[multiple changes]
[gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Sem_Warn; use Sem_Warn;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stringt; use Stringt;
61 with Stand; use Stand;
62 with Style; use Style;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
66
67 package body Sem_Aggr is
68
69 type Case_Bounds is record
70 Lo : Node_Id;
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
73
74 Hi : Node_Id;
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
77
78 Highest : Uint;
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
82
83 Choice : Node_Id;
84 -- The node of the choice
85 end record;
86
87 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
90
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
99
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
109 --
110 -- It would be better to pass the proper type for Typ ???
111
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already pre-analyzed and it is known to be type correct.
118
119 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
123
124 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
126 -- aggregate.
127
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
131
132 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
137 --
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
140 --
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
146 --
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
151 -- aggregate.
152 --
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
158 -- subtree transformation is performed during resolution rather than
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
161 -- however, that all the expansion concerning aggregates for tagged records
162 -- is done in Expand_Record_Aggregate.
163 --
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
165 --
166 -- 1. Make sure that the record type against which the record aggregate
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
169 --
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
175 --
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
184 --
185 -- During this phase we also make sure that every discriminant is
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
190 --
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
194 --
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
199 --
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
206 --
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
210 --
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
216 --
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
219 --
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
227 -- list.
228
229 procedure Check_Misspelled_Component
230 (Elements : Elist_Id;
231 Component : Node_Id);
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
235
236 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
241
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
245
246 function Resolve_Array_Aggregate
247 (N : Node_Id;
248 Index : Node_Id;
249 Index_Constr : Node_Id;
250 Component_Typ : Entity_Id;
251 Others_Allowed : Boolean) return Boolean;
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
254 --
255 -- The procedure works by recursively checking each nested aggregate.
256 -- Specifically, after checking a sub-aggregate nested at the i-th level
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
261 --
262 -- N is the current N_Aggregate node to be checked.
263 --
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
267 --
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
273 --
274 -- Component_Typ is the array component type.
275 --
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
278 --
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
280 --
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
285 -- choice is present, make sure it is allowed in the aggregate context.
286 --
287 -- 2. If the array sub-aggregate contains discrete_choices:
288 --
289 -- (A) Verify their validity. Specifically verify that:
290 --
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
293 --
294 -- (b) Ditto for a non static range.
295 --
296 -- (c) Ditto for a non static expression.
297 --
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
307 --
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
310 --
311 -- 3. For positional aggregates:
312 --
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
317 --
318 -- (B) Determine the bounds of the positional sub-aggregates.
319 --
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
323 --
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
331 --
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
337 --
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
342 --
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
348 --
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
354 --
355 -- type Rec is record
356 -- V : Integer := 0;
357 -- end record;
358 --
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361 --
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
364 --
365 -- P7b : constant Acc_Rec := new Rec;
366 -- RecIP (P7b.all);
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368 --
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
374
375 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376 -- This routine returns the type or subtype of an array aggregate.
377 --
378 -- N is the array aggregate node whose type we return.
379 --
380 -- Typ is the context type in which N occurs.
381 --
382 -- This routine creates an implicit array subtype whose bounds are
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386 -- sub-aggregate bounds. When building the aggregate itype, this function
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
389 --
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
399 --
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
405 -- this). After constructing the proper itype we will eventually replace
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
408 --
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
411 --
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
414
415 procedure Make_String_Into_Aggregate (N : Node_Id);
416 -- A string literal can appear in a context in which a one dimensional
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
419
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
423
424 function Array_Aggr_Subtype
425 (N : Node_Id;
426 Typ : Entity_Id) return Entity_Id
427 is
428 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429 -- Number of aggregate index dimensions
430
431 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432 -- Constrained N_Range of each index dimension in our aggregate itype
433
434 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436 -- Low and High bounds for each index dimension in our aggregate itype
437
438 Is_Fully_Positional : Boolean := True;
439
440 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
446 --
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
451
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
455
456 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457 This_Range : constant Node_Id := Aggregate_Bounds (N);
458 -- The aggregate range node of this specific sub-aggregate
459
460 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462 -- The aggregate bounds of this specific sub-aggregate
463
464 Assoc : Node_Id;
465 Expr : Node_Id;
466
467 begin
468 Remove_Side_Effects (This_Low, Variable_Ref => True);
469 Remove_Side_Effects (This_High, Variable_Ref => True);
470
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
473
474 if No (Aggr_Range (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476 Aggr_High (Dim) := This_High;
477 Aggr_Range (Dim) := This_Range;
478
479 else
480 if Compile_Time_Known_Value (This_Low) then
481 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482 Aggr_Low (Dim) := This_Low;
483
484 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485 Set_Raises_Constraint_Error (N);
486 Error_Msg_Warn := SPARK_Mode /= On;
487 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488 Error_Msg_N ("\Constraint_Error [<<", N);
489 end if;
490 end if;
491
492 if Compile_Time_Known_Value (This_High) then
493 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494 Aggr_High (Dim) := This_High;
495
496 elsif
497 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498 then
499 Set_Raises_Constraint_Error (N);
500 Error_Msg_Warn := SPARK_Mode /= On;
501 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502 Error_Msg_N ("\Constraint_Error [<<", N);
503 end if;
504 end if;
505 end if;
506
507 if Dim < Aggr_Dimension then
508
509 -- Process positional components
510
511 if Present (Expressions (N)) then
512 Expr := First (Expressions (N));
513 while Present (Expr) loop
514 Collect_Aggr_Bounds (Expr, Dim + 1);
515 Next (Expr);
516 end loop;
517 end if;
518
519 -- Process component associations
520
521 if Present (Component_Associations (N)) then
522 Is_Fully_Positional := False;
523
524 Assoc := First (Component_Associations (N));
525 while Present (Assoc) loop
526 Expr := Expression (Assoc);
527 Collect_Aggr_Bounds (Expr, Dim + 1);
528 Next (Assoc);
529 end loop;
530 end if;
531 end if;
532 end Collect_Aggr_Bounds;
533
534 -- Array_Aggr_Subtype variables
535
536 Itype : Entity_Id;
537 -- The final itype of the overall aggregate
538
539 Index_Constraints : constant List_Id := New_List;
540 -- The list of index constraints of the aggregate itype
541
542 -- Start of processing for Array_Aggr_Subtype
543
544 begin
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
547
548 Set_Parent (Index_Constraints, N);
549 Collect_Aggr_Bounds (N, 1);
550
551 -- Build the list of constrained indexes of our aggregate itype
552
553 for J in 1 .. Aggr_Dimension loop
554 Create_Index : declare
555 Index_Base : constant Entity_Id :=
556 Base_Type (Etype (Aggr_Range (J)));
557 Index_Typ : Entity_Id;
558
559 begin
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
562
563 Index_Typ :=
564 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
565
566 Set_Etype (Index_Typ, Index_Base);
567
568 if Is_Character_Type (Index_Base) then
569 Set_Is_Character_Type (Index_Typ);
570 end if;
571
572 Set_Size_Info (Index_Typ, (Index_Base));
573 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
574 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
576
577 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579 end if;
580
581 Set_Etype (Aggr_Range (J), Index_Typ);
582
583 Append (Aggr_Range (J), To => Index_Constraints);
584 end Create_Index;
585 end loop;
586
587 -- Now build the Itype
588
589 Itype := Create_Itype (E_Array_Subtype, N);
590
591 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
592 Set_Convention (Itype, Convention (Typ));
593 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
594 Set_Etype (Itype, Base_Type (Typ));
595 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
596 Set_Is_Aliased (Itype, Is_Aliased (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
598
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
601
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
605
606 -- A simple optimization: purely positional aggregates of static
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
610
611 Set_Size_Known_At_Compile_Time
612 (Itype,
613 Is_Fully_Positional
614 and then Comes_From_Source (N)
615 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
616
617 -- We always need a freeze node for a packed array subtype, so that we
618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
622
623 if Is_Packed (Itype)
624 and then not In_Spec_Expression
625 and then Expander_Active
626 then
627 Freeze_Itype (Itype, N);
628 end if;
629
630 return Itype;
631 end Array_Aggr_Subtype;
632
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
636
637 procedure Check_Misspelled_Component
638 (Elements : Elist_Id;
639 Component : Node_Id)
640 is
641 Max_Suggestions : constant := 2;
642
643 Nr_Of_Suggestions : Natural := 0;
644 Suggestion_1 : Entity_Id := Empty;
645 Suggestion_2 : Entity_Id := Empty;
646 Component_Elmt : Elmt_Id;
647
648 begin
649 -- All the components of List are matched against Component and a count
650 -- is maintained of possible misspellings. When at the end of the
651 -- analysis there are one or two (not more) possible misspellings,
652 -- these misspellings will be suggested as possible corrections.
653
654 Component_Elmt := First_Elmt (Elements);
655 while Nr_Of_Suggestions <= Max_Suggestions
656 and then Present (Component_Elmt)
657 loop
658 if Is_Bad_Spelling_Of
659 (Chars (Node (Component_Elmt)),
660 Chars (Component))
661 then
662 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
663
664 case Nr_Of_Suggestions is
665 when 1 => Suggestion_1 := Node (Component_Elmt);
666 when 2 => Suggestion_2 := Node (Component_Elmt);
667 when others => null;
668 end case;
669 end if;
670
671 Next_Elmt (Component_Elmt);
672 end loop;
673
674 -- Report at most two suggestions
675
676 if Nr_Of_Suggestions = 1 then
677 Error_Msg_NE -- CODEFIX
678 ("\possible misspelling of&", Component, Suggestion_1);
679
680 elsif Nr_Of_Suggestions = 2 then
681 Error_Msg_Node_2 := Suggestion_2;
682 Error_Msg_NE -- CODEFIX
683 ("\possible misspelling of& or&", Component, Suggestion_1);
684 end if;
685 end Check_Misspelled_Component;
686
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
690
691 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692 begin
693 if Is_Limited_Type (Etype (Expr))
694 and then Comes_From_Source (Expr)
695 then
696 if In_Instance_Body or else In_Inlined_Body then
697 null;
698
699 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700 Error_Msg_N
701 ("initialization not allowed for limited types", Expr);
702 Explain_Limited_Type (Etype (Expr), Expr);
703 end if;
704 end if;
705 end Check_Expr_OK_In_Limited_Aggregate;
706
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
710
711 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712 Comp_Expr : Node_Id;
713 Comp_Assn : Node_Id;
714
715 begin
716 if Level = 0 then
717 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
718 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
719 end if;
720
721 else
722 Comp_Expr := First (Expressions (Expr));
723 while Present (Comp_Expr) loop
724 if Nkind (Comp_Expr) = N_Aggregate then
725 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726 end if;
727
728 Comp_Expr := Next (Comp_Expr);
729 end loop;
730
731 Comp_Assn := First (Component_Associations (Expr));
732 while Present (Comp_Assn) loop
733 Comp_Expr := Expression (Comp_Assn);
734
735 if Nkind (Comp_Expr) = N_Aggregate then
736 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737 end if;
738
739 Comp_Assn := Next (Comp_Assn);
740 end loop;
741 end if;
742 end Check_Qualified_Aggregate;
743
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
747
748 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749 Disc : constant Entity_Id := First_Discriminant (T);
750 Comp : Entity_Id;
751 Ind : Entity_Id;
752
753 begin
754 if Has_Record_Rep_Clause (T) then
755 return;
756
757 elsif Present (Next_Discriminant (Disc)) then
758 return;
759
760 elsif Nkind (V) /= N_Integer_Literal then
761 return;
762 end if;
763
764 Comp := First_Component (T);
765 while Present (Comp) loop
766 if Is_Scalar_Type (Etype (Comp)) then
767 null;
768
769 elsif Is_Private_Type (Etype (Comp))
770 and then Present (Full_View (Etype (Comp)))
771 and then Is_Scalar_Type (Full_View (Etype (Comp)))
772 then
773 null;
774
775 elsif Is_Array_Type (Etype (Comp)) then
776 if Is_Bit_Packed_Array (Etype (Comp)) then
777 return;
778 end if;
779
780 Ind := First_Index (Etype (Comp));
781 while Present (Ind) loop
782 if Nkind (Ind) /= N_Range
783 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
784 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785 then
786 return;
787 end if;
788
789 Next_Index (Ind);
790 end loop;
791
792 else
793 return;
794 end if;
795
796 Next_Component (Comp);
797 end loop;
798
799 -- On exit, all components have statically known sizes
800
801 Set_Size_Known_At_Compile_Time (T);
802 end Check_Static_Discriminated_Subtype;
803
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
807
808 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809 begin
810 return No (Expressions (Aggr))
811 and then
812 Nkind (First (Choice_List (First (Component_Associations (Aggr))))) =
813 N_Others_Choice;
814 end Is_Others_Aggregate;
815
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
819
820 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821 begin
822 return Nkind (Parent (Expr)) /= N_Aggregate
823 and then (Nkind (Parent (Expr)) /= N_Component_Association
824 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825 end Is_Top_Level_Aggregate;
826
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
830
831 procedure Make_String_Into_Aggregate (N : Node_Id) is
832 Exprs : constant List_Id := New_List;
833 Loc : constant Source_Ptr := Sloc (N);
834 Str : constant String_Id := Strval (N);
835 Strlen : constant Nat := String_Length (Str);
836 C : Char_Code;
837 C_Node : Node_Id;
838 New_N : Node_Id;
839 P : Source_Ptr;
840
841 begin
842 P := Loc + 1;
843 for J in 1 .. Strlen loop
844 C := Get_String_Char (Str, J);
845 Set_Character_Literal_Name (C);
846
847 C_Node :=
848 Make_Character_Literal (P,
849 Chars => Name_Find,
850 Char_Literal_Value => UI_From_CC (C));
851 Set_Etype (C_Node, Any_Character);
852 Append_To (Exprs, C_Node);
853
854 P := P + 1;
855 -- Something special for wide strings???
856 end loop;
857
858 New_N := Make_Aggregate (Loc, Expressions => Exprs);
859 Set_Analyzed (New_N);
860 Set_Etype (New_N, Any_Composite);
861
862 Rewrite (N, New_N);
863 end Make_String_Into_Aggregate;
864
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
868
869 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
870 Loc : constant Source_Ptr := Sloc (N);
871 Pkind : constant Node_Kind := Nkind (Parent (N));
872
873 Aggr_Subtyp : Entity_Id;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
876
877 begin
878 -- Ignore junk empty aggregate resulting from parser error
879
880 if No (Expressions (N))
881 and then No (Component_Associations (N))
882 and then not Null_Record_Present (N)
883 then
884 return;
885 end if;
886
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
891 -- be done during resolution.
892
893 if Expander_Active
894 and then Present (Component_Associations (N))
895 then
896 declare
897 Comp : Node_Id;
898
899 begin
900 Comp := First (Component_Associations (N));
901 while Present (Comp) loop
902 if Box_Present (Comp) then
903 Insert_Actions (N, Freeze_Entity (Typ, N));
904 exit;
905 end if;
906
907 Next (Comp);
908 end loop;
909 end;
910 end if;
911
912 -- An unqualified aggregate is restricted in SPARK to:
913
914 -- An aggregate item inside an aggregate for a multi-dimensional array
915
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
918
919 if Nkind (Parent (N)) = N_Qualified_Expression then
920 if Is_Array_Type (Typ) then
921 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922 else
923 Check_Qualified_Aggregate (1, N);
924 end if;
925 else
926 if Is_Array_Type (Typ)
927 and then Nkind (Parent (N)) = N_Assignment_Statement
928 and then not Is_Constrained (Etype (Name (Parent (N))))
929 then
930 if not Is_Others_Aggregate (N) then
931 Check_SPARK_05_Restriction
932 ("array aggregate should have only OTHERS", N);
933 end if;
934
935 elsif Is_Top_Level_Aggregate (N) then
936 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
937
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
941
942 else
943 null;
944 end if;
945 end if;
946
947 -- Check for aggregates not allowed in configurable run-time mode.
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
951
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source (N)
954 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955 then
956 Error_Msg_CRT ("aggregate", N);
957 end if;
958
959 -- Ada 2005 (AI-287): Limited aggregates allowed
960
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
964
965 if Is_Limited_Type (Typ)
966 and then Ada_Version < Ada_2005
967 and then not In_Instance
968 then
969 Error_Msg_N ("aggregate type cannot be limited", N);
970 Explain_Limited_Type (Typ, N);
971
972 elsif Is_Class_Wide_Type (Typ) then
973 Error_Msg_N ("type of aggregate cannot be class-wide", N);
974
975 elsif Typ = Any_String
976 or else Typ = Any_Composite
977 then
978 Error_Msg_N ("no unique type for aggregate", N);
979 Set_Etype (N, Any_Composite);
980
981 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982 Error_Msg_N ("null record forbidden in array aggregate", N);
983
984 elsif Is_Record_Type (Typ) then
985 Resolve_Record_Aggregate (N, Typ);
986
987 elsif Is_Array_Type (Typ) then
988
989 -- First a special test, for the case of a positional aggregate of
990 -- characters which can be replaced by a string literal.
991
992 -- Do not perform this transformation if this was a string literal
993 -- to start with, whose components needed constraint checks, or if
994 -- the component type is non-static, because it will require those
995 -- checks and be transformed back into an aggregate. If the index
996 -- type is not Integer the aggregate may represent a user-defined
997 -- string type but the context might need the original type so we
998 -- do not perform the transformation at this point.
999
1000 if Number_Dimensions (Typ) = 1
1001 and then Is_Standard_Character_Type (Component_Type (Typ))
1002 and then No (Component_Associations (N))
1003 and then not Is_Limited_Composite (Typ)
1004 and then not Is_Private_Composite (Typ)
1005 and then not Is_Bit_Packed_Array (Typ)
1006 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1007 and then Is_OK_Static_Subtype (Component_Type (Typ))
1008 and then Base_Type (Etype (First_Index (Typ))) =
1009 Base_Type (Standard_Integer)
1010 then
1011 declare
1012 Expr : Node_Id;
1013
1014 begin
1015 Expr := First (Expressions (N));
1016 while Present (Expr) loop
1017 exit when Nkind (Expr) /= N_Character_Literal;
1018 Next (Expr);
1019 end loop;
1020
1021 if No (Expr) then
1022 Start_String;
1023
1024 Expr := First (Expressions (N));
1025 while Present (Expr) loop
1026 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1027 Next (Expr);
1028 end loop;
1029
1030 Rewrite (N, Make_String_Literal (Loc, End_String));
1031
1032 Analyze_And_Resolve (N, Typ);
1033 return;
1034 end if;
1035 end;
1036 end if;
1037
1038 -- Here if we have a real aggregate to deal with
1039
1040 Array_Aggregate : declare
1041 Aggr_Resolved : Boolean;
1042
1043 Aggr_Typ : constant Entity_Id := Etype (Typ);
1044 -- This is the unconstrained array type, which is the type against
1045 -- which the aggregate is to be resolved. Typ itself is the array
1046 -- type of the context which may not be the same subtype as the
1047 -- subtype for the final aggregate.
1048
1049 begin
1050 -- In the following we determine whether an OTHERS choice is
1051 -- allowed inside the array aggregate. The test checks the context
1052 -- in which the array aggregate occurs. If the context does not
1053 -- permit it, or the aggregate type is unconstrained, an OTHERS
1054 -- choice is not allowed (except that it is always allowed on the
1055 -- right-hand side of an assignment statement; in this case the
1056 -- constrainedness of the type doesn't matter).
1057
1058 -- If expansion is disabled (generic context, or semantics-only
1059 -- mode) actual subtypes cannot be constructed, and the type of an
1060 -- object may be its unconstrained nominal type. However, if the
1061 -- context is an assignment, we assume that OTHERS is allowed,
1062 -- because the target of the assignment will have a constrained
1063 -- subtype when fully compiled.
1064
1065 -- Note that there is no node for Explicit_Actual_Parameter.
1066 -- To test for this context we therefore have to test for node
1067 -- N_Parameter_Association which itself appears only if there is a
1068 -- formal parameter. Consequently we also need to test for
1069 -- N_Procedure_Call_Statement or N_Function_Call.
1070
1071 -- The context may be an N_Reference node, created by expansion.
1072 -- Legality of the others clause was established in the source,
1073 -- so the context is legal.
1074
1075 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1076
1077 if Pkind = N_Assignment_Statement
1078 or else (Is_Constrained (Typ)
1079 and then
1080 (Pkind = N_Parameter_Association or else
1081 Pkind = N_Function_Call or else
1082 Pkind = N_Procedure_Call_Statement or else
1083 Pkind = N_Generic_Association or else
1084 Pkind = N_Formal_Object_Declaration or else
1085 Pkind = N_Simple_Return_Statement or else
1086 Pkind = N_Object_Declaration or else
1087 Pkind = N_Component_Declaration or else
1088 Pkind = N_Parameter_Specification or else
1089 Pkind = N_Qualified_Expression or else
1090 Pkind = N_Reference or else
1091 Pkind = N_Aggregate or else
1092 Pkind = N_Extension_Aggregate or else
1093 Pkind = N_Component_Association))
1094 then
1095 Aggr_Resolved :=
1096 Resolve_Array_Aggregate
1097 (N,
1098 Index => First_Index (Aggr_Typ),
1099 Index_Constr => First_Index (Typ),
1100 Component_Typ => Component_Type (Typ),
1101 Others_Allowed => True);
1102 else
1103 Aggr_Resolved :=
1104 Resolve_Array_Aggregate
1105 (N,
1106 Index => First_Index (Aggr_Typ),
1107 Index_Constr => First_Index (Aggr_Typ),
1108 Component_Typ => Component_Type (Typ),
1109 Others_Allowed => False);
1110 end if;
1111
1112 if not Aggr_Resolved then
1113
1114 -- A parenthesized expression may have been intended as an
1115 -- aggregate, leading to a type error when analyzing the
1116 -- component. This can also happen for a nested component
1117 -- (see Analyze_Aggr_Expr).
1118
1119 if Paren_Count (N) > 0 then
1120 Error_Msg_N
1121 ("positional aggregate cannot have one component", N);
1122 end if;
1123
1124 Aggr_Subtyp := Any_Composite;
1125
1126 else
1127 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1128 end if;
1129
1130 Set_Etype (N, Aggr_Subtyp);
1131 end Array_Aggregate;
1132
1133 elsif Is_Private_Type (Typ)
1134 and then Present (Full_View (Typ))
1135 and then (In_Inlined_Body or In_Instance_Body)
1136 and then Is_Composite_Type (Full_View (Typ))
1137 then
1138 Resolve (N, Full_View (Typ));
1139
1140 else
1141 Error_Msg_N ("illegal context for aggregate", N);
1142 end if;
1143
1144 -- If we can determine statically that the evaluation of the aggregate
1145 -- raises Constraint_Error, then replace the aggregate with an
1146 -- N_Raise_Constraint_Error node, but set the Etype to the right
1147 -- aggregate subtype. Gigi needs this.
1148
1149 if Raises_Constraint_Error (N) then
1150 Aggr_Subtyp := Etype (N);
1151 Rewrite (N,
1152 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1153 Set_Raises_Constraint_Error (N);
1154 Set_Etype (N, Aggr_Subtyp);
1155 Set_Analyzed (N);
1156 end if;
1157
1158 Check_Function_Writable_Actuals (N);
1159 end Resolve_Aggregate;
1160
1161 -----------------------------
1162 -- Resolve_Array_Aggregate --
1163 -----------------------------
1164
1165 function Resolve_Array_Aggregate
1166 (N : Node_Id;
1167 Index : Node_Id;
1168 Index_Constr : Node_Id;
1169 Component_Typ : Entity_Id;
1170 Others_Allowed : Boolean) return Boolean
1171 is
1172 Loc : constant Source_Ptr := Sloc (N);
1173
1174 Failure : constant Boolean := False;
1175 Success : constant Boolean := True;
1176
1177 Index_Typ : constant Entity_Id := Etype (Index);
1178 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1179 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1180 -- The type of the index corresponding to the array sub-aggregate along
1181 -- with its low and upper bounds.
1182
1183 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1184 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1185 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1186 -- Ditto for the base type
1187
1188 Others_Present : Boolean := False;
1189
1190 Nb_Choices : Nat := 0;
1191 -- Contains the overall number of named choices in this sub-aggregate
1192
1193 function Add (Val : Uint; To : Node_Id) return Node_Id;
1194 -- Creates a new expression node where Val is added to expression To.
1195 -- Tries to constant fold whenever possible. To must be an already
1196 -- analyzed expression.
1197
1198 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1199 -- Checks that AH (the upper bound of an array aggregate) is less than
1200 -- or equal to BH (the upper bound of the index base type). If the check
1201 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1202 -- set, and AH is replaced with a duplicate of BH.
1203
1204 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1205 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1206 -- warning if not and sets the Raises_Constraint_Error flag in N.
1207
1208 procedure Check_Length (L, H : Node_Id; Len : Uint);
1209 -- Checks that range L .. H contains at least Len elements. Emits a
1210 -- warning if not and sets the Raises_Constraint_Error flag in N.
1211
1212 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1213 -- Returns True if range L .. H is dynamic or null
1214
1215 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1216 -- Given expression node From, this routine sets OK to False if it
1217 -- cannot statically evaluate From. Otherwise it stores this static
1218 -- value into Value.
1219
1220 function Resolve_Aggr_Expr
1221 (Expr : Node_Id;
1222 Single_Elmt : Boolean) return Boolean;
1223 -- Resolves aggregate expression Expr. Returns False if resolution
1224 -- fails. If Single_Elmt is set to False, the expression Expr may be
1225 -- used to initialize several array aggregate elements (this can happen
1226 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1227 -- In this event we do not resolve Expr unless expansion is disabled.
1228 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1229 --
1230 -- NOTE: In the case of "... => <>", we pass the in the
1231 -- N_Component_Association node as Expr, since there is no Expression in
1232 -- that case, and we need a Sloc for the error message.
1233
1234 procedure Resolve_Iterated_Component_Association
1235 (N : Node_Id;
1236 Index_Typ : Entity_Id);
1237 -- For AI12-061
1238
1239 ---------
1240 -- Add --
1241 ---------
1242
1243 function Add (Val : Uint; To : Node_Id) return Node_Id is
1244 Expr_Pos : Node_Id;
1245 Expr : Node_Id;
1246 To_Pos : Node_Id;
1247
1248 begin
1249 if Raises_Constraint_Error (To) then
1250 return To;
1251 end if;
1252
1253 -- First test if we can do constant folding
1254
1255 if Compile_Time_Known_Value (To)
1256 or else Nkind (To) = N_Integer_Literal
1257 then
1258 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1259 Set_Is_Static_Expression (Expr_Pos);
1260 Set_Etype (Expr_Pos, Etype (To));
1261 Set_Analyzed (Expr_Pos, Analyzed (To));
1262
1263 if not Is_Enumeration_Type (Index_Typ) then
1264 Expr := Expr_Pos;
1265
1266 -- If we are dealing with enumeration return
1267 -- Index_Typ'Val (Expr_Pos)
1268
1269 else
1270 Expr :=
1271 Make_Attribute_Reference
1272 (Loc,
1273 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1274 Attribute_Name => Name_Val,
1275 Expressions => New_List (Expr_Pos));
1276 end if;
1277
1278 return Expr;
1279 end if;
1280
1281 -- If we are here no constant folding possible
1282
1283 if not Is_Enumeration_Type (Index_Base) then
1284 Expr :=
1285 Make_Op_Add (Loc,
1286 Left_Opnd => Duplicate_Subexpr (To),
1287 Right_Opnd => Make_Integer_Literal (Loc, Val));
1288
1289 -- If we are dealing with enumeration return
1290 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1291
1292 else
1293 To_Pos :=
1294 Make_Attribute_Reference
1295 (Loc,
1296 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1297 Attribute_Name => Name_Pos,
1298 Expressions => New_List (Duplicate_Subexpr (To)));
1299
1300 Expr_Pos :=
1301 Make_Op_Add (Loc,
1302 Left_Opnd => To_Pos,
1303 Right_Opnd => Make_Integer_Literal (Loc, Val));
1304
1305 Expr :=
1306 Make_Attribute_Reference
1307 (Loc,
1308 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1309 Attribute_Name => Name_Val,
1310 Expressions => New_List (Expr_Pos));
1311
1312 -- If the index type has a non standard representation, the
1313 -- attributes 'Val and 'Pos expand into function calls and the
1314 -- resulting expression is considered non-safe for reevaluation
1315 -- by the backend. Relocate it into a constant temporary in order
1316 -- to make it safe for reevaluation.
1317
1318 if Has_Non_Standard_Rep (Etype (N)) then
1319 declare
1320 Def_Id : Entity_Id;
1321
1322 begin
1323 Def_Id := Make_Temporary (Loc, 'R', Expr);
1324 Set_Etype (Def_Id, Index_Typ);
1325 Insert_Action (N,
1326 Make_Object_Declaration (Loc,
1327 Defining_Identifier => Def_Id,
1328 Object_Definition =>
1329 New_Occurrence_Of (Index_Typ, Loc),
1330 Constant_Present => True,
1331 Expression => Relocate_Node (Expr)));
1332
1333 Expr := New_Occurrence_Of (Def_Id, Loc);
1334 end;
1335 end if;
1336 end if;
1337
1338 return Expr;
1339 end Add;
1340
1341 -----------------
1342 -- Check_Bound --
1343 -----------------
1344
1345 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1346 Val_BH : Uint;
1347 Val_AH : Uint;
1348
1349 OK_BH : Boolean;
1350 OK_AH : Boolean;
1351
1352 begin
1353 Get (Value => Val_BH, From => BH, OK => OK_BH);
1354 Get (Value => Val_AH, From => AH, OK => OK_AH);
1355
1356 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1357 Set_Raises_Constraint_Error (N);
1358 Error_Msg_Warn := SPARK_Mode /= On;
1359 Error_Msg_N ("upper bound out of range<<", AH);
1360 Error_Msg_N ("\Constraint_Error [<<", AH);
1361
1362 -- You need to set AH to BH or else in the case of enumerations
1363 -- indexes we will not be able to resolve the aggregate bounds.
1364
1365 AH := Duplicate_Subexpr (BH);
1366 end if;
1367 end Check_Bound;
1368
1369 ------------------
1370 -- Check_Bounds --
1371 ------------------
1372
1373 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1374 Val_L : Uint;
1375 Val_H : Uint;
1376 Val_AL : Uint;
1377 Val_AH : Uint;
1378
1379 OK_L : Boolean;
1380 OK_H : Boolean;
1381
1382 OK_AL : Boolean;
1383 OK_AH : Boolean;
1384 pragma Warnings (Off, OK_AL);
1385 pragma Warnings (Off, OK_AH);
1386
1387 begin
1388 if Raises_Constraint_Error (N)
1389 or else Dynamic_Or_Null_Range (AL, AH)
1390 then
1391 return;
1392 end if;
1393
1394 Get (Value => Val_L, From => L, OK => OK_L);
1395 Get (Value => Val_H, From => H, OK => OK_H);
1396
1397 Get (Value => Val_AL, From => AL, OK => OK_AL);
1398 Get (Value => Val_AH, From => AH, OK => OK_AH);
1399
1400 if OK_L and then Val_L > Val_AL then
1401 Set_Raises_Constraint_Error (N);
1402 Error_Msg_Warn := SPARK_Mode /= On;
1403 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1404 Error_Msg_N ("\Constraint_Error [<<", N);
1405 end if;
1406
1407 if OK_H and then Val_H < Val_AH then
1408 Set_Raises_Constraint_Error (N);
1409 Error_Msg_Warn := SPARK_Mode /= On;
1410 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1411 Error_Msg_N ("\Constraint_Error [<<", N);
1412 end if;
1413 end Check_Bounds;
1414
1415 ------------------
1416 -- Check_Length --
1417 ------------------
1418
1419 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1420 Val_L : Uint;
1421 Val_H : Uint;
1422
1423 OK_L : Boolean;
1424 OK_H : Boolean;
1425
1426 Range_Len : Uint;
1427
1428 begin
1429 if Raises_Constraint_Error (N) then
1430 return;
1431 end if;
1432
1433 Get (Value => Val_L, From => L, OK => OK_L);
1434 Get (Value => Val_H, From => H, OK => OK_H);
1435
1436 if not OK_L or else not OK_H then
1437 return;
1438 end if;
1439
1440 -- If null range length is zero
1441
1442 if Val_L > Val_H then
1443 Range_Len := Uint_0;
1444 else
1445 Range_Len := Val_H - Val_L + 1;
1446 end if;
1447
1448 if Range_Len < Len then
1449 Set_Raises_Constraint_Error (N);
1450 Error_Msg_Warn := SPARK_Mode /= On;
1451 Error_Msg_N ("too many elements<<", N);
1452 Error_Msg_N ("\Constraint_Error [<<", N);
1453 end if;
1454 end Check_Length;
1455
1456 ---------------------------
1457 -- Dynamic_Or_Null_Range --
1458 ---------------------------
1459
1460 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1461 Val_L : Uint;
1462 Val_H : Uint;
1463
1464 OK_L : Boolean;
1465 OK_H : Boolean;
1466
1467 begin
1468 Get (Value => Val_L, From => L, OK => OK_L);
1469 Get (Value => Val_H, From => H, OK => OK_H);
1470
1471 return not OK_L or else not OK_H
1472 or else not Is_OK_Static_Expression (L)
1473 or else not Is_OK_Static_Expression (H)
1474 or else Val_L > Val_H;
1475 end Dynamic_Or_Null_Range;
1476
1477 ---------
1478 -- Get --
1479 ---------
1480
1481 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1482 begin
1483 OK := True;
1484
1485 if Compile_Time_Known_Value (From) then
1486 Value := Expr_Value (From);
1487
1488 -- If expression From is something like Some_Type'Val (10) then
1489 -- Value = 10.
1490
1491 elsif Nkind (From) = N_Attribute_Reference
1492 and then Attribute_Name (From) = Name_Val
1493 and then Compile_Time_Known_Value (First (Expressions (From)))
1494 then
1495 Value := Expr_Value (First (Expressions (From)));
1496 else
1497 Value := Uint_0;
1498 OK := False;
1499 end if;
1500 end Get;
1501
1502 -----------------------
1503 -- Resolve_Aggr_Expr --
1504 -----------------------
1505
1506 function Resolve_Aggr_Expr
1507 (Expr : Node_Id;
1508 Single_Elmt : Boolean) return Boolean
1509 is
1510 Nxt_Ind : constant Node_Id := Next_Index (Index);
1511 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1512 -- Index is the current index corresponding to the expression
1513
1514 Resolution_OK : Boolean := True;
1515 -- Set to False if resolution of the expression failed
1516
1517 begin
1518 -- Defend against previous errors
1519
1520 if Nkind (Expr) = N_Error
1521 or else Error_Posted (Expr)
1522 then
1523 return True;
1524 end if;
1525
1526 -- If the array type against which we are resolving the aggregate
1527 -- has several dimensions, the expressions nested inside the
1528 -- aggregate must be further aggregates (or strings).
1529
1530 if Present (Nxt_Ind) then
1531 if Nkind (Expr) /= N_Aggregate then
1532
1533 -- A string literal can appear where a one-dimensional array
1534 -- of characters is expected. If the literal looks like an
1535 -- operator, it is still an operator symbol, which will be
1536 -- transformed into a string when analyzed.
1537
1538 if Is_Character_Type (Component_Typ)
1539 and then No (Next_Index (Nxt_Ind))
1540 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1541 then
1542 -- A string literal used in a multidimensional array
1543 -- aggregate in place of the final one-dimensional
1544 -- aggregate must not be enclosed in parentheses.
1545
1546 if Paren_Count (Expr) /= 0 then
1547 Error_Msg_N ("no parenthesis allowed here", Expr);
1548 end if;
1549
1550 Make_String_Into_Aggregate (Expr);
1551
1552 else
1553 Error_Msg_N ("nested array aggregate expected", Expr);
1554
1555 -- If the expression is parenthesized, this may be
1556 -- a missing component association for a 1-aggregate.
1557
1558 if Paren_Count (Expr) > 0 then
1559 Error_Msg_N
1560 ("\if single-component aggregate is intended, "
1561 & "write e.g. (1 ='> ...)", Expr);
1562 end if;
1563
1564 return Failure;
1565 end if;
1566 end if;
1567
1568 -- If it's "... => <>", nothing to resolve
1569
1570 if Nkind (Expr) = N_Component_Association then
1571 pragma Assert (Box_Present (Expr));
1572 return Success;
1573 end if;
1574
1575 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1576 -- Required to check the null-exclusion attribute (if present).
1577 -- This value may be overridden later on.
1578
1579 Set_Etype (Expr, Etype (N));
1580
1581 Resolution_OK := Resolve_Array_Aggregate
1582 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1583
1584 else
1585 -- If it's "... => <>", nothing to resolve
1586
1587 if Nkind (Expr) = N_Component_Association then
1588 pragma Assert (Box_Present (Expr));
1589 return Success;
1590 end if;
1591
1592 -- Do not resolve the expressions of discrete or others choices
1593 -- unless the expression covers a single component, or the
1594 -- expander is inactive.
1595
1596 -- In SPARK mode, expressions that can perform side-effects will
1597 -- be recognized by the gnat2why back-end, and the whole
1598 -- subprogram will be ignored. So semantic analysis can be
1599 -- performed safely.
1600
1601 if Single_Elmt
1602 or else not Expander_Active
1603 or else In_Spec_Expression
1604 then
1605 Analyze_And_Resolve (Expr, Component_Typ);
1606 Check_Expr_OK_In_Limited_Aggregate (Expr);
1607 Check_Non_Static_Context (Expr);
1608 Aggregate_Constraint_Checks (Expr, Component_Typ);
1609 Check_Unset_Reference (Expr);
1610 end if;
1611 end if;
1612
1613 -- If an aggregate component has a type with predicates, an explicit
1614 -- predicate check must be applied, as for an assignment statement,
1615 -- because the aggegate might not be expanded into individual
1616 -- component assignments. If the expression covers several components
1617 -- the analysis and the predicate check take place later.
1618
1619 if Present (Predicate_Function (Component_Typ))
1620 and then Analyzed (Expr)
1621 then
1622 Apply_Predicate_Check (Expr, Component_Typ);
1623 end if;
1624
1625 if Raises_Constraint_Error (Expr)
1626 and then Nkind (Parent (Expr)) /= N_Component_Association
1627 then
1628 Set_Raises_Constraint_Error (N);
1629 end if;
1630
1631 -- If the expression has been marked as requiring a range check,
1632 -- then generate it here. It's a bit odd to be generating such
1633 -- checks in the analyzer, but harmless since Generate_Range_Check
1634 -- does nothing (other than making sure Do_Range_Check is set) if
1635 -- the expander is not active.
1636
1637 if Do_Range_Check (Expr) then
1638 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1639 end if;
1640
1641 return Resolution_OK;
1642 end Resolve_Aggr_Expr;
1643
1644 --------------------------------------------
1645 -- Resolve_Iterated_Component_Association --
1646 --------------------------------------------
1647
1648 procedure Resolve_Iterated_Component_Association
1649 (N : Node_Id;
1650 Index_Typ : Entity_Id)
1651 is
1652 Id : constant Entity_Id := Defining_Identifier (N);
1653 Loc : constant Source_Ptr := Sloc (N);
1654
1655 Choice : Node_Id;
1656 Dummy : Boolean;
1657 Ent : Entity_Id;
1658
1659 begin
1660 Choice := First (Discrete_Choices (N));
1661
1662 while Present (Choice) loop
1663 if Nkind (Choice) = N_Others_Choice then
1664 Others_Present := True;
1665
1666 else
1667 Analyze_And_Resolve (Choice, Index_Typ);
1668 end if;
1669
1670 Next (Choice);
1671 end loop;
1672
1673 -- Create a scope in which to introduce an index, which is usually
1674 -- visible in the expression for the component, and needed for its
1675 -- analysis.
1676
1677 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1678 Set_Etype (Ent, Standard_Void_Type);
1679 Set_Parent (Ent, Parent (N));
1680
1681 -- Decorate the index variable in the current scope. The association
1682 -- may have several choices, each one leading to a loop, so we create
1683 -- this variable only once to prevent homonyms in this scope.
1684
1685 if No (Scope (Id)) then
1686 Enter_Name (Id);
1687 Set_Etype (Id, Index_Typ);
1688 Set_Ekind (Id, E_Variable);
1689 Set_Scope (Id, Ent);
1690 end if;
1691
1692 Push_Scope (Ent);
1693 Dummy := Resolve_Aggr_Expr (Expression (N), False);
1694 End_Scope;
1695 end Resolve_Iterated_Component_Association;
1696
1697 -- Local variables
1698
1699 Assoc : Node_Id;
1700 Choice : Node_Id;
1701 Expr : Node_Id;
1702 Discard : Node_Id;
1703
1704 Aggr_Low : Node_Id := Empty;
1705 Aggr_High : Node_Id := Empty;
1706 -- The actual low and high bounds of this sub-aggregate
1707
1708 Case_Table_Size : Nat;
1709 -- Contains the size of the case table needed to sort aggregate choices
1710
1711 Choices_Low : Node_Id := Empty;
1712 Choices_High : Node_Id := Empty;
1713 -- The lowest and highest discrete choices values for a named aggregate
1714
1715 Delete_Choice : Boolean;
1716 -- Used when replacing a subtype choice with predicate by a list
1717
1718 Nb_Elements : Uint := Uint_0;
1719 -- The number of elements in a positional aggregate
1720
1721 Nb_Discrete_Choices : Nat := 0;
1722 -- The overall number of discrete choices (not counting others choice)
1723
1724 -- Start of processing for Resolve_Array_Aggregate
1725
1726 begin
1727 -- Ignore junk empty aggregate resulting from parser error
1728
1729 if No (Expressions (N))
1730 and then No (Component_Associations (N))
1731 and then not Null_Record_Present (N)
1732 then
1733 return False;
1734 end if;
1735
1736 -- STEP 1: make sure the aggregate is correctly formatted
1737
1738 if Present (Component_Associations (N)) then
1739 Assoc := First (Component_Associations (N));
1740 while Present (Assoc) loop
1741 if Nkind (Assoc) = N_Iterated_Component_Association then
1742 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1743 end if;
1744
1745 Choice := First (Choice_List (Assoc));
1746 Delete_Choice := False;
1747 while Present (Choice) loop
1748 if Nkind (Choice) = N_Others_Choice then
1749 Others_Present := True;
1750
1751 if Choice /= First (Choice_List (Assoc))
1752 or else Present (Next (Choice))
1753 then
1754 Error_Msg_N
1755 ("OTHERS must appear alone in a choice list", Choice);
1756 return Failure;
1757 end if;
1758
1759 if Present (Next (Assoc)) then
1760 Error_Msg_N
1761 ("OTHERS must appear last in an aggregate", Choice);
1762 return Failure;
1763 end if;
1764
1765 if Ada_Version = Ada_83
1766 and then Assoc /= First (Component_Associations (N))
1767 and then Nkind_In (Parent (N), N_Assignment_Statement,
1768 N_Object_Declaration)
1769 then
1770 Error_Msg_N
1771 ("(Ada 83) illegal context for OTHERS choice", N);
1772 end if;
1773
1774 elsif Is_Entity_Name (Choice) then
1775 Analyze (Choice);
1776
1777 declare
1778 E : constant Entity_Id := Entity (Choice);
1779 New_Cs : List_Id;
1780 P : Node_Id;
1781 C : Node_Id;
1782
1783 begin
1784 if Is_Type (E) and then Has_Predicates (E) then
1785 Freeze_Before (N, E);
1786
1787 if Has_Dynamic_Predicate_Aspect (E) then
1788 Error_Msg_NE
1789 ("subtype& has dynamic predicate, not allowed "
1790 & "in aggregate choice", Choice, E);
1791
1792 elsif not Is_OK_Static_Subtype (E) then
1793 Error_Msg_NE
1794 ("non-static subtype& has predicate, not allowed "
1795 & "in aggregate choice", Choice, E);
1796 end if;
1797
1798 -- If the subtype has a static predicate, replace the
1799 -- original choice with the list of individual values
1800 -- covered by the predicate. Do not perform this
1801 -- transformation if we need to preserve the source
1802 -- for ASIS use.
1803 -- This should be deferred to expansion time ???
1804
1805 if Present (Static_Discrete_Predicate (E))
1806 and then not ASIS_Mode
1807 then
1808 Delete_Choice := True;
1809
1810 New_Cs := New_List;
1811 P := First (Static_Discrete_Predicate (E));
1812 while Present (P) loop
1813 C := New_Copy (P);
1814 Set_Sloc (C, Sloc (Choice));
1815 Append_To (New_Cs, C);
1816 Next (P);
1817 end loop;
1818
1819 Insert_List_After (Choice, New_Cs);
1820 end if;
1821 end if;
1822 end;
1823 end if;
1824
1825 Nb_Choices := Nb_Choices + 1;
1826
1827 declare
1828 C : constant Node_Id := Choice;
1829
1830 begin
1831 Next (Choice);
1832
1833 if Delete_Choice then
1834 Remove (C);
1835 Nb_Choices := Nb_Choices - 1;
1836 Delete_Choice := False;
1837 end if;
1838 end;
1839 end loop;
1840
1841 Next (Assoc);
1842 end loop;
1843 end if;
1844
1845 -- At this point we know that the others choice, if present, is by
1846 -- itself and appears last in the aggregate. Check if we have mixed
1847 -- positional and discrete associations (other than the others choice).
1848
1849 if Present (Expressions (N))
1850 and then (Nb_Choices > 1
1851 or else (Nb_Choices = 1 and then not Others_Present))
1852 then
1853 Error_Msg_N
1854 ("named association cannot follow positional association",
1855 First (Choice_List (First (Component_Associations (N)))));
1856 return Failure;
1857 end if;
1858
1859 -- Test for the validity of an others choice if present
1860
1861 if Others_Present and then not Others_Allowed then
1862 Error_Msg_N
1863 ("OTHERS choice not allowed here",
1864 First (Choices (First (Component_Associations (N)))));
1865 return Failure;
1866 end if;
1867
1868 -- Protect against cascaded errors
1869
1870 if Etype (Index_Typ) = Any_Type then
1871 return Failure;
1872 end if;
1873
1874 -- STEP 2: Process named components
1875
1876 if No (Expressions (N)) then
1877 if Others_Present then
1878 Case_Table_Size := Nb_Choices - 1;
1879 else
1880 Case_Table_Size := Nb_Choices;
1881 end if;
1882
1883 Step_2 : declare
1884 function Empty_Range (A : Node_Id) return Boolean;
1885 -- If an association covers an empty range, some warnings on the
1886 -- expression of the association can be disabled.
1887
1888 -----------------
1889 -- Empty_Range --
1890 -----------------
1891
1892 function Empty_Range (A : Node_Id) return Boolean is
1893 R : constant Node_Id := First (Choices (A));
1894 begin
1895 return No (Next (R))
1896 and then Nkind (R) = N_Range
1897 and then Compile_Time_Compare
1898 (Low_Bound (R), High_Bound (R), False) = GT;
1899 end Empty_Range;
1900
1901 -- Local variables
1902
1903 Low : Node_Id;
1904 High : Node_Id;
1905 -- Denote the lowest and highest values in an aggregate choice
1906
1907 S_Low : Node_Id := Empty;
1908 S_High : Node_Id := Empty;
1909 -- if a choice in an aggregate is a subtype indication these
1910 -- denote the lowest and highest values of the subtype
1911
1912 Table : Case_Table_Type (0 .. Case_Table_Size);
1913 -- Used to sort all the different choice values. Entry zero is
1914 -- reserved for sorting purposes.
1915
1916 Single_Choice : Boolean;
1917 -- Set to true every time there is a single discrete choice in a
1918 -- discrete association
1919
1920 Prev_Nb_Discrete_Choices : Nat;
1921 -- Used to keep track of the number of discrete choices in the
1922 -- current association.
1923
1924 Errors_Posted_On_Choices : Boolean := False;
1925 -- Keeps track of whether any choices have semantic errors
1926
1927 -- Start of processing for Step_2
1928
1929 begin
1930 -- STEP 2 (A): Check discrete choices validity
1931
1932 Assoc := First (Component_Associations (N));
1933 while Present (Assoc) loop
1934 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1935 Choice := First (Choice_List (Assoc));
1936
1937 loop
1938 Analyze (Choice);
1939
1940 if Nkind (Choice) = N_Others_Choice then
1941 Single_Choice := False;
1942 exit;
1943
1944 -- Test for subtype mark without constraint
1945
1946 elsif Is_Entity_Name (Choice) and then
1947 Is_Type (Entity (Choice))
1948 then
1949 if Base_Type (Entity (Choice)) /= Index_Base then
1950 Error_Msg_N
1951 ("invalid subtype mark in aggregate choice",
1952 Choice);
1953 return Failure;
1954 end if;
1955
1956 -- Case of subtype indication
1957
1958 elsif Nkind (Choice) = N_Subtype_Indication then
1959 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1960
1961 if Has_Dynamic_Predicate_Aspect
1962 (Entity (Subtype_Mark (Choice)))
1963 then
1964 Error_Msg_NE
1965 ("subtype& has dynamic predicate, "
1966 & "not allowed in aggregate choice",
1967 Choice, Entity (Subtype_Mark (Choice)));
1968 end if;
1969
1970 -- Does the subtype indication evaluation raise CE?
1971
1972 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1973 Get_Index_Bounds (Choice, Low, High);
1974 Check_Bounds (S_Low, S_High, Low, High);
1975
1976 -- Case of range or expression
1977
1978 else
1979 Resolve (Choice, Index_Base);
1980 Check_Unset_Reference (Choice);
1981 Check_Non_Static_Context (Choice);
1982
1983 -- If semantic errors were posted on the choice, then
1984 -- record that for possible early return from later
1985 -- processing (see handling of enumeration choices).
1986
1987 if Error_Posted (Choice) then
1988 Errors_Posted_On_Choices := True;
1989 end if;
1990
1991 -- Do not range check a choice. This check is redundant
1992 -- since this test is already done when we check that the
1993 -- bounds of the array aggregate are within range.
1994
1995 Set_Do_Range_Check (Choice, False);
1996
1997 -- In SPARK, the choice must be static
1998
1999 if not (Is_OK_Static_Expression (Choice)
2000 or else (Nkind (Choice) = N_Range
2001 and then Is_OK_Static_Range (Choice)))
2002 then
2003 Check_SPARK_05_Restriction
2004 ("choice should be static", Choice);
2005 end if;
2006 end if;
2007
2008 -- If we could not resolve the discrete choice stop here
2009
2010 if Etype (Choice) = Any_Type then
2011 return Failure;
2012
2013 -- If the discrete choice raises CE get its original bounds
2014
2015 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2016 Set_Raises_Constraint_Error (N);
2017 Get_Index_Bounds (Original_Node (Choice), Low, High);
2018
2019 -- Otherwise get its bounds as usual
2020
2021 else
2022 Get_Index_Bounds (Choice, Low, High);
2023 end if;
2024
2025 if (Dynamic_Or_Null_Range (Low, High)
2026 or else (Nkind (Choice) = N_Subtype_Indication
2027 and then
2028 Dynamic_Or_Null_Range (S_Low, S_High)))
2029 and then Nb_Choices /= 1
2030 then
2031 Error_Msg_N
2032 ("dynamic or empty choice in aggregate "
2033 & "must be the only choice", Choice);
2034 return Failure;
2035 end if;
2036
2037 if not (All_Composite_Constraints_Static (Low)
2038 and then All_Composite_Constraints_Static (High)
2039 and then All_Composite_Constraints_Static (S_Low)
2040 and then All_Composite_Constraints_Static (S_High))
2041 then
2042 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2043 end if;
2044
2045 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2046 Table (Nb_Discrete_Choices).Lo := Low;
2047 Table (Nb_Discrete_Choices).Hi := High;
2048 Table (Nb_Discrete_Choices).Choice := Choice;
2049
2050 Next (Choice);
2051
2052 if No (Choice) then
2053
2054 -- Check if we have a single discrete choice and whether
2055 -- this discrete choice specifies a single value.
2056
2057 Single_Choice :=
2058 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2059 and then (Low = High);
2060
2061 exit;
2062 end if;
2063 end loop;
2064
2065 -- Ada 2005 (AI-231)
2066
2067 if Ada_Version >= Ada_2005
2068 and then Known_Null (Expression (Assoc))
2069 and then not Empty_Range (Assoc)
2070 then
2071 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2072 end if;
2073
2074 -- Ada 2005 (AI-287): In case of default initialized component
2075 -- we delay the resolution to the expansion phase.
2076
2077 if Box_Present (Assoc) then
2078
2079 -- Ada 2005 (AI-287): In case of default initialization of a
2080 -- component the expander will generate calls to the
2081 -- corresponding initialization subprogram. We need to call
2082 -- Resolve_Aggr_Expr to check the rules about
2083 -- dimensionality.
2084
2085 if not Resolve_Aggr_Expr
2086 (Assoc, Single_Elmt => Single_Choice)
2087 then
2088 return Failure;
2089 end if;
2090
2091 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2092 null; -- handled above, in a loop context.
2093
2094 elsif not Resolve_Aggr_Expr
2095 (Expression (Assoc), Single_Elmt => Single_Choice)
2096 then
2097 return Failure;
2098
2099 -- Check incorrect use of dynamically tagged expression
2100
2101 -- We differentiate here two cases because the expression may
2102 -- not be decorated. For example, the analysis and resolution
2103 -- of the expression associated with the others choice will be
2104 -- done later with the full aggregate. In such case we
2105 -- duplicate the expression tree to analyze the copy and
2106 -- perform the required check.
2107
2108 elsif not Present (Etype (Expression (Assoc))) then
2109 declare
2110 Save_Analysis : constant Boolean := Full_Analysis;
2111 Expr : constant Node_Id :=
2112 New_Copy_Tree (Expression (Assoc));
2113
2114 begin
2115 Expander_Mode_Save_And_Set (False);
2116 Full_Analysis := False;
2117
2118 -- Analyze the expression, making sure it is properly
2119 -- attached to the tree before we do the analysis.
2120
2121 Set_Parent (Expr, Parent (Expression (Assoc)));
2122 Analyze (Expr);
2123
2124 -- Compute its dimensions now, rather than at the end of
2125 -- resolution, because in the case of multidimensional
2126 -- aggregates subsequent expansion may lead to spurious
2127 -- errors.
2128
2129 Check_Expression_Dimensions (Expr, Component_Typ);
2130
2131 -- If the expression is a literal, propagate this info
2132 -- to the expression in the association, to enable some
2133 -- optimizations downstream.
2134
2135 if Is_Entity_Name (Expr)
2136 and then Present (Entity (Expr))
2137 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2138 then
2139 Analyze_And_Resolve
2140 (Expression (Assoc), Component_Typ);
2141 end if;
2142
2143 Full_Analysis := Save_Analysis;
2144 Expander_Mode_Restore;
2145
2146 if Is_Tagged_Type (Etype (Expr)) then
2147 Check_Dynamically_Tagged_Expression
2148 (Expr => Expr,
2149 Typ => Component_Type (Etype (N)),
2150 Related_Nod => N);
2151 end if;
2152 end;
2153
2154 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2155 Check_Dynamically_Tagged_Expression
2156 (Expr => Expression (Assoc),
2157 Typ => Component_Type (Etype (N)),
2158 Related_Nod => N);
2159 end if;
2160
2161 Next (Assoc);
2162 end loop;
2163
2164 -- If aggregate contains more than one choice then these must be
2165 -- static. Check for duplicate and missing values.
2166
2167 -- Note: there is duplicated code here wrt Check_Choice_Set in
2168 -- the body of Sem_Case, and it is possible we could just reuse
2169 -- that procedure. To be checked ???
2170
2171 if Nb_Discrete_Choices > 1 then
2172 Check_Choices : declare
2173 Choice : Node_Id;
2174 -- Location of choice for messages
2175
2176 Hi_Val : Uint;
2177 Lo_Val : Uint;
2178 -- High end of one range and Low end of the next. Should be
2179 -- contiguous if there is no hole in the list of values.
2180
2181 Lo_Dup : Uint;
2182 Hi_Dup : Uint;
2183 -- End points of duplicated range
2184
2185 Missing_Or_Duplicates : Boolean := False;
2186 -- Set True if missing or duplicate choices found
2187
2188 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2189 -- Output continuation message with a representation of the
2190 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2191 -- choice node where the message is to be posted.
2192
2193 ------------------------
2194 -- Output_Bad_Choices --
2195 ------------------------
2196
2197 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2198 begin
2199 -- Enumeration type case
2200
2201 if Is_Enumeration_Type (Index_Typ) then
2202 Error_Msg_Name_1 :=
2203 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2204 Error_Msg_Name_2 :=
2205 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2206
2207 if Lo = Hi then
2208 Error_Msg_N ("\\ %!", C);
2209 else
2210 Error_Msg_N ("\\ % .. %!", C);
2211 end if;
2212
2213 -- Integer types case
2214
2215 else
2216 Error_Msg_Uint_1 := Lo;
2217 Error_Msg_Uint_2 := Hi;
2218
2219 if Lo = Hi then
2220 Error_Msg_N ("\\ ^!", C);
2221 else
2222 Error_Msg_N ("\\ ^ .. ^!", C);
2223 end if;
2224 end if;
2225 end Output_Bad_Choices;
2226
2227 -- Start of processing for Check_Choices
2228
2229 begin
2230 Sort_Case_Table (Table);
2231
2232 -- First we do a quick linear loop to find out if we have
2233 -- any duplicates or missing entries (usually we have a
2234 -- legal aggregate, so this will get us out quickly).
2235
2236 for J in 1 .. Nb_Discrete_Choices - 1 loop
2237 Hi_Val := Expr_Value (Table (J).Hi);
2238 Lo_Val := Expr_Value (Table (J + 1).Lo);
2239
2240 if Lo_Val <= Hi_Val
2241 or else (Lo_Val > Hi_Val + 1
2242 and then not Others_Present)
2243 then
2244 Missing_Or_Duplicates := True;
2245 exit;
2246 end if;
2247 end loop;
2248
2249 -- If we have missing or duplicate entries, first fill in
2250 -- the Highest entries to make life easier in the following
2251 -- loops to detect bad entries.
2252
2253 if Missing_Or_Duplicates then
2254 Table (1).Highest := Expr_Value (Table (1).Hi);
2255
2256 for J in 2 .. Nb_Discrete_Choices loop
2257 Table (J).Highest :=
2258 UI_Max
2259 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2260 end loop;
2261
2262 -- Loop through table entries to find duplicate indexes
2263
2264 for J in 2 .. Nb_Discrete_Choices loop
2265 Lo_Val := Expr_Value (Table (J).Lo);
2266 Hi_Val := Expr_Value (Table (J).Hi);
2267
2268 -- Case where we have duplicates (the lower bound of
2269 -- this choice is less than or equal to the highest
2270 -- high bound found so far).
2271
2272 if Lo_Val <= Table (J - 1).Highest then
2273
2274 -- We move backwards looking for duplicates. We can
2275 -- abandon this loop as soon as we reach a choice
2276 -- highest value that is less than Lo_Val.
2277
2278 for K in reverse 1 .. J - 1 loop
2279 exit when Table (K).Highest < Lo_Val;
2280
2281 -- Here we may have duplicates between entries
2282 -- for K and J. Get range of duplicates.
2283
2284 Lo_Dup :=
2285 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2286 Hi_Dup :=
2287 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2288
2289 -- Nothing to do if duplicate range is null
2290
2291 if Lo_Dup > Hi_Dup then
2292 null;
2293
2294 -- Otherwise place proper message. Because
2295 -- of the missing expansion of subtypes with
2296 -- predicates in ASIS mode, do not report
2297 -- spurious overlap errors.
2298
2299 elsif ASIS_Mode
2300 and then
2301 ((Is_Type (Entity (Table (J).Choice))
2302 and then Has_Predicates
2303 (Entity (Table (J).Choice)))
2304 or else
2305 (Is_Type (Entity (Table (K).Choice))
2306 and then Has_Predicates
2307 (Entity (Table (K).Choice))))
2308 then
2309 null;
2310
2311 else
2312 -- We place message on later choice, with a
2313 -- line reference to the earlier choice.
2314
2315 if Sloc (Table (J).Choice) <
2316 Sloc (Table (K).Choice)
2317 then
2318 Choice := Table (K).Choice;
2319 Error_Msg_Sloc := Sloc (Table (J).Choice);
2320 else
2321 Choice := Table (J).Choice;
2322 Error_Msg_Sloc := Sloc (Table (K).Choice);
2323 end if;
2324
2325 if Lo_Dup = Hi_Dup then
2326 Error_Msg_N
2327 ("index value in array aggregate "
2328 & "duplicates the one given#!", Choice);
2329 else
2330 Error_Msg_N
2331 ("index values in array aggregate "
2332 & "duplicate those given#!", Choice);
2333 end if;
2334
2335 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2336 end if;
2337 end loop;
2338 end if;
2339 end loop;
2340
2341 -- Loop through entries in table to find missing indexes.
2342 -- Not needed if others, since missing impossible.
2343
2344 if not Others_Present then
2345 for J in 2 .. Nb_Discrete_Choices loop
2346 Lo_Val := Expr_Value (Table (J).Lo);
2347 Hi_Val := Table (J - 1).Highest;
2348
2349 if Lo_Val > Hi_Val + 1 then
2350
2351 declare
2352 Error_Node : Node_Id;
2353
2354 begin
2355 -- If the choice is the bound of a range in
2356 -- a subtype indication, it is not in the
2357 -- source lists for the aggregate itself, so
2358 -- post the error on the aggregate. Otherwise
2359 -- post it on choice itself.
2360
2361 Choice := Table (J).Choice;
2362
2363 if Is_List_Member (Choice) then
2364 Error_Node := Choice;
2365 else
2366 Error_Node := N;
2367 end if;
2368
2369 if Hi_Val + 1 = Lo_Val - 1 then
2370 Error_Msg_N
2371 ("missing index value "
2372 & "in array aggregate!", Error_Node);
2373 else
2374 Error_Msg_N
2375 ("missing index values "
2376 & "in array aggregate!", Error_Node);
2377 end if;
2378
2379 Output_Bad_Choices
2380 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2381 end;
2382 end if;
2383 end loop;
2384 end if;
2385
2386 -- If either missing or duplicate values, return failure
2387
2388 Set_Etype (N, Any_Composite);
2389 return Failure;
2390 end if;
2391 end Check_Choices;
2392 end if;
2393
2394 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2395
2396 if Nb_Discrete_Choices > 0 then
2397 Choices_Low := Table (1).Lo;
2398 Choices_High := Table (Nb_Discrete_Choices).Hi;
2399 end if;
2400
2401 -- If Others is present, then bounds of aggregate come from the
2402 -- index constraint (not the choices in the aggregate itself).
2403
2404 if Others_Present then
2405 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2406
2407 -- Abandon processing if either bound is already signalled as
2408 -- an error (prevents junk cascaded messages and blow ups).
2409
2410 if Nkind (Aggr_Low) = N_Error
2411 or else
2412 Nkind (Aggr_High) = N_Error
2413 then
2414 return False;
2415 end if;
2416
2417 -- No others clause present
2418
2419 else
2420 -- Special processing if others allowed and not present. This
2421 -- means that the bounds of the aggregate come from the index
2422 -- constraint (and the length must match).
2423
2424 if Others_Allowed then
2425 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2426
2427 -- Abandon processing if either bound is already signalled
2428 -- as an error (stop junk cascaded messages and blow ups).
2429
2430 if Nkind (Aggr_Low) = N_Error
2431 or else
2432 Nkind (Aggr_High) = N_Error
2433 then
2434 return False;
2435 end if;
2436
2437 -- If others allowed, and no others present, then the array
2438 -- should cover all index values. If it does not, we will
2439 -- get a length check warning, but there is two cases where
2440 -- an additional warning is useful:
2441
2442 -- If we have no positional components, and the length is
2443 -- wrong (which we can tell by others being allowed with
2444 -- missing components), and the index type is an enumeration
2445 -- type, then issue appropriate warnings about these missing
2446 -- components. They are only warnings, since the aggregate
2447 -- is fine, it's just the wrong length. We skip this check
2448 -- for standard character types (since there are no literals
2449 -- and it is too much trouble to concoct them), and also if
2450 -- any of the bounds have values that are not known at
2451 -- compile time.
2452
2453 -- Another case warranting a warning is when the length
2454 -- is right, but as above we have an index type that is
2455 -- an enumeration, and the bounds do not match. This is a
2456 -- case where dubious sliding is allowed and we generate a
2457 -- warning that the bounds do not match.
2458
2459 if No (Expressions (N))
2460 and then Nkind (Index) = N_Range
2461 and then Is_Enumeration_Type (Etype (Index))
2462 and then not Is_Standard_Character_Type (Etype (Index))
2463 and then Compile_Time_Known_Value (Aggr_Low)
2464 and then Compile_Time_Known_Value (Aggr_High)
2465 and then Compile_Time_Known_Value (Choices_Low)
2466 and then Compile_Time_Known_Value (Choices_High)
2467 then
2468 -- If any of the expressions or range bounds in choices
2469 -- have semantic errors, then do not attempt further
2470 -- resolution, to prevent cascaded errors.
2471
2472 if Errors_Posted_On_Choices then
2473 return Failure;
2474 end if;
2475
2476 declare
2477 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2478 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2479 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2480 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2481
2482 Ent : Entity_Id;
2483
2484 begin
2485 -- Warning case 1, missing values at start/end. Only
2486 -- do the check if the number of entries is too small.
2487
2488 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2489 <
2490 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2491 then
2492 Error_Msg_N
2493 ("missing index value(s) in array aggregate??",
2494 N);
2495
2496 -- Output missing value(s) at start
2497
2498 if Chars (ALo) /= Chars (CLo) then
2499 Ent := Prev (CLo);
2500
2501 if Chars (ALo) = Chars (Ent) then
2502 Error_Msg_Name_1 := Chars (ALo);
2503 Error_Msg_N ("\ %??", N);
2504 else
2505 Error_Msg_Name_1 := Chars (ALo);
2506 Error_Msg_Name_2 := Chars (Ent);
2507 Error_Msg_N ("\ % .. %??", N);
2508 end if;
2509 end if;
2510
2511 -- Output missing value(s) at end
2512
2513 if Chars (AHi) /= Chars (CHi) then
2514 Ent := Next (CHi);
2515
2516 if Chars (AHi) = Chars (Ent) then
2517 Error_Msg_Name_1 := Chars (Ent);
2518 Error_Msg_N ("\ %??", N);
2519 else
2520 Error_Msg_Name_1 := Chars (Ent);
2521 Error_Msg_Name_2 := Chars (AHi);
2522 Error_Msg_N ("\ % .. %??", N);
2523 end if;
2524 end if;
2525
2526 -- Warning case 2, dubious sliding. The First_Subtype
2527 -- test distinguishes between a constrained type where
2528 -- sliding is not allowed (so we will get a warning
2529 -- later that Constraint_Error will be raised), and
2530 -- the unconstrained case where sliding is permitted.
2531
2532 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2533 =
2534 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2535 and then Chars (ALo) /= Chars (CLo)
2536 and then
2537 not Is_Constrained (First_Subtype (Etype (N)))
2538 then
2539 Error_Msg_N
2540 ("bounds of aggregate do not match target??", N);
2541 end if;
2542 end;
2543 end if;
2544 end if;
2545
2546 -- If no others, aggregate bounds come from aggregate
2547
2548 Aggr_Low := Choices_Low;
2549 Aggr_High := Choices_High;
2550 end if;
2551 end Step_2;
2552
2553 -- STEP 3: Process positional components
2554
2555 else
2556 -- STEP 3 (A): Process positional elements
2557
2558 Expr := First (Expressions (N));
2559 Nb_Elements := Uint_0;
2560 while Present (Expr) loop
2561 Nb_Elements := Nb_Elements + 1;
2562
2563 -- Ada 2005 (AI-231)
2564
2565 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2566 Check_Can_Never_Be_Null (Etype (N), Expr);
2567 end if;
2568
2569 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2570 return Failure;
2571 end if;
2572
2573 -- Check incorrect use of dynamically tagged expression
2574
2575 if Is_Tagged_Type (Etype (Expr)) then
2576 Check_Dynamically_Tagged_Expression
2577 (Expr => Expr,
2578 Typ => Component_Type (Etype (N)),
2579 Related_Nod => N);
2580 end if;
2581
2582 Next (Expr);
2583 end loop;
2584
2585 if Others_Present then
2586 Assoc := Last (Component_Associations (N));
2587
2588 -- Ada 2005 (AI-231)
2589
2590 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2591 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2592 end if;
2593
2594 -- Ada 2005 (AI-287): In case of default initialized component,
2595 -- we delay the resolution to the expansion phase.
2596
2597 if Box_Present (Assoc) then
2598
2599 -- Ada 2005 (AI-287): In case of default initialization of a
2600 -- component the expander will generate calls to the
2601 -- corresponding initialization subprogram. We need to call
2602 -- Resolve_Aggr_Expr to check the rules about
2603 -- dimensionality.
2604
2605 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2606 return Failure;
2607 end if;
2608
2609 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2610 Single_Elmt => False)
2611 then
2612 return Failure;
2613
2614 -- Check incorrect use of dynamically tagged expression. The
2615 -- expression of the others choice has not been resolved yet.
2616 -- In order to diagnose the semantic error we create a duplicate
2617 -- tree to analyze it and perform the check.
2618
2619 else
2620 declare
2621 Save_Analysis : constant Boolean := Full_Analysis;
2622 Expr : constant Node_Id :=
2623 New_Copy_Tree (Expression (Assoc));
2624
2625 begin
2626 Expander_Mode_Save_And_Set (False);
2627 Full_Analysis := False;
2628 Analyze (Expr);
2629 Full_Analysis := Save_Analysis;
2630 Expander_Mode_Restore;
2631
2632 if Is_Tagged_Type (Etype (Expr)) then
2633 Check_Dynamically_Tagged_Expression
2634 (Expr => Expr,
2635 Typ => Component_Type (Etype (N)),
2636 Related_Nod => N);
2637 end if;
2638 end;
2639 end if;
2640 end if;
2641
2642 -- STEP 3 (B): Compute the aggregate bounds
2643
2644 if Others_Present then
2645 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2646
2647 else
2648 if Others_Allowed then
2649 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2650 else
2651 Aggr_Low := Index_Typ_Low;
2652 end if;
2653
2654 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2655 Check_Bound (Index_Base_High, Aggr_High);
2656 end if;
2657 end if;
2658
2659 -- STEP 4: Perform static aggregate checks and save the bounds
2660
2661 -- Check (A)
2662
2663 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2664 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2665
2666 -- Check (B)
2667
2668 if Others_Present and then Nb_Discrete_Choices > 0 then
2669 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2670 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2671 Choices_Low, Choices_High);
2672 Check_Bounds (Index_Base_Low, Index_Base_High,
2673 Choices_Low, Choices_High);
2674
2675 -- Check (C)
2676
2677 elsif Others_Present and then Nb_Elements > 0 then
2678 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2679 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2680 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2681 end if;
2682
2683 if Raises_Constraint_Error (Aggr_Low)
2684 or else Raises_Constraint_Error (Aggr_High)
2685 then
2686 Set_Raises_Constraint_Error (N);
2687 end if;
2688
2689 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2690
2691 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2692 -- since the addition node returned by Add is not yet analyzed. Attach
2693 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2694 -- analyzed when it is a literal bound whose type must be properly set.
2695
2696 if Others_Present or else Nb_Discrete_Choices > 0 then
2697 Aggr_High := Duplicate_Subexpr (Aggr_High);
2698
2699 if Etype (Aggr_High) = Universal_Integer then
2700 Set_Analyzed (Aggr_High, False);
2701 end if;
2702 end if;
2703
2704 -- If the aggregate already has bounds attached to it, it means this is
2705 -- a positional aggregate created as an optimization by
2706 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2707 -- bounds.
2708
2709 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2710 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2711 Aggr_High := High_Bound (Aggregate_Bounds (N));
2712 end if;
2713
2714 Set_Aggregate_Bounds
2715 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2716
2717 -- The bounds may contain expressions that must be inserted upwards.
2718 -- Attach them fully to the tree. After analysis, remove side effects
2719 -- from upper bound, if still needed.
2720
2721 Set_Parent (Aggregate_Bounds (N), N);
2722 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2723 Check_Unset_Reference (Aggregate_Bounds (N));
2724
2725 if not Others_Present and then Nb_Discrete_Choices = 0 then
2726 Set_High_Bound
2727 (Aggregate_Bounds (N),
2728 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2729 end if;
2730
2731 -- Check the dimensions of each component in the array aggregate
2732
2733 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2734
2735 return Success;
2736 end Resolve_Array_Aggregate;
2737
2738 -----------------------------
2739 -- Resolve_Delta_Aggregate --
2740 -----------------------------
2741
2742 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2743 Base : constant Node_Id := Expression (N);
2744 Deltas : constant List_Id := Component_Associations (N);
2745 Assoc : Node_Id;
2746 Choice : Node_Id;
2747 Comp_Type : Entity_Id;
2748 Index_Type : Entity_Id;
2749
2750 function Get_Component_Type (Nam : Node_Id) return Entity_Id;
2751
2752 ------------------------
2753 -- Get_Component_Type --
2754 ------------------------
2755
2756 function Get_Component_Type (Nam : Node_Id) return Entity_Id is
2757 Comp : Entity_Id;
2758
2759 begin
2760 Comp := First_Entity (Typ);
2761
2762 while Present (Comp) loop
2763 if Chars (Comp) = Chars (Nam) then
2764 if Ekind (Comp) = E_Discriminant then
2765 Error_Msg_N ("delta cannot apply to discriminant", Nam);
2766 end if;
2767
2768 return Etype (Comp);
2769 end if;
2770
2771 Comp := Next_Entity (Comp);
2772 end loop;
2773
2774 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
2775 return Any_Type;
2776 end Get_Component_Type;
2777
2778 begin
2779 if not Is_Composite_Type (Typ) then
2780 Error_Msg_N ("not a composite type", N);
2781 end if;
2782
2783 Analyze_And_Resolve (Base, Typ);
2784 if Is_Array_Type (Typ) then
2785 Index_Type := Etype (First_Index (Typ));
2786 Assoc := First (Deltas);
2787 while Present (Assoc) loop
2788 if Nkind (Assoc) = N_Iterated_Component_Association then
2789 Choice := First (Choice_List (Assoc));
2790 while Present (Choice) loop
2791 if Nkind (Choice) = N_Others_Choice then
2792 Error_Msg_N
2793 ("others not allowed in delta aggregate", Choice);
2794
2795 else
2796 Analyze_And_Resolve (Choice, Index_Type);
2797 end if;
2798
2799 Next (Choice);
2800 end loop;
2801
2802 declare
2803 Id : constant Entity_Id := Defining_Identifier (Assoc);
2804 Ent : constant Entity_Id :=
2805 New_Internal_Entity
2806 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2807
2808 begin
2809 Set_Etype (Ent, Standard_Void_Type);
2810 Set_Parent (Ent, Assoc);
2811
2812 if No (Scope (Id)) then
2813 Enter_Name (Id);
2814 Set_Etype (Id, Index_Type);
2815 Set_Ekind (Id, E_Variable);
2816 Set_Scope (Id, Ent);
2817 end if;
2818
2819 Push_Scope (Ent);
2820 Analyze_And_Resolve
2821 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2822 End_Scope;
2823 end;
2824
2825 else
2826 Choice := First (Choice_List (Assoc));
2827 while Present (Choice) loop
2828 if Nkind (Choice) = N_Others_Choice then
2829 Error_Msg_N
2830 ("others not allowed in delta aggregate", Choice);
2831
2832 else
2833 Analyze (Choice);
2834 if Is_Entity_Name (Choice)
2835 and then Is_Type (Entity (Choice))
2836 then
2837 -- Choice covers a range of values.
2838 if Base_Type (Entity (Choice)) /=
2839 Base_Type (Index_Type)
2840 then
2841 Error_Msg_NE ("choice does mat match index type of",
2842 Choice, Typ);
2843 end if;
2844 else
2845 Resolve (Choice, Index_Type);
2846 end if;
2847 end if;
2848
2849 Next (Choice);
2850 end loop;
2851
2852 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2853 end if;
2854
2855 Next (Assoc);
2856 end loop;
2857
2858 else
2859 Assoc := First (Deltas);
2860 while Present (Assoc) loop
2861 Choice := First (Choice_List (Assoc));
2862 while Present (Choice) loop
2863 Comp_Type := Get_Component_Type (Choice);
2864 Next (Choice);
2865 end loop;
2866
2867 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
2868 Next (Assoc);
2869 end loop;
2870 end if;
2871
2872 Set_Etype (N, Typ);
2873 end Resolve_Delta_Aggregate;
2874
2875 ---------------------------------
2876 -- Resolve_Extension_Aggregate --
2877 ---------------------------------
2878
2879 -- There are two cases to consider:
2880
2881 -- a) If the ancestor part is a type mark, the components needed are the
2882 -- difference between the components of the expected type and the
2883 -- components of the given type mark.
2884
2885 -- b) If the ancestor part is an expression, it must be unambiguous, and
2886 -- once we have its type we can also compute the needed components as in
2887 -- the previous case. In both cases, if the ancestor type is not the
2888 -- immediate ancestor, we have to build this ancestor recursively.
2889
2890 -- In both cases, discriminants of the ancestor type do not play a role in
2891 -- the resolution of the needed components, because inherited discriminants
2892 -- cannot be used in a type extension. As a result we can compute
2893 -- independently the list of components of the ancestor type and of the
2894 -- expected type.
2895
2896 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2897 A : constant Node_Id := Ancestor_Part (N);
2898 A_Type : Entity_Id;
2899 I : Interp_Index;
2900 It : Interp;
2901
2902 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2903 -- If the type is limited, verify that the ancestor part is a legal
2904 -- expression (aggregate or function call, including 'Input)) that does
2905 -- not require a copy, as specified in 7.5(2).
2906
2907 function Valid_Ancestor_Type return Boolean;
2908 -- Verify that the type of the ancestor part is a non-private ancestor
2909 -- of the expected type, which must be a type extension.
2910
2911 ----------------------------
2912 -- Valid_Limited_Ancestor --
2913 ----------------------------
2914
2915 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2916 begin
2917 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2918 return True;
2919
2920 -- The ancestor must be a call or an aggregate, but a call may
2921 -- have been expanded into a temporary, so check original node.
2922
2923 elsif Nkind_In (Anc, N_Aggregate,
2924 N_Extension_Aggregate,
2925 N_Function_Call)
2926 then
2927 return True;
2928
2929 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2930 return True;
2931
2932 elsif Nkind (Anc) = N_Attribute_Reference
2933 and then Attribute_Name (Anc) = Name_Input
2934 then
2935 return True;
2936
2937 elsif Nkind (Anc) = N_Qualified_Expression then
2938 return Valid_Limited_Ancestor (Expression (Anc));
2939
2940 else
2941 return False;
2942 end if;
2943 end Valid_Limited_Ancestor;
2944
2945 -------------------------
2946 -- Valid_Ancestor_Type --
2947 -------------------------
2948
2949 function Valid_Ancestor_Type return Boolean is
2950 Imm_Type : Entity_Id;
2951
2952 begin
2953 Imm_Type := Base_Type (Typ);
2954 while Is_Derived_Type (Imm_Type) loop
2955 if Etype (Imm_Type) = Base_Type (A_Type) then
2956 return True;
2957
2958 -- The base type of the parent type may appear as a private
2959 -- extension if it is declared as such in a parent unit of the
2960 -- current one. For consistency of the subsequent analysis use
2961 -- the partial view for the ancestor part.
2962
2963 elsif Is_Private_Type (Etype (Imm_Type))
2964 and then Present (Full_View (Etype (Imm_Type)))
2965 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2966 then
2967 A_Type := Etype (Imm_Type);
2968 return True;
2969
2970 -- The parent type may be a private extension. The aggregate is
2971 -- legal if the type of the aggregate is an extension of it that
2972 -- is not a private extension.
2973
2974 elsif Is_Private_Type (A_Type)
2975 and then not Is_Private_Type (Imm_Type)
2976 and then Present (Full_View (A_Type))
2977 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2978 then
2979 return True;
2980
2981 else
2982 Imm_Type := Etype (Base_Type (Imm_Type));
2983 end if;
2984 end loop;
2985
2986 -- If previous loop did not find a proper ancestor, report error
2987
2988 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2989 return False;
2990 end Valid_Ancestor_Type;
2991
2992 -- Start of processing for Resolve_Extension_Aggregate
2993
2994 begin
2995 -- Analyze the ancestor part and account for the case where it is a
2996 -- parameterless function call.
2997
2998 Analyze (A);
2999 Check_Parameterless_Call (A);
3000
3001 -- In SPARK, the ancestor part cannot be a type mark
3002
3003 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3004 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
3005
3006 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3007 -- must not have unknown discriminants.
3008
3009 if Has_Unknown_Discriminants (Root_Type (Typ)) then
3010 Error_Msg_NE
3011 ("aggregate not available for type& whose ancestor "
3012 & "has unknown discriminants", N, Typ);
3013 end if;
3014 end if;
3015
3016 if not Is_Tagged_Type (Typ) then
3017 Error_Msg_N ("type of extension aggregate must be tagged", N);
3018 return;
3019
3020 elsif Is_Limited_Type (Typ) then
3021
3022 -- Ada 2005 (AI-287): Limited aggregates are allowed
3023
3024 if Ada_Version < Ada_2005 then
3025 Error_Msg_N ("aggregate type cannot be limited", N);
3026 Explain_Limited_Type (Typ, N);
3027 return;
3028
3029 elsif Valid_Limited_Ancestor (A) then
3030 null;
3031
3032 else
3033 Error_Msg_N
3034 ("limited ancestor part must be aggregate or function call", A);
3035 end if;
3036
3037 elsif Is_Class_Wide_Type (Typ) then
3038 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3039 return;
3040 end if;
3041
3042 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3043 A_Type := Get_Full_View (Entity (A));
3044
3045 if Valid_Ancestor_Type then
3046 Set_Entity (A, A_Type);
3047 Set_Etype (A, A_Type);
3048
3049 Validate_Ancestor_Part (N);
3050 Resolve_Record_Aggregate (N, Typ);
3051 end if;
3052
3053 elsif Nkind (A) /= N_Aggregate then
3054 if Is_Overloaded (A) then
3055 A_Type := Any_Type;
3056
3057 Get_First_Interp (A, I, It);
3058 while Present (It.Typ) loop
3059
3060 -- Only consider limited interpretations in the Ada 2005 case
3061
3062 if Is_Tagged_Type (It.Typ)
3063 and then (Ada_Version >= Ada_2005
3064 or else not Is_Limited_Type (It.Typ))
3065 then
3066 if A_Type /= Any_Type then
3067 Error_Msg_N ("cannot resolve expression", A);
3068 return;
3069 else
3070 A_Type := It.Typ;
3071 end if;
3072 end if;
3073
3074 Get_Next_Interp (I, It);
3075 end loop;
3076
3077 if A_Type = Any_Type then
3078 if Ada_Version >= Ada_2005 then
3079 Error_Msg_N
3080 ("ancestor part must be of a tagged type", A);
3081 else
3082 Error_Msg_N
3083 ("ancestor part must be of a nonlimited tagged type", A);
3084 end if;
3085
3086 return;
3087 end if;
3088
3089 else
3090 A_Type := Etype (A);
3091 end if;
3092
3093 if Valid_Ancestor_Type then
3094 Resolve (A, A_Type);
3095 Check_Unset_Reference (A);
3096 Check_Non_Static_Context (A);
3097
3098 -- The aggregate is illegal if the ancestor expression is a call
3099 -- to a function with a limited unconstrained result, unless the
3100 -- type of the aggregate is a null extension. This restriction
3101 -- was added in AI05-67 to simplify implementation.
3102
3103 if Nkind (A) = N_Function_Call
3104 and then Is_Limited_Type (A_Type)
3105 and then not Is_Null_Extension (Typ)
3106 and then not Is_Constrained (A_Type)
3107 then
3108 Error_Msg_N
3109 ("type of limited ancestor part must be constrained", A);
3110
3111 -- Reject the use of CPP constructors that leave objects partially
3112 -- initialized. For example:
3113
3114 -- type CPP_Root is tagged limited record ...
3115 -- pragma Import (CPP, CPP_Root);
3116
3117 -- type CPP_DT is new CPP_Root and Iface ...
3118 -- pragma Import (CPP, CPP_DT);
3119
3120 -- type Ada_DT is new CPP_DT with ...
3121
3122 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3123
3124 -- Using the constructor of CPP_Root the slots of the dispatch
3125 -- table of CPP_DT cannot be set, and the secondary tag of
3126 -- CPP_DT is unknown.
3127
3128 elsif Nkind (A) = N_Function_Call
3129 and then Is_CPP_Constructor_Call (A)
3130 and then Enclosing_CPP_Parent (Typ) /= A_Type
3131 then
3132 Error_Msg_NE
3133 ("??must use 'C'P'P constructor for type &", A,
3134 Enclosing_CPP_Parent (Typ));
3135
3136 -- The following call is not needed if the previous warning
3137 -- is promoted to an error.
3138
3139 Resolve_Record_Aggregate (N, Typ);
3140
3141 elsif Is_Class_Wide_Type (Etype (A))
3142 and then Nkind (Original_Node (A)) = N_Function_Call
3143 then
3144 -- If the ancestor part is a dispatching call, it appears
3145 -- statically to be a legal ancestor, but it yields any member
3146 -- of the class, and it is not possible to determine whether
3147 -- it is an ancestor of the extension aggregate (much less
3148 -- which ancestor). It is not possible to determine the
3149 -- components of the extension part.
3150
3151 -- This check implements AI-306, which in fact was motivated by
3152 -- an AdaCore query to the ARG after this test was added.
3153
3154 Error_Msg_N ("ancestor part must be statically tagged", A);
3155 else
3156 Resolve_Record_Aggregate (N, Typ);
3157 end if;
3158 end if;
3159
3160 else
3161 Error_Msg_N ("no unique type for this aggregate", A);
3162 end if;
3163
3164 Check_Function_Writable_Actuals (N);
3165 end Resolve_Extension_Aggregate;
3166
3167 ------------------------------
3168 -- Resolve_Record_Aggregate --
3169 ------------------------------
3170
3171 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3172 New_Assoc_List : constant List_Id := New_List;
3173 -- New_Assoc_List is the newly built list of N_Component_Association
3174 -- nodes.
3175
3176 Others_Etype : Entity_Id := Empty;
3177 -- This variable is used to save the Etype of the last record component
3178 -- that takes its value from the others choice. Its purpose is:
3179 --
3180 -- (a) make sure the others choice is useful
3181 --
3182 -- (b) make sure the type of all the components whose value is
3183 -- subsumed by the others choice are the same.
3184 --
3185 -- This variable is updated as a side effect of function Get_Value.
3186
3187 Box_Node : Node_Id;
3188 Is_Box_Present : Boolean := False;
3189 Others_Box : Integer := 0;
3190 -- Ada 2005 (AI-287): Variables used in case of default initialization
3191 -- to provide a functionality similar to Others_Etype. Box_Present
3192 -- indicates that the component takes its default initialization;
3193 -- Others_Box counts the number of components of the current aggregate
3194 -- (which may be a sub-aggregate of a larger one) that are default-
3195 -- initialized. A value of One indicates that an others_box is present.
3196 -- Any larger value indicates that the others_box is not redundant.
3197 -- These variables, similar to Others_Etype, are also updated as a side
3198 -- effect of function Get_Value. Box_Node is used to place a warning on
3199 -- a redundant others_box.
3200
3201 procedure Add_Association
3202 (Component : Entity_Id;
3203 Expr : Node_Id;
3204 Assoc_List : List_Id;
3205 Is_Box_Present : Boolean := False);
3206 -- Builds a new N_Component_Association node which associates Component
3207 -- to expression Expr and adds it to the association list being built,
3208 -- either New_Assoc_List, or the association being built for an inner
3209 -- aggregate.
3210
3211 procedure Add_Discriminant_Values
3212 (New_Aggr : Node_Id;
3213 Assoc_List : List_Id);
3214 -- The constraint to a component may be given by a discriminant of the
3215 -- enclosing type, in which case we have to retrieve its value, which is
3216 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3217 -- associations of the current type or of some enclosing record.
3218
3219 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3220 -- If aggregate N is a regular aggregate this routine will return True.
3221 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3222 -- a discriminant whose value may already have been specified by N's
3223 -- ancestor part. This routine checks whether this is indeed the case
3224 -- and if so returns False, signaling that no value for Input_Discr
3225 -- should appear in N's aggregate part. Also, in this case, the routine
3226 -- appends to New_Assoc_List the discriminant value specified in the
3227 -- ancestor part.
3228 --
3229 -- If the aggregate is in a context with expansion delayed, it will be
3230 -- reanalyzed. The inherited discriminant values must not be reinserted
3231 -- in the component list to prevent spurious errors, but they must be
3232 -- present on first analysis to build the proper subtype indications.
3233 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3234
3235 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3236 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3237 -- derived from private view Typ. Whether the aggregate is legal depends
3238 -- on the current visibility of the type as well as that of the parent
3239 -- of the ancestor.
3240
3241 function Get_Value
3242 (Compon : Node_Id;
3243 From : List_Id;
3244 Consider_Others_Choice : Boolean := False) return Node_Id;
3245 -- Given a record component stored in parameter Compon, this function
3246 -- returns its value as it appears in the list From, which is a list
3247 -- of N_Component_Association nodes.
3248 --
3249 -- If no component association has a choice for the searched component,
3250 -- the value provided by the others choice is returned, if there is one,
3251 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3252 -- returned. If there is more than one component association giving a
3253 -- value for the searched record component, an error message is emitted
3254 -- and the first found value is returned.
3255 --
3256 -- If Consider_Others_Choice is set and the returned expression comes
3257 -- from the others choice, then Others_Etype is set as a side effect.
3258 -- An error message is emitted if the components taking their value from
3259 -- the others choice do not have same type.
3260
3261 function New_Copy_Tree_And_Copy_Dimensions
3262 (Source : Node_Id;
3263 Map : Elist_Id := No_Elist;
3264 New_Sloc : Source_Ptr := No_Location;
3265 New_Scope : Entity_Id := Empty) return Node_Id;
3266 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3267 -- also copies the dimensions of Source to the returned node.
3268
3269 procedure Propagate_Discriminants
3270 (Aggr : Node_Id;
3271 Assoc_List : List_Id);
3272 -- Nested components may themselves be discriminated types constrained
3273 -- by outer discriminants, whose values must be captured before the
3274 -- aggregate is expanded into assignments.
3275
3276 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3277 -- Analyzes and resolves expression Expr against the Etype of the
3278 -- Component. This routine also applies all appropriate checks to Expr.
3279 -- It finally saves a Expr in the newly created association list that
3280 -- will be attached to the final record aggregate. Note that if the
3281 -- Parent pointer of Expr is not set then Expr was produced with a
3282 -- New_Copy_Tree or some such.
3283
3284 ---------------------
3285 -- Add_Association --
3286 ---------------------
3287
3288 procedure Add_Association
3289 (Component : Entity_Id;
3290 Expr : Node_Id;
3291 Assoc_List : List_Id;
3292 Is_Box_Present : Boolean := False)
3293 is
3294 Choice_List : constant List_Id := New_List;
3295 Loc : Source_Ptr;
3296
3297 begin
3298 -- If this is a box association the expression is missing, so use the
3299 -- Sloc of the aggregate itself for the new association.
3300
3301 if Present (Expr) then
3302 Loc := Sloc (Expr);
3303 else
3304 Loc := Sloc (N);
3305 end if;
3306
3307 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3308
3309 Append_To (Assoc_List,
3310 Make_Component_Association (Loc,
3311 Choices => Choice_List,
3312 Expression => Expr,
3313 Box_Present => Is_Box_Present));
3314 end Add_Association;
3315
3316 -----------------------------
3317 -- Add_Discriminant_Values --
3318 -----------------------------
3319
3320 procedure Add_Discriminant_Values
3321 (New_Aggr : Node_Id;
3322 Assoc_List : List_Id)
3323 is
3324 Assoc : Node_Id;
3325 Discr : Entity_Id;
3326 Discr_Elmt : Elmt_Id;
3327 Discr_Val : Node_Id;
3328 Val : Entity_Id;
3329
3330 begin
3331 Discr := First_Discriminant (Etype (New_Aggr));
3332 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3333 while Present (Discr_Elmt) loop
3334 Discr_Val := Node (Discr_Elmt);
3335
3336 -- If the constraint is given by a discriminant then it is a
3337 -- discriminant of an enclosing record, and its value has already
3338 -- been placed in the association list.
3339
3340 if Is_Entity_Name (Discr_Val)
3341 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3342 then
3343 Val := Entity (Discr_Val);
3344
3345 Assoc := First (Assoc_List);
3346 while Present (Assoc) loop
3347 if Present (Entity (First (Choices (Assoc))))
3348 and then Entity (First (Choices (Assoc))) = Val
3349 then
3350 Discr_Val := Expression (Assoc);
3351 exit;
3352 end if;
3353
3354 Next (Assoc);
3355 end loop;
3356 end if;
3357
3358 Add_Association
3359 (Discr, New_Copy_Tree (Discr_Val),
3360 Component_Associations (New_Aggr));
3361
3362 -- If the discriminant constraint is a current instance, mark the
3363 -- current aggregate so that the self-reference can be expanded
3364 -- later. The constraint may refer to the subtype of aggregate, so
3365 -- use base type for comparison.
3366
3367 if Nkind (Discr_Val) = N_Attribute_Reference
3368 and then Is_Entity_Name (Prefix (Discr_Val))
3369 and then Is_Type (Entity (Prefix (Discr_Val)))
3370 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3371 then
3372 Set_Has_Self_Reference (N);
3373 end if;
3374
3375 Next_Elmt (Discr_Elmt);
3376 Next_Discriminant (Discr);
3377 end loop;
3378 end Add_Discriminant_Values;
3379
3380 --------------------------
3381 -- Discriminant_Present --
3382 --------------------------
3383
3384 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3385 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3386
3387 Ancestor_Is_Subtyp : Boolean;
3388
3389 Loc : Source_Ptr;
3390
3391 Ancestor : Node_Id;
3392 Ancestor_Typ : Entity_Id;
3393 Comp_Assoc : Node_Id;
3394 Discr : Entity_Id;
3395 Discr_Expr : Node_Id;
3396 Discr_Val : Elmt_Id := No_Elmt;
3397 Orig_Discr : Entity_Id;
3398
3399 begin
3400 if Regular_Aggr then
3401 return True;
3402 end if;
3403
3404 -- Check whether inherited discriminant values have already been
3405 -- inserted in the aggregate. This will be the case if we are
3406 -- re-analyzing an aggregate whose expansion was delayed.
3407
3408 if Present (Component_Associations (N)) then
3409 Comp_Assoc := First (Component_Associations (N));
3410 while Present (Comp_Assoc) loop
3411 if Inherited_Discriminant (Comp_Assoc) then
3412 return True;
3413 end if;
3414
3415 Next (Comp_Assoc);
3416 end loop;
3417 end if;
3418
3419 Ancestor := Ancestor_Part (N);
3420 Ancestor_Typ := Etype (Ancestor);
3421 Loc := Sloc (Ancestor);
3422
3423 -- For a private type with unknown discriminants, use the underlying
3424 -- record view if it is available.
3425
3426 if Has_Unknown_Discriminants (Ancestor_Typ)
3427 and then Present (Full_View (Ancestor_Typ))
3428 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3429 then
3430 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3431 end if;
3432
3433 Ancestor_Is_Subtyp :=
3434 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3435
3436 -- If the ancestor part has no discriminants clearly N's aggregate
3437 -- part must provide a value for Discr.
3438
3439 if not Has_Discriminants (Ancestor_Typ) then
3440 return True;
3441
3442 -- If the ancestor part is an unconstrained subtype mark then the
3443 -- Discr must be present in N's aggregate part.
3444
3445 elsif Ancestor_Is_Subtyp
3446 and then not Is_Constrained (Entity (Ancestor))
3447 then
3448 return True;
3449 end if;
3450
3451 -- Now look to see if Discr was specified in the ancestor part
3452
3453 if Ancestor_Is_Subtyp then
3454 Discr_Val :=
3455 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3456 end if;
3457
3458 Orig_Discr := Original_Record_Component (Input_Discr);
3459
3460 Discr := First_Discriminant (Ancestor_Typ);
3461 while Present (Discr) loop
3462
3463 -- If Ancestor has already specified Disc value then insert its
3464 -- value in the final aggregate.
3465
3466 if Original_Record_Component (Discr) = Orig_Discr then
3467 if Ancestor_Is_Subtyp then
3468 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3469 else
3470 Discr_Expr :=
3471 Make_Selected_Component (Loc,
3472 Prefix => Duplicate_Subexpr (Ancestor),
3473 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3474 end if;
3475
3476 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3477 Set_Inherited_Discriminant (Last (New_Assoc_List));
3478 return False;
3479 end if;
3480
3481 Next_Discriminant (Discr);
3482
3483 if Ancestor_Is_Subtyp then
3484 Next_Elmt (Discr_Val);
3485 end if;
3486 end loop;
3487
3488 return True;
3489 end Discriminant_Present;
3490
3491 ---------------------------
3492 -- Find_Private_Ancestor --
3493 ---------------------------
3494
3495 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3496 Par : Entity_Id;
3497
3498 begin
3499 Par := Typ;
3500 loop
3501 if Has_Private_Ancestor (Par)
3502 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3503 then
3504 return Par;
3505
3506 elsif not Is_Derived_Type (Par) then
3507 return Empty;
3508
3509 else
3510 Par := Etype (Base_Type (Par));
3511 end if;
3512 end loop;
3513 end Find_Private_Ancestor;
3514
3515 ---------------
3516 -- Get_Value --
3517 ---------------
3518
3519 function Get_Value
3520 (Compon : Node_Id;
3521 From : List_Id;
3522 Consider_Others_Choice : Boolean := False) return Node_Id
3523 is
3524 Typ : constant Entity_Id := Etype (Compon);
3525 Assoc : Node_Id;
3526 Expr : Node_Id := Empty;
3527 Selector_Name : Node_Id;
3528
3529 begin
3530 Is_Box_Present := False;
3531
3532 if No (From) then
3533 return Empty;
3534 end if;
3535
3536 Assoc := First (From);
3537 while Present (Assoc) loop
3538 Selector_Name := First (Choices (Assoc));
3539 while Present (Selector_Name) loop
3540 if Nkind (Selector_Name) = N_Others_Choice then
3541 if Consider_Others_Choice and then No (Expr) then
3542
3543 -- We need to duplicate the expression for each
3544 -- successive component covered by the others choice.
3545 -- This is redundant if the others_choice covers only
3546 -- one component (small optimization possible???), but
3547 -- indispensable otherwise, because each one must be
3548 -- expanded individually to preserve side-effects.
3549
3550 -- Ada 2005 (AI-287): In case of default initialization
3551 -- of components, we duplicate the corresponding default
3552 -- expression (from the record type declaration). The
3553 -- copy must carry the sloc of the association (not the
3554 -- original expression) to prevent spurious elaboration
3555 -- checks when the default includes function calls.
3556
3557 if Box_Present (Assoc) then
3558 Others_Box := Others_Box + 1;
3559 Is_Box_Present := True;
3560
3561 if Expander_Active then
3562 return
3563 New_Copy_Tree_And_Copy_Dimensions
3564 (Expression (Parent (Compon)),
3565 New_Sloc => Sloc (Assoc));
3566 else
3567 return Expression (Parent (Compon));
3568 end if;
3569
3570 else
3571 if Present (Others_Etype)
3572 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3573 then
3574 -- If the components are of an anonymous access
3575 -- type they are distinct, but this is legal in
3576 -- Ada 2012 as long as designated types match.
3577
3578 if (Ekind (Typ) = E_Anonymous_Access_Type
3579 or else Ekind (Typ) =
3580 E_Anonymous_Access_Subprogram_Type)
3581 and then Designated_Type (Typ) =
3582 Designated_Type (Others_Etype)
3583 then
3584 null;
3585 else
3586 Error_Msg_N
3587 ("components in OTHERS choice must have same "
3588 & "type", Selector_Name);
3589 end if;
3590 end if;
3591
3592 Others_Etype := Typ;
3593
3594 -- Copy the expression so that it is resolved
3595 -- independently for each component, This is needed
3596 -- for accessibility checks on compoents of anonymous
3597 -- access types, even in compile_only mode.
3598
3599 if not Inside_A_Generic then
3600
3601 -- In ASIS mode, preanalyze the expression in an
3602 -- others association before making copies for
3603 -- separate resolution and accessibility checks.
3604 -- This ensures that the type of the expression is
3605 -- available to ASIS in all cases, in particular if
3606 -- the expression is itself an aggregate.
3607
3608 if ASIS_Mode then
3609 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3610 end if;
3611
3612 return
3613 New_Copy_Tree_And_Copy_Dimensions
3614 (Expression (Assoc));
3615
3616 else
3617 return Expression (Assoc);
3618 end if;
3619 end if;
3620 end if;
3621
3622 elsif Chars (Compon) = Chars (Selector_Name) then
3623 if No (Expr) then
3624
3625 -- Ada 2005 (AI-231)
3626
3627 if Ada_Version >= Ada_2005
3628 and then Known_Null (Expression (Assoc))
3629 then
3630 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3631 end if;
3632
3633 -- We need to duplicate the expression when several
3634 -- components are grouped together with a "|" choice.
3635 -- For instance "filed1 | filed2 => Expr"
3636
3637 -- Ada 2005 (AI-287)
3638
3639 if Box_Present (Assoc) then
3640 Is_Box_Present := True;
3641
3642 -- Duplicate the default expression of the component
3643 -- from the record type declaration, so a new copy
3644 -- can be attached to the association.
3645
3646 -- Note that we always copy the default expression,
3647 -- even when the association has a single choice, in
3648 -- order to create a proper association for the
3649 -- expanded aggregate.
3650
3651 -- Component may have no default, in which case the
3652 -- expression is empty and the component is default-
3653 -- initialized, but an association for the component
3654 -- exists, and it is not covered by an others clause.
3655
3656 -- Scalar and private types have no initialization
3657 -- procedure, so they remain uninitialized. If the
3658 -- target of the aggregate is a constant this
3659 -- deserves a warning.
3660
3661 if No (Expression (Parent (Compon)))
3662 and then not Has_Non_Null_Base_Init_Proc (Typ)
3663 and then not Has_Aspect (Typ, Aspect_Default_Value)
3664 and then not Is_Concurrent_Type (Typ)
3665 and then Nkind (Parent (N)) = N_Object_Declaration
3666 and then Constant_Present (Parent (N))
3667 then
3668 Error_Msg_Node_2 := Typ;
3669 Error_Msg_NE
3670 ("component&? of type& is uninitialized",
3671 Assoc, Selector_Name);
3672
3673 -- An additional reminder if the component type
3674 -- is a generic formal.
3675
3676 if Is_Generic_Type (Base_Type (Typ)) then
3677 Error_Msg_NE
3678 ("\instance should provide actual type with "
3679 & "initialization for&", Assoc, Typ);
3680 end if;
3681 end if;
3682
3683 return
3684 New_Copy_Tree_And_Copy_Dimensions
3685 (Expression (Parent (Compon)));
3686
3687 else
3688 if Present (Next (Selector_Name)) then
3689 Expr := New_Copy_Tree_And_Copy_Dimensions
3690 (Expression (Assoc));
3691 else
3692 Expr := Expression (Assoc);
3693 end if;
3694 end if;
3695
3696 Generate_Reference (Compon, Selector_Name, 'm');
3697
3698 else
3699 Error_Msg_NE
3700 ("more than one value supplied for &",
3701 Selector_Name, Compon);
3702
3703 end if;
3704 end if;
3705
3706 Next (Selector_Name);
3707 end loop;
3708
3709 Next (Assoc);
3710 end loop;
3711
3712 return Expr;
3713 end Get_Value;
3714
3715 ---------------------------------------
3716 -- New_Copy_Tree_And_Copy_Dimensions --
3717 ---------------------------------------
3718
3719 function New_Copy_Tree_And_Copy_Dimensions
3720 (Source : Node_Id;
3721 Map : Elist_Id := No_Elist;
3722 New_Sloc : Source_Ptr := No_Location;
3723 New_Scope : Entity_Id := Empty) return Node_Id
3724 is
3725 New_Copy : constant Node_Id :=
3726 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3727
3728 begin
3729 -- Move the dimensions of Source to New_Copy
3730
3731 Copy_Dimensions (Source, New_Copy);
3732 return New_Copy;
3733 end New_Copy_Tree_And_Copy_Dimensions;
3734
3735 -----------------------------
3736 -- Propagate_Discriminants --
3737 -----------------------------
3738
3739 procedure Propagate_Discriminants
3740 (Aggr : Node_Id;
3741 Assoc_List : List_Id)
3742 is
3743 Loc : constant Source_Ptr := Sloc (N);
3744
3745 Needs_Box : Boolean := False;
3746
3747 procedure Process_Component (Comp : Entity_Id);
3748 -- Add one component with a box association to the inner aggregate,
3749 -- and recurse if component is itself composite.
3750
3751 -----------------------
3752 -- Process_Component --
3753 -----------------------
3754
3755 procedure Process_Component (Comp : Entity_Id) is
3756 T : constant Entity_Id := Etype (Comp);
3757 New_Aggr : Node_Id;
3758
3759 begin
3760 if Is_Record_Type (T) and then Has_Discriminants (T) then
3761 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3762 Set_Etype (New_Aggr, T);
3763
3764 Add_Association
3765 (Comp, New_Aggr, Component_Associations (Aggr));
3766
3767 -- Collect discriminant values and recurse
3768
3769 Add_Discriminant_Values (New_Aggr, Assoc_List);
3770 Propagate_Discriminants (New_Aggr, Assoc_List);
3771
3772 else
3773 Needs_Box := True;
3774 end if;
3775 end Process_Component;
3776
3777 -- Local variables
3778
3779 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3780 Components : constant Elist_Id := New_Elmt_List;
3781 Def_Node : constant Node_Id :=
3782 Type_Definition (Declaration_Node (Aggr_Type));
3783
3784 Comp : Node_Id;
3785 Comp_Elmt : Elmt_Id;
3786 Errors : Boolean;
3787
3788 -- Start of processing for Propagate_Discriminants
3789
3790 begin
3791 -- The component type may be a variant type. Collect the components
3792 -- that are ruled by the known values of the discriminants. Their
3793 -- values have already been inserted into the component list of the
3794 -- current aggregate.
3795
3796 if Nkind (Def_Node) = N_Record_Definition
3797 and then Present (Component_List (Def_Node))
3798 and then Present (Variant_Part (Component_List (Def_Node)))
3799 then
3800 Gather_Components (Aggr_Type,
3801 Component_List (Def_Node),
3802 Governed_By => Component_Associations (Aggr),
3803 Into => Components,
3804 Report_Errors => Errors);
3805
3806 Comp_Elmt := First_Elmt (Components);
3807 while Present (Comp_Elmt) loop
3808 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3809 Process_Component (Node (Comp_Elmt));
3810 end if;
3811
3812 Next_Elmt (Comp_Elmt);
3813 end loop;
3814
3815 -- No variant part, iterate over all components
3816
3817 else
3818 Comp := First_Component (Etype (Aggr));
3819 while Present (Comp) loop
3820 Process_Component (Comp);
3821 Next_Component (Comp);
3822 end loop;
3823 end if;
3824
3825 if Needs_Box then
3826 Append_To (Component_Associations (Aggr),
3827 Make_Component_Association (Loc,
3828 Choices => New_List (Make_Others_Choice (Loc)),
3829 Expression => Empty,
3830 Box_Present => True));
3831 end if;
3832 end Propagate_Discriminants;
3833
3834 -----------------------
3835 -- Resolve_Aggr_Expr --
3836 -----------------------
3837
3838 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
3839 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3840 -- If the expression is an aggregate (possibly qualified) then its
3841 -- expansion is delayed until the enclosing aggregate is expanded
3842 -- into assignments. In that case, do not generate checks on the
3843 -- expression, because they will be generated later, and will other-
3844 -- wise force a copy (to remove side-effects) that would leave a
3845 -- dynamic-sized aggregate in the code, something that gigi cannot
3846 -- handle.
3847
3848 ---------------------------
3849 -- Has_Expansion_Delayed --
3850 ---------------------------
3851
3852 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3853 begin
3854 return
3855 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3856 and then Present (Etype (Expr))
3857 and then Is_Record_Type (Etype (Expr))
3858 and then Expansion_Delayed (Expr))
3859 or else
3860 (Nkind (Expr) = N_Qualified_Expression
3861 and then Has_Expansion_Delayed (Expression (Expr)));
3862 end Has_Expansion_Delayed;
3863
3864 -- Local variables
3865
3866 Expr_Type : Entity_Id := Empty;
3867 New_C : Entity_Id := Component;
3868 New_Expr : Node_Id;
3869
3870 Relocate : Boolean;
3871 -- Set to True if the resolved Expr node needs to be relocated when
3872 -- attached to the newly created association list. This node need not
3873 -- be relocated if its parent pointer is not set. In fact in this
3874 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3875 -- True then we have analyzed the expression node in the original
3876 -- aggregate and hence it needs to be relocated when moved over to
3877 -- the new association list.
3878
3879 -- Start of processing for Resolve_Aggr_Expr
3880
3881 begin
3882 -- If the type of the component is elementary or the type of the
3883 -- aggregate does not contain discriminants, use the type of the
3884 -- component to resolve Expr.
3885
3886 if Is_Elementary_Type (Etype (Component))
3887 or else not Has_Discriminants (Etype (N))
3888 then
3889 Expr_Type := Etype (Component);
3890
3891 -- Otherwise we have to pick up the new type of the component from
3892 -- the new constrained subtype of the aggregate. In fact components
3893 -- which are of a composite type might be constrained by a
3894 -- discriminant, and we want to resolve Expr against the subtype were
3895 -- all discriminant occurrences are replaced with their actual value.
3896
3897 else
3898 New_C := First_Component (Etype (N));
3899 while Present (New_C) loop
3900 if Chars (New_C) = Chars (Component) then
3901 Expr_Type := Etype (New_C);
3902 exit;
3903 end if;
3904
3905 Next_Component (New_C);
3906 end loop;
3907
3908 pragma Assert (Present (Expr_Type));
3909
3910 -- For each range in an array type where a discriminant has been
3911 -- replaced with the constraint, check that this range is within
3912 -- the range of the base type. This checks is done in the init
3913 -- proc for regular objects, but has to be done here for
3914 -- aggregates since no init proc is called for them.
3915
3916 if Is_Array_Type (Expr_Type) then
3917 declare
3918 Index : Node_Id;
3919 -- Range of the current constrained index in the array
3920
3921 Orig_Index : Node_Id := First_Index (Etype (Component));
3922 -- Range corresponding to the range Index above in the
3923 -- original unconstrained record type. The bounds of this
3924 -- range may be governed by discriminants.
3925
3926 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3927 -- Range corresponding to the range Index above for the
3928 -- unconstrained array type. This range is needed to apply
3929 -- range checks.
3930
3931 begin
3932 Index := First_Index (Expr_Type);
3933 while Present (Index) loop
3934 if Depends_On_Discriminant (Orig_Index) then
3935 Apply_Range_Check (Index, Etype (Unconstr_Index));
3936 end if;
3937
3938 Next_Index (Index);
3939 Next_Index (Orig_Index);
3940 Next_Index (Unconstr_Index);
3941 end loop;
3942 end;
3943 end if;
3944 end if;
3945
3946 -- If the Parent pointer of Expr is not set, Expr is an expression
3947 -- duplicated by New_Tree_Copy (this happens for record aggregates
3948 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3949 -- Such a duplicated expression must be attached to the tree
3950 -- before analysis and resolution to enforce the rule that a tree
3951 -- fragment should never be analyzed or resolved unless it is
3952 -- attached to the current compilation unit.
3953
3954 if No (Parent (Expr)) then
3955 Set_Parent (Expr, N);
3956 Relocate := False;
3957 else
3958 Relocate := True;
3959 end if;
3960
3961 Analyze_And_Resolve (Expr, Expr_Type);
3962 Check_Expr_OK_In_Limited_Aggregate (Expr);
3963 Check_Non_Static_Context (Expr);
3964 Check_Unset_Reference (Expr);
3965
3966 -- Check wrong use of class-wide types
3967
3968 if Is_Class_Wide_Type (Etype (Expr)) then
3969 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3970 end if;
3971
3972 if not Has_Expansion_Delayed (Expr) then
3973 Aggregate_Constraint_Checks (Expr, Expr_Type);
3974 end if;
3975
3976 -- If an aggregate component has a type with predicates, an explicit
3977 -- predicate check must be applied, as for an assignment statement,
3978 -- because the aggegate might not be expanded into individual
3979 -- component assignments.
3980
3981 if Present (Predicate_Function (Expr_Type))
3982 and then Analyzed (Expr)
3983 then
3984 Apply_Predicate_Check (Expr, Expr_Type);
3985 end if;
3986
3987 if Raises_Constraint_Error (Expr) then
3988 Set_Raises_Constraint_Error (N);
3989 end if;
3990
3991 -- If the expression has been marked as requiring a range check, then
3992 -- generate it here. It's a bit odd to be generating such checks in
3993 -- the analyzer, but harmless since Generate_Range_Check does nothing
3994 -- (other than making sure Do_Range_Check is set) if the expander is
3995 -- not active.
3996
3997 if Do_Range_Check (Expr) then
3998 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3999 end if;
4000
4001 -- Add association Component => Expr if the caller requests it
4002
4003 if Relocate then
4004 New_Expr := Relocate_Node (Expr);
4005
4006 -- Since New_Expr is not gonna be analyzed later on, we need to
4007 -- propagate here the dimensions form Expr to New_Expr.
4008
4009 Copy_Dimensions (Expr, New_Expr);
4010
4011 else
4012 New_Expr := Expr;
4013 end if;
4014
4015 Add_Association (New_C, New_Expr, New_Assoc_List);
4016 end Resolve_Aggr_Expr;
4017
4018 -- Local variables
4019
4020 Components : constant Elist_Id := New_Elmt_List;
4021 -- Components is the list of the record components whose value must be
4022 -- provided in the aggregate. This list does include discriminants.
4023
4024 Expr : Node_Id;
4025 Component : Entity_Id;
4026 Component_Elmt : Elmt_Id;
4027 Positional_Expr : Node_Id;
4028
4029 -- Start of processing for Resolve_Record_Aggregate
4030
4031 begin
4032 -- A record aggregate is restricted in SPARK:
4033
4034 -- Each named association can have only a single choice.
4035 -- OTHERS cannot be used.
4036 -- Positional and named associations cannot be mixed.
4037
4038 if Present (Component_Associations (N))
4039 and then Present (First (Component_Associations (N)))
4040 then
4041 if Present (Expressions (N)) then
4042 Check_SPARK_05_Restriction
4043 ("named association cannot follow positional one",
4044 First (Choices (First (Component_Associations (N)))));
4045 end if;
4046
4047 declare
4048 Assoc : Node_Id;
4049
4050 begin
4051 Assoc := First (Component_Associations (N));
4052 while Present (Assoc) loop
4053 if List_Length (Choices (Assoc)) > 1 then
4054 Check_SPARK_05_Restriction
4055 ("component association in record aggregate must "
4056 & "contain a single choice", Assoc);
4057 end if;
4058
4059 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4060 Check_SPARK_05_Restriction
4061 ("record aggregate cannot contain OTHERS", Assoc);
4062 end if;
4063
4064 Assoc := Next (Assoc);
4065 end loop;
4066 end;
4067 end if;
4068
4069 -- We may end up calling Duplicate_Subexpr on expressions that are
4070 -- attached to New_Assoc_List. For this reason we need to attach it
4071 -- to the tree by setting its parent pointer to N. This parent point
4072 -- will change in STEP 8 below.
4073
4074 Set_Parent (New_Assoc_List, N);
4075
4076 -- STEP 1: abstract type and null record verification
4077
4078 if Is_Abstract_Type (Typ) then
4079 Error_Msg_N ("type of aggregate cannot be abstract", N);
4080 end if;
4081
4082 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4083 Set_Etype (N, Typ);
4084 return;
4085
4086 elsif Present (First_Entity (Typ))
4087 and then Null_Record_Present (N)
4088 and then not Is_Tagged_Type (Typ)
4089 then
4090 Error_Msg_N ("record aggregate cannot be null", N);
4091 return;
4092
4093 -- If the type has no components, then the aggregate should either
4094 -- have "null record", or in Ada 2005 it could instead have a single
4095 -- component association given by "others => <>". For Ada 95 we flag an
4096 -- error at this point, but for Ada 2005 we proceed with checking the
4097 -- associations below, which will catch the case where it's not an
4098 -- aggregate with "others => <>". Note that the legality of a <>
4099 -- aggregate for a null record type was established by AI05-016.
4100
4101 elsif No (First_Entity (Typ))
4102 and then Ada_Version < Ada_2005
4103 then
4104 Error_Msg_N ("record aggregate must be null", N);
4105 return;
4106 end if;
4107
4108 -- STEP 2: Verify aggregate structure
4109
4110 Step_2 : declare
4111 Assoc : Node_Id;
4112 Bad_Aggregate : Boolean := False;
4113 Selector_Name : Node_Id;
4114
4115 begin
4116 if Present (Component_Associations (N)) then
4117 Assoc := First (Component_Associations (N));
4118 else
4119 Assoc := Empty;
4120 end if;
4121
4122 while Present (Assoc) loop
4123 Selector_Name := First (Choices (Assoc));
4124 while Present (Selector_Name) loop
4125 if Nkind (Selector_Name) = N_Identifier then
4126 null;
4127
4128 elsif Nkind (Selector_Name) = N_Others_Choice then
4129 if Selector_Name /= First (Choices (Assoc))
4130 or else Present (Next (Selector_Name))
4131 then
4132 Error_Msg_N
4133 ("OTHERS must appear alone in a choice list",
4134 Selector_Name);
4135 return;
4136
4137 elsif Present (Next (Assoc)) then
4138 Error_Msg_N
4139 ("OTHERS must appear last in an aggregate",
4140 Selector_Name);
4141 return;
4142
4143 -- (Ada 2005): If this is an association with a box,
4144 -- indicate that the association need not represent
4145 -- any component.
4146
4147 elsif Box_Present (Assoc) then
4148 Others_Box := 1;
4149 Box_Node := Assoc;
4150 end if;
4151
4152 else
4153 Error_Msg_N
4154 ("selector name should be identifier or OTHERS",
4155 Selector_Name);
4156 Bad_Aggregate := True;
4157 end if;
4158
4159 Next (Selector_Name);
4160 end loop;
4161
4162 Next (Assoc);
4163 end loop;
4164
4165 if Bad_Aggregate then
4166 return;
4167 end if;
4168 end Step_2;
4169
4170 -- STEP 3: Find discriminant Values
4171
4172 Step_3 : declare
4173 Discrim : Entity_Id;
4174 Missing_Discriminants : Boolean := False;
4175
4176 begin
4177 if Present (Expressions (N)) then
4178 Positional_Expr := First (Expressions (N));
4179 else
4180 Positional_Expr := Empty;
4181 end if;
4182
4183 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4184 -- must not have unknown discriminants.
4185
4186 if Is_Derived_Type (Typ)
4187 and then Has_Unknown_Discriminants (Root_Type (Typ))
4188 and then Nkind (N) /= N_Extension_Aggregate
4189 then
4190 Error_Msg_NE
4191 ("aggregate not available for type& whose ancestor "
4192 & "has unknown discriminants ", N, Typ);
4193 end if;
4194
4195 if Has_Unknown_Discriminants (Typ)
4196 and then Present (Underlying_Record_View (Typ))
4197 then
4198 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4199 elsif Has_Discriminants (Typ) then
4200 Discrim := First_Discriminant (Typ);
4201 else
4202 Discrim := Empty;
4203 end if;
4204
4205 -- First find the discriminant values in the positional components
4206
4207 while Present (Discrim) and then Present (Positional_Expr) loop
4208 if Discriminant_Present (Discrim) then
4209 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4210
4211 -- Ada 2005 (AI-231)
4212
4213 if Ada_Version >= Ada_2005
4214 and then Known_Null (Positional_Expr)
4215 then
4216 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4217 end if;
4218
4219 Next (Positional_Expr);
4220 end if;
4221
4222 if Present (Get_Value (Discrim, Component_Associations (N))) then
4223 Error_Msg_NE
4224 ("more than one value supplied for discriminant&",
4225 N, Discrim);
4226 end if;
4227
4228 Next_Discriminant (Discrim);
4229 end loop;
4230
4231 -- Find remaining discriminant values if any among named components
4232
4233 while Present (Discrim) loop
4234 Expr := Get_Value (Discrim, Component_Associations (N), True);
4235
4236 if not Discriminant_Present (Discrim) then
4237 if Present (Expr) then
4238 Error_Msg_NE
4239 ("more than one value supplied for discriminant &",
4240 N, Discrim);
4241 end if;
4242
4243 elsif No (Expr) then
4244 Error_Msg_NE
4245 ("no value supplied for discriminant &", N, Discrim);
4246 Missing_Discriminants := True;
4247
4248 else
4249 Resolve_Aggr_Expr (Expr, Discrim);
4250 end if;
4251
4252 Next_Discriminant (Discrim);
4253 end loop;
4254
4255 if Missing_Discriminants then
4256 return;
4257 end if;
4258
4259 -- At this point and until the beginning of STEP 6, New_Assoc_List
4260 -- contains only the discriminants and their values.
4261
4262 end Step_3;
4263
4264 -- STEP 4: Set the Etype of the record aggregate
4265
4266 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4267 -- routine should really be exported in sem_util or some such and used
4268 -- in sem_ch3 and here rather than have a copy of the code which is a
4269 -- maintenance nightmare.
4270
4271 -- ??? Performance WARNING. The current implementation creates a new
4272 -- itype for all aggregates whose base type is discriminated. This means
4273 -- that for record aggregates nested inside an array aggregate we will
4274 -- create a new itype for each record aggregate if the array component
4275 -- type has discriminants. For large aggregates this may be a problem.
4276 -- What should be done in this case is to reuse itypes as much as
4277 -- possible.
4278
4279 if Has_Discriminants (Typ)
4280 or else (Has_Unknown_Discriminants (Typ)
4281 and then Present (Underlying_Record_View (Typ)))
4282 then
4283 Build_Constrained_Itype : declare
4284 Constrs : constant List_Id := New_List;
4285 Loc : constant Source_Ptr := Sloc (N);
4286 Def_Id : Entity_Id;
4287 Indic : Node_Id;
4288 New_Assoc : Node_Id;
4289 Subtyp_Decl : Node_Id;
4290
4291 begin
4292 New_Assoc := First (New_Assoc_List);
4293 while Present (New_Assoc) loop
4294 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4295 Next (New_Assoc);
4296 end loop;
4297
4298 if Has_Unknown_Discriminants (Typ)
4299 and then Present (Underlying_Record_View (Typ))
4300 then
4301 Indic :=
4302 Make_Subtype_Indication (Loc,
4303 Subtype_Mark =>
4304 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4305 Constraint =>
4306 Make_Index_Or_Discriminant_Constraint (Loc,
4307 Constraints => Constrs));
4308 else
4309 Indic :=
4310 Make_Subtype_Indication (Loc,
4311 Subtype_Mark =>
4312 New_Occurrence_Of (Base_Type (Typ), Loc),
4313 Constraint =>
4314 Make_Index_Or_Discriminant_Constraint (Loc,
4315 Constraints => Constrs));
4316 end if;
4317
4318 Def_Id := Create_Itype (Ekind (Typ), N);
4319
4320 Subtyp_Decl :=
4321 Make_Subtype_Declaration (Loc,
4322 Defining_Identifier => Def_Id,
4323 Subtype_Indication => Indic);
4324 Set_Parent (Subtyp_Decl, Parent (N));
4325
4326 -- Itypes must be analyzed with checks off (see itypes.ads)
4327
4328 Analyze (Subtyp_Decl, Suppress => All_Checks);
4329
4330 Set_Etype (N, Def_Id);
4331 Check_Static_Discriminated_Subtype
4332 (Def_Id, Expression (First (New_Assoc_List)));
4333 end Build_Constrained_Itype;
4334
4335 else
4336 Set_Etype (N, Typ);
4337 end if;
4338
4339 -- STEP 5: Get remaining components according to discriminant values
4340
4341 Step_5 : declare
4342 Dnode : Node_Id;
4343 Errors_Found : Boolean := False;
4344 Record_Def : Node_Id;
4345 Parent_Typ : Entity_Id;
4346 Parent_Typ_List : Elist_Id;
4347 Parent_Elmt : Elmt_Id;
4348 Root_Typ : Entity_Id;
4349
4350 begin
4351 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4352 Parent_Typ_List := New_Elmt_List;
4353
4354 -- If this is an extension aggregate, the component list must
4355 -- include all components that are not in the given ancestor type.
4356 -- Otherwise, the component list must include components of all
4357 -- ancestors, starting with the root.
4358
4359 if Nkind (N) = N_Extension_Aggregate then
4360 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4361
4362 else
4363 -- AI05-0115: check legality of aggregate for type with a
4364 -- private ancestor.
4365
4366 Root_Typ := Root_Type (Typ);
4367 if Has_Private_Ancestor (Typ) then
4368 declare
4369 Ancestor : constant Entity_Id :=
4370 Find_Private_Ancestor (Typ);
4371 Ancestor_Unit : constant Entity_Id :=
4372 Cunit_Entity
4373 (Get_Source_Unit (Ancestor));
4374 Parent_Unit : constant Entity_Id :=
4375 Cunit_Entity (Get_Source_Unit
4376 (Base_Type (Etype (Ancestor))));
4377 begin
4378 -- Check whether we are in a scope that has full view
4379 -- over the private ancestor and its parent. This can
4380 -- only happen if the derivation takes place in a child
4381 -- unit of the unit that declares the parent, and we are
4382 -- in the private part or body of that child unit, else
4383 -- the aggregate is illegal.
4384
4385 if Is_Child_Unit (Ancestor_Unit)
4386 and then Scope (Ancestor_Unit) = Parent_Unit
4387 and then In_Open_Scopes (Scope (Ancestor))
4388 and then
4389 (In_Private_Part (Scope (Ancestor))
4390 or else In_Package_Body (Scope (Ancestor)))
4391 then
4392 null;
4393
4394 else
4395 Error_Msg_NE
4396 ("type of aggregate has private ancestor&!",
4397 N, Root_Typ);
4398 Error_Msg_N ("must use extension aggregate!", N);
4399 return;
4400 end if;
4401 end;
4402 end if;
4403
4404 Dnode := Declaration_Node (Base_Type (Root_Typ));
4405
4406 -- If we don't get a full declaration, then we have some error
4407 -- which will get signalled later so skip this part. Otherwise
4408 -- gather components of root that apply to the aggregate type.
4409 -- We use the base type in case there is an applicable stored
4410 -- constraint that renames the discriminants of the root.
4411
4412 if Nkind (Dnode) = N_Full_Type_Declaration then
4413 Record_Def := Type_Definition (Dnode);
4414 Gather_Components
4415 (Base_Type (Typ),
4416 Component_List (Record_Def),
4417 Governed_By => New_Assoc_List,
4418 Into => Components,
4419 Report_Errors => Errors_Found);
4420
4421 if Errors_Found then
4422 Error_Msg_N
4423 ("discriminant controlling variant part is not static",
4424 N);
4425 return;
4426 end if;
4427 end if;
4428 end if;
4429
4430 Parent_Typ := Base_Type (Typ);
4431 while Parent_Typ /= Root_Typ loop
4432 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4433 Parent_Typ := Etype (Parent_Typ);
4434
4435 if Nkind (Parent (Base_Type (Parent_Typ))) =
4436 N_Private_Type_Declaration
4437 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4438 N_Private_Extension_Declaration
4439 then
4440 if Nkind (N) /= N_Extension_Aggregate then
4441 Error_Msg_NE
4442 ("type of aggregate has private ancestor&!",
4443 N, Parent_Typ);
4444 Error_Msg_N ("must use extension aggregate!", N);
4445 return;
4446
4447 elsif Parent_Typ /= Root_Typ then
4448 Error_Msg_NE
4449 ("ancestor part of aggregate must be private type&",
4450 Ancestor_Part (N), Parent_Typ);
4451 return;
4452 end if;
4453
4454 -- The current view of ancestor part may be a private type,
4455 -- while the context type is always non-private.
4456
4457 elsif Is_Private_Type (Root_Typ)
4458 and then Present (Full_View (Root_Typ))
4459 and then Nkind (N) = N_Extension_Aggregate
4460 then
4461 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4462 end if;
4463 end loop;
4464
4465 -- Now collect components from all other ancestors, beginning
4466 -- with the current type. If the type has unknown discriminants
4467 -- use the component list of the Underlying_Record_View, which
4468 -- needs to be used for the subsequent expansion of the aggregate
4469 -- into assignments.
4470
4471 Parent_Elmt := First_Elmt (Parent_Typ_List);
4472 while Present (Parent_Elmt) loop
4473 Parent_Typ := Node (Parent_Elmt);
4474
4475 if Has_Unknown_Discriminants (Parent_Typ)
4476 and then Present (Underlying_Record_View (Typ))
4477 then
4478 Parent_Typ := Underlying_Record_View (Parent_Typ);
4479 end if;
4480
4481 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4482 Gather_Components (Empty,
4483 Component_List (Record_Extension_Part (Record_Def)),
4484 Governed_By => New_Assoc_List,
4485 Into => Components,
4486 Report_Errors => Errors_Found);
4487
4488 Next_Elmt (Parent_Elmt);
4489 end loop;
4490
4491 -- Typ is not a derived tagged type
4492
4493 else
4494 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4495
4496 if Null_Present (Record_Def) then
4497 null;
4498
4499 elsif not Has_Unknown_Discriminants (Typ) then
4500 Gather_Components
4501 (Base_Type (Typ),
4502 Component_List (Record_Def),
4503 Governed_By => New_Assoc_List,
4504 Into => Components,
4505 Report_Errors => Errors_Found);
4506
4507 else
4508 Gather_Components
4509 (Base_Type (Underlying_Record_View (Typ)),
4510 Component_List (Record_Def),
4511 Governed_By => New_Assoc_List,
4512 Into => Components,
4513 Report_Errors => Errors_Found);
4514 end if;
4515 end if;
4516
4517 if Errors_Found then
4518 return;
4519 end if;
4520 end Step_5;
4521
4522 -- STEP 6: Find component Values
4523
4524 Component := Empty;
4525 Component_Elmt := First_Elmt (Components);
4526
4527 -- First scan the remaining positional associations in the aggregate.
4528 -- Remember that at this point Positional_Expr contains the current
4529 -- positional association if any is left after looking for discriminant
4530 -- values in step 3.
4531
4532 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4533 Component := Node (Component_Elmt);
4534 Resolve_Aggr_Expr (Positional_Expr, Component);
4535
4536 -- Ada 2005 (AI-231)
4537
4538 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4539 Check_Can_Never_Be_Null (Component, Positional_Expr);
4540 end if;
4541
4542 if Present (Get_Value (Component, Component_Associations (N))) then
4543 Error_Msg_NE
4544 ("more than one value supplied for Component &", N, Component);
4545 end if;
4546
4547 Next (Positional_Expr);
4548 Next_Elmt (Component_Elmt);
4549 end loop;
4550
4551 if Present (Positional_Expr) then
4552 Error_Msg_N
4553 ("too many components for record aggregate", Positional_Expr);
4554 end if;
4555
4556 -- Now scan for the named arguments of the aggregate
4557
4558 while Present (Component_Elmt) loop
4559 Component := Node (Component_Elmt);
4560 Expr := Get_Value (Component, Component_Associations (N), True);
4561
4562 -- Note: The previous call to Get_Value sets the value of the
4563 -- variable Is_Box_Present.
4564
4565 -- Ada 2005 (AI-287): Handle components with default initialization.
4566 -- Note: This feature was originally added to Ada 2005 for limited
4567 -- but it was finally allowed with any type.
4568
4569 if Is_Box_Present then
4570 Check_Box_Component : declare
4571 Ctyp : constant Entity_Id := Etype (Component);
4572
4573 begin
4574 -- If there is a default expression for the aggregate, copy
4575 -- it into a new association. This copy must modify the scopes
4576 -- of internal types that may be attached to the expression
4577 -- (e.g. index subtypes of arrays) because in general the type
4578 -- declaration and the aggregate appear in different scopes,
4579 -- and the backend requires the scope of the type to match the
4580 -- point at which it is elaborated.
4581
4582 -- If the component has an initialization procedure (IP) we
4583 -- pass the component to the expander, which will generate
4584 -- the call to such IP.
4585
4586 -- If the component has discriminants, their values must
4587 -- be taken from their subtype. This is indispensable for
4588 -- constraints that are given by the current instance of an
4589 -- enclosing type, to allow the expansion of the aggregate to
4590 -- replace the reference to the current instance by the target
4591 -- object of the aggregate.
4592
4593 if Present (Parent (Component))
4594 and then Nkind (Parent (Component)) = N_Component_Declaration
4595 and then Present (Expression (Parent (Component)))
4596 then
4597 Expr :=
4598 New_Copy_Tree_And_Copy_Dimensions
4599 (Expression (Parent (Component)),
4600 New_Scope => Current_Scope,
4601 New_Sloc => Sloc (N));
4602
4603 Add_Association
4604 (Component => Component,
4605 Expr => Expr,
4606 Assoc_List => New_Assoc_List);
4607 Set_Has_Self_Reference (N);
4608
4609 -- A box-defaulted access component gets the value null. Also
4610 -- included are components of private types whose underlying
4611 -- type is an access type. In either case set the type of the
4612 -- literal, for subsequent use in semantic checks.
4613
4614 elsif Present (Underlying_Type (Ctyp))
4615 and then Is_Access_Type (Underlying_Type (Ctyp))
4616 then
4617 -- If the component's type is private with an access type as
4618 -- its underlying type then we have to create an unchecked
4619 -- conversion to satisfy type checking.
4620
4621 if Is_Private_Type (Ctyp) then
4622 declare
4623 Qual_Null : constant Node_Id :=
4624 Make_Qualified_Expression (Sloc (N),
4625 Subtype_Mark =>
4626 New_Occurrence_Of
4627 (Underlying_Type (Ctyp), Sloc (N)),
4628 Expression => Make_Null (Sloc (N)));
4629
4630 Convert_Null : constant Node_Id :=
4631 Unchecked_Convert_To
4632 (Ctyp, Qual_Null);
4633
4634 begin
4635 Analyze_And_Resolve (Convert_Null, Ctyp);
4636 Add_Association
4637 (Component => Component,
4638 Expr => Convert_Null,
4639 Assoc_List => New_Assoc_List);
4640 end;
4641
4642 -- Otherwise the component type is non-private
4643
4644 else
4645 Expr := Make_Null (Sloc (N));
4646 Set_Etype (Expr, Ctyp);
4647
4648 Add_Association
4649 (Component => Component,
4650 Expr => Expr,
4651 Assoc_List => New_Assoc_List);
4652 end if;
4653
4654 -- Ada 2012: If component is scalar with default value, use it
4655
4656 elsif Is_Scalar_Type (Ctyp)
4657 and then Has_Default_Aspect (Ctyp)
4658 then
4659 Add_Association
4660 (Component => Component,
4661 Expr =>
4662 Default_Aspect_Value
4663 (First_Subtype (Underlying_Type (Ctyp))),
4664 Assoc_List => New_Assoc_List);
4665
4666 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4667 or else not Expander_Active
4668 then
4669 if Is_Record_Type (Ctyp)
4670 and then Has_Discriminants (Ctyp)
4671 and then not Is_Private_Type (Ctyp)
4672 then
4673 -- We build a partially initialized aggregate with the
4674 -- values of the discriminants and box initialization
4675 -- for the rest, if other components are present.
4676
4677 -- The type of the aggregate is the known subtype of
4678 -- the component. The capture of discriminants must be
4679 -- recursive because subcomponents may be constrained
4680 -- (transitively) by discriminants of enclosing types.
4681 -- For a private type with discriminants, a call to the
4682 -- initialization procedure will be generated, and no
4683 -- subaggregate is needed.
4684
4685 Capture_Discriminants : declare
4686 Loc : constant Source_Ptr := Sloc (N);
4687 Expr : Node_Id;
4688
4689 begin
4690 Expr := Make_Aggregate (Loc, New_List, New_List);
4691 Set_Etype (Expr, Ctyp);
4692
4693 -- If the enclosing type has discriminants, they have
4694 -- been collected in the aggregate earlier, and they
4695 -- may appear as constraints of subcomponents.
4696
4697 -- Similarly if this component has discriminants, they
4698 -- might in turn be propagated to their components.
4699
4700 if Has_Discriminants (Typ) then
4701 Add_Discriminant_Values (Expr, New_Assoc_List);
4702 Propagate_Discriminants (Expr, New_Assoc_List);
4703
4704 elsif Has_Discriminants (Ctyp) then
4705 Add_Discriminant_Values
4706 (Expr, Component_Associations (Expr));
4707 Propagate_Discriminants
4708 (Expr, Component_Associations (Expr));
4709
4710 else
4711 declare
4712 Comp : Entity_Id;
4713
4714 begin
4715 -- If the type has additional components, create
4716 -- an OTHERS box association for them.
4717
4718 Comp := First_Component (Ctyp);
4719 while Present (Comp) loop
4720 if Ekind (Comp) = E_Component then
4721 if not Is_Record_Type (Etype (Comp)) then
4722 Append_To
4723 (Component_Associations (Expr),
4724 Make_Component_Association (Loc,
4725 Choices =>
4726 New_List (
4727 Make_Others_Choice (Loc)),
4728 Expression => Empty,
4729 Box_Present => True));
4730 end if;
4731
4732 exit;
4733 end if;
4734
4735 Next_Component (Comp);
4736 end loop;
4737 end;
4738 end if;
4739
4740 Add_Association
4741 (Component => Component,
4742 Expr => Expr,
4743 Assoc_List => New_Assoc_List);
4744 end Capture_Discriminants;
4745
4746 -- Otherwise the component type is not a record, or it has
4747 -- not discriminants, or it is private.
4748
4749 else
4750 Add_Association
4751 (Component => Component,
4752 Expr => Empty,
4753 Assoc_List => New_Assoc_List,
4754 Is_Box_Present => True);
4755 end if;
4756
4757 -- Otherwise we only need to resolve the expression if the
4758 -- component has partially initialized values (required to
4759 -- expand the corresponding assignments and run-time checks).
4760
4761 elsif Present (Expr)
4762 and then Is_Partially_Initialized_Type (Ctyp)
4763 then
4764 Resolve_Aggr_Expr (Expr, Component);
4765 end if;
4766 end Check_Box_Component;
4767
4768 elsif No (Expr) then
4769
4770 -- Ignore hidden components associated with the position of the
4771 -- interface tags: these are initialized dynamically.
4772
4773 if not Present (Related_Type (Component)) then
4774 Error_Msg_NE
4775 ("no value supplied for component &!", N, Component);
4776 end if;
4777
4778 else
4779 Resolve_Aggr_Expr (Expr, Component);
4780 end if;
4781
4782 Next_Elmt (Component_Elmt);
4783 end loop;
4784
4785 -- STEP 7: check for invalid components + check type in choice list
4786
4787 Step_7 : declare
4788 Assoc : Node_Id;
4789 New_Assoc : Node_Id;
4790
4791 Selectr : Node_Id;
4792 -- Selector name
4793
4794 Typech : Entity_Id;
4795 -- Type of first component in choice list
4796
4797 begin
4798 if Present (Component_Associations (N)) then
4799 Assoc := First (Component_Associations (N));
4800 else
4801 Assoc := Empty;
4802 end if;
4803
4804 Verification : while Present (Assoc) loop
4805 Selectr := First (Choices (Assoc));
4806 Typech := Empty;
4807
4808 if Nkind (Selectr) = N_Others_Choice then
4809
4810 -- Ada 2005 (AI-287): others choice may have expression or box
4811
4812 if No (Others_Etype) and then Others_Box = 0 then
4813 Error_Msg_N
4814 ("OTHERS must represent at least one component", Selectr);
4815
4816 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4817 Error_Msg_N ("others choice is redundant?", Box_Node);
4818 Error_Msg_N
4819 ("\previous choices cover all components?", Box_Node);
4820 end if;
4821
4822 exit Verification;
4823 end if;
4824
4825 while Present (Selectr) loop
4826 New_Assoc := First (New_Assoc_List);
4827 while Present (New_Assoc) loop
4828 Component := First (Choices (New_Assoc));
4829
4830 if Chars (Selectr) = Chars (Component) then
4831 if Style_Check then
4832 Check_Identifier (Selectr, Entity (Component));
4833 end if;
4834
4835 exit;
4836 end if;
4837
4838 Next (New_Assoc);
4839 end loop;
4840
4841 -- If no association, this is not a legal component of the type
4842 -- in question, unless its association is provided with a box.
4843
4844 if No (New_Assoc) then
4845 if Box_Present (Parent (Selectr)) then
4846
4847 -- This may still be a bogus component with a box. Scan
4848 -- list of components to verify that a component with
4849 -- that name exists.
4850
4851 declare
4852 C : Entity_Id;
4853
4854 begin
4855 C := First_Component (Typ);
4856 while Present (C) loop
4857 if Chars (C) = Chars (Selectr) then
4858
4859 -- If the context is an extension aggregate,
4860 -- the component must not be inherited from
4861 -- the ancestor part of the aggregate.
4862
4863 if Nkind (N) /= N_Extension_Aggregate
4864 or else
4865 Scope (Original_Record_Component (C)) /=
4866 Etype (Ancestor_Part (N))
4867 then
4868 exit;
4869 end if;
4870 end if;
4871
4872 Next_Component (C);
4873 end loop;
4874
4875 if No (C) then
4876 Error_Msg_Node_2 := Typ;
4877 Error_Msg_N ("& is not a component of}", Selectr);
4878 end if;
4879 end;
4880
4881 elsif Chars (Selectr) /= Name_uTag
4882 and then Chars (Selectr) /= Name_uParent
4883 then
4884 if not Has_Discriminants (Typ) then
4885 Error_Msg_Node_2 := Typ;
4886 Error_Msg_N ("& is not a component of}", Selectr);
4887 else
4888 Error_Msg_N
4889 ("& is not a component of the aggregate subtype",
4890 Selectr);
4891 end if;
4892
4893 Check_Misspelled_Component (Components, Selectr);
4894 end if;
4895
4896 elsif No (Typech) then
4897 Typech := Base_Type (Etype (Component));
4898
4899 -- AI05-0199: In Ada 2012, several components of anonymous
4900 -- access types can appear in a choice list, as long as the
4901 -- designated types match.
4902
4903 elsif Typech /= Base_Type (Etype (Component)) then
4904 if Ada_Version >= Ada_2012
4905 and then Ekind (Typech) = E_Anonymous_Access_Type
4906 and then
4907 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4908 and then Base_Type (Designated_Type (Typech)) =
4909 Base_Type (Designated_Type (Etype (Component)))
4910 and then
4911 Subtypes_Statically_Match (Typech, (Etype (Component)))
4912 then
4913 null;
4914
4915 elsif not Box_Present (Parent (Selectr)) then
4916 Error_Msg_N
4917 ("components in choice list must have same type",
4918 Selectr);
4919 end if;
4920 end if;
4921
4922 Next (Selectr);
4923 end loop;
4924
4925 Next (Assoc);
4926 end loop Verification;
4927 end Step_7;
4928
4929 -- STEP 8: replace the original aggregate
4930
4931 Step_8 : declare
4932 New_Aggregate : constant Node_Id := New_Copy (N);
4933
4934 begin
4935 Set_Expressions (New_Aggregate, No_List);
4936 Set_Etype (New_Aggregate, Etype (N));
4937 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4938 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
4939
4940 Rewrite (N, New_Aggregate);
4941 end Step_8;
4942
4943 -- Check the dimensions of the components in the record aggregate
4944
4945 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4946 end Resolve_Record_Aggregate;
4947
4948 -----------------------------
4949 -- Check_Can_Never_Be_Null --
4950 -----------------------------
4951
4952 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4953 Comp_Typ : Entity_Id;
4954
4955 begin
4956 pragma Assert
4957 (Ada_Version >= Ada_2005
4958 and then Present (Expr)
4959 and then Known_Null (Expr));
4960
4961 case Ekind (Typ) is
4962 when E_Array_Type =>
4963 Comp_Typ := Component_Type (Typ);
4964
4965 when E_Component
4966 | E_Discriminant
4967 =>
4968 Comp_Typ := Etype (Typ);
4969
4970 when others =>
4971 return;
4972 end case;
4973
4974 if Can_Never_Be_Null (Comp_Typ) then
4975
4976 -- Here we know we have a constraint error. Note that we do not use
4977 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4978 -- seem the more natural approach. That's because in some cases the
4979 -- components are rewritten, and the replacement would be missed.
4980 -- We do not mark the whole aggregate as raising a constraint error,
4981 -- because the association may be a null array range.
4982
4983 Error_Msg_N
4984 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4985 Error_Msg_N
4986 ("\Constraint_Error will be raised at run time??", Expr);
4987
4988 Rewrite (Expr,
4989 Make_Raise_Constraint_Error
4990 (Sloc (Expr), Reason => CE_Access_Check_Failed));
4991 Set_Etype (Expr, Comp_Typ);
4992 Set_Analyzed (Expr);
4993 end if;
4994 end Check_Can_Never_Be_Null;
4995
4996 ---------------------
4997 -- Sort_Case_Table --
4998 ---------------------
4999
5000 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5001 U : constant Int := Case_Table'Last;
5002 K : Int;
5003 J : Int;
5004 T : Case_Bounds;
5005
5006 begin
5007 K := 1;
5008 while K < U loop
5009 T := Case_Table (K + 1);
5010
5011 J := K + 1;
5012 while J > 1
5013 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5014 loop
5015 Case_Table (J) := Case_Table (J - 1);
5016 J := J - 1;
5017 end loop;
5018
5019 Case_Table (J) := T;
5020 K := K + 1;
5021 end loop;
5022 end Sort_Case_Table;
5023
5024 end Sem_Aggr;