d86dc355a1e90acc0506d2a8ac42f8eaf7b39c8c
[gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Sem_Warn; use Sem_Warn;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stringt; use Stringt;
61 with Stand; use Stand;
62 with Style; use Style;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
66
67 package body Sem_Aggr is
68
69 type Case_Bounds is record
70 Lo : Node_Id;
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
73
74 Hi : Node_Id;
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
77
78 Highest : Uint;
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
82
83 Choice : Node_Id;
84 -- The node of the choice
85 end record;
86
87 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
90
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
99
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
109 --
110 -- It would be better to pass the proper type for Typ ???
111
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already pre-analyzed and it is known to be type correct.
118
119 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
123
124 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
126 -- aggregate.
127
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
131
132 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
137 --
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
140 --
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
146 --
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
151 -- aggregate.
152 --
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
158 -- subtree transformation is performed during resolution rather than
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
161 -- however, that all the expansion concerning aggregates for tagged records
162 -- is done in Expand_Record_Aggregate.
163 --
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
165 --
166 -- 1. Make sure that the record type against which the record aggregate
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
169 --
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
175 --
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
184 --
185 -- During this phase we also make sure that every discriminant is
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
190 --
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
194 --
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
199 --
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
206 --
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
210 --
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
216 --
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
219 --
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
227 -- list.
228
229 procedure Check_Misspelled_Component
230 (Elements : Elist_Id;
231 Component : Node_Id);
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
235
236 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
241
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
245
246 function Resolve_Array_Aggregate
247 (N : Node_Id;
248 Index : Node_Id;
249 Index_Constr : Node_Id;
250 Component_Typ : Entity_Id;
251 Others_Allowed : Boolean) return Boolean;
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
254 --
255 -- The procedure works by recursively checking each nested aggregate.
256 -- Specifically, after checking a sub-aggregate nested at the i-th level
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
261 --
262 -- N is the current N_Aggregate node to be checked.
263 --
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
267 --
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
273 --
274 -- Component_Typ is the array component type.
275 --
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
278 --
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
280 --
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
285 -- choice is present, make sure it is allowed in the aggregate context.
286 --
287 -- 2. If the array sub-aggregate contains discrete_choices:
288 --
289 -- (A) Verify their validity. Specifically verify that:
290 --
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
293 --
294 -- (b) Ditto for a non static range.
295 --
296 -- (c) Ditto for a non static expression.
297 --
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
307 --
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
310 --
311 -- 3. For positional aggregates:
312 --
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
317 --
318 -- (B) Determine the bounds of the positional sub-aggregates.
319 --
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
323 --
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
331 --
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
337 --
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
342 --
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
348 --
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
354 --
355 -- type Rec is record
356 -- V : Integer := 0;
357 -- end record;
358 --
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361 --
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
364 --
365 -- P7b : constant Acc_Rec := new Rec;
366 -- RecIP (P7b.all);
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368 --
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
374
375 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376 -- This routine returns the type or subtype of an array aggregate.
377 --
378 -- N is the array aggregate node whose type we return.
379 --
380 -- Typ is the context type in which N occurs.
381 --
382 -- This routine creates an implicit array subtype whose bounds are
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386 -- sub-aggregate bounds. When building the aggregate itype, this function
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
389 --
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
399 --
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
405 -- this). After constructing the proper itype we will eventually replace
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
408 --
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
411 --
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
414
415 procedure Make_String_Into_Aggregate (N : Node_Id);
416 -- A string literal can appear in a context in which a one dimensional
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
419
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
423
424 function Array_Aggr_Subtype
425 (N : Node_Id;
426 Typ : Entity_Id) return Entity_Id
427 is
428 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429 -- Number of aggregate index dimensions
430
431 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432 -- Constrained N_Range of each index dimension in our aggregate itype
433
434 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436 -- Low and High bounds for each index dimension in our aggregate itype
437
438 Is_Fully_Positional : Boolean := True;
439
440 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
446 --
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
451
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
455
456 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457 This_Range : constant Node_Id := Aggregate_Bounds (N);
458 -- The aggregate range node of this specific sub-aggregate
459
460 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462 -- The aggregate bounds of this specific sub-aggregate
463
464 Assoc : Node_Id;
465 Expr : Node_Id;
466
467 begin
468 Remove_Side_Effects (This_Low, Variable_Ref => True);
469 Remove_Side_Effects (This_High, Variable_Ref => True);
470
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
473
474 if No (Aggr_Range (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476 Aggr_High (Dim) := This_High;
477 Aggr_Range (Dim) := This_Range;
478
479 else
480 if Compile_Time_Known_Value (This_Low) then
481 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482 Aggr_Low (Dim) := This_Low;
483
484 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485 Set_Raises_Constraint_Error (N);
486 Error_Msg_Warn := SPARK_Mode /= On;
487 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488 Error_Msg_N ("\Constraint_Error [<<", N);
489 end if;
490 end if;
491
492 if Compile_Time_Known_Value (This_High) then
493 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494 Aggr_High (Dim) := This_High;
495
496 elsif
497 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498 then
499 Set_Raises_Constraint_Error (N);
500 Error_Msg_Warn := SPARK_Mode /= On;
501 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502 Error_Msg_N ("\Constraint_Error [<<", N);
503 end if;
504 end if;
505 end if;
506
507 if Dim < Aggr_Dimension then
508
509 -- Process positional components
510
511 if Present (Expressions (N)) then
512 Expr := First (Expressions (N));
513 while Present (Expr) loop
514 Collect_Aggr_Bounds (Expr, Dim + 1);
515 Next (Expr);
516 end loop;
517 end if;
518
519 -- Process component associations
520
521 if Present (Component_Associations (N)) then
522 Is_Fully_Positional := False;
523
524 Assoc := First (Component_Associations (N));
525 while Present (Assoc) loop
526 Expr := Expression (Assoc);
527 Collect_Aggr_Bounds (Expr, Dim + 1);
528 Next (Assoc);
529 end loop;
530 end if;
531 end if;
532 end Collect_Aggr_Bounds;
533
534 -- Array_Aggr_Subtype variables
535
536 Itype : Entity_Id;
537 -- The final itype of the overall aggregate
538
539 Index_Constraints : constant List_Id := New_List;
540 -- The list of index constraints of the aggregate itype
541
542 -- Start of processing for Array_Aggr_Subtype
543
544 begin
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
547
548 Set_Parent (Index_Constraints, N);
549 Collect_Aggr_Bounds (N, 1);
550
551 -- Build the list of constrained indexes of our aggregate itype
552
553 for J in 1 .. Aggr_Dimension loop
554 Create_Index : declare
555 Index_Base : constant Entity_Id :=
556 Base_Type (Etype (Aggr_Range (J)));
557 Index_Typ : Entity_Id;
558
559 begin
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
562
563 Index_Typ :=
564 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
565
566 Set_Etype (Index_Typ, Index_Base);
567
568 if Is_Character_Type (Index_Base) then
569 Set_Is_Character_Type (Index_Typ);
570 end if;
571
572 Set_Size_Info (Index_Typ, (Index_Base));
573 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
574 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
576
577 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579 end if;
580
581 Set_Etype (Aggr_Range (J), Index_Typ);
582
583 Append (Aggr_Range (J), To => Index_Constraints);
584 end Create_Index;
585 end loop;
586
587 -- Now build the Itype
588
589 Itype := Create_Itype (E_Array_Subtype, N);
590
591 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
592 Set_Convention (Itype, Convention (Typ));
593 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
594 Set_Etype (Itype, Base_Type (Typ));
595 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
596 Set_Is_Aliased (Itype, Is_Aliased (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
598
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
601
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
605
606 -- A simple optimization: purely positional aggregates of static
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
610
611 Set_Size_Known_At_Compile_Time
612 (Itype,
613 Is_Fully_Positional
614 and then Comes_From_Source (N)
615 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
616
617 -- We always need a freeze node for a packed array subtype, so that we
618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
622
623 if Is_Packed (Itype)
624 and then not In_Spec_Expression
625 and then Expander_Active
626 then
627 Freeze_Itype (Itype, N);
628 end if;
629
630 return Itype;
631 end Array_Aggr_Subtype;
632
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
636
637 procedure Check_Misspelled_Component
638 (Elements : Elist_Id;
639 Component : Node_Id)
640 is
641 Max_Suggestions : constant := 2;
642
643 Nr_Of_Suggestions : Natural := 0;
644 Suggestion_1 : Entity_Id := Empty;
645 Suggestion_2 : Entity_Id := Empty;
646 Component_Elmt : Elmt_Id;
647
648 begin
649 -- All the components of List are matched against Component and a count
650 -- is maintained of possible misspellings. When at the end of the
651 -- analysis there are one or two (not more) possible misspellings,
652 -- these misspellings will be suggested as possible corrections.
653
654 Component_Elmt := First_Elmt (Elements);
655 while Nr_Of_Suggestions <= Max_Suggestions
656 and then Present (Component_Elmt)
657 loop
658 if Is_Bad_Spelling_Of
659 (Chars (Node (Component_Elmt)),
660 Chars (Component))
661 then
662 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
663
664 case Nr_Of_Suggestions is
665 when 1 => Suggestion_1 := Node (Component_Elmt);
666 when 2 => Suggestion_2 := Node (Component_Elmt);
667 when others => null;
668 end case;
669 end if;
670
671 Next_Elmt (Component_Elmt);
672 end loop;
673
674 -- Report at most two suggestions
675
676 if Nr_Of_Suggestions = 1 then
677 Error_Msg_NE -- CODEFIX
678 ("\possible misspelling of&", Component, Suggestion_1);
679
680 elsif Nr_Of_Suggestions = 2 then
681 Error_Msg_Node_2 := Suggestion_2;
682 Error_Msg_NE -- CODEFIX
683 ("\possible misspelling of& or&", Component, Suggestion_1);
684 end if;
685 end Check_Misspelled_Component;
686
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
690
691 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692 begin
693 if Is_Limited_Type (Etype (Expr))
694 and then Comes_From_Source (Expr)
695 then
696 if In_Instance_Body or else In_Inlined_Body then
697 null;
698
699 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700 Error_Msg_N
701 ("initialization not allowed for limited types", Expr);
702 Explain_Limited_Type (Etype (Expr), Expr);
703 end if;
704 end if;
705 end Check_Expr_OK_In_Limited_Aggregate;
706
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
710
711 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712 Comp_Expr : Node_Id;
713 Comp_Assn : Node_Id;
714
715 begin
716 if Level = 0 then
717 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
718 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
719 end if;
720
721 else
722 Comp_Expr := First (Expressions (Expr));
723 while Present (Comp_Expr) loop
724 if Nkind (Comp_Expr) = N_Aggregate then
725 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726 end if;
727
728 Comp_Expr := Next (Comp_Expr);
729 end loop;
730
731 Comp_Assn := First (Component_Associations (Expr));
732 while Present (Comp_Assn) loop
733 Comp_Expr := Expression (Comp_Assn);
734
735 if Nkind (Comp_Expr) = N_Aggregate then
736 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737 end if;
738
739 Comp_Assn := Next (Comp_Assn);
740 end loop;
741 end if;
742 end Check_Qualified_Aggregate;
743
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
747
748 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749 Disc : constant Entity_Id := First_Discriminant (T);
750 Comp : Entity_Id;
751 Ind : Entity_Id;
752
753 begin
754 if Has_Record_Rep_Clause (T) then
755 return;
756
757 elsif Present (Next_Discriminant (Disc)) then
758 return;
759
760 elsif Nkind (V) /= N_Integer_Literal then
761 return;
762 end if;
763
764 Comp := First_Component (T);
765 while Present (Comp) loop
766 if Is_Scalar_Type (Etype (Comp)) then
767 null;
768
769 elsif Is_Private_Type (Etype (Comp))
770 and then Present (Full_View (Etype (Comp)))
771 and then Is_Scalar_Type (Full_View (Etype (Comp)))
772 then
773 null;
774
775 elsif Is_Array_Type (Etype (Comp)) then
776 if Is_Bit_Packed_Array (Etype (Comp)) then
777 return;
778 end if;
779
780 Ind := First_Index (Etype (Comp));
781 while Present (Ind) loop
782 if Nkind (Ind) /= N_Range
783 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
784 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785 then
786 return;
787 end if;
788
789 Next_Index (Ind);
790 end loop;
791
792 else
793 return;
794 end if;
795
796 Next_Component (Comp);
797 end loop;
798
799 -- On exit, all components have statically known sizes
800
801 Set_Size_Known_At_Compile_Time (T);
802 end Check_Static_Discriminated_Subtype;
803
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
807
808 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809 begin
810 return No (Expressions (Aggr))
811 and then
812 Nkind (First (Choice_List (First (Component_Associations (Aggr))))) =
813 N_Others_Choice;
814 end Is_Others_Aggregate;
815
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
819
820 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821 begin
822 return Nkind (Parent (Expr)) /= N_Aggregate
823 and then (Nkind (Parent (Expr)) /= N_Component_Association
824 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825 end Is_Top_Level_Aggregate;
826
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
830
831 procedure Make_String_Into_Aggregate (N : Node_Id) is
832 Exprs : constant List_Id := New_List;
833 Loc : constant Source_Ptr := Sloc (N);
834 Str : constant String_Id := Strval (N);
835 Strlen : constant Nat := String_Length (Str);
836 C : Char_Code;
837 C_Node : Node_Id;
838 New_N : Node_Id;
839 P : Source_Ptr;
840
841 begin
842 P := Loc + 1;
843 for J in 1 .. Strlen loop
844 C := Get_String_Char (Str, J);
845 Set_Character_Literal_Name (C);
846
847 C_Node :=
848 Make_Character_Literal (P,
849 Chars => Name_Find,
850 Char_Literal_Value => UI_From_CC (C));
851 Set_Etype (C_Node, Any_Character);
852 Append_To (Exprs, C_Node);
853
854 P := P + 1;
855 -- Something special for wide strings???
856 end loop;
857
858 New_N := Make_Aggregate (Loc, Expressions => Exprs);
859 Set_Analyzed (New_N);
860 Set_Etype (New_N, Any_Composite);
861
862 Rewrite (N, New_N);
863 end Make_String_Into_Aggregate;
864
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
868
869 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
870 Loc : constant Source_Ptr := Sloc (N);
871 Pkind : constant Node_Kind := Nkind (Parent (N));
872
873 Aggr_Subtyp : Entity_Id;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
876
877 begin
878 -- Ignore junk empty aggregate resulting from parser error
879
880 if No (Expressions (N))
881 and then No (Component_Associations (N))
882 and then not Null_Record_Present (N)
883 then
884 return;
885 end if;
886
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
891 -- be done during resolution.
892
893 if Expander_Active
894 and then Present (Component_Associations (N))
895 then
896 declare
897 Comp : Node_Id;
898
899 begin
900 Comp := First (Component_Associations (N));
901 while Present (Comp) loop
902 if Box_Present (Comp) then
903 Insert_Actions (N, Freeze_Entity (Typ, N));
904 exit;
905 end if;
906
907 Next (Comp);
908 end loop;
909 end;
910 end if;
911
912 -- An unqualified aggregate is restricted in SPARK to:
913
914 -- An aggregate item inside an aggregate for a multi-dimensional array
915
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
918
919 if Nkind (Parent (N)) = N_Qualified_Expression then
920 if Is_Array_Type (Typ) then
921 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922 else
923 Check_Qualified_Aggregate (1, N);
924 end if;
925 else
926 if Is_Array_Type (Typ)
927 and then Nkind (Parent (N)) = N_Assignment_Statement
928 and then not Is_Constrained (Etype (Name (Parent (N))))
929 then
930 if not Is_Others_Aggregate (N) then
931 Check_SPARK_05_Restriction
932 ("array aggregate should have only OTHERS", N);
933 end if;
934
935 elsif Is_Top_Level_Aggregate (N) then
936 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
937
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
941
942 else
943 null;
944 end if;
945 end if;
946
947 -- Check for aggregates not allowed in configurable run-time mode.
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
951
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source (N)
954 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955 then
956 Error_Msg_CRT ("aggregate", N);
957 end if;
958
959 -- Ada 2005 (AI-287): Limited aggregates allowed
960
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
964
965 if Is_Limited_Type (Typ)
966 and then Ada_Version < Ada_2005
967 and then not In_Instance
968 then
969 Error_Msg_N ("aggregate type cannot be limited", N);
970 Explain_Limited_Type (Typ, N);
971
972 elsif Is_Class_Wide_Type (Typ) then
973 Error_Msg_N ("type of aggregate cannot be class-wide", N);
974
975 elsif Typ = Any_String
976 or else Typ = Any_Composite
977 then
978 Error_Msg_N ("no unique type for aggregate", N);
979 Set_Etype (N, Any_Composite);
980
981 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982 Error_Msg_N ("null record forbidden in array aggregate", N);
983
984 elsif Is_Record_Type (Typ) then
985 Resolve_Record_Aggregate (N, Typ);
986
987 elsif Is_Array_Type (Typ) then
988
989 -- First a special test, for the case of a positional aggregate
990 -- of characters which can be replaced by a string literal.
991
992 -- Do not perform this transformation if this was a string literal to
993 -- start with, whose components needed constraint checks, or if the
994 -- component type is non-static, because it will require those checks
995 -- and be transformed back into an aggregate.
996
997 if Number_Dimensions (Typ) = 1
998 and then Is_Standard_Character_Type (Component_Type (Typ))
999 and then No (Component_Associations (N))
1000 and then not Is_Limited_Composite (Typ)
1001 and then not Is_Private_Composite (Typ)
1002 and then not Is_Bit_Packed_Array (Typ)
1003 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1004 and then Is_OK_Static_Subtype (Component_Type (Typ))
1005 then
1006 declare
1007 Expr : Node_Id;
1008
1009 begin
1010 Expr := First (Expressions (N));
1011 while Present (Expr) loop
1012 exit when Nkind (Expr) /= N_Character_Literal;
1013 Next (Expr);
1014 end loop;
1015
1016 if No (Expr) then
1017 Start_String;
1018
1019 Expr := First (Expressions (N));
1020 while Present (Expr) loop
1021 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1022 Next (Expr);
1023 end loop;
1024
1025 Rewrite (N, Make_String_Literal (Loc, End_String));
1026
1027 Analyze_And_Resolve (N, Typ);
1028 return;
1029 end if;
1030 end;
1031 end if;
1032
1033 -- Here if we have a real aggregate to deal with
1034
1035 Array_Aggregate : declare
1036 Aggr_Resolved : Boolean;
1037
1038 Aggr_Typ : constant Entity_Id := Etype (Typ);
1039 -- This is the unconstrained array type, which is the type against
1040 -- which the aggregate is to be resolved. Typ itself is the array
1041 -- type of the context which may not be the same subtype as the
1042 -- subtype for the final aggregate.
1043
1044 begin
1045 -- In the following we determine whether an OTHERS choice is
1046 -- allowed inside the array aggregate. The test checks the context
1047 -- in which the array aggregate occurs. If the context does not
1048 -- permit it, or the aggregate type is unconstrained, an OTHERS
1049 -- choice is not allowed (except that it is always allowed on the
1050 -- right-hand side of an assignment statement; in this case the
1051 -- constrainedness of the type doesn't matter).
1052
1053 -- If expansion is disabled (generic context, or semantics-only
1054 -- mode) actual subtypes cannot be constructed, and the type of an
1055 -- object may be its unconstrained nominal type. However, if the
1056 -- context is an assignment, we assume that OTHERS is allowed,
1057 -- because the target of the assignment will have a constrained
1058 -- subtype when fully compiled.
1059
1060 -- Note that there is no node for Explicit_Actual_Parameter.
1061 -- To test for this context we therefore have to test for node
1062 -- N_Parameter_Association which itself appears only if there is a
1063 -- formal parameter. Consequently we also need to test for
1064 -- N_Procedure_Call_Statement or N_Function_Call.
1065
1066 -- The context may be an N_Reference node, created by expansion.
1067 -- Legality of the others clause was established in the source,
1068 -- so the context is legal.
1069
1070 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1071
1072 if Pkind = N_Assignment_Statement
1073 or else (Is_Constrained (Typ)
1074 and then
1075 (Pkind = N_Parameter_Association or else
1076 Pkind = N_Function_Call or else
1077 Pkind = N_Procedure_Call_Statement or else
1078 Pkind = N_Generic_Association or else
1079 Pkind = N_Formal_Object_Declaration or else
1080 Pkind = N_Simple_Return_Statement or else
1081 Pkind = N_Object_Declaration or else
1082 Pkind = N_Component_Declaration or else
1083 Pkind = N_Parameter_Specification or else
1084 Pkind = N_Qualified_Expression or else
1085 Pkind = N_Reference or else
1086 Pkind = N_Aggregate or else
1087 Pkind = N_Extension_Aggregate or else
1088 Pkind = N_Component_Association))
1089 then
1090 Aggr_Resolved :=
1091 Resolve_Array_Aggregate
1092 (N,
1093 Index => First_Index (Aggr_Typ),
1094 Index_Constr => First_Index (Typ),
1095 Component_Typ => Component_Type (Typ),
1096 Others_Allowed => True);
1097 else
1098 Aggr_Resolved :=
1099 Resolve_Array_Aggregate
1100 (N,
1101 Index => First_Index (Aggr_Typ),
1102 Index_Constr => First_Index (Aggr_Typ),
1103 Component_Typ => Component_Type (Typ),
1104 Others_Allowed => False);
1105 end if;
1106
1107 if not Aggr_Resolved then
1108
1109 -- A parenthesized expression may have been intended as an
1110 -- aggregate, leading to a type error when analyzing the
1111 -- component. This can also happen for a nested component
1112 -- (see Analyze_Aggr_Expr).
1113
1114 if Paren_Count (N) > 0 then
1115 Error_Msg_N
1116 ("positional aggregate cannot have one component", N);
1117 end if;
1118
1119 Aggr_Subtyp := Any_Composite;
1120
1121 else
1122 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1123 end if;
1124
1125 Set_Etype (N, Aggr_Subtyp);
1126 end Array_Aggregate;
1127
1128 elsif Is_Private_Type (Typ)
1129 and then Present (Full_View (Typ))
1130 and then (In_Inlined_Body or In_Instance_Body)
1131 and then Is_Composite_Type (Full_View (Typ))
1132 then
1133 Resolve (N, Full_View (Typ));
1134
1135 else
1136 Error_Msg_N ("illegal context for aggregate", N);
1137 end if;
1138
1139 -- If we can determine statically that the evaluation of the aggregate
1140 -- raises Constraint_Error, then replace the aggregate with an
1141 -- N_Raise_Constraint_Error node, but set the Etype to the right
1142 -- aggregate subtype. Gigi needs this.
1143
1144 if Raises_Constraint_Error (N) then
1145 Aggr_Subtyp := Etype (N);
1146 Rewrite (N,
1147 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1148 Set_Raises_Constraint_Error (N);
1149 Set_Etype (N, Aggr_Subtyp);
1150 Set_Analyzed (N);
1151 end if;
1152
1153 Check_Function_Writable_Actuals (N);
1154 end Resolve_Aggregate;
1155
1156 -----------------------------
1157 -- Resolve_Array_Aggregate --
1158 -----------------------------
1159
1160 function Resolve_Array_Aggregate
1161 (N : Node_Id;
1162 Index : Node_Id;
1163 Index_Constr : Node_Id;
1164 Component_Typ : Entity_Id;
1165 Others_Allowed : Boolean) return Boolean
1166 is
1167 Loc : constant Source_Ptr := Sloc (N);
1168
1169 Failure : constant Boolean := False;
1170 Success : constant Boolean := True;
1171
1172 Index_Typ : constant Entity_Id := Etype (Index);
1173 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1174 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1175 -- The type of the index corresponding to the array sub-aggregate along
1176 -- with its low and upper bounds.
1177
1178 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1179 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1180 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1181 -- Ditto for the base type
1182
1183 Others_Present : Boolean := False;
1184
1185 Nb_Choices : Nat := 0;
1186 -- Contains the overall number of named choices in this sub-aggregate
1187
1188 function Add (Val : Uint; To : Node_Id) return Node_Id;
1189 -- Creates a new expression node where Val is added to expression To.
1190 -- Tries to constant fold whenever possible. To must be an already
1191 -- analyzed expression.
1192
1193 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1194 -- Checks that AH (the upper bound of an array aggregate) is less than
1195 -- or equal to BH (the upper bound of the index base type). If the check
1196 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1197 -- set, and AH is replaced with a duplicate of BH.
1198
1199 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1200 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1201 -- warning if not and sets the Raises_Constraint_Error flag in N.
1202
1203 procedure Check_Length (L, H : Node_Id; Len : Uint);
1204 -- Checks that range L .. H contains at least Len elements. Emits a
1205 -- warning if not and sets the Raises_Constraint_Error flag in N.
1206
1207 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1208 -- Returns True if range L .. H is dynamic or null
1209
1210 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1211 -- Given expression node From, this routine sets OK to False if it
1212 -- cannot statically evaluate From. Otherwise it stores this static
1213 -- value into Value.
1214
1215 function Resolve_Aggr_Expr
1216 (Expr : Node_Id;
1217 Single_Elmt : Boolean) return Boolean;
1218 -- Resolves aggregate expression Expr. Returns False if resolution
1219 -- fails. If Single_Elmt is set to False, the expression Expr may be
1220 -- used to initialize several array aggregate elements (this can happen
1221 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1222 -- In this event we do not resolve Expr unless expansion is disabled.
1223 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1224 --
1225 -- NOTE: In the case of "... => <>", we pass the in the
1226 -- N_Component_Association node as Expr, since there is no Expression in
1227 -- that case, and we need a Sloc for the error message.
1228
1229 procedure Resolve_Iterated_Component_Association
1230 (N : Node_Id;
1231 Index_Typ : Entity_Id);
1232 -- For AI12-061
1233
1234 ---------
1235 -- Add --
1236 ---------
1237
1238 function Add (Val : Uint; To : Node_Id) return Node_Id is
1239 Expr_Pos : Node_Id;
1240 Expr : Node_Id;
1241 To_Pos : Node_Id;
1242
1243 begin
1244 if Raises_Constraint_Error (To) then
1245 return To;
1246 end if;
1247
1248 -- First test if we can do constant folding
1249
1250 if Compile_Time_Known_Value (To)
1251 or else Nkind (To) = N_Integer_Literal
1252 then
1253 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1254 Set_Is_Static_Expression (Expr_Pos);
1255 Set_Etype (Expr_Pos, Etype (To));
1256 Set_Analyzed (Expr_Pos, Analyzed (To));
1257
1258 if not Is_Enumeration_Type (Index_Typ) then
1259 Expr := Expr_Pos;
1260
1261 -- If we are dealing with enumeration return
1262 -- Index_Typ'Val (Expr_Pos)
1263
1264 else
1265 Expr :=
1266 Make_Attribute_Reference
1267 (Loc,
1268 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1269 Attribute_Name => Name_Val,
1270 Expressions => New_List (Expr_Pos));
1271 end if;
1272
1273 return Expr;
1274 end if;
1275
1276 -- If we are here no constant folding possible
1277
1278 if not Is_Enumeration_Type (Index_Base) then
1279 Expr :=
1280 Make_Op_Add (Loc,
1281 Left_Opnd => Duplicate_Subexpr (To),
1282 Right_Opnd => Make_Integer_Literal (Loc, Val));
1283
1284 -- If we are dealing with enumeration return
1285 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1286
1287 else
1288 To_Pos :=
1289 Make_Attribute_Reference
1290 (Loc,
1291 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1292 Attribute_Name => Name_Pos,
1293 Expressions => New_List (Duplicate_Subexpr (To)));
1294
1295 Expr_Pos :=
1296 Make_Op_Add (Loc,
1297 Left_Opnd => To_Pos,
1298 Right_Opnd => Make_Integer_Literal (Loc, Val));
1299
1300 Expr :=
1301 Make_Attribute_Reference
1302 (Loc,
1303 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1304 Attribute_Name => Name_Val,
1305 Expressions => New_List (Expr_Pos));
1306
1307 -- If the index type has a non standard representation, the
1308 -- attributes 'Val and 'Pos expand into function calls and the
1309 -- resulting expression is considered non-safe for reevaluation
1310 -- by the backend. Relocate it into a constant temporary in order
1311 -- to make it safe for reevaluation.
1312
1313 if Has_Non_Standard_Rep (Etype (N)) then
1314 declare
1315 Def_Id : Entity_Id;
1316
1317 begin
1318 Def_Id := Make_Temporary (Loc, 'R', Expr);
1319 Set_Etype (Def_Id, Index_Typ);
1320 Insert_Action (N,
1321 Make_Object_Declaration (Loc,
1322 Defining_Identifier => Def_Id,
1323 Object_Definition =>
1324 New_Occurrence_Of (Index_Typ, Loc),
1325 Constant_Present => True,
1326 Expression => Relocate_Node (Expr)));
1327
1328 Expr := New_Occurrence_Of (Def_Id, Loc);
1329 end;
1330 end if;
1331 end if;
1332
1333 return Expr;
1334 end Add;
1335
1336 -----------------
1337 -- Check_Bound --
1338 -----------------
1339
1340 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1341 Val_BH : Uint;
1342 Val_AH : Uint;
1343
1344 OK_BH : Boolean;
1345 OK_AH : Boolean;
1346
1347 begin
1348 Get (Value => Val_BH, From => BH, OK => OK_BH);
1349 Get (Value => Val_AH, From => AH, OK => OK_AH);
1350
1351 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1352 Set_Raises_Constraint_Error (N);
1353 Error_Msg_Warn := SPARK_Mode /= On;
1354 Error_Msg_N ("upper bound out of range<<", AH);
1355 Error_Msg_N ("\Constraint_Error [<<", AH);
1356
1357 -- You need to set AH to BH or else in the case of enumerations
1358 -- indexes we will not be able to resolve the aggregate bounds.
1359
1360 AH := Duplicate_Subexpr (BH);
1361 end if;
1362 end Check_Bound;
1363
1364 ------------------
1365 -- Check_Bounds --
1366 ------------------
1367
1368 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1369 Val_L : Uint;
1370 Val_H : Uint;
1371 Val_AL : Uint;
1372 Val_AH : Uint;
1373
1374 OK_L : Boolean;
1375 OK_H : Boolean;
1376
1377 OK_AL : Boolean;
1378 OK_AH : Boolean;
1379 pragma Warnings (Off, OK_AL);
1380 pragma Warnings (Off, OK_AH);
1381
1382 begin
1383 if Raises_Constraint_Error (N)
1384 or else Dynamic_Or_Null_Range (AL, AH)
1385 then
1386 return;
1387 end if;
1388
1389 Get (Value => Val_L, From => L, OK => OK_L);
1390 Get (Value => Val_H, From => H, OK => OK_H);
1391
1392 Get (Value => Val_AL, From => AL, OK => OK_AL);
1393 Get (Value => Val_AH, From => AH, OK => OK_AH);
1394
1395 if OK_L and then Val_L > Val_AL then
1396 Set_Raises_Constraint_Error (N);
1397 Error_Msg_Warn := SPARK_Mode /= On;
1398 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1399 Error_Msg_N ("\Constraint_Error [<<", N);
1400 end if;
1401
1402 if OK_H and then Val_H < Val_AH then
1403 Set_Raises_Constraint_Error (N);
1404 Error_Msg_Warn := SPARK_Mode /= On;
1405 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1406 Error_Msg_N ("\Constraint_Error [<<", N);
1407 end if;
1408 end Check_Bounds;
1409
1410 ------------------
1411 -- Check_Length --
1412 ------------------
1413
1414 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1415 Val_L : Uint;
1416 Val_H : Uint;
1417
1418 OK_L : Boolean;
1419 OK_H : Boolean;
1420
1421 Range_Len : Uint;
1422
1423 begin
1424 if Raises_Constraint_Error (N) then
1425 return;
1426 end if;
1427
1428 Get (Value => Val_L, From => L, OK => OK_L);
1429 Get (Value => Val_H, From => H, OK => OK_H);
1430
1431 if not OK_L or else not OK_H then
1432 return;
1433 end if;
1434
1435 -- If null range length is zero
1436
1437 if Val_L > Val_H then
1438 Range_Len := Uint_0;
1439 else
1440 Range_Len := Val_H - Val_L + 1;
1441 end if;
1442
1443 if Range_Len < Len then
1444 Set_Raises_Constraint_Error (N);
1445 Error_Msg_Warn := SPARK_Mode /= On;
1446 Error_Msg_N ("too many elements<<", N);
1447 Error_Msg_N ("\Constraint_Error [<<", N);
1448 end if;
1449 end Check_Length;
1450
1451 ---------------------------
1452 -- Dynamic_Or_Null_Range --
1453 ---------------------------
1454
1455 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1456 Val_L : Uint;
1457 Val_H : Uint;
1458
1459 OK_L : Boolean;
1460 OK_H : Boolean;
1461
1462 begin
1463 Get (Value => Val_L, From => L, OK => OK_L);
1464 Get (Value => Val_H, From => H, OK => OK_H);
1465
1466 return not OK_L or else not OK_H
1467 or else not Is_OK_Static_Expression (L)
1468 or else not Is_OK_Static_Expression (H)
1469 or else Val_L > Val_H;
1470 end Dynamic_Or_Null_Range;
1471
1472 ---------
1473 -- Get --
1474 ---------
1475
1476 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1477 begin
1478 OK := True;
1479
1480 if Compile_Time_Known_Value (From) then
1481 Value := Expr_Value (From);
1482
1483 -- If expression From is something like Some_Type'Val (10) then
1484 -- Value = 10.
1485
1486 elsif Nkind (From) = N_Attribute_Reference
1487 and then Attribute_Name (From) = Name_Val
1488 and then Compile_Time_Known_Value (First (Expressions (From)))
1489 then
1490 Value := Expr_Value (First (Expressions (From)));
1491 else
1492 Value := Uint_0;
1493 OK := False;
1494 end if;
1495 end Get;
1496
1497 -----------------------
1498 -- Resolve_Aggr_Expr --
1499 -----------------------
1500
1501 function Resolve_Aggr_Expr
1502 (Expr : Node_Id;
1503 Single_Elmt : Boolean) return Boolean
1504 is
1505 Nxt_Ind : constant Node_Id := Next_Index (Index);
1506 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1507 -- Index is the current index corresponding to the expression
1508
1509 Resolution_OK : Boolean := True;
1510 -- Set to False if resolution of the expression failed
1511
1512 begin
1513 -- Defend against previous errors
1514
1515 if Nkind (Expr) = N_Error
1516 or else Error_Posted (Expr)
1517 then
1518 return True;
1519 end if;
1520
1521 -- If the array type against which we are resolving the aggregate
1522 -- has several dimensions, the expressions nested inside the
1523 -- aggregate must be further aggregates (or strings).
1524
1525 if Present (Nxt_Ind) then
1526 if Nkind (Expr) /= N_Aggregate then
1527
1528 -- A string literal can appear where a one-dimensional array
1529 -- of characters is expected. If the literal looks like an
1530 -- operator, it is still an operator symbol, which will be
1531 -- transformed into a string when analyzed.
1532
1533 if Is_Character_Type (Component_Typ)
1534 and then No (Next_Index (Nxt_Ind))
1535 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1536 then
1537 -- A string literal used in a multidimensional array
1538 -- aggregate in place of the final one-dimensional
1539 -- aggregate must not be enclosed in parentheses.
1540
1541 if Paren_Count (Expr) /= 0 then
1542 Error_Msg_N ("no parenthesis allowed here", Expr);
1543 end if;
1544
1545 Make_String_Into_Aggregate (Expr);
1546
1547 else
1548 Error_Msg_N ("nested array aggregate expected", Expr);
1549
1550 -- If the expression is parenthesized, this may be
1551 -- a missing component association for a 1-aggregate.
1552
1553 if Paren_Count (Expr) > 0 then
1554 Error_Msg_N
1555 ("\if single-component aggregate is intended, "
1556 & "write e.g. (1 ='> ...)", Expr);
1557 end if;
1558
1559 return Failure;
1560 end if;
1561 end if;
1562
1563 -- If it's "... => <>", nothing to resolve
1564
1565 if Nkind (Expr) = N_Component_Association then
1566 pragma Assert (Box_Present (Expr));
1567 return Success;
1568 end if;
1569
1570 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1571 -- Required to check the null-exclusion attribute (if present).
1572 -- This value may be overridden later on.
1573
1574 Set_Etype (Expr, Etype (N));
1575
1576 Resolution_OK := Resolve_Array_Aggregate
1577 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1578
1579 else
1580 -- If it's "... => <>", nothing to resolve
1581
1582 if Nkind (Expr) = N_Component_Association then
1583 pragma Assert (Box_Present (Expr));
1584 return Success;
1585 end if;
1586
1587 -- Do not resolve the expressions of discrete or others choices
1588 -- unless the expression covers a single component, or the
1589 -- expander is inactive.
1590
1591 -- In SPARK mode, expressions that can perform side-effects will
1592 -- be recognized by the gnat2why back-end, and the whole
1593 -- subprogram will be ignored. So semantic analysis can be
1594 -- performed safely.
1595
1596 if Single_Elmt
1597 or else not Expander_Active
1598 or else In_Spec_Expression
1599 then
1600 Analyze_And_Resolve (Expr, Component_Typ);
1601 Check_Expr_OK_In_Limited_Aggregate (Expr);
1602 Check_Non_Static_Context (Expr);
1603 Aggregate_Constraint_Checks (Expr, Component_Typ);
1604 Check_Unset_Reference (Expr);
1605 end if;
1606 end if;
1607
1608 -- If an aggregate component has a type with predicates, an explicit
1609 -- predicate check must be applied, as for an assignment statement,
1610 -- because the aggegate might not be expanded into individual
1611 -- component assignments. If the expression covers several components
1612 -- the analysis and the predicate check take place later.
1613
1614 if Present (Predicate_Function (Component_Typ))
1615 and then Analyzed (Expr)
1616 then
1617 Apply_Predicate_Check (Expr, Component_Typ);
1618 end if;
1619
1620 if Raises_Constraint_Error (Expr)
1621 and then Nkind (Parent (Expr)) /= N_Component_Association
1622 then
1623 Set_Raises_Constraint_Error (N);
1624 end if;
1625
1626 -- If the expression has been marked as requiring a range check,
1627 -- then generate it here. It's a bit odd to be generating such
1628 -- checks in the analyzer, but harmless since Generate_Range_Check
1629 -- does nothing (other than making sure Do_Range_Check is set) if
1630 -- the expander is not active.
1631
1632 if Do_Range_Check (Expr) then
1633 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1634 end if;
1635
1636 return Resolution_OK;
1637 end Resolve_Aggr_Expr;
1638
1639 --------------------------------------------
1640 -- Resolve_Iterated_Component_Association --
1641 --------------------------------------------
1642
1643 procedure Resolve_Iterated_Component_Association
1644 (N : Node_Id;
1645 Index_Typ : Entity_Id)
1646 is
1647 Id : constant Entity_Id := Defining_Identifier (N);
1648 Loc : constant Source_Ptr := Sloc (N);
1649
1650 Choice : Node_Id;
1651 Dummy : Boolean;
1652 Ent : Entity_Id;
1653
1654 begin
1655 Choice := First (Discrete_Choices (N));
1656
1657 while Present (Choice) loop
1658 if Nkind (Choice) = N_Others_Choice then
1659 Error_Msg_N ("others choice not allowed in this context", N);
1660 Others_Present := True;
1661
1662 else
1663 Analyze_And_Resolve (Choice, Index_Typ);
1664 end if;
1665
1666 Nb_Choices := Nb_Choices + 1;
1667 Next (Choice);
1668 end loop;
1669
1670 -- Create a scope in which to introduce an index, which is usually
1671 -- visible in the expression for the component.
1672
1673 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1674 Set_Etype (Ent, Standard_Void_Type);
1675 Set_Parent (Ent, Parent (N));
1676
1677 Enter_Name (Id);
1678 Set_Etype (Id, Index_Typ);
1679 Set_Ekind (Id, E_Variable);
1680 Set_Scope (Id, Ent);
1681
1682 Push_Scope (Ent);
1683 Dummy := Resolve_Aggr_Expr (Expression (N), False);
1684 End_Scope;
1685 end Resolve_Iterated_Component_Association;
1686
1687 -- Local variables
1688
1689 Assoc : Node_Id;
1690 Choice : Node_Id;
1691 Expr : Node_Id;
1692 Discard : Node_Id;
1693
1694 Aggr_Low : Node_Id := Empty;
1695 Aggr_High : Node_Id := Empty;
1696 -- The actual low and high bounds of this sub-aggregate
1697
1698 Case_Table_Size : Nat;
1699 -- Contains the size of the case table needed to sort aggregate choices
1700
1701 Choices_Low : Node_Id := Empty;
1702 Choices_High : Node_Id := Empty;
1703 -- The lowest and highest discrete choices values for a named aggregate
1704
1705 Delete_Choice : Boolean;
1706 -- Used when replacing a subtype choice with predicate by a list
1707
1708 Nb_Elements : Uint := Uint_0;
1709 -- The number of elements in a positional aggregate
1710
1711 Nb_Discrete_Choices : Nat := 0;
1712 -- The overall number of discrete choices (not counting others choice)
1713
1714 -- Start of processing for Resolve_Array_Aggregate
1715
1716 begin
1717 -- Ignore junk empty aggregate resulting from parser error
1718
1719 if No (Expressions (N))
1720 and then No (Component_Associations (N))
1721 and then not Null_Record_Present (N)
1722 then
1723 return False;
1724 end if;
1725
1726 -- STEP 1: make sure the aggregate is correctly formatted
1727
1728 if Present (Component_Associations (N)) then
1729 Assoc := First (Component_Associations (N));
1730 while Present (Assoc) loop
1731 if Nkind (Assoc) = N_Iterated_Component_Association then
1732 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1733 goto Next_Assoc;
1734 end if;
1735
1736 Choice := First (Choices (Assoc));
1737 Delete_Choice := False;
1738 while Present (Choice) loop
1739 if Nkind (Choice) = N_Others_Choice then
1740 Others_Present := True;
1741
1742 if Choice /= First (Choices (Assoc))
1743 or else Present (Next (Choice))
1744 then
1745 Error_Msg_N
1746 ("OTHERS must appear alone in a choice list", Choice);
1747 return Failure;
1748 end if;
1749
1750 if Present (Next (Assoc)) then
1751 Error_Msg_N
1752 ("OTHERS must appear last in an aggregate", Choice);
1753 return Failure;
1754 end if;
1755
1756 if Ada_Version = Ada_83
1757 and then Assoc /= First (Component_Associations (N))
1758 and then Nkind_In (Parent (N), N_Assignment_Statement,
1759 N_Object_Declaration)
1760 then
1761 Error_Msg_N
1762 ("(Ada 83) illegal context for OTHERS choice", N);
1763 end if;
1764
1765 elsif Is_Entity_Name (Choice) then
1766 Analyze (Choice);
1767
1768 declare
1769 E : constant Entity_Id := Entity (Choice);
1770 New_Cs : List_Id;
1771 P : Node_Id;
1772 C : Node_Id;
1773
1774 begin
1775 if Is_Type (E) and then Has_Predicates (E) then
1776 Freeze_Before (N, E);
1777
1778 if Has_Dynamic_Predicate_Aspect (E) then
1779 Error_Msg_NE
1780 ("subtype& has dynamic predicate, not allowed "
1781 & "in aggregate choice", Choice, E);
1782
1783 elsif not Is_OK_Static_Subtype (E) then
1784 Error_Msg_NE
1785 ("non-static subtype& has predicate, not allowed "
1786 & "in aggregate choice", Choice, E);
1787 end if;
1788
1789 -- If the subtype has a static predicate, replace the
1790 -- original choice with the list of individual values
1791 -- covered by the predicate. Do not perform this
1792 -- transformation if we need to preserve the source
1793 -- for ASIS use.
1794 -- This should be deferred to expansion time ???
1795
1796 if Present (Static_Discrete_Predicate (E))
1797 and then not ASIS_Mode
1798 then
1799 Delete_Choice := True;
1800
1801 New_Cs := New_List;
1802 P := First (Static_Discrete_Predicate (E));
1803 while Present (P) loop
1804 C := New_Copy (P);
1805 Set_Sloc (C, Sloc (Choice));
1806 Append_To (New_Cs, C);
1807 Next (P);
1808 end loop;
1809
1810 Insert_List_After (Choice, New_Cs);
1811 end if;
1812 end if;
1813 end;
1814 end if;
1815
1816 Nb_Choices := Nb_Choices + 1;
1817
1818 declare
1819 C : constant Node_Id := Choice;
1820
1821 begin
1822 Next (Choice);
1823
1824 if Delete_Choice then
1825 Remove (C);
1826 Nb_Choices := Nb_Choices - 1;
1827 Delete_Choice := False;
1828 end if;
1829 end;
1830 end loop;
1831
1832 <<Next_Assoc>>
1833 Next (Assoc);
1834 end loop;
1835 end if;
1836
1837 -- At this point we know that the others choice, if present, is by
1838 -- itself and appears last in the aggregate. Check if we have mixed
1839 -- positional and discrete associations (other than the others choice).
1840
1841 if Present (Expressions (N))
1842 and then (Nb_Choices > 1
1843 or else (Nb_Choices = 1 and then not Others_Present))
1844 then
1845 Error_Msg_N
1846 ("named association cannot follow positional association",
1847 First (Choice_List (First (Component_Associations (N)))));
1848 return Failure;
1849 end if;
1850
1851 -- Test for the validity of an others choice if present
1852
1853 if Others_Present and then not Others_Allowed then
1854 Error_Msg_N
1855 ("OTHERS choice not allowed here",
1856 First (Choices (First (Component_Associations (N)))));
1857 return Failure;
1858 end if;
1859
1860 -- Protect against cascaded errors
1861
1862 if Etype (Index_Typ) = Any_Type then
1863 return Failure;
1864 end if;
1865
1866 -- STEP 2: Process named components
1867
1868 if No (Expressions (N)) then
1869 if Others_Present then
1870 Case_Table_Size := Nb_Choices - 1;
1871 else
1872 Case_Table_Size := Nb_Choices;
1873 end if;
1874
1875 Step_2 : declare
1876 function Empty_Range (A : Node_Id) return Boolean;
1877 -- If an association covers an empty range, some warnings on the
1878 -- expression of the association can be disabled.
1879
1880 -----------------
1881 -- Empty_Range --
1882 -----------------
1883
1884 function Empty_Range (A : Node_Id) return Boolean is
1885 R : constant Node_Id := First (Choices (A));
1886 begin
1887 return No (Next (R))
1888 and then Nkind (R) = N_Range
1889 and then Compile_Time_Compare
1890 (Low_Bound (R), High_Bound (R), False) = GT;
1891 end Empty_Range;
1892
1893 -- Local variables
1894
1895 Low : Node_Id;
1896 High : Node_Id;
1897 -- Denote the lowest and highest values in an aggregate choice
1898
1899 S_Low : Node_Id := Empty;
1900 S_High : Node_Id := Empty;
1901 -- if a choice in an aggregate is a subtype indication these
1902 -- denote the lowest and highest values of the subtype
1903
1904 Table : Case_Table_Type (0 .. Case_Table_Size);
1905 -- Used to sort all the different choice values. Entry zero is
1906 -- reserved for sorting purposes.
1907
1908 Single_Choice : Boolean;
1909 -- Set to true every time there is a single discrete choice in a
1910 -- discrete association
1911
1912 Prev_Nb_Discrete_Choices : Nat;
1913 -- Used to keep track of the number of discrete choices in the
1914 -- current association.
1915
1916 Errors_Posted_On_Choices : Boolean := False;
1917 -- Keeps track of whether any choices have semantic errors
1918
1919 -- Start of processing for Step_2
1920
1921 begin
1922 -- STEP 2 (A): Check discrete choices validity
1923
1924 Assoc := First (Component_Associations (N));
1925 while Present (Assoc) loop
1926 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1927 Choice := First (Choice_List (Assoc));
1928
1929 loop
1930 Analyze (Choice);
1931
1932 if Nkind (Choice) = N_Others_Choice then
1933 Single_Choice := False;
1934 exit;
1935
1936 -- Test for subtype mark without constraint
1937
1938 elsif Is_Entity_Name (Choice) and then
1939 Is_Type (Entity (Choice))
1940 then
1941 if Base_Type (Entity (Choice)) /= Index_Base then
1942 Error_Msg_N
1943 ("invalid subtype mark in aggregate choice",
1944 Choice);
1945 return Failure;
1946 end if;
1947
1948 -- Case of subtype indication
1949
1950 elsif Nkind (Choice) = N_Subtype_Indication then
1951 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1952
1953 if Has_Dynamic_Predicate_Aspect
1954 (Entity (Subtype_Mark (Choice)))
1955 then
1956 Error_Msg_NE
1957 ("subtype& has dynamic predicate, "
1958 & "not allowed in aggregate choice",
1959 Choice, Entity (Subtype_Mark (Choice)));
1960 end if;
1961
1962 -- Does the subtype indication evaluation raise CE?
1963
1964 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1965 Get_Index_Bounds (Choice, Low, High);
1966 Check_Bounds (S_Low, S_High, Low, High);
1967
1968 -- Case of range or expression
1969
1970 else
1971 Resolve (Choice, Index_Base);
1972 Check_Unset_Reference (Choice);
1973 Check_Non_Static_Context (Choice);
1974
1975 -- If semantic errors were posted on the choice, then
1976 -- record that for possible early return from later
1977 -- processing (see handling of enumeration choices).
1978
1979 if Error_Posted (Choice) then
1980 Errors_Posted_On_Choices := True;
1981 end if;
1982
1983 -- Do not range check a choice. This check is redundant
1984 -- since this test is already done when we check that the
1985 -- bounds of the array aggregate are within range.
1986
1987 Set_Do_Range_Check (Choice, False);
1988
1989 -- In SPARK, the choice must be static
1990
1991 if not (Is_OK_Static_Expression (Choice)
1992 or else (Nkind (Choice) = N_Range
1993 and then Is_OK_Static_Range (Choice)))
1994 then
1995 Check_SPARK_05_Restriction
1996 ("choice should be static", Choice);
1997 end if;
1998 end if;
1999
2000 -- If we could not resolve the discrete choice stop here
2001
2002 if Etype (Choice) = Any_Type then
2003 return Failure;
2004
2005 -- If the discrete choice raises CE get its original bounds
2006
2007 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2008 Set_Raises_Constraint_Error (N);
2009 Get_Index_Bounds (Original_Node (Choice), Low, High);
2010
2011 -- Otherwise get its bounds as usual
2012
2013 else
2014 Get_Index_Bounds (Choice, Low, High);
2015 end if;
2016
2017 if (Dynamic_Or_Null_Range (Low, High)
2018 or else (Nkind (Choice) = N_Subtype_Indication
2019 and then
2020 Dynamic_Or_Null_Range (S_Low, S_High)))
2021 and then Nb_Choices /= 1
2022 then
2023 Error_Msg_N
2024 ("dynamic or empty choice in aggregate "
2025 & "must be the only choice", Choice);
2026 return Failure;
2027 end if;
2028
2029 if not (All_Composite_Constraints_Static (Low)
2030 and then All_Composite_Constraints_Static (High)
2031 and then All_Composite_Constraints_Static (S_Low)
2032 and then All_Composite_Constraints_Static (S_High))
2033 then
2034 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2035 end if;
2036
2037 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2038 Table (Nb_Discrete_Choices).Lo := Low;
2039 Table (Nb_Discrete_Choices).Hi := High;
2040 Table (Nb_Discrete_Choices).Choice := Choice;
2041
2042 Next (Choice);
2043
2044 if No (Choice) then
2045
2046 -- Check if we have a single discrete choice and whether
2047 -- this discrete choice specifies a single value.
2048
2049 Single_Choice :=
2050 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2051 and then (Low = High);
2052
2053 exit;
2054 end if;
2055 end loop;
2056
2057 -- Ada 2005 (AI-231)
2058
2059 if Ada_Version >= Ada_2005
2060 and then Known_Null (Expression (Assoc))
2061 and then not Empty_Range (Assoc)
2062 then
2063 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2064 end if;
2065
2066 -- Ada 2005 (AI-287): In case of default initialized component
2067 -- we delay the resolution to the expansion phase.
2068
2069 if Box_Present (Assoc) then
2070
2071 -- Ada 2005 (AI-287): In case of default initialization of a
2072 -- component the expander will generate calls to the
2073 -- corresponding initialization subprogram. We need to call
2074 -- Resolve_Aggr_Expr to check the rules about
2075 -- dimensionality.
2076
2077 if not Resolve_Aggr_Expr
2078 (Assoc, Single_Elmt => Single_Choice)
2079 then
2080 return Failure;
2081 end if;
2082
2083 elsif not Resolve_Aggr_Expr
2084 (Expression (Assoc), Single_Elmt => Single_Choice)
2085 then
2086 return Failure;
2087
2088 -- Check incorrect use of dynamically tagged expression
2089
2090 -- We differentiate here two cases because the expression may
2091 -- not be decorated. For example, the analysis and resolution
2092 -- of the expression associated with the others choice will be
2093 -- done later with the full aggregate. In such case we
2094 -- duplicate the expression tree to analyze the copy and
2095 -- perform the required check.
2096
2097 elsif not Present (Etype (Expression (Assoc))) then
2098 declare
2099 Save_Analysis : constant Boolean := Full_Analysis;
2100 Expr : constant Node_Id :=
2101 New_Copy_Tree (Expression (Assoc));
2102
2103 begin
2104 Expander_Mode_Save_And_Set (False);
2105 Full_Analysis := False;
2106
2107 -- Analyze the expression, making sure it is properly
2108 -- attached to the tree before we do the analysis.
2109
2110 Set_Parent (Expr, Parent (Expression (Assoc)));
2111 Analyze (Expr);
2112
2113 -- Compute its dimensions now, rather than at the end of
2114 -- resolution, because in the case of multidimensional
2115 -- aggregates subsequent expansion may lead to spurious
2116 -- errors.
2117
2118 Check_Expression_Dimensions (Expr, Component_Typ);
2119
2120 -- If the expression is a literal, propagate this info
2121 -- to the expression in the association, to enable some
2122 -- optimizations downstream.
2123
2124 if Is_Entity_Name (Expr)
2125 and then Present (Entity (Expr))
2126 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2127 then
2128 Analyze_And_Resolve
2129 (Expression (Assoc), Component_Typ);
2130 end if;
2131
2132 Full_Analysis := Save_Analysis;
2133 Expander_Mode_Restore;
2134
2135 if Is_Tagged_Type (Etype (Expr)) then
2136 Check_Dynamically_Tagged_Expression
2137 (Expr => Expr,
2138 Typ => Component_Type (Etype (N)),
2139 Related_Nod => N);
2140 end if;
2141 end;
2142
2143 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2144 Check_Dynamically_Tagged_Expression
2145 (Expr => Expression (Assoc),
2146 Typ => Component_Type (Etype (N)),
2147 Related_Nod => N);
2148 end if;
2149
2150 Next (Assoc);
2151 end loop;
2152
2153 -- If aggregate contains more than one choice then these must be
2154 -- static. Check for duplicate and missing values.
2155
2156 -- Note: there is duplicated code here wrt Check_Choice_Set in
2157 -- the body of Sem_Case, and it is possible we could just reuse
2158 -- that procedure. To be checked ???
2159
2160 if Nb_Discrete_Choices > 1 then
2161 Check_Choices : declare
2162 Choice : Node_Id;
2163 -- Location of choice for messages
2164
2165 Hi_Val : Uint;
2166 Lo_Val : Uint;
2167 -- High end of one range and Low end of the next. Should be
2168 -- contiguous if there is no hole in the list of values.
2169
2170 Lo_Dup : Uint;
2171 Hi_Dup : Uint;
2172 -- End points of duplicated range
2173
2174 Missing_Or_Duplicates : Boolean := False;
2175 -- Set True if missing or duplicate choices found
2176
2177 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2178 -- Output continuation message with a representation of the
2179 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2180 -- choice node where the message is to be posted.
2181
2182 ------------------------
2183 -- Output_Bad_Choices --
2184 ------------------------
2185
2186 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2187 begin
2188 -- Enumeration type case
2189
2190 if Is_Enumeration_Type (Index_Typ) then
2191 Error_Msg_Name_1 :=
2192 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2193 Error_Msg_Name_2 :=
2194 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2195
2196 if Lo = Hi then
2197 Error_Msg_N ("\\ %!", C);
2198 else
2199 Error_Msg_N ("\\ % .. %!", C);
2200 end if;
2201
2202 -- Integer types case
2203
2204 else
2205 Error_Msg_Uint_1 := Lo;
2206 Error_Msg_Uint_2 := Hi;
2207
2208 if Lo = Hi then
2209 Error_Msg_N ("\\ ^!", C);
2210 else
2211 Error_Msg_N ("\\ ^ .. ^!", C);
2212 end if;
2213 end if;
2214 end Output_Bad_Choices;
2215
2216 -- Start of processing for Check_Choices
2217
2218 begin
2219 Sort_Case_Table (Table);
2220
2221 -- First we do a quick linear loop to find out if we have
2222 -- any duplicates or missing entries (usually we have a
2223 -- legal aggregate, so this will get us out quickly).
2224
2225 for J in 1 .. Nb_Discrete_Choices - 1 loop
2226 Hi_Val := Expr_Value (Table (J).Hi);
2227 Lo_Val := Expr_Value (Table (J + 1).Lo);
2228
2229 if Lo_Val <= Hi_Val
2230 or else (Lo_Val > Hi_Val + 1
2231 and then not Others_Present)
2232 then
2233 Missing_Or_Duplicates := True;
2234 exit;
2235 end if;
2236 end loop;
2237
2238 -- If we have missing or duplicate entries, first fill in
2239 -- the Highest entries to make life easier in the following
2240 -- loops to detect bad entries.
2241
2242 if Missing_Or_Duplicates then
2243 Table (1).Highest := Expr_Value (Table (1).Hi);
2244
2245 for J in 2 .. Nb_Discrete_Choices loop
2246 Table (J).Highest :=
2247 UI_Max
2248 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2249 end loop;
2250
2251 -- Loop through table entries to find duplicate indexes
2252
2253 for J in 2 .. Nb_Discrete_Choices loop
2254 Lo_Val := Expr_Value (Table (J).Lo);
2255 Hi_Val := Expr_Value (Table (J).Hi);
2256
2257 -- Case where we have duplicates (the lower bound of
2258 -- this choice is less than or equal to the highest
2259 -- high bound found so far).
2260
2261 if Lo_Val <= Table (J - 1).Highest then
2262
2263 -- We move backwards looking for duplicates. We can
2264 -- abandon this loop as soon as we reach a choice
2265 -- highest value that is less than Lo_Val.
2266
2267 for K in reverse 1 .. J - 1 loop
2268 exit when Table (K).Highest < Lo_Val;
2269
2270 -- Here we may have duplicates between entries
2271 -- for K and J. Get range of duplicates.
2272
2273 Lo_Dup :=
2274 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2275 Hi_Dup :=
2276 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2277
2278 -- Nothing to do if duplicate range is null
2279
2280 if Lo_Dup > Hi_Dup then
2281 null;
2282
2283 -- Otherwise place proper message
2284
2285 else
2286 -- We place message on later choice, with a
2287 -- line reference to the earlier choice.
2288
2289 if Sloc (Table (J).Choice) <
2290 Sloc (Table (K).Choice)
2291 then
2292 Choice := Table (K).Choice;
2293 Error_Msg_Sloc := Sloc (Table (J).Choice);
2294 else
2295 Choice := Table (J).Choice;
2296 Error_Msg_Sloc := Sloc (Table (K).Choice);
2297 end if;
2298
2299 if Lo_Dup = Hi_Dup then
2300 Error_Msg_N
2301 ("index value in array aggregate "
2302 & "duplicates the one given#!", Choice);
2303 else
2304 Error_Msg_N
2305 ("index values in array aggregate "
2306 & "duplicate those given#!", Choice);
2307 end if;
2308
2309 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2310 end if;
2311 end loop;
2312 end if;
2313 end loop;
2314
2315 -- Loop through entries in table to find missing indexes.
2316 -- Not needed if others, since missing impossible.
2317
2318 if not Others_Present then
2319 for J in 2 .. Nb_Discrete_Choices loop
2320 Lo_Val := Expr_Value (Table (J).Lo);
2321 Hi_Val := Table (J - 1).Highest;
2322
2323 if Lo_Val > Hi_Val + 1 then
2324
2325 declare
2326 Error_Node : Node_Id;
2327
2328 begin
2329 -- If the choice is the bound of a range in
2330 -- a subtype indication, it is not in the
2331 -- source lists for the aggregate itself, so
2332 -- post the error on the aggregate. Otherwise
2333 -- post it on choice itself.
2334
2335 Choice := Table (J).Choice;
2336
2337 if Is_List_Member (Choice) then
2338 Error_Node := Choice;
2339 else
2340 Error_Node := N;
2341 end if;
2342
2343 if Hi_Val + 1 = Lo_Val - 1 then
2344 Error_Msg_N
2345 ("missing index value "
2346 & "in array aggregate!", Error_Node);
2347 else
2348 Error_Msg_N
2349 ("missing index values "
2350 & "in array aggregate!", Error_Node);
2351 end if;
2352
2353 Output_Bad_Choices
2354 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2355 end;
2356 end if;
2357 end loop;
2358 end if;
2359
2360 -- If either missing or duplicate values, return failure
2361
2362 Set_Etype (N, Any_Composite);
2363 return Failure;
2364 end if;
2365 end Check_Choices;
2366 end if;
2367
2368 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2369
2370 if Nb_Discrete_Choices > 0 then
2371 Choices_Low := Table (1).Lo;
2372 Choices_High := Table (Nb_Discrete_Choices).Hi;
2373 end if;
2374
2375 -- If Others is present, then bounds of aggregate come from the
2376 -- index constraint (not the choices in the aggregate itself).
2377
2378 if Others_Present then
2379 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2380
2381 -- Abandon processing if either bound is already signalled as
2382 -- an error (prevents junk cascaded messages and blow ups).
2383
2384 if Nkind (Aggr_Low) = N_Error
2385 or else
2386 Nkind (Aggr_High) = N_Error
2387 then
2388 return False;
2389 end if;
2390
2391 -- No others clause present
2392
2393 else
2394 -- Special processing if others allowed and not present. This
2395 -- means that the bounds of the aggregate come from the index
2396 -- constraint (and the length must match).
2397
2398 if Others_Allowed then
2399 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2400
2401 -- Abandon processing if either bound is already signalled
2402 -- as an error (stop junk cascaded messages and blow ups).
2403
2404 if Nkind (Aggr_Low) = N_Error
2405 or else
2406 Nkind (Aggr_High) = N_Error
2407 then
2408 return False;
2409 end if;
2410
2411 -- If others allowed, and no others present, then the array
2412 -- should cover all index values. If it does not, we will
2413 -- get a length check warning, but there is two cases where
2414 -- an additional warning is useful:
2415
2416 -- If we have no positional components, and the length is
2417 -- wrong (which we can tell by others being allowed with
2418 -- missing components), and the index type is an enumeration
2419 -- type, then issue appropriate warnings about these missing
2420 -- components. They are only warnings, since the aggregate
2421 -- is fine, it's just the wrong length. We skip this check
2422 -- for standard character types (since there are no literals
2423 -- and it is too much trouble to concoct them), and also if
2424 -- any of the bounds have values that are not known at
2425 -- compile time.
2426
2427 -- Another case warranting a warning is when the length
2428 -- is right, but as above we have an index type that is
2429 -- an enumeration, and the bounds do not match. This is a
2430 -- case where dubious sliding is allowed and we generate a
2431 -- warning that the bounds do not match.
2432
2433 if No (Expressions (N))
2434 and then Nkind (Index) = N_Range
2435 and then Is_Enumeration_Type (Etype (Index))
2436 and then not Is_Standard_Character_Type (Etype (Index))
2437 and then Compile_Time_Known_Value (Aggr_Low)
2438 and then Compile_Time_Known_Value (Aggr_High)
2439 and then Compile_Time_Known_Value (Choices_Low)
2440 and then Compile_Time_Known_Value (Choices_High)
2441 then
2442 -- If any of the expressions or range bounds in choices
2443 -- have semantic errors, then do not attempt further
2444 -- resolution, to prevent cascaded errors.
2445
2446 if Errors_Posted_On_Choices then
2447 return Failure;
2448 end if;
2449
2450 declare
2451 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2452 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2453 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2454 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2455
2456 Ent : Entity_Id;
2457
2458 begin
2459 -- Warning case 1, missing values at start/end. Only
2460 -- do the check if the number of entries is too small.
2461
2462 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2463 <
2464 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2465 then
2466 Error_Msg_N
2467 ("missing index value(s) in array aggregate??",
2468 N);
2469
2470 -- Output missing value(s) at start
2471
2472 if Chars (ALo) /= Chars (CLo) then
2473 Ent := Prev (CLo);
2474
2475 if Chars (ALo) = Chars (Ent) then
2476 Error_Msg_Name_1 := Chars (ALo);
2477 Error_Msg_N ("\ %??", N);
2478 else
2479 Error_Msg_Name_1 := Chars (ALo);
2480 Error_Msg_Name_2 := Chars (Ent);
2481 Error_Msg_N ("\ % .. %??", N);
2482 end if;
2483 end if;
2484
2485 -- Output missing value(s) at end
2486
2487 if Chars (AHi) /= Chars (CHi) then
2488 Ent := Next (CHi);
2489
2490 if Chars (AHi) = Chars (Ent) then
2491 Error_Msg_Name_1 := Chars (Ent);
2492 Error_Msg_N ("\ %??", N);
2493 else
2494 Error_Msg_Name_1 := Chars (Ent);
2495 Error_Msg_Name_2 := Chars (AHi);
2496 Error_Msg_N ("\ % .. %??", N);
2497 end if;
2498 end if;
2499
2500 -- Warning case 2, dubious sliding. The First_Subtype
2501 -- test distinguishes between a constrained type where
2502 -- sliding is not allowed (so we will get a warning
2503 -- later that Constraint_Error will be raised), and
2504 -- the unconstrained case where sliding is permitted.
2505
2506 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2507 =
2508 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2509 and then Chars (ALo) /= Chars (CLo)
2510 and then
2511 not Is_Constrained (First_Subtype (Etype (N)))
2512 then
2513 Error_Msg_N
2514 ("bounds of aggregate do not match target??", N);
2515 end if;
2516 end;
2517 end if;
2518 end if;
2519
2520 -- If no others, aggregate bounds come from aggregate
2521
2522 Aggr_Low := Choices_Low;
2523 Aggr_High := Choices_High;
2524 end if;
2525 end Step_2;
2526
2527 -- STEP 3: Process positional components
2528
2529 else
2530 -- STEP 3 (A): Process positional elements
2531
2532 Expr := First (Expressions (N));
2533 Nb_Elements := Uint_0;
2534 while Present (Expr) loop
2535 Nb_Elements := Nb_Elements + 1;
2536
2537 -- Ada 2005 (AI-231)
2538
2539 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2540 Check_Can_Never_Be_Null (Etype (N), Expr);
2541 end if;
2542
2543 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2544 return Failure;
2545 end if;
2546
2547 -- Check incorrect use of dynamically tagged expression
2548
2549 if Is_Tagged_Type (Etype (Expr)) then
2550 Check_Dynamically_Tagged_Expression
2551 (Expr => Expr,
2552 Typ => Component_Type (Etype (N)),
2553 Related_Nod => N);
2554 end if;
2555
2556 Next (Expr);
2557 end loop;
2558
2559 if Others_Present then
2560 Assoc := Last (Component_Associations (N));
2561
2562 -- Ada 2005 (AI-231)
2563
2564 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2565 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2566 end if;
2567
2568 -- Ada 2005 (AI-287): In case of default initialized component,
2569 -- we delay the resolution to the expansion phase.
2570
2571 if Box_Present (Assoc) then
2572
2573 -- Ada 2005 (AI-287): In case of default initialization of a
2574 -- component the expander will generate calls to the
2575 -- corresponding initialization subprogram. We need to call
2576 -- Resolve_Aggr_Expr to check the rules about
2577 -- dimensionality.
2578
2579 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2580 return Failure;
2581 end if;
2582
2583 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2584 Single_Elmt => False)
2585 then
2586 return Failure;
2587
2588 -- Check incorrect use of dynamically tagged expression. The
2589 -- expression of the others choice has not been resolved yet.
2590 -- In order to diagnose the semantic error we create a duplicate
2591 -- tree to analyze it and perform the check.
2592
2593 else
2594 declare
2595 Save_Analysis : constant Boolean := Full_Analysis;
2596 Expr : constant Node_Id :=
2597 New_Copy_Tree (Expression (Assoc));
2598
2599 begin
2600 Expander_Mode_Save_And_Set (False);
2601 Full_Analysis := False;
2602 Analyze (Expr);
2603 Full_Analysis := Save_Analysis;
2604 Expander_Mode_Restore;
2605
2606 if Is_Tagged_Type (Etype (Expr)) then
2607 Check_Dynamically_Tagged_Expression
2608 (Expr => Expr,
2609 Typ => Component_Type (Etype (N)),
2610 Related_Nod => N);
2611 end if;
2612 end;
2613 end if;
2614 end if;
2615
2616 -- STEP 3 (B): Compute the aggregate bounds
2617
2618 if Others_Present then
2619 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2620
2621 else
2622 if Others_Allowed then
2623 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2624 else
2625 Aggr_Low := Index_Typ_Low;
2626 end if;
2627
2628 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2629 Check_Bound (Index_Base_High, Aggr_High);
2630 end if;
2631 end if;
2632
2633 -- STEP 4: Perform static aggregate checks and save the bounds
2634
2635 -- Check (A)
2636
2637 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2638 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2639
2640 -- Check (B)
2641
2642 if Others_Present and then Nb_Discrete_Choices > 0 then
2643 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2644 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2645 Choices_Low, Choices_High);
2646 Check_Bounds (Index_Base_Low, Index_Base_High,
2647 Choices_Low, Choices_High);
2648
2649 -- Check (C)
2650
2651 elsif Others_Present and then Nb_Elements > 0 then
2652 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2653 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2654 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2655 end if;
2656
2657 if Raises_Constraint_Error (Aggr_Low)
2658 or else Raises_Constraint_Error (Aggr_High)
2659 then
2660 Set_Raises_Constraint_Error (N);
2661 end if;
2662
2663 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2664
2665 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2666 -- since the addition node returned by Add is not yet analyzed. Attach
2667 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2668 -- analyzed when it is a literal bound whose type must be properly set.
2669
2670 if Others_Present or else Nb_Discrete_Choices > 0 then
2671 Aggr_High := Duplicate_Subexpr (Aggr_High);
2672
2673 if Etype (Aggr_High) = Universal_Integer then
2674 Set_Analyzed (Aggr_High, False);
2675 end if;
2676 end if;
2677
2678 -- If the aggregate already has bounds attached to it, it means this is
2679 -- a positional aggregate created as an optimization by
2680 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2681 -- bounds.
2682
2683 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2684 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2685 Aggr_High := High_Bound (Aggregate_Bounds (N));
2686 end if;
2687
2688 Set_Aggregate_Bounds
2689 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2690
2691 -- The bounds may contain expressions that must be inserted upwards.
2692 -- Attach them fully to the tree. After analysis, remove side effects
2693 -- from upper bound, if still needed.
2694
2695 Set_Parent (Aggregate_Bounds (N), N);
2696 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2697 Check_Unset_Reference (Aggregate_Bounds (N));
2698
2699 if not Others_Present and then Nb_Discrete_Choices = 0 then
2700 Set_High_Bound
2701 (Aggregate_Bounds (N),
2702 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2703 end if;
2704
2705 -- Check the dimensions of each component in the array aggregate
2706
2707 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2708
2709 return Success;
2710 end Resolve_Array_Aggregate;
2711
2712 ---------------------------------
2713 -- Resolve_Extension_Aggregate --
2714 ---------------------------------
2715
2716 -- There are two cases to consider:
2717
2718 -- a) If the ancestor part is a type mark, the components needed are the
2719 -- difference between the components of the expected type and the
2720 -- components of the given type mark.
2721
2722 -- b) If the ancestor part is an expression, it must be unambiguous, and
2723 -- once we have its type we can also compute the needed components as in
2724 -- the previous case. In both cases, if the ancestor type is not the
2725 -- immediate ancestor, we have to build this ancestor recursively.
2726
2727 -- In both cases, discriminants of the ancestor type do not play a role in
2728 -- the resolution of the needed components, because inherited discriminants
2729 -- cannot be used in a type extension. As a result we can compute
2730 -- independently the list of components of the ancestor type and of the
2731 -- expected type.
2732
2733 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2734 A : constant Node_Id := Ancestor_Part (N);
2735 A_Type : Entity_Id;
2736 I : Interp_Index;
2737 It : Interp;
2738
2739 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2740 -- If the type is limited, verify that the ancestor part is a legal
2741 -- expression (aggregate or function call, including 'Input)) that does
2742 -- not require a copy, as specified in 7.5(2).
2743
2744 function Valid_Ancestor_Type return Boolean;
2745 -- Verify that the type of the ancestor part is a non-private ancestor
2746 -- of the expected type, which must be a type extension.
2747
2748 ----------------------------
2749 -- Valid_Limited_Ancestor --
2750 ----------------------------
2751
2752 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2753 begin
2754 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2755 return True;
2756
2757 -- The ancestor must be a call or an aggregate, but a call may
2758 -- have been expanded into a temporary, so check original node.
2759
2760 elsif Nkind_In (Anc, N_Aggregate,
2761 N_Extension_Aggregate,
2762 N_Function_Call)
2763 then
2764 return True;
2765
2766 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2767 return True;
2768
2769 elsif Nkind (Anc) = N_Attribute_Reference
2770 and then Attribute_Name (Anc) = Name_Input
2771 then
2772 return True;
2773
2774 elsif Nkind (Anc) = N_Qualified_Expression then
2775 return Valid_Limited_Ancestor (Expression (Anc));
2776
2777 else
2778 return False;
2779 end if;
2780 end Valid_Limited_Ancestor;
2781
2782 -------------------------
2783 -- Valid_Ancestor_Type --
2784 -------------------------
2785
2786 function Valid_Ancestor_Type return Boolean is
2787 Imm_Type : Entity_Id;
2788
2789 begin
2790 Imm_Type := Base_Type (Typ);
2791 while Is_Derived_Type (Imm_Type) loop
2792 if Etype (Imm_Type) = Base_Type (A_Type) then
2793 return True;
2794
2795 -- The base type of the parent type may appear as a private
2796 -- extension if it is declared as such in a parent unit of the
2797 -- current one. For consistency of the subsequent analysis use
2798 -- the partial view for the ancestor part.
2799
2800 elsif Is_Private_Type (Etype (Imm_Type))
2801 and then Present (Full_View (Etype (Imm_Type)))
2802 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2803 then
2804 A_Type := Etype (Imm_Type);
2805 return True;
2806
2807 -- The parent type may be a private extension. The aggregate is
2808 -- legal if the type of the aggregate is an extension of it that
2809 -- is not a private extension.
2810
2811 elsif Is_Private_Type (A_Type)
2812 and then not Is_Private_Type (Imm_Type)
2813 and then Present (Full_View (A_Type))
2814 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2815 then
2816 return True;
2817
2818 else
2819 Imm_Type := Etype (Base_Type (Imm_Type));
2820 end if;
2821 end loop;
2822
2823 -- If previous loop did not find a proper ancestor, report error
2824
2825 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2826 return False;
2827 end Valid_Ancestor_Type;
2828
2829 -- Start of processing for Resolve_Extension_Aggregate
2830
2831 begin
2832 -- Analyze the ancestor part and account for the case where it is a
2833 -- parameterless function call.
2834
2835 Analyze (A);
2836 Check_Parameterless_Call (A);
2837
2838 -- In SPARK, the ancestor part cannot be a type mark
2839
2840 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2841 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
2842
2843 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2844 -- must not have unknown discriminants.
2845
2846 if Has_Unknown_Discriminants (Root_Type (Typ)) then
2847 Error_Msg_NE
2848 ("aggregate not available for type& whose ancestor "
2849 & "has unknown discriminants", N, Typ);
2850 end if;
2851 end if;
2852
2853 if not Is_Tagged_Type (Typ) then
2854 Error_Msg_N ("type of extension aggregate must be tagged", N);
2855 return;
2856
2857 elsif Is_Limited_Type (Typ) then
2858
2859 -- Ada 2005 (AI-287): Limited aggregates are allowed
2860
2861 if Ada_Version < Ada_2005 then
2862 Error_Msg_N ("aggregate type cannot be limited", N);
2863 Explain_Limited_Type (Typ, N);
2864 return;
2865
2866 elsif Valid_Limited_Ancestor (A) then
2867 null;
2868
2869 else
2870 Error_Msg_N
2871 ("limited ancestor part must be aggregate or function call", A);
2872 end if;
2873
2874 elsif Is_Class_Wide_Type (Typ) then
2875 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2876 return;
2877 end if;
2878
2879 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2880 A_Type := Get_Full_View (Entity (A));
2881
2882 if Valid_Ancestor_Type then
2883 Set_Entity (A, A_Type);
2884 Set_Etype (A, A_Type);
2885
2886 Validate_Ancestor_Part (N);
2887 Resolve_Record_Aggregate (N, Typ);
2888 end if;
2889
2890 elsif Nkind (A) /= N_Aggregate then
2891 if Is_Overloaded (A) then
2892 A_Type := Any_Type;
2893
2894 Get_First_Interp (A, I, It);
2895 while Present (It.Typ) loop
2896
2897 -- Only consider limited interpretations in the Ada 2005 case
2898
2899 if Is_Tagged_Type (It.Typ)
2900 and then (Ada_Version >= Ada_2005
2901 or else not Is_Limited_Type (It.Typ))
2902 then
2903 if A_Type /= Any_Type then
2904 Error_Msg_N ("cannot resolve expression", A);
2905 return;
2906 else
2907 A_Type := It.Typ;
2908 end if;
2909 end if;
2910
2911 Get_Next_Interp (I, It);
2912 end loop;
2913
2914 if A_Type = Any_Type then
2915 if Ada_Version >= Ada_2005 then
2916 Error_Msg_N
2917 ("ancestor part must be of a tagged type", A);
2918 else
2919 Error_Msg_N
2920 ("ancestor part must be of a nonlimited tagged type", A);
2921 end if;
2922
2923 return;
2924 end if;
2925
2926 else
2927 A_Type := Etype (A);
2928 end if;
2929
2930 if Valid_Ancestor_Type then
2931 Resolve (A, A_Type);
2932 Check_Unset_Reference (A);
2933 Check_Non_Static_Context (A);
2934
2935 -- The aggregate is illegal if the ancestor expression is a call
2936 -- to a function with a limited unconstrained result, unless the
2937 -- type of the aggregate is a null extension. This restriction
2938 -- was added in AI05-67 to simplify implementation.
2939
2940 if Nkind (A) = N_Function_Call
2941 and then Is_Limited_Type (A_Type)
2942 and then not Is_Null_Extension (Typ)
2943 and then not Is_Constrained (A_Type)
2944 then
2945 Error_Msg_N
2946 ("type of limited ancestor part must be constrained", A);
2947
2948 -- Reject the use of CPP constructors that leave objects partially
2949 -- initialized. For example:
2950
2951 -- type CPP_Root is tagged limited record ...
2952 -- pragma Import (CPP, CPP_Root);
2953
2954 -- type CPP_DT is new CPP_Root and Iface ...
2955 -- pragma Import (CPP, CPP_DT);
2956
2957 -- type Ada_DT is new CPP_DT with ...
2958
2959 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2960
2961 -- Using the constructor of CPP_Root the slots of the dispatch
2962 -- table of CPP_DT cannot be set, and the secondary tag of
2963 -- CPP_DT is unknown.
2964
2965 elsif Nkind (A) = N_Function_Call
2966 and then Is_CPP_Constructor_Call (A)
2967 and then Enclosing_CPP_Parent (Typ) /= A_Type
2968 then
2969 Error_Msg_NE
2970 ("??must use 'C'P'P constructor for type &", A,
2971 Enclosing_CPP_Parent (Typ));
2972
2973 -- The following call is not needed if the previous warning
2974 -- is promoted to an error.
2975
2976 Resolve_Record_Aggregate (N, Typ);
2977
2978 elsif Is_Class_Wide_Type (Etype (A))
2979 and then Nkind (Original_Node (A)) = N_Function_Call
2980 then
2981 -- If the ancestor part is a dispatching call, it appears
2982 -- statically to be a legal ancestor, but it yields any member
2983 -- of the class, and it is not possible to determine whether
2984 -- it is an ancestor of the extension aggregate (much less
2985 -- which ancestor). It is not possible to determine the
2986 -- components of the extension part.
2987
2988 -- This check implements AI-306, which in fact was motivated by
2989 -- an AdaCore query to the ARG after this test was added.
2990
2991 Error_Msg_N ("ancestor part must be statically tagged", A);
2992 else
2993 Resolve_Record_Aggregate (N, Typ);
2994 end if;
2995 end if;
2996
2997 else
2998 Error_Msg_N ("no unique type for this aggregate", A);
2999 end if;
3000
3001 Check_Function_Writable_Actuals (N);
3002 end Resolve_Extension_Aggregate;
3003
3004 ------------------------------
3005 -- Resolve_Record_Aggregate --
3006 ------------------------------
3007
3008 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3009 New_Assoc_List : constant List_Id := New_List;
3010 -- New_Assoc_List is the newly built list of N_Component_Association
3011 -- nodes.
3012
3013 Others_Etype : Entity_Id := Empty;
3014 -- This variable is used to save the Etype of the last record component
3015 -- that takes its value from the others choice. Its purpose is:
3016 --
3017 -- (a) make sure the others choice is useful
3018 --
3019 -- (b) make sure the type of all the components whose value is
3020 -- subsumed by the others choice are the same.
3021 --
3022 -- This variable is updated as a side effect of function Get_Value.
3023
3024 Box_Node : Node_Id;
3025 Is_Box_Present : Boolean := False;
3026 Others_Box : Integer := 0;
3027 -- Ada 2005 (AI-287): Variables used in case of default initialization
3028 -- to provide a functionality similar to Others_Etype. Box_Present
3029 -- indicates that the component takes its default initialization;
3030 -- Others_Box counts the number of components of the current aggregate
3031 -- (which may be a sub-aggregate of a larger one) that are default-
3032 -- initialized. A value of One indicates that an others_box is present.
3033 -- Any larger value indicates that the others_box is not redundant.
3034 -- These variables, similar to Others_Etype, are also updated as a side
3035 -- effect of function Get_Value. Box_Node is used to place a warning on
3036 -- a redundant others_box.
3037
3038 procedure Add_Association
3039 (Component : Entity_Id;
3040 Expr : Node_Id;
3041 Assoc_List : List_Id;
3042 Is_Box_Present : Boolean := False);
3043 -- Builds a new N_Component_Association node which associates Component
3044 -- to expression Expr and adds it to the association list being built,
3045 -- either New_Assoc_List, or the association being built for an inner
3046 -- aggregate.
3047
3048 procedure Add_Discriminant_Values
3049 (New_Aggr : Node_Id;
3050 Assoc_List : List_Id);
3051 -- The constraint to a component may be given by a discriminant of the
3052 -- enclosing type, in which case we have to retrieve its value, which is
3053 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3054 -- associations of the current type or of some enclosing record.
3055
3056 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3057 -- If aggregate N is a regular aggregate this routine will return True.
3058 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3059 -- a discriminant whose value may already have been specified by N's
3060 -- ancestor part. This routine checks whether this is indeed the case
3061 -- and if so returns False, signaling that no value for Input_Discr
3062 -- should appear in N's aggregate part. Also, in this case, the routine
3063 -- appends to New_Assoc_List the discriminant value specified in the
3064 -- ancestor part.
3065 --
3066 -- If the aggregate is in a context with expansion delayed, it will be
3067 -- reanalyzed. The inherited discriminant values must not be reinserted
3068 -- in the component list to prevent spurious errors, but they must be
3069 -- present on first analysis to build the proper subtype indications.
3070 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3071
3072 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3073 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3074 -- derived from private view Typ. Whether the aggregate is legal depends
3075 -- on the current visibility of the type as well as that of the parent
3076 -- of the ancestor.
3077
3078 function Get_Value
3079 (Compon : Node_Id;
3080 From : List_Id;
3081 Consider_Others_Choice : Boolean := False) return Node_Id;
3082 -- Given a record component stored in parameter Compon, this function
3083 -- returns its value as it appears in the list From, which is a list
3084 -- of N_Component_Association nodes.
3085 --
3086 -- If no component association has a choice for the searched component,
3087 -- the value provided by the others choice is returned, if there is one,
3088 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3089 -- returned. If there is more than one component association giving a
3090 -- value for the searched record component, an error message is emitted
3091 -- and the first found value is returned.
3092 --
3093 -- If Consider_Others_Choice is set and the returned expression comes
3094 -- from the others choice, then Others_Etype is set as a side effect.
3095 -- An error message is emitted if the components taking their value from
3096 -- the others choice do not have same type.
3097
3098 function New_Copy_Tree_And_Copy_Dimensions
3099 (Source : Node_Id;
3100 Map : Elist_Id := No_Elist;
3101 New_Sloc : Source_Ptr := No_Location;
3102 New_Scope : Entity_Id := Empty) return Node_Id;
3103 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3104 -- also copies the dimensions of Source to the returned node.
3105
3106 procedure Propagate_Discriminants
3107 (Aggr : Node_Id;
3108 Assoc_List : List_Id);
3109 -- Nested components may themselves be discriminated types constrained
3110 -- by outer discriminants, whose values must be captured before the
3111 -- aggregate is expanded into assignments.
3112
3113 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3114 -- Analyzes and resolves expression Expr against the Etype of the
3115 -- Component. This routine also applies all appropriate checks to Expr.
3116 -- It finally saves a Expr in the newly created association list that
3117 -- will be attached to the final record aggregate. Note that if the
3118 -- Parent pointer of Expr is not set then Expr was produced with a
3119 -- New_Copy_Tree or some such.
3120
3121 ---------------------
3122 -- Add_Association --
3123 ---------------------
3124
3125 procedure Add_Association
3126 (Component : Entity_Id;
3127 Expr : Node_Id;
3128 Assoc_List : List_Id;
3129 Is_Box_Present : Boolean := False)
3130 is
3131 Choice_List : constant List_Id := New_List;
3132 Loc : Source_Ptr;
3133
3134 begin
3135 -- If this is a box association the expression is missing, so use the
3136 -- Sloc of the aggregate itself for the new association.
3137
3138 if Present (Expr) then
3139 Loc := Sloc (Expr);
3140 else
3141 Loc := Sloc (N);
3142 end if;
3143
3144 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3145
3146 Append_To (Assoc_List,
3147 Make_Component_Association (Loc,
3148 Choices => Choice_List,
3149 Expression => Expr,
3150 Box_Present => Is_Box_Present));
3151 end Add_Association;
3152
3153 -----------------------------
3154 -- Add_Discriminant_Values --
3155 -----------------------------
3156
3157 procedure Add_Discriminant_Values
3158 (New_Aggr : Node_Id;
3159 Assoc_List : List_Id)
3160 is
3161 Assoc : Node_Id;
3162 Discr : Entity_Id;
3163 Discr_Elmt : Elmt_Id;
3164 Discr_Val : Node_Id;
3165 Val : Entity_Id;
3166
3167 begin
3168 Discr := First_Discriminant (Etype (New_Aggr));
3169 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3170 while Present (Discr_Elmt) loop
3171 Discr_Val := Node (Discr_Elmt);
3172
3173 -- If the constraint is given by a discriminant then it is a
3174 -- discriminant of an enclosing record, and its value has already
3175 -- been placed in the association list.
3176
3177 if Is_Entity_Name (Discr_Val)
3178 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3179 then
3180 Val := Entity (Discr_Val);
3181
3182 Assoc := First (Assoc_List);
3183 while Present (Assoc) loop
3184 if Present (Entity (First (Choices (Assoc))))
3185 and then Entity (First (Choices (Assoc))) = Val
3186 then
3187 Discr_Val := Expression (Assoc);
3188 exit;
3189 end if;
3190
3191 Next (Assoc);
3192 end loop;
3193 end if;
3194
3195 Add_Association
3196 (Discr, New_Copy_Tree (Discr_Val),
3197 Component_Associations (New_Aggr));
3198
3199 -- If the discriminant constraint is a current instance, mark the
3200 -- current aggregate so that the self-reference can be expanded
3201 -- later. The constraint may refer to the subtype of aggregate, so
3202 -- use base type for comparison.
3203
3204 if Nkind (Discr_Val) = N_Attribute_Reference
3205 and then Is_Entity_Name (Prefix (Discr_Val))
3206 and then Is_Type (Entity (Prefix (Discr_Val)))
3207 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3208 then
3209 Set_Has_Self_Reference (N);
3210 end if;
3211
3212 Next_Elmt (Discr_Elmt);
3213 Next_Discriminant (Discr);
3214 end loop;
3215 end Add_Discriminant_Values;
3216
3217 --------------------------
3218 -- Discriminant_Present --
3219 --------------------------
3220
3221 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3222 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3223
3224 Ancestor_Is_Subtyp : Boolean;
3225
3226 Loc : Source_Ptr;
3227
3228 Ancestor : Node_Id;
3229 Ancestor_Typ : Entity_Id;
3230 Comp_Assoc : Node_Id;
3231 Discr : Entity_Id;
3232 Discr_Expr : Node_Id;
3233 Discr_Val : Elmt_Id := No_Elmt;
3234 Orig_Discr : Entity_Id;
3235
3236 begin
3237 if Regular_Aggr then
3238 return True;
3239 end if;
3240
3241 -- Check whether inherited discriminant values have already been
3242 -- inserted in the aggregate. This will be the case if we are
3243 -- re-analyzing an aggregate whose expansion was delayed.
3244
3245 if Present (Component_Associations (N)) then
3246 Comp_Assoc := First (Component_Associations (N));
3247 while Present (Comp_Assoc) loop
3248 if Inherited_Discriminant (Comp_Assoc) then
3249 return True;
3250 end if;
3251
3252 Next (Comp_Assoc);
3253 end loop;
3254 end if;
3255
3256 Ancestor := Ancestor_Part (N);
3257 Ancestor_Typ := Etype (Ancestor);
3258 Loc := Sloc (Ancestor);
3259
3260 -- For a private type with unknown discriminants, use the underlying
3261 -- record view if it is available.
3262
3263 if Has_Unknown_Discriminants (Ancestor_Typ)
3264 and then Present (Full_View (Ancestor_Typ))
3265 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3266 then
3267 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3268 end if;
3269
3270 Ancestor_Is_Subtyp :=
3271 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3272
3273 -- If the ancestor part has no discriminants clearly N's aggregate
3274 -- part must provide a value for Discr.
3275
3276 if not Has_Discriminants (Ancestor_Typ) then
3277 return True;
3278
3279 -- If the ancestor part is an unconstrained subtype mark then the
3280 -- Discr must be present in N's aggregate part.
3281
3282 elsif Ancestor_Is_Subtyp
3283 and then not Is_Constrained (Entity (Ancestor))
3284 then
3285 return True;
3286 end if;
3287
3288 -- Now look to see if Discr was specified in the ancestor part
3289
3290 if Ancestor_Is_Subtyp then
3291 Discr_Val :=
3292 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3293 end if;
3294
3295 Orig_Discr := Original_Record_Component (Input_Discr);
3296
3297 Discr := First_Discriminant (Ancestor_Typ);
3298 while Present (Discr) loop
3299
3300 -- If Ancestor has already specified Disc value then insert its
3301 -- value in the final aggregate.
3302
3303 if Original_Record_Component (Discr) = Orig_Discr then
3304 if Ancestor_Is_Subtyp then
3305 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3306 else
3307 Discr_Expr :=
3308 Make_Selected_Component (Loc,
3309 Prefix => Duplicate_Subexpr (Ancestor),
3310 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3311 end if;
3312
3313 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3314 Set_Inherited_Discriminant (Last (New_Assoc_List));
3315 return False;
3316 end if;
3317
3318 Next_Discriminant (Discr);
3319
3320 if Ancestor_Is_Subtyp then
3321 Next_Elmt (Discr_Val);
3322 end if;
3323 end loop;
3324
3325 return True;
3326 end Discriminant_Present;
3327
3328 ---------------------------
3329 -- Find_Private_Ancestor --
3330 ---------------------------
3331
3332 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3333 Par : Entity_Id;
3334
3335 begin
3336 Par := Typ;
3337 loop
3338 if Has_Private_Ancestor (Par)
3339 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3340 then
3341 return Par;
3342
3343 elsif not Is_Derived_Type (Par) then
3344 return Empty;
3345
3346 else
3347 Par := Etype (Base_Type (Par));
3348 end if;
3349 end loop;
3350 end Find_Private_Ancestor;
3351
3352 ---------------
3353 -- Get_Value --
3354 ---------------
3355
3356 function Get_Value
3357 (Compon : Node_Id;
3358 From : List_Id;
3359 Consider_Others_Choice : Boolean := False) return Node_Id
3360 is
3361 Typ : constant Entity_Id := Etype (Compon);
3362 Assoc : Node_Id;
3363 Expr : Node_Id := Empty;
3364 Selector_Name : Node_Id;
3365
3366 begin
3367 Is_Box_Present := False;
3368
3369 if No (From) then
3370 return Empty;
3371 end if;
3372
3373 Assoc := First (From);
3374 while Present (Assoc) loop
3375 Selector_Name := First (Choices (Assoc));
3376 while Present (Selector_Name) loop
3377 if Nkind (Selector_Name) = N_Others_Choice then
3378 if Consider_Others_Choice and then No (Expr) then
3379
3380 -- We need to duplicate the expression for each
3381 -- successive component covered by the others choice.
3382 -- This is redundant if the others_choice covers only
3383 -- one component (small optimization possible???), but
3384 -- indispensable otherwise, because each one must be
3385 -- expanded individually to preserve side-effects.
3386
3387 -- Ada 2005 (AI-287): In case of default initialization
3388 -- of components, we duplicate the corresponding default
3389 -- expression (from the record type declaration). The
3390 -- copy must carry the sloc of the association (not the
3391 -- original expression) to prevent spurious elaboration
3392 -- checks when the default includes function calls.
3393
3394 if Box_Present (Assoc) then
3395 Others_Box := Others_Box + 1;
3396 Is_Box_Present := True;
3397
3398 if Expander_Active then
3399 return
3400 New_Copy_Tree_And_Copy_Dimensions
3401 (Expression (Parent (Compon)),
3402 New_Sloc => Sloc (Assoc));
3403 else
3404 return Expression (Parent (Compon));
3405 end if;
3406
3407 else
3408 if Present (Others_Etype)
3409 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3410 then
3411 -- If the components are of an anonymous access
3412 -- type they are distinct, but this is legal in
3413 -- Ada 2012 as long as designated types match.
3414
3415 if (Ekind (Typ) = E_Anonymous_Access_Type
3416 or else Ekind (Typ) =
3417 E_Anonymous_Access_Subprogram_Type)
3418 and then Designated_Type (Typ) =
3419 Designated_Type (Others_Etype)
3420 then
3421 null;
3422 else
3423 Error_Msg_N
3424 ("components in OTHERS choice must have same "
3425 & "type", Selector_Name);
3426 end if;
3427 end if;
3428
3429 Others_Etype := Typ;
3430
3431 -- Copy the expression so that it is resolved
3432 -- independently for each component, This is needed
3433 -- for accessibility checks on compoents of anonymous
3434 -- access types, even in compile_only mode.
3435
3436 if not Inside_A_Generic then
3437
3438 -- In ASIS mode, preanalyze the expression in an
3439 -- others association before making copies for
3440 -- separate resolution and accessibility checks.
3441 -- This ensures that the type of the expression is
3442 -- available to ASIS in all cases, in particular if
3443 -- the expression is itself an aggregate.
3444
3445 if ASIS_Mode then
3446 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3447 end if;
3448
3449 return
3450 New_Copy_Tree_And_Copy_Dimensions
3451 (Expression (Assoc));
3452
3453 else
3454 return Expression (Assoc);
3455 end if;
3456 end if;
3457 end if;
3458
3459 elsif Chars (Compon) = Chars (Selector_Name) then
3460 if No (Expr) then
3461
3462 -- Ada 2005 (AI-231)
3463
3464 if Ada_Version >= Ada_2005
3465 and then Known_Null (Expression (Assoc))
3466 then
3467 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3468 end if;
3469
3470 -- We need to duplicate the expression when several
3471 -- components are grouped together with a "|" choice.
3472 -- For instance "filed1 | filed2 => Expr"
3473
3474 -- Ada 2005 (AI-287)
3475
3476 if Box_Present (Assoc) then
3477 Is_Box_Present := True;
3478
3479 -- Duplicate the default expression of the component
3480 -- from the record type declaration, so a new copy
3481 -- can be attached to the association.
3482
3483 -- Note that we always copy the default expression,
3484 -- even when the association has a single choice, in
3485 -- order to create a proper association for the
3486 -- expanded aggregate.
3487
3488 -- Component may have no default, in which case the
3489 -- expression is empty and the component is default-
3490 -- initialized, but an association for the component
3491 -- exists, and it is not covered by an others clause.
3492
3493 -- Scalar and private types have no initialization
3494 -- procedure, so they remain uninitialized. If the
3495 -- target of the aggregate is a constant this
3496 -- deserves a warning.
3497
3498 if No (Expression (Parent (Compon)))
3499 and then not Has_Non_Null_Base_Init_Proc (Typ)
3500 and then not Has_Aspect (Typ, Aspect_Default_Value)
3501 and then not Is_Concurrent_Type (Typ)
3502 and then Nkind (Parent (N)) = N_Object_Declaration
3503 and then Constant_Present (Parent (N))
3504 then
3505 Error_Msg_Node_2 := Typ;
3506 Error_Msg_NE
3507 ("component&? of type& is uninitialized",
3508 Assoc, Selector_Name);
3509
3510 -- An additional reminder if the component type
3511 -- is a generic formal.
3512
3513 if Is_Generic_Type (Base_Type (Typ)) then
3514 Error_Msg_NE
3515 ("\instance should provide actual type with "
3516 & "initialization for&", Assoc, Typ);
3517 end if;
3518 end if;
3519
3520 return
3521 New_Copy_Tree_And_Copy_Dimensions
3522 (Expression (Parent (Compon)));
3523
3524 else
3525 if Present (Next (Selector_Name)) then
3526 Expr := New_Copy_Tree_And_Copy_Dimensions
3527 (Expression (Assoc));
3528 else
3529 Expr := Expression (Assoc);
3530 end if;
3531 end if;
3532
3533 Generate_Reference (Compon, Selector_Name, 'm');
3534
3535 else
3536 Error_Msg_NE
3537 ("more than one value supplied for &",
3538 Selector_Name, Compon);
3539
3540 end if;
3541 end if;
3542
3543 Next (Selector_Name);
3544 end loop;
3545
3546 Next (Assoc);
3547 end loop;
3548
3549 return Expr;
3550 end Get_Value;
3551
3552 ---------------------------------------
3553 -- New_Copy_Tree_And_Copy_Dimensions --
3554 ---------------------------------------
3555
3556 function New_Copy_Tree_And_Copy_Dimensions
3557 (Source : Node_Id;
3558 Map : Elist_Id := No_Elist;
3559 New_Sloc : Source_Ptr := No_Location;
3560 New_Scope : Entity_Id := Empty) return Node_Id
3561 is
3562 New_Copy : constant Node_Id :=
3563 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3564
3565 begin
3566 -- Move the dimensions of Source to New_Copy
3567
3568 Copy_Dimensions (Source, New_Copy);
3569 return New_Copy;
3570 end New_Copy_Tree_And_Copy_Dimensions;
3571
3572 -----------------------------
3573 -- Propagate_Discriminants --
3574 -----------------------------
3575
3576 procedure Propagate_Discriminants
3577 (Aggr : Node_Id;
3578 Assoc_List : List_Id)
3579 is
3580 Loc : constant Source_Ptr := Sloc (N);
3581
3582 Needs_Box : Boolean := False;
3583
3584 procedure Process_Component (Comp : Entity_Id);
3585 -- Add one component with a box association to the inner aggregate,
3586 -- and recurse if component is itself composite.
3587
3588 -----------------------
3589 -- Process_Component --
3590 -----------------------
3591
3592 procedure Process_Component (Comp : Entity_Id) is
3593 T : constant Entity_Id := Etype (Comp);
3594 New_Aggr : Node_Id;
3595
3596 begin
3597 if Is_Record_Type (T) and then Has_Discriminants (T) then
3598 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3599 Set_Etype (New_Aggr, T);
3600
3601 Add_Association
3602 (Comp, New_Aggr, Component_Associations (Aggr));
3603
3604 -- Collect discriminant values and recurse
3605
3606 Add_Discriminant_Values (New_Aggr, Assoc_List);
3607 Propagate_Discriminants (New_Aggr, Assoc_List);
3608
3609 else
3610 Needs_Box := True;
3611 end if;
3612 end Process_Component;
3613
3614 -- Local variables
3615
3616 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3617 Components : constant Elist_Id := New_Elmt_List;
3618 Def_Node : constant Node_Id :=
3619 Type_Definition (Declaration_Node (Aggr_Type));
3620
3621 Comp : Node_Id;
3622 Comp_Elmt : Elmt_Id;
3623 Errors : Boolean;
3624
3625 -- Start of processing for Propagate_Discriminants
3626
3627 begin
3628 -- The component type may be a variant type. Collect the components
3629 -- that are ruled by the known values of the discriminants. Their
3630 -- values have already been inserted into the component list of the
3631 -- current aggregate.
3632
3633 if Nkind (Def_Node) = N_Record_Definition
3634 and then Present (Component_List (Def_Node))
3635 and then Present (Variant_Part (Component_List (Def_Node)))
3636 then
3637 Gather_Components (Aggr_Type,
3638 Component_List (Def_Node),
3639 Governed_By => Component_Associations (Aggr),
3640 Into => Components,
3641 Report_Errors => Errors);
3642
3643 Comp_Elmt := First_Elmt (Components);
3644 while Present (Comp_Elmt) loop
3645 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3646 Process_Component (Node (Comp_Elmt));
3647 end if;
3648
3649 Next_Elmt (Comp_Elmt);
3650 end loop;
3651
3652 -- No variant part, iterate over all components
3653
3654 else
3655 Comp := First_Component (Etype (Aggr));
3656 while Present (Comp) loop
3657 Process_Component (Comp);
3658 Next_Component (Comp);
3659 end loop;
3660 end if;
3661
3662 if Needs_Box then
3663 Append_To (Component_Associations (Aggr),
3664 Make_Component_Association (Loc,
3665 Choices => New_List (Make_Others_Choice (Loc)),
3666 Expression => Empty,
3667 Box_Present => True));
3668 end if;
3669 end Propagate_Discriminants;
3670
3671 -----------------------
3672 -- Resolve_Aggr_Expr --
3673 -----------------------
3674
3675 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
3676 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3677 -- If the expression is an aggregate (possibly qualified) then its
3678 -- expansion is delayed until the enclosing aggregate is expanded
3679 -- into assignments. In that case, do not generate checks on the
3680 -- expression, because they will be generated later, and will other-
3681 -- wise force a copy (to remove side-effects) that would leave a
3682 -- dynamic-sized aggregate in the code, something that gigi cannot
3683 -- handle.
3684
3685 ---------------------------
3686 -- Has_Expansion_Delayed --
3687 ---------------------------
3688
3689 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3690 begin
3691 return
3692 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3693 and then Present (Etype (Expr))
3694 and then Is_Record_Type (Etype (Expr))
3695 and then Expansion_Delayed (Expr))
3696 or else
3697 (Nkind (Expr) = N_Qualified_Expression
3698 and then Has_Expansion_Delayed (Expression (Expr)));
3699 end Has_Expansion_Delayed;
3700
3701 -- Local variables
3702
3703 Expr_Type : Entity_Id := Empty;
3704 New_C : Entity_Id := Component;
3705 New_Expr : Node_Id;
3706
3707 Relocate : Boolean;
3708 -- Set to True if the resolved Expr node needs to be relocated when
3709 -- attached to the newly created association list. This node need not
3710 -- be relocated if its parent pointer is not set. In fact in this
3711 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3712 -- True then we have analyzed the expression node in the original
3713 -- aggregate and hence it needs to be relocated when moved over to
3714 -- the new association list.
3715
3716 -- Start of processing for Resolve_Aggr_Expr
3717
3718 begin
3719 -- If the type of the component is elementary or the type of the
3720 -- aggregate does not contain discriminants, use the type of the
3721 -- component to resolve Expr.
3722
3723 if Is_Elementary_Type (Etype (Component))
3724 or else not Has_Discriminants (Etype (N))
3725 then
3726 Expr_Type := Etype (Component);
3727
3728 -- Otherwise we have to pick up the new type of the component from
3729 -- the new constrained subtype of the aggregate. In fact components
3730 -- which are of a composite type might be constrained by a
3731 -- discriminant, and we want to resolve Expr against the subtype were
3732 -- all discriminant occurrences are replaced with their actual value.
3733
3734 else
3735 New_C := First_Component (Etype (N));
3736 while Present (New_C) loop
3737 if Chars (New_C) = Chars (Component) then
3738 Expr_Type := Etype (New_C);
3739 exit;
3740 end if;
3741
3742 Next_Component (New_C);
3743 end loop;
3744
3745 pragma Assert (Present (Expr_Type));
3746
3747 -- For each range in an array type where a discriminant has been
3748 -- replaced with the constraint, check that this range is within
3749 -- the range of the base type. This checks is done in the init
3750 -- proc for regular objects, but has to be done here for
3751 -- aggregates since no init proc is called for them.
3752
3753 if Is_Array_Type (Expr_Type) then
3754 declare
3755 Index : Node_Id;
3756 -- Range of the current constrained index in the array
3757
3758 Orig_Index : Node_Id := First_Index (Etype (Component));
3759 -- Range corresponding to the range Index above in the
3760 -- original unconstrained record type. The bounds of this
3761 -- range may be governed by discriminants.
3762
3763 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3764 -- Range corresponding to the range Index above for the
3765 -- unconstrained array type. This range is needed to apply
3766 -- range checks.
3767
3768 begin
3769 Index := First_Index (Expr_Type);
3770 while Present (Index) loop
3771 if Depends_On_Discriminant (Orig_Index) then
3772 Apply_Range_Check (Index, Etype (Unconstr_Index));
3773 end if;
3774
3775 Next_Index (Index);
3776 Next_Index (Orig_Index);
3777 Next_Index (Unconstr_Index);
3778 end loop;
3779 end;
3780 end if;
3781 end if;
3782
3783 -- If the Parent pointer of Expr is not set, Expr is an expression
3784 -- duplicated by New_Tree_Copy (this happens for record aggregates
3785 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3786 -- Such a duplicated expression must be attached to the tree
3787 -- before analysis and resolution to enforce the rule that a tree
3788 -- fragment should never be analyzed or resolved unless it is
3789 -- attached to the current compilation unit.
3790
3791 if No (Parent (Expr)) then
3792 Set_Parent (Expr, N);
3793 Relocate := False;
3794 else
3795 Relocate := True;
3796 end if;
3797
3798 Analyze_And_Resolve (Expr, Expr_Type);
3799 Check_Expr_OK_In_Limited_Aggregate (Expr);
3800 Check_Non_Static_Context (Expr);
3801 Check_Unset_Reference (Expr);
3802
3803 -- Check wrong use of class-wide types
3804
3805 if Is_Class_Wide_Type (Etype (Expr)) then
3806 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3807 end if;
3808
3809 if not Has_Expansion_Delayed (Expr) then
3810 Aggregate_Constraint_Checks (Expr, Expr_Type);
3811 end if;
3812
3813 -- If an aggregate component has a type with predicates, an explicit
3814 -- predicate check must be applied, as for an assignment statement,
3815 -- because the aggegate might not be expanded into individual
3816 -- component assignments.
3817
3818 if Present (Predicate_Function (Expr_Type))
3819 and then Analyzed (Expr)
3820 then
3821 Apply_Predicate_Check (Expr, Expr_Type);
3822 end if;
3823
3824 if Raises_Constraint_Error (Expr) then
3825 Set_Raises_Constraint_Error (N);
3826 end if;
3827
3828 -- If the expression has been marked as requiring a range check, then
3829 -- generate it here. It's a bit odd to be generating such checks in
3830 -- the analyzer, but harmless since Generate_Range_Check does nothing
3831 -- (other than making sure Do_Range_Check is set) if the expander is
3832 -- not active.
3833
3834 if Do_Range_Check (Expr) then
3835 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3836 end if;
3837
3838 -- Add association Component => Expr if the caller requests it
3839
3840 if Relocate then
3841 New_Expr := Relocate_Node (Expr);
3842
3843 -- Since New_Expr is not gonna be analyzed later on, we need to
3844 -- propagate here the dimensions form Expr to New_Expr.
3845
3846 Copy_Dimensions (Expr, New_Expr);
3847
3848 else
3849 New_Expr := Expr;
3850 end if;
3851
3852 Add_Association (New_C, New_Expr, New_Assoc_List);
3853 end Resolve_Aggr_Expr;
3854
3855 -- Local variables
3856
3857 Components : constant Elist_Id := New_Elmt_List;
3858 -- Components is the list of the record components whose value must be
3859 -- provided in the aggregate. This list does include discriminants.
3860
3861 Expr : Node_Id;
3862 Component : Entity_Id;
3863 Component_Elmt : Elmt_Id;
3864 Positional_Expr : Node_Id;
3865
3866 -- Start of processing for Resolve_Record_Aggregate
3867
3868 begin
3869 -- A record aggregate is restricted in SPARK:
3870
3871 -- Each named association can have only a single choice.
3872 -- OTHERS cannot be used.
3873 -- Positional and named associations cannot be mixed.
3874
3875 if Present (Component_Associations (N))
3876 and then Present (First (Component_Associations (N)))
3877 then
3878 if Present (Expressions (N)) then
3879 Check_SPARK_05_Restriction
3880 ("named association cannot follow positional one",
3881 First (Choices (First (Component_Associations (N)))));
3882 end if;
3883
3884 declare
3885 Assoc : Node_Id;
3886
3887 begin
3888 Assoc := First (Component_Associations (N));
3889 while Present (Assoc) loop
3890 if List_Length (Choices (Assoc)) > 1 then
3891 Check_SPARK_05_Restriction
3892 ("component association in record aggregate must "
3893 & "contain a single choice", Assoc);
3894 end if;
3895
3896 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3897 Check_SPARK_05_Restriction
3898 ("record aggregate cannot contain OTHERS", Assoc);
3899 end if;
3900
3901 Assoc := Next (Assoc);
3902 end loop;
3903 end;
3904 end if;
3905
3906 -- We may end up calling Duplicate_Subexpr on expressions that are
3907 -- attached to New_Assoc_List. For this reason we need to attach it
3908 -- to the tree by setting its parent pointer to N. This parent point
3909 -- will change in STEP 8 below.
3910
3911 Set_Parent (New_Assoc_List, N);
3912
3913 -- STEP 1: abstract type and null record verification
3914
3915 if Is_Abstract_Type (Typ) then
3916 Error_Msg_N ("type of aggregate cannot be abstract", N);
3917 end if;
3918
3919 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3920 Set_Etype (N, Typ);
3921 return;
3922
3923 elsif Present (First_Entity (Typ))
3924 and then Null_Record_Present (N)
3925 and then not Is_Tagged_Type (Typ)
3926 then
3927 Error_Msg_N ("record aggregate cannot be null", N);
3928 return;
3929
3930 -- If the type has no components, then the aggregate should either
3931 -- have "null record", or in Ada 2005 it could instead have a single
3932 -- component association given by "others => <>". For Ada 95 we flag an
3933 -- error at this point, but for Ada 2005 we proceed with checking the
3934 -- associations below, which will catch the case where it's not an
3935 -- aggregate with "others => <>". Note that the legality of a <>
3936 -- aggregate for a null record type was established by AI05-016.
3937
3938 elsif No (First_Entity (Typ))
3939 and then Ada_Version < Ada_2005
3940 then
3941 Error_Msg_N ("record aggregate must be null", N);
3942 return;
3943 end if;
3944
3945 -- STEP 2: Verify aggregate structure
3946
3947 Step_2 : declare
3948 Assoc : Node_Id;
3949 Bad_Aggregate : Boolean := False;
3950 Selector_Name : Node_Id;
3951
3952 begin
3953 if Present (Component_Associations (N)) then
3954 Assoc := First (Component_Associations (N));
3955 else
3956 Assoc := Empty;
3957 end if;
3958
3959 while Present (Assoc) loop
3960 Selector_Name := First (Choices (Assoc));
3961 while Present (Selector_Name) loop
3962 if Nkind (Selector_Name) = N_Identifier then
3963 null;
3964
3965 elsif Nkind (Selector_Name) = N_Others_Choice then
3966 if Selector_Name /= First (Choices (Assoc))
3967 or else Present (Next (Selector_Name))
3968 then
3969 Error_Msg_N
3970 ("OTHERS must appear alone in a choice list",
3971 Selector_Name);
3972 return;
3973
3974 elsif Present (Next (Assoc)) then
3975 Error_Msg_N
3976 ("OTHERS must appear last in an aggregate",
3977 Selector_Name);
3978 return;
3979
3980 -- (Ada 2005): If this is an association with a box,
3981 -- indicate that the association need not represent
3982 -- any component.
3983
3984 elsif Box_Present (Assoc) then
3985 Others_Box := 1;
3986 Box_Node := Assoc;
3987 end if;
3988
3989 else
3990 Error_Msg_N
3991 ("selector name should be identifier or OTHERS",
3992 Selector_Name);
3993 Bad_Aggregate := True;
3994 end if;
3995
3996 Next (Selector_Name);
3997 end loop;
3998
3999 Next (Assoc);
4000 end loop;
4001
4002 if Bad_Aggregate then
4003 return;
4004 end if;
4005 end Step_2;
4006
4007 -- STEP 3: Find discriminant Values
4008
4009 Step_3 : declare
4010 Discrim : Entity_Id;
4011 Missing_Discriminants : Boolean := False;
4012
4013 begin
4014 if Present (Expressions (N)) then
4015 Positional_Expr := First (Expressions (N));
4016 else
4017 Positional_Expr := Empty;
4018 end if;
4019
4020 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4021 -- must not have unknown discriminants.
4022
4023 if Is_Derived_Type (Typ)
4024 and then Has_Unknown_Discriminants (Root_Type (Typ))
4025 and then Nkind (N) /= N_Extension_Aggregate
4026 then
4027 Error_Msg_NE
4028 ("aggregate not available for type& whose ancestor "
4029 & "has unknown discriminants ", N, Typ);
4030 end if;
4031
4032 if Has_Unknown_Discriminants (Typ)
4033 and then Present (Underlying_Record_View (Typ))
4034 then
4035 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4036 elsif Has_Discriminants (Typ) then
4037 Discrim := First_Discriminant (Typ);
4038 else
4039 Discrim := Empty;
4040 end if;
4041
4042 -- First find the discriminant values in the positional components
4043
4044 while Present (Discrim) and then Present (Positional_Expr) loop
4045 if Discriminant_Present (Discrim) then
4046 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4047
4048 -- Ada 2005 (AI-231)
4049
4050 if Ada_Version >= Ada_2005
4051 and then Known_Null (Positional_Expr)
4052 then
4053 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4054 end if;
4055
4056 Next (Positional_Expr);
4057 end if;
4058
4059 if Present (Get_Value (Discrim, Component_Associations (N))) then
4060 Error_Msg_NE
4061 ("more than one value supplied for discriminant&",
4062 N, Discrim);
4063 end if;
4064
4065 Next_Discriminant (Discrim);
4066 end loop;
4067
4068 -- Find remaining discriminant values if any among named components
4069
4070 while Present (Discrim) loop
4071 Expr := Get_Value (Discrim, Component_Associations (N), True);
4072
4073 if not Discriminant_Present (Discrim) then
4074 if Present (Expr) then
4075 Error_Msg_NE
4076 ("more than one value supplied for discriminant &",
4077 N, Discrim);
4078 end if;
4079
4080 elsif No (Expr) then
4081 Error_Msg_NE
4082 ("no value supplied for discriminant &", N, Discrim);
4083 Missing_Discriminants := True;
4084
4085 else
4086 Resolve_Aggr_Expr (Expr, Discrim);
4087 end if;
4088
4089 Next_Discriminant (Discrim);
4090 end loop;
4091
4092 if Missing_Discriminants then
4093 return;
4094 end if;
4095
4096 -- At this point and until the beginning of STEP 6, New_Assoc_List
4097 -- contains only the discriminants and their values.
4098
4099 end Step_3;
4100
4101 -- STEP 4: Set the Etype of the record aggregate
4102
4103 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4104 -- routine should really be exported in sem_util or some such and used
4105 -- in sem_ch3 and here rather than have a copy of the code which is a
4106 -- maintenance nightmare.
4107
4108 -- ??? Performance WARNING. The current implementation creates a new
4109 -- itype for all aggregates whose base type is discriminated. This means
4110 -- that for record aggregates nested inside an array aggregate we will
4111 -- create a new itype for each record aggregate if the array component
4112 -- type has discriminants. For large aggregates this may be a problem.
4113 -- What should be done in this case is to reuse itypes as much as
4114 -- possible.
4115
4116 if Has_Discriminants (Typ)
4117 or else (Has_Unknown_Discriminants (Typ)
4118 and then Present (Underlying_Record_View (Typ)))
4119 then
4120 Build_Constrained_Itype : declare
4121 Constrs : constant List_Id := New_List;
4122 Loc : constant Source_Ptr := Sloc (N);
4123 Def_Id : Entity_Id;
4124 Indic : Node_Id;
4125 New_Assoc : Node_Id;
4126 Subtyp_Decl : Node_Id;
4127
4128 begin
4129 New_Assoc := First (New_Assoc_List);
4130 while Present (New_Assoc) loop
4131 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4132 Next (New_Assoc);
4133 end loop;
4134
4135 if Has_Unknown_Discriminants (Typ)
4136 and then Present (Underlying_Record_View (Typ))
4137 then
4138 Indic :=
4139 Make_Subtype_Indication (Loc,
4140 Subtype_Mark =>
4141 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4142 Constraint =>
4143 Make_Index_Or_Discriminant_Constraint (Loc,
4144 Constraints => Constrs));
4145 else
4146 Indic :=
4147 Make_Subtype_Indication (Loc,
4148 Subtype_Mark =>
4149 New_Occurrence_Of (Base_Type (Typ), Loc),
4150 Constraint =>
4151 Make_Index_Or_Discriminant_Constraint (Loc,
4152 Constraints => Constrs));
4153 end if;
4154
4155 Def_Id := Create_Itype (Ekind (Typ), N);
4156
4157 Subtyp_Decl :=
4158 Make_Subtype_Declaration (Loc,
4159 Defining_Identifier => Def_Id,
4160 Subtype_Indication => Indic);
4161 Set_Parent (Subtyp_Decl, Parent (N));
4162
4163 -- Itypes must be analyzed with checks off (see itypes.ads)
4164
4165 Analyze (Subtyp_Decl, Suppress => All_Checks);
4166
4167 Set_Etype (N, Def_Id);
4168 Check_Static_Discriminated_Subtype
4169 (Def_Id, Expression (First (New_Assoc_List)));
4170 end Build_Constrained_Itype;
4171
4172 else
4173 Set_Etype (N, Typ);
4174 end if;
4175
4176 -- STEP 5: Get remaining components according to discriminant values
4177
4178 Step_5 : declare
4179 Dnode : Node_Id;
4180 Errors_Found : Boolean := False;
4181 Record_Def : Node_Id;
4182 Parent_Typ : Entity_Id;
4183 Parent_Typ_List : Elist_Id;
4184 Parent_Elmt : Elmt_Id;
4185 Root_Typ : Entity_Id;
4186
4187 begin
4188 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4189 Parent_Typ_List := New_Elmt_List;
4190
4191 -- If this is an extension aggregate, the component list must
4192 -- include all components that are not in the given ancestor type.
4193 -- Otherwise, the component list must include components of all
4194 -- ancestors, starting with the root.
4195
4196 if Nkind (N) = N_Extension_Aggregate then
4197 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4198
4199 else
4200 -- AI05-0115: check legality of aggregate for type with a
4201 -- private ancestor.
4202
4203 Root_Typ := Root_Type (Typ);
4204 if Has_Private_Ancestor (Typ) then
4205 declare
4206 Ancestor : constant Entity_Id :=
4207 Find_Private_Ancestor (Typ);
4208 Ancestor_Unit : constant Entity_Id :=
4209 Cunit_Entity
4210 (Get_Source_Unit (Ancestor));
4211 Parent_Unit : constant Entity_Id :=
4212 Cunit_Entity (Get_Source_Unit
4213 (Base_Type (Etype (Ancestor))));
4214 begin
4215 -- Check whether we are in a scope that has full view
4216 -- over the private ancestor and its parent. This can
4217 -- only happen if the derivation takes place in a child
4218 -- unit of the unit that declares the parent, and we are
4219 -- in the private part or body of that child unit, else
4220 -- the aggregate is illegal.
4221
4222 if Is_Child_Unit (Ancestor_Unit)
4223 and then Scope (Ancestor_Unit) = Parent_Unit
4224 and then In_Open_Scopes (Scope (Ancestor))
4225 and then
4226 (In_Private_Part (Scope (Ancestor))
4227 or else In_Package_Body (Scope (Ancestor)))
4228 then
4229 null;
4230
4231 else
4232 Error_Msg_NE
4233 ("type of aggregate has private ancestor&!",
4234 N, Root_Typ);
4235 Error_Msg_N ("must use extension aggregate!", N);
4236 return;
4237 end if;
4238 end;
4239 end if;
4240
4241 Dnode := Declaration_Node (Base_Type (Root_Typ));
4242
4243 -- If we don't get a full declaration, then we have some error
4244 -- which will get signalled later so skip this part. Otherwise
4245 -- gather components of root that apply to the aggregate type.
4246 -- We use the base type in case there is an applicable stored
4247 -- constraint that renames the discriminants of the root.
4248
4249 if Nkind (Dnode) = N_Full_Type_Declaration then
4250 Record_Def := Type_Definition (Dnode);
4251 Gather_Components
4252 (Base_Type (Typ),
4253 Component_List (Record_Def),
4254 Governed_By => New_Assoc_List,
4255 Into => Components,
4256 Report_Errors => Errors_Found);
4257
4258 if Errors_Found then
4259 Error_Msg_N
4260 ("discriminant controlling variant part is not static",
4261 N);
4262 return;
4263 end if;
4264 end if;
4265 end if;
4266
4267 Parent_Typ := Base_Type (Typ);
4268 while Parent_Typ /= Root_Typ loop
4269 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4270 Parent_Typ := Etype (Parent_Typ);
4271
4272 if Nkind (Parent (Base_Type (Parent_Typ))) =
4273 N_Private_Type_Declaration
4274 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4275 N_Private_Extension_Declaration
4276 then
4277 if Nkind (N) /= N_Extension_Aggregate then
4278 Error_Msg_NE
4279 ("type of aggregate has private ancestor&!",
4280 N, Parent_Typ);
4281 Error_Msg_N ("must use extension aggregate!", N);
4282 return;
4283
4284 elsif Parent_Typ /= Root_Typ then
4285 Error_Msg_NE
4286 ("ancestor part of aggregate must be private type&",
4287 Ancestor_Part (N), Parent_Typ);
4288 return;
4289 end if;
4290
4291 -- The current view of ancestor part may be a private type,
4292 -- while the context type is always non-private.
4293
4294 elsif Is_Private_Type (Root_Typ)
4295 and then Present (Full_View (Root_Typ))
4296 and then Nkind (N) = N_Extension_Aggregate
4297 then
4298 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4299 end if;
4300 end loop;
4301
4302 -- Now collect components from all other ancestors, beginning
4303 -- with the current type. If the type has unknown discriminants
4304 -- use the component list of the Underlying_Record_View, which
4305 -- needs to be used for the subsequent expansion of the aggregate
4306 -- into assignments.
4307
4308 Parent_Elmt := First_Elmt (Parent_Typ_List);
4309 while Present (Parent_Elmt) loop
4310 Parent_Typ := Node (Parent_Elmt);
4311
4312 if Has_Unknown_Discriminants (Parent_Typ)
4313 and then Present (Underlying_Record_View (Typ))
4314 then
4315 Parent_Typ := Underlying_Record_View (Parent_Typ);
4316 end if;
4317
4318 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4319 Gather_Components (Empty,
4320 Component_List (Record_Extension_Part (Record_Def)),
4321 Governed_By => New_Assoc_List,
4322 Into => Components,
4323 Report_Errors => Errors_Found);
4324
4325 Next_Elmt (Parent_Elmt);
4326 end loop;
4327
4328 -- Typ is not a derived tagged type
4329
4330 else
4331 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4332
4333 if Null_Present (Record_Def) then
4334 null;
4335
4336 elsif not Has_Unknown_Discriminants (Typ) then
4337 Gather_Components
4338 (Base_Type (Typ),
4339 Component_List (Record_Def),
4340 Governed_By => New_Assoc_List,
4341 Into => Components,
4342 Report_Errors => Errors_Found);
4343
4344 else
4345 Gather_Components
4346 (Base_Type (Underlying_Record_View (Typ)),
4347 Component_List (Record_Def),
4348 Governed_By => New_Assoc_List,
4349 Into => Components,
4350 Report_Errors => Errors_Found);
4351 end if;
4352 end if;
4353
4354 if Errors_Found then
4355 return;
4356 end if;
4357 end Step_5;
4358
4359 -- STEP 6: Find component Values
4360
4361 Component := Empty;
4362 Component_Elmt := First_Elmt (Components);
4363
4364 -- First scan the remaining positional associations in the aggregate.
4365 -- Remember that at this point Positional_Expr contains the current
4366 -- positional association if any is left after looking for discriminant
4367 -- values in step 3.
4368
4369 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4370 Component := Node (Component_Elmt);
4371 Resolve_Aggr_Expr (Positional_Expr, Component);
4372
4373 -- Ada 2005 (AI-231)
4374
4375 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4376 Check_Can_Never_Be_Null (Component, Positional_Expr);
4377 end if;
4378
4379 if Present (Get_Value (Component, Component_Associations (N))) then
4380 Error_Msg_NE
4381 ("more than one value supplied for Component &", N, Component);
4382 end if;
4383
4384 Next (Positional_Expr);
4385 Next_Elmt (Component_Elmt);
4386 end loop;
4387
4388 if Present (Positional_Expr) then
4389 Error_Msg_N
4390 ("too many components for record aggregate", Positional_Expr);
4391 end if;
4392
4393 -- Now scan for the named arguments of the aggregate
4394
4395 while Present (Component_Elmt) loop
4396 Component := Node (Component_Elmt);
4397 Expr := Get_Value (Component, Component_Associations (N), True);
4398
4399 -- Note: The previous call to Get_Value sets the value of the
4400 -- variable Is_Box_Present.
4401
4402 -- Ada 2005 (AI-287): Handle components with default initialization.
4403 -- Note: This feature was originally added to Ada 2005 for limited
4404 -- but it was finally allowed with any type.
4405
4406 if Is_Box_Present then
4407 Check_Box_Component : declare
4408 Ctyp : constant Entity_Id := Etype (Component);
4409
4410 begin
4411 -- If there is a default expression for the aggregate, copy
4412 -- it into a new association. This copy must modify the scopes
4413 -- of internal types that may be attached to the expression
4414 -- (e.g. index subtypes of arrays) because in general the type
4415 -- declaration and the aggregate appear in different scopes,
4416 -- and the backend requires the scope of the type to match the
4417 -- point at which it is elaborated.
4418
4419 -- If the component has an initialization procedure (IP) we
4420 -- pass the component to the expander, which will generate
4421 -- the call to such IP.
4422
4423 -- If the component has discriminants, their values must
4424 -- be taken from their subtype. This is indispensable for
4425 -- constraints that are given by the current instance of an
4426 -- enclosing type, to allow the expansion of the aggregate to
4427 -- replace the reference to the current instance by the target
4428 -- object of the aggregate.
4429
4430 if Present (Parent (Component))
4431 and then Nkind (Parent (Component)) = N_Component_Declaration
4432 and then Present (Expression (Parent (Component)))
4433 then
4434 Expr :=
4435 New_Copy_Tree_And_Copy_Dimensions
4436 (Expression (Parent (Component)),
4437 New_Scope => Current_Scope,
4438 New_Sloc => Sloc (N));
4439
4440 Add_Association
4441 (Component => Component,
4442 Expr => Expr,
4443 Assoc_List => New_Assoc_List);
4444 Set_Has_Self_Reference (N);
4445
4446 -- A box-defaulted access component gets the value null. Also
4447 -- included are components of private types whose underlying
4448 -- type is an access type. In either case set the type of the
4449 -- literal, for subsequent use in semantic checks.
4450
4451 elsif Present (Underlying_Type (Ctyp))
4452 and then Is_Access_Type (Underlying_Type (Ctyp))
4453 then
4454 -- If the component's type is private with an access type as
4455 -- its underlying type then we have to create an unchecked
4456 -- conversion to satisfy type checking.
4457
4458 if Is_Private_Type (Ctyp) then
4459 declare
4460 Qual_Null : constant Node_Id :=
4461 Make_Qualified_Expression (Sloc (N),
4462 Subtype_Mark =>
4463 New_Occurrence_Of
4464 (Underlying_Type (Ctyp), Sloc (N)),
4465 Expression => Make_Null (Sloc (N)));
4466
4467 Convert_Null : constant Node_Id :=
4468 Unchecked_Convert_To
4469 (Ctyp, Qual_Null);
4470
4471 begin
4472 Analyze_And_Resolve (Convert_Null, Ctyp);
4473 Add_Association
4474 (Component => Component,
4475 Expr => Convert_Null,
4476 Assoc_List => New_Assoc_List);
4477 end;
4478
4479 -- Otherwise the component type is non-private
4480
4481 else
4482 Expr := Make_Null (Sloc (N));
4483 Set_Etype (Expr, Ctyp);
4484
4485 Add_Association
4486 (Component => Component,
4487 Expr => Expr,
4488 Assoc_List => New_Assoc_List);
4489 end if;
4490
4491 -- Ada 2012: If component is scalar with default value, use it
4492
4493 elsif Is_Scalar_Type (Ctyp)
4494 and then Has_Default_Aspect (Ctyp)
4495 then
4496 Add_Association
4497 (Component => Component,
4498 Expr =>
4499 Default_Aspect_Value
4500 (First_Subtype (Underlying_Type (Ctyp))),
4501 Assoc_List => New_Assoc_List);
4502
4503 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4504 or else not Expander_Active
4505 then
4506 if Is_Record_Type (Ctyp)
4507 and then Has_Discriminants (Ctyp)
4508 and then not Is_Private_Type (Ctyp)
4509 then
4510 -- We build a partially initialized aggregate with the
4511 -- values of the discriminants and box initialization
4512 -- for the rest, if other components are present.
4513
4514 -- The type of the aggregate is the known subtype of
4515 -- the component. The capture of discriminants must be
4516 -- recursive because subcomponents may be constrained
4517 -- (transitively) by discriminants of enclosing types.
4518 -- For a private type with discriminants, a call to the
4519 -- initialization procedure will be generated, and no
4520 -- subaggregate is needed.
4521
4522 Capture_Discriminants : declare
4523 Loc : constant Source_Ptr := Sloc (N);
4524 Expr : Node_Id;
4525
4526 begin
4527 Expr := Make_Aggregate (Loc, New_List, New_List);
4528 Set_Etype (Expr, Ctyp);
4529
4530 -- If the enclosing type has discriminants, they have
4531 -- been collected in the aggregate earlier, and they
4532 -- may appear as constraints of subcomponents.
4533
4534 -- Similarly if this component has discriminants, they
4535 -- might in turn be propagated to their components.
4536
4537 if Has_Discriminants (Typ) then
4538 Add_Discriminant_Values (Expr, New_Assoc_List);
4539 Propagate_Discriminants (Expr, New_Assoc_List);
4540
4541 elsif Has_Discriminants (Ctyp) then
4542 Add_Discriminant_Values
4543 (Expr, Component_Associations (Expr));
4544 Propagate_Discriminants
4545 (Expr, Component_Associations (Expr));
4546
4547 else
4548 declare
4549 Comp : Entity_Id;
4550
4551 begin
4552 -- If the type has additional components, create
4553 -- an OTHERS box association for them.
4554
4555 Comp := First_Component (Ctyp);
4556 while Present (Comp) loop
4557 if Ekind (Comp) = E_Component then
4558 if not Is_Record_Type (Etype (Comp)) then
4559 Append_To
4560 (Component_Associations (Expr),
4561 Make_Component_Association (Loc,
4562 Choices =>
4563 New_List (
4564 Make_Others_Choice (Loc)),
4565 Expression => Empty,
4566 Box_Present => True));
4567 end if;
4568
4569 exit;
4570 end if;
4571
4572 Next_Component (Comp);
4573 end loop;
4574 end;
4575 end if;
4576
4577 Add_Association
4578 (Component => Component,
4579 Expr => Expr,
4580 Assoc_List => New_Assoc_List);
4581 end Capture_Discriminants;
4582
4583 -- Otherwise the component type is not a record, or it has
4584 -- not discriminants, or it is private.
4585
4586 else
4587 Add_Association
4588 (Component => Component,
4589 Expr => Empty,
4590 Assoc_List => New_Assoc_List,
4591 Is_Box_Present => True);
4592 end if;
4593
4594 -- Otherwise we only need to resolve the expression if the
4595 -- component has partially initialized values (required to
4596 -- expand the corresponding assignments and run-time checks).
4597
4598 elsif Present (Expr)
4599 and then Is_Partially_Initialized_Type (Ctyp)
4600 then
4601 Resolve_Aggr_Expr (Expr, Component);
4602 end if;
4603 end Check_Box_Component;
4604
4605 elsif No (Expr) then
4606
4607 -- Ignore hidden components associated with the position of the
4608 -- interface tags: these are initialized dynamically.
4609
4610 if not Present (Related_Type (Component)) then
4611 Error_Msg_NE
4612 ("no value supplied for component &!", N, Component);
4613 end if;
4614
4615 else
4616 Resolve_Aggr_Expr (Expr, Component);
4617 end if;
4618
4619 Next_Elmt (Component_Elmt);
4620 end loop;
4621
4622 -- STEP 7: check for invalid components + check type in choice list
4623
4624 Step_7 : declare
4625 Assoc : Node_Id;
4626 New_Assoc : Node_Id;
4627
4628 Selectr : Node_Id;
4629 -- Selector name
4630
4631 Typech : Entity_Id;
4632 -- Type of first component in choice list
4633
4634 begin
4635 if Present (Component_Associations (N)) then
4636 Assoc := First (Component_Associations (N));
4637 else
4638 Assoc := Empty;
4639 end if;
4640
4641 Verification : while Present (Assoc) loop
4642 Selectr := First (Choices (Assoc));
4643 Typech := Empty;
4644
4645 if Nkind (Selectr) = N_Others_Choice then
4646
4647 -- Ada 2005 (AI-287): others choice may have expression or box
4648
4649 if No (Others_Etype) and then Others_Box = 0 then
4650 Error_Msg_N
4651 ("OTHERS must represent at least one component", Selectr);
4652
4653 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4654 Error_Msg_N ("others choice is redundant?", Box_Node);
4655 Error_Msg_N
4656 ("\previous choices cover all components?", Box_Node);
4657 end if;
4658
4659 exit Verification;
4660 end if;
4661
4662 while Present (Selectr) loop
4663 New_Assoc := First (New_Assoc_List);
4664 while Present (New_Assoc) loop
4665 Component := First (Choices (New_Assoc));
4666
4667 if Chars (Selectr) = Chars (Component) then
4668 if Style_Check then
4669 Check_Identifier (Selectr, Entity (Component));
4670 end if;
4671
4672 exit;
4673 end if;
4674
4675 Next (New_Assoc);
4676 end loop;
4677
4678 -- If no association, this is not a legal component of the type
4679 -- in question, unless its association is provided with a box.
4680
4681 if No (New_Assoc) then
4682 if Box_Present (Parent (Selectr)) then
4683
4684 -- This may still be a bogus component with a box. Scan
4685 -- list of components to verify that a component with
4686 -- that name exists.
4687
4688 declare
4689 C : Entity_Id;
4690
4691 begin
4692 C := First_Component (Typ);
4693 while Present (C) loop
4694 if Chars (C) = Chars (Selectr) then
4695
4696 -- If the context is an extension aggregate,
4697 -- the component must not be inherited from
4698 -- the ancestor part of the aggregate.
4699
4700 if Nkind (N) /= N_Extension_Aggregate
4701 or else
4702 Scope (Original_Record_Component (C)) /=
4703 Etype (Ancestor_Part (N))
4704 then
4705 exit;
4706 end if;
4707 end if;
4708
4709 Next_Component (C);
4710 end loop;
4711
4712 if No (C) then
4713 Error_Msg_Node_2 := Typ;
4714 Error_Msg_N ("& is not a component of}", Selectr);
4715 end if;
4716 end;
4717
4718 elsif Chars (Selectr) /= Name_uTag
4719 and then Chars (Selectr) /= Name_uParent
4720 then
4721 if not Has_Discriminants (Typ) then
4722 Error_Msg_Node_2 := Typ;
4723 Error_Msg_N ("& is not a component of}", Selectr);
4724 else
4725 Error_Msg_N
4726 ("& is not a component of the aggregate subtype",
4727 Selectr);
4728 end if;
4729
4730 Check_Misspelled_Component (Components, Selectr);
4731 end if;
4732
4733 elsif No (Typech) then
4734 Typech := Base_Type (Etype (Component));
4735
4736 -- AI05-0199: In Ada 2012, several components of anonymous
4737 -- access types can appear in a choice list, as long as the
4738 -- designated types match.
4739
4740 elsif Typech /= Base_Type (Etype (Component)) then
4741 if Ada_Version >= Ada_2012
4742 and then Ekind (Typech) = E_Anonymous_Access_Type
4743 and then
4744 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4745 and then Base_Type (Designated_Type (Typech)) =
4746 Base_Type (Designated_Type (Etype (Component)))
4747 and then
4748 Subtypes_Statically_Match (Typech, (Etype (Component)))
4749 then
4750 null;
4751
4752 elsif not Box_Present (Parent (Selectr)) then
4753 Error_Msg_N
4754 ("components in choice list must have same type",
4755 Selectr);
4756 end if;
4757 end if;
4758
4759 Next (Selectr);
4760 end loop;
4761
4762 Next (Assoc);
4763 end loop Verification;
4764 end Step_7;
4765
4766 -- STEP 8: replace the original aggregate
4767
4768 Step_8 : declare
4769 New_Aggregate : constant Node_Id := New_Copy (N);
4770
4771 begin
4772 Set_Expressions (New_Aggregate, No_List);
4773 Set_Etype (New_Aggregate, Etype (N));
4774 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4775 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
4776
4777 Rewrite (N, New_Aggregate);
4778 end Step_8;
4779
4780 -- Check the dimensions of the components in the record aggregate
4781
4782 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4783 end Resolve_Record_Aggregate;
4784
4785 -----------------------------
4786 -- Check_Can_Never_Be_Null --
4787 -----------------------------
4788
4789 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4790 Comp_Typ : Entity_Id;
4791
4792 begin
4793 pragma Assert
4794 (Ada_Version >= Ada_2005
4795 and then Present (Expr)
4796 and then Known_Null (Expr));
4797
4798 case Ekind (Typ) is
4799 when E_Array_Type =>
4800 Comp_Typ := Component_Type (Typ);
4801
4802 when E_Component
4803 | E_Discriminant
4804 =>
4805 Comp_Typ := Etype (Typ);
4806
4807 when others =>
4808 return;
4809 end case;
4810
4811 if Can_Never_Be_Null (Comp_Typ) then
4812
4813 -- Here we know we have a constraint error. Note that we do not use
4814 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4815 -- seem the more natural approach. That's because in some cases the
4816 -- components are rewritten, and the replacement would be missed.
4817 -- We do not mark the whole aggregate as raising a constraint error,
4818 -- because the association may be a null array range.
4819
4820 Error_Msg_N
4821 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4822 Error_Msg_N
4823 ("\Constraint_Error will be raised at run time??", Expr);
4824
4825 Rewrite (Expr,
4826 Make_Raise_Constraint_Error
4827 (Sloc (Expr), Reason => CE_Access_Check_Failed));
4828 Set_Etype (Expr, Comp_Typ);
4829 Set_Analyzed (Expr);
4830 end if;
4831 end Check_Can_Never_Be_Null;
4832
4833 ---------------------
4834 -- Sort_Case_Table --
4835 ---------------------
4836
4837 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4838 U : constant Int := Case_Table'Last;
4839 K : Int;
4840 J : Int;
4841 T : Case_Bounds;
4842
4843 begin
4844 K := 1;
4845 while K < U loop
4846 T := Case_Table (K + 1);
4847
4848 J := K + 1;
4849 while J > 1
4850 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
4851 loop
4852 Case_Table (J) := Case_Table (J - 1);
4853 J := J - 1;
4854 end loop;
4855
4856 Case_Table (J) := T;
4857 K := K + 1;
4858 end loop;
4859 end Sort_Case_Table;
4860
4861 end Sem_Aggr;