[Ada] Part of implementation of AI12-0212: container aggregates
[gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Itypes; use Itypes;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sem_Type; use Sem_Type;
58 with Sem_Warn; use Sem_Warn;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stringt; use Stringt;
62 with Stand; use Stand;
63 with Style; use Style;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Uintp; use Uintp;
67
68 package body Sem_Aggr is
69
70 type Case_Bounds is record
71 Lo : Node_Id;
72 -- Low bound of choice. Once we sort the Case_Table, then entries
73 -- will be in order of ascending Choice_Lo values.
74
75 Hi : Node_Id;
76 -- High Bound of choice. The sort does not pay any attention to the
77 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78
79 Highest : Uint;
80 -- If there are duplicates or missing entries, then in the sorted
81 -- table, this records the highest value among Choice_Hi values
82 -- seen so far, including this entry.
83
84 Choice : Node_Id;
85 -- The node of the choice
86 end record;
87
88 type Case_Table_Type is array (Pos range <>) of Case_Bounds;
89 -- Table type used by Check_Case_Choices procedure
90
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
99
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
109 --
110 -- It would be better to pass the proper type for Typ ???
111
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already preanalyzed and it is known to be type correct.
118
119 ------------------------------------------------------
120 -- Subprograms used for RECORD AGGREGATE Processing --
121 ------------------------------------------------------
122
123 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
124 -- This procedure performs all the semantic checks required for record
125 -- aggregates. Note that for aggregates analysis and resolution go
126 -- hand in hand. Aggregate analysis has been delayed up to here and
127 -- it is done while resolving the aggregate.
128 --
129 -- N is the N_Aggregate node.
130 -- Typ is the record type for the aggregate resolution
131 --
132 -- While performing the semantic checks, this procedure builds a new
133 -- Component_Association_List where each record field appears alone in a
134 -- Component_Choice_List along with its corresponding expression. The
135 -- record fields in the Component_Association_List appear in the same order
136 -- in which they appear in the record type Typ.
137 --
138 -- Once this new Component_Association_List is built and all the semantic
139 -- checks performed, the original aggregate subtree is replaced with the
140 -- new named record aggregate just built. This new record aggregate has no
141 -- positional associations, so its Expressions field is set to No_List.
142 -- Note that subtree substitution is performed with Rewrite so as to be
143 -- able to retrieve the original aggregate.
144 --
145 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
146 -- yields the aggregate format expected by Gigi. Typically, this kind of
147 -- tree manipulations are done in the expander. However, because the
148 -- semantic checks that need to be performed on record aggregates really go
149 -- hand in hand with the record aggregate normalization, the aggregate
150 -- subtree transformation is performed during resolution rather than
151 -- expansion. Had we decided otherwise we would have had to duplicate most
152 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
153 -- however, that all the expansion concerning aggregates for tagged records
154 -- is done in Expand_Record_Aggregate.
155 --
156 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
157 --
158 -- 1. Make sure that the record type against which the record aggregate
159 -- has to be resolved is not abstract. Furthermore if the type is a
160 -- null aggregate make sure the input aggregate N is also null.
161 --
162 -- 2. Verify that the structure of the aggregate is that of a record
163 -- aggregate. Specifically, look for component associations and ensure
164 -- that each choice list only has identifiers or the N_Others_Choice
165 -- node. Also make sure that if present, the N_Others_Choice occurs
166 -- last and by itself.
167 --
168 -- 3. If Typ contains discriminants, the values for each discriminant is
169 -- looked for. If the record type Typ has variants, we check that the
170 -- expressions corresponding to each discriminant ruling the (possibly
171 -- nested) variant parts of Typ, are static. This allows us to determine
172 -- the variant parts to which the rest of the aggregate must conform.
173 -- The names of discriminants with their values are saved in a new
174 -- association list, New_Assoc_List which is later augmented with the
175 -- names and values of the remaining components in the record type.
176 --
177 -- During this phase we also make sure that every discriminant is
178 -- assigned exactly one value. Note that when several values for a given
179 -- discriminant are found, semantic processing continues looking for
180 -- further errors. In this case it's the first discriminant value found
181 -- which we will be recorded.
182 --
183 -- IMPORTANT NOTE: For derived tagged types this procedure expects
184 -- First_Discriminant and Next_Discriminant to give the correct list
185 -- of discriminants, in the correct order.
186 --
187 -- 4. After all the discriminant values have been gathered, we can set the
188 -- Etype of the record aggregate. If Typ contains no discriminants this
189 -- is straightforward: the Etype of N is just Typ, otherwise a new
190 -- implicit constrained subtype of Typ is built to be the Etype of N.
191 --
192 -- 5. Gather the remaining record components according to the discriminant
193 -- values. This involves recursively traversing the record type
194 -- structure to see what variants are selected by the given discriminant
195 -- values. This processing is a little more convoluted if Typ is a
196 -- derived tagged types since we need to retrieve the record structure
197 -- of all the ancestors of Typ.
198 --
199 -- 6. After gathering the record components we look for their values in the
200 -- record aggregate and emit appropriate error messages should we not
201 -- find such values or should they be duplicated.
202 --
203 -- 7. We then make sure no illegal component names appear in the record
204 -- aggregate and make sure that the type of the record components
205 -- appearing in a same choice list is the same. Finally we ensure that
206 -- the others choice, if present, is used to provide the value of at
207 -- least a record component.
208 --
209 -- 8. The original aggregate node is replaced with the new named aggregate
210 -- built in steps 3 through 6, as explained earlier.
211 --
212 -- Given the complexity of record aggregate resolution, the primary goal of
213 -- this routine is clarity and simplicity rather than execution and storage
214 -- efficiency. If there are only positional components in the aggregate the
215 -- running time is linear. If there are associations the running time is
216 -- still linear as long as the order of the associations is not too far off
217 -- the order of the components in the record type. If this is not the case
218 -- the running time is at worst quadratic in the size of the association
219 -- list.
220
221 procedure Check_Misspelled_Component
222 (Elements : Elist_Id;
223 Component : Node_Id);
224 -- Give possible misspelling diagnostic if Component is likely to be a
225 -- misspelling of one of the components of the Assoc_List. This is called
226 -- by Resolve_Aggr_Expr after producing an invalid component error message.
227
228 -----------------------------------------------------
229 -- Subprograms used for ARRAY AGGREGATE Processing --
230 -----------------------------------------------------
231
232 function Resolve_Array_Aggregate
233 (N : Node_Id;
234 Index : Node_Id;
235 Index_Constr : Node_Id;
236 Component_Typ : Entity_Id;
237 Others_Allowed : Boolean) return Boolean;
238 -- This procedure performs the semantic checks for an array aggregate.
239 -- True is returned if the aggregate resolution succeeds.
240 --
241 -- The procedure works by recursively checking each nested aggregate.
242 -- Specifically, after checking a sub-aggregate nested at the i-th level
243 -- we recursively check all the subaggregates at the i+1-st level (if any).
244 -- Note that for aggregates analysis and resolution go hand in hand.
245 -- Aggregate analysis has been delayed up to here and it is done while
246 -- resolving the aggregate.
247 --
248 -- N is the current N_Aggregate node to be checked.
249 --
250 -- Index is the index node corresponding to the array sub-aggregate that
251 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
252 -- corresponding index type (or subtype).
253 --
254 -- Index_Constr is the node giving the applicable index constraint if
255 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
256 -- contexts [...] that can be used to determine the bounds of the array
257 -- value specified by the aggregate". If Others_Allowed below is False
258 -- there is no applicable index constraint and this node is set to Index.
259 --
260 -- Component_Typ is the array component type.
261 --
262 -- Others_Allowed indicates whether an others choice is allowed
263 -- in the context where the top-level aggregate appeared.
264 --
265 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
266 --
267 -- 1. Make sure that the others choice, if present, is by itself and
268 -- appears last in the sub-aggregate. Check that we do not have
269 -- positional and named components in the array sub-aggregate (unless
270 -- the named association is an others choice). Finally if an others
271 -- choice is present, make sure it is allowed in the aggregate context.
272 --
273 -- 2. If the array sub-aggregate contains discrete_choices:
274 --
275 -- (A) Verify their validity. Specifically verify that:
276 --
277 -- (a) If a null range is present it must be the only possible
278 -- choice in the array aggregate.
279 --
280 -- (b) Ditto for a non static range.
281 --
282 -- (c) Ditto for a non static expression.
283 --
284 -- In addition this step analyzes and resolves each discrete_choice,
285 -- making sure that its type is the type of the corresponding Index.
286 -- If we are not at the lowest array aggregate level (in the case of
287 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
288 -- recursively on each component expression. Otherwise, resolve the
289 -- bottom level component expressions against the expected component
290 -- type ONLY IF the component corresponds to a single discrete choice
291 -- which is not an others choice (to see why read the DELAYED
292 -- COMPONENT RESOLUTION below).
293 --
294 -- (B) Determine the bounds of the sub-aggregate and lowest and
295 -- highest choice values.
296 --
297 -- 3. For positional aggregates:
298 --
299 -- (A) Loop over the component expressions either recursively invoking
300 -- Resolve_Array_Aggregate on each of these for multi-dimensional
301 -- array aggregates or resolving the bottom level component
302 -- expressions against the expected component type.
303 --
304 -- (B) Determine the bounds of the positional sub-aggregates.
305 --
306 -- 4. Try to determine statically whether the evaluation of the array
307 -- sub-aggregate raises Constraint_Error. If yes emit proper
308 -- warnings. The precise checks are the following:
309 --
310 -- (A) Check that the index range defined by aggregate bounds is
311 -- compatible with corresponding index subtype.
312 -- We also check against the base type. In fact it could be that
313 -- Low/High bounds of the base type are static whereas those of
314 -- the index subtype are not. Thus if we can statically catch
315 -- a problem with respect to the base type we are guaranteed
316 -- that the same problem will arise with the index subtype
317 --
318 -- (B) If we are dealing with a named aggregate containing an others
319 -- choice and at least one discrete choice then make sure the range
320 -- specified by the discrete choices does not overflow the
321 -- aggregate bounds. We also check against the index type and base
322 -- type bounds for the same reasons given in (A).
323 --
324 -- (C) If we are dealing with a positional aggregate with an others
325 -- choice make sure the number of positional elements specified
326 -- does not overflow the aggregate bounds. We also check against
327 -- the index type and base type bounds as mentioned in (A).
328 --
329 -- Finally construct an N_Range node giving the sub-aggregate bounds.
330 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
331 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
332 -- to build the appropriate aggregate subtype. Aggregate_Bounds
333 -- information is needed during expansion.
334 --
335 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
336 -- expressions in an array aggregate may call Duplicate_Subexpr or some
337 -- other routine that inserts code just outside the outermost aggregate.
338 -- If the array aggregate contains discrete choices or an others choice,
339 -- this may be wrong. Consider for instance the following example.
340 --
341 -- type Rec is record
342 -- V : Integer := 0;
343 -- end record;
344 --
345 -- type Acc_Rec is access Rec;
346 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
347 --
348 -- Then the transformation of "new Rec" that occurs during resolution
349 -- entails the following code modifications
350 --
351 -- P7b : constant Acc_Rec := new Rec;
352 -- RecIP (P7b.all);
353 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
354 --
355 -- This code transformation is clearly wrong, since we need to call
356 -- "new Rec" for each of the 3 array elements. To avoid this problem we
357 -- delay resolution of the components of non positional array aggregates
358 -- to the expansion phase. As an optimization, if the discrete choice
359 -- specifies a single value we do not delay resolution.
360
361 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
362 -- This routine returns the type or subtype of an array aggregate.
363 --
364 -- N is the array aggregate node whose type we return.
365 --
366 -- Typ is the context type in which N occurs.
367 --
368 -- This routine creates an implicit array subtype whose bounds are
369 -- those defined by the aggregate. When this routine is invoked
370 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
371 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
372 -- sub-aggregate bounds. When building the aggregate itype, this function
373 -- traverses the array aggregate N collecting such Aggregate_Bounds and
374 -- constructs the proper array aggregate itype.
375 --
376 -- Note that in the case of multidimensional aggregates each inner
377 -- sub-aggregate corresponding to a given array dimension, may provide a
378 -- different bounds. If it is possible to determine statically that
379 -- some sub-aggregates corresponding to the same index do not have the
380 -- same bounds, then a warning is emitted. If such check is not possible
381 -- statically (because some sub-aggregate bounds are dynamic expressions)
382 -- then this job is left to the expander. In all cases the particular
383 -- bounds that this function will chose for a given dimension is the first
384 -- N_Range node for a sub-aggregate corresponding to that dimension.
385 --
386 -- Note that the Raises_Constraint_Error flag of an array aggregate
387 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
388 -- is set in Resolve_Array_Aggregate but the aggregate is not
389 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
390 -- first construct the proper itype for the aggregate (Gigi needs
391 -- this). After constructing the proper itype we will eventually replace
392 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
393 -- Of course in cases such as:
394 --
395 -- type Arr is array (integer range <>) of Integer;
396 -- A : Arr := (positive range -1 .. 2 => 0);
397 --
398 -- The bounds of the aggregate itype are cooked up to look reasonable
399 -- (in this particular case the bounds will be 1 .. 2).
400
401 procedure Make_String_Into_Aggregate (N : Node_Id);
402 -- A string literal can appear in a context in which a one dimensional
403 -- array of characters is expected. This procedure simply rewrites the
404 -- string as an aggregate, prior to resolution.
405
406 ---------------------------------
407 -- Delta aggregate processing --
408 ---------------------------------
409
410 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
411 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
412
413 ------------------------
414 -- Array_Aggr_Subtype --
415 ------------------------
416
417 function Array_Aggr_Subtype
418 (N : Node_Id;
419 Typ : Entity_Id) return Entity_Id
420 is
421 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
422 -- Number of aggregate index dimensions
423
424 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
425 -- Constrained N_Range of each index dimension in our aggregate itype
426
427 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
428 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
429 -- Low and High bounds for each index dimension in our aggregate itype
430
431 Is_Fully_Positional : Boolean := True;
432
433 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
434 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
435 -- to (sub-)aggregate N. This procedure collects and removes the side
436 -- effects of the constrained N_Range nodes corresponding to each index
437 -- dimension of our aggregate itype. These N_Range nodes are collected
438 -- in Aggr_Range above.
439 --
440 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
441 -- bounds of each index dimension. If, when collecting, two bounds
442 -- corresponding to the same dimension are static and found to differ,
443 -- then emit a warning, and mark N as raising Constraint_Error.
444
445 -------------------------
446 -- Collect_Aggr_Bounds --
447 -------------------------
448
449 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
450 This_Range : constant Node_Id := Aggregate_Bounds (N);
451 -- The aggregate range node of this specific sub-aggregate
452
453 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
454 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
455 -- The aggregate bounds of this specific sub-aggregate
456
457 Assoc : Node_Id;
458 Expr : Node_Id;
459
460 begin
461 Remove_Side_Effects (This_Low, Variable_Ref => True);
462 Remove_Side_Effects (This_High, Variable_Ref => True);
463
464 -- Collect the first N_Range for a given dimension that you find.
465 -- For a given dimension they must be all equal anyway.
466
467 if No (Aggr_Range (Dim)) then
468 Aggr_Low (Dim) := This_Low;
469 Aggr_High (Dim) := This_High;
470 Aggr_Range (Dim) := This_Range;
471
472 else
473 if Compile_Time_Known_Value (This_Low) then
474 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476
477 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
478 Set_Raises_Constraint_Error (N);
479 Error_Msg_Warn := SPARK_Mode /= On;
480 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
481 Error_Msg_N ("\Constraint_Error [<<", N);
482 end if;
483 end if;
484
485 if Compile_Time_Known_Value (This_High) then
486 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
487 Aggr_High (Dim) := This_High;
488
489 elsif
490 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
491 then
492 Set_Raises_Constraint_Error (N);
493 Error_Msg_Warn := SPARK_Mode /= On;
494 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
495 Error_Msg_N ("\Constraint_Error [<<", N);
496 end if;
497 end if;
498 end if;
499
500 if Dim < Aggr_Dimension then
501
502 -- Process positional components
503
504 if Present (Expressions (N)) then
505 Expr := First (Expressions (N));
506 while Present (Expr) loop
507 Collect_Aggr_Bounds (Expr, Dim + 1);
508 Next (Expr);
509 end loop;
510 end if;
511
512 -- Process component associations
513
514 if Present (Component_Associations (N)) then
515 Is_Fully_Positional := False;
516
517 Assoc := First (Component_Associations (N));
518 while Present (Assoc) loop
519 Expr := Expression (Assoc);
520 Collect_Aggr_Bounds (Expr, Dim + 1);
521 Next (Assoc);
522 end loop;
523 end if;
524 end if;
525 end Collect_Aggr_Bounds;
526
527 -- Array_Aggr_Subtype variables
528
529 Itype : Entity_Id;
530 -- The final itype of the overall aggregate
531
532 Index_Constraints : constant List_Id := New_List;
533 -- The list of index constraints of the aggregate itype
534
535 -- Start of processing for Array_Aggr_Subtype
536
537 begin
538 -- Make sure that the list of index constraints is properly attached to
539 -- the tree, and then collect the aggregate bounds.
540
541 Set_Parent (Index_Constraints, N);
542 Collect_Aggr_Bounds (N, 1);
543
544 -- Build the list of constrained indexes of our aggregate itype
545
546 for J in 1 .. Aggr_Dimension loop
547 Create_Index : declare
548 Index_Base : constant Entity_Id :=
549 Base_Type (Etype (Aggr_Range (J)));
550 Index_Typ : Entity_Id;
551
552 begin
553 -- Construct the Index subtype, and associate it with the range
554 -- construct that generates it.
555
556 Index_Typ :=
557 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
558
559 Set_Etype (Index_Typ, Index_Base);
560
561 if Is_Character_Type (Index_Base) then
562 Set_Is_Character_Type (Index_Typ);
563 end if;
564
565 Set_Size_Info (Index_Typ, (Index_Base));
566 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
567 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
568 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
569
570 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
571 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
572 end if;
573
574 Set_Etype (Aggr_Range (J), Index_Typ);
575
576 Append (Aggr_Range (J), To => Index_Constraints);
577 end Create_Index;
578 end loop;
579
580 -- Now build the Itype
581
582 Itype := Create_Itype (E_Array_Subtype, N);
583
584 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
585 Set_Convention (Itype, Convention (Typ));
586 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
587 Set_Etype (Itype, Base_Type (Typ));
588 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
589 Set_Is_Aliased (Itype, Is_Aliased (Typ));
590 Set_Is_Independent (Itype, Is_Independent (Typ));
591 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
592
593 Copy_Suppress_Status (Index_Check, Typ, Itype);
594 Copy_Suppress_Status (Length_Check, Typ, Itype);
595
596 Set_First_Index (Itype, First (Index_Constraints));
597 Set_Is_Constrained (Itype, True);
598 Set_Is_Internal (Itype, True);
599
600 if Has_Predicates (Typ) then
601 Set_Has_Predicates (Itype);
602
603 -- If the base type has a predicate, capture the predicated parent
604 -- or the existing predicate function for SPARK use.
605
606 if Present (Predicate_Function (Typ)) then
607 Set_Predicate_Function (Itype, Predicate_Function (Typ));
608
609 elsif Is_Itype (Typ) then
610 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
611
612 else
613 Set_Predicated_Parent (Itype, Typ);
614 end if;
615 end if;
616
617 -- A simple optimization: purely positional aggregates of static
618 -- components should be passed to gigi unexpanded whenever possible, and
619 -- regardless of the staticness of the bounds themselves. Subsequent
620 -- checks in exp_aggr verify that type is not packed, etc.
621
622 Set_Size_Known_At_Compile_Time
623 (Itype,
624 Is_Fully_Positional
625 and then Comes_From_Source (N)
626 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
627
628 -- We always need a freeze node for a packed array subtype, so that we
629 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
630 -- expansion is disabled, the packed array subtype is not built, and we
631 -- must not generate a freeze node for the type, or else it will appear
632 -- incomplete to gigi.
633
634 if Is_Packed (Itype)
635 and then not In_Spec_Expression
636 and then Expander_Active
637 then
638 Freeze_Itype (Itype, N);
639 end if;
640
641 return Itype;
642 end Array_Aggr_Subtype;
643
644 --------------------------------
645 -- Check_Misspelled_Component --
646 --------------------------------
647
648 procedure Check_Misspelled_Component
649 (Elements : Elist_Id;
650 Component : Node_Id)
651 is
652 Max_Suggestions : constant := 2;
653
654 Nr_Of_Suggestions : Natural := 0;
655 Suggestion_1 : Entity_Id := Empty;
656 Suggestion_2 : Entity_Id := Empty;
657 Component_Elmt : Elmt_Id;
658
659 begin
660 -- All the components of List are matched against Component and a count
661 -- is maintained of possible misspellings. When at the end of the
662 -- analysis there are one or two (not more) possible misspellings,
663 -- these misspellings will be suggested as possible corrections.
664
665 Component_Elmt := First_Elmt (Elements);
666 while Nr_Of_Suggestions <= Max_Suggestions
667 and then Present (Component_Elmt)
668 loop
669 if Is_Bad_Spelling_Of
670 (Chars (Node (Component_Elmt)),
671 Chars (Component))
672 then
673 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
674
675 case Nr_Of_Suggestions is
676 when 1 => Suggestion_1 := Node (Component_Elmt);
677 when 2 => Suggestion_2 := Node (Component_Elmt);
678 when others => null;
679 end case;
680 end if;
681
682 Next_Elmt (Component_Elmt);
683 end loop;
684
685 -- Report at most two suggestions
686
687 if Nr_Of_Suggestions = 1 then
688 Error_Msg_NE -- CODEFIX
689 ("\possible misspelling of&", Component, Suggestion_1);
690
691 elsif Nr_Of_Suggestions = 2 then
692 Error_Msg_Node_2 := Suggestion_2;
693 Error_Msg_NE -- CODEFIX
694 ("\possible misspelling of& or&", Component, Suggestion_1);
695 end if;
696 end Check_Misspelled_Component;
697
698 ----------------------------------------
699 -- Check_Expr_OK_In_Limited_Aggregate --
700 ----------------------------------------
701
702 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
703 begin
704 if Is_Limited_Type (Etype (Expr))
705 and then Comes_From_Source (Expr)
706 then
707 if In_Instance_Body or else In_Inlined_Body then
708 null;
709
710 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
711 Error_Msg_N
712 ("initialization not allowed for limited types", Expr);
713 Explain_Limited_Type (Etype (Expr), Expr);
714 end if;
715 end if;
716 end Check_Expr_OK_In_Limited_Aggregate;
717
718 -------------------------
719 -- Is_Others_Aggregate --
720 -------------------------
721
722 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
723 Assoc : constant List_Id := Component_Associations (Aggr);
724
725 begin
726 return No (Expressions (Aggr))
727 and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
728 end Is_Others_Aggregate;
729
730 -------------------------
731 -- Is_Single_Aggregate --
732 -------------------------
733
734 function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
735 Assoc : constant List_Id := Component_Associations (Aggr);
736
737 begin
738 return No (Expressions (Aggr))
739 and then No (Next (First (Assoc)))
740 and then No (Next (First (Choice_List (First (Assoc)))));
741 end Is_Single_Aggregate;
742
743 --------------------------------
744 -- Make_String_Into_Aggregate --
745 --------------------------------
746
747 procedure Make_String_Into_Aggregate (N : Node_Id) is
748 Exprs : constant List_Id := New_List;
749 Loc : constant Source_Ptr := Sloc (N);
750 Str : constant String_Id := Strval (N);
751 Strlen : constant Nat := String_Length (Str);
752 C : Char_Code;
753 C_Node : Node_Id;
754 New_N : Node_Id;
755 P : Source_Ptr;
756
757 begin
758 P := Loc + 1;
759 for J in 1 .. Strlen loop
760 C := Get_String_Char (Str, J);
761 Set_Character_Literal_Name (C);
762
763 C_Node :=
764 Make_Character_Literal (P,
765 Chars => Name_Find,
766 Char_Literal_Value => UI_From_CC (C));
767 Set_Etype (C_Node, Any_Character);
768 Append_To (Exprs, C_Node);
769
770 P := P + 1;
771 -- Something special for wide strings???
772 end loop;
773
774 New_N := Make_Aggregate (Loc, Expressions => Exprs);
775 Set_Analyzed (New_N);
776 Set_Etype (New_N, Any_Composite);
777
778 Rewrite (N, New_N);
779 end Make_String_Into_Aggregate;
780
781 -----------------------
782 -- Resolve_Aggregate --
783 -----------------------
784
785 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
786 Loc : constant Source_Ptr := Sloc (N);
787
788 Aggr_Subtyp : Entity_Id;
789 -- The actual aggregate subtype. This is not necessarily the same as Typ
790 -- which is the subtype of the context in which the aggregate was found.
791
792 begin
793 -- Ignore junk empty aggregate resulting from parser error
794
795 if No (Expressions (N))
796 and then No (Component_Associations (N))
797 and then not Null_Record_Present (N)
798 then
799 return;
800 end if;
801
802 -- If the aggregate has box-initialized components, its type must be
803 -- frozen so that initialization procedures can properly be called
804 -- in the resolution that follows. The replacement of boxes with
805 -- initialization calls is properly an expansion activity but it must
806 -- be done during resolution.
807
808 if Expander_Active
809 and then Present (Component_Associations (N))
810 then
811 declare
812 Comp : Node_Id;
813
814 begin
815 Comp := First (Component_Associations (N));
816 while Present (Comp) loop
817 if Box_Present (Comp) then
818 Insert_Actions (N, Freeze_Entity (Typ, N));
819 exit;
820 end if;
821
822 Next (Comp);
823 end loop;
824 end;
825 end if;
826
827 -- Check for aggregates not allowed in configurable run-time mode.
828 -- We allow all cases of aggregates that do not come from source, since
829 -- these are all assumed to be small (e.g. bounds of a string literal).
830 -- We also allow aggregates of types we know to be small.
831
832 if not Support_Aggregates_On_Target
833 and then Comes_From_Source (N)
834 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
835 then
836 Error_Msg_CRT ("aggregate", N);
837 end if;
838
839 -- Ada 2005 (AI-287): Limited aggregates allowed
840
841 -- In an instance, ignore aggregate subcomponents tnat may be limited,
842 -- because they originate in view conflicts. If the original aggregate
843 -- is legal and the actuals are legal, the aggregate itself is legal.
844
845 if Is_Limited_Type (Typ)
846 and then Ada_Version < Ada_2005
847 and then not In_Instance
848 then
849 Error_Msg_N ("aggregate type cannot be limited", N);
850 Explain_Limited_Type (Typ, N);
851
852 elsif Is_Class_Wide_Type (Typ) then
853 Error_Msg_N ("type of aggregate cannot be class-wide", N);
854
855 elsif Typ = Any_String
856 or else Typ = Any_Composite
857 then
858 Error_Msg_N ("no unique type for aggregate", N);
859 Set_Etype (N, Any_Composite);
860
861 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
862 Error_Msg_N ("null record forbidden in array aggregate", N);
863
864 elsif Is_Record_Type (Typ) then
865 Resolve_Record_Aggregate (N, Typ);
866
867 elsif Is_Array_Type (Typ) then
868
869 -- First a special test, for the case of a positional aggregate of
870 -- characters which can be replaced by a string literal.
871
872 -- Do not perform this transformation if this was a string literal
873 -- to start with, whose components needed constraint checks, or if
874 -- the component type is non-static, because it will require those
875 -- checks and be transformed back into an aggregate. If the index
876 -- type is not Integer the aggregate may represent a user-defined
877 -- string type but the context might need the original type so we
878 -- do not perform the transformation at this point.
879
880 if Number_Dimensions (Typ) = 1
881 and then Is_Standard_Character_Type (Component_Type (Typ))
882 and then No (Component_Associations (N))
883 and then not Is_Limited_Composite (Typ)
884 and then not Is_Private_Composite (Typ)
885 and then not Is_Bit_Packed_Array (Typ)
886 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
887 and then Is_OK_Static_Subtype (Component_Type (Typ))
888 and then Base_Type (Etype (First_Index (Typ))) =
889 Base_Type (Standard_Integer)
890 then
891 declare
892 Expr : Node_Id;
893
894 begin
895 Expr := First (Expressions (N));
896 while Present (Expr) loop
897 exit when Nkind (Expr) /= N_Character_Literal;
898 Next (Expr);
899 end loop;
900
901 if No (Expr) then
902 Start_String;
903
904 Expr := First (Expressions (N));
905 while Present (Expr) loop
906 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
907 Next (Expr);
908 end loop;
909
910 Rewrite (N, Make_String_Literal (Loc, End_String));
911
912 Analyze_And_Resolve (N, Typ);
913 return;
914 end if;
915 end;
916 end if;
917
918 -- Here if we have a real aggregate to deal with
919
920 Array_Aggregate : declare
921 Aggr_Resolved : Boolean;
922
923 Aggr_Typ : constant Entity_Id := Etype (Typ);
924 -- This is the unconstrained array type, which is the type against
925 -- which the aggregate is to be resolved. Typ itself is the array
926 -- type of the context which may not be the same subtype as the
927 -- subtype for the final aggregate.
928
929 begin
930 -- In the following we determine whether an OTHERS choice is
931 -- allowed inside the array aggregate. The test checks the context
932 -- in which the array aggregate occurs. If the context does not
933 -- permit it, or the aggregate type is unconstrained, an OTHERS
934 -- choice is not allowed (except that it is always allowed on the
935 -- right-hand side of an assignment statement; in this case the
936 -- constrainedness of the type doesn't matter, because an array
937 -- object is always constrained).
938
939 -- If expansion is disabled (generic context, or semantics-only
940 -- mode) actual subtypes cannot be constructed, and the type of an
941 -- object may be its unconstrained nominal type. However, if the
942 -- context is an assignment statement, OTHERS is allowed, because
943 -- the target of the assignment will have a constrained subtype
944 -- when fully compiled. Ditto if the context is an initialization
945 -- procedure where a component may have a predicate function that
946 -- carries the base type.
947
948 -- Note that there is no node for Explicit_Actual_Parameter.
949 -- To test for this context we therefore have to test for node
950 -- N_Parameter_Association which itself appears only if there is a
951 -- formal parameter. Consequently we also need to test for
952 -- N_Procedure_Call_Statement or N_Function_Call.
953
954 -- The context may be an N_Reference node, created by expansion.
955 -- Legality of the others clause was established in the source,
956 -- so the context is legal.
957
958 Set_Etype (N, Aggr_Typ); -- May be overridden later on
959
960 if Nkind (Parent (N)) = N_Assignment_Statement
961 or else Inside_Init_Proc
962 or else (Is_Constrained (Typ)
963 and then Nkind_In (Parent (N),
964 N_Parameter_Association,
965 N_Function_Call,
966 N_Procedure_Call_Statement,
967 N_Generic_Association,
968 N_Formal_Object_Declaration,
969 N_Simple_Return_Statement,
970 N_Object_Declaration,
971 N_Component_Declaration,
972 N_Parameter_Specification,
973 N_Qualified_Expression,
974 N_Reference,
975 N_Aggregate,
976 N_Extension_Aggregate,
977 N_Component_Association,
978 N_Case_Expression_Alternative,
979 N_If_Expression,
980 N_Expression_With_Actions))
981 then
982 Aggr_Resolved :=
983 Resolve_Array_Aggregate
984 (N,
985 Index => First_Index (Aggr_Typ),
986 Index_Constr => First_Index (Typ),
987 Component_Typ => Component_Type (Typ),
988 Others_Allowed => True);
989 else
990 Aggr_Resolved :=
991 Resolve_Array_Aggregate
992 (N,
993 Index => First_Index (Aggr_Typ),
994 Index_Constr => First_Index (Aggr_Typ),
995 Component_Typ => Component_Type (Typ),
996 Others_Allowed => False);
997 end if;
998
999 if not Aggr_Resolved then
1000
1001 -- A parenthesized expression may have been intended as an
1002 -- aggregate, leading to a type error when analyzing the
1003 -- component. This can also happen for a nested component
1004 -- (see Analyze_Aggr_Expr).
1005
1006 if Paren_Count (N) > 0 then
1007 Error_Msg_N
1008 ("positional aggregate cannot have one component", N);
1009 end if;
1010
1011 Aggr_Subtyp := Any_Composite;
1012
1013 else
1014 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1015 end if;
1016
1017 Set_Etype (N, Aggr_Subtyp);
1018 end Array_Aggregate;
1019
1020 elsif Is_Private_Type (Typ)
1021 and then Present (Full_View (Typ))
1022 and then (In_Inlined_Body or In_Instance_Body)
1023 and then Is_Composite_Type (Full_View (Typ))
1024 then
1025 Resolve (N, Full_View (Typ));
1026
1027 else
1028 Error_Msg_N ("illegal context for aggregate", N);
1029 end if;
1030
1031 -- If we can determine statically that the evaluation of the aggregate
1032 -- raises Constraint_Error, then replace the aggregate with an
1033 -- N_Raise_Constraint_Error node, but set the Etype to the right
1034 -- aggregate subtype. Gigi needs this.
1035
1036 if Raises_Constraint_Error (N) then
1037 Aggr_Subtyp := Etype (N);
1038 Rewrite (N,
1039 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1040 Set_Raises_Constraint_Error (N);
1041 Set_Etype (N, Aggr_Subtyp);
1042 Set_Analyzed (N);
1043 end if;
1044
1045 Check_Function_Writable_Actuals (N);
1046 end Resolve_Aggregate;
1047
1048 -----------------------------
1049 -- Resolve_Array_Aggregate --
1050 -----------------------------
1051
1052 function Resolve_Array_Aggregate
1053 (N : Node_Id;
1054 Index : Node_Id;
1055 Index_Constr : Node_Id;
1056 Component_Typ : Entity_Id;
1057 Others_Allowed : Boolean) return Boolean
1058 is
1059 Loc : constant Source_Ptr := Sloc (N);
1060
1061 Failure : constant Boolean := False;
1062 Success : constant Boolean := True;
1063
1064 Index_Typ : constant Entity_Id := Etype (Index);
1065 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1066 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1067 -- The type of the index corresponding to the array sub-aggregate along
1068 -- with its low and upper bounds.
1069
1070 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1071 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1072 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1073 -- Ditto for the base type
1074
1075 Others_Present : Boolean := False;
1076
1077 Nb_Choices : Nat := 0;
1078 -- Contains the overall number of named choices in this sub-aggregate
1079
1080 function Add (Val : Uint; To : Node_Id) return Node_Id;
1081 -- Creates a new expression node where Val is added to expression To.
1082 -- Tries to constant fold whenever possible. To must be an already
1083 -- analyzed expression.
1084
1085 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1086 -- Checks that AH (the upper bound of an array aggregate) is less than
1087 -- or equal to BH (the upper bound of the index base type). If the check
1088 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1089 -- set, and AH is replaced with a duplicate of BH.
1090
1091 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1092 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1093 -- warning if not and sets the Raises_Constraint_Error flag in N.
1094
1095 procedure Check_Length (L, H : Node_Id; Len : Uint);
1096 -- Checks that range L .. H contains at least Len elements. Emits a
1097 -- warning if not and sets the Raises_Constraint_Error flag in N.
1098
1099 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1100 -- Returns True if range L .. H is dynamic or null
1101
1102 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1103 -- Given expression node From, this routine sets OK to False if it
1104 -- cannot statically evaluate From. Otherwise it stores this static
1105 -- value into Value.
1106
1107 function Resolve_Aggr_Expr
1108 (Expr : Node_Id;
1109 Single_Elmt : Boolean) return Boolean;
1110 -- Resolves aggregate expression Expr. Returns False if resolution
1111 -- fails. If Single_Elmt is set to False, the expression Expr may be
1112 -- used to initialize several array aggregate elements (this can happen
1113 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1114 -- In this event we do not resolve Expr unless expansion is disabled.
1115 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1116 --
1117 -- NOTE: In the case of "... => <>", we pass the in the
1118 -- N_Component_Association node as Expr, since there is no Expression in
1119 -- that case, and we need a Sloc for the error message.
1120
1121 procedure Resolve_Iterated_Component_Association
1122 (N : Node_Id;
1123 Index_Typ : Entity_Id);
1124 -- For AI12-061
1125
1126 ---------
1127 -- Add --
1128 ---------
1129
1130 function Add (Val : Uint; To : Node_Id) return Node_Id is
1131 Expr_Pos : Node_Id;
1132 Expr : Node_Id;
1133 To_Pos : Node_Id;
1134
1135 begin
1136 if Raises_Constraint_Error (To) then
1137 return To;
1138 end if;
1139
1140 -- First test if we can do constant folding
1141
1142 if Compile_Time_Known_Value (To)
1143 or else Nkind (To) = N_Integer_Literal
1144 then
1145 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1146 Set_Is_Static_Expression (Expr_Pos);
1147 Set_Etype (Expr_Pos, Etype (To));
1148 Set_Analyzed (Expr_Pos, Analyzed (To));
1149
1150 if not Is_Enumeration_Type (Index_Typ) then
1151 Expr := Expr_Pos;
1152
1153 -- If we are dealing with enumeration return
1154 -- Index_Typ'Val (Expr_Pos)
1155
1156 else
1157 Expr :=
1158 Make_Attribute_Reference
1159 (Loc,
1160 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1161 Attribute_Name => Name_Val,
1162 Expressions => New_List (Expr_Pos));
1163 end if;
1164
1165 return Expr;
1166 end if;
1167
1168 -- If we are here no constant folding possible
1169
1170 if not Is_Enumeration_Type (Index_Base) then
1171 Expr :=
1172 Make_Op_Add (Loc,
1173 Left_Opnd => Duplicate_Subexpr (To),
1174 Right_Opnd => Make_Integer_Literal (Loc, Val));
1175
1176 -- If we are dealing with enumeration return
1177 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1178
1179 else
1180 To_Pos :=
1181 Make_Attribute_Reference
1182 (Loc,
1183 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1184 Attribute_Name => Name_Pos,
1185 Expressions => New_List (Duplicate_Subexpr (To)));
1186
1187 Expr_Pos :=
1188 Make_Op_Add (Loc,
1189 Left_Opnd => To_Pos,
1190 Right_Opnd => Make_Integer_Literal (Loc, Val));
1191
1192 Expr :=
1193 Make_Attribute_Reference
1194 (Loc,
1195 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1196 Attribute_Name => Name_Val,
1197 Expressions => New_List (Expr_Pos));
1198
1199 -- If the index type has a non standard representation, the
1200 -- attributes 'Val and 'Pos expand into function calls and the
1201 -- resulting expression is considered non-safe for reevaluation
1202 -- by the backend. Relocate it into a constant temporary in order
1203 -- to make it safe for reevaluation.
1204
1205 if Has_Non_Standard_Rep (Etype (N)) then
1206 declare
1207 Def_Id : Entity_Id;
1208
1209 begin
1210 Def_Id := Make_Temporary (Loc, 'R', Expr);
1211 Set_Etype (Def_Id, Index_Typ);
1212 Insert_Action (N,
1213 Make_Object_Declaration (Loc,
1214 Defining_Identifier => Def_Id,
1215 Object_Definition =>
1216 New_Occurrence_Of (Index_Typ, Loc),
1217 Constant_Present => True,
1218 Expression => Relocate_Node (Expr)));
1219
1220 Expr := New_Occurrence_Of (Def_Id, Loc);
1221 end;
1222 end if;
1223 end if;
1224
1225 return Expr;
1226 end Add;
1227
1228 -----------------
1229 -- Check_Bound --
1230 -----------------
1231
1232 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1233 Val_BH : Uint;
1234 Val_AH : Uint;
1235
1236 OK_BH : Boolean;
1237 OK_AH : Boolean;
1238
1239 begin
1240 Get (Value => Val_BH, From => BH, OK => OK_BH);
1241 Get (Value => Val_AH, From => AH, OK => OK_AH);
1242
1243 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1244 Set_Raises_Constraint_Error (N);
1245 Error_Msg_Warn := SPARK_Mode /= On;
1246 Error_Msg_N ("upper bound out of range<<", AH);
1247 Error_Msg_N ("\Constraint_Error [<<", AH);
1248
1249 -- You need to set AH to BH or else in the case of enumerations
1250 -- indexes we will not be able to resolve the aggregate bounds.
1251
1252 AH := Duplicate_Subexpr (BH);
1253 end if;
1254 end Check_Bound;
1255
1256 ------------------
1257 -- Check_Bounds --
1258 ------------------
1259
1260 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1261 Val_L : Uint;
1262 Val_H : Uint;
1263 Val_AL : Uint;
1264 Val_AH : Uint;
1265
1266 OK_L : Boolean;
1267 OK_H : Boolean;
1268
1269 OK_AL : Boolean;
1270 OK_AH : Boolean;
1271 pragma Warnings (Off, OK_AL);
1272 pragma Warnings (Off, OK_AH);
1273
1274 begin
1275 if Raises_Constraint_Error (N)
1276 or else Dynamic_Or_Null_Range (AL, AH)
1277 then
1278 return;
1279 end if;
1280
1281 Get (Value => Val_L, From => L, OK => OK_L);
1282 Get (Value => Val_H, From => H, OK => OK_H);
1283
1284 Get (Value => Val_AL, From => AL, OK => OK_AL);
1285 Get (Value => Val_AH, From => AH, OK => OK_AH);
1286
1287 if OK_L and then Val_L > Val_AL then
1288 Set_Raises_Constraint_Error (N);
1289 Error_Msg_Warn := SPARK_Mode /= On;
1290 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1291 Error_Msg_N ("\Constraint_Error [<<", N);
1292 end if;
1293
1294 if OK_H and then Val_H < Val_AH then
1295 Set_Raises_Constraint_Error (N);
1296 Error_Msg_Warn := SPARK_Mode /= On;
1297 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1298 Error_Msg_N ("\Constraint_Error [<<", N);
1299 end if;
1300 end Check_Bounds;
1301
1302 ------------------
1303 -- Check_Length --
1304 ------------------
1305
1306 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1307 Val_L : Uint;
1308 Val_H : Uint;
1309
1310 OK_L : Boolean;
1311 OK_H : Boolean;
1312
1313 Range_Len : Uint;
1314
1315 begin
1316 if Raises_Constraint_Error (N) then
1317 return;
1318 end if;
1319
1320 Get (Value => Val_L, From => L, OK => OK_L);
1321 Get (Value => Val_H, From => H, OK => OK_H);
1322
1323 if not OK_L or else not OK_H then
1324 return;
1325 end if;
1326
1327 -- If null range length is zero
1328
1329 if Val_L > Val_H then
1330 Range_Len := Uint_0;
1331 else
1332 Range_Len := Val_H - Val_L + 1;
1333 end if;
1334
1335 if Range_Len < Len then
1336 Set_Raises_Constraint_Error (N);
1337 Error_Msg_Warn := SPARK_Mode /= On;
1338 Error_Msg_N ("too many elements<<", N);
1339 Error_Msg_N ("\Constraint_Error [<<", N);
1340 end if;
1341 end Check_Length;
1342
1343 ---------------------------
1344 -- Dynamic_Or_Null_Range --
1345 ---------------------------
1346
1347 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1348 Val_L : Uint;
1349 Val_H : Uint;
1350
1351 OK_L : Boolean;
1352 OK_H : Boolean;
1353
1354 begin
1355 Get (Value => Val_L, From => L, OK => OK_L);
1356 Get (Value => Val_H, From => H, OK => OK_H);
1357
1358 return not OK_L or else not OK_H
1359 or else not Is_OK_Static_Expression (L)
1360 or else not Is_OK_Static_Expression (H)
1361 or else Val_L > Val_H;
1362 end Dynamic_Or_Null_Range;
1363
1364 ---------
1365 -- Get --
1366 ---------
1367
1368 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1369 begin
1370 OK := True;
1371
1372 if Compile_Time_Known_Value (From) then
1373 Value := Expr_Value (From);
1374
1375 -- If expression From is something like Some_Type'Val (10) then
1376 -- Value = 10.
1377
1378 elsif Nkind (From) = N_Attribute_Reference
1379 and then Attribute_Name (From) = Name_Val
1380 and then Compile_Time_Known_Value (First (Expressions (From)))
1381 then
1382 Value := Expr_Value (First (Expressions (From)));
1383 else
1384 Value := Uint_0;
1385 OK := False;
1386 end if;
1387 end Get;
1388
1389 -----------------------
1390 -- Resolve_Aggr_Expr --
1391 -----------------------
1392
1393 function Resolve_Aggr_Expr
1394 (Expr : Node_Id;
1395 Single_Elmt : Boolean) return Boolean
1396 is
1397 Nxt_Ind : constant Node_Id := Next_Index (Index);
1398 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1399 -- Index is the current index corresponding to the expression
1400
1401 Resolution_OK : Boolean := True;
1402 -- Set to False if resolution of the expression failed
1403
1404 begin
1405 -- Defend against previous errors
1406
1407 if Nkind (Expr) = N_Error
1408 or else Error_Posted (Expr)
1409 then
1410 return True;
1411 end if;
1412
1413 -- If the array type against which we are resolving the aggregate
1414 -- has several dimensions, the expressions nested inside the
1415 -- aggregate must be further aggregates (or strings).
1416
1417 if Present (Nxt_Ind) then
1418 if Nkind (Expr) /= N_Aggregate then
1419
1420 -- A string literal can appear where a one-dimensional array
1421 -- of characters is expected. If the literal looks like an
1422 -- operator, it is still an operator symbol, which will be
1423 -- transformed into a string when analyzed.
1424
1425 if Is_Character_Type (Component_Typ)
1426 and then No (Next_Index (Nxt_Ind))
1427 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1428 then
1429 -- A string literal used in a multidimensional array
1430 -- aggregate in place of the final one-dimensional
1431 -- aggregate must not be enclosed in parentheses.
1432
1433 if Paren_Count (Expr) /= 0 then
1434 Error_Msg_N ("no parenthesis allowed here", Expr);
1435 end if;
1436
1437 Make_String_Into_Aggregate (Expr);
1438
1439 else
1440 Error_Msg_N ("nested array aggregate expected", Expr);
1441
1442 -- If the expression is parenthesized, this may be
1443 -- a missing component association for a 1-aggregate.
1444
1445 if Paren_Count (Expr) > 0 then
1446 Error_Msg_N
1447 ("\if single-component aggregate is intended, "
1448 & "write e.g. (1 ='> ...)", Expr);
1449 end if;
1450
1451 return Failure;
1452 end if;
1453 end if;
1454
1455 -- If it's "... => <>", nothing to resolve
1456
1457 if Nkind (Expr) = N_Component_Association then
1458 pragma Assert (Box_Present (Expr));
1459 return Success;
1460 end if;
1461
1462 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1463 -- Required to check the null-exclusion attribute (if present).
1464 -- This value may be overridden later on.
1465
1466 Set_Etype (Expr, Etype (N));
1467
1468 Resolution_OK := Resolve_Array_Aggregate
1469 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1470
1471 else
1472 -- If it's "... => <>", nothing to resolve
1473
1474 if Nkind (Expr) = N_Component_Association then
1475 pragma Assert (Box_Present (Expr));
1476 return Success;
1477 end if;
1478
1479 -- Do not resolve the expressions of discrete or others choices
1480 -- unless the expression covers a single component, or the
1481 -- expander is inactive.
1482
1483 -- In SPARK mode, expressions that can perform side effects will
1484 -- be recognized by the gnat2why back-end, and the whole
1485 -- subprogram will be ignored. So semantic analysis can be
1486 -- performed safely.
1487
1488 if Single_Elmt
1489 or else not Expander_Active
1490 or else In_Spec_Expression
1491 then
1492 Analyze_And_Resolve (Expr, Component_Typ);
1493 Check_Expr_OK_In_Limited_Aggregate (Expr);
1494 Check_Non_Static_Context (Expr);
1495 Aggregate_Constraint_Checks (Expr, Component_Typ);
1496 Check_Unset_Reference (Expr);
1497 end if;
1498 end if;
1499
1500 -- If an aggregate component has a type with predicates, an explicit
1501 -- predicate check must be applied, as for an assignment statement,
1502 -- because the aggegate might not be expanded into individual
1503 -- component assignments. If the expression covers several components
1504 -- the analysis and the predicate check take place later.
1505
1506 if Has_Predicates (Component_Typ)
1507 and then Analyzed (Expr)
1508 then
1509 Apply_Predicate_Check (Expr, Component_Typ);
1510 end if;
1511
1512 if Raises_Constraint_Error (Expr)
1513 and then Nkind (Parent (Expr)) /= N_Component_Association
1514 then
1515 Set_Raises_Constraint_Error (N);
1516 end if;
1517
1518 -- If the expression has been marked as requiring a range check,
1519 -- then generate it here. It's a bit odd to be generating such
1520 -- checks in the analyzer, but harmless since Generate_Range_Check
1521 -- does nothing (other than making sure Do_Range_Check is set) if
1522 -- the expander is not active.
1523
1524 if Do_Range_Check (Expr) then
1525 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1526 end if;
1527
1528 return Resolution_OK;
1529 end Resolve_Aggr_Expr;
1530
1531 --------------------------------------------
1532 -- Resolve_Iterated_Component_Association --
1533 --------------------------------------------
1534
1535 procedure Resolve_Iterated_Component_Association
1536 (N : Node_Id;
1537 Index_Typ : Entity_Id)
1538 is
1539 Loc : constant Source_Ptr := Sloc (N);
1540
1541 Choice : Node_Id;
1542 Dummy : Boolean;
1543 Ent : Entity_Id;
1544 Expr : Node_Id;
1545 Id : Entity_Id;
1546
1547 begin
1548 -- An element iterator specification cannot appear in
1549 -- an array aggregate because it does not provide index
1550 -- values for the association. This must be a semantic
1551 -- check because the parser cannot tell whether this is
1552 -- an array aggregate or a container aggregate.
1553
1554 if Present (Iterator_Specification (N)) then
1555 Error_Msg_N ("container element Iterator cannot appear "
1556 & "in an array aggregate", N);
1557 return;
1558 end if;
1559
1560 Choice := First (Discrete_Choices (N));
1561
1562 while Present (Choice) loop
1563 if Nkind (Choice) = N_Others_Choice then
1564 Others_Present := True;
1565
1566 else
1567 Analyze (Choice);
1568
1569 -- Choice can be a subtype name, a range, or an expression
1570
1571 if Is_Entity_Name (Choice)
1572 and then Is_Type (Entity (Choice))
1573 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1574 then
1575 null;
1576
1577 else
1578 Analyze_And_Resolve (Choice, Index_Typ);
1579 end if;
1580 end if;
1581
1582 Next (Choice);
1583 end loop;
1584
1585 -- Create a scope in which to introduce an index, which is usually
1586 -- visible in the expression for the component, and needed for its
1587 -- analysis.
1588
1589 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1590 Set_Etype (Ent, Standard_Void_Type);
1591 Set_Parent (Ent, Parent (N));
1592 Push_Scope (Ent);
1593 Id :=
1594 Make_Defining_Identifier (Loc,
1595 Chars => Chars (Defining_Identifier (N)));
1596
1597 -- Insert and decorate the index variable in the current scope.
1598 -- The expression has to be analyzed once the index variable is
1599 -- directly visible. Mark the variable as referenced to prevent
1600 -- spurious warnings, given that subsequent uses of its name in the
1601 -- expression will reference the internal (synonym) loop variable.
1602
1603 Enter_Name (Id);
1604 Set_Etype (Id, Index_Typ);
1605 Set_Ekind (Id, E_Variable);
1606 Set_Scope (Id, Ent);
1607 Set_Referenced (Id);
1608
1609 -- Analyze a copy of the expression, to verify legality. We use
1610 -- a copy because the expression will be analyzed anew when the
1611 -- enclosing aggregate is expanded, and the construct is rewritten
1612 -- as a loop with a new index variable.
1613
1614 Expr := New_Copy_Tree (Expression (N));
1615 Dummy := Resolve_Aggr_Expr (Expr, False);
1616
1617 -- An iterated_component_association may appear in a nested
1618 -- aggregate for a multidimensional structure: preserve the bounds
1619 -- computed for the expression, as well as the anonymous array
1620 -- type generated for it; both are needed during array expansion.
1621 -- This does not work for more than two levels of nesting. ???
1622
1623 if Nkind (Expr) = N_Aggregate then
1624 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1625 Set_Etype (Expression (N), Etype (Expr));
1626 end if;
1627
1628 End_Scope;
1629 end Resolve_Iterated_Component_Association;
1630
1631 -- Local variables
1632
1633 Assoc : Node_Id;
1634 Choice : Node_Id;
1635 Expr : Node_Id;
1636 Discard : Node_Id;
1637
1638 Aggr_Low : Node_Id := Empty;
1639 Aggr_High : Node_Id := Empty;
1640 -- The actual low and high bounds of this sub-aggregate
1641
1642 Case_Table_Size : Nat;
1643 -- Contains the size of the case table needed to sort aggregate choices
1644
1645 Choices_Low : Node_Id := Empty;
1646 Choices_High : Node_Id := Empty;
1647 -- The lowest and highest discrete choices values for a named aggregate
1648
1649 Delete_Choice : Boolean;
1650 -- Used when replacing a subtype choice with predicate by a list
1651
1652 Nb_Elements : Uint := Uint_0;
1653 -- The number of elements in a positional aggregate
1654
1655 Nb_Discrete_Choices : Nat := 0;
1656 -- The overall number of discrete choices (not counting others choice)
1657
1658 -- Start of processing for Resolve_Array_Aggregate
1659
1660 begin
1661 -- Ignore junk empty aggregate resulting from parser error
1662
1663 if No (Expressions (N))
1664 and then No (Component_Associations (N))
1665 and then not Null_Record_Present (N)
1666 then
1667 return False;
1668 end if;
1669
1670 -- STEP 1: make sure the aggregate is correctly formatted
1671
1672 if Present (Component_Associations (N)) then
1673 Assoc := First (Component_Associations (N));
1674 while Present (Assoc) loop
1675 if Nkind (Assoc) = N_Iterated_Component_Association then
1676 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1677 end if;
1678
1679 Choice := First (Choice_List (Assoc));
1680 Delete_Choice := False;
1681 while Present (Choice) loop
1682 if Nkind (Choice) = N_Others_Choice then
1683 Others_Present := True;
1684
1685 if Choice /= First (Choice_List (Assoc))
1686 or else Present (Next (Choice))
1687 then
1688 Error_Msg_N
1689 ("OTHERS must appear alone in a choice list", Choice);
1690 return Failure;
1691 end if;
1692
1693 if Present (Next (Assoc)) then
1694 Error_Msg_N
1695 ("OTHERS must appear last in an aggregate", Choice);
1696 return Failure;
1697 end if;
1698
1699 if Ada_Version = Ada_83
1700 and then Assoc /= First (Component_Associations (N))
1701 and then Nkind_In (Parent (N), N_Assignment_Statement,
1702 N_Object_Declaration)
1703 then
1704 Error_Msg_N
1705 ("(Ada 83) illegal context for OTHERS choice", N);
1706 end if;
1707
1708 elsif Is_Entity_Name (Choice) then
1709 Analyze (Choice);
1710
1711 declare
1712 E : constant Entity_Id := Entity (Choice);
1713 New_Cs : List_Id;
1714 P : Node_Id;
1715 C : Node_Id;
1716
1717 begin
1718 if Is_Type (E) and then Has_Predicates (E) then
1719 Freeze_Before (N, E);
1720
1721 if Has_Dynamic_Predicate_Aspect (E) then
1722 Error_Msg_NE
1723 ("subtype& has dynamic predicate, not allowed "
1724 & "in aggregate choice", Choice, E);
1725
1726 elsif not Is_OK_Static_Subtype (E) then
1727 Error_Msg_NE
1728 ("non-static subtype& has predicate, not allowed "
1729 & "in aggregate choice", Choice, E);
1730 end if;
1731
1732 -- If the subtype has a static predicate, replace the
1733 -- original choice with the list of individual values
1734 -- covered by the predicate.
1735 -- This should be deferred to expansion time ???
1736
1737 if Present (Static_Discrete_Predicate (E)) then
1738 Delete_Choice := True;
1739
1740 New_Cs := New_List;
1741 P := First (Static_Discrete_Predicate (E));
1742 while Present (P) loop
1743 C := New_Copy (P);
1744 Set_Sloc (C, Sloc (Choice));
1745 Append_To (New_Cs, C);
1746 Next (P);
1747 end loop;
1748
1749 Insert_List_After (Choice, New_Cs);
1750 end if;
1751 end if;
1752 end;
1753 end if;
1754
1755 Nb_Choices := Nb_Choices + 1;
1756
1757 declare
1758 C : constant Node_Id := Choice;
1759
1760 begin
1761 Next (Choice);
1762
1763 if Delete_Choice then
1764 Remove (C);
1765 Nb_Choices := Nb_Choices - 1;
1766 Delete_Choice := False;
1767 end if;
1768 end;
1769 end loop;
1770
1771 Next (Assoc);
1772 end loop;
1773 end if;
1774
1775 -- At this point we know that the others choice, if present, is by
1776 -- itself and appears last in the aggregate. Check if we have mixed
1777 -- positional and discrete associations (other than the others choice).
1778
1779 if Present (Expressions (N))
1780 and then (Nb_Choices > 1
1781 or else (Nb_Choices = 1 and then not Others_Present))
1782 then
1783 Error_Msg_N
1784 ("named association cannot follow positional association",
1785 First (Choice_List (First (Component_Associations (N)))));
1786 return Failure;
1787 end if;
1788
1789 -- Test for the validity of an others choice if present
1790
1791 if Others_Present and then not Others_Allowed then
1792 Error_Msg_N
1793 ("OTHERS choice not allowed here",
1794 First (Choices (First (Component_Associations (N)))));
1795 return Failure;
1796 end if;
1797
1798 -- Protect against cascaded errors
1799
1800 if Etype (Index_Typ) = Any_Type then
1801 return Failure;
1802 end if;
1803
1804 -- STEP 2: Process named components
1805
1806 if No (Expressions (N)) then
1807 if Others_Present then
1808 Case_Table_Size := Nb_Choices - 1;
1809 else
1810 Case_Table_Size := Nb_Choices;
1811 end if;
1812
1813 Step_2 : declare
1814 function Empty_Range (A : Node_Id) return Boolean;
1815 -- If an association covers an empty range, some warnings on the
1816 -- expression of the association can be disabled.
1817
1818 -----------------
1819 -- Empty_Range --
1820 -----------------
1821
1822 function Empty_Range (A : Node_Id) return Boolean is
1823 R : constant Node_Id := First (Choices (A));
1824 begin
1825 return No (Next (R))
1826 and then Nkind (R) = N_Range
1827 and then Compile_Time_Compare
1828 (Low_Bound (R), High_Bound (R), False) = GT;
1829 end Empty_Range;
1830
1831 -- Local variables
1832
1833 Low : Node_Id;
1834 High : Node_Id;
1835 -- Denote the lowest and highest values in an aggregate choice
1836
1837 S_Low : Node_Id := Empty;
1838 S_High : Node_Id := Empty;
1839 -- if a choice in an aggregate is a subtype indication these
1840 -- denote the lowest and highest values of the subtype
1841
1842 Table : Case_Table_Type (1 .. Case_Table_Size);
1843 -- Used to sort all the different choice values
1844
1845 Single_Choice : Boolean;
1846 -- Set to true every time there is a single discrete choice in a
1847 -- discrete association
1848
1849 Prev_Nb_Discrete_Choices : Nat;
1850 -- Used to keep track of the number of discrete choices in the
1851 -- current association.
1852
1853 Errors_Posted_On_Choices : Boolean := False;
1854 -- Keeps track of whether any choices have semantic errors
1855
1856 -- Start of processing for Step_2
1857
1858 begin
1859 -- STEP 2 (A): Check discrete choices validity
1860
1861 Assoc := First (Component_Associations (N));
1862 while Present (Assoc) loop
1863 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1864 Choice := First (Choice_List (Assoc));
1865
1866 loop
1867 Analyze (Choice);
1868
1869 if Nkind (Choice) = N_Others_Choice then
1870 Single_Choice := False;
1871 exit;
1872
1873 -- Test for subtype mark without constraint
1874
1875 elsif Is_Entity_Name (Choice) and then
1876 Is_Type (Entity (Choice))
1877 then
1878 if Base_Type (Entity (Choice)) /= Index_Base then
1879 Error_Msg_N
1880 ("invalid subtype mark in aggregate choice",
1881 Choice);
1882 return Failure;
1883 end if;
1884
1885 -- Case of subtype indication
1886
1887 elsif Nkind (Choice) = N_Subtype_Indication then
1888 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1889
1890 if Has_Dynamic_Predicate_Aspect
1891 (Entity (Subtype_Mark (Choice)))
1892 then
1893 Error_Msg_NE
1894 ("subtype& has dynamic predicate, "
1895 & "not allowed in aggregate choice",
1896 Choice, Entity (Subtype_Mark (Choice)));
1897 end if;
1898
1899 -- Does the subtype indication evaluation raise CE?
1900
1901 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1902 Get_Index_Bounds (Choice, Low, High);
1903 Check_Bounds (S_Low, S_High, Low, High);
1904
1905 -- Case of range or expression
1906
1907 else
1908 Resolve (Choice, Index_Base);
1909 Check_Unset_Reference (Choice);
1910 Check_Non_Static_Context (Choice);
1911
1912 -- If semantic errors were posted on the choice, then
1913 -- record that for possible early return from later
1914 -- processing (see handling of enumeration choices).
1915
1916 if Error_Posted (Choice) then
1917 Errors_Posted_On_Choices := True;
1918 end if;
1919
1920 -- Do not range check a choice. This check is redundant
1921 -- since this test is already done when we check that the
1922 -- bounds of the array aggregate are within range.
1923
1924 Set_Do_Range_Check (Choice, False);
1925 end if;
1926
1927 -- If we could not resolve the discrete choice stop here
1928
1929 if Etype (Choice) = Any_Type then
1930 return Failure;
1931
1932 -- If the discrete choice raises CE get its original bounds
1933
1934 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1935 Set_Raises_Constraint_Error (N);
1936 Get_Index_Bounds (Original_Node (Choice), Low, High);
1937
1938 -- Otherwise get its bounds as usual
1939
1940 else
1941 Get_Index_Bounds (Choice, Low, High);
1942 end if;
1943
1944 if (Dynamic_Or_Null_Range (Low, High)
1945 or else (Nkind (Choice) = N_Subtype_Indication
1946 and then
1947 Dynamic_Or_Null_Range (S_Low, S_High)))
1948 and then Nb_Choices /= 1
1949 then
1950 Error_Msg_N
1951 ("dynamic or empty choice in aggregate "
1952 & "must be the only choice", Choice);
1953 return Failure;
1954 end if;
1955
1956 if not (All_Composite_Constraints_Static (Low)
1957 and then All_Composite_Constraints_Static (High)
1958 and then All_Composite_Constraints_Static (S_Low)
1959 and then All_Composite_Constraints_Static (S_High))
1960 then
1961 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
1962 end if;
1963
1964 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1965 Table (Nb_Discrete_Choices).Lo := Low;
1966 Table (Nb_Discrete_Choices).Hi := High;
1967 Table (Nb_Discrete_Choices).Choice := Choice;
1968
1969 Next (Choice);
1970
1971 if No (Choice) then
1972
1973 -- Check if we have a single discrete choice and whether
1974 -- this discrete choice specifies a single value.
1975
1976 Single_Choice :=
1977 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1978 and then (Low = High);
1979
1980 exit;
1981 end if;
1982 end loop;
1983
1984 -- Ada 2005 (AI-231)
1985
1986 if Ada_Version >= Ada_2005
1987 and then Known_Null (Expression (Assoc))
1988 and then not Empty_Range (Assoc)
1989 then
1990 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1991 end if;
1992
1993 -- Ada 2005 (AI-287): In case of default initialized component
1994 -- we delay the resolution to the expansion phase.
1995
1996 if Box_Present (Assoc) then
1997
1998 -- Ada 2005 (AI-287): In case of default initialization of a
1999 -- component the expander will generate calls to the
2000 -- corresponding initialization subprogram. We need to call
2001 -- Resolve_Aggr_Expr to check the rules about
2002 -- dimensionality.
2003
2004 if not Resolve_Aggr_Expr
2005 (Assoc, Single_Elmt => Single_Choice)
2006 then
2007 return Failure;
2008 end if;
2009
2010 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2011 null; -- handled above, in a loop context.
2012
2013 elsif not Resolve_Aggr_Expr
2014 (Expression (Assoc), Single_Elmt => Single_Choice)
2015 then
2016 return Failure;
2017
2018 -- Check incorrect use of dynamically tagged expression
2019
2020 -- We differentiate here two cases because the expression may
2021 -- not be decorated. For example, the analysis and resolution
2022 -- of the expression associated with the others choice will be
2023 -- done later with the full aggregate. In such case we
2024 -- duplicate the expression tree to analyze the copy and
2025 -- perform the required check.
2026
2027 elsif not Present (Etype (Expression (Assoc))) then
2028 declare
2029 Save_Analysis : constant Boolean := Full_Analysis;
2030 Expr : constant Node_Id :=
2031 New_Copy_Tree (Expression (Assoc));
2032
2033 begin
2034 Expander_Mode_Save_And_Set (False);
2035 Full_Analysis := False;
2036
2037 -- Analyze the expression, making sure it is properly
2038 -- attached to the tree before we do the analysis.
2039
2040 Set_Parent (Expr, Parent (Expression (Assoc)));
2041 Analyze (Expr);
2042
2043 -- Compute its dimensions now, rather than at the end of
2044 -- resolution, because in the case of multidimensional
2045 -- aggregates subsequent expansion may lead to spurious
2046 -- errors.
2047
2048 Check_Expression_Dimensions (Expr, Component_Typ);
2049
2050 -- If the expression is a literal, propagate this info
2051 -- to the expression in the association, to enable some
2052 -- optimizations downstream.
2053
2054 if Is_Entity_Name (Expr)
2055 and then Present (Entity (Expr))
2056 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2057 then
2058 Analyze_And_Resolve
2059 (Expression (Assoc), Component_Typ);
2060 end if;
2061
2062 Full_Analysis := Save_Analysis;
2063 Expander_Mode_Restore;
2064
2065 if Is_Tagged_Type (Etype (Expr)) then
2066 Check_Dynamically_Tagged_Expression
2067 (Expr => Expr,
2068 Typ => Component_Type (Etype (N)),
2069 Related_Nod => N);
2070 end if;
2071 end;
2072
2073 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2074 Check_Dynamically_Tagged_Expression
2075 (Expr => Expression (Assoc),
2076 Typ => Component_Type (Etype (N)),
2077 Related_Nod => N);
2078 end if;
2079
2080 Next (Assoc);
2081 end loop;
2082
2083 -- If aggregate contains more than one choice then these must be
2084 -- static. Check for duplicate and missing values.
2085
2086 -- Note: there is duplicated code here wrt Check_Choice_Set in
2087 -- the body of Sem_Case, and it is possible we could just reuse
2088 -- that procedure. To be checked ???
2089
2090 if Nb_Discrete_Choices > 1 then
2091 Check_Choices : declare
2092 Choice : Node_Id;
2093 -- Location of choice for messages
2094
2095 Hi_Val : Uint;
2096 Lo_Val : Uint;
2097 -- High end of one range and Low end of the next. Should be
2098 -- contiguous if there is no hole in the list of values.
2099
2100 Lo_Dup : Uint;
2101 Hi_Dup : Uint;
2102 -- End points of duplicated range
2103
2104 Missing_Or_Duplicates : Boolean := False;
2105 -- Set True if missing or duplicate choices found
2106
2107 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2108 -- Output continuation message with a representation of the
2109 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2110 -- choice node where the message is to be posted.
2111
2112 ------------------------
2113 -- Output_Bad_Choices --
2114 ------------------------
2115
2116 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2117 begin
2118 -- Enumeration type case
2119
2120 if Is_Enumeration_Type (Index_Typ) then
2121 Error_Msg_Name_1 :=
2122 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2123 Error_Msg_Name_2 :=
2124 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2125
2126 if Lo = Hi then
2127 Error_Msg_N ("\\ %!", C);
2128 else
2129 Error_Msg_N ("\\ % .. %!", C);
2130 end if;
2131
2132 -- Integer types case
2133
2134 else
2135 Error_Msg_Uint_1 := Lo;
2136 Error_Msg_Uint_2 := Hi;
2137
2138 if Lo = Hi then
2139 Error_Msg_N ("\\ ^!", C);
2140 else
2141 Error_Msg_N ("\\ ^ .. ^!", C);
2142 end if;
2143 end if;
2144 end Output_Bad_Choices;
2145
2146 -- Start of processing for Check_Choices
2147
2148 begin
2149 Sort_Case_Table (Table);
2150
2151 -- First we do a quick linear loop to find out if we have
2152 -- any duplicates or missing entries (usually we have a
2153 -- legal aggregate, so this will get us out quickly).
2154
2155 for J in 1 .. Nb_Discrete_Choices - 1 loop
2156 Hi_Val := Expr_Value (Table (J).Hi);
2157 Lo_Val := Expr_Value (Table (J + 1).Lo);
2158
2159 if Lo_Val <= Hi_Val
2160 or else (Lo_Val > Hi_Val + 1
2161 and then not Others_Present)
2162 then
2163 Missing_Or_Duplicates := True;
2164 exit;
2165 end if;
2166 end loop;
2167
2168 -- If we have missing or duplicate entries, first fill in
2169 -- the Highest entries to make life easier in the following
2170 -- loops to detect bad entries.
2171
2172 if Missing_Or_Duplicates then
2173 Table (1).Highest := Expr_Value (Table (1).Hi);
2174
2175 for J in 2 .. Nb_Discrete_Choices loop
2176 Table (J).Highest :=
2177 UI_Max
2178 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2179 end loop;
2180
2181 -- Loop through table entries to find duplicate indexes
2182
2183 for J in 2 .. Nb_Discrete_Choices loop
2184 Lo_Val := Expr_Value (Table (J).Lo);
2185 Hi_Val := Expr_Value (Table (J).Hi);
2186
2187 -- Case where we have duplicates (the lower bound of
2188 -- this choice is less than or equal to the highest
2189 -- high bound found so far).
2190
2191 if Lo_Val <= Table (J - 1).Highest then
2192
2193 -- We move backwards looking for duplicates. We can
2194 -- abandon this loop as soon as we reach a choice
2195 -- highest value that is less than Lo_Val.
2196
2197 for K in reverse 1 .. J - 1 loop
2198 exit when Table (K).Highest < Lo_Val;
2199
2200 -- Here we may have duplicates between entries
2201 -- for K and J. Get range of duplicates.
2202
2203 Lo_Dup :=
2204 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2205 Hi_Dup :=
2206 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2207
2208 -- Nothing to do if duplicate range is null
2209
2210 if Lo_Dup > Hi_Dup then
2211 null;
2212
2213 -- Otherwise place proper message
2214
2215 else
2216 -- We place message on later choice, with a
2217 -- line reference to the earlier choice.
2218
2219 if Sloc (Table (J).Choice) <
2220 Sloc (Table (K).Choice)
2221 then
2222 Choice := Table (K).Choice;
2223 Error_Msg_Sloc := Sloc (Table (J).Choice);
2224 else
2225 Choice := Table (J).Choice;
2226 Error_Msg_Sloc := Sloc (Table (K).Choice);
2227 end if;
2228
2229 if Lo_Dup = Hi_Dup then
2230 Error_Msg_N
2231 ("index value in array aggregate "
2232 & "duplicates the one given#!", Choice);
2233 else
2234 Error_Msg_N
2235 ("index values in array aggregate "
2236 & "duplicate those given#!", Choice);
2237 end if;
2238
2239 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2240 end if;
2241 end loop;
2242 end if;
2243 end loop;
2244
2245 -- Loop through entries in table to find missing indexes.
2246 -- Not needed if others, since missing impossible.
2247
2248 if not Others_Present then
2249 for J in 2 .. Nb_Discrete_Choices loop
2250 Lo_Val := Expr_Value (Table (J).Lo);
2251 Hi_Val := Table (J - 1).Highest;
2252
2253 if Lo_Val > Hi_Val + 1 then
2254
2255 declare
2256 Error_Node : Node_Id;
2257
2258 begin
2259 -- If the choice is the bound of a range in
2260 -- a subtype indication, it is not in the
2261 -- source lists for the aggregate itself, so
2262 -- post the error on the aggregate. Otherwise
2263 -- post it on choice itself.
2264
2265 Choice := Table (J).Choice;
2266
2267 if Is_List_Member (Choice) then
2268 Error_Node := Choice;
2269 else
2270 Error_Node := N;
2271 end if;
2272
2273 if Hi_Val + 1 = Lo_Val - 1 then
2274 Error_Msg_N
2275 ("missing index value "
2276 & "in array aggregate!", Error_Node);
2277 else
2278 Error_Msg_N
2279 ("missing index values "
2280 & "in array aggregate!", Error_Node);
2281 end if;
2282
2283 Output_Bad_Choices
2284 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2285 end;
2286 end if;
2287 end loop;
2288 end if;
2289
2290 -- If either missing or duplicate values, return failure
2291
2292 Set_Etype (N, Any_Composite);
2293 return Failure;
2294 end if;
2295 end Check_Choices;
2296 end if;
2297
2298 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2299
2300 if Nb_Discrete_Choices > 0 then
2301 Choices_Low := Table (1).Lo;
2302 Choices_High := Table (Nb_Discrete_Choices).Hi;
2303 end if;
2304
2305 -- If Others is present, then bounds of aggregate come from the
2306 -- index constraint (not the choices in the aggregate itself).
2307
2308 if Others_Present then
2309 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2310
2311 -- Abandon processing if either bound is already signalled as
2312 -- an error (prevents junk cascaded messages and blow ups).
2313
2314 if Nkind (Aggr_Low) = N_Error
2315 or else
2316 Nkind (Aggr_High) = N_Error
2317 then
2318 return False;
2319 end if;
2320
2321 -- No others clause present
2322
2323 else
2324 -- Special processing if others allowed and not present. This
2325 -- means that the bounds of the aggregate come from the index
2326 -- constraint (and the length must match).
2327
2328 if Others_Allowed then
2329 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2330
2331 -- Abandon processing if either bound is already signalled
2332 -- as an error (stop junk cascaded messages and blow ups).
2333
2334 if Nkind (Aggr_Low) = N_Error
2335 or else
2336 Nkind (Aggr_High) = N_Error
2337 then
2338 return False;
2339 end if;
2340
2341 -- If others allowed, and no others present, then the array
2342 -- should cover all index values. If it does not, we will
2343 -- get a length check warning, but there is two cases where
2344 -- an additional warning is useful:
2345
2346 -- If we have no positional components, and the length is
2347 -- wrong (which we can tell by others being allowed with
2348 -- missing components), and the index type is an enumeration
2349 -- type, then issue appropriate warnings about these missing
2350 -- components. They are only warnings, since the aggregate
2351 -- is fine, it's just the wrong length. We skip this check
2352 -- for standard character types (since there are no literals
2353 -- and it is too much trouble to concoct them), and also if
2354 -- any of the bounds have values that are not known at
2355 -- compile time.
2356
2357 -- Another case warranting a warning is when the length
2358 -- is right, but as above we have an index type that is
2359 -- an enumeration, and the bounds do not match. This is a
2360 -- case where dubious sliding is allowed and we generate a
2361 -- warning that the bounds do not match.
2362
2363 if No (Expressions (N))
2364 and then Nkind (Index) = N_Range
2365 and then Is_Enumeration_Type (Etype (Index))
2366 and then not Is_Standard_Character_Type (Etype (Index))
2367 and then Compile_Time_Known_Value (Aggr_Low)
2368 and then Compile_Time_Known_Value (Aggr_High)
2369 and then Compile_Time_Known_Value (Choices_Low)
2370 and then Compile_Time_Known_Value (Choices_High)
2371 then
2372 -- If any of the expressions or range bounds in choices
2373 -- have semantic errors, then do not attempt further
2374 -- resolution, to prevent cascaded errors.
2375
2376 if Errors_Posted_On_Choices then
2377 return Failure;
2378 end if;
2379
2380 declare
2381 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2382 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2383 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2384 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2385
2386 Ent : Entity_Id;
2387
2388 begin
2389 -- Warning case 1, missing values at start/end. Only
2390 -- do the check if the number of entries is too small.
2391
2392 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2393 <
2394 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2395 then
2396 Error_Msg_N
2397 ("missing index value(s) in array aggregate??",
2398 N);
2399
2400 -- Output missing value(s) at start
2401
2402 if Chars (ALo) /= Chars (CLo) then
2403 Ent := Prev (CLo);
2404
2405 if Chars (ALo) = Chars (Ent) then
2406 Error_Msg_Name_1 := Chars (ALo);
2407 Error_Msg_N ("\ %??", N);
2408 else
2409 Error_Msg_Name_1 := Chars (ALo);
2410 Error_Msg_Name_2 := Chars (Ent);
2411 Error_Msg_N ("\ % .. %??", N);
2412 end if;
2413 end if;
2414
2415 -- Output missing value(s) at end
2416
2417 if Chars (AHi) /= Chars (CHi) then
2418 Ent := Next (CHi);
2419
2420 if Chars (AHi) = Chars (Ent) then
2421 Error_Msg_Name_1 := Chars (Ent);
2422 Error_Msg_N ("\ %??", N);
2423 else
2424 Error_Msg_Name_1 := Chars (Ent);
2425 Error_Msg_Name_2 := Chars (AHi);
2426 Error_Msg_N ("\ % .. %??", N);
2427 end if;
2428 end if;
2429
2430 -- Warning case 2, dubious sliding. The First_Subtype
2431 -- test distinguishes between a constrained type where
2432 -- sliding is not allowed (so we will get a warning
2433 -- later that Constraint_Error will be raised), and
2434 -- the unconstrained case where sliding is permitted.
2435
2436 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2437 =
2438 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2439 and then Chars (ALo) /= Chars (CLo)
2440 and then
2441 not Is_Constrained (First_Subtype (Etype (N)))
2442 then
2443 Error_Msg_N
2444 ("bounds of aggregate do not match target??", N);
2445 end if;
2446 end;
2447 end if;
2448 end if;
2449
2450 -- If no others, aggregate bounds come from aggregate
2451
2452 Aggr_Low := Choices_Low;
2453 Aggr_High := Choices_High;
2454 end if;
2455 end Step_2;
2456
2457 -- STEP 3: Process positional components
2458
2459 else
2460 -- STEP 3 (A): Process positional elements
2461
2462 Expr := First (Expressions (N));
2463 Nb_Elements := Uint_0;
2464 while Present (Expr) loop
2465 Nb_Elements := Nb_Elements + 1;
2466
2467 -- Ada 2005 (AI-231)
2468
2469 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2470 Check_Can_Never_Be_Null (Etype (N), Expr);
2471 end if;
2472
2473 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2474 return Failure;
2475 end if;
2476
2477 -- Check incorrect use of dynamically tagged expression
2478
2479 if Is_Tagged_Type (Etype (Expr)) then
2480 Check_Dynamically_Tagged_Expression
2481 (Expr => Expr,
2482 Typ => Component_Type (Etype (N)),
2483 Related_Nod => N);
2484 end if;
2485
2486 Next (Expr);
2487 end loop;
2488
2489 if Others_Present then
2490 Assoc := Last (Component_Associations (N));
2491
2492 -- Ada 2005 (AI-231)
2493
2494 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2495 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2496 end if;
2497
2498 -- Ada 2005 (AI-287): In case of default initialized component,
2499 -- we delay the resolution to the expansion phase.
2500
2501 if Box_Present (Assoc) then
2502
2503 -- Ada 2005 (AI-287): In case of default initialization of a
2504 -- component the expander will generate calls to the
2505 -- corresponding initialization subprogram. We need to call
2506 -- Resolve_Aggr_Expr to check the rules about
2507 -- dimensionality.
2508
2509 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2510 return Failure;
2511 end if;
2512
2513 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2514 Single_Elmt => False)
2515 then
2516 return Failure;
2517
2518 -- Check incorrect use of dynamically tagged expression. The
2519 -- expression of the others choice has not been resolved yet.
2520 -- In order to diagnose the semantic error we create a duplicate
2521 -- tree to analyze it and perform the check.
2522
2523 else
2524 declare
2525 Save_Analysis : constant Boolean := Full_Analysis;
2526 Expr : constant Node_Id :=
2527 New_Copy_Tree (Expression (Assoc));
2528
2529 begin
2530 Expander_Mode_Save_And_Set (False);
2531 Full_Analysis := False;
2532 Analyze (Expr);
2533 Full_Analysis := Save_Analysis;
2534 Expander_Mode_Restore;
2535
2536 if Is_Tagged_Type (Etype (Expr)) then
2537 Check_Dynamically_Tagged_Expression
2538 (Expr => Expr,
2539 Typ => Component_Type (Etype (N)),
2540 Related_Nod => N);
2541 end if;
2542 end;
2543 end if;
2544 end if;
2545
2546 -- STEP 3 (B): Compute the aggregate bounds
2547
2548 if Others_Present then
2549 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2550
2551 else
2552 if Others_Allowed then
2553 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2554 else
2555 Aggr_Low := Index_Typ_Low;
2556 end if;
2557
2558 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2559 Check_Bound (Index_Base_High, Aggr_High);
2560 end if;
2561 end if;
2562
2563 -- STEP 4: Perform static aggregate checks and save the bounds
2564
2565 -- Check (A)
2566
2567 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2568 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2569
2570 -- Check (B)
2571
2572 if Others_Present and then Nb_Discrete_Choices > 0 then
2573 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2574 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2575 Choices_Low, Choices_High);
2576 Check_Bounds (Index_Base_Low, Index_Base_High,
2577 Choices_Low, Choices_High);
2578
2579 -- Check (C)
2580
2581 elsif Others_Present and then Nb_Elements > 0 then
2582 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2583 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2584 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2585 end if;
2586
2587 if Raises_Constraint_Error (Aggr_Low)
2588 or else Raises_Constraint_Error (Aggr_High)
2589 then
2590 Set_Raises_Constraint_Error (N);
2591 end if;
2592
2593 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2594
2595 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2596 -- since the addition node returned by Add is not yet analyzed. Attach
2597 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2598 -- analyzed when it is a literal bound whose type must be properly set.
2599
2600 if Others_Present or else Nb_Discrete_Choices > 0 then
2601 Aggr_High := Duplicate_Subexpr (Aggr_High);
2602
2603 if Etype (Aggr_High) = Universal_Integer then
2604 Set_Analyzed (Aggr_High, False);
2605 end if;
2606 end if;
2607
2608 -- If the aggregate already has bounds attached to it, it means this is
2609 -- a positional aggregate created as an optimization by
2610 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2611 -- bounds.
2612
2613 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2614 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2615 Aggr_High := High_Bound (Aggregate_Bounds (N));
2616 end if;
2617
2618 Set_Aggregate_Bounds
2619 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2620
2621 -- The bounds may contain expressions that must be inserted upwards.
2622 -- Attach them fully to the tree. After analysis, remove side effects
2623 -- from upper bound, if still needed.
2624
2625 Set_Parent (Aggregate_Bounds (N), N);
2626 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2627 Check_Unset_Reference (Aggregate_Bounds (N));
2628
2629 if not Others_Present and then Nb_Discrete_Choices = 0 then
2630 Set_High_Bound
2631 (Aggregate_Bounds (N),
2632 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2633 end if;
2634
2635 -- Check the dimensions of each component in the array aggregate
2636
2637 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2638
2639 return Success;
2640 end Resolve_Array_Aggregate;
2641
2642 ---------------------------------
2643 -- Resolve_Container_Aggregate --
2644 ---------------------------------
2645
2646 procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
2647 Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
2648
2649 Empty_Subp : Node_Id := Empty;
2650 Add_Named_Subp : Node_Id := Empty;
2651 Add_Unnamed_Subp : Node_Id := Empty;
2652 New_Indexed_Subp : Node_Id := Empty;
2653 Assign_Indexed_Subp : Node_Id := Empty;
2654
2655 begin
2656 if Nkind (Asp) /= N_Aggregate then
2657 pragma Assert (False);
2658 return;
2659 else
2660 Set_Etype (N, Typ);
2661 Parse_Aspect_Aggregate (Asp,
2662 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
2663 New_Indexed_Subp, Assign_Indexed_Subp);
2664
2665 if Present (Add_Unnamed_Subp) then
2666 declare
2667 Elmt_Type : constant Entity_Id :=
2668 Etype (Next_Formal
2669 (First_Formal (Entity (Add_Unnamed_Subp))));
2670 Comp : Node_Id;
2671 begin
2672 if Present (Expressions (N)) then
2673 -- positional aggregate
2674
2675 Comp := First (Expressions (N));
2676 while Present (Comp) loop
2677 Analyze_And_Resolve (Comp, Elmt_Type);
2678 Next (Comp);
2679 end loop;
2680 else
2681
2682 -- Empty aggregate, to be replaced by Empty during
2683 -- expansion.
2684 null;
2685 end if;
2686 end;
2687 else
2688 Error_Msg_N ("indexed aggregates are forthcoming", N);
2689 end if;
2690 end if;
2691 end Resolve_Container_Aggregate;
2692
2693 -----------------------------
2694 -- Resolve_Delta_Aggregate --
2695 -----------------------------
2696
2697 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2698 Base : constant Node_Id := Expression (N);
2699
2700 begin
2701 if Ada_Version < Ada_2020 then
2702 Error_Msg_N ("delta_aggregate is an Ada 202x feature", N);
2703 Error_Msg_N ("\compile with -gnat2020", N);
2704 end if;
2705
2706 if not Is_Composite_Type (Typ) then
2707 Error_Msg_N ("not a composite type", N);
2708 end if;
2709
2710 Analyze_And_Resolve (Base, Typ);
2711
2712 if Is_Array_Type (Typ) then
2713 Resolve_Delta_Array_Aggregate (N, Typ);
2714 else
2715 Resolve_Delta_Record_Aggregate (N, Typ);
2716 end if;
2717
2718 Set_Etype (N, Typ);
2719 end Resolve_Delta_Aggregate;
2720
2721 -----------------------------------
2722 -- Resolve_Delta_Array_Aggregate --
2723 -----------------------------------
2724
2725 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
2726 Deltas : constant List_Id := Component_Associations (N);
2727 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
2728
2729 Assoc : Node_Id;
2730 Choice : Node_Id;
2731
2732 begin
2733 Assoc := First (Deltas);
2734 while Present (Assoc) loop
2735 if Nkind (Assoc) = N_Iterated_Component_Association then
2736 Choice := First (Choice_List (Assoc));
2737 while Present (Choice) loop
2738 if Nkind (Choice) = N_Others_Choice then
2739 Error_Msg_N
2740 ("others not allowed in delta aggregate", Choice);
2741
2742 else
2743 Analyze_And_Resolve (Choice, Index_Type);
2744 end if;
2745
2746 Next (Choice);
2747 end loop;
2748
2749 declare
2750 Id : constant Entity_Id := Defining_Identifier (Assoc);
2751 Ent : constant Entity_Id :=
2752 New_Internal_Entity
2753 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2754
2755 begin
2756 Set_Etype (Ent, Standard_Void_Type);
2757 Set_Parent (Ent, Assoc);
2758
2759 if No (Scope (Id)) then
2760 Enter_Name (Id);
2761 Set_Etype (Id, Index_Type);
2762 Set_Ekind (Id, E_Variable);
2763 Set_Scope (Id, Ent);
2764 end if;
2765
2766 Push_Scope (Ent);
2767 Analyze_And_Resolve
2768 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2769 End_Scope;
2770 end;
2771
2772 else
2773 Choice := First (Choice_List (Assoc));
2774 while Present (Choice) loop
2775 if Nkind (Choice) = N_Others_Choice then
2776 Error_Msg_N
2777 ("others not allowed in delta aggregate", Choice);
2778
2779 else
2780 Analyze (Choice);
2781
2782 if Is_Entity_Name (Choice)
2783 and then Is_Type (Entity (Choice))
2784 then
2785 -- Choice covers a range of values
2786
2787 if Base_Type (Entity (Choice)) /=
2788 Base_Type (Index_Type)
2789 then
2790 Error_Msg_NE
2791 ("choice does mat match index type of",
2792 Choice, Typ);
2793 end if;
2794 else
2795 Resolve (Choice, Index_Type);
2796 end if;
2797 end if;
2798
2799 Next (Choice);
2800 end loop;
2801
2802 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2803 end if;
2804
2805 Next (Assoc);
2806 end loop;
2807 end Resolve_Delta_Array_Aggregate;
2808
2809 ------------------------------------
2810 -- Resolve_Delta_Record_Aggregate --
2811 ------------------------------------
2812
2813 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2814
2815 -- Variables used to verify that discriminant-dependent components
2816 -- appear in the same variant.
2817
2818 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
2819 Variant : Node_Id;
2820
2821 procedure Check_Variant (Id : Entity_Id);
2822 -- If a given component of the delta aggregate appears in a variant
2823 -- part, verify that it is within the same variant as that of previous
2824 -- specified variant components of the delta.
2825
2826 function Get_Component (Nam : Node_Id) return Entity_Id;
2827 -- Locate component with a given name and return it. If none found then
2828 -- report error and return Empty.
2829
2830 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
2831 -- Determine whether variant V1 is within variant V2
2832
2833 function Variant_Depth (N : Node_Id) return Integer;
2834 -- Determine the distance of a variant to the enclosing type
2835 -- declaration.
2836
2837 --------------------
2838 -- Check_Variant --
2839 --------------------
2840
2841 procedure Check_Variant (Id : Entity_Id) is
2842 Comp : Entity_Id;
2843 Comp_Variant : Node_Id;
2844
2845 begin
2846 if not Has_Discriminants (Typ) then
2847 return;
2848 end if;
2849
2850 Comp := First_Entity (Typ);
2851 while Present (Comp) loop
2852 exit when Chars (Comp) = Chars (Id);
2853 Next_Component (Comp);
2854 end loop;
2855
2856 -- Find the variant, if any, whose component list includes the
2857 -- component declaration.
2858
2859 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
2860 if Nkind (Comp_Variant) = N_Variant then
2861 if No (Variant) then
2862 Variant := Comp_Variant;
2863 Comp_Ref := Comp;
2864
2865 elsif Variant /= Comp_Variant then
2866 declare
2867 D1 : constant Integer := Variant_Depth (Variant);
2868 D2 : constant Integer := Variant_Depth (Comp_Variant);
2869
2870 begin
2871 if D1 = D2
2872 or else
2873 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
2874 or else
2875 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
2876 then
2877 pragma Assert (Present (Comp_Ref));
2878 Error_Msg_Node_2 := Comp_Ref;
2879 Error_Msg_NE
2880 ("& and & appear in different variants", Id, Comp);
2881
2882 -- Otherwise retain the deeper variant for subsequent tests
2883
2884 elsif D2 > D1 then
2885 Variant := Comp_Variant;
2886 end if;
2887 end;
2888 end if;
2889 end if;
2890 end Check_Variant;
2891
2892 -------------------
2893 -- Get_Component --
2894 -------------------
2895
2896 function Get_Component (Nam : Node_Id) return Entity_Id is
2897 Comp : Entity_Id;
2898
2899 begin
2900 Comp := First_Entity (Typ);
2901 while Present (Comp) loop
2902 if Chars (Comp) = Chars (Nam) then
2903 if Ekind (Comp) = E_Discriminant then
2904 Error_Msg_N ("delta cannot apply to discriminant", Nam);
2905 end if;
2906
2907 return Comp;
2908 end if;
2909
2910 Next_Entity (Comp);
2911 end loop;
2912
2913 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
2914 return Empty;
2915 end Get_Component;
2916
2917 ---------------
2918 -- Nested_In --
2919 ---------------
2920
2921 function Nested_In (V1, V2 : Node_Id) return Boolean is
2922 Par : Node_Id;
2923
2924 begin
2925 Par := Parent (V1);
2926 while Nkind (Par) /= N_Full_Type_Declaration loop
2927 if Par = V2 then
2928 return True;
2929 end if;
2930
2931 Par := Parent (Par);
2932 end loop;
2933
2934 return False;
2935 end Nested_In;
2936
2937 -------------------
2938 -- Variant_Depth --
2939 -------------------
2940
2941 function Variant_Depth (N : Node_Id) return Integer is
2942 Depth : Integer;
2943 Par : Node_Id;
2944
2945 begin
2946 Depth := 0;
2947 Par := Parent (N);
2948 while Nkind (Par) /= N_Full_Type_Declaration loop
2949 Depth := Depth + 1;
2950 Par := Parent (Par);
2951 end loop;
2952
2953 return Depth;
2954 end Variant_Depth;
2955
2956 -- Local variables
2957
2958 Deltas : constant List_Id := Component_Associations (N);
2959
2960 Assoc : Node_Id;
2961 Choice : Node_Id;
2962 Comp : Entity_Id;
2963 Comp_Type : Entity_Id := Empty; -- init to avoid warning
2964
2965 -- Start of processing for Resolve_Delta_Record_Aggregate
2966
2967 begin
2968 Variant := Empty;
2969
2970 Assoc := First (Deltas);
2971 while Present (Assoc) loop
2972 Choice := First (Choice_List (Assoc));
2973 while Present (Choice) loop
2974 Comp := Get_Component (Choice);
2975
2976 if Present (Comp) then
2977 Check_Variant (Choice);
2978
2979 Comp_Type := Etype (Comp);
2980
2981 -- Decorate the component reference by setting its entity and
2982 -- type, as otherwise backends like GNATprove would have to
2983 -- rediscover this information by themselves.
2984
2985 Set_Entity (Choice, Comp);
2986 Set_Etype (Choice, Comp_Type);
2987 else
2988 Comp_Type := Any_Type;
2989 end if;
2990
2991 Next (Choice);
2992 end loop;
2993
2994 pragma Assert (Present (Comp_Type));
2995 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
2996 Next (Assoc);
2997 end loop;
2998 end Resolve_Delta_Record_Aggregate;
2999
3000 ---------------------------------
3001 -- Resolve_Extension_Aggregate --
3002 ---------------------------------
3003
3004 -- There are two cases to consider:
3005
3006 -- a) If the ancestor part is a type mark, the components needed are the
3007 -- difference between the components of the expected type and the
3008 -- components of the given type mark.
3009
3010 -- b) If the ancestor part is an expression, it must be unambiguous, and
3011 -- once we have its type we can also compute the needed components as in
3012 -- the previous case. In both cases, if the ancestor type is not the
3013 -- immediate ancestor, we have to build this ancestor recursively.
3014
3015 -- In both cases, discriminants of the ancestor type do not play a role in
3016 -- the resolution of the needed components, because inherited discriminants
3017 -- cannot be used in a type extension. As a result we can compute
3018 -- independently the list of components of the ancestor type and of the
3019 -- expected type.
3020
3021 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3022 A : constant Node_Id := Ancestor_Part (N);
3023 A_Type : Entity_Id;
3024 I : Interp_Index;
3025 It : Interp;
3026
3027 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3028 -- If the type is limited, verify that the ancestor part is a legal
3029 -- expression (aggregate or function call, including 'Input)) that does
3030 -- not require a copy, as specified in 7.5(2).
3031
3032 function Valid_Ancestor_Type return Boolean;
3033 -- Verify that the type of the ancestor part is a non-private ancestor
3034 -- of the expected type, which must be a type extension.
3035
3036 procedure Transform_BIP_Assignment (Typ : Entity_Id);
3037 -- For an extension aggregate whose ancestor part is a build-in-place
3038 -- call returning a nonlimited type, this is used to transform the
3039 -- assignment to the ancestor part to use a temp.
3040
3041 ----------------------------
3042 -- Valid_Limited_Ancestor --
3043 ----------------------------
3044
3045 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3046 begin
3047 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3048 return True;
3049
3050 -- The ancestor must be a call or an aggregate, but a call may
3051 -- have been expanded into a temporary, so check original node.
3052
3053 elsif Nkind_In (Anc, N_Aggregate,
3054 N_Extension_Aggregate,
3055 N_Function_Call)
3056 then
3057 return True;
3058
3059 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3060 return True;
3061
3062 elsif Nkind (Anc) = N_Attribute_Reference
3063 and then Attribute_Name (Anc) = Name_Input
3064 then
3065 return True;
3066
3067 elsif Nkind (Anc) = N_Qualified_Expression then
3068 return Valid_Limited_Ancestor (Expression (Anc));
3069
3070 elsif Nkind (Anc) = N_Raise_Expression then
3071 return True;
3072
3073 else
3074 return False;
3075 end if;
3076 end Valid_Limited_Ancestor;
3077
3078 -------------------------
3079 -- Valid_Ancestor_Type --
3080 -------------------------
3081
3082 function Valid_Ancestor_Type return Boolean is
3083 Imm_Type : Entity_Id;
3084
3085 begin
3086 Imm_Type := Base_Type (Typ);
3087 while Is_Derived_Type (Imm_Type) loop
3088 if Etype (Imm_Type) = Base_Type (A_Type) then
3089 return True;
3090
3091 -- The base type of the parent type may appear as a private
3092 -- extension if it is declared as such in a parent unit of the
3093 -- current one. For consistency of the subsequent analysis use
3094 -- the partial view for the ancestor part.
3095
3096 elsif Is_Private_Type (Etype (Imm_Type))
3097 and then Present (Full_View (Etype (Imm_Type)))
3098 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3099 then
3100 A_Type := Etype (Imm_Type);
3101 return True;
3102
3103 -- The parent type may be a private extension. The aggregate is
3104 -- legal if the type of the aggregate is an extension of it that
3105 -- is not a private extension.
3106
3107 elsif Is_Private_Type (A_Type)
3108 and then not Is_Private_Type (Imm_Type)
3109 and then Present (Full_View (A_Type))
3110 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3111 then
3112 return True;
3113
3114 -- The parent type may be a raise expression (which is legal in
3115 -- any expression context).
3116
3117 elsif A_Type = Raise_Type then
3118 A_Type := Etype (Imm_Type);
3119 return True;
3120
3121 else
3122 Imm_Type := Etype (Base_Type (Imm_Type));
3123 end if;
3124 end loop;
3125
3126 -- If previous loop did not find a proper ancestor, report error
3127
3128 Error_Msg_NE ("expect ancestor type of &", A, Typ);
3129 return False;
3130 end Valid_Ancestor_Type;
3131
3132 ------------------------------
3133 -- Transform_BIP_Assignment --
3134 ------------------------------
3135
3136 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3137 Loc : constant Source_Ptr := Sloc (N);
3138 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
3139 Obj_Decl : constant Node_Id :=
3140 Make_Object_Declaration (Loc,
3141 Defining_Identifier => Def_Id,
3142 Constant_Present => True,
3143 Object_Definition => New_Occurrence_Of (Typ, Loc),
3144 Expression => A,
3145 Has_Init_Expression => True);
3146 begin
3147 Set_Etype (Def_Id, Typ);
3148 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3149 Insert_Action (N, Obj_Decl);
3150 end Transform_BIP_Assignment;
3151
3152 -- Start of processing for Resolve_Extension_Aggregate
3153
3154 begin
3155 -- Analyze the ancestor part and account for the case where it is a
3156 -- parameterless function call.
3157
3158 Analyze (A);
3159 Check_Parameterless_Call (A);
3160
3161 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3162
3163 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3164 -- must not have unknown discriminants.
3165
3166 if Has_Unknown_Discriminants (Entity (A)) then
3167 Error_Msg_NE
3168 ("aggregate not available for type& whose ancestor "
3169 & "has unknown discriminants", N, Typ);
3170 end if;
3171 end if;
3172
3173 if not Is_Tagged_Type (Typ) then
3174 Error_Msg_N ("type of extension aggregate must be tagged", N);
3175 return;
3176
3177 elsif Is_Limited_Type (Typ) then
3178
3179 -- Ada 2005 (AI-287): Limited aggregates are allowed
3180
3181 if Ada_Version < Ada_2005 then
3182 Error_Msg_N ("aggregate type cannot be limited", N);
3183 Explain_Limited_Type (Typ, N);
3184 return;
3185
3186 elsif Valid_Limited_Ancestor (A) then
3187 null;
3188
3189 else
3190 Error_Msg_N
3191 ("limited ancestor part must be aggregate or function call", A);
3192 end if;
3193
3194 elsif Is_Class_Wide_Type (Typ) then
3195 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3196 return;
3197 end if;
3198
3199 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3200 A_Type := Get_Full_View (Entity (A));
3201
3202 if Valid_Ancestor_Type then
3203 Set_Entity (A, A_Type);
3204 Set_Etype (A, A_Type);
3205
3206 Validate_Ancestor_Part (N);
3207 Resolve_Record_Aggregate (N, Typ);
3208 end if;
3209
3210 elsif Nkind (A) /= N_Aggregate then
3211 if Is_Overloaded (A) then
3212 A_Type := Any_Type;
3213
3214 Get_First_Interp (A, I, It);
3215 while Present (It.Typ) loop
3216
3217 -- Consider limited interpretations if Ada 2005 or higher
3218
3219 if Is_Tagged_Type (It.Typ)
3220 and then (Ada_Version >= Ada_2005
3221 or else not Is_Limited_Type (It.Typ))
3222 then
3223 if A_Type /= Any_Type then
3224 Error_Msg_N ("cannot resolve expression", A);
3225 return;
3226 else
3227 A_Type := It.Typ;
3228 end if;
3229 end if;
3230
3231 Get_Next_Interp (I, It);
3232 end loop;
3233
3234 if A_Type = Any_Type then
3235 if Ada_Version >= Ada_2005 then
3236 Error_Msg_N
3237 ("ancestor part must be of a tagged type", A);
3238 else
3239 Error_Msg_N
3240 ("ancestor part must be of a nonlimited tagged type", A);
3241 end if;
3242
3243 return;
3244 end if;
3245
3246 else
3247 A_Type := Etype (A);
3248 end if;
3249
3250 if Valid_Ancestor_Type then
3251 Resolve (A, A_Type);
3252 Check_Unset_Reference (A);
3253 Check_Non_Static_Context (A);
3254
3255 -- The aggregate is illegal if the ancestor expression is a call
3256 -- to a function with a limited unconstrained result, unless the
3257 -- type of the aggregate is a null extension. This restriction
3258 -- was added in AI05-67 to simplify implementation.
3259
3260 if Nkind (A) = N_Function_Call
3261 and then Is_Limited_Type (A_Type)
3262 and then not Is_Null_Extension (Typ)
3263 and then not Is_Constrained (A_Type)
3264 then
3265 Error_Msg_N
3266 ("type of limited ancestor part must be constrained", A);
3267
3268 -- Reject the use of CPP constructors that leave objects partially
3269 -- initialized. For example:
3270
3271 -- type CPP_Root is tagged limited record ...
3272 -- pragma Import (CPP, CPP_Root);
3273
3274 -- type CPP_DT is new CPP_Root and Iface ...
3275 -- pragma Import (CPP, CPP_DT);
3276
3277 -- type Ada_DT is new CPP_DT with ...
3278
3279 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3280
3281 -- Using the constructor of CPP_Root the slots of the dispatch
3282 -- table of CPP_DT cannot be set, and the secondary tag of
3283 -- CPP_DT is unknown.
3284
3285 elsif Nkind (A) = N_Function_Call
3286 and then Is_CPP_Constructor_Call (A)
3287 and then Enclosing_CPP_Parent (Typ) /= A_Type
3288 then
3289 Error_Msg_NE
3290 ("??must use 'C'P'P constructor for type &", A,
3291 Enclosing_CPP_Parent (Typ));
3292
3293 -- The following call is not needed if the previous warning
3294 -- is promoted to an error.
3295
3296 Resolve_Record_Aggregate (N, Typ);
3297
3298 elsif Is_Class_Wide_Type (Etype (A))
3299 and then Nkind (Original_Node (A)) = N_Function_Call
3300 then
3301 -- If the ancestor part is a dispatching call, it appears
3302 -- statically to be a legal ancestor, but it yields any member
3303 -- of the class, and it is not possible to determine whether
3304 -- it is an ancestor of the extension aggregate (much less
3305 -- which ancestor). It is not possible to determine the
3306 -- components of the extension part.
3307
3308 -- This check implements AI-306, which in fact was motivated by
3309 -- an AdaCore query to the ARG after this test was added.
3310
3311 Error_Msg_N ("ancestor part must be statically tagged", A);
3312 else
3313 -- We are using the build-in-place protocol, but we can't build
3314 -- in place, because we need to call the function before
3315 -- allocating the aggregate. Could do better for null
3316 -- extensions, and maybe for nondiscriminated types.
3317 -- This is wrong for limited, but those were wrong already.
3318
3319 if not Is_Limited_View (A_Type)
3320 and then Is_Build_In_Place_Function_Call (A)
3321 then
3322 Transform_BIP_Assignment (A_Type);
3323 end if;
3324
3325 Resolve_Record_Aggregate (N, Typ);
3326 end if;
3327 end if;
3328
3329 else
3330 Error_Msg_N ("no unique type for this aggregate", A);
3331 end if;
3332
3333 Check_Function_Writable_Actuals (N);
3334 end Resolve_Extension_Aggregate;
3335
3336 ------------------------------
3337 -- Resolve_Record_Aggregate --
3338 ------------------------------
3339
3340 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3341 New_Assoc_List : constant List_Id := New_List;
3342 -- New_Assoc_List is the newly built list of N_Component_Association
3343 -- nodes.
3344
3345 Others_Etype : Entity_Id := Empty;
3346 -- This variable is used to save the Etype of the last record component
3347 -- that takes its value from the others choice. Its purpose is:
3348 --
3349 -- (a) make sure the others choice is useful
3350 --
3351 -- (b) make sure the type of all the components whose value is
3352 -- subsumed by the others choice are the same.
3353 --
3354 -- This variable is updated as a side effect of function Get_Value.
3355
3356 Box_Node : Node_Id := Empty;
3357 Is_Box_Present : Boolean := False;
3358 Others_Box : Natural := 0;
3359 -- Ada 2005 (AI-287): Variables used in case of default initialization
3360 -- to provide a functionality similar to Others_Etype. Box_Present
3361 -- indicates that the component takes its default initialization;
3362 -- Others_Box counts the number of components of the current aggregate
3363 -- (which may be a sub-aggregate of a larger one) that are default-
3364 -- initialized. A value of One indicates that an others_box is present.
3365 -- Any larger value indicates that the others_box is not redundant.
3366 -- These variables, similar to Others_Etype, are also updated as a side
3367 -- effect of function Get_Value. Box_Node is used to place a warning on
3368 -- a redundant others_box.
3369
3370 procedure Add_Association
3371 (Component : Entity_Id;
3372 Expr : Node_Id;
3373 Assoc_List : List_Id;
3374 Is_Box_Present : Boolean := False);
3375 -- Builds a new N_Component_Association node which associates Component
3376 -- to expression Expr and adds it to the association list being built,
3377 -- either New_Assoc_List, or the association being built for an inner
3378 -- aggregate.
3379
3380 procedure Add_Discriminant_Values
3381 (New_Aggr : Node_Id;
3382 Assoc_List : List_Id);
3383 -- The constraint to a component may be given by a discriminant of the
3384 -- enclosing type, in which case we have to retrieve its value, which is
3385 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3386 -- associations of the current type or of some enclosing record.
3387
3388 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3389 -- If aggregate N is a regular aggregate this routine will return True.
3390 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3391 -- a discriminant whose value may already have been specified by N's
3392 -- ancestor part. This routine checks whether this is indeed the case
3393 -- and if so returns False, signaling that no value for Input_Discr
3394 -- should appear in N's aggregate part. Also, in this case, the routine
3395 -- appends to New_Assoc_List the discriminant value specified in the
3396 -- ancestor part.
3397 --
3398 -- If the aggregate is in a context with expansion delayed, it will be
3399 -- reanalyzed. The inherited discriminant values must not be reinserted
3400 -- in the component list to prevent spurious errors, but they must be
3401 -- present on first analysis to build the proper subtype indications.
3402 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3403
3404 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3405 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3406 -- derived from private view Typ. Whether the aggregate is legal depends
3407 -- on the current visibility of the type as well as that of the parent
3408 -- of the ancestor.
3409
3410 function Get_Value
3411 (Compon : Entity_Id;
3412 From : List_Id;
3413 Consider_Others_Choice : Boolean := False) return Node_Id;
3414 -- Given a record component stored in parameter Compon, this function
3415 -- returns its value as it appears in the list From, which is a list
3416 -- of N_Component_Association nodes.
3417 --
3418 -- If no component association has a choice for the searched component,
3419 -- the value provided by the others choice is returned, if there is one,
3420 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3421 -- returned. If there is more than one component association giving a
3422 -- value for the searched record component, an error message is emitted
3423 -- and the first found value is returned.
3424 --
3425 -- If Consider_Others_Choice is set and the returned expression comes
3426 -- from the others choice, then Others_Etype is set as a side effect.
3427 -- An error message is emitted if the components taking their value from
3428 -- the others choice do not have same type.
3429
3430 procedure Propagate_Discriminants
3431 (Aggr : Node_Id;
3432 Assoc_List : List_Id);
3433 -- Nested components may themselves be discriminated types constrained
3434 -- by outer discriminants, whose values must be captured before the
3435 -- aggregate is expanded into assignments.
3436
3437 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3438 -- Analyzes and resolves expression Expr against the Etype of the
3439 -- Component. This routine also applies all appropriate checks to Expr.
3440 -- It finally saves a Expr in the newly created association list that
3441 -- will be attached to the final record aggregate. Note that if the
3442 -- Parent pointer of Expr is not set then Expr was produced with a
3443 -- New_Copy_Tree or some such.
3444
3445 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3446 -- Rewrite a range node Rge when its bounds refer to non-stored
3447 -- discriminants from Root_Type, to replace them with the stored
3448 -- discriminant values. This is required in GNATprove mode, and is
3449 -- adopted in all modes to avoid special-casing GNATprove mode.
3450
3451 ---------------------
3452 -- Add_Association --
3453 ---------------------
3454
3455 procedure Add_Association
3456 (Component : Entity_Id;
3457 Expr : Node_Id;
3458 Assoc_List : List_Id;
3459 Is_Box_Present : Boolean := False)
3460 is
3461 Choice_List : constant List_Id := New_List;
3462 Loc : Source_Ptr;
3463
3464 begin
3465 -- If this is a box association the expression is missing, so use the
3466 -- Sloc of the aggregate itself for the new association.
3467
3468 pragma Assert (Present (Expr) xor Is_Box_Present);
3469
3470 if Present (Expr) then
3471 Loc := Sloc (Expr);
3472 else
3473 Loc := Sloc (N);
3474 end if;
3475
3476 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3477
3478 Append_To (Assoc_List,
3479 Make_Component_Association (Loc,
3480 Choices => Choice_List,
3481 Expression => Expr,
3482 Box_Present => Is_Box_Present));
3483 end Add_Association;
3484
3485 -----------------------------
3486 -- Add_Discriminant_Values --
3487 -----------------------------
3488
3489 procedure Add_Discriminant_Values
3490 (New_Aggr : Node_Id;
3491 Assoc_List : List_Id)
3492 is
3493 Assoc : Node_Id;
3494 Discr : Entity_Id;
3495 Discr_Elmt : Elmt_Id;
3496 Discr_Val : Node_Id;
3497 Val : Entity_Id;
3498
3499 begin
3500 Discr := First_Discriminant (Etype (New_Aggr));
3501 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3502 while Present (Discr_Elmt) loop
3503 Discr_Val := Node (Discr_Elmt);
3504
3505 -- If the constraint is given by a discriminant then it is a
3506 -- discriminant of an enclosing record, and its value has already
3507 -- been placed in the association list.
3508
3509 if Is_Entity_Name (Discr_Val)
3510 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3511 then
3512 Val := Entity (Discr_Val);
3513
3514 Assoc := First (Assoc_List);
3515 while Present (Assoc) loop
3516 if Present (Entity (First (Choices (Assoc))))
3517 and then Entity (First (Choices (Assoc))) = Val
3518 then
3519 Discr_Val := Expression (Assoc);
3520 exit;
3521 end if;
3522
3523 Next (Assoc);
3524 end loop;
3525 end if;
3526
3527 Add_Association
3528 (Discr, New_Copy_Tree (Discr_Val),
3529 Component_Associations (New_Aggr));
3530
3531 -- If the discriminant constraint is a current instance, mark the
3532 -- current aggregate so that the self-reference can be expanded
3533 -- later. The constraint may refer to the subtype of aggregate, so
3534 -- use base type for comparison.
3535
3536 if Nkind (Discr_Val) = N_Attribute_Reference
3537 and then Is_Entity_Name (Prefix (Discr_Val))
3538 and then Is_Type (Entity (Prefix (Discr_Val)))
3539 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3540 then
3541 Set_Has_Self_Reference (N);
3542 end if;
3543
3544 Next_Elmt (Discr_Elmt);
3545 Next_Discriminant (Discr);
3546 end loop;
3547 end Add_Discriminant_Values;
3548
3549 --------------------------
3550 -- Discriminant_Present --
3551 --------------------------
3552
3553 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3554 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3555
3556 Ancestor_Is_Subtyp : Boolean;
3557
3558 Loc : Source_Ptr;
3559
3560 Ancestor : Node_Id;
3561 Ancestor_Typ : Entity_Id;
3562 Comp_Assoc : Node_Id;
3563 Discr : Entity_Id;
3564 Discr_Expr : Node_Id;
3565 Discr_Val : Elmt_Id := No_Elmt;
3566 Orig_Discr : Entity_Id;
3567
3568 begin
3569 if Regular_Aggr then
3570 return True;
3571 end if;
3572
3573 -- Check whether inherited discriminant values have already been
3574 -- inserted in the aggregate. This will be the case if we are
3575 -- re-analyzing an aggregate whose expansion was delayed.
3576
3577 if Present (Component_Associations (N)) then
3578 Comp_Assoc := First (Component_Associations (N));
3579 while Present (Comp_Assoc) loop
3580 if Inherited_Discriminant (Comp_Assoc) then
3581 return True;
3582 end if;
3583
3584 Next (Comp_Assoc);
3585 end loop;
3586 end if;
3587
3588 Ancestor := Ancestor_Part (N);
3589 Ancestor_Typ := Etype (Ancestor);
3590 Loc := Sloc (Ancestor);
3591
3592 -- For a private type with unknown discriminants, use the underlying
3593 -- record view if it is available.
3594
3595 if Has_Unknown_Discriminants (Ancestor_Typ)
3596 and then Present (Full_View (Ancestor_Typ))
3597 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3598 then
3599 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3600 end if;
3601
3602 Ancestor_Is_Subtyp :=
3603 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3604
3605 -- If the ancestor part has no discriminants clearly N's aggregate
3606 -- part must provide a value for Discr.
3607
3608 if not Has_Discriminants (Ancestor_Typ) then
3609 return True;
3610
3611 -- If the ancestor part is an unconstrained subtype mark then the
3612 -- Discr must be present in N's aggregate part.
3613
3614 elsif Ancestor_Is_Subtyp
3615 and then not Is_Constrained (Entity (Ancestor))
3616 then
3617 return True;
3618 end if;
3619
3620 -- Now look to see if Discr was specified in the ancestor part
3621
3622 if Ancestor_Is_Subtyp then
3623 Discr_Val :=
3624 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3625 end if;
3626
3627 Orig_Discr := Original_Record_Component (Input_Discr);
3628
3629 Discr := First_Discriminant (Ancestor_Typ);
3630 while Present (Discr) loop
3631
3632 -- If Ancestor has already specified Disc value then insert its
3633 -- value in the final aggregate.
3634
3635 if Original_Record_Component (Discr) = Orig_Discr then
3636 if Ancestor_Is_Subtyp then
3637 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3638 else
3639 Discr_Expr :=
3640 Make_Selected_Component (Loc,
3641 Prefix => Duplicate_Subexpr (Ancestor),
3642 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3643 end if;
3644
3645 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3646 Set_Inherited_Discriminant (Last (New_Assoc_List));
3647 return False;
3648 end if;
3649
3650 Next_Discriminant (Discr);
3651
3652 if Ancestor_Is_Subtyp then
3653 Next_Elmt (Discr_Val);
3654 end if;
3655 end loop;
3656
3657 return True;
3658 end Discriminant_Present;
3659
3660 ---------------------------
3661 -- Find_Private_Ancestor --
3662 ---------------------------
3663
3664 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3665 Par : Entity_Id;
3666
3667 begin
3668 Par := Typ;
3669 loop
3670 if Has_Private_Ancestor (Par)
3671 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3672 then
3673 return Par;
3674
3675 elsif not Is_Derived_Type (Par) then
3676 return Empty;
3677
3678 else
3679 Par := Etype (Base_Type (Par));
3680 end if;
3681 end loop;
3682 end Find_Private_Ancestor;
3683
3684 ---------------
3685 -- Get_Value --
3686 ---------------
3687
3688 function Get_Value
3689 (Compon : Entity_Id;
3690 From : List_Id;
3691 Consider_Others_Choice : Boolean := False) return Node_Id
3692 is
3693 Typ : constant Entity_Id := Etype (Compon);
3694 Assoc : Node_Id;
3695 Expr : Node_Id := Empty;
3696 Selector_Name : Node_Id;
3697
3698 begin
3699 Is_Box_Present := False;
3700
3701 if No (From) then
3702 return Empty;
3703 end if;
3704
3705 Assoc := First (From);
3706 while Present (Assoc) loop
3707 Selector_Name := First (Choices (Assoc));
3708 while Present (Selector_Name) loop
3709 if Nkind (Selector_Name) = N_Others_Choice then
3710 if Consider_Others_Choice and then No (Expr) then
3711
3712 -- We need to duplicate the expression for each
3713 -- successive component covered by the others choice.
3714 -- This is redundant if the others_choice covers only
3715 -- one component (small optimization possible???), but
3716 -- indispensable otherwise, because each one must be
3717 -- expanded individually to preserve side effects.
3718
3719 -- Ada 2005 (AI-287): In case of default initialization
3720 -- of components, we duplicate the corresponding default
3721 -- expression (from the record type declaration). The
3722 -- copy must carry the sloc of the association (not the
3723 -- original expression) to prevent spurious elaboration
3724 -- checks when the default includes function calls.
3725
3726 if Box_Present (Assoc) then
3727 Others_Box := Others_Box + 1;
3728 Is_Box_Present := True;
3729
3730 if Expander_Active then
3731 return
3732 New_Copy_Tree_And_Copy_Dimensions
3733 (Expression (Parent (Compon)),
3734 New_Sloc => Sloc (Assoc));
3735 else
3736 return Expression (Parent (Compon));
3737 end if;
3738
3739 else
3740 if Present (Others_Etype)
3741 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3742 then
3743 -- If the components are of an anonymous access
3744 -- type they are distinct, but this is legal in
3745 -- Ada 2012 as long as designated types match.
3746
3747 if (Ekind (Typ) = E_Anonymous_Access_Type
3748 or else Ekind (Typ) =
3749 E_Anonymous_Access_Subprogram_Type)
3750 and then Designated_Type (Typ) =
3751 Designated_Type (Others_Etype)
3752 then
3753 null;
3754 else
3755 Error_Msg_N
3756 ("components in OTHERS choice must have same "
3757 & "type", Selector_Name);
3758 end if;
3759 end if;
3760
3761 Others_Etype := Typ;
3762
3763 -- Copy the expression so that it is resolved
3764 -- independently for each component, This is needed
3765 -- for accessibility checks on compoents of anonymous
3766 -- access types, even in compile_only mode.
3767
3768 if not Inside_A_Generic then
3769 return
3770 New_Copy_Tree_And_Copy_Dimensions
3771 (Expression (Assoc));
3772 else
3773 return Expression (Assoc);
3774 end if;
3775 end if;
3776 end if;
3777
3778 elsif Chars (Compon) = Chars (Selector_Name) then
3779 if No (Expr) then
3780
3781 -- Ada 2005 (AI-231)
3782
3783 if Ada_Version >= Ada_2005
3784 and then Known_Null (Expression (Assoc))
3785 then
3786 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3787 end if;
3788
3789 -- We need to duplicate the expression when several
3790 -- components are grouped together with a "|" choice.
3791 -- For instance "filed1 | filed2 => Expr"
3792
3793 -- Ada 2005 (AI-287)
3794
3795 if Box_Present (Assoc) then
3796 Is_Box_Present := True;
3797
3798 -- Duplicate the default expression of the component
3799 -- from the record type declaration, so a new copy
3800 -- can be attached to the association.
3801
3802 -- Note that we always copy the default expression,
3803 -- even when the association has a single choice, in
3804 -- order to create a proper association for the
3805 -- expanded aggregate.
3806
3807 -- Component may have no default, in which case the
3808 -- expression is empty and the component is default-
3809 -- initialized, but an association for the component
3810 -- exists, and it is not covered by an others clause.
3811
3812 -- Scalar and private types have no initialization
3813 -- procedure, so they remain uninitialized. If the
3814 -- target of the aggregate is a constant this
3815 -- deserves a warning.
3816
3817 if No (Expression (Parent (Compon)))
3818 and then not Has_Non_Null_Base_Init_Proc (Typ)
3819 and then not Has_Aspect (Typ, Aspect_Default_Value)
3820 and then not Is_Concurrent_Type (Typ)
3821 and then Nkind (Parent (N)) = N_Object_Declaration
3822 and then Constant_Present (Parent (N))
3823 then
3824 Error_Msg_Node_2 := Typ;
3825 Error_Msg_NE
3826 ("component&? of type& is uninitialized",
3827 Assoc, Selector_Name);
3828
3829 -- An additional reminder if the component type
3830 -- is a generic formal.
3831
3832 if Is_Generic_Type (Base_Type (Typ)) then
3833 Error_Msg_NE
3834 ("\instance should provide actual type with "
3835 & "initialization for&", Assoc, Typ);
3836 end if;
3837 end if;
3838
3839 return
3840 New_Copy_Tree_And_Copy_Dimensions
3841 (Expression (Parent (Compon)));
3842
3843 else
3844 if Present (Next (Selector_Name)) then
3845 Expr := New_Copy_Tree_And_Copy_Dimensions
3846 (Expression (Assoc));
3847 else
3848 Expr := Expression (Assoc);
3849 end if;
3850 end if;
3851
3852 Generate_Reference (Compon, Selector_Name, 'm');
3853
3854 else
3855 Error_Msg_NE
3856 ("more than one value supplied for &",
3857 Selector_Name, Compon);
3858
3859 end if;
3860 end if;
3861
3862 Next (Selector_Name);
3863 end loop;
3864
3865 Next (Assoc);
3866 end loop;
3867
3868 return Expr;
3869 end Get_Value;
3870
3871 -----------------------------
3872 -- Propagate_Discriminants --
3873 -----------------------------
3874
3875 procedure Propagate_Discriminants
3876 (Aggr : Node_Id;
3877 Assoc_List : List_Id)
3878 is
3879 Loc : constant Source_Ptr := Sloc (N);
3880
3881 procedure Process_Component (Comp : Entity_Id);
3882 -- Add one component with a box association to the inner aggregate,
3883 -- and recurse if component is itself composite.
3884
3885 -----------------------
3886 -- Process_Component --
3887 -----------------------
3888
3889 procedure Process_Component (Comp : Entity_Id) is
3890 T : constant Entity_Id := Etype (Comp);
3891 New_Aggr : Node_Id;
3892
3893 begin
3894 if Is_Record_Type (T) and then Has_Discriminants (T) then
3895 New_Aggr := Make_Aggregate (Loc, No_List, New_List);
3896 Set_Etype (New_Aggr, T);
3897
3898 Add_Association
3899 (Comp, New_Aggr, Component_Associations (Aggr));
3900
3901 -- Collect discriminant values and recurse
3902
3903 Add_Discriminant_Values (New_Aggr, Assoc_List);
3904 Propagate_Discriminants (New_Aggr, Assoc_List);
3905
3906 Build_Constrained_Itype
3907 (New_Aggr, T, Component_Associations (New_Aggr));
3908 else
3909 Add_Association
3910 (Comp, Empty, Component_Associations (Aggr),
3911 Is_Box_Present => True);
3912 end if;
3913 end Process_Component;
3914
3915 -- Local variables
3916
3917 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3918 Components : constant Elist_Id := New_Elmt_List;
3919 Def_Node : constant Node_Id :=
3920 Type_Definition (Declaration_Node (Aggr_Type));
3921
3922 Comp : Node_Id;
3923 Comp_Elmt : Elmt_Id;
3924 Errors : Boolean;
3925
3926 -- Start of processing for Propagate_Discriminants
3927
3928 begin
3929 -- The component type may be a variant type. Collect the components
3930 -- that are ruled by the known values of the discriminants. Their
3931 -- values have already been inserted into the component list of the
3932 -- current aggregate.
3933
3934 if Nkind (Def_Node) = N_Record_Definition
3935 and then Present (Component_List (Def_Node))
3936 and then Present (Variant_Part (Component_List (Def_Node)))
3937 then
3938 Gather_Components (Aggr_Type,
3939 Component_List (Def_Node),
3940 Governed_By => Component_Associations (Aggr),
3941 Into => Components,
3942 Report_Errors => Errors);
3943
3944 Comp_Elmt := First_Elmt (Components);
3945 while Present (Comp_Elmt) loop
3946 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3947 Process_Component (Node (Comp_Elmt));
3948 end if;
3949
3950 Next_Elmt (Comp_Elmt);
3951 end loop;
3952
3953 -- No variant part, iterate over all components
3954
3955 else
3956 Comp := First_Component (Etype (Aggr));
3957 while Present (Comp) loop
3958 Process_Component (Comp);
3959 Next_Component (Comp);
3960 end loop;
3961 end if;
3962 end Propagate_Discriminants;
3963
3964 -----------------------
3965 -- Resolve_Aggr_Expr --
3966 -----------------------
3967
3968 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
3969 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3970 -- If the expression is an aggregate (possibly qualified) then its
3971 -- expansion is delayed until the enclosing aggregate is expanded
3972 -- into assignments. In that case, do not generate checks on the
3973 -- expression, because they will be generated later, and will other-
3974 -- wise force a copy (to remove side effects) that would leave a
3975 -- dynamic-sized aggregate in the code, something that gigi cannot
3976 -- handle.
3977
3978 ---------------------------
3979 -- Has_Expansion_Delayed --
3980 ---------------------------
3981
3982 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3983 begin
3984 return
3985 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3986 and then Present (Etype (Expr))
3987 and then Is_Record_Type (Etype (Expr))
3988 and then Expansion_Delayed (Expr))
3989 or else
3990 (Nkind (Expr) = N_Qualified_Expression
3991 and then Has_Expansion_Delayed (Expression (Expr)));
3992 end Has_Expansion_Delayed;
3993
3994 -- Local variables
3995
3996 Expr_Type : Entity_Id := Empty;
3997 New_C : Entity_Id := Component;
3998 New_Expr : Node_Id;
3999
4000 Relocate : Boolean;
4001 -- Set to True if the resolved Expr node needs to be relocated when
4002 -- attached to the newly created association list. This node need not
4003 -- be relocated if its parent pointer is not set. In fact in this
4004 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
4005 -- True then we have analyzed the expression node in the original
4006 -- aggregate and hence it needs to be relocated when moved over to
4007 -- the new association list.
4008
4009 -- Start of processing for Resolve_Aggr_Expr
4010
4011 begin
4012 -- If the type of the component is elementary or the type of the
4013 -- aggregate does not contain discriminants, use the type of the
4014 -- component to resolve Expr.
4015
4016 if Is_Elementary_Type (Etype (Component))
4017 or else not Has_Discriminants (Etype (N))
4018 then
4019 Expr_Type := Etype (Component);
4020
4021 -- Otherwise we have to pick up the new type of the component from
4022 -- the new constrained subtype of the aggregate. In fact components
4023 -- which are of a composite type might be constrained by a
4024 -- discriminant, and we want to resolve Expr against the subtype were
4025 -- all discriminant occurrences are replaced with their actual value.
4026
4027 else
4028 New_C := First_Component (Etype (N));
4029 while Present (New_C) loop
4030 if Chars (New_C) = Chars (Component) then
4031 Expr_Type := Etype (New_C);
4032 exit;
4033 end if;
4034
4035 Next_Component (New_C);
4036 end loop;
4037
4038 pragma Assert (Present (Expr_Type));
4039
4040 -- For each range in an array type where a discriminant has been
4041 -- replaced with the constraint, check that this range is within
4042 -- the range of the base type. This checks is done in the init
4043 -- proc for regular objects, but has to be done here for
4044 -- aggregates since no init proc is called for them.
4045
4046 if Is_Array_Type (Expr_Type) then
4047 declare
4048 Index : Node_Id;
4049 -- Range of the current constrained index in the array
4050
4051 Orig_Index : Node_Id := First_Index (Etype (Component));
4052 -- Range corresponding to the range Index above in the
4053 -- original unconstrained record type. The bounds of this
4054 -- range may be governed by discriminants.
4055
4056 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4057 -- Range corresponding to the range Index above for the
4058 -- unconstrained array type. This range is needed to apply
4059 -- range checks.
4060
4061 begin
4062 Index := First_Index (Expr_Type);
4063 while Present (Index) loop
4064 if Depends_On_Discriminant (Orig_Index) then
4065 Apply_Range_Check (Index, Etype (Unconstr_Index));
4066 end if;
4067
4068 Next_Index (Index);
4069 Next_Index (Orig_Index);
4070 Next_Index (Unconstr_Index);
4071 end loop;
4072 end;
4073 end if;
4074 end if;
4075
4076 -- If the Parent pointer of Expr is not set, Expr is an expression
4077 -- duplicated by New_Tree_Copy (this happens for record aggregates
4078 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4079 -- Such a duplicated expression must be attached to the tree
4080 -- before analysis and resolution to enforce the rule that a tree
4081 -- fragment should never be analyzed or resolved unless it is
4082 -- attached to the current compilation unit.
4083
4084 if No (Parent (Expr)) then
4085 Set_Parent (Expr, N);
4086 Relocate := False;
4087 else
4088 Relocate := True;
4089 end if;
4090
4091 Analyze_And_Resolve (Expr, Expr_Type);
4092 Check_Expr_OK_In_Limited_Aggregate (Expr);
4093 Check_Non_Static_Context (Expr);
4094 Check_Unset_Reference (Expr);
4095
4096 -- Check wrong use of class-wide types
4097
4098 if Is_Class_Wide_Type (Etype (Expr)) then
4099 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4100 end if;
4101
4102 if not Has_Expansion_Delayed (Expr) then
4103 Aggregate_Constraint_Checks (Expr, Expr_Type);
4104 end if;
4105
4106 -- If an aggregate component has a type with predicates, an explicit
4107 -- predicate check must be applied, as for an assignment statement,
4108 -- because the aggegate might not be expanded into individual
4109 -- component assignments.
4110
4111 if Has_Predicates (Expr_Type)
4112 and then Analyzed (Expr)
4113 then
4114 Apply_Predicate_Check (Expr, Expr_Type);
4115 end if;
4116
4117 if Raises_Constraint_Error (Expr) then
4118 Set_Raises_Constraint_Error (N);
4119 end if;
4120
4121 -- If the expression has been marked as requiring a range check, then
4122 -- generate it here. It's a bit odd to be generating such checks in
4123 -- the analyzer, but harmless since Generate_Range_Check does nothing
4124 -- (other than making sure Do_Range_Check is set) if the expander is
4125 -- not active.
4126
4127 if Do_Range_Check (Expr) then
4128 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4129 end if;
4130
4131 -- Add association Component => Expr if the caller requests it
4132
4133 if Relocate then
4134 New_Expr := Relocate_Node (Expr);
4135
4136 -- Since New_Expr is not gonna be analyzed later on, we need to
4137 -- propagate here the dimensions form Expr to New_Expr.
4138
4139 Copy_Dimensions (Expr, New_Expr);
4140
4141 else
4142 New_Expr := Expr;
4143 end if;
4144
4145 Add_Association (New_C, New_Expr, New_Assoc_List);
4146 end Resolve_Aggr_Expr;
4147
4148 -------------------
4149 -- Rewrite_Range --
4150 -------------------
4151
4152 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4153 procedure Rewrite_Bound
4154 (Bound : Node_Id;
4155 Disc : Entity_Id;
4156 Expr_Disc : Node_Id);
4157 -- Rewrite a bound of the range Bound, when it is equal to the
4158 -- non-stored discriminant Disc, into the stored discriminant
4159 -- value Expr_Disc.
4160
4161 -------------------
4162 -- Rewrite_Bound --
4163 -------------------
4164
4165 procedure Rewrite_Bound
4166 (Bound : Node_Id;
4167 Disc : Entity_Id;
4168 Expr_Disc : Node_Id)
4169 is
4170 begin
4171 if Nkind (Bound) /= N_Identifier then
4172 return;
4173 end if;
4174
4175 -- We expect either the discriminant or the discriminal
4176
4177 if Entity (Bound) = Disc
4178 or else (Ekind (Entity (Bound)) = E_In_Parameter
4179 and then Discriminal_Link (Entity (Bound)) = Disc)
4180 then
4181 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4182 end if;
4183 end Rewrite_Bound;
4184
4185 -- Local variables
4186
4187 Low, High : Node_Id;
4188 Disc : Entity_Id;
4189 Expr_Disc : Elmt_Id;
4190
4191 -- Start of processing for Rewrite_Range
4192
4193 begin
4194 if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4195 Low := Low_Bound (Rge);
4196 High := High_Bound (Rge);
4197
4198 Disc := First_Discriminant (Root_Type);
4199 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4200 while Present (Disc) loop
4201 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4202 Rewrite_Bound (High, Disc, Node (Expr_Disc));
4203 Next_Discriminant (Disc);
4204 Next_Elmt (Expr_Disc);
4205 end loop;
4206 end if;
4207 end Rewrite_Range;
4208
4209 -- Local variables
4210
4211 Components : constant Elist_Id := New_Elmt_List;
4212 -- Components is the list of the record components whose value must be
4213 -- provided in the aggregate. This list does include discriminants.
4214
4215 Component : Entity_Id;
4216 Component_Elmt : Elmt_Id;
4217 Expr : Node_Id;
4218 Positional_Expr : Node_Id;
4219
4220 -- Start of processing for Resolve_Record_Aggregate
4221
4222 begin
4223 -- A record aggregate is restricted in SPARK:
4224
4225 -- Each named association can have only a single choice.
4226 -- OTHERS cannot be used.
4227 -- Positional and named associations cannot be mixed.
4228
4229 if Present (Component_Associations (N))
4230 and then Present (First (Component_Associations (N)))
4231 then
4232 declare
4233 Assoc : Node_Id;
4234
4235 begin
4236 Assoc := First (Component_Associations (N));
4237 while Present (Assoc) loop
4238 if Nkind (Assoc) = N_Iterated_Component_Association then
4239 Error_Msg_N
4240 ("iterated component association can only appear in an "
4241 & "array aggregate", N);
4242 raise Unrecoverable_Error;
4243 end if;
4244
4245 Next (Assoc);
4246 end loop;
4247 end;
4248 end if;
4249
4250 -- We may end up calling Duplicate_Subexpr on expressions that are
4251 -- attached to New_Assoc_List. For this reason we need to attach it
4252 -- to the tree by setting its parent pointer to N. This parent point
4253 -- will change in STEP 8 below.
4254
4255 Set_Parent (New_Assoc_List, N);
4256
4257 -- STEP 1: abstract type and null record verification
4258
4259 if Is_Abstract_Type (Typ) then
4260 Error_Msg_N ("type of aggregate cannot be abstract", N);
4261 end if;
4262
4263 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4264 Set_Etype (N, Typ);
4265 return;
4266
4267 elsif Present (First_Entity (Typ))
4268 and then Null_Record_Present (N)
4269 and then not Is_Tagged_Type (Typ)
4270 then
4271 Error_Msg_N ("record aggregate cannot be null", N);
4272 return;
4273
4274 -- If the type has no components, then the aggregate should either
4275 -- have "null record", or in Ada 2005 it could instead have a single
4276 -- component association given by "others => <>". For Ada 95 we flag an
4277 -- error at this point, but for Ada 2005 we proceed with checking the
4278 -- associations below, which will catch the case where it's not an
4279 -- aggregate with "others => <>". Note that the legality of a <>
4280 -- aggregate for a null record type was established by AI05-016.
4281
4282 elsif No (First_Entity (Typ))
4283 and then Ada_Version < Ada_2005
4284 then
4285 Error_Msg_N ("record aggregate must be null", N);
4286 return;
4287 end if;
4288
4289 -- STEP 2: Verify aggregate structure
4290
4291 Step_2 : declare
4292 Assoc : Node_Id;
4293 Bad_Aggregate : Boolean := False;
4294 Selector_Name : Node_Id;
4295
4296 begin
4297 if Present (Component_Associations (N)) then
4298 Assoc := First (Component_Associations (N));
4299 else
4300 Assoc := Empty;
4301 end if;
4302
4303 while Present (Assoc) loop
4304 Selector_Name := First (Choices (Assoc));
4305 while Present (Selector_Name) loop
4306 if Nkind (Selector_Name) = N_Identifier then
4307 null;
4308
4309 elsif Nkind (Selector_Name) = N_Others_Choice then
4310 if Selector_Name /= First (Choices (Assoc))
4311 or else Present (Next (Selector_Name))
4312 then
4313 Error_Msg_N
4314 ("OTHERS must appear alone in a choice list",
4315 Selector_Name);
4316 return;
4317
4318 elsif Present (Next (Assoc)) then
4319 Error_Msg_N
4320 ("OTHERS must appear last in an aggregate",
4321 Selector_Name);
4322 return;
4323
4324 -- (Ada 2005): If this is an association with a box,
4325 -- indicate that the association need not represent
4326 -- any component.
4327
4328 elsif Box_Present (Assoc) then
4329 Others_Box := 1;
4330 Box_Node := Assoc;
4331 end if;
4332
4333 else
4334 Error_Msg_N
4335 ("selector name should be identifier or OTHERS",
4336 Selector_Name);
4337 Bad_Aggregate := True;
4338 end if;
4339
4340 Next (Selector_Name);
4341 end loop;
4342
4343 Next (Assoc);
4344 end loop;
4345
4346 if Bad_Aggregate then
4347 return;
4348 end if;
4349 end Step_2;
4350
4351 -- STEP 3: Find discriminant Values
4352
4353 Step_3 : declare
4354 Discrim : Entity_Id;
4355 Missing_Discriminants : Boolean := False;
4356
4357 begin
4358 if Present (Expressions (N)) then
4359 Positional_Expr := First (Expressions (N));
4360 else
4361 Positional_Expr := Empty;
4362 end if;
4363
4364 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4365 -- must not have unknown discriminants.
4366 -- ??? We are not checking any subtype mark here and this code is not
4367 -- exercised by any test, so it's likely wrong (in particular
4368 -- we should not use Root_Type here but the subtype mark, if any),
4369 -- and possibly not needed.
4370
4371 if Is_Derived_Type (Typ)
4372 and then Has_Unknown_Discriminants (Root_Type (Typ))
4373 and then Nkind (N) /= N_Extension_Aggregate
4374 then
4375 Error_Msg_NE
4376 ("aggregate not available for type& whose ancestor "
4377 & "has unknown discriminants ", N, Typ);
4378 end if;
4379
4380 if Has_Unknown_Discriminants (Typ)
4381 and then Present (Underlying_Record_View (Typ))
4382 then
4383 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4384 elsif Has_Discriminants (Typ) then
4385 Discrim := First_Discriminant (Typ);
4386 else
4387 Discrim := Empty;
4388 end if;
4389
4390 -- First find the discriminant values in the positional components
4391
4392 while Present (Discrim) and then Present (Positional_Expr) loop
4393 if Discriminant_Present (Discrim) then
4394 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4395
4396 -- Ada 2005 (AI-231)
4397
4398 if Ada_Version >= Ada_2005
4399 and then Known_Null (Positional_Expr)
4400 then
4401 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4402 end if;
4403
4404 Next (Positional_Expr);
4405 end if;
4406
4407 if Present (Get_Value (Discrim, Component_Associations (N))) then
4408 Error_Msg_NE
4409 ("more than one value supplied for discriminant&",
4410 N, Discrim);
4411 end if;
4412
4413 Next_Discriminant (Discrim);
4414 end loop;
4415
4416 -- Find remaining discriminant values if any among named components
4417
4418 while Present (Discrim) loop
4419 Expr := Get_Value (Discrim, Component_Associations (N), True);
4420
4421 if not Discriminant_Present (Discrim) then
4422 if Present (Expr) then
4423 Error_Msg_NE
4424 ("more than one value supplied for discriminant &",
4425 N, Discrim);
4426 end if;
4427
4428 elsif No (Expr) then
4429 Error_Msg_NE
4430 ("no value supplied for discriminant &", N, Discrim);
4431 Missing_Discriminants := True;
4432
4433 else
4434 Resolve_Aggr_Expr (Expr, Discrim);
4435 end if;
4436
4437 Next_Discriminant (Discrim);
4438 end loop;
4439
4440 if Missing_Discriminants then
4441 return;
4442 end if;
4443
4444 -- At this point and until the beginning of STEP 6, New_Assoc_List
4445 -- contains only the discriminants and their values.
4446
4447 end Step_3;
4448
4449 -- STEP 4: Set the Etype of the record aggregate
4450
4451 if Has_Discriminants (Typ)
4452 or else (Has_Unknown_Discriminants (Typ)
4453 and then Present (Underlying_Record_View (Typ)))
4454 then
4455 Build_Constrained_Itype (N, Typ, New_Assoc_List);
4456 else
4457 Set_Etype (N, Typ);
4458 end if;
4459
4460 -- STEP 5: Get remaining components according to discriminant values
4461
4462 Step_5 : declare
4463 Dnode : Node_Id;
4464 Errors_Found : Boolean := False;
4465 Record_Def : Node_Id;
4466 Parent_Typ : Entity_Id;
4467 Parent_Typ_List : Elist_Id;
4468 Parent_Elmt : Elmt_Id;
4469 Root_Typ : Entity_Id;
4470
4471 begin
4472 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4473 Parent_Typ_List := New_Elmt_List;
4474
4475 -- If this is an extension aggregate, the component list must
4476 -- include all components that are not in the given ancestor type.
4477 -- Otherwise, the component list must include components of all
4478 -- ancestors, starting with the root.
4479
4480 if Nkind (N) = N_Extension_Aggregate then
4481 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4482
4483 else
4484 -- AI05-0115: check legality of aggregate for type with a
4485 -- private ancestor.
4486
4487 Root_Typ := Root_Type (Typ);
4488 if Has_Private_Ancestor (Typ) then
4489 declare
4490 Ancestor : constant Entity_Id :=
4491 Find_Private_Ancestor (Typ);
4492 Ancestor_Unit : constant Entity_Id :=
4493 Cunit_Entity
4494 (Get_Source_Unit (Ancestor));
4495 Parent_Unit : constant Entity_Id :=
4496 Cunit_Entity (Get_Source_Unit
4497 (Base_Type (Etype (Ancestor))));
4498 begin
4499 -- Check whether we are in a scope that has full view
4500 -- over the private ancestor and its parent. This can
4501 -- only happen if the derivation takes place in a child
4502 -- unit of the unit that declares the parent, and we are
4503 -- in the private part or body of that child unit, else
4504 -- the aggregate is illegal.
4505
4506 if Is_Child_Unit (Ancestor_Unit)
4507 and then Scope (Ancestor_Unit) = Parent_Unit
4508 and then In_Open_Scopes (Scope (Ancestor))
4509 and then
4510 (In_Private_Part (Scope (Ancestor))
4511 or else In_Package_Body (Scope (Ancestor)))
4512 then
4513 null;
4514
4515 else
4516 Error_Msg_NE
4517 ("type of aggregate has private ancestor&!",
4518 N, Root_Typ);
4519 Error_Msg_N ("must use extension aggregate!", N);
4520 return;
4521 end if;
4522 end;
4523 end if;
4524
4525 Dnode := Declaration_Node (Base_Type (Root_Typ));
4526
4527 -- If we don't get a full declaration, then we have some error
4528 -- which will get signalled later so skip this part. Otherwise
4529 -- gather components of root that apply to the aggregate type.
4530 -- We use the base type in case there is an applicable stored
4531 -- constraint that renames the discriminants of the root.
4532
4533 if Nkind (Dnode) = N_Full_Type_Declaration then
4534 Record_Def := Type_Definition (Dnode);
4535 Gather_Components
4536 (Base_Type (Typ),
4537 Component_List (Record_Def),
4538 Governed_By => New_Assoc_List,
4539 Into => Components,
4540 Report_Errors => Errors_Found);
4541
4542 if Errors_Found then
4543 Error_Msg_N
4544 ("discriminant controlling variant part is not static",
4545 N);
4546 return;
4547 end if;
4548 end if;
4549 end if;
4550
4551 Parent_Typ := Base_Type (Typ);
4552 while Parent_Typ /= Root_Typ loop
4553 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4554 Parent_Typ := Etype (Parent_Typ);
4555
4556 if Nkind (Parent (Base_Type (Parent_Typ))) =
4557 N_Private_Type_Declaration
4558 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4559 N_Private_Extension_Declaration
4560 then
4561 if Nkind (N) /= N_Extension_Aggregate then
4562 Error_Msg_NE
4563 ("type of aggregate has private ancestor&!",
4564 N, Parent_Typ);
4565 Error_Msg_N ("must use extension aggregate!", N);
4566 return;
4567
4568 elsif Parent_Typ /= Root_Typ then
4569 Error_Msg_NE
4570 ("ancestor part of aggregate must be private type&",
4571 Ancestor_Part (N), Parent_Typ);
4572 return;
4573 end if;
4574
4575 -- The current view of ancestor part may be a private type,
4576 -- while the context type is always non-private.
4577
4578 elsif Is_Private_Type (Root_Typ)
4579 and then Present (Full_View (Root_Typ))
4580 and then Nkind (N) = N_Extension_Aggregate
4581 then
4582 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4583 end if;
4584 end loop;
4585
4586 -- Now collect components from all other ancestors, beginning
4587 -- with the current type. If the type has unknown discriminants
4588 -- use the component list of the Underlying_Record_View, which
4589 -- needs to be used for the subsequent expansion of the aggregate
4590 -- into assignments.
4591
4592 Parent_Elmt := First_Elmt (Parent_Typ_List);
4593 while Present (Parent_Elmt) loop
4594 Parent_Typ := Node (Parent_Elmt);
4595
4596 if Has_Unknown_Discriminants (Parent_Typ)
4597 and then Present (Underlying_Record_View (Typ))
4598 then
4599 Parent_Typ := Underlying_Record_View (Parent_Typ);
4600 end if;
4601
4602 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4603 Gather_Components (Empty,
4604 Component_List (Record_Extension_Part (Record_Def)),
4605 Governed_By => New_Assoc_List,
4606 Into => Components,
4607 Report_Errors => Errors_Found);
4608
4609 Next_Elmt (Parent_Elmt);
4610 end loop;
4611
4612 -- Typ is not a derived tagged type
4613
4614 else
4615 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4616
4617 if Null_Present (Record_Def) then
4618 null;
4619
4620 elsif not Has_Unknown_Discriminants (Typ) then
4621 Gather_Components
4622 (Base_Type (Typ),
4623 Component_List (Record_Def),
4624 Governed_By => New_Assoc_List,
4625 Into => Components,
4626 Report_Errors => Errors_Found);
4627
4628 else
4629 Gather_Components
4630 (Base_Type (Underlying_Record_View (Typ)),
4631 Component_List (Record_Def),
4632 Governed_By => New_Assoc_List,
4633 Into => Components,
4634 Report_Errors => Errors_Found);
4635 end if;
4636 end if;
4637
4638 if Errors_Found then
4639 return;
4640 end if;
4641 end Step_5;
4642
4643 -- STEP 6: Find component Values
4644
4645 Component := Empty;
4646 Component_Elmt := First_Elmt (Components);
4647
4648 -- First scan the remaining positional associations in the aggregate.
4649 -- Remember that at this point Positional_Expr contains the current
4650 -- positional association if any is left after looking for discriminant
4651 -- values in step 3.
4652
4653 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4654 Component := Node (Component_Elmt);
4655 Resolve_Aggr_Expr (Positional_Expr, Component);
4656
4657 -- Ada 2005 (AI-231)
4658
4659 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4660 Check_Can_Never_Be_Null (Component, Positional_Expr);
4661 end if;
4662
4663 if Present (Get_Value (Component, Component_Associations (N))) then
4664 Error_Msg_NE
4665 ("more than one value supplied for Component &", N, Component);
4666 end if;
4667
4668 Next (Positional_Expr);
4669 Next_Elmt (Component_Elmt);
4670 end loop;
4671
4672 if Present (Positional_Expr) then
4673 Error_Msg_N
4674 ("too many components for record aggregate", Positional_Expr);
4675 end if;
4676
4677 -- Now scan for the named arguments of the aggregate
4678
4679 while Present (Component_Elmt) loop
4680 Component := Node (Component_Elmt);
4681 Expr := Get_Value (Component, Component_Associations (N), True);
4682
4683 -- Note: The previous call to Get_Value sets the value of the
4684 -- variable Is_Box_Present.
4685
4686 -- Ada 2005 (AI-287): Handle components with default initialization.
4687 -- Note: This feature was originally added to Ada 2005 for limited
4688 -- but it was finally allowed with any type.
4689
4690 if Is_Box_Present then
4691 Check_Box_Component : declare
4692 Ctyp : constant Entity_Id := Etype (Component);
4693
4694 begin
4695 -- If there is a default expression for the aggregate, copy
4696 -- it into a new association. This copy must modify the scopes
4697 -- of internal types that may be attached to the expression
4698 -- (e.g. index subtypes of arrays) because in general the type
4699 -- declaration and the aggregate appear in different scopes,
4700 -- and the backend requires the scope of the type to match the
4701 -- point at which it is elaborated.
4702
4703 -- If the component has an initialization procedure (IP) we
4704 -- pass the component to the expander, which will generate
4705 -- the call to such IP.
4706
4707 -- If the component has discriminants, their values must
4708 -- be taken from their subtype. This is indispensable for
4709 -- constraints that are given by the current instance of an
4710 -- enclosing type, to allow the expansion of the aggregate to
4711 -- replace the reference to the current instance by the target
4712 -- object of the aggregate.
4713
4714 if Present (Parent (Component))
4715 and then Nkind (Parent (Component)) = N_Component_Declaration
4716 and then Present (Expression (Parent (Component)))
4717 then
4718 Expr :=
4719 New_Copy_Tree_And_Copy_Dimensions
4720 (Expression (Parent (Component)),
4721 New_Scope => Current_Scope,
4722 New_Sloc => Sloc (N));
4723
4724 -- As the type of the copied default expression may refer
4725 -- to discriminants of the record type declaration, these
4726 -- non-stored discriminants need to be rewritten into stored
4727 -- discriminant values for the aggregate. This is required
4728 -- in GNATprove mode, and is adopted in all modes to avoid
4729 -- special-casing GNATprove mode.
4730
4731 if Is_Array_Type (Etype (Expr)) then
4732 declare
4733 Rec_Typ : constant Entity_Id := Scope (Component);
4734 -- Root record type whose discriminants may be used as
4735 -- bounds in range nodes.
4736
4737 Assoc : Node_Id;
4738 Choice : Node_Id;
4739 Index : Node_Id;
4740
4741 begin
4742 -- Rewrite the range nodes occurring in the indexes
4743 -- and their types.
4744
4745 Index := First_Index (Etype (Expr));
4746 while Present (Index) loop
4747 Rewrite_Range (Rec_Typ, Index);
4748 Rewrite_Range
4749 (Rec_Typ, Scalar_Range (Etype (Index)));
4750
4751 Next_Index (Index);
4752 end loop;
4753
4754 -- Rewrite the range nodes occurring as aggregate
4755 -- bounds and component associations.
4756
4757 if Nkind (Expr) = N_Aggregate then
4758 if Present (Aggregate_Bounds (Expr)) then
4759 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
4760 end if;
4761
4762 if Present (Component_Associations (Expr)) then
4763 Assoc := First (Component_Associations (Expr));
4764 while Present (Assoc) loop
4765 Choice := First (Choices (Assoc));
4766 while Present (Choice) loop
4767 Rewrite_Range (Rec_Typ, Choice);
4768
4769 Next (Choice);
4770 end loop;
4771
4772 Next (Assoc);
4773 end loop;
4774 end if;
4775 end if;
4776 end;
4777 end if;
4778
4779 Add_Association
4780 (Component => Component,
4781 Expr => Expr,
4782 Assoc_List => New_Assoc_List);
4783 Set_Has_Self_Reference (N);
4784
4785 -- A box-defaulted access component gets the value null. Also
4786 -- included are components of private types whose underlying
4787 -- type is an access type. In either case set the type of the
4788 -- literal, for subsequent use in semantic checks.
4789
4790 elsif Present (Underlying_Type (Ctyp))
4791 and then Is_Access_Type (Underlying_Type (Ctyp))
4792 then
4793 -- If the component's type is private with an access type as
4794 -- its underlying type then we have to create an unchecked
4795 -- conversion to satisfy type checking.
4796
4797 if Is_Private_Type (Ctyp) then
4798 declare
4799 Qual_Null : constant Node_Id :=
4800 Make_Qualified_Expression (Sloc (N),
4801 Subtype_Mark =>
4802 New_Occurrence_Of
4803 (Underlying_Type (Ctyp), Sloc (N)),
4804 Expression => Make_Null (Sloc (N)));
4805
4806 Convert_Null : constant Node_Id :=
4807 Unchecked_Convert_To
4808 (Ctyp, Qual_Null);
4809
4810 begin
4811 Analyze_And_Resolve (Convert_Null, Ctyp);
4812 Add_Association
4813 (Component => Component,
4814 Expr => Convert_Null,
4815 Assoc_List => New_Assoc_List);
4816 end;
4817
4818 -- Otherwise the component type is non-private
4819
4820 else
4821 Expr := Make_Null (Sloc (N));
4822 Set_Etype (Expr, Ctyp);
4823
4824 Add_Association
4825 (Component => Component,
4826 Expr => Expr,
4827 Assoc_List => New_Assoc_List);
4828 end if;
4829
4830 -- Ada 2012: If component is scalar with default value, use it
4831
4832 elsif Is_Scalar_Type (Ctyp)
4833 and then Has_Default_Aspect (Ctyp)
4834 then
4835 Add_Association
4836 (Component => Component,
4837 Expr =>
4838 Default_Aspect_Value
4839 (First_Subtype (Underlying_Type (Ctyp))),
4840 Assoc_List => New_Assoc_List);
4841
4842 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4843 or else not Expander_Active
4844 then
4845 if Is_Record_Type (Ctyp)
4846 and then Has_Discriminants (Ctyp)
4847 and then not Is_Private_Type (Ctyp)
4848 then
4849 -- We build a partially initialized aggregate with the
4850 -- values of the discriminants and box initialization
4851 -- for the rest, if other components are present.
4852
4853 -- The type of the aggregate is the known subtype of
4854 -- the component. The capture of discriminants must be
4855 -- recursive because subcomponents may be constrained
4856 -- (transitively) by discriminants of enclosing types.
4857 -- For a private type with discriminants, a call to the
4858 -- initialization procedure will be generated, and no
4859 -- subaggregate is needed.
4860
4861 Capture_Discriminants : declare
4862 Loc : constant Source_Ptr := Sloc (N);
4863 Expr : Node_Id;
4864
4865 begin
4866 Expr := Make_Aggregate (Loc, No_List, New_List);
4867 Set_Etype (Expr, Ctyp);
4868
4869 -- If the enclosing type has discriminants, they have
4870 -- been collected in the aggregate earlier, and they
4871 -- may appear as constraints of subcomponents.
4872
4873 -- Similarly if this component has discriminants, they
4874 -- might in turn be propagated to their components.
4875
4876 if Has_Discriminants (Typ) then
4877 Add_Discriminant_Values (Expr, New_Assoc_List);
4878 Propagate_Discriminants (Expr, New_Assoc_List);
4879
4880 elsif Has_Discriminants (Ctyp) then
4881 Add_Discriminant_Values
4882 (Expr, Component_Associations (Expr));
4883 Propagate_Discriminants
4884 (Expr, Component_Associations (Expr));
4885
4886 Build_Constrained_Itype
4887 (Expr, Ctyp, Component_Associations (Expr));
4888
4889 else
4890 declare
4891 Comp : Entity_Id;
4892
4893 begin
4894 -- If the type has additional components, create
4895 -- an OTHERS box association for them.
4896
4897 Comp := First_Component (Ctyp);
4898 while Present (Comp) loop
4899 if Ekind (Comp) = E_Component then
4900 if not Is_Record_Type (Etype (Comp)) then
4901 Append_To
4902 (Component_Associations (Expr),
4903 Make_Component_Association (Loc,
4904 Choices =>
4905 New_List (
4906 Make_Others_Choice (Loc)),
4907 Expression => Empty,
4908 Box_Present => True));
4909 end if;
4910
4911 exit;
4912 end if;
4913
4914 Next_Component (Comp);
4915 end loop;
4916 end;
4917 end if;
4918
4919 Add_Association
4920 (Component => Component,
4921 Expr => Expr,
4922 Assoc_List => New_Assoc_List);
4923 end Capture_Discriminants;
4924
4925 -- Otherwise the component type is not a record, or it has
4926 -- not discriminants, or it is private.
4927
4928 else
4929 Add_Association
4930 (Component => Component,
4931 Expr => Empty,
4932 Assoc_List => New_Assoc_List,
4933 Is_Box_Present => True);
4934 end if;
4935
4936 -- Otherwise we only need to resolve the expression if the
4937 -- component has partially initialized values (required to
4938 -- expand the corresponding assignments and run-time checks).
4939
4940 elsif Present (Expr)
4941 and then Is_Partially_Initialized_Type (Ctyp)
4942 then
4943 Resolve_Aggr_Expr (Expr, Component);
4944 end if;
4945 end Check_Box_Component;
4946
4947 elsif No (Expr) then
4948
4949 -- Ignore hidden components associated with the position of the
4950 -- interface tags: these are initialized dynamically.
4951
4952 if not Present (Related_Type (Component)) then
4953 Error_Msg_NE
4954 ("no value supplied for component &!", N, Component);
4955 end if;
4956
4957 else
4958 Resolve_Aggr_Expr (Expr, Component);
4959 end if;
4960
4961 Next_Elmt (Component_Elmt);
4962 end loop;
4963
4964 -- STEP 7: check for invalid components + check type in choice list
4965
4966 Step_7 : declare
4967 Assoc : Node_Id;
4968 New_Assoc : Node_Id;
4969
4970 Selectr : Node_Id;
4971 -- Selector name
4972
4973 Typech : Entity_Id;
4974 -- Type of first component in choice list
4975
4976 begin
4977 if Present (Component_Associations (N)) then
4978 Assoc := First (Component_Associations (N));
4979 else
4980 Assoc := Empty;
4981 end if;
4982
4983 Verification : while Present (Assoc) loop
4984 Selectr := First (Choices (Assoc));
4985 Typech := Empty;
4986
4987 if Nkind (Selectr) = N_Others_Choice then
4988
4989 -- Ada 2005 (AI-287): others choice may have expression or box
4990
4991 if No (Others_Etype) and then Others_Box = 0 then
4992 Error_Msg_N
4993 ("OTHERS must represent at least one component", Selectr);
4994
4995 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4996 Error_Msg_N ("others choice is redundant?", Box_Node);
4997 Error_Msg_N
4998 ("\previous choices cover all components?", Box_Node);
4999 end if;
5000
5001 exit Verification;
5002 end if;
5003
5004 while Present (Selectr) loop
5005 New_Assoc := First (New_Assoc_List);
5006 while Present (New_Assoc) loop
5007 Component := First (Choices (New_Assoc));
5008
5009 if Chars (Selectr) = Chars (Component) then
5010 if Style_Check then
5011 Check_Identifier (Selectr, Entity (Component));
5012 end if;
5013
5014 exit;
5015 end if;
5016
5017 Next (New_Assoc);
5018 end loop;
5019
5020 -- If no association, this is not a legal component of the type
5021 -- in question, unless its association is provided with a box.
5022
5023 if No (New_Assoc) then
5024 if Box_Present (Parent (Selectr)) then
5025
5026 -- This may still be a bogus component with a box. Scan
5027 -- list of components to verify that a component with
5028 -- that name exists.
5029
5030 declare
5031 C : Entity_Id;
5032
5033 begin
5034 C := First_Component (Typ);
5035 while Present (C) loop
5036 if Chars (C) = Chars (Selectr) then
5037
5038 -- If the context is an extension aggregate,
5039 -- the component must not be inherited from
5040 -- the ancestor part of the aggregate.
5041
5042 if Nkind (N) /= N_Extension_Aggregate
5043 or else
5044 Scope (Original_Record_Component (C)) /=
5045 Etype (Ancestor_Part (N))
5046 then
5047 exit;
5048 end if;
5049 end if;
5050
5051 Next_Component (C);
5052 end loop;
5053
5054 if No (C) then
5055 Error_Msg_Node_2 := Typ;
5056 Error_Msg_N ("& is not a component of}", Selectr);
5057 end if;
5058 end;
5059
5060 elsif Chars (Selectr) /= Name_uTag
5061 and then Chars (Selectr) /= Name_uParent
5062 then
5063 if not Has_Discriminants (Typ) then
5064 Error_Msg_Node_2 := Typ;
5065 Error_Msg_N ("& is not a component of}", Selectr);
5066 else
5067 Error_Msg_N
5068 ("& is not a component of the aggregate subtype",
5069 Selectr);
5070 end if;
5071
5072 Check_Misspelled_Component (Components, Selectr);
5073 end if;
5074
5075 elsif No (Typech) then
5076 Typech := Base_Type (Etype (Component));
5077
5078 -- AI05-0199: In Ada 2012, several components of anonymous
5079 -- access types can appear in a choice list, as long as the
5080 -- designated types match.
5081
5082 elsif Typech /= Base_Type (Etype (Component)) then
5083 if Ada_Version >= Ada_2012
5084 and then Ekind (Typech) = E_Anonymous_Access_Type
5085 and then
5086 Ekind (Etype (Component)) = E_Anonymous_Access_Type
5087 and then Base_Type (Designated_Type (Typech)) =
5088 Base_Type (Designated_Type (Etype (Component)))
5089 and then
5090 Subtypes_Statically_Match (Typech, (Etype (Component)))
5091 then
5092 null;
5093
5094 elsif not Box_Present (Parent (Selectr)) then
5095 Error_Msg_N
5096 ("components in choice list must have same type",
5097 Selectr);
5098 end if;
5099 end if;
5100
5101 Next (Selectr);
5102 end loop;
5103
5104 Next (Assoc);
5105 end loop Verification;
5106 end Step_7;
5107
5108 -- STEP 8: replace the original aggregate
5109
5110 Step_8 : declare
5111 New_Aggregate : constant Node_Id := New_Copy (N);
5112
5113 begin
5114 Set_Expressions (New_Aggregate, No_List);
5115 Set_Etype (New_Aggregate, Etype (N));
5116 Set_Component_Associations (New_Aggregate, New_Assoc_List);
5117 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
5118
5119 Rewrite (N, New_Aggregate);
5120 end Step_8;
5121
5122 -- Check the dimensions of the components in the record aggregate
5123
5124 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5125 end Resolve_Record_Aggregate;
5126
5127 -----------------------------
5128 -- Check_Can_Never_Be_Null --
5129 -----------------------------
5130
5131 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5132 Comp_Typ : Entity_Id;
5133
5134 begin
5135 pragma Assert
5136 (Ada_Version >= Ada_2005
5137 and then Present (Expr)
5138 and then Known_Null (Expr));
5139
5140 case Ekind (Typ) is
5141 when E_Array_Type =>
5142 Comp_Typ := Component_Type (Typ);
5143
5144 when E_Component
5145 | E_Discriminant
5146 =>
5147 Comp_Typ := Etype (Typ);
5148
5149 when others =>
5150 return;
5151 end case;
5152
5153 if Can_Never_Be_Null (Comp_Typ) then
5154
5155 -- Here we know we have a constraint error. Note that we do not use
5156 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5157 -- seem the more natural approach. That's because in some cases the
5158 -- components are rewritten, and the replacement would be missed.
5159 -- We do not mark the whole aggregate as raising a constraint error,
5160 -- because the association may be a null array range.
5161
5162 Error_Msg_N
5163 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
5164 Error_Msg_N
5165 ("\Constraint_Error will be raised at run time??", Expr);
5166
5167 Rewrite (Expr,
5168 Make_Raise_Constraint_Error
5169 (Sloc (Expr), Reason => CE_Access_Check_Failed));
5170 Set_Etype (Expr, Comp_Typ);
5171 Set_Analyzed (Expr);
5172 end if;
5173 end Check_Can_Never_Be_Null;
5174
5175 ---------------------
5176 -- Sort_Case_Table --
5177 ---------------------
5178
5179 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5180 U : constant Int := Case_Table'Last;
5181 K : Int;
5182 J : Int;
5183 T : Case_Bounds;
5184
5185 begin
5186 K := 1;
5187 while K < U loop
5188 T := Case_Table (K + 1);
5189
5190 J := K + 1;
5191 while J > 1
5192 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5193 loop
5194 Case_Table (J) := Case_Table (J - 1);
5195 J := J - 1;
5196 end loop;
5197
5198 Case_Table (J) := T;
5199 K := K + 1;
5200 end loop;
5201 end Sort_Case_Table;
5202
5203 end Sem_Aggr;