[Ada] Change local object from variable to constant
[gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Itypes; use Itypes;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sem_Type; use Sem_Type;
58 with Sem_Warn; use Sem_Warn;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stringt; use Stringt;
62 with Stand; use Stand;
63 with Style; use Style;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Uintp; use Uintp;
67
68 package body Sem_Aggr is
69
70 type Case_Bounds is record
71 Lo : Node_Id;
72 -- Low bound of choice. Once we sort the Case_Table, then entries
73 -- will be in order of ascending Choice_Lo values.
74
75 Hi : Node_Id;
76 -- High Bound of choice. The sort does not pay any attention to the
77 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78
79 Highest : Uint;
80 -- If there are duplicates or missing entries, then in the sorted
81 -- table, this records the highest value among Choice_Hi values
82 -- seen so far, including this entry.
83
84 Choice : Node_Id;
85 -- The node of the choice
86 end record;
87
88 type Case_Table_Type is array (Pos range <>) of Case_Bounds;
89 -- Table type used by Check_Case_Choices procedure
90
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
99
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
109 --
110 -- It would be better to pass the proper type for Typ ???
111
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already preanalyzed and it is known to be type correct.
118
119 ------------------------------------------------------
120 -- Subprograms used for RECORD AGGREGATE Processing --
121 ------------------------------------------------------
122
123 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
124 -- This procedure performs all the semantic checks required for record
125 -- aggregates. Note that for aggregates analysis and resolution go
126 -- hand in hand. Aggregate analysis has been delayed up to here and
127 -- it is done while resolving the aggregate.
128 --
129 -- N is the N_Aggregate node.
130 -- Typ is the record type for the aggregate resolution
131 --
132 -- While performing the semantic checks, this procedure builds a new
133 -- Component_Association_List where each record field appears alone in a
134 -- Component_Choice_List along with its corresponding expression. The
135 -- record fields in the Component_Association_List appear in the same order
136 -- in which they appear in the record type Typ.
137 --
138 -- Once this new Component_Association_List is built and all the semantic
139 -- checks performed, the original aggregate subtree is replaced with the
140 -- new named record aggregate just built. This new record aggregate has no
141 -- positional associations, so its Expressions field is set to No_List.
142 -- Note that subtree substitution is performed with Rewrite so as to be
143 -- able to retrieve the original aggregate.
144 --
145 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
146 -- yields the aggregate format expected by Gigi. Typically, this kind of
147 -- tree manipulations are done in the expander. However, because the
148 -- semantic checks that need to be performed on record aggregates really go
149 -- hand in hand with the record aggregate normalization, the aggregate
150 -- subtree transformation is performed during resolution rather than
151 -- expansion. Had we decided otherwise we would have had to duplicate most
152 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
153 -- however, that all the expansion concerning aggregates for tagged records
154 -- is done in Expand_Record_Aggregate.
155 --
156 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
157 --
158 -- 1. Make sure that the record type against which the record aggregate
159 -- has to be resolved is not abstract. Furthermore if the type is a
160 -- null aggregate make sure the input aggregate N is also null.
161 --
162 -- 2. Verify that the structure of the aggregate is that of a record
163 -- aggregate. Specifically, look for component associations and ensure
164 -- that each choice list only has identifiers or the N_Others_Choice
165 -- node. Also make sure that if present, the N_Others_Choice occurs
166 -- last and by itself.
167 --
168 -- 3. If Typ contains discriminants, the values for each discriminant is
169 -- looked for. If the record type Typ has variants, we check that the
170 -- expressions corresponding to each discriminant ruling the (possibly
171 -- nested) variant parts of Typ, are static. This allows us to determine
172 -- the variant parts to which the rest of the aggregate must conform.
173 -- The names of discriminants with their values are saved in a new
174 -- association list, New_Assoc_List which is later augmented with the
175 -- names and values of the remaining components in the record type.
176 --
177 -- During this phase we also make sure that every discriminant is
178 -- assigned exactly one value. Note that when several values for a given
179 -- discriminant are found, semantic processing continues looking for
180 -- further errors. In this case it's the first discriminant value found
181 -- which we will be recorded.
182 --
183 -- IMPORTANT NOTE: For derived tagged types this procedure expects
184 -- First_Discriminant and Next_Discriminant to give the correct list
185 -- of discriminants, in the correct order.
186 --
187 -- 4. After all the discriminant values have been gathered, we can set the
188 -- Etype of the record aggregate. If Typ contains no discriminants this
189 -- is straightforward: the Etype of N is just Typ, otherwise a new
190 -- implicit constrained subtype of Typ is built to be the Etype of N.
191 --
192 -- 5. Gather the remaining record components according to the discriminant
193 -- values. This involves recursively traversing the record type
194 -- structure to see what variants are selected by the given discriminant
195 -- values. This processing is a little more convoluted if Typ is a
196 -- derived tagged types since we need to retrieve the record structure
197 -- of all the ancestors of Typ.
198 --
199 -- 6. After gathering the record components we look for their values in the
200 -- record aggregate and emit appropriate error messages should we not
201 -- find such values or should they be duplicated.
202 --
203 -- 7. We then make sure no illegal component names appear in the record
204 -- aggregate and make sure that the type of the record components
205 -- appearing in a same choice list is the same. Finally we ensure that
206 -- the others choice, if present, is used to provide the value of at
207 -- least a record component.
208 --
209 -- 8. The original aggregate node is replaced with the new named aggregate
210 -- built in steps 3 through 6, as explained earlier.
211 --
212 -- Given the complexity of record aggregate resolution, the primary goal of
213 -- this routine is clarity and simplicity rather than execution and storage
214 -- efficiency. If there are only positional components in the aggregate the
215 -- running time is linear. If there are associations the running time is
216 -- still linear as long as the order of the associations is not too far off
217 -- the order of the components in the record type. If this is not the case
218 -- the running time is at worst quadratic in the size of the association
219 -- list.
220
221 procedure Check_Misspelled_Component
222 (Elements : Elist_Id;
223 Component : Node_Id);
224 -- Give possible misspelling diagnostic if Component is likely to be a
225 -- misspelling of one of the components of the Assoc_List. This is called
226 -- by Resolve_Aggr_Expr after producing an invalid component error message.
227
228 -----------------------------------------------------
229 -- Subprograms used for ARRAY AGGREGATE Processing --
230 -----------------------------------------------------
231
232 function Resolve_Array_Aggregate
233 (N : Node_Id;
234 Index : Node_Id;
235 Index_Constr : Node_Id;
236 Component_Typ : Entity_Id;
237 Others_Allowed : Boolean) return Boolean;
238 -- This procedure performs the semantic checks for an array aggregate.
239 -- True is returned if the aggregate resolution succeeds.
240 --
241 -- The procedure works by recursively checking each nested aggregate.
242 -- Specifically, after checking a sub-aggregate nested at the i-th level
243 -- we recursively check all the subaggregates at the i+1-st level (if any).
244 -- Note that for aggregates analysis and resolution go hand in hand.
245 -- Aggregate analysis has been delayed up to here and it is done while
246 -- resolving the aggregate.
247 --
248 -- N is the current N_Aggregate node to be checked.
249 --
250 -- Index is the index node corresponding to the array sub-aggregate that
251 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
252 -- corresponding index type (or subtype).
253 --
254 -- Index_Constr is the node giving the applicable index constraint if
255 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
256 -- contexts [...] that can be used to determine the bounds of the array
257 -- value specified by the aggregate". If Others_Allowed below is False
258 -- there is no applicable index constraint and this node is set to Index.
259 --
260 -- Component_Typ is the array component type.
261 --
262 -- Others_Allowed indicates whether an others choice is allowed
263 -- in the context where the top-level aggregate appeared.
264 --
265 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
266 --
267 -- 1. Make sure that the others choice, if present, is by itself and
268 -- appears last in the sub-aggregate. Check that we do not have
269 -- positional and named components in the array sub-aggregate (unless
270 -- the named association is an others choice). Finally if an others
271 -- choice is present, make sure it is allowed in the aggregate context.
272 --
273 -- 2. If the array sub-aggregate contains discrete_choices:
274 --
275 -- (A) Verify their validity. Specifically verify that:
276 --
277 -- (a) If a null range is present it must be the only possible
278 -- choice in the array aggregate.
279 --
280 -- (b) Ditto for a non static range.
281 --
282 -- (c) Ditto for a non static expression.
283 --
284 -- In addition this step analyzes and resolves each discrete_choice,
285 -- making sure that its type is the type of the corresponding Index.
286 -- If we are not at the lowest array aggregate level (in the case of
287 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
288 -- recursively on each component expression. Otherwise, resolve the
289 -- bottom level component expressions against the expected component
290 -- type ONLY IF the component corresponds to a single discrete choice
291 -- which is not an others choice (to see why read the DELAYED
292 -- COMPONENT RESOLUTION below).
293 --
294 -- (B) Determine the bounds of the sub-aggregate and lowest and
295 -- highest choice values.
296 --
297 -- 3. For positional aggregates:
298 --
299 -- (A) Loop over the component expressions either recursively invoking
300 -- Resolve_Array_Aggregate on each of these for multi-dimensional
301 -- array aggregates or resolving the bottom level component
302 -- expressions against the expected component type.
303 --
304 -- (B) Determine the bounds of the positional sub-aggregates.
305 --
306 -- 4. Try to determine statically whether the evaluation of the array
307 -- sub-aggregate raises Constraint_Error. If yes emit proper
308 -- warnings. The precise checks are the following:
309 --
310 -- (A) Check that the index range defined by aggregate bounds is
311 -- compatible with corresponding index subtype.
312 -- We also check against the base type. In fact it could be that
313 -- Low/High bounds of the base type are static whereas those of
314 -- the index subtype are not. Thus if we can statically catch
315 -- a problem with respect to the base type we are guaranteed
316 -- that the same problem will arise with the index subtype
317 --
318 -- (B) If we are dealing with a named aggregate containing an others
319 -- choice and at least one discrete choice then make sure the range
320 -- specified by the discrete choices does not overflow the
321 -- aggregate bounds. We also check against the index type and base
322 -- type bounds for the same reasons given in (A).
323 --
324 -- (C) If we are dealing with a positional aggregate with an others
325 -- choice make sure the number of positional elements specified
326 -- does not overflow the aggregate bounds. We also check against
327 -- the index type and base type bounds as mentioned in (A).
328 --
329 -- Finally construct an N_Range node giving the sub-aggregate bounds.
330 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
331 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
332 -- to build the appropriate aggregate subtype. Aggregate_Bounds
333 -- information is needed during expansion.
334 --
335 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
336 -- expressions in an array aggregate may call Duplicate_Subexpr or some
337 -- other routine that inserts code just outside the outermost aggregate.
338 -- If the array aggregate contains discrete choices or an others choice,
339 -- this may be wrong. Consider for instance the following example.
340 --
341 -- type Rec is record
342 -- V : Integer := 0;
343 -- end record;
344 --
345 -- type Acc_Rec is access Rec;
346 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
347 --
348 -- Then the transformation of "new Rec" that occurs during resolution
349 -- entails the following code modifications
350 --
351 -- P7b : constant Acc_Rec := new Rec;
352 -- RecIP (P7b.all);
353 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
354 --
355 -- This code transformation is clearly wrong, since we need to call
356 -- "new Rec" for each of the 3 array elements. To avoid this problem we
357 -- delay resolution of the components of non positional array aggregates
358 -- to the expansion phase. As an optimization, if the discrete choice
359 -- specifies a single value we do not delay resolution.
360
361 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
362 -- This routine returns the type or subtype of an array aggregate.
363 --
364 -- N is the array aggregate node whose type we return.
365 --
366 -- Typ is the context type in which N occurs.
367 --
368 -- This routine creates an implicit array subtype whose bounds are
369 -- those defined by the aggregate. When this routine is invoked
370 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
371 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
372 -- sub-aggregate bounds. When building the aggregate itype, this function
373 -- traverses the array aggregate N collecting such Aggregate_Bounds and
374 -- constructs the proper array aggregate itype.
375 --
376 -- Note that in the case of multidimensional aggregates each inner
377 -- sub-aggregate corresponding to a given array dimension, may provide a
378 -- different bounds. If it is possible to determine statically that
379 -- some sub-aggregates corresponding to the same index do not have the
380 -- same bounds, then a warning is emitted. If such check is not possible
381 -- statically (because some sub-aggregate bounds are dynamic expressions)
382 -- then this job is left to the expander. In all cases the particular
383 -- bounds that this function will chose for a given dimension is the first
384 -- N_Range node for a sub-aggregate corresponding to that dimension.
385 --
386 -- Note that the Raises_Constraint_Error flag of an array aggregate
387 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
388 -- is set in Resolve_Array_Aggregate but the aggregate is not
389 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
390 -- first construct the proper itype for the aggregate (Gigi needs
391 -- this). After constructing the proper itype we will eventually replace
392 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
393 -- Of course in cases such as:
394 --
395 -- type Arr is array (integer range <>) of Integer;
396 -- A : Arr := (positive range -1 .. 2 => 0);
397 --
398 -- The bounds of the aggregate itype are cooked up to look reasonable
399 -- (in this particular case the bounds will be 1 .. 2).
400
401 procedure Make_String_Into_Aggregate (N : Node_Id);
402 -- A string literal can appear in a context in which a one dimensional
403 -- array of characters is expected. This procedure simply rewrites the
404 -- string as an aggregate, prior to resolution.
405
406 ---------------------------------
407 -- Delta aggregate processing --
408 ---------------------------------
409
410 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
411 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
412
413 ------------------------
414 -- Array_Aggr_Subtype --
415 ------------------------
416
417 function Array_Aggr_Subtype
418 (N : Node_Id;
419 Typ : Entity_Id) return Entity_Id
420 is
421 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
422 -- Number of aggregate index dimensions
423
424 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
425 -- Constrained N_Range of each index dimension in our aggregate itype
426
427 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
428 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
429 -- Low and High bounds for each index dimension in our aggregate itype
430
431 Is_Fully_Positional : Boolean := True;
432
433 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
434 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
435 -- to (sub-)aggregate N. This procedure collects and removes the side
436 -- effects of the constrained N_Range nodes corresponding to each index
437 -- dimension of our aggregate itype. These N_Range nodes are collected
438 -- in Aggr_Range above.
439 --
440 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
441 -- bounds of each index dimension. If, when collecting, two bounds
442 -- corresponding to the same dimension are static and found to differ,
443 -- then emit a warning, and mark N as raising Constraint_Error.
444
445 -------------------------
446 -- Collect_Aggr_Bounds --
447 -------------------------
448
449 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
450 This_Range : constant Node_Id := Aggregate_Bounds (N);
451 -- The aggregate range node of this specific sub-aggregate
452
453 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
454 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
455 -- The aggregate bounds of this specific sub-aggregate
456
457 Assoc : Node_Id;
458 Expr : Node_Id;
459
460 begin
461 Remove_Side_Effects (This_Low, Variable_Ref => True);
462 Remove_Side_Effects (This_High, Variable_Ref => True);
463
464 -- Collect the first N_Range for a given dimension that you find.
465 -- For a given dimension they must be all equal anyway.
466
467 if No (Aggr_Range (Dim)) then
468 Aggr_Low (Dim) := This_Low;
469 Aggr_High (Dim) := This_High;
470 Aggr_Range (Dim) := This_Range;
471
472 else
473 if Compile_Time_Known_Value (This_Low) then
474 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476
477 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
478 Set_Raises_Constraint_Error (N);
479 Error_Msg_Warn := SPARK_Mode /= On;
480 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
481 Error_Msg_N ("\Constraint_Error [<<", N);
482 end if;
483 end if;
484
485 if Compile_Time_Known_Value (This_High) then
486 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
487 Aggr_High (Dim) := This_High;
488
489 elsif
490 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
491 then
492 Set_Raises_Constraint_Error (N);
493 Error_Msg_Warn := SPARK_Mode /= On;
494 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
495 Error_Msg_N ("\Constraint_Error [<<", N);
496 end if;
497 end if;
498 end if;
499
500 if Dim < Aggr_Dimension then
501
502 -- Process positional components
503
504 if Present (Expressions (N)) then
505 Expr := First (Expressions (N));
506 while Present (Expr) loop
507 Collect_Aggr_Bounds (Expr, Dim + 1);
508 Next (Expr);
509 end loop;
510 end if;
511
512 -- Process component associations
513
514 if Present (Component_Associations (N)) then
515 Is_Fully_Positional := False;
516
517 Assoc := First (Component_Associations (N));
518 while Present (Assoc) loop
519 Expr := Expression (Assoc);
520 Collect_Aggr_Bounds (Expr, Dim + 1);
521 Next (Assoc);
522 end loop;
523 end if;
524 end if;
525 end Collect_Aggr_Bounds;
526
527 -- Array_Aggr_Subtype variables
528
529 Itype : Entity_Id;
530 -- The final itype of the overall aggregate
531
532 Index_Constraints : constant List_Id := New_List;
533 -- The list of index constraints of the aggregate itype
534
535 -- Start of processing for Array_Aggr_Subtype
536
537 begin
538 -- Make sure that the list of index constraints is properly attached to
539 -- the tree, and then collect the aggregate bounds.
540
541 Set_Parent (Index_Constraints, N);
542 Collect_Aggr_Bounds (N, 1);
543
544 -- Build the list of constrained indexes of our aggregate itype
545
546 for J in 1 .. Aggr_Dimension loop
547 Create_Index : declare
548 Index_Base : constant Entity_Id :=
549 Base_Type (Etype (Aggr_Range (J)));
550 Index_Typ : Entity_Id;
551
552 begin
553 -- Construct the Index subtype, and associate it with the range
554 -- construct that generates it.
555
556 Index_Typ :=
557 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
558
559 Set_Etype (Index_Typ, Index_Base);
560
561 if Is_Character_Type (Index_Base) then
562 Set_Is_Character_Type (Index_Typ);
563 end if;
564
565 Set_Size_Info (Index_Typ, (Index_Base));
566 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
567 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
568 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
569
570 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
571 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
572 end if;
573
574 Set_Etype (Aggr_Range (J), Index_Typ);
575
576 Append (Aggr_Range (J), To => Index_Constraints);
577 end Create_Index;
578 end loop;
579
580 -- Now build the Itype
581
582 Itype := Create_Itype (E_Array_Subtype, N);
583
584 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
585 Set_Convention (Itype, Convention (Typ));
586 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
587 Set_Etype (Itype, Base_Type (Typ));
588 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
589 Set_Is_Aliased (Itype, Is_Aliased (Typ));
590 Set_Is_Independent (Itype, Is_Independent (Typ));
591 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
592
593 Copy_Suppress_Status (Index_Check, Typ, Itype);
594 Copy_Suppress_Status (Length_Check, Typ, Itype);
595
596 Set_First_Index (Itype, First (Index_Constraints));
597 Set_Is_Constrained (Itype, True);
598 Set_Is_Internal (Itype, True);
599
600 if Has_Predicates (Typ) then
601 Set_Has_Predicates (Itype);
602
603 -- If the base type has a predicate, capture the predicated parent
604 -- or the existing predicate function for SPARK use.
605
606 if Present (Predicate_Function (Typ)) then
607 Set_Predicate_Function (Itype, Predicate_Function (Typ));
608
609 elsif Is_Itype (Typ) then
610 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
611
612 else
613 Set_Predicated_Parent (Itype, Typ);
614 end if;
615 end if;
616
617 -- A simple optimization: purely positional aggregates of static
618 -- components should be passed to gigi unexpanded whenever possible, and
619 -- regardless of the staticness of the bounds themselves. Subsequent
620 -- checks in exp_aggr verify that type is not packed, etc.
621
622 Set_Size_Known_At_Compile_Time
623 (Itype,
624 Is_Fully_Positional
625 and then Comes_From_Source (N)
626 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
627
628 -- We always need a freeze node for a packed array subtype, so that we
629 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
630 -- expansion is disabled, the packed array subtype is not built, and we
631 -- must not generate a freeze node for the type, or else it will appear
632 -- incomplete to gigi.
633
634 if Is_Packed (Itype)
635 and then not In_Spec_Expression
636 and then Expander_Active
637 then
638 Freeze_Itype (Itype, N);
639 end if;
640
641 return Itype;
642 end Array_Aggr_Subtype;
643
644 --------------------------------
645 -- Check_Misspelled_Component --
646 --------------------------------
647
648 procedure Check_Misspelled_Component
649 (Elements : Elist_Id;
650 Component : Node_Id)
651 is
652 Max_Suggestions : constant := 2;
653
654 Nr_Of_Suggestions : Natural := 0;
655 Suggestion_1 : Entity_Id := Empty;
656 Suggestion_2 : Entity_Id := Empty;
657 Component_Elmt : Elmt_Id;
658
659 begin
660 -- All the components of List are matched against Component and a count
661 -- is maintained of possible misspellings. When at the end of the
662 -- analysis there are one or two (not more) possible misspellings,
663 -- these misspellings will be suggested as possible corrections.
664
665 Component_Elmt := First_Elmt (Elements);
666 while Nr_Of_Suggestions <= Max_Suggestions
667 and then Present (Component_Elmt)
668 loop
669 if Is_Bad_Spelling_Of
670 (Chars (Node (Component_Elmt)),
671 Chars (Component))
672 then
673 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
674
675 case Nr_Of_Suggestions is
676 when 1 => Suggestion_1 := Node (Component_Elmt);
677 when 2 => Suggestion_2 := Node (Component_Elmt);
678 when others => null;
679 end case;
680 end if;
681
682 Next_Elmt (Component_Elmt);
683 end loop;
684
685 -- Report at most two suggestions
686
687 if Nr_Of_Suggestions = 1 then
688 Error_Msg_NE -- CODEFIX
689 ("\possible misspelling of&", Component, Suggestion_1);
690
691 elsif Nr_Of_Suggestions = 2 then
692 Error_Msg_Node_2 := Suggestion_2;
693 Error_Msg_NE -- CODEFIX
694 ("\possible misspelling of& or&", Component, Suggestion_1);
695 end if;
696 end Check_Misspelled_Component;
697
698 ----------------------------------------
699 -- Check_Expr_OK_In_Limited_Aggregate --
700 ----------------------------------------
701
702 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
703 begin
704 if Is_Limited_Type (Etype (Expr))
705 and then Comes_From_Source (Expr)
706 then
707 if In_Instance_Body or else In_Inlined_Body then
708 null;
709
710 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
711 Error_Msg_N
712 ("initialization not allowed for limited types", Expr);
713 Explain_Limited_Type (Etype (Expr), Expr);
714 end if;
715 end if;
716 end Check_Expr_OK_In_Limited_Aggregate;
717
718 -------------------------
719 -- Is_Others_Aggregate --
720 -------------------------
721
722 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
723 Assoc : constant List_Id := Component_Associations (Aggr);
724
725 begin
726 return No (Expressions (Aggr))
727 and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
728 end Is_Others_Aggregate;
729
730 -------------------------
731 -- Is_Single_Aggregate --
732 -------------------------
733
734 function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
735 Assoc : constant List_Id := Component_Associations (Aggr);
736
737 begin
738 return No (Expressions (Aggr))
739 and then No (Next (First (Assoc)))
740 and then No (Next (First (Choice_List (First (Assoc)))));
741 end Is_Single_Aggregate;
742
743 --------------------------------
744 -- Make_String_Into_Aggregate --
745 --------------------------------
746
747 procedure Make_String_Into_Aggregate (N : Node_Id) is
748 Exprs : constant List_Id := New_List;
749 Loc : constant Source_Ptr := Sloc (N);
750 Str : constant String_Id := Strval (N);
751 Strlen : constant Nat := String_Length (Str);
752 C : Char_Code;
753 C_Node : Node_Id;
754 New_N : Node_Id;
755 P : Source_Ptr;
756
757 begin
758 P := Loc + 1;
759 for J in 1 .. Strlen loop
760 C := Get_String_Char (Str, J);
761 Set_Character_Literal_Name (C);
762
763 C_Node :=
764 Make_Character_Literal (P,
765 Chars => Name_Find,
766 Char_Literal_Value => UI_From_CC (C));
767 Set_Etype (C_Node, Any_Character);
768 Append_To (Exprs, C_Node);
769
770 P := P + 1;
771 -- Something special for wide strings???
772 end loop;
773
774 New_N := Make_Aggregate (Loc, Expressions => Exprs);
775 Set_Analyzed (New_N);
776 Set_Etype (New_N, Any_Composite);
777
778 Rewrite (N, New_N);
779 end Make_String_Into_Aggregate;
780
781 -----------------------
782 -- Resolve_Aggregate --
783 -----------------------
784
785 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
786 Loc : constant Source_Ptr := Sloc (N);
787
788 Aggr_Subtyp : Entity_Id;
789 -- The actual aggregate subtype. This is not necessarily the same as Typ
790 -- which is the subtype of the context in which the aggregate was found.
791
792 begin
793 -- Ignore junk empty aggregate resulting from parser error
794
795 if No (Expressions (N))
796 and then No (Component_Associations (N))
797 and then not Null_Record_Present (N)
798 then
799 return;
800 end if;
801
802 -- If the aggregate has box-initialized components, its type must be
803 -- frozen so that initialization procedures can properly be called
804 -- in the resolution that follows. The replacement of boxes with
805 -- initialization calls is properly an expansion activity but it must
806 -- be done during resolution.
807
808 if Expander_Active
809 and then Present (Component_Associations (N))
810 then
811 declare
812 Comp : Node_Id;
813
814 begin
815 Comp := First (Component_Associations (N));
816 while Present (Comp) loop
817 if Box_Present (Comp) then
818 Insert_Actions (N, Freeze_Entity (Typ, N));
819 exit;
820 end if;
821
822 Next (Comp);
823 end loop;
824 end;
825 end if;
826
827 -- Check for aggregates not allowed in configurable run-time mode.
828 -- We allow all cases of aggregates that do not come from source, since
829 -- these are all assumed to be small (e.g. bounds of a string literal).
830 -- We also allow aggregates of types we know to be small.
831
832 if not Support_Aggregates_On_Target
833 and then Comes_From_Source (N)
834 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
835 then
836 Error_Msg_CRT ("aggregate", N);
837 end if;
838
839 -- Ada 2005 (AI-287): Limited aggregates allowed
840
841 -- In an instance, ignore aggregate subcomponents tnat may be limited,
842 -- because they originate in view conflicts. If the original aggregate
843 -- is legal and the actuals are legal, the aggregate itself is legal.
844
845 if Is_Limited_Type (Typ)
846 and then Ada_Version < Ada_2005
847 and then not In_Instance
848 then
849 Error_Msg_N ("aggregate type cannot be limited", N);
850 Explain_Limited_Type (Typ, N);
851
852 elsif Is_Class_Wide_Type (Typ) then
853 Error_Msg_N ("type of aggregate cannot be class-wide", N);
854
855 elsif Typ = Any_String
856 or else Typ = Any_Composite
857 then
858 Error_Msg_N ("no unique type for aggregate", N);
859 Set_Etype (N, Any_Composite);
860
861 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
862 Error_Msg_N ("null record forbidden in array aggregate", N);
863
864 elsif Is_Record_Type (Typ) then
865 Resolve_Record_Aggregate (N, Typ);
866
867 elsif Is_Array_Type (Typ) then
868
869 -- First a special test, for the case of a positional aggregate of
870 -- characters which can be replaced by a string literal.
871
872 -- Do not perform this transformation if this was a string literal
873 -- to start with, whose components needed constraint checks, or if
874 -- the component type is non-static, because it will require those
875 -- checks and be transformed back into an aggregate. If the index
876 -- type is not Integer the aggregate may represent a user-defined
877 -- string type but the context might need the original type so we
878 -- do not perform the transformation at this point.
879
880 if Number_Dimensions (Typ) = 1
881 and then Is_Standard_Character_Type (Component_Type (Typ))
882 and then No (Component_Associations (N))
883 and then not Is_Limited_Composite (Typ)
884 and then not Is_Private_Composite (Typ)
885 and then not Is_Bit_Packed_Array (Typ)
886 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
887 and then Is_OK_Static_Subtype (Component_Type (Typ))
888 and then Base_Type (Etype (First_Index (Typ))) =
889 Base_Type (Standard_Integer)
890 then
891 declare
892 Expr : Node_Id;
893
894 begin
895 Expr := First (Expressions (N));
896 while Present (Expr) loop
897 exit when Nkind (Expr) /= N_Character_Literal;
898 Next (Expr);
899 end loop;
900
901 if No (Expr) then
902 Start_String;
903
904 Expr := First (Expressions (N));
905 while Present (Expr) loop
906 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
907 Next (Expr);
908 end loop;
909
910 Rewrite (N, Make_String_Literal (Loc, End_String));
911
912 Analyze_And_Resolve (N, Typ);
913 return;
914 end if;
915 end;
916 end if;
917
918 -- Here if we have a real aggregate to deal with
919
920 Array_Aggregate : declare
921 Aggr_Resolved : Boolean;
922
923 Aggr_Typ : constant Entity_Id := Etype (Typ);
924 -- This is the unconstrained array type, which is the type against
925 -- which the aggregate is to be resolved. Typ itself is the array
926 -- type of the context which may not be the same subtype as the
927 -- subtype for the final aggregate.
928
929 begin
930 -- In the following we determine whether an OTHERS choice is
931 -- allowed inside the array aggregate. The test checks the context
932 -- in which the array aggregate occurs. If the context does not
933 -- permit it, or the aggregate type is unconstrained, an OTHERS
934 -- choice is not allowed (except that it is always allowed on the
935 -- right-hand side of an assignment statement; in this case the
936 -- constrainedness of the type doesn't matter, because an array
937 -- object is always constrained).
938
939 -- If expansion is disabled (generic context, or semantics-only
940 -- mode) actual subtypes cannot be constructed, and the type of an
941 -- object may be its unconstrained nominal type. However, if the
942 -- context is an assignment statement, OTHERS is allowed, because
943 -- the target of the assignment will have a constrained subtype
944 -- when fully compiled. Ditto if the context is an initialization
945 -- procedure where a component may have a predicate function that
946 -- carries the base type.
947
948 -- Note that there is no node for Explicit_Actual_Parameter.
949 -- To test for this context we therefore have to test for node
950 -- N_Parameter_Association which itself appears only if there is a
951 -- formal parameter. Consequently we also need to test for
952 -- N_Procedure_Call_Statement or N_Function_Call.
953
954 -- The context may be an N_Reference node, created by expansion.
955 -- Legality of the others clause was established in the source,
956 -- so the context is legal.
957
958 Set_Etype (N, Aggr_Typ); -- May be overridden later on
959
960 if Nkind (Parent (N)) = N_Assignment_Statement
961 or else Inside_Init_Proc
962 or else (Is_Constrained (Typ)
963 and then Nkind_In (Parent (N),
964 N_Parameter_Association,
965 N_Function_Call,
966 N_Procedure_Call_Statement,
967 N_Generic_Association,
968 N_Formal_Object_Declaration,
969 N_Simple_Return_Statement,
970 N_Object_Declaration,
971 N_Component_Declaration,
972 N_Parameter_Specification,
973 N_Qualified_Expression,
974 N_Reference,
975 N_Aggregate,
976 N_Extension_Aggregate,
977 N_Component_Association,
978 N_Case_Expression_Alternative,
979 N_If_Expression,
980 N_Expression_With_Actions))
981 then
982 Aggr_Resolved :=
983 Resolve_Array_Aggregate
984 (N,
985 Index => First_Index (Aggr_Typ),
986 Index_Constr => First_Index (Typ),
987 Component_Typ => Component_Type (Typ),
988 Others_Allowed => True);
989 else
990 Aggr_Resolved :=
991 Resolve_Array_Aggregate
992 (N,
993 Index => First_Index (Aggr_Typ),
994 Index_Constr => First_Index (Aggr_Typ),
995 Component_Typ => Component_Type (Typ),
996 Others_Allowed => False);
997 end if;
998
999 if not Aggr_Resolved then
1000
1001 -- A parenthesized expression may have been intended as an
1002 -- aggregate, leading to a type error when analyzing the
1003 -- component. This can also happen for a nested component
1004 -- (see Analyze_Aggr_Expr).
1005
1006 if Paren_Count (N) > 0 then
1007 Error_Msg_N
1008 ("positional aggregate cannot have one component", N);
1009 end if;
1010
1011 Aggr_Subtyp := Any_Composite;
1012
1013 else
1014 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1015 end if;
1016
1017 Set_Etype (N, Aggr_Subtyp);
1018 end Array_Aggregate;
1019
1020 elsif Is_Private_Type (Typ)
1021 and then Present (Full_View (Typ))
1022 and then (In_Inlined_Body or In_Instance_Body)
1023 and then Is_Composite_Type (Full_View (Typ))
1024 then
1025 Resolve (N, Full_View (Typ));
1026
1027 else
1028 Error_Msg_N ("illegal context for aggregate", N);
1029 end if;
1030
1031 -- If we can determine statically that the evaluation of the aggregate
1032 -- raises Constraint_Error, then replace the aggregate with an
1033 -- N_Raise_Constraint_Error node, but set the Etype to the right
1034 -- aggregate subtype. Gigi needs this.
1035
1036 if Raises_Constraint_Error (N) then
1037 Aggr_Subtyp := Etype (N);
1038 Rewrite (N,
1039 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1040 Set_Raises_Constraint_Error (N);
1041 Set_Etype (N, Aggr_Subtyp);
1042 Set_Analyzed (N);
1043 end if;
1044
1045 Check_Function_Writable_Actuals (N);
1046 end Resolve_Aggregate;
1047
1048 -----------------------------
1049 -- Resolve_Array_Aggregate --
1050 -----------------------------
1051
1052 function Resolve_Array_Aggregate
1053 (N : Node_Id;
1054 Index : Node_Id;
1055 Index_Constr : Node_Id;
1056 Component_Typ : Entity_Id;
1057 Others_Allowed : Boolean) return Boolean
1058 is
1059 Loc : constant Source_Ptr := Sloc (N);
1060
1061 Failure : constant Boolean := False;
1062 Success : constant Boolean := True;
1063
1064 Index_Typ : constant Entity_Id := Etype (Index);
1065 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1066 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1067 -- The type of the index corresponding to the array sub-aggregate along
1068 -- with its low and upper bounds.
1069
1070 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1071 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1072 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1073 -- Ditto for the base type
1074
1075 Others_Present : Boolean := False;
1076
1077 Nb_Choices : Nat := 0;
1078 -- Contains the overall number of named choices in this sub-aggregate
1079
1080 function Add (Val : Uint; To : Node_Id) return Node_Id;
1081 -- Creates a new expression node where Val is added to expression To.
1082 -- Tries to constant fold whenever possible. To must be an already
1083 -- analyzed expression.
1084
1085 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1086 -- Checks that AH (the upper bound of an array aggregate) is less than
1087 -- or equal to BH (the upper bound of the index base type). If the check
1088 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1089 -- set, and AH is replaced with a duplicate of BH.
1090
1091 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1092 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1093 -- warning if not and sets the Raises_Constraint_Error flag in N.
1094
1095 procedure Check_Length (L, H : Node_Id; Len : Uint);
1096 -- Checks that range L .. H contains at least Len elements. Emits a
1097 -- warning if not and sets the Raises_Constraint_Error flag in N.
1098
1099 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1100 -- Returns True if range L .. H is dynamic or null
1101
1102 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1103 -- Given expression node From, this routine sets OK to False if it
1104 -- cannot statically evaluate From. Otherwise it stores this static
1105 -- value into Value.
1106
1107 function Resolve_Aggr_Expr
1108 (Expr : Node_Id;
1109 Single_Elmt : Boolean) return Boolean;
1110 -- Resolves aggregate expression Expr. Returns False if resolution
1111 -- fails. If Single_Elmt is set to False, the expression Expr may be
1112 -- used to initialize several array aggregate elements (this can happen
1113 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1114 -- In this event we do not resolve Expr unless expansion is disabled.
1115 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1116 --
1117 -- NOTE: In the case of "... => <>", we pass the in the
1118 -- N_Component_Association node as Expr, since there is no Expression in
1119 -- that case, and we need a Sloc for the error message.
1120
1121 procedure Resolve_Iterated_Component_Association
1122 (N : Node_Id;
1123 Index_Typ : Entity_Id);
1124 -- For AI12-061
1125
1126 ---------
1127 -- Add --
1128 ---------
1129
1130 function Add (Val : Uint; To : Node_Id) return Node_Id is
1131 Expr_Pos : Node_Id;
1132 Expr : Node_Id;
1133 To_Pos : Node_Id;
1134
1135 begin
1136 if Raises_Constraint_Error (To) then
1137 return To;
1138 end if;
1139
1140 -- First test if we can do constant folding
1141
1142 if Compile_Time_Known_Value (To)
1143 or else Nkind (To) = N_Integer_Literal
1144 then
1145 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1146 Set_Is_Static_Expression (Expr_Pos);
1147 Set_Etype (Expr_Pos, Etype (To));
1148 Set_Analyzed (Expr_Pos, Analyzed (To));
1149
1150 if not Is_Enumeration_Type (Index_Typ) then
1151 Expr := Expr_Pos;
1152
1153 -- If we are dealing with enumeration return
1154 -- Index_Typ'Val (Expr_Pos)
1155
1156 else
1157 Expr :=
1158 Make_Attribute_Reference
1159 (Loc,
1160 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1161 Attribute_Name => Name_Val,
1162 Expressions => New_List (Expr_Pos));
1163 end if;
1164
1165 return Expr;
1166 end if;
1167
1168 -- If we are here no constant folding possible
1169
1170 if not Is_Enumeration_Type (Index_Base) then
1171 Expr :=
1172 Make_Op_Add (Loc,
1173 Left_Opnd => Duplicate_Subexpr (To),
1174 Right_Opnd => Make_Integer_Literal (Loc, Val));
1175
1176 -- If we are dealing with enumeration return
1177 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1178
1179 else
1180 To_Pos :=
1181 Make_Attribute_Reference
1182 (Loc,
1183 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1184 Attribute_Name => Name_Pos,
1185 Expressions => New_List (Duplicate_Subexpr (To)));
1186
1187 Expr_Pos :=
1188 Make_Op_Add (Loc,
1189 Left_Opnd => To_Pos,
1190 Right_Opnd => Make_Integer_Literal (Loc, Val));
1191
1192 Expr :=
1193 Make_Attribute_Reference
1194 (Loc,
1195 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1196 Attribute_Name => Name_Val,
1197 Expressions => New_List (Expr_Pos));
1198
1199 -- If the index type has a non standard representation, the
1200 -- attributes 'Val and 'Pos expand into function calls and the
1201 -- resulting expression is considered non-safe for reevaluation
1202 -- by the backend. Relocate it into a constant temporary in order
1203 -- to make it safe for reevaluation.
1204
1205 if Has_Non_Standard_Rep (Etype (N)) then
1206 declare
1207 Def_Id : Entity_Id;
1208
1209 begin
1210 Def_Id := Make_Temporary (Loc, 'R', Expr);
1211 Set_Etype (Def_Id, Index_Typ);
1212 Insert_Action (N,
1213 Make_Object_Declaration (Loc,
1214 Defining_Identifier => Def_Id,
1215 Object_Definition =>
1216 New_Occurrence_Of (Index_Typ, Loc),
1217 Constant_Present => True,
1218 Expression => Relocate_Node (Expr)));
1219
1220 Expr := New_Occurrence_Of (Def_Id, Loc);
1221 end;
1222 end if;
1223 end if;
1224
1225 return Expr;
1226 end Add;
1227
1228 -----------------
1229 -- Check_Bound --
1230 -----------------
1231
1232 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1233 Val_BH : Uint;
1234 Val_AH : Uint;
1235
1236 OK_BH : Boolean;
1237 OK_AH : Boolean;
1238
1239 begin
1240 Get (Value => Val_BH, From => BH, OK => OK_BH);
1241 Get (Value => Val_AH, From => AH, OK => OK_AH);
1242
1243 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1244 Set_Raises_Constraint_Error (N);
1245 Error_Msg_Warn := SPARK_Mode /= On;
1246 Error_Msg_N ("upper bound out of range<<", AH);
1247 Error_Msg_N ("\Constraint_Error [<<", AH);
1248
1249 -- You need to set AH to BH or else in the case of enumerations
1250 -- indexes we will not be able to resolve the aggregate bounds.
1251
1252 AH := Duplicate_Subexpr (BH);
1253 end if;
1254 end Check_Bound;
1255
1256 ------------------
1257 -- Check_Bounds --
1258 ------------------
1259
1260 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1261 Val_L : Uint;
1262 Val_H : Uint;
1263 Val_AL : Uint;
1264 Val_AH : Uint;
1265
1266 OK_L : Boolean;
1267 OK_H : Boolean;
1268
1269 OK_AL : Boolean;
1270 OK_AH : Boolean;
1271 pragma Warnings (Off, OK_AL);
1272 pragma Warnings (Off, OK_AH);
1273
1274 begin
1275 if Raises_Constraint_Error (N)
1276 or else Dynamic_Or_Null_Range (AL, AH)
1277 then
1278 return;
1279 end if;
1280
1281 Get (Value => Val_L, From => L, OK => OK_L);
1282 Get (Value => Val_H, From => H, OK => OK_H);
1283
1284 Get (Value => Val_AL, From => AL, OK => OK_AL);
1285 Get (Value => Val_AH, From => AH, OK => OK_AH);
1286
1287 if OK_L and then Val_L > Val_AL then
1288 Set_Raises_Constraint_Error (N);
1289 Error_Msg_Warn := SPARK_Mode /= On;
1290 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1291 Error_Msg_N ("\Constraint_Error [<<", N);
1292 end if;
1293
1294 if OK_H and then Val_H < Val_AH then
1295 Set_Raises_Constraint_Error (N);
1296 Error_Msg_Warn := SPARK_Mode /= On;
1297 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1298 Error_Msg_N ("\Constraint_Error [<<", N);
1299 end if;
1300 end Check_Bounds;
1301
1302 ------------------
1303 -- Check_Length --
1304 ------------------
1305
1306 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1307 Val_L : Uint;
1308 Val_H : Uint;
1309
1310 OK_L : Boolean;
1311 OK_H : Boolean;
1312
1313 Range_Len : Uint;
1314
1315 begin
1316 if Raises_Constraint_Error (N) then
1317 return;
1318 end if;
1319
1320 Get (Value => Val_L, From => L, OK => OK_L);
1321 Get (Value => Val_H, From => H, OK => OK_H);
1322
1323 if not OK_L or else not OK_H then
1324 return;
1325 end if;
1326
1327 -- If null range length is zero
1328
1329 if Val_L > Val_H then
1330 Range_Len := Uint_0;
1331 else
1332 Range_Len := Val_H - Val_L + 1;
1333 end if;
1334
1335 if Range_Len < Len then
1336 Set_Raises_Constraint_Error (N);
1337 Error_Msg_Warn := SPARK_Mode /= On;
1338 Error_Msg_N ("too many elements<<", N);
1339 Error_Msg_N ("\Constraint_Error [<<", N);
1340 end if;
1341 end Check_Length;
1342
1343 ---------------------------
1344 -- Dynamic_Or_Null_Range --
1345 ---------------------------
1346
1347 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1348 Val_L : Uint;
1349 Val_H : Uint;
1350
1351 OK_L : Boolean;
1352 OK_H : Boolean;
1353
1354 begin
1355 Get (Value => Val_L, From => L, OK => OK_L);
1356 Get (Value => Val_H, From => H, OK => OK_H);
1357
1358 return not OK_L or else not OK_H
1359 or else not Is_OK_Static_Expression (L)
1360 or else not Is_OK_Static_Expression (H)
1361 or else Val_L > Val_H;
1362 end Dynamic_Or_Null_Range;
1363
1364 ---------
1365 -- Get --
1366 ---------
1367
1368 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1369 begin
1370 OK := True;
1371
1372 if Compile_Time_Known_Value (From) then
1373 Value := Expr_Value (From);
1374
1375 -- If expression From is something like Some_Type'Val (10) then
1376 -- Value = 10.
1377
1378 elsif Nkind (From) = N_Attribute_Reference
1379 and then Attribute_Name (From) = Name_Val
1380 and then Compile_Time_Known_Value (First (Expressions (From)))
1381 then
1382 Value := Expr_Value (First (Expressions (From)));
1383 else
1384 Value := Uint_0;
1385 OK := False;
1386 end if;
1387 end Get;
1388
1389 -----------------------
1390 -- Resolve_Aggr_Expr --
1391 -----------------------
1392
1393 function Resolve_Aggr_Expr
1394 (Expr : Node_Id;
1395 Single_Elmt : Boolean) return Boolean
1396 is
1397 Nxt_Ind : constant Node_Id := Next_Index (Index);
1398 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1399 -- Index is the current index corresponding to the expression
1400
1401 Resolution_OK : Boolean := True;
1402 -- Set to False if resolution of the expression failed
1403
1404 begin
1405 -- Defend against previous errors
1406
1407 if Nkind (Expr) = N_Error
1408 or else Error_Posted (Expr)
1409 then
1410 return True;
1411 end if;
1412
1413 -- If the array type against which we are resolving the aggregate
1414 -- has several dimensions, the expressions nested inside the
1415 -- aggregate must be further aggregates (or strings).
1416
1417 if Present (Nxt_Ind) then
1418 if Nkind (Expr) /= N_Aggregate then
1419
1420 -- A string literal can appear where a one-dimensional array
1421 -- of characters is expected. If the literal looks like an
1422 -- operator, it is still an operator symbol, which will be
1423 -- transformed into a string when analyzed.
1424
1425 if Is_Character_Type (Component_Typ)
1426 and then No (Next_Index (Nxt_Ind))
1427 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1428 then
1429 -- A string literal used in a multidimensional array
1430 -- aggregate in place of the final one-dimensional
1431 -- aggregate must not be enclosed in parentheses.
1432
1433 if Paren_Count (Expr) /= 0 then
1434 Error_Msg_N ("no parenthesis allowed here", Expr);
1435 end if;
1436
1437 Make_String_Into_Aggregate (Expr);
1438
1439 else
1440 Error_Msg_N ("nested array aggregate expected", Expr);
1441
1442 -- If the expression is parenthesized, this may be
1443 -- a missing component association for a 1-aggregate.
1444
1445 if Paren_Count (Expr) > 0 then
1446 Error_Msg_N
1447 ("\if single-component aggregate is intended, "
1448 & "write e.g. (1 ='> ...)", Expr);
1449 end if;
1450
1451 return Failure;
1452 end if;
1453 end if;
1454
1455 -- If it's "... => <>", nothing to resolve
1456
1457 if Nkind (Expr) = N_Component_Association then
1458 pragma Assert (Box_Present (Expr));
1459 return Success;
1460 end if;
1461
1462 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1463 -- Required to check the null-exclusion attribute (if present).
1464 -- This value may be overridden later on.
1465
1466 Set_Etype (Expr, Etype (N));
1467
1468 Resolution_OK := Resolve_Array_Aggregate
1469 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1470
1471 else
1472 -- If it's "... => <>", nothing to resolve
1473
1474 if Nkind (Expr) = N_Component_Association then
1475 pragma Assert (Box_Present (Expr));
1476 return Success;
1477 end if;
1478
1479 -- Do not resolve the expressions of discrete or others choices
1480 -- unless the expression covers a single component, or the
1481 -- expander is inactive.
1482
1483 -- In SPARK mode, expressions that can perform side effects will
1484 -- be recognized by the gnat2why back-end, and the whole
1485 -- subprogram will be ignored. So semantic analysis can be
1486 -- performed safely.
1487
1488 if Single_Elmt
1489 or else not Expander_Active
1490 or else In_Spec_Expression
1491 then
1492 Analyze_And_Resolve (Expr, Component_Typ);
1493 Check_Expr_OK_In_Limited_Aggregate (Expr);
1494 Check_Non_Static_Context (Expr);
1495 Aggregate_Constraint_Checks (Expr, Component_Typ);
1496 Check_Unset_Reference (Expr);
1497 end if;
1498 end if;
1499
1500 -- If an aggregate component has a type with predicates, an explicit
1501 -- predicate check must be applied, as for an assignment statement,
1502 -- because the aggegate might not be expanded into individual
1503 -- component assignments. If the expression covers several components
1504 -- the analysis and the predicate check take place later.
1505
1506 if Has_Predicates (Component_Typ)
1507 and then Analyzed (Expr)
1508 then
1509 Apply_Predicate_Check (Expr, Component_Typ);
1510 end if;
1511
1512 if Raises_Constraint_Error (Expr)
1513 and then Nkind (Parent (Expr)) /= N_Component_Association
1514 then
1515 Set_Raises_Constraint_Error (N);
1516 end if;
1517
1518 -- If the expression has been marked as requiring a range check,
1519 -- then generate it here. It's a bit odd to be generating such
1520 -- checks in the analyzer, but harmless since Generate_Range_Check
1521 -- does nothing (other than making sure Do_Range_Check is set) if
1522 -- the expander is not active.
1523
1524 if Do_Range_Check (Expr) then
1525 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1526 end if;
1527
1528 return Resolution_OK;
1529 end Resolve_Aggr_Expr;
1530
1531 --------------------------------------------
1532 -- Resolve_Iterated_Component_Association --
1533 --------------------------------------------
1534
1535 procedure Resolve_Iterated_Component_Association
1536 (N : Node_Id;
1537 Index_Typ : Entity_Id)
1538 is
1539 Loc : constant Source_Ptr := Sloc (N);
1540
1541 Choice : Node_Id;
1542 Dummy : Boolean;
1543 Ent : Entity_Id;
1544 Expr : Node_Id;
1545 Id : Entity_Id;
1546
1547 begin
1548 Choice := First (Discrete_Choices (N));
1549
1550 while Present (Choice) loop
1551 if Nkind (Choice) = N_Others_Choice then
1552 Others_Present := True;
1553
1554 else
1555 Analyze (Choice);
1556
1557 -- Choice can be a subtype name, a range, or an expression
1558
1559 if Is_Entity_Name (Choice)
1560 and then Is_Type (Entity (Choice))
1561 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1562 then
1563 null;
1564
1565 else
1566 Analyze_And_Resolve (Choice, Index_Typ);
1567 end if;
1568 end if;
1569
1570 Next (Choice);
1571 end loop;
1572
1573 -- Create a scope in which to introduce an index, which is usually
1574 -- visible in the expression for the component, and needed for its
1575 -- analysis.
1576
1577 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1578 Set_Etype (Ent, Standard_Void_Type);
1579 Set_Parent (Ent, Parent (N));
1580 Push_Scope (Ent);
1581 Id :=
1582 Make_Defining_Identifier (Loc,
1583 Chars => Chars (Defining_Identifier (N)));
1584
1585 -- Insert and decorate the index variable in the current scope.
1586 -- The expression has to be analyzed once the index variable is
1587 -- directly visible. Mark the variable as referenced to prevent
1588 -- spurious warnings, given that subsequent uses of its name in the
1589 -- expression will reference the internal (synonym) loop variable.
1590
1591 Enter_Name (Id);
1592 Set_Etype (Id, Index_Typ);
1593 Set_Ekind (Id, E_Variable);
1594 Set_Scope (Id, Ent);
1595 Set_Referenced (Id);
1596
1597 -- Analyze a copy of the expression, to verify legality. We use
1598 -- a copy because the expression will be analyzed anew when the
1599 -- enclosing aggregate is expanded, and the construct is rewritten
1600 -- as a loop with a new index variable.
1601
1602 Expr := New_Copy_Tree (Expression (N));
1603 Dummy := Resolve_Aggr_Expr (Expr, False);
1604
1605 -- An iterated_component_association may appear in a nested
1606 -- aggregate for a multidimensional structure: preserve the bounds
1607 -- computed for the expression, as well as the anonymous array
1608 -- type generated for it; both are needed during array expansion.
1609 -- This does not work for more than two levels of nesting. ???
1610
1611 if Nkind (Expr) = N_Aggregate then
1612 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1613 Set_Etype (Expression (N), Etype (Expr));
1614 end if;
1615
1616 End_Scope;
1617 end Resolve_Iterated_Component_Association;
1618
1619 -- Local variables
1620
1621 Assoc : Node_Id;
1622 Choice : Node_Id;
1623 Expr : Node_Id;
1624 Discard : Node_Id;
1625
1626 Aggr_Low : Node_Id := Empty;
1627 Aggr_High : Node_Id := Empty;
1628 -- The actual low and high bounds of this sub-aggregate
1629
1630 Case_Table_Size : Nat;
1631 -- Contains the size of the case table needed to sort aggregate choices
1632
1633 Choices_Low : Node_Id := Empty;
1634 Choices_High : Node_Id := Empty;
1635 -- The lowest and highest discrete choices values for a named aggregate
1636
1637 Delete_Choice : Boolean;
1638 -- Used when replacing a subtype choice with predicate by a list
1639
1640 Nb_Elements : Uint := Uint_0;
1641 -- The number of elements in a positional aggregate
1642
1643 Nb_Discrete_Choices : Nat := 0;
1644 -- The overall number of discrete choices (not counting others choice)
1645
1646 -- Start of processing for Resolve_Array_Aggregate
1647
1648 begin
1649 -- Ignore junk empty aggregate resulting from parser error
1650
1651 if No (Expressions (N))
1652 and then No (Component_Associations (N))
1653 and then not Null_Record_Present (N)
1654 then
1655 return False;
1656 end if;
1657
1658 -- STEP 1: make sure the aggregate is correctly formatted
1659
1660 if Present (Component_Associations (N)) then
1661 Assoc := First (Component_Associations (N));
1662 while Present (Assoc) loop
1663 if Nkind (Assoc) = N_Iterated_Component_Association then
1664 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1665 end if;
1666
1667 Choice := First (Choice_List (Assoc));
1668 Delete_Choice := False;
1669 while Present (Choice) loop
1670 if Nkind (Choice) = N_Others_Choice then
1671 Others_Present := True;
1672
1673 if Choice /= First (Choice_List (Assoc))
1674 or else Present (Next (Choice))
1675 then
1676 Error_Msg_N
1677 ("OTHERS must appear alone in a choice list", Choice);
1678 return Failure;
1679 end if;
1680
1681 if Present (Next (Assoc)) then
1682 Error_Msg_N
1683 ("OTHERS must appear last in an aggregate", Choice);
1684 return Failure;
1685 end if;
1686
1687 if Ada_Version = Ada_83
1688 and then Assoc /= First (Component_Associations (N))
1689 and then Nkind_In (Parent (N), N_Assignment_Statement,
1690 N_Object_Declaration)
1691 then
1692 Error_Msg_N
1693 ("(Ada 83) illegal context for OTHERS choice", N);
1694 end if;
1695
1696 elsif Is_Entity_Name (Choice) then
1697 Analyze (Choice);
1698
1699 declare
1700 E : constant Entity_Id := Entity (Choice);
1701 New_Cs : List_Id;
1702 P : Node_Id;
1703 C : Node_Id;
1704
1705 begin
1706 if Is_Type (E) and then Has_Predicates (E) then
1707 Freeze_Before (N, E);
1708
1709 if Has_Dynamic_Predicate_Aspect (E) then
1710 Error_Msg_NE
1711 ("subtype& has dynamic predicate, not allowed "
1712 & "in aggregate choice", Choice, E);
1713
1714 elsif not Is_OK_Static_Subtype (E) then
1715 Error_Msg_NE
1716 ("non-static subtype& has predicate, not allowed "
1717 & "in aggregate choice", Choice, E);
1718 end if;
1719
1720 -- If the subtype has a static predicate, replace the
1721 -- original choice with the list of individual values
1722 -- covered by the predicate.
1723 -- This should be deferred to expansion time ???
1724
1725 if Present (Static_Discrete_Predicate (E)) then
1726 Delete_Choice := True;
1727
1728 New_Cs := New_List;
1729 P := First (Static_Discrete_Predicate (E));
1730 while Present (P) loop
1731 C := New_Copy (P);
1732 Set_Sloc (C, Sloc (Choice));
1733 Append_To (New_Cs, C);
1734 Next (P);
1735 end loop;
1736
1737 Insert_List_After (Choice, New_Cs);
1738 end if;
1739 end if;
1740 end;
1741 end if;
1742
1743 Nb_Choices := Nb_Choices + 1;
1744
1745 declare
1746 C : constant Node_Id := Choice;
1747
1748 begin
1749 Next (Choice);
1750
1751 if Delete_Choice then
1752 Remove (C);
1753 Nb_Choices := Nb_Choices - 1;
1754 Delete_Choice := False;
1755 end if;
1756 end;
1757 end loop;
1758
1759 Next (Assoc);
1760 end loop;
1761 end if;
1762
1763 -- At this point we know that the others choice, if present, is by
1764 -- itself and appears last in the aggregate. Check if we have mixed
1765 -- positional and discrete associations (other than the others choice).
1766
1767 if Present (Expressions (N))
1768 and then (Nb_Choices > 1
1769 or else (Nb_Choices = 1 and then not Others_Present))
1770 then
1771 Error_Msg_N
1772 ("named association cannot follow positional association",
1773 First (Choice_List (First (Component_Associations (N)))));
1774 return Failure;
1775 end if;
1776
1777 -- Test for the validity of an others choice if present
1778
1779 if Others_Present and then not Others_Allowed then
1780 Error_Msg_N
1781 ("OTHERS choice not allowed here",
1782 First (Choices (First (Component_Associations (N)))));
1783 return Failure;
1784 end if;
1785
1786 -- Protect against cascaded errors
1787
1788 if Etype (Index_Typ) = Any_Type then
1789 return Failure;
1790 end if;
1791
1792 -- STEP 2: Process named components
1793
1794 if No (Expressions (N)) then
1795 if Others_Present then
1796 Case_Table_Size := Nb_Choices - 1;
1797 else
1798 Case_Table_Size := Nb_Choices;
1799 end if;
1800
1801 Step_2 : declare
1802 function Empty_Range (A : Node_Id) return Boolean;
1803 -- If an association covers an empty range, some warnings on the
1804 -- expression of the association can be disabled.
1805
1806 -----------------
1807 -- Empty_Range --
1808 -----------------
1809
1810 function Empty_Range (A : Node_Id) return Boolean is
1811 R : constant Node_Id := First (Choices (A));
1812 begin
1813 return No (Next (R))
1814 and then Nkind (R) = N_Range
1815 and then Compile_Time_Compare
1816 (Low_Bound (R), High_Bound (R), False) = GT;
1817 end Empty_Range;
1818
1819 -- Local variables
1820
1821 Low : Node_Id;
1822 High : Node_Id;
1823 -- Denote the lowest and highest values in an aggregate choice
1824
1825 S_Low : Node_Id := Empty;
1826 S_High : Node_Id := Empty;
1827 -- if a choice in an aggregate is a subtype indication these
1828 -- denote the lowest and highest values of the subtype
1829
1830 Table : Case_Table_Type (1 .. Case_Table_Size);
1831 -- Used to sort all the different choice values
1832
1833 Single_Choice : Boolean;
1834 -- Set to true every time there is a single discrete choice in a
1835 -- discrete association
1836
1837 Prev_Nb_Discrete_Choices : Nat;
1838 -- Used to keep track of the number of discrete choices in the
1839 -- current association.
1840
1841 Errors_Posted_On_Choices : Boolean := False;
1842 -- Keeps track of whether any choices have semantic errors
1843
1844 -- Start of processing for Step_2
1845
1846 begin
1847 -- STEP 2 (A): Check discrete choices validity
1848
1849 Assoc := First (Component_Associations (N));
1850 while Present (Assoc) loop
1851 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1852 Choice := First (Choice_List (Assoc));
1853
1854 loop
1855 Analyze (Choice);
1856
1857 if Nkind (Choice) = N_Others_Choice then
1858 Single_Choice := False;
1859 exit;
1860
1861 -- Test for subtype mark without constraint
1862
1863 elsif Is_Entity_Name (Choice) and then
1864 Is_Type (Entity (Choice))
1865 then
1866 if Base_Type (Entity (Choice)) /= Index_Base then
1867 Error_Msg_N
1868 ("invalid subtype mark in aggregate choice",
1869 Choice);
1870 return Failure;
1871 end if;
1872
1873 -- Case of subtype indication
1874
1875 elsif Nkind (Choice) = N_Subtype_Indication then
1876 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1877
1878 if Has_Dynamic_Predicate_Aspect
1879 (Entity (Subtype_Mark (Choice)))
1880 then
1881 Error_Msg_NE
1882 ("subtype& has dynamic predicate, "
1883 & "not allowed in aggregate choice",
1884 Choice, Entity (Subtype_Mark (Choice)));
1885 end if;
1886
1887 -- Does the subtype indication evaluation raise CE?
1888
1889 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1890 Get_Index_Bounds (Choice, Low, High);
1891 Check_Bounds (S_Low, S_High, Low, High);
1892
1893 -- Case of range or expression
1894
1895 else
1896 Resolve (Choice, Index_Base);
1897 Check_Unset_Reference (Choice);
1898 Check_Non_Static_Context (Choice);
1899
1900 -- If semantic errors were posted on the choice, then
1901 -- record that for possible early return from later
1902 -- processing (see handling of enumeration choices).
1903
1904 if Error_Posted (Choice) then
1905 Errors_Posted_On_Choices := True;
1906 end if;
1907
1908 -- Do not range check a choice. This check is redundant
1909 -- since this test is already done when we check that the
1910 -- bounds of the array aggregate are within range.
1911
1912 Set_Do_Range_Check (Choice, False);
1913 end if;
1914
1915 -- If we could not resolve the discrete choice stop here
1916
1917 if Etype (Choice) = Any_Type then
1918 return Failure;
1919
1920 -- If the discrete choice raises CE get its original bounds
1921
1922 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1923 Set_Raises_Constraint_Error (N);
1924 Get_Index_Bounds (Original_Node (Choice), Low, High);
1925
1926 -- Otherwise get its bounds as usual
1927
1928 else
1929 Get_Index_Bounds (Choice, Low, High);
1930 end if;
1931
1932 if (Dynamic_Or_Null_Range (Low, High)
1933 or else (Nkind (Choice) = N_Subtype_Indication
1934 and then
1935 Dynamic_Or_Null_Range (S_Low, S_High)))
1936 and then Nb_Choices /= 1
1937 then
1938 Error_Msg_N
1939 ("dynamic or empty choice in aggregate "
1940 & "must be the only choice", Choice);
1941 return Failure;
1942 end if;
1943
1944 if not (All_Composite_Constraints_Static (Low)
1945 and then All_Composite_Constraints_Static (High)
1946 and then All_Composite_Constraints_Static (S_Low)
1947 and then All_Composite_Constraints_Static (S_High))
1948 then
1949 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
1950 end if;
1951
1952 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1953 Table (Nb_Discrete_Choices).Lo := Low;
1954 Table (Nb_Discrete_Choices).Hi := High;
1955 Table (Nb_Discrete_Choices).Choice := Choice;
1956
1957 Next (Choice);
1958
1959 if No (Choice) then
1960
1961 -- Check if we have a single discrete choice and whether
1962 -- this discrete choice specifies a single value.
1963
1964 Single_Choice :=
1965 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1966 and then (Low = High);
1967
1968 exit;
1969 end if;
1970 end loop;
1971
1972 -- Ada 2005 (AI-231)
1973
1974 if Ada_Version >= Ada_2005
1975 and then Known_Null (Expression (Assoc))
1976 and then not Empty_Range (Assoc)
1977 then
1978 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1979 end if;
1980
1981 -- Ada 2005 (AI-287): In case of default initialized component
1982 -- we delay the resolution to the expansion phase.
1983
1984 if Box_Present (Assoc) then
1985
1986 -- Ada 2005 (AI-287): In case of default initialization of a
1987 -- component the expander will generate calls to the
1988 -- corresponding initialization subprogram. We need to call
1989 -- Resolve_Aggr_Expr to check the rules about
1990 -- dimensionality.
1991
1992 if not Resolve_Aggr_Expr
1993 (Assoc, Single_Elmt => Single_Choice)
1994 then
1995 return Failure;
1996 end if;
1997
1998 elsif Nkind (Assoc) = N_Iterated_Component_Association then
1999 null; -- handled above, in a loop context.
2000
2001 elsif not Resolve_Aggr_Expr
2002 (Expression (Assoc), Single_Elmt => Single_Choice)
2003 then
2004 return Failure;
2005
2006 -- Check incorrect use of dynamically tagged expression
2007
2008 -- We differentiate here two cases because the expression may
2009 -- not be decorated. For example, the analysis and resolution
2010 -- of the expression associated with the others choice will be
2011 -- done later with the full aggregate. In such case we
2012 -- duplicate the expression tree to analyze the copy and
2013 -- perform the required check.
2014
2015 elsif not Present (Etype (Expression (Assoc))) then
2016 declare
2017 Save_Analysis : constant Boolean := Full_Analysis;
2018 Expr : constant Node_Id :=
2019 New_Copy_Tree (Expression (Assoc));
2020
2021 begin
2022 Expander_Mode_Save_And_Set (False);
2023 Full_Analysis := False;
2024
2025 -- Analyze the expression, making sure it is properly
2026 -- attached to the tree before we do the analysis.
2027
2028 Set_Parent (Expr, Parent (Expression (Assoc)));
2029 Analyze (Expr);
2030
2031 -- Compute its dimensions now, rather than at the end of
2032 -- resolution, because in the case of multidimensional
2033 -- aggregates subsequent expansion may lead to spurious
2034 -- errors.
2035
2036 Check_Expression_Dimensions (Expr, Component_Typ);
2037
2038 -- If the expression is a literal, propagate this info
2039 -- to the expression in the association, to enable some
2040 -- optimizations downstream.
2041
2042 if Is_Entity_Name (Expr)
2043 and then Present (Entity (Expr))
2044 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2045 then
2046 Analyze_And_Resolve
2047 (Expression (Assoc), Component_Typ);
2048 end if;
2049
2050 Full_Analysis := Save_Analysis;
2051 Expander_Mode_Restore;
2052
2053 if Is_Tagged_Type (Etype (Expr)) then
2054 Check_Dynamically_Tagged_Expression
2055 (Expr => Expr,
2056 Typ => Component_Type (Etype (N)),
2057 Related_Nod => N);
2058 end if;
2059 end;
2060
2061 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2062 Check_Dynamically_Tagged_Expression
2063 (Expr => Expression (Assoc),
2064 Typ => Component_Type (Etype (N)),
2065 Related_Nod => N);
2066 end if;
2067
2068 Next (Assoc);
2069 end loop;
2070
2071 -- If aggregate contains more than one choice then these must be
2072 -- static. Check for duplicate and missing values.
2073
2074 -- Note: there is duplicated code here wrt Check_Choice_Set in
2075 -- the body of Sem_Case, and it is possible we could just reuse
2076 -- that procedure. To be checked ???
2077
2078 if Nb_Discrete_Choices > 1 then
2079 Check_Choices : declare
2080 Choice : Node_Id;
2081 -- Location of choice for messages
2082
2083 Hi_Val : Uint;
2084 Lo_Val : Uint;
2085 -- High end of one range and Low end of the next. Should be
2086 -- contiguous if there is no hole in the list of values.
2087
2088 Lo_Dup : Uint;
2089 Hi_Dup : Uint;
2090 -- End points of duplicated range
2091
2092 Missing_Or_Duplicates : Boolean := False;
2093 -- Set True if missing or duplicate choices found
2094
2095 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2096 -- Output continuation message with a representation of the
2097 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2098 -- choice node where the message is to be posted.
2099
2100 ------------------------
2101 -- Output_Bad_Choices --
2102 ------------------------
2103
2104 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2105 begin
2106 -- Enumeration type case
2107
2108 if Is_Enumeration_Type (Index_Typ) then
2109 Error_Msg_Name_1 :=
2110 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2111 Error_Msg_Name_2 :=
2112 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2113
2114 if Lo = Hi then
2115 Error_Msg_N ("\\ %!", C);
2116 else
2117 Error_Msg_N ("\\ % .. %!", C);
2118 end if;
2119
2120 -- Integer types case
2121
2122 else
2123 Error_Msg_Uint_1 := Lo;
2124 Error_Msg_Uint_2 := Hi;
2125
2126 if Lo = Hi then
2127 Error_Msg_N ("\\ ^!", C);
2128 else
2129 Error_Msg_N ("\\ ^ .. ^!", C);
2130 end if;
2131 end if;
2132 end Output_Bad_Choices;
2133
2134 -- Start of processing for Check_Choices
2135
2136 begin
2137 Sort_Case_Table (Table);
2138
2139 -- First we do a quick linear loop to find out if we have
2140 -- any duplicates or missing entries (usually we have a
2141 -- legal aggregate, so this will get us out quickly).
2142
2143 for J in 1 .. Nb_Discrete_Choices - 1 loop
2144 Hi_Val := Expr_Value (Table (J).Hi);
2145 Lo_Val := Expr_Value (Table (J + 1).Lo);
2146
2147 if Lo_Val <= Hi_Val
2148 or else (Lo_Val > Hi_Val + 1
2149 and then not Others_Present)
2150 then
2151 Missing_Or_Duplicates := True;
2152 exit;
2153 end if;
2154 end loop;
2155
2156 -- If we have missing or duplicate entries, first fill in
2157 -- the Highest entries to make life easier in the following
2158 -- loops to detect bad entries.
2159
2160 if Missing_Or_Duplicates then
2161 Table (1).Highest := Expr_Value (Table (1).Hi);
2162
2163 for J in 2 .. Nb_Discrete_Choices loop
2164 Table (J).Highest :=
2165 UI_Max
2166 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2167 end loop;
2168
2169 -- Loop through table entries to find duplicate indexes
2170
2171 for J in 2 .. Nb_Discrete_Choices loop
2172 Lo_Val := Expr_Value (Table (J).Lo);
2173 Hi_Val := Expr_Value (Table (J).Hi);
2174
2175 -- Case where we have duplicates (the lower bound of
2176 -- this choice is less than or equal to the highest
2177 -- high bound found so far).
2178
2179 if Lo_Val <= Table (J - 1).Highest then
2180
2181 -- We move backwards looking for duplicates. We can
2182 -- abandon this loop as soon as we reach a choice
2183 -- highest value that is less than Lo_Val.
2184
2185 for K in reverse 1 .. J - 1 loop
2186 exit when Table (K).Highest < Lo_Val;
2187
2188 -- Here we may have duplicates between entries
2189 -- for K and J. Get range of duplicates.
2190
2191 Lo_Dup :=
2192 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2193 Hi_Dup :=
2194 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2195
2196 -- Nothing to do if duplicate range is null
2197
2198 if Lo_Dup > Hi_Dup then
2199 null;
2200
2201 -- Otherwise place proper message
2202
2203 else
2204 -- We place message on later choice, with a
2205 -- line reference to the earlier choice.
2206
2207 if Sloc (Table (J).Choice) <
2208 Sloc (Table (K).Choice)
2209 then
2210 Choice := Table (K).Choice;
2211 Error_Msg_Sloc := Sloc (Table (J).Choice);
2212 else
2213 Choice := Table (J).Choice;
2214 Error_Msg_Sloc := Sloc (Table (K).Choice);
2215 end if;
2216
2217 if Lo_Dup = Hi_Dup then
2218 Error_Msg_N
2219 ("index value in array aggregate "
2220 & "duplicates the one given#!", Choice);
2221 else
2222 Error_Msg_N
2223 ("index values in array aggregate "
2224 & "duplicate those given#!", Choice);
2225 end if;
2226
2227 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2228 end if;
2229 end loop;
2230 end if;
2231 end loop;
2232
2233 -- Loop through entries in table to find missing indexes.
2234 -- Not needed if others, since missing impossible.
2235
2236 if not Others_Present then
2237 for J in 2 .. Nb_Discrete_Choices loop
2238 Lo_Val := Expr_Value (Table (J).Lo);
2239 Hi_Val := Table (J - 1).Highest;
2240
2241 if Lo_Val > Hi_Val + 1 then
2242
2243 declare
2244 Error_Node : Node_Id;
2245
2246 begin
2247 -- If the choice is the bound of a range in
2248 -- a subtype indication, it is not in the
2249 -- source lists for the aggregate itself, so
2250 -- post the error on the aggregate. Otherwise
2251 -- post it on choice itself.
2252
2253 Choice := Table (J).Choice;
2254
2255 if Is_List_Member (Choice) then
2256 Error_Node := Choice;
2257 else
2258 Error_Node := N;
2259 end if;
2260
2261 if Hi_Val + 1 = Lo_Val - 1 then
2262 Error_Msg_N
2263 ("missing index value "
2264 & "in array aggregate!", Error_Node);
2265 else
2266 Error_Msg_N
2267 ("missing index values "
2268 & "in array aggregate!", Error_Node);
2269 end if;
2270
2271 Output_Bad_Choices
2272 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2273 end;
2274 end if;
2275 end loop;
2276 end if;
2277
2278 -- If either missing or duplicate values, return failure
2279
2280 Set_Etype (N, Any_Composite);
2281 return Failure;
2282 end if;
2283 end Check_Choices;
2284 end if;
2285
2286 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2287
2288 if Nb_Discrete_Choices > 0 then
2289 Choices_Low := Table (1).Lo;
2290 Choices_High := Table (Nb_Discrete_Choices).Hi;
2291 end if;
2292
2293 -- If Others is present, then bounds of aggregate come from the
2294 -- index constraint (not the choices in the aggregate itself).
2295
2296 if Others_Present then
2297 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2298
2299 -- Abandon processing if either bound is already signalled as
2300 -- an error (prevents junk cascaded messages and blow ups).
2301
2302 if Nkind (Aggr_Low) = N_Error
2303 or else
2304 Nkind (Aggr_High) = N_Error
2305 then
2306 return False;
2307 end if;
2308
2309 -- No others clause present
2310
2311 else
2312 -- Special processing if others allowed and not present. This
2313 -- means that the bounds of the aggregate come from the index
2314 -- constraint (and the length must match).
2315
2316 if Others_Allowed then
2317 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2318
2319 -- Abandon processing if either bound is already signalled
2320 -- as an error (stop junk cascaded messages and blow ups).
2321
2322 if Nkind (Aggr_Low) = N_Error
2323 or else
2324 Nkind (Aggr_High) = N_Error
2325 then
2326 return False;
2327 end if;
2328
2329 -- If others allowed, and no others present, then the array
2330 -- should cover all index values. If it does not, we will
2331 -- get a length check warning, but there is two cases where
2332 -- an additional warning is useful:
2333
2334 -- If we have no positional components, and the length is
2335 -- wrong (which we can tell by others being allowed with
2336 -- missing components), and the index type is an enumeration
2337 -- type, then issue appropriate warnings about these missing
2338 -- components. They are only warnings, since the aggregate
2339 -- is fine, it's just the wrong length. We skip this check
2340 -- for standard character types (since there are no literals
2341 -- and it is too much trouble to concoct them), and also if
2342 -- any of the bounds have values that are not known at
2343 -- compile time.
2344
2345 -- Another case warranting a warning is when the length
2346 -- is right, but as above we have an index type that is
2347 -- an enumeration, and the bounds do not match. This is a
2348 -- case where dubious sliding is allowed and we generate a
2349 -- warning that the bounds do not match.
2350
2351 if No (Expressions (N))
2352 and then Nkind (Index) = N_Range
2353 and then Is_Enumeration_Type (Etype (Index))
2354 and then not Is_Standard_Character_Type (Etype (Index))
2355 and then Compile_Time_Known_Value (Aggr_Low)
2356 and then Compile_Time_Known_Value (Aggr_High)
2357 and then Compile_Time_Known_Value (Choices_Low)
2358 and then Compile_Time_Known_Value (Choices_High)
2359 then
2360 -- If any of the expressions or range bounds in choices
2361 -- have semantic errors, then do not attempt further
2362 -- resolution, to prevent cascaded errors.
2363
2364 if Errors_Posted_On_Choices then
2365 return Failure;
2366 end if;
2367
2368 declare
2369 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2370 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2371 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2372 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2373
2374 Ent : Entity_Id;
2375
2376 begin
2377 -- Warning case 1, missing values at start/end. Only
2378 -- do the check if the number of entries is too small.
2379
2380 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2381 <
2382 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2383 then
2384 Error_Msg_N
2385 ("missing index value(s) in array aggregate??",
2386 N);
2387
2388 -- Output missing value(s) at start
2389
2390 if Chars (ALo) /= Chars (CLo) then
2391 Ent := Prev (CLo);
2392
2393 if Chars (ALo) = Chars (Ent) then
2394 Error_Msg_Name_1 := Chars (ALo);
2395 Error_Msg_N ("\ %??", N);
2396 else
2397 Error_Msg_Name_1 := Chars (ALo);
2398 Error_Msg_Name_2 := Chars (Ent);
2399 Error_Msg_N ("\ % .. %??", N);
2400 end if;
2401 end if;
2402
2403 -- Output missing value(s) at end
2404
2405 if Chars (AHi) /= Chars (CHi) then
2406 Ent := Next (CHi);
2407
2408 if Chars (AHi) = Chars (Ent) then
2409 Error_Msg_Name_1 := Chars (Ent);
2410 Error_Msg_N ("\ %??", N);
2411 else
2412 Error_Msg_Name_1 := Chars (Ent);
2413 Error_Msg_Name_2 := Chars (AHi);
2414 Error_Msg_N ("\ % .. %??", N);
2415 end if;
2416 end if;
2417
2418 -- Warning case 2, dubious sliding. The First_Subtype
2419 -- test distinguishes between a constrained type where
2420 -- sliding is not allowed (so we will get a warning
2421 -- later that Constraint_Error will be raised), and
2422 -- the unconstrained case where sliding is permitted.
2423
2424 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2425 =
2426 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2427 and then Chars (ALo) /= Chars (CLo)
2428 and then
2429 not Is_Constrained (First_Subtype (Etype (N)))
2430 then
2431 Error_Msg_N
2432 ("bounds of aggregate do not match target??", N);
2433 end if;
2434 end;
2435 end if;
2436 end if;
2437
2438 -- If no others, aggregate bounds come from aggregate
2439
2440 Aggr_Low := Choices_Low;
2441 Aggr_High := Choices_High;
2442 end if;
2443 end Step_2;
2444
2445 -- STEP 3: Process positional components
2446
2447 else
2448 -- STEP 3 (A): Process positional elements
2449
2450 Expr := First (Expressions (N));
2451 Nb_Elements := Uint_0;
2452 while Present (Expr) loop
2453 Nb_Elements := Nb_Elements + 1;
2454
2455 -- Ada 2005 (AI-231)
2456
2457 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2458 Check_Can_Never_Be_Null (Etype (N), Expr);
2459 end if;
2460
2461 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2462 return Failure;
2463 end if;
2464
2465 -- Check incorrect use of dynamically tagged expression
2466
2467 if Is_Tagged_Type (Etype (Expr)) then
2468 Check_Dynamically_Tagged_Expression
2469 (Expr => Expr,
2470 Typ => Component_Type (Etype (N)),
2471 Related_Nod => N);
2472 end if;
2473
2474 Next (Expr);
2475 end loop;
2476
2477 if Others_Present then
2478 Assoc := Last (Component_Associations (N));
2479
2480 -- Ada 2005 (AI-231)
2481
2482 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2483 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2484 end if;
2485
2486 -- Ada 2005 (AI-287): In case of default initialized component,
2487 -- we delay the resolution to the expansion phase.
2488
2489 if Box_Present (Assoc) then
2490
2491 -- Ada 2005 (AI-287): In case of default initialization of a
2492 -- component the expander will generate calls to the
2493 -- corresponding initialization subprogram. We need to call
2494 -- Resolve_Aggr_Expr to check the rules about
2495 -- dimensionality.
2496
2497 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2498 return Failure;
2499 end if;
2500
2501 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2502 Single_Elmt => False)
2503 then
2504 return Failure;
2505
2506 -- Check incorrect use of dynamically tagged expression. The
2507 -- expression of the others choice has not been resolved yet.
2508 -- In order to diagnose the semantic error we create a duplicate
2509 -- tree to analyze it and perform the check.
2510
2511 else
2512 declare
2513 Save_Analysis : constant Boolean := Full_Analysis;
2514 Expr : constant Node_Id :=
2515 New_Copy_Tree (Expression (Assoc));
2516
2517 begin
2518 Expander_Mode_Save_And_Set (False);
2519 Full_Analysis := False;
2520 Analyze (Expr);
2521 Full_Analysis := Save_Analysis;
2522 Expander_Mode_Restore;
2523
2524 if Is_Tagged_Type (Etype (Expr)) then
2525 Check_Dynamically_Tagged_Expression
2526 (Expr => Expr,
2527 Typ => Component_Type (Etype (N)),
2528 Related_Nod => N);
2529 end if;
2530 end;
2531 end if;
2532 end if;
2533
2534 -- STEP 3 (B): Compute the aggregate bounds
2535
2536 if Others_Present then
2537 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2538
2539 else
2540 if Others_Allowed then
2541 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2542 else
2543 Aggr_Low := Index_Typ_Low;
2544 end if;
2545
2546 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2547 Check_Bound (Index_Base_High, Aggr_High);
2548 end if;
2549 end if;
2550
2551 -- STEP 4: Perform static aggregate checks and save the bounds
2552
2553 -- Check (A)
2554
2555 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2556 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2557
2558 -- Check (B)
2559
2560 if Others_Present and then Nb_Discrete_Choices > 0 then
2561 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2562 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2563 Choices_Low, Choices_High);
2564 Check_Bounds (Index_Base_Low, Index_Base_High,
2565 Choices_Low, Choices_High);
2566
2567 -- Check (C)
2568
2569 elsif Others_Present and then Nb_Elements > 0 then
2570 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2571 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2572 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2573 end if;
2574
2575 if Raises_Constraint_Error (Aggr_Low)
2576 or else Raises_Constraint_Error (Aggr_High)
2577 then
2578 Set_Raises_Constraint_Error (N);
2579 end if;
2580
2581 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2582
2583 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2584 -- since the addition node returned by Add is not yet analyzed. Attach
2585 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2586 -- analyzed when it is a literal bound whose type must be properly set.
2587
2588 if Others_Present or else Nb_Discrete_Choices > 0 then
2589 Aggr_High := Duplicate_Subexpr (Aggr_High);
2590
2591 if Etype (Aggr_High) = Universal_Integer then
2592 Set_Analyzed (Aggr_High, False);
2593 end if;
2594 end if;
2595
2596 -- If the aggregate already has bounds attached to it, it means this is
2597 -- a positional aggregate created as an optimization by
2598 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2599 -- bounds.
2600
2601 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2602 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2603 Aggr_High := High_Bound (Aggregate_Bounds (N));
2604 end if;
2605
2606 Set_Aggregate_Bounds
2607 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2608
2609 -- The bounds may contain expressions that must be inserted upwards.
2610 -- Attach them fully to the tree. After analysis, remove side effects
2611 -- from upper bound, if still needed.
2612
2613 Set_Parent (Aggregate_Bounds (N), N);
2614 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2615 Check_Unset_Reference (Aggregate_Bounds (N));
2616
2617 if not Others_Present and then Nb_Discrete_Choices = 0 then
2618 Set_High_Bound
2619 (Aggregate_Bounds (N),
2620 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2621 end if;
2622
2623 -- Check the dimensions of each component in the array aggregate
2624
2625 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2626
2627 return Success;
2628 end Resolve_Array_Aggregate;
2629
2630 -----------------------------
2631 -- Resolve_Delta_Aggregate --
2632 -----------------------------
2633
2634 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2635 Base : constant Node_Id := Expression (N);
2636
2637 begin
2638 if Ada_Version < Ada_2020 then
2639 Error_Msg_N ("delta_aggregate is an Ada 202x feature", N);
2640 Error_Msg_N ("\compile with -gnat2020", N);
2641 end if;
2642
2643 if not Is_Composite_Type (Typ) then
2644 Error_Msg_N ("not a composite type", N);
2645 end if;
2646
2647 Analyze_And_Resolve (Base, Typ);
2648
2649 if Is_Array_Type (Typ) then
2650 Resolve_Delta_Array_Aggregate (N, Typ);
2651 else
2652 Resolve_Delta_Record_Aggregate (N, Typ);
2653 end if;
2654
2655 Set_Etype (N, Typ);
2656 end Resolve_Delta_Aggregate;
2657
2658 -----------------------------------
2659 -- Resolve_Delta_Array_Aggregate --
2660 -----------------------------------
2661
2662 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
2663 Deltas : constant List_Id := Component_Associations (N);
2664 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
2665
2666 Assoc : Node_Id;
2667 Choice : Node_Id;
2668
2669 begin
2670 Assoc := First (Deltas);
2671 while Present (Assoc) loop
2672 if Nkind (Assoc) = N_Iterated_Component_Association then
2673 Choice := First (Choice_List (Assoc));
2674 while Present (Choice) loop
2675 if Nkind (Choice) = N_Others_Choice then
2676 Error_Msg_N
2677 ("others not allowed in delta aggregate", Choice);
2678
2679 else
2680 Analyze_And_Resolve (Choice, Index_Type);
2681 end if;
2682
2683 Next (Choice);
2684 end loop;
2685
2686 declare
2687 Id : constant Entity_Id := Defining_Identifier (Assoc);
2688 Ent : constant Entity_Id :=
2689 New_Internal_Entity
2690 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2691
2692 begin
2693 Set_Etype (Ent, Standard_Void_Type);
2694 Set_Parent (Ent, Assoc);
2695
2696 if No (Scope (Id)) then
2697 Enter_Name (Id);
2698 Set_Etype (Id, Index_Type);
2699 Set_Ekind (Id, E_Variable);
2700 Set_Scope (Id, Ent);
2701 end if;
2702
2703 Push_Scope (Ent);
2704 Analyze_And_Resolve
2705 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2706 End_Scope;
2707 end;
2708
2709 else
2710 Choice := First (Choice_List (Assoc));
2711 while Present (Choice) loop
2712 if Nkind (Choice) = N_Others_Choice then
2713 Error_Msg_N
2714 ("others not allowed in delta aggregate", Choice);
2715
2716 else
2717 Analyze (Choice);
2718
2719 if Is_Entity_Name (Choice)
2720 and then Is_Type (Entity (Choice))
2721 then
2722 -- Choice covers a range of values
2723
2724 if Base_Type (Entity (Choice)) /=
2725 Base_Type (Index_Type)
2726 then
2727 Error_Msg_NE
2728 ("choice does mat match index type of",
2729 Choice, Typ);
2730 end if;
2731 else
2732 Resolve (Choice, Index_Type);
2733 end if;
2734 end if;
2735
2736 Next (Choice);
2737 end loop;
2738
2739 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2740 end if;
2741
2742 Next (Assoc);
2743 end loop;
2744 end Resolve_Delta_Array_Aggregate;
2745
2746 ------------------------------------
2747 -- Resolve_Delta_Record_Aggregate --
2748 ------------------------------------
2749
2750 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2751
2752 -- Variables used to verify that discriminant-dependent components
2753 -- appear in the same variant.
2754
2755 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
2756 Variant : Node_Id;
2757
2758 procedure Check_Variant (Id : Entity_Id);
2759 -- If a given component of the delta aggregate appears in a variant
2760 -- part, verify that it is within the same variant as that of previous
2761 -- specified variant components of the delta.
2762
2763 function Get_Component (Nam : Node_Id) return Entity_Id;
2764 -- Locate component with a given name and return it. If none found then
2765 -- report error and return Empty.
2766
2767 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
2768 -- Determine whether variant V1 is within variant V2
2769
2770 function Variant_Depth (N : Node_Id) return Integer;
2771 -- Determine the distance of a variant to the enclosing type
2772 -- declaration.
2773
2774 --------------------
2775 -- Check_Variant --
2776 --------------------
2777
2778 procedure Check_Variant (Id : Entity_Id) is
2779 Comp : Entity_Id;
2780 Comp_Variant : Node_Id;
2781
2782 begin
2783 if not Has_Discriminants (Typ) then
2784 return;
2785 end if;
2786
2787 Comp := First_Entity (Typ);
2788 while Present (Comp) loop
2789 exit when Chars (Comp) = Chars (Id);
2790 Next_Component (Comp);
2791 end loop;
2792
2793 -- Find the variant, if any, whose component list includes the
2794 -- component declaration.
2795
2796 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
2797 if Nkind (Comp_Variant) = N_Variant then
2798 if No (Variant) then
2799 Variant := Comp_Variant;
2800 Comp_Ref := Comp;
2801
2802 elsif Variant /= Comp_Variant then
2803 declare
2804 D1 : constant Integer := Variant_Depth (Variant);
2805 D2 : constant Integer := Variant_Depth (Comp_Variant);
2806
2807 begin
2808 if D1 = D2
2809 or else
2810 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
2811 or else
2812 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
2813 then
2814 pragma Assert (Present (Comp_Ref));
2815 Error_Msg_Node_2 := Comp_Ref;
2816 Error_Msg_NE
2817 ("& and & appear in different variants", Id, Comp);
2818
2819 -- Otherwise retain the deeper variant for subsequent tests
2820
2821 elsif D2 > D1 then
2822 Variant := Comp_Variant;
2823 end if;
2824 end;
2825 end if;
2826 end if;
2827 end Check_Variant;
2828
2829 -------------------
2830 -- Get_Component --
2831 -------------------
2832
2833 function Get_Component (Nam : Node_Id) return Entity_Id is
2834 Comp : Entity_Id;
2835
2836 begin
2837 Comp := First_Entity (Typ);
2838 while Present (Comp) loop
2839 if Chars (Comp) = Chars (Nam) then
2840 if Ekind (Comp) = E_Discriminant then
2841 Error_Msg_N ("delta cannot apply to discriminant", Nam);
2842 end if;
2843
2844 return Comp;
2845 end if;
2846
2847 Next_Entity (Comp);
2848 end loop;
2849
2850 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
2851 return Empty;
2852 end Get_Component;
2853
2854 ---------------
2855 -- Nested_In --
2856 ---------------
2857
2858 function Nested_In (V1, V2 : Node_Id) return Boolean is
2859 Par : Node_Id;
2860
2861 begin
2862 Par := Parent (V1);
2863 while Nkind (Par) /= N_Full_Type_Declaration loop
2864 if Par = V2 then
2865 return True;
2866 end if;
2867
2868 Par := Parent (Par);
2869 end loop;
2870
2871 return False;
2872 end Nested_In;
2873
2874 -------------------
2875 -- Variant_Depth --
2876 -------------------
2877
2878 function Variant_Depth (N : Node_Id) return Integer is
2879 Depth : Integer;
2880 Par : Node_Id;
2881
2882 begin
2883 Depth := 0;
2884 Par := Parent (N);
2885 while Nkind (Par) /= N_Full_Type_Declaration loop
2886 Depth := Depth + 1;
2887 Par := Parent (Par);
2888 end loop;
2889
2890 return Depth;
2891 end Variant_Depth;
2892
2893 -- Local variables
2894
2895 Deltas : constant List_Id := Component_Associations (N);
2896
2897 Assoc : Node_Id;
2898 Choice : Node_Id;
2899 Comp : Entity_Id;
2900 Comp_Type : Entity_Id := Empty; -- init to avoid warning
2901
2902 -- Start of processing for Resolve_Delta_Record_Aggregate
2903
2904 begin
2905 Variant := Empty;
2906
2907 Assoc := First (Deltas);
2908 while Present (Assoc) loop
2909 Choice := First (Choice_List (Assoc));
2910 while Present (Choice) loop
2911 Comp := Get_Component (Choice);
2912
2913 if Present (Comp) then
2914 Check_Variant (Choice);
2915
2916 Comp_Type := Etype (Comp);
2917
2918 -- Decorate the component reference by setting its entity and
2919 -- type, as otherwise backends like GNATprove would have to
2920 -- rediscover this information by themselves.
2921
2922 Set_Entity (Choice, Comp);
2923 Set_Etype (Choice, Comp_Type);
2924 else
2925 Comp_Type := Any_Type;
2926 end if;
2927
2928 Next (Choice);
2929 end loop;
2930
2931 pragma Assert (Present (Comp_Type));
2932 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
2933 Next (Assoc);
2934 end loop;
2935 end Resolve_Delta_Record_Aggregate;
2936
2937 ---------------------------------
2938 -- Resolve_Extension_Aggregate --
2939 ---------------------------------
2940
2941 -- There are two cases to consider:
2942
2943 -- a) If the ancestor part is a type mark, the components needed are the
2944 -- difference between the components of the expected type and the
2945 -- components of the given type mark.
2946
2947 -- b) If the ancestor part is an expression, it must be unambiguous, and
2948 -- once we have its type we can also compute the needed components as in
2949 -- the previous case. In both cases, if the ancestor type is not the
2950 -- immediate ancestor, we have to build this ancestor recursively.
2951
2952 -- In both cases, discriminants of the ancestor type do not play a role in
2953 -- the resolution of the needed components, because inherited discriminants
2954 -- cannot be used in a type extension. As a result we can compute
2955 -- independently the list of components of the ancestor type and of the
2956 -- expected type.
2957
2958 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2959 A : constant Node_Id := Ancestor_Part (N);
2960 A_Type : Entity_Id;
2961 I : Interp_Index;
2962 It : Interp;
2963
2964 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2965 -- If the type is limited, verify that the ancestor part is a legal
2966 -- expression (aggregate or function call, including 'Input)) that does
2967 -- not require a copy, as specified in 7.5(2).
2968
2969 function Valid_Ancestor_Type return Boolean;
2970 -- Verify that the type of the ancestor part is a non-private ancestor
2971 -- of the expected type, which must be a type extension.
2972
2973 procedure Transform_BIP_Assignment (Typ : Entity_Id);
2974 -- For an extension aggregate whose ancestor part is a build-in-place
2975 -- call returning a nonlimited type, this is used to transform the
2976 -- assignment to the ancestor part to use a temp.
2977
2978 ----------------------------
2979 -- Valid_Limited_Ancestor --
2980 ----------------------------
2981
2982 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2983 begin
2984 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2985 return True;
2986
2987 -- The ancestor must be a call or an aggregate, but a call may
2988 -- have been expanded into a temporary, so check original node.
2989
2990 elsif Nkind_In (Anc, N_Aggregate,
2991 N_Extension_Aggregate,
2992 N_Function_Call)
2993 then
2994 return True;
2995
2996 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2997 return True;
2998
2999 elsif Nkind (Anc) = N_Attribute_Reference
3000 and then Attribute_Name (Anc) = Name_Input
3001 then
3002 return True;
3003
3004 elsif Nkind (Anc) = N_Qualified_Expression then
3005 return Valid_Limited_Ancestor (Expression (Anc));
3006
3007 elsif Nkind (Anc) = N_Raise_Expression then
3008 return True;
3009
3010 else
3011 return False;
3012 end if;
3013 end Valid_Limited_Ancestor;
3014
3015 -------------------------
3016 -- Valid_Ancestor_Type --
3017 -------------------------
3018
3019 function Valid_Ancestor_Type return Boolean is
3020 Imm_Type : Entity_Id;
3021
3022 begin
3023 Imm_Type := Base_Type (Typ);
3024 while Is_Derived_Type (Imm_Type) loop
3025 if Etype (Imm_Type) = Base_Type (A_Type) then
3026 return True;
3027
3028 -- The base type of the parent type may appear as a private
3029 -- extension if it is declared as such in a parent unit of the
3030 -- current one. For consistency of the subsequent analysis use
3031 -- the partial view for the ancestor part.
3032
3033 elsif Is_Private_Type (Etype (Imm_Type))
3034 and then Present (Full_View (Etype (Imm_Type)))
3035 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3036 then
3037 A_Type := Etype (Imm_Type);
3038 return True;
3039
3040 -- The parent type may be a private extension. The aggregate is
3041 -- legal if the type of the aggregate is an extension of it that
3042 -- is not a private extension.
3043
3044 elsif Is_Private_Type (A_Type)
3045 and then not Is_Private_Type (Imm_Type)
3046 and then Present (Full_View (A_Type))
3047 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3048 then
3049 return True;
3050
3051 -- The parent type may be a raise expression (which is legal in
3052 -- any expression context).
3053
3054 elsif A_Type = Raise_Type then
3055 A_Type := Etype (Imm_Type);
3056 return True;
3057
3058 else
3059 Imm_Type := Etype (Base_Type (Imm_Type));
3060 end if;
3061 end loop;
3062
3063 -- If previous loop did not find a proper ancestor, report error
3064
3065 Error_Msg_NE ("expect ancestor type of &", A, Typ);
3066 return False;
3067 end Valid_Ancestor_Type;
3068
3069 ------------------------------
3070 -- Transform_BIP_Assignment --
3071 ------------------------------
3072
3073 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3074 Loc : constant Source_Ptr := Sloc (N);
3075 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
3076 Obj_Decl : constant Node_Id :=
3077 Make_Object_Declaration (Loc,
3078 Defining_Identifier => Def_Id,
3079 Constant_Present => True,
3080 Object_Definition => New_Occurrence_Of (Typ, Loc),
3081 Expression => A,
3082 Has_Init_Expression => True);
3083 begin
3084 Set_Etype (Def_Id, Typ);
3085 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3086 Insert_Action (N, Obj_Decl);
3087 end Transform_BIP_Assignment;
3088
3089 -- Start of processing for Resolve_Extension_Aggregate
3090
3091 begin
3092 -- Analyze the ancestor part and account for the case where it is a
3093 -- parameterless function call.
3094
3095 Analyze (A);
3096 Check_Parameterless_Call (A);
3097
3098 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3099
3100 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3101 -- must not have unknown discriminants.
3102
3103 if Has_Unknown_Discriminants (Entity (A)) then
3104 Error_Msg_NE
3105 ("aggregate not available for type& whose ancestor "
3106 & "has unknown discriminants", N, Typ);
3107 end if;
3108 end if;
3109
3110 if not Is_Tagged_Type (Typ) then
3111 Error_Msg_N ("type of extension aggregate must be tagged", N);
3112 return;
3113
3114 elsif Is_Limited_Type (Typ) then
3115
3116 -- Ada 2005 (AI-287): Limited aggregates are allowed
3117
3118 if Ada_Version < Ada_2005 then
3119 Error_Msg_N ("aggregate type cannot be limited", N);
3120 Explain_Limited_Type (Typ, N);
3121 return;
3122
3123 elsif Valid_Limited_Ancestor (A) then
3124 null;
3125
3126 else
3127 Error_Msg_N
3128 ("limited ancestor part must be aggregate or function call", A);
3129 end if;
3130
3131 elsif Is_Class_Wide_Type (Typ) then
3132 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3133 return;
3134 end if;
3135
3136 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3137 A_Type := Get_Full_View (Entity (A));
3138
3139 if Valid_Ancestor_Type then
3140 Set_Entity (A, A_Type);
3141 Set_Etype (A, A_Type);
3142
3143 Validate_Ancestor_Part (N);
3144 Resolve_Record_Aggregate (N, Typ);
3145 end if;
3146
3147 elsif Nkind (A) /= N_Aggregate then
3148 if Is_Overloaded (A) then
3149 A_Type := Any_Type;
3150
3151 Get_First_Interp (A, I, It);
3152 while Present (It.Typ) loop
3153
3154 -- Consider limited interpretations if Ada 2005 or higher
3155
3156 if Is_Tagged_Type (It.Typ)
3157 and then (Ada_Version >= Ada_2005
3158 or else not Is_Limited_Type (It.Typ))
3159 then
3160 if A_Type /= Any_Type then
3161 Error_Msg_N ("cannot resolve expression", A);
3162 return;
3163 else
3164 A_Type := It.Typ;
3165 end if;
3166 end if;
3167
3168 Get_Next_Interp (I, It);
3169 end loop;
3170
3171 if A_Type = Any_Type then
3172 if Ada_Version >= Ada_2005 then
3173 Error_Msg_N
3174 ("ancestor part must be of a tagged type", A);
3175 else
3176 Error_Msg_N
3177 ("ancestor part must be of a nonlimited tagged type", A);
3178 end if;
3179
3180 return;
3181 end if;
3182
3183 else
3184 A_Type := Etype (A);
3185 end if;
3186
3187 if Valid_Ancestor_Type then
3188 Resolve (A, A_Type);
3189 Check_Unset_Reference (A);
3190 Check_Non_Static_Context (A);
3191
3192 -- The aggregate is illegal if the ancestor expression is a call
3193 -- to a function with a limited unconstrained result, unless the
3194 -- type of the aggregate is a null extension. This restriction
3195 -- was added in AI05-67 to simplify implementation.
3196
3197 if Nkind (A) = N_Function_Call
3198 and then Is_Limited_Type (A_Type)
3199 and then not Is_Null_Extension (Typ)
3200 and then not Is_Constrained (A_Type)
3201 then
3202 Error_Msg_N
3203 ("type of limited ancestor part must be constrained", A);
3204
3205 -- Reject the use of CPP constructors that leave objects partially
3206 -- initialized. For example:
3207
3208 -- type CPP_Root is tagged limited record ...
3209 -- pragma Import (CPP, CPP_Root);
3210
3211 -- type CPP_DT is new CPP_Root and Iface ...
3212 -- pragma Import (CPP, CPP_DT);
3213
3214 -- type Ada_DT is new CPP_DT with ...
3215
3216 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3217
3218 -- Using the constructor of CPP_Root the slots of the dispatch
3219 -- table of CPP_DT cannot be set, and the secondary tag of
3220 -- CPP_DT is unknown.
3221
3222 elsif Nkind (A) = N_Function_Call
3223 and then Is_CPP_Constructor_Call (A)
3224 and then Enclosing_CPP_Parent (Typ) /= A_Type
3225 then
3226 Error_Msg_NE
3227 ("??must use 'C'P'P constructor for type &", A,
3228 Enclosing_CPP_Parent (Typ));
3229
3230 -- The following call is not needed if the previous warning
3231 -- is promoted to an error.
3232
3233 Resolve_Record_Aggregate (N, Typ);
3234
3235 elsif Is_Class_Wide_Type (Etype (A))
3236 and then Nkind (Original_Node (A)) = N_Function_Call
3237 then
3238 -- If the ancestor part is a dispatching call, it appears
3239 -- statically to be a legal ancestor, but it yields any member
3240 -- of the class, and it is not possible to determine whether
3241 -- it is an ancestor of the extension aggregate (much less
3242 -- which ancestor). It is not possible to determine the
3243 -- components of the extension part.
3244
3245 -- This check implements AI-306, which in fact was motivated by
3246 -- an AdaCore query to the ARG after this test was added.
3247
3248 Error_Msg_N ("ancestor part must be statically tagged", A);
3249 else
3250 -- We are using the build-in-place protocol, but we can't build
3251 -- in place, because we need to call the function before
3252 -- allocating the aggregate. Could do better for null
3253 -- extensions, and maybe for nondiscriminated types.
3254 -- This is wrong for limited, but those were wrong already.
3255
3256 if not Is_Limited_View (A_Type)
3257 and then Is_Build_In_Place_Function_Call (A)
3258 then
3259 Transform_BIP_Assignment (A_Type);
3260 end if;
3261
3262 Resolve_Record_Aggregate (N, Typ);
3263 end if;
3264 end if;
3265
3266 else
3267 Error_Msg_N ("no unique type for this aggregate", A);
3268 end if;
3269
3270 Check_Function_Writable_Actuals (N);
3271 end Resolve_Extension_Aggregate;
3272
3273 ------------------------------
3274 -- Resolve_Record_Aggregate --
3275 ------------------------------
3276
3277 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3278 New_Assoc_List : constant List_Id := New_List;
3279 -- New_Assoc_List is the newly built list of N_Component_Association
3280 -- nodes.
3281
3282 Others_Etype : Entity_Id := Empty;
3283 -- This variable is used to save the Etype of the last record component
3284 -- that takes its value from the others choice. Its purpose is:
3285 --
3286 -- (a) make sure the others choice is useful
3287 --
3288 -- (b) make sure the type of all the components whose value is
3289 -- subsumed by the others choice are the same.
3290 --
3291 -- This variable is updated as a side effect of function Get_Value.
3292
3293 Box_Node : Node_Id := Empty;
3294 Is_Box_Present : Boolean := False;
3295 Others_Box : Natural := 0;
3296 -- Ada 2005 (AI-287): Variables used in case of default initialization
3297 -- to provide a functionality similar to Others_Etype. Box_Present
3298 -- indicates that the component takes its default initialization;
3299 -- Others_Box counts the number of components of the current aggregate
3300 -- (which may be a sub-aggregate of a larger one) that are default-
3301 -- initialized. A value of One indicates that an others_box is present.
3302 -- Any larger value indicates that the others_box is not redundant.
3303 -- These variables, similar to Others_Etype, are also updated as a side
3304 -- effect of function Get_Value. Box_Node is used to place a warning on
3305 -- a redundant others_box.
3306
3307 procedure Add_Association
3308 (Component : Entity_Id;
3309 Expr : Node_Id;
3310 Assoc_List : List_Id;
3311 Is_Box_Present : Boolean := False);
3312 -- Builds a new N_Component_Association node which associates Component
3313 -- to expression Expr and adds it to the association list being built,
3314 -- either New_Assoc_List, or the association being built for an inner
3315 -- aggregate.
3316
3317 procedure Add_Discriminant_Values
3318 (New_Aggr : Node_Id;
3319 Assoc_List : List_Id);
3320 -- The constraint to a component may be given by a discriminant of the
3321 -- enclosing type, in which case we have to retrieve its value, which is
3322 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3323 -- associations of the current type or of some enclosing record.
3324
3325 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3326 -- If aggregate N is a regular aggregate this routine will return True.
3327 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3328 -- a discriminant whose value may already have been specified by N's
3329 -- ancestor part. This routine checks whether this is indeed the case
3330 -- and if so returns False, signaling that no value for Input_Discr
3331 -- should appear in N's aggregate part. Also, in this case, the routine
3332 -- appends to New_Assoc_List the discriminant value specified in the
3333 -- ancestor part.
3334 --
3335 -- If the aggregate is in a context with expansion delayed, it will be
3336 -- reanalyzed. The inherited discriminant values must not be reinserted
3337 -- in the component list to prevent spurious errors, but they must be
3338 -- present on first analysis to build the proper subtype indications.
3339 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3340
3341 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3342 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3343 -- derived from private view Typ. Whether the aggregate is legal depends
3344 -- on the current visibility of the type as well as that of the parent
3345 -- of the ancestor.
3346
3347 function Get_Value
3348 (Compon : Entity_Id;
3349 From : List_Id;
3350 Consider_Others_Choice : Boolean := False) return Node_Id;
3351 -- Given a record component stored in parameter Compon, this function
3352 -- returns its value as it appears in the list From, which is a list
3353 -- of N_Component_Association nodes.
3354 --
3355 -- If no component association has a choice for the searched component,
3356 -- the value provided by the others choice is returned, if there is one,
3357 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3358 -- returned. If there is more than one component association giving a
3359 -- value for the searched record component, an error message is emitted
3360 -- and the first found value is returned.
3361 --
3362 -- If Consider_Others_Choice is set and the returned expression comes
3363 -- from the others choice, then Others_Etype is set as a side effect.
3364 -- An error message is emitted if the components taking their value from
3365 -- the others choice do not have same type.
3366
3367 procedure Propagate_Discriminants
3368 (Aggr : Node_Id;
3369 Assoc_List : List_Id);
3370 -- Nested components may themselves be discriminated types constrained
3371 -- by outer discriminants, whose values must be captured before the
3372 -- aggregate is expanded into assignments.
3373
3374 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3375 -- Analyzes and resolves expression Expr against the Etype of the
3376 -- Component. This routine also applies all appropriate checks to Expr.
3377 -- It finally saves a Expr in the newly created association list that
3378 -- will be attached to the final record aggregate. Note that if the
3379 -- Parent pointer of Expr is not set then Expr was produced with a
3380 -- New_Copy_Tree or some such.
3381
3382 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3383 -- Rewrite a range node Rge when its bounds refer to non-stored
3384 -- discriminants from Root_Type, to replace them with the stored
3385 -- discriminant values. This is required in GNATprove mode, and is
3386 -- adopted in all modes to avoid special-casing GNATprove mode.
3387
3388 ---------------------
3389 -- Add_Association --
3390 ---------------------
3391
3392 procedure Add_Association
3393 (Component : Entity_Id;
3394 Expr : Node_Id;
3395 Assoc_List : List_Id;
3396 Is_Box_Present : Boolean := False)
3397 is
3398 Choice_List : constant List_Id := New_List;
3399 Loc : Source_Ptr;
3400
3401 begin
3402 -- If this is a box association the expression is missing, so use the
3403 -- Sloc of the aggregate itself for the new association.
3404
3405 pragma Assert (Present (Expr) xor Is_Box_Present);
3406
3407 if Present (Expr) then
3408 Loc := Sloc (Expr);
3409 else
3410 Loc := Sloc (N);
3411 end if;
3412
3413 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3414
3415 Append_To (Assoc_List,
3416 Make_Component_Association (Loc,
3417 Choices => Choice_List,
3418 Expression => Expr,
3419 Box_Present => Is_Box_Present));
3420 end Add_Association;
3421
3422 -----------------------------
3423 -- Add_Discriminant_Values --
3424 -----------------------------
3425
3426 procedure Add_Discriminant_Values
3427 (New_Aggr : Node_Id;
3428 Assoc_List : List_Id)
3429 is
3430 Assoc : Node_Id;
3431 Discr : Entity_Id;
3432 Discr_Elmt : Elmt_Id;
3433 Discr_Val : Node_Id;
3434 Val : Entity_Id;
3435
3436 begin
3437 Discr := First_Discriminant (Etype (New_Aggr));
3438 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3439 while Present (Discr_Elmt) loop
3440 Discr_Val := Node (Discr_Elmt);
3441
3442 -- If the constraint is given by a discriminant then it is a
3443 -- discriminant of an enclosing record, and its value has already
3444 -- been placed in the association list.
3445
3446 if Is_Entity_Name (Discr_Val)
3447 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3448 then
3449 Val := Entity (Discr_Val);
3450
3451 Assoc := First (Assoc_List);
3452 while Present (Assoc) loop
3453 if Present (Entity (First (Choices (Assoc))))
3454 and then Entity (First (Choices (Assoc))) = Val
3455 then
3456 Discr_Val := Expression (Assoc);
3457 exit;
3458 end if;
3459
3460 Next (Assoc);
3461 end loop;
3462 end if;
3463
3464 Add_Association
3465 (Discr, New_Copy_Tree (Discr_Val),
3466 Component_Associations (New_Aggr));
3467
3468 -- If the discriminant constraint is a current instance, mark the
3469 -- current aggregate so that the self-reference can be expanded
3470 -- later. The constraint may refer to the subtype of aggregate, so
3471 -- use base type for comparison.
3472
3473 if Nkind (Discr_Val) = N_Attribute_Reference
3474 and then Is_Entity_Name (Prefix (Discr_Val))
3475 and then Is_Type (Entity (Prefix (Discr_Val)))
3476 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3477 then
3478 Set_Has_Self_Reference (N);
3479 end if;
3480
3481 Next_Elmt (Discr_Elmt);
3482 Next_Discriminant (Discr);
3483 end loop;
3484 end Add_Discriminant_Values;
3485
3486 --------------------------
3487 -- Discriminant_Present --
3488 --------------------------
3489
3490 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3491 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3492
3493 Ancestor_Is_Subtyp : Boolean;
3494
3495 Loc : Source_Ptr;
3496
3497 Ancestor : Node_Id;
3498 Ancestor_Typ : Entity_Id;
3499 Comp_Assoc : Node_Id;
3500 Discr : Entity_Id;
3501 Discr_Expr : Node_Id;
3502 Discr_Val : Elmt_Id := No_Elmt;
3503 Orig_Discr : Entity_Id;
3504
3505 begin
3506 if Regular_Aggr then
3507 return True;
3508 end if;
3509
3510 -- Check whether inherited discriminant values have already been
3511 -- inserted in the aggregate. This will be the case if we are
3512 -- re-analyzing an aggregate whose expansion was delayed.
3513
3514 if Present (Component_Associations (N)) then
3515 Comp_Assoc := First (Component_Associations (N));
3516 while Present (Comp_Assoc) loop
3517 if Inherited_Discriminant (Comp_Assoc) then
3518 return True;
3519 end if;
3520
3521 Next (Comp_Assoc);
3522 end loop;
3523 end if;
3524
3525 Ancestor := Ancestor_Part (N);
3526 Ancestor_Typ := Etype (Ancestor);
3527 Loc := Sloc (Ancestor);
3528
3529 -- For a private type with unknown discriminants, use the underlying
3530 -- record view if it is available.
3531
3532 if Has_Unknown_Discriminants (Ancestor_Typ)
3533 and then Present (Full_View (Ancestor_Typ))
3534 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3535 then
3536 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3537 end if;
3538
3539 Ancestor_Is_Subtyp :=
3540 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3541
3542 -- If the ancestor part has no discriminants clearly N's aggregate
3543 -- part must provide a value for Discr.
3544
3545 if not Has_Discriminants (Ancestor_Typ) then
3546 return True;
3547
3548 -- If the ancestor part is an unconstrained subtype mark then the
3549 -- Discr must be present in N's aggregate part.
3550
3551 elsif Ancestor_Is_Subtyp
3552 and then not Is_Constrained (Entity (Ancestor))
3553 then
3554 return True;
3555 end if;
3556
3557 -- Now look to see if Discr was specified in the ancestor part
3558
3559 if Ancestor_Is_Subtyp then
3560 Discr_Val :=
3561 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3562 end if;
3563
3564 Orig_Discr := Original_Record_Component (Input_Discr);
3565
3566 Discr := First_Discriminant (Ancestor_Typ);
3567 while Present (Discr) loop
3568
3569 -- If Ancestor has already specified Disc value then insert its
3570 -- value in the final aggregate.
3571
3572 if Original_Record_Component (Discr) = Orig_Discr then
3573 if Ancestor_Is_Subtyp then
3574 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3575 else
3576 Discr_Expr :=
3577 Make_Selected_Component (Loc,
3578 Prefix => Duplicate_Subexpr (Ancestor),
3579 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3580 end if;
3581
3582 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3583 Set_Inherited_Discriminant (Last (New_Assoc_List));
3584 return False;
3585 end if;
3586
3587 Next_Discriminant (Discr);
3588
3589 if Ancestor_Is_Subtyp then
3590 Next_Elmt (Discr_Val);
3591 end if;
3592 end loop;
3593
3594 return True;
3595 end Discriminant_Present;
3596
3597 ---------------------------
3598 -- Find_Private_Ancestor --
3599 ---------------------------
3600
3601 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3602 Par : Entity_Id;
3603
3604 begin
3605 Par := Typ;
3606 loop
3607 if Has_Private_Ancestor (Par)
3608 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3609 then
3610 return Par;
3611
3612 elsif not Is_Derived_Type (Par) then
3613 return Empty;
3614
3615 else
3616 Par := Etype (Base_Type (Par));
3617 end if;
3618 end loop;
3619 end Find_Private_Ancestor;
3620
3621 ---------------
3622 -- Get_Value --
3623 ---------------
3624
3625 function Get_Value
3626 (Compon : Entity_Id;
3627 From : List_Id;
3628 Consider_Others_Choice : Boolean := False) return Node_Id
3629 is
3630 Typ : constant Entity_Id := Etype (Compon);
3631 Assoc : Node_Id;
3632 Expr : Node_Id := Empty;
3633 Selector_Name : Node_Id;
3634
3635 begin
3636 Is_Box_Present := False;
3637
3638 if No (From) then
3639 return Empty;
3640 end if;
3641
3642 Assoc := First (From);
3643 while Present (Assoc) loop
3644 Selector_Name := First (Choices (Assoc));
3645 while Present (Selector_Name) loop
3646 if Nkind (Selector_Name) = N_Others_Choice then
3647 if Consider_Others_Choice and then No (Expr) then
3648
3649 -- We need to duplicate the expression for each
3650 -- successive component covered by the others choice.
3651 -- This is redundant if the others_choice covers only
3652 -- one component (small optimization possible???), but
3653 -- indispensable otherwise, because each one must be
3654 -- expanded individually to preserve side effects.
3655
3656 -- Ada 2005 (AI-287): In case of default initialization
3657 -- of components, we duplicate the corresponding default
3658 -- expression (from the record type declaration). The
3659 -- copy must carry the sloc of the association (not the
3660 -- original expression) to prevent spurious elaboration
3661 -- checks when the default includes function calls.
3662
3663 if Box_Present (Assoc) then
3664 Others_Box := Others_Box + 1;
3665 Is_Box_Present := True;
3666
3667 if Expander_Active then
3668 return
3669 New_Copy_Tree_And_Copy_Dimensions
3670 (Expression (Parent (Compon)),
3671 New_Sloc => Sloc (Assoc));
3672 else
3673 return Expression (Parent (Compon));
3674 end if;
3675
3676 else
3677 if Present (Others_Etype)
3678 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3679 then
3680 -- If the components are of an anonymous access
3681 -- type they are distinct, but this is legal in
3682 -- Ada 2012 as long as designated types match.
3683
3684 if (Ekind (Typ) = E_Anonymous_Access_Type
3685 or else Ekind (Typ) =
3686 E_Anonymous_Access_Subprogram_Type)
3687 and then Designated_Type (Typ) =
3688 Designated_Type (Others_Etype)
3689 then
3690 null;
3691 else
3692 Error_Msg_N
3693 ("components in OTHERS choice must have same "
3694 & "type", Selector_Name);
3695 end if;
3696 end if;
3697
3698 Others_Etype := Typ;
3699
3700 -- Copy the expression so that it is resolved
3701 -- independently for each component, This is needed
3702 -- for accessibility checks on compoents of anonymous
3703 -- access types, even in compile_only mode.
3704
3705 if not Inside_A_Generic then
3706 return
3707 New_Copy_Tree_And_Copy_Dimensions
3708 (Expression (Assoc));
3709 else
3710 return Expression (Assoc);
3711 end if;
3712 end if;
3713 end if;
3714
3715 elsif Chars (Compon) = Chars (Selector_Name) then
3716 if No (Expr) then
3717
3718 -- Ada 2005 (AI-231)
3719
3720 if Ada_Version >= Ada_2005
3721 and then Known_Null (Expression (Assoc))
3722 then
3723 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3724 end if;
3725
3726 -- We need to duplicate the expression when several
3727 -- components are grouped together with a "|" choice.
3728 -- For instance "filed1 | filed2 => Expr"
3729
3730 -- Ada 2005 (AI-287)
3731
3732 if Box_Present (Assoc) then
3733 Is_Box_Present := True;
3734
3735 -- Duplicate the default expression of the component
3736 -- from the record type declaration, so a new copy
3737 -- can be attached to the association.
3738
3739 -- Note that we always copy the default expression,
3740 -- even when the association has a single choice, in
3741 -- order to create a proper association for the
3742 -- expanded aggregate.
3743
3744 -- Component may have no default, in which case the
3745 -- expression is empty and the component is default-
3746 -- initialized, but an association for the component
3747 -- exists, and it is not covered by an others clause.
3748
3749 -- Scalar and private types have no initialization
3750 -- procedure, so they remain uninitialized. If the
3751 -- target of the aggregate is a constant this
3752 -- deserves a warning.
3753
3754 if No (Expression (Parent (Compon)))
3755 and then not Has_Non_Null_Base_Init_Proc (Typ)
3756 and then not Has_Aspect (Typ, Aspect_Default_Value)
3757 and then not Is_Concurrent_Type (Typ)
3758 and then Nkind (Parent (N)) = N_Object_Declaration
3759 and then Constant_Present (Parent (N))
3760 then
3761 Error_Msg_Node_2 := Typ;
3762 Error_Msg_NE
3763 ("component&? of type& is uninitialized",
3764 Assoc, Selector_Name);
3765
3766 -- An additional reminder if the component type
3767 -- is a generic formal.
3768
3769 if Is_Generic_Type (Base_Type (Typ)) then
3770 Error_Msg_NE
3771 ("\instance should provide actual type with "
3772 & "initialization for&", Assoc, Typ);
3773 end if;
3774 end if;
3775
3776 return
3777 New_Copy_Tree_And_Copy_Dimensions
3778 (Expression (Parent (Compon)));
3779
3780 else
3781 if Present (Next (Selector_Name)) then
3782 Expr := New_Copy_Tree_And_Copy_Dimensions
3783 (Expression (Assoc));
3784 else
3785 Expr := Expression (Assoc);
3786 end if;
3787 end if;
3788
3789 Generate_Reference (Compon, Selector_Name, 'm');
3790
3791 else
3792 Error_Msg_NE
3793 ("more than one value supplied for &",
3794 Selector_Name, Compon);
3795
3796 end if;
3797 end if;
3798
3799 Next (Selector_Name);
3800 end loop;
3801
3802 Next (Assoc);
3803 end loop;
3804
3805 return Expr;
3806 end Get_Value;
3807
3808 -----------------------------
3809 -- Propagate_Discriminants --
3810 -----------------------------
3811
3812 procedure Propagate_Discriminants
3813 (Aggr : Node_Id;
3814 Assoc_List : List_Id)
3815 is
3816 Loc : constant Source_Ptr := Sloc (N);
3817
3818 procedure Process_Component (Comp : Entity_Id);
3819 -- Add one component with a box association to the inner aggregate,
3820 -- and recurse if component is itself composite.
3821
3822 -----------------------
3823 -- Process_Component --
3824 -----------------------
3825
3826 procedure Process_Component (Comp : Entity_Id) is
3827 T : constant Entity_Id := Etype (Comp);
3828 New_Aggr : Node_Id;
3829
3830 begin
3831 if Is_Record_Type (T) and then Has_Discriminants (T) then
3832 New_Aggr := Make_Aggregate (Loc, No_List, New_List);
3833 Set_Etype (New_Aggr, T);
3834
3835 Add_Association
3836 (Comp, New_Aggr, Component_Associations (Aggr));
3837
3838 -- Collect discriminant values and recurse
3839
3840 Add_Discriminant_Values (New_Aggr, Assoc_List);
3841 Propagate_Discriminants (New_Aggr, Assoc_List);
3842
3843 Build_Constrained_Itype
3844 (New_Aggr, T, Component_Associations (New_Aggr));
3845 else
3846 Add_Association
3847 (Comp, Empty, Component_Associations (Aggr),
3848 Is_Box_Present => True);
3849 end if;
3850 end Process_Component;
3851
3852 -- Local variables
3853
3854 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3855 Components : constant Elist_Id := New_Elmt_List;
3856 Def_Node : constant Node_Id :=
3857 Type_Definition (Declaration_Node (Aggr_Type));
3858
3859 Comp : Node_Id;
3860 Comp_Elmt : Elmt_Id;
3861 Errors : Boolean;
3862
3863 -- Start of processing for Propagate_Discriminants
3864
3865 begin
3866 -- The component type may be a variant type. Collect the components
3867 -- that are ruled by the known values of the discriminants. Their
3868 -- values have already been inserted into the component list of the
3869 -- current aggregate.
3870
3871 if Nkind (Def_Node) = N_Record_Definition
3872 and then Present (Component_List (Def_Node))
3873 and then Present (Variant_Part (Component_List (Def_Node)))
3874 then
3875 Gather_Components (Aggr_Type,
3876 Component_List (Def_Node),
3877 Governed_By => Component_Associations (Aggr),
3878 Into => Components,
3879 Report_Errors => Errors);
3880
3881 Comp_Elmt := First_Elmt (Components);
3882 while Present (Comp_Elmt) loop
3883 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3884 Process_Component (Node (Comp_Elmt));
3885 end if;
3886
3887 Next_Elmt (Comp_Elmt);
3888 end loop;
3889
3890 -- No variant part, iterate over all components
3891
3892 else
3893 Comp := First_Component (Etype (Aggr));
3894 while Present (Comp) loop
3895 Process_Component (Comp);
3896 Next_Component (Comp);
3897 end loop;
3898 end if;
3899 end Propagate_Discriminants;
3900
3901 -----------------------
3902 -- Resolve_Aggr_Expr --
3903 -----------------------
3904
3905 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
3906 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3907 -- If the expression is an aggregate (possibly qualified) then its
3908 -- expansion is delayed until the enclosing aggregate is expanded
3909 -- into assignments. In that case, do not generate checks on the
3910 -- expression, because they will be generated later, and will other-
3911 -- wise force a copy (to remove side effects) that would leave a
3912 -- dynamic-sized aggregate in the code, something that gigi cannot
3913 -- handle.
3914
3915 ---------------------------
3916 -- Has_Expansion_Delayed --
3917 ---------------------------
3918
3919 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3920 begin
3921 return
3922 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3923 and then Present (Etype (Expr))
3924 and then Is_Record_Type (Etype (Expr))
3925 and then Expansion_Delayed (Expr))
3926 or else
3927 (Nkind (Expr) = N_Qualified_Expression
3928 and then Has_Expansion_Delayed (Expression (Expr)));
3929 end Has_Expansion_Delayed;
3930
3931 -- Local variables
3932
3933 Expr_Type : Entity_Id := Empty;
3934 New_C : Entity_Id := Component;
3935 New_Expr : Node_Id;
3936
3937 Relocate : Boolean;
3938 -- Set to True if the resolved Expr node needs to be relocated when
3939 -- attached to the newly created association list. This node need not
3940 -- be relocated if its parent pointer is not set. In fact in this
3941 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3942 -- True then we have analyzed the expression node in the original
3943 -- aggregate and hence it needs to be relocated when moved over to
3944 -- the new association list.
3945
3946 -- Start of processing for Resolve_Aggr_Expr
3947
3948 begin
3949 -- If the type of the component is elementary or the type of the
3950 -- aggregate does not contain discriminants, use the type of the
3951 -- component to resolve Expr.
3952
3953 if Is_Elementary_Type (Etype (Component))
3954 or else not Has_Discriminants (Etype (N))
3955 then
3956 Expr_Type := Etype (Component);
3957
3958 -- Otherwise we have to pick up the new type of the component from
3959 -- the new constrained subtype of the aggregate. In fact components
3960 -- which are of a composite type might be constrained by a
3961 -- discriminant, and we want to resolve Expr against the subtype were
3962 -- all discriminant occurrences are replaced with their actual value.
3963
3964 else
3965 New_C := First_Component (Etype (N));
3966 while Present (New_C) loop
3967 if Chars (New_C) = Chars (Component) then
3968 Expr_Type := Etype (New_C);
3969 exit;
3970 end if;
3971
3972 Next_Component (New_C);
3973 end loop;
3974
3975 pragma Assert (Present (Expr_Type));
3976
3977 -- For each range in an array type where a discriminant has been
3978 -- replaced with the constraint, check that this range is within
3979 -- the range of the base type. This checks is done in the init
3980 -- proc for regular objects, but has to be done here for
3981 -- aggregates since no init proc is called for them.
3982
3983 if Is_Array_Type (Expr_Type) then
3984 declare
3985 Index : Node_Id;
3986 -- Range of the current constrained index in the array
3987
3988 Orig_Index : Node_Id := First_Index (Etype (Component));
3989 -- Range corresponding to the range Index above in the
3990 -- original unconstrained record type. The bounds of this
3991 -- range may be governed by discriminants.
3992
3993 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3994 -- Range corresponding to the range Index above for the
3995 -- unconstrained array type. This range is needed to apply
3996 -- range checks.
3997
3998 begin
3999 Index := First_Index (Expr_Type);
4000 while Present (Index) loop
4001 if Depends_On_Discriminant (Orig_Index) then
4002 Apply_Range_Check (Index, Etype (Unconstr_Index));
4003 end if;
4004
4005 Next_Index (Index);
4006 Next_Index (Orig_Index);
4007 Next_Index (Unconstr_Index);
4008 end loop;
4009 end;
4010 end if;
4011 end if;
4012
4013 -- If the Parent pointer of Expr is not set, Expr is an expression
4014 -- duplicated by New_Tree_Copy (this happens for record aggregates
4015 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4016 -- Such a duplicated expression must be attached to the tree
4017 -- before analysis and resolution to enforce the rule that a tree
4018 -- fragment should never be analyzed or resolved unless it is
4019 -- attached to the current compilation unit.
4020
4021 if No (Parent (Expr)) then
4022 Set_Parent (Expr, N);
4023 Relocate := False;
4024 else
4025 Relocate := True;
4026 end if;
4027
4028 Analyze_And_Resolve (Expr, Expr_Type);
4029 Check_Expr_OK_In_Limited_Aggregate (Expr);
4030 Check_Non_Static_Context (Expr);
4031 Check_Unset_Reference (Expr);
4032
4033 -- Check wrong use of class-wide types
4034
4035 if Is_Class_Wide_Type (Etype (Expr)) then
4036 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4037 end if;
4038
4039 if not Has_Expansion_Delayed (Expr) then
4040 Aggregate_Constraint_Checks (Expr, Expr_Type);
4041 end if;
4042
4043 -- If an aggregate component has a type with predicates, an explicit
4044 -- predicate check must be applied, as for an assignment statement,
4045 -- because the aggegate might not be expanded into individual
4046 -- component assignments.
4047
4048 if Has_Predicates (Expr_Type)
4049 and then Analyzed (Expr)
4050 then
4051 Apply_Predicate_Check (Expr, Expr_Type);
4052 end if;
4053
4054 if Raises_Constraint_Error (Expr) then
4055 Set_Raises_Constraint_Error (N);
4056 end if;
4057
4058 -- If the expression has been marked as requiring a range check, then
4059 -- generate it here. It's a bit odd to be generating such checks in
4060 -- the analyzer, but harmless since Generate_Range_Check does nothing
4061 -- (other than making sure Do_Range_Check is set) if the expander is
4062 -- not active.
4063
4064 if Do_Range_Check (Expr) then
4065 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4066 end if;
4067
4068 -- Add association Component => Expr if the caller requests it
4069
4070 if Relocate then
4071 New_Expr := Relocate_Node (Expr);
4072
4073 -- Since New_Expr is not gonna be analyzed later on, we need to
4074 -- propagate here the dimensions form Expr to New_Expr.
4075
4076 Copy_Dimensions (Expr, New_Expr);
4077
4078 else
4079 New_Expr := Expr;
4080 end if;
4081
4082 Add_Association (New_C, New_Expr, New_Assoc_List);
4083 end Resolve_Aggr_Expr;
4084
4085 -------------------
4086 -- Rewrite_Range --
4087 -------------------
4088
4089 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4090 procedure Rewrite_Bound
4091 (Bound : Node_Id;
4092 Disc : Entity_Id;
4093 Expr_Disc : Node_Id);
4094 -- Rewrite a bound of the range Bound, when it is equal to the
4095 -- non-stored discriminant Disc, into the stored discriminant
4096 -- value Expr_Disc.
4097
4098 -------------------
4099 -- Rewrite_Bound --
4100 -------------------
4101
4102 procedure Rewrite_Bound
4103 (Bound : Node_Id;
4104 Disc : Entity_Id;
4105 Expr_Disc : Node_Id)
4106 is
4107 begin
4108 if Nkind (Bound) /= N_Identifier then
4109 return;
4110 end if;
4111
4112 -- We expect either the discriminant or the discriminal
4113
4114 if Entity (Bound) = Disc
4115 or else (Ekind (Entity (Bound)) = E_In_Parameter
4116 and then Discriminal_Link (Entity (Bound)) = Disc)
4117 then
4118 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4119 end if;
4120 end Rewrite_Bound;
4121
4122 -- Local variables
4123
4124 Low, High : Node_Id;
4125 Disc : Entity_Id;
4126 Expr_Disc : Elmt_Id;
4127
4128 -- Start of processing for Rewrite_Range
4129
4130 begin
4131 if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4132 Low := Low_Bound (Rge);
4133 High := High_Bound (Rge);
4134
4135 Disc := First_Discriminant (Root_Type);
4136 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4137 while Present (Disc) loop
4138 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4139 Rewrite_Bound (High, Disc, Node (Expr_Disc));
4140 Next_Discriminant (Disc);
4141 Next_Elmt (Expr_Disc);
4142 end loop;
4143 end if;
4144 end Rewrite_Range;
4145
4146 -- Local variables
4147
4148 Components : constant Elist_Id := New_Elmt_List;
4149 -- Components is the list of the record components whose value must be
4150 -- provided in the aggregate. This list does include discriminants.
4151
4152 Component : Entity_Id;
4153 Component_Elmt : Elmt_Id;
4154 Expr : Node_Id;
4155 Positional_Expr : Node_Id;
4156
4157 -- Start of processing for Resolve_Record_Aggregate
4158
4159 begin
4160 -- A record aggregate is restricted in SPARK:
4161
4162 -- Each named association can have only a single choice.
4163 -- OTHERS cannot be used.
4164 -- Positional and named associations cannot be mixed.
4165
4166 if Present (Component_Associations (N))
4167 and then Present (First (Component_Associations (N)))
4168 then
4169 declare
4170 Assoc : Node_Id;
4171
4172 begin
4173 Assoc := First (Component_Associations (N));
4174 while Present (Assoc) loop
4175 if Nkind (Assoc) = N_Iterated_Component_Association then
4176 Error_Msg_N
4177 ("iterated component association can only appear in an "
4178 & "array aggregate", N);
4179 raise Unrecoverable_Error;
4180 end if;
4181
4182 Next (Assoc);
4183 end loop;
4184 end;
4185 end if;
4186
4187 -- We may end up calling Duplicate_Subexpr on expressions that are
4188 -- attached to New_Assoc_List. For this reason we need to attach it
4189 -- to the tree by setting its parent pointer to N. This parent point
4190 -- will change in STEP 8 below.
4191
4192 Set_Parent (New_Assoc_List, N);
4193
4194 -- STEP 1: abstract type and null record verification
4195
4196 if Is_Abstract_Type (Typ) then
4197 Error_Msg_N ("type of aggregate cannot be abstract", N);
4198 end if;
4199
4200 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4201 Set_Etype (N, Typ);
4202 return;
4203
4204 elsif Present (First_Entity (Typ))
4205 and then Null_Record_Present (N)
4206 and then not Is_Tagged_Type (Typ)
4207 then
4208 Error_Msg_N ("record aggregate cannot be null", N);
4209 return;
4210
4211 -- If the type has no components, then the aggregate should either
4212 -- have "null record", or in Ada 2005 it could instead have a single
4213 -- component association given by "others => <>". For Ada 95 we flag an
4214 -- error at this point, but for Ada 2005 we proceed with checking the
4215 -- associations below, which will catch the case where it's not an
4216 -- aggregate with "others => <>". Note that the legality of a <>
4217 -- aggregate for a null record type was established by AI05-016.
4218
4219 elsif No (First_Entity (Typ))
4220 and then Ada_Version < Ada_2005
4221 then
4222 Error_Msg_N ("record aggregate must be null", N);
4223 return;
4224 end if;
4225
4226 -- STEP 2: Verify aggregate structure
4227
4228 Step_2 : declare
4229 Assoc : Node_Id;
4230 Bad_Aggregate : Boolean := False;
4231 Selector_Name : Node_Id;
4232
4233 begin
4234 if Present (Component_Associations (N)) then
4235 Assoc := First (Component_Associations (N));
4236 else
4237 Assoc := Empty;
4238 end if;
4239
4240 while Present (Assoc) loop
4241 Selector_Name := First (Choices (Assoc));
4242 while Present (Selector_Name) loop
4243 if Nkind (Selector_Name) = N_Identifier then
4244 null;
4245
4246 elsif Nkind (Selector_Name) = N_Others_Choice then
4247 if Selector_Name /= First (Choices (Assoc))
4248 or else Present (Next (Selector_Name))
4249 then
4250 Error_Msg_N
4251 ("OTHERS must appear alone in a choice list",
4252 Selector_Name);
4253 return;
4254
4255 elsif Present (Next (Assoc)) then
4256 Error_Msg_N
4257 ("OTHERS must appear last in an aggregate",
4258 Selector_Name);
4259 return;
4260
4261 -- (Ada 2005): If this is an association with a box,
4262 -- indicate that the association need not represent
4263 -- any component.
4264
4265 elsif Box_Present (Assoc) then
4266 Others_Box := 1;
4267 Box_Node := Assoc;
4268 end if;
4269
4270 else
4271 Error_Msg_N
4272 ("selector name should be identifier or OTHERS",
4273 Selector_Name);
4274 Bad_Aggregate := True;
4275 end if;
4276
4277 Next (Selector_Name);
4278 end loop;
4279
4280 Next (Assoc);
4281 end loop;
4282
4283 if Bad_Aggregate then
4284 return;
4285 end if;
4286 end Step_2;
4287
4288 -- STEP 3: Find discriminant Values
4289
4290 Step_3 : declare
4291 Discrim : Entity_Id;
4292 Missing_Discriminants : Boolean := False;
4293
4294 begin
4295 if Present (Expressions (N)) then
4296 Positional_Expr := First (Expressions (N));
4297 else
4298 Positional_Expr := Empty;
4299 end if;
4300
4301 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4302 -- must not have unknown discriminants.
4303 -- ??? We are not checking any subtype mark here and this code is not
4304 -- exercised by any test, so it's likely wrong (in particular
4305 -- we should not use Root_Type here but the subtype mark, if any),
4306 -- and possibly not needed.
4307
4308 if Is_Derived_Type (Typ)
4309 and then Has_Unknown_Discriminants (Root_Type (Typ))
4310 and then Nkind (N) /= N_Extension_Aggregate
4311 then
4312 Error_Msg_NE
4313 ("aggregate not available for type& whose ancestor "
4314 & "has unknown discriminants ", N, Typ);
4315 end if;
4316
4317 if Has_Unknown_Discriminants (Typ)
4318 and then Present (Underlying_Record_View (Typ))
4319 then
4320 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4321 elsif Has_Discriminants (Typ) then
4322 Discrim := First_Discriminant (Typ);
4323 else
4324 Discrim := Empty;
4325 end if;
4326
4327 -- First find the discriminant values in the positional components
4328
4329 while Present (Discrim) and then Present (Positional_Expr) loop
4330 if Discriminant_Present (Discrim) then
4331 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4332
4333 -- Ada 2005 (AI-231)
4334
4335 if Ada_Version >= Ada_2005
4336 and then Known_Null (Positional_Expr)
4337 then
4338 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4339 end if;
4340
4341 Next (Positional_Expr);
4342 end if;
4343
4344 if Present (Get_Value (Discrim, Component_Associations (N))) then
4345 Error_Msg_NE
4346 ("more than one value supplied for discriminant&",
4347 N, Discrim);
4348 end if;
4349
4350 Next_Discriminant (Discrim);
4351 end loop;
4352
4353 -- Find remaining discriminant values if any among named components
4354
4355 while Present (Discrim) loop
4356 Expr := Get_Value (Discrim, Component_Associations (N), True);
4357
4358 if not Discriminant_Present (Discrim) then
4359 if Present (Expr) then
4360 Error_Msg_NE
4361 ("more than one value supplied for discriminant &",
4362 N, Discrim);
4363 end if;
4364
4365 elsif No (Expr) then
4366 Error_Msg_NE
4367 ("no value supplied for discriminant &", N, Discrim);
4368 Missing_Discriminants := True;
4369
4370 else
4371 Resolve_Aggr_Expr (Expr, Discrim);
4372 end if;
4373
4374 Next_Discriminant (Discrim);
4375 end loop;
4376
4377 if Missing_Discriminants then
4378 return;
4379 end if;
4380
4381 -- At this point and until the beginning of STEP 6, New_Assoc_List
4382 -- contains only the discriminants and their values.
4383
4384 end Step_3;
4385
4386 -- STEP 4: Set the Etype of the record aggregate
4387
4388 if Has_Discriminants (Typ)
4389 or else (Has_Unknown_Discriminants (Typ)
4390 and then Present (Underlying_Record_View (Typ)))
4391 then
4392 Build_Constrained_Itype (N, Typ, New_Assoc_List);
4393 else
4394 Set_Etype (N, Typ);
4395 end if;
4396
4397 -- STEP 5: Get remaining components according to discriminant values
4398
4399 Step_5 : declare
4400 Dnode : Node_Id;
4401 Errors_Found : Boolean := False;
4402 Record_Def : Node_Id;
4403 Parent_Typ : Entity_Id;
4404 Parent_Typ_List : Elist_Id;
4405 Parent_Elmt : Elmt_Id;
4406 Root_Typ : Entity_Id;
4407
4408 begin
4409 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4410 Parent_Typ_List := New_Elmt_List;
4411
4412 -- If this is an extension aggregate, the component list must
4413 -- include all components that are not in the given ancestor type.
4414 -- Otherwise, the component list must include components of all
4415 -- ancestors, starting with the root.
4416
4417 if Nkind (N) = N_Extension_Aggregate then
4418 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4419
4420 else
4421 -- AI05-0115: check legality of aggregate for type with a
4422 -- private ancestor.
4423
4424 Root_Typ := Root_Type (Typ);
4425 if Has_Private_Ancestor (Typ) then
4426 declare
4427 Ancestor : constant Entity_Id :=
4428 Find_Private_Ancestor (Typ);
4429 Ancestor_Unit : constant Entity_Id :=
4430 Cunit_Entity
4431 (Get_Source_Unit (Ancestor));
4432 Parent_Unit : constant Entity_Id :=
4433 Cunit_Entity (Get_Source_Unit
4434 (Base_Type (Etype (Ancestor))));
4435 begin
4436 -- Check whether we are in a scope that has full view
4437 -- over the private ancestor and its parent. This can
4438 -- only happen if the derivation takes place in a child
4439 -- unit of the unit that declares the parent, and we are
4440 -- in the private part or body of that child unit, else
4441 -- the aggregate is illegal.
4442
4443 if Is_Child_Unit (Ancestor_Unit)
4444 and then Scope (Ancestor_Unit) = Parent_Unit
4445 and then In_Open_Scopes (Scope (Ancestor))
4446 and then
4447 (In_Private_Part (Scope (Ancestor))
4448 or else In_Package_Body (Scope (Ancestor)))
4449 then
4450 null;
4451
4452 else
4453 Error_Msg_NE
4454 ("type of aggregate has private ancestor&!",
4455 N, Root_Typ);
4456 Error_Msg_N ("must use extension aggregate!", N);
4457 return;
4458 end if;
4459 end;
4460 end if;
4461
4462 Dnode := Declaration_Node (Base_Type (Root_Typ));
4463
4464 -- If we don't get a full declaration, then we have some error
4465 -- which will get signalled later so skip this part. Otherwise
4466 -- gather components of root that apply to the aggregate type.
4467 -- We use the base type in case there is an applicable stored
4468 -- constraint that renames the discriminants of the root.
4469
4470 if Nkind (Dnode) = N_Full_Type_Declaration then
4471 Record_Def := Type_Definition (Dnode);
4472 Gather_Components
4473 (Base_Type (Typ),
4474 Component_List (Record_Def),
4475 Governed_By => New_Assoc_List,
4476 Into => Components,
4477 Report_Errors => Errors_Found);
4478
4479 if Errors_Found then
4480 Error_Msg_N
4481 ("discriminant controlling variant part is not static",
4482 N);
4483 return;
4484 end if;
4485 end if;
4486 end if;
4487
4488 Parent_Typ := Base_Type (Typ);
4489 while Parent_Typ /= Root_Typ loop
4490 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4491 Parent_Typ := Etype (Parent_Typ);
4492
4493 if Nkind (Parent (Base_Type (Parent_Typ))) =
4494 N_Private_Type_Declaration
4495 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4496 N_Private_Extension_Declaration
4497 then
4498 if Nkind (N) /= N_Extension_Aggregate then
4499 Error_Msg_NE
4500 ("type of aggregate has private ancestor&!",
4501 N, Parent_Typ);
4502 Error_Msg_N ("must use extension aggregate!", N);
4503 return;
4504
4505 elsif Parent_Typ /= Root_Typ then
4506 Error_Msg_NE
4507 ("ancestor part of aggregate must be private type&",
4508 Ancestor_Part (N), Parent_Typ);
4509 return;
4510 end if;
4511
4512 -- The current view of ancestor part may be a private type,
4513 -- while the context type is always non-private.
4514
4515 elsif Is_Private_Type (Root_Typ)
4516 and then Present (Full_View (Root_Typ))
4517 and then Nkind (N) = N_Extension_Aggregate
4518 then
4519 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4520 end if;
4521 end loop;
4522
4523 -- Now collect components from all other ancestors, beginning
4524 -- with the current type. If the type has unknown discriminants
4525 -- use the component list of the Underlying_Record_View, which
4526 -- needs to be used for the subsequent expansion of the aggregate
4527 -- into assignments.
4528
4529 Parent_Elmt := First_Elmt (Parent_Typ_List);
4530 while Present (Parent_Elmt) loop
4531 Parent_Typ := Node (Parent_Elmt);
4532
4533 if Has_Unknown_Discriminants (Parent_Typ)
4534 and then Present (Underlying_Record_View (Typ))
4535 then
4536 Parent_Typ := Underlying_Record_View (Parent_Typ);
4537 end if;
4538
4539 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4540 Gather_Components (Empty,
4541 Component_List (Record_Extension_Part (Record_Def)),
4542 Governed_By => New_Assoc_List,
4543 Into => Components,
4544 Report_Errors => Errors_Found);
4545
4546 Next_Elmt (Parent_Elmt);
4547 end loop;
4548
4549 -- Typ is not a derived tagged type
4550
4551 else
4552 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4553
4554 if Null_Present (Record_Def) then
4555 null;
4556
4557 elsif not Has_Unknown_Discriminants (Typ) then
4558 Gather_Components
4559 (Base_Type (Typ),
4560 Component_List (Record_Def),
4561 Governed_By => New_Assoc_List,
4562 Into => Components,
4563 Report_Errors => Errors_Found);
4564
4565 else
4566 Gather_Components
4567 (Base_Type (Underlying_Record_View (Typ)),
4568 Component_List (Record_Def),
4569 Governed_By => New_Assoc_List,
4570 Into => Components,
4571 Report_Errors => Errors_Found);
4572 end if;
4573 end if;
4574
4575 if Errors_Found then
4576 return;
4577 end if;
4578 end Step_5;
4579
4580 -- STEP 6: Find component Values
4581
4582 Component := Empty;
4583 Component_Elmt := First_Elmt (Components);
4584
4585 -- First scan the remaining positional associations in the aggregate.
4586 -- Remember that at this point Positional_Expr contains the current
4587 -- positional association if any is left after looking for discriminant
4588 -- values in step 3.
4589
4590 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4591 Component := Node (Component_Elmt);
4592 Resolve_Aggr_Expr (Positional_Expr, Component);
4593
4594 -- Ada 2005 (AI-231)
4595
4596 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4597 Check_Can_Never_Be_Null (Component, Positional_Expr);
4598 end if;
4599
4600 if Present (Get_Value (Component, Component_Associations (N))) then
4601 Error_Msg_NE
4602 ("more than one value supplied for Component &", N, Component);
4603 end if;
4604
4605 Next (Positional_Expr);
4606 Next_Elmt (Component_Elmt);
4607 end loop;
4608
4609 if Present (Positional_Expr) then
4610 Error_Msg_N
4611 ("too many components for record aggregate", Positional_Expr);
4612 end if;
4613
4614 -- Now scan for the named arguments of the aggregate
4615
4616 while Present (Component_Elmt) loop
4617 Component := Node (Component_Elmt);
4618 Expr := Get_Value (Component, Component_Associations (N), True);
4619
4620 -- Note: The previous call to Get_Value sets the value of the
4621 -- variable Is_Box_Present.
4622
4623 -- Ada 2005 (AI-287): Handle components with default initialization.
4624 -- Note: This feature was originally added to Ada 2005 for limited
4625 -- but it was finally allowed with any type.
4626
4627 if Is_Box_Present then
4628 Check_Box_Component : declare
4629 Ctyp : constant Entity_Id := Etype (Component);
4630
4631 begin
4632 -- If there is a default expression for the aggregate, copy
4633 -- it into a new association. This copy must modify the scopes
4634 -- of internal types that may be attached to the expression
4635 -- (e.g. index subtypes of arrays) because in general the type
4636 -- declaration and the aggregate appear in different scopes,
4637 -- and the backend requires the scope of the type to match the
4638 -- point at which it is elaborated.
4639
4640 -- If the component has an initialization procedure (IP) we
4641 -- pass the component to the expander, which will generate
4642 -- the call to such IP.
4643
4644 -- If the component has discriminants, their values must
4645 -- be taken from their subtype. This is indispensable for
4646 -- constraints that are given by the current instance of an
4647 -- enclosing type, to allow the expansion of the aggregate to
4648 -- replace the reference to the current instance by the target
4649 -- object of the aggregate.
4650
4651 if Present (Parent (Component))
4652 and then Nkind (Parent (Component)) = N_Component_Declaration
4653 and then Present (Expression (Parent (Component)))
4654 then
4655 Expr :=
4656 New_Copy_Tree_And_Copy_Dimensions
4657 (Expression (Parent (Component)),
4658 New_Scope => Current_Scope,
4659 New_Sloc => Sloc (N));
4660
4661 -- As the type of the copied default expression may refer
4662 -- to discriminants of the record type declaration, these
4663 -- non-stored discriminants need to be rewritten into stored
4664 -- discriminant values for the aggregate. This is required
4665 -- in GNATprove mode, and is adopted in all modes to avoid
4666 -- special-casing GNATprove mode.
4667
4668 if Is_Array_Type (Etype (Expr)) then
4669 declare
4670 Rec_Typ : constant Entity_Id := Scope (Component);
4671 -- Root record type whose discriminants may be used as
4672 -- bounds in range nodes.
4673
4674 Assoc : Node_Id;
4675 Choice : Node_Id;
4676 Index : Node_Id;
4677
4678 begin
4679 -- Rewrite the range nodes occurring in the indexes
4680 -- and their types.
4681
4682 Index := First_Index (Etype (Expr));
4683 while Present (Index) loop
4684 Rewrite_Range (Rec_Typ, Index);
4685 Rewrite_Range
4686 (Rec_Typ, Scalar_Range (Etype (Index)));
4687
4688 Next_Index (Index);
4689 end loop;
4690
4691 -- Rewrite the range nodes occurring as aggregate
4692 -- bounds and component associations.
4693
4694 if Nkind (Expr) = N_Aggregate then
4695 if Present (Aggregate_Bounds (Expr)) then
4696 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
4697 end if;
4698
4699 if Present (Component_Associations (Expr)) then
4700 Assoc := First (Component_Associations (Expr));
4701 while Present (Assoc) loop
4702 Choice := First (Choices (Assoc));
4703 while Present (Choice) loop
4704 Rewrite_Range (Rec_Typ, Choice);
4705
4706 Next (Choice);
4707 end loop;
4708
4709 Next (Assoc);
4710 end loop;
4711 end if;
4712 end if;
4713 end;
4714 end if;
4715
4716 Add_Association
4717 (Component => Component,
4718 Expr => Expr,
4719 Assoc_List => New_Assoc_List);
4720 Set_Has_Self_Reference (N);
4721
4722 -- A box-defaulted access component gets the value null. Also
4723 -- included are components of private types whose underlying
4724 -- type is an access type. In either case set the type of the
4725 -- literal, for subsequent use in semantic checks.
4726
4727 elsif Present (Underlying_Type (Ctyp))
4728 and then Is_Access_Type (Underlying_Type (Ctyp))
4729 then
4730 -- If the component's type is private with an access type as
4731 -- its underlying type then we have to create an unchecked
4732 -- conversion to satisfy type checking.
4733
4734 if Is_Private_Type (Ctyp) then
4735 declare
4736 Qual_Null : constant Node_Id :=
4737 Make_Qualified_Expression (Sloc (N),
4738 Subtype_Mark =>
4739 New_Occurrence_Of
4740 (Underlying_Type (Ctyp), Sloc (N)),
4741 Expression => Make_Null (Sloc (N)));
4742
4743 Convert_Null : constant Node_Id :=
4744 Unchecked_Convert_To
4745 (Ctyp, Qual_Null);
4746
4747 begin
4748 Analyze_And_Resolve (Convert_Null, Ctyp);
4749 Add_Association
4750 (Component => Component,
4751 Expr => Convert_Null,
4752 Assoc_List => New_Assoc_List);
4753 end;
4754
4755 -- Otherwise the component type is non-private
4756
4757 else
4758 Expr := Make_Null (Sloc (N));
4759 Set_Etype (Expr, Ctyp);
4760
4761 Add_Association
4762 (Component => Component,
4763 Expr => Expr,
4764 Assoc_List => New_Assoc_List);
4765 end if;
4766
4767 -- Ada 2012: If component is scalar with default value, use it
4768
4769 elsif Is_Scalar_Type (Ctyp)
4770 and then Has_Default_Aspect (Ctyp)
4771 then
4772 Add_Association
4773 (Component => Component,
4774 Expr =>
4775 Default_Aspect_Value
4776 (First_Subtype (Underlying_Type (Ctyp))),
4777 Assoc_List => New_Assoc_List);
4778
4779 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4780 or else not Expander_Active
4781 then
4782 if Is_Record_Type (Ctyp)
4783 and then Has_Discriminants (Ctyp)
4784 and then not Is_Private_Type (Ctyp)
4785 then
4786 -- We build a partially initialized aggregate with the
4787 -- values of the discriminants and box initialization
4788 -- for the rest, if other components are present.
4789
4790 -- The type of the aggregate is the known subtype of
4791 -- the component. The capture of discriminants must be
4792 -- recursive because subcomponents may be constrained
4793 -- (transitively) by discriminants of enclosing types.
4794 -- For a private type with discriminants, a call to the
4795 -- initialization procedure will be generated, and no
4796 -- subaggregate is needed.
4797
4798 Capture_Discriminants : declare
4799 Loc : constant Source_Ptr := Sloc (N);
4800 Expr : Node_Id;
4801
4802 begin
4803 Expr := Make_Aggregate (Loc, No_List, New_List);
4804 Set_Etype (Expr, Ctyp);
4805
4806 -- If the enclosing type has discriminants, they have
4807 -- been collected in the aggregate earlier, and they
4808 -- may appear as constraints of subcomponents.
4809
4810 -- Similarly if this component has discriminants, they
4811 -- might in turn be propagated to their components.
4812
4813 if Has_Discriminants (Typ) then
4814 Add_Discriminant_Values (Expr, New_Assoc_List);
4815 Propagate_Discriminants (Expr, New_Assoc_List);
4816
4817 elsif Has_Discriminants (Ctyp) then
4818 Add_Discriminant_Values
4819 (Expr, Component_Associations (Expr));
4820 Propagate_Discriminants
4821 (Expr, Component_Associations (Expr));
4822
4823 Build_Constrained_Itype
4824 (Expr, Ctyp, Component_Associations (Expr));
4825
4826 else
4827 declare
4828 Comp : Entity_Id;
4829
4830 begin
4831 -- If the type has additional components, create
4832 -- an OTHERS box association for them.
4833
4834 Comp := First_Component (Ctyp);
4835 while Present (Comp) loop
4836 if Ekind (Comp) = E_Component then
4837 if not Is_Record_Type (Etype (Comp)) then
4838 Append_To
4839 (Component_Associations (Expr),
4840 Make_Component_Association (Loc,
4841 Choices =>
4842 New_List (
4843 Make_Others_Choice (Loc)),
4844 Expression => Empty,
4845 Box_Present => True));
4846 end if;
4847
4848 exit;
4849 end if;
4850
4851 Next_Component (Comp);
4852 end loop;
4853 end;
4854 end if;
4855
4856 Add_Association
4857 (Component => Component,
4858 Expr => Expr,
4859 Assoc_List => New_Assoc_List);
4860 end Capture_Discriminants;
4861
4862 -- Otherwise the component type is not a record, or it has
4863 -- not discriminants, or it is private.
4864
4865 else
4866 Add_Association
4867 (Component => Component,
4868 Expr => Empty,
4869 Assoc_List => New_Assoc_List,
4870 Is_Box_Present => True);
4871 end if;
4872
4873 -- Otherwise we only need to resolve the expression if the
4874 -- component has partially initialized values (required to
4875 -- expand the corresponding assignments and run-time checks).
4876
4877 elsif Present (Expr)
4878 and then Is_Partially_Initialized_Type (Ctyp)
4879 then
4880 Resolve_Aggr_Expr (Expr, Component);
4881 end if;
4882 end Check_Box_Component;
4883
4884 elsif No (Expr) then
4885
4886 -- Ignore hidden components associated with the position of the
4887 -- interface tags: these are initialized dynamically.
4888
4889 if not Present (Related_Type (Component)) then
4890 Error_Msg_NE
4891 ("no value supplied for component &!", N, Component);
4892 end if;
4893
4894 else
4895 Resolve_Aggr_Expr (Expr, Component);
4896 end if;
4897
4898 Next_Elmt (Component_Elmt);
4899 end loop;
4900
4901 -- STEP 7: check for invalid components + check type in choice list
4902
4903 Step_7 : declare
4904 Assoc : Node_Id;
4905 New_Assoc : Node_Id;
4906
4907 Selectr : Node_Id;
4908 -- Selector name
4909
4910 Typech : Entity_Id;
4911 -- Type of first component in choice list
4912
4913 begin
4914 if Present (Component_Associations (N)) then
4915 Assoc := First (Component_Associations (N));
4916 else
4917 Assoc := Empty;
4918 end if;
4919
4920 Verification : while Present (Assoc) loop
4921 Selectr := First (Choices (Assoc));
4922 Typech := Empty;
4923
4924 if Nkind (Selectr) = N_Others_Choice then
4925
4926 -- Ada 2005 (AI-287): others choice may have expression or box
4927
4928 if No (Others_Etype) and then Others_Box = 0 then
4929 Error_Msg_N
4930 ("OTHERS must represent at least one component", Selectr);
4931
4932 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4933 Error_Msg_N ("others choice is redundant?", Box_Node);
4934 Error_Msg_N
4935 ("\previous choices cover all components?", Box_Node);
4936 end if;
4937
4938 exit Verification;
4939 end if;
4940
4941 while Present (Selectr) loop
4942 New_Assoc := First (New_Assoc_List);
4943 while Present (New_Assoc) loop
4944 Component := First (Choices (New_Assoc));
4945
4946 if Chars (Selectr) = Chars (Component) then
4947 if Style_Check then
4948 Check_Identifier (Selectr, Entity (Component));
4949 end if;
4950
4951 exit;
4952 end if;
4953
4954 Next (New_Assoc);
4955 end loop;
4956
4957 -- If no association, this is not a legal component of the type
4958 -- in question, unless its association is provided with a box.
4959
4960 if No (New_Assoc) then
4961 if Box_Present (Parent (Selectr)) then
4962
4963 -- This may still be a bogus component with a box. Scan
4964 -- list of components to verify that a component with
4965 -- that name exists.
4966
4967 declare
4968 C : Entity_Id;
4969
4970 begin
4971 C := First_Component (Typ);
4972 while Present (C) loop
4973 if Chars (C) = Chars (Selectr) then
4974
4975 -- If the context is an extension aggregate,
4976 -- the component must not be inherited from
4977 -- the ancestor part of the aggregate.
4978
4979 if Nkind (N) /= N_Extension_Aggregate
4980 or else
4981 Scope (Original_Record_Component (C)) /=
4982 Etype (Ancestor_Part (N))
4983 then
4984 exit;
4985 end if;
4986 end if;
4987
4988 Next_Component (C);
4989 end loop;
4990
4991 if No (C) then
4992 Error_Msg_Node_2 := Typ;
4993 Error_Msg_N ("& is not a component of}", Selectr);
4994 end if;
4995 end;
4996
4997 elsif Chars (Selectr) /= Name_uTag
4998 and then Chars (Selectr) /= Name_uParent
4999 then
5000 if not Has_Discriminants (Typ) then
5001 Error_Msg_Node_2 := Typ;
5002 Error_Msg_N ("& is not a component of}", Selectr);
5003 else
5004 Error_Msg_N
5005 ("& is not a component of the aggregate subtype",
5006 Selectr);
5007 end if;
5008
5009 Check_Misspelled_Component (Components, Selectr);
5010 end if;
5011
5012 elsif No (Typech) then
5013 Typech := Base_Type (Etype (Component));
5014
5015 -- AI05-0199: In Ada 2012, several components of anonymous
5016 -- access types can appear in a choice list, as long as the
5017 -- designated types match.
5018
5019 elsif Typech /= Base_Type (Etype (Component)) then
5020 if Ada_Version >= Ada_2012
5021 and then Ekind (Typech) = E_Anonymous_Access_Type
5022 and then
5023 Ekind (Etype (Component)) = E_Anonymous_Access_Type
5024 and then Base_Type (Designated_Type (Typech)) =
5025 Base_Type (Designated_Type (Etype (Component)))
5026 and then
5027 Subtypes_Statically_Match (Typech, (Etype (Component)))
5028 then
5029 null;
5030
5031 elsif not Box_Present (Parent (Selectr)) then
5032 Error_Msg_N
5033 ("components in choice list must have same type",
5034 Selectr);
5035 end if;
5036 end if;
5037
5038 Next (Selectr);
5039 end loop;
5040
5041 Next (Assoc);
5042 end loop Verification;
5043 end Step_7;
5044
5045 -- STEP 8: replace the original aggregate
5046
5047 Step_8 : declare
5048 New_Aggregate : constant Node_Id := New_Copy (N);
5049
5050 begin
5051 Set_Expressions (New_Aggregate, No_List);
5052 Set_Etype (New_Aggregate, Etype (N));
5053 Set_Component_Associations (New_Aggregate, New_Assoc_List);
5054 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
5055
5056 Rewrite (N, New_Aggregate);
5057 end Step_8;
5058
5059 -- Check the dimensions of the components in the record aggregate
5060
5061 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5062 end Resolve_Record_Aggregate;
5063
5064 -----------------------------
5065 -- Check_Can_Never_Be_Null --
5066 -----------------------------
5067
5068 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5069 Comp_Typ : Entity_Id;
5070
5071 begin
5072 pragma Assert
5073 (Ada_Version >= Ada_2005
5074 and then Present (Expr)
5075 and then Known_Null (Expr));
5076
5077 case Ekind (Typ) is
5078 when E_Array_Type =>
5079 Comp_Typ := Component_Type (Typ);
5080
5081 when E_Component
5082 | E_Discriminant
5083 =>
5084 Comp_Typ := Etype (Typ);
5085
5086 when others =>
5087 return;
5088 end case;
5089
5090 if Can_Never_Be_Null (Comp_Typ) then
5091
5092 -- Here we know we have a constraint error. Note that we do not use
5093 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5094 -- seem the more natural approach. That's because in some cases the
5095 -- components are rewritten, and the replacement would be missed.
5096 -- We do not mark the whole aggregate as raising a constraint error,
5097 -- because the association may be a null array range.
5098
5099 Error_Msg_N
5100 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
5101 Error_Msg_N
5102 ("\Constraint_Error will be raised at run time??", Expr);
5103
5104 Rewrite (Expr,
5105 Make_Raise_Constraint_Error
5106 (Sloc (Expr), Reason => CE_Access_Check_Failed));
5107 Set_Etype (Expr, Comp_Typ);
5108 Set_Analyzed (Expr);
5109 end if;
5110 end Check_Can_Never_Be_Null;
5111
5112 ---------------------
5113 -- Sort_Case_Table --
5114 ---------------------
5115
5116 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5117 U : constant Int := Case_Table'Last;
5118 K : Int;
5119 J : Int;
5120 T : Case_Bounds;
5121
5122 begin
5123 K := 1;
5124 while K < U loop
5125 T := Case_Table (K + 1);
5126
5127 J := K + 1;
5128 while J > 1
5129 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5130 loop
5131 Case_Table (J) := Case_Table (J - 1);
5132 J := J - 1;
5133 end loop;
5134
5135 Case_Table (J) := T;
5136 K := K + 1;
5137 end loop;
5138 end Sort_Case_Table;
5139
5140 end Sem_Aggr;