6ecb12760f47aa4d7073903c894f7b8cc2cffb30
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
73
74 with GNAT.Heap_Sort_G;
75
76 package body Sem_Ch13 is
77
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
88
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
94
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
109
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
116
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
123
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
135
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
139
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
146
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
151
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
157
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
168 --
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
171 --
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
175 --
176 -- "ABC" < "DEF"
177 --
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
180 --
181 -- subtype S is String with Static_Predicate => S < "DEF"
182 --
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
185
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
199 --
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
205
206 procedure Resolve_Iterable_Operation
207 (N : Node_Id;
208 Cursor : Entity_Id;
209 Typ : Entity_Id;
210 Nam : Name_Id);
211 -- If the name of a primitive operation for an Iterable aspect is
212 -- overloaded, resolve according to required signature.
213
214 procedure Set_Biased
215 (E : Entity_Id;
216 N : Node_Id;
217 Msg : String;
218 Biased : Boolean := True);
219 -- If Biased is True, sets Has_Biased_Representation flag for E, and
220 -- outputs a warning message at node N if Warn_On_Biased_Representation is
221 -- is True. This warning inserts the string Msg to describe the construct
222 -- causing biasing.
223
224 ---------------------------------------------------
225 -- Table for Validate_Compile_Time_Warning_Error --
226 ---------------------------------------------------
227
228 -- The following table collects pragmas Compile_Time_Error and Compile_
229 -- Time_Warning for validation. Entries are made by calls to subprogram
230 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
231 -- Validate_Compile_Time_Warning_Errors does the actual error checking
232 -- and posting of warning and error messages. The reason for this delayed
233 -- processing is to take advantage of back-annotations of attributes size
234 -- and alignment values performed by the back end.
235
236 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
237 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
238 -- already have modified all Sloc values if the -gnatD option is set.
239
240 type CTWE_Entry is record
241 Eloc : Source_Ptr;
242 -- Source location used in warnings and error messages
243
244 Prag : Node_Id;
245 -- Pragma Compile_Time_Error or Compile_Time_Warning
246
247 Scope : Node_Id;
248 -- The scope which encloses the pragma
249 end record;
250
251 package Compile_Time_Warnings_Errors is new Table.Table (
252 Table_Component_Type => CTWE_Entry,
253 Table_Index_Type => Int,
254 Table_Low_Bound => 1,
255 Table_Initial => 50,
256 Table_Increment => 200,
257 Table_Name => "Compile_Time_Warnings_Errors");
258
259 ----------------------------------------------
260 -- Table for Validate_Unchecked_Conversions --
261 ----------------------------------------------
262
263 -- The following table collects unchecked conversions for validation.
264 -- Entries are made by Validate_Unchecked_Conversion and then the call
265 -- to Validate_Unchecked_Conversions does the actual error checking and
266 -- posting of warnings. The reason for this delayed processing is to take
267 -- advantage of back-annotations of size and alignment values performed by
268 -- the back end.
269
270 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
271 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
272 -- already have modified all Sloc values if the -gnatD option is set.
273
274 type UC_Entry is record
275 Eloc : Source_Ptr; -- node used for posting warnings
276 Source : Entity_Id; -- source type for unchecked conversion
277 Target : Entity_Id; -- target type for unchecked conversion
278 Act_Unit : Entity_Id; -- actual function instantiated
279 end record;
280
281 package Unchecked_Conversions is new Table.Table (
282 Table_Component_Type => UC_Entry,
283 Table_Index_Type => Int,
284 Table_Low_Bound => 1,
285 Table_Initial => 50,
286 Table_Increment => 200,
287 Table_Name => "Unchecked_Conversions");
288
289 ----------------------------------------
290 -- Table for Validate_Address_Clauses --
291 ----------------------------------------
292
293 -- If an address clause has the form
294
295 -- for X'Address use Expr
296
297 -- where Expr has a value known at compile time or is of the form Y'Address
298 -- or recursively is a reference to a constant initialized with either of
299 -- these forms, and the value of Expr is not a multiple of X's alignment,
300 -- or if Y has a smaller alignment than X, then that merits a warning about
301 -- possible bad alignment. The following table collects address clauses of
302 -- this kind. We put these in a table so that they can be checked after the
303 -- back end has completed annotation of the alignments of objects, since we
304 -- can catch more cases that way.
305
306 type Address_Clause_Check_Record is record
307 N : Node_Id;
308 -- The address clause
309
310 X : Entity_Id;
311 -- The entity of the object subject to the address clause
312
313 A : Uint;
314 -- The value of the address in the first case
315
316 Y : Entity_Id;
317 -- The entity of the object being overlaid in the second case
318
319 Off : Boolean;
320 -- Whether the address is offset within Y in the second case
321 end record;
322
323 package Address_Clause_Checks is new Table.Table (
324 Table_Component_Type => Address_Clause_Check_Record,
325 Table_Index_Type => Int,
326 Table_Low_Bound => 1,
327 Table_Initial => 20,
328 Table_Increment => 200,
329 Table_Name => "Address_Clause_Checks");
330
331 -----------------------------------------
332 -- Adjust_Record_For_Reverse_Bit_Order --
333 -----------------------------------------
334
335 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
336 Max_Machine_Scalar_Size : constant Uint :=
337 UI_From_Int
338 (Standard_Long_Long_Integer_Size);
339 -- We use this as the maximum machine scalar size
340
341 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
342
343 CC : Node_Id;
344 Comp : Node_Id;
345 Num_CC : Natural;
346
347 begin
348 -- Processing here used to depend on Ada version: the behavior was
349 -- changed by AI95-0133. However this AI is a Binding interpretation,
350 -- so we now implement it even in Ada 95 mode. The original behavior
351 -- from unamended Ada 95 is still available for compatibility under
352 -- debugging switch -gnatd.
353
354 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
355 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
356 return;
357 end if;
358
359 -- For Ada 2005, we do machine scalar processing, as fully described In
360 -- AI-133. This involves gathering all components which start at the
361 -- same byte offset and processing them together. Same approach is still
362 -- valid in later versions including Ada 2012.
363
364 -- This first loop through components does two things. First it deals
365 -- with the case of components with component clauses whose length is
366 -- greater than the maximum machine scalar size (either accepting them
367 -- or rejecting as needed). Second, it counts the number of components
368 -- with component clauses whose length does not exceed this maximum for
369 -- later processing.
370
371 Num_CC := 0;
372 Comp := First_Component_Or_Discriminant (R);
373 while Present (Comp) loop
374 CC := Component_Clause (Comp);
375
376 if Present (CC) then
377 declare
378 Fbit : constant Uint := Static_Integer (First_Bit (CC));
379 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
380
381 begin
382 -- Case of component with last bit >= max machine scalar
383
384 if Lbit >= Max_Machine_Scalar_Size then
385
386 -- This is allowed only if first bit is zero, and last bit
387 -- + 1 is a multiple of storage unit size.
388
389 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
390
391 -- This is the case to give a warning if enabled
392
393 if Warn_On_Reverse_Bit_Order then
394 Error_Msg_N
395 ("info: multi-byte field specified with "
396 & "non-standard Bit_Order?V?", CC);
397
398 if Bytes_Big_Endian then
399 Error_Msg_N
400 ("\bytes are not reversed "
401 & "(component is big-endian)?V?", CC);
402 else
403 Error_Msg_N
404 ("\bytes are not reversed "
405 & "(component is little-endian)?V?", CC);
406 end if;
407 end if;
408
409 -- Give error message for RM 13.5.1(10) violation
410
411 else
412 Error_Msg_FE
413 ("machine scalar rules not followed for&",
414 First_Bit (CC), Comp);
415
416 Error_Msg_Uint_1 := Lbit + 1;
417 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
418 Error_Msg_F
419 ("\last bit + 1 (^) exceeds maximum machine scalar "
420 & "size (^)", First_Bit (CC));
421
422 if (Lbit + 1) mod SSU /= 0 then
423 Error_Msg_Uint_1 := SSU;
424 Error_Msg_F
425 ("\and is not a multiple of Storage_Unit (^) "
426 & "(RM 13.5.1(10))", First_Bit (CC));
427
428 else
429 Error_Msg_Uint_1 := Fbit;
430 Error_Msg_F
431 ("\and first bit (^) is non-zero "
432 & "(RM 13.4.1(10))", First_Bit (CC));
433 end if;
434 end if;
435
436 -- OK case of machine scalar related component clause. For now,
437 -- just count them.
438
439 else
440 Num_CC := Num_CC + 1;
441 end if;
442 end;
443 end if;
444
445 Next_Component_Or_Discriminant (Comp);
446 end loop;
447
448 -- We need to sort the component clauses on the basis of the Position
449 -- values in the clause, so we can group clauses with the same Position
450 -- together to determine the relevant machine scalar size.
451
452 Sort_CC : declare
453 Comps : array (0 .. Num_CC) of Entity_Id;
454 -- Array to collect component and discriminant entities. The data
455 -- starts at index 1, the 0'th entry is for the sort routine.
456
457 function CP_Lt (Op1, Op2 : Natural) return Boolean;
458 -- Compare routine for Sort
459
460 procedure CP_Move (From : Natural; To : Natural);
461 -- Move routine for Sort
462
463 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
464
465 MaxL : Uint;
466 -- Maximum last bit value of any component in this set
467
468 MSS : Uint;
469 -- Corresponding machine scalar size
470
471 Start : Natural;
472 Stop : Natural;
473 -- Start and stop positions in the component list of the set of
474 -- components with the same starting position (that constitute
475 -- components in a single machine scalar).
476
477 -----------
478 -- CP_Lt --
479 -----------
480
481 function CP_Lt (Op1, Op2 : Natural) return Boolean is
482 begin
483 return
484 Position (Component_Clause (Comps (Op1))) <
485 Position (Component_Clause (Comps (Op2)));
486 end CP_Lt;
487
488 -------------
489 -- CP_Move --
490 -------------
491
492 procedure CP_Move (From : Natural; To : Natural) is
493 begin
494 Comps (To) := Comps (From);
495 end CP_Move;
496
497 -- Start of processing for Sort_CC
498
499 begin
500 -- Collect the machine scalar relevant component clauses
501
502 Num_CC := 0;
503 Comp := First_Component_Or_Discriminant (R);
504 while Present (Comp) loop
505 declare
506 CC : constant Node_Id := Component_Clause (Comp);
507
508 begin
509 -- Collect only component clauses whose last bit is less than
510 -- machine scalar size. Any component clause whose last bit
511 -- exceeds this value does not take part in machine scalar
512 -- layout considerations. The test for Error_Posted makes sure
513 -- we exclude component clauses for which we already posted an
514 -- error.
515
516 if Present (CC)
517 and then not Error_Posted (Last_Bit (CC))
518 and then Static_Integer (Last_Bit (CC)) <
519 Max_Machine_Scalar_Size
520 then
521 Num_CC := Num_CC + 1;
522 Comps (Num_CC) := Comp;
523 end if;
524 end;
525
526 Next_Component_Or_Discriminant (Comp);
527 end loop;
528
529 -- Sort by ascending position number
530
531 Sorting.Sort (Num_CC);
532
533 -- We now have all the components whose size does not exceed the max
534 -- machine scalar value, sorted by starting position. In this loop we
535 -- gather groups of clauses starting at the same position, to process
536 -- them in accordance with AI-133.
537
538 Stop := 0;
539 while Stop < Num_CC loop
540 Start := Stop + 1;
541 Stop := Start;
542 MaxL :=
543 Static_Integer
544 (Last_Bit (Component_Clause (Comps (Start))));
545 while Stop < Num_CC loop
546 if Static_Integer
547 (Position (Component_Clause (Comps (Stop + 1)))) =
548 Static_Integer
549 (Position (Component_Clause (Comps (Stop))))
550 then
551 Stop := Stop + 1;
552 MaxL :=
553 UI_Max
554 (MaxL,
555 Static_Integer
556 (Last_Bit
557 (Component_Clause (Comps (Stop)))));
558 else
559 exit;
560 end if;
561 end loop;
562
563 -- Now we have a group of component clauses from Start to Stop
564 -- whose positions are identical, and MaxL is the maximum last
565 -- bit value of any of these components.
566
567 -- We need to determine the corresponding machine scalar size.
568 -- This loop assumes that machine scalar sizes are even, and that
569 -- each possible machine scalar has twice as many bits as the next
570 -- smaller one.
571
572 MSS := Max_Machine_Scalar_Size;
573 while MSS mod 2 = 0
574 and then (MSS / 2) >= SSU
575 and then (MSS / 2) > MaxL
576 loop
577 MSS := MSS / 2;
578 end loop;
579
580 -- Here is where we fix up the Component_Bit_Offset value to
581 -- account for the reverse bit order. Some examples of what needs
582 -- to be done for the case of a machine scalar size of 8 are:
583
584 -- First_Bit .. Last_Bit Component_Bit_Offset
585 -- old new old new
586
587 -- 0 .. 0 7 .. 7 0 7
588 -- 0 .. 1 6 .. 7 0 6
589 -- 0 .. 2 5 .. 7 0 5
590 -- 0 .. 7 0 .. 7 0 4
591
592 -- 1 .. 1 6 .. 6 1 6
593 -- 1 .. 4 3 .. 6 1 3
594 -- 4 .. 7 0 .. 3 4 0
595
596 -- The rule is that the first bit is obtained by subtracting the
597 -- old ending bit from machine scalar size - 1.
598
599 for C in Start .. Stop loop
600 declare
601 Comp : constant Entity_Id := Comps (C);
602 CC : constant Node_Id := Component_Clause (Comp);
603
604 LB : constant Uint := Static_Integer (Last_Bit (CC));
605 NFB : constant Uint := MSS - Uint_1 - LB;
606 NLB : constant Uint := NFB + Esize (Comp) - 1;
607 Pos : constant Uint := Static_Integer (Position (CC));
608
609 begin
610 if Warn_On_Reverse_Bit_Order then
611 Error_Msg_Uint_1 := MSS;
612 Error_Msg_N
613 ("info: reverse bit order in machine scalar of "
614 & "length^?V?", First_Bit (CC));
615 Error_Msg_Uint_1 := NFB;
616 Error_Msg_Uint_2 := NLB;
617
618 if Bytes_Big_Endian then
619 Error_Msg_NE
620 ("\big-endian range for component & is ^ .. ^?V?",
621 First_Bit (CC), Comp);
622 else
623 Error_Msg_NE
624 ("\little-endian range for component & is ^ .. ^?V?",
625 First_Bit (CC), Comp);
626 end if;
627 end if;
628
629 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
630 Set_Normalized_First_Bit (Comp, NFB mod SSU);
631 end;
632 end loop;
633 end loop;
634 end Sort_CC;
635 end Adjust_Record_For_Reverse_Bit_Order;
636
637 ------------------------------------------------
638 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
639 ------------------------------------------------
640
641 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
642 CC : Node_Id;
643 Comp : Node_Id;
644
645 begin
646 -- For Ada 95, we just renumber bits within a storage unit. We do the
647 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
648 -- Ada 83, and are free to add this extension.
649
650 Comp := First_Component_Or_Discriminant (R);
651 while Present (Comp) loop
652 CC := Component_Clause (Comp);
653
654 -- If component clause is present, then deal with the non-default
655 -- bit order case for Ada 95 mode.
656
657 -- We only do this processing for the base type, and in fact that
658 -- is important, since otherwise if there are record subtypes, we
659 -- could reverse the bits once for each subtype, which is wrong.
660
661 if Present (CC) and then Ekind (R) = E_Record_Type then
662 declare
663 CFB : constant Uint := Component_Bit_Offset (Comp);
664 CSZ : constant Uint := Esize (Comp);
665 CLC : constant Node_Id := Component_Clause (Comp);
666 Pos : constant Node_Id := Position (CLC);
667 FB : constant Node_Id := First_Bit (CLC);
668
669 Storage_Unit_Offset : constant Uint :=
670 CFB / System_Storage_Unit;
671
672 Start_Bit : constant Uint :=
673 CFB mod System_Storage_Unit;
674
675 begin
676 -- Cases where field goes over storage unit boundary
677
678 if Start_Bit + CSZ > System_Storage_Unit then
679
680 -- Allow multi-byte field but generate warning
681
682 if Start_Bit mod System_Storage_Unit = 0
683 and then CSZ mod System_Storage_Unit = 0
684 then
685 Error_Msg_N
686 ("info: multi-byte field specified with non-standard "
687 & "Bit_Order?V?", CLC);
688
689 if Bytes_Big_Endian then
690 Error_Msg_N
691 ("\bytes are not reversed "
692 & "(component is big-endian)?V?", CLC);
693 else
694 Error_Msg_N
695 ("\bytes are not reversed "
696 & "(component is little-endian)?V?", CLC);
697 end if;
698
699 -- Do not allow non-contiguous field
700
701 else
702 Error_Msg_N
703 ("attempt to specify non-contiguous field not "
704 & "permitted", CLC);
705 Error_Msg_N
706 ("\caused by non-standard Bit_Order specified in "
707 & "legacy Ada 95 mode", CLC);
708 end if;
709
710 -- Case where field fits in one storage unit
711
712 else
713 -- Give warning if suspicious component clause
714
715 if Intval (FB) >= System_Storage_Unit
716 and then Warn_On_Reverse_Bit_Order
717 then
718 Error_Msg_N
719 ("info: Bit_Order clause does not affect byte "
720 & "ordering?V?", Pos);
721 Error_Msg_Uint_1 :=
722 Intval (Pos) + Intval (FB) /
723 System_Storage_Unit;
724 Error_Msg_N
725 ("info: position normalized to ^ before bit order "
726 & "interpreted?V?", Pos);
727 end if;
728
729 -- Here is where we fix up the Component_Bit_Offset value
730 -- to account for the reverse bit order. Some examples of
731 -- what needs to be done are:
732
733 -- First_Bit .. Last_Bit Component_Bit_Offset
734 -- old new old new
735
736 -- 0 .. 0 7 .. 7 0 7
737 -- 0 .. 1 6 .. 7 0 6
738 -- 0 .. 2 5 .. 7 0 5
739 -- 0 .. 7 0 .. 7 0 4
740
741 -- 1 .. 1 6 .. 6 1 6
742 -- 1 .. 4 3 .. 6 1 3
743 -- 4 .. 7 0 .. 3 4 0
744
745 -- The rule is that the first bit is is obtained by
746 -- subtracting the old ending bit from storage_unit - 1.
747
748 Set_Component_Bit_Offset (Comp,
749 (Storage_Unit_Offset * System_Storage_Unit) +
750 (System_Storage_Unit - 1) -
751 (Start_Bit + CSZ - 1));
752
753 Set_Normalized_First_Bit (Comp,
754 Component_Bit_Offset (Comp) mod System_Storage_Unit);
755 end if;
756 end;
757 end if;
758
759 Next_Component_Or_Discriminant (Comp);
760 end loop;
761 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
762
763 -------------------------------------
764 -- Alignment_Check_For_Size_Change --
765 -------------------------------------
766
767 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
768 begin
769 -- If the alignment is known, and not set by a rep clause, and is
770 -- inconsistent with the size being set, then reset it to unknown,
771 -- we assume in this case that the size overrides the inherited
772 -- alignment, and that the alignment must be recomputed.
773
774 if Known_Alignment (Typ)
775 and then not Has_Alignment_Clause (Typ)
776 and then Size mod (Alignment (Typ) * SSU) /= 0
777 then
778 Init_Alignment (Typ);
779 end if;
780 end Alignment_Check_For_Size_Change;
781
782 -------------------------------------
783 -- Analyze_Aspects_At_Freeze_Point --
784 -------------------------------------
785
786 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
787 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
788 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
789 -- the aspect specification node ASN.
790
791 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
792 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
793 -- a derived type can inherit aspects from its parent which have been
794 -- specified at the time of the derivation using an aspect, as in:
795 --
796 -- type A is range 1 .. 10
797 -- with Size => Not_Defined_Yet;
798 -- ..
799 -- type B is new A;
800 -- ..
801 -- Not_Defined_Yet : constant := 64;
802 --
803 -- In this example, the Size of A is considered to be specified prior
804 -- to the derivation, and thus inherited, even though the value is not
805 -- known at the time of derivation. To deal with this, we use two entity
806 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
807 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
808 -- the derived type (B here). If this flag is set when the derived type
809 -- is frozen, then this procedure is called to ensure proper inheritance
810 -- of all delayed aspects from the parent type. The derived type is E,
811 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
812 -- aspect specification node in the Rep_Item chain for the parent type.
813
814 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
815 -- Given an aspect specification node ASN whose expression is an
816 -- optional Boolean, this routines creates the corresponding pragma
817 -- at the freezing point.
818
819 ----------------------------------
820 -- Analyze_Aspect_Default_Value --
821 ----------------------------------
822
823 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
824 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
825 Ent : constant Entity_Id := Entity (ASN);
826 Expr : constant Node_Id := Expression (ASN);
827 Id : constant Node_Id := Identifier (ASN);
828
829 begin
830 Error_Msg_Name_1 := Chars (Id);
831
832 if not Is_Type (Ent) then
833 Error_Msg_N ("aspect% can only apply to a type", Id);
834 return;
835
836 elsif not Is_First_Subtype (Ent) then
837 Error_Msg_N ("aspect% cannot apply to subtype", Id);
838 return;
839
840 elsif A_Id = Aspect_Default_Value
841 and then not Is_Scalar_Type (Ent)
842 then
843 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
844 return;
845
846 elsif A_Id = Aspect_Default_Component_Value then
847 if not Is_Array_Type (Ent) then
848 Error_Msg_N ("aspect% can only be applied to array type", Id);
849 return;
850
851 elsif not Is_Scalar_Type (Component_Type (Ent)) then
852 Error_Msg_N ("aspect% requires scalar components", Id);
853 return;
854 end if;
855 end if;
856
857 Set_Has_Default_Aspect (Base_Type (Ent));
858
859 if Is_Scalar_Type (Ent) then
860 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
861 else
862 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
863 end if;
864 end Analyze_Aspect_Default_Value;
865
866 ---------------------------------
867 -- Inherit_Delayed_Rep_Aspects --
868 ---------------------------------
869
870 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
871 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
872 P : constant Entity_Id := Entity (ASN);
873 -- Entithy for parent type
874
875 N : Node_Id;
876 -- Item from Rep_Item chain
877
878 A : Aspect_Id;
879
880 begin
881 -- Loop through delayed aspects for the parent type
882
883 N := ASN;
884 while Present (N) loop
885 if Nkind (N) = N_Aspect_Specification then
886 exit when Entity (N) /= P;
887
888 if Is_Delayed_Aspect (N) then
889 A := Get_Aspect_Id (Chars (Identifier (N)));
890
891 -- Process delayed rep aspect. For Boolean attributes it is
892 -- not possible to cancel an attribute once set (the attempt
893 -- to use an aspect with xxx => False is an error) for a
894 -- derived type. So for those cases, we do not have to check
895 -- if a clause has been given for the derived type, since it
896 -- is harmless to set it again if it is already set.
897
898 case A is
899
900 -- Alignment
901
902 when Aspect_Alignment =>
903 if not Has_Alignment_Clause (E) then
904 Set_Alignment (E, Alignment (P));
905 end if;
906
907 -- Atomic
908
909 when Aspect_Atomic =>
910 if Is_Atomic (P) then
911 Set_Is_Atomic (E);
912 end if;
913
914 -- Atomic_Components
915
916 when Aspect_Atomic_Components =>
917 if Has_Atomic_Components (P) then
918 Set_Has_Atomic_Components (Base_Type (E));
919 end if;
920
921 -- Bit_Order
922
923 when Aspect_Bit_Order =>
924 if Is_Record_Type (E)
925 and then No (Get_Attribute_Definition_Clause
926 (E, Attribute_Bit_Order))
927 and then Reverse_Bit_Order (P)
928 then
929 Set_Reverse_Bit_Order (Base_Type (E));
930 end if;
931
932 -- Component_Size
933
934 when Aspect_Component_Size =>
935 if Is_Array_Type (E)
936 and then not Has_Component_Size_Clause (E)
937 then
938 Set_Component_Size
939 (Base_Type (E), Component_Size (P));
940 end if;
941
942 -- Machine_Radix
943
944 when Aspect_Machine_Radix =>
945 if Is_Decimal_Fixed_Point_Type (E)
946 and then not Has_Machine_Radix_Clause (E)
947 then
948 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
949 end if;
950
951 -- Object_Size (also Size which also sets Object_Size)
952
953 when Aspect_Object_Size
954 | Aspect_Size
955 =>
956 if not Has_Size_Clause (E)
957 and then
958 No (Get_Attribute_Definition_Clause
959 (E, Attribute_Object_Size))
960 then
961 Set_Esize (E, Esize (P));
962 end if;
963
964 -- Pack
965
966 when Aspect_Pack =>
967 if not Is_Packed (E) then
968 Set_Is_Packed (Base_Type (E));
969
970 if Is_Bit_Packed_Array (P) then
971 Set_Is_Bit_Packed_Array (Base_Type (E));
972 Set_Packed_Array_Impl_Type
973 (E, Packed_Array_Impl_Type (P));
974 end if;
975 end if;
976
977 -- Scalar_Storage_Order
978
979 when Aspect_Scalar_Storage_Order =>
980 if (Is_Record_Type (E) or else Is_Array_Type (E))
981 and then No (Get_Attribute_Definition_Clause
982 (E, Attribute_Scalar_Storage_Order))
983 and then Reverse_Storage_Order (P)
984 then
985 Set_Reverse_Storage_Order (Base_Type (E));
986
987 -- Clear default SSO indications, since the aspect
988 -- overrides the default.
989
990 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
991 Set_SSO_Set_High_By_Default (Base_Type (E), False);
992 end if;
993
994 -- Small
995
996 when Aspect_Small =>
997 if Is_Fixed_Point_Type (E)
998 and then not Has_Small_Clause (E)
999 then
1000 Set_Small_Value (E, Small_Value (P));
1001 end if;
1002
1003 -- Storage_Size
1004
1005 when Aspect_Storage_Size =>
1006 if (Is_Access_Type (E) or else Is_Task_Type (E))
1007 and then not Has_Storage_Size_Clause (E)
1008 then
1009 Set_Storage_Size_Variable
1010 (Base_Type (E), Storage_Size_Variable (P));
1011 end if;
1012
1013 -- Value_Size
1014
1015 when Aspect_Value_Size =>
1016
1017 -- Value_Size is never inherited, it is either set by
1018 -- default, or it is explicitly set for the derived
1019 -- type. So nothing to do here.
1020
1021 null;
1022
1023 -- Volatile
1024
1025 when Aspect_Volatile =>
1026 if Is_Volatile (P) then
1027 Set_Is_Volatile (E);
1028 end if;
1029
1030 -- Volatile_Full_Access
1031
1032 when Aspect_Volatile_Full_Access =>
1033 if Is_Volatile_Full_Access (P) then
1034 Set_Is_Volatile_Full_Access (E);
1035 end if;
1036
1037 -- Volatile_Components
1038
1039 when Aspect_Volatile_Components =>
1040 if Has_Volatile_Components (P) then
1041 Set_Has_Volatile_Components (Base_Type (E));
1042 end if;
1043
1044 -- That should be all the Rep Aspects
1045
1046 when others =>
1047 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1048 null;
1049 end case;
1050 end if;
1051 end if;
1052
1053 N := Next_Rep_Item (N);
1054 end loop;
1055 end Inherit_Delayed_Rep_Aspects;
1056
1057 -------------------------------------
1058 -- Make_Pragma_From_Boolean_Aspect --
1059 -------------------------------------
1060
1061 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1062 Ident : constant Node_Id := Identifier (ASN);
1063 A_Name : constant Name_Id := Chars (Ident);
1064 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1065 Ent : constant Entity_Id := Entity (ASN);
1066 Expr : constant Node_Id := Expression (ASN);
1067 Loc : constant Source_Ptr := Sloc (ASN);
1068
1069 procedure Check_False_Aspect_For_Derived_Type;
1070 -- This procedure checks for the case of a false aspect for a derived
1071 -- type, which improperly tries to cancel an aspect inherited from
1072 -- the parent.
1073
1074 -----------------------------------------
1075 -- Check_False_Aspect_For_Derived_Type --
1076 -----------------------------------------
1077
1078 procedure Check_False_Aspect_For_Derived_Type is
1079 Par : Node_Id;
1080
1081 begin
1082 -- We are only checking derived types
1083
1084 if not Is_Derived_Type (E) then
1085 return;
1086 end if;
1087
1088 Par := Nearest_Ancestor (E);
1089
1090 case A_Id is
1091 when Aspect_Atomic
1092 | Aspect_Shared
1093 =>
1094 if not Is_Atomic (Par) then
1095 return;
1096 end if;
1097
1098 when Aspect_Atomic_Components =>
1099 if not Has_Atomic_Components (Par) then
1100 return;
1101 end if;
1102
1103 when Aspect_Discard_Names =>
1104 if not Discard_Names (Par) then
1105 return;
1106 end if;
1107
1108 when Aspect_Pack =>
1109 if not Is_Packed (Par) then
1110 return;
1111 end if;
1112
1113 when Aspect_Unchecked_Union =>
1114 if not Is_Unchecked_Union (Par) then
1115 return;
1116 end if;
1117
1118 when Aspect_Volatile =>
1119 if not Is_Volatile (Par) then
1120 return;
1121 end if;
1122
1123 when Aspect_Volatile_Components =>
1124 if not Has_Volatile_Components (Par) then
1125 return;
1126 end if;
1127
1128 when Aspect_Volatile_Full_Access =>
1129 if not Is_Volatile_Full_Access (Par) then
1130 return;
1131 end if;
1132
1133 when others =>
1134 return;
1135 end case;
1136
1137 -- Fall through means we are canceling an inherited aspect
1138
1139 Error_Msg_Name_1 := A_Name;
1140 Error_Msg_NE
1141 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1142 end Check_False_Aspect_For_Derived_Type;
1143
1144 -- Local variables
1145
1146 Prag : Node_Id;
1147
1148 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1149
1150 begin
1151 -- Note that we know Expr is present, because for a missing Expr
1152 -- argument, we knew it was True and did not need to delay the
1153 -- evaluation to the freeze point.
1154
1155 if Is_False (Static_Boolean (Expr)) then
1156 Check_False_Aspect_For_Derived_Type;
1157
1158 else
1159 Prag :=
1160 Make_Pragma (Loc,
1161 Pragma_Identifier =>
1162 Make_Identifier (Sloc (Ident), Chars (Ident)),
1163 Pragma_Argument_Associations => New_List (
1164 Make_Pragma_Argument_Association (Sloc (Ident),
1165 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1166
1167 Set_From_Aspect_Specification (Prag, True);
1168 Set_Corresponding_Aspect (Prag, ASN);
1169 Set_Aspect_Rep_Item (ASN, Prag);
1170 Set_Is_Delayed_Aspect (Prag);
1171 Set_Parent (Prag, ASN);
1172 end if;
1173 end Make_Pragma_From_Boolean_Aspect;
1174
1175 -- Local variables
1176
1177 A_Id : Aspect_Id;
1178 ASN : Node_Id;
1179 Ritem : Node_Id;
1180
1181 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1182
1183 begin
1184 -- Must be visible in current scope, but if this is a type from a nested
1185 -- package it may be frozen from an object declaration in the enclosing
1186 -- scope, so install the package declarations to complete the analysis
1187 -- of the aspects, if any. If the package itself is frozen the type will
1188 -- have been frozen as well.
1189
1190 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1191 if Is_Type (E) and then From_Nested_Package (E) then
1192 declare
1193 Pack : constant Entity_Id := Scope (E);
1194
1195 begin
1196 Push_Scope (Pack);
1197 Install_Visible_Declarations (Pack);
1198 Install_Private_Declarations (Pack);
1199 Analyze_Aspects_At_Freeze_Point (E);
1200
1201 if Is_Private_Type (E)
1202 and then Present (Full_View (E))
1203 then
1204 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1205 end if;
1206
1207 End_Package_Scope (Pack);
1208 return;
1209 end;
1210
1211 -- Aspects from other entities in different contexts are analyzed
1212 -- elsewhere.
1213
1214 else
1215 return;
1216 end if;
1217 end if;
1218
1219 -- Look for aspect specification entries for this entity
1220
1221 ASN := First_Rep_Item (E);
1222 while Present (ASN) loop
1223 if Nkind (ASN) = N_Aspect_Specification then
1224 exit when Entity (ASN) /= E;
1225
1226 if Is_Delayed_Aspect (ASN) then
1227 A_Id := Get_Aspect_Id (ASN);
1228
1229 case A_Id is
1230
1231 -- For aspects whose expression is an optional Boolean, make
1232 -- the corresponding pragma at the freeze point.
1233
1234 when Boolean_Aspects
1235 | Library_Unit_Aspects
1236 =>
1237 -- Aspects Export and Import require special handling.
1238 -- Both are by definition Boolean and may benefit from
1239 -- forward references, however their expressions are
1240 -- treated as static. In addition, the syntax of their
1241 -- corresponding pragmas requires extra "pieces" which
1242 -- may also contain forward references. To account for
1243 -- all of this, the corresponding pragma is created by
1244 -- Analyze_Aspect_Export_Import, but is not analyzed as
1245 -- the complete analysis must happen now.
1246
1247 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1248 null;
1249
1250 -- Otherwise create a corresponding pragma
1251
1252 else
1253 Make_Pragma_From_Boolean_Aspect (ASN);
1254 end if;
1255
1256 -- Special handling for aspects that don't correspond to
1257 -- pragmas/attributes.
1258
1259 when Aspect_Default_Value
1260 | Aspect_Default_Component_Value
1261 =>
1262 -- Do not inherit aspect for anonymous base type of a
1263 -- scalar or array type, because they apply to the first
1264 -- subtype of the type, and will be processed when that
1265 -- first subtype is frozen.
1266
1267 if Is_Derived_Type (E)
1268 and then not Comes_From_Source (E)
1269 and then E /= First_Subtype (E)
1270 then
1271 null;
1272 else
1273 Analyze_Aspect_Default_Value (ASN);
1274 end if;
1275
1276 -- Ditto for iterator aspects, because the corresponding
1277 -- attributes may not have been analyzed yet.
1278
1279 when Aspect_Constant_Indexing
1280 | Aspect_Default_Iterator
1281 | Aspect_Iterator_Element
1282 | Aspect_Variable_Indexing
1283 =>
1284 Analyze (Expression (ASN));
1285
1286 if Etype (Expression (ASN)) = Any_Type then
1287 Error_Msg_NE
1288 ("\aspect must be fully defined before & is frozen",
1289 ASN, E);
1290 end if;
1291
1292 when Aspect_Iterable =>
1293 Validate_Iterable_Aspect (E, ASN);
1294
1295 when others =>
1296 null;
1297 end case;
1298
1299 Ritem := Aspect_Rep_Item (ASN);
1300
1301 if Present (Ritem) then
1302 Analyze (Ritem);
1303 end if;
1304 end if;
1305 end if;
1306
1307 Next_Rep_Item (ASN);
1308 end loop;
1309
1310 -- This is where we inherit delayed rep aspects from our parent. Note
1311 -- that if we fell out of the above loop with ASN non-empty, it means
1312 -- we hit an aspect for an entity other than E, and it must be the
1313 -- type from which we were derived.
1314
1315 if May_Inherit_Delayed_Rep_Aspects (E) then
1316 Inherit_Delayed_Rep_Aspects (ASN);
1317 end if;
1318 end Analyze_Aspects_At_Freeze_Point;
1319
1320 -----------------------------------
1321 -- Analyze_Aspect_Specifications --
1322 -----------------------------------
1323
1324 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1325 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1326 -- Establish linkages between an aspect and its corresponding pragma
1327
1328 procedure Insert_Pragma
1329 (Prag : Node_Id;
1330 Is_Instance : Boolean := False);
1331 -- Subsidiary to the analysis of aspects
1332 -- Abstract_State
1333 -- Attach_Handler
1334 -- Contract_Cases
1335 -- Depends
1336 -- Ghost
1337 -- Global
1338 -- Initial_Condition
1339 -- Initializes
1340 -- Post
1341 -- Pre
1342 -- Refined_Depends
1343 -- Refined_Global
1344 -- Refined_State
1345 -- SPARK_Mode
1346 -- Warnings
1347 -- Insert pragma Prag such that it mimics the placement of a source
1348 -- pragma of the same kind. Flag Is_Generic should be set when the
1349 -- context denotes a generic instance.
1350
1351 --------------
1352 -- Decorate --
1353 --------------
1354
1355 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1356 begin
1357 Set_Aspect_Rep_Item (Asp, Prag);
1358 Set_Corresponding_Aspect (Prag, Asp);
1359 Set_From_Aspect_Specification (Prag);
1360 Set_Parent (Prag, Asp);
1361 end Decorate;
1362
1363 -------------------
1364 -- Insert_Pragma --
1365 -------------------
1366
1367 procedure Insert_Pragma
1368 (Prag : Node_Id;
1369 Is_Instance : Boolean := False)
1370 is
1371 Aux : Node_Id;
1372 Decl : Node_Id;
1373 Decls : List_Id;
1374 Def : Node_Id;
1375 Inserted : Boolean := False;
1376
1377 begin
1378 -- When the aspect appears on an entry, package, protected unit,
1379 -- subprogram, or task unit body, insert the generated pragma at the
1380 -- top of the body declarations to emulate the behavior of a source
1381 -- pragma.
1382
1383 -- package body Pack with Aspect is
1384
1385 -- package body Pack is
1386 -- pragma Prag;
1387
1388 if Nkind_In (N, N_Entry_Body,
1389 N_Package_Body,
1390 N_Protected_Body,
1391 N_Subprogram_Body,
1392 N_Task_Body)
1393 then
1394 Decls := Declarations (N);
1395
1396 if No (Decls) then
1397 Decls := New_List;
1398 Set_Declarations (N, Decls);
1399 end if;
1400
1401 Prepend_To (Decls, Prag);
1402
1403 -- When the aspect is associated with a [generic] package declaration
1404 -- insert the generated pragma at the top of the visible declarations
1405 -- to emulate the behavior of a source pragma.
1406
1407 -- package Pack with Aspect is
1408
1409 -- package Pack is
1410 -- pragma Prag;
1411
1412 elsif Nkind_In (N, N_Generic_Package_Declaration,
1413 N_Package_Declaration)
1414 then
1415 Decls := Visible_Declarations (Specification (N));
1416
1417 if No (Decls) then
1418 Decls := New_List;
1419 Set_Visible_Declarations (Specification (N), Decls);
1420 end if;
1421
1422 -- The visible declarations of a generic instance have the
1423 -- following structure:
1424
1425 -- <renamings of generic formals>
1426 -- <renamings of internally-generated spec and body>
1427 -- <first source declaration>
1428
1429 -- Insert the pragma before the first source declaration by
1430 -- skipping the instance "header" to ensure proper visibility of
1431 -- all formals.
1432
1433 if Is_Instance then
1434 Decl := First (Decls);
1435 while Present (Decl) loop
1436 if Comes_From_Source (Decl) then
1437 Insert_Before (Decl, Prag);
1438 Inserted := True;
1439 exit;
1440 else
1441 Next (Decl);
1442 end if;
1443 end loop;
1444
1445 -- The pragma is placed after the instance "header"
1446
1447 if not Inserted then
1448 Append_To (Decls, Prag);
1449 end if;
1450
1451 -- Otherwise this is not a generic instance
1452
1453 else
1454 Prepend_To (Decls, Prag);
1455 end if;
1456
1457 -- When the aspect is associated with a protected unit declaration,
1458 -- insert the generated pragma at the top of the visible declarations
1459 -- the emulate the behavior of a source pragma.
1460
1461 -- protected [type] Prot with Aspect is
1462
1463 -- protected [type] Prot is
1464 -- pragma Prag;
1465
1466 elsif Nkind (N) = N_Protected_Type_Declaration then
1467 Def := Protected_Definition (N);
1468
1469 if No (Def) then
1470 Def :=
1471 Make_Protected_Definition (Sloc (N),
1472 Visible_Declarations => New_List,
1473 End_Label => Empty);
1474
1475 Set_Protected_Definition (N, Def);
1476 end if;
1477
1478 Decls := Visible_Declarations (Def);
1479
1480 if No (Decls) then
1481 Decls := New_List;
1482 Set_Visible_Declarations (Def, Decls);
1483 end if;
1484
1485 Prepend_To (Decls, Prag);
1486
1487 -- When the aspect is associated with a task unit declaration, insert
1488 -- insert the generated pragma at the top of the visible declarations
1489 -- the emulate the behavior of a source pragma.
1490
1491 -- task [type] Prot with Aspect is
1492
1493 -- task [type] Prot is
1494 -- pragma Prag;
1495
1496 elsif Nkind (N) = N_Task_Type_Declaration then
1497 Def := Task_Definition (N);
1498
1499 if No (Def) then
1500 Def :=
1501 Make_Task_Definition (Sloc (N),
1502 Visible_Declarations => New_List,
1503 End_Label => Empty);
1504
1505 Set_Task_Definition (N, Def);
1506 end if;
1507
1508 Decls := Visible_Declarations (Def);
1509
1510 if No (Decls) then
1511 Decls := New_List;
1512 Set_Visible_Declarations (Def, Decls);
1513 end if;
1514
1515 Prepend_To (Decls, Prag);
1516
1517 -- When the context is a library unit, the pragma is added to the
1518 -- Pragmas_After list.
1519
1520 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1521 Aux := Aux_Decls_Node (Parent (N));
1522
1523 if No (Pragmas_After (Aux)) then
1524 Set_Pragmas_After (Aux, New_List);
1525 end if;
1526
1527 Prepend (Prag, Pragmas_After (Aux));
1528
1529 -- Default, the pragma is inserted after the context
1530
1531 else
1532 Insert_After (N, Prag);
1533 end if;
1534 end Insert_Pragma;
1535
1536 -- Local variables
1537
1538 Aspect : Node_Id;
1539 Aitem : Node_Id;
1540 Ent : Node_Id;
1541
1542 L : constant List_Id := Aspect_Specifications (N);
1543
1544 Ins_Node : Node_Id := N;
1545 -- Insert pragmas/attribute definition clause after this node when no
1546 -- delayed analysis is required.
1547
1548 -- Start of processing for Analyze_Aspect_Specifications
1549
1550 begin
1551 -- The general processing involves building an attribute definition
1552 -- clause or a pragma node that corresponds to the aspect. Then in order
1553 -- to delay the evaluation of this aspect to the freeze point, we attach
1554 -- the corresponding pragma/attribute definition clause to the aspect
1555 -- specification node, which is then placed in the Rep Item chain. In
1556 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1557 -- and we evaluate the rep item at the freeze point. When the aspect
1558 -- doesn't have a corresponding pragma/attribute definition clause, then
1559 -- its analysis is simply delayed at the freeze point.
1560
1561 -- Some special cases don't require delay analysis, thus the aspect is
1562 -- analyzed right now.
1563
1564 -- Note that there is a special handling for Pre, Post, Test_Case,
1565 -- Contract_Cases aspects. In these cases, we do not have to worry
1566 -- about delay issues, since the pragmas themselves deal with delay
1567 -- of visibility for the expression analysis. Thus, we just insert
1568 -- the pragma after the node N.
1569
1570 pragma Assert (Present (L));
1571
1572 -- Loop through aspects
1573
1574 Aspect := First (L);
1575 Aspect_Loop : while Present (Aspect) loop
1576 Analyze_One_Aspect : declare
1577 Expr : constant Node_Id := Expression (Aspect);
1578 Id : constant Node_Id := Identifier (Aspect);
1579 Loc : constant Source_Ptr := Sloc (Aspect);
1580 Nam : constant Name_Id := Chars (Id);
1581 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1582 Anod : Node_Id;
1583
1584 Delay_Required : Boolean;
1585 -- Set False if delay is not required
1586
1587 Eloc : Source_Ptr := No_Location;
1588 -- Source location of expression, modified when we split PPC's. It
1589 -- is set below when Expr is present.
1590
1591 procedure Analyze_Aspect_Convention;
1592 -- Perform analysis of aspect Convention
1593
1594 procedure Analyze_Aspect_Export_Import;
1595 -- Perform analysis of aspects Export or Import
1596
1597 procedure Analyze_Aspect_External_Link_Name;
1598 -- Perform analysis of aspects External_Name or Link_Name
1599
1600 procedure Analyze_Aspect_Implicit_Dereference;
1601 -- Perform analysis of the Implicit_Dereference aspects
1602
1603 procedure Make_Aitem_Pragma
1604 (Pragma_Argument_Associations : List_Id;
1605 Pragma_Name : Name_Id);
1606 -- This is a wrapper for Make_Pragma used for converting aspects
1607 -- to pragmas. It takes care of Sloc (set from Loc) and building
1608 -- the pragma identifier from the given name. In addition the
1609 -- flags Class_Present and Split_PPC are set from the aspect
1610 -- node, as well as Is_Ignored. This routine also sets the
1611 -- From_Aspect_Specification in the resulting pragma node to
1612 -- True, and sets Corresponding_Aspect to point to the aspect.
1613 -- The resulting pragma is assigned to Aitem.
1614
1615 -------------------------------
1616 -- Analyze_Aspect_Convention --
1617 -------------------------------
1618
1619 procedure Analyze_Aspect_Convention is
1620 Conv : Node_Id;
1621 Dummy_1 : Node_Id;
1622 Dummy_2 : Node_Id;
1623 Dummy_3 : Node_Id;
1624 Expo : Node_Id;
1625 Imp : Node_Id;
1626
1627 begin
1628 -- Obtain all interfacing aspects that apply to the related
1629 -- entity.
1630
1631 Get_Interfacing_Aspects
1632 (Iface_Asp => Aspect,
1633 Conv_Asp => Dummy_1,
1634 EN_Asp => Dummy_2,
1635 Expo_Asp => Expo,
1636 Imp_Asp => Imp,
1637 LN_Asp => Dummy_3,
1638 Do_Checks => True);
1639
1640 -- The related entity is subject to aspect Export or Import.
1641 -- Do not process Convention now because it must be analysed
1642 -- as part of Export or Import.
1643
1644 if Present (Expo) or else Present (Imp) then
1645 return;
1646
1647 -- Otherwise Convention appears by itself
1648
1649 else
1650 -- The aspect specifies a particular convention
1651
1652 if Present (Expr) then
1653 Conv := New_Copy_Tree (Expr);
1654
1655 -- Otherwise assume convention Ada
1656
1657 else
1658 Conv := Make_Identifier (Loc, Name_Ada);
1659 end if;
1660
1661 -- Generate:
1662 -- pragma Convention (<Conv>, <E>);
1663
1664 Make_Aitem_Pragma
1665 (Pragma_Name => Name_Convention,
1666 Pragma_Argument_Associations => New_List (
1667 Make_Pragma_Argument_Association (Loc,
1668 Expression => Conv),
1669 Make_Pragma_Argument_Association (Loc,
1670 Expression => New_Occurrence_Of (E, Loc))));
1671
1672 Decorate (Aspect, Aitem);
1673 Insert_Pragma (Aitem);
1674 end if;
1675 end Analyze_Aspect_Convention;
1676
1677 ----------------------------------
1678 -- Analyze_Aspect_Export_Import --
1679 ----------------------------------
1680
1681 procedure Analyze_Aspect_Export_Import is
1682 Dummy_1 : Node_Id;
1683 Dummy_2 : Node_Id;
1684 Dummy_3 : Node_Id;
1685 Expo : Node_Id;
1686 Imp : Node_Id;
1687
1688 begin
1689 -- Obtain all interfacing aspects that apply to the related
1690 -- entity.
1691
1692 Get_Interfacing_Aspects
1693 (Iface_Asp => Aspect,
1694 Conv_Asp => Dummy_1,
1695 EN_Asp => Dummy_2,
1696 Expo_Asp => Expo,
1697 Imp_Asp => Imp,
1698 LN_Asp => Dummy_3,
1699 Do_Checks => True);
1700
1701 -- The related entity cannot be subject to both aspects Export
1702 -- and Import.
1703
1704 if Present (Expo) and then Present (Imp) then
1705 Error_Msg_N
1706 ("incompatible interfacing aspects given for &", E);
1707 Error_Msg_Sloc := Sloc (Expo);
1708 Error_Msg_N ("\aspect `Export` #", E);
1709 Error_Msg_Sloc := Sloc (Imp);
1710 Error_Msg_N ("\aspect `Import` #", E);
1711 end if;
1712
1713 -- A variable is most likely modified from the outside. Take
1714 -- the optimistic approach to avoid spurious errors.
1715
1716 if Ekind (E) = E_Variable then
1717 Set_Never_Set_In_Source (E, False);
1718 end if;
1719
1720 -- Resolve the expression of an Import or Export here, and
1721 -- require it to be of type Boolean and static. This is not
1722 -- quite right, because in general this should be delayed,
1723 -- but that seems tricky for these, because normally Boolean
1724 -- aspects are replaced with pragmas at the freeze point in
1725 -- Make_Pragma_From_Boolean_Aspect.
1726
1727 if not Present (Expr)
1728 or else Is_True (Static_Boolean (Expr))
1729 then
1730 if A_Id = Aspect_Import then
1731 Set_Has_Completion (E);
1732 Set_Is_Imported (E);
1733
1734 -- An imported object cannot be explicitly initialized
1735
1736 if Nkind (N) = N_Object_Declaration
1737 and then Present (Expression (N))
1738 then
1739 Error_Msg_N
1740 ("imported entities cannot be initialized "
1741 & "(RM B.1(24))", Expression (N));
1742 end if;
1743
1744 else
1745 pragma Assert (A_Id = Aspect_Export);
1746 Set_Is_Exported (E);
1747 end if;
1748
1749 -- Create the proper form of pragma Export or Import taking
1750 -- into account Conversion, External_Name, and Link_Name.
1751
1752 Aitem := Build_Export_Import_Pragma (Aspect, E);
1753
1754 -- Otherwise the expression is either False or erroneous. There
1755 -- is no corresponding pragma.
1756
1757 else
1758 Aitem := Empty;
1759 end if;
1760 end Analyze_Aspect_Export_Import;
1761
1762 ---------------------------------------
1763 -- Analyze_Aspect_External_Link_Name --
1764 ---------------------------------------
1765
1766 procedure Analyze_Aspect_External_Link_Name is
1767 Dummy_1 : Node_Id;
1768 Dummy_2 : Node_Id;
1769 Dummy_3 : Node_Id;
1770 Expo : Node_Id;
1771 Imp : Node_Id;
1772
1773 begin
1774 -- Obtain all interfacing aspects that apply to the related
1775 -- entity.
1776
1777 Get_Interfacing_Aspects
1778 (Iface_Asp => Aspect,
1779 Conv_Asp => Dummy_1,
1780 EN_Asp => Dummy_2,
1781 Expo_Asp => Expo,
1782 Imp_Asp => Imp,
1783 LN_Asp => Dummy_3,
1784 Do_Checks => True);
1785
1786 -- Ensure that aspect External_Name applies to aspect Export or
1787 -- Import.
1788
1789 if A_Id = Aspect_External_Name then
1790 if No (Expo) and then No (Imp) then
1791 Error_Msg_N
1792 ("aspect `External_Name` requires aspect `Import` or "
1793 & "`Export`", Aspect);
1794 end if;
1795
1796 -- Otherwise ensure that aspect Link_Name applies to aspect
1797 -- Export or Import.
1798
1799 else
1800 pragma Assert (A_Id = Aspect_Link_Name);
1801 if No (Expo) and then No (Imp) then
1802 Error_Msg_N
1803 ("aspect `Link_Name` requires aspect `Import` or "
1804 & "`Export`", Aspect);
1805 end if;
1806 end if;
1807 end Analyze_Aspect_External_Link_Name;
1808
1809 -----------------------------------------
1810 -- Analyze_Aspect_Implicit_Dereference --
1811 -----------------------------------------
1812
1813 procedure Analyze_Aspect_Implicit_Dereference is
1814 Disc : Entity_Id;
1815 Parent_Disc : Entity_Id;
1816
1817 begin
1818 if not Is_Type (E) or else not Has_Discriminants (E) then
1819 Error_Msg_N
1820 ("aspect must apply to a type with discriminants", Expr);
1821
1822 elsif not Is_Entity_Name (Expr) then
1823 Error_Msg_N
1824 ("aspect must name a discriminant of current type", Expr);
1825
1826 else
1827 -- Discriminant type be an anonymous access type or an
1828 -- anonymous access to subprogram.
1829
1830 -- Missing synchronized types???
1831
1832 Disc := First_Discriminant (E);
1833 while Present (Disc) loop
1834 if Chars (Expr) = Chars (Disc)
1835 and then Ekind_In (Etype (Disc),
1836 E_Anonymous_Access_Subprogram_Type,
1837 E_Anonymous_Access_Type)
1838 then
1839 Set_Has_Implicit_Dereference (E);
1840 Set_Has_Implicit_Dereference (Disc);
1841 exit;
1842 end if;
1843
1844 Next_Discriminant (Disc);
1845 end loop;
1846
1847 -- Error if no proper access discriminant
1848
1849 if No (Disc) then
1850 Error_Msg_NE ("not an access discriminant of&", Expr, E);
1851 return;
1852 end if;
1853 end if;
1854
1855 -- For a type extension, check whether parent has a
1856 -- reference discriminant, to verify that use is proper.
1857
1858 if Is_Derived_Type (E)
1859 and then Has_Discriminants (Etype (E))
1860 then
1861 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1862
1863 if Present (Parent_Disc)
1864 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1865 then
1866 Error_Msg_N
1867 ("reference discriminant does not match discriminant "
1868 & "of parent type", Expr);
1869 end if;
1870 end if;
1871 end Analyze_Aspect_Implicit_Dereference;
1872
1873 -----------------------
1874 -- Make_Aitem_Pragma --
1875 -----------------------
1876
1877 procedure Make_Aitem_Pragma
1878 (Pragma_Argument_Associations : List_Id;
1879 Pragma_Name : Name_Id)
1880 is
1881 Args : List_Id := Pragma_Argument_Associations;
1882
1883 begin
1884 -- We should never get here if aspect was disabled
1885
1886 pragma Assert (not Is_Disabled (Aspect));
1887
1888 -- Certain aspects allow for an optional name or expression. Do
1889 -- not generate a pragma with empty argument association list.
1890
1891 if No (Args) or else No (Expression (First (Args))) then
1892 Args := No_List;
1893 end if;
1894
1895 -- Build the pragma
1896
1897 Aitem :=
1898 Make_Pragma (Loc,
1899 Pragma_Argument_Associations => Args,
1900 Pragma_Identifier =>
1901 Make_Identifier (Sloc (Id), Pragma_Name),
1902 Class_Present => Class_Present (Aspect),
1903 Split_PPC => Split_PPC (Aspect));
1904
1905 -- Set additional semantic fields
1906
1907 if Is_Ignored (Aspect) then
1908 Set_Is_Ignored (Aitem);
1909 elsif Is_Checked (Aspect) then
1910 Set_Is_Checked (Aitem);
1911 end if;
1912
1913 Set_Corresponding_Aspect (Aitem, Aspect);
1914 Set_From_Aspect_Specification (Aitem);
1915 end Make_Aitem_Pragma;
1916
1917 -- Start of processing for Analyze_One_Aspect
1918
1919 begin
1920 -- Skip aspect if already analyzed, to avoid looping in some cases
1921
1922 if Analyzed (Aspect) then
1923 goto Continue;
1924 end if;
1925
1926 -- Skip looking at aspect if it is totally disabled. Just mark it
1927 -- as such for later reference in the tree. This also sets the
1928 -- Is_Ignored and Is_Checked flags appropriately.
1929
1930 Check_Applicable_Policy (Aspect);
1931
1932 if Is_Disabled (Aspect) then
1933 goto Continue;
1934 end if;
1935
1936 -- Set the source location of expression, used in the case of
1937 -- a failed precondition/postcondition or invariant. Note that
1938 -- the source location of the expression is not usually the best
1939 -- choice here. For example, it gets located on the last AND
1940 -- keyword in a chain of boolean expressiond AND'ed together.
1941 -- It is best to put the message on the first character of the
1942 -- assertion, which is the effect of the First_Node call here.
1943
1944 if Present (Expr) then
1945 Eloc := Sloc (First_Node (Expr));
1946 end if;
1947
1948 -- Check restriction No_Implementation_Aspect_Specifications
1949
1950 if Implementation_Defined_Aspect (A_Id) then
1951 Check_Restriction
1952 (No_Implementation_Aspect_Specifications, Aspect);
1953 end if;
1954
1955 -- Check restriction No_Specification_Of_Aspect
1956
1957 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1958
1959 -- Mark aspect analyzed (actual analysis is delayed till later)
1960
1961 Set_Analyzed (Aspect);
1962 Set_Entity (Aspect, E);
1963
1964 -- Build the reference to E that will be used in the built pragmas
1965
1966 Ent := New_Occurrence_Of (E, Sloc (Id));
1967
1968 if A_Id = Aspect_Attach_Handler
1969 or else A_Id = Aspect_Interrupt_Handler
1970 then
1971 -- Decorate the reference as comming from the sources and force
1972 -- its reanalysis to generate the reference to E; required to
1973 -- avoid reporting spurious warning on E as unreferenced entity
1974 -- (because aspects are not fully analyzed).
1975
1976 Set_Comes_From_Source (Ent, Comes_From_Source (Id));
1977 Set_Entity (Ent, Empty);
1978
1979 Analyze (Ent);
1980 end if;
1981
1982 -- Check for duplicate aspect. Note that the Comes_From_Source
1983 -- test allows duplicate Pre/Post's that we generate internally
1984 -- to escape being flagged here.
1985
1986 if No_Duplicates_Allowed (A_Id) then
1987 Anod := First (L);
1988 while Anod /= Aspect loop
1989 if Comes_From_Source (Aspect)
1990 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1991 then
1992 Error_Msg_Name_1 := Nam;
1993 Error_Msg_Sloc := Sloc (Anod);
1994
1995 -- Case of same aspect specified twice
1996
1997 if Class_Present (Anod) = Class_Present (Aspect) then
1998 if not Class_Present (Anod) then
1999 Error_Msg_NE
2000 ("aspect% for & previously given#",
2001 Id, E);
2002 else
2003 Error_Msg_NE
2004 ("aspect `%''Class` for & previously given#",
2005 Id, E);
2006 end if;
2007 end if;
2008 end if;
2009
2010 Next (Anod);
2011 end loop;
2012 end if;
2013
2014 -- Check some general restrictions on language defined aspects
2015
2016 if not Implementation_Defined_Aspect (A_Id) then
2017 Error_Msg_Name_1 := Nam;
2018
2019 -- Not allowed for renaming declarations. Examine the original
2020 -- node because a subprogram renaming may have been rewritten
2021 -- as a body.
2022
2023 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2024 Error_Msg_N
2025 ("aspect % not allowed for renaming declaration",
2026 Aspect);
2027 end if;
2028
2029 -- Not allowed for formal type declarations
2030
2031 if Nkind (N) = N_Formal_Type_Declaration then
2032 Error_Msg_N
2033 ("aspect % not allowed for formal type declaration",
2034 Aspect);
2035 end if;
2036 end if;
2037
2038 -- Copy expression for later processing by the procedures
2039 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2040
2041 Set_Entity (Id, New_Copy_Tree (Expr));
2042
2043 -- Set Delay_Required as appropriate to aspect
2044
2045 case Aspect_Delay (A_Id) is
2046 when Always_Delay =>
2047 Delay_Required := True;
2048
2049 when Never_Delay =>
2050 Delay_Required := False;
2051
2052 when Rep_Aspect =>
2053
2054 -- If expression has the form of an integer literal, then
2055 -- do not delay, since we know the value cannot change.
2056 -- This optimization catches most rep clause cases.
2057
2058 -- For Boolean aspects, don't delay if no expression
2059
2060 if A_Id in Boolean_Aspects and then No (Expr) then
2061 Delay_Required := False;
2062
2063 -- For non-Boolean aspects, don't delay if integer literal,
2064 -- unless the aspect is Alignment, which affects the
2065 -- freezing of an initialized object.
2066
2067 elsif A_Id not in Boolean_Aspects
2068 and then A_Id /= Aspect_Alignment
2069 and then Present (Expr)
2070 and then Nkind (Expr) = N_Integer_Literal
2071 then
2072 Delay_Required := False;
2073
2074 -- All other cases are delayed
2075
2076 else
2077 Delay_Required := True;
2078 Set_Has_Delayed_Rep_Aspects (E);
2079 end if;
2080 end case;
2081
2082 -- Processing based on specific aspect
2083
2084 case A_Id is
2085 when Aspect_Unimplemented =>
2086 null; -- ??? temp for now
2087
2088 -- No_Aspect should be impossible
2089
2090 when No_Aspect =>
2091 raise Program_Error;
2092
2093 -- Case 1: Aspects corresponding to attribute definition
2094 -- clauses.
2095
2096 when Aspect_Address
2097 | Aspect_Alignment
2098 | Aspect_Bit_Order
2099 | Aspect_Component_Size
2100 | Aspect_Constant_Indexing
2101 | Aspect_Default_Iterator
2102 | Aspect_Dispatching_Domain
2103 | Aspect_External_Tag
2104 | Aspect_Input
2105 | Aspect_Iterable
2106 | Aspect_Iterator_Element
2107 | Aspect_Machine_Radix
2108 | Aspect_Object_Size
2109 | Aspect_Output
2110 | Aspect_Read
2111 | Aspect_Scalar_Storage_Order
2112 | Aspect_Secondary_Stack_Size
2113 | Aspect_Simple_Storage_Pool
2114 | Aspect_Size
2115 | Aspect_Small
2116 | Aspect_Storage_Pool
2117 | Aspect_Stream_Size
2118 | Aspect_Value_Size
2119 | Aspect_Variable_Indexing
2120 | Aspect_Write
2121 =>
2122 -- Indexing aspects apply only to tagged type
2123
2124 if (A_Id = Aspect_Constant_Indexing
2125 or else
2126 A_Id = Aspect_Variable_Indexing)
2127 and then not (Is_Type (E)
2128 and then Is_Tagged_Type (E))
2129 then
2130 Error_Msg_N
2131 ("indexing aspect can only apply to a tagged type",
2132 Aspect);
2133 goto Continue;
2134 end if;
2135
2136 -- For the case of aspect Address, we don't consider that we
2137 -- know the entity is never set in the source, since it is
2138 -- is likely aliasing is occurring.
2139
2140 -- Note: one might think that the analysis of the resulting
2141 -- attribute definition clause would take care of that, but
2142 -- that's not the case since it won't be from source.
2143
2144 if A_Id = Aspect_Address then
2145 Set_Never_Set_In_Source (E, False);
2146 end if;
2147
2148 -- Correctness of the profile of a stream operation is
2149 -- verified at the freeze point, but we must detect the
2150 -- illegal specification of this aspect for a subtype now,
2151 -- to prevent malformed rep_item chains.
2152
2153 if A_Id = Aspect_Input or else
2154 A_Id = Aspect_Output or else
2155 A_Id = Aspect_Read or else
2156 A_Id = Aspect_Write
2157 then
2158 if not Is_First_Subtype (E) then
2159 Error_Msg_N
2160 ("local name must be a first subtype", Aspect);
2161 goto Continue;
2162
2163 -- If stream aspect applies to the class-wide type,
2164 -- the generated attribute definition applies to the
2165 -- class-wide type as well.
2166
2167 elsif Class_Present (Aspect) then
2168 Ent :=
2169 Make_Attribute_Reference (Loc,
2170 Prefix => Ent,
2171 Attribute_Name => Name_Class);
2172 end if;
2173 end if;
2174
2175 -- Construct the attribute definition clause
2176
2177 Aitem :=
2178 Make_Attribute_Definition_Clause (Loc,
2179 Name => Ent,
2180 Chars => Chars (Id),
2181 Expression => Relocate_Node (Expr));
2182
2183 -- If the address is specified, then we treat the entity as
2184 -- referenced, to avoid spurious warnings. This is analogous
2185 -- to what is done with an attribute definition clause, but
2186 -- here we don't want to generate a reference because this
2187 -- is the point of definition of the entity.
2188
2189 if A_Id = Aspect_Address then
2190 Set_Referenced (E);
2191 end if;
2192
2193 -- Case 2: Aspects corresponding to pragmas
2194
2195 -- Case 2a: Aspects corresponding to pragmas with two
2196 -- arguments, where the first argument is a local name
2197 -- referring to the entity, and the second argument is the
2198 -- aspect definition expression.
2199
2200 -- Linker_Section/Suppress/Unsuppress
2201
2202 when Aspect_Linker_Section
2203 | Aspect_Suppress
2204 | Aspect_Unsuppress
2205 =>
2206 Make_Aitem_Pragma
2207 (Pragma_Argument_Associations => New_List (
2208 Make_Pragma_Argument_Association (Loc,
2209 Expression => New_Occurrence_Of (E, Loc)),
2210 Make_Pragma_Argument_Association (Sloc (Expr),
2211 Expression => Relocate_Node (Expr))),
2212 Pragma_Name => Chars (Id));
2213
2214 -- Synchronization
2215
2216 -- Corresponds to pragma Implemented, construct the pragma
2217
2218 when Aspect_Synchronization =>
2219 Make_Aitem_Pragma
2220 (Pragma_Argument_Associations => New_List (
2221 Make_Pragma_Argument_Association (Loc,
2222 Expression => New_Occurrence_Of (E, Loc)),
2223 Make_Pragma_Argument_Association (Sloc (Expr),
2224 Expression => Relocate_Node (Expr))),
2225 Pragma_Name => Name_Implemented);
2226
2227 -- Attach_Handler
2228
2229 when Aspect_Attach_Handler =>
2230 Make_Aitem_Pragma
2231 (Pragma_Argument_Associations => New_List (
2232 Make_Pragma_Argument_Association (Sloc (Ent),
2233 Expression => Ent),
2234 Make_Pragma_Argument_Association (Sloc (Expr),
2235 Expression => Relocate_Node (Expr))),
2236 Pragma_Name => Name_Attach_Handler);
2237
2238 -- We need to insert this pragma into the tree to get proper
2239 -- processing and to look valid from a placement viewpoint.
2240
2241 Insert_Pragma (Aitem);
2242 goto Continue;
2243
2244 -- Dynamic_Predicate, Predicate, Static_Predicate
2245
2246 when Aspect_Dynamic_Predicate
2247 | Aspect_Predicate
2248 | Aspect_Static_Predicate
2249 =>
2250 -- These aspects apply only to subtypes
2251
2252 if not Is_Type (E) then
2253 Error_Msg_N
2254 ("predicate can only be specified for a subtype",
2255 Aspect);
2256 goto Continue;
2257
2258 elsif Is_Incomplete_Type (E) then
2259 Error_Msg_N
2260 ("predicate cannot apply to incomplete view", Aspect);
2261 goto Continue;
2262 end if;
2263
2264 -- Construct the pragma (always a pragma Predicate, with
2265 -- flags recording whether it is static/dynamic). We also
2266 -- set flags recording this in the type itself.
2267
2268 Make_Aitem_Pragma
2269 (Pragma_Argument_Associations => New_List (
2270 Make_Pragma_Argument_Association (Sloc (Ent),
2271 Expression => Ent),
2272 Make_Pragma_Argument_Association (Sloc (Expr),
2273 Expression => Relocate_Node (Expr))),
2274 Pragma_Name => Name_Predicate);
2275
2276 -- Mark type has predicates, and remember what kind of
2277 -- aspect lead to this predicate (we need this to access
2278 -- the right set of check policies later on).
2279
2280 Set_Has_Predicates (E);
2281
2282 if A_Id = Aspect_Dynamic_Predicate then
2283 Set_Has_Dynamic_Predicate_Aspect (E);
2284
2285 -- If the entity has a dynamic predicate, any inherited
2286 -- static predicate becomes dynamic as well, and the
2287 -- predicate function includes the conjunction of both.
2288
2289 Set_Has_Static_Predicate_Aspect (E, False);
2290
2291 elsif A_Id = Aspect_Static_Predicate then
2292 Set_Has_Static_Predicate_Aspect (E);
2293 end if;
2294
2295 -- If the type is private, indicate that its completion
2296 -- has a freeze node, because that is the one that will
2297 -- be visible at freeze time.
2298
2299 if Is_Private_Type (E) and then Present (Full_View (E)) then
2300 Set_Has_Predicates (Full_View (E));
2301
2302 if A_Id = Aspect_Dynamic_Predicate then
2303 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2304 elsif A_Id = Aspect_Static_Predicate then
2305 Set_Has_Static_Predicate_Aspect (Full_View (E));
2306 end if;
2307
2308 Set_Has_Delayed_Aspects (Full_View (E));
2309 Ensure_Freeze_Node (Full_View (E));
2310 end if;
2311
2312 -- Predicate_Failure
2313
2314 when Aspect_Predicate_Failure =>
2315
2316 -- This aspect applies only to subtypes
2317
2318 if not Is_Type (E) then
2319 Error_Msg_N
2320 ("predicate can only be specified for a subtype",
2321 Aspect);
2322 goto Continue;
2323
2324 elsif Is_Incomplete_Type (E) then
2325 Error_Msg_N
2326 ("predicate cannot apply to incomplete view", Aspect);
2327 goto Continue;
2328 end if;
2329
2330 -- Construct the pragma
2331
2332 Make_Aitem_Pragma
2333 (Pragma_Argument_Associations => New_List (
2334 Make_Pragma_Argument_Association (Sloc (Ent),
2335 Expression => Ent),
2336 Make_Pragma_Argument_Association (Sloc (Expr),
2337 Expression => Relocate_Node (Expr))),
2338 Pragma_Name => Name_Predicate_Failure);
2339
2340 Set_Has_Predicates (E);
2341
2342 -- If the type is private, indicate that its completion
2343 -- has a freeze node, because that is the one that will
2344 -- be visible at freeze time.
2345
2346 if Is_Private_Type (E) and then Present (Full_View (E)) then
2347 Set_Has_Predicates (Full_View (E));
2348 Set_Has_Delayed_Aspects (Full_View (E));
2349 Ensure_Freeze_Node (Full_View (E));
2350 end if;
2351
2352 -- Case 2b: Aspects corresponding to pragmas with two
2353 -- arguments, where the second argument is a local name
2354 -- referring to the entity, and the first argument is the
2355 -- aspect definition expression.
2356
2357 -- Convention
2358
2359 when Aspect_Convention =>
2360 Analyze_Aspect_Convention;
2361 goto Continue;
2362
2363 -- External_Name, Link_Name
2364
2365 when Aspect_External_Name
2366 | Aspect_Link_Name
2367 =>
2368 Analyze_Aspect_External_Link_Name;
2369 goto Continue;
2370
2371 -- CPU, Interrupt_Priority, Priority
2372
2373 -- These three aspects can be specified for a subprogram spec
2374 -- or body, in which case we analyze the expression and export
2375 -- the value of the aspect.
2376
2377 -- Previously, we generated an equivalent pragma for bodies
2378 -- (note that the specs cannot contain these pragmas). The
2379 -- pragma was inserted ahead of local declarations, rather than
2380 -- after the body. This leads to a certain duplication between
2381 -- the processing performed for the aspect and the pragma, but
2382 -- given the straightforward handling required it is simpler
2383 -- to duplicate than to translate the aspect in the spec into
2384 -- a pragma in the declarative part of the body.
2385
2386 when Aspect_CPU
2387 | Aspect_Interrupt_Priority
2388 | Aspect_Priority
2389 =>
2390 if Nkind_In (N, N_Subprogram_Body,
2391 N_Subprogram_Declaration)
2392 then
2393 -- Analyze the aspect expression
2394
2395 Analyze_And_Resolve (Expr, Standard_Integer);
2396
2397 -- Interrupt_Priority aspect not allowed for main
2398 -- subprograms. RM D.1 does not forbid this explicitly,
2399 -- but RM J.15.11(6/3) does not permit pragma
2400 -- Interrupt_Priority for subprograms.
2401
2402 if A_Id = Aspect_Interrupt_Priority then
2403 Error_Msg_N
2404 ("Interrupt_Priority aspect cannot apply to "
2405 & "subprogram", Expr);
2406
2407 -- The expression must be static
2408
2409 elsif not Is_OK_Static_Expression (Expr) then
2410 Flag_Non_Static_Expr
2411 ("aspect requires static expression!", Expr);
2412
2413 -- Check whether this is the main subprogram. Issue a
2414 -- warning only if it is obviously not a main program
2415 -- (when it has parameters or when the subprogram is
2416 -- within a package).
2417
2418 elsif Present (Parameter_Specifications
2419 (Specification (N)))
2420 or else not Is_Compilation_Unit (Defining_Entity (N))
2421 then
2422 -- See RM D.1(14/3) and D.16(12/3)
2423
2424 Error_Msg_N
2425 ("aspect applied to subprogram other than the "
2426 & "main subprogram has no effect??", Expr);
2427
2428 -- Otherwise check in range and export the value
2429
2430 -- For the CPU aspect
2431
2432 elsif A_Id = Aspect_CPU then
2433 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2434
2435 -- Value is correct so we export the value to make
2436 -- it available at execution time.
2437
2438 Set_Main_CPU
2439 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2440
2441 else
2442 Error_Msg_N
2443 ("main subprogram CPU is out of range", Expr);
2444 end if;
2445
2446 -- For the Priority aspect
2447
2448 elsif A_Id = Aspect_Priority then
2449 if Is_In_Range (Expr, RTE (RE_Priority)) then
2450
2451 -- Value is correct so we export the value to make
2452 -- it available at execution time.
2453
2454 Set_Main_Priority
2455 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2456
2457 -- Ignore pragma if Relaxed_RM_Semantics to support
2458 -- other targets/non GNAT compilers.
2459
2460 elsif not Relaxed_RM_Semantics then
2461 Error_Msg_N
2462 ("main subprogram priority is out of range",
2463 Expr);
2464 end if;
2465 end if;
2466
2467 -- Load an arbitrary entity from System.Tasking.Stages
2468 -- or System.Tasking.Restricted.Stages (depending on
2469 -- the supported profile) to make sure that one of these
2470 -- packages is implicitly with'ed, since we need to have
2471 -- the tasking run time active for the pragma Priority to
2472 -- have any effect. Previously we with'ed the package
2473 -- System.Tasking, but this package does not trigger the
2474 -- required initialization of the run-time library.
2475
2476 declare
2477 Discard : Entity_Id;
2478 begin
2479 if Restricted_Profile then
2480 Discard := RTE (RE_Activate_Restricted_Tasks);
2481 else
2482 Discard := RTE (RE_Activate_Tasks);
2483 end if;
2484 end;
2485
2486 -- Handling for these aspects in subprograms is complete
2487
2488 goto Continue;
2489
2490 -- For task and protected types pass the aspect as an
2491 -- attribute.
2492
2493 else
2494 Aitem :=
2495 Make_Attribute_Definition_Clause (Loc,
2496 Name => Ent,
2497 Chars => Chars (Id),
2498 Expression => Relocate_Node (Expr));
2499 end if;
2500
2501 -- Warnings
2502
2503 when Aspect_Warnings =>
2504 Make_Aitem_Pragma
2505 (Pragma_Argument_Associations => New_List (
2506 Make_Pragma_Argument_Association (Sloc (Expr),
2507 Expression => Relocate_Node (Expr)),
2508 Make_Pragma_Argument_Association (Loc,
2509 Expression => New_Occurrence_Of (E, Loc))),
2510 Pragma_Name => Chars (Id));
2511
2512 Decorate (Aspect, Aitem);
2513 Insert_Pragma (Aitem);
2514 goto Continue;
2515
2516 -- Case 2c: Aspects corresponding to pragmas with three
2517 -- arguments.
2518
2519 -- Invariant aspects have a first argument that references the
2520 -- entity, a second argument that is the expression and a third
2521 -- argument that is an appropriate message.
2522
2523 -- Invariant, Type_Invariant
2524
2525 when Aspect_Invariant
2526 | Aspect_Type_Invariant
2527 =>
2528 -- Analysis of the pragma will verify placement legality:
2529 -- an invariant must apply to a private type, or appear in
2530 -- the private part of a spec and apply to a completion.
2531
2532 Make_Aitem_Pragma
2533 (Pragma_Argument_Associations => New_List (
2534 Make_Pragma_Argument_Association (Sloc (Ent),
2535 Expression => Ent),
2536 Make_Pragma_Argument_Association (Sloc (Expr),
2537 Expression => Relocate_Node (Expr))),
2538 Pragma_Name => Name_Invariant);
2539
2540 -- Add message unless exception messages are suppressed
2541
2542 if not Opt.Exception_Locations_Suppressed then
2543 Append_To (Pragma_Argument_Associations (Aitem),
2544 Make_Pragma_Argument_Association (Eloc,
2545 Chars => Name_Message,
2546 Expression =>
2547 Make_String_Literal (Eloc,
2548 Strval => "failed invariant from "
2549 & Build_Location_String (Eloc))));
2550 end if;
2551
2552 -- For Invariant case, insert immediately after the entity
2553 -- declaration. We do not have to worry about delay issues
2554 -- since the pragma processing takes care of this.
2555
2556 Delay_Required := False;
2557
2558 -- Case 2d : Aspects that correspond to a pragma with one
2559 -- argument.
2560
2561 -- Abstract_State
2562
2563 -- Aspect Abstract_State introduces implicit declarations for
2564 -- all state abstraction entities it defines. To emulate this
2565 -- behavior, insert the pragma at the beginning of the visible
2566 -- declarations of the related package so that it is analyzed
2567 -- immediately.
2568
2569 when Aspect_Abstract_State => Abstract_State : declare
2570 Context : Node_Id := N;
2571
2572 begin
2573 -- When aspect Abstract_State appears on a generic package,
2574 -- it is propageted to the package instance. The context in
2575 -- this case is the instance spec.
2576
2577 if Nkind (Context) = N_Package_Instantiation then
2578 Context := Instance_Spec (Context);
2579 end if;
2580
2581 if Nkind_In (Context, N_Generic_Package_Declaration,
2582 N_Package_Declaration)
2583 then
2584 Make_Aitem_Pragma
2585 (Pragma_Argument_Associations => New_List (
2586 Make_Pragma_Argument_Association (Loc,
2587 Expression => Relocate_Node (Expr))),
2588 Pragma_Name => Name_Abstract_State);
2589
2590 Decorate (Aspect, Aitem);
2591 Insert_Pragma
2592 (Prag => Aitem,
2593 Is_Instance =>
2594 Is_Generic_Instance (Defining_Entity (Context)));
2595
2596 else
2597 Error_Msg_NE
2598 ("aspect & must apply to a package declaration",
2599 Aspect, Id);
2600 end if;
2601
2602 goto Continue;
2603 end Abstract_State;
2604
2605 -- Aspect Async_Readers is never delayed because it is
2606 -- equivalent to a source pragma which appears after the
2607 -- related object declaration.
2608
2609 when Aspect_Async_Readers =>
2610 Make_Aitem_Pragma
2611 (Pragma_Argument_Associations => New_List (
2612 Make_Pragma_Argument_Association (Loc,
2613 Expression => Relocate_Node (Expr))),
2614 Pragma_Name => Name_Async_Readers);
2615
2616 Decorate (Aspect, Aitem);
2617 Insert_Pragma (Aitem);
2618 goto Continue;
2619
2620 -- Aspect Async_Writers is never delayed because it is
2621 -- equivalent to a source pragma which appears after the
2622 -- related object declaration.
2623
2624 when Aspect_Async_Writers =>
2625 Make_Aitem_Pragma
2626 (Pragma_Argument_Associations => New_List (
2627 Make_Pragma_Argument_Association (Loc,
2628 Expression => Relocate_Node (Expr))),
2629 Pragma_Name => Name_Async_Writers);
2630
2631 Decorate (Aspect, Aitem);
2632 Insert_Pragma (Aitem);
2633 goto Continue;
2634
2635 -- Aspect Constant_After_Elaboration is never delayed because
2636 -- it is equivalent to a source pragma which appears after the
2637 -- related object declaration.
2638
2639 when Aspect_Constant_After_Elaboration =>
2640 Make_Aitem_Pragma
2641 (Pragma_Argument_Associations => New_List (
2642 Make_Pragma_Argument_Association (Loc,
2643 Expression => Relocate_Node (Expr))),
2644 Pragma_Name =>
2645 Name_Constant_After_Elaboration);
2646
2647 Decorate (Aspect, Aitem);
2648 Insert_Pragma (Aitem);
2649 goto Continue;
2650
2651 -- Aspect Default_Internal_Condition is never delayed because
2652 -- it is equivalent to a source pragma which appears after the
2653 -- related private type. To deal with forward references, the
2654 -- generated pragma is stored in the rep chain of the related
2655 -- private type as types do not carry contracts. The pragma is
2656 -- wrapped inside of a procedure at the freeze point of the
2657 -- private type's full view.
2658
2659 when Aspect_Default_Initial_Condition =>
2660 Make_Aitem_Pragma
2661 (Pragma_Argument_Associations => New_List (
2662 Make_Pragma_Argument_Association (Loc,
2663 Expression => Relocate_Node (Expr))),
2664 Pragma_Name =>
2665 Name_Default_Initial_Condition);
2666
2667 Decorate (Aspect, Aitem);
2668 Insert_Pragma (Aitem);
2669 goto Continue;
2670
2671 -- Default_Storage_Pool
2672
2673 when Aspect_Default_Storage_Pool =>
2674 Make_Aitem_Pragma
2675 (Pragma_Argument_Associations => New_List (
2676 Make_Pragma_Argument_Association (Loc,
2677 Expression => Relocate_Node (Expr))),
2678 Pragma_Name =>
2679 Name_Default_Storage_Pool);
2680
2681 Decorate (Aspect, Aitem);
2682 Insert_Pragma (Aitem);
2683 goto Continue;
2684
2685 -- Depends
2686
2687 -- Aspect Depends is never delayed because it is equivalent to
2688 -- a source pragma which appears after the related subprogram.
2689 -- To deal with forward references, the generated pragma is
2690 -- stored in the contract of the related subprogram and later
2691 -- analyzed at the end of the declarative region. See routine
2692 -- Analyze_Depends_In_Decl_Part for details.
2693
2694 when Aspect_Depends =>
2695 Make_Aitem_Pragma
2696 (Pragma_Argument_Associations => New_List (
2697 Make_Pragma_Argument_Association (Loc,
2698 Expression => Relocate_Node (Expr))),
2699 Pragma_Name => Name_Depends);
2700
2701 Decorate (Aspect, Aitem);
2702 Insert_Pragma (Aitem);
2703 goto Continue;
2704
2705 -- Aspect Effecitve_Reads is never delayed because it is
2706 -- equivalent to a source pragma which appears after the
2707 -- related object declaration.
2708
2709 when Aspect_Effective_Reads =>
2710 Make_Aitem_Pragma
2711 (Pragma_Argument_Associations => New_List (
2712 Make_Pragma_Argument_Association (Loc,
2713 Expression => Relocate_Node (Expr))),
2714 Pragma_Name => Name_Effective_Reads);
2715
2716 Decorate (Aspect, Aitem);
2717 Insert_Pragma (Aitem);
2718 goto Continue;
2719
2720 -- Aspect Effective_Writes is never delayed because it is
2721 -- equivalent to a source pragma which appears after the
2722 -- related object declaration.
2723
2724 when Aspect_Effective_Writes =>
2725 Make_Aitem_Pragma
2726 (Pragma_Argument_Associations => New_List (
2727 Make_Pragma_Argument_Association (Loc,
2728 Expression => Relocate_Node (Expr))),
2729 Pragma_Name => Name_Effective_Writes);
2730
2731 Decorate (Aspect, Aitem);
2732 Insert_Pragma (Aitem);
2733 goto Continue;
2734
2735 -- Aspect Extensions_Visible is never delayed because it is
2736 -- equivalent to a source pragma which appears after the
2737 -- related subprogram.
2738
2739 when Aspect_Extensions_Visible =>
2740 Make_Aitem_Pragma
2741 (Pragma_Argument_Associations => New_List (
2742 Make_Pragma_Argument_Association (Loc,
2743 Expression => Relocate_Node (Expr))),
2744 Pragma_Name => Name_Extensions_Visible);
2745
2746 Decorate (Aspect, Aitem);
2747 Insert_Pragma (Aitem);
2748 goto Continue;
2749
2750 -- Aspect Ghost is never delayed because it is equivalent to a
2751 -- source pragma which appears at the top of [generic] package
2752 -- declarations or after an object, a [generic] subprogram, or
2753 -- a type declaration.
2754
2755 when Aspect_Ghost =>
2756 Make_Aitem_Pragma
2757 (Pragma_Argument_Associations => New_List (
2758 Make_Pragma_Argument_Association (Loc,
2759 Expression => Relocate_Node (Expr))),
2760 Pragma_Name => Name_Ghost);
2761
2762 Decorate (Aspect, Aitem);
2763 Insert_Pragma (Aitem);
2764 goto Continue;
2765
2766 -- Global
2767
2768 -- Aspect Global is never delayed because it is equivalent to
2769 -- a source pragma which appears after the related subprogram.
2770 -- To deal with forward references, the generated pragma is
2771 -- stored in the contract of the related subprogram and later
2772 -- analyzed at the end of the declarative region. See routine
2773 -- Analyze_Global_In_Decl_Part for details.
2774
2775 when Aspect_Global =>
2776 Make_Aitem_Pragma
2777 (Pragma_Argument_Associations => New_List (
2778 Make_Pragma_Argument_Association (Loc,
2779 Expression => Relocate_Node (Expr))),
2780 Pragma_Name => Name_Global);
2781
2782 Decorate (Aspect, Aitem);
2783 Insert_Pragma (Aitem);
2784 goto Continue;
2785
2786 -- Initial_Condition
2787
2788 -- Aspect Initial_Condition is never delayed because it is
2789 -- equivalent to a source pragma which appears after the
2790 -- related package. To deal with forward references, the
2791 -- generated pragma is stored in the contract of the related
2792 -- package and later analyzed at the end of the declarative
2793 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2794 -- for details.
2795
2796 when Aspect_Initial_Condition => Initial_Condition : declare
2797 Context : Node_Id := N;
2798
2799 begin
2800 -- When aspect Initial_Condition appears on a generic
2801 -- package, it is propageted to the package instance. The
2802 -- context in this case is the instance spec.
2803
2804 if Nkind (Context) = N_Package_Instantiation then
2805 Context := Instance_Spec (Context);
2806 end if;
2807
2808 if Nkind_In (Context, N_Generic_Package_Declaration,
2809 N_Package_Declaration)
2810 then
2811 Make_Aitem_Pragma
2812 (Pragma_Argument_Associations => New_List (
2813 Make_Pragma_Argument_Association (Loc,
2814 Expression => Relocate_Node (Expr))),
2815 Pragma_Name =>
2816 Name_Initial_Condition);
2817
2818 Decorate (Aspect, Aitem);
2819 Insert_Pragma
2820 (Prag => Aitem,
2821 Is_Instance =>
2822 Is_Generic_Instance (Defining_Entity (Context)));
2823
2824 -- Otherwise the context is illegal
2825
2826 else
2827 Error_Msg_NE
2828 ("aspect & must apply to a package declaration",
2829 Aspect, Id);
2830 end if;
2831
2832 goto Continue;
2833 end Initial_Condition;
2834
2835 -- Initializes
2836
2837 -- Aspect Initializes is never delayed because it is equivalent
2838 -- to a source pragma appearing after the related package. To
2839 -- deal with forward references, the generated pragma is stored
2840 -- in the contract of the related package and later analyzed at
2841 -- the end of the declarative region. For details, see routine
2842 -- Analyze_Initializes_In_Decl_Part.
2843
2844 when Aspect_Initializes => Initializes : declare
2845 Context : Node_Id := N;
2846
2847 begin
2848 -- When aspect Initializes appears on a generic package,
2849 -- it is propageted to the package instance. The context
2850 -- in this case is the instance spec.
2851
2852 if Nkind (Context) = N_Package_Instantiation then
2853 Context := Instance_Spec (Context);
2854 end if;
2855
2856 if Nkind_In (Context, N_Generic_Package_Declaration,
2857 N_Package_Declaration)
2858 then
2859 Make_Aitem_Pragma
2860 (Pragma_Argument_Associations => New_List (
2861 Make_Pragma_Argument_Association (Loc,
2862 Expression => Relocate_Node (Expr))),
2863 Pragma_Name => Name_Initializes);
2864
2865 Decorate (Aspect, Aitem);
2866 Insert_Pragma
2867 (Prag => Aitem,
2868 Is_Instance =>
2869 Is_Generic_Instance (Defining_Entity (Context)));
2870
2871 -- Otherwise the context is illegal
2872
2873 else
2874 Error_Msg_NE
2875 ("aspect & must apply to a package declaration",
2876 Aspect, Id);
2877 end if;
2878
2879 goto Continue;
2880 end Initializes;
2881
2882 -- Max_Queue_Length
2883
2884 when Aspect_Max_Queue_Length =>
2885 Make_Aitem_Pragma
2886 (Pragma_Argument_Associations => New_List (
2887 Make_Pragma_Argument_Association (Loc,
2888 Expression => Relocate_Node (Expr))),
2889 Pragma_Name => Name_Max_Queue_Length);
2890
2891 Decorate (Aspect, Aitem);
2892 Insert_Pragma (Aitem);
2893 goto Continue;
2894
2895 -- Obsolescent
2896
2897 when Aspect_Obsolescent => declare
2898 Args : List_Id;
2899
2900 begin
2901 if No (Expr) then
2902 Args := No_List;
2903 else
2904 Args := New_List (
2905 Make_Pragma_Argument_Association (Sloc (Expr),
2906 Expression => Relocate_Node (Expr)));
2907 end if;
2908
2909 Make_Aitem_Pragma
2910 (Pragma_Argument_Associations => Args,
2911 Pragma_Name => Chars (Id));
2912 end;
2913
2914 -- Part_Of
2915
2916 when Aspect_Part_Of =>
2917 if Nkind_In (N, N_Object_Declaration,
2918 N_Package_Instantiation)
2919 or else Is_Single_Concurrent_Type_Declaration (N)
2920 then
2921 Make_Aitem_Pragma
2922 (Pragma_Argument_Associations => New_List (
2923 Make_Pragma_Argument_Association (Loc,
2924 Expression => Relocate_Node (Expr))),
2925 Pragma_Name => Name_Part_Of);
2926
2927 Decorate (Aspect, Aitem);
2928 Insert_Pragma (Aitem);
2929
2930 else
2931 Error_Msg_NE
2932 ("aspect & must apply to package instantiation, "
2933 & "object, single protected type or single task type",
2934 Aspect, Id);
2935 end if;
2936
2937 goto Continue;
2938
2939 -- SPARK_Mode
2940
2941 when Aspect_SPARK_Mode =>
2942 Make_Aitem_Pragma
2943 (Pragma_Argument_Associations => New_List (
2944 Make_Pragma_Argument_Association (Loc,
2945 Expression => Relocate_Node (Expr))),
2946 Pragma_Name => Name_SPARK_Mode);
2947
2948 Decorate (Aspect, Aitem);
2949 Insert_Pragma (Aitem);
2950 goto Continue;
2951
2952 -- Refined_Depends
2953
2954 -- Aspect Refined_Depends is never delayed because it is
2955 -- equivalent to a source pragma which appears in the
2956 -- declarations of the related subprogram body. To deal with
2957 -- forward references, the generated pragma is stored in the
2958 -- contract of the related subprogram body and later analyzed
2959 -- at the end of the declarative region. For details, see
2960 -- routine Analyze_Refined_Depends_In_Decl_Part.
2961
2962 when Aspect_Refined_Depends =>
2963 Make_Aitem_Pragma
2964 (Pragma_Argument_Associations => New_List (
2965 Make_Pragma_Argument_Association (Loc,
2966 Expression => Relocate_Node (Expr))),
2967 Pragma_Name => Name_Refined_Depends);
2968
2969 Decorate (Aspect, Aitem);
2970 Insert_Pragma (Aitem);
2971 goto Continue;
2972
2973 -- Refined_Global
2974
2975 -- Aspect Refined_Global is never delayed because it is
2976 -- equivalent to a source pragma which appears in the
2977 -- declarations of the related subprogram body. To deal with
2978 -- forward references, the generated pragma is stored in the
2979 -- contract of the related subprogram body and later analyzed
2980 -- at the end of the declarative region. For details, see
2981 -- routine Analyze_Refined_Global_In_Decl_Part.
2982
2983 when Aspect_Refined_Global =>
2984 Make_Aitem_Pragma
2985 (Pragma_Argument_Associations => New_List (
2986 Make_Pragma_Argument_Association (Loc,
2987 Expression => Relocate_Node (Expr))),
2988 Pragma_Name => Name_Refined_Global);
2989
2990 Decorate (Aspect, Aitem);
2991 Insert_Pragma (Aitem);
2992 goto Continue;
2993
2994 -- Refined_Post
2995
2996 when Aspect_Refined_Post =>
2997 Make_Aitem_Pragma
2998 (Pragma_Argument_Associations => New_List (
2999 Make_Pragma_Argument_Association (Loc,
3000 Expression => Relocate_Node (Expr))),
3001 Pragma_Name => Name_Refined_Post);
3002
3003 Decorate (Aspect, Aitem);
3004 Insert_Pragma (Aitem);
3005 goto Continue;
3006
3007 -- Refined_State
3008
3009 when Aspect_Refined_State =>
3010
3011 -- The corresponding pragma for Refined_State is inserted in
3012 -- the declarations of the related package body. This action
3013 -- synchronizes both the source and from-aspect versions of
3014 -- the pragma.
3015
3016 if Nkind (N) = N_Package_Body then
3017 Make_Aitem_Pragma
3018 (Pragma_Argument_Associations => New_List (
3019 Make_Pragma_Argument_Association (Loc,
3020 Expression => Relocate_Node (Expr))),
3021 Pragma_Name => Name_Refined_State);
3022
3023 Decorate (Aspect, Aitem);
3024 Insert_Pragma (Aitem);
3025
3026 -- Otherwise the context is illegal
3027
3028 else
3029 Error_Msg_NE
3030 ("aspect & must apply to a package body", Aspect, Id);
3031 end if;
3032
3033 goto Continue;
3034
3035 -- Relative_Deadline
3036
3037 when Aspect_Relative_Deadline =>
3038 Make_Aitem_Pragma
3039 (Pragma_Argument_Associations => New_List (
3040 Make_Pragma_Argument_Association (Loc,
3041 Expression => Relocate_Node (Expr))),
3042 Pragma_Name => Name_Relative_Deadline);
3043
3044 -- If the aspect applies to a task, the corresponding pragma
3045 -- must appear within its declarations, not after.
3046
3047 if Nkind (N) = N_Task_Type_Declaration then
3048 declare
3049 Def : Node_Id;
3050 V : List_Id;
3051
3052 begin
3053 if No (Task_Definition (N)) then
3054 Set_Task_Definition (N,
3055 Make_Task_Definition (Loc,
3056 Visible_Declarations => New_List,
3057 End_Label => Empty));
3058 end if;
3059
3060 Def := Task_Definition (N);
3061 V := Visible_Declarations (Def);
3062 if not Is_Empty_List (V) then
3063 Insert_Before (First (V), Aitem);
3064
3065 else
3066 Set_Visible_Declarations (Def, New_List (Aitem));
3067 end if;
3068
3069 goto Continue;
3070 end;
3071 end if;
3072
3073 -- Aspect Volatile_Function is never delayed because it is
3074 -- equivalent to a source pragma which appears after the
3075 -- related subprogram.
3076
3077 when Aspect_Volatile_Function =>
3078 Make_Aitem_Pragma
3079 (Pragma_Argument_Associations => New_List (
3080 Make_Pragma_Argument_Association (Loc,
3081 Expression => Relocate_Node (Expr))),
3082 Pragma_Name => Name_Volatile_Function);
3083
3084 Decorate (Aspect, Aitem);
3085 Insert_Pragma (Aitem);
3086 goto Continue;
3087
3088 -- Case 2e: Annotate aspect
3089
3090 when Aspect_Annotate =>
3091 declare
3092 Args : List_Id;
3093 Pargs : List_Id;
3094 Arg : Node_Id;
3095
3096 begin
3097 -- The argument can be a single identifier
3098
3099 if Nkind (Expr) = N_Identifier then
3100
3101 -- One level of parens is allowed
3102
3103 if Paren_Count (Expr) > 1 then
3104 Error_Msg_F ("extra parentheses ignored", Expr);
3105 end if;
3106
3107 Set_Paren_Count (Expr, 0);
3108
3109 -- Add the single item to the list
3110
3111 Args := New_List (Expr);
3112
3113 -- Otherwise we must have an aggregate
3114
3115 elsif Nkind (Expr) = N_Aggregate then
3116
3117 -- Must be positional
3118
3119 if Present (Component_Associations (Expr)) then
3120 Error_Msg_F
3121 ("purely positional aggregate required", Expr);
3122 goto Continue;
3123 end if;
3124
3125 -- Must not be parenthesized
3126
3127 if Paren_Count (Expr) /= 0 then
3128 Error_Msg_F ("extra parentheses ignored", Expr);
3129 end if;
3130
3131 -- List of arguments is list of aggregate expressions
3132
3133 Args := Expressions (Expr);
3134
3135 -- Anything else is illegal
3136
3137 else
3138 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3139 goto Continue;
3140 end if;
3141
3142 -- Prepare pragma arguments
3143
3144 Pargs := New_List;
3145 Arg := First (Args);
3146 while Present (Arg) loop
3147 Append_To (Pargs,
3148 Make_Pragma_Argument_Association (Sloc (Arg),
3149 Expression => Relocate_Node (Arg)));
3150 Next (Arg);
3151 end loop;
3152
3153 Append_To (Pargs,
3154 Make_Pragma_Argument_Association (Sloc (Ent),
3155 Chars => Name_Entity,
3156 Expression => Ent));
3157
3158 Make_Aitem_Pragma
3159 (Pragma_Argument_Associations => Pargs,
3160 Pragma_Name => Name_Annotate);
3161 end;
3162
3163 -- Case 3 : Aspects that don't correspond to pragma/attribute
3164 -- definition clause.
3165
3166 -- Case 3a: The aspects listed below don't correspond to
3167 -- pragmas/attributes but do require delayed analysis.
3168
3169 -- Default_Value can only apply to a scalar type
3170
3171 when Aspect_Default_Value =>
3172 if not Is_Scalar_Type (E) then
3173 Error_Msg_N
3174 ("aspect Default_Value must apply to a scalar type", N);
3175 end if;
3176
3177 Aitem := Empty;
3178
3179 -- Default_Component_Value can only apply to an array type
3180 -- with scalar components.
3181
3182 when Aspect_Default_Component_Value =>
3183 if not (Is_Array_Type (E)
3184 and then Is_Scalar_Type (Component_Type (E)))
3185 then
3186 Error_Msg_N
3187 ("aspect Default_Component_Value can only apply to an "
3188 & "array of scalar components", N);
3189 end if;
3190
3191 Aitem := Empty;
3192
3193 -- Case 3b: The aspects listed below don't correspond to
3194 -- pragmas/attributes and don't need delayed analysis.
3195
3196 -- Implicit_Dereference
3197
3198 -- For Implicit_Dereference, External_Name and Link_Name, only
3199 -- the legality checks are done during the analysis, thus no
3200 -- delay is required.
3201
3202 when Aspect_Implicit_Dereference =>
3203 Analyze_Aspect_Implicit_Dereference;
3204 goto Continue;
3205
3206 -- Dimension
3207
3208 when Aspect_Dimension =>
3209 Analyze_Aspect_Dimension (N, Id, Expr);
3210 goto Continue;
3211
3212 -- Dimension_System
3213
3214 when Aspect_Dimension_System =>
3215 Analyze_Aspect_Dimension_System (N, Id, Expr);
3216 goto Continue;
3217
3218 -- Case 4: Aspects requiring special handling
3219
3220 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3221 -- pragmas take care of the delay.
3222
3223 -- Pre/Post
3224
3225 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3226 -- with a first argument that is the expression, and a second
3227 -- argument that is an informative message if the test fails.
3228 -- This is inserted right after the declaration, to get the
3229 -- required pragma placement. The processing for the pragmas
3230 -- takes care of the required delay.
3231
3232 when Pre_Post_Aspects => Pre_Post : declare
3233 Pname : Name_Id;
3234
3235 begin
3236 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3237 Pname := Name_Precondition;
3238 else
3239 Pname := Name_Postcondition;
3240 end if;
3241
3242 -- Check that the class-wide predicate cannot be applied to
3243 -- an operation of a synchronized type. AI12-0182 forbids
3244 -- these altogether, while earlier language semantics made
3245 -- them legal on tagged synchronized types.
3246
3247 -- Other legality checks are performed when analyzing the
3248 -- contract of the operation.
3249
3250 if Class_Present (Aspect)
3251 and then Is_Concurrent_Type (Current_Scope)
3252 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3253 then
3254 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3255 Error_Msg_N
3256 ("aspect % can only be specified for a primitive "
3257 & "operation of a tagged type", Aspect);
3258
3259 goto Continue;
3260 end if;
3261
3262 -- If the expressions is of the form A and then B, then
3263 -- we generate separate Pre/Post aspects for the separate
3264 -- clauses. Since we allow multiple pragmas, there is no
3265 -- problem in allowing multiple Pre/Post aspects internally.
3266 -- These should be treated in reverse order (B first and
3267 -- A second) since they are later inserted just after N in
3268 -- the order they are treated. This way, the pragma for A
3269 -- ends up preceding the pragma for B, which may have an
3270 -- importance for the error raised (either constraint error
3271 -- or precondition error).
3272
3273 -- We do not do this for Pre'Class, since we have to put
3274 -- these conditions together in a complex OR expression.
3275
3276 -- We do not do this in ASIS mode, as ASIS relies on the
3277 -- original node representing the complete expression, when
3278 -- retrieving it through the source aspect table.
3279
3280 if not ASIS_Mode
3281 and then (Pname = Name_Postcondition
3282 or else not Class_Present (Aspect))
3283 then
3284 while Nkind (Expr) = N_And_Then loop
3285 Insert_After (Aspect,
3286 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3287 Identifier => Identifier (Aspect),
3288 Expression => Relocate_Node (Left_Opnd (Expr)),
3289 Class_Present => Class_Present (Aspect),
3290 Split_PPC => True));
3291 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3292 Eloc := Sloc (Expr);
3293 end loop;
3294 end if;
3295
3296 -- Build the precondition/postcondition pragma
3297
3298 -- Add note about why we do NOT need Copy_Tree here???
3299
3300 Make_Aitem_Pragma
3301 (Pragma_Argument_Associations => New_List (
3302 Make_Pragma_Argument_Association (Eloc,
3303 Chars => Name_Check,
3304 Expression => Relocate_Node (Expr))),
3305 Pragma_Name => Pname);
3306
3307 -- Add message unless exception messages are suppressed
3308
3309 if not Opt.Exception_Locations_Suppressed then
3310 Append_To (Pragma_Argument_Associations (Aitem),
3311 Make_Pragma_Argument_Association (Eloc,
3312 Chars => Name_Message,
3313 Expression =>
3314 Make_String_Literal (Eloc,
3315 Strval => "failed "
3316 & Get_Name_String (Pname)
3317 & " from "
3318 & Build_Location_String (Eloc))));
3319 end if;
3320
3321 Set_Is_Delayed_Aspect (Aspect);
3322
3323 -- For Pre/Post cases, insert immediately after the entity
3324 -- declaration, since that is the required pragma placement.
3325 -- Note that for these aspects, we do not have to worry
3326 -- about delay issues, since the pragmas themselves deal
3327 -- with delay of visibility for the expression analysis.
3328
3329 Insert_Pragma (Aitem);
3330
3331 goto Continue;
3332 end Pre_Post;
3333
3334 -- Test_Case
3335
3336 when Aspect_Test_Case => Test_Case : declare
3337 Args : List_Id;
3338 Comp_Expr : Node_Id;
3339 Comp_Assn : Node_Id;
3340 New_Expr : Node_Id;
3341
3342 begin
3343 Args := New_List;
3344
3345 if Nkind (Parent (N)) = N_Compilation_Unit then
3346 Error_Msg_Name_1 := Nam;
3347 Error_Msg_N ("incorrect placement of aspect `%`", E);
3348 goto Continue;
3349 end if;
3350
3351 if Nkind (Expr) /= N_Aggregate then
3352 Error_Msg_Name_1 := Nam;
3353 Error_Msg_NE
3354 ("wrong syntax for aspect `%` for &", Id, E);
3355 goto Continue;
3356 end if;
3357
3358 -- Make pragma expressions refer to the original aspect
3359 -- expressions through the Original_Node link. This is used
3360 -- in semantic analysis for ASIS mode, so that the original
3361 -- expression also gets analyzed.
3362
3363 Comp_Expr := First (Expressions (Expr));
3364 while Present (Comp_Expr) loop
3365 New_Expr := Relocate_Node (Comp_Expr);
3366 Append_To (Args,
3367 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3368 Expression => New_Expr));
3369 Next (Comp_Expr);
3370 end loop;
3371
3372 Comp_Assn := First (Component_Associations (Expr));
3373 while Present (Comp_Assn) loop
3374 if List_Length (Choices (Comp_Assn)) /= 1
3375 or else
3376 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3377 then
3378 Error_Msg_Name_1 := Nam;
3379 Error_Msg_NE
3380 ("wrong syntax for aspect `%` for &", Id, E);
3381 goto Continue;
3382 end if;
3383
3384 Append_To (Args,
3385 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3386 Chars => Chars (First (Choices (Comp_Assn))),
3387 Expression =>
3388 Relocate_Node (Expression (Comp_Assn))));
3389 Next (Comp_Assn);
3390 end loop;
3391
3392 -- Build the test-case pragma
3393
3394 Make_Aitem_Pragma
3395 (Pragma_Argument_Associations => Args,
3396 Pragma_Name => Nam);
3397 end Test_Case;
3398
3399 -- Contract_Cases
3400
3401 when Aspect_Contract_Cases =>
3402 Make_Aitem_Pragma
3403 (Pragma_Argument_Associations => New_List (
3404 Make_Pragma_Argument_Association (Loc,
3405 Expression => Relocate_Node (Expr))),
3406 Pragma_Name => Nam);
3407
3408 Decorate (Aspect, Aitem);
3409 Insert_Pragma (Aitem);
3410 goto Continue;
3411
3412 -- Case 5: Special handling for aspects with an optional
3413 -- boolean argument.
3414
3415 -- In the delayed case, the corresponding pragma cannot be
3416 -- generated yet because the evaluation of the boolean needs
3417 -- to be delayed till the freeze point.
3418
3419 when Boolean_Aspects
3420 | Library_Unit_Aspects
3421 =>
3422 Set_Is_Boolean_Aspect (Aspect);
3423
3424 -- Lock_Free aspect only apply to protected objects
3425
3426 if A_Id = Aspect_Lock_Free then
3427 if Ekind (E) /= E_Protected_Type then
3428 Error_Msg_Name_1 := Nam;
3429 Error_Msg_N
3430 ("aspect % only applies to a protected object",
3431 Aspect);
3432
3433 else
3434 -- Set the Uses_Lock_Free flag to True if there is no
3435 -- expression or if the expression is True. The
3436 -- evaluation of this aspect should be delayed to the
3437 -- freeze point (why???)
3438
3439 if No (Expr)
3440 or else Is_True (Static_Boolean (Expr))
3441 then
3442 Set_Uses_Lock_Free (E);
3443 end if;
3444
3445 Record_Rep_Item (E, Aspect);
3446 end if;
3447
3448 goto Continue;
3449
3450 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3451 Analyze_Aspect_Export_Import;
3452
3453 -- Disable_Controlled
3454
3455 elsif A_Id = Aspect_Disable_Controlled then
3456 if Ekind (E) /= E_Record_Type
3457 or else not Is_Controlled (E)
3458 then
3459 Error_Msg_N
3460 ("aspect % requires controlled record type", Aspect);
3461 goto Continue;
3462 end if;
3463
3464 -- If we're in a generic template, we don't want to try
3465 -- to disable controlled types, because typical usage is
3466 -- "Disable_Controlled => not <some_check>'Enabled", and
3467 -- the value of Enabled is not known until we see a
3468 -- particular instance. In such a context, we just need
3469 -- to preanalyze the expression for legality.
3470
3471 if Expander_Active then
3472 Analyze_And_Resolve (Expr, Standard_Boolean);
3473
3474 if not Present (Expr)
3475 or else Is_True (Static_Boolean (Expr))
3476 then
3477 Set_Disable_Controlled (E);
3478 end if;
3479
3480 elsif Serious_Errors_Detected = 0 then
3481 Preanalyze_And_Resolve (Expr, Standard_Boolean);
3482 end if;
3483
3484 goto Continue;
3485 end if;
3486
3487 -- Library unit aspects require special handling in the case
3488 -- of a package declaration, the pragma needs to be inserted
3489 -- in the list of declarations for the associated package.
3490 -- There is no issue of visibility delay for these aspects.
3491
3492 if A_Id in Library_Unit_Aspects
3493 and then
3494 Nkind_In (N, N_Package_Declaration,
3495 N_Generic_Package_Declaration)
3496 and then Nkind (Parent (N)) /= N_Compilation_Unit
3497
3498 -- Aspect is legal on a local instantiation of a library-
3499 -- level generic unit.
3500
3501 and then not Is_Generic_Instance (Defining_Entity (N))
3502 then
3503 Error_Msg_N
3504 ("incorrect context for library unit aspect&", Id);
3505 goto Continue;
3506 end if;
3507
3508 -- Cases where we do not delay, includes all cases where the
3509 -- expression is missing other than the above cases.
3510
3511 if not Delay_Required or else No (Expr) then
3512
3513 -- Exclude aspects Export and Import because their pragma
3514 -- syntax does not map directly to a Boolean aspect.
3515
3516 if A_Id /= Aspect_Export
3517 and then A_Id /= Aspect_Import
3518 then
3519 Make_Aitem_Pragma
3520 (Pragma_Argument_Associations => New_List (
3521 Make_Pragma_Argument_Association (Sloc (Ent),
3522 Expression => Ent)),
3523 Pragma_Name => Chars (Id));
3524 end if;
3525
3526 Delay_Required := False;
3527
3528 -- In general cases, the corresponding pragma/attribute
3529 -- definition clause will be inserted later at the freezing
3530 -- point, and we do not need to build it now.
3531
3532 else
3533 Aitem := Empty;
3534 end if;
3535
3536 -- Storage_Size
3537
3538 -- This is special because for access types we need to generate
3539 -- an attribute definition clause. This also works for single
3540 -- task declarations, but it does not work for task type
3541 -- declarations, because we have the case where the expression
3542 -- references a discriminant of the task type. That can't use
3543 -- an attribute definition clause because we would not have
3544 -- visibility on the discriminant. For that case we must
3545 -- generate a pragma in the task definition.
3546
3547 when Aspect_Storage_Size =>
3548
3549 -- Task type case
3550
3551 if Ekind (E) = E_Task_Type then
3552 declare
3553 Decl : constant Node_Id := Declaration_Node (E);
3554
3555 begin
3556 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3557
3558 -- If no task definition, create one
3559
3560 if No (Task_Definition (Decl)) then
3561 Set_Task_Definition (Decl,
3562 Make_Task_Definition (Loc,
3563 Visible_Declarations => Empty_List,
3564 End_Label => Empty));
3565 end if;
3566
3567 -- Create a pragma and put it at the start of the task
3568 -- definition for the task type declaration.
3569
3570 Make_Aitem_Pragma
3571 (Pragma_Argument_Associations => New_List (
3572 Make_Pragma_Argument_Association (Loc,
3573 Expression => Relocate_Node (Expr))),
3574 Pragma_Name => Name_Storage_Size);
3575
3576 Prepend
3577 (Aitem,
3578 Visible_Declarations (Task_Definition (Decl)));
3579 goto Continue;
3580 end;
3581
3582 -- All other cases, generate attribute definition
3583
3584 else
3585 Aitem :=
3586 Make_Attribute_Definition_Clause (Loc,
3587 Name => Ent,
3588 Chars => Chars (Id),
3589 Expression => Relocate_Node (Expr));
3590 end if;
3591 end case;
3592
3593 -- Attach the corresponding pragma/attribute definition clause to
3594 -- the aspect specification node.
3595
3596 if Present (Aitem) then
3597 Set_From_Aspect_Specification (Aitem);
3598 end if;
3599
3600 -- In the context of a compilation unit, we directly put the
3601 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3602 -- node (no delay is required here) except for aspects on a
3603 -- subprogram body (see below) and a generic package, for which we
3604 -- need to introduce the pragma before building the generic copy
3605 -- (see sem_ch12), and for package instantiations, where the
3606 -- library unit pragmas are better handled early.
3607
3608 if Nkind (Parent (N)) = N_Compilation_Unit
3609 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3610 then
3611 declare
3612 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3613
3614 begin
3615 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3616
3617 -- For a Boolean aspect, create the corresponding pragma if
3618 -- no expression or if the value is True.
3619
3620 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3621 if Is_True (Static_Boolean (Expr)) then
3622 Make_Aitem_Pragma
3623 (Pragma_Argument_Associations => New_List (
3624 Make_Pragma_Argument_Association (Sloc (Ent),
3625 Expression => Ent)),
3626 Pragma_Name => Chars (Id));
3627
3628 Set_From_Aspect_Specification (Aitem, True);
3629 Set_Corresponding_Aspect (Aitem, Aspect);
3630
3631 else
3632 goto Continue;
3633 end if;
3634 end if;
3635
3636 -- If the aspect is on a subprogram body (relevant aspect
3637 -- is Inline), add the pragma in front of the declarations.
3638
3639 if Nkind (N) = N_Subprogram_Body then
3640 if No (Declarations (N)) then
3641 Set_Declarations (N, New_List);
3642 end if;
3643
3644 Prepend (Aitem, Declarations (N));
3645
3646 elsif Nkind (N) = N_Generic_Package_Declaration then
3647 if No (Visible_Declarations (Specification (N))) then
3648 Set_Visible_Declarations (Specification (N), New_List);
3649 end if;
3650
3651 Prepend (Aitem,
3652 Visible_Declarations (Specification (N)));
3653
3654 elsif Nkind (N) = N_Package_Instantiation then
3655 declare
3656 Spec : constant Node_Id :=
3657 Specification (Instance_Spec (N));
3658 begin
3659 if No (Visible_Declarations (Spec)) then
3660 Set_Visible_Declarations (Spec, New_List);
3661 end if;
3662
3663 Prepend (Aitem, Visible_Declarations (Spec));
3664 end;
3665
3666 else
3667 if No (Pragmas_After (Aux)) then
3668 Set_Pragmas_After (Aux, New_List);
3669 end if;
3670
3671 Append (Aitem, Pragmas_After (Aux));
3672 end if;
3673
3674 goto Continue;
3675 end;
3676 end if;
3677
3678 -- The evaluation of the aspect is delayed to the freezing point.
3679 -- The pragma or attribute clause if there is one is then attached
3680 -- to the aspect specification which is put in the rep item list.
3681
3682 if Delay_Required then
3683 if Present (Aitem) then
3684 Set_Is_Delayed_Aspect (Aitem);
3685 Set_Aspect_Rep_Item (Aspect, Aitem);
3686 Set_Parent (Aitem, Aspect);
3687 end if;
3688
3689 Set_Is_Delayed_Aspect (Aspect);
3690
3691 -- In the case of Default_Value, link the aspect to base type
3692 -- as well, even though it appears on a first subtype. This is
3693 -- mandated by the semantics of the aspect. Do not establish
3694 -- the link when processing the base type itself as this leads
3695 -- to a rep item circularity. Verify that we are dealing with
3696 -- a scalar type to prevent cascaded errors.
3697
3698 if A_Id = Aspect_Default_Value
3699 and then Is_Scalar_Type (E)
3700 and then Base_Type (E) /= E
3701 then
3702 Set_Has_Delayed_Aspects (Base_Type (E));
3703 Record_Rep_Item (Base_Type (E), Aspect);
3704 end if;
3705
3706 Set_Has_Delayed_Aspects (E);
3707 Record_Rep_Item (E, Aspect);
3708
3709 -- When delay is not required and the context is a package or a
3710 -- subprogram body, insert the pragma in the body declarations.
3711
3712 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3713 if No (Declarations (N)) then
3714 Set_Declarations (N, New_List);
3715 end if;
3716
3717 -- The pragma is added before source declarations
3718
3719 Prepend_To (Declarations (N), Aitem);
3720
3721 -- When delay is not required and the context is not a compilation
3722 -- unit, we simply insert the pragma/attribute definition clause
3723 -- in sequence.
3724
3725 elsif Present (Aitem) then
3726 Insert_After (Ins_Node, Aitem);
3727 Ins_Node := Aitem;
3728 end if;
3729 end Analyze_One_Aspect;
3730
3731 <<Continue>>
3732 Next (Aspect);
3733 end loop Aspect_Loop;
3734
3735 if Has_Delayed_Aspects (E) then
3736 Ensure_Freeze_Node (E);
3737 end if;
3738 end Analyze_Aspect_Specifications;
3739
3740 ---------------------------------------------------
3741 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3742 ---------------------------------------------------
3743
3744 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3745 Body_Id : constant Entity_Id := Defining_Entity (N);
3746
3747 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3748 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3749 -- error message depending on the aspects involved. Spec_Id denotes the
3750 -- entity of the corresponding spec.
3751
3752 --------------------------------
3753 -- Diagnose_Misplaced_Aspects --
3754 --------------------------------
3755
3756 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3757 procedure Misplaced_Aspect_Error
3758 (Asp : Node_Id;
3759 Ref_Nam : Name_Id);
3760 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3761 -- the name of the refined version of the aspect.
3762
3763 ----------------------------
3764 -- Misplaced_Aspect_Error --
3765 ----------------------------
3766
3767 procedure Misplaced_Aspect_Error
3768 (Asp : Node_Id;
3769 Ref_Nam : Name_Id)
3770 is
3771 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3772 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3773
3774 begin
3775 -- The corresponding spec already contains the aspect in question
3776 -- and the one appearing on the body must be the refined form:
3777
3778 -- procedure P with Global ...;
3779 -- procedure P with Global ... is ... end P;
3780 -- ^
3781 -- Refined_Global
3782
3783 if Has_Aspect (Spec_Id, Asp_Id) then
3784 Error_Msg_Name_1 := Asp_Nam;
3785
3786 -- Subunits cannot carry aspects that apply to a subprogram
3787 -- declaration.
3788
3789 if Nkind (Parent (N)) = N_Subunit then
3790 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3791
3792 -- Otherwise suggest the refined form
3793
3794 else
3795 Error_Msg_Name_2 := Ref_Nam;
3796 Error_Msg_N ("aspect % should be %", Asp);
3797 end if;
3798
3799 -- Otherwise the aspect must appear on the spec, not on the body
3800
3801 -- procedure P;
3802 -- procedure P with Global ... is ... end P;
3803
3804 else
3805 Error_Msg_N
3806 ("aspect specification must appear on initial declaration",
3807 Asp);
3808 end if;
3809 end Misplaced_Aspect_Error;
3810
3811 -- Local variables
3812
3813 Asp : Node_Id;
3814 Asp_Nam : Name_Id;
3815
3816 -- Start of processing for Diagnose_Misplaced_Aspects
3817
3818 begin
3819 -- Iterate over the aspect specifications and emit specific errors
3820 -- where applicable.
3821
3822 Asp := First (Aspect_Specifications (N));
3823 while Present (Asp) loop
3824 Asp_Nam := Chars (Identifier (Asp));
3825
3826 -- Do not emit errors on aspects that can appear on a subprogram
3827 -- body. This scenario occurs when the aspect specification list
3828 -- contains both misplaced and properly placed aspects.
3829
3830 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3831 null;
3832
3833 -- Special diagnostics for SPARK aspects
3834
3835 elsif Asp_Nam = Name_Depends then
3836 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3837
3838 elsif Asp_Nam = Name_Global then
3839 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3840
3841 elsif Asp_Nam = Name_Post then
3842 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3843
3844 -- Otherwise a language-defined aspect is misplaced
3845
3846 else
3847 Error_Msg_N
3848 ("aspect specification must appear on initial declaration",
3849 Asp);
3850 end if;
3851
3852 Next (Asp);
3853 end loop;
3854 end Diagnose_Misplaced_Aspects;
3855
3856 -- Local variables
3857
3858 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3859
3860 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3861
3862 begin
3863 -- Language-defined aspects cannot be associated with a subprogram body
3864 -- [stub] if the subprogram has a spec. Certain implementation defined
3865 -- aspects are allowed to break this rule (for all applicable cases, see
3866 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3867
3868 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3869 Diagnose_Misplaced_Aspects (Spec_Id);
3870 else
3871 Analyze_Aspect_Specifications (N, Body_Id);
3872 end if;
3873 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3874
3875 -----------------------
3876 -- Analyze_At_Clause --
3877 -----------------------
3878
3879 -- An at clause is replaced by the corresponding Address attribute
3880 -- definition clause that is the preferred approach in Ada 95.
3881
3882 procedure Analyze_At_Clause (N : Node_Id) is
3883 CS : constant Boolean := Comes_From_Source (N);
3884
3885 begin
3886 -- This is an obsolescent feature
3887
3888 Check_Restriction (No_Obsolescent_Features, N);
3889
3890 if Warn_On_Obsolescent_Feature then
3891 Error_Msg_N
3892 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3893 Error_Msg_N
3894 ("\?j?use address attribute definition clause instead", N);
3895 end if;
3896
3897 -- Rewrite as address clause
3898
3899 Rewrite (N,
3900 Make_Attribute_Definition_Clause (Sloc (N),
3901 Name => Identifier (N),
3902 Chars => Name_Address,
3903 Expression => Expression (N)));
3904
3905 -- We preserve Comes_From_Source, since logically the clause still comes
3906 -- from the source program even though it is changed in form.
3907
3908 Set_Comes_From_Source (N, CS);
3909
3910 -- Analyze rewritten clause
3911
3912 Analyze_Attribute_Definition_Clause (N);
3913 end Analyze_At_Clause;
3914
3915 -----------------------------------------
3916 -- Analyze_Attribute_Definition_Clause --
3917 -----------------------------------------
3918
3919 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3920 Loc : constant Source_Ptr := Sloc (N);
3921 Nam : constant Node_Id := Name (N);
3922 Attr : constant Name_Id := Chars (N);
3923 Expr : constant Node_Id := Expression (N);
3924 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3925
3926 Ent : Entity_Id;
3927 -- The entity of Nam after it is analyzed. In the case of an incomplete
3928 -- type, this is the underlying type.
3929
3930 U_Ent : Entity_Id;
3931 -- The underlying entity to which the attribute applies. Generally this
3932 -- is the Underlying_Type of Ent, except in the case where the clause
3933 -- applies to the full view of an incomplete or private type, in which
3934 -- case U_Ent is just a copy of Ent.
3935
3936 FOnly : Boolean := False;
3937 -- Reset to True for subtype specific attribute (Alignment, Size)
3938 -- and for stream attributes, i.e. those cases where in the call to
3939 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3940 -- are checked. Note that the case of stream attributes is not clear
3941 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3942 -- Storage_Size for derived task types, but that is also clearly
3943 -- unintentional.
3944
3945 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3946 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3947 -- definition clauses.
3948
3949 function Duplicate_Clause return Boolean;
3950 -- This routine checks if the aspect for U_Ent being given by attribute
3951 -- definition clause N is for an aspect that has already been specified,
3952 -- and if so gives an error message. If there is a duplicate, True is
3953 -- returned, otherwise if there is no error, False is returned.
3954
3955 procedure Check_Indexing_Functions;
3956 -- Check that the function in Constant_Indexing or Variable_Indexing
3957 -- attribute has the proper type structure. If the name is overloaded,
3958 -- check that some interpretation is legal.
3959
3960 procedure Check_Iterator_Functions;
3961 -- Check that there is a single function in Default_Iterator attribute
3962 -- has the proper type structure.
3963
3964 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3965 -- Common legality check for the previous two
3966
3967 -----------------------------------
3968 -- Analyze_Stream_TSS_Definition --
3969 -----------------------------------
3970
3971 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3972 Subp : Entity_Id := Empty;
3973 I : Interp_Index;
3974 It : Interp;
3975 Pnam : Entity_Id;
3976
3977 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3978 -- True for Read attribute, False for other attributes
3979
3980 function Has_Good_Profile
3981 (Subp : Entity_Id;
3982 Report : Boolean := False) return Boolean;
3983 -- Return true if the entity is a subprogram with an appropriate
3984 -- profile for the attribute being defined. If result is False and
3985 -- Report is True, function emits appropriate error.
3986
3987 ----------------------
3988 -- Has_Good_Profile --
3989 ----------------------
3990
3991 function Has_Good_Profile
3992 (Subp : Entity_Id;
3993 Report : Boolean := False) return Boolean
3994 is
3995 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3996 (False => E_Procedure, True => E_Function);
3997 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3998 F : Entity_Id;
3999 Typ : Entity_Id;
4000
4001 begin
4002 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4003 return False;
4004 end if;
4005
4006 F := First_Formal (Subp);
4007
4008 if No (F)
4009 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4010 or else Designated_Type (Etype (F)) /=
4011 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4012 then
4013 return False;
4014 end if;
4015
4016 if not Is_Function then
4017 Next_Formal (F);
4018
4019 declare
4020 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4021 (False => E_In_Parameter,
4022 True => E_Out_Parameter);
4023 begin
4024 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4025 return False;
4026 end if;
4027 end;
4028
4029 Typ := Etype (F);
4030
4031 -- If the attribute specification comes from an aspect
4032 -- specification for a class-wide stream, the parameter must be
4033 -- a class-wide type of the entity to which the aspect applies.
4034
4035 if From_Aspect_Specification (N)
4036 and then Class_Present (Parent (N))
4037 and then Is_Class_Wide_Type (Typ)
4038 then
4039 Typ := Etype (Typ);
4040 end if;
4041
4042 else
4043 Typ := Etype (Subp);
4044 end if;
4045
4046 -- Verify that the prefix of the attribute and the local name for
4047 -- the type of the formal match, or one is the class-wide of the
4048 -- other, in the case of a class-wide stream operation.
4049
4050 if Base_Type (Typ) = Base_Type (Ent)
4051 or else (Is_Class_Wide_Type (Typ)
4052 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4053 or else (Is_Class_Wide_Type (Ent)
4054 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4055 then
4056 null;
4057 else
4058 return False;
4059 end if;
4060
4061 if Present (Next_Formal (F)) then
4062 return False;
4063
4064 elsif not Is_Scalar_Type (Typ)
4065 and then not Is_First_Subtype (Typ)
4066 and then not Is_Class_Wide_Type (Typ)
4067 then
4068 if Report and not Is_First_Subtype (Typ) then
4069 Error_Msg_N
4070 ("subtype of formal in stream operation must be a first "
4071 & "subtype", Parameter_Type (Parent (F)));
4072 end if;
4073
4074 return False;
4075
4076 else
4077 return True;
4078 end if;
4079 end Has_Good_Profile;
4080
4081 -- Start of processing for Analyze_Stream_TSS_Definition
4082
4083 begin
4084 FOnly := True;
4085
4086 if not Is_Type (U_Ent) then
4087 Error_Msg_N ("local name must be a subtype", Nam);
4088 return;
4089
4090 elsif not Is_First_Subtype (U_Ent) then
4091 Error_Msg_N ("local name must be a first subtype", Nam);
4092 return;
4093 end if;
4094
4095 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4096
4097 -- If Pnam is present, it can be either inherited from an ancestor
4098 -- type (in which case it is legal to redefine it for this type), or
4099 -- be a previous definition of the attribute for the same type (in
4100 -- which case it is illegal).
4101
4102 -- In the first case, it will have been analyzed already, and we
4103 -- can check that its profile does not match the expected profile
4104 -- for a stream attribute of U_Ent. In the second case, either Pnam
4105 -- has been analyzed (and has the expected profile), or it has not
4106 -- been analyzed yet (case of a type that has not been frozen yet
4107 -- and for which the stream attribute has been set using Set_TSS).
4108
4109 if Present (Pnam)
4110 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4111 then
4112 Error_Msg_Sloc := Sloc (Pnam);
4113 Error_Msg_Name_1 := Attr;
4114 Error_Msg_N ("% attribute already defined #", Nam);
4115 return;
4116 end if;
4117
4118 Analyze (Expr);
4119
4120 if Is_Entity_Name (Expr) then
4121 if not Is_Overloaded (Expr) then
4122 if Has_Good_Profile (Entity (Expr), Report => True) then
4123 Subp := Entity (Expr);
4124 end if;
4125
4126 else
4127 Get_First_Interp (Expr, I, It);
4128 while Present (It.Nam) loop
4129 if Has_Good_Profile (It.Nam) then
4130 Subp := It.Nam;
4131 exit;
4132 end if;
4133
4134 Get_Next_Interp (I, It);
4135 end loop;
4136 end if;
4137 end if;
4138
4139 if Present (Subp) then
4140 if Is_Abstract_Subprogram (Subp) then
4141 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4142 return;
4143
4144 -- A stream subprogram for an interface type must be a null
4145 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4146 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4147
4148 elsif Is_Interface (U_Ent)
4149 and then not Is_Class_Wide_Type (U_Ent)
4150 and then not Inside_A_Generic
4151 and then
4152 (Ekind (Subp) = E_Function
4153 or else
4154 not Null_Present
4155 (Specification
4156 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4157 then
4158 Error_Msg_N
4159 ("stream subprogram for interface type must be null "
4160 & "procedure", Expr);
4161 end if;
4162
4163 Set_Entity (Expr, Subp);
4164 Set_Etype (Expr, Etype (Subp));
4165
4166 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4167
4168 else
4169 Error_Msg_Name_1 := Attr;
4170 Error_Msg_N ("incorrect expression for% attribute", Expr);
4171 end if;
4172 end Analyze_Stream_TSS_Definition;
4173
4174 ------------------------------
4175 -- Check_Indexing_Functions --
4176 ------------------------------
4177
4178 procedure Check_Indexing_Functions is
4179 Indexing_Found : Boolean := False;
4180
4181 procedure Check_Inherited_Indexing;
4182 -- For a derived type, check that no indexing aspect is specified
4183 -- for the type if it is also inherited
4184
4185 procedure Check_One_Function (Subp : Entity_Id);
4186 -- Check one possible interpretation. Sets Indexing_Found True if a
4187 -- legal indexing function is found.
4188
4189 procedure Illegal_Indexing (Msg : String);
4190 -- Diagnose illegal indexing function if not overloaded. In the
4191 -- overloaded case indicate that no legal interpretation exists.
4192
4193 ------------------------------
4194 -- Check_Inherited_Indexing --
4195 ------------------------------
4196
4197 procedure Check_Inherited_Indexing is
4198 Inherited : Node_Id;
4199
4200 begin
4201 if Attr = Name_Constant_Indexing then
4202 Inherited :=
4203 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4204 else pragma Assert (Attr = Name_Variable_Indexing);
4205 Inherited :=
4206 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4207 end if;
4208
4209 if Present (Inherited) then
4210 if Debug_Flag_Dot_XX then
4211 null;
4212
4213 -- OK if current attribute_definition_clause is expansion of
4214 -- inherited aspect.
4215
4216 elsif Aspect_Rep_Item (Inherited) = N then
4217 null;
4218
4219 -- Indicate the operation that must be overridden, rather than
4220 -- redefining the indexing aspect.
4221
4222 else
4223 Illegal_Indexing
4224 ("indexing function already inherited from parent type");
4225 Error_Msg_NE
4226 ("!override & instead",
4227 N, Entity (Expression (Inherited)));
4228 end if;
4229 end if;
4230 end Check_Inherited_Indexing;
4231
4232 ------------------------
4233 -- Check_One_Function --
4234 ------------------------
4235
4236 procedure Check_One_Function (Subp : Entity_Id) is
4237 Default_Element : Node_Id;
4238 Ret_Type : constant Entity_Id := Etype (Subp);
4239
4240 begin
4241 if not Is_Overloadable (Subp) then
4242 Illegal_Indexing ("illegal indexing function for type&");
4243 return;
4244
4245 elsif Scope (Subp) /= Scope (Ent) then
4246 if Nkind (Expr) = N_Expanded_Name then
4247
4248 -- Indexing function can't be declared elsewhere
4249
4250 Illegal_Indexing
4251 ("indexing function must be declared in scope of type&");
4252 end if;
4253
4254 return;
4255
4256 elsif No (First_Formal (Subp)) then
4257 Illegal_Indexing
4258 ("Indexing requires a function that applies to type&");
4259 return;
4260
4261 elsif No (Next_Formal (First_Formal (Subp))) then
4262 Illegal_Indexing
4263 ("indexing function must have at least two parameters");
4264 return;
4265
4266 elsif Is_Derived_Type (Ent) then
4267 Check_Inherited_Indexing;
4268 end if;
4269
4270 if not Check_Primitive_Function (Subp) then
4271 Illegal_Indexing
4272 ("Indexing aspect requires a function that applies to type&");
4273 return;
4274 end if;
4275
4276 -- If partial declaration exists, verify that it is not tagged.
4277
4278 if Ekind (Current_Scope) = E_Package
4279 and then Has_Private_Declaration (Ent)
4280 and then From_Aspect_Specification (N)
4281 and then
4282 List_Containing (Parent (Ent)) =
4283 Private_Declarations
4284 (Specification (Unit_Declaration_Node (Current_Scope)))
4285 and then Nkind (N) = N_Attribute_Definition_Clause
4286 then
4287 declare
4288 Decl : Node_Id;
4289
4290 begin
4291 Decl :=
4292 First (Visible_Declarations
4293 (Specification
4294 (Unit_Declaration_Node (Current_Scope))));
4295
4296 while Present (Decl) loop
4297 if Nkind (Decl) = N_Private_Type_Declaration
4298 and then Ent = Full_View (Defining_Identifier (Decl))
4299 and then Tagged_Present (Decl)
4300 and then No (Aspect_Specifications (Decl))
4301 then
4302 Illegal_Indexing
4303 ("Indexing aspect cannot be specified on full view "
4304 & "if partial view is tagged");
4305 return;
4306 end if;
4307
4308 Next (Decl);
4309 end loop;
4310 end;
4311 end if;
4312
4313 -- An indexing function must return either the default element of
4314 -- the container, or a reference type. For variable indexing it
4315 -- must be the latter.
4316
4317 Default_Element :=
4318 Find_Value_Of_Aspect
4319 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4320
4321 if Present (Default_Element) then
4322 Analyze (Default_Element);
4323
4324 if Is_Entity_Name (Default_Element)
4325 and then not Covers (Entity (Default_Element), Ret_Type)
4326 and then False
4327 then
4328 Illegal_Indexing
4329 ("wrong return type for indexing function");
4330 return;
4331 end if;
4332 end if;
4333
4334 -- For variable_indexing the return type must be a reference type
4335
4336 if Attr = Name_Variable_Indexing then
4337 if not Has_Implicit_Dereference (Ret_Type) then
4338 Illegal_Indexing
4339 ("variable indexing must return a reference type");
4340 return;
4341
4342 elsif Is_Access_Constant
4343 (Etype (First_Discriminant (Ret_Type)))
4344 then
4345 Illegal_Indexing
4346 ("variable indexing must return an access to variable");
4347 return;
4348 end if;
4349
4350 else
4351 if Has_Implicit_Dereference (Ret_Type)
4352 and then not
4353 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4354 then
4355 Illegal_Indexing
4356 ("constant indexing must return an access to constant");
4357 return;
4358
4359 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4360 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4361 then
4362 Illegal_Indexing
4363 ("constant indexing must apply to an access to constant");
4364 return;
4365 end if;
4366 end if;
4367
4368 -- All checks succeeded.
4369
4370 Indexing_Found := True;
4371 end Check_One_Function;
4372
4373 -----------------------
4374 -- Illegal_Indexing --
4375 -----------------------
4376
4377 procedure Illegal_Indexing (Msg : String) is
4378 begin
4379 Error_Msg_NE (Msg, N, Ent);
4380 end Illegal_Indexing;
4381
4382 -- Start of processing for Check_Indexing_Functions
4383
4384 begin
4385 if In_Instance then
4386 Check_Inherited_Indexing;
4387 end if;
4388
4389 Analyze (Expr);
4390
4391 if not Is_Overloaded (Expr) then
4392 Check_One_Function (Entity (Expr));
4393
4394 else
4395 declare
4396 I : Interp_Index;
4397 It : Interp;
4398
4399 begin
4400 Indexing_Found := False;
4401 Get_First_Interp (Expr, I, It);
4402 while Present (It.Nam) loop
4403
4404 -- Note that analysis will have added the interpretation
4405 -- that corresponds to the dereference. We only check the
4406 -- subprogram itself. Ignore homonyms that may come from
4407 -- derived types in the context.
4408
4409 if Is_Overloadable (It.Nam)
4410 and then Comes_From_Source (It.Nam)
4411 then
4412 Check_One_Function (It.Nam);
4413 end if;
4414
4415 Get_Next_Interp (I, It);
4416 end loop;
4417 end;
4418 end if;
4419
4420 if not Indexing_Found and then not Error_Posted (N) then
4421 Error_Msg_NE
4422 ("aspect Indexing requires a local function that applies to "
4423 & "type&", Expr, Ent);
4424 end if;
4425 end Check_Indexing_Functions;
4426
4427 ------------------------------
4428 -- Check_Iterator_Functions --
4429 ------------------------------
4430
4431 procedure Check_Iterator_Functions is
4432 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4433 -- Check one possible interpretation for validity
4434
4435 ----------------------------
4436 -- Valid_Default_Iterator --
4437 ----------------------------
4438
4439 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4440 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4441 Formal : Entity_Id;
4442
4443 begin
4444 if not Check_Primitive_Function (Subp) then
4445 return False;
4446
4447 -- The return type must be derived from a type in an instance
4448 -- of Iterator.Interfaces, and thus its root type must have a
4449 -- predefined name.
4450
4451 elsif Chars (Root_T) /= Name_Forward_Iterator
4452 and then Chars (Root_T) /= Name_Reversible_Iterator
4453 then
4454 return False;
4455
4456 else
4457 Formal := First_Formal (Subp);
4458 end if;
4459
4460 -- False if any subsequent formal has no default expression
4461
4462 Formal := Next_Formal (Formal);
4463 while Present (Formal) loop
4464 if No (Expression (Parent (Formal))) then
4465 return False;
4466 end if;
4467
4468 Next_Formal (Formal);
4469 end loop;
4470
4471 -- True if all subsequent formals have default expressions
4472
4473 return True;
4474 end Valid_Default_Iterator;
4475
4476 -- Start of processing for Check_Iterator_Functions
4477
4478 begin
4479 Analyze (Expr);
4480
4481 if not Is_Entity_Name (Expr) then
4482 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4483 end if;
4484
4485 if not Is_Overloaded (Expr) then
4486 if not Check_Primitive_Function (Entity (Expr)) then
4487 Error_Msg_NE
4488 ("aspect Indexing requires a function that applies to type&",
4489 Entity (Expr), Ent);
4490 end if;
4491
4492 -- Flag the default_iterator as well as the denoted function.
4493
4494 if not Valid_Default_Iterator (Entity (Expr)) then
4495 Error_Msg_N ("improper function for default iterator!", Expr);
4496 end if;
4497
4498 else
4499 declare
4500 Default : Entity_Id := Empty;
4501 I : Interp_Index;
4502 It : Interp;
4503
4504 begin
4505 Get_First_Interp (Expr, I, It);
4506 while Present (It.Nam) loop
4507 if not Check_Primitive_Function (It.Nam)
4508 or else not Valid_Default_Iterator (It.Nam)
4509 then
4510 Remove_Interp (I);
4511
4512 elsif Present (Default) then
4513
4514 -- An explicit one should override an implicit one
4515
4516 if Comes_From_Source (Default) =
4517 Comes_From_Source (It.Nam)
4518 then
4519 Error_Msg_N ("default iterator must be unique", Expr);
4520 Error_Msg_Sloc := Sloc (Default);
4521 Error_Msg_N ("\\possible interpretation#", Expr);
4522 Error_Msg_Sloc := Sloc (It.Nam);
4523 Error_Msg_N ("\\possible interpretation#", Expr);
4524
4525 elsif Comes_From_Source (It.Nam) then
4526 Default := It.Nam;
4527 end if;
4528 else
4529 Default := It.Nam;
4530 end if;
4531
4532 Get_Next_Interp (I, It);
4533 end loop;
4534
4535 if Present (Default) then
4536 Set_Entity (Expr, Default);
4537 Set_Is_Overloaded (Expr, False);
4538 else
4539 Error_Msg_N
4540 ("no interpretation is a valid default iterator!", Expr);
4541 end if;
4542 end;
4543 end if;
4544 end Check_Iterator_Functions;
4545
4546 -------------------------------
4547 -- Check_Primitive_Function --
4548 -------------------------------
4549
4550 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4551 Ctrl : Entity_Id;
4552
4553 begin
4554 if Ekind (Subp) /= E_Function then
4555 return False;
4556 end if;
4557
4558 if No (First_Formal (Subp)) then
4559 return False;
4560 else
4561 Ctrl := Etype (First_Formal (Subp));
4562 end if;
4563
4564 -- To be a primitive operation subprogram has to be in same scope.
4565
4566 if Scope (Ctrl) /= Scope (Subp) then
4567 return False;
4568 end if;
4569
4570 -- Type of formal may be the class-wide type, an access to such,
4571 -- or an incomplete view.
4572
4573 if Ctrl = Ent
4574 or else Ctrl = Class_Wide_Type (Ent)
4575 or else
4576 (Ekind (Ctrl) = E_Anonymous_Access_Type
4577 and then (Designated_Type (Ctrl) = Ent
4578 or else
4579 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4580 or else
4581 (Ekind (Ctrl) = E_Incomplete_Type
4582 and then Full_View (Ctrl) = Ent)
4583 then
4584 null;
4585 else
4586 return False;
4587 end if;
4588
4589 return True;
4590 end Check_Primitive_Function;
4591
4592 ----------------------
4593 -- Duplicate_Clause --
4594 ----------------------
4595
4596 function Duplicate_Clause return Boolean is
4597 A : Node_Id;
4598
4599 begin
4600 -- Nothing to do if this attribute definition clause comes from
4601 -- an aspect specification, since we could not be duplicating an
4602 -- explicit clause, and we dealt with the case of duplicated aspects
4603 -- in Analyze_Aspect_Specifications.
4604
4605 if From_Aspect_Specification (N) then
4606 return False;
4607 end if;
4608
4609 -- Otherwise current clause may duplicate previous clause, or a
4610 -- previously given pragma or aspect specification for the same
4611 -- aspect.
4612
4613 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4614
4615 if Present (A) then
4616 Error_Msg_Name_1 := Chars (N);
4617 Error_Msg_Sloc := Sloc (A);
4618
4619 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4620 return True;
4621 end if;
4622
4623 return False;
4624 end Duplicate_Clause;
4625
4626 -- Start of processing for Analyze_Attribute_Definition_Clause
4627
4628 begin
4629 -- The following code is a defense against recursion. Not clear that
4630 -- this can happen legitimately, but perhaps some error situations can
4631 -- cause it, and we did see this recursion during testing.
4632
4633 if Analyzed (N) then
4634 return;
4635 else
4636 Set_Analyzed (N, True);
4637 end if;
4638
4639 Check_Restriction_No_Use_Of_Attribute (N);
4640
4641 -- Ignore some selected attributes in CodePeer mode since they are not
4642 -- relevant in this context.
4643
4644 if CodePeer_Mode then
4645 case Id is
4646
4647 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4648 -- internal representation of types by implicitly packing them.
4649
4650 when Attribute_Component_Size =>
4651 Rewrite (N, Make_Null_Statement (Sloc (N)));
4652 return;
4653
4654 when others =>
4655 null;
4656 end case;
4657 end if;
4658
4659 -- Process Ignore_Rep_Clauses option
4660
4661 if Ignore_Rep_Clauses then
4662 case Id is
4663
4664 -- The following should be ignored. They do not affect legality
4665 -- and may be target dependent. The basic idea of -gnatI is to
4666 -- ignore any rep clauses that may be target dependent but do not
4667 -- affect legality (except possibly to be rejected because they
4668 -- are incompatible with the compilation target).
4669
4670 when Attribute_Alignment
4671 | Attribute_Bit_Order
4672 | Attribute_Component_Size
4673 | Attribute_Default_Scalar_Storage_Order
4674 | Attribute_Machine_Radix
4675 | Attribute_Object_Size
4676 | Attribute_Scalar_Storage_Order
4677 | Attribute_Size
4678 | Attribute_Small
4679 | Attribute_Stream_Size
4680 | Attribute_Value_Size
4681 =>
4682 Kill_Rep_Clause (N);
4683 return;
4684
4685 -- The following should not be ignored, because in the first place
4686 -- they are reasonably portable, and should not cause problems
4687 -- in compiling code from another target, and also they do affect
4688 -- legality, e.g. failing to provide a stream attribute for a type
4689 -- may make a program illegal.
4690
4691 when Attribute_External_Tag
4692 | Attribute_Input
4693 | Attribute_Output
4694 | Attribute_Read
4695 | Attribute_Simple_Storage_Pool
4696 | Attribute_Storage_Pool
4697 | Attribute_Storage_Size
4698 | Attribute_Write
4699 =>
4700 null;
4701
4702 -- We do not do anything here with address clauses, they will be
4703 -- removed by Freeze later on, but for now, it works better to
4704 -- keep then in the tree.
4705
4706 when Attribute_Address =>
4707 null;
4708
4709 -- Other cases are errors ("attribute& cannot be set with
4710 -- definition clause"), which will be caught below.
4711
4712 when others =>
4713 null;
4714 end case;
4715 end if;
4716
4717 Analyze (Nam);
4718 Ent := Entity (Nam);
4719
4720 if Rep_Item_Too_Early (Ent, N) then
4721 return;
4722 end if;
4723
4724 -- Rep clause applies to full view of incomplete type or private type if
4725 -- we have one (if not, this is a premature use of the type). However,
4726 -- certain semantic checks need to be done on the specified entity (i.e.
4727 -- the private view), so we save it in Ent.
4728
4729 if Is_Private_Type (Ent)
4730 and then Is_Derived_Type (Ent)
4731 and then not Is_Tagged_Type (Ent)
4732 and then No (Full_View (Ent))
4733 then
4734 -- If this is a private type whose completion is a derivation from
4735 -- another private type, there is no full view, and the attribute
4736 -- belongs to the type itself, not its underlying parent.
4737
4738 U_Ent := Ent;
4739
4740 elsif Ekind (Ent) = E_Incomplete_Type then
4741
4742 -- The attribute applies to the full view, set the entity of the
4743 -- attribute definition accordingly.
4744
4745 Ent := Underlying_Type (Ent);
4746 U_Ent := Ent;
4747 Set_Entity (Nam, Ent);
4748
4749 else
4750 U_Ent := Underlying_Type (Ent);
4751 end if;
4752
4753 -- Avoid cascaded error
4754
4755 if Etype (Nam) = Any_Type then
4756 return;
4757
4758 -- Must be declared in current scope or in case of an aspect
4759 -- specification, must be visible in current scope.
4760
4761 elsif Scope (Ent) /= Current_Scope
4762 and then
4763 not (From_Aspect_Specification (N)
4764 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4765 then
4766 Error_Msg_N ("entity must be declared in this scope", Nam);
4767 return;
4768
4769 -- Must not be a source renaming (we do have some cases where the
4770 -- expander generates a renaming, and those cases are OK, in such
4771 -- cases any attribute applies to the renamed object as well).
4772
4773 elsif Is_Object (Ent)
4774 and then Present (Renamed_Object (Ent))
4775 then
4776 -- Case of renamed object from source, this is an error
4777
4778 if Comes_From_Source (Renamed_Object (Ent)) then
4779 Get_Name_String (Chars (N));
4780 Error_Msg_Strlen := Name_Len;
4781 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4782 Error_Msg_N
4783 ("~ clause not allowed for a renaming declaration "
4784 & "(RM 13.1(6))", Nam);
4785 return;
4786
4787 -- For the case of a compiler generated renaming, the attribute
4788 -- definition clause applies to the renamed object created by the
4789 -- expander. The easiest general way to handle this is to create a
4790 -- copy of the attribute definition clause for this object.
4791
4792 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4793 Insert_Action (N,
4794 Make_Attribute_Definition_Clause (Loc,
4795 Name =>
4796 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4797 Chars => Chars (N),
4798 Expression => Duplicate_Subexpr (Expression (N))));
4799
4800 -- If the renamed object is not an entity, it must be a dereference
4801 -- of an unconstrained function call, and we must introduce a new
4802 -- declaration to capture the expression. This is needed in the case
4803 -- of 'Alignment, where the original declaration must be rewritten.
4804
4805 else
4806 pragma Assert
4807 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4808 null;
4809 end if;
4810
4811 -- If no underlying entity, use entity itself, applies to some
4812 -- previously detected error cases ???
4813
4814 elsif No (U_Ent) then
4815 U_Ent := Ent;
4816
4817 -- Cannot specify for a subtype (exception Object/Value_Size)
4818
4819 elsif Is_Type (U_Ent)
4820 and then not Is_First_Subtype (U_Ent)
4821 and then Id /= Attribute_Object_Size
4822 and then Id /= Attribute_Value_Size
4823 and then not From_At_Mod (N)
4824 then
4825 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4826 return;
4827 end if;
4828
4829 Set_Entity (N, U_Ent);
4830
4831 -- Switch on particular attribute
4832
4833 case Id is
4834
4835 -------------
4836 -- Address --
4837 -------------
4838
4839 -- Address attribute definition clause
4840
4841 when Attribute_Address => Address : begin
4842
4843 -- A little error check, catch for X'Address use X'Address;
4844
4845 if Nkind (Nam) = N_Identifier
4846 and then Nkind (Expr) = N_Attribute_Reference
4847 and then Attribute_Name (Expr) = Name_Address
4848 and then Nkind (Prefix (Expr)) = N_Identifier
4849 and then Chars (Nam) = Chars (Prefix (Expr))
4850 then
4851 Error_Msg_NE
4852 ("address for & is self-referencing", Prefix (Expr), Ent);
4853 return;
4854 end if;
4855
4856 -- Not that special case, carry on with analysis of expression
4857
4858 Analyze_And_Resolve (Expr, RTE (RE_Address));
4859
4860 -- Even when ignoring rep clauses we need to indicate that the
4861 -- entity has an address clause and thus it is legal to declare
4862 -- it imported. Freeze will get rid of the address clause later.
4863
4864 if Ignore_Rep_Clauses then
4865 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4866 Record_Rep_Item (U_Ent, N);
4867 end if;
4868
4869 return;
4870 end if;
4871
4872 if Duplicate_Clause then
4873 null;
4874
4875 -- Case of address clause for subprogram
4876
4877 elsif Is_Subprogram (U_Ent) then
4878 if Has_Homonym (U_Ent) then
4879 Error_Msg_N
4880 ("address clause cannot be given for overloaded "
4881 & "subprogram", Nam);
4882 return;
4883 end if;
4884
4885 -- For subprograms, all address clauses are permitted, and we
4886 -- mark the subprogram as having a deferred freeze so that Gigi
4887 -- will not elaborate it too soon.
4888
4889 -- Above needs more comments, what is too soon about???
4890
4891 Set_Has_Delayed_Freeze (U_Ent);
4892
4893 -- Case of address clause for entry
4894
4895 elsif Ekind (U_Ent) = E_Entry then
4896 if Nkind (Parent (N)) = N_Task_Body then
4897 Error_Msg_N
4898 ("entry address must be specified in task spec", Nam);
4899 return;
4900 end if;
4901
4902 -- For entries, we require a constant address
4903
4904 Check_Constant_Address_Clause (Expr, U_Ent);
4905
4906 -- Special checks for task types
4907
4908 if Is_Task_Type (Scope (U_Ent))
4909 and then Comes_From_Source (Scope (U_Ent))
4910 then
4911 Error_Msg_N
4912 ("??entry address declared for entry in task type", N);
4913 Error_Msg_N
4914 ("\??only one task can be declared of this type", N);
4915 end if;
4916
4917 -- Entry address clauses are obsolescent
4918
4919 Check_Restriction (No_Obsolescent_Features, N);
4920
4921 if Warn_On_Obsolescent_Feature then
4922 Error_Msg_N
4923 ("?j?attaching interrupt to task entry is an obsolescent "
4924 & "feature (RM J.7.1)", N);
4925 Error_Msg_N
4926 ("\?j?use interrupt procedure instead", N);
4927 end if;
4928
4929 -- Case of an address clause for a class-wide object, which is
4930 -- considered erroneous.
4931
4932 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
4933 Error_Msg_NE
4934 ("??class-wide object & must not be overlaid", Nam, U_Ent);
4935 Error_Msg_N
4936 ("\??Program_Error will be raised at run time", Nam);
4937 Insert_Action (Declaration_Node (U_Ent),
4938 Make_Raise_Program_Error (Loc,
4939 Reason => PE_Overlaid_Controlled_Object));
4940 return;
4941
4942 -- Case of address clause for an object
4943
4944 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
4945 declare
4946 Expr : constant Node_Id := Expression (N);
4947 O_Ent : Entity_Id;
4948 Off : Boolean;
4949
4950 begin
4951 -- Exported variables cannot have an address clause, because
4952 -- this cancels the effect of the pragma Export.
4953
4954 if Is_Exported (U_Ent) then
4955 Error_Msg_N
4956 ("cannot export object with address clause", Nam);
4957 return;
4958 end if;
4959
4960 Find_Overlaid_Entity (N, O_Ent, Off);
4961
4962 if Present (O_Ent) then
4963
4964 -- If the object overlays a constant object, mark it so
4965
4966 if Is_Constant_Object (O_Ent) then
4967 Set_Overlays_Constant (U_Ent);
4968 end if;
4969
4970 -- If the address clause is of the form:
4971
4972 -- for X'Address use Y'Address;
4973
4974 -- or
4975
4976 -- C : constant Address := Y'Address;
4977 -- ...
4978 -- for X'Address use C;
4979
4980 -- then we make an entry in the table to check the size
4981 -- and alignment of the overlaying variable. But we defer
4982 -- this check till after code generation to take full
4983 -- advantage of the annotation done by the back end.
4984
4985 -- If the entity has a generic type, the check will be
4986 -- performed in the instance if the actual type justifies
4987 -- it, and we do not insert the clause in the table to
4988 -- prevent spurious warnings.
4989
4990 -- Note: we used to test Comes_From_Source and only give
4991 -- this warning for source entities, but we have removed
4992 -- this test. It really seems bogus to generate overlays
4993 -- that would trigger this warning in generated code.
4994 -- Furthermore, by removing the test, we handle the
4995 -- aspect case properly.
4996
4997 if Is_Object (O_Ent)
4998 and then not Is_Generic_Type (Etype (U_Ent))
4999 and then Address_Clause_Overlay_Warnings
5000 then
5001 Address_Clause_Checks.Append
5002 ((N, U_Ent, No_Uint, O_Ent, Off));
5003 end if;
5004 else
5005 -- If this is not an overlay, mark a variable as being
5006 -- volatile to prevent unwanted optimizations. It's a
5007 -- conservative interpretation of RM 13.3(19) for the
5008 -- cases where the compiler cannot detect potential
5009 -- aliasing issues easily and it also covers the case
5010 -- of an absolute address where the volatile aspect is
5011 -- kind of implicit.
5012
5013 if Ekind (U_Ent) = E_Variable then
5014 Set_Treat_As_Volatile (U_Ent);
5015 end if;
5016
5017 -- Make an entry in the table for an absolute address as
5018 -- above to check that the value is compatible with the
5019 -- alignment of the object.
5020
5021 declare
5022 Addr : constant Node_Id := Address_Value (Expr);
5023 begin
5024 if Compile_Time_Known_Value (Addr)
5025 and then Address_Clause_Overlay_Warnings
5026 then
5027 Address_Clause_Checks.Append
5028 ((N, U_Ent, Expr_Value (Addr), Empty, False));
5029 end if;
5030 end;
5031 end if;
5032
5033 -- Issue an unconditional warning for a constant overlaying
5034 -- a variable. For the reverse case, we will issue it only
5035 -- if the variable is modified.
5036
5037 if Ekind (U_Ent) = E_Constant
5038 and then Present (O_Ent)
5039 and then not Overlays_Constant (U_Ent)
5040 and then Address_Clause_Overlay_Warnings
5041 then
5042 Error_Msg_N ("??constant overlays a variable", Expr);
5043
5044 -- Imported variables can have an address clause, but then
5045 -- the import is pretty meaningless except to suppress
5046 -- initializations, so we do not need such variables to
5047 -- be statically allocated (and in fact it causes trouble
5048 -- if the address clause is a local value).
5049
5050 elsif Is_Imported (U_Ent) then
5051 Set_Is_Statically_Allocated (U_Ent, False);
5052 end if;
5053
5054 -- We mark a possible modification of a variable with an
5055 -- address clause, since it is likely aliasing is occurring.
5056
5057 Note_Possible_Modification (Nam, Sure => False);
5058
5059 -- Legality checks on the address clause for initialized
5060 -- objects is deferred until the freeze point, because
5061 -- a subsequent pragma might indicate that the object
5062 -- is imported and thus not initialized. Also, the address
5063 -- clause might involve entities that have yet to be
5064 -- elaborated.
5065
5066 Set_Has_Delayed_Freeze (U_Ent);
5067
5068 -- If an initialization call has been generated for this
5069 -- object, it needs to be deferred to after the freeze node
5070 -- we have just now added, otherwise GIGI will see a
5071 -- reference to the variable (as actual to the IP call)
5072 -- before its definition.
5073
5074 declare
5075 Init_Call : constant Node_Id :=
5076 Remove_Init_Call (U_Ent, N);
5077
5078 begin
5079 if Present (Init_Call) then
5080 Append_Freeze_Action (U_Ent, Init_Call);
5081
5082 -- Reset Initialization_Statements pointer so that
5083 -- if there is a pragma Import further down, it can
5084 -- clear any default initialization.
5085
5086 Set_Initialization_Statements (U_Ent, Init_Call);
5087 end if;
5088 end;
5089
5090 -- Entity has delayed freeze, so we will generate an
5091 -- alignment check at the freeze point unless suppressed.
5092
5093 if not Range_Checks_Suppressed (U_Ent)
5094 and then not Alignment_Checks_Suppressed (U_Ent)
5095 then
5096 Set_Check_Address_Alignment (N);
5097 end if;
5098
5099 -- Kill the size check code, since we are not allocating
5100 -- the variable, it is somewhere else.
5101
5102 Kill_Size_Check_Code (U_Ent);
5103 end;
5104
5105 -- Not a valid entity for an address clause
5106
5107 else
5108 Error_Msg_N ("address cannot be given for &", Nam);
5109 end if;
5110 end Address;
5111
5112 ---------------
5113 -- Alignment --
5114 ---------------
5115
5116 -- Alignment attribute definition clause
5117
5118 when Attribute_Alignment => Alignment : declare
5119 Align : constant Uint := Get_Alignment_Value (Expr);
5120 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5121
5122 begin
5123 FOnly := True;
5124
5125 if not Is_Type (U_Ent)
5126 and then Ekind (U_Ent) /= E_Variable
5127 and then Ekind (U_Ent) /= E_Constant
5128 then
5129 Error_Msg_N ("alignment cannot be given for &", Nam);
5130
5131 elsif Duplicate_Clause then
5132 null;
5133
5134 elsif Align /= No_Uint then
5135 Set_Has_Alignment_Clause (U_Ent);
5136
5137 -- Tagged type case, check for attempt to set alignment to a
5138 -- value greater than Max_Align, and reset if so. This error
5139 -- is suppressed in ASIS mode to allow for different ASIS
5140 -- back ends or ASIS-based tools to query the illegal clause.
5141
5142 if Is_Tagged_Type (U_Ent)
5143 and then Align > Max_Align
5144 and then not ASIS_Mode
5145 then
5146 Error_Msg_N
5147 ("alignment for & set to Maximum_Aligment??", Nam);
5148 Set_Alignment (U_Ent, Max_Align);
5149
5150 -- All other cases
5151
5152 else
5153 Set_Alignment (U_Ent, Align);
5154 end if;
5155
5156 -- For an array type, U_Ent is the first subtype. In that case,
5157 -- also set the alignment of the anonymous base type so that
5158 -- other subtypes (such as the itypes for aggregates of the
5159 -- type) also receive the expected alignment.
5160
5161 if Is_Array_Type (U_Ent) then
5162 Set_Alignment (Base_Type (U_Ent), Align);
5163 end if;
5164 end if;
5165 end Alignment;
5166
5167 ---------------
5168 -- Bit_Order --
5169 ---------------
5170
5171 -- Bit_Order attribute definition clause
5172
5173 when Attribute_Bit_Order =>
5174 if not Is_Record_Type (U_Ent) then
5175 Error_Msg_N
5176 ("Bit_Order can only be defined for record type", Nam);
5177
5178 elsif Duplicate_Clause then
5179 null;
5180
5181 else
5182 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5183
5184 if Etype (Expr) = Any_Type then
5185 return;
5186
5187 elsif not Is_OK_Static_Expression (Expr) then
5188 Flag_Non_Static_Expr
5189 ("Bit_Order requires static expression!", Expr);
5190
5191 else
5192 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5193 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5194 end if;
5195 end if;
5196 end if;
5197
5198 --------------------
5199 -- Component_Size --
5200 --------------------
5201
5202 -- Component_Size attribute definition clause
5203
5204 when Attribute_Component_Size => Component_Size_Case : declare
5205 Csize : constant Uint := Static_Integer (Expr);
5206 Ctyp : Entity_Id;
5207 Btype : Entity_Id;
5208 Biased : Boolean;
5209 New_Ctyp : Entity_Id;
5210 Decl : Node_Id;
5211
5212 begin
5213 if not Is_Array_Type (U_Ent) then
5214 Error_Msg_N ("component size requires array type", Nam);
5215 return;
5216 end if;
5217
5218 Btype := Base_Type (U_Ent);
5219 Ctyp := Component_Type (Btype);
5220
5221 if Duplicate_Clause then
5222 null;
5223
5224 elsif Rep_Item_Too_Early (Btype, N) then
5225 null;
5226
5227 elsif Csize /= No_Uint then
5228 Check_Size (Expr, Ctyp, Csize, Biased);
5229
5230 -- For the biased case, build a declaration for a subtype that
5231 -- will be used to represent the biased subtype that reflects
5232 -- the biased representation of components. We need the subtype
5233 -- to get proper conversions on referencing elements of the
5234 -- array.
5235
5236 if Biased then
5237 New_Ctyp :=
5238 Make_Defining_Identifier (Loc,
5239 Chars =>
5240 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5241
5242 Decl :=
5243 Make_Subtype_Declaration (Loc,
5244 Defining_Identifier => New_Ctyp,
5245 Subtype_Indication =>
5246 New_Occurrence_Of (Component_Type (Btype), Loc));
5247
5248 Set_Parent (Decl, N);
5249 Analyze (Decl, Suppress => All_Checks);
5250
5251 Set_Has_Delayed_Freeze (New_Ctyp, False);
5252 Set_Esize (New_Ctyp, Csize);
5253 Set_RM_Size (New_Ctyp, Csize);
5254 Init_Alignment (New_Ctyp);
5255 Set_Is_Itype (New_Ctyp, True);
5256 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5257
5258 Set_Component_Type (Btype, New_Ctyp);
5259 Set_Biased (New_Ctyp, N, "component size clause");
5260 end if;
5261
5262 Set_Component_Size (Btype, Csize);
5263
5264 -- Deal with warning on overridden size
5265
5266 if Warn_On_Overridden_Size
5267 and then Has_Size_Clause (Ctyp)
5268 and then RM_Size (Ctyp) /= Csize
5269 then
5270 Error_Msg_NE
5271 ("component size overrides size clause for&?S?", N, Ctyp);
5272 end if;
5273
5274 Set_Has_Component_Size_Clause (Btype, True);
5275 Set_Has_Non_Standard_Rep (Btype, True);
5276 end if;
5277 end Component_Size_Case;
5278
5279 -----------------------
5280 -- Constant_Indexing --
5281 -----------------------
5282
5283 when Attribute_Constant_Indexing =>
5284 Check_Indexing_Functions;
5285
5286 ---------
5287 -- CPU --
5288 ---------
5289
5290 when Attribute_CPU =>
5291
5292 -- CPU attribute definition clause not allowed except from aspect
5293 -- specification.
5294
5295 if From_Aspect_Specification (N) then
5296 if not Is_Task_Type (U_Ent) then
5297 Error_Msg_N ("CPU can only be defined for task", Nam);
5298
5299 elsif Duplicate_Clause then
5300 null;
5301
5302 else
5303 -- The expression must be analyzed in the special manner
5304 -- described in "Handling of Default and Per-Object
5305 -- Expressions" in sem.ads.
5306
5307 -- The visibility to the discriminants must be restored
5308
5309 Push_Scope_And_Install_Discriminants (U_Ent);
5310 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5311 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5312
5313 if not Is_OK_Static_Expression (Expr) then
5314 Check_Restriction (Static_Priorities, Expr);
5315 end if;
5316 end if;
5317
5318 else
5319 Error_Msg_N
5320 ("attribute& cannot be set with definition clause", N);
5321 end if;
5322
5323 ----------------------
5324 -- Default_Iterator --
5325 ----------------------
5326
5327 when Attribute_Default_Iterator => Default_Iterator : declare
5328 Func : Entity_Id;
5329 Typ : Entity_Id;
5330
5331 begin
5332 -- If target type is untagged, further checks are irrelevant
5333
5334 if not Is_Tagged_Type (U_Ent) then
5335 Error_Msg_N
5336 ("aspect Default_Iterator applies to tagged type", Nam);
5337 return;
5338 end if;
5339
5340 Check_Iterator_Functions;
5341
5342 Analyze (Expr);
5343
5344 if not Is_Entity_Name (Expr)
5345 or else Ekind (Entity (Expr)) /= E_Function
5346 then
5347 Error_Msg_N ("aspect Iterator must be a function", Expr);
5348 return;
5349 else
5350 Func := Entity (Expr);
5351 end if;
5352
5353 -- The type of the first parameter must be T, T'class, or a
5354 -- corresponding access type (5.5.1 (8/3). If function is
5355 -- parameterless label type accordingly.
5356
5357 if No (First_Formal (Func)) then
5358 Typ := Any_Type;
5359 else
5360 Typ := Etype (First_Formal (Func));
5361 end if;
5362
5363 if Typ = U_Ent
5364 or else Typ = Class_Wide_Type (U_Ent)
5365 or else (Is_Access_Type (Typ)
5366 and then Designated_Type (Typ) = U_Ent)
5367 or else (Is_Access_Type (Typ)
5368 and then Designated_Type (Typ) =
5369 Class_Wide_Type (U_Ent))
5370 then
5371 null;
5372
5373 else
5374 Error_Msg_NE
5375 ("Default Iterator must be a primitive of&", Func, U_Ent);
5376 end if;
5377 end Default_Iterator;
5378
5379 ------------------------
5380 -- Dispatching_Domain --
5381 ------------------------
5382
5383 when Attribute_Dispatching_Domain =>
5384
5385 -- Dispatching_Domain attribute definition clause not allowed
5386 -- except from aspect specification.
5387
5388 if From_Aspect_Specification (N) then
5389 if not Is_Task_Type (U_Ent) then
5390 Error_Msg_N
5391 ("Dispatching_Domain can only be defined for task", Nam);
5392
5393 elsif Duplicate_Clause then
5394 null;
5395
5396 else
5397 -- The expression must be analyzed in the special manner
5398 -- described in "Handling of Default and Per-Object
5399 -- Expressions" in sem.ads.
5400
5401 -- The visibility to the discriminants must be restored
5402
5403 Push_Scope_And_Install_Discriminants (U_Ent);
5404
5405 Preanalyze_Spec_Expression
5406 (Expr, RTE (RE_Dispatching_Domain));
5407
5408 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5409 end if;
5410
5411 else
5412 Error_Msg_N
5413 ("attribute& cannot be set with definition clause", N);
5414 end if;
5415
5416 ------------------
5417 -- External_Tag --
5418 ------------------
5419
5420 when Attribute_External_Tag =>
5421 if not Is_Tagged_Type (U_Ent) then
5422 Error_Msg_N ("should be a tagged type", Nam);
5423 end if;
5424
5425 if Duplicate_Clause then
5426 null;
5427
5428 else
5429 Analyze_And_Resolve (Expr, Standard_String);
5430
5431 if not Is_OK_Static_Expression (Expr) then
5432 Flag_Non_Static_Expr
5433 ("static string required for tag name!", Nam);
5434 end if;
5435
5436 if not Is_Library_Level_Entity (U_Ent) then
5437 Error_Msg_NE
5438 ("??non-unique external tag supplied for &", N, U_Ent);
5439 Error_Msg_N
5440 ("\??same external tag applies to all subprogram calls",
5441 N);
5442 Error_Msg_N
5443 ("\??corresponding internal tag cannot be obtained", N);
5444 end if;
5445 end if;
5446
5447 --------------------------
5448 -- Implicit_Dereference --
5449 --------------------------
5450
5451 when Attribute_Implicit_Dereference =>
5452
5453 -- Legality checks already performed at the point of the type
5454 -- declaration, aspect is not delayed.
5455
5456 null;
5457
5458 -----------
5459 -- Input --
5460 -----------
5461
5462 when Attribute_Input =>
5463 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5464 Set_Has_Specified_Stream_Input (Ent);
5465
5466 ------------------------
5467 -- Interrupt_Priority --
5468 ------------------------
5469
5470 when Attribute_Interrupt_Priority =>
5471
5472 -- Interrupt_Priority attribute definition clause not allowed
5473 -- except from aspect specification.
5474
5475 if From_Aspect_Specification (N) then
5476 if not Is_Concurrent_Type (U_Ent) then
5477 Error_Msg_N
5478 ("Interrupt_Priority can only be defined for task and "
5479 & "protected object", Nam);
5480
5481 elsif Duplicate_Clause then
5482 null;
5483
5484 else
5485 -- The expression must be analyzed in the special manner
5486 -- described in "Handling of Default and Per-Object
5487 -- Expressions" in sem.ads.
5488
5489 -- The visibility to the discriminants must be restored
5490
5491 Push_Scope_And_Install_Discriminants (U_Ent);
5492
5493 Preanalyze_Spec_Expression
5494 (Expr, RTE (RE_Interrupt_Priority));
5495
5496 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5497
5498 -- Check the No_Task_At_Interrupt_Priority restriction
5499
5500 if Is_Task_Type (U_Ent) then
5501 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5502 end if;
5503 end if;
5504
5505 else
5506 Error_Msg_N
5507 ("attribute& cannot be set with definition clause", N);
5508 end if;
5509
5510 --------------
5511 -- Iterable --
5512 --------------
5513
5514 when Attribute_Iterable =>
5515 Analyze (Expr);
5516
5517 if Nkind (Expr) /= N_Aggregate then
5518 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5519 end if;
5520
5521 declare
5522 Assoc : Node_Id;
5523
5524 begin
5525 Assoc := First (Component_Associations (Expr));
5526 while Present (Assoc) loop
5527 if not Is_Entity_Name (Expression (Assoc)) then
5528 Error_Msg_N ("value must be a function", Assoc);
5529 end if;
5530
5531 Next (Assoc);
5532 end loop;
5533 end;
5534
5535 ----------------------
5536 -- Iterator_Element --
5537 ----------------------
5538
5539 when Attribute_Iterator_Element =>
5540 Analyze (Expr);
5541
5542 if not Is_Entity_Name (Expr)
5543 or else not Is_Type (Entity (Expr))
5544 then
5545 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5546 end if;
5547
5548 -------------------
5549 -- Machine_Radix --
5550 -------------------
5551
5552 -- Machine radix attribute definition clause
5553
5554 when Attribute_Machine_Radix => Machine_Radix : declare
5555 Radix : constant Uint := Static_Integer (Expr);
5556
5557 begin
5558 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5559 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5560
5561 elsif Duplicate_Clause then
5562 null;
5563
5564 elsif Radix /= No_Uint then
5565 Set_Has_Machine_Radix_Clause (U_Ent);
5566 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5567
5568 if Radix = 2 then
5569 null;
5570
5571 elsif Radix = 10 then
5572 Set_Machine_Radix_10 (U_Ent);
5573
5574 -- The following error is suppressed in ASIS mode to allow for
5575 -- different ASIS back ends or ASIS-based tools to query the
5576 -- illegal clause.
5577
5578 elsif not ASIS_Mode then
5579 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5580 end if;
5581 end if;
5582 end Machine_Radix;
5583
5584 -----------------
5585 -- Object_Size --
5586 -----------------
5587
5588 -- Object_Size attribute definition clause
5589
5590 when Attribute_Object_Size => Object_Size : declare
5591 Size : constant Uint := Static_Integer (Expr);
5592
5593 Biased : Boolean;
5594 pragma Warnings (Off, Biased);
5595
5596 begin
5597 if not Is_Type (U_Ent) then
5598 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5599
5600 elsif Duplicate_Clause then
5601 null;
5602
5603 else
5604 Check_Size (Expr, U_Ent, Size, Biased);
5605
5606 -- The following errors are suppressed in ASIS mode to allow
5607 -- for different ASIS back ends or ASIS-based tools to query
5608 -- the illegal clause.
5609
5610 if ASIS_Mode then
5611 null;
5612
5613 elsif Is_Scalar_Type (U_Ent) then
5614 if Size /= 8 and then Size /= 16 and then Size /= 32
5615 and then UI_Mod (Size, 64) /= 0
5616 then
5617 Error_Msg_N
5618 ("Object_Size must be 8, 16, 32, or multiple of 64",
5619 Expr);
5620 end if;
5621
5622 elsif Size mod 8 /= 0 then
5623 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5624 end if;
5625
5626 Set_Esize (U_Ent, Size);
5627 Set_Has_Object_Size_Clause (U_Ent);
5628 Alignment_Check_For_Size_Change (U_Ent, Size);
5629 end if;
5630 end Object_Size;
5631
5632 ------------
5633 -- Output --
5634 ------------
5635
5636 when Attribute_Output =>
5637 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5638 Set_Has_Specified_Stream_Output (Ent);
5639
5640 --------------
5641 -- Priority --
5642 --------------
5643
5644 when Attribute_Priority =>
5645
5646 -- Priority attribute definition clause not allowed except from
5647 -- aspect specification.
5648
5649 if From_Aspect_Specification (N) then
5650 if not (Is_Concurrent_Type (U_Ent)
5651 or else Ekind (U_Ent) = E_Procedure)
5652 then
5653 Error_Msg_N
5654 ("Priority can only be defined for task and protected "
5655 & "object", Nam);
5656
5657 elsif Duplicate_Clause then
5658 null;
5659
5660 else
5661 -- The expression must be analyzed in the special manner
5662 -- described in "Handling of Default and Per-Object
5663 -- Expressions" in sem.ads.
5664
5665 -- The visibility to the discriminants must be restored
5666
5667 Push_Scope_And_Install_Discriminants (U_Ent);
5668 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5669 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5670
5671 if not Is_OK_Static_Expression (Expr) then
5672 Check_Restriction (Static_Priorities, Expr);
5673 end if;
5674 end if;
5675
5676 else
5677 Error_Msg_N
5678 ("attribute& cannot be set with definition clause", N);
5679 end if;
5680
5681 ----------
5682 -- Read --
5683 ----------
5684
5685 when Attribute_Read =>
5686 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5687 Set_Has_Specified_Stream_Read (Ent);
5688
5689 --------------------------
5690 -- Scalar_Storage_Order --
5691 --------------------------
5692
5693 -- Scalar_Storage_Order attribute definition clause
5694
5695 when Attribute_Scalar_Storage_Order =>
5696 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5697 Error_Msg_N
5698 ("Scalar_Storage_Order can only be defined for record or "
5699 & "array type", Nam);
5700
5701 elsif Duplicate_Clause then
5702 null;
5703
5704 else
5705 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5706
5707 if Etype (Expr) = Any_Type then
5708 return;
5709
5710 elsif not Is_OK_Static_Expression (Expr) then
5711 Flag_Non_Static_Expr
5712 ("Scalar_Storage_Order requires static expression!", Expr);
5713
5714 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5715
5716 -- Here for the case of a non-default (i.e. non-confirming)
5717 -- Scalar_Storage_Order attribute definition.
5718
5719 if Support_Nondefault_SSO_On_Target then
5720 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5721 else
5722 Error_Msg_N
5723 ("non-default Scalar_Storage_Order not supported on "
5724 & "target", Expr);
5725 end if;
5726 end if;
5727
5728 -- Clear SSO default indications since explicit setting of the
5729 -- order overrides the defaults.
5730
5731 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5732 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5733 end if;
5734
5735 --------------------------
5736 -- Secondary_Stack_Size --
5737 --------------------------
5738
5739 when Attribute_Secondary_Stack_Size =>
5740
5741 -- Secondary_Stack_Size attribute definition clause not allowed
5742 -- except from aspect specification.
5743
5744 if From_Aspect_Specification (N) then
5745 if not Is_Task_Type (U_Ent) then
5746 Error_Msg_N
5747 ("Secondary Stack Size can only be defined for task", Nam);
5748
5749 elsif Duplicate_Clause then
5750 null;
5751
5752 else
5753 Check_Restriction (No_Secondary_Stack, Expr);
5754
5755 -- The expression must be analyzed in the special manner
5756 -- described in "Handling of Default and Per-Object
5757 -- Expressions" in sem.ads.
5758
5759 -- The visibility to the discriminants must be restored
5760
5761 Push_Scope_And_Install_Discriminants (U_Ent);
5762 Preanalyze_Spec_Expression (Expr, Any_Integer);
5763 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5764
5765 if not Is_OK_Static_Expression (Expr) then
5766 Check_Restriction (Static_Storage_Size, Expr);
5767 end if;
5768 end if;
5769
5770 else
5771 Error_Msg_N
5772 ("attribute& cannot be set with definition clause", N);
5773 end if;
5774
5775 ----------
5776 -- Size --
5777 ----------
5778
5779 -- Size attribute definition clause
5780
5781 when Attribute_Size => Size : declare
5782 Size : constant Uint := Static_Integer (Expr);
5783 Etyp : Entity_Id;
5784 Biased : Boolean;
5785
5786 begin
5787 FOnly := True;
5788
5789 if Duplicate_Clause then
5790 null;
5791
5792 elsif not Is_Type (U_Ent)
5793 and then Ekind (U_Ent) /= E_Variable
5794 and then Ekind (U_Ent) /= E_Constant
5795 then
5796 Error_Msg_N ("size cannot be given for &", Nam);
5797
5798 elsif Is_Array_Type (U_Ent)
5799 and then not Is_Constrained (U_Ent)
5800 then
5801 Error_Msg_N
5802 ("size cannot be given for unconstrained array", Nam);
5803
5804 elsif Size /= No_Uint then
5805 if Is_Type (U_Ent) then
5806 Etyp := U_Ent;
5807 else
5808 Etyp := Etype (U_Ent);
5809 end if;
5810
5811 -- Check size, note that Gigi is in charge of checking that the
5812 -- size of an array or record type is OK. Also we do not check
5813 -- the size in the ordinary fixed-point case, since it is too
5814 -- early to do so (there may be subsequent small clause that
5815 -- affects the size). We can check the size if a small clause
5816 -- has already been given.
5817
5818 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5819 or else Has_Small_Clause (U_Ent)
5820 then
5821 Check_Size (Expr, Etyp, Size, Biased);
5822 Set_Biased (U_Ent, N, "size clause", Biased);
5823 end if;
5824
5825 -- For types set RM_Size and Esize if possible
5826
5827 if Is_Type (U_Ent) then
5828 Set_RM_Size (U_Ent, Size);
5829
5830 -- For elementary types, increase Object_Size to power of 2,
5831 -- but not less than a storage unit in any case (normally
5832 -- this means it will be byte addressable).
5833
5834 -- For all other types, nothing else to do, we leave Esize
5835 -- (object size) unset, the back end will set it from the
5836 -- size and alignment in an appropriate manner.
5837
5838 -- In both cases, we check whether the alignment must be
5839 -- reset in the wake of the size change.
5840
5841 if Is_Elementary_Type (U_Ent) then
5842 if Size <= System_Storage_Unit then
5843 Init_Esize (U_Ent, System_Storage_Unit);
5844 elsif Size <= 16 then
5845 Init_Esize (U_Ent, 16);
5846 elsif Size <= 32 then
5847 Init_Esize (U_Ent, 32);
5848 else
5849 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5850 end if;
5851
5852 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5853 else
5854 Alignment_Check_For_Size_Change (U_Ent, Size);
5855 end if;
5856
5857 -- For objects, set Esize only
5858
5859 else
5860 -- The following error is suppressed in ASIS mode to allow
5861 -- for different ASIS back ends or ASIS-based tools to query
5862 -- the illegal clause.
5863
5864 if Is_Elementary_Type (Etyp)
5865 and then Size /= System_Storage_Unit
5866 and then Size /= System_Storage_Unit * 2
5867 and then Size /= System_Storage_Unit * 4
5868 and then Size /= System_Storage_Unit * 8
5869 and then not ASIS_Mode
5870 then
5871 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5872 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5873 Error_Msg_N
5874 ("size for primitive object must be a power of 2 in "
5875 & "the range ^-^", N);
5876 end if;
5877
5878 Set_Esize (U_Ent, Size);
5879 end if;
5880
5881 Set_Has_Size_Clause (U_Ent);
5882 end if;
5883 end Size;
5884
5885 -----------
5886 -- Small --
5887 -----------
5888
5889 -- Small attribute definition clause
5890
5891 when Attribute_Small => Small : declare
5892 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5893 Small : Ureal;
5894
5895 begin
5896 Analyze_And_Resolve (Expr, Any_Real);
5897
5898 if Etype (Expr) = Any_Type then
5899 return;
5900
5901 elsif not Is_OK_Static_Expression (Expr) then
5902 Flag_Non_Static_Expr
5903 ("small requires static expression!", Expr);
5904 return;
5905
5906 else
5907 Small := Expr_Value_R (Expr);
5908
5909 if Small <= Ureal_0 then
5910 Error_Msg_N ("small value must be greater than zero", Expr);
5911 return;
5912 end if;
5913
5914 end if;
5915
5916 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5917 Error_Msg_N
5918 ("small requires an ordinary fixed point type", Nam);
5919
5920 elsif Has_Small_Clause (U_Ent) then
5921 Error_Msg_N ("small already given for &", Nam);
5922
5923 elsif Small > Delta_Value (U_Ent) then
5924 Error_Msg_N
5925 ("small value must not be greater than delta value", Nam);
5926
5927 else
5928 Set_Small_Value (U_Ent, Small);
5929 Set_Small_Value (Implicit_Base, Small);
5930 Set_Has_Small_Clause (U_Ent);
5931 Set_Has_Small_Clause (Implicit_Base);
5932 Set_Has_Non_Standard_Rep (Implicit_Base);
5933 end if;
5934 end Small;
5935
5936 ------------------
5937 -- Storage_Pool --
5938 ------------------
5939
5940 -- Storage_Pool attribute definition clause
5941
5942 when Attribute_Simple_Storage_Pool
5943 | Attribute_Storage_Pool
5944 =>
5945 Storage_Pool : declare
5946 Pool : Entity_Id;
5947 T : Entity_Id;
5948
5949 begin
5950 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5951 Error_Msg_N
5952 ("storage pool cannot be given for access-to-subprogram type",
5953 Nam);
5954 return;
5955
5956 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5957 then
5958 Error_Msg_N
5959 ("storage pool can only be given for access types", Nam);
5960 return;
5961
5962 elsif Is_Derived_Type (U_Ent) then
5963 Error_Msg_N
5964 ("storage pool cannot be given for a derived access type",
5965 Nam);
5966
5967 elsif Duplicate_Clause then
5968 return;
5969
5970 elsif Present (Associated_Storage_Pool (U_Ent)) then
5971 Error_Msg_N ("storage pool already given for &", Nam);
5972 return;
5973 end if;
5974
5975 -- Check for Storage_Size previously given
5976
5977 declare
5978 SS : constant Node_Id :=
5979 Get_Attribute_Definition_Clause
5980 (U_Ent, Attribute_Storage_Size);
5981 begin
5982 if Present (SS) then
5983 Check_Pool_Size_Clash (U_Ent, N, SS);
5984 end if;
5985 end;
5986
5987 -- Storage_Pool case
5988
5989 if Id = Attribute_Storage_Pool then
5990 Analyze_And_Resolve
5991 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5992
5993 -- In the Simple_Storage_Pool case, we allow a variable of any
5994 -- simple storage pool type, so we Resolve without imposing an
5995 -- expected type.
5996
5997 else
5998 Analyze_And_Resolve (Expr);
5999
6000 if not Present (Get_Rep_Pragma
6001 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6002 then
6003 Error_Msg_N
6004 ("expression must be of a simple storage pool type", Expr);
6005 end if;
6006 end if;
6007
6008 if not Denotes_Variable (Expr) then
6009 Error_Msg_N ("storage pool must be a variable", Expr);
6010 return;
6011 end if;
6012
6013 if Nkind (Expr) = N_Type_Conversion then
6014 T := Etype (Expression (Expr));
6015 else
6016 T := Etype (Expr);
6017 end if;
6018
6019 -- The Stack_Bounded_Pool is used internally for implementing
6020 -- access types with a Storage_Size. Since it only work properly
6021 -- when used on one specific type, we need to check that it is not
6022 -- hijacked improperly:
6023
6024 -- type T is access Integer;
6025 -- for T'Storage_Size use n;
6026 -- type Q is access Float;
6027 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6028
6029 if RTE_Available (RE_Stack_Bounded_Pool)
6030 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6031 then
6032 Error_Msg_N ("non-shareable internal Pool", Expr);
6033 return;
6034 end if;
6035
6036 -- If the argument is a name that is not an entity name, then
6037 -- we construct a renaming operation to define an entity of
6038 -- type storage pool.
6039
6040 if not Is_Entity_Name (Expr)
6041 and then Is_Object_Reference (Expr)
6042 then
6043 Pool := Make_Temporary (Loc, 'P', Expr);
6044
6045 declare
6046 Rnode : constant Node_Id :=
6047 Make_Object_Renaming_Declaration (Loc,
6048 Defining_Identifier => Pool,
6049 Subtype_Mark =>
6050 New_Occurrence_Of (Etype (Expr), Loc),
6051 Name => Expr);
6052
6053 begin
6054 -- If the attribute definition clause comes from an aspect
6055 -- clause, then insert the renaming before the associated
6056 -- entity's declaration, since the attribute clause has
6057 -- not yet been appended to the declaration list.
6058
6059 if From_Aspect_Specification (N) then
6060 Insert_Before (Parent (Entity (N)), Rnode);
6061 else
6062 Insert_Before (N, Rnode);
6063 end if;
6064
6065 Analyze (Rnode);
6066 Set_Associated_Storage_Pool (U_Ent, Pool);
6067 end;
6068
6069 elsif Is_Entity_Name (Expr) then
6070 Pool := Entity (Expr);
6071
6072 -- If pool is a renamed object, get original one. This can
6073 -- happen with an explicit renaming, and within instances.
6074
6075 while Present (Renamed_Object (Pool))
6076 and then Is_Entity_Name (Renamed_Object (Pool))
6077 loop
6078 Pool := Entity (Renamed_Object (Pool));
6079 end loop;
6080
6081 if Present (Renamed_Object (Pool))
6082 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6083 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6084 then
6085 Pool := Entity (Expression (Renamed_Object (Pool)));
6086 end if;
6087
6088 Set_Associated_Storage_Pool (U_Ent, Pool);
6089
6090 elsif Nkind (Expr) = N_Type_Conversion
6091 and then Is_Entity_Name (Expression (Expr))
6092 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6093 then
6094 Pool := Entity (Expression (Expr));
6095 Set_Associated_Storage_Pool (U_Ent, Pool);
6096
6097 else
6098 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6099 return;
6100 end if;
6101 end Storage_Pool;
6102
6103 ------------------
6104 -- Storage_Size --
6105 ------------------
6106
6107 -- Storage_Size attribute definition clause
6108
6109 when Attribute_Storage_Size => Storage_Size : declare
6110 Btype : constant Entity_Id := Base_Type (U_Ent);
6111
6112 begin
6113 if Is_Task_Type (U_Ent) then
6114
6115 -- Check obsolescent (but never obsolescent if from aspect)
6116
6117 if not From_Aspect_Specification (N) then
6118 Check_Restriction (No_Obsolescent_Features, N);
6119
6120 if Warn_On_Obsolescent_Feature then
6121 Error_Msg_N
6122 ("?j?storage size clause for task is an obsolescent "
6123 & "feature (RM J.9)", N);
6124 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6125 end if;
6126 end if;
6127
6128 FOnly := True;
6129 end if;
6130
6131 if not Is_Access_Type (U_Ent)
6132 and then Ekind (U_Ent) /= E_Task_Type
6133 then
6134 Error_Msg_N ("storage size cannot be given for &", Nam);
6135
6136 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6137 Error_Msg_N
6138 ("storage size cannot be given for a derived access type",
6139 Nam);
6140
6141 elsif Duplicate_Clause then
6142 null;
6143
6144 else
6145 Analyze_And_Resolve (Expr, Any_Integer);
6146
6147 if Is_Access_Type (U_Ent) then
6148
6149 -- Check for Storage_Pool previously given
6150
6151 declare
6152 SP : constant Node_Id :=
6153 Get_Attribute_Definition_Clause
6154 (U_Ent, Attribute_Storage_Pool);
6155
6156 begin
6157 if Present (SP) then
6158 Check_Pool_Size_Clash (U_Ent, SP, N);
6159 end if;
6160 end;
6161
6162 -- Special case of for x'Storage_Size use 0
6163
6164 if Is_OK_Static_Expression (Expr)
6165 and then Expr_Value (Expr) = 0
6166 then
6167 Set_No_Pool_Assigned (Btype);
6168 end if;
6169 end if;
6170
6171 Set_Has_Storage_Size_Clause (Btype);
6172 end if;
6173 end Storage_Size;
6174
6175 -----------------
6176 -- Stream_Size --
6177 -----------------
6178
6179 when Attribute_Stream_Size => Stream_Size : declare
6180 Size : constant Uint := Static_Integer (Expr);
6181
6182 begin
6183 if Ada_Version <= Ada_95 then
6184 Check_Restriction (No_Implementation_Attributes, N);
6185 end if;
6186
6187 if Duplicate_Clause then
6188 null;
6189
6190 elsif Is_Elementary_Type (U_Ent) then
6191
6192 -- The following errors are suppressed in ASIS mode to allow
6193 -- for different ASIS back ends or ASIS-based tools to query
6194 -- the illegal clause.
6195
6196 if ASIS_Mode then
6197 null;
6198
6199 elsif Size /= System_Storage_Unit
6200 and then Size /= System_Storage_Unit * 2
6201 and then Size /= System_Storage_Unit * 4
6202 and then Size /= System_Storage_Unit * 8
6203 then
6204 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6205 Error_Msg_N
6206 ("stream size for elementary type must be a power of 2 "
6207 & "and at least ^", N);
6208
6209 elsif RM_Size (U_Ent) > Size then
6210 Error_Msg_Uint_1 := RM_Size (U_Ent);
6211 Error_Msg_N
6212 ("stream size for elementary type must be a power of 2 "
6213 & "and at least ^", N);
6214 end if;
6215
6216 Set_Has_Stream_Size_Clause (U_Ent);
6217
6218 else
6219 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6220 end if;
6221 end Stream_Size;
6222
6223 ----------------
6224 -- Value_Size --
6225 ----------------
6226
6227 -- Value_Size attribute definition clause
6228
6229 when Attribute_Value_Size => Value_Size : declare
6230 Size : constant Uint := Static_Integer (Expr);
6231 Biased : Boolean;
6232
6233 begin
6234 if not Is_Type (U_Ent) then
6235 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6236
6237 elsif Duplicate_Clause then
6238 null;
6239
6240 elsif Is_Array_Type (U_Ent)
6241 and then not Is_Constrained (U_Ent)
6242 then
6243 Error_Msg_N
6244 ("Value_Size cannot be given for unconstrained array", Nam);
6245
6246 else
6247 if Is_Elementary_Type (U_Ent) then
6248 Check_Size (Expr, U_Ent, Size, Biased);
6249 Set_Biased (U_Ent, N, "value size clause", Biased);
6250 end if;
6251
6252 Set_RM_Size (U_Ent, Size);
6253 end if;
6254 end Value_Size;
6255
6256 -----------------------
6257 -- Variable_Indexing --
6258 -----------------------
6259
6260 when Attribute_Variable_Indexing =>
6261 Check_Indexing_Functions;
6262
6263 -----------
6264 -- Write --
6265 -----------
6266
6267 when Attribute_Write =>
6268 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6269 Set_Has_Specified_Stream_Write (Ent);
6270
6271 -- All other attributes cannot be set
6272
6273 when others =>
6274 Error_Msg_N
6275 ("attribute& cannot be set with definition clause", N);
6276 end case;
6277
6278 -- The test for the type being frozen must be performed after any
6279 -- expression the clause has been analyzed since the expression itself
6280 -- might cause freezing that makes the clause illegal.
6281
6282 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6283 return;
6284 end if;
6285 end Analyze_Attribute_Definition_Clause;
6286
6287 ----------------------------
6288 -- Analyze_Code_Statement --
6289 ----------------------------
6290
6291 procedure Analyze_Code_Statement (N : Node_Id) is
6292 HSS : constant Node_Id := Parent (N);
6293 SBody : constant Node_Id := Parent (HSS);
6294 Subp : constant Entity_Id := Current_Scope;
6295 Stmt : Node_Id;
6296 Decl : Node_Id;
6297 StmtO : Node_Id;
6298 DeclO : Node_Id;
6299
6300 begin
6301 -- Accept foreign code statements for CodePeer. The analysis is skipped
6302 -- to avoid rejecting unrecognized constructs.
6303
6304 if CodePeer_Mode then
6305 Set_Analyzed (N);
6306 return;
6307 end if;
6308
6309 -- Analyze and check we get right type, note that this implements the
6310 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6311 -- the only way that Asm_Insn could possibly be visible.
6312
6313 Analyze_And_Resolve (Expression (N));
6314
6315 if Etype (Expression (N)) = Any_Type then
6316 return;
6317 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6318 Error_Msg_N ("incorrect type for code statement", N);
6319 return;
6320 end if;
6321
6322 Check_Code_Statement (N);
6323
6324 -- Make sure we appear in the handled statement sequence of a subprogram
6325 -- (RM 13.8(3)).
6326
6327 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6328 or else Nkind (SBody) /= N_Subprogram_Body
6329 then
6330 Error_Msg_N
6331 ("code statement can only appear in body of subprogram", N);
6332 return;
6333 end if;
6334
6335 -- Do remaining checks (RM 13.8(3)) if not already done
6336
6337 if not Is_Machine_Code_Subprogram (Subp) then
6338 Set_Is_Machine_Code_Subprogram (Subp);
6339
6340 -- No exception handlers allowed
6341
6342 if Present (Exception_Handlers (HSS)) then
6343 Error_Msg_N
6344 ("exception handlers not permitted in machine code subprogram",
6345 First (Exception_Handlers (HSS)));
6346 end if;
6347
6348 -- No declarations other than use clauses and pragmas (we allow
6349 -- certain internally generated declarations as well).
6350
6351 Decl := First (Declarations (SBody));
6352 while Present (Decl) loop
6353 DeclO := Original_Node (Decl);
6354 if Comes_From_Source (DeclO)
6355 and not Nkind_In (DeclO, N_Pragma,
6356 N_Use_Package_Clause,
6357 N_Use_Type_Clause,
6358 N_Implicit_Label_Declaration)
6359 then
6360 Error_Msg_N
6361 ("this declaration not allowed in machine code subprogram",
6362 DeclO);
6363 end if;
6364
6365 Next (Decl);
6366 end loop;
6367
6368 -- No statements other than code statements, pragmas, and labels.
6369 -- Again we allow certain internally generated statements.
6370
6371 -- In Ada 2012, qualified expressions are names, and the code
6372 -- statement is initially parsed as a procedure call.
6373
6374 Stmt := First (Statements (HSS));
6375 while Present (Stmt) loop
6376 StmtO := Original_Node (Stmt);
6377
6378 -- A procedure call transformed into a code statement is OK
6379
6380 if Ada_Version >= Ada_2012
6381 and then Nkind (StmtO) = N_Procedure_Call_Statement
6382 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6383 then
6384 null;
6385
6386 elsif Comes_From_Source (StmtO)
6387 and then not Nkind_In (StmtO, N_Pragma,
6388 N_Label,
6389 N_Code_Statement)
6390 then
6391 Error_Msg_N
6392 ("this statement is not allowed in machine code subprogram",
6393 StmtO);
6394 end if;
6395
6396 Next (Stmt);
6397 end loop;
6398 end if;
6399 end Analyze_Code_Statement;
6400
6401 -----------------------------------------------
6402 -- Analyze_Enumeration_Representation_Clause --
6403 -----------------------------------------------
6404
6405 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6406 Ident : constant Node_Id := Identifier (N);
6407 Aggr : constant Node_Id := Array_Aggregate (N);
6408 Enumtype : Entity_Id;
6409 Elit : Entity_Id;
6410 Expr : Node_Id;
6411 Assoc : Node_Id;
6412 Choice : Node_Id;
6413 Val : Uint;
6414
6415 Err : Boolean := False;
6416 -- Set True to avoid cascade errors and crashes on incorrect source code
6417
6418 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6419 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6420 -- Allowed range of universal integer (= allowed range of enum lit vals)
6421
6422 Min : Uint;
6423 Max : Uint;
6424 -- Minimum and maximum values of entries
6425
6426 Max_Node : Node_Id;
6427 -- Pointer to node for literal providing max value
6428
6429 begin
6430 if Ignore_Rep_Clauses then
6431 Kill_Rep_Clause (N);
6432 return;
6433 end if;
6434
6435 -- Ignore enumeration rep clauses by default in CodePeer mode,
6436 -- unless -gnatd.I is specified, as a work around for potential false
6437 -- positive messages.
6438
6439 if CodePeer_Mode and not Debug_Flag_Dot_II then
6440 return;
6441 end if;
6442
6443 -- First some basic error checks
6444
6445 Find_Type (Ident);
6446 Enumtype := Entity (Ident);
6447
6448 if Enumtype = Any_Type
6449 or else Rep_Item_Too_Early (Enumtype, N)
6450 then
6451 return;
6452 else
6453 Enumtype := Underlying_Type (Enumtype);
6454 end if;
6455
6456 if not Is_Enumeration_Type (Enumtype) then
6457 Error_Msg_NE
6458 ("enumeration type required, found}",
6459 Ident, First_Subtype (Enumtype));
6460 return;
6461 end if;
6462
6463 -- Ignore rep clause on generic actual type. This will already have
6464 -- been flagged on the template as an error, and this is the safest
6465 -- way to ensure we don't get a junk cascaded message in the instance.
6466
6467 if Is_Generic_Actual_Type (Enumtype) then
6468 return;
6469
6470 -- Type must be in current scope
6471
6472 elsif Scope (Enumtype) /= Current_Scope then
6473 Error_Msg_N ("type must be declared in this scope", Ident);
6474 return;
6475
6476 -- Type must be a first subtype
6477
6478 elsif not Is_First_Subtype (Enumtype) then
6479 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6480 return;
6481
6482 -- Ignore duplicate rep clause
6483
6484 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6485 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6486 return;
6487
6488 -- Don't allow rep clause for standard [wide_[wide_]]character
6489
6490 elsif Is_Standard_Character_Type (Enumtype) then
6491 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6492 return;
6493
6494 -- Check that the expression is a proper aggregate (no parentheses)
6495
6496 elsif Paren_Count (Aggr) /= 0 then
6497 Error_Msg
6498 ("extra parentheses surrounding aggregate not allowed",
6499 First_Sloc (Aggr));
6500 return;
6501
6502 -- All tests passed, so set rep clause in place
6503
6504 else
6505 Set_Has_Enumeration_Rep_Clause (Enumtype);
6506 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6507 end if;
6508
6509 -- Now we process the aggregate. Note that we don't use the normal
6510 -- aggregate code for this purpose, because we don't want any of the
6511 -- normal expansion activities, and a number of special semantic
6512 -- rules apply (including the component type being any integer type)
6513
6514 Elit := First_Literal (Enumtype);
6515
6516 -- First the positional entries if any
6517
6518 if Present (Expressions (Aggr)) then
6519 Expr := First (Expressions (Aggr));
6520 while Present (Expr) loop
6521 if No (Elit) then
6522 Error_Msg_N ("too many entries in aggregate", Expr);
6523 return;
6524 end if;
6525
6526 Val := Static_Integer (Expr);
6527
6528 -- Err signals that we found some incorrect entries processing
6529 -- the list. The final checks for completeness and ordering are
6530 -- skipped in this case.
6531
6532 if Val = No_Uint then
6533 Err := True;
6534
6535 elsif Val < Lo or else Hi < Val then
6536 Error_Msg_N ("value outside permitted range", Expr);
6537 Err := True;
6538 end if;
6539
6540 Set_Enumeration_Rep (Elit, Val);
6541 Set_Enumeration_Rep_Expr (Elit, Expr);
6542 Next (Expr);
6543 Next (Elit);
6544 end loop;
6545 end if;
6546
6547 -- Now process the named entries if present
6548
6549 if Present (Component_Associations (Aggr)) then
6550 Assoc := First (Component_Associations (Aggr));
6551 while Present (Assoc) loop
6552 Choice := First (Choices (Assoc));
6553
6554 if Present (Next (Choice)) then
6555 Error_Msg_N
6556 ("multiple choice not allowed here", Next (Choice));
6557 Err := True;
6558 end if;
6559
6560 if Nkind (Choice) = N_Others_Choice then
6561 Error_Msg_N ("others choice not allowed here", Choice);
6562 Err := True;
6563
6564 elsif Nkind (Choice) = N_Range then
6565
6566 -- ??? should allow zero/one element range here
6567
6568 Error_Msg_N ("range not allowed here", Choice);
6569 Err := True;
6570
6571 else
6572 Analyze_And_Resolve (Choice, Enumtype);
6573
6574 if Error_Posted (Choice) then
6575 Err := True;
6576 end if;
6577
6578 if not Err then
6579 if Is_Entity_Name (Choice)
6580 and then Is_Type (Entity (Choice))
6581 then
6582 Error_Msg_N ("subtype name not allowed here", Choice);
6583 Err := True;
6584
6585 -- ??? should allow static subtype with zero/one entry
6586
6587 elsif Etype (Choice) = Base_Type (Enumtype) then
6588 if not Is_OK_Static_Expression (Choice) then
6589 Flag_Non_Static_Expr
6590 ("non-static expression used for choice!", Choice);
6591 Err := True;
6592
6593 else
6594 Elit := Expr_Value_E (Choice);
6595
6596 if Present (Enumeration_Rep_Expr (Elit)) then
6597 Error_Msg_Sloc :=
6598 Sloc (Enumeration_Rep_Expr (Elit));
6599 Error_Msg_NE
6600 ("representation for& previously given#",
6601 Choice, Elit);
6602 Err := True;
6603 end if;
6604
6605 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6606
6607 Expr := Expression (Assoc);
6608 Val := Static_Integer (Expr);
6609
6610 if Val = No_Uint then
6611 Err := True;
6612
6613 elsif Val < Lo or else Hi < Val then
6614 Error_Msg_N ("value outside permitted range", Expr);
6615 Err := True;
6616 end if;
6617
6618 Set_Enumeration_Rep (Elit, Val);
6619 end if;
6620 end if;
6621 end if;
6622 end if;
6623
6624 Next (Assoc);
6625 end loop;
6626 end if;
6627
6628 -- Aggregate is fully processed. Now we check that a full set of
6629 -- representations was given, and that they are in range and in order.
6630 -- These checks are only done if no other errors occurred.
6631
6632 if not Err then
6633 Min := No_Uint;
6634 Max := No_Uint;
6635
6636 Elit := First_Literal (Enumtype);
6637 while Present (Elit) loop
6638 if No (Enumeration_Rep_Expr (Elit)) then
6639 Error_Msg_NE ("missing representation for&!", N, Elit);
6640
6641 else
6642 Val := Enumeration_Rep (Elit);
6643
6644 if Min = No_Uint then
6645 Min := Val;
6646 end if;
6647
6648 if Val /= No_Uint then
6649 if Max /= No_Uint and then Val <= Max then
6650 Error_Msg_NE
6651 ("enumeration value for& not ordered!",
6652 Enumeration_Rep_Expr (Elit), Elit);
6653 end if;
6654
6655 Max_Node := Enumeration_Rep_Expr (Elit);
6656 Max := Val;
6657 end if;
6658
6659 -- If there is at least one literal whose representation is not
6660 -- equal to the Pos value, then note that this enumeration type
6661 -- has a non-standard representation.
6662
6663 if Val /= Enumeration_Pos (Elit) then
6664 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6665 end if;
6666 end if;
6667
6668 Next (Elit);
6669 end loop;
6670
6671 -- Now set proper size information
6672
6673 declare
6674 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6675
6676 begin
6677 if Has_Size_Clause (Enumtype) then
6678
6679 -- All OK, if size is OK now
6680
6681 if RM_Size (Enumtype) >= Minsize then
6682 null;
6683
6684 else
6685 -- Try if we can get by with biasing
6686
6687 Minsize :=
6688 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6689
6690 -- Error message if even biasing does not work
6691
6692 if RM_Size (Enumtype) < Minsize then
6693 Error_Msg_Uint_1 := RM_Size (Enumtype);
6694 Error_Msg_Uint_2 := Max;
6695 Error_Msg_N
6696 ("previously given size (^) is too small "
6697 & "for this value (^)", Max_Node);
6698
6699 -- If biasing worked, indicate that we now have biased rep
6700
6701 else
6702 Set_Biased
6703 (Enumtype, Size_Clause (Enumtype), "size clause");
6704 end if;
6705 end if;
6706
6707 else
6708 Set_RM_Size (Enumtype, Minsize);
6709 Set_Enum_Esize (Enumtype);
6710 end if;
6711
6712 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6713 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6714 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6715 end;
6716 end if;
6717
6718 -- We repeat the too late test in case it froze itself
6719
6720 if Rep_Item_Too_Late (Enumtype, N) then
6721 null;
6722 end if;
6723 end Analyze_Enumeration_Representation_Clause;
6724
6725 ----------------------------
6726 -- Analyze_Free_Statement --
6727 ----------------------------
6728
6729 procedure Analyze_Free_Statement (N : Node_Id) is
6730 begin
6731 Analyze (Expression (N));
6732 end Analyze_Free_Statement;
6733
6734 ---------------------------
6735 -- Analyze_Freeze_Entity --
6736 ---------------------------
6737
6738 procedure Analyze_Freeze_Entity (N : Node_Id) is
6739 begin
6740 Freeze_Entity_Checks (N);
6741 end Analyze_Freeze_Entity;
6742
6743 -----------------------------------
6744 -- Analyze_Freeze_Generic_Entity --
6745 -----------------------------------
6746
6747 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6748 E : constant Entity_Id := Entity (N);
6749
6750 begin
6751 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6752 Analyze_Aspects_At_Freeze_Point (E);
6753 end if;
6754
6755 Freeze_Entity_Checks (N);
6756 end Analyze_Freeze_Generic_Entity;
6757
6758 ------------------------------------------
6759 -- Analyze_Record_Representation_Clause --
6760 ------------------------------------------
6761
6762 -- Note: we check as much as we can here, but we can't do any checks
6763 -- based on the position values (e.g. overlap checks) until freeze time
6764 -- because especially in Ada 2005 (machine scalar mode), the processing
6765 -- for non-standard bit order can substantially change the positions.
6766 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6767 -- for the remainder of this processing.
6768
6769 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6770 Ident : constant Node_Id := Identifier (N);
6771 Biased : Boolean;
6772 CC : Node_Id;
6773 Comp : Entity_Id;
6774 Fbit : Uint;
6775 Hbit : Uint := Uint_0;
6776 Lbit : Uint;
6777 Ocomp : Entity_Id;
6778 Posit : Uint;
6779 Rectype : Entity_Id;
6780 Recdef : Node_Id;
6781
6782 function Is_Inherited (Comp : Entity_Id) return Boolean;
6783 -- True if Comp is an inherited component in a record extension
6784
6785 ------------------
6786 -- Is_Inherited --
6787 ------------------
6788
6789 function Is_Inherited (Comp : Entity_Id) return Boolean is
6790 Comp_Base : Entity_Id;
6791
6792 begin
6793 if Ekind (Rectype) = E_Record_Subtype then
6794 Comp_Base := Original_Record_Component (Comp);
6795 else
6796 Comp_Base := Comp;
6797 end if;
6798
6799 return Comp_Base /= Original_Record_Component (Comp_Base);
6800 end Is_Inherited;
6801
6802 -- Local variables
6803
6804 Is_Record_Extension : Boolean;
6805 -- True if Rectype is a record extension
6806
6807 CR_Pragma : Node_Id := Empty;
6808 -- Points to N_Pragma node if Complete_Representation pragma present
6809
6810 -- Start of processing for Analyze_Record_Representation_Clause
6811
6812 begin
6813 if Ignore_Rep_Clauses then
6814 Kill_Rep_Clause (N);
6815 return;
6816 end if;
6817
6818 Find_Type (Ident);
6819 Rectype := Entity (Ident);
6820
6821 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6822 return;
6823 else
6824 Rectype := Underlying_Type (Rectype);
6825 end if;
6826
6827 -- First some basic error checks
6828
6829 if not Is_Record_Type (Rectype) then
6830 Error_Msg_NE
6831 ("record type required, found}", Ident, First_Subtype (Rectype));
6832 return;
6833
6834 elsif Scope (Rectype) /= Current_Scope then
6835 Error_Msg_N ("type must be declared in this scope", N);
6836 return;
6837
6838 elsif not Is_First_Subtype (Rectype) then
6839 Error_Msg_N ("cannot give record rep clause for subtype", N);
6840 return;
6841
6842 elsif Has_Record_Rep_Clause (Rectype) then
6843 Error_Msg_N ("duplicate record rep clause ignored", N);
6844 return;
6845
6846 elsif Rep_Item_Too_Late (Rectype, N) then
6847 return;
6848 end if;
6849
6850 -- We know we have a first subtype, now possibly go to the anonymous
6851 -- base type to determine whether Rectype is a record extension.
6852
6853 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6854 Is_Record_Extension :=
6855 Nkind (Recdef) = N_Derived_Type_Definition
6856 and then Present (Record_Extension_Part (Recdef));
6857
6858 if Present (Mod_Clause (N)) then
6859 declare
6860 Loc : constant Source_Ptr := Sloc (N);
6861 M : constant Node_Id := Mod_Clause (N);
6862 P : constant List_Id := Pragmas_Before (M);
6863 AtM_Nod : Node_Id;
6864
6865 Mod_Val : Uint;
6866 pragma Warnings (Off, Mod_Val);
6867
6868 begin
6869 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6870
6871 if Warn_On_Obsolescent_Feature then
6872 Error_Msg_N
6873 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6874 Error_Msg_N
6875 ("\?j?use alignment attribute definition clause instead", N);
6876 end if;
6877
6878 if Present (P) then
6879 Analyze_List (P);
6880 end if;
6881
6882 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6883 -- the Mod clause into an alignment clause anyway, so that the
6884 -- back end can compute and back-annotate properly the size and
6885 -- alignment of types that may include this record.
6886
6887 -- This seems dubious, this destroys the source tree in a manner
6888 -- not detectable by ASIS ???
6889
6890 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6891 AtM_Nod :=
6892 Make_Attribute_Definition_Clause (Loc,
6893 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6894 Chars => Name_Alignment,
6895 Expression => Relocate_Node (Expression (M)));
6896
6897 Set_From_At_Mod (AtM_Nod);
6898 Insert_After (N, AtM_Nod);
6899 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6900 Set_Mod_Clause (N, Empty);
6901
6902 else
6903 -- Get the alignment value to perform error checking
6904
6905 Mod_Val := Get_Alignment_Value (Expression (M));
6906 end if;
6907 end;
6908 end if;
6909
6910 -- For untagged types, clear any existing component clauses for the
6911 -- type. If the type is derived, this is what allows us to override
6912 -- a rep clause for the parent. For type extensions, the representation
6913 -- of the inherited components is inherited, so we want to keep previous
6914 -- component clauses for completeness.
6915
6916 if not Is_Tagged_Type (Rectype) then
6917 Comp := First_Component_Or_Discriminant (Rectype);
6918 while Present (Comp) loop
6919 Set_Component_Clause (Comp, Empty);
6920 Next_Component_Or_Discriminant (Comp);
6921 end loop;
6922 end if;
6923
6924 -- All done if no component clauses
6925
6926 CC := First (Component_Clauses (N));
6927
6928 if No (CC) then
6929 return;
6930 end if;
6931
6932 -- A representation like this applies to the base type
6933
6934 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6935 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6936 Set_Has_Specified_Layout (Base_Type (Rectype));
6937
6938 -- Process the component clauses
6939
6940 while Present (CC) loop
6941
6942 -- Pragma
6943
6944 if Nkind (CC) = N_Pragma then
6945 Analyze (CC);
6946
6947 -- The only pragma of interest is Complete_Representation
6948
6949 if Pragma_Name (CC) = Name_Complete_Representation then
6950 CR_Pragma := CC;
6951 end if;
6952
6953 -- Processing for real component clause
6954
6955 else
6956 Posit := Static_Integer (Position (CC));
6957 Fbit := Static_Integer (First_Bit (CC));
6958 Lbit := Static_Integer (Last_Bit (CC));
6959
6960 if Posit /= No_Uint
6961 and then Fbit /= No_Uint
6962 and then Lbit /= No_Uint
6963 then
6964 if Posit < 0 then
6965 Error_Msg_N ("position cannot be negative", Position (CC));
6966
6967 elsif Fbit < 0 then
6968 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
6969
6970 -- The Last_Bit specified in a component clause must not be
6971 -- less than the First_Bit minus one (RM-13.5.1(10)).
6972
6973 elsif Lbit < Fbit - 1 then
6974 Error_Msg_N
6975 ("last bit cannot be less than first bit minus one",
6976 Last_Bit (CC));
6977
6978 -- Values look OK, so find the corresponding record component
6979 -- Even though the syntax allows an attribute reference for
6980 -- implementation-defined components, GNAT does not allow the
6981 -- tag to get an explicit position.
6982
6983 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6984 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6985 Error_Msg_N ("position of tag cannot be specified", CC);
6986 else
6987 Error_Msg_N ("illegal component name", CC);
6988 end if;
6989
6990 else
6991 Comp := First_Entity (Rectype);
6992 while Present (Comp) loop
6993 exit when Chars (Comp) = Chars (Component_Name (CC));
6994 Next_Entity (Comp);
6995 end loop;
6996
6997 if No (Comp) then
6998
6999 -- Maybe component of base type that is absent from
7000 -- statically constrained first subtype.
7001
7002 Comp := First_Entity (Base_Type (Rectype));
7003 while Present (Comp) loop
7004 exit when Chars (Comp) = Chars (Component_Name (CC));
7005 Next_Entity (Comp);
7006 end loop;
7007 end if;
7008
7009 if No (Comp) then
7010 Error_Msg_N
7011 ("component clause is for non-existent field", CC);
7012
7013 -- Ada 2012 (AI05-0026): Any name that denotes a
7014 -- discriminant of an object of an unchecked union type
7015 -- shall not occur within a record_representation_clause.
7016
7017 -- The general restriction of using record rep clauses on
7018 -- Unchecked_Union types has now been lifted. Since it is
7019 -- possible to introduce a record rep clause which mentions
7020 -- the discriminant of an Unchecked_Union in non-Ada 2012
7021 -- code, this check is applied to all versions of the
7022 -- language.
7023
7024 elsif Ekind (Comp) = E_Discriminant
7025 and then Is_Unchecked_Union (Rectype)
7026 then
7027 Error_Msg_N
7028 ("cannot reference discriminant of unchecked union",
7029 Component_Name (CC));
7030
7031 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7032 Error_Msg_NE
7033 ("component clause not allowed for inherited "
7034 & "component&", CC, Comp);
7035
7036 elsif Present (Component_Clause (Comp)) then
7037
7038 -- Diagnose duplicate rep clause, or check consistency
7039 -- if this is an inherited component. In a double fault,
7040 -- there may be a duplicate inconsistent clause for an
7041 -- inherited component.
7042
7043 if Scope (Original_Record_Component (Comp)) = Rectype
7044 or else Parent (Component_Clause (Comp)) = N
7045 then
7046 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7047 Error_Msg_N ("component clause previously given#", CC);
7048
7049 else
7050 declare
7051 Rep1 : constant Node_Id := Component_Clause (Comp);
7052 begin
7053 if Intval (Position (Rep1)) /=
7054 Intval (Position (CC))
7055 or else Intval (First_Bit (Rep1)) /=
7056 Intval (First_Bit (CC))
7057 or else Intval (Last_Bit (Rep1)) /=
7058 Intval (Last_Bit (CC))
7059 then
7060 Error_Msg_N
7061 ("component clause inconsistent with "
7062 & "representation of ancestor", CC);
7063
7064 elsif Warn_On_Redundant_Constructs then
7065 Error_Msg_N
7066 ("?r?redundant confirming component clause "
7067 & "for component!", CC);
7068 end if;
7069 end;
7070 end if;
7071
7072 -- Normal case where this is the first component clause we
7073 -- have seen for this entity, so set it up properly.
7074
7075 else
7076 -- Make reference for field in record rep clause and set
7077 -- appropriate entity field in the field identifier.
7078
7079 Generate_Reference
7080 (Comp, Component_Name (CC), Set_Ref => False);
7081 Set_Entity (Component_Name (CC), Comp);
7082
7083 -- Update Fbit and Lbit to the actual bit number
7084
7085 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7086 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7087
7088 if Has_Size_Clause (Rectype)
7089 and then RM_Size (Rectype) <= Lbit
7090 then
7091 Error_Msg_N
7092 ("bit number out of range of specified size",
7093 Last_Bit (CC));
7094 else
7095 Set_Component_Clause (Comp, CC);
7096 Set_Component_Bit_Offset (Comp, Fbit);
7097 Set_Esize (Comp, 1 + (Lbit - Fbit));
7098 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7099 Set_Normalized_Position (Comp, Fbit / SSU);
7100
7101 if Warn_On_Overridden_Size
7102 and then Has_Size_Clause (Etype (Comp))
7103 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7104 then
7105 Error_Msg_NE
7106 ("?S?component size overrides size clause for&",
7107 Component_Name (CC), Etype (Comp));
7108 end if;
7109
7110 -- This information is also set in the corresponding
7111 -- component of the base type, found by accessing the
7112 -- Original_Record_Component link if it is present.
7113
7114 Ocomp := Original_Record_Component (Comp);
7115
7116 if Hbit < Lbit then
7117 Hbit := Lbit;
7118 end if;
7119
7120 Check_Size
7121 (Component_Name (CC),
7122 Etype (Comp),
7123 Esize (Comp),
7124 Biased);
7125
7126 Set_Biased
7127 (Comp, First_Node (CC), "component clause", Biased);
7128
7129 if Present (Ocomp) then
7130 Set_Component_Clause (Ocomp, CC);
7131 Set_Component_Bit_Offset (Ocomp, Fbit);
7132 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7133 Set_Normalized_Position (Ocomp, Fbit / SSU);
7134 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7135
7136 Set_Normalized_Position_Max
7137 (Ocomp, Normalized_Position (Ocomp));
7138
7139 -- Note: we don't use Set_Biased here, because we
7140 -- already gave a warning above if needed, and we
7141 -- would get a duplicate for the same name here.
7142
7143 Set_Has_Biased_Representation
7144 (Ocomp, Has_Biased_Representation (Comp));
7145 end if;
7146
7147 if Esize (Comp) < 0 then
7148 Error_Msg_N ("component size is negative", CC);
7149 end if;
7150 end if;
7151 end if;
7152 end if;
7153 end if;
7154 end if;
7155
7156 Next (CC);
7157 end loop;
7158
7159 -- Check missing components if Complete_Representation pragma appeared
7160
7161 if Present (CR_Pragma) then
7162 Comp := First_Component_Or_Discriminant (Rectype);
7163 while Present (Comp) loop
7164 if No (Component_Clause (Comp)) then
7165 Error_Msg_NE
7166 ("missing component clause for &", CR_Pragma, Comp);
7167 end if;
7168
7169 Next_Component_Or_Discriminant (Comp);
7170 end loop;
7171
7172 -- Give missing components warning if required
7173
7174 elsif Warn_On_Unrepped_Components then
7175 declare
7176 Num_Repped_Components : Nat := 0;
7177 Num_Unrepped_Components : Nat := 0;
7178
7179 begin
7180 -- First count number of repped and unrepped components
7181
7182 Comp := First_Component_Or_Discriminant (Rectype);
7183 while Present (Comp) loop
7184 if Present (Component_Clause (Comp)) then
7185 Num_Repped_Components := Num_Repped_Components + 1;
7186 else
7187 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7188 end if;
7189
7190 Next_Component_Or_Discriminant (Comp);
7191 end loop;
7192
7193 -- We are only interested in the case where there is at least one
7194 -- unrepped component, and at least half the components have rep
7195 -- clauses. We figure that if less than half have them, then the
7196 -- partial rep clause is really intentional. If the component
7197 -- type has no underlying type set at this point (as for a generic
7198 -- formal type), we don't know enough to give a warning on the
7199 -- component.
7200
7201 if Num_Unrepped_Components > 0
7202 and then Num_Unrepped_Components < Num_Repped_Components
7203 then
7204 Comp := First_Component_Or_Discriminant (Rectype);
7205 while Present (Comp) loop
7206 if No (Component_Clause (Comp))
7207 and then Comes_From_Source (Comp)
7208 and then Present (Underlying_Type (Etype (Comp)))
7209 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7210 or else Size_Known_At_Compile_Time
7211 (Underlying_Type (Etype (Comp))))
7212 and then not Has_Warnings_Off (Rectype)
7213
7214 -- Ignore discriminant in unchecked union, since it is
7215 -- not there, and cannot have a component clause.
7216
7217 and then (not Is_Unchecked_Union (Rectype)
7218 or else Ekind (Comp) /= E_Discriminant)
7219 then
7220 Error_Msg_Sloc := Sloc (Comp);
7221 Error_Msg_NE
7222 ("?C?no component clause given for & declared #",
7223 N, Comp);
7224 end if;
7225
7226 Next_Component_Or_Discriminant (Comp);
7227 end loop;
7228 end if;
7229 end;
7230 end if;
7231 end Analyze_Record_Representation_Clause;
7232
7233 -------------------------------------
7234 -- Build_Discrete_Static_Predicate --
7235 -------------------------------------
7236
7237 procedure Build_Discrete_Static_Predicate
7238 (Typ : Entity_Id;
7239 Expr : Node_Id;
7240 Nam : Name_Id)
7241 is
7242 Loc : constant Source_Ptr := Sloc (Expr);
7243
7244 Non_Static : exception;
7245 -- Raised if something non-static is found
7246
7247 Btyp : constant Entity_Id := Base_Type (Typ);
7248
7249 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7250 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7251 -- Low bound and high bound value of base type of Typ
7252
7253 TLo : Uint;
7254 THi : Uint;
7255 -- Bounds for constructing the static predicate. We use the bound of the
7256 -- subtype if it is static, otherwise the corresponding base type bound.
7257 -- Note: a non-static subtype can have a static predicate.
7258
7259 type REnt is record
7260 Lo, Hi : Uint;
7261 end record;
7262 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7263 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7264 -- value.
7265
7266 type RList is array (Nat range <>) of REnt;
7267 -- A list of ranges. The ranges are sorted in increasing order, and are
7268 -- disjoint (there is a gap of at least one value between each range in
7269 -- the table). A value is in the set of ranges in Rlist if it lies
7270 -- within one of these ranges.
7271
7272 False_Range : constant RList :=
7273 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7274 -- An empty set of ranges represents a range list that can never be
7275 -- satisfied, since there are no ranges in which the value could lie,
7276 -- so it does not lie in any of them. False_Range is a canonical value
7277 -- for this empty set, but general processing should test for an Rlist
7278 -- with length zero (see Is_False predicate), since other null ranges
7279 -- may appear which must be treated as False.
7280
7281 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7282 -- Range representing True, value must be in the base range
7283
7284 function "and" (Left : RList; Right : RList) return RList;
7285 -- And's together two range lists, returning a range list. This is a set
7286 -- intersection operation.
7287
7288 function "or" (Left : RList; Right : RList) return RList;
7289 -- Or's together two range lists, returning a range list. This is a set
7290 -- union operation.
7291
7292 function "not" (Right : RList) return RList;
7293 -- Returns complement of a given range list, i.e. a range list
7294 -- representing all the values in TLo .. THi that are not in the input
7295 -- operand Right.
7296
7297 function Build_Val (V : Uint) return Node_Id;
7298 -- Return an analyzed N_Identifier node referencing this value, suitable
7299 -- for use as an entry in the Static_Discrte_Predicate list. This node
7300 -- is typed with the base type.
7301
7302 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7303 -- Return an analyzed N_Range node referencing this range, suitable for
7304 -- use as an entry in the Static_Discrete_Predicate list. This node is
7305 -- typed with the base type.
7306
7307 function Get_RList (Exp : Node_Id) return RList;
7308 -- This is a recursive routine that converts the given expression into a
7309 -- list of ranges, suitable for use in building the static predicate.
7310
7311 function Is_False (R : RList) return Boolean;
7312 pragma Inline (Is_False);
7313 -- Returns True if the given range list is empty, and thus represents a
7314 -- False list of ranges that can never be satisfied.
7315
7316 function Is_True (R : RList) return Boolean;
7317 -- Returns True if R trivially represents the True predicate by having a
7318 -- single range from BLo to BHi.
7319
7320 function Is_Type_Ref (N : Node_Id) return Boolean;
7321 pragma Inline (Is_Type_Ref);
7322 -- Returns if True if N is a reference to the type for the predicate in
7323 -- the expression (i.e. if it is an identifier whose Chars field matches
7324 -- the Nam given in the call). N must not be parenthesized, if the type
7325 -- name appears in parens, this routine will return False.
7326
7327 function Lo_Val (N : Node_Id) return Uint;
7328 -- Given an entry from a Static_Discrete_Predicate list that is either
7329 -- a static expression or static range, gets either the expression value
7330 -- or the low bound of the range.
7331
7332 function Hi_Val (N : Node_Id) return Uint;
7333 -- Given an entry from a Static_Discrete_Predicate list that is either
7334 -- a static expression or static range, gets either the expression value
7335 -- or the high bound of the range.
7336
7337 function Membership_Entry (N : Node_Id) return RList;
7338 -- Given a single membership entry (range, value, or subtype), returns
7339 -- the corresponding range list. Raises Static_Error if not static.
7340
7341 function Membership_Entries (N : Node_Id) return RList;
7342 -- Given an element on an alternatives list of a membership operation,
7343 -- returns the range list corresponding to this entry and all following
7344 -- entries (i.e. returns the "or" of this list of values).
7345
7346 function Stat_Pred (Typ : Entity_Id) return RList;
7347 -- Given a type, if it has a static predicate, then return the predicate
7348 -- as a range list, otherwise raise Non_Static.
7349
7350 -----------
7351 -- "and" --
7352 -----------
7353
7354 function "and" (Left : RList; Right : RList) return RList is
7355 FEnt : REnt;
7356 -- First range of result
7357
7358 SLeft : Nat := Left'First;
7359 -- Start of rest of left entries
7360
7361 SRight : Nat := Right'First;
7362 -- Start of rest of right entries
7363
7364 begin
7365 -- If either range is True, return the other
7366
7367 if Is_True (Left) then
7368 return Right;
7369 elsif Is_True (Right) then
7370 return Left;
7371 end if;
7372
7373 -- If either range is False, return False
7374
7375 if Is_False (Left) or else Is_False (Right) then
7376 return False_Range;
7377 end if;
7378
7379 -- Loop to remove entries at start that are disjoint, and thus just
7380 -- get discarded from the result entirely.
7381
7382 loop
7383 -- If no operands left in either operand, result is false
7384
7385 if SLeft > Left'Last or else SRight > Right'Last then
7386 return False_Range;
7387
7388 -- Discard first left operand entry if disjoint with right
7389
7390 elsif Left (SLeft).Hi < Right (SRight).Lo then
7391 SLeft := SLeft + 1;
7392
7393 -- Discard first right operand entry if disjoint with left
7394
7395 elsif Right (SRight).Hi < Left (SLeft).Lo then
7396 SRight := SRight + 1;
7397
7398 -- Otherwise we have an overlapping entry
7399
7400 else
7401 exit;
7402 end if;
7403 end loop;
7404
7405 -- Now we have two non-null operands, and first entries overlap. The
7406 -- first entry in the result will be the overlapping part of these
7407 -- two entries.
7408
7409 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7410 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7411
7412 -- Now we can remove the entry that ended at a lower value, since its
7413 -- contribution is entirely contained in Fent.
7414
7415 if Left (SLeft).Hi <= Right (SRight).Hi then
7416 SLeft := SLeft + 1;
7417 else
7418 SRight := SRight + 1;
7419 end if;
7420
7421 -- Compute result by concatenating this first entry with the "and" of
7422 -- the remaining parts of the left and right operands. Note that if
7423 -- either of these is empty, "and" will yield empty, so that we will
7424 -- end up with just Fent, which is what we want in that case.
7425
7426 return
7427 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7428 end "and";
7429
7430 -----------
7431 -- "not" --
7432 -----------
7433
7434 function "not" (Right : RList) return RList is
7435 begin
7436 -- Return True if False range
7437
7438 if Is_False (Right) then
7439 return True_Range;
7440 end if;
7441
7442 -- Return False if True range
7443
7444 if Is_True (Right) then
7445 return False_Range;
7446 end if;
7447
7448 -- Here if not trivial case
7449
7450 declare
7451 Result : RList (1 .. Right'Length + 1);
7452 -- May need one more entry for gap at beginning and end
7453
7454 Count : Nat := 0;
7455 -- Number of entries stored in Result
7456
7457 begin
7458 -- Gap at start
7459
7460 if Right (Right'First).Lo > TLo then
7461 Count := Count + 1;
7462 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7463 end if;
7464
7465 -- Gaps between ranges
7466
7467 for J in Right'First .. Right'Last - 1 loop
7468 Count := Count + 1;
7469 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7470 end loop;
7471
7472 -- Gap at end
7473
7474 if Right (Right'Last).Hi < THi then
7475 Count := Count + 1;
7476 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7477 end if;
7478
7479 return Result (1 .. Count);
7480 end;
7481 end "not";
7482
7483 ----------
7484 -- "or" --
7485 ----------
7486
7487 function "or" (Left : RList; Right : RList) return RList is
7488 FEnt : REnt;
7489 -- First range of result
7490
7491 SLeft : Nat := Left'First;
7492 -- Start of rest of left entries
7493
7494 SRight : Nat := Right'First;
7495 -- Start of rest of right entries
7496
7497 begin
7498 -- If either range is True, return True
7499
7500 if Is_True (Left) or else Is_True (Right) then
7501 return True_Range;
7502 end if;
7503
7504 -- If either range is False (empty), return the other
7505
7506 if Is_False (Left) then
7507 return Right;
7508 elsif Is_False (Right) then
7509 return Left;
7510 end if;
7511
7512 -- Initialize result first entry from left or right operand depending
7513 -- on which starts with the lower range.
7514
7515 if Left (SLeft).Lo < Right (SRight).Lo then
7516 FEnt := Left (SLeft);
7517 SLeft := SLeft + 1;
7518 else
7519 FEnt := Right (SRight);
7520 SRight := SRight + 1;
7521 end if;
7522
7523 -- This loop eats ranges from left and right operands that are
7524 -- contiguous with the first range we are gathering.
7525
7526 loop
7527 -- Eat first entry in left operand if contiguous or overlapped by
7528 -- gathered first operand of result.
7529
7530 if SLeft <= Left'Last
7531 and then Left (SLeft).Lo <= FEnt.Hi + 1
7532 then
7533 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7534 SLeft := SLeft + 1;
7535
7536 -- Eat first entry in right operand if contiguous or overlapped by
7537 -- gathered right operand of result.
7538
7539 elsif SRight <= Right'Last
7540 and then Right (SRight).Lo <= FEnt.Hi + 1
7541 then
7542 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7543 SRight := SRight + 1;
7544
7545 -- All done if no more entries to eat
7546
7547 else
7548 exit;
7549 end if;
7550 end loop;
7551
7552 -- Obtain result as the first entry we just computed, concatenated
7553 -- to the "or" of the remaining results (if one operand is empty,
7554 -- this will just concatenate with the other
7555
7556 return
7557 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7558 end "or";
7559
7560 -----------------
7561 -- Build_Range --
7562 -----------------
7563
7564 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7565 Result : Node_Id;
7566 begin
7567 Result :=
7568 Make_Range (Loc,
7569 Low_Bound => Build_Val (Lo),
7570 High_Bound => Build_Val (Hi));
7571 Set_Etype (Result, Btyp);
7572 Set_Analyzed (Result);
7573 return Result;
7574 end Build_Range;
7575
7576 ---------------
7577 -- Build_Val --
7578 ---------------
7579
7580 function Build_Val (V : Uint) return Node_Id is
7581 Result : Node_Id;
7582
7583 begin
7584 if Is_Enumeration_Type (Typ) then
7585 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7586 else
7587 Result := Make_Integer_Literal (Loc, V);
7588 end if;
7589
7590 Set_Etype (Result, Btyp);
7591 Set_Is_Static_Expression (Result);
7592 Set_Analyzed (Result);
7593 return Result;
7594 end Build_Val;
7595
7596 ---------------
7597 -- Get_RList --
7598 ---------------
7599
7600 function Get_RList (Exp : Node_Id) return RList is
7601 Op : Node_Kind;
7602 Val : Uint;
7603
7604 begin
7605 -- Static expression can only be true or false
7606
7607 if Is_OK_Static_Expression (Exp) then
7608 if Expr_Value (Exp) = 0 then
7609 return False_Range;
7610 else
7611 return True_Range;
7612 end if;
7613 end if;
7614
7615 -- Otherwise test node type
7616
7617 Op := Nkind (Exp);
7618
7619 case Op is
7620
7621 -- And
7622
7623 when N_And_Then
7624 | N_Op_And
7625 =>
7626 return Get_RList (Left_Opnd (Exp))
7627 and
7628 Get_RList (Right_Opnd (Exp));
7629
7630 -- Or
7631
7632 when N_Op_Or
7633 | N_Or_Else
7634 =>
7635 return Get_RList (Left_Opnd (Exp))
7636 or
7637 Get_RList (Right_Opnd (Exp));
7638
7639 -- Not
7640
7641 when N_Op_Not =>
7642 return not Get_RList (Right_Opnd (Exp));
7643
7644 -- Comparisons of type with static value
7645
7646 when N_Op_Compare =>
7647
7648 -- Type is left operand
7649
7650 if Is_Type_Ref (Left_Opnd (Exp))
7651 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7652 then
7653 Val := Expr_Value (Right_Opnd (Exp));
7654
7655 -- Typ is right operand
7656
7657 elsif Is_Type_Ref (Right_Opnd (Exp))
7658 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7659 then
7660 Val := Expr_Value (Left_Opnd (Exp));
7661
7662 -- Invert sense of comparison
7663
7664 case Op is
7665 when N_Op_Gt => Op := N_Op_Lt;
7666 when N_Op_Lt => Op := N_Op_Gt;
7667 when N_Op_Ge => Op := N_Op_Le;
7668 when N_Op_Le => Op := N_Op_Ge;
7669 when others => null;
7670 end case;
7671
7672 -- Other cases are non-static
7673
7674 else
7675 raise Non_Static;
7676 end if;
7677
7678 -- Construct range according to comparison operation
7679
7680 case Op is
7681 when N_Op_Eq =>
7682 return RList'(1 => REnt'(Val, Val));
7683
7684 when N_Op_Ge =>
7685 return RList'(1 => REnt'(Val, BHi));
7686
7687 when N_Op_Gt =>
7688 return RList'(1 => REnt'(Val + 1, BHi));
7689
7690 when N_Op_Le =>
7691 return RList'(1 => REnt'(BLo, Val));
7692
7693 when N_Op_Lt =>
7694 return RList'(1 => REnt'(BLo, Val - 1));
7695
7696 when N_Op_Ne =>
7697 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7698
7699 when others =>
7700 raise Program_Error;
7701 end case;
7702
7703 -- Membership (IN)
7704
7705 when N_In =>
7706 if not Is_Type_Ref (Left_Opnd (Exp)) then
7707 raise Non_Static;
7708 end if;
7709
7710 if Present (Right_Opnd (Exp)) then
7711 return Membership_Entry (Right_Opnd (Exp));
7712 else
7713 return Membership_Entries (First (Alternatives (Exp)));
7714 end if;
7715
7716 -- Negative membership (NOT IN)
7717
7718 when N_Not_In =>
7719 if not Is_Type_Ref (Left_Opnd (Exp)) then
7720 raise Non_Static;
7721 end if;
7722
7723 if Present (Right_Opnd (Exp)) then
7724 return not Membership_Entry (Right_Opnd (Exp));
7725 else
7726 return not Membership_Entries (First (Alternatives (Exp)));
7727 end if;
7728
7729 -- Function call, may be call to static predicate
7730
7731 when N_Function_Call =>
7732 if Is_Entity_Name (Name (Exp)) then
7733 declare
7734 Ent : constant Entity_Id := Entity (Name (Exp));
7735 begin
7736 if Is_Predicate_Function (Ent)
7737 or else
7738 Is_Predicate_Function_M (Ent)
7739 then
7740 return Stat_Pred (Etype (First_Formal (Ent)));
7741 end if;
7742 end;
7743 end if;
7744
7745 -- Other function call cases are non-static
7746
7747 raise Non_Static;
7748
7749 -- Qualified expression, dig out the expression
7750
7751 when N_Qualified_Expression =>
7752 return Get_RList (Expression (Exp));
7753
7754 when N_Case_Expression =>
7755 declare
7756 Alt : Node_Id;
7757 Choices : List_Id;
7758 Dep : Node_Id;
7759
7760 begin
7761 if not Is_Entity_Name (Expression (Expr))
7762 or else Etype (Expression (Expr)) /= Typ
7763 then
7764 Error_Msg_N
7765 ("expression must denaote subtype", Expression (Expr));
7766 return False_Range;
7767 end if;
7768
7769 -- Collect discrete choices in all True alternatives
7770
7771 Choices := New_List;
7772 Alt := First (Alternatives (Exp));
7773 while Present (Alt) loop
7774 Dep := Expression (Alt);
7775
7776 if not Is_OK_Static_Expression (Dep) then
7777 raise Non_Static;
7778
7779 elsif Is_True (Expr_Value (Dep)) then
7780 Append_List_To (Choices,
7781 New_Copy_List (Discrete_Choices (Alt)));
7782 end if;
7783
7784 Next (Alt);
7785 end loop;
7786
7787 return Membership_Entries (First (Choices));
7788 end;
7789
7790 -- Expression with actions: if no actions, dig out expression
7791
7792 when N_Expression_With_Actions =>
7793 if Is_Empty_List (Actions (Exp)) then
7794 return Get_RList (Expression (Exp));
7795 else
7796 raise Non_Static;
7797 end if;
7798
7799 -- Xor operator
7800
7801 when N_Op_Xor =>
7802 return (Get_RList (Left_Opnd (Exp))
7803 and not Get_RList (Right_Opnd (Exp)))
7804 or (Get_RList (Right_Opnd (Exp))
7805 and not Get_RList (Left_Opnd (Exp)));
7806
7807 -- Any other node type is non-static
7808
7809 when others =>
7810 raise Non_Static;
7811 end case;
7812 end Get_RList;
7813
7814 ------------
7815 -- Hi_Val --
7816 ------------
7817
7818 function Hi_Val (N : Node_Id) return Uint is
7819 begin
7820 if Is_OK_Static_Expression (N) then
7821 return Expr_Value (N);
7822 else
7823 pragma Assert (Nkind (N) = N_Range);
7824 return Expr_Value (High_Bound (N));
7825 end if;
7826 end Hi_Val;
7827
7828 --------------
7829 -- Is_False --
7830 --------------
7831
7832 function Is_False (R : RList) return Boolean is
7833 begin
7834 return R'Length = 0;
7835 end Is_False;
7836
7837 -------------
7838 -- Is_True --
7839 -------------
7840
7841 function Is_True (R : RList) return Boolean is
7842 begin
7843 return R'Length = 1
7844 and then R (R'First).Lo = BLo
7845 and then R (R'First).Hi = BHi;
7846 end Is_True;
7847
7848 -----------------
7849 -- Is_Type_Ref --
7850 -----------------
7851
7852 function Is_Type_Ref (N : Node_Id) return Boolean is
7853 begin
7854 return Nkind (N) = N_Identifier
7855 and then Chars (N) = Nam
7856 and then Paren_Count (N) = 0;
7857 end Is_Type_Ref;
7858
7859 ------------
7860 -- Lo_Val --
7861 ------------
7862
7863 function Lo_Val (N : Node_Id) return Uint is
7864 begin
7865 if Is_OK_Static_Expression (N) then
7866 return Expr_Value (N);
7867 else
7868 pragma Assert (Nkind (N) = N_Range);
7869 return Expr_Value (Low_Bound (N));
7870 end if;
7871 end Lo_Val;
7872
7873 ------------------------
7874 -- Membership_Entries --
7875 ------------------------
7876
7877 function Membership_Entries (N : Node_Id) return RList is
7878 begin
7879 if No (Next (N)) then
7880 return Membership_Entry (N);
7881 else
7882 return Membership_Entry (N) or Membership_Entries (Next (N));
7883 end if;
7884 end Membership_Entries;
7885
7886 ----------------------
7887 -- Membership_Entry --
7888 ----------------------
7889
7890 function Membership_Entry (N : Node_Id) return RList is
7891 Val : Uint;
7892 SLo : Uint;
7893 SHi : Uint;
7894
7895 begin
7896 -- Range case
7897
7898 if Nkind (N) = N_Range then
7899 if not Is_OK_Static_Expression (Low_Bound (N))
7900 or else
7901 not Is_OK_Static_Expression (High_Bound (N))
7902 then
7903 raise Non_Static;
7904 else
7905 SLo := Expr_Value (Low_Bound (N));
7906 SHi := Expr_Value (High_Bound (N));
7907 return RList'(1 => REnt'(SLo, SHi));
7908 end if;
7909
7910 -- Static expression case
7911
7912 elsif Is_OK_Static_Expression (N) then
7913 Val := Expr_Value (N);
7914 return RList'(1 => REnt'(Val, Val));
7915
7916 -- Identifier (other than static expression) case
7917
7918 else pragma Assert (Nkind (N) = N_Identifier);
7919
7920 -- Type case
7921
7922 if Is_Type (Entity (N)) then
7923
7924 -- If type has predicates, process them
7925
7926 if Has_Predicates (Entity (N)) then
7927 return Stat_Pred (Entity (N));
7928
7929 -- For static subtype without predicates, get range
7930
7931 elsif Is_OK_Static_Subtype (Entity (N)) then
7932 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7933 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7934 return RList'(1 => REnt'(SLo, SHi));
7935
7936 -- Any other type makes us non-static
7937
7938 else
7939 raise Non_Static;
7940 end if;
7941
7942 -- Any other kind of identifier in predicate (e.g. a non-static
7943 -- expression value) means this is not a static predicate.
7944
7945 else
7946 raise Non_Static;
7947 end if;
7948 end if;
7949 end Membership_Entry;
7950
7951 ---------------
7952 -- Stat_Pred --
7953 ---------------
7954
7955 function Stat_Pred (Typ : Entity_Id) return RList is
7956 begin
7957 -- Not static if type does not have static predicates
7958
7959 if not Has_Static_Predicate (Typ) then
7960 raise Non_Static;
7961 end if;
7962
7963 -- Otherwise we convert the predicate list to a range list
7964
7965 declare
7966 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7967 Result : RList (1 .. List_Length (Spred));
7968 P : Node_Id;
7969
7970 begin
7971 P := First (Static_Discrete_Predicate (Typ));
7972 for J in Result'Range loop
7973 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7974 Next (P);
7975 end loop;
7976
7977 return Result;
7978 end;
7979 end Stat_Pred;
7980
7981 -- Start of processing for Build_Discrete_Static_Predicate
7982
7983 begin
7984 -- Establish bounds for the predicate
7985
7986 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7987 TLo := Expr_Value (Type_Low_Bound (Typ));
7988 else
7989 TLo := BLo;
7990 end if;
7991
7992 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7993 THi := Expr_Value (Type_High_Bound (Typ));
7994 else
7995 THi := BHi;
7996 end if;
7997
7998 -- Analyze the expression to see if it is a static predicate
7999
8000 declare
8001 Ranges : constant RList := Get_RList (Expr);
8002 -- Range list from expression if it is static
8003
8004 Plist : List_Id;
8005
8006 begin
8007 -- Convert range list into a form for the static predicate. In the
8008 -- Ranges array, we just have raw ranges, these must be converted
8009 -- to properly typed and analyzed static expressions or range nodes.
8010
8011 -- Note: here we limit ranges to the ranges of the subtype, so that
8012 -- a predicate is always false for values outside the subtype. That
8013 -- seems fine, such values are invalid anyway, and considering them
8014 -- to fail the predicate seems allowed and friendly, and furthermore
8015 -- simplifies processing for case statements and loops.
8016
8017 Plist := New_List;
8018
8019 for J in Ranges'Range loop
8020 declare
8021 Lo : Uint := Ranges (J).Lo;
8022 Hi : Uint := Ranges (J).Hi;
8023
8024 begin
8025 -- Ignore completely out of range entry
8026
8027 if Hi < TLo or else Lo > THi then
8028 null;
8029
8030 -- Otherwise process entry
8031
8032 else
8033 -- Adjust out of range value to subtype range
8034
8035 if Lo < TLo then
8036 Lo := TLo;
8037 end if;
8038
8039 if Hi > THi then
8040 Hi := THi;
8041 end if;
8042
8043 -- Convert range into required form
8044
8045 Append_To (Plist, Build_Range (Lo, Hi));
8046 end if;
8047 end;
8048 end loop;
8049
8050 -- Processing was successful and all entries were static, so now we
8051 -- can store the result as the predicate list.
8052
8053 Set_Static_Discrete_Predicate (Typ, Plist);
8054
8055 -- The processing for static predicates put the expression into
8056 -- canonical form as a series of ranges. It also eliminated
8057 -- duplicates and collapsed and combined ranges. We might as well
8058 -- replace the alternatives list of the right operand of the
8059 -- membership test with the static predicate list, which will
8060 -- usually be more efficient.
8061
8062 declare
8063 New_Alts : constant List_Id := New_List;
8064 Old_Node : Node_Id;
8065 New_Node : Node_Id;
8066
8067 begin
8068 Old_Node := First (Plist);
8069 while Present (Old_Node) loop
8070 New_Node := New_Copy (Old_Node);
8071
8072 if Nkind (New_Node) = N_Range then
8073 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8074 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8075 end if;
8076
8077 Append_To (New_Alts, New_Node);
8078 Next (Old_Node);
8079 end loop;
8080
8081 -- If empty list, replace by False
8082
8083 if Is_Empty_List (New_Alts) then
8084 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8085
8086 -- Else replace by set membership test
8087
8088 else
8089 Rewrite (Expr,
8090 Make_In (Loc,
8091 Left_Opnd => Make_Identifier (Loc, Nam),
8092 Right_Opnd => Empty,
8093 Alternatives => New_Alts));
8094
8095 -- Resolve new expression in function context
8096
8097 Install_Formals (Predicate_Function (Typ));
8098 Push_Scope (Predicate_Function (Typ));
8099 Analyze_And_Resolve (Expr, Standard_Boolean);
8100 Pop_Scope;
8101 end if;
8102 end;
8103 end;
8104
8105 -- If non-static, return doing nothing
8106
8107 exception
8108 when Non_Static =>
8109 return;
8110 end Build_Discrete_Static_Predicate;
8111
8112 --------------------------------
8113 -- Build_Export_Import_Pragma --
8114 --------------------------------
8115
8116 function Build_Export_Import_Pragma
8117 (Asp : Node_Id;
8118 Id : Entity_Id) return Node_Id
8119 is
8120 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8121 Expr : constant Node_Id := Expression (Asp);
8122 Loc : constant Source_Ptr := Sloc (Asp);
8123
8124 Args : List_Id;
8125 Conv : Node_Id;
8126 Conv_Arg : Node_Id;
8127 Dummy_1 : Node_Id;
8128 Dummy_2 : Node_Id;
8129 EN : Node_Id;
8130 LN : Node_Id;
8131 Prag : Node_Id;
8132
8133 Create_Pragma : Boolean := False;
8134 -- This flag is set when the aspect form is such that it warrants the
8135 -- creation of a corresponding pragma.
8136
8137 begin
8138 if Present (Expr) then
8139 if Error_Posted (Expr) then
8140 null;
8141
8142 elsif Is_True (Expr_Value (Expr)) then
8143 Create_Pragma := True;
8144 end if;
8145
8146 -- Otherwise the aspect defaults to True
8147
8148 else
8149 Create_Pragma := True;
8150 end if;
8151
8152 -- Nothing to do when the expression is False or is erroneous
8153
8154 if not Create_Pragma then
8155 return Empty;
8156 end if;
8157
8158 -- Obtain all interfacing aspects that apply to the related entity
8159
8160 Get_Interfacing_Aspects
8161 (Iface_Asp => Asp,
8162 Conv_Asp => Conv,
8163 EN_Asp => EN,
8164 Expo_Asp => Dummy_1,
8165 Imp_Asp => Dummy_2,
8166 LN_Asp => LN);
8167
8168 Args := New_List;
8169
8170 -- Handle the convention argument
8171
8172 if Present (Conv) then
8173 Conv_Arg := New_Copy_Tree (Expression (Conv));
8174
8175 -- Assume convention "Ada' when aspect Convention is missing
8176
8177 else
8178 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8179 end if;
8180
8181 Append_To (Args,
8182 Make_Pragma_Argument_Association (Loc,
8183 Chars => Name_Convention,
8184 Expression => Conv_Arg));
8185
8186 -- Handle the entity argument
8187
8188 Append_To (Args,
8189 Make_Pragma_Argument_Association (Loc,
8190 Chars => Name_Entity,
8191 Expression => New_Occurrence_Of (Id, Loc)));
8192
8193 -- Handle the External_Name argument
8194
8195 if Present (EN) then
8196 Append_To (Args,
8197 Make_Pragma_Argument_Association (Loc,
8198 Chars => Name_External_Name,
8199 Expression => New_Copy_Tree (Expression (EN))));
8200 end if;
8201
8202 -- Handle the Link_Name argument
8203
8204 if Present (LN) then
8205 Append_To (Args,
8206 Make_Pragma_Argument_Association (Loc,
8207 Chars => Name_Link_Name,
8208 Expression => New_Copy_Tree (Expression (LN))));
8209 end if;
8210
8211 -- Generate:
8212 -- pragma Export/Import
8213 -- (Convention => <Conv>/Ada,
8214 -- Entity => <Id>,
8215 -- [External_Name => <EN>,]
8216 -- [Link_Name => <LN>]);
8217
8218 Prag :=
8219 Make_Pragma (Loc,
8220 Pragma_Identifier =>
8221 Make_Identifier (Loc, Chars (Identifier (Asp))),
8222 Pragma_Argument_Associations => Args);
8223
8224 -- Decorate the relevant aspect and the pragma
8225
8226 Set_Aspect_Rep_Item (Asp, Prag);
8227
8228 Set_Corresponding_Aspect (Prag, Asp);
8229 Set_From_Aspect_Specification (Prag);
8230 Set_Parent (Prag, Asp);
8231
8232 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8233 Set_Import_Pragma (Id, Prag);
8234 end if;
8235
8236 return Prag;
8237 end Build_Export_Import_Pragma;
8238
8239 -------------------------------
8240 -- Build_Predicate_Functions --
8241 -------------------------------
8242
8243 -- The procedures that are constructed here have the form:
8244
8245 -- function typPredicate (Ixxx : typ) return Boolean is
8246 -- begin
8247 -- return
8248 -- typ1Predicate (typ1 (Ixxx))
8249 -- and then typ2Predicate (typ2 (Ixxx))
8250 -- and then ...;
8251 -- exp1 and then exp2 and then ...
8252 -- end typPredicate;
8253
8254 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8255 -- this is the point at which these expressions get analyzed, providing the
8256 -- required delay, and typ1, typ2, are entities from which predicates are
8257 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8258 -- use this function even if checks are off, e.g. for membership tests.
8259
8260 -- Note that the inherited predicates are evaluated first, as required by
8261 -- AI12-0071-1.
8262
8263 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8264 -- the form of this return expression.
8265
8266 -- If the expression has at least one Raise_Expression, then we also build
8267 -- the typPredicateM version of the function, in which any occurrence of a
8268 -- Raise_Expression is converted to "return False".
8269
8270 -- WARNING: This routine manages Ghost regions. Return statements must be
8271 -- replaced by gotos which jump to the end of the routine and restore the
8272 -- Ghost mode.
8273
8274 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8275 Loc : constant Source_Ptr := Sloc (Typ);
8276
8277 Expr : Node_Id;
8278 -- This is the expression for the result of the function. It is
8279 -- is build by connecting the component predicates with AND THEN.
8280
8281 Expr_M : Node_Id;
8282 -- This is the corresponding return expression for the Predicate_M
8283 -- function. It differs in that raise expressions are marked for
8284 -- special expansion (see Process_REs).
8285
8286 Object_Name : Name_Id;
8287 -- Name for argument of Predicate procedure. Note that we use the same
8288 -- name for both predicate functions. That way the reference within the
8289 -- predicate expression is the same in both functions.
8290
8291 Object_Entity : Entity_Id;
8292 -- Entity for argument of Predicate procedure
8293
8294 Object_Entity_M : Entity_Id;
8295 -- Entity for argument of separate Predicate procedure when exceptions
8296 -- are present in expression.
8297
8298 FDecl : Node_Id;
8299 -- The function declaration
8300
8301 SId : Entity_Id;
8302 -- Its entity
8303
8304 Raise_Expression_Present : Boolean := False;
8305 -- Set True if Expr has at least one Raise_Expression
8306
8307 procedure Add_Condition (Cond : Node_Id);
8308 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8309 -- Expr is empty).
8310
8311 procedure Add_Predicates;
8312 -- Appends expressions for any Predicate pragmas in the rep item chain
8313 -- Typ to Expr. Note that we look only at items for this exact entity.
8314 -- Inheritance of predicates for the parent type is done by calling the
8315 -- Predicate_Function of the parent type, using Add_Call above.
8316
8317 procedure Add_Call (T : Entity_Id);
8318 -- Includes a call to the predicate function for type T in Expr if T
8319 -- has predicates and Predicate_Function (T) is non-empty.
8320
8321 function Process_RE (N : Node_Id) return Traverse_Result;
8322 -- Used in Process REs, tests if node N is a raise expression, and if
8323 -- so, marks it to be converted to return False.
8324
8325 procedure Process_REs is new Traverse_Proc (Process_RE);
8326 -- Marks any raise expressions in Expr_M to return False
8327
8328 function Test_RE (N : Node_Id) return Traverse_Result;
8329 -- Used in Test_REs, tests one node for being a raise expression, and if
8330 -- so sets Raise_Expression_Present True.
8331
8332 procedure Test_REs is new Traverse_Proc (Test_RE);
8333 -- Tests to see if Expr contains any raise expressions
8334
8335 --------------
8336 -- Add_Call --
8337 --------------
8338
8339 procedure Add_Call (T : Entity_Id) is
8340 Exp : Node_Id;
8341
8342 begin
8343 if Present (T) and then Present (Predicate_Function (T)) then
8344 Set_Has_Predicates (Typ);
8345
8346 -- Build the call to the predicate function of T. The type may be
8347 -- derived, so use an unchecked conversion for the actual.
8348
8349 Exp :=
8350 Make_Predicate_Call
8351 (Typ => T,
8352 Expr =>
8353 Unchecked_Convert_To (T,
8354 Make_Identifier (Loc, Object_Name)));
8355
8356 -- "and"-in the call to evolving expression
8357
8358 Add_Condition (Exp);
8359
8360 -- Output info message on inheritance if required. Note we do not
8361 -- give this information for generic actual types, since it is
8362 -- unwelcome noise in that case in instantiations. We also
8363 -- generally suppress the message in instantiations, and also
8364 -- if it involves internal names.
8365
8366 if Opt.List_Inherited_Aspects
8367 and then not Is_Generic_Actual_Type (Typ)
8368 and then Instantiation_Depth (Sloc (Typ)) = 0
8369 and then not Is_Internal_Name (Chars (T))
8370 and then not Is_Internal_Name (Chars (Typ))
8371 then
8372 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8373 Error_Msg_Node_2 := T;
8374 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8375 end if;
8376 end if;
8377 end Add_Call;
8378
8379 -------------------
8380 -- Add_Condition --
8381 -------------------
8382
8383 procedure Add_Condition (Cond : Node_Id) is
8384 begin
8385 -- This is the first predicate expression
8386
8387 if No (Expr) then
8388 Expr := Cond;
8389
8390 -- Otherwise concatenate to the existing predicate expressions by
8391 -- using "and then".
8392
8393 else
8394 Expr :=
8395 Make_And_Then (Loc,
8396 Left_Opnd => Relocate_Node (Expr),
8397 Right_Opnd => Cond);
8398 end if;
8399 end Add_Condition;
8400
8401 --------------------
8402 -- Add_Predicates --
8403 --------------------
8404
8405 procedure Add_Predicates is
8406 procedure Add_Predicate (Prag : Node_Id);
8407 -- Concatenate the expression of predicate pragma Prag to Expr by
8408 -- using a short circuit "and then" operator.
8409
8410 -------------------
8411 -- Add_Predicate --
8412 -------------------
8413
8414 procedure Add_Predicate (Prag : Node_Id) is
8415 procedure Replace_Type_Reference (N : Node_Id);
8416 -- Replace a single occurrence N of the subtype name with a
8417 -- reference to the formal of the predicate function. N can be an
8418 -- identifier referencing the subtype, or a selected component,
8419 -- representing an appropriately qualified occurrence of the
8420 -- subtype name.
8421
8422 procedure Replace_Type_References is
8423 new Replace_Type_References_Generic (Replace_Type_Reference);
8424 -- Traverse an expression changing every occurrence of an
8425 -- identifier whose name matches the name of the subtype with a
8426 -- reference to the formal parameter of the predicate function.
8427
8428 ----------------------------
8429 -- Replace_Type_Reference --
8430 ----------------------------
8431
8432 procedure Replace_Type_Reference (N : Node_Id) is
8433 begin
8434 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8435 -- Use the Sloc of the usage name, not the defining name
8436
8437 Set_Etype (N, Typ);
8438 Set_Entity (N, Object_Entity);
8439
8440 -- We want to treat the node as if it comes from source, so
8441 -- that ASIS will not ignore it.
8442
8443 Set_Comes_From_Source (N, True);
8444 end Replace_Type_Reference;
8445
8446 -- Local variables
8447
8448 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8449 Arg1 : Node_Id;
8450 Arg2 : Node_Id;
8451
8452 -- Start of processing for Add_Predicate
8453
8454 begin
8455 -- Mark corresponding SCO as enabled
8456
8457 Set_SCO_Pragma_Enabled (Sloc (Prag));
8458
8459 -- Extract the arguments of the pragma. The expression itself
8460 -- is copied for use in the predicate function, to preserve the
8461 -- original version for ASIS use.
8462
8463 Arg1 := First (Pragma_Argument_Associations (Prag));
8464 Arg2 := Next (Arg1);
8465
8466 Arg1 := Get_Pragma_Arg (Arg1);
8467 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8468
8469 -- When the predicate pragma applies to the current type or its
8470 -- full view, replace all occurrences of the subtype name with
8471 -- references to the formal parameter of the predicate function.
8472
8473 if Entity (Arg1) = Typ
8474 or else Full_View (Entity (Arg1)) = Typ
8475 then
8476 Replace_Type_References (Arg2, Typ);
8477
8478 -- If the predicate pragma comes from an aspect, replace the
8479 -- saved expression because we need the subtype references
8480 -- replaced for the calls to Preanalyze_Spec_Expression in
8481 -- Check_Aspect_At_xxx routines.
8482
8483 if Present (Asp) then
8484 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8485 end if;
8486
8487 -- "and"-in the Arg2 condition to evolving expression
8488
8489 Add_Condition (Relocate_Node (Arg2));
8490 end if;
8491 end Add_Predicate;
8492
8493 -- Local variables
8494
8495 Ritem : Node_Id;
8496
8497 -- Start of processing for Add_Predicates
8498
8499 begin
8500 Ritem := First_Rep_Item (Typ);
8501
8502 -- If the type is private, check whether full view has inherited
8503 -- predicates.
8504
8505 if Is_Private_Type (Typ) and then No (Ritem) then
8506 Ritem := First_Rep_Item (Full_View (Typ));
8507 end if;
8508
8509 while Present (Ritem) loop
8510 if Nkind (Ritem) = N_Pragma
8511 and then Pragma_Name (Ritem) = Name_Predicate
8512 then
8513 Add_Predicate (Ritem);
8514
8515 -- If the type is declared in an inner package it may be frozen
8516 -- outside of the package, and the generated pragma has not been
8517 -- analyzed yet, so capture the expression for the predicate
8518 -- function at this point.
8519
8520 elsif Nkind (Ritem) = N_Aspect_Specification
8521 and then Present (Aspect_Rep_Item (Ritem))
8522 and then Scope (Typ) /= Current_Scope
8523 then
8524 declare
8525 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8526
8527 begin
8528 if Nkind (Prag) = N_Pragma
8529 and then Pragma_Name (Prag) = Name_Predicate
8530 then
8531 Add_Predicate (Prag);
8532 end if;
8533 end;
8534 end if;
8535
8536 Next_Rep_Item (Ritem);
8537 end loop;
8538 end Add_Predicates;
8539
8540 ----------------
8541 -- Process_RE --
8542 ----------------
8543
8544 function Process_RE (N : Node_Id) return Traverse_Result is
8545 begin
8546 if Nkind (N) = N_Raise_Expression then
8547 Set_Convert_To_Return_False (N);
8548 return Skip;
8549 else
8550 return OK;
8551 end if;
8552 end Process_RE;
8553
8554 -------------
8555 -- Test_RE --
8556 -------------
8557
8558 function Test_RE (N : Node_Id) return Traverse_Result is
8559 begin
8560 if Nkind (N) = N_Raise_Expression then
8561 Raise_Expression_Present := True;
8562 return Abandon;
8563 else
8564 return OK;
8565 end if;
8566 end Test_RE;
8567
8568 -- Local variables
8569
8570 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8571 -- Save the Ghost mode to restore on exit
8572
8573 -- Start of processing for Build_Predicate_Functions
8574
8575 begin
8576 -- Return if already built or if type does not have predicates
8577
8578 SId := Predicate_Function (Typ);
8579 if not Has_Predicates (Typ)
8580 or else (Present (SId) and then Has_Completion (SId))
8581 then
8582 return;
8583 end if;
8584
8585 -- The related type may be subject to pragma Ghost. Set the mode now to
8586 -- ensure that the predicate functions are properly marked as Ghost.
8587
8588 Set_Ghost_Mode (Typ);
8589
8590 -- Prepare to construct predicate expression
8591
8592 Expr := Empty;
8593
8594 if Present (SId) then
8595 FDecl := Unit_Declaration_Node (SId);
8596
8597 else
8598 FDecl := Build_Predicate_Function_Declaration (Typ);
8599 SId := Defining_Entity (FDecl);
8600 end if;
8601
8602 -- Recover name of formal parameter of function that replaces references
8603 -- to the type in predicate expressions.
8604
8605 Object_Entity :=
8606 Defining_Identifier
8607 (First (Parameter_Specifications (Specification (FDecl))));
8608
8609 Object_Name := Chars (Object_Entity);
8610 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8611
8612 -- Add predicates for ancestor if present. These must come before the
8613 -- ones for the current type, as required by AI12-0071-1.
8614
8615 declare
8616 Atyp : Entity_Id;
8617 begin
8618 Atyp := Nearest_Ancestor (Typ);
8619
8620 -- The type may be private but the full view may inherit predicates
8621
8622 if No (Atyp) and then Is_Private_Type (Typ) then
8623 Atyp := Nearest_Ancestor (Full_View (Typ));
8624 end if;
8625
8626 if Present (Atyp) then
8627 Add_Call (Atyp);
8628 end if;
8629 end;
8630
8631 -- Add Predicates for the current type
8632
8633 Add_Predicates;
8634
8635 -- Case where predicates are present
8636
8637 if Present (Expr) then
8638
8639 -- Test for raise expression present
8640
8641 Test_REs (Expr);
8642
8643 -- If raise expression is present, capture a copy of Expr for use
8644 -- in building the predicateM function version later on. For this
8645 -- copy we replace references to Object_Entity by Object_Entity_M.
8646
8647 if Raise_Expression_Present then
8648 declare
8649 Map : constant Elist_Id := New_Elmt_List;
8650 New_V : Entity_Id := Empty;
8651
8652 -- The unanalyzed expression will be copied and appear in
8653 -- both functions. Normally expressions do not declare new
8654 -- entities, but quantified expressions do, so we need to
8655 -- create new entities for their bound variables, to prevent
8656 -- multiple definitions in gigi.
8657
8658 function Reset_Loop_Variable (N : Node_Id)
8659 return Traverse_Result;
8660
8661 procedure Collect_Loop_Variables is
8662 new Traverse_Proc (Reset_Loop_Variable);
8663
8664 ------------------------
8665 -- Reset_Loop_Variable --
8666 ------------------------
8667
8668 function Reset_Loop_Variable (N : Node_Id)
8669 return Traverse_Result
8670 is
8671 begin
8672 if Nkind (N) = N_Iterator_Specification then
8673 New_V := Make_Defining_Identifier
8674 (Sloc (N), Chars (Defining_Identifier (N)));
8675
8676 Set_Defining_Identifier (N, New_V);
8677 end if;
8678
8679 return OK;
8680 end Reset_Loop_Variable;
8681
8682 begin
8683 Append_Elmt (Object_Entity, Map);
8684 Append_Elmt (Object_Entity_M, Map);
8685 Expr_M := New_Copy_Tree (Expr, Map => Map);
8686 Collect_Loop_Variables (Expr_M);
8687 end;
8688 end if;
8689
8690 -- Build the main predicate function
8691
8692 declare
8693 SIdB : constant Entity_Id :=
8694 Make_Defining_Identifier (Loc,
8695 Chars => New_External_Name (Chars (Typ), "Predicate"));
8696 -- The entity for the function body
8697
8698 Spec : Node_Id;
8699 FBody : Node_Id;
8700
8701 begin
8702 -- The predicate function is shared between views of a type
8703
8704 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8705 Set_Predicate_Function (Full_View (Typ), SId);
8706 end if;
8707
8708 -- Build function body
8709
8710 Spec :=
8711 Make_Function_Specification (Loc,
8712 Defining_Unit_Name => SIdB,
8713 Parameter_Specifications => New_List (
8714 Make_Parameter_Specification (Loc,
8715 Defining_Identifier =>
8716 Make_Defining_Identifier (Loc, Object_Name),
8717 Parameter_Type =>
8718 New_Occurrence_Of (Typ, Loc))),
8719 Result_Definition =>
8720 New_Occurrence_Of (Standard_Boolean, Loc));
8721
8722 FBody :=
8723 Make_Subprogram_Body (Loc,
8724 Specification => Spec,
8725 Declarations => Empty_List,
8726 Handled_Statement_Sequence =>
8727 Make_Handled_Sequence_Of_Statements (Loc,
8728 Statements => New_List (
8729 Make_Simple_Return_Statement (Loc,
8730 Expression => Expr))));
8731
8732 -- If declaration has not been analyzed yet, Insert declaration
8733 -- before freeze node. Insert body itself after freeze node.
8734
8735 if not Analyzed (FDecl) then
8736 Insert_Before_And_Analyze (N, FDecl);
8737 end if;
8738
8739 Insert_After_And_Analyze (N, FBody);
8740
8741 -- Static predicate functions are always side-effect free, and
8742 -- in most cases dynamic predicate functions are as well. Mark
8743 -- them as such whenever possible, so redundant predicate checks
8744 -- can be optimized. If there is a variable reference within the
8745 -- expression, the function is not pure.
8746
8747 if Expander_Active then
8748 Set_Is_Pure (SId,
8749 Side_Effect_Free (Expr, Variable_Ref => True));
8750 Set_Is_Inlined (SId);
8751 end if;
8752 end;
8753
8754 -- Test for raise expressions present and if so build M version
8755
8756 if Raise_Expression_Present then
8757 declare
8758 SId : constant Entity_Id :=
8759 Make_Defining_Identifier (Loc,
8760 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8761 -- The entity for the function spec
8762
8763 SIdB : constant Entity_Id :=
8764 Make_Defining_Identifier (Loc,
8765 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8766 -- The entity for the function body
8767
8768 Spec : Node_Id;
8769 FBody : Node_Id;
8770 FDecl : Node_Id;
8771 BTemp : Entity_Id;
8772
8773 begin
8774 -- Mark any raise expressions for special expansion
8775
8776 Process_REs (Expr_M);
8777
8778 -- Build function declaration
8779
8780 Set_Ekind (SId, E_Function);
8781 Set_Is_Predicate_Function_M (SId);
8782 Set_Predicate_Function_M (Typ, SId);
8783
8784 -- The predicate function is shared between views of a type
8785
8786 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8787 Set_Predicate_Function_M (Full_View (Typ), SId);
8788 end if;
8789
8790 Spec :=
8791 Make_Function_Specification (Loc,
8792 Defining_Unit_Name => SId,
8793 Parameter_Specifications => New_List (
8794 Make_Parameter_Specification (Loc,
8795 Defining_Identifier => Object_Entity_M,
8796 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8797 Result_Definition =>
8798 New_Occurrence_Of (Standard_Boolean, Loc));
8799
8800 FDecl :=
8801 Make_Subprogram_Declaration (Loc,
8802 Specification => Spec);
8803
8804 -- Build function body
8805
8806 Spec :=
8807 Make_Function_Specification (Loc,
8808 Defining_Unit_Name => SIdB,
8809 Parameter_Specifications => New_List (
8810 Make_Parameter_Specification (Loc,
8811 Defining_Identifier =>
8812 Make_Defining_Identifier (Loc, Object_Name),
8813 Parameter_Type =>
8814 New_Occurrence_Of (Typ, Loc))),
8815 Result_Definition =>
8816 New_Occurrence_Of (Standard_Boolean, Loc));
8817
8818 -- Build the body, we declare the boolean expression before
8819 -- doing the return, because we are not really confident of
8820 -- what happens if a return appears within a return.
8821
8822 BTemp :=
8823 Make_Defining_Identifier (Loc,
8824 Chars => New_Internal_Name ('B'));
8825
8826 FBody :=
8827 Make_Subprogram_Body (Loc,
8828 Specification => Spec,
8829
8830 Declarations => New_List (
8831 Make_Object_Declaration (Loc,
8832 Defining_Identifier => BTemp,
8833 Constant_Present => True,
8834 Object_Definition =>
8835 New_Occurrence_Of (Standard_Boolean, Loc),
8836 Expression => Expr_M)),
8837
8838 Handled_Statement_Sequence =>
8839 Make_Handled_Sequence_Of_Statements (Loc,
8840 Statements => New_List (
8841 Make_Simple_Return_Statement (Loc,
8842 Expression => New_Occurrence_Of (BTemp, Loc)))));
8843
8844 -- Insert declaration before freeze node and body after
8845
8846 Insert_Before_And_Analyze (N, FDecl);
8847 Insert_After_And_Analyze (N, FBody);
8848 end;
8849 end if;
8850
8851 -- See if we have a static predicate. Note that the answer may be
8852 -- yes even if we have an explicit Dynamic_Predicate present.
8853
8854 declare
8855 PS : Boolean;
8856 EN : Node_Id;
8857
8858 begin
8859 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8860 PS := False;
8861 else
8862 PS := Is_Predicate_Static (Expr, Object_Name);
8863 end if;
8864
8865 -- Case where we have a predicate-static aspect
8866
8867 if PS then
8868
8869 -- We don't set Has_Static_Predicate_Aspect, since we can have
8870 -- any of the three cases (Predicate, Dynamic_Predicate, or
8871 -- Static_Predicate) generating a predicate with an expression
8872 -- that is predicate-static. We just indicate that we have a
8873 -- predicate that can be treated as static.
8874
8875 Set_Has_Static_Predicate (Typ);
8876
8877 -- For discrete subtype, build the static predicate list
8878
8879 if Is_Discrete_Type (Typ) then
8880 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8881
8882 -- If we don't get a static predicate list, it means that we
8883 -- have a case where this is not possible, most typically in
8884 -- the case where we inherit a dynamic predicate. We do not
8885 -- consider this an error, we just leave the predicate as
8886 -- dynamic. But if we do succeed in building the list, then
8887 -- we mark the predicate as static.
8888
8889 if No (Static_Discrete_Predicate (Typ)) then
8890 Set_Has_Static_Predicate (Typ, False);
8891 end if;
8892
8893 -- For real or string subtype, save predicate expression
8894
8895 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8896 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8897 end if;
8898
8899 -- Case of dynamic predicate (expression is not predicate-static)
8900
8901 else
8902 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8903 -- is only set if we have an explicit Dynamic_Predicate aspect
8904 -- given. Here we may simply have a Predicate aspect where the
8905 -- expression happens not to be predicate-static.
8906
8907 -- Emit an error when the predicate is categorized as static
8908 -- but its expression is not predicate-static.
8909
8910 -- First a little fiddling to get a nice location for the
8911 -- message. If the expression is of the form (A and then B),
8912 -- where A is an inherited predicate, then use the right
8913 -- operand for the Sloc. This avoids getting confused by a call
8914 -- to an inherited predicate with a less convenient source
8915 -- location.
8916
8917 EN := Expr;
8918 while Nkind (EN) = N_And_Then
8919 and then Nkind (Left_Opnd (EN)) = N_Function_Call
8920 and then Is_Predicate_Function
8921 (Entity (Name (Left_Opnd (EN))))
8922 loop
8923 EN := Right_Opnd (EN);
8924 end loop;
8925
8926 -- Now post appropriate message
8927
8928 if Has_Static_Predicate_Aspect (Typ) then
8929 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
8930 Error_Msg_F
8931 ("expression is not predicate-static (RM 3.2.4(16-22))",
8932 EN);
8933 else
8934 Error_Msg_F
8935 ("static predicate requires scalar or string type", EN);
8936 end if;
8937 end if;
8938 end if;
8939 end;
8940 end if;
8941
8942 Restore_Ghost_Mode (Saved_GM);
8943 end Build_Predicate_Functions;
8944
8945 ------------------------------------------
8946 -- Build_Predicate_Function_Declaration --
8947 ------------------------------------------
8948
8949 -- WARNING: This routine manages Ghost regions. Return statements must be
8950 -- replaced by gotos which jump to the end of the routine and restore the
8951 -- Ghost mode.
8952
8953 function Build_Predicate_Function_Declaration
8954 (Typ : Entity_Id) return Node_Id
8955 is
8956 Loc : constant Source_Ptr := Sloc (Typ);
8957
8958 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8959 -- Save the Ghost mode to restore on exit
8960
8961 Func_Decl : Node_Id;
8962 Func_Id : Entity_Id;
8963 Spec : Node_Id;
8964
8965 begin
8966 -- The related type may be subject to pragma Ghost. Set the mode now to
8967 -- ensure that the predicate functions are properly marked as Ghost.
8968
8969 Set_Ghost_Mode (Typ);
8970
8971 Func_Id :=
8972 Make_Defining_Identifier (Loc,
8973 Chars => New_External_Name (Chars (Typ), "Predicate"));
8974
8975 -- The predicate function requires debug info when the predicates are
8976 -- subject to Source Coverage Obligations.
8977
8978 if Opt.Generate_SCO then
8979 Set_Debug_Info_Needed (Func_Id);
8980 end if;
8981
8982 Spec :=
8983 Make_Function_Specification (Loc,
8984 Defining_Unit_Name => Func_Id,
8985 Parameter_Specifications => New_List (
8986 Make_Parameter_Specification (Loc,
8987 Defining_Identifier => Make_Temporary (Loc, 'I'),
8988 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8989 Result_Definition =>
8990 New_Occurrence_Of (Standard_Boolean, Loc));
8991
8992 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
8993
8994 Set_Ekind (Func_Id, E_Function);
8995 Set_Etype (Func_Id, Standard_Boolean);
8996 Set_Is_Internal (Func_Id);
8997 Set_Is_Predicate_Function (Func_Id);
8998 Set_Predicate_Function (Typ, Func_Id);
8999
9000 Insert_After (Parent (Typ), Func_Decl);
9001 Analyze (Func_Decl);
9002
9003 Restore_Ghost_Mode (Saved_GM);
9004
9005 return Func_Decl;
9006 end Build_Predicate_Function_Declaration;
9007
9008 -----------------------------------------
9009 -- Check_Aspect_At_End_Of_Declarations --
9010 -----------------------------------------
9011
9012 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9013 Ent : constant Entity_Id := Entity (ASN);
9014 Ident : constant Node_Id := Identifier (ASN);
9015 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9016
9017 End_Decl_Expr : constant Node_Id := Entity (Ident);
9018 -- Expression to be analyzed at end of declarations
9019
9020 Freeze_Expr : constant Node_Id := Expression (ASN);
9021 -- Expression from call to Check_Aspect_At_Freeze_Point.
9022
9023 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9024 -- Type required for preanalyze call. We use the original expression to
9025 -- get the proper type, to prevent cascaded errors when the expression
9026 -- is constant-folded.
9027
9028 Err : Boolean;
9029 -- Set False if error
9030
9031 -- On entry to this procedure, Entity (Ident) contains a copy of the
9032 -- original expression from the aspect, saved for this purpose, and
9033 -- but Expression (Ident) is a preanalyzed copy of the expression,
9034 -- preanalyzed just after the freeze point.
9035
9036 procedure Check_Overloaded_Name;
9037 -- For aspects whose expression is simply a name, this routine checks if
9038 -- the name is overloaded or not. If so, it verifies there is an
9039 -- interpretation that matches the entity obtained at the freeze point,
9040 -- otherwise the compiler complains.
9041
9042 ---------------------------
9043 -- Check_Overloaded_Name --
9044 ---------------------------
9045
9046 procedure Check_Overloaded_Name is
9047 begin
9048 if not Is_Overloaded (End_Decl_Expr) then
9049 Err := not Is_Entity_Name (End_Decl_Expr)
9050 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9051
9052 else
9053 Err := True;
9054
9055 declare
9056 Index : Interp_Index;
9057 It : Interp;
9058
9059 begin
9060 Get_First_Interp (End_Decl_Expr, Index, It);
9061 while Present (It.Typ) loop
9062 if It.Nam = Entity (Freeze_Expr) then
9063 Err := False;
9064 exit;
9065 end if;
9066
9067 Get_Next_Interp (Index, It);
9068 end loop;
9069 end;
9070 end if;
9071 end Check_Overloaded_Name;
9072
9073 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9074
9075 begin
9076 -- In an instance we do not perform the consistency check between freeze
9077 -- point and end of declarations, because it was done already in the
9078 -- analysis of the generic. Furthermore, the delayed analysis of an
9079 -- aspect of the instance may produce spurious errors when the generic
9080 -- is a child unit that references entities in the parent (which might
9081 -- not be in scope at the freeze point of the instance).
9082
9083 if In_Instance then
9084 return;
9085
9086 -- Case of aspects Dimension, Dimension_System and Synchronization
9087
9088 elsif A_Id = Aspect_Synchronization then
9089 return;
9090
9091 -- Case of stream attributes, just have to compare entities. However,
9092 -- the expression is just a name (possibly overloaded), and there may
9093 -- be stream operations declared for unrelated types, so we just need
9094 -- to verify that one of these interpretations is the one available at
9095 -- at the freeze point.
9096
9097 elsif A_Id = Aspect_Input or else
9098 A_Id = Aspect_Output or else
9099 A_Id = Aspect_Read or else
9100 A_Id = Aspect_Write
9101 then
9102 Analyze (End_Decl_Expr);
9103 Check_Overloaded_Name;
9104
9105 elsif A_Id = Aspect_Variable_Indexing or else
9106 A_Id = Aspect_Constant_Indexing or else
9107 A_Id = Aspect_Default_Iterator or else
9108 A_Id = Aspect_Iterator_Element
9109 then
9110 -- Make type unfrozen before analysis, to prevent spurious errors
9111 -- about late attributes.
9112
9113 Set_Is_Frozen (Ent, False);
9114 Analyze (End_Decl_Expr);
9115 Set_Is_Frozen (Ent, True);
9116
9117 -- If the end of declarations comes before any other freeze
9118 -- point, the Freeze_Expr is not analyzed: no check needed.
9119
9120 if Analyzed (Freeze_Expr) and then not In_Instance then
9121 Check_Overloaded_Name;
9122 else
9123 Err := False;
9124 end if;
9125
9126 -- All other cases
9127
9128 else
9129 -- Indicate that the expression comes from an aspect specification,
9130 -- which is used in subsequent analysis even if expansion is off.
9131
9132 Set_Parent (End_Decl_Expr, ASN);
9133
9134 -- In a generic context the aspect expressions have not been
9135 -- preanalyzed, so do it now. There are no conformance checks
9136 -- to perform in this case.
9137
9138 if No (T) then
9139 Check_Aspect_At_Freeze_Point (ASN);
9140 return;
9141
9142 -- The default values attributes may be defined in the private part,
9143 -- and the analysis of the expression may take place when only the
9144 -- partial view is visible. The expression must be scalar, so use
9145 -- the full view to resolve.
9146
9147 elsif (A_Id = Aspect_Default_Value
9148 or else
9149 A_Id = Aspect_Default_Component_Value)
9150 and then Is_Private_Type (T)
9151 then
9152 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9153
9154 else
9155 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9156 end if;
9157
9158 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9159 end if;
9160
9161 -- Output error message if error. Force error on aspect specification
9162 -- even if there is an error on the expression itself.
9163
9164 if Err then
9165 Error_Msg_NE
9166 ("!visibility of aspect for& changes after freeze point",
9167 ASN, Ent);
9168 Error_Msg_NE
9169 ("info: & is frozen here, aspects evaluated at this point??",
9170 Freeze_Node (Ent), Ent);
9171 end if;
9172 end Check_Aspect_At_End_Of_Declarations;
9173
9174 ----------------------------------
9175 -- Check_Aspect_At_Freeze_Point --
9176 ----------------------------------
9177
9178 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9179 Ident : constant Node_Id := Identifier (ASN);
9180 -- Identifier (use Entity field to save expression)
9181
9182 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9183
9184 T : Entity_Id := Empty;
9185 -- Type required for preanalyze call
9186
9187 begin
9188 -- On entry to this procedure, Entity (Ident) contains a copy of the
9189 -- original expression from the aspect, saved for this purpose.
9190
9191 -- On exit from this procedure Entity (Ident) is unchanged, still
9192 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9193 -- of the expression, preanalyzed just after the freeze point.
9194
9195 -- Make a copy of the expression to be preanalyzed
9196
9197 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9198
9199 -- Find type for preanalyze call
9200
9201 case A_Id is
9202
9203 -- No_Aspect should be impossible
9204
9205 when No_Aspect =>
9206 raise Program_Error;
9207
9208 -- Aspects taking an optional boolean argument
9209
9210 when Boolean_Aspects
9211 | Library_Unit_Aspects
9212 =>
9213 T := Standard_Boolean;
9214
9215 -- Aspects corresponding to attribute definition clauses
9216
9217 when Aspect_Address =>
9218 T := RTE (RE_Address);
9219
9220 when Aspect_Attach_Handler =>
9221 T := RTE (RE_Interrupt_ID);
9222
9223 when Aspect_Bit_Order
9224 | Aspect_Scalar_Storage_Order
9225 =>
9226 T := RTE (RE_Bit_Order);
9227
9228 when Aspect_Convention =>
9229 return;
9230
9231 when Aspect_CPU =>
9232 T := RTE (RE_CPU_Range);
9233
9234 -- Default_Component_Value is resolved with the component type
9235
9236 when Aspect_Default_Component_Value =>
9237 T := Component_Type (Entity (ASN));
9238
9239 when Aspect_Default_Storage_Pool =>
9240 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9241
9242 -- Default_Value is resolved with the type entity in question
9243
9244 when Aspect_Default_Value =>
9245 T := Entity (ASN);
9246
9247 when Aspect_Dispatching_Domain =>
9248 T := RTE (RE_Dispatching_Domain);
9249
9250 when Aspect_External_Tag =>
9251 T := Standard_String;
9252
9253 when Aspect_External_Name =>
9254 T := Standard_String;
9255
9256 when Aspect_Link_Name =>
9257 T := Standard_String;
9258
9259 when Aspect_Interrupt_Priority
9260 | Aspect_Priority
9261 =>
9262 T := Standard_Integer;
9263
9264 when Aspect_Relative_Deadline =>
9265 T := RTE (RE_Time_Span);
9266
9267 when Aspect_Secondary_Stack_Size =>
9268 T := Standard_Integer;
9269
9270 when Aspect_Small =>
9271 T := Universal_Real;
9272
9273 -- For a simple storage pool, we have to retrieve the type of the
9274 -- pool object associated with the aspect's corresponding attribute
9275 -- definition clause.
9276
9277 when Aspect_Simple_Storage_Pool =>
9278 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9279
9280 when Aspect_Storage_Pool =>
9281 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9282
9283 when Aspect_Alignment
9284 | Aspect_Component_Size
9285 | Aspect_Machine_Radix
9286 | Aspect_Object_Size
9287 | Aspect_Size
9288 | Aspect_Storage_Size
9289 | Aspect_Stream_Size
9290 | Aspect_Value_Size
9291 =>
9292 T := Any_Integer;
9293
9294 when Aspect_Linker_Section =>
9295 T := Standard_String;
9296
9297 when Aspect_Synchronization =>
9298 return;
9299
9300 -- Special case, the expression of these aspects is just an entity
9301 -- that does not need any resolution, so just analyze.
9302
9303 when Aspect_Input
9304 | Aspect_Output
9305 | Aspect_Read
9306 | Aspect_Suppress
9307 | Aspect_Unsuppress
9308 | Aspect_Warnings
9309 | Aspect_Write
9310 =>
9311 Analyze (Expression (ASN));
9312 return;
9313
9314 -- Same for Iterator aspects, where the expression is a function
9315 -- name. Legality rules are checked separately.
9316
9317 when Aspect_Constant_Indexing
9318 | Aspect_Default_Iterator
9319 | Aspect_Iterator_Element
9320 | Aspect_Variable_Indexing
9321 =>
9322 Analyze (Expression (ASN));
9323 return;
9324
9325 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9326
9327 when Aspect_Iterable =>
9328 T := Entity (ASN);
9329
9330 declare
9331 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9332 Assoc : Node_Id;
9333 Expr : Node_Id;
9334
9335 begin
9336 if Cursor = Any_Type then
9337 return;
9338 end if;
9339
9340 Assoc := First (Component_Associations (Expression (ASN)));
9341 while Present (Assoc) loop
9342 Expr := Expression (Assoc);
9343 Analyze (Expr);
9344
9345 if not Error_Posted (Expr) then
9346 Resolve_Iterable_Operation
9347 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9348 end if;
9349
9350 Next (Assoc);
9351 end loop;
9352 end;
9353
9354 return;
9355
9356 -- Invariant/Predicate take boolean expressions
9357
9358 when Aspect_Dynamic_Predicate
9359 | Aspect_Invariant
9360 | Aspect_Predicate
9361 | Aspect_Static_Predicate
9362 | Aspect_Type_Invariant
9363 =>
9364 T := Standard_Boolean;
9365
9366 when Aspect_Predicate_Failure =>
9367 T := Standard_String;
9368
9369 -- Here is the list of aspects that don't require delay analysis
9370
9371 when Aspect_Abstract_State
9372 | Aspect_Annotate
9373 | Aspect_Async_Readers
9374 | Aspect_Async_Writers
9375 | Aspect_Constant_After_Elaboration
9376 | Aspect_Contract_Cases
9377 | Aspect_Default_Initial_Condition
9378 | Aspect_Depends
9379 | Aspect_Dimension
9380 | Aspect_Dimension_System
9381 | Aspect_Effective_Reads
9382 | Aspect_Effective_Writes
9383 | Aspect_Extensions_Visible
9384 | Aspect_Ghost
9385 | Aspect_Global
9386 | Aspect_Implicit_Dereference
9387 | Aspect_Initial_Condition
9388 | Aspect_Initializes
9389 | Aspect_Max_Queue_Length
9390 | Aspect_Obsolescent
9391 | Aspect_Part_Of
9392 | Aspect_Post
9393 | Aspect_Postcondition
9394 | Aspect_Pre
9395 | Aspect_Precondition
9396 | Aspect_Refined_Depends
9397 | Aspect_Refined_Global
9398 | Aspect_Refined_Post
9399 | Aspect_Refined_State
9400 | Aspect_SPARK_Mode
9401 | Aspect_Test_Case
9402 | Aspect_Unimplemented
9403 | Aspect_Volatile_Function
9404 =>
9405 raise Program_Error;
9406
9407 end case;
9408
9409 -- Do the preanalyze call
9410
9411 Preanalyze_Spec_Expression (Expression (ASN), T);
9412 end Check_Aspect_At_Freeze_Point;
9413
9414 -----------------------------------
9415 -- Check_Constant_Address_Clause --
9416 -----------------------------------
9417
9418 procedure Check_Constant_Address_Clause
9419 (Expr : Node_Id;
9420 U_Ent : Entity_Id)
9421 is
9422 procedure Check_At_Constant_Address (Nod : Node_Id);
9423 -- Checks that the given node N represents a name whose 'Address is
9424 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9425 -- address value is the same at the point of declaration of U_Ent and at
9426 -- the time of elaboration of the address clause.
9427
9428 procedure Check_Expr_Constants (Nod : Node_Id);
9429 -- Checks that Nod meets the requirements for a constant address clause
9430 -- in the sense of the enclosing procedure.
9431
9432 procedure Check_List_Constants (Lst : List_Id);
9433 -- Check that all elements of list Lst meet the requirements for a
9434 -- constant address clause in the sense of the enclosing procedure.
9435
9436 -------------------------------
9437 -- Check_At_Constant_Address --
9438 -------------------------------
9439
9440 procedure Check_At_Constant_Address (Nod : Node_Id) is
9441 begin
9442 if Is_Entity_Name (Nod) then
9443 if Present (Address_Clause (Entity ((Nod)))) then
9444 Error_Msg_NE
9445 ("invalid address clause for initialized object &!",
9446 Nod, U_Ent);
9447 Error_Msg_NE
9448 ("address for& cannot depend on another address clause! "
9449 & "(RM 13.1(22))!", Nod, U_Ent);
9450
9451 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9452 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9453 then
9454 Error_Msg_NE
9455 ("invalid address clause for initialized object &!",
9456 Nod, U_Ent);
9457 Error_Msg_Node_2 := U_Ent;
9458 Error_Msg_NE
9459 ("\& must be defined before & (RM 13.1(22))!",
9460 Nod, Entity (Nod));
9461 end if;
9462
9463 elsif Nkind (Nod) = N_Selected_Component then
9464 declare
9465 T : constant Entity_Id := Etype (Prefix (Nod));
9466
9467 begin
9468 if (Is_Record_Type (T)
9469 and then Has_Discriminants (T))
9470 or else
9471 (Is_Access_Type (T)
9472 and then Is_Record_Type (Designated_Type (T))
9473 and then Has_Discriminants (Designated_Type (T)))
9474 then
9475 Error_Msg_NE
9476 ("invalid address clause for initialized object &!",
9477 Nod, U_Ent);
9478 Error_Msg_N
9479 ("\address cannot depend on component of discriminated "
9480 & "record (RM 13.1(22))!", Nod);
9481 else
9482 Check_At_Constant_Address (Prefix (Nod));
9483 end if;
9484 end;
9485
9486 elsif Nkind (Nod) = N_Indexed_Component then
9487 Check_At_Constant_Address (Prefix (Nod));
9488 Check_List_Constants (Expressions (Nod));
9489
9490 else
9491 Check_Expr_Constants (Nod);
9492 end if;
9493 end Check_At_Constant_Address;
9494
9495 --------------------------
9496 -- Check_Expr_Constants --
9497 --------------------------
9498
9499 procedure Check_Expr_Constants (Nod : Node_Id) is
9500 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9501 Ent : Entity_Id := Empty;
9502
9503 begin
9504 if Nkind (Nod) in N_Has_Etype
9505 and then Etype (Nod) = Any_Type
9506 then
9507 return;
9508 end if;
9509
9510 case Nkind (Nod) is
9511 when N_Empty
9512 | N_Error
9513 =>
9514 return;
9515
9516 when N_Expanded_Name
9517 | N_Identifier
9518 =>
9519 Ent := Entity (Nod);
9520
9521 -- We need to look at the original node if it is different
9522 -- from the node, since we may have rewritten things and
9523 -- substituted an identifier representing the rewrite.
9524
9525 if Original_Node (Nod) /= Nod then
9526 Check_Expr_Constants (Original_Node (Nod));
9527
9528 -- If the node is an object declaration without initial
9529 -- value, some code has been expanded, and the expression
9530 -- is not constant, even if the constituents might be
9531 -- acceptable, as in A'Address + offset.
9532
9533 if Ekind (Ent) = E_Variable
9534 and then
9535 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9536 and then
9537 No (Expression (Declaration_Node (Ent)))
9538 then
9539 Error_Msg_NE
9540 ("invalid address clause for initialized object &!",
9541 Nod, U_Ent);
9542
9543 -- If entity is constant, it may be the result of expanding
9544 -- a check. We must verify that its declaration appears
9545 -- before the object in question, else we also reject the
9546 -- address clause.
9547
9548 elsif Ekind (Ent) = E_Constant
9549 and then In_Same_Source_Unit (Ent, U_Ent)
9550 and then Sloc (Ent) > Loc_U_Ent
9551 then
9552 Error_Msg_NE
9553 ("invalid address clause for initialized object &!",
9554 Nod, U_Ent);
9555 end if;
9556
9557 return;
9558 end if;
9559
9560 -- Otherwise look at the identifier and see if it is OK
9561
9562 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9563 or else Is_Type (Ent)
9564 then
9565 return;
9566
9567 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9568
9569 -- This is the case where we must have Ent defined before
9570 -- U_Ent. Clearly if they are in different units this
9571 -- requirement is met since the unit containing Ent is
9572 -- already processed.
9573
9574 if not In_Same_Source_Unit (Ent, U_Ent) then
9575 return;
9576
9577 -- Otherwise location of Ent must be before the location
9578 -- of U_Ent, that's what prior defined means.
9579
9580 elsif Sloc (Ent) < Loc_U_Ent then
9581 return;
9582
9583 else
9584 Error_Msg_NE
9585 ("invalid address clause for initialized object &!",
9586 Nod, U_Ent);
9587 Error_Msg_Node_2 := U_Ent;
9588 Error_Msg_NE
9589 ("\& must be defined before & (RM 13.1(22))!",
9590 Nod, Ent);
9591 end if;
9592
9593 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9594 Check_Expr_Constants (Original_Node (Nod));
9595
9596 else
9597 Error_Msg_NE
9598 ("invalid address clause for initialized object &!",
9599 Nod, U_Ent);
9600
9601 if Comes_From_Source (Ent) then
9602 Error_Msg_NE
9603 ("\reference to variable& not allowed"
9604 & " (RM 13.1(22))!", Nod, Ent);
9605 else
9606 Error_Msg_N
9607 ("non-static expression not allowed"
9608 & " (RM 13.1(22))!", Nod);
9609 end if;
9610 end if;
9611
9612 when N_Integer_Literal =>
9613
9614 -- If this is a rewritten unchecked conversion, in a system
9615 -- where Address is an integer type, always use the base type
9616 -- for a literal value. This is user-friendly and prevents
9617 -- order-of-elaboration issues with instances of unchecked
9618 -- conversion.
9619
9620 if Nkind (Original_Node (Nod)) = N_Function_Call then
9621 Set_Etype (Nod, Base_Type (Etype (Nod)));
9622 end if;
9623
9624 when N_Character_Literal
9625 | N_Real_Literal
9626 | N_String_Literal
9627 =>
9628 return;
9629
9630 when N_Range =>
9631 Check_Expr_Constants (Low_Bound (Nod));
9632 Check_Expr_Constants (High_Bound (Nod));
9633
9634 when N_Explicit_Dereference =>
9635 Check_Expr_Constants (Prefix (Nod));
9636
9637 when N_Indexed_Component =>
9638 Check_Expr_Constants (Prefix (Nod));
9639 Check_List_Constants (Expressions (Nod));
9640
9641 when N_Slice =>
9642 Check_Expr_Constants (Prefix (Nod));
9643 Check_Expr_Constants (Discrete_Range (Nod));
9644
9645 when N_Selected_Component =>
9646 Check_Expr_Constants (Prefix (Nod));
9647
9648 when N_Attribute_Reference =>
9649 if Nam_In (Attribute_Name (Nod), Name_Address,
9650 Name_Access,
9651 Name_Unchecked_Access,
9652 Name_Unrestricted_Access)
9653 then
9654 Check_At_Constant_Address (Prefix (Nod));
9655
9656 else
9657 Check_Expr_Constants (Prefix (Nod));
9658 Check_List_Constants (Expressions (Nod));
9659 end if;
9660
9661 when N_Aggregate =>
9662 Check_List_Constants (Component_Associations (Nod));
9663 Check_List_Constants (Expressions (Nod));
9664
9665 when N_Component_Association =>
9666 Check_Expr_Constants (Expression (Nod));
9667
9668 when N_Extension_Aggregate =>
9669 Check_Expr_Constants (Ancestor_Part (Nod));
9670 Check_List_Constants (Component_Associations (Nod));
9671 Check_List_Constants (Expressions (Nod));
9672
9673 when N_Null =>
9674 return;
9675
9676 when N_Binary_Op
9677 | N_Membership_Test
9678 | N_Short_Circuit
9679 =>
9680 Check_Expr_Constants (Left_Opnd (Nod));
9681 Check_Expr_Constants (Right_Opnd (Nod));
9682
9683 when N_Unary_Op =>
9684 Check_Expr_Constants (Right_Opnd (Nod));
9685
9686 when N_Allocator
9687 | N_Qualified_Expression
9688 | N_Type_Conversion
9689 | N_Unchecked_Type_Conversion
9690 =>
9691 Check_Expr_Constants (Expression (Nod));
9692
9693 when N_Function_Call =>
9694 if not Is_Pure (Entity (Name (Nod))) then
9695 Error_Msg_NE
9696 ("invalid address clause for initialized object &!",
9697 Nod, U_Ent);
9698
9699 Error_Msg_NE
9700 ("\function & is not pure (RM 13.1(22))!",
9701 Nod, Entity (Name (Nod)));
9702
9703 else
9704 Check_List_Constants (Parameter_Associations (Nod));
9705 end if;
9706
9707 when N_Parameter_Association =>
9708 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9709
9710 when others =>
9711 Error_Msg_NE
9712 ("invalid address clause for initialized object &!",
9713 Nod, U_Ent);
9714 Error_Msg_NE
9715 ("\must be constant defined before& (RM 13.1(22))!",
9716 Nod, U_Ent);
9717 end case;
9718 end Check_Expr_Constants;
9719
9720 --------------------------
9721 -- Check_List_Constants --
9722 --------------------------
9723
9724 procedure Check_List_Constants (Lst : List_Id) is
9725 Nod1 : Node_Id;
9726
9727 begin
9728 if Present (Lst) then
9729 Nod1 := First (Lst);
9730 while Present (Nod1) loop
9731 Check_Expr_Constants (Nod1);
9732 Next (Nod1);
9733 end loop;
9734 end if;
9735 end Check_List_Constants;
9736
9737 -- Start of processing for Check_Constant_Address_Clause
9738
9739 begin
9740 -- If rep_clauses are to be ignored, no need for legality checks. In
9741 -- particular, no need to pester user about rep clauses that violate the
9742 -- rule on constant addresses, given that these clauses will be removed
9743 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9744 -- we want to relax these checks.
9745
9746 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9747 Check_Expr_Constants (Expr);
9748 end if;
9749 end Check_Constant_Address_Clause;
9750
9751 ---------------------------
9752 -- Check_Pool_Size_Clash --
9753 ---------------------------
9754
9755 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9756 Post : Node_Id;
9757
9758 begin
9759 -- We need to find out which one came first. Note that in the case of
9760 -- aspects mixed with pragmas there are cases where the processing order
9761 -- is reversed, which is why we do the check here.
9762
9763 if Sloc (SP) < Sloc (SS) then
9764 Error_Msg_Sloc := Sloc (SP);
9765 Post := SS;
9766 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9767
9768 else
9769 Error_Msg_Sloc := Sloc (SS);
9770 Post := SP;
9771 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9772 end if;
9773
9774 Error_Msg_N
9775 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9776 end Check_Pool_Size_Clash;
9777
9778 ----------------------------------------
9779 -- Check_Record_Representation_Clause --
9780 ----------------------------------------
9781
9782 procedure Check_Record_Representation_Clause (N : Node_Id) is
9783 Loc : constant Source_Ptr := Sloc (N);
9784 Ident : constant Node_Id := Identifier (N);
9785 Rectype : Entity_Id;
9786 Fent : Entity_Id;
9787 CC : Node_Id;
9788 Fbit : Uint;
9789 Lbit : Uint;
9790 Hbit : Uint := Uint_0;
9791 Comp : Entity_Id;
9792 Pcomp : Entity_Id;
9793
9794 Max_Bit_So_Far : Uint;
9795 -- Records the maximum bit position so far. If all field positions
9796 -- are monotonically increasing, then we can skip the circuit for
9797 -- checking for overlap, since no overlap is possible.
9798
9799 Tagged_Parent : Entity_Id := Empty;
9800 -- This is set in the case of a derived tagged type for which we have
9801 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9802 -- positioned by record representation clauses). In this case we must
9803 -- check for overlap between components of this tagged type, and the
9804 -- components of its parent. Tagged_Parent will point to this parent
9805 -- type. For all other cases Tagged_Parent is left set to Empty.
9806
9807 Parent_Last_Bit : Uint;
9808 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9809 -- last bit position for any field in the parent type. We only need to
9810 -- check overlap for fields starting below this point.
9811
9812 Overlap_Check_Required : Boolean;
9813 -- Used to keep track of whether or not an overlap check is required
9814
9815 Overlap_Detected : Boolean := False;
9816 -- Set True if an overlap is detected
9817
9818 Ccount : Natural := 0;
9819 -- Number of component clauses in record rep clause
9820
9821 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9822 -- Given two entities for record components or discriminants, checks
9823 -- if they have overlapping component clauses and issues errors if so.
9824
9825 procedure Find_Component;
9826 -- Finds component entity corresponding to current component clause (in
9827 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9828 -- start/stop bits for the field. If there is no matching component or
9829 -- if the matching component does not have a component clause, then
9830 -- that's an error and Comp is set to Empty, but no error message is
9831 -- issued, since the message was already given. Comp is also set to
9832 -- Empty if the current "component clause" is in fact a pragma.
9833
9834 -----------------------------
9835 -- Check_Component_Overlap --
9836 -----------------------------
9837
9838 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9839 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9840 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9841
9842 begin
9843 if Present (CC1) and then Present (CC2) then
9844
9845 -- Exclude odd case where we have two tag components in the same
9846 -- record, both at location zero. This seems a bit strange, but
9847 -- it seems to happen in some circumstances, perhaps on an error.
9848
9849 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9850 return;
9851 end if;
9852
9853 -- Here we check if the two fields overlap
9854
9855 declare
9856 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9857 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9858 E1 : constant Uint := S1 + Esize (C1_Ent);
9859 E2 : constant Uint := S2 + Esize (C2_Ent);
9860
9861 begin
9862 if E2 <= S1 or else E1 <= S2 then
9863 null;
9864 else
9865 Error_Msg_Node_2 := Component_Name (CC2);
9866 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9867 Error_Msg_Node_1 := Component_Name (CC1);
9868 Error_Msg_N
9869 ("component& overlaps & #", Component_Name (CC1));
9870 Overlap_Detected := True;
9871 end if;
9872 end;
9873 end if;
9874 end Check_Component_Overlap;
9875
9876 --------------------
9877 -- Find_Component --
9878 --------------------
9879
9880 procedure Find_Component is
9881
9882 procedure Search_Component (R : Entity_Id);
9883 -- Search components of R for a match. If found, Comp is set
9884
9885 ----------------------
9886 -- Search_Component --
9887 ----------------------
9888
9889 procedure Search_Component (R : Entity_Id) is
9890 begin
9891 Comp := First_Component_Or_Discriminant (R);
9892 while Present (Comp) loop
9893
9894 -- Ignore error of attribute name for component name (we
9895 -- already gave an error message for this, so no need to
9896 -- complain here)
9897
9898 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9899 null;
9900 else
9901 exit when Chars (Comp) = Chars (Component_Name (CC));
9902 end if;
9903
9904 Next_Component_Or_Discriminant (Comp);
9905 end loop;
9906 end Search_Component;
9907
9908 -- Start of processing for Find_Component
9909
9910 begin
9911 -- Return with Comp set to Empty if we have a pragma
9912
9913 if Nkind (CC) = N_Pragma then
9914 Comp := Empty;
9915 return;
9916 end if;
9917
9918 -- Search current record for matching component
9919
9920 Search_Component (Rectype);
9921
9922 -- If not found, maybe component of base type discriminant that is
9923 -- absent from statically constrained first subtype.
9924
9925 if No (Comp) then
9926 Search_Component (Base_Type (Rectype));
9927 end if;
9928
9929 -- If no component, or the component does not reference the component
9930 -- clause in question, then there was some previous error for which
9931 -- we already gave a message, so just return with Comp Empty.
9932
9933 if No (Comp) or else Component_Clause (Comp) /= CC then
9934 Check_Error_Detected;
9935 Comp := Empty;
9936
9937 -- Normal case where we have a component clause
9938
9939 else
9940 Fbit := Component_Bit_Offset (Comp);
9941 Lbit := Fbit + Esize (Comp) - 1;
9942 end if;
9943 end Find_Component;
9944
9945 -- Start of processing for Check_Record_Representation_Clause
9946
9947 begin
9948 Find_Type (Ident);
9949 Rectype := Entity (Ident);
9950
9951 if Rectype = Any_Type then
9952 return;
9953 else
9954 Rectype := Underlying_Type (Rectype);
9955 end if;
9956
9957 -- See if we have a fully repped derived tagged type
9958
9959 declare
9960 PS : constant Entity_Id := Parent_Subtype (Rectype);
9961
9962 begin
9963 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9964 Tagged_Parent := PS;
9965
9966 -- Find maximum bit of any component of the parent type
9967
9968 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9969 Pcomp := First_Entity (Tagged_Parent);
9970 while Present (Pcomp) loop
9971 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9972 if Component_Bit_Offset (Pcomp) /= No_Uint
9973 and then Known_Static_Esize (Pcomp)
9974 then
9975 Parent_Last_Bit :=
9976 UI_Max
9977 (Parent_Last_Bit,
9978 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9979 end if;
9980 else
9981
9982 -- Skip anonymous types generated for constrained array
9983 -- or record components.
9984
9985 null;
9986 end if;
9987
9988 Next_Entity (Pcomp);
9989 end loop;
9990 end if;
9991 end;
9992
9993 -- All done if no component clauses
9994
9995 CC := First (Component_Clauses (N));
9996
9997 if No (CC) then
9998 return;
9999 end if;
10000
10001 -- If a tag is present, then create a component clause that places it
10002 -- at the start of the record (otherwise gigi may place it after other
10003 -- fields that have rep clauses).
10004
10005 Fent := First_Entity (Rectype);
10006
10007 if Nkind (Fent) = N_Defining_Identifier
10008 and then Chars (Fent) = Name_uTag
10009 then
10010 Set_Component_Bit_Offset (Fent, Uint_0);
10011 Set_Normalized_Position (Fent, Uint_0);
10012 Set_Normalized_First_Bit (Fent, Uint_0);
10013 Set_Normalized_Position_Max (Fent, Uint_0);
10014 Init_Esize (Fent, System_Address_Size);
10015
10016 Set_Component_Clause (Fent,
10017 Make_Component_Clause (Loc,
10018 Component_Name => Make_Identifier (Loc, Name_uTag),
10019
10020 Position => Make_Integer_Literal (Loc, Uint_0),
10021 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10022 Last_Bit =>
10023 Make_Integer_Literal (Loc,
10024 UI_From_Int (System_Address_Size))));
10025
10026 Ccount := Ccount + 1;
10027 end if;
10028
10029 Max_Bit_So_Far := Uint_Minus_1;
10030 Overlap_Check_Required := False;
10031
10032 -- Process the component clauses
10033
10034 while Present (CC) loop
10035 Find_Component;
10036
10037 if Present (Comp) then
10038 Ccount := Ccount + 1;
10039
10040 -- We need a full overlap check if record positions non-monotonic
10041
10042 if Fbit <= Max_Bit_So_Far then
10043 Overlap_Check_Required := True;
10044 end if;
10045
10046 Max_Bit_So_Far := Lbit;
10047
10048 -- Check bit position out of range of specified size
10049
10050 if Has_Size_Clause (Rectype)
10051 and then RM_Size (Rectype) <= Lbit
10052 then
10053 Error_Msg_N
10054 ("bit number out of range of specified size",
10055 Last_Bit (CC));
10056
10057 -- Check for overlap with tag component
10058
10059 else
10060 if Is_Tagged_Type (Rectype)
10061 and then Fbit < System_Address_Size
10062 then
10063 Error_Msg_NE
10064 ("component overlaps tag field of&",
10065 Component_Name (CC), Rectype);
10066 Overlap_Detected := True;
10067 end if;
10068
10069 if Hbit < Lbit then
10070 Hbit := Lbit;
10071 end if;
10072 end if;
10073
10074 -- Check parent overlap if component might overlap parent field
10075
10076 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
10077 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
10078 while Present (Pcomp) loop
10079 if not Is_Tag (Pcomp)
10080 and then Chars (Pcomp) /= Name_uParent
10081 then
10082 Check_Component_Overlap (Comp, Pcomp);
10083 end if;
10084
10085 Next_Component_Or_Discriminant (Pcomp);
10086 end loop;
10087 end if;
10088 end if;
10089
10090 Next (CC);
10091 end loop;
10092
10093 -- Now that we have processed all the component clauses, check for
10094 -- overlap. We have to leave this till last, since the components can
10095 -- appear in any arbitrary order in the representation clause.
10096
10097 -- We do not need this check if all specified ranges were monotonic,
10098 -- as recorded by Overlap_Check_Required being False at this stage.
10099
10100 -- This first section checks if there are any overlapping entries at
10101 -- all. It does this by sorting all entries and then seeing if there are
10102 -- any overlaps. If there are none, then that is decisive, but if there
10103 -- are overlaps, they may still be OK (they may result from fields in
10104 -- different variants).
10105
10106 if Overlap_Check_Required then
10107 Overlap_Check1 : declare
10108
10109 OC_Fbit : array (0 .. Ccount) of Uint;
10110 -- First-bit values for component clauses, the value is the offset
10111 -- of the first bit of the field from start of record. The zero
10112 -- entry is for use in sorting.
10113
10114 OC_Lbit : array (0 .. Ccount) of Uint;
10115 -- Last-bit values for component clauses, the value is the offset
10116 -- of the last bit of the field from start of record. The zero
10117 -- entry is for use in sorting.
10118
10119 OC_Count : Natural := 0;
10120 -- Count of entries in OC_Fbit and OC_Lbit
10121
10122 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10123 -- Compare routine for Sort
10124
10125 procedure OC_Move (From : Natural; To : Natural);
10126 -- Move routine for Sort
10127
10128 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10129
10130 -----------
10131 -- OC_Lt --
10132 -----------
10133
10134 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10135 begin
10136 return OC_Fbit (Op1) < OC_Fbit (Op2);
10137 end OC_Lt;
10138
10139 -------------
10140 -- OC_Move --
10141 -------------
10142
10143 procedure OC_Move (From : Natural; To : Natural) is
10144 begin
10145 OC_Fbit (To) := OC_Fbit (From);
10146 OC_Lbit (To) := OC_Lbit (From);
10147 end OC_Move;
10148
10149 -- Start of processing for Overlap_Check
10150
10151 begin
10152 CC := First (Component_Clauses (N));
10153 while Present (CC) loop
10154
10155 -- Exclude component clause already marked in error
10156
10157 if not Error_Posted (CC) then
10158 Find_Component;
10159
10160 if Present (Comp) then
10161 OC_Count := OC_Count + 1;
10162 OC_Fbit (OC_Count) := Fbit;
10163 OC_Lbit (OC_Count) := Lbit;
10164 end if;
10165 end if;
10166
10167 Next (CC);
10168 end loop;
10169
10170 Sorting.Sort (OC_Count);
10171
10172 Overlap_Check_Required := False;
10173 for J in 1 .. OC_Count - 1 loop
10174 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10175 Overlap_Check_Required := True;
10176 exit;
10177 end if;
10178 end loop;
10179 end Overlap_Check1;
10180 end if;
10181
10182 -- If Overlap_Check_Required is still True, then we have to do the full
10183 -- scale overlap check, since we have at least two fields that do
10184 -- overlap, and we need to know if that is OK since they are in
10185 -- different variant, or whether we have a definite problem.
10186
10187 if Overlap_Check_Required then
10188 Overlap_Check2 : declare
10189 C1_Ent, C2_Ent : Entity_Id;
10190 -- Entities of components being checked for overlap
10191
10192 Clist : Node_Id;
10193 -- Component_List node whose Component_Items are being checked
10194
10195 Citem : Node_Id;
10196 -- Component declaration for component being checked
10197
10198 begin
10199 C1_Ent := First_Entity (Base_Type (Rectype));
10200
10201 -- Loop through all components in record. For each component check
10202 -- for overlap with any of the preceding elements on the component
10203 -- list containing the component and also, if the component is in
10204 -- a variant, check against components outside the case structure.
10205 -- This latter test is repeated recursively up the variant tree.
10206
10207 Main_Component_Loop : while Present (C1_Ent) loop
10208 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10209 goto Continue_Main_Component_Loop;
10210 end if;
10211
10212 -- Skip overlap check if entity has no declaration node. This
10213 -- happens with discriminants in constrained derived types.
10214 -- Possibly we are missing some checks as a result, but that
10215 -- does not seem terribly serious.
10216
10217 if No (Declaration_Node (C1_Ent)) then
10218 goto Continue_Main_Component_Loop;
10219 end if;
10220
10221 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10222
10223 -- Loop through component lists that need checking. Check the
10224 -- current component list and all lists in variants above us.
10225
10226 Component_List_Loop : loop
10227
10228 -- If derived type definition, go to full declaration
10229 -- If at outer level, check discriminants if there are any.
10230
10231 if Nkind (Clist) = N_Derived_Type_Definition then
10232 Clist := Parent (Clist);
10233 end if;
10234
10235 -- Outer level of record definition, check discriminants
10236
10237 if Nkind_In (Clist, N_Full_Type_Declaration,
10238 N_Private_Type_Declaration)
10239 then
10240 if Has_Discriminants (Defining_Identifier (Clist)) then
10241 C2_Ent :=
10242 First_Discriminant (Defining_Identifier (Clist));
10243 while Present (C2_Ent) loop
10244 exit when C1_Ent = C2_Ent;
10245 Check_Component_Overlap (C1_Ent, C2_Ent);
10246 Next_Discriminant (C2_Ent);
10247 end loop;
10248 end if;
10249
10250 -- Record extension case
10251
10252 elsif Nkind (Clist) = N_Derived_Type_Definition then
10253 Clist := Empty;
10254
10255 -- Otherwise check one component list
10256
10257 else
10258 Citem := First (Component_Items (Clist));
10259 while Present (Citem) loop
10260 if Nkind (Citem) = N_Component_Declaration then
10261 C2_Ent := Defining_Identifier (Citem);
10262 exit when C1_Ent = C2_Ent;
10263 Check_Component_Overlap (C1_Ent, C2_Ent);
10264 end if;
10265
10266 Next (Citem);
10267 end loop;
10268 end if;
10269
10270 -- Check for variants above us (the parent of the Clist can
10271 -- be a variant, in which case its parent is a variant part,
10272 -- and the parent of the variant part is a component list
10273 -- whose components must all be checked against the current
10274 -- component for overlap).
10275
10276 if Nkind (Parent (Clist)) = N_Variant then
10277 Clist := Parent (Parent (Parent (Clist)));
10278
10279 -- Check for possible discriminant part in record, this
10280 -- is treated essentially as another level in the
10281 -- recursion. For this case the parent of the component
10282 -- list is the record definition, and its parent is the
10283 -- full type declaration containing the discriminant
10284 -- specifications.
10285
10286 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10287 Clist := Parent (Parent ((Clist)));
10288
10289 -- If neither of these two cases, we are at the top of
10290 -- the tree.
10291
10292 else
10293 exit Component_List_Loop;
10294 end if;
10295 end loop Component_List_Loop;
10296
10297 <<Continue_Main_Component_Loop>>
10298 Next_Entity (C1_Ent);
10299
10300 end loop Main_Component_Loop;
10301 end Overlap_Check2;
10302 end if;
10303
10304 -- The following circuit deals with warning on record holes (gaps). We
10305 -- skip this check if overlap was detected, since it makes sense for the
10306 -- programmer to fix this illegality before worrying about warnings.
10307
10308 if not Overlap_Detected and Warn_On_Record_Holes then
10309 Record_Hole_Check : declare
10310 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10311 -- Full declaration of record type
10312
10313 procedure Check_Component_List
10314 (CL : Node_Id;
10315 Sbit : Uint;
10316 DS : List_Id);
10317 -- Check component list CL for holes. The starting bit should be
10318 -- Sbit. which is zero for the main record component list and set
10319 -- appropriately for recursive calls for variants. DS is set to
10320 -- a list of discriminant specifications to be included in the
10321 -- consideration of components. It is No_List if none to consider.
10322
10323 --------------------------
10324 -- Check_Component_List --
10325 --------------------------
10326
10327 procedure Check_Component_List
10328 (CL : Node_Id;
10329 Sbit : Uint;
10330 DS : List_Id)
10331 is
10332 Compl : Integer;
10333
10334 begin
10335 Compl := Integer (List_Length (Component_Items (CL)));
10336
10337 if DS /= No_List then
10338 Compl := Compl + Integer (List_Length (DS));
10339 end if;
10340
10341 declare
10342 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10343 -- Gather components (zero entry is for sort routine)
10344
10345 Ncomps : Natural := 0;
10346 -- Number of entries stored in Comps (starting at Comps (1))
10347
10348 Citem : Node_Id;
10349 -- One component item or discriminant specification
10350
10351 Nbit : Uint;
10352 -- Starting bit for next component
10353
10354 CEnt : Entity_Id;
10355 -- Component entity
10356
10357 Variant : Node_Id;
10358 -- One variant
10359
10360 function Lt (Op1, Op2 : Natural) return Boolean;
10361 -- Compare routine for Sort
10362
10363 procedure Move (From : Natural; To : Natural);
10364 -- Move routine for Sort
10365
10366 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10367
10368 --------
10369 -- Lt --
10370 --------
10371
10372 function Lt (Op1, Op2 : Natural) return Boolean is
10373 begin
10374 return Component_Bit_Offset (Comps (Op1))
10375 <
10376 Component_Bit_Offset (Comps (Op2));
10377 end Lt;
10378
10379 ----------
10380 -- Move --
10381 ----------
10382
10383 procedure Move (From : Natural; To : Natural) is
10384 begin
10385 Comps (To) := Comps (From);
10386 end Move;
10387
10388 begin
10389 -- Gather discriminants into Comp
10390
10391 if DS /= No_List then
10392 Citem := First (DS);
10393 while Present (Citem) loop
10394 if Nkind (Citem) = N_Discriminant_Specification then
10395 declare
10396 Ent : constant Entity_Id :=
10397 Defining_Identifier (Citem);
10398 begin
10399 if Ekind (Ent) = E_Discriminant then
10400 Ncomps := Ncomps + 1;
10401 Comps (Ncomps) := Ent;
10402 end if;
10403 end;
10404 end if;
10405
10406 Next (Citem);
10407 end loop;
10408 end if;
10409
10410 -- Gather component entities into Comp
10411
10412 Citem := First (Component_Items (CL));
10413 while Present (Citem) loop
10414 if Nkind (Citem) = N_Component_Declaration then
10415 Ncomps := Ncomps + 1;
10416 Comps (Ncomps) := Defining_Identifier (Citem);
10417 end if;
10418
10419 Next (Citem);
10420 end loop;
10421
10422 -- Now sort the component entities based on the first bit.
10423 -- Note we already know there are no overlapping components.
10424
10425 Sorting.Sort (Ncomps);
10426
10427 -- Loop through entries checking for holes
10428
10429 Nbit := Sbit;
10430 for J in 1 .. Ncomps loop
10431 CEnt := Comps (J);
10432
10433 declare
10434 CBO : constant Uint := Component_Bit_Offset (CEnt);
10435
10436 begin
10437 -- Skip components with unknown offsets
10438
10439 if CBO /= No_Uint and then CBO >= 0 then
10440 Error_Msg_Uint_1 := CBO - Nbit;
10441
10442 if Error_Msg_Uint_1 > 0 then
10443 Error_Msg_NE
10444 ("?H?^-bit gap before component&",
10445 Component_Name (Component_Clause (CEnt)),
10446 CEnt);
10447 end if;
10448
10449 Nbit := CBO + Esize (CEnt);
10450 end if;
10451 end;
10452 end loop;
10453
10454 -- Process variant parts recursively if present
10455
10456 if Present (Variant_Part (CL)) then
10457 Variant := First (Variants (Variant_Part (CL)));
10458 while Present (Variant) loop
10459 Check_Component_List
10460 (Component_List (Variant), Nbit, No_List);
10461 Next (Variant);
10462 end loop;
10463 end if;
10464 end;
10465 end Check_Component_List;
10466
10467 -- Start of processing for Record_Hole_Check
10468
10469 begin
10470 declare
10471 Sbit : Uint;
10472
10473 begin
10474 if Is_Tagged_Type (Rectype) then
10475 Sbit := UI_From_Int (System_Address_Size);
10476 else
10477 Sbit := Uint_0;
10478 end if;
10479
10480 if Nkind (Decl) = N_Full_Type_Declaration
10481 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10482 then
10483 Check_Component_List
10484 (Component_List (Type_Definition (Decl)),
10485 Sbit,
10486 Discriminant_Specifications (Decl));
10487 end if;
10488 end;
10489 end Record_Hole_Check;
10490 end if;
10491
10492 -- For records that have component clauses for all components, and whose
10493 -- size is less than or equal to 32, we need to know the size in the
10494 -- front end to activate possible packed array processing where the
10495 -- component type is a record.
10496
10497 -- At this stage Hbit + 1 represents the first unused bit from all the
10498 -- component clauses processed, so if the component clauses are
10499 -- complete, then this is the length of the record.
10500
10501 -- For records longer than System.Storage_Unit, and for those where not
10502 -- all components have component clauses, the back end determines the
10503 -- length (it may for example be appropriate to round up the size
10504 -- to some convenient boundary, based on alignment considerations, etc).
10505
10506 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10507
10508 -- Nothing to do if at least one component has no component clause
10509
10510 Comp := First_Component_Or_Discriminant (Rectype);
10511 while Present (Comp) loop
10512 exit when No (Component_Clause (Comp));
10513 Next_Component_Or_Discriminant (Comp);
10514 end loop;
10515
10516 -- If we fall out of loop, all components have component clauses
10517 -- and so we can set the size to the maximum value.
10518
10519 if No (Comp) then
10520 Set_RM_Size (Rectype, Hbit + 1);
10521 end if;
10522 end if;
10523 end Check_Record_Representation_Clause;
10524
10525 ----------------
10526 -- Check_Size --
10527 ----------------
10528
10529 procedure Check_Size
10530 (N : Node_Id;
10531 T : Entity_Id;
10532 Siz : Uint;
10533 Biased : out Boolean)
10534 is
10535 procedure Size_Too_Small_Error (Min_Siz : Uint);
10536 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10537 -- minimum size.
10538
10539 --------------------------
10540 -- Size_Too_Small_Error --
10541 --------------------------
10542
10543 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10544 begin
10545 -- This error is suppressed in ASIS mode to allow for different ASIS
10546 -- back ends or ASIS-based tools to query the illegal clause.
10547
10548 if not ASIS_Mode then
10549 Error_Msg_Uint_1 := Min_Siz;
10550 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10551 end if;
10552 end Size_Too_Small_Error;
10553
10554 -- Local variables
10555
10556 UT : constant Entity_Id := Underlying_Type (T);
10557 M : Uint;
10558
10559 -- Start of processing for Check_Size
10560
10561 begin
10562 Biased := False;
10563
10564 -- Reject patently improper size values
10565
10566 if Is_Elementary_Type (T)
10567 and then Siz > UI_From_Int (Int'Last)
10568 then
10569 Error_Msg_N ("Size value too large for elementary type", N);
10570
10571 if Nkind (Original_Node (N)) = N_Op_Expon then
10572 Error_Msg_N
10573 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10574 end if;
10575 end if;
10576
10577 -- Dismiss generic types
10578
10579 if Is_Generic_Type (T)
10580 or else
10581 Is_Generic_Type (UT)
10582 or else
10583 Is_Generic_Type (Root_Type (UT))
10584 then
10585 return;
10586
10587 -- Guard against previous errors
10588
10589 elsif No (UT) or else UT = Any_Type then
10590 Check_Error_Detected;
10591 return;
10592
10593 -- Check case of bit packed array
10594
10595 elsif Is_Array_Type (UT)
10596 and then Known_Static_Component_Size (UT)
10597 and then Is_Bit_Packed_Array (UT)
10598 then
10599 declare
10600 Asiz : Uint;
10601 Indx : Node_Id;
10602 Ityp : Entity_Id;
10603
10604 begin
10605 Asiz := Component_Size (UT);
10606 Indx := First_Index (UT);
10607 loop
10608 Ityp := Etype (Indx);
10609
10610 -- If non-static bound, then we are not in the business of
10611 -- trying to check the length, and indeed an error will be
10612 -- issued elsewhere, since sizes of non-static array types
10613 -- cannot be set implicitly or explicitly.
10614
10615 if not Is_OK_Static_Subtype (Ityp) then
10616 return;
10617 end if;
10618
10619 -- Otherwise accumulate next dimension
10620
10621 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10622 Expr_Value (Type_Low_Bound (Ityp)) +
10623 Uint_1);
10624
10625 Next_Index (Indx);
10626 exit when No (Indx);
10627 end loop;
10628
10629 if Asiz <= Siz then
10630 return;
10631
10632 else
10633 Size_Too_Small_Error (Asiz);
10634 Set_Esize (T, Asiz);
10635 Set_RM_Size (T, Asiz);
10636 end if;
10637 end;
10638
10639 -- All other composite types are ignored
10640
10641 elsif Is_Composite_Type (UT) then
10642 return;
10643
10644 -- For fixed-point types, don't check minimum if type is not frozen,
10645 -- since we don't know all the characteristics of the type that can
10646 -- affect the size (e.g. a specified small) till freeze time.
10647
10648 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10649 null;
10650
10651 -- Cases for which a minimum check is required
10652
10653 else
10654 -- Ignore if specified size is correct for the type
10655
10656 if Known_Esize (UT) and then Siz = Esize (UT) then
10657 return;
10658 end if;
10659
10660 -- Otherwise get minimum size
10661
10662 M := UI_From_Int (Minimum_Size (UT));
10663
10664 if Siz < M then
10665
10666 -- Size is less than minimum size, but one possibility remains
10667 -- that we can manage with the new size if we bias the type.
10668
10669 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10670
10671 if Siz < M then
10672 Size_Too_Small_Error (M);
10673 Set_Esize (T, M);
10674 Set_RM_Size (T, M);
10675 else
10676 Biased := True;
10677 end if;
10678 end if;
10679 end if;
10680 end Check_Size;
10681
10682 --------------------------
10683 -- Freeze_Entity_Checks --
10684 --------------------------
10685
10686 procedure Freeze_Entity_Checks (N : Node_Id) is
10687 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10688 -- Inspect the primitive operations of type Typ and hide all pairs of
10689 -- implicitly declared non-overridden non-fully conformant homographs
10690 -- (Ada RM 8.3 12.3/2).
10691
10692 -------------------------------------
10693 -- Hide_Non_Overridden_Subprograms --
10694 -------------------------------------
10695
10696 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10697 procedure Hide_Matching_Homographs
10698 (Subp_Id : Entity_Id;
10699 Start_Elmt : Elmt_Id);
10700 -- Inspect a list of primitive operations starting with Start_Elmt
10701 -- and find matching implicitly declared non-overridden non-fully
10702 -- conformant homographs of Subp_Id. If found, all matches along
10703 -- with Subp_Id are hidden from all visibility.
10704
10705 function Is_Non_Overridden_Or_Null_Procedure
10706 (Subp_Id : Entity_Id) return Boolean;
10707 -- Determine whether subprogram Subp_Id is implicitly declared non-
10708 -- overridden subprogram or an implicitly declared null procedure.
10709
10710 ------------------------------
10711 -- Hide_Matching_Homographs --
10712 ------------------------------
10713
10714 procedure Hide_Matching_Homographs
10715 (Subp_Id : Entity_Id;
10716 Start_Elmt : Elmt_Id)
10717 is
10718 Prim : Entity_Id;
10719 Prim_Elmt : Elmt_Id;
10720
10721 begin
10722 Prim_Elmt := Start_Elmt;
10723 while Present (Prim_Elmt) loop
10724 Prim := Node (Prim_Elmt);
10725
10726 -- The current primitive is implicitly declared non-overridden
10727 -- non-fully conformant homograph of Subp_Id. Both subprograms
10728 -- must be hidden from visibility.
10729
10730 if Chars (Prim) = Chars (Subp_Id)
10731 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10732 and then not Fully_Conformant (Prim, Subp_Id)
10733 then
10734 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10735 Set_Is_Immediately_Visible (Prim, False);
10736 Set_Is_Potentially_Use_Visible (Prim, False);
10737
10738 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10739 Set_Is_Immediately_Visible (Subp_Id, False);
10740 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10741 end if;
10742
10743 Next_Elmt (Prim_Elmt);
10744 end loop;
10745 end Hide_Matching_Homographs;
10746
10747 -----------------------------------------
10748 -- Is_Non_Overridden_Or_Null_Procedure --
10749 -----------------------------------------
10750
10751 function Is_Non_Overridden_Or_Null_Procedure
10752 (Subp_Id : Entity_Id) return Boolean
10753 is
10754 Alias_Id : Entity_Id;
10755
10756 begin
10757 -- The subprogram is inherited (implicitly declared), it does not
10758 -- override and does not cover a primitive of an interface.
10759
10760 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10761 and then Present (Alias (Subp_Id))
10762 and then No (Interface_Alias (Subp_Id))
10763 and then No (Overridden_Operation (Subp_Id))
10764 then
10765 Alias_Id := Alias (Subp_Id);
10766
10767 if Requires_Overriding (Alias_Id) then
10768 return True;
10769
10770 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10771 and then Null_Present (Parent (Alias_Id))
10772 then
10773 return True;
10774 end if;
10775 end if;
10776
10777 return False;
10778 end Is_Non_Overridden_Or_Null_Procedure;
10779
10780 -- Local variables
10781
10782 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10783 Prim : Entity_Id;
10784 Prim_Elmt : Elmt_Id;
10785
10786 -- Start of processing for Hide_Non_Overridden_Subprograms
10787
10788 begin
10789 -- Inspect the list of primitives looking for non-overridden
10790 -- subprograms.
10791
10792 if Present (Prim_Ops) then
10793 Prim_Elmt := First_Elmt (Prim_Ops);
10794 while Present (Prim_Elmt) loop
10795 Prim := Node (Prim_Elmt);
10796 Next_Elmt (Prim_Elmt);
10797
10798 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10799 Hide_Matching_Homographs
10800 (Subp_Id => Prim,
10801 Start_Elmt => Prim_Elmt);
10802 end if;
10803 end loop;
10804 end if;
10805 end Hide_Non_Overridden_Subprograms;
10806
10807 -- Local variables
10808
10809 E : constant Entity_Id := Entity (N);
10810
10811 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10812 -- True in non-generic case. Some of the processing here is skipped
10813 -- for the generic case since it is not needed. Basically in the
10814 -- generic case, we only need to do stuff that might generate error
10815 -- messages or warnings.
10816
10817 -- Start of processing for Freeze_Entity_Checks
10818
10819 begin
10820 -- Remember that we are processing a freezing entity. Required to
10821 -- ensure correct decoration of internal entities associated with
10822 -- interfaces (see New_Overloaded_Entity).
10823
10824 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10825
10826 -- For tagged types covering interfaces add internal entities that link
10827 -- the primitives of the interfaces with the primitives that cover them.
10828 -- Note: These entities were originally generated only when generating
10829 -- code because their main purpose was to provide support to initialize
10830 -- the secondary dispatch tables. They are now generated also when
10831 -- compiling with no code generation to provide ASIS the relationship
10832 -- between interface primitives and tagged type primitives. They are
10833 -- also used to locate primitives covering interfaces when processing
10834 -- generics (see Derive_Subprograms).
10835
10836 -- This is not needed in the generic case
10837
10838 if Ada_Version >= Ada_2005
10839 and then Non_Generic_Case
10840 and then Ekind (E) = E_Record_Type
10841 and then Is_Tagged_Type (E)
10842 and then not Is_Interface (E)
10843 and then Has_Interfaces (E)
10844 then
10845 -- This would be a good common place to call the routine that checks
10846 -- overriding of interface primitives (and thus factorize calls to
10847 -- Check_Abstract_Overriding located at different contexts in the
10848 -- compiler). However, this is not possible because it causes
10849 -- spurious errors in case of late overriding.
10850
10851 Add_Internal_Interface_Entities (E);
10852 end if;
10853
10854 -- After all forms of overriding have been resolved, a tagged type may
10855 -- be left with a set of implicitly declared and possibly erroneous
10856 -- abstract subprograms, null procedures and subprograms that require
10857 -- overriding. If this set contains fully conformant homographs, then
10858 -- one is chosen arbitrarily (already done during resolution), otherwise
10859 -- all remaining non-fully conformant homographs are hidden from
10860 -- visibility (Ada RM 8.3 12.3/2).
10861
10862 if Is_Tagged_Type (E) then
10863 Hide_Non_Overridden_Subprograms (E);
10864 end if;
10865
10866 -- Check CPP types
10867
10868 if Ekind (E) = E_Record_Type
10869 and then Is_CPP_Class (E)
10870 and then Is_Tagged_Type (E)
10871 and then Tagged_Type_Expansion
10872 then
10873 if CPP_Num_Prims (E) = 0 then
10874
10875 -- If the CPP type has user defined components then it must import
10876 -- primitives from C++. This is required because if the C++ class
10877 -- has no primitives then the C++ compiler does not added the _tag
10878 -- component to the type.
10879
10880 if First_Entity (E) /= Last_Entity (E) then
10881 Error_Msg_N
10882 ("'C'P'P type must import at least one primitive from C++??",
10883 E);
10884 end if;
10885 end if;
10886
10887 -- Check that all its primitives are abstract or imported from C++.
10888 -- Check also availability of the C++ constructor.
10889
10890 declare
10891 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10892 Elmt : Elmt_Id;
10893 Error_Reported : Boolean := False;
10894 Prim : Node_Id;
10895
10896 begin
10897 Elmt := First_Elmt (Primitive_Operations (E));
10898 while Present (Elmt) loop
10899 Prim := Node (Elmt);
10900
10901 if Comes_From_Source (Prim) then
10902 if Is_Abstract_Subprogram (Prim) then
10903 null;
10904
10905 elsif not Is_Imported (Prim)
10906 or else Convention (Prim) /= Convention_CPP
10907 then
10908 Error_Msg_N
10909 ("primitives of 'C'P'P types must be imported from C++ "
10910 & "or abstract??", Prim);
10911
10912 elsif not Has_Constructors
10913 and then not Error_Reported
10914 then
10915 Error_Msg_Name_1 := Chars (E);
10916 Error_Msg_N
10917 ("??'C'P'P constructor required for type %", Prim);
10918 Error_Reported := True;
10919 end if;
10920 end if;
10921
10922 Next_Elmt (Elmt);
10923 end loop;
10924 end;
10925 end if;
10926
10927 -- Check Ada derivation of CPP type
10928
10929 if Expander_Active -- why? losing errors in -gnatc mode???
10930 and then Present (Etype (E)) -- defend against errors
10931 and then Tagged_Type_Expansion
10932 and then Ekind (E) = E_Record_Type
10933 and then Etype (E) /= E
10934 and then Is_CPP_Class (Etype (E))
10935 and then CPP_Num_Prims (Etype (E)) > 0
10936 and then not Is_CPP_Class (E)
10937 and then not Has_CPP_Constructors (Etype (E))
10938 then
10939 -- If the parent has C++ primitives but it has no constructor then
10940 -- check that all the primitives are overridden in this derivation;
10941 -- otherwise the constructor of the parent is needed to build the
10942 -- dispatch table.
10943
10944 declare
10945 Elmt : Elmt_Id;
10946 Prim : Node_Id;
10947
10948 begin
10949 Elmt := First_Elmt (Primitive_Operations (E));
10950 while Present (Elmt) loop
10951 Prim := Node (Elmt);
10952
10953 if not Is_Abstract_Subprogram (Prim)
10954 and then No (Interface_Alias (Prim))
10955 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
10956 then
10957 Error_Msg_Name_1 := Chars (Etype (E));
10958 Error_Msg_N
10959 ("'C'P'P constructor required for parent type %", E);
10960 exit;
10961 end if;
10962
10963 Next_Elmt (Elmt);
10964 end loop;
10965 end;
10966 end if;
10967
10968 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
10969
10970 -- If we have a type with predicates, build predicate function. This is
10971 -- not needed in the generic case, nor within TSS subprograms and other
10972 -- predefined primitives.
10973
10974 if Is_Type (E)
10975 and then Non_Generic_Case
10976 and then not Within_Internal_Subprogram
10977 and then Has_Predicates (E)
10978 then
10979 Build_Predicate_Functions (E, N);
10980 end if;
10981
10982 -- If type has delayed aspects, this is where we do the preanalysis at
10983 -- the freeze point, as part of the consistent visibility check. Note
10984 -- that this must be done after calling Build_Predicate_Functions or
10985 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10986 -- the subtype name in the saved expression so that they will not cause
10987 -- trouble in the preanalysis.
10988
10989 -- This is also not needed in the generic case
10990
10991 if Non_Generic_Case
10992 and then Has_Delayed_Aspects (E)
10993 and then Scope (E) = Current_Scope
10994 then
10995 -- Retrieve the visibility to the discriminants in order to properly
10996 -- analyze the aspects.
10997
10998 Push_Scope_And_Install_Discriminants (E);
10999
11000 declare
11001 Ritem : Node_Id;
11002
11003 begin
11004 -- Look for aspect specification entries for this entity
11005
11006 Ritem := First_Rep_Item (E);
11007 while Present (Ritem) loop
11008 if Nkind (Ritem) = N_Aspect_Specification
11009 and then Entity (Ritem) = E
11010 and then Is_Delayed_Aspect (Ritem)
11011 then
11012 Check_Aspect_At_Freeze_Point (Ritem);
11013 end if;
11014
11015 Next_Rep_Item (Ritem);
11016 end loop;
11017 end;
11018
11019 Uninstall_Discriminants_And_Pop_Scope (E);
11020 end if;
11021
11022 -- For a record type, deal with variant parts. This has to be delayed
11023 -- to this point, because of the issue of statically predicated
11024 -- subtypes, which we have to ensure are frozen before checking
11025 -- choices, since we need to have the static choice list set.
11026
11027 if Is_Record_Type (E) then
11028 Check_Variant_Part : declare
11029 D : constant Node_Id := Declaration_Node (E);
11030 T : Node_Id;
11031 C : Node_Id;
11032 VP : Node_Id;
11033
11034 Others_Present : Boolean;
11035 pragma Warnings (Off, Others_Present);
11036 -- Indicates others present, not used in this case
11037
11038 procedure Non_Static_Choice_Error (Choice : Node_Id);
11039 -- Error routine invoked by the generic instantiation below when
11040 -- the variant part has a non static choice.
11041
11042 procedure Process_Declarations (Variant : Node_Id);
11043 -- Processes declarations associated with a variant. We analyzed
11044 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11045 -- but we still need the recursive call to Check_Choices for any
11046 -- nested variant to get its choices properly processed. This is
11047 -- also where we expand out the choices if expansion is active.
11048
11049 package Variant_Choices_Processing is new
11050 Generic_Check_Choices
11051 (Process_Empty_Choice => No_OP,
11052 Process_Non_Static_Choice => Non_Static_Choice_Error,
11053 Process_Associated_Node => Process_Declarations);
11054 use Variant_Choices_Processing;
11055
11056 -----------------------------
11057 -- Non_Static_Choice_Error --
11058 -----------------------------
11059
11060 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11061 begin
11062 Flag_Non_Static_Expr
11063 ("choice given in variant part is not static!", Choice);
11064 end Non_Static_Choice_Error;
11065
11066 --------------------------
11067 -- Process_Declarations --
11068 --------------------------
11069
11070 procedure Process_Declarations (Variant : Node_Id) is
11071 CL : constant Node_Id := Component_List (Variant);
11072 VP : Node_Id;
11073
11074 begin
11075 -- Check for static predicate present in this variant
11076
11077 if Has_SP_Choice (Variant) then
11078
11079 -- Here we expand. You might expect to find this call in
11080 -- Expand_N_Variant_Part, but that is called when we first
11081 -- see the variant part, and we cannot do this expansion
11082 -- earlier than the freeze point, since for statically
11083 -- predicated subtypes, the predicate is not known till
11084 -- the freeze point.
11085
11086 -- Furthermore, we do this expansion even if the expander
11087 -- is not active, because other semantic processing, e.g.
11088 -- for aggregates, requires the expanded list of choices.
11089
11090 -- If the expander is not active, then we can't just clobber
11091 -- the list since it would invalidate the ASIS -gnatct tree.
11092 -- So we have to rewrite the variant part with a Rewrite
11093 -- call that replaces it with a copy and clobber the copy.
11094
11095 if not Expander_Active then
11096 declare
11097 NewV : constant Node_Id := New_Copy (Variant);
11098 begin
11099 Set_Discrete_Choices
11100 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11101 Rewrite (Variant, NewV);
11102 end;
11103 end if;
11104
11105 Expand_Static_Predicates_In_Choices (Variant);
11106 end if;
11107
11108 -- We don't need to worry about the declarations in the variant
11109 -- (since they were analyzed by Analyze_Choices when we first
11110 -- encountered the variant), but we do need to take care of
11111 -- expansion of any nested variants.
11112
11113 if not Null_Present (CL) then
11114 VP := Variant_Part (CL);
11115
11116 if Present (VP) then
11117 Check_Choices
11118 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11119 end if;
11120 end if;
11121 end Process_Declarations;
11122
11123 -- Start of processing for Check_Variant_Part
11124
11125 begin
11126 -- Find component list
11127
11128 C := Empty;
11129
11130 if Nkind (D) = N_Full_Type_Declaration then
11131 T := Type_Definition (D);
11132
11133 if Nkind (T) = N_Record_Definition then
11134 C := Component_List (T);
11135
11136 elsif Nkind (T) = N_Derived_Type_Definition
11137 and then Present (Record_Extension_Part (T))
11138 then
11139 C := Component_List (Record_Extension_Part (T));
11140 end if;
11141 end if;
11142
11143 -- Case of variant part present
11144
11145 if Present (C) and then Present (Variant_Part (C)) then
11146 VP := Variant_Part (C);
11147
11148 -- Check choices
11149
11150 Check_Choices
11151 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11152
11153 -- If the last variant does not contain the Others choice,
11154 -- replace it with an N_Others_Choice node since Gigi always
11155 -- wants an Others. Note that we do not bother to call Analyze
11156 -- on the modified variant part, since its only effect would be
11157 -- to compute the Others_Discrete_Choices node laboriously, and
11158 -- of course we already know the list of choices corresponding
11159 -- to the others choice (it's the list we're replacing).
11160
11161 -- We only want to do this if the expander is active, since
11162 -- we do not want to clobber the ASIS tree.
11163
11164 if Expander_Active then
11165 declare
11166 Last_Var : constant Node_Id :=
11167 Last_Non_Pragma (Variants (VP));
11168
11169 Others_Node : Node_Id;
11170
11171 begin
11172 if Nkind (First (Discrete_Choices (Last_Var))) /=
11173 N_Others_Choice
11174 then
11175 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11176 Set_Others_Discrete_Choices
11177 (Others_Node, Discrete_Choices (Last_Var));
11178 Set_Discrete_Choices
11179 (Last_Var, New_List (Others_Node));
11180 end if;
11181 end;
11182 end if;
11183 end if;
11184 end Check_Variant_Part;
11185 end if;
11186 end Freeze_Entity_Checks;
11187
11188 -------------------------
11189 -- Get_Alignment_Value --
11190 -------------------------
11191
11192 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11193 Align : constant Uint := Static_Integer (Expr);
11194
11195 begin
11196 if Align = No_Uint then
11197 return No_Uint;
11198
11199 elsif Align <= 0 then
11200
11201 -- This error is suppressed in ASIS mode to allow for different ASIS
11202 -- back ends or ASIS-based tools to query the illegal clause.
11203
11204 if not ASIS_Mode then
11205 Error_Msg_N ("alignment value must be positive", Expr);
11206 end if;
11207
11208 return No_Uint;
11209
11210 else
11211 for J in Int range 0 .. 64 loop
11212 declare
11213 M : constant Uint := Uint_2 ** J;
11214
11215 begin
11216 exit when M = Align;
11217
11218 if M > Align then
11219
11220 -- This error is suppressed in ASIS mode to allow for
11221 -- different ASIS back ends or ASIS-based tools to query the
11222 -- illegal clause.
11223
11224 if not ASIS_Mode then
11225 Error_Msg_N ("alignment value must be power of 2", Expr);
11226 end if;
11227
11228 return No_Uint;
11229 end if;
11230 end;
11231 end loop;
11232
11233 return Align;
11234 end if;
11235 end Get_Alignment_Value;
11236
11237 -------------------------------------
11238 -- Inherit_Aspects_At_Freeze_Point --
11239 -------------------------------------
11240
11241 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11242 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11243 (Rep_Item : Node_Id) return Boolean;
11244 -- This routine checks if Rep_Item is either a pragma or an aspect
11245 -- specification node whose correponding pragma (if any) is present in
11246 -- the Rep Item chain of the entity it has been specified to.
11247
11248 --------------------------------------------------
11249 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11250 --------------------------------------------------
11251
11252 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11253 (Rep_Item : Node_Id) return Boolean
11254 is
11255 begin
11256 return
11257 Nkind (Rep_Item) = N_Pragma
11258 or else Present_In_Rep_Item
11259 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11260 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11261
11262 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11263
11264 begin
11265 -- A representation item is either subtype-specific (Size and Alignment
11266 -- clauses) or type-related (all others). Subtype-specific aspects may
11267 -- differ for different subtypes of the same type (RM 13.1.8).
11268
11269 -- A derived type inherits each type-related representation aspect of
11270 -- its parent type that was directly specified before the declaration of
11271 -- the derived type (RM 13.1.15).
11272
11273 -- A derived subtype inherits each subtype-specific representation
11274 -- aspect of its parent subtype that was directly specified before the
11275 -- declaration of the derived type (RM 13.1.15).
11276
11277 -- The general processing involves inheriting a representation aspect
11278 -- from a parent type whenever the first rep item (aspect specification,
11279 -- attribute definition clause, pragma) corresponding to the given
11280 -- representation aspect in the rep item chain of Typ, if any, isn't
11281 -- directly specified to Typ but to one of its parents.
11282
11283 -- ??? Note that, for now, just a limited number of representation
11284 -- aspects have been inherited here so far. Many of them are
11285 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11286 -- a non- exhaustive list of aspects that likely also need to
11287 -- be moved to this routine: Alignment, Component_Alignment,
11288 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11289 -- Preelaborable_Initialization, RM_Size and Small.
11290
11291 -- In addition, Convention must be propagated from base type to subtype,
11292 -- because the subtype may have been declared on an incomplete view.
11293
11294 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11295 return;
11296 end if;
11297
11298 -- Ada_05/Ada_2005
11299
11300 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11301 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11302 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11303 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11304 then
11305 Set_Is_Ada_2005_Only (Typ);
11306 end if;
11307
11308 -- Ada_12/Ada_2012
11309
11310 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11311 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11312 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11313 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11314 then
11315 Set_Is_Ada_2012_Only (Typ);
11316 end if;
11317
11318 -- Atomic/Shared
11319
11320 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11321 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11322 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11323 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11324 then
11325 Set_Is_Atomic (Typ);
11326 Set_Is_Volatile (Typ);
11327 Set_Treat_As_Volatile (Typ);
11328 end if;
11329
11330 -- Convention
11331
11332 if Is_Record_Type (Typ)
11333 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11334 then
11335 Set_Convention (Typ, Convention (Base_Type (Typ)));
11336 end if;
11337
11338 -- Default_Component_Value
11339
11340 -- Verify that there is no rep_item declared for the type, and there
11341 -- is one coming from an ancestor.
11342
11343 if Is_Array_Type (Typ)
11344 and then Is_Base_Type (Typ)
11345 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11346 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11347 then
11348 Set_Default_Aspect_Component_Value (Typ,
11349 Default_Aspect_Component_Value
11350 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11351 end if;
11352
11353 -- Default_Value
11354
11355 if Is_Scalar_Type (Typ)
11356 and then Is_Base_Type (Typ)
11357 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11358 and then Has_Rep_Item (Typ, Name_Default_Value)
11359 then
11360 Set_Has_Default_Aspect (Typ);
11361 Set_Default_Aspect_Value (Typ,
11362 Default_Aspect_Value
11363 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11364 end if;
11365
11366 -- Discard_Names
11367
11368 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11369 and then Has_Rep_Item (Typ, Name_Discard_Names)
11370 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11371 (Get_Rep_Item (Typ, Name_Discard_Names))
11372 then
11373 Set_Discard_Names (Typ);
11374 end if;
11375
11376 -- Volatile
11377
11378 if not Has_Rep_Item (Typ, Name_Volatile, False)
11379 and then Has_Rep_Item (Typ, Name_Volatile)
11380 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11381 (Get_Rep_Item (Typ, Name_Volatile))
11382 then
11383 Set_Is_Volatile (Typ);
11384 Set_Treat_As_Volatile (Typ);
11385 end if;
11386
11387 -- Volatile_Full_Access
11388
11389 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11390 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11391 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11392 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11393 then
11394 Set_Is_Volatile_Full_Access (Typ);
11395 Set_Is_Volatile (Typ);
11396 Set_Treat_As_Volatile (Typ);
11397 end if;
11398
11399 -- Inheritance for derived types only
11400
11401 if Is_Derived_Type (Typ) then
11402 declare
11403 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11404 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11405
11406 begin
11407 -- Atomic_Components
11408
11409 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11410 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11411 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11412 (Get_Rep_Item (Typ, Name_Atomic_Components))
11413 then
11414 Set_Has_Atomic_Components (Imp_Bas_Typ);
11415 end if;
11416
11417 -- Volatile_Components
11418
11419 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11420 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11421 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11422 (Get_Rep_Item (Typ, Name_Volatile_Components))
11423 then
11424 Set_Has_Volatile_Components (Imp_Bas_Typ);
11425 end if;
11426
11427 -- Finalize_Storage_Only
11428
11429 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11430 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11431 then
11432 Set_Finalize_Storage_Only (Bas_Typ);
11433 end if;
11434
11435 -- Universal_Aliasing
11436
11437 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11438 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11439 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11440 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11441 then
11442 Set_Universal_Aliasing (Imp_Bas_Typ);
11443 end if;
11444
11445 -- Bit_Order
11446
11447 if Is_Record_Type (Typ) then
11448 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11449 and then Has_Rep_Item (Typ, Name_Bit_Order)
11450 then
11451 Set_Reverse_Bit_Order (Bas_Typ,
11452 Reverse_Bit_Order (Entity (Name
11453 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11454 end if;
11455 end if;
11456
11457 -- Scalar_Storage_Order
11458
11459 -- Note: the aspect is specified on a first subtype, but recorded
11460 -- in a flag of the base type!
11461
11462 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11463 and then Typ = Bas_Typ
11464 then
11465 -- For a type extension, always inherit from parent; otherwise
11466 -- inherit if no default applies. Note: we do not check for
11467 -- an explicit rep item on the parent type when inheriting,
11468 -- because the parent SSO may itself have been set by default.
11469
11470 if not Has_Rep_Item (First_Subtype (Typ),
11471 Name_Scalar_Storage_Order, False)
11472 and then (Is_Tagged_Type (Bas_Typ)
11473 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11474 or else
11475 SSO_Set_High_By_Default (Bas_Typ)))
11476 then
11477 Set_Reverse_Storage_Order (Bas_Typ,
11478 Reverse_Storage_Order
11479 (Implementation_Base_Type (Etype (Bas_Typ))));
11480
11481 -- Clear default SSO indications, since the inherited aspect
11482 -- which was set explicitly overrides the default.
11483
11484 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11485 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11486 end if;
11487 end if;
11488 end;
11489 end if;
11490 end Inherit_Aspects_At_Freeze_Point;
11491
11492 ----------------
11493 -- Initialize --
11494 ----------------
11495
11496 procedure Initialize is
11497 begin
11498 Address_Clause_Checks.Init;
11499 Compile_Time_Warnings_Errors.Init;
11500 Unchecked_Conversions.Init;
11501
11502 if AAMP_On_Target then
11503 Independence_Checks.Init;
11504 end if;
11505 end Initialize;
11506
11507 ---------------------------
11508 -- Install_Discriminants --
11509 ---------------------------
11510
11511 procedure Install_Discriminants (E : Entity_Id) is
11512 Disc : Entity_Id;
11513 Prev : Entity_Id;
11514 begin
11515 Disc := First_Discriminant (E);
11516 while Present (Disc) loop
11517 Prev := Current_Entity (Disc);
11518 Set_Current_Entity (Disc);
11519 Set_Is_Immediately_Visible (Disc);
11520 Set_Homonym (Disc, Prev);
11521 Next_Discriminant (Disc);
11522 end loop;
11523 end Install_Discriminants;
11524
11525 -------------------------
11526 -- Is_Operational_Item --
11527 -------------------------
11528
11529 function Is_Operational_Item (N : Node_Id) return Boolean is
11530 begin
11531 if Nkind (N) /= N_Attribute_Definition_Clause then
11532 return False;
11533
11534 else
11535 declare
11536 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11537 begin
11538
11539 -- List of operational items is given in AARM 13.1(8.mm/1).
11540 -- It is clearly incomplete, as it does not include iterator
11541 -- aspects, among others.
11542
11543 return Id = Attribute_Constant_Indexing
11544 or else Id = Attribute_Default_Iterator
11545 or else Id = Attribute_Implicit_Dereference
11546 or else Id = Attribute_Input
11547 or else Id = Attribute_Iterator_Element
11548 or else Id = Attribute_Iterable
11549 or else Id = Attribute_Output
11550 or else Id = Attribute_Read
11551 or else Id = Attribute_Variable_Indexing
11552 or else Id = Attribute_Write
11553 or else Id = Attribute_External_Tag;
11554 end;
11555 end if;
11556 end Is_Operational_Item;
11557
11558 -------------------------
11559 -- Is_Predicate_Static --
11560 -------------------------
11561
11562 -- Note: the basic legality of the expression has already been checked, so
11563 -- we don't need to worry about cases or ranges on strings for example.
11564
11565 function Is_Predicate_Static
11566 (Expr : Node_Id;
11567 Nam : Name_Id) return Boolean
11568 is
11569 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11570 -- Given a list of case expression alternatives, returns True if all
11571 -- the alternatives are static (have all static choices, and a static
11572 -- expression).
11573
11574 function All_Static_Choices (L : List_Id) return Boolean;
11575 -- Returns true if all elements of the list are OK static choices
11576 -- as defined below for Is_Static_Choice. Used for case expression
11577 -- alternatives and for the right operand of a membership test. An
11578 -- others_choice is static if the corresponding expression is static.
11579 -- The staticness of the bounds is checked separately.
11580
11581 function Is_Static_Choice (N : Node_Id) return Boolean;
11582 -- Returns True if N represents a static choice (static subtype, or
11583 -- static subtype indication, or static expression, or static range).
11584 --
11585 -- Note that this is a bit more inclusive than we actually need
11586 -- (in particular membership tests do not allow the use of subtype
11587 -- indications). But that doesn't matter, we have already checked
11588 -- that the construct is legal to get this far.
11589
11590 function Is_Type_Ref (N : Node_Id) return Boolean;
11591 pragma Inline (Is_Type_Ref);
11592 -- Returns True if N is a reference to the type for the predicate in the
11593 -- expression (i.e. if it is an identifier whose Chars field matches the
11594 -- Nam given in the call). N must not be parenthesized, if the type name
11595 -- appears in parens, this routine will return False.
11596 --
11597 -- The routine also returns True for function calls generated during the
11598 -- expansion of comparison operators on strings, which are intended to
11599 -- be legal in static predicates, and are converted into calls to array
11600 -- comparison routines in the body of the corresponding predicate
11601 -- function.
11602
11603 ----------------------------------
11604 -- All_Static_Case_Alternatives --
11605 ----------------------------------
11606
11607 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11608 N : Node_Id;
11609
11610 begin
11611 N := First (L);
11612 while Present (N) loop
11613 if not (All_Static_Choices (Discrete_Choices (N))
11614 and then Is_OK_Static_Expression (Expression (N)))
11615 then
11616 return False;
11617 end if;
11618
11619 Next (N);
11620 end loop;
11621
11622 return True;
11623 end All_Static_Case_Alternatives;
11624
11625 ------------------------
11626 -- All_Static_Choices --
11627 ------------------------
11628
11629 function All_Static_Choices (L : List_Id) return Boolean is
11630 N : Node_Id;
11631
11632 begin
11633 N := First (L);
11634 while Present (N) loop
11635 if not Is_Static_Choice (N) then
11636 return False;
11637 end if;
11638
11639 Next (N);
11640 end loop;
11641
11642 return True;
11643 end All_Static_Choices;
11644
11645 ----------------------
11646 -- Is_Static_Choice --
11647 ----------------------
11648
11649 function Is_Static_Choice (N : Node_Id) return Boolean is
11650 begin
11651 return Nkind (N) = N_Others_Choice
11652 or else Is_OK_Static_Expression (N)
11653 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11654 and then Is_OK_Static_Subtype (Entity (N)))
11655 or else (Nkind (N) = N_Subtype_Indication
11656 and then Is_OK_Static_Subtype (Entity (N)))
11657 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11658 end Is_Static_Choice;
11659
11660 -----------------
11661 -- Is_Type_Ref --
11662 -----------------
11663
11664 function Is_Type_Ref (N : Node_Id) return Boolean is
11665 begin
11666 return (Nkind (N) = N_Identifier
11667 and then Chars (N) = Nam
11668 and then Paren_Count (N) = 0)
11669 or else Nkind (N) = N_Function_Call;
11670 end Is_Type_Ref;
11671
11672 -- Start of processing for Is_Predicate_Static
11673
11674 begin
11675 -- Predicate_Static means one of the following holds. Numbers are the
11676 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11677
11678 -- 16: A static expression
11679
11680 if Is_OK_Static_Expression (Expr) then
11681 return True;
11682
11683 -- 17: A membership test whose simple_expression is the current
11684 -- instance, and whose membership_choice_list meets the requirements
11685 -- for a static membership test.
11686
11687 elsif Nkind (Expr) in N_Membership_Test
11688 and then ((Present (Right_Opnd (Expr))
11689 and then Is_Static_Choice (Right_Opnd (Expr)))
11690 or else
11691 (Present (Alternatives (Expr))
11692 and then All_Static_Choices (Alternatives (Expr))))
11693 then
11694 return True;
11695
11696 -- 18. A case_expression whose selecting_expression is the current
11697 -- instance, and whose dependent expressions are static expressions.
11698
11699 elsif Nkind (Expr) = N_Case_Expression
11700 and then Is_Type_Ref (Expression (Expr))
11701 and then All_Static_Case_Alternatives (Alternatives (Expr))
11702 then
11703 return True;
11704
11705 -- 19. A call to a predefined equality or ordering operator, where one
11706 -- operand is the current instance, and the other is a static
11707 -- expression.
11708
11709 -- Note: the RM is clearly wrong here in not excluding string types.
11710 -- Without this exclusion, we would allow expressions like X > "ABC"
11711 -- to be considered as predicate-static, which is clearly not intended,
11712 -- since the idea is for predicate-static to be a subset of normal
11713 -- static expressions (and "DEF" > "ABC" is not a static expression).
11714
11715 -- However, we do allow internally generated (not from source) equality
11716 -- and inequality operations to be valid on strings (this helps deal
11717 -- with cases where we transform A in "ABC" to A = "ABC).
11718
11719 -- In fact, it appears that the intent of the ARG is to extend static
11720 -- predicates to strings, and that the extension should probably apply
11721 -- to static expressions themselves. The code below accepts comparison
11722 -- operators that apply to static strings.
11723
11724 elsif Nkind (Expr) in N_Op_Compare
11725 and then ((Is_Type_Ref (Left_Opnd (Expr))
11726 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11727 or else
11728 (Is_Type_Ref (Right_Opnd (Expr))
11729 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11730 then
11731 return True;
11732
11733 -- 20. A call to a predefined boolean logical operator, where each
11734 -- operand is predicate-static.
11735
11736 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11737 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11738 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11739 or else
11740 (Nkind (Expr) = N_Op_Not
11741 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11742 then
11743 return True;
11744
11745 -- 21. A short-circuit control form where both operands are
11746 -- predicate-static.
11747
11748 elsif Nkind (Expr) in N_Short_Circuit
11749 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11750 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11751 then
11752 return True;
11753
11754 -- 22. A parenthesized predicate-static expression. This does not
11755 -- require any special test, since we just ignore paren levels in
11756 -- all the cases above.
11757
11758 -- One more test that is an implementation artifact caused by the fact
11759 -- that we are analyzing not the original expression, but the generated
11760 -- expression in the body of the predicate function. This can include
11761 -- references to inherited predicates, so that the expression we are
11762 -- processing looks like:
11763
11764 -- xxPredicate (typ (Inns)) and then expression
11765
11766 -- Where the call is to a Predicate function for an inherited predicate.
11767 -- We simply ignore such a call, which could be to either a dynamic or
11768 -- a static predicate. Note that if the parent predicate is dynamic then
11769 -- eventually this type will be marked as dynamic, but you are allowed
11770 -- to specify a static predicate for a subtype which is inheriting a
11771 -- dynamic predicate, so the static predicate validation here ignores
11772 -- the inherited predicate even if it is dynamic.
11773 -- In all cases, a static predicate can only apply to a scalar type.
11774
11775 elsif Nkind (Expr) = N_Function_Call
11776 and then Is_Predicate_Function (Entity (Name (Expr)))
11777 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11778 then
11779 return True;
11780
11781 -- That's an exhaustive list of tests, all other cases are not
11782 -- predicate-static, so we return False.
11783
11784 else
11785 return False;
11786 end if;
11787 end Is_Predicate_Static;
11788
11789 ---------------------
11790 -- Kill_Rep_Clause --
11791 ---------------------
11792
11793 procedure Kill_Rep_Clause (N : Node_Id) is
11794 begin
11795 pragma Assert (Ignore_Rep_Clauses);
11796
11797 -- Note: we use Replace rather than Rewrite, because we don't want
11798 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11799 -- rep clause that is being replaced.
11800
11801 Replace (N, Make_Null_Statement (Sloc (N)));
11802
11803 -- The null statement must be marked as not coming from source. This is
11804 -- so that ASIS ignores it, and also the back end does not expect bogus
11805 -- "from source" null statements in weird places (e.g. in declarative
11806 -- regions where such null statements are not allowed).
11807
11808 Set_Comes_From_Source (N, False);
11809 end Kill_Rep_Clause;
11810
11811 ------------------
11812 -- Minimum_Size --
11813 ------------------
11814
11815 function Minimum_Size
11816 (T : Entity_Id;
11817 Biased : Boolean := False) return Nat
11818 is
11819 Lo : Uint := No_Uint;
11820 Hi : Uint := No_Uint;
11821 LoR : Ureal := No_Ureal;
11822 HiR : Ureal := No_Ureal;
11823 LoSet : Boolean := False;
11824 HiSet : Boolean := False;
11825 B : Uint;
11826 S : Nat;
11827 Ancest : Entity_Id;
11828 R_Typ : constant Entity_Id := Root_Type (T);
11829
11830 begin
11831 -- If bad type, return 0
11832
11833 if T = Any_Type then
11834 return 0;
11835
11836 -- For generic types, just return zero. There cannot be any legitimate
11837 -- need to know such a size, but this routine may be called with a
11838 -- generic type as part of normal processing.
11839
11840 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11841 return 0;
11842
11843 -- Access types (cannot have size smaller than System.Address)
11844
11845 elsif Is_Access_Type (T) then
11846 return System_Address_Size;
11847
11848 -- Floating-point types
11849
11850 elsif Is_Floating_Point_Type (T) then
11851 return UI_To_Int (Esize (R_Typ));
11852
11853 -- Discrete types
11854
11855 elsif Is_Discrete_Type (T) then
11856
11857 -- The following loop is looking for the nearest compile time known
11858 -- bounds following the ancestor subtype chain. The idea is to find
11859 -- the most restrictive known bounds information.
11860
11861 Ancest := T;
11862 loop
11863 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11864 return 0;
11865 end if;
11866
11867 if not LoSet then
11868 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11869 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11870 LoSet := True;
11871 exit when HiSet;
11872 end if;
11873 end if;
11874
11875 if not HiSet then
11876 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11877 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11878 HiSet := True;
11879 exit when LoSet;
11880 end if;
11881 end if;
11882
11883 Ancest := Ancestor_Subtype (Ancest);
11884
11885 if No (Ancest) then
11886 Ancest := Base_Type (T);
11887
11888 if Is_Generic_Type (Ancest) then
11889 return 0;
11890 end if;
11891 end if;
11892 end loop;
11893
11894 -- Fixed-point types. We can't simply use Expr_Value to get the
11895 -- Corresponding_Integer_Value values of the bounds, since these do not
11896 -- get set till the type is frozen, and this routine can be called
11897 -- before the type is frozen. Similarly the test for bounds being static
11898 -- needs to include the case where we have unanalyzed real literals for
11899 -- the same reason.
11900
11901 elsif Is_Fixed_Point_Type (T) then
11902
11903 -- The following loop is looking for the nearest compile time known
11904 -- bounds following the ancestor subtype chain. The idea is to find
11905 -- the most restrictive known bounds information.
11906
11907 Ancest := T;
11908 loop
11909 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11910 return 0;
11911 end if;
11912
11913 -- Note: In the following two tests for LoSet and HiSet, it may
11914 -- seem redundant to test for N_Real_Literal here since normally
11915 -- one would assume that the test for the value being known at
11916 -- compile time includes this case. However, there is a glitch.
11917 -- If the real literal comes from folding a non-static expression,
11918 -- then we don't consider any non- static expression to be known
11919 -- at compile time if we are in configurable run time mode (needed
11920 -- in some cases to give a clearer definition of what is and what
11921 -- is not accepted). So the test is indeed needed. Without it, we
11922 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11923
11924 if not LoSet then
11925 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11926 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11927 then
11928 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11929 LoSet := True;
11930 exit when HiSet;
11931 end if;
11932 end if;
11933
11934 if not HiSet then
11935 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11936 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11937 then
11938 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11939 HiSet := True;
11940 exit when LoSet;
11941 end if;
11942 end if;
11943
11944 Ancest := Ancestor_Subtype (Ancest);
11945
11946 if No (Ancest) then
11947 Ancest := Base_Type (T);
11948
11949 if Is_Generic_Type (Ancest) then
11950 return 0;
11951 end if;
11952 end if;
11953 end loop;
11954
11955 Lo := UR_To_Uint (LoR / Small_Value (T));
11956 Hi := UR_To_Uint (HiR / Small_Value (T));
11957
11958 -- No other types allowed
11959
11960 else
11961 raise Program_Error;
11962 end if;
11963
11964 -- Fall through with Hi and Lo set. Deal with biased case
11965
11966 if (Biased
11967 and then not Is_Fixed_Point_Type (T)
11968 and then not (Is_Enumeration_Type (T)
11969 and then Has_Non_Standard_Rep (T)))
11970 or else Has_Biased_Representation (T)
11971 then
11972 Hi := Hi - Lo;
11973 Lo := Uint_0;
11974 end if;
11975
11976 -- Null range case, size is always zero. We only do this in the discrete
11977 -- type case, since that's the odd case that came up. Probably we should
11978 -- also do this in the fixed-point case, but doing so causes peculiar
11979 -- gigi failures, and it is not worth worrying about this incredibly
11980 -- marginal case (explicit null-range fixed-point type declarations)???
11981
11982 if Lo > Hi and then Is_Discrete_Type (T) then
11983 S := 0;
11984
11985 -- Signed case. Note that we consider types like range 1 .. -1 to be
11986 -- signed for the purpose of computing the size, since the bounds have
11987 -- to be accommodated in the base type.
11988
11989 elsif Lo < 0 or else Hi < 0 then
11990 S := 1;
11991 B := Uint_1;
11992
11993 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11994 -- Note that we accommodate the case where the bounds cross. This
11995 -- can happen either because of the way the bounds are declared
11996 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11997
11998 while Lo < -B
11999 or else Hi < -B
12000 or else Lo >= B
12001 or else Hi >= B
12002 loop
12003 B := Uint_2 ** S;
12004 S := S + 1;
12005 end loop;
12006
12007 -- Unsigned case
12008
12009 else
12010 -- If both bounds are positive, make sure that both are represen-
12011 -- table in the case where the bounds are crossed. This can happen
12012 -- either because of the way the bounds are declared, or because of
12013 -- the algorithm in Freeze_Fixed_Point_Type.
12014
12015 if Lo > Hi then
12016 Hi := Lo;
12017 end if;
12018
12019 -- S = size, (can accommodate 0 .. (2**size - 1))
12020
12021 S := 0;
12022 while Hi >= Uint_2 ** S loop
12023 S := S + 1;
12024 end loop;
12025 end if;
12026
12027 return S;
12028 end Minimum_Size;
12029
12030 ---------------------------
12031 -- New_Stream_Subprogram --
12032 ---------------------------
12033
12034 procedure New_Stream_Subprogram
12035 (N : Node_Id;
12036 Ent : Entity_Id;
12037 Subp : Entity_Id;
12038 Nam : TSS_Name_Type)
12039 is
12040 Loc : constant Source_Ptr := Sloc (N);
12041 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12042 Subp_Id : Entity_Id;
12043 Subp_Decl : Node_Id;
12044 F : Entity_Id;
12045 Etyp : Entity_Id;
12046
12047 Defer_Declaration : constant Boolean :=
12048 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12049 -- For a tagged type, there is a declaration for each stream attribute
12050 -- at the freeze point, and we must generate only a completion of this
12051 -- declaration. We do the same for private types, because the full view
12052 -- might be tagged. Otherwise we generate a declaration at the point of
12053 -- the attribute definition clause. If the attribute definition comes
12054 -- from an aspect specification the declaration is part of the freeze
12055 -- actions of the type.
12056
12057 function Build_Spec return Node_Id;
12058 -- Used for declaration and renaming declaration, so that this is
12059 -- treated as a renaming_as_body.
12060
12061 ----------------
12062 -- Build_Spec --
12063 ----------------
12064
12065 function Build_Spec return Node_Id is
12066 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12067 Formals : List_Id;
12068 Spec : Node_Id;
12069 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12070
12071 begin
12072 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12073
12074 -- S : access Root_Stream_Type'Class
12075
12076 Formals := New_List (
12077 Make_Parameter_Specification (Loc,
12078 Defining_Identifier =>
12079 Make_Defining_Identifier (Loc, Name_S),
12080 Parameter_Type =>
12081 Make_Access_Definition (Loc,
12082 Subtype_Mark =>
12083 New_Occurrence_Of (
12084 Designated_Type (Etype (F)), Loc))));
12085
12086 if Nam = TSS_Stream_Input then
12087 Spec :=
12088 Make_Function_Specification (Loc,
12089 Defining_Unit_Name => Subp_Id,
12090 Parameter_Specifications => Formals,
12091 Result_Definition => T_Ref);
12092 else
12093 -- V : [out] T
12094
12095 Append_To (Formals,
12096 Make_Parameter_Specification (Loc,
12097 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12098 Out_Present => Out_P,
12099 Parameter_Type => T_Ref));
12100
12101 Spec :=
12102 Make_Procedure_Specification (Loc,
12103 Defining_Unit_Name => Subp_Id,
12104 Parameter_Specifications => Formals);
12105 end if;
12106
12107 return Spec;
12108 end Build_Spec;
12109
12110 -- Start of processing for New_Stream_Subprogram
12111
12112 begin
12113 F := First_Formal (Subp);
12114
12115 if Ekind (Subp) = E_Procedure then
12116 Etyp := Etype (Next_Formal (F));
12117 else
12118 Etyp := Etype (Subp);
12119 end if;
12120
12121 -- Prepare subprogram declaration and insert it as an action on the
12122 -- clause node. The visibility for this entity is used to test for
12123 -- visibility of the attribute definition clause (in the sense of
12124 -- 8.3(23) as amended by AI-195).
12125
12126 if not Defer_Declaration then
12127 Subp_Decl :=
12128 Make_Subprogram_Declaration (Loc,
12129 Specification => Build_Spec);
12130
12131 -- For a tagged type, there is always a visible declaration for each
12132 -- stream TSS (it is a predefined primitive operation), and the
12133 -- completion of this declaration occurs at the freeze point, which is
12134 -- not always visible at places where the attribute definition clause is
12135 -- visible. So, we create a dummy entity here for the purpose of
12136 -- tracking the visibility of the attribute definition clause itself.
12137
12138 else
12139 Subp_Id :=
12140 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12141 Subp_Decl :=
12142 Make_Object_Declaration (Loc,
12143 Defining_Identifier => Subp_Id,
12144 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12145 end if;
12146
12147 if not Defer_Declaration
12148 and then From_Aspect_Specification (N)
12149 and then Has_Delayed_Freeze (Ent)
12150 then
12151 Append_Freeze_Action (Ent, Subp_Decl);
12152
12153 else
12154 Insert_Action (N, Subp_Decl);
12155 Set_Entity (N, Subp_Id);
12156 end if;
12157
12158 Subp_Decl :=
12159 Make_Subprogram_Renaming_Declaration (Loc,
12160 Specification => Build_Spec,
12161 Name => New_Occurrence_Of (Subp, Loc));
12162
12163 if Defer_Declaration then
12164 Set_TSS (Base_Type (Ent), Subp_Id);
12165
12166 else
12167 if From_Aspect_Specification (N) then
12168 Append_Freeze_Action (Ent, Subp_Decl);
12169 else
12170 Insert_Action (N, Subp_Decl);
12171 end if;
12172
12173 Copy_TSS (Subp_Id, Base_Type (Ent));
12174 end if;
12175 end New_Stream_Subprogram;
12176
12177 ------------------------------------------
12178 -- Push_Scope_And_Install_Discriminants --
12179 ------------------------------------------
12180
12181 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12182 begin
12183 if Has_Discriminants (E) then
12184 Push_Scope (E);
12185
12186 -- Make the discriminants visible for type declarations and protected
12187 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12188
12189 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12190 Install_Discriminants (E);
12191 end if;
12192 end if;
12193 end Push_Scope_And_Install_Discriminants;
12194
12195 ------------------------
12196 -- Rep_Item_Too_Early --
12197 ------------------------
12198
12199 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12200 begin
12201 -- Cannot apply non-operational rep items to generic types
12202
12203 if Is_Operational_Item (N) then
12204 return False;
12205
12206 elsif Is_Type (T)
12207 and then Is_Generic_Type (Root_Type (T))
12208 and then (Nkind (N) /= N_Pragma
12209 or else Get_Pragma_Id (N) /= Pragma_Convention)
12210 then
12211 Error_Msg_N ("representation item not allowed for generic type", N);
12212 return True;
12213 end if;
12214
12215 -- Otherwise check for incomplete type
12216
12217 if Is_Incomplete_Or_Private_Type (T)
12218 and then No (Underlying_Type (T))
12219 and then
12220 (Nkind (N) /= N_Pragma
12221 or else Get_Pragma_Id (N) /= Pragma_Import)
12222 then
12223 Error_Msg_N
12224 ("representation item must be after full type declaration", N);
12225 return True;
12226
12227 -- If the type has incomplete components, a representation clause is
12228 -- illegal but stream attributes and Convention pragmas are correct.
12229
12230 elsif Has_Private_Component (T) then
12231 if Nkind (N) = N_Pragma then
12232 return False;
12233
12234 else
12235 Error_Msg_N
12236 ("representation item must appear after type is fully defined",
12237 N);
12238 return True;
12239 end if;
12240 else
12241 return False;
12242 end if;
12243 end Rep_Item_Too_Early;
12244
12245 -----------------------
12246 -- Rep_Item_Too_Late --
12247 -----------------------
12248
12249 function Rep_Item_Too_Late
12250 (T : Entity_Id;
12251 N : Node_Id;
12252 FOnly : Boolean := False) return Boolean
12253 is
12254 S : Entity_Id;
12255 Parent_Type : Entity_Id;
12256
12257 procedure No_Type_Rep_Item;
12258 -- Output message indicating that no type-related aspects can be
12259 -- specified due to some property of the parent type.
12260
12261 procedure Too_Late;
12262 -- Output message for an aspect being specified too late
12263
12264 -- Note that neither of the above errors is considered a serious one,
12265 -- since the effect is simply that we ignore the representation clause
12266 -- in these cases.
12267 -- Is this really true? In any case if we make this change we must
12268 -- document the requirement in the spec of Rep_Item_Too_Late that
12269 -- if True is returned, then the rep item must be completely ignored???
12270
12271 ----------------------
12272 -- No_Type_Rep_Item --
12273 ----------------------
12274
12275 procedure No_Type_Rep_Item is
12276 begin
12277 Error_Msg_N ("|type-related representation item not permitted!", N);
12278 end No_Type_Rep_Item;
12279
12280 --------------
12281 -- Too_Late --
12282 --------------
12283
12284 procedure Too_Late is
12285 begin
12286 -- Other compilers seem more relaxed about rep items appearing too
12287 -- late. Since analysis tools typically don't care about rep items
12288 -- anyway, no reason to be too strict about this.
12289
12290 if not Relaxed_RM_Semantics then
12291 Error_Msg_N ("|representation item appears too late!", N);
12292 end if;
12293 end Too_Late;
12294
12295 -- Start of processing for Rep_Item_Too_Late
12296
12297 begin
12298 -- First make sure entity is not frozen (RM 13.1(9))
12299
12300 if Is_Frozen (T)
12301
12302 -- Exclude imported types, which may be frozen if they appear in a
12303 -- representation clause for a local type.
12304
12305 and then not From_Limited_With (T)
12306
12307 -- Exclude generated entities (not coming from source). The common
12308 -- case is when we generate a renaming which prematurely freezes the
12309 -- renamed internal entity, but we still want to be able to set copies
12310 -- of attribute values such as Size/Alignment.
12311
12312 and then Comes_From_Source (T)
12313 then
12314 -- A self-referential aspect is illegal if it forces freezing the
12315 -- entity before the corresponding pragma has been analyzed.
12316
12317 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12318 and then From_Aspect_Specification (N)
12319 then
12320 Error_Msg_NE
12321 ("aspect specification causes premature freezing of&", N, T);
12322 Set_Has_Delayed_Freeze (T, False);
12323 return True;
12324 end if;
12325
12326 Too_Late;
12327 S := First_Subtype (T);
12328
12329 if Present (Freeze_Node (S)) then
12330 if not Relaxed_RM_Semantics then
12331 Error_Msg_NE
12332 ("??no more representation items for }", Freeze_Node (S), S);
12333 end if;
12334 end if;
12335
12336 return True;
12337
12338 -- Check for case of untagged derived type whose parent either has
12339 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12340 -- this case we do not output a Too_Late message, since there is no
12341 -- earlier point where the rep item could be placed to make it legal.
12342
12343 elsif Is_Type (T)
12344 and then not FOnly
12345 and then Is_Derived_Type (T)
12346 and then not Is_Tagged_Type (T)
12347 then
12348 Parent_Type := Etype (Base_Type (T));
12349
12350 if Has_Primitive_Operations (Parent_Type) then
12351 No_Type_Rep_Item;
12352
12353 if not Relaxed_RM_Semantics then
12354 Error_Msg_NE
12355 ("\parent type & has primitive operations!", N, Parent_Type);
12356 end if;
12357
12358 return True;
12359
12360 elsif Is_By_Reference_Type (Parent_Type) then
12361 No_Type_Rep_Item;
12362
12363 if not Relaxed_RM_Semantics then
12364 Error_Msg_NE
12365 ("\parent type & is a by reference type!", N, Parent_Type);
12366 end if;
12367
12368 return True;
12369 end if;
12370 end if;
12371
12372 -- No error, but one more warning to consider. The RM (surprisingly)
12373 -- allows this pattern:
12374
12375 -- type S is ...
12376 -- primitive operations for S
12377 -- type R is new S;
12378 -- rep clause for S
12379
12380 -- Meaning that calls on the primitive operations of S for values of
12381 -- type R may require possibly expensive implicit conversion operations.
12382 -- This is not an error, but is worth a warning.
12383
12384 if not Relaxed_RM_Semantics and then Is_Type (T) then
12385 declare
12386 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12387
12388 begin
12389 if Present (DTL)
12390 and then Has_Primitive_Operations (Base_Type (T))
12391
12392 -- For now, do not generate this warning for the case of aspect
12393 -- specification using Ada 2012 syntax, since we get wrong
12394 -- messages we do not understand. The whole business of derived
12395 -- types and rep items seems a bit confused when aspects are
12396 -- used, since the aspects are not evaluated till freeze time.
12397
12398 and then not From_Aspect_Specification (N)
12399 then
12400 Error_Msg_Sloc := Sloc (DTL);
12401 Error_Msg_N
12402 ("representation item for& appears after derived type "
12403 & "declaration#??", N);
12404 Error_Msg_NE
12405 ("\may result in implicit conversions for primitive "
12406 & "operations of&??", N, T);
12407 Error_Msg_NE
12408 ("\to change representations when called with arguments "
12409 & "of type&??", N, DTL);
12410 end if;
12411 end;
12412 end if;
12413
12414 -- No error, link item into head of chain of rep items for the entity,
12415 -- but avoid chaining if we have an overloadable entity, and the pragma
12416 -- is one that can apply to multiple overloaded entities.
12417
12418 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12419 declare
12420 Pname : constant Name_Id := Pragma_Name (N);
12421 begin
12422 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12423 Name_External, Name_Interface)
12424 then
12425 return False;
12426 end if;
12427 end;
12428 end if;
12429
12430 Record_Rep_Item (T, N);
12431 return False;
12432 end Rep_Item_Too_Late;
12433
12434 -------------------------------------
12435 -- Replace_Type_References_Generic --
12436 -------------------------------------
12437
12438 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12439 TName : constant Name_Id := Chars (T);
12440
12441 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12442 -- Processes a single node in the traversal procedure below, checking
12443 -- if node N should be replaced, and if so, doing the replacement.
12444
12445 function Visible_Component (Comp : Name_Id) return Entity_Id;
12446 -- Given an identifier in the expression, check whether there is a
12447 -- discriminant or component of the type that is directy visible, and
12448 -- rewrite it as the corresponding selected component of the formal of
12449 -- the subprogram. The entity is located by a sequential search, which
12450 -- seems acceptable given the typical size of component lists and check
12451 -- expressions. Possible optimization ???
12452
12453 ----------------------
12454 -- Replace_Type_Ref --
12455 ----------------------
12456
12457 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12458 Loc : constant Source_Ptr := Sloc (N);
12459
12460 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12461 -- Add the proper prefix to a reference to a component of the type
12462 -- when it is not already a selected component.
12463
12464 ----------------
12465 -- Add_Prefix --
12466 ----------------
12467
12468 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12469 begin
12470 Rewrite (Ref,
12471 Make_Selected_Component (Loc,
12472 Prefix => New_Occurrence_Of (T, Loc),
12473 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12474 Replace_Type_Reference (Prefix (Ref));
12475 end Add_Prefix;
12476
12477 -- Local variables
12478
12479 Comp : Entity_Id;
12480 Pref : Node_Id;
12481 Scop : Entity_Id;
12482
12483 -- Start of processing for Replace_Type_Ref
12484
12485 begin
12486 if Nkind (N) = N_Identifier then
12487
12488 -- If not the type name, check whether it is a reference to some
12489 -- other type, which must be frozen before the predicate function
12490 -- is analyzed, i.e. before the freeze node of the type to which
12491 -- the predicate applies.
12492
12493 if Chars (N) /= TName then
12494 if Present (Current_Entity (N))
12495 and then Is_Type (Current_Entity (N))
12496 then
12497 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12498 end if;
12499
12500 -- The components of the type are directly visible and can
12501 -- be referenced without a prefix.
12502
12503 if Nkind (Parent (N)) = N_Selected_Component then
12504 null;
12505
12506 -- In expression C (I), C may be a directly visible function
12507 -- or a visible component that has an array type. Disambiguate
12508 -- by examining the component type.
12509
12510 elsif Nkind (Parent (N)) = N_Indexed_Component
12511 and then N = Prefix (Parent (N))
12512 then
12513 Comp := Visible_Component (Chars (N));
12514
12515 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12516 Add_Prefix (N, Comp);
12517 end if;
12518
12519 else
12520 Comp := Visible_Component (Chars (N));
12521
12522 if Present (Comp) then
12523 Add_Prefix (N, Comp);
12524 end if;
12525 end if;
12526
12527 return Skip;
12528
12529 -- Otherwise do the replacement and we are done with this node
12530
12531 else
12532 Replace_Type_Reference (N);
12533 return Skip;
12534 end if;
12535
12536 -- Case of selected component (which is what a qualification looks
12537 -- like in the unanalyzed tree, which is what we have.
12538
12539 elsif Nkind (N) = N_Selected_Component then
12540
12541 -- If selector name is not our type, keeping going (we might still
12542 -- have an occurrence of the type in the prefix).
12543
12544 if Nkind (Selector_Name (N)) /= N_Identifier
12545 or else Chars (Selector_Name (N)) /= TName
12546 then
12547 return OK;
12548
12549 -- Selector name is our type, check qualification
12550
12551 else
12552 -- Loop through scopes and prefixes, doing comparison
12553
12554 Scop := Current_Scope;
12555 Pref := Prefix (N);
12556 loop
12557 -- Continue if no more scopes or scope with no name
12558
12559 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12560 return OK;
12561 end if;
12562
12563 -- Do replace if prefix is an identifier matching the scope
12564 -- that we are currently looking at.
12565
12566 if Nkind (Pref) = N_Identifier
12567 and then Chars (Pref) = Chars (Scop)
12568 then
12569 Replace_Type_Reference (N);
12570 return Skip;
12571 end if;
12572
12573 -- Go check scope above us if prefix is itself of the form
12574 -- of a selected component, whose selector matches the scope
12575 -- we are currently looking at.
12576
12577 if Nkind (Pref) = N_Selected_Component
12578 and then Nkind (Selector_Name (Pref)) = N_Identifier
12579 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12580 then
12581 Scop := Scope (Scop);
12582 Pref := Prefix (Pref);
12583
12584 -- For anything else, we don't have a match, so keep on
12585 -- going, there are still some weird cases where we may
12586 -- still have a replacement within the prefix.
12587
12588 else
12589 return OK;
12590 end if;
12591 end loop;
12592 end if;
12593
12594 -- Continue for any other node kind
12595
12596 else
12597 return OK;
12598 end if;
12599 end Replace_Type_Ref;
12600
12601 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12602
12603 -----------------------
12604 -- Visible_Component --
12605 -----------------------
12606
12607 function Visible_Component (Comp : Name_Id) return Entity_Id is
12608 E : Entity_Id;
12609
12610 begin
12611 -- Types with nameable components are records and discriminated
12612 -- private types.
12613
12614 if Ekind (T) = E_Record_Type
12615 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12616 then
12617 E := First_Entity (T);
12618 while Present (E) loop
12619 if Comes_From_Source (E) and then Chars (E) = Comp then
12620 return E;
12621 end if;
12622
12623 Next_Entity (E);
12624 end loop;
12625 end if;
12626
12627 -- Nothing by that name, or the type has no components
12628
12629 return Empty;
12630 end Visible_Component;
12631
12632 -- Start of processing for Replace_Type_References_Generic
12633
12634 begin
12635 Replace_Type_Refs (N);
12636 end Replace_Type_References_Generic;
12637
12638 --------------------------------
12639 -- Resolve_Aspect_Expressions --
12640 --------------------------------
12641
12642 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12643 ASN : Node_Id;
12644 A_Id : Aspect_Id;
12645 Expr : Node_Id;
12646
12647 function Resolve_Name (N : Node_Id) return Traverse_Result;
12648 -- Verify that all identifiers in the expression, with the exception
12649 -- of references to the current entity, denote visible entities. This
12650 -- is done only to detect visibility errors, as the expression will be
12651 -- properly analyzed/expanded during analysis of the predicate function
12652 -- body. We omit quantified expressions from this test, given that they
12653 -- introduce a local identifier that would require proper expansion to
12654 -- handle properly.
12655
12656 -- In ASIS_Mode we preserve the entity in the source because there is
12657 -- no subsequent expansion to decorate the tree.
12658
12659 ------------------
12660 -- Resolve_Name --
12661 ------------------
12662
12663 function Resolve_Name (N : Node_Id) return Traverse_Result is
12664 begin
12665 if Nkind (N) = N_Selected_Component then
12666 if Nkind (Prefix (N)) = N_Identifier
12667 and then Chars (Prefix (N)) /= Chars (E)
12668 then
12669 Find_Selected_Component (N);
12670 end if;
12671
12672 return Skip;
12673
12674 elsif Nkind (N) = N_Identifier and then Chars (N) /= Chars (E) then
12675 Find_Direct_Name (N);
12676
12677 if not ASIS_Mode then
12678 Set_Entity (N, Empty);
12679 end if;
12680
12681 elsif Nkind (N) = N_Quantified_Expression then
12682 return Skip;
12683 end if;
12684
12685 return OK;
12686 end Resolve_Name;
12687
12688 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12689
12690 -- Start of processing for Resolve_Aspect_Expressions
12691
12692 begin
12693 ASN := First_Rep_Item (E);
12694 while Present (ASN) loop
12695 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12696 A_Id := Get_Aspect_Id (ASN);
12697 Expr := Expression (ASN);
12698
12699 case A_Id is
12700
12701 -- For now we only deal with aspects that do not generate
12702 -- subprograms, or that may mention current instances of
12703 -- types. These will require special handling (???TBD).
12704
12705 when Aspect_Invariant
12706 | Aspect_Predicate
12707 | Aspect_Predicate_Failure
12708 =>
12709 null;
12710
12711 when Aspect_Dynamic_Predicate
12712 | Aspect_Static_Predicate
12713 =>
12714 -- Build predicate function specification and preanalyze
12715 -- expression after type replacement.
12716
12717 if No (Predicate_Function (E)) then
12718 declare
12719 FDecl : constant Node_Id :=
12720 Build_Predicate_Function_Declaration (E);
12721 pragma Unreferenced (FDecl);
12722 begin
12723 Resolve_Aspect_Expression (Expr);
12724 end;
12725 end if;
12726
12727 when Pre_Post_Aspects =>
12728 null;
12729
12730 when Aspect_Iterable =>
12731 if Nkind (Expr) = N_Aggregate then
12732 declare
12733 Assoc : Node_Id;
12734
12735 begin
12736 Assoc := First (Component_Associations (Expr));
12737 while Present (Assoc) loop
12738 Find_Direct_Name (Expression (Assoc));
12739 Next (Assoc);
12740 end loop;
12741 end;
12742 end if;
12743
12744 when others =>
12745 if Present (Expr) then
12746 case Aspect_Argument (A_Id) is
12747 when Expression
12748 | Optional_Expression
12749 =>
12750 Analyze_And_Resolve (Expression (ASN));
12751
12752 when Name
12753 | Optional_Name
12754 =>
12755 if Nkind (Expr) = N_Identifier then
12756 Find_Direct_Name (Expr);
12757
12758 elsif Nkind (Expr) = N_Selected_Component then
12759 Find_Selected_Component (Expr);
12760 end if;
12761 end case;
12762 end if;
12763 end case;
12764 end if;
12765
12766 ASN := Next_Rep_Item (ASN);
12767 end loop;
12768 end Resolve_Aspect_Expressions;
12769
12770 -------------------------
12771 -- Same_Representation --
12772 -------------------------
12773
12774 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12775 T1 : constant Entity_Id := Underlying_Type (Typ1);
12776 T2 : constant Entity_Id := Underlying_Type (Typ2);
12777
12778 begin
12779 -- A quick check, if base types are the same, then we definitely have
12780 -- the same representation, because the subtype specific representation
12781 -- attributes (Size and Alignment) do not affect representation from
12782 -- the point of view of this test.
12783
12784 if Base_Type (T1) = Base_Type (T2) then
12785 return True;
12786
12787 elsif Is_Private_Type (Base_Type (T2))
12788 and then Base_Type (T1) = Full_View (Base_Type (T2))
12789 then
12790 return True;
12791 end if;
12792
12793 -- Tagged types never have differing representations
12794
12795 if Is_Tagged_Type (T1) then
12796 return True;
12797 end if;
12798
12799 -- Representations are definitely different if conventions differ
12800
12801 if Convention (T1) /= Convention (T2) then
12802 return False;
12803 end if;
12804
12805 -- Representations are different if component alignments or scalar
12806 -- storage orders differ.
12807
12808 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
12809 and then
12810 (Is_Record_Type (T2) or else Is_Array_Type (T2))
12811 and then
12812 (Component_Alignment (T1) /= Component_Alignment (T2)
12813 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
12814 then
12815 return False;
12816 end if;
12817
12818 -- For arrays, the only real issue is component size. If we know the
12819 -- component size for both arrays, and it is the same, then that's
12820 -- good enough to know we don't have a change of representation.
12821
12822 if Is_Array_Type (T1) then
12823 if Known_Component_Size (T1)
12824 and then Known_Component_Size (T2)
12825 and then Component_Size (T1) = Component_Size (T2)
12826 then
12827 return True;
12828 end if;
12829 end if;
12830
12831 -- Types definitely have same representation if neither has non-standard
12832 -- representation since default representations are always consistent.
12833 -- If only one has non-standard representation, and the other does not,
12834 -- then we consider that they do not have the same representation. They
12835 -- might, but there is no way of telling early enough.
12836
12837 if Has_Non_Standard_Rep (T1) then
12838 if not Has_Non_Standard_Rep (T2) then
12839 return False;
12840 end if;
12841 else
12842 return not Has_Non_Standard_Rep (T2);
12843 end if;
12844
12845 -- Here the two types both have non-standard representation, and we need
12846 -- to determine if they have the same non-standard representation.
12847
12848 -- For arrays, we simply need to test if the component sizes are the
12849 -- same. Pragma Pack is reflected in modified component sizes, so this
12850 -- check also deals with pragma Pack.
12851
12852 if Is_Array_Type (T1) then
12853 return Component_Size (T1) = Component_Size (T2);
12854
12855 -- Tagged types always have the same representation, because it is not
12856 -- possible to specify different representations for common fields.
12857
12858 elsif Is_Tagged_Type (T1) then
12859 return True;
12860
12861 -- Case of record types
12862
12863 elsif Is_Record_Type (T1) then
12864
12865 -- Packed status must conform
12866
12867 if Is_Packed (T1) /= Is_Packed (T2) then
12868 return False;
12869
12870 -- Otherwise we must check components. Typ2 maybe a constrained
12871 -- subtype with fewer components, so we compare the components
12872 -- of the base types.
12873
12874 else
12875 Record_Case : declare
12876 CD1, CD2 : Entity_Id;
12877
12878 function Same_Rep return Boolean;
12879 -- CD1 and CD2 are either components or discriminants. This
12880 -- function tests whether they have the same representation.
12881
12882 --------------
12883 -- Same_Rep --
12884 --------------
12885
12886 function Same_Rep return Boolean is
12887 begin
12888 if No (Component_Clause (CD1)) then
12889 return No (Component_Clause (CD2));
12890 else
12891 -- Note: at this point, component clauses have been
12892 -- normalized to the default bit order, so that the
12893 -- comparison of Component_Bit_Offsets is meaningful.
12894
12895 return
12896 Present (Component_Clause (CD2))
12897 and then
12898 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12899 and then
12900 Esize (CD1) = Esize (CD2);
12901 end if;
12902 end Same_Rep;
12903
12904 -- Start of processing for Record_Case
12905
12906 begin
12907 if Has_Discriminants (T1) then
12908
12909 -- The number of discriminants may be different if the
12910 -- derived type has fewer (constrained by values). The
12911 -- invisible discriminants retain the representation of
12912 -- the original, so the discrepancy does not per se
12913 -- indicate a different representation.
12914
12915 CD1 := First_Discriminant (T1);
12916 CD2 := First_Discriminant (T2);
12917 while Present (CD1) and then Present (CD2) loop
12918 if not Same_Rep then
12919 return False;
12920 else
12921 Next_Discriminant (CD1);
12922 Next_Discriminant (CD2);
12923 end if;
12924 end loop;
12925 end if;
12926
12927 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12928 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
12929 while Present (CD1) loop
12930 if not Same_Rep then
12931 return False;
12932 else
12933 Next_Component (CD1);
12934 Next_Component (CD2);
12935 end if;
12936 end loop;
12937
12938 return True;
12939 end Record_Case;
12940 end if;
12941
12942 -- For enumeration types, we must check each literal to see if the
12943 -- representation is the same. Note that we do not permit enumeration
12944 -- representation clauses for Character and Wide_Character, so these
12945 -- cases were already dealt with.
12946
12947 elsif Is_Enumeration_Type (T1) then
12948 Enumeration_Case : declare
12949 L1, L2 : Entity_Id;
12950
12951 begin
12952 L1 := First_Literal (T1);
12953 L2 := First_Literal (T2);
12954 while Present (L1) loop
12955 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12956 return False;
12957 else
12958 Next_Literal (L1);
12959 Next_Literal (L2);
12960 end if;
12961 end loop;
12962
12963 return True;
12964 end Enumeration_Case;
12965
12966 -- Any other types have the same representation for these purposes
12967
12968 else
12969 return True;
12970 end if;
12971 end Same_Representation;
12972
12973 --------------------------------
12974 -- Resolve_Iterable_Operation --
12975 --------------------------------
12976
12977 procedure Resolve_Iterable_Operation
12978 (N : Node_Id;
12979 Cursor : Entity_Id;
12980 Typ : Entity_Id;
12981 Nam : Name_Id)
12982 is
12983 Ent : Entity_Id;
12984 F1 : Entity_Id;
12985 F2 : Entity_Id;
12986
12987 begin
12988 if not Is_Overloaded (N) then
12989 if not Is_Entity_Name (N)
12990 or else Ekind (Entity (N)) /= E_Function
12991 or else Scope (Entity (N)) /= Scope (Typ)
12992 or else No (First_Formal (Entity (N)))
12993 or else Etype (First_Formal (Entity (N))) /= Typ
12994 then
12995 Error_Msg_N ("iterable primitive must be local function name "
12996 & "whose first formal is an iterable type", N);
12997 return;
12998 end if;
12999
13000 Ent := Entity (N);
13001 F1 := First_Formal (Ent);
13002 if Nam = Name_First then
13003
13004 -- First (Container) => Cursor
13005
13006 if Etype (Ent) /= Cursor then
13007 Error_Msg_N ("primitive for First must yield a curosr", N);
13008 end if;
13009
13010 elsif Nam = Name_Next then
13011
13012 -- Next (Container, Cursor) => Cursor
13013
13014 F2 := Next_Formal (F1);
13015
13016 if Etype (F2) /= Cursor
13017 or else Etype (Ent) /= Cursor
13018 or else Present (Next_Formal (F2))
13019 then
13020 Error_Msg_N ("no match for Next iterable primitive", N);
13021 end if;
13022
13023 elsif Nam = Name_Has_Element then
13024
13025 -- Has_Element (Container, Cursor) => Boolean
13026
13027 F2 := Next_Formal (F1);
13028 if Etype (F2) /= Cursor
13029 or else Etype (Ent) /= Standard_Boolean
13030 or else Present (Next_Formal (F2))
13031 then
13032 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13033 end if;
13034
13035 elsif Nam = Name_Element then
13036 F2 := Next_Formal (F1);
13037
13038 if No (F2)
13039 or else Etype (F2) /= Cursor
13040 or else Present (Next_Formal (F2))
13041 then
13042 Error_Msg_N ("no match for Element iterable primitive", N);
13043 end if;
13044 null;
13045
13046 else
13047 raise Program_Error;
13048 end if;
13049
13050 else
13051 -- Overloaded case: find subprogram with proper signature.
13052 -- Caller will report error if no match is found.
13053
13054 declare
13055 I : Interp_Index;
13056 It : Interp;
13057
13058 begin
13059 Get_First_Interp (N, I, It);
13060 while Present (It.Typ) loop
13061 if Ekind (It.Nam) = E_Function
13062 and then Scope (It.Nam) = Scope (Typ)
13063 and then Etype (First_Formal (It.Nam)) = Typ
13064 then
13065 F1 := First_Formal (It.Nam);
13066
13067 if Nam = Name_First then
13068 if Etype (It.Nam) = Cursor
13069 and then No (Next_Formal (F1))
13070 then
13071 Set_Entity (N, It.Nam);
13072 exit;
13073 end if;
13074
13075 elsif Nam = Name_Next then
13076 F2 := Next_Formal (F1);
13077
13078 if Present (F2)
13079 and then No (Next_Formal (F2))
13080 and then Etype (F2) = Cursor
13081 and then Etype (It.Nam) = Cursor
13082 then
13083 Set_Entity (N, It.Nam);
13084 exit;
13085 end if;
13086
13087 elsif Nam = Name_Has_Element then
13088 F2 := Next_Formal (F1);
13089
13090 if Present (F2)
13091 and then No (Next_Formal (F2))
13092 and then Etype (F2) = Cursor
13093 and then Etype (It.Nam) = Standard_Boolean
13094 then
13095 Set_Entity (N, It.Nam);
13096 F2 := Next_Formal (F1);
13097 exit;
13098 end if;
13099
13100 elsif Nam = Name_Element then
13101 F2 := Next_Formal (F1);
13102
13103 if Present (F2)
13104 and then No (Next_Formal (F2))
13105 and then Etype (F2) = Cursor
13106 then
13107 Set_Entity (N, It.Nam);
13108 exit;
13109 end if;
13110 end if;
13111 end if;
13112
13113 Get_Next_Interp (I, It);
13114 end loop;
13115 end;
13116 end if;
13117 end Resolve_Iterable_Operation;
13118
13119 ----------------
13120 -- Set_Biased --
13121 ----------------
13122
13123 procedure Set_Biased
13124 (E : Entity_Id;
13125 N : Node_Id;
13126 Msg : String;
13127 Biased : Boolean := True)
13128 is
13129 begin
13130 if Biased then
13131 Set_Has_Biased_Representation (E);
13132
13133 if Warn_On_Biased_Representation then
13134 Error_Msg_NE
13135 ("?B?" & Msg & " forces biased representation for&", N, E);
13136 end if;
13137 end if;
13138 end Set_Biased;
13139
13140 --------------------
13141 -- Set_Enum_Esize --
13142 --------------------
13143
13144 procedure Set_Enum_Esize (T : Entity_Id) is
13145 Lo : Uint;
13146 Hi : Uint;
13147 Sz : Nat;
13148
13149 begin
13150 Init_Alignment (T);
13151
13152 -- Find the minimum standard size (8,16,32,64) that fits
13153
13154 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13155 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13156
13157 if Lo < 0 then
13158 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13159 Sz := Standard_Character_Size; -- May be > 8 on some targets
13160
13161 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13162 Sz := 16;
13163
13164 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13165 Sz := 32;
13166
13167 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13168 Sz := 64;
13169 end if;
13170
13171 else
13172 if Hi < Uint_2**08 then
13173 Sz := Standard_Character_Size; -- May be > 8 on some targets
13174
13175 elsif Hi < Uint_2**16 then
13176 Sz := 16;
13177
13178 elsif Hi < Uint_2**32 then
13179 Sz := 32;
13180
13181 else pragma Assert (Hi < Uint_2**63);
13182 Sz := 64;
13183 end if;
13184 end if;
13185
13186 -- That minimum is the proper size unless we have a foreign convention
13187 -- and the size required is 32 or less, in which case we bump the size
13188 -- up to 32. This is required for C and C++ and seems reasonable for
13189 -- all other foreign conventions.
13190
13191 if Has_Foreign_Convention (T)
13192 and then Esize (T) < Standard_Integer_Size
13193
13194 -- Don't do this if Short_Enums on target
13195
13196 and then not Target_Short_Enums
13197 then
13198 Init_Esize (T, Standard_Integer_Size);
13199 else
13200 Init_Esize (T, Sz);
13201 end if;
13202 end Set_Enum_Esize;
13203
13204 -----------------------------
13205 -- Uninstall_Discriminants --
13206 -----------------------------
13207
13208 procedure Uninstall_Discriminants (E : Entity_Id) is
13209 Disc : Entity_Id;
13210 Prev : Entity_Id;
13211 Outer : Entity_Id;
13212
13213 begin
13214 -- Discriminants have been made visible for type declarations and
13215 -- protected type declarations, not for subtype declarations.
13216
13217 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13218 Disc := First_Discriminant (E);
13219 while Present (Disc) loop
13220 if Disc /= Current_Entity (Disc) then
13221 Prev := Current_Entity (Disc);
13222 while Present (Prev)
13223 and then Present (Homonym (Prev))
13224 and then Homonym (Prev) /= Disc
13225 loop
13226 Prev := Homonym (Prev);
13227 end loop;
13228 else
13229 Prev := Empty;
13230 end if;
13231
13232 Set_Is_Immediately_Visible (Disc, False);
13233
13234 Outer := Homonym (Disc);
13235 while Present (Outer) and then Scope (Outer) = E loop
13236 Outer := Homonym (Outer);
13237 end loop;
13238
13239 -- Reset homonym link of other entities, but do not modify link
13240 -- between entities in current scope, so that the back end can
13241 -- have a proper count of local overloadings.
13242
13243 if No (Prev) then
13244 Set_Name_Entity_Id (Chars (Disc), Outer);
13245
13246 elsif Scope (Prev) /= Scope (Disc) then
13247 Set_Homonym (Prev, Outer);
13248 end if;
13249
13250 Next_Discriminant (Disc);
13251 end loop;
13252 end if;
13253 end Uninstall_Discriminants;
13254
13255 -------------------------------------------
13256 -- Uninstall_Discriminants_And_Pop_Scope --
13257 -------------------------------------------
13258
13259 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13260 begin
13261 if Has_Discriminants (E) then
13262 Uninstall_Discriminants (E);
13263 Pop_Scope;
13264 end if;
13265 end Uninstall_Discriminants_And_Pop_Scope;
13266
13267 ------------------------------
13268 -- Validate_Address_Clauses --
13269 ------------------------------
13270
13271 procedure Validate_Address_Clauses is
13272 function Offset_Value (Expr : Node_Id) return Uint;
13273 -- Given an Address attribute reference, return the value in bits of its
13274 -- offset from the first bit of the underlying entity, or 0 if it is not
13275 -- known at compile time.
13276
13277 ------------------
13278 -- Offset_Value --
13279 ------------------
13280
13281 function Offset_Value (Expr : Node_Id) return Uint is
13282 N : Node_Id := Prefix (Expr);
13283 Off : Uint;
13284 Val : Uint := Uint_0;
13285
13286 begin
13287 -- Climb the prefix chain and compute the cumulative offset
13288
13289 loop
13290 if Is_Entity_Name (N) then
13291 return Val;
13292
13293 elsif Nkind (N) = N_Selected_Component then
13294 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13295 if Off /= No_Uint and then Off >= Uint_0 then
13296 Val := Val + Off;
13297 N := Prefix (N);
13298 else
13299 return Uint_0;
13300 end if;
13301
13302 elsif Nkind (N) = N_Indexed_Component then
13303 Off := Indexed_Component_Bit_Offset (N);
13304 if Off /= No_Uint then
13305 Val := Val + Off;
13306 N := Prefix (N);
13307 else
13308 return Uint_0;
13309 end if;
13310
13311 else
13312 return Uint_0;
13313 end if;
13314 end loop;
13315 end Offset_Value;
13316
13317 -- Start of processing for Validate_Address_Clauses
13318
13319 begin
13320 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13321 declare
13322 ACCR : Address_Clause_Check_Record
13323 renames Address_Clause_Checks.Table (J);
13324
13325 Expr : Node_Id;
13326
13327 X_Alignment : Uint;
13328 Y_Alignment : Uint;
13329
13330 X_Size : Uint;
13331 Y_Size : Uint;
13332
13333 X_Offs : Uint;
13334
13335 begin
13336 -- Skip processing of this entry if warning already posted
13337
13338 if not Address_Warning_Posted (ACCR.N) then
13339 Expr := Original_Node (Expression (ACCR.N));
13340
13341 -- Get alignments, sizes and offset, if any
13342
13343 X_Alignment := Alignment (ACCR.X);
13344 X_Size := Esize (ACCR.X);
13345
13346 if Present (ACCR.Y) then
13347 Y_Alignment := Alignment (ACCR.Y);
13348 Y_Size := Esize (ACCR.Y);
13349 end if;
13350
13351 if ACCR.Off
13352 and then Nkind (Expr) = N_Attribute_Reference
13353 and then Attribute_Name (Expr) = Name_Address
13354 then
13355 X_Offs := Offset_Value (Expr);
13356 else
13357 X_Offs := Uint_0;
13358 end if;
13359
13360 -- Check for known value not multiple of alignment
13361
13362 if No (ACCR.Y) then
13363 if not Alignment_Checks_Suppressed (ACCR.X)
13364 and then X_Alignment /= 0
13365 and then ACCR.A mod X_Alignment /= 0
13366 then
13367 Error_Msg_NE
13368 ("??specified address for& is inconsistent with "
13369 & "alignment", ACCR.N, ACCR.X);
13370 Error_Msg_N
13371 ("\??program execution may be erroneous (RM 13.3(27))",
13372 ACCR.N);
13373
13374 Error_Msg_Uint_1 := X_Alignment;
13375 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13376 end if;
13377
13378 -- Check for large object overlaying smaller one
13379
13380 elsif Y_Size > Uint_0
13381 and then X_Size > Uint_0
13382 and then X_Offs + X_Size > Y_Size
13383 then
13384 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13385 Error_Msg_N
13386 ("\??program execution may be erroneous", ACCR.N);
13387
13388 Error_Msg_Uint_1 := X_Size;
13389 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13390
13391 Error_Msg_Uint_1 := Y_Size;
13392 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13393
13394 if Y_Size >= X_Size then
13395 Error_Msg_Uint_1 := X_Offs;
13396 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13397 end if;
13398
13399 -- Check for inadequate alignment, both of the base object
13400 -- and of the offset, if any. We only do this check if the
13401 -- run-time Alignment_Check is active. No point in warning
13402 -- if this check has been suppressed (or is suppressed by
13403 -- default in the non-strict alignment machine case).
13404
13405 -- Note: we do not check the alignment if we gave a size
13406 -- warning, since it would likely be redundant.
13407
13408 elsif not Alignment_Checks_Suppressed (ACCR.X)
13409 and then Y_Alignment /= Uint_0
13410 and then
13411 (Y_Alignment < X_Alignment
13412 or else
13413 (ACCR.Off
13414 and then Nkind (Expr) = N_Attribute_Reference
13415 and then Attribute_Name (Expr) = Name_Address
13416 and then Has_Compatible_Alignment
13417 (ACCR.X, Prefix (Expr), True) /=
13418 Known_Compatible))
13419 then
13420 Error_Msg_NE
13421 ("??specified address for& may be inconsistent with "
13422 & "alignment", ACCR.N, ACCR.X);
13423 Error_Msg_N
13424 ("\??program execution may be erroneous (RM 13.3(27))",
13425 ACCR.N);
13426
13427 Error_Msg_Uint_1 := X_Alignment;
13428 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13429
13430 Error_Msg_Uint_1 := Y_Alignment;
13431 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13432
13433 if Y_Alignment >= X_Alignment then
13434 Error_Msg_N
13435 ("\??but offset is not multiple of alignment", ACCR.N);
13436 end if;
13437 end if;
13438 end if;
13439 end;
13440 end loop;
13441 end Validate_Address_Clauses;
13442
13443 -----------------------------------------
13444 -- Validate_Compile_Time_Warning_Error --
13445 -----------------------------------------
13446
13447 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13448 begin
13449 Compile_Time_Warnings_Errors.Append
13450 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13451 Scope => Current_Scope,
13452 Prag => N));
13453 end Validate_Compile_Time_Warning_Error;
13454
13455 ------------------------------------------
13456 -- Validate_Compile_Time_Warning_Errors --
13457 ------------------------------------------
13458
13459 procedure Validate_Compile_Time_Warning_Errors is
13460 procedure Set_Scope (S : Entity_Id);
13461 -- Install all enclosing scopes of S along with S itself
13462
13463 procedure Unset_Scope (S : Entity_Id);
13464 -- Uninstall all enclosing scopes of S along with S itself
13465
13466 ---------------
13467 -- Set_Scope --
13468 ---------------
13469
13470 procedure Set_Scope (S : Entity_Id) is
13471 begin
13472 if S /= Standard_Standard then
13473 Set_Scope (Scope (S));
13474 end if;
13475
13476 Push_Scope (S);
13477 end Set_Scope;
13478
13479 -----------------
13480 -- Unset_Scope --
13481 -----------------
13482
13483 procedure Unset_Scope (S : Entity_Id) is
13484 begin
13485 if S /= Standard_Standard then
13486 Unset_Scope (Scope (S));
13487 end if;
13488
13489 Pop_Scope;
13490 end Unset_Scope;
13491
13492 -- Start of processing for Validate_Compile_Time_Warning_Errors
13493
13494 begin
13495 Expander_Mode_Save_And_Set (False);
13496 In_Compile_Time_Warning_Or_Error := True;
13497
13498 for N in Compile_Time_Warnings_Errors.First ..
13499 Compile_Time_Warnings_Errors.Last
13500 loop
13501 declare
13502 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13503
13504 begin
13505 Set_Scope (T.Scope);
13506 Reset_Analyzed_Flags (T.Prag);
13507 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13508 Unset_Scope (T.Scope);
13509 end;
13510 end loop;
13511
13512 In_Compile_Time_Warning_Or_Error := False;
13513 Expander_Mode_Restore;
13514 end Validate_Compile_Time_Warning_Errors;
13515
13516 ---------------------------
13517 -- Validate_Independence --
13518 ---------------------------
13519
13520 procedure Validate_Independence is
13521 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13522 N : Node_Id;
13523 E : Entity_Id;
13524 IC : Boolean;
13525 Comp : Entity_Id;
13526 Addr : Node_Id;
13527 P : Node_Id;
13528
13529 procedure Check_Array_Type (Atyp : Entity_Id);
13530 -- Checks if the array type Atyp has independent components, and
13531 -- if not, outputs an appropriate set of error messages.
13532
13533 procedure No_Independence;
13534 -- Output message that independence cannot be guaranteed
13535
13536 function OK_Component (C : Entity_Id) return Boolean;
13537 -- Checks one component to see if it is independently accessible, and
13538 -- if so yields True, otherwise yields False if independent access
13539 -- cannot be guaranteed. This is a conservative routine, it only
13540 -- returns True if it knows for sure, it returns False if it knows
13541 -- there is a problem, or it cannot be sure there is no problem.
13542
13543 procedure Reason_Bad_Component (C : Entity_Id);
13544 -- Outputs continuation message if a reason can be determined for
13545 -- the component C being bad.
13546
13547 ----------------------
13548 -- Check_Array_Type --
13549 ----------------------
13550
13551 procedure Check_Array_Type (Atyp : Entity_Id) is
13552 Ctyp : constant Entity_Id := Component_Type (Atyp);
13553
13554 begin
13555 -- OK if no alignment clause, no pack, and no component size
13556
13557 if not Has_Component_Size_Clause (Atyp)
13558 and then not Has_Alignment_Clause (Atyp)
13559 and then not Is_Packed (Atyp)
13560 then
13561 return;
13562 end if;
13563
13564 -- Case of component size is greater than or equal to 64 and the
13565 -- alignment of the array is at least as large as the alignment
13566 -- of the component. We are definitely OK in this situation.
13567
13568 if Known_Component_Size (Atyp)
13569 and then Component_Size (Atyp) >= 64
13570 and then Known_Alignment (Atyp)
13571 and then Known_Alignment (Ctyp)
13572 and then Alignment (Atyp) >= Alignment (Ctyp)
13573 then
13574 return;
13575 end if;
13576
13577 -- Check actual component size
13578
13579 if not Known_Component_Size (Atyp)
13580 or else not (Addressable (Component_Size (Atyp))
13581 and then Component_Size (Atyp) < 64)
13582 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13583 then
13584 No_Independence;
13585
13586 -- Bad component size, check reason
13587
13588 if Has_Component_Size_Clause (Atyp) then
13589 P := Get_Attribute_Definition_Clause
13590 (Atyp, Attribute_Component_Size);
13591
13592 if Present (P) then
13593 Error_Msg_Sloc := Sloc (P);
13594 Error_Msg_N ("\because of Component_Size clause#", N);
13595 return;
13596 end if;
13597 end if;
13598
13599 if Is_Packed (Atyp) then
13600 P := Get_Rep_Pragma (Atyp, Name_Pack);
13601
13602 if Present (P) then
13603 Error_Msg_Sloc := Sloc (P);
13604 Error_Msg_N ("\because of pragma Pack#", N);
13605 return;
13606 end if;
13607 end if;
13608
13609 -- No reason found, just return
13610
13611 return;
13612 end if;
13613
13614 -- Array type is OK independence-wise
13615
13616 return;
13617 end Check_Array_Type;
13618
13619 ---------------------
13620 -- No_Independence --
13621 ---------------------
13622
13623 procedure No_Independence is
13624 begin
13625 if Pragma_Name (N) = Name_Independent then
13626 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13627 else
13628 Error_Msg_NE
13629 ("independent components cannot be guaranteed for&", N, E);
13630 end if;
13631 end No_Independence;
13632
13633 ------------------
13634 -- OK_Component --
13635 ------------------
13636
13637 function OK_Component (C : Entity_Id) return Boolean is
13638 Rec : constant Entity_Id := Scope (C);
13639 Ctyp : constant Entity_Id := Etype (C);
13640
13641 begin
13642 -- OK if no component clause, no Pack, and no alignment clause
13643
13644 if No (Component_Clause (C))
13645 and then not Is_Packed (Rec)
13646 and then not Has_Alignment_Clause (Rec)
13647 then
13648 return True;
13649 end if;
13650
13651 -- Here we look at the actual component layout. A component is
13652 -- addressable if its size is a multiple of the Esize of the
13653 -- component type, and its starting position in the record has
13654 -- appropriate alignment, and the record itself has appropriate
13655 -- alignment to guarantee the component alignment.
13656
13657 -- Make sure sizes are static, always assume the worst for any
13658 -- cases where we cannot check static values.
13659
13660 if not (Known_Static_Esize (C)
13661 and then
13662 Known_Static_Esize (Ctyp))
13663 then
13664 return False;
13665 end if;
13666
13667 -- Size of component must be addressable or greater than 64 bits
13668 -- and a multiple of bytes.
13669
13670 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13671 return False;
13672 end if;
13673
13674 -- Check size is proper multiple
13675
13676 if Esize (C) mod Esize (Ctyp) /= 0 then
13677 return False;
13678 end if;
13679
13680 -- Check alignment of component is OK
13681
13682 if not Known_Component_Bit_Offset (C)
13683 or else Component_Bit_Offset (C) < Uint_0
13684 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13685 then
13686 return False;
13687 end if;
13688
13689 -- Check alignment of record type is OK
13690
13691 if not Known_Alignment (Rec)
13692 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13693 then
13694 return False;
13695 end if;
13696
13697 -- All tests passed, component is addressable
13698
13699 return True;
13700 end OK_Component;
13701
13702 --------------------------
13703 -- Reason_Bad_Component --
13704 --------------------------
13705
13706 procedure Reason_Bad_Component (C : Entity_Id) is
13707 Rec : constant Entity_Id := Scope (C);
13708 Ctyp : constant Entity_Id := Etype (C);
13709
13710 begin
13711 -- If component clause present assume that's the problem
13712
13713 if Present (Component_Clause (C)) then
13714 Error_Msg_Sloc := Sloc (Component_Clause (C));
13715 Error_Msg_N ("\because of Component_Clause#", N);
13716 return;
13717 end if;
13718
13719 -- If pragma Pack clause present, assume that's the problem
13720
13721 if Is_Packed (Rec) then
13722 P := Get_Rep_Pragma (Rec, Name_Pack);
13723
13724 if Present (P) then
13725 Error_Msg_Sloc := Sloc (P);
13726 Error_Msg_N ("\because of pragma Pack#", N);
13727 return;
13728 end if;
13729 end if;
13730
13731 -- See if record has bad alignment clause
13732
13733 if Has_Alignment_Clause (Rec)
13734 and then Known_Alignment (Rec)
13735 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13736 then
13737 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13738
13739 if Present (P) then
13740 Error_Msg_Sloc := Sloc (P);
13741 Error_Msg_N ("\because of Alignment clause#", N);
13742 end if;
13743 end if;
13744
13745 -- Couldn't find a reason, so return without a message
13746
13747 return;
13748 end Reason_Bad_Component;
13749
13750 -- Start of processing for Validate_Independence
13751
13752 begin
13753 for J in Independence_Checks.First .. Independence_Checks.Last loop
13754 N := Independence_Checks.Table (J).N;
13755 E := Independence_Checks.Table (J).E;
13756 IC := Pragma_Name (N) = Name_Independent_Components;
13757
13758 -- Deal with component case
13759
13760 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13761 if not OK_Component (E) then
13762 No_Independence;
13763 Reason_Bad_Component (E);
13764 goto Continue;
13765 end if;
13766 end if;
13767
13768 -- Deal with record with Independent_Components
13769
13770 if IC and then Is_Record_Type (E) then
13771 Comp := First_Component_Or_Discriminant (E);
13772 while Present (Comp) loop
13773 if not OK_Component (Comp) then
13774 No_Independence;
13775 Reason_Bad_Component (Comp);
13776 goto Continue;
13777 end if;
13778
13779 Next_Component_Or_Discriminant (Comp);
13780 end loop;
13781 end if;
13782
13783 -- Deal with address clause case
13784
13785 if Is_Object (E) then
13786 Addr := Address_Clause (E);
13787
13788 if Present (Addr) then
13789 No_Independence;
13790 Error_Msg_Sloc := Sloc (Addr);
13791 Error_Msg_N ("\because of Address clause#", N);
13792 goto Continue;
13793 end if;
13794 end if;
13795
13796 -- Deal with independent components for array type
13797
13798 if IC and then Is_Array_Type (E) then
13799 Check_Array_Type (E);
13800 end if;
13801
13802 -- Deal with independent components for array object
13803
13804 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13805 Check_Array_Type (Etype (E));
13806 end if;
13807
13808 <<Continue>> null;
13809 end loop;
13810 end Validate_Independence;
13811
13812 ------------------------------
13813 -- Validate_Iterable_Aspect --
13814 ------------------------------
13815
13816 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13817 Assoc : Node_Id;
13818 Expr : Node_Id;
13819
13820 Prim : Node_Id;
13821 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
13822
13823 First_Id : Entity_Id;
13824 Next_Id : Entity_Id;
13825 Has_Element_Id : Entity_Id;
13826 Element_Id : Entity_Id;
13827
13828 begin
13829 -- If previous error aspect is unusable
13830
13831 if Cursor = Any_Type then
13832 return;
13833 end if;
13834
13835 First_Id := Empty;
13836 Next_Id := Empty;
13837 Has_Element_Id := Empty;
13838 Element_Id := Empty;
13839
13840 -- Each expression must resolve to a function with the proper signature
13841
13842 Assoc := First (Component_Associations (Expression (ASN)));
13843 while Present (Assoc) loop
13844 Expr := Expression (Assoc);
13845 Analyze (Expr);
13846
13847 Prim := First (Choices (Assoc));
13848
13849 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
13850 Error_Msg_N ("illegal name in association", Prim);
13851
13852 elsif Chars (Prim) = Name_First then
13853 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
13854 First_Id := Entity (Expr);
13855
13856 elsif Chars (Prim) = Name_Next then
13857 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
13858 Next_Id := Entity (Expr);
13859
13860 elsif Chars (Prim) = Name_Has_Element then
13861 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
13862 Has_Element_Id := Entity (Expr);
13863
13864 elsif Chars (Prim) = Name_Element then
13865 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
13866 Element_Id := Entity (Expr);
13867
13868 else
13869 Error_Msg_N ("invalid name for iterable function", Prim);
13870 end if;
13871
13872 Next (Assoc);
13873 end loop;
13874
13875 if No (First_Id) then
13876 Error_Msg_N ("match for First primitive not found", ASN);
13877
13878 elsif No (Next_Id) then
13879 Error_Msg_N ("match for Next primitive not found", ASN);
13880
13881 elsif No (Has_Element_Id) then
13882 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13883
13884 elsif No (Element_Id) then
13885 null; -- Optional.
13886 end if;
13887 end Validate_Iterable_Aspect;
13888
13889 -----------------------------------
13890 -- Validate_Unchecked_Conversion --
13891 -----------------------------------
13892
13893 procedure Validate_Unchecked_Conversion
13894 (N : Node_Id;
13895 Act_Unit : Entity_Id)
13896 is
13897 Source : Entity_Id;
13898 Target : Entity_Id;
13899 Vnode : Node_Id;
13900
13901 begin
13902 -- Obtain source and target types. Note that we call Ancestor_Subtype
13903 -- here because the processing for generic instantiation always makes
13904 -- subtypes, and we want the original frozen actual types.
13905
13906 -- If we are dealing with private types, then do the check on their
13907 -- fully declared counterparts if the full declarations have been
13908 -- encountered (they don't have to be visible, but they must exist).
13909
13910 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13911
13912 if Is_Private_Type (Source)
13913 and then Present (Underlying_Type (Source))
13914 then
13915 Source := Underlying_Type (Source);
13916 end if;
13917
13918 Target := Ancestor_Subtype (Etype (Act_Unit));
13919
13920 -- If either type is generic, the instantiation happens within a generic
13921 -- unit, and there is nothing to check. The proper check will happen
13922 -- when the enclosing generic is instantiated.
13923
13924 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13925 return;
13926 end if;
13927
13928 if Is_Private_Type (Target)
13929 and then Present (Underlying_Type (Target))
13930 then
13931 Target := Underlying_Type (Target);
13932 end if;
13933
13934 -- Source may be unconstrained array, but not target, except in relaxed
13935 -- semantics mode.
13936
13937 if Is_Array_Type (Target)
13938 and then not Is_Constrained (Target)
13939 and then not Relaxed_RM_Semantics
13940 then
13941 Error_Msg_N
13942 ("unchecked conversion to unconstrained array not allowed", N);
13943 return;
13944 end if;
13945
13946 -- Warn if conversion between two different convention pointers
13947
13948 if Is_Access_Type (Target)
13949 and then Is_Access_Type (Source)
13950 and then Convention (Target) /= Convention (Source)
13951 and then Warn_On_Unchecked_Conversion
13952 then
13953 -- Give warnings for subprogram pointers only on most targets
13954
13955 if Is_Access_Subprogram_Type (Target)
13956 or else Is_Access_Subprogram_Type (Source)
13957 then
13958 Error_Msg_N
13959 ("?z?conversion between pointers with different conventions!",
13960 N);
13961 end if;
13962 end if;
13963
13964 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13965 -- warning when compiling GNAT-related sources.
13966
13967 if Warn_On_Unchecked_Conversion
13968 and then not In_Predefined_Unit (N)
13969 and then RTU_Loaded (Ada_Calendar)
13970 and then (Chars (Source) = Name_Time
13971 or else
13972 Chars (Target) = Name_Time)
13973 then
13974 -- If Ada.Calendar is loaded and the name of one of the operands is
13975 -- Time, there is a good chance that this is Ada.Calendar.Time.
13976
13977 declare
13978 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
13979 begin
13980 pragma Assert (Present (Calendar_Time));
13981
13982 if Source = Calendar_Time or else Target = Calendar_Time then
13983 Error_Msg_N
13984 ("?z?representation of 'Time values may change between "
13985 & "'G'N'A'T versions", N);
13986 end if;
13987 end;
13988 end if;
13989
13990 -- Make entry in unchecked conversion table for later processing by
13991 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13992 -- (using values set by the back end where possible). This is only done
13993 -- if the appropriate warning is active.
13994
13995 if Warn_On_Unchecked_Conversion then
13996 Unchecked_Conversions.Append
13997 (New_Val => UC_Entry'(Eloc => Sloc (N),
13998 Source => Source,
13999 Target => Target,
14000 Act_Unit => Act_Unit));
14001
14002 -- If both sizes are known statically now, then back-end annotation
14003 -- is not required to do a proper check but if either size is not
14004 -- known statically, then we need the annotation.
14005
14006 if Known_Static_RM_Size (Source)
14007 and then
14008 Known_Static_RM_Size (Target)
14009 then
14010 null;
14011 else
14012 Back_Annotate_Rep_Info := True;
14013 end if;
14014 end if;
14015
14016 -- If unchecked conversion to access type, and access type is declared
14017 -- in the same unit as the unchecked conversion, then set the flag
14018 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14019
14020 if Is_Access_Type (Target) and then
14021 In_Same_Source_Unit (Target, N)
14022 then
14023 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14024 end if;
14025
14026 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14027 -- the back end needs to perform special validation checks.
14028
14029 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14030 -- have full expansion and the back end is called ???
14031
14032 Vnode :=
14033 Make_Validate_Unchecked_Conversion (Sloc (N));
14034 Set_Source_Type (Vnode, Source);
14035 Set_Target_Type (Vnode, Target);
14036
14037 -- If the unchecked conversion node is in a list, just insert before it.
14038 -- If not we have some strange case, not worth bothering about.
14039
14040 if Is_List_Member (N) then
14041 Insert_After (N, Vnode);
14042 end if;
14043 end Validate_Unchecked_Conversion;
14044
14045 ------------------------------------
14046 -- Validate_Unchecked_Conversions --
14047 ------------------------------------
14048
14049 procedure Validate_Unchecked_Conversions is
14050 begin
14051 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14052 declare
14053 T : UC_Entry renames Unchecked_Conversions.Table (N);
14054
14055 Act_Unit : constant Entity_Id := T.Act_Unit;
14056 Eloc : constant Source_Ptr := T.Eloc;
14057 Source : constant Entity_Id := T.Source;
14058 Target : constant Entity_Id := T.Target;
14059
14060 Source_Siz : Uint;
14061 Target_Siz : Uint;
14062
14063 begin
14064 -- Skip if function marked as warnings off
14065
14066 if Warnings_Off (Act_Unit) then
14067 goto Continue;
14068 end if;
14069
14070 -- This validation check, which warns if we have unequal sizes for
14071 -- unchecked conversion, and thus potentially implementation
14072 -- dependent semantics, is one of the few occasions on which we
14073 -- use the official RM size instead of Esize. See description in
14074 -- Einfo "Handling of Type'Size Values" for details.
14075
14076 if Serious_Errors_Detected = 0
14077 and then Known_Static_RM_Size (Source)
14078 and then Known_Static_RM_Size (Target)
14079
14080 -- Don't do the check if warnings off for either type, note the
14081 -- deliberate use of OR here instead of OR ELSE to get the flag
14082 -- Warnings_Off_Used set for both types if appropriate.
14083
14084 and then not (Has_Warnings_Off (Source)
14085 or
14086 Has_Warnings_Off (Target))
14087 then
14088 Source_Siz := RM_Size (Source);
14089 Target_Siz := RM_Size (Target);
14090
14091 if Source_Siz /= Target_Siz then
14092 Error_Msg
14093 ("?z?types for unchecked conversion have different sizes!",
14094 Eloc);
14095
14096 if All_Errors_Mode then
14097 Error_Msg_Name_1 := Chars (Source);
14098 Error_Msg_Uint_1 := Source_Siz;
14099 Error_Msg_Name_2 := Chars (Target);
14100 Error_Msg_Uint_2 := Target_Siz;
14101 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14102
14103 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14104
14105 if Is_Discrete_Type (Source)
14106 and then
14107 Is_Discrete_Type (Target)
14108 then
14109 if Source_Siz > Target_Siz then
14110 Error_Msg
14111 ("\?z?^ high order bits of source will "
14112 & "be ignored!", Eloc);
14113
14114 elsif Is_Unsigned_Type (Source) then
14115 Error_Msg
14116 ("\?z?source will be extended with ^ high order "
14117 & "zero bits!", Eloc);
14118
14119 else
14120 Error_Msg
14121 ("\?z?source will be extended with ^ high order "
14122 & "sign bits!", Eloc);
14123 end if;
14124
14125 elsif Source_Siz < Target_Siz then
14126 if Is_Discrete_Type (Target) then
14127 if Bytes_Big_Endian then
14128 Error_Msg
14129 ("\?z?target value will include ^ undefined "
14130 & "low order bits!", Eloc);
14131 else
14132 Error_Msg
14133 ("\?z?target value will include ^ undefined "
14134 & "high order bits!", Eloc);
14135 end if;
14136
14137 else
14138 Error_Msg
14139 ("\?z?^ trailing bits of target value will be "
14140 & "undefined!", Eloc);
14141 end if;
14142
14143 else pragma Assert (Source_Siz > Target_Siz);
14144 if Is_Discrete_Type (Source) then
14145 if Bytes_Big_Endian then
14146 Error_Msg
14147 ("\?z?^ low order bits of source will be "
14148 & "ignored!", Eloc);
14149 else
14150 Error_Msg
14151 ("\?z?^ high order bits of source will be "
14152 & "ignored!", Eloc);
14153 end if;
14154
14155 else
14156 Error_Msg
14157 ("\?z?^ trailing bits of source will be "
14158 & "ignored!", Eloc);
14159 end if;
14160 end if;
14161 end if;
14162 end if;
14163 end if;
14164
14165 -- If both types are access types, we need to check the alignment.
14166 -- If the alignment of both is specified, we can do it here.
14167
14168 if Serious_Errors_Detected = 0
14169 and then Is_Access_Type (Source)
14170 and then Is_Access_Type (Target)
14171 and then Target_Strict_Alignment
14172 and then Present (Designated_Type (Source))
14173 and then Present (Designated_Type (Target))
14174 then
14175 declare
14176 D_Source : constant Entity_Id := Designated_Type (Source);
14177 D_Target : constant Entity_Id := Designated_Type (Target);
14178
14179 begin
14180 if Known_Alignment (D_Source)
14181 and then
14182 Known_Alignment (D_Target)
14183 then
14184 declare
14185 Source_Align : constant Uint := Alignment (D_Source);
14186 Target_Align : constant Uint := Alignment (D_Target);
14187
14188 begin
14189 if Source_Align < Target_Align
14190 and then not Is_Tagged_Type (D_Source)
14191
14192 -- Suppress warning if warnings suppressed on either
14193 -- type or either designated type. Note the use of
14194 -- OR here instead of OR ELSE. That is intentional,
14195 -- we would like to set flag Warnings_Off_Used in
14196 -- all types for which warnings are suppressed.
14197
14198 and then not (Has_Warnings_Off (D_Source)
14199 or
14200 Has_Warnings_Off (D_Target)
14201 or
14202 Has_Warnings_Off (Source)
14203 or
14204 Has_Warnings_Off (Target))
14205 then
14206 Error_Msg_Uint_1 := Target_Align;
14207 Error_Msg_Uint_2 := Source_Align;
14208 Error_Msg_Node_1 := D_Target;
14209 Error_Msg_Node_2 := D_Source;
14210 Error_Msg
14211 ("?z?alignment of & (^) is stricter than "
14212 & "alignment of & (^)!", Eloc);
14213 Error_Msg
14214 ("\?z?resulting access value may have invalid "
14215 & "alignment!", Eloc);
14216 end if;
14217 end;
14218 end if;
14219 end;
14220 end if;
14221 end;
14222
14223 <<Continue>>
14224 null;
14225 end loop;
14226 end Validate_Unchecked_Conversions;
14227
14228 end Sem_Ch13;