838436d7811cb4ff3ce16f61f630c105b549688f
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Tss; use Exp_Tss;
31 with Exp_Util; use Exp_Util;
32 with Lib; use Lib;
33 with Namet; use Namet;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Restrict; use Restrict;
38 with Rident; use Rident;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Eval; use Sem_Eval;
43 with Sem_Res; use Sem_Res;
44 with Sem_Type; use Sem_Type;
45 with Sem_Util; use Sem_Util;
46 with Sem_Warn; use Sem_Warn;
47 with Snames; use Snames;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Table;
51 with Targparm; use Targparm;
52 with Ttypes; use Ttypes;
53 with Tbuild; use Tbuild;
54 with Urealp; use Urealp;
55
56 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
57
58 package body Sem_Ch13 is
59
60 SSU : constant Pos := System_Storage_Unit;
61 -- Convenient short hand for commonly used constant
62
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
66
67 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
68 -- This routine is called after setting the Esize of type entity Typ.
69 -- The purpose is to deal with the situation where an aligment has been
70 -- inherited from a derived type that is no longer appropriate for the
71 -- new Esize value. In this case, we reset the Alignment to unknown.
72
73 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
74 -- Given two entities for record components or discriminants, checks
75 -- if they hav overlapping component clauses and issues errors if so.
76
77 function Get_Alignment_Value (Expr : Node_Id) return Uint;
78 -- Given the expression for an alignment value, returns the corresponding
79 -- Uint value. If the value is inappropriate, then error messages are
80 -- posted as required, and a value of No_Uint is returned.
81
82 function Is_Operational_Item (N : Node_Id) return Boolean;
83 -- A specification for a stream attribute is allowed before the full
84 -- type is declared, as explained in AI-00137 and the corrigendum.
85 -- Attributes that do not specify a representation characteristic are
86 -- operational attributes.
87
88 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
89 -- If expression N is of the form E'Address, return E
90
91 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
92 -- This is used for processing of an address representation clause. If
93 -- the expression N is of the form of K'Address, then the entity that
94 -- is associated with K is marked as volatile.
95
96 procedure New_Stream_Subprogram
97 (N : Node_Id;
98 Ent : Entity_Id;
99 Subp : Entity_Id;
100 Nam : TSS_Name_Type);
101 -- Create a subprogram renaming of a given stream attribute to the
102 -- designated subprogram and then in the tagged case, provide this as a
103 -- primitive operation, or in the non-tagged case make an appropriate TSS
104 -- entry. This is more properly an expansion activity than just semantics,
105 -- but the presence of user-defined stream functions for limited types is a
106 -- legality check, which is why this takes place here rather than in
107 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
108 -- function to be generated.
109 --
110 -- To avoid elaboration anomalies with freeze nodes, for untagged types
111 -- we generate both a subprogram declaration and a subprogram renaming
112 -- declaration, so that the attribute specification is handled as a
113 -- renaming_as_body. For tagged types, the specification is one of the
114 -- primitive specs.
115
116 ----------------------------------------------
117 -- Table for Validate_Unchecked_Conversions --
118 ----------------------------------------------
119
120 -- The following table collects unchecked conversions for validation.
121 -- Entries are made by Validate_Unchecked_Conversion and then the
122 -- call to Validate_Unchecked_Conversions does the actual error
123 -- checking and posting of warnings. The reason for this delayed
124 -- processing is to take advantage of back-annotations of size and
125 -- alignment values peformed by the back end.
126
127 type UC_Entry is record
128 Enode : Node_Id; -- node used for posting warnings
129 Source : Entity_Id; -- source type for unchecked conversion
130 Target : Entity_Id; -- target type for unchecked conversion
131 end record;
132
133 package Unchecked_Conversions is new Table.Table (
134 Table_Component_Type => UC_Entry,
135 Table_Index_Type => Int,
136 Table_Low_Bound => 1,
137 Table_Initial => 50,
138 Table_Increment => 200,
139 Table_Name => "Unchecked_Conversions");
140
141 ----------------------------
142 -- Address_Aliased_Entity --
143 ----------------------------
144
145 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
146 begin
147 if Nkind (N) = N_Attribute_Reference
148 and then Attribute_Name (N) = Name_Address
149 then
150 declare
151 Nam : Node_Id := Prefix (N);
152 begin
153 while False
154 or else Nkind (Nam) = N_Selected_Component
155 or else Nkind (Nam) = N_Indexed_Component
156 loop
157 Nam := Prefix (Nam);
158 end loop;
159
160 if Is_Entity_Name (Nam) then
161 return Entity (Nam);
162 end if;
163 end;
164 end if;
165
166 return Empty;
167 end Address_Aliased_Entity;
168
169 -----------------------------------------
170 -- Adjust_Record_For_Reverse_Bit_Order --
171 -----------------------------------------
172
173 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
174 Max_Machine_Scalar_Size : constant Uint :=
175 UI_From_Int
176 (Standard_Long_Long_Integer_Size);
177 -- We use this as the maximum machine scalar size in the sense of AI-133
178
179 Num_CC : Natural;
180 Comp : Entity_Id;
181 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
182
183 begin
184 -- This first loop through components does two things. First it deals
185 -- with the case of components with component clauses whose length is
186 -- greater than the maximum machine scalar size (either accepting them
187 -- or rejecting as needed). Second, it counts the number of components
188 -- with component clauses whose length does not exceed this maximum for
189 -- later processing.
190
191 Num_CC := 0;
192 Comp := First_Component_Or_Discriminant (R);
193 while Present (Comp) loop
194 declare
195 CC : constant Node_Id := Component_Clause (Comp);
196 Fbit : constant Uint := Static_Integer (First_Bit (CC));
197
198 begin
199 if Present (CC) then
200
201 -- Case of component with size > max machine scalar
202
203 if Esize (Comp) > Max_Machine_Scalar_Size then
204
205 -- Must begin on byte boundary
206
207 if Fbit mod SSU /= 0 then
208 Error_Msg_N
209 ("illegal first bit value for reverse bit order",
210 First_Bit (CC));
211 Error_Msg_Uint_1 := SSU;
212 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
213
214 Error_Msg_N
215 ("\must be a multiple of ^ if size greater than ^",
216 First_Bit (CC));
217
218 -- Must end on byte boundary
219
220 elsif Esize (Comp) mod SSU /= 0 then
221 Error_Msg_N
222 ("illegal last bit value for reverse bit order",
223 Last_Bit (CC));
224 Error_Msg_Uint_1 := SSU;
225 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
226
227 Error_Msg_N
228 ("\must be a multiple of ^ if size greater than ^",
229 Last_Bit (CC));
230
231 -- OK, give warning if enabled
232
233 elsif Warn_On_Reverse_Bit_Order then
234 Error_Msg_N
235 ("multi-byte field specified with non-standard"
236 & " Bit_Order?", CC);
237
238 if Bytes_Big_Endian then
239 Error_Msg_N
240 ("\bytes are not reversed "
241 & "(component is big-endian)?", CC);
242 else
243 Error_Msg_N
244 ("\bytes are not reversed "
245 & "(component is little-endian)?", CC);
246 end if;
247 end if;
248
249 -- Case where size is not greater than max machine scalar.
250 -- For now, we just count these.
251
252 else
253 Num_CC := Num_CC + 1;
254 end if;
255 end if;
256 end;
257
258 Next_Component_Or_Discriminant (Comp);
259 end loop;
260
261 -- We need to sort the component clauses on the basis of the Position
262 -- values in the clause, so we can group clauses with the same Position
263 -- together to determine the relevant machine scalar size.
264
265 declare
266 Comps : array (0 .. Num_CC) of Entity_Id;
267 -- Array to collect component and discrimninant entities. The data
268 -- starts at index 1, the 0'th entry is for GNAT.Heap_Sort_A.
269
270 function CP_Lt (Op1, Op2 : Natural) return Boolean;
271 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
272
273 procedure CP_Move (From : Natural; To : Natural);
274 -- Move routine for Sort (see GNAT.Heap_Sort_A)
275
276 Start : Natural;
277 Stop : Natural;
278 -- Start and stop positions in component list of set of components
279 -- with the same starting position (that constitute components in
280 -- a single machine scalar).
281
282 MaxL : Uint;
283 -- Maximum last bit value of any component in this set
284
285 MSS : Uint;
286 -- Corresponding machine scalar size
287
288 -----------
289 -- CP_Lt --
290 -----------
291
292 function CP_Lt (Op1, Op2 : Natural) return Boolean is
293 begin
294 return Position (Component_Clause (Comps (Op1))) <
295 Position (Component_Clause (Comps (Op2)));
296 end CP_Lt;
297
298 -------------
299 -- CP_Move --
300 -------------
301
302 procedure CP_Move (From : Natural; To : Natural) is
303 begin
304 Comps (To) := Comps (From);
305 end CP_Move;
306
307 begin
308 -- Collect the component clauses
309
310 Num_CC := 0;
311 Comp := First_Component_Or_Discriminant (R);
312 while Present (Comp) loop
313 if Present (Component_Clause (Comp))
314 and then Esize (Comp) <= Max_Machine_Scalar_Size
315 then
316 Num_CC := Num_CC + 1;
317 Comps (Num_CC) := Comp;
318 end if;
319
320 Next_Component_Or_Discriminant (Comp);
321 end loop;
322
323 -- Sort by ascending position number
324
325 Sort (Num_CC, CP_Move'Unrestricted_Access, CP_Lt'Unrestricted_Access);
326
327 -- We now have all the components whose size does not exceed the max
328 -- machine scalar value, sorted by starting position. In this loop
329 -- we gather groups of clauses starting at the same position, to
330 -- process them in accordance with Ada 2005 AI-133.
331
332 Stop := 0;
333 while Stop < Num_CC loop
334 Start := Stop + 1;
335 Stop := Start;
336 MaxL :=
337 Static_Integer (Last_Bit (Component_Clause (Comps (Start))));
338 while Stop < Num_CC loop
339 if Static_Integer
340 (Position (Component_Clause (Comps (Stop + 1)))) =
341 Static_Integer
342 (Position (Component_Clause (Comps (Stop))))
343 then
344 Stop := Stop + 1;
345 MaxL :=
346 UI_Max
347 (MaxL,
348 Static_Integer
349 (Last_Bit (Component_Clause (Comps (Stop)))));
350 else
351 exit;
352 end if;
353 end loop;
354
355 -- Now we have a group of component clauses from Start to Stop
356 -- whose positions are identical, and MaxL is the maximum last bit
357 -- value of any of these components.
358
359 -- We need to determine the corresponding machine scalar size.
360 -- This loop assumes that machine scalar sizes are even, and that
361 -- each possible machine scalar has twice as many bits as the
362 -- next smaller one.
363
364 MSS := Max_Machine_Scalar_Size;
365 while MSS mod 2 = 0
366 and then (MSS / 2) >= SSU
367 and then (MSS / 2) > MaxL
368 loop
369 MSS := MSS / 2;
370 end loop;
371
372 -- Here is where we fix up the Component_Bit_Offset value to
373 -- account for the reverse bit order. Some examples of what needs
374 -- to be done for the case of a machine scalar size of 8 are:
375
376 -- First_Bit .. Last_Bit Component_Bit_Offset
377 -- old new old new
378
379 -- 0 .. 0 7 .. 7 0 7
380 -- 0 .. 1 6 .. 7 0 6
381 -- 0 .. 2 5 .. 7 0 5
382 -- 0 .. 7 0 .. 7 0 4
383
384 -- 1 .. 1 6 .. 6 1 6
385 -- 1 .. 4 3 .. 6 1 3
386 -- 4 .. 7 0 .. 3 4 0
387
388 -- The general rule is that the first bit is is obtained by
389 -- subtracting the old ending bit from machine scalar size - 1.
390
391 for C in Start .. Stop loop
392 declare
393 Comp : constant Entity_Id := Comps (C);
394 CC : constant Node_Id := Component_Clause (Comp);
395 LB : constant Uint := Static_Integer (Last_Bit (CC));
396 NFB : constant Uint := MSS - Uint_1 - LB;
397 NLB : constant Uint := NFB + Esize (Comp) - 1;
398 Pos : constant Uint := Static_Integer (Position (CC));
399
400 begin
401 if Warn_On_Reverse_Bit_Order then
402 Error_Msg_Uint_1 := MSS;
403 Error_Msg_N
404 ("?reverse bit order in machine " &
405 "scalar of length^", First_Bit (CC));
406 Error_Msg_Uint_1 := NFB;
407 Error_Msg_Uint_2 := NLB;
408
409 if Bytes_Big_Endian then
410 Error_Msg_NE
411 ("?\big-endian range for component & is ^ .. ^",
412 First_Bit (CC), Comp);
413 else
414 Error_Msg_NE
415 ("?\little-endian range for component & is ^ .. ^",
416 First_Bit (CC), Comp);
417 end if;
418 end if;
419
420 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
421 Set_Normalized_First_Bit (Comp, NFB mod SSU);
422 end;
423 end loop;
424 end loop;
425 end;
426 end Adjust_Record_For_Reverse_Bit_Order;
427
428 --------------------------------------
429 -- Alignment_Check_For_Esize_Change --
430 --------------------------------------
431
432 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
433 begin
434 -- If the alignment is known, and not set by a rep clause, and is
435 -- inconsistent with the size being set, then reset it to unknown,
436 -- we assume in this case that the size overrides the inherited
437 -- alignment, and that the alignment must be recomputed.
438
439 if Known_Alignment (Typ)
440 and then not Has_Alignment_Clause (Typ)
441 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
442 then
443 Init_Alignment (Typ);
444 end if;
445 end Alignment_Check_For_Esize_Change;
446
447 -----------------------
448 -- Analyze_At_Clause --
449 -----------------------
450
451 -- An at clause is replaced by the corresponding Address attribute
452 -- definition clause that is the preferred approach in Ada 95.
453
454 procedure Analyze_At_Clause (N : Node_Id) is
455 begin
456 Check_Restriction (No_Obsolescent_Features, N);
457
458 if Warn_On_Obsolescent_Feature then
459 Error_Msg_N
460 ("at clause is an obsolescent feature (RM J.7(2))?", N);
461 Error_Msg_N
462 ("\use address attribute definition clause instead?", N);
463 end if;
464
465 Rewrite (N,
466 Make_Attribute_Definition_Clause (Sloc (N),
467 Name => Identifier (N),
468 Chars => Name_Address,
469 Expression => Expression (N)));
470 Analyze_Attribute_Definition_Clause (N);
471 end Analyze_At_Clause;
472
473 -----------------------------------------
474 -- Analyze_Attribute_Definition_Clause --
475 -----------------------------------------
476
477 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
478 Loc : constant Source_Ptr := Sloc (N);
479 Nam : constant Node_Id := Name (N);
480 Attr : constant Name_Id := Chars (N);
481 Expr : constant Node_Id := Expression (N);
482 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
483 Ent : Entity_Id;
484 U_Ent : Entity_Id;
485
486 FOnly : Boolean := False;
487 -- Reset to True for subtype specific attribute (Alignment, Size)
488 -- and for stream attributes, i.e. those cases where in the call
489 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
490 -- rules are checked. Note that the case of stream attributes is not
491 -- clear from the RM, but see AI95-00137. Also, the RM seems to
492 -- disallow Storage_Size for derived task types, but that is also
493 -- clearly unintentional.
494
495 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
496 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
497 -- definition clauses.
498
499 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
500 Subp : Entity_Id := Empty;
501 I : Interp_Index;
502 It : Interp;
503 Pnam : Entity_Id;
504
505 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
506
507 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
508 -- Return true if the entity is a subprogram with an appropriate
509 -- profile for the attribute being defined.
510
511 ----------------------
512 -- Has_Good_Profile --
513 ----------------------
514
515 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
516 F : Entity_Id;
517 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
518 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
519 (False => E_Procedure, True => E_Function);
520 Typ : Entity_Id;
521
522 begin
523 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
524 return False;
525 end if;
526
527 F := First_Formal (Subp);
528
529 if No (F)
530 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
531 or else Designated_Type (Etype (F)) /=
532 Class_Wide_Type (RTE (RE_Root_Stream_Type))
533 then
534 return False;
535 end if;
536
537 if not Is_Function then
538 Next_Formal (F);
539
540 declare
541 Expected_Mode : constant array (Boolean) of Entity_Kind :=
542 (False => E_In_Parameter,
543 True => E_Out_Parameter);
544 begin
545 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
546 return False;
547 end if;
548 end;
549
550 Typ := Etype (F);
551
552 else
553 Typ := Etype (Subp);
554 end if;
555
556 return Base_Type (Typ) = Base_Type (Ent)
557 and then No (Next_Formal (F));
558
559 end Has_Good_Profile;
560
561 -- Start of processing for Analyze_Stream_TSS_Definition
562
563 begin
564 FOnly := True;
565
566 if not Is_Type (U_Ent) then
567 Error_Msg_N ("local name must be a subtype", Nam);
568 return;
569 end if;
570
571 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
572
573 -- If Pnam is present, it can be either inherited from an ancestor
574 -- type (in which case it is legal to redefine it for this type), or
575 -- be a previous definition of the attribute for the same type (in
576 -- which case it is illegal).
577
578 -- In the first case, it will have been analyzed already, and we
579 -- can check that its profile does not match the expected profile
580 -- for a stream attribute of U_Ent. In the second case, either Pnam
581 -- has been analyzed (and has the expected profile), or it has not
582 -- been analyzed yet (case of a type that has not been frozen yet
583 -- and for which the stream attribute has been set using Set_TSS).
584
585 if Present (Pnam)
586 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
587 then
588 Error_Msg_Sloc := Sloc (Pnam);
589 Error_Msg_Name_1 := Attr;
590 Error_Msg_N ("% attribute already defined #", Nam);
591 return;
592 end if;
593
594 Analyze (Expr);
595
596 if Is_Entity_Name (Expr) then
597 if not Is_Overloaded (Expr) then
598 if Has_Good_Profile (Entity (Expr)) then
599 Subp := Entity (Expr);
600 end if;
601
602 else
603 Get_First_Interp (Expr, I, It);
604
605 while Present (It.Nam) loop
606 if Has_Good_Profile (It.Nam) then
607 Subp := It.Nam;
608 exit;
609 end if;
610
611 Get_Next_Interp (I, It);
612 end loop;
613 end if;
614 end if;
615
616 if Present (Subp) then
617 if Is_Abstract_Subprogram (Subp) then
618 Error_Msg_N ("stream subprogram must not be abstract", Expr);
619 return;
620 end if;
621
622 Set_Entity (Expr, Subp);
623 Set_Etype (Expr, Etype (Subp));
624
625 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
626
627 else
628 Error_Msg_Name_1 := Attr;
629 Error_Msg_N ("incorrect expression for% attribute", Expr);
630 end if;
631 end Analyze_Stream_TSS_Definition;
632
633 -- Start of processing for Analyze_Attribute_Definition_Clause
634
635 begin
636 if Ignore_Rep_Clauses then
637 Rewrite (N, Make_Null_Statement (Sloc (N)));
638 return;
639 end if;
640
641 Analyze (Nam);
642 Ent := Entity (Nam);
643
644 if Rep_Item_Too_Early (Ent, N) then
645 return;
646 end if;
647
648 -- Rep clause applies to full view of incomplete type or private type if
649 -- we have one (if not, this is a premature use of the type). However,
650 -- certain semantic checks need to be done on the specified entity (i.e.
651 -- the private view), so we save it in Ent.
652
653 if Is_Private_Type (Ent)
654 and then Is_Derived_Type (Ent)
655 and then not Is_Tagged_Type (Ent)
656 and then No (Full_View (Ent))
657 then
658 -- If this is a private type whose completion is a derivation from
659 -- another private type, there is no full view, and the attribute
660 -- belongs to the type itself, not its underlying parent.
661
662 U_Ent := Ent;
663
664 elsif Ekind (Ent) = E_Incomplete_Type then
665
666 -- The attribute applies to the full view, set the entity of the
667 -- attribute definition accordingly.
668
669 Ent := Underlying_Type (Ent);
670 U_Ent := Ent;
671 Set_Entity (Nam, Ent);
672
673 else
674 U_Ent := Underlying_Type (Ent);
675 end if;
676
677 -- Complete other routine error checks
678
679 if Etype (Nam) = Any_Type then
680 return;
681
682 elsif Scope (Ent) /= Current_Scope then
683 Error_Msg_N ("entity must be declared in this scope", Nam);
684 return;
685
686 elsif No (U_Ent) then
687 U_Ent := Ent;
688
689 elsif Is_Type (U_Ent)
690 and then not Is_First_Subtype (U_Ent)
691 and then Id /= Attribute_Object_Size
692 and then Id /= Attribute_Value_Size
693 and then not From_At_Mod (N)
694 then
695 Error_Msg_N ("cannot specify attribute for subtype", Nam);
696 return;
697 end if;
698
699 -- Switch on particular attribute
700
701 case Id is
702
703 -------------
704 -- Address --
705 -------------
706
707 -- Address attribute definition clause
708
709 when Attribute_Address => Address : begin
710 Analyze_And_Resolve (Expr, RTE (RE_Address));
711
712 if Present (Address_Clause (U_Ent)) then
713 Error_Msg_N ("address already given for &", Nam);
714
715 -- Case of address clause for subprogram
716
717 elsif Is_Subprogram (U_Ent) then
718 if Has_Homonym (U_Ent) then
719 Error_Msg_N
720 ("address clause cannot be given " &
721 "for overloaded subprogram",
722 Nam);
723 end if;
724
725 -- For subprograms, all address clauses are permitted,
726 -- and we mark the subprogram as having a deferred freeze
727 -- so that Gigi will not elaborate it too soon.
728
729 -- Above needs more comments, what is too soon about???
730
731 Set_Has_Delayed_Freeze (U_Ent);
732
733 -- Case of address clause for entry
734
735 elsif Ekind (U_Ent) = E_Entry then
736 if Nkind (Parent (N)) = N_Task_Body then
737 Error_Msg_N
738 ("entry address must be specified in task spec", Nam);
739 end if;
740
741 -- For entries, we require a constant address
742
743 Check_Constant_Address_Clause (Expr, U_Ent);
744
745 if Is_Task_Type (Scope (U_Ent))
746 and then Comes_From_Source (Scope (U_Ent))
747 then
748 Error_Msg_N
749 ("?entry address declared for entry in task type", N);
750 Error_Msg_N
751 ("\?only one task can be declared of this type", N);
752 end if;
753
754 Check_Restriction (No_Obsolescent_Features, N);
755
756 if Warn_On_Obsolescent_Feature then
757 Error_Msg_N
758 ("attaching interrupt to task entry is an " &
759 "obsolescent feature (RM J.7.1)?", N);
760 Error_Msg_N
761 ("\use interrupt procedure instead?", N);
762 end if;
763
764 -- Case of an address clause for a controlled object:
765 -- erroneous execution.
766
767 elsif Is_Controlled (Etype (U_Ent)) then
768 Error_Msg_NE
769 ("?controlled object& must not be overlaid", Nam, U_Ent);
770 Error_Msg_N
771 ("\?Program_Error will be raised at run time", Nam);
772 Insert_Action (Declaration_Node (U_Ent),
773 Make_Raise_Program_Error (Loc,
774 Reason => PE_Overlaid_Controlled_Object));
775
776 -- Case of address clause for a (non-controlled) object
777
778 elsif
779 Ekind (U_Ent) = E_Variable
780 or else
781 Ekind (U_Ent) = E_Constant
782 then
783 declare
784 Expr : constant Node_Id := Expression (N);
785 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
786
787 begin
788 -- Exported variables cannot have an address clause,
789 -- because this cancels the effect of the pragma Export
790
791 if Is_Exported (U_Ent) then
792 Error_Msg_N
793 ("cannot export object with address clause", Nam);
794
795 -- Overlaying controlled objects is erroneous
796
797 elsif Present (Aent)
798 and then Is_Controlled (Etype (Aent))
799 then
800 Error_Msg_N
801 ("?controlled object must not be overlaid", Expr);
802 Error_Msg_N
803 ("\?Program_Error will be raised at run time", Expr);
804 Insert_Action (Declaration_Node (U_Ent),
805 Make_Raise_Program_Error (Loc,
806 Reason => PE_Overlaid_Controlled_Object));
807
808 elsif Present (Aent)
809 and then Ekind (U_Ent) = E_Constant
810 and then Ekind (Aent) /= E_Constant
811 then
812 Error_Msg_N ("constant overlays a variable?", Expr);
813
814 elsif Present (Renamed_Object (U_Ent)) then
815 Error_Msg_N
816 ("address clause not allowed"
817 & " for a renaming declaration (RM 13.1(6))", Nam);
818
819 -- Imported variables can have an address clause, but then
820 -- the import is pretty meaningless except to suppress
821 -- initializations, so we do not need such variables to
822 -- be statically allocated (and in fact it causes trouble
823 -- if the address clause is a local value).
824
825 elsif Is_Imported (U_Ent) then
826 Set_Is_Statically_Allocated (U_Ent, False);
827 end if;
828
829 -- We mark a possible modification of a variable with an
830 -- address clause, since it is likely aliasing is occurring.
831
832 Note_Possible_Modification (Nam);
833
834 -- Here we are checking for explicit overlap of one
835 -- variable by another, and if we find this, then we
836 -- mark the overlapped variable as also being aliased.
837
838 -- First case is where we have an explicit
839
840 -- for J'Address use K'Address;
841
842 -- In this case, we mark K as volatile
843
844 Mark_Aliased_Address_As_Volatile (Expr);
845
846 -- Second case is where we have a constant whose
847 -- definition is of the form of an address as in:
848
849 -- A : constant Address := K'Address;
850 -- ...
851 -- for B'Address use A;
852
853 -- In this case we also mark K as volatile
854
855 if Is_Entity_Name (Expr) then
856 declare
857 Ent : constant Entity_Id := Entity (Expr);
858 Decl : constant Node_Id := Declaration_Node (Ent);
859
860 begin
861 if Ekind (Ent) = E_Constant
862 and then Nkind (Decl) = N_Object_Declaration
863 and then Present (Expression (Decl))
864 then
865 Mark_Aliased_Address_As_Volatile
866 (Expression (Decl));
867 end if;
868 end;
869 end if;
870
871 -- Legality checks on the address clause for initialized
872 -- objects is deferred until the freeze point, because
873 -- a subsequent pragma might indicate that the object is
874 -- imported and thus not initialized.
875
876 Set_Has_Delayed_Freeze (U_Ent);
877
878 if Is_Exported (U_Ent) then
879 Error_Msg_N
880 ("& cannot be exported if an address clause is given",
881 Nam);
882 Error_Msg_N
883 ("\define and export a variable " &
884 "that holds its address instead",
885 Nam);
886 end if;
887
888 -- Entity has delayed freeze, so we will generate an
889 -- alignment check at the freeze point unless suppressed.
890
891 if not Range_Checks_Suppressed (U_Ent)
892 and then not Alignment_Checks_Suppressed (U_Ent)
893 then
894 Set_Check_Address_Alignment (N);
895 end if;
896
897 -- Kill the size check code, since we are not allocating
898 -- the variable, it is somewhere else.
899
900 Kill_Size_Check_Code (U_Ent);
901 end;
902
903 -- Not a valid entity for an address clause
904
905 else
906 Error_Msg_N ("address cannot be given for &", Nam);
907 end if;
908 end Address;
909
910 ---------------
911 -- Alignment --
912 ---------------
913
914 -- Alignment attribute definition clause
915
916 when Attribute_Alignment => Alignment_Block : declare
917 Align : constant Uint := Get_Alignment_Value (Expr);
918
919 begin
920 FOnly := True;
921
922 if not Is_Type (U_Ent)
923 and then Ekind (U_Ent) /= E_Variable
924 and then Ekind (U_Ent) /= E_Constant
925 then
926 Error_Msg_N ("alignment cannot be given for &", Nam);
927
928 elsif Has_Alignment_Clause (U_Ent) then
929 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
930 Error_Msg_N ("alignment clause previously given#", N);
931
932 elsif Align /= No_Uint then
933 Set_Has_Alignment_Clause (U_Ent);
934 Set_Alignment (U_Ent, Align);
935 end if;
936 end Alignment_Block;
937
938 ---------------
939 -- Bit_Order --
940 ---------------
941
942 -- Bit_Order attribute definition clause
943
944 when Attribute_Bit_Order => Bit_Order : declare
945 begin
946 if not Is_Record_Type (U_Ent) then
947 Error_Msg_N
948 ("Bit_Order can only be defined for record type", Nam);
949
950 else
951 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
952
953 if Etype (Expr) = Any_Type then
954 return;
955
956 elsif not Is_Static_Expression (Expr) then
957 Flag_Non_Static_Expr
958 ("Bit_Order requires static expression!", Expr);
959
960 else
961 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
962 Set_Reverse_Bit_Order (U_Ent, True);
963 end if;
964 end if;
965 end if;
966 end Bit_Order;
967
968 --------------------
969 -- Component_Size --
970 --------------------
971
972 -- Component_Size attribute definition clause
973
974 when Attribute_Component_Size => Component_Size_Case : declare
975 Csize : constant Uint := Static_Integer (Expr);
976 Btype : Entity_Id;
977 Biased : Boolean;
978 New_Ctyp : Entity_Id;
979 Decl : Node_Id;
980
981 begin
982 if not Is_Array_Type (U_Ent) then
983 Error_Msg_N ("component size requires array type", Nam);
984 return;
985 end if;
986
987 Btype := Base_Type (U_Ent);
988
989 if Has_Component_Size_Clause (Btype) then
990 Error_Msg_N
991 ("component size clase for& previously given", Nam);
992
993 elsif Csize /= No_Uint then
994 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
995
996 if Has_Aliased_Components (Btype)
997 and then Csize < 32
998 and then Csize /= 8
999 and then Csize /= 16
1000 then
1001 Error_Msg_N
1002 ("component size incorrect for aliased components", N);
1003 return;
1004 end if;
1005
1006 -- For the biased case, build a declaration for a subtype
1007 -- that will be used to represent the biased subtype that
1008 -- reflects the biased representation of components. We need
1009 -- this subtype to get proper conversions on referencing
1010 -- elements of the array.
1011
1012 if Biased then
1013 New_Ctyp :=
1014 Make_Defining_Identifier (Loc,
1015 Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
1016
1017 Decl :=
1018 Make_Subtype_Declaration (Loc,
1019 Defining_Identifier => New_Ctyp,
1020 Subtype_Indication =>
1021 New_Occurrence_Of (Component_Type (Btype), Loc));
1022
1023 Set_Parent (Decl, N);
1024 Analyze (Decl, Suppress => All_Checks);
1025
1026 Set_Has_Delayed_Freeze (New_Ctyp, False);
1027 Set_Esize (New_Ctyp, Csize);
1028 Set_RM_Size (New_Ctyp, Csize);
1029 Init_Alignment (New_Ctyp);
1030 Set_Has_Biased_Representation (New_Ctyp, True);
1031 Set_Is_Itype (New_Ctyp, True);
1032 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
1033
1034 Set_Component_Type (Btype, New_Ctyp);
1035 end if;
1036
1037 Set_Component_Size (Btype, Csize);
1038 Set_Has_Component_Size_Clause (Btype, True);
1039 Set_Has_Non_Standard_Rep (Btype, True);
1040 end if;
1041 end Component_Size_Case;
1042
1043 ------------------
1044 -- External_Tag --
1045 ------------------
1046
1047 when Attribute_External_Tag => External_Tag :
1048 begin
1049 if not Is_Tagged_Type (U_Ent) then
1050 Error_Msg_N ("should be a tagged type", Nam);
1051 end if;
1052
1053 Analyze_And_Resolve (Expr, Standard_String);
1054
1055 if not Is_Static_Expression (Expr) then
1056 Flag_Non_Static_Expr
1057 ("static string required for tag name!", Nam);
1058 end if;
1059
1060 if VM_Target = No_VM then
1061 Set_Has_External_Tag_Rep_Clause (U_Ent);
1062 else
1063 Error_Msg_Name_1 := Attr;
1064 Error_Msg_N
1065 ("% attribute unsupported in this configuration", Nam);
1066 end if;
1067
1068 if not Is_Library_Level_Entity (U_Ent) then
1069 Error_Msg_NE
1070 ("?non-unique external tag supplied for &", N, U_Ent);
1071 Error_Msg_N
1072 ("?\same external tag applies to all subprogram calls", N);
1073 Error_Msg_N
1074 ("?\corresponding internal tag cannot be obtained", N);
1075 end if;
1076 end External_Tag;
1077
1078 -----------
1079 -- Input --
1080 -----------
1081
1082 when Attribute_Input =>
1083 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
1084 Set_Has_Specified_Stream_Input (Ent);
1085
1086 -------------------
1087 -- Machine_Radix --
1088 -------------------
1089
1090 -- Machine radix attribute definition clause
1091
1092 when Attribute_Machine_Radix => Machine_Radix : declare
1093 Radix : constant Uint := Static_Integer (Expr);
1094
1095 begin
1096 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
1097 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
1098
1099 elsif Has_Machine_Radix_Clause (U_Ent) then
1100 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1101 Error_Msg_N ("machine radix clause previously given#", N);
1102
1103 elsif Radix /= No_Uint then
1104 Set_Has_Machine_Radix_Clause (U_Ent);
1105 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
1106
1107 if Radix = 2 then
1108 null;
1109 elsif Radix = 10 then
1110 Set_Machine_Radix_10 (U_Ent);
1111 else
1112 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
1113 end if;
1114 end if;
1115 end Machine_Radix;
1116
1117 -----------------
1118 -- Object_Size --
1119 -----------------
1120
1121 -- Object_Size attribute definition clause
1122
1123 when Attribute_Object_Size => Object_Size : declare
1124 Size : constant Uint := Static_Integer (Expr);
1125 Biased : Boolean;
1126
1127 begin
1128 if not Is_Type (U_Ent) then
1129 Error_Msg_N ("Object_Size cannot be given for &", Nam);
1130
1131 elsif Has_Object_Size_Clause (U_Ent) then
1132 Error_Msg_N ("Object_Size already given for &", Nam);
1133
1134 else
1135 Check_Size (Expr, U_Ent, Size, Biased);
1136
1137 if Size /= 8
1138 and then
1139 Size /= 16
1140 and then
1141 Size /= 32
1142 and then
1143 UI_Mod (Size, 64) /= 0
1144 then
1145 Error_Msg_N
1146 ("Object_Size must be 8, 16, 32, or multiple of 64",
1147 Expr);
1148 end if;
1149
1150 Set_Esize (U_Ent, Size);
1151 Set_Has_Object_Size_Clause (U_Ent);
1152 Alignment_Check_For_Esize_Change (U_Ent);
1153 end if;
1154 end Object_Size;
1155
1156 ------------
1157 -- Output --
1158 ------------
1159
1160 when Attribute_Output =>
1161 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
1162 Set_Has_Specified_Stream_Output (Ent);
1163
1164 ----------
1165 -- Read --
1166 ----------
1167
1168 when Attribute_Read =>
1169 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
1170 Set_Has_Specified_Stream_Read (Ent);
1171
1172 ----------
1173 -- Size --
1174 ----------
1175
1176 -- Size attribute definition clause
1177
1178 when Attribute_Size => Size : declare
1179 Size : constant Uint := Static_Integer (Expr);
1180 Etyp : Entity_Id;
1181 Biased : Boolean;
1182
1183 begin
1184 FOnly := True;
1185
1186 if Has_Size_Clause (U_Ent) then
1187 Error_Msg_N ("size already given for &", Nam);
1188
1189 elsif not Is_Type (U_Ent)
1190 and then Ekind (U_Ent) /= E_Variable
1191 and then Ekind (U_Ent) /= E_Constant
1192 then
1193 Error_Msg_N ("size cannot be given for &", Nam);
1194
1195 elsif Is_Array_Type (U_Ent)
1196 and then not Is_Constrained (U_Ent)
1197 then
1198 Error_Msg_N
1199 ("size cannot be given for unconstrained array", Nam);
1200
1201 elsif Size /= No_Uint then
1202 if Is_Type (U_Ent) then
1203 Etyp := U_Ent;
1204 else
1205 Etyp := Etype (U_Ent);
1206 end if;
1207
1208 -- Check size, note that Gigi is in charge of checking that the
1209 -- size of an array or record type is OK. Also we do not check
1210 -- the size in the ordinary fixed-point case, since it is too
1211 -- early to do so (there may be subsequent small clause that
1212 -- affects the size). We can check the size if a small clause
1213 -- has already been given.
1214
1215 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1216 or else Has_Small_Clause (U_Ent)
1217 then
1218 Check_Size (Expr, Etyp, Size, Biased);
1219 Set_Has_Biased_Representation (U_Ent, Biased);
1220 end if;
1221
1222 -- For types set RM_Size and Esize if possible
1223
1224 if Is_Type (U_Ent) then
1225 Set_RM_Size (U_Ent, Size);
1226
1227 -- For scalar types, increase Object_Size to power of 2, but
1228 -- not less than a storage unit in any case (i.e., normally
1229 -- this means it will be byte addressable).
1230
1231 if Is_Scalar_Type (U_Ent) then
1232 if Size <= System_Storage_Unit then
1233 Init_Esize (U_Ent, System_Storage_Unit);
1234 elsif Size <= 16 then
1235 Init_Esize (U_Ent, 16);
1236 elsif Size <= 32 then
1237 Init_Esize (U_Ent, 32);
1238 else
1239 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1240 end if;
1241
1242 -- For all other types, object size = value size. The
1243 -- backend will adjust as needed.
1244
1245 else
1246 Set_Esize (U_Ent, Size);
1247 end if;
1248
1249 Alignment_Check_For_Esize_Change (U_Ent);
1250
1251 -- For objects, set Esize only
1252
1253 else
1254 if Is_Elementary_Type (Etyp) then
1255 if Size /= System_Storage_Unit
1256 and then
1257 Size /= System_Storage_Unit * 2
1258 and then
1259 Size /= System_Storage_Unit * 4
1260 and then
1261 Size /= System_Storage_Unit * 8
1262 then
1263 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1264 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
1265 Error_Msg_N
1266 ("size for primitive object must be a power of 2"
1267 & " in the range ^-^", N);
1268 end if;
1269 end if;
1270
1271 Set_Esize (U_Ent, Size);
1272 end if;
1273
1274 Set_Has_Size_Clause (U_Ent);
1275 end if;
1276 end Size;
1277
1278 -----------
1279 -- Small --
1280 -----------
1281
1282 -- Small attribute definition clause
1283
1284 when Attribute_Small => Small : declare
1285 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1286 Small : Ureal;
1287
1288 begin
1289 Analyze_And_Resolve (Expr, Any_Real);
1290
1291 if Etype (Expr) = Any_Type then
1292 return;
1293
1294 elsif not Is_Static_Expression (Expr) then
1295 Flag_Non_Static_Expr
1296 ("small requires static expression!", Expr);
1297 return;
1298
1299 else
1300 Small := Expr_Value_R (Expr);
1301
1302 if Small <= Ureal_0 then
1303 Error_Msg_N ("small value must be greater than zero", Expr);
1304 return;
1305 end if;
1306
1307 end if;
1308
1309 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1310 Error_Msg_N
1311 ("small requires an ordinary fixed point type", Nam);
1312
1313 elsif Has_Small_Clause (U_Ent) then
1314 Error_Msg_N ("small already given for &", Nam);
1315
1316 elsif Small > Delta_Value (U_Ent) then
1317 Error_Msg_N
1318 ("small value must not be greater then delta value", Nam);
1319
1320 else
1321 Set_Small_Value (U_Ent, Small);
1322 Set_Small_Value (Implicit_Base, Small);
1323 Set_Has_Small_Clause (U_Ent);
1324 Set_Has_Small_Clause (Implicit_Base);
1325 Set_Has_Non_Standard_Rep (Implicit_Base);
1326 end if;
1327 end Small;
1328
1329 ------------------
1330 -- Storage_Pool --
1331 ------------------
1332
1333 -- Storage_Pool attribute definition clause
1334
1335 when Attribute_Storage_Pool => Storage_Pool : declare
1336 Pool : Entity_Id;
1337 T : Entity_Id;
1338
1339 begin
1340 if Ekind (U_Ent) = E_Access_Subprogram_Type then
1341 Error_Msg_N
1342 ("storage pool cannot be given for access-to-subprogram type",
1343 Nam);
1344 return;
1345
1346 elsif Ekind (U_Ent) /= E_Access_Type
1347 and then Ekind (U_Ent) /= E_General_Access_Type
1348 then
1349 Error_Msg_N
1350 ("storage pool can only be given for access types", Nam);
1351 return;
1352
1353 elsif Is_Derived_Type (U_Ent) then
1354 Error_Msg_N
1355 ("storage pool cannot be given for a derived access type",
1356 Nam);
1357
1358 elsif Has_Storage_Size_Clause (U_Ent) then
1359 Error_Msg_N ("storage size already given for &", Nam);
1360 return;
1361
1362 elsif Present (Associated_Storage_Pool (U_Ent)) then
1363 Error_Msg_N ("storage pool already given for &", Nam);
1364 return;
1365 end if;
1366
1367 Analyze_And_Resolve
1368 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1369
1370 if Nkind (Expr) = N_Type_Conversion then
1371 T := Etype (Expression (Expr));
1372 else
1373 T := Etype (Expr);
1374 end if;
1375
1376 -- The Stack_Bounded_Pool is used internally for implementing
1377 -- access types with a Storage_Size. Since it only work
1378 -- properly when used on one specific type, we need to check
1379 -- that it is not highjacked improperly:
1380 -- type T is access Integer;
1381 -- for T'Storage_Size use n;
1382 -- type Q is access Float;
1383 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1384
1385 if RTE_Available (RE_Stack_Bounded_Pool)
1386 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
1387 then
1388 Error_Msg_N ("non-shareable internal Pool", Expr);
1389 return;
1390 end if;
1391
1392 -- If the argument is a name that is not an entity name, then
1393 -- we construct a renaming operation to define an entity of
1394 -- type storage pool.
1395
1396 if not Is_Entity_Name (Expr)
1397 and then Is_Object_Reference (Expr)
1398 then
1399 Pool :=
1400 Make_Defining_Identifier (Loc,
1401 Chars => New_Internal_Name ('P'));
1402
1403 declare
1404 Rnode : constant Node_Id :=
1405 Make_Object_Renaming_Declaration (Loc,
1406 Defining_Identifier => Pool,
1407 Subtype_Mark =>
1408 New_Occurrence_Of (Etype (Expr), Loc),
1409 Name => Expr);
1410
1411 begin
1412 Insert_Before (N, Rnode);
1413 Analyze (Rnode);
1414 Set_Associated_Storage_Pool (U_Ent, Pool);
1415 end;
1416
1417 elsif Is_Entity_Name (Expr) then
1418 Pool := Entity (Expr);
1419
1420 -- If pool is a renamed object, get original one. This can
1421 -- happen with an explicit renaming, and within instances.
1422
1423 while Present (Renamed_Object (Pool))
1424 and then Is_Entity_Name (Renamed_Object (Pool))
1425 loop
1426 Pool := Entity (Renamed_Object (Pool));
1427 end loop;
1428
1429 if Present (Renamed_Object (Pool))
1430 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1431 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1432 then
1433 Pool := Entity (Expression (Renamed_Object (Pool)));
1434 end if;
1435
1436 Set_Associated_Storage_Pool (U_Ent, Pool);
1437
1438 elsif Nkind (Expr) = N_Type_Conversion
1439 and then Is_Entity_Name (Expression (Expr))
1440 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1441 then
1442 Pool := Entity (Expression (Expr));
1443 Set_Associated_Storage_Pool (U_Ent, Pool);
1444
1445 else
1446 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1447 return;
1448 end if;
1449 end Storage_Pool;
1450
1451 ------------------
1452 -- Storage_Size --
1453 ------------------
1454
1455 -- Storage_Size attribute definition clause
1456
1457 when Attribute_Storage_Size => Storage_Size : declare
1458 Btype : constant Entity_Id := Base_Type (U_Ent);
1459 Sprag : Node_Id;
1460
1461 begin
1462 if Is_Task_Type (U_Ent) then
1463 Check_Restriction (No_Obsolescent_Features, N);
1464
1465 if Warn_On_Obsolescent_Feature then
1466 Error_Msg_N
1467 ("storage size clause for task is an " &
1468 "obsolescent feature (RM J.9)?", N);
1469 Error_Msg_N
1470 ("\use Storage_Size pragma instead?", N);
1471 end if;
1472
1473 FOnly := True;
1474 end if;
1475
1476 if not Is_Access_Type (U_Ent)
1477 and then Ekind (U_Ent) /= E_Task_Type
1478 then
1479 Error_Msg_N ("storage size cannot be given for &", Nam);
1480
1481 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1482 Error_Msg_N
1483 ("storage size cannot be given for a derived access type",
1484 Nam);
1485
1486 elsif Has_Storage_Size_Clause (Btype) then
1487 Error_Msg_N ("storage size already given for &", Nam);
1488
1489 else
1490 Analyze_And_Resolve (Expr, Any_Integer);
1491
1492 if Is_Access_Type (U_Ent) then
1493 if Present (Associated_Storage_Pool (U_Ent)) then
1494 Error_Msg_N ("storage pool already given for &", Nam);
1495 return;
1496 end if;
1497
1498 if Compile_Time_Known_Value (Expr)
1499 and then Expr_Value (Expr) = 0
1500 then
1501 Set_No_Pool_Assigned (Btype);
1502 end if;
1503
1504 else -- Is_Task_Type (U_Ent)
1505 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1506
1507 if Present (Sprag) then
1508 Error_Msg_Sloc := Sloc (Sprag);
1509 Error_Msg_N
1510 ("Storage_Size already specified#", Nam);
1511 return;
1512 end if;
1513 end if;
1514
1515 Set_Has_Storage_Size_Clause (Btype);
1516 end if;
1517 end Storage_Size;
1518
1519 -----------------
1520 -- Stream_Size --
1521 -----------------
1522
1523 when Attribute_Stream_Size => Stream_Size : declare
1524 Size : constant Uint := Static_Integer (Expr);
1525
1526 begin
1527 if Ada_Version <= Ada_95 then
1528 Check_Restriction (No_Implementation_Attributes, N);
1529 end if;
1530
1531 if Has_Stream_Size_Clause (U_Ent) then
1532 Error_Msg_N ("Stream_Size already given for &", Nam);
1533
1534 elsif Is_Elementary_Type (U_Ent) then
1535 if Size /= System_Storage_Unit
1536 and then
1537 Size /= System_Storage_Unit * 2
1538 and then
1539 Size /= System_Storage_Unit * 4
1540 and then
1541 Size /= System_Storage_Unit * 8
1542 then
1543 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1544 Error_Msg_N
1545 ("stream size for elementary type must be a"
1546 & " power of 2 and at least ^", N);
1547
1548 elsif RM_Size (U_Ent) > Size then
1549 Error_Msg_Uint_1 := RM_Size (U_Ent);
1550 Error_Msg_N
1551 ("stream size for elementary type must be a"
1552 & " power of 2 and at least ^", N);
1553 end if;
1554
1555 Set_Has_Stream_Size_Clause (U_Ent);
1556
1557 else
1558 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1559 end if;
1560 end Stream_Size;
1561
1562 ----------------
1563 -- Value_Size --
1564 ----------------
1565
1566 -- Value_Size attribute definition clause
1567
1568 when Attribute_Value_Size => Value_Size : declare
1569 Size : constant Uint := Static_Integer (Expr);
1570 Biased : Boolean;
1571
1572 begin
1573 if not Is_Type (U_Ent) then
1574 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1575
1576 elsif Present
1577 (Get_Attribute_Definition_Clause
1578 (U_Ent, Attribute_Value_Size))
1579 then
1580 Error_Msg_N ("Value_Size already given for &", Nam);
1581
1582 elsif Is_Array_Type (U_Ent)
1583 and then not Is_Constrained (U_Ent)
1584 then
1585 Error_Msg_N
1586 ("Value_Size cannot be given for unconstrained array", Nam);
1587
1588 else
1589 if Is_Elementary_Type (U_Ent) then
1590 Check_Size (Expr, U_Ent, Size, Biased);
1591 Set_Has_Biased_Representation (U_Ent, Biased);
1592 end if;
1593
1594 Set_RM_Size (U_Ent, Size);
1595 end if;
1596 end Value_Size;
1597
1598 -----------
1599 -- Write --
1600 -----------
1601
1602 when Attribute_Write =>
1603 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1604 Set_Has_Specified_Stream_Write (Ent);
1605
1606 -- All other attributes cannot be set
1607
1608 when others =>
1609 Error_Msg_N
1610 ("attribute& cannot be set with definition clause", N);
1611 end case;
1612
1613 -- The test for the type being frozen must be performed after
1614 -- any expression the clause has been analyzed since the expression
1615 -- itself might cause freezing that makes the clause illegal.
1616
1617 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1618 return;
1619 end if;
1620 end Analyze_Attribute_Definition_Clause;
1621
1622 ----------------------------
1623 -- Analyze_Code_Statement --
1624 ----------------------------
1625
1626 procedure Analyze_Code_Statement (N : Node_Id) is
1627 HSS : constant Node_Id := Parent (N);
1628 SBody : constant Node_Id := Parent (HSS);
1629 Subp : constant Entity_Id := Current_Scope;
1630 Stmt : Node_Id;
1631 Decl : Node_Id;
1632 StmtO : Node_Id;
1633 DeclO : Node_Id;
1634
1635 begin
1636 -- Analyze and check we get right type, note that this implements the
1637 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1638 -- is the only way that Asm_Insn could possibly be visible.
1639
1640 Analyze_And_Resolve (Expression (N));
1641
1642 if Etype (Expression (N)) = Any_Type then
1643 return;
1644 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1645 Error_Msg_N ("incorrect type for code statement", N);
1646 return;
1647 end if;
1648
1649 Check_Code_Statement (N);
1650
1651 -- Make sure we appear in the handled statement sequence of a
1652 -- subprogram (RM 13.8(3)).
1653
1654 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1655 or else Nkind (SBody) /= N_Subprogram_Body
1656 then
1657 Error_Msg_N
1658 ("code statement can only appear in body of subprogram", N);
1659 return;
1660 end if;
1661
1662 -- Do remaining checks (RM 13.8(3)) if not already done
1663
1664 if not Is_Machine_Code_Subprogram (Subp) then
1665 Set_Is_Machine_Code_Subprogram (Subp);
1666
1667 -- No exception handlers allowed
1668
1669 if Present (Exception_Handlers (HSS)) then
1670 Error_Msg_N
1671 ("exception handlers not permitted in machine code subprogram",
1672 First (Exception_Handlers (HSS)));
1673 end if;
1674
1675 -- No declarations other than use clauses and pragmas (we allow
1676 -- certain internally generated declarations as well).
1677
1678 Decl := First (Declarations (SBody));
1679 while Present (Decl) loop
1680 DeclO := Original_Node (Decl);
1681 if Comes_From_Source (DeclO)
1682 and then Nkind (DeclO) /= N_Pragma
1683 and then Nkind (DeclO) /= N_Use_Package_Clause
1684 and then Nkind (DeclO) /= N_Use_Type_Clause
1685 and then Nkind (DeclO) /= N_Implicit_Label_Declaration
1686 then
1687 Error_Msg_N
1688 ("this declaration not allowed in machine code subprogram",
1689 DeclO);
1690 end if;
1691
1692 Next (Decl);
1693 end loop;
1694
1695 -- No statements other than code statements, pragmas, and labels.
1696 -- Again we allow certain internally generated statements.
1697
1698 Stmt := First (Statements (HSS));
1699 while Present (Stmt) loop
1700 StmtO := Original_Node (Stmt);
1701 if Comes_From_Source (StmtO)
1702 and then Nkind (StmtO) /= N_Pragma
1703 and then Nkind (StmtO) /= N_Label
1704 and then Nkind (StmtO) /= N_Code_Statement
1705 then
1706 Error_Msg_N
1707 ("this statement is not allowed in machine code subprogram",
1708 StmtO);
1709 end if;
1710
1711 Next (Stmt);
1712 end loop;
1713 end if;
1714 end Analyze_Code_Statement;
1715
1716 -----------------------------------------------
1717 -- Analyze_Enumeration_Representation_Clause --
1718 -----------------------------------------------
1719
1720 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1721 Ident : constant Node_Id := Identifier (N);
1722 Aggr : constant Node_Id := Array_Aggregate (N);
1723 Enumtype : Entity_Id;
1724 Elit : Entity_Id;
1725 Expr : Node_Id;
1726 Assoc : Node_Id;
1727 Choice : Node_Id;
1728 Val : Uint;
1729 Err : Boolean := False;
1730
1731 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1732 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1733 Min : Uint;
1734 Max : Uint;
1735
1736 begin
1737 if Ignore_Rep_Clauses then
1738 return;
1739 end if;
1740
1741 -- First some basic error checks
1742
1743 Find_Type (Ident);
1744 Enumtype := Entity (Ident);
1745
1746 if Enumtype = Any_Type
1747 or else Rep_Item_Too_Early (Enumtype, N)
1748 then
1749 return;
1750 else
1751 Enumtype := Underlying_Type (Enumtype);
1752 end if;
1753
1754 if not Is_Enumeration_Type (Enumtype) then
1755 Error_Msg_NE
1756 ("enumeration type required, found}",
1757 Ident, First_Subtype (Enumtype));
1758 return;
1759 end if;
1760
1761 -- Ignore rep clause on generic actual type. This will already have
1762 -- been flagged on the template as an error, and this is the safest
1763 -- way to ensure we don't get a junk cascaded message in the instance.
1764
1765 if Is_Generic_Actual_Type (Enumtype) then
1766 return;
1767
1768 -- Type must be in current scope
1769
1770 elsif Scope (Enumtype) /= Current_Scope then
1771 Error_Msg_N ("type must be declared in this scope", Ident);
1772 return;
1773
1774 -- Type must be a first subtype
1775
1776 elsif not Is_First_Subtype (Enumtype) then
1777 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1778 return;
1779
1780 -- Ignore duplicate rep clause
1781
1782 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1783 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1784 return;
1785
1786 -- Don't allow rep clause for standard [wide_[wide_]]character
1787
1788 elsif Root_Type (Enumtype) = Standard_Character
1789 or else Root_Type (Enumtype) = Standard_Wide_Character
1790 or else Root_Type (Enumtype) = Standard_Wide_Wide_Character
1791 then
1792 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
1793 return;
1794
1795 -- Check that the expression is a proper aggregate (no parentheses)
1796
1797 elsif Paren_Count (Aggr) /= 0 then
1798 Error_Msg
1799 ("extra parentheses surrounding aggregate not allowed",
1800 First_Sloc (Aggr));
1801 return;
1802
1803 -- All tests passed, so set rep clause in place
1804
1805 else
1806 Set_Has_Enumeration_Rep_Clause (Enumtype);
1807 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1808 end if;
1809
1810 -- Now we process the aggregate. Note that we don't use the normal
1811 -- aggregate code for this purpose, because we don't want any of the
1812 -- normal expansion activities, and a number of special semantic
1813 -- rules apply (including the component type being any integer type)
1814
1815 Elit := First_Literal (Enumtype);
1816
1817 -- First the positional entries if any
1818
1819 if Present (Expressions (Aggr)) then
1820 Expr := First (Expressions (Aggr));
1821 while Present (Expr) loop
1822 if No (Elit) then
1823 Error_Msg_N ("too many entries in aggregate", Expr);
1824 return;
1825 end if;
1826
1827 Val := Static_Integer (Expr);
1828
1829 -- Err signals that we found some incorrect entries processing
1830 -- the list. The final checks for completeness and ordering are
1831 -- skipped in this case.
1832
1833 if Val = No_Uint then
1834 Err := True;
1835 elsif Val < Lo or else Hi < Val then
1836 Error_Msg_N ("value outside permitted range", Expr);
1837 Err := True;
1838 end if;
1839
1840 Set_Enumeration_Rep (Elit, Val);
1841 Set_Enumeration_Rep_Expr (Elit, Expr);
1842 Next (Expr);
1843 Next (Elit);
1844 end loop;
1845 end if;
1846
1847 -- Now process the named entries if present
1848
1849 if Present (Component_Associations (Aggr)) then
1850 Assoc := First (Component_Associations (Aggr));
1851 while Present (Assoc) loop
1852 Choice := First (Choices (Assoc));
1853
1854 if Present (Next (Choice)) then
1855 Error_Msg_N
1856 ("multiple choice not allowed here", Next (Choice));
1857 Err := True;
1858 end if;
1859
1860 if Nkind (Choice) = N_Others_Choice then
1861 Error_Msg_N ("others choice not allowed here", Choice);
1862 Err := True;
1863
1864 elsif Nkind (Choice) = N_Range then
1865 -- ??? should allow zero/one element range here
1866 Error_Msg_N ("range not allowed here", Choice);
1867 Err := True;
1868
1869 else
1870 Analyze_And_Resolve (Choice, Enumtype);
1871
1872 if Is_Entity_Name (Choice)
1873 and then Is_Type (Entity (Choice))
1874 then
1875 Error_Msg_N ("subtype name not allowed here", Choice);
1876 Err := True;
1877 -- ??? should allow static subtype with zero/one entry
1878
1879 elsif Etype (Choice) = Base_Type (Enumtype) then
1880 if not Is_Static_Expression (Choice) then
1881 Flag_Non_Static_Expr
1882 ("non-static expression used for choice!", Choice);
1883 Err := True;
1884
1885 else
1886 Elit := Expr_Value_E (Choice);
1887
1888 if Present (Enumeration_Rep_Expr (Elit)) then
1889 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
1890 Error_Msg_NE
1891 ("representation for& previously given#",
1892 Choice, Elit);
1893 Err := True;
1894 end if;
1895
1896 Set_Enumeration_Rep_Expr (Elit, Choice);
1897
1898 Expr := Expression (Assoc);
1899 Val := Static_Integer (Expr);
1900
1901 if Val = No_Uint then
1902 Err := True;
1903
1904 elsif Val < Lo or else Hi < Val then
1905 Error_Msg_N ("value outside permitted range", Expr);
1906 Err := True;
1907 end if;
1908
1909 Set_Enumeration_Rep (Elit, Val);
1910 end if;
1911 end if;
1912 end if;
1913
1914 Next (Assoc);
1915 end loop;
1916 end if;
1917
1918 -- Aggregate is fully processed. Now we check that a full set of
1919 -- representations was given, and that they are in range and in order.
1920 -- These checks are only done if no other errors occurred.
1921
1922 if not Err then
1923 Min := No_Uint;
1924 Max := No_Uint;
1925
1926 Elit := First_Literal (Enumtype);
1927 while Present (Elit) loop
1928 if No (Enumeration_Rep_Expr (Elit)) then
1929 Error_Msg_NE ("missing representation for&!", N, Elit);
1930
1931 else
1932 Val := Enumeration_Rep (Elit);
1933
1934 if Min = No_Uint then
1935 Min := Val;
1936 end if;
1937
1938 if Val /= No_Uint then
1939 if Max /= No_Uint and then Val <= Max then
1940 Error_Msg_NE
1941 ("enumeration value for& not ordered!",
1942 Enumeration_Rep_Expr (Elit), Elit);
1943 end if;
1944
1945 Max := Val;
1946 end if;
1947
1948 -- If there is at least one literal whose representation
1949 -- is not equal to the Pos value, then note that this
1950 -- enumeration type has a non-standard representation.
1951
1952 if Val /= Enumeration_Pos (Elit) then
1953 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
1954 end if;
1955 end if;
1956
1957 Next (Elit);
1958 end loop;
1959
1960 -- Now set proper size information
1961
1962 declare
1963 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
1964
1965 begin
1966 if Has_Size_Clause (Enumtype) then
1967 if Esize (Enumtype) >= Minsize then
1968 null;
1969
1970 else
1971 Minsize :=
1972 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
1973
1974 if Esize (Enumtype) < Minsize then
1975 Error_Msg_N ("previously given size is too small", N);
1976
1977 else
1978 Set_Has_Biased_Representation (Enumtype);
1979 end if;
1980 end if;
1981
1982 else
1983 Set_RM_Size (Enumtype, Minsize);
1984 Set_Enum_Esize (Enumtype);
1985 end if;
1986
1987 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
1988 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
1989 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
1990 end;
1991 end if;
1992
1993 -- We repeat the too late test in case it froze itself!
1994
1995 if Rep_Item_Too_Late (Enumtype, N) then
1996 null;
1997 end if;
1998 end Analyze_Enumeration_Representation_Clause;
1999
2000 ----------------------------
2001 -- Analyze_Free_Statement --
2002 ----------------------------
2003
2004 procedure Analyze_Free_Statement (N : Node_Id) is
2005 begin
2006 Analyze (Expression (N));
2007 end Analyze_Free_Statement;
2008
2009 ------------------------------------------
2010 -- Analyze_Record_Representation_Clause --
2011 ------------------------------------------
2012
2013 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
2014 Loc : constant Source_Ptr := Sloc (N);
2015 Ident : constant Node_Id := Identifier (N);
2016 Rectype : Entity_Id;
2017 Fent : Entity_Id;
2018 CC : Node_Id;
2019 Posit : Uint;
2020 Fbit : Uint;
2021 Lbit : Uint;
2022 Hbit : Uint := Uint_0;
2023 Comp : Entity_Id;
2024 Ocomp : Entity_Id;
2025 Biased : Boolean;
2026
2027 Max_Bit_So_Far : Uint;
2028 -- Records the maximum bit position so far. If all field positions
2029 -- are monotonically increasing, then we can skip the circuit for
2030 -- checking for overlap, since no overlap is possible.
2031
2032 Overlap_Check_Required : Boolean;
2033 -- Used to keep track of whether or not an overlap check is required
2034
2035 Ccount : Natural := 0;
2036 -- Number of component clauses in record rep clause
2037
2038 CR_Pragma : Node_Id := Empty;
2039 -- Points to N_Pragma node if Complete_Representation pragma present
2040
2041 begin
2042 if Ignore_Rep_Clauses then
2043 return;
2044 end if;
2045
2046 Find_Type (Ident);
2047 Rectype := Entity (Ident);
2048
2049 if Rectype = Any_Type
2050 or else Rep_Item_Too_Early (Rectype, N)
2051 then
2052 return;
2053 else
2054 Rectype := Underlying_Type (Rectype);
2055 end if;
2056
2057 -- First some basic error checks
2058
2059 if not Is_Record_Type (Rectype) then
2060 Error_Msg_NE
2061 ("record type required, found}", Ident, First_Subtype (Rectype));
2062 return;
2063
2064 elsif Is_Unchecked_Union (Rectype) then
2065 Error_Msg_N
2066 ("record rep clause not allowed for Unchecked_Union", N);
2067
2068 elsif Scope (Rectype) /= Current_Scope then
2069 Error_Msg_N ("type must be declared in this scope", N);
2070 return;
2071
2072 elsif not Is_First_Subtype (Rectype) then
2073 Error_Msg_N ("cannot give record rep clause for subtype", N);
2074 return;
2075
2076 elsif Has_Record_Rep_Clause (Rectype) then
2077 Error_Msg_N ("duplicate record rep clause ignored", N);
2078 return;
2079
2080 elsif Rep_Item_Too_Late (Rectype, N) then
2081 return;
2082 end if;
2083
2084 if Present (Mod_Clause (N)) then
2085 declare
2086 Loc : constant Source_Ptr := Sloc (N);
2087 M : constant Node_Id := Mod_Clause (N);
2088 P : constant List_Id := Pragmas_Before (M);
2089 AtM_Nod : Node_Id;
2090
2091 Mod_Val : Uint;
2092 pragma Warnings (Off, Mod_Val);
2093
2094 begin
2095 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
2096
2097 if Warn_On_Obsolescent_Feature then
2098 Error_Msg_N
2099 ("mod clause is an obsolescent feature (RM J.8)?", N);
2100 Error_Msg_N
2101 ("\use alignment attribute definition clause instead?", N);
2102 end if;
2103
2104 if Present (P) then
2105 Analyze_List (P);
2106 end if;
2107
2108 -- In ASIS_Mode mode, expansion is disabled, but we must convert
2109 -- the Mod clause into an alignment clause anyway, so that the
2110 -- back-end can compute and back-annotate properly the size and
2111 -- alignment of types that may include this record.
2112
2113 -- This seems dubious, this destroys the source tree in a manner
2114 -- not detectable by ASIS ???
2115
2116 if Operating_Mode = Check_Semantics
2117 and then ASIS_Mode
2118 then
2119 AtM_Nod :=
2120 Make_Attribute_Definition_Clause (Loc,
2121 Name => New_Reference_To (Base_Type (Rectype), Loc),
2122 Chars => Name_Alignment,
2123 Expression => Relocate_Node (Expression (M)));
2124
2125 Set_From_At_Mod (AtM_Nod);
2126 Insert_After (N, AtM_Nod);
2127 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
2128 Set_Mod_Clause (N, Empty);
2129
2130 else
2131 -- Get the alignment value to perform error checking
2132
2133 Mod_Val := Get_Alignment_Value (Expression (M));
2134
2135 end if;
2136 end;
2137 end if;
2138
2139 -- Clear any existing component clauses for the type (this happens with
2140 -- derived types, where we are now overriding the original)
2141
2142 Comp := First_Component_Or_Discriminant (Rectype);
2143 while Present (Comp) loop
2144 Set_Component_Clause (Comp, Empty);
2145 Next_Component_Or_Discriminant (Comp);
2146 end loop;
2147
2148 -- All done if no component clauses
2149
2150 CC := First (Component_Clauses (N));
2151
2152 if No (CC) then
2153 return;
2154 end if;
2155
2156 -- If a tag is present, then create a component clause that places it
2157 -- at the start of the record (otherwise gigi may place it after other
2158 -- fields that have rep clauses).
2159
2160 Fent := First_Entity (Rectype);
2161
2162 if Nkind (Fent) = N_Defining_Identifier
2163 and then Chars (Fent) = Name_uTag
2164 then
2165 Set_Component_Bit_Offset (Fent, Uint_0);
2166 Set_Normalized_Position (Fent, Uint_0);
2167 Set_Normalized_First_Bit (Fent, Uint_0);
2168 Set_Normalized_Position_Max (Fent, Uint_0);
2169 Init_Esize (Fent, System_Address_Size);
2170
2171 Set_Component_Clause (Fent,
2172 Make_Component_Clause (Loc,
2173 Component_Name =>
2174 Make_Identifier (Loc,
2175 Chars => Name_uTag),
2176
2177 Position =>
2178 Make_Integer_Literal (Loc,
2179 Intval => Uint_0),
2180
2181 First_Bit =>
2182 Make_Integer_Literal (Loc,
2183 Intval => Uint_0),
2184
2185 Last_Bit =>
2186 Make_Integer_Literal (Loc,
2187 UI_From_Int (System_Address_Size))));
2188
2189 Ccount := Ccount + 1;
2190 end if;
2191
2192 -- A representation like this applies to the base type
2193
2194 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2195 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2196 Set_Has_Specified_Layout (Base_Type (Rectype));
2197
2198 Max_Bit_So_Far := Uint_Minus_1;
2199 Overlap_Check_Required := False;
2200
2201 -- Process the component clauses
2202
2203 while Present (CC) loop
2204
2205 -- Pragma
2206
2207 if Nkind (CC) = N_Pragma then
2208 Analyze (CC);
2209
2210 -- The only pragma of interest is Complete_Representation
2211
2212 if Chars (CC) = Name_Complete_Representation then
2213 CR_Pragma := CC;
2214 end if;
2215
2216 -- Processing for real component clause
2217
2218 else
2219 Ccount := Ccount + 1;
2220 Posit := Static_Integer (Position (CC));
2221 Fbit := Static_Integer (First_Bit (CC));
2222 Lbit := Static_Integer (Last_Bit (CC));
2223
2224 if Posit /= No_Uint
2225 and then Fbit /= No_Uint
2226 and then Lbit /= No_Uint
2227 then
2228 if Posit < 0 then
2229 Error_Msg_N
2230 ("position cannot be negative", Position (CC));
2231
2232 elsif Fbit < 0 then
2233 Error_Msg_N
2234 ("first bit cannot be negative", First_Bit (CC));
2235
2236 -- Values look OK, so find the corresponding record component
2237 -- Even though the syntax allows an attribute reference for
2238 -- implementation-defined components, GNAT does not allow the
2239 -- tag to get an explicit position.
2240
2241 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2242 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2243 Error_Msg_N ("position of tag cannot be specified", CC);
2244 else
2245 Error_Msg_N ("illegal component name", CC);
2246 end if;
2247
2248 else
2249 Comp := First_Entity (Rectype);
2250 while Present (Comp) loop
2251 exit when Chars (Comp) = Chars (Component_Name (CC));
2252 Next_Entity (Comp);
2253 end loop;
2254
2255 if No (Comp) then
2256
2257 -- Maybe component of base type that is absent from
2258 -- statically constrained first subtype.
2259
2260 Comp := First_Entity (Base_Type (Rectype));
2261 while Present (Comp) loop
2262 exit when Chars (Comp) = Chars (Component_Name (CC));
2263 Next_Entity (Comp);
2264 end loop;
2265 end if;
2266
2267 if No (Comp) then
2268 Error_Msg_N
2269 ("component clause is for non-existent field", CC);
2270
2271 elsif Present (Component_Clause (Comp)) then
2272 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2273 Error_Msg_N
2274 ("component clause previously given#", CC);
2275
2276 else
2277 -- Update Fbit and Lbit to the actual bit number
2278
2279 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2280 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2281
2282 if Fbit <= Max_Bit_So_Far then
2283 Overlap_Check_Required := True;
2284 else
2285 Max_Bit_So_Far := Lbit;
2286 end if;
2287
2288 if Has_Size_Clause (Rectype)
2289 and then Esize (Rectype) <= Lbit
2290 then
2291 Error_Msg_N
2292 ("bit number out of range of specified size",
2293 Last_Bit (CC));
2294 else
2295 Set_Component_Clause (Comp, CC);
2296 Set_Component_Bit_Offset (Comp, Fbit);
2297 Set_Esize (Comp, 1 + (Lbit - Fbit));
2298 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2299 Set_Normalized_Position (Comp, Fbit / SSU);
2300
2301 Set_Normalized_Position_Max
2302 (Fent, Normalized_Position (Fent));
2303
2304 if Is_Tagged_Type (Rectype)
2305 and then Fbit < System_Address_Size
2306 then
2307 Error_Msg_NE
2308 ("component overlaps tag field of&",
2309 CC, Rectype);
2310 end if;
2311
2312 -- This information is also set in the corresponding
2313 -- component of the base type, found by accessing the
2314 -- Original_Record_Component link if it is present.
2315
2316 Ocomp := Original_Record_Component (Comp);
2317
2318 if Hbit < Lbit then
2319 Hbit := Lbit;
2320 end if;
2321
2322 Check_Size
2323 (Component_Name (CC),
2324 Etype (Comp),
2325 Esize (Comp),
2326 Biased);
2327
2328 Set_Has_Biased_Representation (Comp, Biased);
2329
2330 if Present (Ocomp) then
2331 Set_Component_Clause (Ocomp, CC);
2332 Set_Component_Bit_Offset (Ocomp, Fbit);
2333 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2334 Set_Normalized_Position (Ocomp, Fbit / SSU);
2335 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2336
2337 Set_Normalized_Position_Max
2338 (Ocomp, Normalized_Position (Ocomp));
2339
2340 Set_Has_Biased_Representation
2341 (Ocomp, Has_Biased_Representation (Comp));
2342 end if;
2343
2344 if Esize (Comp) < 0 then
2345 Error_Msg_N ("component size is negative", CC);
2346 end if;
2347 end if;
2348 end if;
2349 end if;
2350 end if;
2351 end if;
2352
2353 Next (CC);
2354 end loop;
2355
2356 -- Now that we have processed all the component clauses, check for
2357 -- overlap. We have to leave this till last, since the components
2358 -- can appear in any arbitrary order in the representation clause.
2359
2360 -- We do not need this check if all specified ranges were monotonic,
2361 -- as recorded by Overlap_Check_Required being False at this stage.
2362
2363 -- This first section checks if there are any overlapping entries
2364 -- at all. It does this by sorting all entries and then seeing if
2365 -- there are any overlaps. If there are none, then that is decisive,
2366 -- but if there are overlaps, they may still be OK (they may result
2367 -- from fields in different variants).
2368
2369 if Overlap_Check_Required then
2370 Overlap_Check1 : declare
2371
2372 OC_Fbit : array (0 .. Ccount) of Uint;
2373 -- First-bit values for component clauses, the value is the
2374 -- offset of the first bit of the field from start of record.
2375 -- The zero entry is for use in sorting.
2376
2377 OC_Lbit : array (0 .. Ccount) of Uint;
2378 -- Last-bit values for component clauses, the value is the
2379 -- offset of the last bit of the field from start of record.
2380 -- The zero entry is for use in sorting.
2381
2382 OC_Count : Natural := 0;
2383 -- Count of entries in OC_Fbit and OC_Lbit
2384
2385 function OC_Lt (Op1, Op2 : Natural) return Boolean;
2386 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2387
2388 procedure OC_Move (From : Natural; To : Natural);
2389 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2390
2391 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2392 begin
2393 return OC_Fbit (Op1) < OC_Fbit (Op2);
2394 end OC_Lt;
2395
2396 procedure OC_Move (From : Natural; To : Natural) is
2397 begin
2398 OC_Fbit (To) := OC_Fbit (From);
2399 OC_Lbit (To) := OC_Lbit (From);
2400 end OC_Move;
2401
2402 begin
2403 CC := First (Component_Clauses (N));
2404 while Present (CC) loop
2405 if Nkind (CC) /= N_Pragma then
2406 Posit := Static_Integer (Position (CC));
2407 Fbit := Static_Integer (First_Bit (CC));
2408 Lbit := Static_Integer (Last_Bit (CC));
2409
2410 if Posit /= No_Uint
2411 and then Fbit /= No_Uint
2412 and then Lbit /= No_Uint
2413 then
2414 OC_Count := OC_Count + 1;
2415 Posit := Posit * SSU;
2416 OC_Fbit (OC_Count) := Fbit + Posit;
2417 OC_Lbit (OC_Count) := Lbit + Posit;
2418 end if;
2419 end if;
2420
2421 Next (CC);
2422 end loop;
2423
2424 Sort
2425 (OC_Count,
2426 OC_Move'Unrestricted_Access,
2427 OC_Lt'Unrestricted_Access);
2428
2429 Overlap_Check_Required := False;
2430 for J in 1 .. OC_Count - 1 loop
2431 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2432 Overlap_Check_Required := True;
2433 exit;
2434 end if;
2435 end loop;
2436 end Overlap_Check1;
2437 end if;
2438
2439 -- If Overlap_Check_Required is still True, then we have to do
2440 -- the full scale overlap check, since we have at least two fields
2441 -- that do overlap, and we need to know if that is OK since they
2442 -- are in the same variant, or whether we have a definite problem
2443
2444 if Overlap_Check_Required then
2445 Overlap_Check2 : declare
2446 C1_Ent, C2_Ent : Entity_Id;
2447 -- Entities of components being checked for overlap
2448
2449 Clist : Node_Id;
2450 -- Component_List node whose Component_Items are being checked
2451
2452 Citem : Node_Id;
2453 -- Component declaration for component being checked
2454
2455 begin
2456 C1_Ent := First_Entity (Base_Type (Rectype));
2457
2458 -- Loop through all components in record. For each component check
2459 -- for overlap with any of the preceding elements on the component
2460 -- list containing the component, and also, if the component is in
2461 -- a variant, check against components outside the case structure.
2462 -- This latter test is repeated recursively up the variant tree.
2463
2464 Main_Component_Loop : while Present (C1_Ent) loop
2465 if Ekind (C1_Ent) /= E_Component
2466 and then Ekind (C1_Ent) /= E_Discriminant
2467 then
2468 goto Continue_Main_Component_Loop;
2469 end if;
2470
2471 -- Skip overlap check if entity has no declaration node. This
2472 -- happens with discriminants in constrained derived types.
2473 -- Probably we are missing some checks as a result, but that
2474 -- does not seem terribly serious ???
2475
2476 if No (Declaration_Node (C1_Ent)) then
2477 goto Continue_Main_Component_Loop;
2478 end if;
2479
2480 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2481
2482 -- Loop through component lists that need checking. Check the
2483 -- current component list and all lists in variants above us.
2484
2485 Component_List_Loop : loop
2486
2487 -- If derived type definition, go to full declaration
2488 -- If at outer level, check discriminants if there are any
2489
2490 if Nkind (Clist) = N_Derived_Type_Definition then
2491 Clist := Parent (Clist);
2492 end if;
2493
2494 -- Outer level of record definition, check discriminants
2495
2496 if Nkind (Clist) = N_Full_Type_Declaration
2497 or else Nkind (Clist) = N_Private_Type_Declaration
2498 then
2499 if Has_Discriminants (Defining_Identifier (Clist)) then
2500 C2_Ent :=
2501 First_Discriminant (Defining_Identifier (Clist));
2502
2503 while Present (C2_Ent) loop
2504 exit when C1_Ent = C2_Ent;
2505 Check_Component_Overlap (C1_Ent, C2_Ent);
2506 Next_Discriminant (C2_Ent);
2507 end loop;
2508 end if;
2509
2510 -- Record extension case
2511
2512 elsif Nkind (Clist) = N_Derived_Type_Definition then
2513 Clist := Empty;
2514
2515 -- Otherwise check one component list
2516
2517 else
2518 Citem := First (Component_Items (Clist));
2519
2520 while Present (Citem) loop
2521 if Nkind (Citem) = N_Component_Declaration then
2522 C2_Ent := Defining_Identifier (Citem);
2523 exit when C1_Ent = C2_Ent;
2524 Check_Component_Overlap (C1_Ent, C2_Ent);
2525 end if;
2526
2527 Next (Citem);
2528 end loop;
2529 end if;
2530
2531 -- Check for variants above us (the parent of the Clist can
2532 -- be a variant, in which case its parent is a variant part,
2533 -- and the parent of the variant part is a component list
2534 -- whose components must all be checked against the current
2535 -- component for overlap.
2536
2537 if Nkind (Parent (Clist)) = N_Variant then
2538 Clist := Parent (Parent (Parent (Clist)));
2539
2540 -- Check for possible discriminant part in record, this is
2541 -- treated essentially as another level in the recursion.
2542 -- For this case we have the parent of the component list
2543 -- is the record definition, and its parent is the full
2544 -- type declaration which contains the discriminant
2545 -- specifications.
2546
2547 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2548 Clist := Parent (Parent ((Clist)));
2549
2550 -- If neither of these two cases, we are at the top of
2551 -- the tree
2552
2553 else
2554 exit Component_List_Loop;
2555 end if;
2556 end loop Component_List_Loop;
2557
2558 <<Continue_Main_Component_Loop>>
2559 Next_Entity (C1_Ent);
2560
2561 end loop Main_Component_Loop;
2562 end Overlap_Check2;
2563 end if;
2564
2565 -- For records that have component clauses for all components, and
2566 -- whose size is less than or equal to 32, we need to know the size
2567 -- in the front end to activate possible packed array processing
2568 -- where the component type is a record.
2569
2570 -- At this stage Hbit + 1 represents the first unused bit from all
2571 -- the component clauses processed, so if the component clauses are
2572 -- complete, then this is the length of the record.
2573
2574 -- For records longer than System.Storage_Unit, and for those where
2575 -- not all components have component clauses, the back end determines
2576 -- the length (it may for example be appopriate to round up the size
2577 -- to some convenient boundary, based on alignment considerations etc).
2578
2579 if Unknown_RM_Size (Rectype)
2580 and then Hbit + 1 <= 32
2581 then
2582 -- Nothing to do if at least one component with no component clause
2583
2584 Comp := First_Component_Or_Discriminant (Rectype);
2585 while Present (Comp) loop
2586 exit when No (Component_Clause (Comp));
2587 Next_Component_Or_Discriminant (Comp);
2588 end loop;
2589
2590 -- If we fall out of loop, all components have component clauses
2591 -- and so we can set the size to the maximum value.
2592
2593 if No (Comp) then
2594 Set_RM_Size (Rectype, Hbit + 1);
2595 end if;
2596 end if;
2597
2598 -- Check missing components if Complete_Representation pragma appeared
2599
2600 if Present (CR_Pragma) then
2601 Comp := First_Component_Or_Discriminant (Rectype);
2602 while Present (Comp) loop
2603 if No (Component_Clause (Comp)) then
2604 Error_Msg_NE
2605 ("missing component clause for &", CR_Pragma, Comp);
2606 end if;
2607
2608 Next_Component_Or_Discriminant (Comp);
2609 end loop;
2610
2611 -- If no Complete_Representation pragma, warn if missing components
2612
2613 elsif Warn_On_Unrepped_Components
2614 and then not Warnings_Off (Rectype)
2615 then
2616 declare
2617 Num_Repped_Components : Nat := 0;
2618 Num_Unrepped_Components : Nat := 0;
2619
2620 begin
2621 -- First count number of repped and unrepped components
2622
2623 Comp := First_Component_Or_Discriminant (Rectype);
2624 while Present (Comp) loop
2625 if Present (Component_Clause (Comp)) then
2626 Num_Repped_Components := Num_Repped_Components + 1;
2627 else
2628 Num_Unrepped_Components := Num_Unrepped_Components + 1;
2629 end if;
2630
2631 Next_Component_Or_Discriminant (Comp);
2632 end loop;
2633
2634 -- We are only interested in the case where there is at least one
2635 -- unrepped component, and at least half the components have rep
2636 -- clauses. We figure that if less than half have them, then the
2637 -- partial rep clause is really intentional.
2638
2639 if Num_Unrepped_Components > 0
2640 and then Num_Unrepped_Components < Num_Repped_Components
2641 then
2642 Comp := First_Component_Or_Discriminant (Rectype);
2643 while Present (Comp) loop
2644 if No (Component_Clause (Comp)) then
2645 Error_Msg_Sloc := Sloc (Comp);
2646 Error_Msg_NE
2647 ("?no component clause given for & declared #",
2648 N, Comp);
2649 end if;
2650
2651 Next_Component_Or_Discriminant (Comp);
2652 end loop;
2653 end if;
2654 end;
2655 end if;
2656 end Analyze_Record_Representation_Clause;
2657
2658 -----------------------------
2659 -- Check_Component_Overlap --
2660 -----------------------------
2661
2662 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2663 begin
2664 if Present (Component_Clause (C1_Ent))
2665 and then Present (Component_Clause (C2_Ent))
2666 then
2667 -- Exclude odd case where we have two tag fields in the same
2668 -- record, both at location zero. This seems a bit strange,
2669 -- but it seems to happen in some circumstances ???
2670
2671 if Chars (C1_Ent) = Name_uTag
2672 and then Chars (C2_Ent) = Name_uTag
2673 then
2674 return;
2675 end if;
2676
2677 -- Here we check if the two fields overlap
2678
2679 declare
2680 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2681 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2682 E1 : constant Uint := S1 + Esize (C1_Ent);
2683 E2 : constant Uint := S2 + Esize (C2_Ent);
2684
2685 begin
2686 if E2 <= S1 or else E1 <= S2 then
2687 null;
2688 else
2689 Error_Msg_Node_2 :=
2690 Component_Name (Component_Clause (C2_Ent));
2691 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2692 Error_Msg_Node_1 :=
2693 Component_Name (Component_Clause (C1_Ent));
2694 Error_Msg_N
2695 ("component& overlaps & #",
2696 Component_Name (Component_Clause (C1_Ent)));
2697 end if;
2698 end;
2699 end if;
2700 end Check_Component_Overlap;
2701
2702 -----------------------------------
2703 -- Check_Constant_Address_Clause --
2704 -----------------------------------
2705
2706 procedure Check_Constant_Address_Clause
2707 (Expr : Node_Id;
2708 U_Ent : Entity_Id)
2709 is
2710 procedure Check_At_Constant_Address (Nod : Node_Id);
2711 -- Checks that the given node N represents a name whose 'Address
2712 -- is constant (in the same sense as OK_Constant_Address_Clause,
2713 -- i.e. the address value is the same at the point of declaration
2714 -- of U_Ent and at the time of elaboration of the address clause.
2715
2716 procedure Check_Expr_Constants (Nod : Node_Id);
2717 -- Checks that Nod meets the requirements for a constant address
2718 -- clause in the sense of the enclosing procedure.
2719
2720 procedure Check_List_Constants (Lst : List_Id);
2721 -- Check that all elements of list Lst meet the requirements for a
2722 -- constant address clause in the sense of the enclosing procedure.
2723
2724 -------------------------------
2725 -- Check_At_Constant_Address --
2726 -------------------------------
2727
2728 procedure Check_At_Constant_Address (Nod : Node_Id) is
2729 begin
2730 if Is_Entity_Name (Nod) then
2731 if Present (Address_Clause (Entity ((Nod)))) then
2732 Error_Msg_NE
2733 ("invalid address clause for initialized object &!",
2734 Nod, U_Ent);
2735 Error_Msg_NE
2736 ("address for& cannot" &
2737 " depend on another address clause! (RM 13.1(22))!",
2738 Nod, U_Ent);
2739
2740 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2741 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2742 then
2743 Error_Msg_NE
2744 ("invalid address clause for initialized object &!",
2745 Nod, U_Ent);
2746 Error_Msg_Name_1 := Chars (Entity (Nod));
2747 Error_Msg_Name_2 := Chars (U_Ent);
2748 Error_Msg_N
2749 ("\% must be defined before % (RM 13.1(22))!",
2750 Nod);
2751 end if;
2752
2753 elsif Nkind (Nod) = N_Selected_Component then
2754 declare
2755 T : constant Entity_Id := Etype (Prefix (Nod));
2756
2757 begin
2758 if (Is_Record_Type (T)
2759 and then Has_Discriminants (T))
2760 or else
2761 (Is_Access_Type (T)
2762 and then Is_Record_Type (Designated_Type (T))
2763 and then Has_Discriminants (Designated_Type (T)))
2764 then
2765 Error_Msg_NE
2766 ("invalid address clause for initialized object &!",
2767 Nod, U_Ent);
2768 Error_Msg_N
2769 ("\address cannot depend on component" &
2770 " of discriminated record (RM 13.1(22))!",
2771 Nod);
2772 else
2773 Check_At_Constant_Address (Prefix (Nod));
2774 end if;
2775 end;
2776
2777 elsif Nkind (Nod) = N_Indexed_Component then
2778 Check_At_Constant_Address (Prefix (Nod));
2779 Check_List_Constants (Expressions (Nod));
2780
2781 else
2782 Check_Expr_Constants (Nod);
2783 end if;
2784 end Check_At_Constant_Address;
2785
2786 --------------------------
2787 -- Check_Expr_Constants --
2788 --------------------------
2789
2790 procedure Check_Expr_Constants (Nod : Node_Id) is
2791 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2792 Ent : Entity_Id := Empty;
2793
2794 begin
2795 if Nkind (Nod) in N_Has_Etype
2796 and then Etype (Nod) = Any_Type
2797 then
2798 return;
2799 end if;
2800
2801 case Nkind (Nod) is
2802 when N_Empty | N_Error =>
2803 return;
2804
2805 when N_Identifier | N_Expanded_Name =>
2806 Ent := Entity (Nod);
2807
2808 -- We need to look at the original node if it is different
2809 -- from the node, since we may have rewritten things and
2810 -- substituted an identifier representing the rewrite.
2811
2812 if Original_Node (Nod) /= Nod then
2813 Check_Expr_Constants (Original_Node (Nod));
2814
2815 -- If the node is an object declaration without initial
2816 -- value, some code has been expanded, and the expression
2817 -- is not constant, even if the constituents might be
2818 -- acceptable, as in A'Address + offset.
2819
2820 if Ekind (Ent) = E_Variable
2821 and then Nkind (Declaration_Node (Ent))
2822 = N_Object_Declaration
2823 and then
2824 No (Expression (Declaration_Node (Ent)))
2825 then
2826 Error_Msg_NE
2827 ("invalid address clause for initialized object &!",
2828 Nod, U_Ent);
2829
2830 -- If entity is constant, it may be the result of expanding
2831 -- a check. We must verify that its declaration appears
2832 -- before the object in question, else we also reject the
2833 -- address clause.
2834
2835 elsif Ekind (Ent) = E_Constant
2836 and then In_Same_Source_Unit (Ent, U_Ent)
2837 and then Sloc (Ent) > Loc_U_Ent
2838 then
2839 Error_Msg_NE
2840 ("invalid address clause for initialized object &!",
2841 Nod, U_Ent);
2842 end if;
2843
2844 return;
2845 end if;
2846
2847 -- Otherwise look at the identifier and see if it is OK
2848
2849 if Ekind (Ent) = E_Named_Integer
2850 or else
2851 Ekind (Ent) = E_Named_Real
2852 or else
2853 Is_Type (Ent)
2854 then
2855 return;
2856
2857 elsif
2858 Ekind (Ent) = E_Constant
2859 or else
2860 Ekind (Ent) = E_In_Parameter
2861 then
2862 -- This is the case where we must have Ent defined
2863 -- before U_Ent. Clearly if they are in different
2864 -- units this requirement is met since the unit
2865 -- containing Ent is already processed.
2866
2867 if not In_Same_Source_Unit (Ent, U_Ent) then
2868 return;
2869
2870 -- Otherwise location of Ent must be before the
2871 -- location of U_Ent, that's what prior defined means.
2872
2873 elsif Sloc (Ent) < Loc_U_Ent then
2874 return;
2875
2876 else
2877 Error_Msg_NE
2878 ("invalid address clause for initialized object &!",
2879 Nod, U_Ent);
2880 Error_Msg_Name_1 := Chars (Ent);
2881 Error_Msg_Name_2 := Chars (U_Ent);
2882 Error_Msg_N
2883 ("\% must be defined before % (RM 13.1(22))!",
2884 Nod);
2885 end if;
2886
2887 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2888 Check_Expr_Constants (Original_Node (Nod));
2889
2890 else
2891 Error_Msg_NE
2892 ("invalid address clause for initialized object &!",
2893 Nod, U_Ent);
2894
2895 if Comes_From_Source (Ent) then
2896 Error_Msg_Name_1 := Chars (Ent);
2897 Error_Msg_N
2898 ("\reference to variable% not allowed"
2899 & " (RM 13.1(22))!", Nod);
2900 else
2901 Error_Msg_N
2902 ("non-static expression not allowed"
2903 & " (RM 13.1(22))!", Nod);
2904 end if;
2905 end if;
2906
2907 when N_Integer_Literal =>
2908
2909 -- If this is a rewritten unchecked conversion, in a system
2910 -- where Address is an integer type, always use the base type
2911 -- for a literal value. This is user-friendly and prevents
2912 -- order-of-elaboration issues with instances of unchecked
2913 -- conversion.
2914
2915 if Nkind (Original_Node (Nod)) = N_Function_Call then
2916 Set_Etype (Nod, Base_Type (Etype (Nod)));
2917 end if;
2918
2919 when N_Real_Literal |
2920 N_String_Literal |
2921 N_Character_Literal =>
2922 return;
2923
2924 when N_Range =>
2925 Check_Expr_Constants (Low_Bound (Nod));
2926 Check_Expr_Constants (High_Bound (Nod));
2927
2928 when N_Explicit_Dereference =>
2929 Check_Expr_Constants (Prefix (Nod));
2930
2931 when N_Indexed_Component =>
2932 Check_Expr_Constants (Prefix (Nod));
2933 Check_List_Constants (Expressions (Nod));
2934
2935 when N_Slice =>
2936 Check_Expr_Constants (Prefix (Nod));
2937 Check_Expr_Constants (Discrete_Range (Nod));
2938
2939 when N_Selected_Component =>
2940 Check_Expr_Constants (Prefix (Nod));
2941
2942 when N_Attribute_Reference =>
2943 if Attribute_Name (Nod) = Name_Address
2944 or else
2945 Attribute_Name (Nod) = Name_Access
2946 or else
2947 Attribute_Name (Nod) = Name_Unchecked_Access
2948 or else
2949 Attribute_Name (Nod) = Name_Unrestricted_Access
2950 then
2951 Check_At_Constant_Address (Prefix (Nod));
2952
2953 else
2954 Check_Expr_Constants (Prefix (Nod));
2955 Check_List_Constants (Expressions (Nod));
2956 end if;
2957
2958 when N_Aggregate =>
2959 Check_List_Constants (Component_Associations (Nod));
2960 Check_List_Constants (Expressions (Nod));
2961
2962 when N_Component_Association =>
2963 Check_Expr_Constants (Expression (Nod));
2964
2965 when N_Extension_Aggregate =>
2966 Check_Expr_Constants (Ancestor_Part (Nod));
2967 Check_List_Constants (Component_Associations (Nod));
2968 Check_List_Constants (Expressions (Nod));
2969
2970 when N_Null =>
2971 return;
2972
2973 when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
2974 Check_Expr_Constants (Left_Opnd (Nod));
2975 Check_Expr_Constants (Right_Opnd (Nod));
2976
2977 when N_Unary_Op =>
2978 Check_Expr_Constants (Right_Opnd (Nod));
2979
2980 when N_Type_Conversion |
2981 N_Qualified_Expression |
2982 N_Allocator =>
2983 Check_Expr_Constants (Expression (Nod));
2984
2985 when N_Unchecked_Type_Conversion =>
2986 Check_Expr_Constants (Expression (Nod));
2987
2988 -- If this is a rewritten unchecked conversion, subtypes
2989 -- in this node are those created within the instance.
2990 -- To avoid order of elaboration issues, replace them
2991 -- with their base types. Note that address clauses can
2992 -- cause order of elaboration problems because they are
2993 -- elaborated by the back-end at the point of definition,
2994 -- and may mention entities declared in between (as long
2995 -- as everything is static). It is user-friendly to allow
2996 -- unchecked conversions in this context.
2997
2998 if Nkind (Original_Node (Nod)) = N_Function_Call then
2999 Set_Etype (Expression (Nod),
3000 Base_Type (Etype (Expression (Nod))));
3001 Set_Etype (Nod, Base_Type (Etype (Nod)));
3002 end if;
3003
3004 when N_Function_Call =>
3005 if not Is_Pure (Entity (Name (Nod))) then
3006 Error_Msg_NE
3007 ("invalid address clause for initialized object &!",
3008 Nod, U_Ent);
3009
3010 Error_Msg_NE
3011 ("\function & is not pure (RM 13.1(22))!",
3012 Nod, Entity (Name (Nod)));
3013
3014 else
3015 Check_List_Constants (Parameter_Associations (Nod));
3016 end if;
3017
3018 when N_Parameter_Association =>
3019 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
3020
3021 when others =>
3022 Error_Msg_NE
3023 ("invalid address clause for initialized object &!",
3024 Nod, U_Ent);
3025 Error_Msg_NE
3026 ("\must be constant defined before& (RM 13.1(22))!",
3027 Nod, U_Ent);
3028 end case;
3029 end Check_Expr_Constants;
3030
3031 --------------------------
3032 -- Check_List_Constants --
3033 --------------------------
3034
3035 procedure Check_List_Constants (Lst : List_Id) is
3036 Nod1 : Node_Id;
3037
3038 begin
3039 if Present (Lst) then
3040 Nod1 := First (Lst);
3041 while Present (Nod1) loop
3042 Check_Expr_Constants (Nod1);
3043 Next (Nod1);
3044 end loop;
3045 end if;
3046 end Check_List_Constants;
3047
3048 -- Start of processing for Check_Constant_Address_Clause
3049
3050 begin
3051 Check_Expr_Constants (Expr);
3052 end Check_Constant_Address_Clause;
3053
3054 ----------------
3055 -- Check_Size --
3056 ----------------
3057
3058 procedure Check_Size
3059 (N : Node_Id;
3060 T : Entity_Id;
3061 Siz : Uint;
3062 Biased : out Boolean)
3063 is
3064 UT : constant Entity_Id := Underlying_Type (T);
3065 M : Uint;
3066
3067 begin
3068 Biased := False;
3069
3070 -- Dismiss cases for generic types or types with previous errors
3071
3072 if No (UT)
3073 or else UT = Any_Type
3074 or else Is_Generic_Type (UT)
3075 or else Is_Generic_Type (Root_Type (UT))
3076 then
3077 return;
3078
3079 -- Check case of bit packed array
3080
3081 elsif Is_Array_Type (UT)
3082 and then Known_Static_Component_Size (UT)
3083 and then Is_Bit_Packed_Array (UT)
3084 then
3085 declare
3086 Asiz : Uint;
3087 Indx : Node_Id;
3088 Ityp : Entity_Id;
3089
3090 begin
3091 Asiz := Component_Size (UT);
3092 Indx := First_Index (UT);
3093 loop
3094 Ityp := Etype (Indx);
3095
3096 -- If non-static bound, then we are not in the business of
3097 -- trying to check the length, and indeed an error will be
3098 -- issued elsewhere, since sizes of non-static array types
3099 -- cannot be set implicitly or explicitly.
3100
3101 if not Is_Static_Subtype (Ityp) then
3102 return;
3103 end if;
3104
3105 -- Otherwise accumulate next dimension
3106
3107 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
3108 Expr_Value (Type_Low_Bound (Ityp)) +
3109 Uint_1);
3110
3111 Next_Index (Indx);
3112 exit when No (Indx);
3113 end loop;
3114
3115 if Asiz <= Siz then
3116 return;
3117 else
3118 Error_Msg_Uint_1 := Asiz;
3119 Error_Msg_NE
3120 ("size for& too small, minimum allowed is ^", N, T);
3121 Set_Esize (T, Asiz);
3122 Set_RM_Size (T, Asiz);
3123 end if;
3124 end;
3125
3126 -- All other composite types are ignored
3127
3128 elsif Is_Composite_Type (UT) then
3129 return;
3130
3131 -- For fixed-point types, don't check minimum if type is not frozen,
3132 -- since we don't know all the characteristics of the type that can
3133 -- affect the size (e.g. a specified small) till freeze time.
3134
3135 elsif Is_Fixed_Point_Type (UT)
3136 and then not Is_Frozen (UT)
3137 then
3138 null;
3139
3140 -- Cases for which a minimum check is required
3141
3142 else
3143 -- Ignore if specified size is correct for the type
3144
3145 if Known_Esize (UT) and then Siz = Esize (UT) then
3146 return;
3147 end if;
3148
3149 -- Otherwise get minimum size
3150
3151 M := UI_From_Int (Minimum_Size (UT));
3152
3153 if Siz < M then
3154
3155 -- Size is less than minimum size, but one possibility remains
3156 -- that we can manage with the new size if we bias the type
3157
3158 M := UI_From_Int (Minimum_Size (UT, Biased => True));
3159
3160 if Siz < M then
3161 Error_Msg_Uint_1 := M;
3162 Error_Msg_NE
3163 ("size for& too small, minimum allowed is ^", N, T);
3164 Set_Esize (T, M);
3165 Set_RM_Size (T, M);
3166 else
3167 Biased := True;
3168 end if;
3169 end if;
3170 end if;
3171 end Check_Size;
3172
3173 -------------------------
3174 -- Get_Alignment_Value --
3175 -------------------------
3176
3177 function Get_Alignment_Value (Expr : Node_Id) return Uint is
3178 Align : constant Uint := Static_Integer (Expr);
3179
3180 begin
3181 if Align = No_Uint then
3182 return No_Uint;
3183
3184 elsif Align <= 0 then
3185 Error_Msg_N ("alignment value must be positive", Expr);
3186 return No_Uint;
3187
3188 else
3189 for J in Int range 0 .. 64 loop
3190 declare
3191 M : constant Uint := Uint_2 ** J;
3192
3193 begin
3194 exit when M = Align;
3195
3196 if M > Align then
3197 Error_Msg_N
3198 ("alignment value must be power of 2", Expr);
3199 return No_Uint;
3200 end if;
3201 end;
3202 end loop;
3203
3204 return Align;
3205 end if;
3206 end Get_Alignment_Value;
3207
3208 ----------------
3209 -- Initialize --
3210 ----------------
3211
3212 procedure Initialize is
3213 begin
3214 Unchecked_Conversions.Init;
3215 end Initialize;
3216
3217 -------------------------
3218 -- Is_Operational_Item --
3219 -------------------------
3220
3221 function Is_Operational_Item (N : Node_Id) return Boolean is
3222 begin
3223 if Nkind (N) /= N_Attribute_Definition_Clause then
3224 return False;
3225 else
3226 declare
3227 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
3228
3229 begin
3230 return Id = Attribute_Input
3231 or else Id = Attribute_Output
3232 or else Id = Attribute_Read
3233 or else Id = Attribute_Write
3234 or else Id = Attribute_External_Tag;
3235 end;
3236 end if;
3237 end Is_Operational_Item;
3238
3239 --------------------------------------
3240 -- Mark_Aliased_Address_As_Volatile --
3241 --------------------------------------
3242
3243 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
3244 Ent : constant Entity_Id := Address_Aliased_Entity (N);
3245
3246 begin
3247 if Present (Ent) then
3248 Set_Treat_As_Volatile (Ent);
3249 end if;
3250 end Mark_Aliased_Address_As_Volatile;
3251
3252 ------------------
3253 -- Minimum_Size --
3254 ------------------
3255
3256 function Minimum_Size
3257 (T : Entity_Id;
3258 Biased : Boolean := False) return Nat
3259 is
3260 Lo : Uint := No_Uint;
3261 Hi : Uint := No_Uint;
3262 LoR : Ureal := No_Ureal;
3263 HiR : Ureal := No_Ureal;
3264 LoSet : Boolean := False;
3265 HiSet : Boolean := False;
3266 B : Uint;
3267 S : Nat;
3268 Ancest : Entity_Id;
3269 R_Typ : constant Entity_Id := Root_Type (T);
3270
3271 begin
3272 -- If bad type, return 0
3273
3274 if T = Any_Type then
3275 return 0;
3276
3277 -- For generic types, just return zero. There cannot be any legitimate
3278 -- need to know such a size, but this routine may be called with a
3279 -- generic type as part of normal processing.
3280
3281 elsif Is_Generic_Type (R_Typ)
3282 or else R_Typ = Any_Type
3283 then
3284 return 0;
3285
3286 -- Access types. Normally an access type cannot have a size smaller
3287 -- than the size of System.Address. The exception is on VMS, where
3288 -- we have short and long addresses, and it is possible for an access
3289 -- type to have a short address size (and thus be less than the size
3290 -- of System.Address itself). We simply skip the check for VMS, and
3291 -- leave the back end to do the check.
3292
3293 elsif Is_Access_Type (T) then
3294 if OpenVMS_On_Target then
3295 return 0;
3296 else
3297 return System_Address_Size;
3298 end if;
3299
3300 -- Floating-point types
3301
3302 elsif Is_Floating_Point_Type (T) then
3303 return UI_To_Int (Esize (R_Typ));
3304
3305 -- Discrete types
3306
3307 elsif Is_Discrete_Type (T) then
3308
3309 -- The following loop is looking for the nearest compile time
3310 -- known bounds following the ancestor subtype chain. The idea
3311 -- is to find the most restrictive known bounds information.
3312
3313 Ancest := T;
3314 loop
3315 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3316 return 0;
3317 end if;
3318
3319 if not LoSet then
3320 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
3321 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
3322 LoSet := True;
3323 exit when HiSet;
3324 end if;
3325 end if;
3326
3327 if not HiSet then
3328 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
3329 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
3330 HiSet := True;
3331 exit when LoSet;
3332 end if;
3333 end if;
3334
3335 Ancest := Ancestor_Subtype (Ancest);
3336
3337 if No (Ancest) then
3338 Ancest := Base_Type (T);
3339
3340 if Is_Generic_Type (Ancest) then
3341 return 0;
3342 end if;
3343 end if;
3344 end loop;
3345
3346 -- Fixed-point types. We can't simply use Expr_Value to get the
3347 -- Corresponding_Integer_Value values of the bounds, since these
3348 -- do not get set till the type is frozen, and this routine can
3349 -- be called before the type is frozen. Similarly the test for
3350 -- bounds being static needs to include the case where we have
3351 -- unanalyzed real literals for the same reason.
3352
3353 elsif Is_Fixed_Point_Type (T) then
3354
3355 -- The following loop is looking for the nearest compile time
3356 -- known bounds following the ancestor subtype chain. The idea
3357 -- is to find the most restrictive known bounds information.
3358
3359 Ancest := T;
3360 loop
3361 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3362 return 0;
3363 end if;
3364
3365 if not LoSet then
3366 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
3367 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
3368 then
3369 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
3370 LoSet := True;
3371 exit when HiSet;
3372 end if;
3373 end if;
3374
3375 if not HiSet then
3376 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3377 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3378 then
3379 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3380 HiSet := True;
3381 exit when LoSet;
3382 end if;
3383 end if;
3384
3385 Ancest := Ancestor_Subtype (Ancest);
3386
3387 if No (Ancest) then
3388 Ancest := Base_Type (T);
3389
3390 if Is_Generic_Type (Ancest) then
3391 return 0;
3392 end if;
3393 end if;
3394 end loop;
3395
3396 Lo := UR_To_Uint (LoR / Small_Value (T));
3397 Hi := UR_To_Uint (HiR / Small_Value (T));
3398
3399 -- No other types allowed
3400
3401 else
3402 raise Program_Error;
3403 end if;
3404
3405 -- Fall through with Hi and Lo set. Deal with biased case
3406
3407 if (Biased and then not Is_Fixed_Point_Type (T))
3408 or else Has_Biased_Representation (T)
3409 then
3410 Hi := Hi - Lo;
3411 Lo := Uint_0;
3412 end if;
3413
3414 -- Signed case. Note that we consider types like range 1 .. -1 to be
3415 -- signed for the purpose of computing the size, since the bounds
3416 -- have to be accomodated in the base type.
3417
3418 if Lo < 0 or else Hi < 0 then
3419 S := 1;
3420 B := Uint_1;
3421
3422 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3423 -- Note that we accommodate the case where the bounds cross. This
3424 -- can happen either because of the way the bounds are declared
3425 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3426
3427 while Lo < -B
3428 or else Hi < -B
3429 or else Lo >= B
3430 or else Hi >= B
3431 loop
3432 B := Uint_2 ** S;
3433 S := S + 1;
3434 end loop;
3435
3436 -- Unsigned case
3437
3438 else
3439 -- If both bounds are positive, make sure that both are represen-
3440 -- table in the case where the bounds are crossed. This can happen
3441 -- either because of the way the bounds are declared, or because of
3442 -- the algorithm in Freeze_Fixed_Point_Type.
3443
3444 if Lo > Hi then
3445 Hi := Lo;
3446 end if;
3447
3448 -- S = size, (can accommodate 0 .. (2**size - 1))
3449
3450 S := 0;
3451 while Hi >= Uint_2 ** S loop
3452 S := S + 1;
3453 end loop;
3454 end if;
3455
3456 return S;
3457 end Minimum_Size;
3458
3459 ---------------------------
3460 -- New_Stream_Subprogram --
3461 ---------------------------
3462
3463 procedure New_Stream_Subprogram
3464 (N : Node_Id;
3465 Ent : Entity_Id;
3466 Subp : Entity_Id;
3467 Nam : TSS_Name_Type)
3468 is
3469 Loc : constant Source_Ptr := Sloc (N);
3470 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3471 Subp_Id : Entity_Id;
3472 Subp_Decl : Node_Id;
3473 F : Entity_Id;
3474 Etyp : Entity_Id;
3475
3476 Defer_Declaration : constant Boolean :=
3477 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
3478 -- For a tagged type, there is a declaration for each stream attribute
3479 -- at the freeze point, and we must generate only a completion of this
3480 -- declaration. We do the same for private types, because the full view
3481 -- might be tagged. Otherwise we generate a declaration at the point of
3482 -- the attribute definition clause.
3483
3484 function Build_Spec return Node_Id;
3485 -- Used for declaration and renaming declaration, so that this is
3486 -- treated as a renaming_as_body.
3487
3488 ----------------
3489 -- Build_Spec --
3490 ----------------
3491
3492 function Build_Spec return Node_Id is
3493 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
3494 Formals : List_Id;
3495 Spec : Node_Id;
3496 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
3497
3498 begin
3499 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3500
3501 -- S : access Root_Stream_Type'Class
3502
3503 Formals := New_List (
3504 Make_Parameter_Specification (Loc,
3505 Defining_Identifier =>
3506 Make_Defining_Identifier (Loc, Name_S),
3507 Parameter_Type =>
3508 Make_Access_Definition (Loc,
3509 Subtype_Mark =>
3510 New_Reference_To (
3511 Designated_Type (Etype (F)), Loc))));
3512
3513 if Nam = TSS_Stream_Input then
3514 Spec := Make_Function_Specification (Loc,
3515 Defining_Unit_Name => Subp_Id,
3516 Parameter_Specifications => Formals,
3517 Result_Definition => T_Ref);
3518 else
3519 -- V : [out] T
3520
3521 Append_To (Formals,
3522 Make_Parameter_Specification (Loc,
3523 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
3524 Out_Present => Out_P,
3525 Parameter_Type => T_Ref));
3526
3527 Spec := Make_Procedure_Specification (Loc,
3528 Defining_Unit_Name => Subp_Id,
3529 Parameter_Specifications => Formals);
3530 end if;
3531
3532 return Spec;
3533 end Build_Spec;
3534
3535 -- Start of processing for New_Stream_Subprogram
3536
3537 begin
3538 F := First_Formal (Subp);
3539
3540 if Ekind (Subp) = E_Procedure then
3541 Etyp := Etype (Next_Formal (F));
3542 else
3543 Etyp := Etype (Subp);
3544 end if;
3545
3546 -- Prepare subprogram declaration and insert it as an action on the
3547 -- clause node. The visibility for this entity is used to test for
3548 -- visibility of the attribute definition clause (in the sense of
3549 -- 8.3(23) as amended by AI-195).
3550
3551 if not Defer_Declaration then
3552 Subp_Decl :=
3553 Make_Subprogram_Declaration (Loc,
3554 Specification => Build_Spec);
3555
3556 -- For a tagged type, there is always a visible declaration for each
3557 -- stream TSS (it is a predefined primitive operation), and the
3558 -- completion of this declaration occurs at the freeze point, which is
3559 -- not always visible at places where the attribute definition clause is
3560 -- visible. So, we create a dummy entity here for the purpose of
3561 -- tracking the visibility of the attribute definition clause itself.
3562
3563 else
3564 Subp_Id :=
3565 Make_Defining_Identifier (Loc,
3566 Chars => New_External_Name (Sname, 'V'));
3567 Subp_Decl :=
3568 Make_Object_Declaration (Loc,
3569 Defining_Identifier => Subp_Id,
3570 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
3571 end if;
3572
3573 Insert_Action (N, Subp_Decl);
3574 Set_Entity (N, Subp_Id);
3575
3576 Subp_Decl :=
3577 Make_Subprogram_Renaming_Declaration (Loc,
3578 Specification => Build_Spec,
3579 Name => New_Reference_To (Subp, Loc));
3580
3581 if Defer_Declaration then
3582 Set_TSS (Base_Type (Ent), Subp_Id);
3583 else
3584 Insert_Action (N, Subp_Decl);
3585 Copy_TSS (Subp_Id, Base_Type (Ent));
3586 end if;
3587 end New_Stream_Subprogram;
3588
3589 ------------------------
3590 -- Rep_Item_Too_Early --
3591 ------------------------
3592
3593 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
3594 begin
3595 -- Cannot apply non-operational rep items to generic types
3596
3597 if Is_Operational_Item (N) then
3598 return False;
3599
3600 elsif Is_Type (T)
3601 and then Is_Generic_Type (Root_Type (T))
3602 then
3603 Error_Msg_N
3604 ("representation item not allowed for generic type", N);
3605 return True;
3606 end if;
3607
3608 -- Otherwise check for incompleted type
3609
3610 if Is_Incomplete_Or_Private_Type (T)
3611 and then No (Underlying_Type (T))
3612 then
3613 Error_Msg_N
3614 ("representation item must be after full type declaration", N);
3615 return True;
3616
3617 -- If the type has incompleted components, a representation clause is
3618 -- illegal but stream attributes and Convention pragmas are correct.
3619
3620 elsif Has_Private_Component (T) then
3621 if Nkind (N) = N_Pragma then
3622 return False;
3623 else
3624 Error_Msg_N
3625 ("representation item must appear after type is fully defined",
3626 N);
3627 return True;
3628 end if;
3629 else
3630 return False;
3631 end if;
3632 end Rep_Item_Too_Early;
3633
3634 -----------------------
3635 -- Rep_Item_Too_Late --
3636 -----------------------
3637
3638 function Rep_Item_Too_Late
3639 (T : Entity_Id;
3640 N : Node_Id;
3641 FOnly : Boolean := False) return Boolean
3642 is
3643 S : Entity_Id;
3644 Parent_Type : Entity_Id;
3645
3646 procedure Too_Late;
3647 -- Output the too late message. Note that this is not considered a
3648 -- serious error, since the effect is simply that we ignore the
3649 -- representation clause in this case.
3650
3651 --------------
3652 -- Too_Late --
3653 --------------
3654
3655 procedure Too_Late is
3656 begin
3657 Error_Msg_N ("|representation item appears too late!", N);
3658 end Too_Late;
3659
3660 -- Start of processing for Rep_Item_Too_Late
3661
3662 begin
3663 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3664 -- types, which may be frozen if they appear in a representation clause
3665 -- for a local type.
3666
3667 if Is_Frozen (T)
3668 and then not From_With_Type (T)
3669 then
3670 Too_Late;
3671 S := First_Subtype (T);
3672
3673 if Present (Freeze_Node (S)) then
3674 Error_Msg_NE
3675 ("?no more representation items for }", Freeze_Node (S), S);
3676 end if;
3677
3678 return True;
3679
3680 -- Check for case of non-tagged derived type whose parent either has
3681 -- primitive operations, or is a by reference type (RM 13.1(10)).
3682
3683 elsif Is_Type (T)
3684 and then not FOnly
3685 and then Is_Derived_Type (T)
3686 and then not Is_Tagged_Type (T)
3687 then
3688 Parent_Type := Etype (Base_Type (T));
3689
3690 if Has_Primitive_Operations (Parent_Type) then
3691 Too_Late;
3692 Error_Msg_NE
3693 ("primitive operations already defined for&!", N, Parent_Type);
3694 return True;
3695
3696 elsif Is_By_Reference_Type (Parent_Type) then
3697 Too_Late;
3698 Error_Msg_NE
3699 ("parent type & is a by reference type!", N, Parent_Type);
3700 return True;
3701 end if;
3702 end if;
3703
3704 -- No error, link item into head of chain of rep items for the entity
3705
3706 Record_Rep_Item (T, N);
3707 return False;
3708 end Rep_Item_Too_Late;
3709
3710 -------------------------
3711 -- Same_Representation --
3712 -------------------------
3713
3714 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3715 T1 : constant Entity_Id := Underlying_Type (Typ1);
3716 T2 : constant Entity_Id := Underlying_Type (Typ2);
3717
3718 begin
3719 -- A quick check, if base types are the same, then we definitely have
3720 -- the same representation, because the subtype specific representation
3721 -- attributes (Size and Alignment) do not affect representation from
3722 -- the point of view of this test.
3723
3724 if Base_Type (T1) = Base_Type (T2) then
3725 return True;
3726
3727 elsif Is_Private_Type (Base_Type (T2))
3728 and then Base_Type (T1) = Full_View (Base_Type (T2))
3729 then
3730 return True;
3731 end if;
3732
3733 -- Tagged types never have differing representations
3734
3735 if Is_Tagged_Type (T1) then
3736 return True;
3737 end if;
3738
3739 -- Representations are definitely different if conventions differ
3740
3741 if Convention (T1) /= Convention (T2) then
3742 return False;
3743 end if;
3744
3745 -- Representations are different if component alignments differ
3746
3747 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3748 and then
3749 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3750 and then Component_Alignment (T1) /= Component_Alignment (T2)
3751 then
3752 return False;
3753 end if;
3754
3755 -- For arrays, the only real issue is component size. If we know the
3756 -- component size for both arrays, and it is the same, then that's
3757 -- good enough to know we don't have a change of representation.
3758
3759 if Is_Array_Type (T1) then
3760 if Known_Component_Size (T1)
3761 and then Known_Component_Size (T2)
3762 and then Component_Size (T1) = Component_Size (T2)
3763 then
3764 return True;
3765 end if;
3766 end if;
3767
3768 -- Types definitely have same representation if neither has non-standard
3769 -- representation since default representations are always consistent.
3770 -- If only one has non-standard representation, and the other does not,
3771 -- then we consider that they do not have the same representation. They
3772 -- might, but there is no way of telling early enough.
3773
3774 if Has_Non_Standard_Rep (T1) then
3775 if not Has_Non_Standard_Rep (T2) then
3776 return False;
3777 end if;
3778 else
3779 return not Has_Non_Standard_Rep (T2);
3780 end if;
3781
3782 -- Here the two types both have non-standard representation, and we
3783 -- need to determine if they have the same non-standard representation
3784
3785 -- For arrays, we simply need to test if the component sizes are the
3786 -- same. Pragma Pack is reflected in modified component sizes, so this
3787 -- check also deals with pragma Pack.
3788
3789 if Is_Array_Type (T1) then
3790 return Component_Size (T1) = Component_Size (T2);
3791
3792 -- Tagged types always have the same representation, because it is not
3793 -- possible to specify different representations for common fields.
3794
3795 elsif Is_Tagged_Type (T1) then
3796 return True;
3797
3798 -- Case of record types
3799
3800 elsif Is_Record_Type (T1) then
3801
3802 -- Packed status must conform
3803
3804 if Is_Packed (T1) /= Is_Packed (T2) then
3805 return False;
3806
3807 -- Otherwise we must check components. Typ2 maybe a constrained
3808 -- subtype with fewer components, so we compare the components
3809 -- of the base types.
3810
3811 else
3812 Record_Case : declare
3813 CD1, CD2 : Entity_Id;
3814
3815 function Same_Rep return Boolean;
3816 -- CD1 and CD2 are either components or discriminants. This
3817 -- function tests whether the two have the same representation
3818
3819 --------------
3820 -- Same_Rep --
3821 --------------
3822
3823 function Same_Rep return Boolean is
3824 begin
3825 if No (Component_Clause (CD1)) then
3826 return No (Component_Clause (CD2));
3827
3828 else
3829 return
3830 Present (Component_Clause (CD2))
3831 and then
3832 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
3833 and then
3834 Esize (CD1) = Esize (CD2);
3835 end if;
3836 end Same_Rep;
3837
3838 -- Start processing for Record_Case
3839
3840 begin
3841 if Has_Discriminants (T1) then
3842 CD1 := First_Discriminant (T1);
3843 CD2 := First_Discriminant (T2);
3844
3845 -- The number of discriminants may be different if the
3846 -- derived type has fewer (constrained by values). The
3847 -- invisible discriminants retain the representation of
3848 -- the original, so the discrepancy does not per se
3849 -- indicate a different representation.
3850
3851 while Present (CD1)
3852 and then Present (CD2)
3853 loop
3854 if not Same_Rep then
3855 return False;
3856 else
3857 Next_Discriminant (CD1);
3858 Next_Discriminant (CD2);
3859 end if;
3860 end loop;
3861 end if;
3862
3863 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
3864 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
3865
3866 while Present (CD1) loop
3867 if not Same_Rep then
3868 return False;
3869 else
3870 Next_Component (CD1);
3871 Next_Component (CD2);
3872 end if;
3873 end loop;
3874
3875 return True;
3876 end Record_Case;
3877 end if;
3878
3879 -- For enumeration types, we must check each literal to see if the
3880 -- representation is the same. Note that we do not permit enumeration
3881 -- reprsentation clauses for Character and Wide_Character, so these
3882 -- cases were already dealt with.
3883
3884 elsif Is_Enumeration_Type (T1) then
3885
3886 Enumeration_Case : declare
3887 L1, L2 : Entity_Id;
3888
3889 begin
3890 L1 := First_Literal (T1);
3891 L2 := First_Literal (T2);
3892
3893 while Present (L1) loop
3894 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
3895 return False;
3896 else
3897 Next_Literal (L1);
3898 Next_Literal (L2);
3899 end if;
3900 end loop;
3901
3902 return True;
3903
3904 end Enumeration_Case;
3905
3906 -- Any other types have the same representation for these purposes
3907
3908 else
3909 return True;
3910 end if;
3911 end Same_Representation;
3912
3913 --------------------
3914 -- Set_Enum_Esize --
3915 --------------------
3916
3917 procedure Set_Enum_Esize (T : Entity_Id) is
3918 Lo : Uint;
3919 Hi : Uint;
3920 Sz : Nat;
3921
3922 begin
3923 Init_Alignment (T);
3924
3925 -- Find the minimum standard size (8,16,32,64) that fits
3926
3927 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
3928 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
3929
3930 if Lo < 0 then
3931 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
3932 Sz := Standard_Character_Size; -- May be > 8 on some targets
3933
3934 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
3935 Sz := 16;
3936
3937 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
3938 Sz := 32;
3939
3940 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
3941 Sz := 64;
3942 end if;
3943
3944 else
3945 if Hi < Uint_2**08 then
3946 Sz := Standard_Character_Size; -- May be > 8 on some targets
3947
3948 elsif Hi < Uint_2**16 then
3949 Sz := 16;
3950
3951 elsif Hi < Uint_2**32 then
3952 Sz := 32;
3953
3954 else pragma Assert (Hi < Uint_2**63);
3955 Sz := 64;
3956 end if;
3957 end if;
3958
3959 -- That minimum is the proper size unless we have a foreign convention
3960 -- and the size required is 32 or less, in which case we bump the size
3961 -- up to 32. This is required for C and C++ and seems reasonable for
3962 -- all other foreign conventions.
3963
3964 if Has_Foreign_Convention (T)
3965 and then Esize (T) < Standard_Integer_Size
3966 then
3967 Init_Esize (T, Standard_Integer_Size);
3968
3969 else
3970 Init_Esize (T, Sz);
3971 end if;
3972 end Set_Enum_Esize;
3973
3974 -----------------------------------
3975 -- Validate_Unchecked_Conversion --
3976 -----------------------------------
3977
3978 procedure Validate_Unchecked_Conversion
3979 (N : Node_Id;
3980 Act_Unit : Entity_Id)
3981 is
3982 Source : Entity_Id;
3983 Target : Entity_Id;
3984 Vnode : Node_Id;
3985
3986 begin
3987 -- Obtain source and target types. Note that we call Ancestor_Subtype
3988 -- here because the processing for generic instantiation always makes
3989 -- subtypes, and we want the original frozen actual types.
3990
3991 -- If we are dealing with private types, then do the check on their
3992 -- fully declared counterparts if the full declarations have been
3993 -- encountered (they don't have to be visible, but they must exist!)
3994
3995 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
3996
3997 if Is_Private_Type (Source)
3998 and then Present (Underlying_Type (Source))
3999 then
4000 Source := Underlying_Type (Source);
4001 end if;
4002
4003 Target := Ancestor_Subtype (Etype (Act_Unit));
4004
4005 -- If either type is generic, the instantiation happens within a
4006 -- generic unit, and there is nothing to check. The proper check
4007 -- will happen when the enclosing generic is instantiated.
4008
4009 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
4010 return;
4011 end if;
4012
4013 if Is_Private_Type (Target)
4014 and then Present (Underlying_Type (Target))
4015 then
4016 Target := Underlying_Type (Target);
4017 end if;
4018
4019 -- Source may be unconstrained array, but not target
4020
4021 if Is_Array_Type (Target)
4022 and then not Is_Constrained (Target)
4023 then
4024 Error_Msg_N
4025 ("unchecked conversion to unconstrained array not allowed", N);
4026 return;
4027 end if;
4028
4029 -- Warn if conversion between two different convention pointers
4030
4031 if Is_Access_Type (Target)
4032 and then Is_Access_Type (Source)
4033 and then Convention (Target) /= Convention (Source)
4034 and then Warn_On_Unchecked_Conversion
4035 then
4036 Error_Msg_N
4037 ("?conversion between pointers with different conventions!", N);
4038 end if;
4039
4040 -- Make entry in unchecked conversion table for later processing
4041 -- by Validate_Unchecked_Conversions, which will check sizes and
4042 -- alignments (using values set by the back-end where possible).
4043 -- This is only done if the appropriate warning is active
4044
4045 if Warn_On_Unchecked_Conversion then
4046 Unchecked_Conversions.Append
4047 (New_Val => UC_Entry'
4048 (Enode => N,
4049 Source => Source,
4050 Target => Target));
4051
4052 -- If both sizes are known statically now, then back end annotation
4053 -- is not required to do a proper check but if either size is not
4054 -- known statically, then we need the annotation.
4055
4056 if Known_Static_RM_Size (Source)
4057 and then Known_Static_RM_Size (Target)
4058 then
4059 null;
4060 else
4061 Back_Annotate_Rep_Info := True;
4062 end if;
4063 end if;
4064
4065 -- If unchecked conversion to access type, and access type is
4066 -- declared in the same unit as the unchecked conversion, then
4067 -- set the No_Strict_Aliasing flag (no strict aliasing is
4068 -- implicit in this situation).
4069
4070 if Is_Access_Type (Target) and then
4071 In_Same_Source_Unit (Target, N)
4072 then
4073 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
4074 end if;
4075
4076 -- Generate N_Validate_Unchecked_Conversion node for back end in
4077 -- case the back end needs to perform special validation checks.
4078
4079 -- Shouldn't this be in exp_ch13, since the check only gets done
4080 -- if we have full expansion and the back end is called ???
4081
4082 Vnode :=
4083 Make_Validate_Unchecked_Conversion (Sloc (N));
4084 Set_Source_Type (Vnode, Source);
4085 Set_Target_Type (Vnode, Target);
4086
4087 -- If the unchecked conversion node is in a list, just insert before
4088 -- it. If not we have some strange case, not worth bothering about.
4089
4090 if Is_List_Member (N) then
4091 Insert_After (N, Vnode);
4092 end if;
4093 end Validate_Unchecked_Conversion;
4094
4095 ------------------------------------
4096 -- Validate_Unchecked_Conversions --
4097 ------------------------------------
4098
4099 procedure Validate_Unchecked_Conversions is
4100 begin
4101 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
4102 declare
4103 T : UC_Entry renames Unchecked_Conversions.Table (N);
4104
4105 Enode : constant Node_Id := T.Enode;
4106 Source : constant Entity_Id := T.Source;
4107 Target : constant Entity_Id := T.Target;
4108
4109 Source_Siz : Uint;
4110 Target_Siz : Uint;
4111
4112 begin
4113 -- This validation check, which warns if we have unequal sizes
4114 -- for unchecked conversion, and thus potentially implementation
4115 -- dependent semantics, is one of the few occasions on which we
4116 -- use the official RM size instead of Esize. See description
4117 -- in Einfo "Handling of Type'Size Values" for details.
4118
4119 if Serious_Errors_Detected = 0
4120 and then Known_Static_RM_Size (Source)
4121 and then Known_Static_RM_Size (Target)
4122 then
4123 Source_Siz := RM_Size (Source);
4124 Target_Siz := RM_Size (Target);
4125
4126 if Source_Siz /= Target_Siz then
4127 Error_Msg_N
4128 ("?types for unchecked conversion have different sizes!",
4129 Enode);
4130
4131 if All_Errors_Mode then
4132 Error_Msg_Name_1 := Chars (Source);
4133 Error_Msg_Uint_1 := Source_Siz;
4134 Error_Msg_Name_2 := Chars (Target);
4135 Error_Msg_Uint_2 := Target_Siz;
4136 Error_Msg_N
4137 ("\size of % is ^, size of % is ^?", Enode);
4138
4139 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
4140
4141 if Is_Discrete_Type (Source)
4142 and then Is_Discrete_Type (Target)
4143 then
4144 if Source_Siz > Target_Siz then
4145 Error_Msg_N
4146 ("\?^ high order bits of source will be ignored!",
4147 Enode);
4148
4149 elsif Is_Unsigned_Type (Source) then
4150 Error_Msg_N
4151 ("\?source will be extended with ^ high order " &
4152 "zero bits?!", Enode);
4153
4154 else
4155 Error_Msg_N
4156 ("\?source will be extended with ^ high order " &
4157 "sign bits!",
4158 Enode);
4159 end if;
4160
4161 elsif Source_Siz < Target_Siz then
4162 if Is_Discrete_Type (Target) then
4163 if Bytes_Big_Endian then
4164 Error_Msg_N
4165 ("\?target value will include ^ undefined " &
4166 "low order bits!",
4167 Enode);
4168 else
4169 Error_Msg_N
4170 ("\?target value will include ^ undefined " &
4171 "high order bits!",
4172 Enode);
4173 end if;
4174
4175 else
4176 Error_Msg_N
4177 ("\?^ trailing bits of target value will be " &
4178 "undefined!", Enode);
4179 end if;
4180
4181 else pragma Assert (Source_Siz > Target_Siz);
4182 Error_Msg_N
4183 ("\?^ trailing bits of source will be ignored!",
4184 Enode);
4185 end if;
4186 end if;
4187 end if;
4188 end if;
4189
4190 -- If both types are access types, we need to check the alignment.
4191 -- If the alignment of both is specified, we can do it here.
4192
4193 if Serious_Errors_Detected = 0
4194 and then Ekind (Source) in Access_Kind
4195 and then Ekind (Target) in Access_Kind
4196 and then Target_Strict_Alignment
4197 and then Present (Designated_Type (Source))
4198 and then Present (Designated_Type (Target))
4199 then
4200 declare
4201 D_Source : constant Entity_Id := Designated_Type (Source);
4202 D_Target : constant Entity_Id := Designated_Type (Target);
4203
4204 begin
4205 if Known_Alignment (D_Source)
4206 and then Known_Alignment (D_Target)
4207 then
4208 declare
4209 Source_Align : constant Uint := Alignment (D_Source);
4210 Target_Align : constant Uint := Alignment (D_Target);
4211
4212 begin
4213 if Source_Align < Target_Align
4214 and then not Is_Tagged_Type (D_Source)
4215 then
4216 Error_Msg_Uint_1 := Target_Align;
4217 Error_Msg_Uint_2 := Source_Align;
4218 Error_Msg_Node_2 := D_Source;
4219 Error_Msg_NE
4220 ("?alignment of & (^) is stricter than " &
4221 "alignment of & (^)!", Enode, D_Target);
4222
4223 if All_Errors_Mode then
4224 Error_Msg_N
4225 ("\?resulting access value may have invalid " &
4226 "alignment!", Enode);
4227 end if;
4228 end if;
4229 end;
4230 end if;
4231 end;
4232 end if;
4233 end;
4234 end loop;
4235 end Validate_Unchecked_Conversions;
4236
4237 end Sem_Ch13;