83b209570edd75d25c6b18a8fac8b1d42417dc35
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
26
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Hostparm; use Hostparm;
34 with Lib; use Lib;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Rtsfind; use Rtsfind;
39 with Sem; use Sem;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Eval; use Sem_Eval;
42 with Sem_Res; use Sem_Res;
43 with Sem_Type; use Sem_Type;
44 with Sem_Util; use Sem_Util;
45 with Snames; use Snames;
46 with Stand; use Stand;
47 with Sinfo; use Sinfo;
48 with Table;
49 with Ttypes; use Ttypes;
50 with Tbuild; use Tbuild;
51 with Urealp; use Urealp;
52
53 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
54
55 package body Sem_Ch13 is
56
57 SSU : constant Pos := System_Storage_Unit;
58 -- Convenient short hand for commonly used constant
59
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
63
64 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
65 -- This routine is called after setting the Esize of type entity Typ.
66 -- The purpose is to deal with the situation where an aligment has been
67 -- inherited from a derived type that is no longer appropriate for the
68 -- new Esize value. In this case, we reset the Alignment to unknown.
69
70 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
71 -- Given two entities for record components or discriminants, checks
72 -- if they hav overlapping component clauses and issues errors if so.
73
74 function Get_Alignment_Value (Expr : Node_Id) return Uint;
75 -- Given the expression for an alignment value, returns the corresponding
76 -- Uint value. If the value is inappropriate, then error messages are
77 -- posted as required, and a value of No_Uint is returned.
78
79 function Is_Operational_Item (N : Node_Id) return Boolean;
80 -- A specification for a stream attribute is allowed before the full
81 -- type is declared, as explained in AI-00137 and the corrigendum.
82 -- Attributes that do not specify a representation characteristic are
83 -- operational attributes.
84
85 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
86 -- If expression N is of the form E'Address, return E.
87
88 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
89 -- This is used for processing of an address representation clause. If
90 -- the expression N is of the form of K'Address, then the entity that
91 -- is associated with K is marked as volatile.
92
93 procedure New_Stream_Function
94 (N : Node_Id;
95 Ent : Entity_Id;
96 Subp : Entity_Id;
97 Nam : TSS_Name_Type);
98 -- Create a function renaming of a given stream attribute to the
99 -- designated subprogram and then in the tagged case, provide this as
100 -- a primitive operation, or in the non-tagged case make an appropriate
101 -- TSS entry. Used for Input. This is more properly an expansion activity
102 -- than just semantics, but the presence of user-defined stream functions
103 -- for limited types is a legality check, which is why this takes place
104 -- here rather than in exp_ch13, where it was previously. Nam indicates
105 -- the name of the TSS function to be generated.
106 --
107 -- To avoid elaboration anomalies with freeze nodes, for untagged types
108 -- we generate both a subprogram declaration and a subprogram renaming
109 -- declaration, so that the attribute specification is handled as a
110 -- renaming_as_body. For tagged types, the specification is one of the
111 -- primitive specs.
112
113 procedure New_Stream_Procedure
114 (N : Node_Id;
115 Ent : Entity_Id;
116 Subp : Entity_Id;
117 Nam : TSS_Name_Type;
118 Out_P : Boolean := False);
119 -- Create a procedure renaming of a given stream attribute to the
120 -- designated subprogram and then in the tagged case, provide this as
121 -- a primitive operation, or in the non-tagged case make an appropriate
122 -- TSS entry. Used for Read, Output, Write. Nam indicates the name of
123 -- the TSS procedure to be generated.
124
125 ----------------------------------------------
126 -- Table for Validate_Unchecked_Conversions --
127 ----------------------------------------------
128
129 -- The following table collects unchecked conversions for validation.
130 -- Entries are made by Validate_Unchecked_Conversion and then the
131 -- call to Validate_Unchecked_Conversions does the actual error
132 -- checking and posting of warnings. The reason for this delayed
133 -- processing is to take advantage of back-annotations of size and
134 -- alignment values peformed by the back end.
135
136 type UC_Entry is record
137 Enode : Node_Id; -- node used for posting warnings
138 Source : Entity_Id; -- source type for unchecked conversion
139 Target : Entity_Id; -- target type for unchecked conversion
140 end record;
141
142 package Unchecked_Conversions is new Table.Table (
143 Table_Component_Type => UC_Entry,
144 Table_Index_Type => Int,
145 Table_Low_Bound => 1,
146 Table_Initial => 50,
147 Table_Increment => 200,
148 Table_Name => "Unchecked_Conversions");
149
150 ----------------------------
151 -- Address_Aliased_Entity --
152 ----------------------------
153
154 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
155 begin
156 if Nkind (N) = N_Attribute_Reference
157 and then Attribute_Name (N) = Name_Address
158 then
159 declare
160 Nam : Node_Id := Prefix (N);
161 begin
162 while False
163 or else Nkind (Nam) = N_Selected_Component
164 or else Nkind (Nam) = N_Indexed_Component
165 loop
166 Nam := Prefix (Nam);
167 end loop;
168
169 if Is_Entity_Name (Nam) then
170 return Entity (Nam);
171 end if;
172 end;
173 end if;
174
175 return Empty;
176 end Address_Aliased_Entity;
177
178 --------------------------------------
179 -- Alignment_Check_For_Esize_Change --
180 --------------------------------------
181
182 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
183 begin
184 -- If the alignment is known, and not set by a rep clause, and is
185 -- inconsistent with the size being set, then reset it to unknown,
186 -- we assume in this case that the size overrides the inherited
187 -- alignment, and that the alignment must be recomputed.
188
189 if Known_Alignment (Typ)
190 and then not Has_Alignment_Clause (Typ)
191 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
192 then
193 Init_Alignment (Typ);
194 end if;
195 end Alignment_Check_For_Esize_Change;
196
197 -----------------------
198 -- Analyze_At_Clause --
199 -----------------------
200
201 -- An at clause is replaced by the corresponding Address attribute
202 -- definition clause that is the preferred approach in Ada 95.
203
204 procedure Analyze_At_Clause (N : Node_Id) is
205 begin
206 if Warn_On_Obsolescent_Feature then
207 Error_Msg_N
208 ("at clause is an obsolescent feature ('R'M 'J.7(2))?", N);
209 Error_Msg_N
210 ("|use address attribute definition clause instead?", N);
211 end if;
212
213 Rewrite (N,
214 Make_Attribute_Definition_Clause (Sloc (N),
215 Name => Identifier (N),
216 Chars => Name_Address,
217 Expression => Expression (N)));
218 Analyze_Attribute_Definition_Clause (N);
219 end Analyze_At_Clause;
220
221 -----------------------------------------
222 -- Analyze_Attribute_Definition_Clause --
223 -----------------------------------------
224
225 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
226 Loc : constant Source_Ptr := Sloc (N);
227 Nam : constant Node_Id := Name (N);
228 Attr : constant Name_Id := Chars (N);
229 Expr : constant Node_Id := Expression (N);
230 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
231 Ent : Entity_Id;
232 U_Ent : Entity_Id;
233
234 FOnly : Boolean := False;
235 -- Reset to True for subtype specific attribute (Alignment, Size)
236 -- and for stream attributes, i.e. those cases where in the call
237 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
238 -- rules are checked. Note that the case of stream attributes is not
239 -- clear from the RM, but see AI95-00137. Also, the RM seems to
240 -- disallow Storage_Size for derived task types, but that is also
241 -- clearly unintentional.
242
243 begin
244 Analyze (Nam);
245 Ent := Entity (Nam);
246
247 if Rep_Item_Too_Early (Ent, N) then
248 return;
249 end if;
250
251 -- Rep clause applies to full view of incomplete type or private type
252 -- if we have one (if not, this is a premature use of the type).
253 -- However, certain semantic checks need to be done on the specified
254 -- entity (i.e. the private view), so we save it in Ent.
255
256 if Is_Private_Type (Ent)
257 and then Is_Derived_Type (Ent)
258 and then not Is_Tagged_Type (Ent)
259 and then No (Full_View (Ent))
260 then
261 -- If this is a private type whose completion is a derivation
262 -- from another private type, there is no full view, and the
263 -- attribute belongs to the type itself, not its underlying parent.
264
265 U_Ent := Ent;
266
267 elsif Ekind (Ent) = E_Incomplete_Type then
268 Ent := Underlying_Type (Ent);
269 U_Ent := Ent;
270 else
271 U_Ent := Underlying_Type (Ent);
272 end if;
273
274 -- Complete other routine error checks
275
276 if Etype (Nam) = Any_Type then
277 return;
278
279 elsif Scope (Ent) /= Current_Scope then
280 Error_Msg_N ("entity must be declared in this scope", Nam);
281 return;
282
283 elsif No (U_Ent) then
284 U_Ent := Ent;
285
286 elsif Is_Type (U_Ent)
287 and then not Is_First_Subtype (U_Ent)
288 and then Id /= Attribute_Object_Size
289 and then Id /= Attribute_Value_Size
290 and then not From_At_Mod (N)
291 then
292 Error_Msg_N ("cannot specify attribute for subtype", Nam);
293 return;
294
295 end if;
296
297 -- Switch on particular attribute
298
299 case Id is
300
301 -------------
302 -- Address --
303 -------------
304
305 -- Address attribute definition clause
306
307 when Attribute_Address => Address : begin
308 Analyze_And_Resolve (Expr, RTE (RE_Address));
309
310 if Present (Address_Clause (U_Ent)) then
311 Error_Msg_N ("address already given for &", Nam);
312
313 -- Case of address clause for subprogram
314
315 elsif Is_Subprogram (U_Ent) then
316 if Has_Homonym (U_Ent) then
317 Error_Msg_N
318 ("address clause cannot be given " &
319 "for overloaded subprogram",
320 Nam);
321 end if;
322
323 -- For subprograms, all address clauses are permitted,
324 -- and we mark the subprogram as having a deferred freeze
325 -- so that Gigi will not elaborate it too soon.
326
327 -- Above needs more comments, what is too soon about???
328
329 Set_Has_Delayed_Freeze (U_Ent);
330
331 -- Case of address clause for entry
332
333 elsif Ekind (U_Ent) = E_Entry then
334 if Nkind (Parent (N)) = N_Task_Body then
335 Error_Msg_N
336 ("entry address must be specified in task spec", Nam);
337 end if;
338
339 -- For entries, we require a constant address
340
341 Check_Constant_Address_Clause (Expr, U_Ent);
342
343 if Is_Task_Type (Scope (U_Ent))
344 and then Comes_From_Source (Scope (U_Ent))
345 then
346 Error_Msg_N
347 ("?entry address declared for entry in task type", N);
348 Error_Msg_N
349 ("\?only one task can be declared of this type", N);
350 end if;
351
352 if Warn_On_Obsolescent_Feature then
353 Error_Msg_N
354 ("attaching interrupt to task entry is an " &
355 "obsolescent feature ('R'M 'J.7.1)?", N);
356 Error_Msg_N
357 ("|use interrupt procedure instead?", N);
358 end if;
359
360 -- Case of an address clause for a controlled object:
361 -- erroneous execution.
362
363 elsif Is_Controlled (Etype (U_Ent)) then
364 Error_Msg_NE
365 ("?controlled object& must not be overlaid", Nam, U_Ent);
366 Error_Msg_N
367 ("\?Program_Error will be raised at run time", Nam);
368 Insert_Action (Declaration_Node (U_Ent),
369 Make_Raise_Program_Error (Loc,
370 Reason => PE_Overlaid_Controlled_Object));
371
372 -- Case of address clause for a (non-controlled) object
373
374 elsif
375 Ekind (U_Ent) = E_Variable
376 or else
377 Ekind (U_Ent) = E_Constant
378 then
379 declare
380 Expr : constant Node_Id := Expression (N);
381 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
382
383 begin
384 -- Exported variables cannot have an address clause,
385 -- because this cancels the effect of the pragma Export
386
387 if Is_Exported (U_Ent) then
388 Error_Msg_N
389 ("cannot export object with address clause", Nam);
390
391 -- Overlaying controlled objects is erroneous
392
393 elsif Present (Aent)
394 and then Is_Controlled (Etype (Aent))
395 then
396 Error_Msg_N
397 ("?controlled object must not be overlaid", Expr);
398 Error_Msg_N
399 ("\?Program_Error will be raised at run time", Expr);
400 Insert_Action (Declaration_Node (U_Ent),
401 Make_Raise_Program_Error (Loc,
402 Reason => PE_Overlaid_Controlled_Object));
403
404 elsif Present (Aent)
405 and then Ekind (U_Ent) = E_Constant
406 and then Ekind (Aent) /= E_Constant
407 then
408 Error_Msg_N ("constant overlays a variable?", Expr);
409
410 elsif Present (Renamed_Object (U_Ent)) then
411 Error_Msg_N
412 ("address clause not allowed"
413 & " for a renaming declaration ('R'M 13.1(6))", Nam);
414
415 -- Imported variables can have an address clause, but then
416 -- the import is pretty meaningless except to suppress
417 -- initializations, so we do not need such variables to
418 -- be statically allocated (and in fact it causes trouble
419 -- if the address clause is a local value).
420
421 elsif Is_Imported (U_Ent) then
422 Set_Is_Statically_Allocated (U_Ent, False);
423 end if;
424
425 -- We mark a possible modification of a variable with an
426 -- address clause, since it is likely aliasing is occurring.
427
428 Note_Possible_Modification (Nam);
429
430 -- Here we are checking for explicit overlap of one
431 -- variable by another, and if we find this, then we
432 -- mark the overlapped variable as also being aliased.
433
434 -- First case is where we have an explicit
435
436 -- for J'Address use K'Address;
437
438 -- In this case, we mark K as volatile
439
440 Mark_Aliased_Address_As_Volatile (Expr);
441
442 -- Second case is where we have a constant whose
443 -- definition is of the form of an adress as in:
444
445 -- A : constant Address := K'Address;
446 -- ...
447 -- for B'Address use A;
448
449 -- In this case we also mark K as volatile
450
451 if Is_Entity_Name (Expr) then
452 declare
453 Ent : constant Entity_Id := Entity (Expr);
454 Decl : constant Node_Id := Declaration_Node (Ent);
455
456 begin
457 if Ekind (Ent) = E_Constant
458 and then Nkind (Decl) = N_Object_Declaration
459 and then Present (Expression (Decl))
460 then
461 Mark_Aliased_Address_As_Volatile
462 (Expression (Decl));
463 end if;
464 end;
465 end if;
466
467 -- Legality checks on the address clause for initialized
468 -- objects is deferred until the freeze point, because
469 -- a subsequent pragma might indicate that the object is
470 -- imported and thus not initialized.
471
472 Set_Has_Delayed_Freeze (U_Ent);
473
474 if Is_Exported (U_Ent) then
475 Error_Msg_N
476 ("& cannot be exported if an address clause is given",
477 Nam);
478 Error_Msg_N
479 ("\define and export a variable " &
480 "that holds its address instead",
481 Nam);
482 end if;
483
484 -- Entity has delayed freeze, so we will generate
485 -- an alignment check at the freeze point.
486
487 Set_Check_Address_Alignment
488 (N, not Range_Checks_Suppressed (U_Ent));
489
490 -- Kill the size check code, since we are not allocating
491 -- the variable, it is somewhere else.
492
493 Kill_Size_Check_Code (U_Ent);
494 end;
495
496 -- Not a valid entity for an address clause
497
498 else
499 Error_Msg_N ("address cannot be given for &", Nam);
500 end if;
501 end Address;
502
503 ---------------
504 -- Alignment --
505 ---------------
506
507 -- Alignment attribute definition clause
508
509 when Attribute_Alignment => Alignment_Block : declare
510 Align : constant Uint := Get_Alignment_Value (Expr);
511
512 begin
513 FOnly := True;
514
515 if not Is_Type (U_Ent)
516 and then Ekind (U_Ent) /= E_Variable
517 and then Ekind (U_Ent) /= E_Constant
518 then
519 Error_Msg_N ("alignment cannot be given for &", Nam);
520
521 elsif Has_Alignment_Clause (U_Ent) then
522 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
523 Error_Msg_N ("alignment clause previously given#", N);
524
525 elsif Align /= No_Uint then
526 Set_Has_Alignment_Clause (U_Ent);
527 Set_Alignment (U_Ent, Align);
528 end if;
529 end Alignment_Block;
530
531 ---------------
532 -- Bit_Order --
533 ---------------
534
535 -- Bit_Order attribute definition clause
536
537 when Attribute_Bit_Order => Bit_Order : declare
538 begin
539 if not Is_Record_Type (U_Ent) then
540 Error_Msg_N
541 ("Bit_Order can only be defined for record type", Nam);
542
543 else
544 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
545
546 if Etype (Expr) = Any_Type then
547 return;
548
549 elsif not Is_Static_Expression (Expr) then
550 Flag_Non_Static_Expr
551 ("Bit_Order requires static expression!", Expr);
552
553 else
554 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
555 Set_Reverse_Bit_Order (U_Ent, True);
556 end if;
557 end if;
558 end if;
559 end Bit_Order;
560
561 --------------------
562 -- Component_Size --
563 --------------------
564
565 -- Component_Size attribute definition clause
566
567 when Attribute_Component_Size => Component_Size_Case : declare
568 Csize : constant Uint := Static_Integer (Expr);
569 Btype : Entity_Id;
570 Biased : Boolean;
571 New_Ctyp : Entity_Id;
572 Decl : Node_Id;
573
574 begin
575 if not Is_Array_Type (U_Ent) then
576 Error_Msg_N ("component size requires array type", Nam);
577 return;
578 end if;
579
580 Btype := Base_Type (U_Ent);
581
582 if Has_Component_Size_Clause (Btype) then
583 Error_Msg_N
584 ("component size clase for& previously given", Nam);
585
586 elsif Csize /= No_Uint then
587 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
588
589 if Has_Aliased_Components (Btype)
590 and then Csize < 32
591 and then Csize /= 8
592 and then Csize /= 16
593 then
594 Error_Msg_N
595 ("component size incorrect for aliased components", N);
596 return;
597 end if;
598
599 -- For the biased case, build a declaration for a subtype
600 -- that will be used to represent the biased subtype that
601 -- reflects the biased representation of components. We need
602 -- this subtype to get proper conversions on referencing
603 -- elements of the array.
604
605 if Biased then
606 New_Ctyp :=
607 Make_Defining_Identifier (Loc,
608 Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
609
610 Decl :=
611 Make_Subtype_Declaration (Loc,
612 Defining_Identifier => New_Ctyp,
613 Subtype_Indication =>
614 New_Occurrence_Of (Component_Type (Btype), Loc));
615
616 Set_Parent (Decl, N);
617 Analyze (Decl, Suppress => All_Checks);
618
619 Set_Has_Delayed_Freeze (New_Ctyp, False);
620 Set_Esize (New_Ctyp, Csize);
621 Set_RM_Size (New_Ctyp, Csize);
622 Init_Alignment (New_Ctyp);
623 Set_Has_Biased_Representation (New_Ctyp, True);
624 Set_Is_Itype (New_Ctyp, True);
625 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
626
627 Set_Component_Type (Btype, New_Ctyp);
628 end if;
629
630 Set_Component_Size (Btype, Csize);
631 Set_Has_Component_Size_Clause (Btype, True);
632 Set_Has_Non_Standard_Rep (Btype, True);
633 end if;
634 end Component_Size_Case;
635
636 ------------------
637 -- External_Tag --
638 ------------------
639
640 when Attribute_External_Tag => External_Tag :
641 begin
642 if not Is_Tagged_Type (U_Ent) then
643 Error_Msg_N ("should be a tagged type", Nam);
644 end if;
645
646 Analyze_And_Resolve (Expr, Standard_String);
647
648 if not Is_Static_Expression (Expr) then
649 Flag_Non_Static_Expr
650 ("static string required for tag name!", Nam);
651 end if;
652
653 Set_Has_External_Tag_Rep_Clause (U_Ent);
654 end External_Tag;
655
656 -----------
657 -- Input --
658 -----------
659
660 when Attribute_Input => Input : declare
661 Subp : Entity_Id := Empty;
662 I : Interp_Index;
663 It : Interp;
664 Pnam : Entity_Id;
665
666 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
667 -- Return true if the entity is a function with an appropriate
668 -- profile for the Input attribute.
669
670 ----------------------
671 -- Has_Good_Profile --
672 ----------------------
673
674 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
675 F : Entity_Id;
676 Ok : Boolean := False;
677
678 begin
679 if Ekind (Subp) = E_Function then
680 F := First_Formal (Subp);
681
682 if Present (F) and then No (Next_Formal (F)) then
683 if Ekind (Etype (F)) = E_Anonymous_Access_Type
684 and then
685 Designated_Type (Etype (F)) =
686 Class_Wide_Type (RTE (RE_Root_Stream_Type))
687 then
688 Ok := Base_Type (Etype (Subp)) = Base_Type (Ent);
689 end if;
690 end if;
691 end if;
692
693 return Ok;
694 end Has_Good_Profile;
695
696 -- Start of processing for Input attribute definition
697
698 begin
699 FOnly := True;
700
701 if not Is_Type (U_Ent) then
702 Error_Msg_N ("local name must be a subtype", Nam);
703 return;
704
705 else
706 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Input);
707
708 if Present (Pnam)
709 and then Base_Type (Etype (Pnam)) = Base_Type (U_Ent)
710 then
711 Error_Msg_Sloc := Sloc (Pnam);
712 Error_Msg_N ("input attribute already defined #", Nam);
713 return;
714 end if;
715 end if;
716
717 Analyze (Expr);
718
719 if Is_Entity_Name (Expr) then
720 if not Is_Overloaded (Expr) then
721 if Has_Good_Profile (Entity (Expr)) then
722 Subp := Entity (Expr);
723 end if;
724
725 else
726 Get_First_Interp (Expr, I, It);
727
728 while Present (It.Nam) loop
729 if Has_Good_Profile (It.Nam) then
730 Subp := It.Nam;
731 exit;
732 end if;
733
734 Get_Next_Interp (I, It);
735 end loop;
736 end if;
737 end if;
738
739 if Present (Subp) then
740 Set_Entity (Expr, Subp);
741 Set_Etype (Expr, Etype (Subp));
742 New_Stream_Function (N, U_Ent, Subp, TSS_Stream_Input);
743 else
744 Error_Msg_N ("incorrect expression for input attribute", Expr);
745 return;
746 end if;
747 end Input;
748
749 -------------------
750 -- Machine_Radix --
751 -------------------
752
753 -- Machine radix attribute definition clause
754
755 when Attribute_Machine_Radix => Machine_Radix : declare
756 Radix : constant Uint := Static_Integer (Expr);
757
758 begin
759 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
760 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
761
762 elsif Has_Machine_Radix_Clause (U_Ent) then
763 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
764 Error_Msg_N ("machine radix clause previously given#", N);
765
766 elsif Radix /= No_Uint then
767 Set_Has_Machine_Radix_Clause (U_Ent);
768 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
769
770 if Radix = 2 then
771 null;
772 elsif Radix = 10 then
773 Set_Machine_Radix_10 (U_Ent);
774 else
775 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
776 end if;
777 end if;
778 end Machine_Radix;
779
780 -----------------
781 -- Object_Size --
782 -----------------
783
784 -- Object_Size attribute definition clause
785
786 when Attribute_Object_Size => Object_Size : declare
787 Size : constant Uint := Static_Integer (Expr);
788 Biased : Boolean;
789
790 begin
791 if not Is_Type (U_Ent) then
792 Error_Msg_N ("Object_Size cannot be given for &", Nam);
793
794 elsif Has_Object_Size_Clause (U_Ent) then
795 Error_Msg_N ("Object_Size already given for &", Nam);
796
797 else
798 Check_Size (Expr, U_Ent, Size, Biased);
799
800 if Size /= 8
801 and then
802 Size /= 16
803 and then
804 Size /= 32
805 and then
806 UI_Mod (Size, 64) /= 0
807 then
808 Error_Msg_N
809 ("Object_Size must be 8, 16, 32, or multiple of 64",
810 Expr);
811 end if;
812
813 Set_Esize (U_Ent, Size);
814 Set_Has_Object_Size_Clause (U_Ent);
815 Alignment_Check_For_Esize_Change (U_Ent);
816 end if;
817 end Object_Size;
818
819 ------------
820 -- Output --
821 ------------
822
823 when Attribute_Output => Output : declare
824 Subp : Entity_Id := Empty;
825 I : Interp_Index;
826 It : Interp;
827 Pnam : Entity_Id;
828
829 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
830 -- Return true if the entity is a procedure with an
831 -- appropriate profile for the output attribute.
832
833 ----------------------
834 -- Has_Good_Profile --
835 ----------------------
836
837 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
838 F : Entity_Id;
839 Ok : Boolean := False;
840
841 begin
842 if Ekind (Subp) = E_Procedure then
843 F := First_Formal (Subp);
844
845 if Present (F) then
846 if Ekind (Etype (F)) = E_Anonymous_Access_Type
847 and then
848 Designated_Type (Etype (F)) =
849 Class_Wide_Type (RTE (RE_Root_Stream_Type))
850 then
851 Next_Formal (F);
852 Ok := Present (F)
853 and then Parameter_Mode (F) = E_In_Parameter
854 and then Base_Type (Etype (F)) = Base_Type (Ent)
855 and then No (Next_Formal (F));
856 end if;
857 end if;
858 end if;
859
860 return Ok;
861 end Has_Good_Profile;
862
863 -- Start of processing for Output attribute definition
864
865 begin
866 FOnly := True;
867
868 if not Is_Type (U_Ent) then
869 Error_Msg_N ("local name must be a subtype", Nam);
870 return;
871
872 else
873 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Output);
874
875 if Present (Pnam)
876 and then
877 Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
878 = Base_Type (U_Ent)
879 then
880 Error_Msg_Sloc := Sloc (Pnam);
881 Error_Msg_N ("output attribute already defined #", Nam);
882 return;
883 end if;
884 end if;
885
886 Analyze (Expr);
887
888 if Is_Entity_Name (Expr) then
889 if not Is_Overloaded (Expr) then
890 if Has_Good_Profile (Entity (Expr)) then
891 Subp := Entity (Expr);
892 end if;
893
894 else
895 Get_First_Interp (Expr, I, It);
896
897 while Present (It.Nam) loop
898 if Has_Good_Profile (It.Nam) then
899 Subp := It.Nam;
900 exit;
901 end if;
902
903 Get_Next_Interp (I, It);
904 end loop;
905 end if;
906 end if;
907
908 if Present (Subp) then
909 Set_Entity (Expr, Subp);
910 Set_Etype (Expr, Etype (Subp));
911 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Output);
912 else
913 Error_Msg_N ("incorrect expression for output attribute", Expr);
914 return;
915 end if;
916 end Output;
917
918 ----------
919 -- Read --
920 ----------
921
922 when Attribute_Read => Read : declare
923 Subp : Entity_Id := Empty;
924 I : Interp_Index;
925 It : Interp;
926 Pnam : Entity_Id;
927
928 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
929 -- Return true if the entity is a procedure with an appropriate
930 -- profile for the Read attribute.
931
932 ----------------------
933 -- Has_Good_Profile --
934 ----------------------
935
936 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
937 F : Entity_Id;
938 Ok : Boolean := False;
939
940 begin
941 if Ekind (Subp) = E_Procedure then
942 F := First_Formal (Subp);
943
944 if Present (F) then
945 if Ekind (Etype (F)) = E_Anonymous_Access_Type
946 and then
947 Designated_Type (Etype (F)) =
948 Class_Wide_Type (RTE (RE_Root_Stream_Type))
949 then
950 Next_Formal (F);
951 Ok := Present (F)
952 and then Parameter_Mode (F) = E_Out_Parameter
953 and then Base_Type (Etype (F)) = Base_Type (Ent)
954 and then No (Next_Formal (F));
955 end if;
956 end if;
957 end if;
958
959 return Ok;
960 end Has_Good_Profile;
961
962 -- Start of processing for Read attribute definition
963
964 begin
965 FOnly := True;
966
967 if not Is_Type (U_Ent) then
968 Error_Msg_N ("local name must be a subtype", Nam);
969 return;
970
971 else
972 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Read);
973
974 if Present (Pnam)
975 and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
976 = Base_Type (U_Ent)
977 then
978 Error_Msg_Sloc := Sloc (Pnam);
979 Error_Msg_N ("read attribute already defined #", Nam);
980 return;
981 end if;
982 end if;
983
984 Analyze (Expr);
985
986 if Is_Entity_Name (Expr) then
987 if not Is_Overloaded (Expr) then
988 if Has_Good_Profile (Entity (Expr)) then
989 Subp := Entity (Expr);
990 end if;
991
992 else
993 Get_First_Interp (Expr, I, It);
994
995 while Present (It.Nam) loop
996 if Has_Good_Profile (It.Nam) then
997 Subp := It.Nam;
998 exit;
999 end if;
1000
1001 Get_Next_Interp (I, It);
1002 end loop;
1003 end if;
1004 end if;
1005
1006 if Present (Subp) then
1007 Set_Entity (Expr, Subp);
1008 Set_Etype (Expr, Etype (Subp));
1009 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Read, True);
1010 else
1011 Error_Msg_N ("incorrect expression for read attribute", Expr);
1012 return;
1013 end if;
1014 end Read;
1015
1016 ----------
1017 -- Size --
1018 ----------
1019
1020 -- Size attribute definition clause
1021
1022 when Attribute_Size => Size : declare
1023 Size : constant Uint := Static_Integer (Expr);
1024 Etyp : Entity_Id;
1025 Biased : Boolean;
1026
1027 begin
1028 FOnly := True;
1029
1030 if Has_Size_Clause (U_Ent) then
1031 Error_Msg_N ("size already given for &", Nam);
1032
1033 elsif not Is_Type (U_Ent)
1034 and then Ekind (U_Ent) /= E_Variable
1035 and then Ekind (U_Ent) /= E_Constant
1036 then
1037 Error_Msg_N ("size cannot be given for &", Nam);
1038
1039 elsif Is_Array_Type (U_Ent)
1040 and then not Is_Constrained (U_Ent)
1041 then
1042 Error_Msg_N
1043 ("size cannot be given for unconstrained array", Nam);
1044
1045 elsif Size /= No_Uint then
1046 if Is_Type (U_Ent) then
1047 Etyp := U_Ent;
1048 else
1049 Etyp := Etype (U_Ent);
1050 end if;
1051
1052 -- Check size, note that Gigi is in charge of checking
1053 -- that the size of an array or record type is OK. Also
1054 -- we do not check the size in the ordinary fixed-point
1055 -- case, since it is too early to do so (there may be a
1056 -- subsequent small clause that affects the size). We can
1057 -- check the size if a small clause has already been given.
1058
1059 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1060 or else Has_Small_Clause (U_Ent)
1061 then
1062 Check_Size (Expr, Etyp, Size, Biased);
1063 Set_Has_Biased_Representation (U_Ent, Biased);
1064 end if;
1065
1066 -- For types set RM_Size and Esize if possible
1067
1068 if Is_Type (U_Ent) then
1069 Set_RM_Size (U_Ent, Size);
1070
1071 -- For scalar types, increase Object_Size to power of 2,
1072 -- but not less than a storage unit in any case (i.e.,
1073 -- normally this means it will be byte addressable).
1074
1075 if Is_Scalar_Type (U_Ent) then
1076 if Size <= System_Storage_Unit then
1077 Init_Esize (U_Ent, System_Storage_Unit);
1078 elsif Size <= 16 then
1079 Init_Esize (U_Ent, 16);
1080 elsif Size <= 32 then
1081 Init_Esize (U_Ent, 32);
1082 else
1083 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1084 end if;
1085
1086 -- For all other types, object size = value size. The
1087 -- backend will adjust as needed.
1088
1089 else
1090 Set_Esize (U_Ent, Size);
1091 end if;
1092
1093 Alignment_Check_For_Esize_Change (U_Ent);
1094
1095 -- For objects, set Esize only
1096
1097 else
1098 if Is_Elementary_Type (Etyp) then
1099 if Size /= System_Storage_Unit
1100 and then
1101 Size /= System_Storage_Unit * 2
1102 and then
1103 Size /= System_Storage_Unit * 4
1104 and then
1105 Size /= System_Storage_Unit * 8
1106 then
1107 Error_Msg_N
1108 ("size for primitive object must be power of 2", N);
1109 end if;
1110 end if;
1111
1112 Set_Esize (U_Ent, Size);
1113 end if;
1114
1115 Set_Has_Size_Clause (U_Ent);
1116 end if;
1117 end Size;
1118
1119 -----------
1120 -- Small --
1121 -----------
1122
1123 -- Small attribute definition clause
1124
1125 when Attribute_Small => Small : declare
1126 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1127 Small : Ureal;
1128
1129 begin
1130 Analyze_And_Resolve (Expr, Any_Real);
1131
1132 if Etype (Expr) = Any_Type then
1133 return;
1134
1135 elsif not Is_Static_Expression (Expr) then
1136 Flag_Non_Static_Expr
1137 ("small requires static expression!", Expr);
1138 return;
1139
1140 else
1141 Small := Expr_Value_R (Expr);
1142
1143 if Small <= Ureal_0 then
1144 Error_Msg_N ("small value must be greater than zero", Expr);
1145 return;
1146 end if;
1147
1148 end if;
1149
1150 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1151 Error_Msg_N
1152 ("small requires an ordinary fixed point type", Nam);
1153
1154 elsif Has_Small_Clause (U_Ent) then
1155 Error_Msg_N ("small already given for &", Nam);
1156
1157 elsif Small > Delta_Value (U_Ent) then
1158 Error_Msg_N
1159 ("small value must not be greater then delta value", Nam);
1160
1161 else
1162 Set_Small_Value (U_Ent, Small);
1163 Set_Small_Value (Implicit_Base, Small);
1164 Set_Has_Small_Clause (U_Ent);
1165 Set_Has_Small_Clause (Implicit_Base);
1166 Set_Has_Non_Standard_Rep (Implicit_Base);
1167 end if;
1168 end Small;
1169
1170 ------------------
1171 -- Storage_Size --
1172 ------------------
1173
1174 -- Storage_Size attribute definition clause
1175
1176 when Attribute_Storage_Size => Storage_Size : declare
1177 Btype : constant Entity_Id := Base_Type (U_Ent);
1178 Sprag : Node_Id;
1179
1180 begin
1181 if Is_Task_Type (U_Ent) then
1182 if Warn_On_Obsolescent_Feature then
1183 Error_Msg_N
1184 ("storage size clause for task is an " &
1185 "obsolescent feature ('R'M 'J.9)?", N);
1186 Error_Msg_N
1187 ("|use Storage_Size pragma instead?", N);
1188 end if;
1189
1190 FOnly := True;
1191 end if;
1192
1193 if not Is_Access_Type (U_Ent)
1194 and then Ekind (U_Ent) /= E_Task_Type
1195 then
1196 Error_Msg_N ("storage size cannot be given for &", Nam);
1197
1198 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1199 Error_Msg_N
1200 ("storage size cannot be given for a derived access type",
1201 Nam);
1202
1203 elsif Has_Storage_Size_Clause (Btype) then
1204 Error_Msg_N ("storage size already given for &", Nam);
1205
1206 else
1207 Analyze_And_Resolve (Expr, Any_Integer);
1208
1209 if Is_Access_Type (U_Ent) then
1210
1211 if Present (Associated_Storage_Pool (U_Ent)) then
1212 Error_Msg_N ("storage pool already given for &", Nam);
1213 return;
1214 end if;
1215
1216 if Compile_Time_Known_Value (Expr)
1217 and then Expr_Value (Expr) = 0
1218 then
1219 Set_No_Pool_Assigned (Btype);
1220 end if;
1221
1222 else -- Is_Task_Type (U_Ent)
1223 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1224
1225 if Present (Sprag) then
1226 Error_Msg_Sloc := Sloc (Sprag);
1227 Error_Msg_N
1228 ("Storage_Size already specified#", Nam);
1229 return;
1230 end if;
1231 end if;
1232
1233 Set_Has_Storage_Size_Clause (Btype);
1234 end if;
1235 end Storage_Size;
1236
1237 ------------------
1238 -- Storage_Pool --
1239 ------------------
1240
1241 -- Storage_Pool attribute definition clause
1242
1243 when Attribute_Storage_Pool => Storage_Pool : declare
1244 Pool : Entity_Id;
1245
1246 begin
1247 if Ekind (U_Ent) /= E_Access_Type
1248 and then Ekind (U_Ent) /= E_General_Access_Type
1249 then
1250 Error_Msg_N (
1251 "storage pool can only be given for access types", Nam);
1252 return;
1253
1254 elsif Is_Derived_Type (U_Ent) then
1255 Error_Msg_N
1256 ("storage pool cannot be given for a derived access type",
1257 Nam);
1258
1259 elsif Has_Storage_Size_Clause (U_Ent) then
1260 Error_Msg_N ("storage size already given for &", Nam);
1261 return;
1262
1263 elsif Present (Associated_Storage_Pool (U_Ent)) then
1264 Error_Msg_N ("storage pool already given for &", Nam);
1265 return;
1266 end if;
1267
1268 Analyze_And_Resolve
1269 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1270
1271 -- If the argument is a name that is not an entity name, then
1272 -- we construct a renaming operation to define an entity of
1273 -- type storage pool.
1274
1275 if not Is_Entity_Name (Expr)
1276 and then Is_Object_Reference (Expr)
1277 then
1278 Pool :=
1279 Make_Defining_Identifier (Loc,
1280 Chars => New_Internal_Name ('P'));
1281
1282 declare
1283 Rnode : constant Node_Id :=
1284 Make_Object_Renaming_Declaration (Loc,
1285 Defining_Identifier => Pool,
1286 Subtype_Mark =>
1287 New_Occurrence_Of (Etype (Expr), Loc),
1288 Name => Expr);
1289
1290 begin
1291 Insert_Before (N, Rnode);
1292 Analyze (Rnode);
1293 Set_Associated_Storage_Pool (U_Ent, Pool);
1294 end;
1295
1296 elsif Is_Entity_Name (Expr) then
1297 Pool := Entity (Expr);
1298
1299 -- If pool is a renamed object, get original one. This can
1300 -- happen with an explicit renaming, and within instances.
1301
1302 while Present (Renamed_Object (Pool))
1303 and then Is_Entity_Name (Renamed_Object (Pool))
1304 loop
1305 Pool := Entity (Renamed_Object (Pool));
1306 end loop;
1307
1308 if Present (Renamed_Object (Pool))
1309 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1310 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1311 then
1312 Pool := Entity (Expression (Renamed_Object (Pool)));
1313 end if;
1314
1315 if Present (Etype (Pool))
1316 and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
1317 and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
1318 then
1319 Set_Associated_Storage_Pool (U_Ent, Pool);
1320 else
1321 Error_Msg_N ("Non sharable GNAT Pool", Expr);
1322 end if;
1323
1324 -- The pool may be specified as the Storage_Pool of some other
1325 -- type. It is rewritten as a class_wide conversion of the
1326 -- corresponding pool entity.
1327
1328 elsif Nkind (Expr) = N_Type_Conversion
1329 and then Is_Entity_Name (Expression (Expr))
1330 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1331 then
1332 Pool := Entity (Expression (Expr));
1333
1334 if Present (Etype (Pool))
1335 and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
1336 and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
1337 then
1338 Set_Associated_Storage_Pool (U_Ent, Pool);
1339 else
1340 Error_Msg_N ("Non sharable GNAT Pool", Expr);
1341 end if;
1342
1343 else
1344 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1345 return;
1346 end if;
1347 end Storage_Pool;
1348
1349 ----------------
1350 -- Value_Size --
1351 ----------------
1352
1353 -- Value_Size attribute definition clause
1354
1355 when Attribute_Value_Size => Value_Size : declare
1356 Size : constant Uint := Static_Integer (Expr);
1357 Biased : Boolean;
1358
1359 begin
1360 if not Is_Type (U_Ent) then
1361 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1362
1363 elsif Present
1364 (Get_Attribute_Definition_Clause
1365 (U_Ent, Attribute_Value_Size))
1366 then
1367 Error_Msg_N ("Value_Size already given for &", Nam);
1368
1369 else
1370 if Is_Elementary_Type (U_Ent) then
1371 Check_Size (Expr, U_Ent, Size, Biased);
1372 Set_Has_Biased_Representation (U_Ent, Biased);
1373 end if;
1374
1375 Set_RM_Size (U_Ent, Size);
1376 end if;
1377 end Value_Size;
1378
1379 -----------
1380 -- Write --
1381 -----------
1382
1383 -- Write attribute definition clause
1384 -- check for class-wide case will be performed later
1385
1386 when Attribute_Write => Write : declare
1387 Subp : Entity_Id := Empty;
1388 I : Interp_Index;
1389 It : Interp;
1390 Pnam : Entity_Id;
1391
1392 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
1393 -- Return true if the entity is a procedure with an
1394 -- appropriate profile for the write attribute.
1395
1396 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
1397 F : Entity_Id;
1398 Ok : Boolean := False;
1399
1400 begin
1401 if Ekind (Subp) = E_Procedure then
1402 F := First_Formal (Subp);
1403
1404 if Present (F) then
1405 if Ekind (Etype (F)) = E_Anonymous_Access_Type
1406 and then
1407 Designated_Type (Etype (F)) =
1408 Class_Wide_Type (RTE (RE_Root_Stream_Type))
1409 then
1410 Next_Formal (F);
1411 Ok := Present (F)
1412 and then Parameter_Mode (F) = E_In_Parameter
1413 and then Base_Type (Etype (F)) = Base_Type (Ent)
1414 and then No (Next_Formal (F));
1415 end if;
1416 end if;
1417 end if;
1418
1419 return Ok;
1420 end Has_Good_Profile;
1421
1422 -- Start of processing for Write attribute definition
1423
1424 begin
1425 FOnly := True;
1426
1427 if not Is_Type (U_Ent) then
1428 Error_Msg_N ("local name must be a subtype", Nam);
1429 return;
1430 end if;
1431
1432 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Write);
1433
1434 if Present (Pnam)
1435 and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
1436 = Base_Type (U_Ent)
1437 then
1438 Error_Msg_Sloc := Sloc (Pnam);
1439 Error_Msg_N ("write attribute already defined #", Nam);
1440 return;
1441 end if;
1442
1443 Analyze (Expr);
1444
1445 if Is_Entity_Name (Expr) then
1446 if not Is_Overloaded (Expr) then
1447 if Has_Good_Profile (Entity (Expr)) then
1448 Subp := Entity (Expr);
1449 end if;
1450
1451 else
1452 Get_First_Interp (Expr, I, It);
1453
1454 while Present (It.Nam) loop
1455 if Has_Good_Profile (It.Nam) then
1456 Subp := It.Nam;
1457 exit;
1458 end if;
1459
1460 Get_Next_Interp (I, It);
1461 end loop;
1462 end if;
1463 end if;
1464
1465 if Present (Subp) then
1466 Set_Entity (Expr, Subp);
1467 Set_Etype (Expr, Etype (Subp));
1468 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Write);
1469 else
1470 Error_Msg_N ("incorrect expression for write attribute", Expr);
1471 return;
1472 end if;
1473 end Write;
1474
1475 -- All other attributes cannot be set
1476
1477 when others =>
1478 Error_Msg_N
1479 ("attribute& cannot be set with definition clause", N);
1480
1481 end case;
1482
1483 -- The test for the type being frozen must be performed after
1484 -- any expression the clause has been analyzed since the expression
1485 -- itself might cause freezing that makes the clause illegal.
1486
1487 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1488 return;
1489 end if;
1490 end Analyze_Attribute_Definition_Clause;
1491
1492 ----------------------------
1493 -- Analyze_Code_Statement --
1494 ----------------------------
1495
1496 procedure Analyze_Code_Statement (N : Node_Id) is
1497 HSS : constant Node_Id := Parent (N);
1498 SBody : constant Node_Id := Parent (HSS);
1499 Subp : constant Entity_Id := Current_Scope;
1500 Stmt : Node_Id;
1501 Decl : Node_Id;
1502 StmtO : Node_Id;
1503 DeclO : Node_Id;
1504
1505 begin
1506 -- Analyze and check we get right type, note that this implements the
1507 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1508 -- is the only way that Asm_Insn could possibly be visible.
1509
1510 Analyze_And_Resolve (Expression (N));
1511
1512 if Etype (Expression (N)) = Any_Type then
1513 return;
1514 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1515 Error_Msg_N ("incorrect type for code statement", N);
1516 return;
1517 end if;
1518
1519 -- Make sure we appear in the handled statement sequence of a
1520 -- subprogram (RM 13.8(3)).
1521
1522 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1523 or else Nkind (SBody) /= N_Subprogram_Body
1524 then
1525 Error_Msg_N
1526 ("code statement can only appear in body of subprogram", N);
1527 return;
1528 end if;
1529
1530 -- Do remaining checks (RM 13.8(3)) if not already done
1531
1532 if not Is_Machine_Code_Subprogram (Subp) then
1533 Set_Is_Machine_Code_Subprogram (Subp);
1534
1535 -- No exception handlers allowed
1536
1537 if Present (Exception_Handlers (HSS)) then
1538 Error_Msg_N
1539 ("exception handlers not permitted in machine code subprogram",
1540 First (Exception_Handlers (HSS)));
1541 end if;
1542
1543 -- No declarations other than use clauses and pragmas (we allow
1544 -- certain internally generated declarations as well).
1545
1546 Decl := First (Declarations (SBody));
1547 while Present (Decl) loop
1548 DeclO := Original_Node (Decl);
1549 if Comes_From_Source (DeclO)
1550 and then Nkind (DeclO) /= N_Pragma
1551 and then Nkind (DeclO) /= N_Use_Package_Clause
1552 and then Nkind (DeclO) /= N_Use_Type_Clause
1553 and then Nkind (DeclO) /= N_Implicit_Label_Declaration
1554 then
1555 Error_Msg_N
1556 ("this declaration not allowed in machine code subprogram",
1557 DeclO);
1558 end if;
1559
1560 Next (Decl);
1561 end loop;
1562
1563 -- No statements other than code statements, pragmas, and labels.
1564 -- Again we allow certain internally generated statements.
1565
1566 Stmt := First (Statements (HSS));
1567 while Present (Stmt) loop
1568 StmtO := Original_Node (Stmt);
1569 if Comes_From_Source (StmtO)
1570 and then Nkind (StmtO) /= N_Pragma
1571 and then Nkind (StmtO) /= N_Label
1572 and then Nkind (StmtO) /= N_Code_Statement
1573 then
1574 Error_Msg_N
1575 ("this statement is not allowed in machine code subprogram",
1576 StmtO);
1577 end if;
1578
1579 Next (Stmt);
1580 end loop;
1581 end if;
1582 end Analyze_Code_Statement;
1583
1584 -----------------------------------------------
1585 -- Analyze_Enumeration_Representation_Clause --
1586 -----------------------------------------------
1587
1588 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1589 Ident : constant Node_Id := Identifier (N);
1590 Aggr : constant Node_Id := Array_Aggregate (N);
1591 Enumtype : Entity_Id;
1592 Elit : Entity_Id;
1593 Expr : Node_Id;
1594 Assoc : Node_Id;
1595 Choice : Node_Id;
1596 Val : Uint;
1597 Err : Boolean := False;
1598
1599 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1600 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1601 Min : Uint;
1602 Max : Uint;
1603
1604 begin
1605 -- First some basic error checks
1606
1607 Find_Type (Ident);
1608 Enumtype := Entity (Ident);
1609
1610 if Enumtype = Any_Type
1611 or else Rep_Item_Too_Early (Enumtype, N)
1612 then
1613 return;
1614 else
1615 Enumtype := Underlying_Type (Enumtype);
1616 end if;
1617
1618 if not Is_Enumeration_Type (Enumtype) then
1619 Error_Msg_NE
1620 ("enumeration type required, found}",
1621 Ident, First_Subtype (Enumtype));
1622 return;
1623 end if;
1624
1625 -- Ignore rep clause on generic actual type. This will already have
1626 -- been flagged on the template as an error, and this is the safest
1627 -- way to ensure we don't get a junk cascaded message in the instance.
1628
1629 if Is_Generic_Actual_Type (Enumtype) then
1630 return;
1631
1632 -- Type must be in current scope
1633
1634 elsif Scope (Enumtype) /= Current_Scope then
1635 Error_Msg_N ("type must be declared in this scope", Ident);
1636 return;
1637
1638 -- Type must be a first subtype
1639
1640 elsif not Is_First_Subtype (Enumtype) then
1641 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1642 return;
1643
1644 -- Ignore duplicate rep clause
1645
1646 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1647 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1648 return;
1649
1650 -- Don't allow rep clause if root type is standard [wide_]character
1651
1652 elsif Root_Type (Enumtype) = Standard_Character
1653 or else Root_Type (Enumtype) = Standard_Wide_Character
1654 then
1655 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
1656 return;
1657
1658 -- All tests passed, so set rep clause in place
1659
1660 else
1661 Set_Has_Enumeration_Rep_Clause (Enumtype);
1662 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1663 end if;
1664
1665 -- Now we process the aggregate. Note that we don't use the normal
1666 -- aggregate code for this purpose, because we don't want any of the
1667 -- normal expansion activities, and a number of special semantic
1668 -- rules apply (including the component type being any integer type)
1669
1670 -- Badent signals that we found some incorrect entries processing
1671 -- the list. The final checks for completeness and ordering are
1672 -- skipped in this case.
1673
1674 Elit := First_Literal (Enumtype);
1675
1676 -- First the positional entries if any
1677
1678 if Present (Expressions (Aggr)) then
1679 Expr := First (Expressions (Aggr));
1680 while Present (Expr) loop
1681 if No (Elit) then
1682 Error_Msg_N ("too many entries in aggregate", Expr);
1683 return;
1684 end if;
1685
1686 Val := Static_Integer (Expr);
1687
1688 if Val = No_Uint then
1689 Err := True;
1690
1691 elsif Val < Lo or else Hi < Val then
1692 Error_Msg_N ("value outside permitted range", Expr);
1693 Err := True;
1694 end if;
1695
1696 Set_Enumeration_Rep (Elit, Val);
1697 Set_Enumeration_Rep_Expr (Elit, Expr);
1698 Next (Expr);
1699 Next (Elit);
1700 end loop;
1701 end if;
1702
1703 -- Now process the named entries if present
1704
1705 if Present (Component_Associations (Aggr)) then
1706 Assoc := First (Component_Associations (Aggr));
1707 while Present (Assoc) loop
1708 Choice := First (Choices (Assoc));
1709
1710 if Present (Next (Choice)) then
1711 Error_Msg_N
1712 ("multiple choice not allowed here", Next (Choice));
1713 Err := True;
1714 end if;
1715
1716 if Nkind (Choice) = N_Others_Choice then
1717 Error_Msg_N ("others choice not allowed here", Choice);
1718 Err := True;
1719
1720 elsif Nkind (Choice) = N_Range then
1721 -- ??? should allow zero/one element range here
1722 Error_Msg_N ("range not allowed here", Choice);
1723 Err := True;
1724
1725 else
1726 Analyze_And_Resolve (Choice, Enumtype);
1727
1728 if Is_Entity_Name (Choice)
1729 and then Is_Type (Entity (Choice))
1730 then
1731 Error_Msg_N ("subtype name not allowed here", Choice);
1732 Err := True;
1733 -- ??? should allow static subtype with zero/one entry
1734
1735 elsif Etype (Choice) = Base_Type (Enumtype) then
1736 if not Is_Static_Expression (Choice) then
1737 Flag_Non_Static_Expr
1738 ("non-static expression used for choice!", Choice);
1739 Err := True;
1740
1741 else
1742 Elit := Expr_Value_E (Choice);
1743
1744 if Present (Enumeration_Rep_Expr (Elit)) then
1745 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
1746 Error_Msg_NE
1747 ("representation for& previously given#",
1748 Choice, Elit);
1749 Err := True;
1750 end if;
1751
1752 Set_Enumeration_Rep_Expr (Elit, Choice);
1753
1754 Expr := Expression (Assoc);
1755 Val := Static_Integer (Expr);
1756
1757 if Val = No_Uint then
1758 Err := True;
1759
1760 elsif Val < Lo or else Hi < Val then
1761 Error_Msg_N ("value outside permitted range", Expr);
1762 Err := True;
1763 end if;
1764
1765 Set_Enumeration_Rep (Elit, Val);
1766 end if;
1767 end if;
1768 end if;
1769
1770 Next (Assoc);
1771 end loop;
1772 end if;
1773
1774 -- Aggregate is fully processed. Now we check that a full set of
1775 -- representations was given, and that they are in range and in order.
1776 -- These checks are only done if no other errors occurred.
1777
1778 if not Err then
1779 Min := No_Uint;
1780 Max := No_Uint;
1781
1782 Elit := First_Literal (Enumtype);
1783 while Present (Elit) loop
1784 if No (Enumeration_Rep_Expr (Elit)) then
1785 Error_Msg_NE ("missing representation for&!", N, Elit);
1786
1787 else
1788 Val := Enumeration_Rep (Elit);
1789
1790 if Min = No_Uint then
1791 Min := Val;
1792 end if;
1793
1794 if Val /= No_Uint then
1795 if Max /= No_Uint and then Val <= Max then
1796 Error_Msg_NE
1797 ("enumeration value for& not ordered!",
1798 Enumeration_Rep_Expr (Elit), Elit);
1799 end if;
1800
1801 Max := Val;
1802 end if;
1803
1804 -- If there is at least one literal whose representation
1805 -- is not equal to the Pos value, then note that this
1806 -- enumeration type has a non-standard representation.
1807
1808 if Val /= Enumeration_Pos (Elit) then
1809 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
1810 end if;
1811 end if;
1812
1813 Next (Elit);
1814 end loop;
1815
1816 -- Now set proper size information
1817
1818 declare
1819 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
1820
1821 begin
1822 if Has_Size_Clause (Enumtype) then
1823 if Esize (Enumtype) >= Minsize then
1824 null;
1825
1826 else
1827 Minsize :=
1828 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
1829
1830 if Esize (Enumtype) < Minsize then
1831 Error_Msg_N ("previously given size is too small", N);
1832
1833 else
1834 Set_Has_Biased_Representation (Enumtype);
1835 end if;
1836 end if;
1837
1838 else
1839 Set_RM_Size (Enumtype, Minsize);
1840 Set_Enum_Esize (Enumtype);
1841 end if;
1842
1843 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
1844 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
1845 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
1846 end;
1847 end if;
1848
1849 -- We repeat the too late test in case it froze itself!
1850
1851 if Rep_Item_Too_Late (Enumtype, N) then
1852 null;
1853 end if;
1854 end Analyze_Enumeration_Representation_Clause;
1855
1856 ----------------------------
1857 -- Analyze_Free_Statement --
1858 ----------------------------
1859
1860 procedure Analyze_Free_Statement (N : Node_Id) is
1861 begin
1862 Analyze (Expression (N));
1863 end Analyze_Free_Statement;
1864
1865 ------------------------------------------
1866 -- Analyze_Record_Representation_Clause --
1867 ------------------------------------------
1868
1869 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
1870 Loc : constant Source_Ptr := Sloc (N);
1871 Ident : constant Node_Id := Identifier (N);
1872 Rectype : Entity_Id;
1873 Fent : Entity_Id;
1874 CC : Node_Id;
1875 Posit : Uint;
1876 Fbit : Uint;
1877 Lbit : Uint;
1878 Hbit : Uint := Uint_0;
1879 Comp : Entity_Id;
1880 Ocomp : Entity_Id;
1881 Biased : Boolean;
1882
1883 Max_Bit_So_Far : Uint;
1884 -- Records the maximum bit position so far. If all field positoins
1885 -- are monotonically increasing, then we can skip the circuit for
1886 -- checking for overlap, since no overlap is possible.
1887
1888 Overlap_Check_Required : Boolean;
1889 -- Used to keep track of whether or not an overlap check is required
1890
1891 Ccount : Natural := 0;
1892 -- Number of component clauses in record rep clause
1893
1894 begin
1895 Find_Type (Ident);
1896 Rectype := Entity (Ident);
1897
1898 if Rectype = Any_Type
1899 or else Rep_Item_Too_Early (Rectype, N)
1900 then
1901 return;
1902 else
1903 Rectype := Underlying_Type (Rectype);
1904 end if;
1905
1906 -- First some basic error checks
1907
1908 if not Is_Record_Type (Rectype) then
1909 Error_Msg_NE
1910 ("record type required, found}", Ident, First_Subtype (Rectype));
1911 return;
1912
1913 elsif Is_Unchecked_Union (Rectype) then
1914 Error_Msg_N
1915 ("record rep clause not allowed for Unchecked_Union", N);
1916
1917 elsif Scope (Rectype) /= Current_Scope then
1918 Error_Msg_N ("type must be declared in this scope", N);
1919 return;
1920
1921 elsif not Is_First_Subtype (Rectype) then
1922 Error_Msg_N ("cannot give record rep clause for subtype", N);
1923 return;
1924
1925 elsif Has_Record_Rep_Clause (Rectype) then
1926 Error_Msg_N ("duplicate record rep clause ignored", N);
1927 return;
1928
1929 elsif Rep_Item_Too_Late (Rectype, N) then
1930 return;
1931 end if;
1932
1933 if Present (Mod_Clause (N)) then
1934 declare
1935 Loc : constant Source_Ptr := Sloc (N);
1936 M : constant Node_Id := Mod_Clause (N);
1937 P : constant List_Id := Pragmas_Before (M);
1938 AtM_Nod : Node_Id;
1939
1940 Mod_Val : Uint;
1941 pragma Warnings (Off, Mod_Val);
1942
1943 begin
1944 if Warn_On_Obsolescent_Feature then
1945 Error_Msg_N
1946 ("mod clause is an obsolescent feature ('R'M 'J.8)?", N);
1947 Error_Msg_N
1948 ("|use alignment attribute definition clause instead?", N);
1949 end if;
1950
1951 if Present (P) then
1952 Analyze_List (P);
1953 end if;
1954
1955 -- In ASIS_Mode mode, expansion is disabled, but we must
1956 -- convert the Mod clause into an alignment clause anyway, so
1957 -- that the back-end can compute and back-annotate properly the
1958 -- size and alignment of types that may include this record.
1959
1960 if Operating_Mode = Check_Semantics
1961 and then ASIS_Mode
1962 then
1963 AtM_Nod :=
1964 Make_Attribute_Definition_Clause (Loc,
1965 Name => New_Reference_To (Base_Type (Rectype), Loc),
1966 Chars => Name_Alignment,
1967 Expression => Relocate_Node (Expression (M)));
1968
1969 Set_From_At_Mod (AtM_Nod);
1970 Insert_After (N, AtM_Nod);
1971 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
1972 Set_Mod_Clause (N, Empty);
1973
1974 else
1975 -- Get the alignment value to perform error checking
1976
1977 Mod_Val := Get_Alignment_Value (Expression (M));
1978
1979 end if;
1980 end;
1981 end if;
1982
1983 -- Clear any existing component clauses for the type (this happens
1984 -- with derived types, where we are now overriding the original)
1985
1986 Fent := First_Entity (Rectype);
1987
1988 Comp := Fent;
1989 while Present (Comp) loop
1990 if Ekind (Comp) = E_Component
1991 or else Ekind (Comp) = E_Discriminant
1992 then
1993 Set_Component_Clause (Comp, Empty);
1994 end if;
1995
1996 Next_Entity (Comp);
1997 end loop;
1998
1999 -- All done if no component clauses
2000
2001 CC := First (Component_Clauses (N));
2002
2003 if No (CC) then
2004 return;
2005 end if;
2006
2007 -- If a tag is present, then create a component clause that places
2008 -- it at the start of the record (otherwise gigi may place it after
2009 -- other fields that have rep clauses).
2010
2011 if Nkind (Fent) = N_Defining_Identifier
2012 and then Chars (Fent) = Name_uTag
2013 then
2014 Set_Component_Bit_Offset (Fent, Uint_0);
2015 Set_Normalized_Position (Fent, Uint_0);
2016 Set_Normalized_First_Bit (Fent, Uint_0);
2017 Set_Normalized_Position_Max (Fent, Uint_0);
2018 Init_Esize (Fent, System_Address_Size);
2019
2020 Set_Component_Clause (Fent,
2021 Make_Component_Clause (Loc,
2022 Component_Name =>
2023 Make_Identifier (Loc,
2024 Chars => Name_uTag),
2025
2026 Position =>
2027 Make_Integer_Literal (Loc,
2028 Intval => Uint_0),
2029
2030 First_Bit =>
2031 Make_Integer_Literal (Loc,
2032 Intval => Uint_0),
2033
2034 Last_Bit =>
2035 Make_Integer_Literal (Loc,
2036 UI_From_Int (System_Address_Size))));
2037
2038 Ccount := Ccount + 1;
2039 end if;
2040
2041 -- A representation like this applies to the base type
2042
2043 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2044 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2045 Set_Has_Specified_Layout (Base_Type (Rectype));
2046
2047 Max_Bit_So_Far := Uint_Minus_1;
2048 Overlap_Check_Required := False;
2049
2050 -- Process the component clauses
2051
2052 while Present (CC) loop
2053
2054 -- If pragma, just analyze it
2055
2056 if Nkind (CC) = N_Pragma then
2057 Analyze (CC);
2058
2059 -- Processing for real component clause
2060
2061 else
2062 Ccount := Ccount + 1;
2063 Posit := Static_Integer (Position (CC));
2064 Fbit := Static_Integer (First_Bit (CC));
2065 Lbit := Static_Integer (Last_Bit (CC));
2066
2067 if Posit /= No_Uint
2068 and then Fbit /= No_Uint
2069 and then Lbit /= No_Uint
2070 then
2071 if Posit < 0 then
2072 Error_Msg_N
2073 ("position cannot be negative", Position (CC));
2074
2075 elsif Fbit < 0 then
2076 Error_Msg_N
2077 ("first bit cannot be negative", First_Bit (CC));
2078
2079 -- Values look OK, so find the corresponding record component
2080 -- Even though the syntax allows an attribute reference for
2081 -- implementation-defined components, GNAT does not allow the
2082 -- tag to get an explicit position.
2083
2084 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2085
2086 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2087 Error_Msg_N ("position of tag cannot be specified", CC);
2088 else
2089 Error_Msg_N ("illegal component name", CC);
2090 end if;
2091
2092 else
2093 Comp := First_Entity (Rectype);
2094 while Present (Comp) loop
2095 exit when Chars (Comp) = Chars (Component_Name (CC));
2096 Next_Entity (Comp);
2097 end loop;
2098
2099 if No (Comp) then
2100
2101 -- Maybe component of base type that is absent from
2102 -- statically constrained first subtype.
2103
2104 Comp := First_Entity (Base_Type (Rectype));
2105 while Present (Comp) loop
2106 exit when Chars (Comp) = Chars (Component_Name (CC));
2107 Next_Entity (Comp);
2108 end loop;
2109 end if;
2110
2111 if No (Comp) then
2112 Error_Msg_N
2113 ("component clause is for non-existent field", CC);
2114
2115 elsif Present (Component_Clause (Comp)) then
2116 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2117 Error_Msg_N
2118 ("component clause previously given#", CC);
2119
2120 else
2121 -- Update Fbit and Lbit to the actual bit number.
2122
2123 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2124 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2125
2126 if Fbit <= Max_Bit_So_Far then
2127 Overlap_Check_Required := True;
2128 else
2129 Max_Bit_So_Far := Lbit;
2130 end if;
2131
2132 if Has_Size_Clause (Rectype)
2133 and then Esize (Rectype) <= Lbit
2134 then
2135 Error_Msg_N
2136 ("bit number out of range of specified size",
2137 Last_Bit (CC));
2138 else
2139 Set_Component_Clause (Comp, CC);
2140 Set_Component_Bit_Offset (Comp, Fbit);
2141 Set_Esize (Comp, 1 + (Lbit - Fbit));
2142 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2143 Set_Normalized_Position (Comp, Fbit / SSU);
2144
2145 Set_Normalized_Position_Max
2146 (Fent, Normalized_Position (Fent));
2147
2148 if Is_Tagged_Type (Rectype)
2149 and then Fbit < System_Address_Size
2150 then
2151 Error_Msg_NE
2152 ("component overlaps tag field of&",
2153 CC, Rectype);
2154 end if;
2155
2156 -- Test for large object that is not on a storage unit
2157 -- boundary, defined as a large packed array not
2158 -- represented by a modular type, or an object for
2159 -- which a size of greater than 64 bits is specified.
2160
2161 if Fbit mod SSU /= 0 then
2162 if (Is_Packed_Array_Type (Etype (Comp))
2163 and then Is_Array_Type
2164 (Packed_Array_Type (Etype (Comp))))
2165 or else Esize (Etype (Comp)) > Max_Unaligned_Field
2166 then
2167 if SSU = 8 then
2168 Error_Msg_N
2169 ("large component must be on byte boundary",
2170 First_Bit (CC));
2171 else
2172 Error_Msg_N
2173 ("large component must be on word boundary",
2174 First_Bit (CC));
2175 end if;
2176 end if;
2177 end if;
2178
2179 -- This information is also set in the
2180 -- corresponding component of the base type,
2181 -- found by accessing the Original_Record_Component
2182 -- link if it is present.
2183
2184 Ocomp := Original_Record_Component (Comp);
2185
2186 if Hbit < Lbit then
2187 Hbit := Lbit;
2188 end if;
2189
2190 Check_Size
2191 (Component_Name (CC),
2192 Etype (Comp),
2193 Esize (Comp),
2194 Biased);
2195
2196 Set_Has_Biased_Representation (Comp, Biased);
2197
2198 if Present (Ocomp) then
2199 Set_Component_Clause (Ocomp, CC);
2200 Set_Component_Bit_Offset (Ocomp, Fbit);
2201 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2202 Set_Normalized_Position (Ocomp, Fbit / SSU);
2203 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2204
2205 Set_Normalized_Position_Max
2206 (Ocomp, Normalized_Position (Ocomp));
2207
2208 Set_Has_Biased_Representation
2209 (Ocomp, Has_Biased_Representation (Comp));
2210 end if;
2211
2212 if Esize (Comp) < 0 then
2213 Error_Msg_N ("component size is negative", CC);
2214 end if;
2215 end if;
2216 end if;
2217 end if;
2218 end if;
2219 end if;
2220
2221 Next (CC);
2222 end loop;
2223
2224 -- Now that we have processed all the component clauses, check for
2225 -- overlap. We have to leave this till last, since the components
2226 -- can appear in any arbitrary order in the representation clause.
2227
2228 -- We do not need this check if all specified ranges were monotonic,
2229 -- as recorded by Overlap_Check_Required being False at this stage.
2230
2231 -- This first section checks if there are any overlapping entries
2232 -- at all. It does this by sorting all entries and then seeing if
2233 -- there are any overlaps. If there are none, then that is decisive,
2234 -- but if there are overlaps, they may still be OK (they may result
2235 -- from fields in different variants).
2236
2237 if Overlap_Check_Required then
2238 Overlap_Check1 : declare
2239
2240 OC_Fbit : array (0 .. Ccount) of Uint;
2241 -- First-bit values for component clauses, the value is the
2242 -- offset of the first bit of the field from start of record.
2243 -- The zero entry is for use in sorting.
2244
2245 OC_Lbit : array (0 .. Ccount) of Uint;
2246 -- Last-bit values for component clauses, the value is the
2247 -- offset of the last bit of the field from start of record.
2248 -- The zero entry is for use in sorting.
2249
2250 OC_Count : Natural := 0;
2251 -- Count of entries in OC_Fbit and OC_Lbit
2252
2253 function OC_Lt (Op1, Op2 : Natural) return Boolean;
2254 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2255
2256 procedure OC_Move (From : Natural; To : Natural);
2257 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2258
2259 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2260 begin
2261 return OC_Fbit (Op1) < OC_Fbit (Op2);
2262 end OC_Lt;
2263
2264 procedure OC_Move (From : Natural; To : Natural) is
2265 begin
2266 OC_Fbit (To) := OC_Fbit (From);
2267 OC_Lbit (To) := OC_Lbit (From);
2268 end OC_Move;
2269
2270 begin
2271 CC := First (Component_Clauses (N));
2272 while Present (CC) loop
2273 if Nkind (CC) /= N_Pragma then
2274 Posit := Static_Integer (Position (CC));
2275 Fbit := Static_Integer (First_Bit (CC));
2276 Lbit := Static_Integer (Last_Bit (CC));
2277
2278 if Posit /= No_Uint
2279 and then Fbit /= No_Uint
2280 and then Lbit /= No_Uint
2281 then
2282 OC_Count := OC_Count + 1;
2283 Posit := Posit * SSU;
2284 OC_Fbit (OC_Count) := Fbit + Posit;
2285 OC_Lbit (OC_Count) := Lbit + Posit;
2286 end if;
2287 end if;
2288
2289 Next (CC);
2290 end loop;
2291
2292 Sort
2293 (OC_Count,
2294 OC_Move'Unrestricted_Access,
2295 OC_Lt'Unrestricted_Access);
2296
2297 Overlap_Check_Required := False;
2298 for J in 1 .. OC_Count - 1 loop
2299 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2300 Overlap_Check_Required := True;
2301 exit;
2302 end if;
2303 end loop;
2304 end Overlap_Check1;
2305 end if;
2306
2307 -- If Overlap_Check_Required is still True, then we have to do
2308 -- the full scale overlap check, since we have at least two fields
2309 -- that do overlap, and we need to know if that is OK since they
2310 -- are in the same variant, or whether we have a definite problem
2311
2312 if Overlap_Check_Required then
2313 Overlap_Check2 : declare
2314 C1_Ent, C2_Ent : Entity_Id;
2315 -- Entities of components being checked for overlap
2316
2317 Clist : Node_Id;
2318 -- Component_List node whose Component_Items are being checked
2319
2320 Citem : Node_Id;
2321 -- Component declaration for component being checked
2322
2323 begin
2324 C1_Ent := First_Entity (Base_Type (Rectype));
2325
2326 -- Loop through all components in record. For each component check
2327 -- for overlap with any of the preceding elements on the component
2328 -- list containing the component, and also, if the component is in
2329 -- a variant, check against components outside the case structure.
2330 -- This latter test is repeated recursively up the variant tree.
2331
2332 Main_Component_Loop : while Present (C1_Ent) loop
2333 if Ekind (C1_Ent) /= E_Component
2334 and then Ekind (C1_Ent) /= E_Discriminant
2335 then
2336 goto Continue_Main_Component_Loop;
2337 end if;
2338
2339 -- Skip overlap check if entity has no declaration node. This
2340 -- happens with discriminants in constrained derived types.
2341 -- Probably we are missing some checks as a result, but that
2342 -- does not seem terribly serious ???
2343
2344 if No (Declaration_Node (C1_Ent)) then
2345 goto Continue_Main_Component_Loop;
2346 end if;
2347
2348 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2349
2350 -- Loop through component lists that need checking. Check the
2351 -- current component list and all lists in variants above us.
2352
2353 Component_List_Loop : loop
2354
2355 -- If derived type definition, go to full declaration
2356 -- If at outer level, check discriminants if there are any
2357
2358 if Nkind (Clist) = N_Derived_Type_Definition then
2359 Clist := Parent (Clist);
2360 end if;
2361
2362 -- Outer level of record definition, check discriminants
2363
2364 if Nkind (Clist) = N_Full_Type_Declaration
2365 or else Nkind (Clist) = N_Private_Type_Declaration
2366 then
2367 if Has_Discriminants (Defining_Identifier (Clist)) then
2368 C2_Ent :=
2369 First_Discriminant (Defining_Identifier (Clist));
2370
2371 while Present (C2_Ent) loop
2372 exit when C1_Ent = C2_Ent;
2373 Check_Component_Overlap (C1_Ent, C2_Ent);
2374 Next_Discriminant (C2_Ent);
2375 end loop;
2376 end if;
2377
2378 -- Record extension case
2379
2380 elsif Nkind (Clist) = N_Derived_Type_Definition then
2381 Clist := Empty;
2382
2383 -- Otherwise check one component list
2384
2385 else
2386 Citem := First (Component_Items (Clist));
2387
2388 while Present (Citem) loop
2389 if Nkind (Citem) = N_Component_Declaration then
2390 C2_Ent := Defining_Identifier (Citem);
2391 exit when C1_Ent = C2_Ent;
2392 Check_Component_Overlap (C1_Ent, C2_Ent);
2393 end if;
2394
2395 Next (Citem);
2396 end loop;
2397 end if;
2398
2399 -- Check for variants above us (the parent of the Clist can
2400 -- be a variant, in which case its parent is a variant part,
2401 -- and the parent of the variant part is a component list
2402 -- whose components must all be checked against the current
2403 -- component for overlap.
2404
2405 if Nkind (Parent (Clist)) = N_Variant then
2406 Clist := Parent (Parent (Parent (Clist)));
2407
2408 -- Check for possible discriminant part in record, this is
2409 -- treated essentially as another level in the recursion.
2410 -- For this case we have the parent of the component list
2411 -- is the record definition, and its parent is the full
2412 -- type declaration which contains the discriminant
2413 -- specifications.
2414
2415 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2416 Clist := Parent (Parent ((Clist)));
2417
2418 -- If neither of these two cases, we are at the top of
2419 -- the tree
2420
2421 else
2422 exit Component_List_Loop;
2423 end if;
2424 end loop Component_List_Loop;
2425
2426 <<Continue_Main_Component_Loop>>
2427 Next_Entity (C1_Ent);
2428
2429 end loop Main_Component_Loop;
2430 end Overlap_Check2;
2431 end if;
2432
2433 -- For records that have component clauses for all components, and
2434 -- whose size is less than or equal to 32, we need to know the size
2435 -- in the front end to activate possible packed array processing
2436 -- where the component type is a record.
2437
2438 -- At this stage Hbit + 1 represents the first unused bit from all
2439 -- the component clauses processed, so if the component clauses are
2440 -- complete, then this is the length of the record.
2441
2442 -- For records longer than System.Storage_Unit, and for those where
2443 -- not all components have component clauses, the back end determines
2444 -- the length (it may for example be appopriate to round up the size
2445 -- to some convenient boundary, based on alignment considerations etc).
2446
2447 if Unknown_RM_Size (Rectype)
2448 and then Hbit + 1 <= 32
2449 then
2450 -- Nothing to do if at least one component with no component clause
2451
2452 Comp := First_Entity (Rectype);
2453 while Present (Comp) loop
2454 if Ekind (Comp) = E_Component
2455 or else Ekind (Comp) = E_Discriminant
2456 then
2457 if No (Component_Clause (Comp)) then
2458 return;
2459 end if;
2460 end if;
2461
2462 Next_Entity (Comp);
2463 end loop;
2464
2465 -- If we fall out of loop, all components have component clauses
2466 -- and so we can set the size to the maximum value.
2467
2468 Set_RM_Size (Rectype, Hbit + 1);
2469 end if;
2470 end Analyze_Record_Representation_Clause;
2471
2472 -----------------------------
2473 -- Check_Component_Overlap --
2474 -----------------------------
2475
2476 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2477 begin
2478 if Present (Component_Clause (C1_Ent))
2479 and then Present (Component_Clause (C2_Ent))
2480 then
2481 -- Exclude odd case where we have two tag fields in the same
2482 -- record, both at location zero. This seems a bit strange,
2483 -- but it seems to happen in some circumstances ???
2484
2485 if Chars (C1_Ent) = Name_uTag
2486 and then Chars (C2_Ent) = Name_uTag
2487 then
2488 return;
2489 end if;
2490
2491 -- Here we check if the two fields overlap
2492
2493 declare
2494 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2495 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2496 E1 : constant Uint := S1 + Esize (C1_Ent);
2497 E2 : constant Uint := S2 + Esize (C2_Ent);
2498
2499 begin
2500 if E2 <= S1 or else E1 <= S2 then
2501 null;
2502 else
2503 Error_Msg_Node_2 :=
2504 Component_Name (Component_Clause (C2_Ent));
2505 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2506 Error_Msg_Node_1 :=
2507 Component_Name (Component_Clause (C1_Ent));
2508 Error_Msg_N
2509 ("component& overlaps & #",
2510 Component_Name (Component_Clause (C1_Ent)));
2511 end if;
2512 end;
2513 end if;
2514 end Check_Component_Overlap;
2515
2516 -----------------------------------
2517 -- Check_Constant_Address_Clause --
2518 -----------------------------------
2519
2520 procedure Check_Constant_Address_Clause
2521 (Expr : Node_Id;
2522 U_Ent : Entity_Id)
2523 is
2524 procedure Check_At_Constant_Address (Nod : Node_Id);
2525 -- Checks that the given node N represents a name whose 'Address
2526 -- is constant (in the same sense as OK_Constant_Address_Clause,
2527 -- i.e. the address value is the same at the point of declaration
2528 -- of U_Ent and at the time of elaboration of the address clause.
2529
2530 procedure Check_Expr_Constants (Nod : Node_Id);
2531 -- Checks that Nod meets the requirements for a constant address
2532 -- clause in the sense of the enclosing procedure.
2533
2534 procedure Check_List_Constants (Lst : List_Id);
2535 -- Check that all elements of list Lst meet the requirements for a
2536 -- constant address clause in the sense of the enclosing procedure.
2537
2538 -------------------------------
2539 -- Check_At_Constant_Address --
2540 -------------------------------
2541
2542 procedure Check_At_Constant_Address (Nod : Node_Id) is
2543 begin
2544 if Is_Entity_Name (Nod) then
2545 if Present (Address_Clause (Entity ((Nod)))) then
2546 Error_Msg_NE
2547 ("invalid address clause for initialized object &!",
2548 Nod, U_Ent);
2549 Error_Msg_NE
2550 ("address for& cannot" &
2551 " depend on another address clause! ('R'M 13.1(22))!",
2552 Nod, U_Ent);
2553
2554 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2555 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2556 then
2557 Error_Msg_NE
2558 ("invalid address clause for initialized object &!",
2559 Nod, U_Ent);
2560 Error_Msg_Name_1 := Chars (Entity (Nod));
2561 Error_Msg_Name_2 := Chars (U_Ent);
2562 Error_Msg_N
2563 ("\% must be defined before % ('R'M 13.1(22))!",
2564 Nod);
2565 end if;
2566
2567 elsif Nkind (Nod) = N_Selected_Component then
2568 declare
2569 T : constant Entity_Id := Etype (Prefix (Nod));
2570
2571 begin
2572 if (Is_Record_Type (T)
2573 and then Has_Discriminants (T))
2574 or else
2575 (Is_Access_Type (T)
2576 and then Is_Record_Type (Designated_Type (T))
2577 and then Has_Discriminants (Designated_Type (T)))
2578 then
2579 Error_Msg_NE
2580 ("invalid address clause for initialized object &!",
2581 Nod, U_Ent);
2582 Error_Msg_N
2583 ("\address cannot depend on component" &
2584 " of discriminated record ('R'M 13.1(22))!",
2585 Nod);
2586 else
2587 Check_At_Constant_Address (Prefix (Nod));
2588 end if;
2589 end;
2590
2591 elsif Nkind (Nod) = N_Indexed_Component then
2592 Check_At_Constant_Address (Prefix (Nod));
2593 Check_List_Constants (Expressions (Nod));
2594
2595 else
2596 Check_Expr_Constants (Nod);
2597 end if;
2598 end Check_At_Constant_Address;
2599
2600 --------------------------
2601 -- Check_Expr_Constants --
2602 --------------------------
2603
2604 procedure Check_Expr_Constants (Nod : Node_Id) is
2605 begin
2606 if Nkind (Nod) in N_Has_Etype
2607 and then Etype (Nod) = Any_Type
2608 then
2609 return;
2610 end if;
2611
2612 case Nkind (Nod) is
2613 when N_Empty | N_Error =>
2614 return;
2615
2616 when N_Identifier | N_Expanded_Name =>
2617
2618 -- We need to look at the original node if it is different
2619 -- from the node, since we may have rewritten things and
2620 -- substituted an identifier representing the rewrite.
2621
2622 if Original_Node (Nod) /= Nod then
2623 Check_Expr_Constants (Original_Node (Nod));
2624
2625 -- If the node is an object declaration without initial
2626 -- value, some code has been expanded, and the expression
2627 -- is not constant, even if the constituents might be
2628 -- acceptable, as in A'Address + offset.
2629
2630 if Ekind (Entity (Nod)) = E_Variable
2631 and then Nkind (Declaration_Node (Entity (Nod)))
2632 = N_Object_Declaration
2633 and then
2634 No (Expression (Declaration_Node (Entity (Nod))))
2635 then
2636 Error_Msg_NE
2637 ("invalid address clause for initialized object &!",
2638 Nod, U_Ent);
2639 end if;
2640 return;
2641 end if;
2642
2643 -- Otherwise look at the identifier and see if it is OK.
2644
2645 declare
2646 Ent : constant Entity_Id := Entity (Nod);
2647 Loc_Ent : constant Source_Ptr := Sloc (Ent);
2648 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2649
2650 begin
2651 if Ekind (Ent) = E_Named_Integer
2652 or else
2653 Ekind (Ent) = E_Named_Real
2654 or else
2655 Is_Type (Ent)
2656 then
2657 return;
2658
2659 elsif
2660 Ekind (Ent) = E_Constant
2661 or else
2662 Ekind (Ent) = E_In_Parameter
2663 then
2664 -- This is the case where we must have Ent defined
2665 -- before U_Ent. Clearly if they are in different
2666 -- units this requirement is met since the unit
2667 -- containing Ent is already processed.
2668
2669 if not In_Same_Source_Unit (Ent, U_Ent) then
2670 return;
2671
2672 -- Otherwise location of Ent must be before the
2673 -- location of U_Ent, that's what prior defined means.
2674
2675 elsif Loc_Ent < Loc_U_Ent then
2676 return;
2677
2678 else
2679 Error_Msg_NE
2680 ("invalid address clause for initialized object &!",
2681 Nod, U_Ent);
2682 Error_Msg_Name_1 := Chars (Ent);
2683 Error_Msg_Name_2 := Chars (U_Ent);
2684 Error_Msg_N
2685 ("\% must be defined before % ('R'M 13.1(22))!",
2686 Nod);
2687 end if;
2688
2689 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2690 Check_Expr_Constants (Original_Node (Nod));
2691
2692 else
2693 Error_Msg_NE
2694 ("invalid address clause for initialized object &!",
2695 Nod, U_Ent);
2696
2697 if Comes_From_Source (Ent) then
2698 Error_Msg_Name_1 := Chars (Ent);
2699 Error_Msg_N
2700 ("\reference to variable% not allowed"
2701 & " ('R'M 13.1(22))!", Nod);
2702 else
2703 Error_Msg_N
2704 ("non-static expression not allowed"
2705 & " ('R'M 13.1(22))!", Nod);
2706 end if;
2707 end if;
2708 end;
2709
2710 when N_Integer_Literal |
2711 N_Real_Literal |
2712 N_String_Literal |
2713 N_Character_Literal =>
2714 return;
2715
2716 when N_Range =>
2717 Check_Expr_Constants (Low_Bound (Nod));
2718 Check_Expr_Constants (High_Bound (Nod));
2719
2720 when N_Explicit_Dereference =>
2721 Check_Expr_Constants (Prefix (Nod));
2722
2723 when N_Indexed_Component =>
2724 Check_Expr_Constants (Prefix (Nod));
2725 Check_List_Constants (Expressions (Nod));
2726
2727 when N_Slice =>
2728 Check_Expr_Constants (Prefix (Nod));
2729 Check_Expr_Constants (Discrete_Range (Nod));
2730
2731 when N_Selected_Component =>
2732 Check_Expr_Constants (Prefix (Nod));
2733
2734 when N_Attribute_Reference =>
2735
2736 if Attribute_Name (Nod) = Name_Address
2737 or else
2738 Attribute_Name (Nod) = Name_Access
2739 or else
2740 Attribute_Name (Nod) = Name_Unchecked_Access
2741 or else
2742 Attribute_Name (Nod) = Name_Unrestricted_Access
2743 then
2744 Check_At_Constant_Address (Prefix (Nod));
2745
2746 else
2747 Check_Expr_Constants (Prefix (Nod));
2748 Check_List_Constants (Expressions (Nod));
2749 end if;
2750
2751 when N_Aggregate =>
2752 Check_List_Constants (Component_Associations (Nod));
2753 Check_List_Constants (Expressions (Nod));
2754
2755 when N_Component_Association =>
2756 Check_Expr_Constants (Expression (Nod));
2757
2758 when N_Extension_Aggregate =>
2759 Check_Expr_Constants (Ancestor_Part (Nod));
2760 Check_List_Constants (Component_Associations (Nod));
2761 Check_List_Constants (Expressions (Nod));
2762
2763 when N_Null =>
2764 return;
2765
2766 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
2767 Check_Expr_Constants (Left_Opnd (Nod));
2768 Check_Expr_Constants (Right_Opnd (Nod));
2769
2770 when N_Unary_Op =>
2771 Check_Expr_Constants (Right_Opnd (Nod));
2772
2773 when N_Type_Conversion |
2774 N_Qualified_Expression |
2775 N_Allocator =>
2776 Check_Expr_Constants (Expression (Nod));
2777
2778 when N_Unchecked_Type_Conversion =>
2779 Check_Expr_Constants (Expression (Nod));
2780
2781 -- If this is a rewritten unchecked conversion, subtypes
2782 -- in this node are those created within the instance.
2783 -- To avoid order of elaboration issues, replace them
2784 -- with their base types. Note that address clauses can
2785 -- cause order of elaboration problems because they are
2786 -- elaborated by the back-end at the point of definition,
2787 -- and may mention entities declared in between (as long
2788 -- as everything is static). It is user-friendly to allow
2789 -- unchecked conversions in this context.
2790
2791 if Nkind (Original_Node (Nod)) = N_Function_Call then
2792 Set_Etype (Expression (Nod),
2793 Base_Type (Etype (Expression (Nod))));
2794 Set_Etype (Nod, Base_Type (Etype (Nod)));
2795 end if;
2796
2797 when N_Function_Call =>
2798 if not Is_Pure (Entity (Name (Nod))) then
2799 Error_Msg_NE
2800 ("invalid address clause for initialized object &!",
2801 Nod, U_Ent);
2802
2803 Error_Msg_NE
2804 ("\function & is not pure ('R'M 13.1(22))!",
2805 Nod, Entity (Name (Nod)));
2806
2807 else
2808 Check_List_Constants (Parameter_Associations (Nod));
2809 end if;
2810
2811 when N_Parameter_Association =>
2812 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
2813
2814 when others =>
2815 Error_Msg_NE
2816 ("invalid address clause for initialized object &!",
2817 Nod, U_Ent);
2818 Error_Msg_NE
2819 ("\must be constant defined before& ('R'M 13.1(22))!",
2820 Nod, U_Ent);
2821 end case;
2822 end Check_Expr_Constants;
2823
2824 --------------------------
2825 -- Check_List_Constants --
2826 --------------------------
2827
2828 procedure Check_List_Constants (Lst : List_Id) is
2829 Nod1 : Node_Id;
2830
2831 begin
2832 if Present (Lst) then
2833 Nod1 := First (Lst);
2834 while Present (Nod1) loop
2835 Check_Expr_Constants (Nod1);
2836 Next (Nod1);
2837 end loop;
2838 end if;
2839 end Check_List_Constants;
2840
2841 -- Start of processing for Check_Constant_Address_Clause
2842
2843 begin
2844 Check_Expr_Constants (Expr);
2845 end Check_Constant_Address_Clause;
2846
2847 ----------------
2848 -- Check_Size --
2849 ----------------
2850
2851 procedure Check_Size
2852 (N : Node_Id;
2853 T : Entity_Id;
2854 Siz : Uint;
2855 Biased : out Boolean)
2856 is
2857 UT : constant Entity_Id := Underlying_Type (T);
2858 M : Uint;
2859
2860 begin
2861 Biased := False;
2862
2863 -- Immediate return if size is same as standard size or if composite
2864 -- item, or generic type, or type with previous errors.
2865
2866 if No (UT)
2867 or else UT = Any_Type
2868 or else Is_Generic_Type (UT)
2869 or else Is_Generic_Type (Root_Type (UT))
2870 or else Is_Composite_Type (UT)
2871 or else (Known_Esize (UT) and then Siz = Esize (UT))
2872 then
2873 return;
2874
2875 -- For fixed-point types, don't check minimum if type is not frozen,
2876 -- since type is not known till then
2877 -- at freeze time.
2878
2879 elsif Is_Fixed_Point_Type (UT)
2880 and then not Is_Frozen (UT)
2881 then
2882 null;
2883
2884 -- Cases for which a minimum check is required
2885
2886 else
2887 M := UI_From_Int (Minimum_Size (UT));
2888
2889 if Siz < M then
2890
2891 -- Size is less than minimum size, but one possibility remains
2892 -- that we can manage with the new size if we bias the type
2893
2894 M := UI_From_Int (Minimum_Size (UT, Biased => True));
2895
2896 if Siz < M then
2897 Error_Msg_Uint_1 := M;
2898 Error_Msg_NE
2899 ("size for& too small, minimum allowed is ^", N, T);
2900 else
2901 Biased := True;
2902 end if;
2903 end if;
2904 end if;
2905 end Check_Size;
2906
2907 -------------------------
2908 -- Get_Alignment_Value --
2909 -------------------------
2910
2911 function Get_Alignment_Value (Expr : Node_Id) return Uint is
2912 Align : constant Uint := Static_Integer (Expr);
2913
2914 begin
2915 if Align = No_Uint then
2916 return No_Uint;
2917
2918 elsif Align <= 0 then
2919 Error_Msg_N ("alignment value must be positive", Expr);
2920 return No_Uint;
2921
2922 else
2923 for J in Int range 0 .. 64 loop
2924 declare
2925 M : constant Uint := Uint_2 ** J;
2926
2927 begin
2928 exit when M = Align;
2929
2930 if M > Align then
2931 Error_Msg_N
2932 ("alignment value must be power of 2", Expr);
2933 return No_Uint;
2934 end if;
2935 end;
2936 end loop;
2937
2938 return Align;
2939 end if;
2940 end Get_Alignment_Value;
2941
2942 ----------------
2943 -- Initialize --
2944 ----------------
2945
2946 procedure Initialize is
2947 begin
2948 Unchecked_Conversions.Init;
2949 end Initialize;
2950
2951 -------------------------
2952 -- Is_Operational_Item --
2953 -------------------------
2954
2955 function Is_Operational_Item (N : Node_Id) return Boolean is
2956 begin
2957 if Nkind (N) /= N_Attribute_Definition_Clause then
2958 return False;
2959 else
2960 declare
2961 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
2962
2963 begin
2964 return Id = Attribute_Input
2965 or else Id = Attribute_Output
2966 or else Id = Attribute_Read
2967 or else Id = Attribute_Write
2968 or else Id = Attribute_External_Tag;
2969 end;
2970 end if;
2971 end Is_Operational_Item;
2972
2973 --------------------------------------
2974 -- Mark_Aliased_Address_As_Volatile --
2975 --------------------------------------
2976
2977 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
2978 Ent : constant Entity_Id := Address_Aliased_Entity (N);
2979
2980 begin
2981 if Present (Ent) then
2982 Set_Treat_As_Volatile (Ent);
2983 end if;
2984 end Mark_Aliased_Address_As_Volatile;
2985
2986 ------------------
2987 -- Minimum_Size --
2988 ------------------
2989
2990 function Minimum_Size
2991 (T : Entity_Id;
2992 Biased : Boolean := False)
2993 return Nat
2994 is
2995 Lo : Uint := No_Uint;
2996 Hi : Uint := No_Uint;
2997 LoR : Ureal := No_Ureal;
2998 HiR : Ureal := No_Ureal;
2999 LoSet : Boolean := False;
3000 HiSet : Boolean := False;
3001 B : Uint;
3002 S : Nat;
3003 Ancest : Entity_Id;
3004 R_Typ : constant Entity_Id := Root_Type (T);
3005
3006 begin
3007 -- If bad type, return 0
3008
3009 if T = Any_Type then
3010 return 0;
3011
3012 -- For generic types, just return zero. There cannot be any legitimate
3013 -- need to know such a size, but this routine may be called with a
3014 -- generic type as part of normal processing.
3015
3016 elsif Is_Generic_Type (R_Typ)
3017 or else R_Typ = Any_Type
3018 then
3019 return 0;
3020
3021 -- Access types
3022
3023 elsif Is_Access_Type (T) then
3024 return System_Address_Size;
3025
3026 -- Floating-point types
3027
3028 elsif Is_Floating_Point_Type (T) then
3029 return UI_To_Int (Esize (R_Typ));
3030
3031 -- Discrete types
3032
3033 elsif Is_Discrete_Type (T) then
3034
3035 -- The following loop is looking for the nearest compile time
3036 -- known bounds following the ancestor subtype chain. The idea
3037 -- is to find the most restrictive known bounds information.
3038
3039 Ancest := T;
3040 loop
3041 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3042 return 0;
3043 end if;
3044
3045 if not LoSet then
3046 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
3047 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
3048 LoSet := True;
3049 exit when HiSet;
3050 end if;
3051 end if;
3052
3053 if not HiSet then
3054 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
3055 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
3056 HiSet := True;
3057 exit when LoSet;
3058 end if;
3059 end if;
3060
3061 Ancest := Ancestor_Subtype (Ancest);
3062
3063 if No (Ancest) then
3064 Ancest := Base_Type (T);
3065
3066 if Is_Generic_Type (Ancest) then
3067 return 0;
3068 end if;
3069 end if;
3070 end loop;
3071
3072 -- Fixed-point types. We can't simply use Expr_Value to get the
3073 -- Corresponding_Integer_Value values of the bounds, since these
3074 -- do not get set till the type is frozen, and this routine can
3075 -- be called before the type is frozen. Similarly the test for
3076 -- bounds being static needs to include the case where we have
3077 -- unanalyzed real literals for the same reason.
3078
3079 elsif Is_Fixed_Point_Type (T) then
3080
3081 -- The following loop is looking for the nearest compile time
3082 -- known bounds following the ancestor subtype chain. The idea
3083 -- is to find the most restrictive known bounds information.
3084
3085 Ancest := T;
3086 loop
3087 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3088 return 0;
3089 end if;
3090
3091 if not LoSet then
3092 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
3093 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
3094 then
3095 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
3096 LoSet := True;
3097 exit when HiSet;
3098 end if;
3099 end if;
3100
3101 if not HiSet then
3102 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3103 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3104 then
3105 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3106 HiSet := True;
3107 exit when LoSet;
3108 end if;
3109 end if;
3110
3111 Ancest := Ancestor_Subtype (Ancest);
3112
3113 if No (Ancest) then
3114 Ancest := Base_Type (T);
3115
3116 if Is_Generic_Type (Ancest) then
3117 return 0;
3118 end if;
3119 end if;
3120 end loop;
3121
3122 Lo := UR_To_Uint (LoR / Small_Value (T));
3123 Hi := UR_To_Uint (HiR / Small_Value (T));
3124
3125 -- No other types allowed
3126
3127 else
3128 raise Program_Error;
3129 end if;
3130
3131 -- Fall through with Hi and Lo set. Deal with biased case.
3132
3133 if (Biased and then not Is_Fixed_Point_Type (T))
3134 or else Has_Biased_Representation (T)
3135 then
3136 Hi := Hi - Lo;
3137 Lo := Uint_0;
3138 end if;
3139
3140 -- Signed case. Note that we consider types like range 1 .. -1 to be
3141 -- signed for the purpose of computing the size, since the bounds
3142 -- have to be accomodated in the base type.
3143
3144 if Lo < 0 or else Hi < 0 then
3145 S := 1;
3146 B := Uint_1;
3147
3148 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3149 -- Note that we accommodate the case where the bounds cross. This
3150 -- can happen either because of the way the bounds are declared
3151 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3152
3153 while Lo < -B
3154 or else Hi < -B
3155 or else Lo >= B
3156 or else Hi >= B
3157 loop
3158 B := Uint_2 ** S;
3159 S := S + 1;
3160 end loop;
3161
3162 -- Unsigned case
3163
3164 else
3165 -- If both bounds are positive, make sure that both are represen-
3166 -- table in the case where the bounds are crossed. This can happen
3167 -- either because of the way the bounds are declared, or because of
3168 -- the algorithm in Freeze_Fixed_Point_Type.
3169
3170 if Lo > Hi then
3171 Hi := Lo;
3172 end if;
3173
3174 -- S = size, (can accommodate 0 .. (2**size - 1))
3175
3176 S := 0;
3177 while Hi >= Uint_2 ** S loop
3178 S := S + 1;
3179 end loop;
3180 end if;
3181
3182 return S;
3183 end Minimum_Size;
3184
3185 -------------------------
3186 -- New_Stream_Function --
3187 -------------------------
3188
3189 procedure New_Stream_Function
3190 (N : Node_Id;
3191 Ent : Entity_Id;
3192 Subp : Entity_Id;
3193 Nam : TSS_Name_Type)
3194 is
3195 Loc : constant Source_Ptr := Sloc (N);
3196 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3197 Subp_Id : Entity_Id;
3198 Subp_Decl : Node_Id;
3199 F : Entity_Id;
3200 Etyp : Entity_Id;
3201
3202 function Build_Spec return Node_Id;
3203 -- Used for declaration and renaming declaration, so that this is
3204 -- treated as a renaming_as_body.
3205
3206 ----------------
3207 -- Build_Spec --
3208 ----------------
3209
3210 function Build_Spec return Node_Id is
3211 begin
3212 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3213
3214 return
3215 Make_Function_Specification (Loc,
3216 Defining_Unit_Name => Subp_Id,
3217 Parameter_Specifications =>
3218 New_List (
3219 Make_Parameter_Specification (Loc,
3220 Defining_Identifier =>
3221 Make_Defining_Identifier (Loc, Name_S),
3222 Parameter_Type =>
3223 Make_Access_Definition (Loc,
3224 Subtype_Mark =>
3225 New_Reference_To (
3226 Designated_Type (Etype (F)), Loc)))),
3227
3228 Subtype_Mark =>
3229 New_Reference_To (Etyp, Loc));
3230 end Build_Spec;
3231
3232 -- Start of processing for New_Stream_Function
3233
3234 begin
3235 F := First_Formal (Subp);
3236 Etyp := Etype (Subp);
3237
3238 if not Is_Tagged_Type (Ent) then
3239 Subp_Decl :=
3240 Make_Subprogram_Declaration (Loc,
3241 Specification => Build_Spec);
3242 Insert_Action (N, Subp_Decl);
3243 end if;
3244
3245 Subp_Decl :=
3246 Make_Subprogram_Renaming_Declaration (Loc,
3247 Specification => Build_Spec,
3248 Name => New_Reference_To (Subp, Loc));
3249
3250 if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
3251 Set_TSS (Base_Type (Ent), Subp_Id);
3252 else
3253 Insert_Action (N, Subp_Decl);
3254 Copy_TSS (Subp_Id, Base_Type (Ent));
3255 end if;
3256 end New_Stream_Function;
3257
3258 --------------------------
3259 -- New_Stream_Procedure --
3260 --------------------------
3261
3262 procedure New_Stream_Procedure
3263 (N : Node_Id;
3264 Ent : Entity_Id;
3265 Subp : Entity_Id;
3266 Nam : TSS_Name_Type;
3267 Out_P : Boolean := False)
3268 is
3269 Loc : constant Source_Ptr := Sloc (N);
3270 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3271 Subp_Id : Entity_Id;
3272 Subp_Decl : Node_Id;
3273 F : Entity_Id;
3274 Etyp : Entity_Id;
3275
3276 function Build_Spec return Node_Id;
3277 -- Used for declaration and renaming declaration, so that this is
3278 -- treated as a renaming_as_body.
3279
3280 ----------------
3281 -- Build_Spec --
3282 ----------------
3283
3284 function Build_Spec return Node_Id is
3285 begin
3286 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3287
3288 return
3289 Make_Procedure_Specification (Loc,
3290 Defining_Unit_Name => Subp_Id,
3291 Parameter_Specifications =>
3292 New_List (
3293 Make_Parameter_Specification (Loc,
3294 Defining_Identifier =>
3295 Make_Defining_Identifier (Loc, Name_S),
3296 Parameter_Type =>
3297 Make_Access_Definition (Loc,
3298 Subtype_Mark =>
3299 New_Reference_To (
3300 Designated_Type (Etype (F)), Loc))),
3301
3302 Make_Parameter_Specification (Loc,
3303 Defining_Identifier =>
3304 Make_Defining_Identifier (Loc, Name_V),
3305 Out_Present => Out_P,
3306 Parameter_Type =>
3307 New_Reference_To (Etyp, Loc))));
3308 end Build_Spec;
3309
3310 -- Start of processing for New_Stream_Procedure
3311
3312 begin
3313 F := First_Formal (Subp);
3314 Etyp := Etype (Next_Formal (F));
3315
3316 if not Is_Tagged_Type (Ent) then
3317 Subp_Decl :=
3318 Make_Subprogram_Declaration (Loc,
3319 Specification => Build_Spec);
3320 Insert_Action (N, Subp_Decl);
3321 end if;
3322
3323 Subp_Decl :=
3324 Make_Subprogram_Renaming_Declaration (Loc,
3325 Specification => Build_Spec,
3326 Name => New_Reference_To (Subp, Loc));
3327
3328 if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
3329 Set_TSS (Base_Type (Ent), Subp_Id);
3330 else
3331 Insert_Action (N, Subp_Decl);
3332 Copy_TSS (Subp_Id, Base_Type (Ent));
3333 end if;
3334 end New_Stream_Procedure;
3335
3336 ---------------------
3337 -- Record_Rep_Item --
3338 ---------------------
3339
3340 procedure Record_Rep_Item (T : Entity_Id; N : Node_Id) is
3341 begin
3342 Set_Next_Rep_Item (N, First_Rep_Item (T));
3343 Set_First_Rep_Item (T, N);
3344 end Record_Rep_Item;
3345
3346 ------------------------
3347 -- Rep_Item_Too_Early --
3348 ------------------------
3349
3350 function Rep_Item_Too_Early
3351 (T : Entity_Id;
3352 N : Node_Id)
3353 return Boolean
3354 is
3355 begin
3356 -- Cannot apply rep items that are not operational items
3357 -- to generic types
3358
3359 if Is_Operational_Item (N) then
3360 return False;
3361
3362 elsif Is_Type (T)
3363 and then Is_Generic_Type (Root_Type (T))
3364 then
3365 Error_Msg_N
3366 ("representation item not allowed for generic type", N);
3367 return True;
3368 end if;
3369
3370 -- Otherwise check for incompleted type
3371
3372 if Is_Incomplete_Or_Private_Type (T)
3373 and then No (Underlying_Type (T))
3374 then
3375 Error_Msg_N
3376 ("representation item must be after full type declaration", N);
3377 return True;
3378
3379 -- If the type has incompleted components, a representation clause is
3380 -- illegal but stream attributes and Convention pragmas are correct.
3381
3382 elsif Has_Private_Component (T) then
3383 if Nkind (N) = N_Pragma then
3384 return False;
3385 else
3386 Error_Msg_N
3387 ("representation item must appear after type is fully defined",
3388 N);
3389 return True;
3390 end if;
3391 else
3392 return False;
3393 end if;
3394 end Rep_Item_Too_Early;
3395
3396 -----------------------
3397 -- Rep_Item_Too_Late --
3398 -----------------------
3399
3400 function Rep_Item_Too_Late
3401 (T : Entity_Id;
3402 N : Node_Id;
3403 FOnly : Boolean := False)
3404 return Boolean
3405 is
3406 S : Entity_Id;
3407 Parent_Type : Entity_Id;
3408
3409 procedure Too_Late;
3410 -- Output the too late message
3411
3412 procedure Too_Late is
3413 begin
3414 Error_Msg_N ("representation item appears too late!", N);
3415 end Too_Late;
3416
3417 -- Start of processing for Rep_Item_Too_Late
3418
3419 begin
3420 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3421 -- types, which may be frozen if they appear in a representation clause
3422 -- for a local type.
3423
3424 if Is_Frozen (T)
3425 and then not From_With_Type (T)
3426 then
3427 Too_Late;
3428 S := First_Subtype (T);
3429
3430 if Present (Freeze_Node (S)) then
3431 Error_Msg_NE
3432 ("?no more representation items for }!", Freeze_Node (S), S);
3433 end if;
3434
3435 return True;
3436
3437 -- Check for case of non-tagged derived type whose parent either has
3438 -- primitive operations, or is a by reference type (RM 13.1(10)).
3439
3440 elsif Is_Type (T)
3441 and then not FOnly
3442 and then Is_Derived_Type (T)
3443 and then not Is_Tagged_Type (T)
3444 then
3445 Parent_Type := Etype (Base_Type (T));
3446
3447 if Has_Primitive_Operations (Parent_Type) then
3448 Too_Late;
3449 Error_Msg_NE
3450 ("primitive operations already defined for&!", N, Parent_Type);
3451 return True;
3452
3453 elsif Is_By_Reference_Type (Parent_Type) then
3454 Too_Late;
3455 Error_Msg_NE
3456 ("parent type & is a by reference type!", N, Parent_Type);
3457 return True;
3458 end if;
3459 end if;
3460
3461 -- No error, link item into head of chain of rep items for the entity
3462
3463 Record_Rep_Item (T, N);
3464 return False;
3465 end Rep_Item_Too_Late;
3466
3467 -------------------------
3468 -- Same_Representation --
3469 -------------------------
3470
3471 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3472 T1 : constant Entity_Id := Underlying_Type (Typ1);
3473 T2 : constant Entity_Id := Underlying_Type (Typ2);
3474
3475 begin
3476 -- A quick check, if base types are the same, then we definitely have
3477 -- the same representation, because the subtype specific representation
3478 -- attributes (Size and Alignment) do not affect representation from
3479 -- the point of view of this test.
3480
3481 if Base_Type (T1) = Base_Type (T2) then
3482 return True;
3483
3484 elsif Is_Private_Type (Base_Type (T2))
3485 and then Base_Type (T1) = Full_View (Base_Type (T2))
3486 then
3487 return True;
3488 end if;
3489
3490 -- Tagged types never have differing representations
3491
3492 if Is_Tagged_Type (T1) then
3493 return True;
3494 end if;
3495
3496 -- Representations are definitely different if conventions differ
3497
3498 if Convention (T1) /= Convention (T2) then
3499 return False;
3500 end if;
3501
3502 -- Representations are different if component alignments differ
3503
3504 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3505 and then
3506 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3507 and then Component_Alignment (T1) /= Component_Alignment (T2)
3508 then
3509 return False;
3510 end if;
3511
3512 -- For arrays, the only real issue is component size. If we know the
3513 -- component size for both arrays, and it is the same, then that's
3514 -- good enough to know we don't have a change of representation.
3515
3516 if Is_Array_Type (T1) then
3517 if Known_Component_Size (T1)
3518 and then Known_Component_Size (T2)
3519 and then Component_Size (T1) = Component_Size (T2)
3520 then
3521 return True;
3522 end if;
3523 end if;
3524
3525 -- Types definitely have same representation if neither has non-standard
3526 -- representation since default representations are always consistent.
3527 -- If only one has non-standard representation, and the other does not,
3528 -- then we consider that they do not have the same representation. They
3529 -- might, but there is no way of telling early enough.
3530
3531 if Has_Non_Standard_Rep (T1) then
3532 if not Has_Non_Standard_Rep (T2) then
3533 return False;
3534 end if;
3535 else
3536 return not Has_Non_Standard_Rep (T2);
3537 end if;
3538
3539 -- Here the two types both have non-standard representation, and we
3540 -- need to determine if they have the same non-standard representation
3541
3542 -- For arrays, we simply need to test if the component sizes are the
3543 -- same. Pragma Pack is reflected in modified component sizes, so this
3544 -- check also deals with pragma Pack.
3545
3546 if Is_Array_Type (T1) then
3547 return Component_Size (T1) = Component_Size (T2);
3548
3549 -- Tagged types always have the same representation, because it is not
3550 -- possible to specify different representations for common fields.
3551
3552 elsif Is_Tagged_Type (T1) then
3553 return True;
3554
3555 -- Case of record types
3556
3557 elsif Is_Record_Type (T1) then
3558
3559 -- Packed status must conform
3560
3561 if Is_Packed (T1) /= Is_Packed (T2) then
3562 return False;
3563
3564 -- Otherwise we must check components. Typ2 maybe a constrained
3565 -- subtype with fewer components, so we compare the components
3566 -- of the base types.
3567
3568 else
3569 Record_Case : declare
3570 CD1, CD2 : Entity_Id;
3571
3572 function Same_Rep return Boolean;
3573 -- CD1 and CD2 are either components or discriminants. This
3574 -- function tests whether the two have the same representation
3575
3576 function Same_Rep return Boolean is
3577 begin
3578 if No (Component_Clause (CD1)) then
3579 return No (Component_Clause (CD2));
3580
3581 else
3582 return
3583 Present (Component_Clause (CD2))
3584 and then
3585 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
3586 and then
3587 Esize (CD1) = Esize (CD2);
3588 end if;
3589 end Same_Rep;
3590
3591 -- Start processing for Record_Case
3592
3593 begin
3594 if Has_Discriminants (T1) then
3595 CD1 := First_Discriminant (T1);
3596 CD2 := First_Discriminant (T2);
3597
3598 -- The number of discriminants may be different if the
3599 -- derived type has fewer (constrained by values). The
3600 -- invisible discriminants retain the representation of
3601 -- the original, so the discrepancy does not per se
3602 -- indicate a different representation.
3603
3604 while Present (CD1)
3605 and then Present (CD2)
3606 loop
3607 if not Same_Rep then
3608 return False;
3609 else
3610 Next_Discriminant (CD1);
3611 Next_Discriminant (CD2);
3612 end if;
3613 end loop;
3614 end if;
3615
3616 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
3617 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
3618
3619 while Present (CD1) loop
3620 if not Same_Rep then
3621 return False;
3622 else
3623 Next_Component (CD1);
3624 Next_Component (CD2);
3625 end if;
3626 end loop;
3627
3628 return True;
3629 end Record_Case;
3630 end if;
3631
3632 -- For enumeration types, we must check each literal to see if the
3633 -- representation is the same. Note that we do not permit enumeration
3634 -- reprsentation clauses for Character and Wide_Character, so these
3635 -- cases were already dealt with.
3636
3637 elsif Is_Enumeration_Type (T1) then
3638
3639 Enumeration_Case : declare
3640 L1, L2 : Entity_Id;
3641
3642 begin
3643 L1 := First_Literal (T1);
3644 L2 := First_Literal (T2);
3645
3646 while Present (L1) loop
3647 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
3648 return False;
3649 else
3650 Next_Literal (L1);
3651 Next_Literal (L2);
3652 end if;
3653 end loop;
3654
3655 return True;
3656
3657 end Enumeration_Case;
3658
3659 -- Any other types have the same representation for these purposes
3660
3661 else
3662 return True;
3663 end if;
3664 end Same_Representation;
3665
3666 --------------------
3667 -- Set_Enum_Esize --
3668 --------------------
3669
3670 procedure Set_Enum_Esize (T : Entity_Id) is
3671 Lo : Uint;
3672 Hi : Uint;
3673 Sz : Nat;
3674
3675 begin
3676 Init_Alignment (T);
3677
3678 -- Find the minimum standard size (8,16,32,64) that fits
3679
3680 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
3681 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
3682
3683 if Lo < 0 then
3684 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
3685 Sz := Standard_Character_Size; -- May be > 8 on some targets
3686
3687 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
3688 Sz := 16;
3689
3690 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
3691 Sz := 32;
3692
3693 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
3694 Sz := 64;
3695 end if;
3696
3697 else
3698 if Hi < Uint_2**08 then
3699 Sz := Standard_Character_Size; -- May be > 8 on some targets
3700
3701 elsif Hi < Uint_2**16 then
3702 Sz := 16;
3703
3704 elsif Hi < Uint_2**32 then
3705 Sz := 32;
3706
3707 else pragma Assert (Hi < Uint_2**63);
3708 Sz := 64;
3709 end if;
3710 end if;
3711
3712 -- That minimum is the proper size unless we have a foreign convention
3713 -- and the size required is 32 or less, in which case we bump the size
3714 -- up to 32. This is required for C and C++ and seems reasonable for
3715 -- all other foreign conventions.
3716
3717 if Has_Foreign_Convention (T)
3718 and then Esize (T) < Standard_Integer_Size
3719 then
3720 Init_Esize (T, Standard_Integer_Size);
3721
3722 else
3723 Init_Esize (T, Sz);
3724 end if;
3725 end Set_Enum_Esize;
3726
3727 -----------------------------------
3728 -- Validate_Unchecked_Conversion --
3729 -----------------------------------
3730
3731 procedure Validate_Unchecked_Conversion
3732 (N : Node_Id;
3733 Act_Unit : Entity_Id)
3734 is
3735 Source : Entity_Id;
3736 Target : Entity_Id;
3737 Vnode : Node_Id;
3738
3739 begin
3740 -- Obtain source and target types. Note that we call Ancestor_Subtype
3741 -- here because the processing for generic instantiation always makes
3742 -- subtypes, and we want the original frozen actual types.
3743
3744 -- If we are dealing with private types, then do the check on their
3745 -- fully declared counterparts if the full declarations have been
3746 -- encountered (they don't have to be visible, but they must exist!)
3747
3748 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
3749
3750 if Is_Private_Type (Source)
3751 and then Present (Underlying_Type (Source))
3752 then
3753 Source := Underlying_Type (Source);
3754 end if;
3755
3756 Target := Ancestor_Subtype (Etype (Act_Unit));
3757
3758 -- If either type is generic, the instantiation happens within a
3759 -- generic unit, and there is nothing to check. The proper check
3760 -- will happen when the enclosing generic is instantiated.
3761
3762 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
3763 return;
3764 end if;
3765
3766 if Is_Private_Type (Target)
3767 and then Present (Underlying_Type (Target))
3768 then
3769 Target := Underlying_Type (Target);
3770 end if;
3771
3772 -- Source may be unconstrained array, but not target
3773
3774 if Is_Array_Type (Target)
3775 and then not Is_Constrained (Target)
3776 then
3777 Error_Msg_N
3778 ("unchecked conversion to unconstrained array not allowed", N);
3779 return;
3780 end if;
3781
3782 -- Make entry in unchecked conversion table for later processing
3783 -- by Validate_Unchecked_Conversions, which will check sizes and
3784 -- alignments (using values set by the back-end where possible).
3785 -- This is only done if the appropriate warning is active
3786
3787 if Warn_On_Unchecked_Conversion then
3788 Unchecked_Conversions.Append
3789 (New_Val => UC_Entry'
3790 (Enode => N,
3791 Source => Source,
3792 Target => Target));
3793
3794 -- If both sizes are known statically now, then back end annotation
3795 -- is not required to do a proper check but if either size is not
3796 -- known statically, then we need the annotation.
3797
3798 if Known_Static_RM_Size (Source)
3799 and then Known_Static_RM_Size (Target)
3800 then
3801 null;
3802 else
3803 Back_Annotate_Rep_Info := True;
3804 end if;
3805 end if;
3806
3807 -- Generate N_Validate_Unchecked_Conversion node for back end if
3808 -- the back end needs to perform special validation checks. At the
3809 -- current time, only the JVM version requires such checks.
3810
3811 if Java_VM then
3812 Vnode :=
3813 Make_Validate_Unchecked_Conversion (Sloc (N));
3814 Set_Source_Type (Vnode, Source);
3815 Set_Target_Type (Vnode, Target);
3816 Insert_After (N, Vnode);
3817 end if;
3818 end Validate_Unchecked_Conversion;
3819
3820 ------------------------------------
3821 -- Validate_Unchecked_Conversions --
3822 ------------------------------------
3823
3824 procedure Validate_Unchecked_Conversions is
3825 begin
3826 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
3827 declare
3828 T : UC_Entry renames Unchecked_Conversions.Table (N);
3829
3830 Enode : constant Node_Id := T.Enode;
3831 Source : constant Entity_Id := T.Source;
3832 Target : constant Entity_Id := T.Target;
3833
3834 Source_Siz : Uint;
3835 Target_Siz : Uint;
3836
3837 begin
3838 -- This validation check, which warns if we have unequal sizes
3839 -- for unchecked conversion, and thus potentially implementation
3840 -- dependent semantics, is one of the few occasions on which we
3841 -- use the official RM size instead of Esize. See description
3842 -- in Einfo "Handling of Type'Size Values" for details.
3843
3844 if Serious_Errors_Detected = 0
3845 and then Known_Static_RM_Size (Source)
3846 and then Known_Static_RM_Size (Target)
3847 then
3848 Source_Siz := RM_Size (Source);
3849 Target_Siz := RM_Size (Target);
3850
3851 if Source_Siz /= Target_Siz then
3852 Error_Msg_N
3853 ("types for unchecked conversion have different sizes?",
3854 Enode);
3855
3856 if All_Errors_Mode then
3857 Error_Msg_Name_1 := Chars (Source);
3858 Error_Msg_Uint_1 := Source_Siz;
3859 Error_Msg_Name_2 := Chars (Target);
3860 Error_Msg_Uint_2 := Target_Siz;
3861 Error_Msg_N
3862 ("\size of % is ^, size of % is ^?", Enode);
3863
3864 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
3865
3866 if Is_Discrete_Type (Source)
3867 and then Is_Discrete_Type (Target)
3868 then
3869 if Source_Siz > Target_Siz then
3870 Error_Msg_N
3871 ("\^ high order bits of source will be ignored?",
3872 Enode);
3873
3874 elsif Is_Unsigned_Type (Source) then
3875 Error_Msg_N
3876 ("\source will be extended with ^ high order " &
3877 "zero bits?", Enode);
3878
3879 else
3880 Error_Msg_N
3881 ("\source will be extended with ^ high order " &
3882 "sign bits?",
3883 Enode);
3884 end if;
3885
3886 elsif Source_Siz < Target_Siz then
3887 if Is_Discrete_Type (Target) then
3888 if Bytes_Big_Endian then
3889 Error_Msg_N
3890 ("\target value will include ^ undefined " &
3891 "low order bits?",
3892 Enode);
3893 else
3894 Error_Msg_N
3895 ("\target value will include ^ undefined " &
3896 "high order bits?",
3897 Enode);
3898 end if;
3899
3900 else
3901 Error_Msg_N
3902 ("\^ trailing bits of target value will be " &
3903 "undefined?", Enode);
3904 end if;
3905
3906 else pragma Assert (Source_Siz > Target_Siz);
3907 Error_Msg_N
3908 ("\^ trailing bits of source will be ignored?",
3909 Enode);
3910 end if;
3911 end if;
3912 end if;
3913 end if;
3914
3915 -- If both types are access types, we need to check the alignment.
3916 -- If the alignment of both is specified, we can do it here.
3917
3918 if Serious_Errors_Detected = 0
3919 and then Ekind (Source) in Access_Kind
3920 and then Ekind (Target) in Access_Kind
3921 and then Target_Strict_Alignment
3922 and then Present (Designated_Type (Source))
3923 and then Present (Designated_Type (Target))
3924 then
3925 declare
3926 D_Source : constant Entity_Id := Designated_Type (Source);
3927 D_Target : constant Entity_Id := Designated_Type (Target);
3928
3929 begin
3930 if Known_Alignment (D_Source)
3931 and then Known_Alignment (D_Target)
3932 then
3933 declare
3934 Source_Align : constant Uint := Alignment (D_Source);
3935 Target_Align : constant Uint := Alignment (D_Target);
3936
3937 begin
3938 if Source_Align < Target_Align
3939 and then not Is_Tagged_Type (D_Source)
3940 then
3941 Error_Msg_Uint_1 := Target_Align;
3942 Error_Msg_Uint_2 := Source_Align;
3943 Error_Msg_Node_2 := D_Source;
3944 Error_Msg_NE
3945 ("alignment of & (^) is stricter than " &
3946 "alignment of & (^)?", Enode, D_Target);
3947
3948 if All_Errors_Mode then
3949 Error_Msg_N
3950 ("\resulting access value may have invalid " &
3951 "alignment?", Enode);
3952 end if;
3953 end if;
3954 end;
3955 end if;
3956 end;
3957 end if;
3958 end;
3959 end loop;
3960 end Validate_Unchecked_Conversions;
3961
3962 end Sem_Ch13;