[multiple changes]
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Restrict; use Restrict;
41 with Rident; use Rident;
42 with Rtsfind; use Rtsfind;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Table;
56 with Targparm; use Targparm;
57 with Ttypes; use Ttypes;
58 with Tbuild; use Tbuild;
59 with Urealp; use Urealp;
60
61 with GNAT.Heap_Sort_G;
62
63 package body Sem_Ch13 is
64
65 SSU : constant Pos := System_Storage_Unit;
66 -- Convenient short hand for commonly used constant
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
73 -- This routine is called after setting the Esize of type entity Typ.
74 -- The purpose is to deal with the situation where an alignment has been
75 -- inherited from a derived type that is no longer appropriate for the
76 -- new Esize value. In this case, we reset the Alignment to unknown.
77
78 function Get_Alignment_Value (Expr : Node_Id) return Uint;
79 -- Given the expression for an alignment value, returns the corresponding
80 -- Uint value. If the value is inappropriate, then error messages are
81 -- posted as required, and a value of No_Uint is returned.
82
83 function Is_Operational_Item (N : Node_Id) return Boolean;
84 -- A specification for a stream attribute is allowed before the full
85 -- type is declared, as explained in AI-00137 and the corrigendum.
86 -- Attributes that do not specify a representation characteristic are
87 -- operational attributes.
88
89 procedure New_Stream_Subprogram
90 (N : Node_Id;
91 Ent : Entity_Id;
92 Subp : Entity_Id;
93 Nam : TSS_Name_Type);
94 -- Create a subprogram renaming of a given stream attribute to the
95 -- designated subprogram and then in the tagged case, provide this as a
96 -- primitive operation, or in the non-tagged case make an appropriate TSS
97 -- entry. This is more properly an expansion activity than just semantics,
98 -- but the presence of user-defined stream functions for limited types is a
99 -- legality check, which is why this takes place here rather than in
100 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
101 -- function to be generated.
102 --
103 -- To avoid elaboration anomalies with freeze nodes, for untagged types
104 -- we generate both a subprogram declaration and a subprogram renaming
105 -- declaration, so that the attribute specification is handled as a
106 -- renaming_as_body. For tagged types, the specification is one of the
107 -- primitive specs.
108
109 procedure Set_Biased
110 (E : Entity_Id;
111 N : Node_Id;
112 Msg : String;
113 Biased : Boolean := True);
114 -- If Biased is True, sets Has_Biased_Representation flag for E, and
115 -- outputs a warning message at node N if Warn_On_Biased_Representation is
116 -- is True. This warning inserts the string Msg to describe the construct
117 -- causing biasing.
118
119 ----------------------------------------------
120 -- Table for Validate_Unchecked_Conversions --
121 ----------------------------------------------
122
123 -- The following table collects unchecked conversions for validation.
124 -- Entries are made by Validate_Unchecked_Conversion and then the
125 -- call to Validate_Unchecked_Conversions does the actual error
126 -- checking and posting of warnings. The reason for this delayed
127 -- processing is to take advantage of back-annotations of size and
128 -- alignment values performed by the back end.
129
130 -- Note: the reason we store a Source_Ptr value instead of a Node_Id
131 -- is that by the time Validate_Unchecked_Conversions is called, Sprint
132 -- will already have modified all Sloc values if the -gnatD option is set.
133
134 type UC_Entry is record
135 Eloc : Source_Ptr; -- node used for posting warnings
136 Source : Entity_Id; -- source type for unchecked conversion
137 Target : Entity_Id; -- target type for unchecked conversion
138 end record;
139
140 package Unchecked_Conversions is new Table.Table (
141 Table_Component_Type => UC_Entry,
142 Table_Index_Type => Int,
143 Table_Low_Bound => 1,
144 Table_Initial => 50,
145 Table_Increment => 200,
146 Table_Name => "Unchecked_Conversions");
147
148 ----------------------------------------
149 -- Table for Validate_Address_Clauses --
150 ----------------------------------------
151
152 -- If an address clause has the form
153
154 -- for X'Address use Expr
155
156 -- where Expr is of the form Y'Address or recursively is a reference
157 -- to a constant of either of these forms, and X and Y are entities of
158 -- objects, then if Y has a smaller alignment than X, that merits a
159 -- warning about possible bad alignment. The following table collects
160 -- address clauses of this kind. We put these in a table so that they
161 -- can be checked after the back end has completed annotation of the
162 -- alignments of objects, since we can catch more cases that way.
163
164 type Address_Clause_Check_Record is record
165 N : Node_Id;
166 -- The address clause
167
168 X : Entity_Id;
169 -- The entity of the object overlaying Y
170
171 Y : Entity_Id;
172 -- The entity of the object being overlaid
173
174 Off : Boolean;
175 -- Whether the address is offseted within Y
176 end record;
177
178 package Address_Clause_Checks is new Table.Table (
179 Table_Component_Type => Address_Clause_Check_Record,
180 Table_Index_Type => Int,
181 Table_Low_Bound => 1,
182 Table_Initial => 20,
183 Table_Increment => 200,
184 Table_Name => "Address_Clause_Checks");
185
186 -----------------------------------------
187 -- Adjust_Record_For_Reverse_Bit_Order --
188 -----------------------------------------
189
190 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
191 Comp : Node_Id;
192 CC : Node_Id;
193
194 begin
195 -- Processing depends on version of Ada
196
197 -- For Ada 95, we just renumber bits within a storage unit. We do the
198 -- same for Ada 83 mode, since we recognize pragma Bit_Order in Ada 83,
199 -- and are free to add this extension.
200
201 if Ada_Version < Ada_2005 then
202 Comp := First_Component_Or_Discriminant (R);
203 while Present (Comp) loop
204 CC := Component_Clause (Comp);
205
206 -- If component clause is present, then deal with the non-default
207 -- bit order case for Ada 95 mode.
208
209 -- We only do this processing for the base type, and in fact that
210 -- is important, since otherwise if there are record subtypes, we
211 -- could reverse the bits once for each subtype, which is wrong.
212
213 if Present (CC)
214 and then Ekind (R) = E_Record_Type
215 then
216 declare
217 CFB : constant Uint := Component_Bit_Offset (Comp);
218 CSZ : constant Uint := Esize (Comp);
219 CLC : constant Node_Id := Component_Clause (Comp);
220 Pos : constant Node_Id := Position (CLC);
221 FB : constant Node_Id := First_Bit (CLC);
222
223 Storage_Unit_Offset : constant Uint :=
224 CFB / System_Storage_Unit;
225
226 Start_Bit : constant Uint :=
227 CFB mod System_Storage_Unit;
228
229 begin
230 -- Cases where field goes over storage unit boundary
231
232 if Start_Bit + CSZ > System_Storage_Unit then
233
234 -- Allow multi-byte field but generate warning
235
236 if Start_Bit mod System_Storage_Unit = 0
237 and then CSZ mod System_Storage_Unit = 0
238 then
239 Error_Msg_N
240 ("multi-byte field specified with non-standard"
241 & " Bit_Order?", CLC);
242
243 if Bytes_Big_Endian then
244 Error_Msg_N
245 ("bytes are not reversed "
246 & "(component is big-endian)?", CLC);
247 else
248 Error_Msg_N
249 ("bytes are not reversed "
250 & "(component is little-endian)?", CLC);
251 end if;
252
253 -- Do not allow non-contiguous field
254
255 else
256 Error_Msg_N
257 ("attempt to specify non-contiguous field "
258 & "not permitted", CLC);
259 Error_Msg_N
260 ("\caused by non-standard Bit_Order "
261 & "specified", CLC);
262 Error_Msg_N
263 ("\consider possibility of using "
264 & "Ada 2005 mode here", CLC);
265 end if;
266
267 -- Case where field fits in one storage unit
268
269 else
270 -- Give warning if suspicious component clause
271
272 if Intval (FB) >= System_Storage_Unit
273 and then Warn_On_Reverse_Bit_Order
274 then
275 Error_Msg_N
276 ("?Bit_Order clause does not affect " &
277 "byte ordering", Pos);
278 Error_Msg_Uint_1 :=
279 Intval (Pos) + Intval (FB) /
280 System_Storage_Unit;
281 Error_Msg_N
282 ("?position normalized to ^ before bit " &
283 "order interpreted", Pos);
284 end if;
285
286 -- Here is where we fix up the Component_Bit_Offset value
287 -- to account for the reverse bit order. Some examples of
288 -- what needs to be done are:
289
290 -- First_Bit .. Last_Bit Component_Bit_Offset
291 -- old new old new
292
293 -- 0 .. 0 7 .. 7 0 7
294 -- 0 .. 1 6 .. 7 0 6
295 -- 0 .. 2 5 .. 7 0 5
296 -- 0 .. 7 0 .. 7 0 4
297
298 -- 1 .. 1 6 .. 6 1 6
299 -- 1 .. 4 3 .. 6 1 3
300 -- 4 .. 7 0 .. 3 4 0
301
302 -- The rule is that the first bit is is obtained by
303 -- subtracting the old ending bit from storage_unit - 1.
304
305 Set_Component_Bit_Offset
306 (Comp,
307 (Storage_Unit_Offset * System_Storage_Unit) +
308 (System_Storage_Unit - 1) -
309 (Start_Bit + CSZ - 1));
310
311 Set_Normalized_First_Bit
312 (Comp,
313 Component_Bit_Offset (Comp) mod
314 System_Storage_Unit);
315 end if;
316 end;
317 end if;
318
319 Next_Component_Or_Discriminant (Comp);
320 end loop;
321
322 -- For Ada 2005, we do machine scalar processing, as fully described In
323 -- AI-133. This involves gathering all components which start at the
324 -- same byte offset and processing them together. Same approach is still
325 -- valid in later versions including Ada 2012.
326
327 else
328 declare
329 Max_Machine_Scalar_Size : constant Uint :=
330 UI_From_Int
331 (Standard_Long_Long_Integer_Size);
332 -- We use this as the maximum machine scalar size
333
334 Num_CC : Natural;
335 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
336
337 begin
338 -- This first loop through components does two things. First it
339 -- deals with the case of components with component clauses whose
340 -- length is greater than the maximum machine scalar size (either
341 -- accepting them or rejecting as needed). Second, it counts the
342 -- number of components with component clauses whose length does
343 -- not exceed this maximum for later processing.
344
345 Num_CC := 0;
346 Comp := First_Component_Or_Discriminant (R);
347 while Present (Comp) loop
348 CC := Component_Clause (Comp);
349
350 if Present (CC) then
351 declare
352 Fbit : constant Uint :=
353 Static_Integer (First_Bit (CC));
354
355 begin
356 -- Case of component with size > max machine scalar
357
358 if Esize (Comp) > Max_Machine_Scalar_Size then
359
360 -- Must begin on byte boundary
361
362 if Fbit mod SSU /= 0 then
363 Error_Msg_N
364 ("illegal first bit value for "
365 & "reverse bit order",
366 First_Bit (CC));
367 Error_Msg_Uint_1 := SSU;
368 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
369
370 Error_Msg_N
371 ("\must be a multiple of ^ "
372 & "if size greater than ^",
373 First_Bit (CC));
374
375 -- Must end on byte boundary
376
377 elsif Esize (Comp) mod SSU /= 0 then
378 Error_Msg_N
379 ("illegal last bit value for "
380 & "reverse bit order",
381 Last_Bit (CC));
382 Error_Msg_Uint_1 := SSU;
383 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
384
385 Error_Msg_N
386 ("\must be a multiple of ^ if size "
387 & "greater than ^",
388 Last_Bit (CC));
389
390 -- OK, give warning if enabled
391
392 elsif Warn_On_Reverse_Bit_Order then
393 Error_Msg_N
394 ("multi-byte field specified with "
395 & " non-standard Bit_Order?", CC);
396
397 if Bytes_Big_Endian then
398 Error_Msg_N
399 ("\bytes are not reversed "
400 & "(component is big-endian)?", CC);
401 else
402 Error_Msg_N
403 ("\bytes are not reversed "
404 & "(component is little-endian)?", CC);
405 end if;
406 end if;
407
408 -- Case where size is not greater than max machine
409 -- scalar. For now, we just count these.
410
411 else
412 Num_CC := Num_CC + 1;
413 end if;
414 end;
415 end if;
416
417 Next_Component_Or_Discriminant (Comp);
418 end loop;
419
420 -- We need to sort the component clauses on the basis of the
421 -- Position values in the clause, so we can group clauses with
422 -- the same Position. together to determine the relevant machine
423 -- scalar size.
424
425 Sort_CC : declare
426 Comps : array (0 .. Num_CC) of Entity_Id;
427 -- Array to collect component and discriminant entities. The
428 -- data starts at index 1, the 0'th entry is for the sort
429 -- routine.
430
431 function CP_Lt (Op1, Op2 : Natural) return Boolean;
432 -- Compare routine for Sort
433
434 procedure CP_Move (From : Natural; To : Natural);
435 -- Move routine for Sort
436
437 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
438
439 Start : Natural;
440 Stop : Natural;
441 -- Start and stop positions in the component list of the set of
442 -- components with the same starting position (that constitute
443 -- components in a single machine scalar).
444
445 MaxL : Uint;
446 -- Maximum last bit value of any component in this set
447
448 MSS : Uint;
449 -- Corresponding machine scalar size
450
451 -----------
452 -- CP_Lt --
453 -----------
454
455 function CP_Lt (Op1, Op2 : Natural) return Boolean is
456 begin
457 return Position (Component_Clause (Comps (Op1))) <
458 Position (Component_Clause (Comps (Op2)));
459 end CP_Lt;
460
461 -------------
462 -- CP_Move --
463 -------------
464
465 procedure CP_Move (From : Natural; To : Natural) is
466 begin
467 Comps (To) := Comps (From);
468 end CP_Move;
469
470 -- Start of processing for Sort_CC
471
472 begin
473 -- Collect the component clauses
474
475 Num_CC := 0;
476 Comp := First_Component_Or_Discriminant (R);
477 while Present (Comp) loop
478 if Present (Component_Clause (Comp))
479 and then Esize (Comp) <= Max_Machine_Scalar_Size
480 then
481 Num_CC := Num_CC + 1;
482 Comps (Num_CC) := Comp;
483 end if;
484
485 Next_Component_Or_Discriminant (Comp);
486 end loop;
487
488 -- Sort by ascending position number
489
490 Sorting.Sort (Num_CC);
491
492 -- We now have all the components whose size does not exceed
493 -- the max machine scalar value, sorted by starting position.
494 -- In this loop we gather groups of clauses starting at the
495 -- same position, to process them in accordance with AI-133.
496
497 Stop := 0;
498 while Stop < Num_CC loop
499 Start := Stop + 1;
500 Stop := Start;
501 MaxL :=
502 Static_Integer
503 (Last_Bit (Component_Clause (Comps (Start))));
504 while Stop < Num_CC loop
505 if Static_Integer
506 (Position (Component_Clause (Comps (Stop + 1)))) =
507 Static_Integer
508 (Position (Component_Clause (Comps (Stop))))
509 then
510 Stop := Stop + 1;
511 MaxL :=
512 UI_Max
513 (MaxL,
514 Static_Integer
515 (Last_Bit
516 (Component_Clause (Comps (Stop)))));
517 else
518 exit;
519 end if;
520 end loop;
521
522 -- Now we have a group of component clauses from Start to
523 -- Stop whose positions are identical, and MaxL is the
524 -- maximum last bit value of any of these components.
525
526 -- We need to determine the corresponding machine scalar
527 -- size. This loop assumes that machine scalar sizes are
528 -- even, and that each possible machine scalar has twice
529 -- as many bits as the next smaller one.
530
531 MSS := Max_Machine_Scalar_Size;
532 while MSS mod 2 = 0
533 and then (MSS / 2) >= SSU
534 and then (MSS / 2) > MaxL
535 loop
536 MSS := MSS / 2;
537 end loop;
538
539 -- Here is where we fix up the Component_Bit_Offset value
540 -- to account for the reverse bit order. Some examples of
541 -- what needs to be done for the case of a machine scalar
542 -- size of 8 are:
543
544 -- First_Bit .. Last_Bit Component_Bit_Offset
545 -- old new old new
546
547 -- 0 .. 0 7 .. 7 0 7
548 -- 0 .. 1 6 .. 7 0 6
549 -- 0 .. 2 5 .. 7 0 5
550 -- 0 .. 7 0 .. 7 0 4
551
552 -- 1 .. 1 6 .. 6 1 6
553 -- 1 .. 4 3 .. 6 1 3
554 -- 4 .. 7 0 .. 3 4 0
555
556 -- The rule is that the first bit is obtained by subtracting
557 -- the old ending bit from machine scalar size - 1.
558
559 for C in Start .. Stop loop
560 declare
561 Comp : constant Entity_Id := Comps (C);
562 CC : constant Node_Id :=
563 Component_Clause (Comp);
564 LB : constant Uint :=
565 Static_Integer (Last_Bit (CC));
566 NFB : constant Uint := MSS - Uint_1 - LB;
567 NLB : constant Uint := NFB + Esize (Comp) - 1;
568 Pos : constant Uint :=
569 Static_Integer (Position (CC));
570
571 begin
572 if Warn_On_Reverse_Bit_Order then
573 Error_Msg_Uint_1 := MSS;
574 Error_Msg_N
575 ("info: reverse bit order in machine " &
576 "scalar of length^?", First_Bit (CC));
577 Error_Msg_Uint_1 := NFB;
578 Error_Msg_Uint_2 := NLB;
579
580 if Bytes_Big_Endian then
581 Error_Msg_NE
582 ("?\info: big-endian range for "
583 & "component & is ^ .. ^",
584 First_Bit (CC), Comp);
585 else
586 Error_Msg_NE
587 ("?\info: little-endian range "
588 & "for component & is ^ .. ^",
589 First_Bit (CC), Comp);
590 end if;
591 end if;
592
593 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
594 Set_Normalized_First_Bit (Comp, NFB mod SSU);
595 end;
596 end loop;
597 end loop;
598 end Sort_CC;
599 end;
600 end if;
601 end Adjust_Record_For_Reverse_Bit_Order;
602
603 --------------------------------------
604 -- Alignment_Check_For_Esize_Change --
605 --------------------------------------
606
607 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
608 begin
609 -- If the alignment is known, and not set by a rep clause, and is
610 -- inconsistent with the size being set, then reset it to unknown,
611 -- we assume in this case that the size overrides the inherited
612 -- alignment, and that the alignment must be recomputed.
613
614 if Known_Alignment (Typ)
615 and then not Has_Alignment_Clause (Typ)
616 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
617 then
618 Init_Alignment (Typ);
619 end if;
620 end Alignment_Check_For_Esize_Change;
621
622 -----------------------
623 -- Analyze_At_Clause --
624 -----------------------
625
626 -- An at clause is replaced by the corresponding Address attribute
627 -- definition clause that is the preferred approach in Ada 95.
628
629 procedure Analyze_At_Clause (N : Node_Id) is
630 CS : constant Boolean := Comes_From_Source (N);
631
632 begin
633 -- This is an obsolescent feature
634
635 Check_Restriction (No_Obsolescent_Features, N);
636
637 if Warn_On_Obsolescent_Feature then
638 Error_Msg_N
639 ("at clause is an obsolescent feature (RM J.7(2))?", N);
640 Error_Msg_N
641 ("\use address attribute definition clause instead?", N);
642 end if;
643
644 -- Rewrite as address clause
645
646 Rewrite (N,
647 Make_Attribute_Definition_Clause (Sloc (N),
648 Name => Identifier (N),
649 Chars => Name_Address,
650 Expression => Expression (N)));
651
652 -- We preserve Comes_From_Source, since logically the clause still
653 -- comes from the source program even though it is changed in form.
654
655 Set_Comes_From_Source (N, CS);
656
657 -- Analyze rewritten clause
658
659 Analyze_Attribute_Definition_Clause (N);
660 end Analyze_At_Clause;
661
662 -----------------------------------------
663 -- Analyze_Attribute_Definition_Clause --
664 -----------------------------------------
665
666 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
667 Loc : constant Source_Ptr := Sloc (N);
668 Nam : constant Node_Id := Name (N);
669 Attr : constant Name_Id := Chars (N);
670 Expr : constant Node_Id := Expression (N);
671 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
672 Ent : Entity_Id;
673 U_Ent : Entity_Id;
674
675 FOnly : Boolean := False;
676 -- Reset to True for subtype specific attribute (Alignment, Size)
677 -- and for stream attributes, i.e. those cases where in the call
678 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
679 -- rules are checked. Note that the case of stream attributes is not
680 -- clear from the RM, but see AI95-00137. Also, the RM seems to
681 -- disallow Storage_Size for derived task types, but that is also
682 -- clearly unintentional.
683
684 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
685 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
686 -- definition clauses.
687
688 -----------------------------------
689 -- Analyze_Stream_TSS_Definition --
690 -----------------------------------
691
692 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
693 Subp : Entity_Id := Empty;
694 I : Interp_Index;
695 It : Interp;
696 Pnam : Entity_Id;
697
698 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
699
700 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
701 -- Return true if the entity is a subprogram with an appropriate
702 -- profile for the attribute being defined.
703
704 ----------------------
705 -- Has_Good_Profile --
706 ----------------------
707
708 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
709 F : Entity_Id;
710 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
711 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
712 (False => E_Procedure, True => E_Function);
713 Typ : Entity_Id;
714
715 begin
716 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
717 return False;
718 end if;
719
720 F := First_Formal (Subp);
721
722 if No (F)
723 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
724 or else Designated_Type (Etype (F)) /=
725 Class_Wide_Type (RTE (RE_Root_Stream_Type))
726 then
727 return False;
728 end if;
729
730 if not Is_Function then
731 Next_Formal (F);
732
733 declare
734 Expected_Mode : constant array (Boolean) of Entity_Kind :=
735 (False => E_In_Parameter,
736 True => E_Out_Parameter);
737 begin
738 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
739 return False;
740 end if;
741 end;
742
743 Typ := Etype (F);
744
745 else
746 Typ := Etype (Subp);
747 end if;
748
749 return Base_Type (Typ) = Base_Type (Ent)
750 and then No (Next_Formal (F));
751 end Has_Good_Profile;
752
753 -- Start of processing for Analyze_Stream_TSS_Definition
754
755 begin
756 FOnly := True;
757
758 if not Is_Type (U_Ent) then
759 Error_Msg_N ("local name must be a subtype", Nam);
760 return;
761 end if;
762
763 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
764
765 -- If Pnam is present, it can be either inherited from an ancestor
766 -- type (in which case it is legal to redefine it for this type), or
767 -- be a previous definition of the attribute for the same type (in
768 -- which case it is illegal).
769
770 -- In the first case, it will have been analyzed already, and we
771 -- can check that its profile does not match the expected profile
772 -- for a stream attribute of U_Ent. In the second case, either Pnam
773 -- has been analyzed (and has the expected profile), or it has not
774 -- been analyzed yet (case of a type that has not been frozen yet
775 -- and for which the stream attribute has been set using Set_TSS).
776
777 if Present (Pnam)
778 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
779 then
780 Error_Msg_Sloc := Sloc (Pnam);
781 Error_Msg_Name_1 := Attr;
782 Error_Msg_N ("% attribute already defined #", Nam);
783 return;
784 end if;
785
786 Analyze (Expr);
787
788 if Is_Entity_Name (Expr) then
789 if not Is_Overloaded (Expr) then
790 if Has_Good_Profile (Entity (Expr)) then
791 Subp := Entity (Expr);
792 end if;
793
794 else
795 Get_First_Interp (Expr, I, It);
796 while Present (It.Nam) loop
797 if Has_Good_Profile (It.Nam) then
798 Subp := It.Nam;
799 exit;
800 end if;
801
802 Get_Next_Interp (I, It);
803 end loop;
804 end if;
805 end if;
806
807 if Present (Subp) then
808 if Is_Abstract_Subprogram (Subp) then
809 Error_Msg_N ("stream subprogram must not be abstract", Expr);
810 return;
811 end if;
812
813 Set_Entity (Expr, Subp);
814 Set_Etype (Expr, Etype (Subp));
815
816 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
817
818 else
819 Error_Msg_Name_1 := Attr;
820 Error_Msg_N ("incorrect expression for% attribute", Expr);
821 end if;
822 end Analyze_Stream_TSS_Definition;
823
824 -- Start of processing for Analyze_Attribute_Definition_Clause
825
826 begin
827 -- Process Ignore_Rep_Clauses option
828
829 if Ignore_Rep_Clauses then
830 case Id is
831
832 -- The following should be ignored. They do not affect legality
833 -- and may be target dependent. The basic idea of -gnatI is to
834 -- ignore any rep clauses that may be target dependent but do not
835 -- affect legality (except possibly to be rejected because they
836 -- are incompatible with the compilation target).
837
838 when Attribute_Alignment |
839 Attribute_Bit_Order |
840 Attribute_Component_Size |
841 Attribute_Machine_Radix |
842 Attribute_Object_Size |
843 Attribute_Size |
844 Attribute_Small |
845 Attribute_Stream_Size |
846 Attribute_Value_Size =>
847
848 Rewrite (N, Make_Null_Statement (Sloc (N)));
849 return;
850
851 -- The following should not be ignored, because in the first place
852 -- they are reasonably portable, and should not cause problems in
853 -- compiling code from another target, and also they do affect
854 -- legality, e.g. failing to provide a stream attribute for a
855 -- type may make a program illegal.
856
857 when Attribute_External_Tag |
858 Attribute_Input |
859 Attribute_Output |
860 Attribute_Read |
861 Attribute_Storage_Pool |
862 Attribute_Storage_Size |
863 Attribute_Write =>
864 null;
865
866 -- Other cases are errors ("attribute& cannot be set with
867 -- definition clause"), which will be caught below.
868
869 when others =>
870 null;
871 end case;
872 end if;
873
874 Analyze (Nam);
875 Ent := Entity (Nam);
876
877 if Rep_Item_Too_Early (Ent, N) then
878 return;
879 end if;
880
881 -- Rep clause applies to full view of incomplete type or private type if
882 -- we have one (if not, this is a premature use of the type). However,
883 -- certain semantic checks need to be done on the specified entity (i.e.
884 -- the private view), so we save it in Ent.
885
886 if Is_Private_Type (Ent)
887 and then Is_Derived_Type (Ent)
888 and then not Is_Tagged_Type (Ent)
889 and then No (Full_View (Ent))
890 then
891 -- If this is a private type whose completion is a derivation from
892 -- another private type, there is no full view, and the attribute
893 -- belongs to the type itself, not its underlying parent.
894
895 U_Ent := Ent;
896
897 elsif Ekind (Ent) = E_Incomplete_Type then
898
899 -- The attribute applies to the full view, set the entity of the
900 -- attribute definition accordingly.
901
902 Ent := Underlying_Type (Ent);
903 U_Ent := Ent;
904 Set_Entity (Nam, Ent);
905
906 else
907 U_Ent := Underlying_Type (Ent);
908 end if;
909
910 -- Complete other routine error checks
911
912 if Etype (Nam) = Any_Type then
913 return;
914
915 elsif Scope (Ent) /= Current_Scope then
916 Error_Msg_N ("entity must be declared in this scope", Nam);
917 return;
918
919 elsif No (U_Ent) then
920 U_Ent := Ent;
921
922 elsif Is_Type (U_Ent)
923 and then not Is_First_Subtype (U_Ent)
924 and then Id /= Attribute_Object_Size
925 and then Id /= Attribute_Value_Size
926 and then not From_At_Mod (N)
927 then
928 Error_Msg_N ("cannot specify attribute for subtype", Nam);
929 return;
930 end if;
931
932 -- Switch on particular attribute
933
934 case Id is
935
936 -------------
937 -- Address --
938 -------------
939
940 -- Address attribute definition clause
941
942 when Attribute_Address => Address : begin
943
944 -- A little error check, catch for X'Address use X'Address;
945
946 if Nkind (Nam) = N_Identifier
947 and then Nkind (Expr) = N_Attribute_Reference
948 and then Attribute_Name (Expr) = Name_Address
949 and then Nkind (Prefix (Expr)) = N_Identifier
950 and then Chars (Nam) = Chars (Prefix (Expr))
951 then
952 Error_Msg_NE
953 ("address for & is self-referencing", Prefix (Expr), Ent);
954 return;
955 end if;
956
957 -- Not that special case, carry on with analysis of expression
958
959 Analyze_And_Resolve (Expr, RTE (RE_Address));
960
961 -- Even when ignoring rep clauses we need to indicate that the
962 -- entity has an address clause and thus it is legal to declare
963 -- it imported.
964
965 if Ignore_Rep_Clauses then
966 if Ekind_In (U_Ent, E_Variable, E_Constant) then
967 Record_Rep_Item (U_Ent, N);
968 end if;
969
970 return;
971 end if;
972
973 if Present (Address_Clause (U_Ent)) then
974 Error_Msg_N ("address already given for &", Nam);
975
976 -- Case of address clause for subprogram
977
978 elsif Is_Subprogram (U_Ent) then
979 if Has_Homonym (U_Ent) then
980 Error_Msg_N
981 ("address clause cannot be given " &
982 "for overloaded subprogram",
983 Nam);
984 return;
985 end if;
986
987 -- For subprograms, all address clauses are permitted, and we
988 -- mark the subprogram as having a deferred freeze so that Gigi
989 -- will not elaborate it too soon.
990
991 -- Above needs more comments, what is too soon about???
992
993 Set_Has_Delayed_Freeze (U_Ent);
994
995 -- Case of address clause for entry
996
997 elsif Ekind (U_Ent) = E_Entry then
998 if Nkind (Parent (N)) = N_Task_Body then
999 Error_Msg_N
1000 ("entry address must be specified in task spec", Nam);
1001 return;
1002 end if;
1003
1004 -- For entries, we require a constant address
1005
1006 Check_Constant_Address_Clause (Expr, U_Ent);
1007
1008 -- Special checks for task types
1009
1010 if Is_Task_Type (Scope (U_Ent))
1011 and then Comes_From_Source (Scope (U_Ent))
1012 then
1013 Error_Msg_N
1014 ("?entry address declared for entry in task type", N);
1015 Error_Msg_N
1016 ("\?only one task can be declared of this type", N);
1017 end if;
1018
1019 -- Entry address clauses are obsolescent
1020
1021 Check_Restriction (No_Obsolescent_Features, N);
1022
1023 if Warn_On_Obsolescent_Feature then
1024 Error_Msg_N
1025 ("attaching interrupt to task entry is an " &
1026 "obsolescent feature (RM J.7.1)?", N);
1027 Error_Msg_N
1028 ("\use interrupt procedure instead?", N);
1029 end if;
1030
1031 -- Case of an address clause for a controlled object which we
1032 -- consider to be erroneous.
1033
1034 elsif Is_Controlled (Etype (U_Ent))
1035 or else Has_Controlled_Component (Etype (U_Ent))
1036 then
1037 Error_Msg_NE
1038 ("?controlled object& must not be overlaid", Nam, U_Ent);
1039 Error_Msg_N
1040 ("\?Program_Error will be raised at run time", Nam);
1041 Insert_Action (Declaration_Node (U_Ent),
1042 Make_Raise_Program_Error (Loc,
1043 Reason => PE_Overlaid_Controlled_Object));
1044 return;
1045
1046 -- Case of address clause for a (non-controlled) object
1047
1048 elsif
1049 Ekind (U_Ent) = E_Variable
1050 or else
1051 Ekind (U_Ent) = E_Constant
1052 then
1053 declare
1054 Expr : constant Node_Id := Expression (N);
1055 O_Ent : Entity_Id;
1056 Off : Boolean;
1057
1058 begin
1059 -- Exported variables cannot have an address clause, because
1060 -- this cancels the effect of the pragma Export.
1061
1062 if Is_Exported (U_Ent) then
1063 Error_Msg_N
1064 ("cannot export object with address clause", Nam);
1065 return;
1066 end if;
1067
1068 Find_Overlaid_Entity (N, O_Ent, Off);
1069
1070 -- Overlaying controlled objects is erroneous
1071
1072 if Present (O_Ent)
1073 and then (Has_Controlled_Component (Etype (O_Ent))
1074 or else Is_Controlled (Etype (O_Ent)))
1075 then
1076 Error_Msg_N
1077 ("?cannot overlay with controlled object", Expr);
1078 Error_Msg_N
1079 ("\?Program_Error will be raised at run time", Expr);
1080 Insert_Action (Declaration_Node (U_Ent),
1081 Make_Raise_Program_Error (Loc,
1082 Reason => PE_Overlaid_Controlled_Object));
1083 return;
1084
1085 elsif Present (O_Ent)
1086 and then Ekind (U_Ent) = E_Constant
1087 and then not Is_Constant_Object (O_Ent)
1088 then
1089 Error_Msg_N ("constant overlays a variable?", Expr);
1090
1091 elsif Present (Renamed_Object (U_Ent)) then
1092 Error_Msg_N
1093 ("address clause not allowed"
1094 & " for a renaming declaration (RM 13.1(6))", Nam);
1095 return;
1096
1097 -- Imported variables can have an address clause, but then
1098 -- the import is pretty meaningless except to suppress
1099 -- initializations, so we do not need such variables to
1100 -- be statically allocated (and in fact it causes trouble
1101 -- if the address clause is a local value).
1102
1103 elsif Is_Imported (U_Ent) then
1104 Set_Is_Statically_Allocated (U_Ent, False);
1105 end if;
1106
1107 -- We mark a possible modification of a variable with an
1108 -- address clause, since it is likely aliasing is occurring.
1109
1110 Note_Possible_Modification (Nam, Sure => False);
1111
1112 -- Here we are checking for explicit overlap of one variable
1113 -- by another, and if we find this then mark the overlapped
1114 -- variable as also being volatile to prevent unwanted
1115 -- optimizations. This is a significant pessimization so
1116 -- avoid it when there is an offset, i.e. when the object
1117 -- is composite; they cannot be optimized easily anyway.
1118
1119 if Present (O_Ent)
1120 and then Is_Object (O_Ent)
1121 and then not Off
1122 then
1123 Set_Treat_As_Volatile (O_Ent);
1124 end if;
1125
1126 -- Legality checks on the address clause for initialized
1127 -- objects is deferred until the freeze point, because
1128 -- a subsequent pragma might indicate that the object is
1129 -- imported and thus not initialized.
1130
1131 Set_Has_Delayed_Freeze (U_Ent);
1132
1133 -- If an initialization call has been generated for this
1134 -- object, it needs to be deferred to after the freeze node
1135 -- we have just now added, otherwise GIGI will see a
1136 -- reference to the variable (as actual to the IP call)
1137 -- before its definition.
1138
1139 declare
1140 Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
1141 begin
1142 if Present (Init_Call) then
1143 Remove (Init_Call);
1144 Append_Freeze_Action (U_Ent, Init_Call);
1145 end if;
1146 end;
1147
1148 if Is_Exported (U_Ent) then
1149 Error_Msg_N
1150 ("& cannot be exported if an address clause is given",
1151 Nam);
1152 Error_Msg_N
1153 ("\define and export a variable " &
1154 "that holds its address instead",
1155 Nam);
1156 end if;
1157
1158 -- Entity has delayed freeze, so we will generate an
1159 -- alignment check at the freeze point unless suppressed.
1160
1161 if not Range_Checks_Suppressed (U_Ent)
1162 and then not Alignment_Checks_Suppressed (U_Ent)
1163 then
1164 Set_Check_Address_Alignment (N);
1165 end if;
1166
1167 -- Kill the size check code, since we are not allocating
1168 -- the variable, it is somewhere else.
1169
1170 Kill_Size_Check_Code (U_Ent);
1171
1172 -- If the address clause is of the form:
1173
1174 -- for Y'Address use X'Address
1175
1176 -- or
1177
1178 -- Const : constant Address := X'Address;
1179 -- ...
1180 -- for Y'Address use Const;
1181
1182 -- then we make an entry in the table for checking the size
1183 -- and alignment of the overlaying variable. We defer this
1184 -- check till after code generation to take full advantage
1185 -- of the annotation done by the back end. This entry is
1186 -- only made if the address clause comes from source.
1187 -- If the entity has a generic type, the check will be
1188 -- performed in the instance if the actual type justifies
1189 -- it, and we do not insert the clause in the table to
1190 -- prevent spurious warnings.
1191
1192 if Address_Clause_Overlay_Warnings
1193 and then Comes_From_Source (N)
1194 and then Present (O_Ent)
1195 and then Is_Object (O_Ent)
1196 then
1197 if not Is_Generic_Type (Etype (U_Ent)) then
1198 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
1199 end if;
1200
1201 -- If variable overlays a constant view, and we are
1202 -- warning on overlays, then mark the variable as
1203 -- overlaying a constant (we will give warnings later
1204 -- if this variable is assigned).
1205
1206 if Is_Constant_Object (O_Ent)
1207 and then Ekind (U_Ent) = E_Variable
1208 then
1209 Set_Overlays_Constant (U_Ent);
1210 end if;
1211 end if;
1212 end;
1213
1214 -- Not a valid entity for an address clause
1215
1216 else
1217 Error_Msg_N ("address cannot be given for &", Nam);
1218 end if;
1219 end Address;
1220
1221 ---------------
1222 -- Alignment --
1223 ---------------
1224
1225 -- Alignment attribute definition clause
1226
1227 when Attribute_Alignment => Alignment : declare
1228 Align : constant Uint := Get_Alignment_Value (Expr);
1229
1230 begin
1231 FOnly := True;
1232
1233 if not Is_Type (U_Ent)
1234 and then Ekind (U_Ent) /= E_Variable
1235 and then Ekind (U_Ent) /= E_Constant
1236 then
1237 Error_Msg_N ("alignment cannot be given for &", Nam);
1238
1239 elsif Has_Alignment_Clause (U_Ent) then
1240 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1241 Error_Msg_N ("alignment clause previously given#", N);
1242
1243 elsif Align /= No_Uint then
1244 Set_Has_Alignment_Clause (U_Ent);
1245 Set_Alignment (U_Ent, Align);
1246
1247 -- For an array type, U_Ent is the first subtype. In that case,
1248 -- also set the alignment of the anonymous base type so that
1249 -- other subtypes (such as the itypes for aggregates of the
1250 -- type) also receive the expected alignment.
1251
1252 if Is_Array_Type (U_Ent) then
1253 Set_Alignment (Base_Type (U_Ent), Align);
1254 end if;
1255 end if;
1256 end Alignment;
1257
1258 ---------------
1259 -- Bit_Order --
1260 ---------------
1261
1262 -- Bit_Order attribute definition clause
1263
1264 when Attribute_Bit_Order => Bit_Order : declare
1265 begin
1266 if not Is_Record_Type (U_Ent) then
1267 Error_Msg_N
1268 ("Bit_Order can only be defined for record type", Nam);
1269
1270 else
1271 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
1272
1273 if Etype (Expr) = Any_Type then
1274 return;
1275
1276 elsif not Is_Static_Expression (Expr) then
1277 Flag_Non_Static_Expr
1278 ("Bit_Order requires static expression!", Expr);
1279
1280 else
1281 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
1282 Set_Reverse_Bit_Order (U_Ent, True);
1283 end if;
1284 end if;
1285 end if;
1286 end Bit_Order;
1287
1288 --------------------
1289 -- Component_Size --
1290 --------------------
1291
1292 -- Component_Size attribute definition clause
1293
1294 when Attribute_Component_Size => Component_Size_Case : declare
1295 Csize : constant Uint := Static_Integer (Expr);
1296 Ctyp : Entity_Id;
1297 Btype : Entity_Id;
1298 Biased : Boolean;
1299 New_Ctyp : Entity_Id;
1300 Decl : Node_Id;
1301
1302 begin
1303 if not Is_Array_Type (U_Ent) then
1304 Error_Msg_N ("component size requires array type", Nam);
1305 return;
1306 end if;
1307
1308 Btype := Base_Type (U_Ent);
1309 Ctyp := Component_Type (Btype);
1310
1311 if Has_Component_Size_Clause (Btype) then
1312 Error_Msg_N
1313 ("component size clause for& previously given", Nam);
1314
1315 elsif Csize /= No_Uint then
1316 Check_Size (Expr, Ctyp, Csize, Biased);
1317
1318 if Has_Aliased_Components (Btype)
1319 and then Csize < 32
1320 and then Csize /= 8
1321 and then Csize /= 16
1322 then
1323 Error_Msg_N
1324 ("component size incorrect for aliased components", N);
1325 return;
1326 end if;
1327
1328 -- For the biased case, build a declaration for a subtype
1329 -- that will be used to represent the biased subtype that
1330 -- reflects the biased representation of components. We need
1331 -- this subtype to get proper conversions on referencing
1332 -- elements of the array. Note that component size clauses
1333 -- are ignored in VM mode.
1334
1335 if VM_Target = No_VM then
1336 if Biased then
1337 New_Ctyp :=
1338 Make_Defining_Identifier (Loc,
1339 Chars =>
1340 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
1341
1342 Decl :=
1343 Make_Subtype_Declaration (Loc,
1344 Defining_Identifier => New_Ctyp,
1345 Subtype_Indication =>
1346 New_Occurrence_Of (Component_Type (Btype), Loc));
1347
1348 Set_Parent (Decl, N);
1349 Analyze (Decl, Suppress => All_Checks);
1350
1351 Set_Has_Delayed_Freeze (New_Ctyp, False);
1352 Set_Esize (New_Ctyp, Csize);
1353 Set_RM_Size (New_Ctyp, Csize);
1354 Init_Alignment (New_Ctyp);
1355 Set_Is_Itype (New_Ctyp, True);
1356 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
1357
1358 Set_Component_Type (Btype, New_Ctyp);
1359 Set_Biased (New_Ctyp, N, "component size clause");
1360 end if;
1361
1362 Set_Component_Size (Btype, Csize);
1363
1364 -- For VM case, we ignore component size clauses
1365
1366 else
1367 -- Give a warning unless we are in GNAT mode, in which case
1368 -- the warning is suppressed since it is not useful.
1369
1370 if not GNAT_Mode then
1371 Error_Msg_N
1372 ("?component size ignored in this configuration", N);
1373 end if;
1374 end if;
1375
1376 -- Deal with warning on overridden size
1377
1378 if Warn_On_Overridden_Size
1379 and then Has_Size_Clause (Ctyp)
1380 and then RM_Size (Ctyp) /= Csize
1381 then
1382 Error_Msg_NE
1383 ("?component size overrides size clause for&",
1384 N, Ctyp);
1385 end if;
1386
1387 Set_Has_Component_Size_Clause (Btype, True);
1388 Set_Has_Non_Standard_Rep (Btype, True);
1389 end if;
1390 end Component_Size_Case;
1391
1392 ------------------
1393 -- External_Tag --
1394 ------------------
1395
1396 when Attribute_External_Tag => External_Tag :
1397 begin
1398 if not Is_Tagged_Type (U_Ent) then
1399 Error_Msg_N ("should be a tagged type", Nam);
1400 end if;
1401
1402 Analyze_And_Resolve (Expr, Standard_String);
1403
1404 if not Is_Static_Expression (Expr) then
1405 Flag_Non_Static_Expr
1406 ("static string required for tag name!", Nam);
1407 end if;
1408
1409 if VM_Target = No_VM then
1410 Set_Has_External_Tag_Rep_Clause (U_Ent);
1411 else
1412 Error_Msg_Name_1 := Attr;
1413 Error_Msg_N
1414 ("% attribute unsupported in this configuration", Nam);
1415 end if;
1416
1417 if not Is_Library_Level_Entity (U_Ent) then
1418 Error_Msg_NE
1419 ("?non-unique external tag supplied for &", N, U_Ent);
1420 Error_Msg_N
1421 ("?\same external tag applies to all subprogram calls", N);
1422 Error_Msg_N
1423 ("?\corresponding internal tag cannot be obtained", N);
1424 end if;
1425 end External_Tag;
1426
1427 -----------
1428 -- Input --
1429 -----------
1430
1431 when Attribute_Input =>
1432 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
1433 Set_Has_Specified_Stream_Input (Ent);
1434
1435 -------------------
1436 -- Machine_Radix --
1437 -------------------
1438
1439 -- Machine radix attribute definition clause
1440
1441 when Attribute_Machine_Radix => Machine_Radix : declare
1442 Radix : constant Uint := Static_Integer (Expr);
1443
1444 begin
1445 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
1446 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
1447
1448 elsif Has_Machine_Radix_Clause (U_Ent) then
1449 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1450 Error_Msg_N ("machine radix clause previously given#", N);
1451
1452 elsif Radix /= No_Uint then
1453 Set_Has_Machine_Radix_Clause (U_Ent);
1454 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
1455
1456 if Radix = 2 then
1457 null;
1458 elsif Radix = 10 then
1459 Set_Machine_Radix_10 (U_Ent);
1460 else
1461 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
1462 end if;
1463 end if;
1464 end Machine_Radix;
1465
1466 -----------------
1467 -- Object_Size --
1468 -----------------
1469
1470 -- Object_Size attribute definition clause
1471
1472 when Attribute_Object_Size => Object_Size : declare
1473 Size : constant Uint := Static_Integer (Expr);
1474
1475 Biased : Boolean;
1476 pragma Warnings (Off, Biased);
1477
1478 begin
1479 if not Is_Type (U_Ent) then
1480 Error_Msg_N ("Object_Size cannot be given for &", Nam);
1481
1482 elsif Has_Object_Size_Clause (U_Ent) then
1483 Error_Msg_N ("Object_Size already given for &", Nam);
1484
1485 else
1486 Check_Size (Expr, U_Ent, Size, Biased);
1487
1488 if Size /= 8
1489 and then
1490 Size /= 16
1491 and then
1492 Size /= 32
1493 and then
1494 UI_Mod (Size, 64) /= 0
1495 then
1496 Error_Msg_N
1497 ("Object_Size must be 8, 16, 32, or multiple of 64",
1498 Expr);
1499 end if;
1500
1501 Set_Esize (U_Ent, Size);
1502 Set_Has_Object_Size_Clause (U_Ent);
1503 Alignment_Check_For_Esize_Change (U_Ent);
1504 end if;
1505 end Object_Size;
1506
1507 ------------
1508 -- Output --
1509 ------------
1510
1511 when Attribute_Output =>
1512 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
1513 Set_Has_Specified_Stream_Output (Ent);
1514
1515 ----------
1516 -- Read --
1517 ----------
1518
1519 when Attribute_Read =>
1520 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
1521 Set_Has_Specified_Stream_Read (Ent);
1522
1523 ----------
1524 -- Size --
1525 ----------
1526
1527 -- Size attribute definition clause
1528
1529 when Attribute_Size => Size : declare
1530 Size : constant Uint := Static_Integer (Expr);
1531 Etyp : Entity_Id;
1532 Biased : Boolean;
1533
1534 begin
1535 FOnly := True;
1536
1537 if Has_Size_Clause (U_Ent) then
1538 Error_Msg_N ("size already given for &", Nam);
1539
1540 elsif not Is_Type (U_Ent)
1541 and then Ekind (U_Ent) /= E_Variable
1542 and then Ekind (U_Ent) /= E_Constant
1543 then
1544 Error_Msg_N ("size cannot be given for &", Nam);
1545
1546 elsif Is_Array_Type (U_Ent)
1547 and then not Is_Constrained (U_Ent)
1548 then
1549 Error_Msg_N
1550 ("size cannot be given for unconstrained array", Nam);
1551
1552 elsif Size /= No_Uint then
1553
1554 if VM_Target /= No_VM and then not GNAT_Mode then
1555
1556 -- Size clause is not handled properly on VM targets.
1557 -- Display a warning unless we are in GNAT mode, in which
1558 -- case this is useless.
1559
1560 Error_Msg_N
1561 ("?size clauses are ignored in this configuration", N);
1562 end if;
1563
1564 if Is_Type (U_Ent) then
1565 Etyp := U_Ent;
1566 else
1567 Etyp := Etype (U_Ent);
1568 end if;
1569
1570 -- Check size, note that Gigi is in charge of checking that the
1571 -- size of an array or record type is OK. Also we do not check
1572 -- the size in the ordinary fixed-point case, since it is too
1573 -- early to do so (there may be subsequent small clause that
1574 -- affects the size). We can check the size if a small clause
1575 -- has already been given.
1576
1577 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1578 or else Has_Small_Clause (U_Ent)
1579 then
1580 Check_Size (Expr, Etyp, Size, Biased);
1581 Set_Biased (U_Ent, N, "size clause", Biased);
1582 end if;
1583
1584 -- For types set RM_Size and Esize if possible
1585
1586 if Is_Type (U_Ent) then
1587 Set_RM_Size (U_Ent, Size);
1588
1589 -- For scalar types, increase Object_Size to power of 2, but
1590 -- not less than a storage unit in any case (i.e., normally
1591 -- this means it will be byte addressable).
1592
1593 if Is_Scalar_Type (U_Ent) then
1594 if Size <= System_Storage_Unit then
1595 Init_Esize (U_Ent, System_Storage_Unit);
1596 elsif Size <= 16 then
1597 Init_Esize (U_Ent, 16);
1598 elsif Size <= 32 then
1599 Init_Esize (U_Ent, 32);
1600 else
1601 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1602 end if;
1603
1604 -- For all other types, object size = value size. The
1605 -- backend will adjust as needed.
1606
1607 else
1608 Set_Esize (U_Ent, Size);
1609 end if;
1610
1611 Alignment_Check_For_Esize_Change (U_Ent);
1612
1613 -- For objects, set Esize only
1614
1615 else
1616 if Is_Elementary_Type (Etyp) then
1617 if Size /= System_Storage_Unit
1618 and then
1619 Size /= System_Storage_Unit * 2
1620 and then
1621 Size /= System_Storage_Unit * 4
1622 and then
1623 Size /= System_Storage_Unit * 8
1624 then
1625 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1626 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
1627 Error_Msg_N
1628 ("size for primitive object must be a power of 2"
1629 & " in the range ^-^", N);
1630 end if;
1631 end if;
1632
1633 Set_Esize (U_Ent, Size);
1634 end if;
1635
1636 Set_Has_Size_Clause (U_Ent);
1637 end if;
1638 end Size;
1639
1640 -----------
1641 -- Small --
1642 -----------
1643
1644 -- Small attribute definition clause
1645
1646 when Attribute_Small => Small : declare
1647 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1648 Small : Ureal;
1649
1650 begin
1651 Analyze_And_Resolve (Expr, Any_Real);
1652
1653 if Etype (Expr) = Any_Type then
1654 return;
1655
1656 elsif not Is_Static_Expression (Expr) then
1657 Flag_Non_Static_Expr
1658 ("small requires static expression!", Expr);
1659 return;
1660
1661 else
1662 Small := Expr_Value_R (Expr);
1663
1664 if Small <= Ureal_0 then
1665 Error_Msg_N ("small value must be greater than zero", Expr);
1666 return;
1667 end if;
1668
1669 end if;
1670
1671 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1672 Error_Msg_N
1673 ("small requires an ordinary fixed point type", Nam);
1674
1675 elsif Has_Small_Clause (U_Ent) then
1676 Error_Msg_N ("small already given for &", Nam);
1677
1678 elsif Small > Delta_Value (U_Ent) then
1679 Error_Msg_N
1680 ("small value must not be greater then delta value", Nam);
1681
1682 else
1683 Set_Small_Value (U_Ent, Small);
1684 Set_Small_Value (Implicit_Base, Small);
1685 Set_Has_Small_Clause (U_Ent);
1686 Set_Has_Small_Clause (Implicit_Base);
1687 Set_Has_Non_Standard_Rep (Implicit_Base);
1688 end if;
1689 end Small;
1690
1691 ------------------
1692 -- Storage_Pool --
1693 ------------------
1694
1695 -- Storage_Pool attribute definition clause
1696
1697 when Attribute_Storage_Pool => Storage_Pool : declare
1698 Pool : Entity_Id;
1699 T : Entity_Id;
1700
1701 begin
1702 if Ekind (U_Ent) = E_Access_Subprogram_Type then
1703 Error_Msg_N
1704 ("storage pool cannot be given for access-to-subprogram type",
1705 Nam);
1706 return;
1707
1708 elsif not
1709 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
1710 then
1711 Error_Msg_N
1712 ("storage pool can only be given for access types", Nam);
1713 return;
1714
1715 elsif Is_Derived_Type (U_Ent) then
1716 Error_Msg_N
1717 ("storage pool cannot be given for a derived access type",
1718 Nam);
1719
1720 elsif Has_Storage_Size_Clause (U_Ent) then
1721 Error_Msg_N ("storage size already given for &", Nam);
1722 return;
1723
1724 elsif Present (Associated_Storage_Pool (U_Ent)) then
1725 Error_Msg_N ("storage pool already given for &", Nam);
1726 return;
1727 end if;
1728
1729 Analyze_And_Resolve
1730 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1731
1732 if not Denotes_Variable (Expr) then
1733 Error_Msg_N ("storage pool must be a variable", Expr);
1734 return;
1735 end if;
1736
1737 if Nkind (Expr) = N_Type_Conversion then
1738 T := Etype (Expression (Expr));
1739 else
1740 T := Etype (Expr);
1741 end if;
1742
1743 -- The Stack_Bounded_Pool is used internally for implementing
1744 -- access types with a Storage_Size. Since it only work
1745 -- properly when used on one specific type, we need to check
1746 -- that it is not hijacked improperly:
1747 -- type T is access Integer;
1748 -- for T'Storage_Size use n;
1749 -- type Q is access Float;
1750 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1751
1752 if RTE_Available (RE_Stack_Bounded_Pool)
1753 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
1754 then
1755 Error_Msg_N ("non-shareable internal Pool", Expr);
1756 return;
1757 end if;
1758
1759 -- If the argument is a name that is not an entity name, then
1760 -- we construct a renaming operation to define an entity of
1761 -- type storage pool.
1762
1763 if not Is_Entity_Name (Expr)
1764 and then Is_Object_Reference (Expr)
1765 then
1766 Pool := Make_Temporary (Loc, 'P', Expr);
1767
1768 declare
1769 Rnode : constant Node_Id :=
1770 Make_Object_Renaming_Declaration (Loc,
1771 Defining_Identifier => Pool,
1772 Subtype_Mark =>
1773 New_Occurrence_Of (Etype (Expr), Loc),
1774 Name => Expr);
1775
1776 begin
1777 Insert_Before (N, Rnode);
1778 Analyze (Rnode);
1779 Set_Associated_Storage_Pool (U_Ent, Pool);
1780 end;
1781
1782 elsif Is_Entity_Name (Expr) then
1783 Pool := Entity (Expr);
1784
1785 -- If pool is a renamed object, get original one. This can
1786 -- happen with an explicit renaming, and within instances.
1787
1788 while Present (Renamed_Object (Pool))
1789 and then Is_Entity_Name (Renamed_Object (Pool))
1790 loop
1791 Pool := Entity (Renamed_Object (Pool));
1792 end loop;
1793
1794 if Present (Renamed_Object (Pool))
1795 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1796 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1797 then
1798 Pool := Entity (Expression (Renamed_Object (Pool)));
1799 end if;
1800
1801 Set_Associated_Storage_Pool (U_Ent, Pool);
1802
1803 elsif Nkind (Expr) = N_Type_Conversion
1804 and then Is_Entity_Name (Expression (Expr))
1805 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1806 then
1807 Pool := Entity (Expression (Expr));
1808 Set_Associated_Storage_Pool (U_Ent, Pool);
1809
1810 else
1811 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1812 return;
1813 end if;
1814 end Storage_Pool;
1815
1816 ------------------
1817 -- Storage_Size --
1818 ------------------
1819
1820 -- Storage_Size attribute definition clause
1821
1822 when Attribute_Storage_Size => Storage_Size : declare
1823 Btype : constant Entity_Id := Base_Type (U_Ent);
1824 Sprag : Node_Id;
1825
1826 begin
1827 if Is_Task_Type (U_Ent) then
1828 Check_Restriction (No_Obsolescent_Features, N);
1829
1830 if Warn_On_Obsolescent_Feature then
1831 Error_Msg_N
1832 ("storage size clause for task is an " &
1833 "obsolescent feature (RM J.9)?", N);
1834 Error_Msg_N ("\use Storage_Size pragma instead?", N);
1835 end if;
1836
1837 FOnly := True;
1838 end if;
1839
1840 if not Is_Access_Type (U_Ent)
1841 and then Ekind (U_Ent) /= E_Task_Type
1842 then
1843 Error_Msg_N ("storage size cannot be given for &", Nam);
1844
1845 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1846 Error_Msg_N
1847 ("storage size cannot be given for a derived access type",
1848 Nam);
1849
1850 elsif Has_Storage_Size_Clause (Btype) then
1851 Error_Msg_N ("storage size already given for &", Nam);
1852
1853 else
1854 Analyze_And_Resolve (Expr, Any_Integer);
1855
1856 if Is_Access_Type (U_Ent) then
1857 if Present (Associated_Storage_Pool (U_Ent)) then
1858 Error_Msg_N ("storage pool already given for &", Nam);
1859 return;
1860 end if;
1861
1862 if Compile_Time_Known_Value (Expr)
1863 and then Expr_Value (Expr) = 0
1864 then
1865 Set_No_Pool_Assigned (Btype);
1866 end if;
1867
1868 else -- Is_Task_Type (U_Ent)
1869 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1870
1871 if Present (Sprag) then
1872 Error_Msg_Sloc := Sloc (Sprag);
1873 Error_Msg_N
1874 ("Storage_Size already specified#", Nam);
1875 return;
1876 end if;
1877 end if;
1878
1879 Set_Has_Storage_Size_Clause (Btype);
1880 end if;
1881 end Storage_Size;
1882
1883 -----------------
1884 -- Stream_Size --
1885 -----------------
1886
1887 when Attribute_Stream_Size => Stream_Size : declare
1888 Size : constant Uint := Static_Integer (Expr);
1889
1890 begin
1891 if Ada_Version <= Ada_95 then
1892 Check_Restriction (No_Implementation_Attributes, N);
1893 end if;
1894
1895 if Has_Stream_Size_Clause (U_Ent) then
1896 Error_Msg_N ("Stream_Size already given for &", Nam);
1897
1898 elsif Is_Elementary_Type (U_Ent) then
1899 if Size /= System_Storage_Unit
1900 and then
1901 Size /= System_Storage_Unit * 2
1902 and then
1903 Size /= System_Storage_Unit * 4
1904 and then
1905 Size /= System_Storage_Unit * 8
1906 then
1907 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1908 Error_Msg_N
1909 ("stream size for elementary type must be a"
1910 & " power of 2 and at least ^", N);
1911
1912 elsif RM_Size (U_Ent) > Size then
1913 Error_Msg_Uint_1 := RM_Size (U_Ent);
1914 Error_Msg_N
1915 ("stream size for elementary type must be a"
1916 & " power of 2 and at least ^", N);
1917 end if;
1918
1919 Set_Has_Stream_Size_Clause (U_Ent);
1920
1921 else
1922 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1923 end if;
1924 end Stream_Size;
1925
1926 ----------------
1927 -- Value_Size --
1928 ----------------
1929
1930 -- Value_Size attribute definition clause
1931
1932 when Attribute_Value_Size => Value_Size : declare
1933 Size : constant Uint := Static_Integer (Expr);
1934 Biased : Boolean;
1935
1936 begin
1937 if not Is_Type (U_Ent) then
1938 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1939
1940 elsif Present
1941 (Get_Attribute_Definition_Clause
1942 (U_Ent, Attribute_Value_Size))
1943 then
1944 Error_Msg_N ("Value_Size already given for &", Nam);
1945
1946 elsif Is_Array_Type (U_Ent)
1947 and then not Is_Constrained (U_Ent)
1948 then
1949 Error_Msg_N
1950 ("Value_Size cannot be given for unconstrained array", Nam);
1951
1952 else
1953 if Is_Elementary_Type (U_Ent) then
1954 Check_Size (Expr, U_Ent, Size, Biased);
1955 Set_Biased (U_Ent, N, "value size clause", Biased);
1956 end if;
1957
1958 Set_RM_Size (U_Ent, Size);
1959 end if;
1960 end Value_Size;
1961
1962 -----------
1963 -- Write --
1964 -----------
1965
1966 when Attribute_Write =>
1967 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1968 Set_Has_Specified_Stream_Write (Ent);
1969
1970 -- All other attributes cannot be set
1971
1972 when others =>
1973 Error_Msg_N
1974 ("attribute& cannot be set with definition clause", N);
1975 end case;
1976
1977 -- The test for the type being frozen must be performed after
1978 -- any expression the clause has been analyzed since the expression
1979 -- itself might cause freezing that makes the clause illegal.
1980
1981 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1982 return;
1983 end if;
1984 end Analyze_Attribute_Definition_Clause;
1985
1986 ----------------------------
1987 -- Analyze_Code_Statement --
1988 ----------------------------
1989
1990 procedure Analyze_Code_Statement (N : Node_Id) is
1991 HSS : constant Node_Id := Parent (N);
1992 SBody : constant Node_Id := Parent (HSS);
1993 Subp : constant Entity_Id := Current_Scope;
1994 Stmt : Node_Id;
1995 Decl : Node_Id;
1996 StmtO : Node_Id;
1997 DeclO : Node_Id;
1998
1999 begin
2000 -- Analyze and check we get right type, note that this implements the
2001 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
2002 -- is the only way that Asm_Insn could possibly be visible.
2003
2004 Analyze_And_Resolve (Expression (N));
2005
2006 if Etype (Expression (N)) = Any_Type then
2007 return;
2008 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
2009 Error_Msg_N ("incorrect type for code statement", N);
2010 return;
2011 end if;
2012
2013 Check_Code_Statement (N);
2014
2015 -- Make sure we appear in the handled statement sequence of a
2016 -- subprogram (RM 13.8(3)).
2017
2018 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
2019 or else Nkind (SBody) /= N_Subprogram_Body
2020 then
2021 Error_Msg_N
2022 ("code statement can only appear in body of subprogram", N);
2023 return;
2024 end if;
2025
2026 -- Do remaining checks (RM 13.8(3)) if not already done
2027
2028 if not Is_Machine_Code_Subprogram (Subp) then
2029 Set_Is_Machine_Code_Subprogram (Subp);
2030
2031 -- No exception handlers allowed
2032
2033 if Present (Exception_Handlers (HSS)) then
2034 Error_Msg_N
2035 ("exception handlers not permitted in machine code subprogram",
2036 First (Exception_Handlers (HSS)));
2037 end if;
2038
2039 -- No declarations other than use clauses and pragmas (we allow
2040 -- certain internally generated declarations as well).
2041
2042 Decl := First (Declarations (SBody));
2043 while Present (Decl) loop
2044 DeclO := Original_Node (Decl);
2045 if Comes_From_Source (DeclO)
2046 and not Nkind_In (DeclO, N_Pragma,
2047 N_Use_Package_Clause,
2048 N_Use_Type_Clause,
2049 N_Implicit_Label_Declaration)
2050 then
2051 Error_Msg_N
2052 ("this declaration not allowed in machine code subprogram",
2053 DeclO);
2054 end if;
2055
2056 Next (Decl);
2057 end loop;
2058
2059 -- No statements other than code statements, pragmas, and labels.
2060 -- Again we allow certain internally generated statements.
2061
2062 Stmt := First (Statements (HSS));
2063 while Present (Stmt) loop
2064 StmtO := Original_Node (Stmt);
2065 if Comes_From_Source (StmtO)
2066 and then not Nkind_In (StmtO, N_Pragma,
2067 N_Label,
2068 N_Code_Statement)
2069 then
2070 Error_Msg_N
2071 ("this statement is not allowed in machine code subprogram",
2072 StmtO);
2073 end if;
2074
2075 Next (Stmt);
2076 end loop;
2077 end if;
2078 end Analyze_Code_Statement;
2079
2080 -----------------------------------------------
2081 -- Analyze_Enumeration_Representation_Clause --
2082 -----------------------------------------------
2083
2084 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
2085 Ident : constant Node_Id := Identifier (N);
2086 Aggr : constant Node_Id := Array_Aggregate (N);
2087 Enumtype : Entity_Id;
2088 Elit : Entity_Id;
2089 Expr : Node_Id;
2090 Assoc : Node_Id;
2091 Choice : Node_Id;
2092 Val : Uint;
2093 Err : Boolean := False;
2094
2095 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
2096 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
2097 -- Allowed range of universal integer (= allowed range of enum lit vals)
2098
2099 Min : Uint;
2100 Max : Uint;
2101 -- Minimum and maximum values of entries
2102
2103 Max_Node : Node_Id;
2104 -- Pointer to node for literal providing max value
2105
2106 begin
2107 if Ignore_Rep_Clauses then
2108 return;
2109 end if;
2110
2111 -- First some basic error checks
2112
2113 Find_Type (Ident);
2114 Enumtype := Entity (Ident);
2115
2116 if Enumtype = Any_Type
2117 or else Rep_Item_Too_Early (Enumtype, N)
2118 then
2119 return;
2120 else
2121 Enumtype := Underlying_Type (Enumtype);
2122 end if;
2123
2124 if not Is_Enumeration_Type (Enumtype) then
2125 Error_Msg_NE
2126 ("enumeration type required, found}",
2127 Ident, First_Subtype (Enumtype));
2128 return;
2129 end if;
2130
2131 -- Ignore rep clause on generic actual type. This will already have
2132 -- been flagged on the template as an error, and this is the safest
2133 -- way to ensure we don't get a junk cascaded message in the instance.
2134
2135 if Is_Generic_Actual_Type (Enumtype) then
2136 return;
2137
2138 -- Type must be in current scope
2139
2140 elsif Scope (Enumtype) /= Current_Scope then
2141 Error_Msg_N ("type must be declared in this scope", Ident);
2142 return;
2143
2144 -- Type must be a first subtype
2145
2146 elsif not Is_First_Subtype (Enumtype) then
2147 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
2148 return;
2149
2150 -- Ignore duplicate rep clause
2151
2152 elsif Has_Enumeration_Rep_Clause (Enumtype) then
2153 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
2154 return;
2155
2156 -- Don't allow rep clause for standard [wide_[wide_]]character
2157
2158 elsif Is_Standard_Character_Type (Enumtype) then
2159 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
2160 return;
2161
2162 -- Check that the expression is a proper aggregate (no parentheses)
2163
2164 elsif Paren_Count (Aggr) /= 0 then
2165 Error_Msg
2166 ("extra parentheses surrounding aggregate not allowed",
2167 First_Sloc (Aggr));
2168 return;
2169
2170 -- All tests passed, so set rep clause in place
2171
2172 else
2173 Set_Has_Enumeration_Rep_Clause (Enumtype);
2174 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
2175 end if;
2176
2177 -- Now we process the aggregate. Note that we don't use the normal
2178 -- aggregate code for this purpose, because we don't want any of the
2179 -- normal expansion activities, and a number of special semantic
2180 -- rules apply (including the component type being any integer type)
2181
2182 Elit := First_Literal (Enumtype);
2183
2184 -- First the positional entries if any
2185
2186 if Present (Expressions (Aggr)) then
2187 Expr := First (Expressions (Aggr));
2188 while Present (Expr) loop
2189 if No (Elit) then
2190 Error_Msg_N ("too many entries in aggregate", Expr);
2191 return;
2192 end if;
2193
2194 Val := Static_Integer (Expr);
2195
2196 -- Err signals that we found some incorrect entries processing
2197 -- the list. The final checks for completeness and ordering are
2198 -- skipped in this case.
2199
2200 if Val = No_Uint then
2201 Err := True;
2202 elsif Val < Lo or else Hi < Val then
2203 Error_Msg_N ("value outside permitted range", Expr);
2204 Err := True;
2205 end if;
2206
2207 Set_Enumeration_Rep (Elit, Val);
2208 Set_Enumeration_Rep_Expr (Elit, Expr);
2209 Next (Expr);
2210 Next (Elit);
2211 end loop;
2212 end if;
2213
2214 -- Now process the named entries if present
2215
2216 if Present (Component_Associations (Aggr)) then
2217 Assoc := First (Component_Associations (Aggr));
2218 while Present (Assoc) loop
2219 Choice := First (Choices (Assoc));
2220
2221 if Present (Next (Choice)) then
2222 Error_Msg_N
2223 ("multiple choice not allowed here", Next (Choice));
2224 Err := True;
2225 end if;
2226
2227 if Nkind (Choice) = N_Others_Choice then
2228 Error_Msg_N ("others choice not allowed here", Choice);
2229 Err := True;
2230
2231 elsif Nkind (Choice) = N_Range then
2232 -- ??? should allow zero/one element range here
2233 Error_Msg_N ("range not allowed here", Choice);
2234 Err := True;
2235
2236 else
2237 Analyze_And_Resolve (Choice, Enumtype);
2238
2239 if Is_Entity_Name (Choice)
2240 and then Is_Type (Entity (Choice))
2241 then
2242 Error_Msg_N ("subtype name not allowed here", Choice);
2243 Err := True;
2244 -- ??? should allow static subtype with zero/one entry
2245
2246 elsif Etype (Choice) = Base_Type (Enumtype) then
2247 if not Is_Static_Expression (Choice) then
2248 Flag_Non_Static_Expr
2249 ("non-static expression used for choice!", Choice);
2250 Err := True;
2251
2252 else
2253 Elit := Expr_Value_E (Choice);
2254
2255 if Present (Enumeration_Rep_Expr (Elit)) then
2256 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
2257 Error_Msg_NE
2258 ("representation for& previously given#",
2259 Choice, Elit);
2260 Err := True;
2261 end if;
2262
2263 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
2264
2265 Expr := Expression (Assoc);
2266 Val := Static_Integer (Expr);
2267
2268 if Val = No_Uint then
2269 Err := True;
2270
2271 elsif Val < Lo or else Hi < Val then
2272 Error_Msg_N ("value outside permitted range", Expr);
2273 Err := True;
2274 end if;
2275
2276 Set_Enumeration_Rep (Elit, Val);
2277 end if;
2278 end if;
2279 end if;
2280
2281 Next (Assoc);
2282 end loop;
2283 end if;
2284
2285 -- Aggregate is fully processed. Now we check that a full set of
2286 -- representations was given, and that they are in range and in order.
2287 -- These checks are only done if no other errors occurred.
2288
2289 if not Err then
2290 Min := No_Uint;
2291 Max := No_Uint;
2292
2293 Elit := First_Literal (Enumtype);
2294 while Present (Elit) loop
2295 if No (Enumeration_Rep_Expr (Elit)) then
2296 Error_Msg_NE ("missing representation for&!", N, Elit);
2297
2298 else
2299 Val := Enumeration_Rep (Elit);
2300
2301 if Min = No_Uint then
2302 Min := Val;
2303 end if;
2304
2305 if Val /= No_Uint then
2306 if Max /= No_Uint and then Val <= Max then
2307 Error_Msg_NE
2308 ("enumeration value for& not ordered!",
2309 Enumeration_Rep_Expr (Elit), Elit);
2310 end if;
2311
2312 Max_Node := Enumeration_Rep_Expr (Elit);
2313 Max := Val;
2314 end if;
2315
2316 -- If there is at least one literal whose representation is not
2317 -- equal to the Pos value, then note that this enumeration type
2318 -- has a non-standard representation.
2319
2320 if Val /= Enumeration_Pos (Elit) then
2321 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
2322 end if;
2323 end if;
2324
2325 Next (Elit);
2326 end loop;
2327
2328 -- Now set proper size information
2329
2330 declare
2331 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
2332
2333 begin
2334 if Has_Size_Clause (Enumtype) then
2335
2336 -- All OK, if size is OK now
2337
2338 if RM_Size (Enumtype) >= Minsize then
2339 null;
2340
2341 else
2342 -- Try if we can get by with biasing
2343
2344 Minsize :=
2345 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
2346
2347 -- Error message if even biasing does not work
2348
2349 if RM_Size (Enumtype) < Minsize then
2350 Error_Msg_Uint_1 := RM_Size (Enumtype);
2351 Error_Msg_Uint_2 := Max;
2352 Error_Msg_N
2353 ("previously given size (^) is too small "
2354 & "for this value (^)", Max_Node);
2355
2356 -- If biasing worked, indicate that we now have biased rep
2357
2358 else
2359 Set_Biased
2360 (Enumtype, Size_Clause (Enumtype), "size clause");
2361 end if;
2362 end if;
2363
2364 else
2365 Set_RM_Size (Enumtype, Minsize);
2366 Set_Enum_Esize (Enumtype);
2367 end if;
2368
2369 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
2370 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
2371 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
2372 end;
2373 end if;
2374
2375 -- We repeat the too late test in case it froze itself!
2376
2377 if Rep_Item_Too_Late (Enumtype, N) then
2378 null;
2379 end if;
2380 end Analyze_Enumeration_Representation_Clause;
2381
2382 ----------------------------
2383 -- Analyze_Free_Statement --
2384 ----------------------------
2385
2386 procedure Analyze_Free_Statement (N : Node_Id) is
2387 begin
2388 Analyze (Expression (N));
2389 end Analyze_Free_Statement;
2390
2391 ---------------------------
2392 -- Analyze_Freeze_Entity --
2393 ---------------------------
2394
2395 procedure Analyze_Freeze_Entity (N : Node_Id) is
2396 E : constant Entity_Id := Entity (N);
2397
2398 begin
2399 -- Remember that we are processing a freezing entity. Required to
2400 -- ensure correct decoration of internal entities associated with
2401 -- interfaces (see New_Overloaded_Entity).
2402
2403 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
2404
2405 -- For tagged types covering interfaces add internal entities that link
2406 -- the primitives of the interfaces with the primitives that cover them.
2407 -- Note: These entities were originally generated only when generating
2408 -- code because their main purpose was to provide support to initialize
2409 -- the secondary dispatch tables. They are now generated also when
2410 -- compiling with no code generation to provide ASIS the relationship
2411 -- between interface primitives and tagged type primitives. They are
2412 -- also used to locate primitives covering interfaces when processing
2413 -- generics (see Derive_Subprograms).
2414
2415 if Ada_Version >= Ada_05
2416 and then Ekind (E) = E_Record_Type
2417 and then Is_Tagged_Type (E)
2418 and then not Is_Interface (E)
2419 and then Has_Interfaces (E)
2420 then
2421 -- This would be a good common place to call the routine that checks
2422 -- overriding of interface primitives (and thus factorize calls to
2423 -- Check_Abstract_Overriding located at different contexts in the
2424 -- compiler). However, this is not possible because it causes
2425 -- spurious errors in case of late overriding.
2426
2427 Add_Internal_Interface_Entities (E);
2428 end if;
2429
2430 -- Check CPP types
2431
2432 if Ekind (E) = E_Record_Type
2433 and then Is_CPP_Class (E)
2434 and then Is_Tagged_Type (E)
2435 and then Tagged_Type_Expansion
2436 and then Expander_Active
2437 then
2438 if CPP_Num_Prims (E) = 0 then
2439
2440 -- If the CPP type has user defined components then it must import
2441 -- primitives from C++. This is required because if the C++ class
2442 -- has no primitives then the C++ compiler does not added the _tag
2443 -- component to the type.
2444
2445 pragma Assert (Chars (First_Entity (E)) = Name_uTag);
2446
2447 if First_Entity (E) /= Last_Entity (E) then
2448 Error_Msg_N
2449 ("?'C'P'P type must import at least one primitive from C++",
2450 E);
2451 end if;
2452 end if;
2453
2454 -- Check that all its primitives are abstract or imported from C++.
2455 -- Check also availability of the C++ constructor.
2456
2457 declare
2458 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
2459 Elmt : Elmt_Id;
2460 Error_Reported : Boolean := False;
2461 Prim : Node_Id;
2462
2463 begin
2464 Elmt := First_Elmt (Primitive_Operations (E));
2465 while Present (Elmt) loop
2466 Prim := Node (Elmt);
2467
2468 if Comes_From_Source (Prim) then
2469 if Is_Abstract_Subprogram (Prim) then
2470 null;
2471
2472 elsif not Is_Imported (Prim)
2473 or else Convention (Prim) /= Convention_CPP
2474 then
2475 Error_Msg_N
2476 ("?primitives of 'C'P'P types must be imported from C++"
2477 & " or abstract", Prim);
2478
2479 elsif not Has_Constructors
2480 and then not Error_Reported
2481 then
2482 Error_Msg_Name_1 := Chars (E);
2483 Error_Msg_N
2484 ("?'C'P'P constructor required for type %", Prim);
2485 Error_Reported := True;
2486 end if;
2487 end if;
2488
2489 Next_Elmt (Elmt);
2490 end loop;
2491 end;
2492 end if;
2493
2494 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
2495 end Analyze_Freeze_Entity;
2496
2497 ------------------------------------------
2498 -- Analyze_Record_Representation_Clause --
2499 ------------------------------------------
2500
2501 -- Note: we check as much as we can here, but we can't do any checks
2502 -- based on the position values (e.g. overlap checks) until freeze time
2503 -- because especially in Ada 2005 (machine scalar mode), the processing
2504 -- for non-standard bit order can substantially change the positions.
2505 -- See procedure Check_Record_Representation_Clause (called from Freeze)
2506 -- for the remainder of this processing.
2507
2508 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
2509 Ident : constant Node_Id := Identifier (N);
2510 Rectype : Entity_Id;
2511 CC : Node_Id;
2512 Posit : Uint;
2513 Fbit : Uint;
2514 Lbit : Uint;
2515 Hbit : Uint := Uint_0;
2516 Comp : Entity_Id;
2517 Ocomp : Entity_Id;
2518 Biased : Boolean;
2519
2520 CR_Pragma : Node_Id := Empty;
2521 -- Points to N_Pragma node if Complete_Representation pragma present
2522
2523 begin
2524 if Ignore_Rep_Clauses then
2525 return;
2526 end if;
2527
2528 Find_Type (Ident);
2529 Rectype := Entity (Ident);
2530
2531 if Rectype = Any_Type
2532 or else Rep_Item_Too_Early (Rectype, N)
2533 then
2534 return;
2535 else
2536 Rectype := Underlying_Type (Rectype);
2537 end if;
2538
2539 -- First some basic error checks
2540
2541 if not Is_Record_Type (Rectype) then
2542 Error_Msg_NE
2543 ("record type required, found}", Ident, First_Subtype (Rectype));
2544 return;
2545
2546 elsif Is_Unchecked_Union (Rectype) then
2547 Error_Msg_N
2548 ("record rep clause not allowed for Unchecked_Union", N);
2549
2550 elsif Scope (Rectype) /= Current_Scope then
2551 Error_Msg_N ("type must be declared in this scope", N);
2552 return;
2553
2554 elsif not Is_First_Subtype (Rectype) then
2555 Error_Msg_N ("cannot give record rep clause for subtype", N);
2556 return;
2557
2558 elsif Has_Record_Rep_Clause (Rectype) then
2559 Error_Msg_N ("duplicate record rep clause ignored", N);
2560 return;
2561
2562 elsif Rep_Item_Too_Late (Rectype, N) then
2563 return;
2564 end if;
2565
2566 if Present (Mod_Clause (N)) then
2567 declare
2568 Loc : constant Source_Ptr := Sloc (N);
2569 M : constant Node_Id := Mod_Clause (N);
2570 P : constant List_Id := Pragmas_Before (M);
2571 AtM_Nod : Node_Id;
2572
2573 Mod_Val : Uint;
2574 pragma Warnings (Off, Mod_Val);
2575
2576 begin
2577 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
2578
2579 if Warn_On_Obsolescent_Feature then
2580 Error_Msg_N
2581 ("mod clause is an obsolescent feature (RM J.8)?", N);
2582 Error_Msg_N
2583 ("\use alignment attribute definition clause instead?", N);
2584 end if;
2585
2586 if Present (P) then
2587 Analyze_List (P);
2588 end if;
2589
2590 -- In ASIS_Mode mode, expansion is disabled, but we must convert
2591 -- the Mod clause into an alignment clause anyway, so that the
2592 -- back-end can compute and back-annotate properly the size and
2593 -- alignment of types that may include this record.
2594
2595 -- This seems dubious, this destroys the source tree in a manner
2596 -- not detectable by ASIS ???
2597
2598 if Operating_Mode = Check_Semantics
2599 and then ASIS_Mode
2600 then
2601 AtM_Nod :=
2602 Make_Attribute_Definition_Clause (Loc,
2603 Name => New_Reference_To (Base_Type (Rectype), Loc),
2604 Chars => Name_Alignment,
2605 Expression => Relocate_Node (Expression (M)));
2606
2607 Set_From_At_Mod (AtM_Nod);
2608 Insert_After (N, AtM_Nod);
2609 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
2610 Set_Mod_Clause (N, Empty);
2611
2612 else
2613 -- Get the alignment value to perform error checking
2614
2615 Mod_Val := Get_Alignment_Value (Expression (M));
2616 end if;
2617 end;
2618 end if;
2619
2620 -- For untagged types, clear any existing component clauses for the
2621 -- type. If the type is derived, this is what allows us to override
2622 -- a rep clause for the parent. For type extensions, the representation
2623 -- of the inherited components is inherited, so we want to keep previous
2624 -- component clauses for completeness.
2625
2626 if not Is_Tagged_Type (Rectype) then
2627 Comp := First_Component_Or_Discriminant (Rectype);
2628 while Present (Comp) loop
2629 Set_Component_Clause (Comp, Empty);
2630 Next_Component_Or_Discriminant (Comp);
2631 end loop;
2632 end if;
2633
2634 -- All done if no component clauses
2635
2636 CC := First (Component_Clauses (N));
2637
2638 if No (CC) then
2639 return;
2640 end if;
2641
2642 -- A representation like this applies to the base type
2643
2644 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2645 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2646 Set_Has_Specified_Layout (Base_Type (Rectype));
2647
2648 -- Process the component clauses
2649
2650 while Present (CC) loop
2651
2652 -- Pragma
2653
2654 if Nkind (CC) = N_Pragma then
2655 Analyze (CC);
2656
2657 -- The only pragma of interest is Complete_Representation
2658
2659 if Pragma_Name (CC) = Name_Complete_Representation then
2660 CR_Pragma := CC;
2661 end if;
2662
2663 -- Processing for real component clause
2664
2665 else
2666 Posit := Static_Integer (Position (CC));
2667 Fbit := Static_Integer (First_Bit (CC));
2668 Lbit := Static_Integer (Last_Bit (CC));
2669
2670 if Posit /= No_Uint
2671 and then Fbit /= No_Uint
2672 and then Lbit /= No_Uint
2673 then
2674 if Posit < 0 then
2675 Error_Msg_N
2676 ("position cannot be negative", Position (CC));
2677
2678 elsif Fbit < 0 then
2679 Error_Msg_N
2680 ("first bit cannot be negative", First_Bit (CC));
2681
2682 -- The Last_Bit specified in a component clause must not be
2683 -- less than the First_Bit minus one (RM-13.5.1(10)).
2684
2685 elsif Lbit < Fbit - 1 then
2686 Error_Msg_N
2687 ("last bit cannot be less than first bit minus one",
2688 Last_Bit (CC));
2689
2690 -- Values look OK, so find the corresponding record component
2691 -- Even though the syntax allows an attribute reference for
2692 -- implementation-defined components, GNAT does not allow the
2693 -- tag to get an explicit position.
2694
2695 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2696 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2697 Error_Msg_N ("position of tag cannot be specified", CC);
2698 else
2699 Error_Msg_N ("illegal component name", CC);
2700 end if;
2701
2702 else
2703 Comp := First_Entity (Rectype);
2704 while Present (Comp) loop
2705 exit when Chars (Comp) = Chars (Component_Name (CC));
2706 Next_Entity (Comp);
2707 end loop;
2708
2709 if No (Comp) then
2710
2711 -- Maybe component of base type that is absent from
2712 -- statically constrained first subtype.
2713
2714 Comp := First_Entity (Base_Type (Rectype));
2715 while Present (Comp) loop
2716 exit when Chars (Comp) = Chars (Component_Name (CC));
2717 Next_Entity (Comp);
2718 end loop;
2719 end if;
2720
2721 if No (Comp) then
2722 Error_Msg_N
2723 ("component clause is for non-existent field", CC);
2724
2725 elsif Present (Component_Clause (Comp)) then
2726
2727 -- Diagnose duplicate rep clause, or check consistency
2728 -- if this is an inherited component. In a double fault,
2729 -- there may be a duplicate inconsistent clause for an
2730 -- inherited component.
2731
2732 if Scope (Original_Record_Component (Comp)) = Rectype
2733 or else Parent (Component_Clause (Comp)) = N
2734 then
2735 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2736 Error_Msg_N ("component clause previously given#", CC);
2737
2738 else
2739 declare
2740 Rep1 : constant Node_Id := Component_Clause (Comp);
2741 begin
2742 if Intval (Position (Rep1)) /=
2743 Intval (Position (CC))
2744 or else Intval (First_Bit (Rep1)) /=
2745 Intval (First_Bit (CC))
2746 or else Intval (Last_Bit (Rep1)) /=
2747 Intval (Last_Bit (CC))
2748 then
2749 Error_Msg_N ("component clause inconsistent "
2750 & "with representation of ancestor", CC);
2751 elsif Warn_On_Redundant_Constructs then
2752 Error_Msg_N ("?redundant component clause "
2753 & "for inherited component!", CC);
2754 end if;
2755 end;
2756 end if;
2757
2758 -- Normal case where this is the first component clause we
2759 -- have seen for this entity, so set it up properly.
2760
2761 else
2762 -- Make reference for field in record rep clause and set
2763 -- appropriate entity field in the field identifier.
2764
2765 Generate_Reference
2766 (Comp, Component_Name (CC), Set_Ref => False);
2767 Set_Entity (Component_Name (CC), Comp);
2768
2769 -- Update Fbit and Lbit to the actual bit number
2770
2771 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2772 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2773
2774 if Has_Size_Clause (Rectype)
2775 and then Esize (Rectype) <= Lbit
2776 then
2777 Error_Msg_N
2778 ("bit number out of range of specified size",
2779 Last_Bit (CC));
2780 else
2781 Set_Component_Clause (Comp, CC);
2782 Set_Component_Bit_Offset (Comp, Fbit);
2783 Set_Esize (Comp, 1 + (Lbit - Fbit));
2784 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2785 Set_Normalized_Position (Comp, Fbit / SSU);
2786
2787 if Warn_On_Overridden_Size
2788 and then Has_Size_Clause (Etype (Comp))
2789 and then RM_Size (Etype (Comp)) /= Esize (Comp)
2790 then
2791 Error_Msg_NE
2792 ("?component size overrides size clause for&",
2793 Component_Name (CC), Etype (Comp));
2794 end if;
2795
2796 -- This information is also set in the corresponding
2797 -- component of the base type, found by accessing the
2798 -- Original_Record_Component link if it is present.
2799
2800 Ocomp := Original_Record_Component (Comp);
2801
2802 if Hbit < Lbit then
2803 Hbit := Lbit;
2804 end if;
2805
2806 Check_Size
2807 (Component_Name (CC),
2808 Etype (Comp),
2809 Esize (Comp),
2810 Biased);
2811
2812 Set_Biased
2813 (Comp, First_Node (CC), "component clause", Biased);
2814
2815 if Present (Ocomp) then
2816 Set_Component_Clause (Ocomp, CC);
2817 Set_Component_Bit_Offset (Ocomp, Fbit);
2818 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2819 Set_Normalized_Position (Ocomp, Fbit / SSU);
2820 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2821
2822 Set_Normalized_Position_Max
2823 (Ocomp, Normalized_Position (Ocomp));
2824
2825 -- Note: we don't use Set_Biased here, because we
2826 -- already gave a warning above if needed, and we
2827 -- would get a duplicate for the same name here.
2828
2829 Set_Has_Biased_Representation
2830 (Ocomp, Has_Biased_Representation (Comp));
2831 end if;
2832
2833 if Esize (Comp) < 0 then
2834 Error_Msg_N ("component size is negative", CC);
2835 end if;
2836 end if;
2837 end if;
2838 end if;
2839 end if;
2840 end if;
2841
2842 Next (CC);
2843 end loop;
2844
2845 -- Check missing components if Complete_Representation pragma appeared
2846
2847 if Present (CR_Pragma) then
2848 Comp := First_Component_Or_Discriminant (Rectype);
2849 while Present (Comp) loop
2850 if No (Component_Clause (Comp)) then
2851 Error_Msg_NE
2852 ("missing component clause for &", CR_Pragma, Comp);
2853 end if;
2854
2855 Next_Component_Or_Discriminant (Comp);
2856 end loop;
2857
2858 -- If no Complete_Representation pragma, warn if missing components
2859
2860 elsif Warn_On_Unrepped_Components then
2861 declare
2862 Num_Repped_Components : Nat := 0;
2863 Num_Unrepped_Components : Nat := 0;
2864
2865 begin
2866 -- First count number of repped and unrepped components
2867
2868 Comp := First_Component_Or_Discriminant (Rectype);
2869 while Present (Comp) loop
2870 if Present (Component_Clause (Comp)) then
2871 Num_Repped_Components := Num_Repped_Components + 1;
2872 else
2873 Num_Unrepped_Components := Num_Unrepped_Components + 1;
2874 end if;
2875
2876 Next_Component_Or_Discriminant (Comp);
2877 end loop;
2878
2879 -- We are only interested in the case where there is at least one
2880 -- unrepped component, and at least half the components have rep
2881 -- clauses. We figure that if less than half have them, then the
2882 -- partial rep clause is really intentional. If the component
2883 -- type has no underlying type set at this point (as for a generic
2884 -- formal type), we don't know enough to give a warning on the
2885 -- component.
2886
2887 if Num_Unrepped_Components > 0
2888 and then Num_Unrepped_Components < Num_Repped_Components
2889 then
2890 Comp := First_Component_Or_Discriminant (Rectype);
2891 while Present (Comp) loop
2892 if No (Component_Clause (Comp))
2893 and then Comes_From_Source (Comp)
2894 and then Present (Underlying_Type (Etype (Comp)))
2895 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
2896 or else Size_Known_At_Compile_Time
2897 (Underlying_Type (Etype (Comp))))
2898 and then not Has_Warnings_Off (Rectype)
2899 then
2900 Error_Msg_Sloc := Sloc (Comp);
2901 Error_Msg_NE
2902 ("?no component clause given for & declared #",
2903 N, Comp);
2904 end if;
2905
2906 Next_Component_Or_Discriminant (Comp);
2907 end loop;
2908 end if;
2909 end;
2910 end if;
2911 end Analyze_Record_Representation_Clause;
2912
2913 -----------------------------------
2914 -- Check_Constant_Address_Clause --
2915 -----------------------------------
2916
2917 procedure Check_Constant_Address_Clause
2918 (Expr : Node_Id;
2919 U_Ent : Entity_Id)
2920 is
2921 procedure Check_At_Constant_Address (Nod : Node_Id);
2922 -- Checks that the given node N represents a name whose 'Address is
2923 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
2924 -- address value is the same at the point of declaration of U_Ent and at
2925 -- the time of elaboration of the address clause.
2926
2927 procedure Check_Expr_Constants (Nod : Node_Id);
2928 -- Checks that Nod meets the requirements for a constant address clause
2929 -- in the sense of the enclosing procedure.
2930
2931 procedure Check_List_Constants (Lst : List_Id);
2932 -- Check that all elements of list Lst meet the requirements for a
2933 -- constant address clause in the sense of the enclosing procedure.
2934
2935 -------------------------------
2936 -- Check_At_Constant_Address --
2937 -------------------------------
2938
2939 procedure Check_At_Constant_Address (Nod : Node_Id) is
2940 begin
2941 if Is_Entity_Name (Nod) then
2942 if Present (Address_Clause (Entity ((Nod)))) then
2943 Error_Msg_NE
2944 ("invalid address clause for initialized object &!",
2945 Nod, U_Ent);
2946 Error_Msg_NE
2947 ("address for& cannot" &
2948 " depend on another address clause! (RM 13.1(22))!",
2949 Nod, U_Ent);
2950
2951 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2952 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2953 then
2954 Error_Msg_NE
2955 ("invalid address clause for initialized object &!",
2956 Nod, U_Ent);
2957 Error_Msg_Node_2 := U_Ent;
2958 Error_Msg_NE
2959 ("\& must be defined before & (RM 13.1(22))!",
2960 Nod, Entity (Nod));
2961 end if;
2962
2963 elsif Nkind (Nod) = N_Selected_Component then
2964 declare
2965 T : constant Entity_Id := Etype (Prefix (Nod));
2966
2967 begin
2968 if (Is_Record_Type (T)
2969 and then Has_Discriminants (T))
2970 or else
2971 (Is_Access_Type (T)
2972 and then Is_Record_Type (Designated_Type (T))
2973 and then Has_Discriminants (Designated_Type (T)))
2974 then
2975 Error_Msg_NE
2976 ("invalid address clause for initialized object &!",
2977 Nod, U_Ent);
2978 Error_Msg_N
2979 ("\address cannot depend on component" &
2980 " of discriminated record (RM 13.1(22))!",
2981 Nod);
2982 else
2983 Check_At_Constant_Address (Prefix (Nod));
2984 end if;
2985 end;
2986
2987 elsif Nkind (Nod) = N_Indexed_Component then
2988 Check_At_Constant_Address (Prefix (Nod));
2989 Check_List_Constants (Expressions (Nod));
2990
2991 else
2992 Check_Expr_Constants (Nod);
2993 end if;
2994 end Check_At_Constant_Address;
2995
2996 --------------------------
2997 -- Check_Expr_Constants --
2998 --------------------------
2999
3000 procedure Check_Expr_Constants (Nod : Node_Id) is
3001 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
3002 Ent : Entity_Id := Empty;
3003
3004 begin
3005 if Nkind (Nod) in N_Has_Etype
3006 and then Etype (Nod) = Any_Type
3007 then
3008 return;
3009 end if;
3010
3011 case Nkind (Nod) is
3012 when N_Empty | N_Error =>
3013 return;
3014
3015 when N_Identifier | N_Expanded_Name =>
3016 Ent := Entity (Nod);
3017
3018 -- We need to look at the original node if it is different
3019 -- from the node, since we may have rewritten things and
3020 -- substituted an identifier representing the rewrite.
3021
3022 if Original_Node (Nod) /= Nod then
3023 Check_Expr_Constants (Original_Node (Nod));
3024
3025 -- If the node is an object declaration without initial
3026 -- value, some code has been expanded, and the expression
3027 -- is not constant, even if the constituents might be
3028 -- acceptable, as in A'Address + offset.
3029
3030 if Ekind (Ent) = E_Variable
3031 and then
3032 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
3033 and then
3034 No (Expression (Declaration_Node (Ent)))
3035 then
3036 Error_Msg_NE
3037 ("invalid address clause for initialized object &!",
3038 Nod, U_Ent);
3039
3040 -- If entity is constant, it may be the result of expanding
3041 -- a check. We must verify that its declaration appears
3042 -- before the object in question, else we also reject the
3043 -- address clause.
3044
3045 elsif Ekind (Ent) = E_Constant
3046 and then In_Same_Source_Unit (Ent, U_Ent)
3047 and then Sloc (Ent) > Loc_U_Ent
3048 then
3049 Error_Msg_NE
3050 ("invalid address clause for initialized object &!",
3051 Nod, U_Ent);
3052 end if;
3053
3054 return;
3055 end if;
3056
3057 -- Otherwise look at the identifier and see if it is OK
3058
3059 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
3060 or else Is_Type (Ent)
3061 then
3062 return;
3063
3064 elsif
3065 Ekind (Ent) = E_Constant
3066 or else
3067 Ekind (Ent) = E_In_Parameter
3068 then
3069 -- This is the case where we must have Ent defined before
3070 -- U_Ent. Clearly if they are in different units this
3071 -- requirement is met since the unit containing Ent is
3072 -- already processed.
3073
3074 if not In_Same_Source_Unit (Ent, U_Ent) then
3075 return;
3076
3077 -- Otherwise location of Ent must be before the location
3078 -- of U_Ent, that's what prior defined means.
3079
3080 elsif Sloc (Ent) < Loc_U_Ent then
3081 return;
3082
3083 else
3084 Error_Msg_NE
3085 ("invalid address clause for initialized object &!",
3086 Nod, U_Ent);
3087 Error_Msg_Node_2 := U_Ent;
3088 Error_Msg_NE
3089 ("\& must be defined before & (RM 13.1(22))!",
3090 Nod, Ent);
3091 end if;
3092
3093 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
3094 Check_Expr_Constants (Original_Node (Nod));
3095
3096 else
3097 Error_Msg_NE
3098 ("invalid address clause for initialized object &!",
3099 Nod, U_Ent);
3100
3101 if Comes_From_Source (Ent) then
3102 Error_Msg_NE
3103 ("\reference to variable& not allowed"
3104 & " (RM 13.1(22))!", Nod, Ent);
3105 else
3106 Error_Msg_N
3107 ("non-static expression not allowed"
3108 & " (RM 13.1(22))!", Nod);
3109 end if;
3110 end if;
3111
3112 when N_Integer_Literal =>
3113
3114 -- If this is a rewritten unchecked conversion, in a system
3115 -- where Address is an integer type, always use the base type
3116 -- for a literal value. This is user-friendly and prevents
3117 -- order-of-elaboration issues with instances of unchecked
3118 -- conversion.
3119
3120 if Nkind (Original_Node (Nod)) = N_Function_Call then
3121 Set_Etype (Nod, Base_Type (Etype (Nod)));
3122 end if;
3123
3124 when N_Real_Literal |
3125 N_String_Literal |
3126 N_Character_Literal =>
3127 return;
3128
3129 when N_Range =>
3130 Check_Expr_Constants (Low_Bound (Nod));
3131 Check_Expr_Constants (High_Bound (Nod));
3132
3133 when N_Explicit_Dereference =>
3134 Check_Expr_Constants (Prefix (Nod));
3135
3136 when N_Indexed_Component =>
3137 Check_Expr_Constants (Prefix (Nod));
3138 Check_List_Constants (Expressions (Nod));
3139
3140 when N_Slice =>
3141 Check_Expr_Constants (Prefix (Nod));
3142 Check_Expr_Constants (Discrete_Range (Nod));
3143
3144 when N_Selected_Component =>
3145 Check_Expr_Constants (Prefix (Nod));
3146
3147 when N_Attribute_Reference =>
3148 if Attribute_Name (Nod) = Name_Address
3149 or else
3150 Attribute_Name (Nod) = Name_Access
3151 or else
3152 Attribute_Name (Nod) = Name_Unchecked_Access
3153 or else
3154 Attribute_Name (Nod) = Name_Unrestricted_Access
3155 then
3156 Check_At_Constant_Address (Prefix (Nod));
3157
3158 else
3159 Check_Expr_Constants (Prefix (Nod));
3160 Check_List_Constants (Expressions (Nod));
3161 end if;
3162
3163 when N_Aggregate =>
3164 Check_List_Constants (Component_Associations (Nod));
3165 Check_List_Constants (Expressions (Nod));
3166
3167 when N_Component_Association =>
3168 Check_Expr_Constants (Expression (Nod));
3169
3170 when N_Extension_Aggregate =>
3171 Check_Expr_Constants (Ancestor_Part (Nod));
3172 Check_List_Constants (Component_Associations (Nod));
3173 Check_List_Constants (Expressions (Nod));
3174
3175 when N_Null =>
3176 return;
3177
3178 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
3179 Check_Expr_Constants (Left_Opnd (Nod));
3180 Check_Expr_Constants (Right_Opnd (Nod));
3181
3182 when N_Unary_Op =>
3183 Check_Expr_Constants (Right_Opnd (Nod));
3184
3185 when N_Type_Conversion |
3186 N_Qualified_Expression |
3187 N_Allocator =>
3188 Check_Expr_Constants (Expression (Nod));
3189
3190 when N_Unchecked_Type_Conversion =>
3191 Check_Expr_Constants (Expression (Nod));
3192
3193 -- If this is a rewritten unchecked conversion, subtypes in
3194 -- this node are those created within the instance. To avoid
3195 -- order of elaboration issues, replace them with their base
3196 -- types. Note that address clauses can cause order of
3197 -- elaboration problems because they are elaborated by the
3198 -- back-end at the point of definition, and may mention
3199 -- entities declared in between (as long as everything is
3200 -- static). It is user-friendly to allow unchecked conversions
3201 -- in this context.
3202
3203 if Nkind (Original_Node (Nod)) = N_Function_Call then
3204 Set_Etype (Expression (Nod),
3205 Base_Type (Etype (Expression (Nod))));
3206 Set_Etype (Nod, Base_Type (Etype (Nod)));
3207 end if;
3208
3209 when N_Function_Call =>
3210 if not Is_Pure (Entity (Name (Nod))) then
3211 Error_Msg_NE
3212 ("invalid address clause for initialized object &!",
3213 Nod, U_Ent);
3214
3215 Error_Msg_NE
3216 ("\function & is not pure (RM 13.1(22))!",
3217 Nod, Entity (Name (Nod)));
3218
3219 else
3220 Check_List_Constants (Parameter_Associations (Nod));
3221 end if;
3222
3223 when N_Parameter_Association =>
3224 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
3225
3226 when others =>
3227 Error_Msg_NE
3228 ("invalid address clause for initialized object &!",
3229 Nod, U_Ent);
3230 Error_Msg_NE
3231 ("\must be constant defined before& (RM 13.1(22))!",
3232 Nod, U_Ent);
3233 end case;
3234 end Check_Expr_Constants;
3235
3236 --------------------------
3237 -- Check_List_Constants --
3238 --------------------------
3239
3240 procedure Check_List_Constants (Lst : List_Id) is
3241 Nod1 : Node_Id;
3242
3243 begin
3244 if Present (Lst) then
3245 Nod1 := First (Lst);
3246 while Present (Nod1) loop
3247 Check_Expr_Constants (Nod1);
3248 Next (Nod1);
3249 end loop;
3250 end if;
3251 end Check_List_Constants;
3252
3253 -- Start of processing for Check_Constant_Address_Clause
3254
3255 begin
3256 -- If rep_clauses are to be ignored, no need for legality checks. In
3257 -- particular, no need to pester user about rep clauses that violate
3258 -- the rule on constant addresses, given that these clauses will be
3259 -- removed by Freeze before they reach the back end.
3260
3261 if not Ignore_Rep_Clauses then
3262 Check_Expr_Constants (Expr);
3263 end if;
3264 end Check_Constant_Address_Clause;
3265
3266 ----------------------------------------
3267 -- Check_Record_Representation_Clause --
3268 ----------------------------------------
3269
3270 procedure Check_Record_Representation_Clause (N : Node_Id) is
3271 Loc : constant Source_Ptr := Sloc (N);
3272 Ident : constant Node_Id := Identifier (N);
3273 Rectype : Entity_Id;
3274 Fent : Entity_Id;
3275 CC : Node_Id;
3276 Fbit : Uint;
3277 Lbit : Uint;
3278 Hbit : Uint := Uint_0;
3279 Comp : Entity_Id;
3280 Pcomp : Entity_Id;
3281
3282 Max_Bit_So_Far : Uint;
3283 -- Records the maximum bit position so far. If all field positions
3284 -- are monotonically increasing, then we can skip the circuit for
3285 -- checking for overlap, since no overlap is possible.
3286
3287 Tagged_Parent : Entity_Id := Empty;
3288 -- This is set in the case of a derived tagged type for which we have
3289 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
3290 -- positioned by record representation clauses). In this case we must
3291 -- check for overlap between components of this tagged type, and the
3292 -- components of its parent. Tagged_Parent will point to this parent
3293 -- type. For all other cases Tagged_Parent is left set to Empty.
3294
3295 Parent_Last_Bit : Uint;
3296 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
3297 -- last bit position for any field in the parent type. We only need to
3298 -- check overlap for fields starting below this point.
3299
3300 Overlap_Check_Required : Boolean;
3301 -- Used to keep track of whether or not an overlap check is required
3302
3303 Overlap_Detected : Boolean := False;
3304 -- Set True if an overlap is detected
3305
3306 Ccount : Natural := 0;
3307 -- Number of component clauses in record rep clause
3308
3309 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
3310 -- Given two entities for record components or discriminants, checks
3311 -- if they have overlapping component clauses and issues errors if so.
3312
3313 procedure Find_Component;
3314 -- Finds component entity corresponding to current component clause (in
3315 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
3316 -- start/stop bits for the field. If there is no matching component or
3317 -- if the matching component does not have a component clause, then
3318 -- that's an error and Comp is set to Empty, but no error message is
3319 -- issued, since the message was already given. Comp is also set to
3320 -- Empty if the current "component clause" is in fact a pragma.
3321
3322 -----------------------------
3323 -- Check_Component_Overlap --
3324 -----------------------------
3325
3326 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
3327 CC1 : constant Node_Id := Component_Clause (C1_Ent);
3328 CC2 : constant Node_Id := Component_Clause (C2_Ent);
3329
3330 begin
3331 if Present (CC1) and then Present (CC2) then
3332
3333 -- Exclude odd case where we have two tag fields in the same
3334 -- record, both at location zero. This seems a bit strange, but
3335 -- it seems to happen in some circumstances, perhaps on an error.
3336
3337 if Chars (C1_Ent) = Name_uTag
3338 and then
3339 Chars (C2_Ent) = Name_uTag
3340 then
3341 return;
3342 end if;
3343
3344 -- Here we check if the two fields overlap
3345
3346 declare
3347 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
3348 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
3349 E1 : constant Uint := S1 + Esize (C1_Ent);
3350 E2 : constant Uint := S2 + Esize (C2_Ent);
3351
3352 begin
3353 if E2 <= S1 or else E1 <= S2 then
3354 null;
3355 else
3356 Error_Msg_Node_2 := Component_Name (CC2);
3357 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
3358 Error_Msg_Node_1 := Component_Name (CC1);
3359 Error_Msg_N
3360 ("component& overlaps & #", Component_Name (CC1));
3361 Overlap_Detected := True;
3362 end if;
3363 end;
3364 end if;
3365 end Check_Component_Overlap;
3366
3367 --------------------
3368 -- Find_Component --
3369 --------------------
3370
3371 procedure Find_Component is
3372
3373 procedure Search_Component (R : Entity_Id);
3374 -- Search components of R for a match. If found, Comp is set.
3375
3376 ----------------------
3377 -- Search_Component --
3378 ----------------------
3379
3380 procedure Search_Component (R : Entity_Id) is
3381 begin
3382 Comp := First_Component_Or_Discriminant (R);
3383 while Present (Comp) loop
3384
3385 -- Ignore error of attribute name for component name (we
3386 -- already gave an error message for this, so no need to
3387 -- complain here)
3388
3389 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
3390 null;
3391 else
3392 exit when Chars (Comp) = Chars (Component_Name (CC));
3393 end if;
3394
3395 Next_Component_Or_Discriminant (Comp);
3396 end loop;
3397 end Search_Component;
3398
3399 -- Start of processing for Find_Component
3400
3401 begin
3402 -- Return with Comp set to Empty if we have a pragma
3403
3404 if Nkind (CC) = N_Pragma then
3405 Comp := Empty;
3406 return;
3407 end if;
3408
3409 -- Search current record for matching component
3410
3411 Search_Component (Rectype);
3412
3413 -- If not found, maybe component of base type that is absent from
3414 -- statically constrained first subtype.
3415
3416 if No (Comp) then
3417 Search_Component (Base_Type (Rectype));
3418 end if;
3419
3420 -- If no component, or the component does not reference the component
3421 -- clause in question, then there was some previous error for which
3422 -- we already gave a message, so just return with Comp Empty.
3423
3424 if No (Comp)
3425 or else Component_Clause (Comp) /= CC
3426 then
3427 Comp := Empty;
3428
3429 -- Normal case where we have a component clause
3430
3431 else
3432 Fbit := Component_Bit_Offset (Comp);
3433 Lbit := Fbit + Esize (Comp) - 1;
3434 end if;
3435 end Find_Component;
3436
3437 -- Start of processing for Check_Record_Representation_Clause
3438
3439 begin
3440 Find_Type (Ident);
3441 Rectype := Entity (Ident);
3442
3443 if Rectype = Any_Type then
3444 return;
3445 else
3446 Rectype := Underlying_Type (Rectype);
3447 end if;
3448
3449 -- See if we have a fully repped derived tagged type
3450
3451 declare
3452 PS : constant Entity_Id := Parent_Subtype (Rectype);
3453
3454 begin
3455 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
3456 Tagged_Parent := PS;
3457
3458 -- Find maximum bit of any component of the parent type
3459
3460 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
3461 Pcomp := First_Entity (Tagged_Parent);
3462 while Present (Pcomp) loop
3463 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
3464 if Component_Bit_Offset (Pcomp) /= No_Uint
3465 and then Known_Static_Esize (Pcomp)
3466 then
3467 Parent_Last_Bit :=
3468 UI_Max
3469 (Parent_Last_Bit,
3470 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
3471 end if;
3472
3473 Next_Entity (Pcomp);
3474 end if;
3475 end loop;
3476 end if;
3477 end;
3478
3479 -- All done if no component clauses
3480
3481 CC := First (Component_Clauses (N));
3482
3483 if No (CC) then
3484 return;
3485 end if;
3486
3487 -- If a tag is present, then create a component clause that places it
3488 -- at the start of the record (otherwise gigi may place it after other
3489 -- fields that have rep clauses).
3490
3491 Fent := First_Entity (Rectype);
3492
3493 if Nkind (Fent) = N_Defining_Identifier
3494 and then Chars (Fent) = Name_uTag
3495 then
3496 Set_Component_Bit_Offset (Fent, Uint_0);
3497 Set_Normalized_Position (Fent, Uint_0);
3498 Set_Normalized_First_Bit (Fent, Uint_0);
3499 Set_Normalized_Position_Max (Fent, Uint_0);
3500 Init_Esize (Fent, System_Address_Size);
3501
3502 Set_Component_Clause (Fent,
3503 Make_Component_Clause (Loc,
3504 Component_Name =>
3505 Make_Identifier (Loc,
3506 Chars => Name_uTag),
3507
3508 Position =>
3509 Make_Integer_Literal (Loc,
3510 Intval => Uint_0),
3511
3512 First_Bit =>
3513 Make_Integer_Literal (Loc,
3514 Intval => Uint_0),
3515
3516 Last_Bit =>
3517 Make_Integer_Literal (Loc,
3518 UI_From_Int (System_Address_Size))));
3519
3520 Ccount := Ccount + 1;
3521 end if;
3522
3523 Max_Bit_So_Far := Uint_Minus_1;
3524 Overlap_Check_Required := False;
3525
3526 -- Process the component clauses
3527
3528 while Present (CC) loop
3529 Find_Component;
3530
3531 if Present (Comp) then
3532 Ccount := Ccount + 1;
3533
3534 -- We need a full overlap check if record positions non-monotonic
3535
3536 if Fbit <= Max_Bit_So_Far then
3537 Overlap_Check_Required := True;
3538 end if;
3539
3540 Max_Bit_So_Far := Lbit;
3541
3542 -- Check bit position out of range of specified size
3543
3544 if Has_Size_Clause (Rectype)
3545 and then Esize (Rectype) <= Lbit
3546 then
3547 Error_Msg_N
3548 ("bit number out of range of specified size",
3549 Last_Bit (CC));
3550
3551 -- Check for overlap with tag field
3552
3553 else
3554 if Is_Tagged_Type (Rectype)
3555 and then Fbit < System_Address_Size
3556 then
3557 Error_Msg_NE
3558 ("component overlaps tag field of&",
3559 Component_Name (CC), Rectype);
3560 Overlap_Detected := True;
3561 end if;
3562
3563 if Hbit < Lbit then
3564 Hbit := Lbit;
3565 end if;
3566 end if;
3567
3568 -- Check parent overlap if component might overlap parent field
3569
3570 if Present (Tagged_Parent)
3571 and then Fbit <= Parent_Last_Bit
3572 then
3573 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
3574 while Present (Pcomp) loop
3575 if not Is_Tag (Pcomp)
3576 and then Chars (Pcomp) /= Name_uParent
3577 then
3578 Check_Component_Overlap (Comp, Pcomp);
3579 end if;
3580
3581 Next_Component_Or_Discriminant (Pcomp);
3582 end loop;
3583 end if;
3584 end if;
3585
3586 Next (CC);
3587 end loop;
3588
3589 -- Now that we have processed all the component clauses, check for
3590 -- overlap. We have to leave this till last, since the components can
3591 -- appear in any arbitrary order in the representation clause.
3592
3593 -- We do not need this check if all specified ranges were monotonic,
3594 -- as recorded by Overlap_Check_Required being False at this stage.
3595
3596 -- This first section checks if there are any overlapping entries at
3597 -- all. It does this by sorting all entries and then seeing if there are
3598 -- any overlaps. If there are none, then that is decisive, but if there
3599 -- are overlaps, they may still be OK (they may result from fields in
3600 -- different variants).
3601
3602 if Overlap_Check_Required then
3603 Overlap_Check1 : declare
3604
3605 OC_Fbit : array (0 .. Ccount) of Uint;
3606 -- First-bit values for component clauses, the value is the offset
3607 -- of the first bit of the field from start of record. The zero
3608 -- entry is for use in sorting.
3609
3610 OC_Lbit : array (0 .. Ccount) of Uint;
3611 -- Last-bit values for component clauses, the value is the offset
3612 -- of the last bit of the field from start of record. The zero
3613 -- entry is for use in sorting.
3614
3615 OC_Count : Natural := 0;
3616 -- Count of entries in OC_Fbit and OC_Lbit
3617
3618 function OC_Lt (Op1, Op2 : Natural) return Boolean;
3619 -- Compare routine for Sort
3620
3621 procedure OC_Move (From : Natural; To : Natural);
3622 -- Move routine for Sort
3623
3624 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
3625
3626 -----------
3627 -- OC_Lt --
3628 -----------
3629
3630 function OC_Lt (Op1, Op2 : Natural) return Boolean is
3631 begin
3632 return OC_Fbit (Op1) < OC_Fbit (Op2);
3633 end OC_Lt;
3634
3635 -------------
3636 -- OC_Move --
3637 -------------
3638
3639 procedure OC_Move (From : Natural; To : Natural) is
3640 begin
3641 OC_Fbit (To) := OC_Fbit (From);
3642 OC_Lbit (To) := OC_Lbit (From);
3643 end OC_Move;
3644
3645 -- Start of processing for Overlap_Check
3646
3647 begin
3648 CC := First (Component_Clauses (N));
3649 while Present (CC) loop
3650
3651 -- Exclude component clause already marked in error
3652
3653 if not Error_Posted (CC) then
3654 Find_Component;
3655
3656 if Present (Comp) then
3657 OC_Count := OC_Count + 1;
3658 OC_Fbit (OC_Count) := Fbit;
3659 OC_Lbit (OC_Count) := Lbit;
3660 end if;
3661 end if;
3662
3663 Next (CC);
3664 end loop;
3665
3666 Sorting.Sort (OC_Count);
3667
3668 Overlap_Check_Required := False;
3669 for J in 1 .. OC_Count - 1 loop
3670 if OC_Lbit (J) >= OC_Fbit (J + 1) then
3671 Overlap_Check_Required := True;
3672 exit;
3673 end if;
3674 end loop;
3675 end Overlap_Check1;
3676 end if;
3677
3678 -- If Overlap_Check_Required is still True, then we have to do the full
3679 -- scale overlap check, since we have at least two fields that do
3680 -- overlap, and we need to know if that is OK since they are in
3681 -- different variant, or whether we have a definite problem.
3682
3683 if Overlap_Check_Required then
3684 Overlap_Check2 : declare
3685 C1_Ent, C2_Ent : Entity_Id;
3686 -- Entities of components being checked for overlap
3687
3688 Clist : Node_Id;
3689 -- Component_List node whose Component_Items are being checked
3690
3691 Citem : Node_Id;
3692 -- Component declaration for component being checked
3693
3694 begin
3695 C1_Ent := First_Entity (Base_Type (Rectype));
3696
3697 -- Loop through all components in record. For each component check
3698 -- for overlap with any of the preceding elements on the component
3699 -- list containing the component and also, if the component is in
3700 -- a variant, check against components outside the case structure.
3701 -- This latter test is repeated recursively up the variant tree.
3702
3703 Main_Component_Loop : while Present (C1_Ent) loop
3704 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
3705 goto Continue_Main_Component_Loop;
3706 end if;
3707
3708 -- Skip overlap check if entity has no declaration node. This
3709 -- happens with discriminants in constrained derived types.
3710 -- Possibly we are missing some checks as a result, but that
3711 -- does not seem terribly serious.
3712
3713 if No (Declaration_Node (C1_Ent)) then
3714 goto Continue_Main_Component_Loop;
3715 end if;
3716
3717 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
3718
3719 -- Loop through component lists that need checking. Check the
3720 -- current component list and all lists in variants above us.
3721
3722 Component_List_Loop : loop
3723
3724 -- If derived type definition, go to full declaration
3725 -- If at outer level, check discriminants if there are any.
3726
3727 if Nkind (Clist) = N_Derived_Type_Definition then
3728 Clist := Parent (Clist);
3729 end if;
3730
3731 -- Outer level of record definition, check discriminants
3732
3733 if Nkind_In (Clist, N_Full_Type_Declaration,
3734 N_Private_Type_Declaration)
3735 then
3736 if Has_Discriminants (Defining_Identifier (Clist)) then
3737 C2_Ent :=
3738 First_Discriminant (Defining_Identifier (Clist));
3739 while Present (C2_Ent) loop
3740 exit when C1_Ent = C2_Ent;
3741 Check_Component_Overlap (C1_Ent, C2_Ent);
3742 Next_Discriminant (C2_Ent);
3743 end loop;
3744 end if;
3745
3746 -- Record extension case
3747
3748 elsif Nkind (Clist) = N_Derived_Type_Definition then
3749 Clist := Empty;
3750
3751 -- Otherwise check one component list
3752
3753 else
3754 Citem := First (Component_Items (Clist));
3755 while Present (Citem) loop
3756 if Nkind (Citem) = N_Component_Declaration then
3757 C2_Ent := Defining_Identifier (Citem);
3758 exit when C1_Ent = C2_Ent;
3759 Check_Component_Overlap (C1_Ent, C2_Ent);
3760 end if;
3761
3762 Next (Citem);
3763 end loop;
3764 end if;
3765
3766 -- Check for variants above us (the parent of the Clist can
3767 -- be a variant, in which case its parent is a variant part,
3768 -- and the parent of the variant part is a component list
3769 -- whose components must all be checked against the current
3770 -- component for overlap).
3771
3772 if Nkind (Parent (Clist)) = N_Variant then
3773 Clist := Parent (Parent (Parent (Clist)));
3774
3775 -- Check for possible discriminant part in record, this
3776 -- is treated essentially as another level in the
3777 -- recursion. For this case the parent of the component
3778 -- list is the record definition, and its parent is the
3779 -- full type declaration containing the discriminant
3780 -- specifications.
3781
3782 elsif Nkind (Parent (Clist)) = N_Record_Definition then
3783 Clist := Parent (Parent ((Clist)));
3784
3785 -- If neither of these two cases, we are at the top of
3786 -- the tree.
3787
3788 else
3789 exit Component_List_Loop;
3790 end if;
3791 end loop Component_List_Loop;
3792
3793 <<Continue_Main_Component_Loop>>
3794 Next_Entity (C1_Ent);
3795
3796 end loop Main_Component_Loop;
3797 end Overlap_Check2;
3798 end if;
3799
3800 -- The following circuit deals with warning on record holes (gaps). We
3801 -- skip this check if overlap was detected, since it makes sense for the
3802 -- programmer to fix this illegality before worrying about warnings.
3803
3804 if not Overlap_Detected and Warn_On_Record_Holes then
3805 Record_Hole_Check : declare
3806 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
3807 -- Full declaration of record type
3808
3809 procedure Check_Component_List
3810 (CL : Node_Id;
3811 Sbit : Uint;
3812 DS : List_Id);
3813 -- Check component list CL for holes. The starting bit should be
3814 -- Sbit. which is zero for the main record component list and set
3815 -- appropriately for recursive calls for variants. DS is set to
3816 -- a list of discriminant specifications to be included in the
3817 -- consideration of components. It is No_List if none to consider.
3818
3819 --------------------------
3820 -- Check_Component_List --
3821 --------------------------
3822
3823 procedure Check_Component_List
3824 (CL : Node_Id;
3825 Sbit : Uint;
3826 DS : List_Id)
3827 is
3828 Compl : Integer;
3829
3830 begin
3831 Compl := Integer (List_Length (Component_Items (CL)));
3832
3833 if DS /= No_List then
3834 Compl := Compl + Integer (List_Length (DS));
3835 end if;
3836
3837 declare
3838 Comps : array (Natural range 0 .. Compl) of Entity_Id;
3839 -- Gather components (zero entry is for sort routine)
3840
3841 Ncomps : Natural := 0;
3842 -- Number of entries stored in Comps (starting at Comps (1))
3843
3844 Citem : Node_Id;
3845 -- One component item or discriminant specification
3846
3847 Nbit : Uint;
3848 -- Starting bit for next component
3849
3850 CEnt : Entity_Id;
3851 -- Component entity
3852
3853 Variant : Node_Id;
3854 -- One variant
3855
3856 function Lt (Op1, Op2 : Natural) return Boolean;
3857 -- Compare routine for Sort
3858
3859 procedure Move (From : Natural; To : Natural);
3860 -- Move routine for Sort
3861
3862 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
3863
3864 --------
3865 -- Lt --
3866 --------
3867
3868 function Lt (Op1, Op2 : Natural) return Boolean is
3869 begin
3870 return Component_Bit_Offset (Comps (Op1))
3871 <
3872 Component_Bit_Offset (Comps (Op2));
3873 end Lt;
3874
3875 ----------
3876 -- Move --
3877 ----------
3878
3879 procedure Move (From : Natural; To : Natural) is
3880 begin
3881 Comps (To) := Comps (From);
3882 end Move;
3883
3884 begin
3885 -- Gather discriminants into Comp
3886
3887 if DS /= No_List then
3888 Citem := First (DS);
3889 while Present (Citem) loop
3890 if Nkind (Citem) = N_Discriminant_Specification then
3891 declare
3892 Ent : constant Entity_Id :=
3893 Defining_Identifier (Citem);
3894 begin
3895 if Ekind (Ent) = E_Discriminant then
3896 Ncomps := Ncomps + 1;
3897 Comps (Ncomps) := Ent;
3898 end if;
3899 end;
3900 end if;
3901
3902 Next (Citem);
3903 end loop;
3904 end if;
3905
3906 -- Gather component entities into Comp
3907
3908 Citem := First (Component_Items (CL));
3909 while Present (Citem) loop
3910 if Nkind (Citem) = N_Component_Declaration then
3911 Ncomps := Ncomps + 1;
3912 Comps (Ncomps) := Defining_Identifier (Citem);
3913 end if;
3914
3915 Next (Citem);
3916 end loop;
3917
3918 -- Now sort the component entities based on the first bit.
3919 -- Note we already know there are no overlapping components.
3920
3921 Sorting.Sort (Ncomps);
3922
3923 -- Loop through entries checking for holes
3924
3925 Nbit := Sbit;
3926 for J in 1 .. Ncomps loop
3927 CEnt := Comps (J);
3928 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
3929
3930 if Error_Msg_Uint_1 > 0 then
3931 Error_Msg_NE
3932 ("?^-bit gap before component&",
3933 Component_Name (Component_Clause (CEnt)), CEnt);
3934 end if;
3935
3936 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
3937 end loop;
3938
3939 -- Process variant parts recursively if present
3940
3941 if Present (Variant_Part (CL)) then
3942 Variant := First (Variants (Variant_Part (CL)));
3943 while Present (Variant) loop
3944 Check_Component_List
3945 (Component_List (Variant), Nbit, No_List);
3946 Next (Variant);
3947 end loop;
3948 end if;
3949 end;
3950 end Check_Component_List;
3951
3952 -- Start of processing for Record_Hole_Check
3953
3954 begin
3955 declare
3956 Sbit : Uint;
3957
3958 begin
3959 if Is_Tagged_Type (Rectype) then
3960 Sbit := UI_From_Int (System_Address_Size);
3961 else
3962 Sbit := Uint_0;
3963 end if;
3964
3965 if Nkind (Decl) = N_Full_Type_Declaration
3966 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
3967 then
3968 Check_Component_List
3969 (Component_List (Type_Definition (Decl)),
3970 Sbit,
3971 Discriminant_Specifications (Decl));
3972 end if;
3973 end;
3974 end Record_Hole_Check;
3975 end if;
3976
3977 -- For records that have component clauses for all components, and whose
3978 -- size is less than or equal to 32, we need to know the size in the
3979 -- front end to activate possible packed array processing where the
3980 -- component type is a record.
3981
3982 -- At this stage Hbit + 1 represents the first unused bit from all the
3983 -- component clauses processed, so if the component clauses are
3984 -- complete, then this is the length of the record.
3985
3986 -- For records longer than System.Storage_Unit, and for those where not
3987 -- all components have component clauses, the back end determines the
3988 -- length (it may for example be appropriate to round up the size
3989 -- to some convenient boundary, based on alignment considerations, etc).
3990
3991 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
3992
3993 -- Nothing to do if at least one component has no component clause
3994
3995 Comp := First_Component_Or_Discriminant (Rectype);
3996 while Present (Comp) loop
3997 exit when No (Component_Clause (Comp));
3998 Next_Component_Or_Discriminant (Comp);
3999 end loop;
4000
4001 -- If we fall out of loop, all components have component clauses
4002 -- and so we can set the size to the maximum value.
4003
4004 if No (Comp) then
4005 Set_RM_Size (Rectype, Hbit + 1);
4006 end if;
4007 end if;
4008 end Check_Record_Representation_Clause;
4009
4010 ----------------
4011 -- Check_Size --
4012 ----------------
4013
4014 procedure Check_Size
4015 (N : Node_Id;
4016 T : Entity_Id;
4017 Siz : Uint;
4018 Biased : out Boolean)
4019 is
4020 UT : constant Entity_Id := Underlying_Type (T);
4021 M : Uint;
4022
4023 begin
4024 Biased := False;
4025
4026 -- Dismiss cases for generic types or types with previous errors
4027
4028 if No (UT)
4029 or else UT = Any_Type
4030 or else Is_Generic_Type (UT)
4031 or else Is_Generic_Type (Root_Type (UT))
4032 then
4033 return;
4034
4035 -- Check case of bit packed array
4036
4037 elsif Is_Array_Type (UT)
4038 and then Known_Static_Component_Size (UT)
4039 and then Is_Bit_Packed_Array (UT)
4040 then
4041 declare
4042 Asiz : Uint;
4043 Indx : Node_Id;
4044 Ityp : Entity_Id;
4045
4046 begin
4047 Asiz := Component_Size (UT);
4048 Indx := First_Index (UT);
4049 loop
4050 Ityp := Etype (Indx);
4051
4052 -- If non-static bound, then we are not in the business of
4053 -- trying to check the length, and indeed an error will be
4054 -- issued elsewhere, since sizes of non-static array types
4055 -- cannot be set implicitly or explicitly.
4056
4057 if not Is_Static_Subtype (Ityp) then
4058 return;
4059 end if;
4060
4061 -- Otherwise accumulate next dimension
4062
4063 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
4064 Expr_Value (Type_Low_Bound (Ityp)) +
4065 Uint_1);
4066
4067 Next_Index (Indx);
4068 exit when No (Indx);
4069 end loop;
4070
4071 if Asiz <= Siz then
4072 return;
4073 else
4074 Error_Msg_Uint_1 := Asiz;
4075 Error_Msg_NE
4076 ("size for& too small, minimum allowed is ^", N, T);
4077 Set_Esize (T, Asiz);
4078 Set_RM_Size (T, Asiz);
4079 end if;
4080 end;
4081
4082 -- All other composite types are ignored
4083
4084 elsif Is_Composite_Type (UT) then
4085 return;
4086
4087 -- For fixed-point types, don't check minimum if type is not frozen,
4088 -- since we don't know all the characteristics of the type that can
4089 -- affect the size (e.g. a specified small) till freeze time.
4090
4091 elsif Is_Fixed_Point_Type (UT)
4092 and then not Is_Frozen (UT)
4093 then
4094 null;
4095
4096 -- Cases for which a minimum check is required
4097
4098 else
4099 -- Ignore if specified size is correct for the type
4100
4101 if Known_Esize (UT) and then Siz = Esize (UT) then
4102 return;
4103 end if;
4104
4105 -- Otherwise get minimum size
4106
4107 M := UI_From_Int (Minimum_Size (UT));
4108
4109 if Siz < M then
4110
4111 -- Size is less than minimum size, but one possibility remains
4112 -- that we can manage with the new size if we bias the type.
4113
4114 M := UI_From_Int (Minimum_Size (UT, Biased => True));
4115
4116 if Siz < M then
4117 Error_Msg_Uint_1 := M;
4118 Error_Msg_NE
4119 ("size for& too small, minimum allowed is ^", N, T);
4120 Set_Esize (T, M);
4121 Set_RM_Size (T, M);
4122 else
4123 Biased := True;
4124 end if;
4125 end if;
4126 end if;
4127 end Check_Size;
4128
4129 -------------------------
4130 -- Get_Alignment_Value --
4131 -------------------------
4132
4133 function Get_Alignment_Value (Expr : Node_Id) return Uint is
4134 Align : constant Uint := Static_Integer (Expr);
4135
4136 begin
4137 if Align = No_Uint then
4138 return No_Uint;
4139
4140 elsif Align <= 0 then
4141 Error_Msg_N ("alignment value must be positive", Expr);
4142 return No_Uint;
4143
4144 else
4145 for J in Int range 0 .. 64 loop
4146 declare
4147 M : constant Uint := Uint_2 ** J;
4148
4149 begin
4150 exit when M = Align;
4151
4152 if M > Align then
4153 Error_Msg_N
4154 ("alignment value must be power of 2", Expr);
4155 return No_Uint;
4156 end if;
4157 end;
4158 end loop;
4159
4160 return Align;
4161 end if;
4162 end Get_Alignment_Value;
4163
4164 ----------------
4165 -- Initialize --
4166 ----------------
4167
4168 procedure Initialize is
4169 begin
4170 Unchecked_Conversions.Init;
4171 end Initialize;
4172
4173 -------------------------
4174 -- Is_Operational_Item --
4175 -------------------------
4176
4177 function Is_Operational_Item (N : Node_Id) return Boolean is
4178 begin
4179 if Nkind (N) /= N_Attribute_Definition_Clause then
4180 return False;
4181 else
4182 declare
4183 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
4184 begin
4185 return Id = Attribute_Input
4186 or else Id = Attribute_Output
4187 or else Id = Attribute_Read
4188 or else Id = Attribute_Write
4189 or else Id = Attribute_External_Tag;
4190 end;
4191 end if;
4192 end Is_Operational_Item;
4193
4194 ------------------
4195 -- Minimum_Size --
4196 ------------------
4197
4198 function Minimum_Size
4199 (T : Entity_Id;
4200 Biased : Boolean := False) return Nat
4201 is
4202 Lo : Uint := No_Uint;
4203 Hi : Uint := No_Uint;
4204 LoR : Ureal := No_Ureal;
4205 HiR : Ureal := No_Ureal;
4206 LoSet : Boolean := False;
4207 HiSet : Boolean := False;
4208 B : Uint;
4209 S : Nat;
4210 Ancest : Entity_Id;
4211 R_Typ : constant Entity_Id := Root_Type (T);
4212
4213 begin
4214 -- If bad type, return 0
4215
4216 if T = Any_Type then
4217 return 0;
4218
4219 -- For generic types, just return zero. There cannot be any legitimate
4220 -- need to know such a size, but this routine may be called with a
4221 -- generic type as part of normal processing.
4222
4223 elsif Is_Generic_Type (R_Typ)
4224 or else R_Typ = Any_Type
4225 then
4226 return 0;
4227
4228 -- Access types. Normally an access type cannot have a size smaller
4229 -- than the size of System.Address. The exception is on VMS, where
4230 -- we have short and long addresses, and it is possible for an access
4231 -- type to have a short address size (and thus be less than the size
4232 -- of System.Address itself). We simply skip the check for VMS, and
4233 -- leave it to the back end to do the check.
4234
4235 elsif Is_Access_Type (T) then
4236 if OpenVMS_On_Target then
4237 return 0;
4238 else
4239 return System_Address_Size;
4240 end if;
4241
4242 -- Floating-point types
4243
4244 elsif Is_Floating_Point_Type (T) then
4245 return UI_To_Int (Esize (R_Typ));
4246
4247 -- Discrete types
4248
4249 elsif Is_Discrete_Type (T) then
4250
4251 -- The following loop is looking for the nearest compile time known
4252 -- bounds following the ancestor subtype chain. The idea is to find
4253 -- the most restrictive known bounds information.
4254
4255 Ancest := T;
4256 loop
4257 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
4258 return 0;
4259 end if;
4260
4261 if not LoSet then
4262 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
4263 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
4264 LoSet := True;
4265 exit when HiSet;
4266 end if;
4267 end if;
4268
4269 if not HiSet then
4270 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
4271 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
4272 HiSet := True;
4273 exit when LoSet;
4274 end if;
4275 end if;
4276
4277 Ancest := Ancestor_Subtype (Ancest);
4278
4279 if No (Ancest) then
4280 Ancest := Base_Type (T);
4281
4282 if Is_Generic_Type (Ancest) then
4283 return 0;
4284 end if;
4285 end if;
4286 end loop;
4287
4288 -- Fixed-point types. We can't simply use Expr_Value to get the
4289 -- Corresponding_Integer_Value values of the bounds, since these do not
4290 -- get set till the type is frozen, and this routine can be called
4291 -- before the type is frozen. Similarly the test for bounds being static
4292 -- needs to include the case where we have unanalyzed real literals for
4293 -- the same reason.
4294
4295 elsif Is_Fixed_Point_Type (T) then
4296
4297 -- The following loop is looking for the nearest compile time known
4298 -- bounds following the ancestor subtype chain. The idea is to find
4299 -- the most restrictive known bounds information.
4300
4301 Ancest := T;
4302 loop
4303 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
4304 return 0;
4305 end if;
4306
4307 -- Note: In the following two tests for LoSet and HiSet, it may
4308 -- seem redundant to test for N_Real_Literal here since normally
4309 -- one would assume that the test for the value being known at
4310 -- compile time includes this case. However, there is a glitch.
4311 -- If the real literal comes from folding a non-static expression,
4312 -- then we don't consider any non- static expression to be known
4313 -- at compile time if we are in configurable run time mode (needed
4314 -- in some cases to give a clearer definition of what is and what
4315 -- is not accepted). So the test is indeed needed. Without it, we
4316 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
4317
4318 if not LoSet then
4319 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
4320 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
4321 then
4322 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
4323 LoSet := True;
4324 exit when HiSet;
4325 end if;
4326 end if;
4327
4328 if not HiSet then
4329 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
4330 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
4331 then
4332 HiR := Expr_Value_R (Type_High_Bound (Ancest));
4333 HiSet := True;
4334 exit when LoSet;
4335 end if;
4336 end if;
4337
4338 Ancest := Ancestor_Subtype (Ancest);
4339
4340 if No (Ancest) then
4341 Ancest := Base_Type (T);
4342
4343 if Is_Generic_Type (Ancest) then
4344 return 0;
4345 end if;
4346 end if;
4347 end loop;
4348
4349 Lo := UR_To_Uint (LoR / Small_Value (T));
4350 Hi := UR_To_Uint (HiR / Small_Value (T));
4351
4352 -- No other types allowed
4353
4354 else
4355 raise Program_Error;
4356 end if;
4357
4358 -- Fall through with Hi and Lo set. Deal with biased case
4359
4360 if (Biased
4361 and then not Is_Fixed_Point_Type (T)
4362 and then not (Is_Enumeration_Type (T)
4363 and then Has_Non_Standard_Rep (T)))
4364 or else Has_Biased_Representation (T)
4365 then
4366 Hi := Hi - Lo;
4367 Lo := Uint_0;
4368 end if;
4369
4370 -- Signed case. Note that we consider types like range 1 .. -1 to be
4371 -- signed for the purpose of computing the size, since the bounds have
4372 -- to be accommodated in the base type.
4373
4374 if Lo < 0 or else Hi < 0 then
4375 S := 1;
4376 B := Uint_1;
4377
4378 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
4379 -- Note that we accommodate the case where the bounds cross. This
4380 -- can happen either because of the way the bounds are declared
4381 -- or because of the algorithm in Freeze_Fixed_Point_Type.
4382
4383 while Lo < -B
4384 or else Hi < -B
4385 or else Lo >= B
4386 or else Hi >= B
4387 loop
4388 B := Uint_2 ** S;
4389 S := S + 1;
4390 end loop;
4391
4392 -- Unsigned case
4393
4394 else
4395 -- If both bounds are positive, make sure that both are represen-
4396 -- table in the case where the bounds are crossed. This can happen
4397 -- either because of the way the bounds are declared, or because of
4398 -- the algorithm in Freeze_Fixed_Point_Type.
4399
4400 if Lo > Hi then
4401 Hi := Lo;
4402 end if;
4403
4404 -- S = size, (can accommodate 0 .. (2**size - 1))
4405
4406 S := 0;
4407 while Hi >= Uint_2 ** S loop
4408 S := S + 1;
4409 end loop;
4410 end if;
4411
4412 return S;
4413 end Minimum_Size;
4414
4415 ---------------------------
4416 -- New_Stream_Subprogram --
4417 ---------------------------
4418
4419 procedure New_Stream_Subprogram
4420 (N : Node_Id;
4421 Ent : Entity_Id;
4422 Subp : Entity_Id;
4423 Nam : TSS_Name_Type)
4424 is
4425 Loc : constant Source_Ptr := Sloc (N);
4426 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
4427 Subp_Id : Entity_Id;
4428 Subp_Decl : Node_Id;
4429 F : Entity_Id;
4430 Etyp : Entity_Id;
4431
4432 Defer_Declaration : constant Boolean :=
4433 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
4434 -- For a tagged type, there is a declaration for each stream attribute
4435 -- at the freeze point, and we must generate only a completion of this
4436 -- declaration. We do the same for private types, because the full view
4437 -- might be tagged. Otherwise we generate a declaration at the point of
4438 -- the attribute definition clause.
4439
4440 function Build_Spec return Node_Id;
4441 -- Used for declaration and renaming declaration, so that this is
4442 -- treated as a renaming_as_body.
4443
4444 ----------------
4445 -- Build_Spec --
4446 ----------------
4447
4448 function Build_Spec return Node_Id is
4449 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
4450 Formals : List_Id;
4451 Spec : Node_Id;
4452 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
4453
4454 begin
4455 Subp_Id := Make_Defining_Identifier (Loc, Sname);
4456
4457 -- S : access Root_Stream_Type'Class
4458
4459 Formals := New_List (
4460 Make_Parameter_Specification (Loc,
4461 Defining_Identifier =>
4462 Make_Defining_Identifier (Loc, Name_S),
4463 Parameter_Type =>
4464 Make_Access_Definition (Loc,
4465 Subtype_Mark =>
4466 New_Reference_To (
4467 Designated_Type (Etype (F)), Loc))));
4468
4469 if Nam = TSS_Stream_Input then
4470 Spec := Make_Function_Specification (Loc,
4471 Defining_Unit_Name => Subp_Id,
4472 Parameter_Specifications => Formals,
4473 Result_Definition => T_Ref);
4474 else
4475 -- V : [out] T
4476
4477 Append_To (Formals,
4478 Make_Parameter_Specification (Loc,
4479 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
4480 Out_Present => Out_P,
4481 Parameter_Type => T_Ref));
4482
4483 Spec :=
4484 Make_Procedure_Specification (Loc,
4485 Defining_Unit_Name => Subp_Id,
4486 Parameter_Specifications => Formals);
4487 end if;
4488
4489 return Spec;
4490 end Build_Spec;
4491
4492 -- Start of processing for New_Stream_Subprogram
4493
4494 begin
4495 F := First_Formal (Subp);
4496
4497 if Ekind (Subp) = E_Procedure then
4498 Etyp := Etype (Next_Formal (F));
4499 else
4500 Etyp := Etype (Subp);
4501 end if;
4502
4503 -- Prepare subprogram declaration and insert it as an action on the
4504 -- clause node. The visibility for this entity is used to test for
4505 -- visibility of the attribute definition clause (in the sense of
4506 -- 8.3(23) as amended by AI-195).
4507
4508 if not Defer_Declaration then
4509 Subp_Decl :=
4510 Make_Subprogram_Declaration (Loc,
4511 Specification => Build_Spec);
4512
4513 -- For a tagged type, there is always a visible declaration for each
4514 -- stream TSS (it is a predefined primitive operation), and the
4515 -- completion of this declaration occurs at the freeze point, which is
4516 -- not always visible at places where the attribute definition clause is
4517 -- visible. So, we create a dummy entity here for the purpose of
4518 -- tracking the visibility of the attribute definition clause itself.
4519
4520 else
4521 Subp_Id :=
4522 Make_Defining_Identifier (Loc,
4523 Chars => New_External_Name (Sname, 'V'));
4524 Subp_Decl :=
4525 Make_Object_Declaration (Loc,
4526 Defining_Identifier => Subp_Id,
4527 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
4528 end if;
4529
4530 Insert_Action (N, Subp_Decl);
4531 Set_Entity (N, Subp_Id);
4532
4533 Subp_Decl :=
4534 Make_Subprogram_Renaming_Declaration (Loc,
4535 Specification => Build_Spec,
4536 Name => New_Reference_To (Subp, Loc));
4537
4538 if Defer_Declaration then
4539 Set_TSS (Base_Type (Ent), Subp_Id);
4540 else
4541 Insert_Action (N, Subp_Decl);
4542 Copy_TSS (Subp_Id, Base_Type (Ent));
4543 end if;
4544 end New_Stream_Subprogram;
4545
4546 ------------------------
4547 -- Rep_Item_Too_Early --
4548 ------------------------
4549
4550 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
4551 begin
4552 -- Cannot apply non-operational rep items to generic types
4553
4554 if Is_Operational_Item (N) then
4555 return False;
4556
4557 elsif Is_Type (T)
4558 and then Is_Generic_Type (Root_Type (T))
4559 then
4560 Error_Msg_N ("representation item not allowed for generic type", N);
4561 return True;
4562 end if;
4563
4564 -- Otherwise check for incomplete type
4565
4566 if Is_Incomplete_Or_Private_Type (T)
4567 and then No (Underlying_Type (T))
4568 then
4569 Error_Msg_N
4570 ("representation item must be after full type declaration", N);
4571 return True;
4572
4573 -- If the type has incomplete components, a representation clause is
4574 -- illegal but stream attributes and Convention pragmas are correct.
4575
4576 elsif Has_Private_Component (T) then
4577 if Nkind (N) = N_Pragma then
4578 return False;
4579 else
4580 Error_Msg_N
4581 ("representation item must appear after type is fully defined",
4582 N);
4583 return True;
4584 end if;
4585 else
4586 return False;
4587 end if;
4588 end Rep_Item_Too_Early;
4589
4590 -----------------------
4591 -- Rep_Item_Too_Late --
4592 -----------------------
4593
4594 function Rep_Item_Too_Late
4595 (T : Entity_Id;
4596 N : Node_Id;
4597 FOnly : Boolean := False) return Boolean
4598 is
4599 S : Entity_Id;
4600 Parent_Type : Entity_Id;
4601
4602 procedure Too_Late;
4603 -- Output the too late message. Note that this is not considered a
4604 -- serious error, since the effect is simply that we ignore the
4605 -- representation clause in this case.
4606
4607 --------------
4608 -- Too_Late --
4609 --------------
4610
4611 procedure Too_Late is
4612 begin
4613 Error_Msg_N ("|representation item appears too late!", N);
4614 end Too_Late;
4615
4616 -- Start of processing for Rep_Item_Too_Late
4617
4618 begin
4619 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
4620 -- types, which may be frozen if they appear in a representation clause
4621 -- for a local type.
4622
4623 if Is_Frozen (T)
4624 and then not From_With_Type (T)
4625 then
4626 Too_Late;
4627 S := First_Subtype (T);
4628
4629 if Present (Freeze_Node (S)) then
4630 Error_Msg_NE
4631 ("?no more representation items for }", Freeze_Node (S), S);
4632 end if;
4633
4634 return True;
4635
4636 -- Check for case of non-tagged derived type whose parent either has
4637 -- primitive operations, or is a by reference type (RM 13.1(10)).
4638
4639 elsif Is_Type (T)
4640 and then not FOnly
4641 and then Is_Derived_Type (T)
4642 and then not Is_Tagged_Type (T)
4643 then
4644 Parent_Type := Etype (Base_Type (T));
4645
4646 if Has_Primitive_Operations (Parent_Type) then
4647 Too_Late;
4648 Error_Msg_NE
4649 ("primitive operations already defined for&!", N, Parent_Type);
4650 return True;
4651
4652 elsif Is_By_Reference_Type (Parent_Type) then
4653 Too_Late;
4654 Error_Msg_NE
4655 ("parent type & is a by reference type!", N, Parent_Type);
4656 return True;
4657 end if;
4658 end if;
4659
4660 -- No error, link item into head of chain of rep items for the entity,
4661 -- but avoid chaining if we have an overloadable entity, and the pragma
4662 -- is one that can apply to multiple overloaded entities.
4663
4664 if Is_Overloadable (T)
4665 and then Nkind (N) = N_Pragma
4666 then
4667 declare
4668 Pname : constant Name_Id := Pragma_Name (N);
4669 begin
4670 if Pname = Name_Convention or else
4671 Pname = Name_Import or else
4672 Pname = Name_Export or else
4673 Pname = Name_External or else
4674 Pname = Name_Interface
4675 then
4676 return False;
4677 end if;
4678 end;
4679 end if;
4680
4681 Record_Rep_Item (T, N);
4682 return False;
4683 end Rep_Item_Too_Late;
4684
4685 -------------------------
4686 -- Same_Representation --
4687 -------------------------
4688
4689 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
4690 T1 : constant Entity_Id := Underlying_Type (Typ1);
4691 T2 : constant Entity_Id := Underlying_Type (Typ2);
4692
4693 begin
4694 -- A quick check, if base types are the same, then we definitely have
4695 -- the same representation, because the subtype specific representation
4696 -- attributes (Size and Alignment) do not affect representation from
4697 -- the point of view of this test.
4698
4699 if Base_Type (T1) = Base_Type (T2) then
4700 return True;
4701
4702 elsif Is_Private_Type (Base_Type (T2))
4703 and then Base_Type (T1) = Full_View (Base_Type (T2))
4704 then
4705 return True;
4706 end if;
4707
4708 -- Tagged types never have differing representations
4709
4710 if Is_Tagged_Type (T1) then
4711 return True;
4712 end if;
4713
4714 -- Representations are definitely different if conventions differ
4715
4716 if Convention (T1) /= Convention (T2) then
4717 return False;
4718 end if;
4719
4720 -- Representations are different if component alignments differ
4721
4722 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
4723 and then
4724 (Is_Record_Type (T2) or else Is_Array_Type (T2))
4725 and then Component_Alignment (T1) /= Component_Alignment (T2)
4726 then
4727 return False;
4728 end if;
4729
4730 -- For arrays, the only real issue is component size. If we know the
4731 -- component size for both arrays, and it is the same, then that's
4732 -- good enough to know we don't have a change of representation.
4733
4734 if Is_Array_Type (T1) then
4735 if Known_Component_Size (T1)
4736 and then Known_Component_Size (T2)
4737 and then Component_Size (T1) = Component_Size (T2)
4738 then
4739 return True;
4740 end if;
4741 end if;
4742
4743 -- Types definitely have same representation if neither has non-standard
4744 -- representation since default representations are always consistent.
4745 -- If only one has non-standard representation, and the other does not,
4746 -- then we consider that they do not have the same representation. They
4747 -- might, but there is no way of telling early enough.
4748
4749 if Has_Non_Standard_Rep (T1) then
4750 if not Has_Non_Standard_Rep (T2) then
4751 return False;
4752 end if;
4753 else
4754 return not Has_Non_Standard_Rep (T2);
4755 end if;
4756
4757 -- Here the two types both have non-standard representation, and we need
4758 -- to determine if they have the same non-standard representation.
4759
4760 -- For arrays, we simply need to test if the component sizes are the
4761 -- same. Pragma Pack is reflected in modified component sizes, so this
4762 -- check also deals with pragma Pack.
4763
4764 if Is_Array_Type (T1) then
4765 return Component_Size (T1) = Component_Size (T2);
4766
4767 -- Tagged types always have the same representation, because it is not
4768 -- possible to specify different representations for common fields.
4769
4770 elsif Is_Tagged_Type (T1) then
4771 return True;
4772
4773 -- Case of record types
4774
4775 elsif Is_Record_Type (T1) then
4776
4777 -- Packed status must conform
4778
4779 if Is_Packed (T1) /= Is_Packed (T2) then
4780 return False;
4781
4782 -- Otherwise we must check components. Typ2 maybe a constrained
4783 -- subtype with fewer components, so we compare the components
4784 -- of the base types.
4785
4786 else
4787 Record_Case : declare
4788 CD1, CD2 : Entity_Id;
4789
4790 function Same_Rep return Boolean;
4791 -- CD1 and CD2 are either components or discriminants. This
4792 -- function tests whether the two have the same representation
4793
4794 --------------
4795 -- Same_Rep --
4796 --------------
4797
4798 function Same_Rep return Boolean is
4799 begin
4800 if No (Component_Clause (CD1)) then
4801 return No (Component_Clause (CD2));
4802
4803 else
4804 return
4805 Present (Component_Clause (CD2))
4806 and then
4807 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
4808 and then
4809 Esize (CD1) = Esize (CD2);
4810 end if;
4811 end Same_Rep;
4812
4813 -- Start of processing for Record_Case
4814
4815 begin
4816 if Has_Discriminants (T1) then
4817 CD1 := First_Discriminant (T1);
4818 CD2 := First_Discriminant (T2);
4819
4820 -- The number of discriminants may be different if the
4821 -- derived type has fewer (constrained by values). The
4822 -- invisible discriminants retain the representation of
4823 -- the original, so the discrepancy does not per se
4824 -- indicate a different representation.
4825
4826 while Present (CD1)
4827 and then Present (CD2)
4828 loop
4829 if not Same_Rep then
4830 return False;
4831 else
4832 Next_Discriminant (CD1);
4833 Next_Discriminant (CD2);
4834 end if;
4835 end loop;
4836 end if;
4837
4838 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
4839 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
4840
4841 while Present (CD1) loop
4842 if not Same_Rep then
4843 return False;
4844 else
4845 Next_Component (CD1);
4846 Next_Component (CD2);
4847 end if;
4848 end loop;
4849
4850 return True;
4851 end Record_Case;
4852 end if;
4853
4854 -- For enumeration types, we must check each literal to see if the
4855 -- representation is the same. Note that we do not permit enumeration
4856 -- representation clauses for Character and Wide_Character, so these
4857 -- cases were already dealt with.
4858
4859 elsif Is_Enumeration_Type (T1) then
4860 Enumeration_Case : declare
4861 L1, L2 : Entity_Id;
4862
4863 begin
4864 L1 := First_Literal (T1);
4865 L2 := First_Literal (T2);
4866
4867 while Present (L1) loop
4868 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
4869 return False;
4870 else
4871 Next_Literal (L1);
4872 Next_Literal (L2);
4873 end if;
4874 end loop;
4875
4876 return True;
4877
4878 end Enumeration_Case;
4879
4880 -- Any other types have the same representation for these purposes
4881
4882 else
4883 return True;
4884 end if;
4885 end Same_Representation;
4886
4887 ----------------
4888 -- Set_Biased --
4889 ----------------
4890
4891 procedure Set_Biased
4892 (E : Entity_Id;
4893 N : Node_Id;
4894 Msg : String;
4895 Biased : Boolean := True)
4896 is
4897 begin
4898 if Biased then
4899 Set_Has_Biased_Representation (E);
4900
4901 if Warn_On_Biased_Representation then
4902 Error_Msg_NE
4903 ("?" & Msg & " forces biased representation for&", N, E);
4904 end if;
4905 end if;
4906 end Set_Biased;
4907
4908 --------------------
4909 -- Set_Enum_Esize --
4910 --------------------
4911
4912 procedure Set_Enum_Esize (T : Entity_Id) is
4913 Lo : Uint;
4914 Hi : Uint;
4915 Sz : Nat;
4916
4917 begin
4918 Init_Alignment (T);
4919
4920 -- Find the minimum standard size (8,16,32,64) that fits
4921
4922 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
4923 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
4924
4925 if Lo < 0 then
4926 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
4927 Sz := Standard_Character_Size; -- May be > 8 on some targets
4928
4929 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
4930 Sz := 16;
4931
4932 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
4933 Sz := 32;
4934
4935 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
4936 Sz := 64;
4937 end if;
4938
4939 else
4940 if Hi < Uint_2**08 then
4941 Sz := Standard_Character_Size; -- May be > 8 on some targets
4942
4943 elsif Hi < Uint_2**16 then
4944 Sz := 16;
4945
4946 elsif Hi < Uint_2**32 then
4947 Sz := 32;
4948
4949 else pragma Assert (Hi < Uint_2**63);
4950 Sz := 64;
4951 end if;
4952 end if;
4953
4954 -- That minimum is the proper size unless we have a foreign convention
4955 -- and the size required is 32 or less, in which case we bump the size
4956 -- up to 32. This is required for C and C++ and seems reasonable for
4957 -- all other foreign conventions.
4958
4959 if Has_Foreign_Convention (T)
4960 and then Esize (T) < Standard_Integer_Size
4961 then
4962 Init_Esize (T, Standard_Integer_Size);
4963 else
4964 Init_Esize (T, Sz);
4965 end if;
4966 end Set_Enum_Esize;
4967
4968 ------------------------------
4969 -- Validate_Address_Clauses --
4970 ------------------------------
4971
4972 procedure Validate_Address_Clauses is
4973 begin
4974 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
4975 declare
4976 ACCR : Address_Clause_Check_Record
4977 renames Address_Clause_Checks.Table (J);
4978
4979 Expr : Node_Id;
4980
4981 X_Alignment : Uint;
4982 Y_Alignment : Uint;
4983
4984 X_Size : Uint;
4985 Y_Size : Uint;
4986
4987 begin
4988 -- Skip processing of this entry if warning already posted
4989
4990 if not Address_Warning_Posted (ACCR.N) then
4991
4992 Expr := Original_Node (Expression (ACCR.N));
4993
4994 -- Get alignments
4995
4996 X_Alignment := Alignment (ACCR.X);
4997 Y_Alignment := Alignment (ACCR.Y);
4998
4999 -- Similarly obtain sizes
5000
5001 X_Size := Esize (ACCR.X);
5002 Y_Size := Esize (ACCR.Y);
5003
5004 -- Check for large object overlaying smaller one
5005
5006 if Y_Size > Uint_0
5007 and then X_Size > Uint_0
5008 and then X_Size > Y_Size
5009 then
5010 Error_Msg_NE
5011 ("?& overlays smaller object", ACCR.N, ACCR.X);
5012 Error_Msg_N
5013 ("\?program execution may be erroneous", ACCR.N);
5014 Error_Msg_Uint_1 := X_Size;
5015 Error_Msg_NE
5016 ("\?size of & is ^", ACCR.N, ACCR.X);
5017 Error_Msg_Uint_1 := Y_Size;
5018 Error_Msg_NE
5019 ("\?size of & is ^", ACCR.N, ACCR.Y);
5020
5021 -- Check for inadequate alignment, both of the base object
5022 -- and of the offset, if any.
5023
5024 -- Note: we do not check the alignment if we gave a size
5025 -- warning, since it would likely be redundant.
5026
5027 elsif Y_Alignment /= Uint_0
5028 and then (Y_Alignment < X_Alignment
5029 or else (ACCR.Off
5030 and then
5031 Nkind (Expr) = N_Attribute_Reference
5032 and then
5033 Attribute_Name (Expr) = Name_Address
5034 and then
5035 Has_Compatible_Alignment
5036 (ACCR.X, Prefix (Expr))
5037 /= Known_Compatible))
5038 then
5039 Error_Msg_NE
5040 ("?specified address for& may be inconsistent "
5041 & "with alignment",
5042 ACCR.N, ACCR.X);
5043 Error_Msg_N
5044 ("\?program execution may be erroneous (RM 13.3(27))",
5045 ACCR.N);
5046 Error_Msg_Uint_1 := X_Alignment;
5047 Error_Msg_NE
5048 ("\?alignment of & is ^",
5049 ACCR.N, ACCR.X);
5050 Error_Msg_Uint_1 := Y_Alignment;
5051 Error_Msg_NE
5052 ("\?alignment of & is ^",
5053 ACCR.N, ACCR.Y);
5054 if Y_Alignment >= X_Alignment then
5055 Error_Msg_N
5056 ("\?but offset is not multiple of alignment",
5057 ACCR.N);
5058 end if;
5059 end if;
5060 end if;
5061 end;
5062 end loop;
5063 end Validate_Address_Clauses;
5064
5065 -----------------------------------
5066 -- Validate_Unchecked_Conversion --
5067 -----------------------------------
5068
5069 procedure Validate_Unchecked_Conversion
5070 (N : Node_Id;
5071 Act_Unit : Entity_Id)
5072 is
5073 Source : Entity_Id;
5074 Target : Entity_Id;
5075 Vnode : Node_Id;
5076
5077 begin
5078 -- Obtain source and target types. Note that we call Ancestor_Subtype
5079 -- here because the processing for generic instantiation always makes
5080 -- subtypes, and we want the original frozen actual types.
5081
5082 -- If we are dealing with private types, then do the check on their
5083 -- fully declared counterparts if the full declarations have been
5084 -- encountered (they don't have to be visible, but they must exist!)
5085
5086 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
5087
5088 if Is_Private_Type (Source)
5089 and then Present (Underlying_Type (Source))
5090 then
5091 Source := Underlying_Type (Source);
5092 end if;
5093
5094 Target := Ancestor_Subtype (Etype (Act_Unit));
5095
5096 -- If either type is generic, the instantiation happens within a generic
5097 -- unit, and there is nothing to check. The proper check
5098 -- will happen when the enclosing generic is instantiated.
5099
5100 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
5101 return;
5102 end if;
5103
5104 if Is_Private_Type (Target)
5105 and then Present (Underlying_Type (Target))
5106 then
5107 Target := Underlying_Type (Target);
5108 end if;
5109
5110 -- Source may be unconstrained array, but not target
5111
5112 if Is_Array_Type (Target)
5113 and then not Is_Constrained (Target)
5114 then
5115 Error_Msg_N
5116 ("unchecked conversion to unconstrained array not allowed", N);
5117 return;
5118 end if;
5119
5120 -- Warn if conversion between two different convention pointers
5121
5122 if Is_Access_Type (Target)
5123 and then Is_Access_Type (Source)
5124 and then Convention (Target) /= Convention (Source)
5125 and then Warn_On_Unchecked_Conversion
5126 then
5127 -- Give warnings for subprogram pointers only on most targets. The
5128 -- exception is VMS, where data pointers can have different lengths
5129 -- depending on the pointer convention.
5130
5131 if Is_Access_Subprogram_Type (Target)
5132 or else Is_Access_Subprogram_Type (Source)
5133 or else OpenVMS_On_Target
5134 then
5135 Error_Msg_N
5136 ("?conversion between pointers with different conventions!", N);
5137 end if;
5138 end if;
5139
5140 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
5141 -- warning when compiling GNAT-related sources.
5142
5143 if Warn_On_Unchecked_Conversion
5144 and then not In_Predefined_Unit (N)
5145 and then RTU_Loaded (Ada_Calendar)
5146 and then
5147 (Chars (Source) = Name_Time
5148 or else
5149 Chars (Target) = Name_Time)
5150 then
5151 -- If Ada.Calendar is loaded and the name of one of the operands is
5152 -- Time, there is a good chance that this is Ada.Calendar.Time.
5153
5154 declare
5155 Calendar_Time : constant Entity_Id :=
5156 Full_View (RTE (RO_CA_Time));
5157 begin
5158 pragma Assert (Present (Calendar_Time));
5159
5160 if Source = Calendar_Time
5161 or else Target = Calendar_Time
5162 then
5163 Error_Msg_N
5164 ("?representation of 'Time values may change between " &
5165 "'G'N'A'T versions", N);
5166 end if;
5167 end;
5168 end if;
5169
5170 -- Make entry in unchecked conversion table for later processing by
5171 -- Validate_Unchecked_Conversions, which will check sizes and alignments
5172 -- (using values set by the back-end where possible). This is only done
5173 -- if the appropriate warning is active.
5174
5175 if Warn_On_Unchecked_Conversion then
5176 Unchecked_Conversions.Append
5177 (New_Val => UC_Entry'
5178 (Eloc => Sloc (N),
5179 Source => Source,
5180 Target => Target));
5181
5182 -- If both sizes are known statically now, then back end annotation
5183 -- is not required to do a proper check but if either size is not
5184 -- known statically, then we need the annotation.
5185
5186 if Known_Static_RM_Size (Source)
5187 and then Known_Static_RM_Size (Target)
5188 then
5189 null;
5190 else
5191 Back_Annotate_Rep_Info := True;
5192 end if;
5193 end if;
5194
5195 -- If unchecked conversion to access type, and access type is declared
5196 -- in the same unit as the unchecked conversion, then set the
5197 -- No_Strict_Aliasing flag (no strict aliasing is implicit in this
5198 -- situation).
5199
5200 if Is_Access_Type (Target) and then
5201 In_Same_Source_Unit (Target, N)
5202 then
5203 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
5204 end if;
5205
5206 -- Generate N_Validate_Unchecked_Conversion node for back end in
5207 -- case the back end needs to perform special validation checks.
5208
5209 -- Shouldn't this be in Exp_Ch13, since the check only gets done
5210 -- if we have full expansion and the back end is called ???
5211
5212 Vnode :=
5213 Make_Validate_Unchecked_Conversion (Sloc (N));
5214 Set_Source_Type (Vnode, Source);
5215 Set_Target_Type (Vnode, Target);
5216
5217 -- If the unchecked conversion node is in a list, just insert before it.
5218 -- If not we have some strange case, not worth bothering about.
5219
5220 if Is_List_Member (N) then
5221 Insert_After (N, Vnode);
5222 end if;
5223 end Validate_Unchecked_Conversion;
5224
5225 ------------------------------------
5226 -- Validate_Unchecked_Conversions --
5227 ------------------------------------
5228
5229 procedure Validate_Unchecked_Conversions is
5230 begin
5231 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
5232 declare
5233 T : UC_Entry renames Unchecked_Conversions.Table (N);
5234
5235 Eloc : constant Source_Ptr := T.Eloc;
5236 Source : constant Entity_Id := T.Source;
5237 Target : constant Entity_Id := T.Target;
5238
5239 Source_Siz : Uint;
5240 Target_Siz : Uint;
5241
5242 begin
5243 -- This validation check, which warns if we have unequal sizes for
5244 -- unchecked conversion, and thus potentially implementation
5245 -- dependent semantics, is one of the few occasions on which we
5246 -- use the official RM size instead of Esize. See description in
5247 -- Einfo "Handling of Type'Size Values" for details.
5248
5249 if Serious_Errors_Detected = 0
5250 and then Known_Static_RM_Size (Source)
5251 and then Known_Static_RM_Size (Target)
5252
5253 -- Don't do the check if warnings off for either type, note the
5254 -- deliberate use of OR here instead of OR ELSE to get the flag
5255 -- Warnings_Off_Used set for both types if appropriate.
5256
5257 and then not (Has_Warnings_Off (Source)
5258 or
5259 Has_Warnings_Off (Target))
5260 then
5261 Source_Siz := RM_Size (Source);
5262 Target_Siz := RM_Size (Target);
5263
5264 if Source_Siz /= Target_Siz then
5265 Error_Msg
5266 ("?types for unchecked conversion have different sizes!",
5267 Eloc);
5268
5269 if All_Errors_Mode then
5270 Error_Msg_Name_1 := Chars (Source);
5271 Error_Msg_Uint_1 := Source_Siz;
5272 Error_Msg_Name_2 := Chars (Target);
5273 Error_Msg_Uint_2 := Target_Siz;
5274 Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
5275
5276 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
5277
5278 if Is_Discrete_Type (Source)
5279 and then Is_Discrete_Type (Target)
5280 then
5281 if Source_Siz > Target_Siz then
5282 Error_Msg
5283 ("\?^ high order bits of source will be ignored!",
5284 Eloc);
5285
5286 elsif Is_Unsigned_Type (Source) then
5287 Error_Msg
5288 ("\?source will be extended with ^ high order " &
5289 "zero bits?!", Eloc);
5290
5291 else
5292 Error_Msg
5293 ("\?source will be extended with ^ high order " &
5294 "sign bits!",
5295 Eloc);
5296 end if;
5297
5298 elsif Source_Siz < Target_Siz then
5299 if Is_Discrete_Type (Target) then
5300 if Bytes_Big_Endian then
5301 Error_Msg
5302 ("\?target value will include ^ undefined " &
5303 "low order bits!",
5304 Eloc);
5305 else
5306 Error_Msg
5307 ("\?target value will include ^ undefined " &
5308 "high order bits!",
5309 Eloc);
5310 end if;
5311
5312 else
5313 Error_Msg
5314 ("\?^ trailing bits of target value will be " &
5315 "undefined!", Eloc);
5316 end if;
5317
5318 else pragma Assert (Source_Siz > Target_Siz);
5319 Error_Msg
5320 ("\?^ trailing bits of source will be ignored!",
5321 Eloc);
5322 end if;
5323 end if;
5324 end if;
5325 end if;
5326
5327 -- If both types are access types, we need to check the alignment.
5328 -- If the alignment of both is specified, we can do it here.
5329
5330 if Serious_Errors_Detected = 0
5331 and then Ekind (Source) in Access_Kind
5332 and then Ekind (Target) in Access_Kind
5333 and then Target_Strict_Alignment
5334 and then Present (Designated_Type (Source))
5335 and then Present (Designated_Type (Target))
5336 then
5337 declare
5338 D_Source : constant Entity_Id := Designated_Type (Source);
5339 D_Target : constant Entity_Id := Designated_Type (Target);
5340
5341 begin
5342 if Known_Alignment (D_Source)
5343 and then Known_Alignment (D_Target)
5344 then
5345 declare
5346 Source_Align : constant Uint := Alignment (D_Source);
5347 Target_Align : constant Uint := Alignment (D_Target);
5348
5349 begin
5350 if Source_Align < Target_Align
5351 and then not Is_Tagged_Type (D_Source)
5352
5353 -- Suppress warning if warnings suppressed on either
5354 -- type or either designated type. Note the use of
5355 -- OR here instead of OR ELSE. That is intentional,
5356 -- we would like to set flag Warnings_Off_Used in
5357 -- all types for which warnings are suppressed.
5358
5359 and then not (Has_Warnings_Off (D_Source)
5360 or
5361 Has_Warnings_Off (D_Target)
5362 or
5363 Has_Warnings_Off (Source)
5364 or
5365 Has_Warnings_Off (Target))
5366 then
5367 Error_Msg_Uint_1 := Target_Align;
5368 Error_Msg_Uint_2 := Source_Align;
5369 Error_Msg_Node_1 := D_Target;
5370 Error_Msg_Node_2 := D_Source;
5371 Error_Msg
5372 ("?alignment of & (^) is stricter than " &
5373 "alignment of & (^)!", Eloc);
5374 Error_Msg
5375 ("\?resulting access value may have invalid " &
5376 "alignment!", Eloc);
5377 end if;
5378 end;
5379 end if;
5380 end;
5381 end if;
5382 end;
5383 end loop;
5384 end Validate_Unchecked_Conversions;
5385
5386 end Sem_Ch13;