[multiple changes]
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
26
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Lib; use Lib;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Rtsfind; use Rtsfind;
38 with Sem; use Sem;
39 with Sem_Ch8; use Sem_Ch8;
40 with Sem_Eval; use Sem_Eval;
41 with Sem_Res; use Sem_Res;
42 with Sem_Type; use Sem_Type;
43 with Sem_Util; use Sem_Util;
44 with Snames; use Snames;
45 with Stand; use Stand;
46 with Sinfo; use Sinfo;
47 with Table;
48 with Targparm; use Targparm;
49 with Ttypes; use Ttypes;
50 with Tbuild; use Tbuild;
51 with Urealp; use Urealp;
52
53 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
54
55 package body Sem_Ch13 is
56
57 SSU : constant Pos := System_Storage_Unit;
58 -- Convenient short hand for commonly used constant
59
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
63
64 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
65 -- This routine is called after setting the Esize of type entity Typ.
66 -- The purpose is to deal with the situation where an aligment has been
67 -- inherited from a derived type that is no longer appropriate for the
68 -- new Esize value. In this case, we reset the Alignment to unknown.
69
70 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
71 -- Given two entities for record components or discriminants, checks
72 -- if they hav overlapping component clauses and issues errors if so.
73
74 function Get_Alignment_Value (Expr : Node_Id) return Uint;
75 -- Given the expression for an alignment value, returns the corresponding
76 -- Uint value. If the value is inappropriate, then error messages are
77 -- posted as required, and a value of No_Uint is returned.
78
79 function Is_Operational_Item (N : Node_Id) return Boolean;
80 -- A specification for a stream attribute is allowed before the full
81 -- type is declared, as explained in AI-00137 and the corrigendum.
82 -- Attributes that do not specify a representation characteristic are
83 -- operational attributes.
84
85 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
86 -- If expression N is of the form E'Address, return E.
87
88 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
89 -- This is used for processing of an address representation clause. If
90 -- the expression N is of the form of K'Address, then the entity that
91 -- is associated with K is marked as volatile.
92
93 procedure New_Stream_Function
94 (N : Node_Id;
95 Ent : Entity_Id;
96 Subp : Entity_Id;
97 Nam : TSS_Name_Type);
98 -- Create a function renaming of a given stream attribute to the
99 -- designated subprogram and then in the tagged case, provide this as
100 -- a primitive operation, or in the non-tagged case make an appropriate
101 -- TSS entry. Used for Input. This is more properly an expansion activity
102 -- than just semantics, but the presence of user-defined stream functions
103 -- for limited types is a legality check, which is why this takes place
104 -- here rather than in exp_ch13, where it was previously. Nam indicates
105 -- the name of the TSS function to be generated.
106 --
107 -- To avoid elaboration anomalies with freeze nodes, for untagged types
108 -- we generate both a subprogram declaration and a subprogram renaming
109 -- declaration, so that the attribute specification is handled as a
110 -- renaming_as_body. For tagged types, the specification is one of the
111 -- primitive specs.
112
113 procedure New_Stream_Procedure
114 (N : Node_Id;
115 Ent : Entity_Id;
116 Subp : Entity_Id;
117 Nam : TSS_Name_Type;
118 Out_P : Boolean := False);
119 -- Create a procedure renaming of a given stream attribute to the
120 -- designated subprogram and then in the tagged case, provide this as
121 -- a primitive operation, or in the non-tagged case make an appropriate
122 -- TSS entry. Used for Read, Output, Write. Nam indicates the name of
123 -- the TSS procedure to be generated.
124
125 ----------------------------------------------
126 -- Table for Validate_Unchecked_Conversions --
127 ----------------------------------------------
128
129 -- The following table collects unchecked conversions for validation.
130 -- Entries are made by Validate_Unchecked_Conversion and then the
131 -- call to Validate_Unchecked_Conversions does the actual error
132 -- checking and posting of warnings. The reason for this delayed
133 -- processing is to take advantage of back-annotations of size and
134 -- alignment values peformed by the back end.
135
136 type UC_Entry is record
137 Enode : Node_Id; -- node used for posting warnings
138 Source : Entity_Id; -- source type for unchecked conversion
139 Target : Entity_Id; -- target type for unchecked conversion
140 end record;
141
142 package Unchecked_Conversions is new Table.Table (
143 Table_Component_Type => UC_Entry,
144 Table_Index_Type => Int,
145 Table_Low_Bound => 1,
146 Table_Initial => 50,
147 Table_Increment => 200,
148 Table_Name => "Unchecked_Conversions");
149
150 ----------------------------
151 -- Address_Aliased_Entity --
152 ----------------------------
153
154 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
155 begin
156 if Nkind (N) = N_Attribute_Reference
157 and then Attribute_Name (N) = Name_Address
158 then
159 declare
160 Nam : Node_Id := Prefix (N);
161 begin
162 while False
163 or else Nkind (Nam) = N_Selected_Component
164 or else Nkind (Nam) = N_Indexed_Component
165 loop
166 Nam := Prefix (Nam);
167 end loop;
168
169 if Is_Entity_Name (Nam) then
170 return Entity (Nam);
171 end if;
172 end;
173 end if;
174
175 return Empty;
176 end Address_Aliased_Entity;
177
178 --------------------------------------
179 -- Alignment_Check_For_Esize_Change --
180 --------------------------------------
181
182 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
183 begin
184 -- If the alignment is known, and not set by a rep clause, and is
185 -- inconsistent with the size being set, then reset it to unknown,
186 -- we assume in this case that the size overrides the inherited
187 -- alignment, and that the alignment must be recomputed.
188
189 if Known_Alignment (Typ)
190 and then not Has_Alignment_Clause (Typ)
191 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
192 then
193 Init_Alignment (Typ);
194 end if;
195 end Alignment_Check_For_Esize_Change;
196
197 -----------------------
198 -- Analyze_At_Clause --
199 -----------------------
200
201 -- An at clause is replaced by the corresponding Address attribute
202 -- definition clause that is the preferred approach in Ada 95.
203
204 procedure Analyze_At_Clause (N : Node_Id) is
205 begin
206 if Warn_On_Obsolescent_Feature then
207 Error_Msg_N
208 ("at clause is an obsolescent feature ('R'M 'J.7(2))?", N);
209 Error_Msg_N
210 ("|use address attribute definition clause instead?", N);
211 end if;
212
213 Rewrite (N,
214 Make_Attribute_Definition_Clause (Sloc (N),
215 Name => Identifier (N),
216 Chars => Name_Address,
217 Expression => Expression (N)));
218 Analyze_Attribute_Definition_Clause (N);
219 end Analyze_At_Clause;
220
221 -----------------------------------------
222 -- Analyze_Attribute_Definition_Clause --
223 -----------------------------------------
224
225 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
226 Loc : constant Source_Ptr := Sloc (N);
227 Nam : constant Node_Id := Name (N);
228 Attr : constant Name_Id := Chars (N);
229 Expr : constant Node_Id := Expression (N);
230 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
231 Ent : Entity_Id;
232 U_Ent : Entity_Id;
233
234 FOnly : Boolean := False;
235 -- Reset to True for subtype specific attribute (Alignment, Size)
236 -- and for stream attributes, i.e. those cases where in the call
237 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
238 -- rules are checked. Note that the case of stream attributes is not
239 -- clear from the RM, but see AI95-00137. Also, the RM seems to
240 -- disallow Storage_Size for derived task types, but that is also
241 -- clearly unintentional.
242
243 begin
244 Analyze (Nam);
245 Ent := Entity (Nam);
246
247 if Rep_Item_Too_Early (Ent, N) then
248 return;
249 end if;
250
251 -- Rep clause applies to full view of incomplete type or private type
252 -- if we have one (if not, this is a premature use of the type).
253 -- However, certain semantic checks need to be done on the specified
254 -- entity (i.e. the private view), so we save it in Ent.
255
256 if Is_Private_Type (Ent)
257 and then Is_Derived_Type (Ent)
258 and then not Is_Tagged_Type (Ent)
259 and then No (Full_View (Ent))
260 then
261 -- If this is a private type whose completion is a derivation
262 -- from another private type, there is no full view, and the
263 -- attribute belongs to the type itself, not its underlying parent.
264
265 U_Ent := Ent;
266
267 elsif Ekind (Ent) = E_Incomplete_Type then
268
269 -- The attribute applies to the full view, set the entity
270 -- of the attribute definition accordingly.
271
272 Ent := Underlying_Type (Ent);
273 U_Ent := Ent;
274 Set_Entity (Nam, Ent);
275
276 else
277 U_Ent := Underlying_Type (Ent);
278 end if;
279
280 -- Complete other routine error checks
281
282 if Etype (Nam) = Any_Type then
283 return;
284
285 elsif Scope (Ent) /= Current_Scope then
286 Error_Msg_N ("entity must be declared in this scope", Nam);
287 return;
288
289 elsif No (U_Ent) then
290 U_Ent := Ent;
291
292 elsif Is_Type (U_Ent)
293 and then not Is_First_Subtype (U_Ent)
294 and then Id /= Attribute_Object_Size
295 and then Id /= Attribute_Value_Size
296 and then not From_At_Mod (N)
297 then
298 Error_Msg_N ("cannot specify attribute for subtype", Nam);
299 return;
300
301 end if;
302
303 -- Switch on particular attribute
304
305 case Id is
306
307 -------------
308 -- Address --
309 -------------
310
311 -- Address attribute definition clause
312
313 when Attribute_Address => Address : begin
314 Analyze_And_Resolve (Expr, RTE (RE_Address));
315
316 if Present (Address_Clause (U_Ent)) then
317 Error_Msg_N ("address already given for &", Nam);
318
319 -- Case of address clause for subprogram
320
321 elsif Is_Subprogram (U_Ent) then
322 if Has_Homonym (U_Ent) then
323 Error_Msg_N
324 ("address clause cannot be given " &
325 "for overloaded subprogram",
326 Nam);
327 end if;
328
329 -- For subprograms, all address clauses are permitted,
330 -- and we mark the subprogram as having a deferred freeze
331 -- so that Gigi will not elaborate it too soon.
332
333 -- Above needs more comments, what is too soon about???
334
335 Set_Has_Delayed_Freeze (U_Ent);
336
337 -- Case of address clause for entry
338
339 elsif Ekind (U_Ent) = E_Entry then
340 if Nkind (Parent (N)) = N_Task_Body then
341 Error_Msg_N
342 ("entry address must be specified in task spec", Nam);
343 end if;
344
345 -- For entries, we require a constant address
346
347 Check_Constant_Address_Clause (Expr, U_Ent);
348
349 if Is_Task_Type (Scope (U_Ent))
350 and then Comes_From_Source (Scope (U_Ent))
351 then
352 Error_Msg_N
353 ("?entry address declared for entry in task type", N);
354 Error_Msg_N
355 ("\?only one task can be declared of this type", N);
356 end if;
357
358 if Warn_On_Obsolescent_Feature then
359 Error_Msg_N
360 ("attaching interrupt to task entry is an " &
361 "obsolescent feature ('R'M 'J.7.1)?", N);
362 Error_Msg_N
363 ("|use interrupt procedure instead?", N);
364 end if;
365
366 -- Case of an address clause for a controlled object:
367 -- erroneous execution.
368
369 elsif Is_Controlled (Etype (U_Ent)) then
370 Error_Msg_NE
371 ("?controlled object& must not be overlaid", Nam, U_Ent);
372 Error_Msg_N
373 ("\?Program_Error will be raised at run time", Nam);
374 Insert_Action (Declaration_Node (U_Ent),
375 Make_Raise_Program_Error (Loc,
376 Reason => PE_Overlaid_Controlled_Object));
377
378 -- Case of address clause for a (non-controlled) object
379
380 elsif
381 Ekind (U_Ent) = E_Variable
382 or else
383 Ekind (U_Ent) = E_Constant
384 then
385 declare
386 Expr : constant Node_Id := Expression (N);
387 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
388
389 begin
390 -- Exported variables cannot have an address clause,
391 -- because this cancels the effect of the pragma Export
392
393 if Is_Exported (U_Ent) then
394 Error_Msg_N
395 ("cannot export object with address clause", Nam);
396
397 -- Overlaying controlled objects is erroneous
398
399 elsif Present (Aent)
400 and then Is_Controlled (Etype (Aent))
401 then
402 Error_Msg_N
403 ("?controlled object must not be overlaid", Expr);
404 Error_Msg_N
405 ("\?Program_Error will be raised at run time", Expr);
406 Insert_Action (Declaration_Node (U_Ent),
407 Make_Raise_Program_Error (Loc,
408 Reason => PE_Overlaid_Controlled_Object));
409
410 elsif Present (Aent)
411 and then Ekind (U_Ent) = E_Constant
412 and then Ekind (Aent) /= E_Constant
413 then
414 Error_Msg_N ("constant overlays a variable?", Expr);
415
416 elsif Present (Renamed_Object (U_Ent)) then
417 Error_Msg_N
418 ("address clause not allowed"
419 & " for a renaming declaration ('R'M 13.1(6))", Nam);
420
421 -- Imported variables can have an address clause, but then
422 -- the import is pretty meaningless except to suppress
423 -- initializations, so we do not need such variables to
424 -- be statically allocated (and in fact it causes trouble
425 -- if the address clause is a local value).
426
427 elsif Is_Imported (U_Ent) then
428 Set_Is_Statically_Allocated (U_Ent, False);
429 end if;
430
431 -- We mark a possible modification of a variable with an
432 -- address clause, since it is likely aliasing is occurring.
433
434 Note_Possible_Modification (Nam);
435
436 -- Here we are checking for explicit overlap of one
437 -- variable by another, and if we find this, then we
438 -- mark the overlapped variable as also being aliased.
439
440 -- First case is where we have an explicit
441
442 -- for J'Address use K'Address;
443
444 -- In this case, we mark K as volatile
445
446 Mark_Aliased_Address_As_Volatile (Expr);
447
448 -- Second case is where we have a constant whose
449 -- definition is of the form of an adress as in:
450
451 -- A : constant Address := K'Address;
452 -- ...
453 -- for B'Address use A;
454
455 -- In this case we also mark K as volatile
456
457 if Is_Entity_Name (Expr) then
458 declare
459 Ent : constant Entity_Id := Entity (Expr);
460 Decl : constant Node_Id := Declaration_Node (Ent);
461
462 begin
463 if Ekind (Ent) = E_Constant
464 and then Nkind (Decl) = N_Object_Declaration
465 and then Present (Expression (Decl))
466 then
467 Mark_Aliased_Address_As_Volatile
468 (Expression (Decl));
469 end if;
470 end;
471 end if;
472
473 -- Legality checks on the address clause for initialized
474 -- objects is deferred until the freeze point, because
475 -- a subsequent pragma might indicate that the object is
476 -- imported and thus not initialized.
477
478 Set_Has_Delayed_Freeze (U_Ent);
479
480 if Is_Exported (U_Ent) then
481 Error_Msg_N
482 ("& cannot be exported if an address clause is given",
483 Nam);
484 Error_Msg_N
485 ("\define and export a variable " &
486 "that holds its address instead",
487 Nam);
488 end if;
489
490 -- Entity has delayed freeze, so we will generate
491 -- an alignment check at the freeze point.
492
493 Set_Check_Address_Alignment
494 (N, not Range_Checks_Suppressed (U_Ent));
495
496 -- Kill the size check code, since we are not allocating
497 -- the variable, it is somewhere else.
498
499 Kill_Size_Check_Code (U_Ent);
500 end;
501
502 -- Not a valid entity for an address clause
503
504 else
505 Error_Msg_N ("address cannot be given for &", Nam);
506 end if;
507 end Address;
508
509 ---------------
510 -- Alignment --
511 ---------------
512
513 -- Alignment attribute definition clause
514
515 when Attribute_Alignment => Alignment_Block : declare
516 Align : constant Uint := Get_Alignment_Value (Expr);
517
518 begin
519 FOnly := True;
520
521 if not Is_Type (U_Ent)
522 and then Ekind (U_Ent) /= E_Variable
523 and then Ekind (U_Ent) /= E_Constant
524 then
525 Error_Msg_N ("alignment cannot be given for &", Nam);
526
527 elsif Has_Alignment_Clause (U_Ent) then
528 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
529 Error_Msg_N ("alignment clause previously given#", N);
530
531 elsif Align /= No_Uint then
532 Set_Has_Alignment_Clause (U_Ent);
533 Set_Alignment (U_Ent, Align);
534 end if;
535 end Alignment_Block;
536
537 ---------------
538 -- Bit_Order --
539 ---------------
540
541 -- Bit_Order attribute definition clause
542
543 when Attribute_Bit_Order => Bit_Order : declare
544 begin
545 if not Is_Record_Type (U_Ent) then
546 Error_Msg_N
547 ("Bit_Order can only be defined for record type", Nam);
548
549 else
550 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
551
552 if Etype (Expr) = Any_Type then
553 return;
554
555 elsif not Is_Static_Expression (Expr) then
556 Flag_Non_Static_Expr
557 ("Bit_Order requires static expression!", Expr);
558
559 else
560 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
561 Set_Reverse_Bit_Order (U_Ent, True);
562 end if;
563 end if;
564 end if;
565 end Bit_Order;
566
567 --------------------
568 -- Component_Size --
569 --------------------
570
571 -- Component_Size attribute definition clause
572
573 when Attribute_Component_Size => Component_Size_Case : declare
574 Csize : constant Uint := Static_Integer (Expr);
575 Btype : Entity_Id;
576 Biased : Boolean;
577 New_Ctyp : Entity_Id;
578 Decl : Node_Id;
579
580 begin
581 if not Is_Array_Type (U_Ent) then
582 Error_Msg_N ("component size requires array type", Nam);
583 return;
584 end if;
585
586 Btype := Base_Type (U_Ent);
587
588 if Has_Component_Size_Clause (Btype) then
589 Error_Msg_N
590 ("component size clase for& previously given", Nam);
591
592 elsif Csize /= No_Uint then
593 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
594
595 if Has_Aliased_Components (Btype)
596 and then Csize < 32
597 and then Csize /= 8
598 and then Csize /= 16
599 then
600 Error_Msg_N
601 ("component size incorrect for aliased components", N);
602 return;
603 end if;
604
605 -- For the biased case, build a declaration for a subtype
606 -- that will be used to represent the biased subtype that
607 -- reflects the biased representation of components. We need
608 -- this subtype to get proper conversions on referencing
609 -- elements of the array.
610
611 if Biased then
612 New_Ctyp :=
613 Make_Defining_Identifier (Loc,
614 Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
615
616 Decl :=
617 Make_Subtype_Declaration (Loc,
618 Defining_Identifier => New_Ctyp,
619 Subtype_Indication =>
620 New_Occurrence_Of (Component_Type (Btype), Loc));
621
622 Set_Parent (Decl, N);
623 Analyze (Decl, Suppress => All_Checks);
624
625 Set_Has_Delayed_Freeze (New_Ctyp, False);
626 Set_Esize (New_Ctyp, Csize);
627 Set_RM_Size (New_Ctyp, Csize);
628 Init_Alignment (New_Ctyp);
629 Set_Has_Biased_Representation (New_Ctyp, True);
630 Set_Is_Itype (New_Ctyp, True);
631 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
632
633 Set_Component_Type (Btype, New_Ctyp);
634 end if;
635
636 Set_Component_Size (Btype, Csize);
637 Set_Has_Component_Size_Clause (Btype, True);
638 Set_Has_Non_Standard_Rep (Btype, True);
639 end if;
640 end Component_Size_Case;
641
642 ------------------
643 -- External_Tag --
644 ------------------
645
646 when Attribute_External_Tag => External_Tag :
647 begin
648 if not Is_Tagged_Type (U_Ent) then
649 Error_Msg_N ("should be a tagged type", Nam);
650 end if;
651
652 Analyze_And_Resolve (Expr, Standard_String);
653
654 if not Is_Static_Expression (Expr) then
655 Flag_Non_Static_Expr
656 ("static string required for tag name!", Nam);
657 end if;
658
659 Set_Has_External_Tag_Rep_Clause (U_Ent);
660 end External_Tag;
661
662 -----------
663 -- Input --
664 -----------
665
666 when Attribute_Input => Input : declare
667 Subp : Entity_Id := Empty;
668 I : Interp_Index;
669 It : Interp;
670 Pnam : Entity_Id;
671
672 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
673 -- Return true if the entity is a function with an appropriate
674 -- profile for the Input attribute.
675
676 ----------------------
677 -- Has_Good_Profile --
678 ----------------------
679
680 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
681 F : Entity_Id;
682 Ok : Boolean := False;
683
684 begin
685 if Ekind (Subp) = E_Function then
686 F := First_Formal (Subp);
687
688 if Present (F) and then No (Next_Formal (F)) then
689 if Ekind (Etype (F)) = E_Anonymous_Access_Type
690 and then
691 Designated_Type (Etype (F)) =
692 Class_Wide_Type (RTE (RE_Root_Stream_Type))
693 then
694 Ok := Base_Type (Etype (Subp)) = Base_Type (Ent);
695 end if;
696 end if;
697 end if;
698
699 return Ok;
700 end Has_Good_Profile;
701
702 -- Start of processing for Input attribute definition
703
704 begin
705 FOnly := True;
706
707 if not Is_Type (U_Ent) then
708 Error_Msg_N ("local name must be a subtype", Nam);
709 return;
710
711 else
712 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Input);
713
714 if Present (Pnam)
715 and then Base_Type (Etype (Pnam)) = Base_Type (U_Ent)
716 then
717 Error_Msg_Sloc := Sloc (Pnam);
718 Error_Msg_N ("input attribute already defined #", Nam);
719 return;
720 end if;
721 end if;
722
723 Analyze (Expr);
724
725 if Is_Entity_Name (Expr) then
726 if not Is_Overloaded (Expr) then
727 if Has_Good_Profile (Entity (Expr)) then
728 Subp := Entity (Expr);
729 end if;
730
731 else
732 Get_First_Interp (Expr, I, It);
733
734 while Present (It.Nam) loop
735 if Has_Good_Profile (It.Nam) then
736 Subp := It.Nam;
737 exit;
738 end if;
739
740 Get_Next_Interp (I, It);
741 end loop;
742 end if;
743 end if;
744
745 if Present (Subp) then
746 Set_Entity (Expr, Subp);
747 Set_Etype (Expr, Etype (Subp));
748 New_Stream_Function (N, U_Ent, Subp, TSS_Stream_Input);
749 else
750 Error_Msg_N ("incorrect expression for input attribute", Expr);
751 return;
752 end if;
753 end Input;
754
755 -------------------
756 -- Machine_Radix --
757 -------------------
758
759 -- Machine radix attribute definition clause
760
761 when Attribute_Machine_Radix => Machine_Radix : declare
762 Radix : constant Uint := Static_Integer (Expr);
763
764 begin
765 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
766 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
767
768 elsif Has_Machine_Radix_Clause (U_Ent) then
769 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
770 Error_Msg_N ("machine radix clause previously given#", N);
771
772 elsif Radix /= No_Uint then
773 Set_Has_Machine_Radix_Clause (U_Ent);
774 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
775
776 if Radix = 2 then
777 null;
778 elsif Radix = 10 then
779 Set_Machine_Radix_10 (U_Ent);
780 else
781 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
782 end if;
783 end if;
784 end Machine_Radix;
785
786 -----------------
787 -- Object_Size --
788 -----------------
789
790 -- Object_Size attribute definition clause
791
792 when Attribute_Object_Size => Object_Size : declare
793 Size : constant Uint := Static_Integer (Expr);
794 Biased : Boolean;
795
796 begin
797 if not Is_Type (U_Ent) then
798 Error_Msg_N ("Object_Size cannot be given for &", Nam);
799
800 elsif Has_Object_Size_Clause (U_Ent) then
801 Error_Msg_N ("Object_Size already given for &", Nam);
802
803 else
804 Check_Size (Expr, U_Ent, Size, Biased);
805
806 if Size /= 8
807 and then
808 Size /= 16
809 and then
810 Size /= 32
811 and then
812 UI_Mod (Size, 64) /= 0
813 then
814 Error_Msg_N
815 ("Object_Size must be 8, 16, 32, or multiple of 64",
816 Expr);
817 end if;
818
819 Set_Esize (U_Ent, Size);
820 Set_Has_Object_Size_Clause (U_Ent);
821 Alignment_Check_For_Esize_Change (U_Ent);
822 end if;
823 end Object_Size;
824
825 ------------
826 -- Output --
827 ------------
828
829 when Attribute_Output => Output : declare
830 Subp : Entity_Id := Empty;
831 I : Interp_Index;
832 It : Interp;
833 Pnam : Entity_Id;
834
835 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
836 -- Return true if the entity is a procedure with an
837 -- appropriate profile for the output attribute.
838
839 ----------------------
840 -- Has_Good_Profile --
841 ----------------------
842
843 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
844 F : Entity_Id;
845 Ok : Boolean := False;
846
847 begin
848 if Ekind (Subp) = E_Procedure then
849 F := First_Formal (Subp);
850
851 if Present (F) then
852 if Ekind (Etype (F)) = E_Anonymous_Access_Type
853 and then
854 Designated_Type (Etype (F)) =
855 Class_Wide_Type (RTE (RE_Root_Stream_Type))
856 then
857 Next_Formal (F);
858 Ok := Present (F)
859 and then Parameter_Mode (F) = E_In_Parameter
860 and then Base_Type (Etype (F)) = Base_Type (Ent)
861 and then No (Next_Formal (F));
862 end if;
863 end if;
864 end if;
865
866 return Ok;
867 end Has_Good_Profile;
868
869 -- Start of processing for Output attribute definition
870
871 begin
872 FOnly := True;
873
874 if not Is_Type (U_Ent) then
875 Error_Msg_N ("local name must be a subtype", Nam);
876 return;
877
878 else
879 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Output);
880
881 if Present (Pnam)
882 and then
883 Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
884 = Base_Type (U_Ent)
885 then
886 Error_Msg_Sloc := Sloc (Pnam);
887 Error_Msg_N ("output attribute already defined #", Nam);
888 return;
889 end if;
890 end if;
891
892 Analyze (Expr);
893
894 if Is_Entity_Name (Expr) then
895 if not Is_Overloaded (Expr) then
896 if Has_Good_Profile (Entity (Expr)) then
897 Subp := Entity (Expr);
898 end if;
899
900 else
901 Get_First_Interp (Expr, I, It);
902
903 while Present (It.Nam) loop
904 if Has_Good_Profile (It.Nam) then
905 Subp := It.Nam;
906 exit;
907 end if;
908
909 Get_Next_Interp (I, It);
910 end loop;
911 end if;
912 end if;
913
914 if Present (Subp) then
915 Set_Entity (Expr, Subp);
916 Set_Etype (Expr, Etype (Subp));
917 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Output);
918 else
919 Error_Msg_N ("incorrect expression for output attribute", Expr);
920 return;
921 end if;
922 end Output;
923
924 ----------
925 -- Read --
926 ----------
927
928 when Attribute_Read => Read : declare
929 Subp : Entity_Id := Empty;
930 I : Interp_Index;
931 It : Interp;
932 Pnam : Entity_Id;
933
934 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
935 -- Return true if the entity is a procedure with an appropriate
936 -- profile for the Read attribute.
937
938 ----------------------
939 -- Has_Good_Profile --
940 ----------------------
941
942 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
943 F : Entity_Id;
944 Ok : Boolean := False;
945
946 begin
947 if Ekind (Subp) = E_Procedure then
948 F := First_Formal (Subp);
949
950 if Present (F) then
951 if Ekind (Etype (F)) = E_Anonymous_Access_Type
952 and then
953 Designated_Type (Etype (F)) =
954 Class_Wide_Type (RTE (RE_Root_Stream_Type))
955 then
956 Next_Formal (F);
957 Ok := Present (F)
958 and then Parameter_Mode (F) = E_Out_Parameter
959 and then Base_Type (Etype (F)) = Base_Type (Ent)
960 and then No (Next_Formal (F));
961 end if;
962 end if;
963 end if;
964
965 return Ok;
966 end Has_Good_Profile;
967
968 -- Start of processing for Read attribute definition
969
970 begin
971 FOnly := True;
972
973 if not Is_Type (U_Ent) then
974 Error_Msg_N ("local name must be a subtype", Nam);
975 return;
976
977 else
978 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Read);
979
980 if Present (Pnam)
981 and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
982 = Base_Type (U_Ent)
983 then
984 Error_Msg_Sloc := Sloc (Pnam);
985 Error_Msg_N ("read attribute already defined #", Nam);
986 return;
987 end if;
988 end if;
989
990 Analyze (Expr);
991
992 if Is_Entity_Name (Expr) then
993 if not Is_Overloaded (Expr) then
994 if Has_Good_Profile (Entity (Expr)) then
995 Subp := Entity (Expr);
996 end if;
997
998 else
999 Get_First_Interp (Expr, I, It);
1000
1001 while Present (It.Nam) loop
1002 if Has_Good_Profile (It.Nam) then
1003 Subp := It.Nam;
1004 exit;
1005 end if;
1006
1007 Get_Next_Interp (I, It);
1008 end loop;
1009 end if;
1010 end if;
1011
1012 if Present (Subp) then
1013 Set_Entity (Expr, Subp);
1014 Set_Etype (Expr, Etype (Subp));
1015 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Read, True);
1016 else
1017 Error_Msg_N ("incorrect expression for read attribute", Expr);
1018 return;
1019 end if;
1020 end Read;
1021
1022 ----------
1023 -- Size --
1024 ----------
1025
1026 -- Size attribute definition clause
1027
1028 when Attribute_Size => Size : declare
1029 Size : constant Uint := Static_Integer (Expr);
1030 Etyp : Entity_Id;
1031 Biased : Boolean;
1032
1033 begin
1034 FOnly := True;
1035
1036 if Has_Size_Clause (U_Ent) then
1037 Error_Msg_N ("size already given for &", Nam);
1038
1039 elsif not Is_Type (U_Ent)
1040 and then Ekind (U_Ent) /= E_Variable
1041 and then Ekind (U_Ent) /= E_Constant
1042 then
1043 Error_Msg_N ("size cannot be given for &", Nam);
1044
1045 elsif Is_Array_Type (U_Ent)
1046 and then not Is_Constrained (U_Ent)
1047 then
1048 Error_Msg_N
1049 ("size cannot be given for unconstrained array", Nam);
1050
1051 elsif Size /= No_Uint then
1052 if Is_Type (U_Ent) then
1053 Etyp := U_Ent;
1054 else
1055 Etyp := Etype (U_Ent);
1056 end if;
1057
1058 -- Check size, note that Gigi is in charge of checking
1059 -- that the size of an array or record type is OK. Also
1060 -- we do not check the size in the ordinary fixed-point
1061 -- case, since it is too early to do so (there may be a
1062 -- subsequent small clause that affects the size). We can
1063 -- check the size if a small clause has already been given.
1064
1065 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1066 or else Has_Small_Clause (U_Ent)
1067 then
1068 Check_Size (Expr, Etyp, Size, Biased);
1069 Set_Has_Biased_Representation (U_Ent, Biased);
1070 end if;
1071
1072 -- For types set RM_Size and Esize if possible
1073
1074 if Is_Type (U_Ent) then
1075 Set_RM_Size (U_Ent, Size);
1076
1077 -- For scalar types, increase Object_Size to power of 2,
1078 -- but not less than a storage unit in any case (i.e.,
1079 -- normally this means it will be byte addressable).
1080
1081 if Is_Scalar_Type (U_Ent) then
1082 if Size <= System_Storage_Unit then
1083 Init_Esize (U_Ent, System_Storage_Unit);
1084 elsif Size <= 16 then
1085 Init_Esize (U_Ent, 16);
1086 elsif Size <= 32 then
1087 Init_Esize (U_Ent, 32);
1088 else
1089 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1090 end if;
1091
1092 -- For all other types, object size = value size. The
1093 -- backend will adjust as needed.
1094
1095 else
1096 Set_Esize (U_Ent, Size);
1097 end if;
1098
1099 Alignment_Check_For_Esize_Change (U_Ent);
1100
1101 -- For objects, set Esize only
1102
1103 else
1104 if Is_Elementary_Type (Etyp) then
1105 if Size /= System_Storage_Unit
1106 and then
1107 Size /= System_Storage_Unit * 2
1108 and then
1109 Size /= System_Storage_Unit * 4
1110 and then
1111 Size /= System_Storage_Unit * 8
1112 then
1113 Error_Msg_N
1114 ("size for primitive object must be power of 2", N);
1115 end if;
1116 end if;
1117
1118 Set_Esize (U_Ent, Size);
1119 end if;
1120
1121 Set_Has_Size_Clause (U_Ent);
1122 end if;
1123 end Size;
1124
1125 -----------
1126 -- Small --
1127 -----------
1128
1129 -- Small attribute definition clause
1130
1131 when Attribute_Small => Small : declare
1132 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1133 Small : Ureal;
1134
1135 begin
1136 Analyze_And_Resolve (Expr, Any_Real);
1137
1138 if Etype (Expr) = Any_Type then
1139 return;
1140
1141 elsif not Is_Static_Expression (Expr) then
1142 Flag_Non_Static_Expr
1143 ("small requires static expression!", Expr);
1144 return;
1145
1146 else
1147 Small := Expr_Value_R (Expr);
1148
1149 if Small <= Ureal_0 then
1150 Error_Msg_N ("small value must be greater than zero", Expr);
1151 return;
1152 end if;
1153
1154 end if;
1155
1156 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1157 Error_Msg_N
1158 ("small requires an ordinary fixed point type", Nam);
1159
1160 elsif Has_Small_Clause (U_Ent) then
1161 Error_Msg_N ("small already given for &", Nam);
1162
1163 elsif Small > Delta_Value (U_Ent) then
1164 Error_Msg_N
1165 ("small value must not be greater then delta value", Nam);
1166
1167 else
1168 Set_Small_Value (U_Ent, Small);
1169 Set_Small_Value (Implicit_Base, Small);
1170 Set_Has_Small_Clause (U_Ent);
1171 Set_Has_Small_Clause (Implicit_Base);
1172 Set_Has_Non_Standard_Rep (Implicit_Base);
1173 end if;
1174 end Small;
1175
1176 ------------------
1177 -- Storage_Size --
1178 ------------------
1179
1180 -- Storage_Size attribute definition clause
1181
1182 when Attribute_Storage_Size => Storage_Size : declare
1183 Btype : constant Entity_Id := Base_Type (U_Ent);
1184 Sprag : Node_Id;
1185
1186 begin
1187 if Is_Task_Type (U_Ent) then
1188 if Warn_On_Obsolescent_Feature then
1189 Error_Msg_N
1190 ("storage size clause for task is an " &
1191 "obsolescent feature ('R'M 'J.9)?", N);
1192 Error_Msg_N
1193 ("|use Storage_Size pragma instead?", N);
1194 end if;
1195
1196 FOnly := True;
1197 end if;
1198
1199 if not Is_Access_Type (U_Ent)
1200 and then Ekind (U_Ent) /= E_Task_Type
1201 then
1202 Error_Msg_N ("storage size cannot be given for &", Nam);
1203
1204 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1205 Error_Msg_N
1206 ("storage size cannot be given for a derived access type",
1207 Nam);
1208
1209 elsif Has_Storage_Size_Clause (Btype) then
1210 Error_Msg_N ("storage size already given for &", Nam);
1211
1212 else
1213 Analyze_And_Resolve (Expr, Any_Integer);
1214
1215 if Is_Access_Type (U_Ent) then
1216
1217 if Present (Associated_Storage_Pool (U_Ent)) then
1218 Error_Msg_N ("storage pool already given for &", Nam);
1219 return;
1220 end if;
1221
1222 if Compile_Time_Known_Value (Expr)
1223 and then Expr_Value (Expr) = 0
1224 then
1225 Set_No_Pool_Assigned (Btype);
1226 end if;
1227
1228 else -- Is_Task_Type (U_Ent)
1229 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1230
1231 if Present (Sprag) then
1232 Error_Msg_Sloc := Sloc (Sprag);
1233 Error_Msg_N
1234 ("Storage_Size already specified#", Nam);
1235 return;
1236 end if;
1237 end if;
1238
1239 Set_Has_Storage_Size_Clause (Btype);
1240 end if;
1241 end Storage_Size;
1242
1243 ------------------
1244 -- Storage_Pool --
1245 ------------------
1246
1247 -- Storage_Pool attribute definition clause
1248
1249 when Attribute_Storage_Pool => Storage_Pool : declare
1250 Pool : Entity_Id;
1251
1252 begin
1253 if Ekind (U_Ent) /= E_Access_Type
1254 and then Ekind (U_Ent) /= E_General_Access_Type
1255 then
1256 Error_Msg_N (
1257 "storage pool can only be given for access types", Nam);
1258 return;
1259
1260 elsif Is_Derived_Type (U_Ent) then
1261 Error_Msg_N
1262 ("storage pool cannot be given for a derived access type",
1263 Nam);
1264
1265 elsif Has_Storage_Size_Clause (U_Ent) then
1266 Error_Msg_N ("storage size already given for &", Nam);
1267 return;
1268
1269 elsif Present (Associated_Storage_Pool (U_Ent)) then
1270 Error_Msg_N ("storage pool already given for &", Nam);
1271 return;
1272 end if;
1273
1274 Analyze_And_Resolve
1275 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1276
1277 -- If the argument is a name that is not an entity name, then
1278 -- we construct a renaming operation to define an entity of
1279 -- type storage pool.
1280
1281 if not Is_Entity_Name (Expr)
1282 and then Is_Object_Reference (Expr)
1283 then
1284 Pool :=
1285 Make_Defining_Identifier (Loc,
1286 Chars => New_Internal_Name ('P'));
1287
1288 declare
1289 Rnode : constant Node_Id :=
1290 Make_Object_Renaming_Declaration (Loc,
1291 Defining_Identifier => Pool,
1292 Subtype_Mark =>
1293 New_Occurrence_Of (Etype (Expr), Loc),
1294 Name => Expr);
1295
1296 begin
1297 Insert_Before (N, Rnode);
1298 Analyze (Rnode);
1299 Set_Associated_Storage_Pool (U_Ent, Pool);
1300 end;
1301
1302 elsif Is_Entity_Name (Expr) then
1303 Pool := Entity (Expr);
1304
1305 -- If pool is a renamed object, get original one. This can
1306 -- happen with an explicit renaming, and within instances.
1307
1308 while Present (Renamed_Object (Pool))
1309 and then Is_Entity_Name (Renamed_Object (Pool))
1310 loop
1311 Pool := Entity (Renamed_Object (Pool));
1312 end loop;
1313
1314 if Present (Renamed_Object (Pool))
1315 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1316 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1317 then
1318 Pool := Entity (Expression (Renamed_Object (Pool)));
1319 end if;
1320
1321 if Present (Etype (Pool))
1322 and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
1323 and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
1324 then
1325 Set_Associated_Storage_Pool (U_Ent, Pool);
1326 else
1327 Error_Msg_N ("Non sharable GNAT Pool", Expr);
1328 end if;
1329
1330 -- The pool may be specified as the Storage_Pool of some other
1331 -- type. It is rewritten as a class_wide conversion of the
1332 -- corresponding pool entity.
1333
1334 elsif Nkind (Expr) = N_Type_Conversion
1335 and then Is_Entity_Name (Expression (Expr))
1336 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1337 then
1338 Pool := Entity (Expression (Expr));
1339
1340 if Present (Etype (Pool))
1341 and then Etype (Pool) /= RTE (RE_Stack_Bounded_Pool)
1342 and then Etype (Pool) /= RTE (RE_Unbounded_Reclaim_Pool)
1343 then
1344 Set_Associated_Storage_Pool (U_Ent, Pool);
1345 else
1346 Error_Msg_N ("Non sharable GNAT Pool", Expr);
1347 end if;
1348
1349 else
1350 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1351 return;
1352 end if;
1353 end Storage_Pool;
1354
1355 ----------------
1356 -- Value_Size --
1357 ----------------
1358
1359 -- Value_Size attribute definition clause
1360
1361 when Attribute_Value_Size => Value_Size : declare
1362 Size : constant Uint := Static_Integer (Expr);
1363 Biased : Boolean;
1364
1365 begin
1366 if not Is_Type (U_Ent) then
1367 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1368
1369 elsif Present
1370 (Get_Attribute_Definition_Clause
1371 (U_Ent, Attribute_Value_Size))
1372 then
1373 Error_Msg_N ("Value_Size already given for &", Nam);
1374
1375 else
1376 if Is_Elementary_Type (U_Ent) then
1377 Check_Size (Expr, U_Ent, Size, Biased);
1378 Set_Has_Biased_Representation (U_Ent, Biased);
1379 end if;
1380
1381 Set_RM_Size (U_Ent, Size);
1382 end if;
1383 end Value_Size;
1384
1385 -----------
1386 -- Write --
1387 -----------
1388
1389 -- Write attribute definition clause
1390 -- check for class-wide case will be performed later
1391
1392 when Attribute_Write => Write : declare
1393 Subp : Entity_Id := Empty;
1394 I : Interp_Index;
1395 It : Interp;
1396 Pnam : Entity_Id;
1397
1398 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
1399 -- Return true if the entity is a procedure with an
1400 -- appropriate profile for the write attribute.
1401
1402 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
1403 F : Entity_Id;
1404 Ok : Boolean := False;
1405
1406 begin
1407 if Ekind (Subp) = E_Procedure then
1408 F := First_Formal (Subp);
1409
1410 if Present (F) then
1411 if Ekind (Etype (F)) = E_Anonymous_Access_Type
1412 and then
1413 Designated_Type (Etype (F)) =
1414 Class_Wide_Type (RTE (RE_Root_Stream_Type))
1415 then
1416 Next_Formal (F);
1417 Ok := Present (F)
1418 and then Parameter_Mode (F) = E_In_Parameter
1419 and then Base_Type (Etype (F)) = Base_Type (Ent)
1420 and then No (Next_Formal (F));
1421 end if;
1422 end if;
1423 end if;
1424
1425 return Ok;
1426 end Has_Good_Profile;
1427
1428 -- Start of processing for Write attribute definition
1429
1430 begin
1431 FOnly := True;
1432
1433 if not Is_Type (U_Ent) then
1434 Error_Msg_N ("local name must be a subtype", Nam);
1435 return;
1436 end if;
1437
1438 Pnam := TSS (Base_Type (U_Ent), TSS_Stream_Write);
1439
1440 if Present (Pnam)
1441 and then Base_Type (Etype (Next_Formal (First_Formal (Pnam))))
1442 = Base_Type (U_Ent)
1443 then
1444 Error_Msg_Sloc := Sloc (Pnam);
1445 Error_Msg_N ("write attribute already defined #", Nam);
1446 return;
1447 end if;
1448
1449 Analyze (Expr);
1450
1451 if Is_Entity_Name (Expr) then
1452 if not Is_Overloaded (Expr) then
1453 if Has_Good_Profile (Entity (Expr)) then
1454 Subp := Entity (Expr);
1455 end if;
1456
1457 else
1458 Get_First_Interp (Expr, I, It);
1459
1460 while Present (It.Nam) loop
1461 if Has_Good_Profile (It.Nam) then
1462 Subp := It.Nam;
1463 exit;
1464 end if;
1465
1466 Get_Next_Interp (I, It);
1467 end loop;
1468 end if;
1469 end if;
1470
1471 if Present (Subp) then
1472 Set_Entity (Expr, Subp);
1473 Set_Etype (Expr, Etype (Subp));
1474 New_Stream_Procedure (N, U_Ent, Subp, TSS_Stream_Write);
1475 else
1476 Error_Msg_N ("incorrect expression for write attribute", Expr);
1477 return;
1478 end if;
1479 end Write;
1480
1481 -- All other attributes cannot be set
1482
1483 when others =>
1484 Error_Msg_N
1485 ("attribute& cannot be set with definition clause", N);
1486
1487 end case;
1488
1489 -- The test for the type being frozen must be performed after
1490 -- any expression the clause has been analyzed since the expression
1491 -- itself might cause freezing that makes the clause illegal.
1492
1493 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1494 return;
1495 end if;
1496 end Analyze_Attribute_Definition_Clause;
1497
1498 ----------------------------
1499 -- Analyze_Code_Statement --
1500 ----------------------------
1501
1502 procedure Analyze_Code_Statement (N : Node_Id) is
1503 HSS : constant Node_Id := Parent (N);
1504 SBody : constant Node_Id := Parent (HSS);
1505 Subp : constant Entity_Id := Current_Scope;
1506 Stmt : Node_Id;
1507 Decl : Node_Id;
1508 StmtO : Node_Id;
1509 DeclO : Node_Id;
1510
1511 begin
1512 -- Analyze and check we get right type, note that this implements the
1513 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1514 -- is the only way that Asm_Insn could possibly be visible.
1515
1516 Analyze_And_Resolve (Expression (N));
1517
1518 if Etype (Expression (N)) = Any_Type then
1519 return;
1520 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1521 Error_Msg_N ("incorrect type for code statement", N);
1522 return;
1523 end if;
1524
1525 -- Make sure we appear in the handled statement sequence of a
1526 -- subprogram (RM 13.8(3)).
1527
1528 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1529 or else Nkind (SBody) /= N_Subprogram_Body
1530 then
1531 Error_Msg_N
1532 ("code statement can only appear in body of subprogram", N);
1533 return;
1534 end if;
1535
1536 -- Do remaining checks (RM 13.8(3)) if not already done
1537
1538 if not Is_Machine_Code_Subprogram (Subp) then
1539 Set_Is_Machine_Code_Subprogram (Subp);
1540
1541 -- No exception handlers allowed
1542
1543 if Present (Exception_Handlers (HSS)) then
1544 Error_Msg_N
1545 ("exception handlers not permitted in machine code subprogram",
1546 First (Exception_Handlers (HSS)));
1547 end if;
1548
1549 -- No declarations other than use clauses and pragmas (we allow
1550 -- certain internally generated declarations as well).
1551
1552 Decl := First (Declarations (SBody));
1553 while Present (Decl) loop
1554 DeclO := Original_Node (Decl);
1555 if Comes_From_Source (DeclO)
1556 and then Nkind (DeclO) /= N_Pragma
1557 and then Nkind (DeclO) /= N_Use_Package_Clause
1558 and then Nkind (DeclO) /= N_Use_Type_Clause
1559 and then Nkind (DeclO) /= N_Implicit_Label_Declaration
1560 then
1561 Error_Msg_N
1562 ("this declaration not allowed in machine code subprogram",
1563 DeclO);
1564 end if;
1565
1566 Next (Decl);
1567 end loop;
1568
1569 -- No statements other than code statements, pragmas, and labels.
1570 -- Again we allow certain internally generated statements.
1571
1572 Stmt := First (Statements (HSS));
1573 while Present (Stmt) loop
1574 StmtO := Original_Node (Stmt);
1575 if Comes_From_Source (StmtO)
1576 and then Nkind (StmtO) /= N_Pragma
1577 and then Nkind (StmtO) /= N_Label
1578 and then Nkind (StmtO) /= N_Code_Statement
1579 then
1580 Error_Msg_N
1581 ("this statement is not allowed in machine code subprogram",
1582 StmtO);
1583 end if;
1584
1585 Next (Stmt);
1586 end loop;
1587 end if;
1588 end Analyze_Code_Statement;
1589
1590 -----------------------------------------------
1591 -- Analyze_Enumeration_Representation_Clause --
1592 -----------------------------------------------
1593
1594 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1595 Ident : constant Node_Id := Identifier (N);
1596 Aggr : constant Node_Id := Array_Aggregate (N);
1597 Enumtype : Entity_Id;
1598 Elit : Entity_Id;
1599 Expr : Node_Id;
1600 Assoc : Node_Id;
1601 Choice : Node_Id;
1602 Val : Uint;
1603 Err : Boolean := False;
1604
1605 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1606 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1607 Min : Uint;
1608 Max : Uint;
1609
1610 begin
1611 -- First some basic error checks
1612
1613 Find_Type (Ident);
1614 Enumtype := Entity (Ident);
1615
1616 if Enumtype = Any_Type
1617 or else Rep_Item_Too_Early (Enumtype, N)
1618 then
1619 return;
1620 else
1621 Enumtype := Underlying_Type (Enumtype);
1622 end if;
1623
1624 if not Is_Enumeration_Type (Enumtype) then
1625 Error_Msg_NE
1626 ("enumeration type required, found}",
1627 Ident, First_Subtype (Enumtype));
1628 return;
1629 end if;
1630
1631 -- Ignore rep clause on generic actual type. This will already have
1632 -- been flagged on the template as an error, and this is the safest
1633 -- way to ensure we don't get a junk cascaded message in the instance.
1634
1635 if Is_Generic_Actual_Type (Enumtype) then
1636 return;
1637
1638 -- Type must be in current scope
1639
1640 elsif Scope (Enumtype) /= Current_Scope then
1641 Error_Msg_N ("type must be declared in this scope", Ident);
1642 return;
1643
1644 -- Type must be a first subtype
1645
1646 elsif not Is_First_Subtype (Enumtype) then
1647 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1648 return;
1649
1650 -- Ignore duplicate rep clause
1651
1652 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1653 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1654 return;
1655
1656 -- Don't allow rep clause if root type is standard [wide_]character
1657
1658 elsif Root_Type (Enumtype) = Standard_Character
1659 or else Root_Type (Enumtype) = Standard_Wide_Character
1660 then
1661 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
1662 return;
1663
1664 -- All tests passed, so set rep clause in place
1665
1666 else
1667 Set_Has_Enumeration_Rep_Clause (Enumtype);
1668 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1669 end if;
1670
1671 -- Now we process the aggregate. Note that we don't use the normal
1672 -- aggregate code for this purpose, because we don't want any of the
1673 -- normal expansion activities, and a number of special semantic
1674 -- rules apply (including the component type being any integer type)
1675
1676 -- Badent signals that we found some incorrect entries processing
1677 -- the list. The final checks for completeness and ordering are
1678 -- skipped in this case.
1679
1680 Elit := First_Literal (Enumtype);
1681
1682 -- First the positional entries if any
1683
1684 if Present (Expressions (Aggr)) then
1685 Expr := First (Expressions (Aggr));
1686 while Present (Expr) loop
1687 if No (Elit) then
1688 Error_Msg_N ("too many entries in aggregate", Expr);
1689 return;
1690 end if;
1691
1692 Val := Static_Integer (Expr);
1693
1694 if Val = No_Uint then
1695 Err := True;
1696
1697 elsif Val < Lo or else Hi < Val then
1698 Error_Msg_N ("value outside permitted range", Expr);
1699 Err := True;
1700 end if;
1701
1702 Set_Enumeration_Rep (Elit, Val);
1703 Set_Enumeration_Rep_Expr (Elit, Expr);
1704 Next (Expr);
1705 Next (Elit);
1706 end loop;
1707 end if;
1708
1709 -- Now process the named entries if present
1710
1711 if Present (Component_Associations (Aggr)) then
1712 Assoc := First (Component_Associations (Aggr));
1713 while Present (Assoc) loop
1714 Choice := First (Choices (Assoc));
1715
1716 if Present (Next (Choice)) then
1717 Error_Msg_N
1718 ("multiple choice not allowed here", Next (Choice));
1719 Err := True;
1720 end if;
1721
1722 if Nkind (Choice) = N_Others_Choice then
1723 Error_Msg_N ("others choice not allowed here", Choice);
1724 Err := True;
1725
1726 elsif Nkind (Choice) = N_Range then
1727 -- ??? should allow zero/one element range here
1728 Error_Msg_N ("range not allowed here", Choice);
1729 Err := True;
1730
1731 else
1732 Analyze_And_Resolve (Choice, Enumtype);
1733
1734 if Is_Entity_Name (Choice)
1735 and then Is_Type (Entity (Choice))
1736 then
1737 Error_Msg_N ("subtype name not allowed here", Choice);
1738 Err := True;
1739 -- ??? should allow static subtype with zero/one entry
1740
1741 elsif Etype (Choice) = Base_Type (Enumtype) then
1742 if not Is_Static_Expression (Choice) then
1743 Flag_Non_Static_Expr
1744 ("non-static expression used for choice!", Choice);
1745 Err := True;
1746
1747 else
1748 Elit := Expr_Value_E (Choice);
1749
1750 if Present (Enumeration_Rep_Expr (Elit)) then
1751 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
1752 Error_Msg_NE
1753 ("representation for& previously given#",
1754 Choice, Elit);
1755 Err := True;
1756 end if;
1757
1758 Set_Enumeration_Rep_Expr (Elit, Choice);
1759
1760 Expr := Expression (Assoc);
1761 Val := Static_Integer (Expr);
1762
1763 if Val = No_Uint then
1764 Err := True;
1765
1766 elsif Val < Lo or else Hi < Val then
1767 Error_Msg_N ("value outside permitted range", Expr);
1768 Err := True;
1769 end if;
1770
1771 Set_Enumeration_Rep (Elit, Val);
1772 end if;
1773 end if;
1774 end if;
1775
1776 Next (Assoc);
1777 end loop;
1778 end if;
1779
1780 -- Aggregate is fully processed. Now we check that a full set of
1781 -- representations was given, and that they are in range and in order.
1782 -- These checks are only done if no other errors occurred.
1783
1784 if not Err then
1785 Min := No_Uint;
1786 Max := No_Uint;
1787
1788 Elit := First_Literal (Enumtype);
1789 while Present (Elit) loop
1790 if No (Enumeration_Rep_Expr (Elit)) then
1791 Error_Msg_NE ("missing representation for&!", N, Elit);
1792
1793 else
1794 Val := Enumeration_Rep (Elit);
1795
1796 if Min = No_Uint then
1797 Min := Val;
1798 end if;
1799
1800 if Val /= No_Uint then
1801 if Max /= No_Uint and then Val <= Max then
1802 Error_Msg_NE
1803 ("enumeration value for& not ordered!",
1804 Enumeration_Rep_Expr (Elit), Elit);
1805 end if;
1806
1807 Max := Val;
1808 end if;
1809
1810 -- If there is at least one literal whose representation
1811 -- is not equal to the Pos value, then note that this
1812 -- enumeration type has a non-standard representation.
1813
1814 if Val /= Enumeration_Pos (Elit) then
1815 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
1816 end if;
1817 end if;
1818
1819 Next (Elit);
1820 end loop;
1821
1822 -- Now set proper size information
1823
1824 declare
1825 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
1826
1827 begin
1828 if Has_Size_Clause (Enumtype) then
1829 if Esize (Enumtype) >= Minsize then
1830 null;
1831
1832 else
1833 Minsize :=
1834 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
1835
1836 if Esize (Enumtype) < Minsize then
1837 Error_Msg_N ("previously given size is too small", N);
1838
1839 else
1840 Set_Has_Biased_Representation (Enumtype);
1841 end if;
1842 end if;
1843
1844 else
1845 Set_RM_Size (Enumtype, Minsize);
1846 Set_Enum_Esize (Enumtype);
1847 end if;
1848
1849 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
1850 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
1851 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
1852 end;
1853 end if;
1854
1855 -- We repeat the too late test in case it froze itself!
1856
1857 if Rep_Item_Too_Late (Enumtype, N) then
1858 null;
1859 end if;
1860 end Analyze_Enumeration_Representation_Clause;
1861
1862 ----------------------------
1863 -- Analyze_Free_Statement --
1864 ----------------------------
1865
1866 procedure Analyze_Free_Statement (N : Node_Id) is
1867 begin
1868 Analyze (Expression (N));
1869 end Analyze_Free_Statement;
1870
1871 ------------------------------------------
1872 -- Analyze_Record_Representation_Clause --
1873 ------------------------------------------
1874
1875 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
1876 Loc : constant Source_Ptr := Sloc (N);
1877 Ident : constant Node_Id := Identifier (N);
1878 Rectype : Entity_Id;
1879 Fent : Entity_Id;
1880 CC : Node_Id;
1881 Posit : Uint;
1882 Fbit : Uint;
1883 Lbit : Uint;
1884 Hbit : Uint := Uint_0;
1885 Comp : Entity_Id;
1886 Ocomp : Entity_Id;
1887 Biased : Boolean;
1888
1889 Max_Bit_So_Far : Uint;
1890 -- Records the maximum bit position so far. If all field positions
1891 -- are monotonically increasing, then we can skip the circuit for
1892 -- checking for overlap, since no overlap is possible.
1893
1894 Overlap_Check_Required : Boolean;
1895 -- Used to keep track of whether or not an overlap check is required
1896
1897 Ccount : Natural := 0;
1898 -- Number of component clauses in record rep clause
1899
1900 begin
1901 Find_Type (Ident);
1902 Rectype := Entity (Ident);
1903
1904 if Rectype = Any_Type
1905 or else Rep_Item_Too_Early (Rectype, N)
1906 then
1907 return;
1908 else
1909 Rectype := Underlying_Type (Rectype);
1910 end if;
1911
1912 -- First some basic error checks
1913
1914 if not Is_Record_Type (Rectype) then
1915 Error_Msg_NE
1916 ("record type required, found}", Ident, First_Subtype (Rectype));
1917 return;
1918
1919 elsif Is_Unchecked_Union (Rectype) then
1920 Error_Msg_N
1921 ("record rep clause not allowed for Unchecked_Union", N);
1922
1923 elsif Scope (Rectype) /= Current_Scope then
1924 Error_Msg_N ("type must be declared in this scope", N);
1925 return;
1926
1927 elsif not Is_First_Subtype (Rectype) then
1928 Error_Msg_N ("cannot give record rep clause for subtype", N);
1929 return;
1930
1931 elsif Has_Record_Rep_Clause (Rectype) then
1932 Error_Msg_N ("duplicate record rep clause ignored", N);
1933 return;
1934
1935 elsif Rep_Item_Too_Late (Rectype, N) then
1936 return;
1937 end if;
1938
1939 if Present (Mod_Clause (N)) then
1940 declare
1941 Loc : constant Source_Ptr := Sloc (N);
1942 M : constant Node_Id := Mod_Clause (N);
1943 P : constant List_Id := Pragmas_Before (M);
1944 AtM_Nod : Node_Id;
1945
1946 Mod_Val : Uint;
1947 pragma Warnings (Off, Mod_Val);
1948
1949 begin
1950 if Warn_On_Obsolescent_Feature then
1951 Error_Msg_N
1952 ("mod clause is an obsolescent feature ('R'M 'J.8)?", N);
1953 Error_Msg_N
1954 ("|use alignment attribute definition clause instead?", N);
1955 end if;
1956
1957 if Present (P) then
1958 Analyze_List (P);
1959 end if;
1960
1961 -- In ASIS_Mode mode, expansion is disabled, but we must
1962 -- convert the Mod clause into an alignment clause anyway, so
1963 -- that the back-end can compute and back-annotate properly the
1964 -- size and alignment of types that may include this record.
1965
1966 if Operating_Mode = Check_Semantics
1967 and then ASIS_Mode
1968 then
1969 AtM_Nod :=
1970 Make_Attribute_Definition_Clause (Loc,
1971 Name => New_Reference_To (Base_Type (Rectype), Loc),
1972 Chars => Name_Alignment,
1973 Expression => Relocate_Node (Expression (M)));
1974
1975 Set_From_At_Mod (AtM_Nod);
1976 Insert_After (N, AtM_Nod);
1977 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
1978 Set_Mod_Clause (N, Empty);
1979
1980 else
1981 -- Get the alignment value to perform error checking
1982
1983 Mod_Val := Get_Alignment_Value (Expression (M));
1984
1985 end if;
1986 end;
1987 end if;
1988
1989 -- Clear any existing component clauses for the type (this happens
1990 -- with derived types, where we are now overriding the original)
1991
1992 Fent := First_Entity (Rectype);
1993
1994 Comp := Fent;
1995 while Present (Comp) loop
1996 if Ekind (Comp) = E_Component
1997 or else Ekind (Comp) = E_Discriminant
1998 then
1999 Set_Component_Clause (Comp, Empty);
2000 end if;
2001
2002 Next_Entity (Comp);
2003 end loop;
2004
2005 -- All done if no component clauses
2006
2007 CC := First (Component_Clauses (N));
2008
2009 if No (CC) then
2010 return;
2011 end if;
2012
2013 -- If a tag is present, then create a component clause that places
2014 -- it at the start of the record (otherwise gigi may place it after
2015 -- other fields that have rep clauses).
2016
2017 if Nkind (Fent) = N_Defining_Identifier
2018 and then Chars (Fent) = Name_uTag
2019 then
2020 Set_Component_Bit_Offset (Fent, Uint_0);
2021 Set_Normalized_Position (Fent, Uint_0);
2022 Set_Normalized_First_Bit (Fent, Uint_0);
2023 Set_Normalized_Position_Max (Fent, Uint_0);
2024 Init_Esize (Fent, System_Address_Size);
2025
2026 Set_Component_Clause (Fent,
2027 Make_Component_Clause (Loc,
2028 Component_Name =>
2029 Make_Identifier (Loc,
2030 Chars => Name_uTag),
2031
2032 Position =>
2033 Make_Integer_Literal (Loc,
2034 Intval => Uint_0),
2035
2036 First_Bit =>
2037 Make_Integer_Literal (Loc,
2038 Intval => Uint_0),
2039
2040 Last_Bit =>
2041 Make_Integer_Literal (Loc,
2042 UI_From_Int (System_Address_Size))));
2043
2044 Ccount := Ccount + 1;
2045 end if;
2046
2047 -- A representation like this applies to the base type
2048
2049 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2050 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2051 Set_Has_Specified_Layout (Base_Type (Rectype));
2052
2053 Max_Bit_So_Far := Uint_Minus_1;
2054 Overlap_Check_Required := False;
2055
2056 -- Process the component clauses
2057
2058 while Present (CC) loop
2059
2060 -- If pragma, just analyze it
2061
2062 if Nkind (CC) = N_Pragma then
2063 Analyze (CC);
2064
2065 -- Processing for real component clause
2066
2067 else
2068 Ccount := Ccount + 1;
2069 Posit := Static_Integer (Position (CC));
2070 Fbit := Static_Integer (First_Bit (CC));
2071 Lbit := Static_Integer (Last_Bit (CC));
2072
2073 if Posit /= No_Uint
2074 and then Fbit /= No_Uint
2075 and then Lbit /= No_Uint
2076 then
2077 if Posit < 0 then
2078 Error_Msg_N
2079 ("position cannot be negative", Position (CC));
2080
2081 elsif Fbit < 0 then
2082 Error_Msg_N
2083 ("first bit cannot be negative", First_Bit (CC));
2084
2085 -- Values look OK, so find the corresponding record component
2086 -- Even though the syntax allows an attribute reference for
2087 -- implementation-defined components, GNAT does not allow the
2088 -- tag to get an explicit position.
2089
2090 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2091
2092 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2093 Error_Msg_N ("position of tag cannot be specified", CC);
2094 else
2095 Error_Msg_N ("illegal component name", CC);
2096 end if;
2097
2098 else
2099 Comp := First_Entity (Rectype);
2100 while Present (Comp) loop
2101 exit when Chars (Comp) = Chars (Component_Name (CC));
2102 Next_Entity (Comp);
2103 end loop;
2104
2105 if No (Comp) then
2106
2107 -- Maybe component of base type that is absent from
2108 -- statically constrained first subtype.
2109
2110 Comp := First_Entity (Base_Type (Rectype));
2111 while Present (Comp) loop
2112 exit when Chars (Comp) = Chars (Component_Name (CC));
2113 Next_Entity (Comp);
2114 end loop;
2115 end if;
2116
2117 if No (Comp) then
2118 Error_Msg_N
2119 ("component clause is for non-existent field", CC);
2120
2121 elsif Present (Component_Clause (Comp)) then
2122 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2123 Error_Msg_N
2124 ("component clause previously given#", CC);
2125
2126 else
2127 -- Update Fbit and Lbit to the actual bit number.
2128
2129 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2130 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2131
2132 if Fbit <= Max_Bit_So_Far then
2133 Overlap_Check_Required := True;
2134 else
2135 Max_Bit_So_Far := Lbit;
2136 end if;
2137
2138 if Has_Size_Clause (Rectype)
2139 and then Esize (Rectype) <= Lbit
2140 then
2141 Error_Msg_N
2142 ("bit number out of range of specified size",
2143 Last_Bit (CC));
2144 else
2145 Set_Component_Clause (Comp, CC);
2146 Set_Component_Bit_Offset (Comp, Fbit);
2147 Set_Esize (Comp, 1 + (Lbit - Fbit));
2148 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2149 Set_Normalized_Position (Comp, Fbit / SSU);
2150
2151 Set_Normalized_Position_Max
2152 (Fent, Normalized_Position (Fent));
2153
2154 if Is_Tagged_Type (Rectype)
2155 and then Fbit < System_Address_Size
2156 then
2157 Error_Msg_NE
2158 ("component overlaps tag field of&",
2159 CC, Rectype);
2160 end if;
2161
2162 -- This information is also set in the corresponding
2163 -- component of the base type, found by accessing the
2164 -- Original_Record_Component link if it is present.
2165
2166 Ocomp := Original_Record_Component (Comp);
2167
2168 if Hbit < Lbit then
2169 Hbit := Lbit;
2170 end if;
2171
2172 Check_Size
2173 (Component_Name (CC),
2174 Etype (Comp),
2175 Esize (Comp),
2176 Biased);
2177
2178 Set_Has_Biased_Representation (Comp, Biased);
2179
2180 if Present (Ocomp) then
2181 Set_Component_Clause (Ocomp, CC);
2182 Set_Component_Bit_Offset (Ocomp, Fbit);
2183 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2184 Set_Normalized_Position (Ocomp, Fbit / SSU);
2185 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2186
2187 Set_Normalized_Position_Max
2188 (Ocomp, Normalized_Position (Ocomp));
2189
2190 Set_Has_Biased_Representation
2191 (Ocomp, Has_Biased_Representation (Comp));
2192 end if;
2193
2194 if Esize (Comp) < 0 then
2195 Error_Msg_N ("component size is negative", CC);
2196 end if;
2197 end if;
2198 end if;
2199 end if;
2200 end if;
2201 end if;
2202
2203 Next (CC);
2204 end loop;
2205
2206 -- Now that we have processed all the component clauses, check for
2207 -- overlap. We have to leave this till last, since the components
2208 -- can appear in any arbitrary order in the representation clause.
2209
2210 -- We do not need this check if all specified ranges were monotonic,
2211 -- as recorded by Overlap_Check_Required being False at this stage.
2212
2213 -- This first section checks if there are any overlapping entries
2214 -- at all. It does this by sorting all entries and then seeing if
2215 -- there are any overlaps. If there are none, then that is decisive,
2216 -- but if there are overlaps, they may still be OK (they may result
2217 -- from fields in different variants).
2218
2219 if Overlap_Check_Required then
2220 Overlap_Check1 : declare
2221
2222 OC_Fbit : array (0 .. Ccount) of Uint;
2223 -- First-bit values for component clauses, the value is the
2224 -- offset of the first bit of the field from start of record.
2225 -- The zero entry is for use in sorting.
2226
2227 OC_Lbit : array (0 .. Ccount) of Uint;
2228 -- Last-bit values for component clauses, the value is the
2229 -- offset of the last bit of the field from start of record.
2230 -- The zero entry is for use in sorting.
2231
2232 OC_Count : Natural := 0;
2233 -- Count of entries in OC_Fbit and OC_Lbit
2234
2235 function OC_Lt (Op1, Op2 : Natural) return Boolean;
2236 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2237
2238 procedure OC_Move (From : Natural; To : Natural);
2239 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2240
2241 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2242 begin
2243 return OC_Fbit (Op1) < OC_Fbit (Op2);
2244 end OC_Lt;
2245
2246 procedure OC_Move (From : Natural; To : Natural) is
2247 begin
2248 OC_Fbit (To) := OC_Fbit (From);
2249 OC_Lbit (To) := OC_Lbit (From);
2250 end OC_Move;
2251
2252 begin
2253 CC := First (Component_Clauses (N));
2254 while Present (CC) loop
2255 if Nkind (CC) /= N_Pragma then
2256 Posit := Static_Integer (Position (CC));
2257 Fbit := Static_Integer (First_Bit (CC));
2258 Lbit := Static_Integer (Last_Bit (CC));
2259
2260 if Posit /= No_Uint
2261 and then Fbit /= No_Uint
2262 and then Lbit /= No_Uint
2263 then
2264 OC_Count := OC_Count + 1;
2265 Posit := Posit * SSU;
2266 OC_Fbit (OC_Count) := Fbit + Posit;
2267 OC_Lbit (OC_Count) := Lbit + Posit;
2268 end if;
2269 end if;
2270
2271 Next (CC);
2272 end loop;
2273
2274 Sort
2275 (OC_Count,
2276 OC_Move'Unrestricted_Access,
2277 OC_Lt'Unrestricted_Access);
2278
2279 Overlap_Check_Required := False;
2280 for J in 1 .. OC_Count - 1 loop
2281 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2282 Overlap_Check_Required := True;
2283 exit;
2284 end if;
2285 end loop;
2286 end Overlap_Check1;
2287 end if;
2288
2289 -- If Overlap_Check_Required is still True, then we have to do
2290 -- the full scale overlap check, since we have at least two fields
2291 -- that do overlap, and we need to know if that is OK since they
2292 -- are in the same variant, or whether we have a definite problem
2293
2294 if Overlap_Check_Required then
2295 Overlap_Check2 : declare
2296 C1_Ent, C2_Ent : Entity_Id;
2297 -- Entities of components being checked for overlap
2298
2299 Clist : Node_Id;
2300 -- Component_List node whose Component_Items are being checked
2301
2302 Citem : Node_Id;
2303 -- Component declaration for component being checked
2304
2305 begin
2306 C1_Ent := First_Entity (Base_Type (Rectype));
2307
2308 -- Loop through all components in record. For each component check
2309 -- for overlap with any of the preceding elements on the component
2310 -- list containing the component, and also, if the component is in
2311 -- a variant, check against components outside the case structure.
2312 -- This latter test is repeated recursively up the variant tree.
2313
2314 Main_Component_Loop : while Present (C1_Ent) loop
2315 if Ekind (C1_Ent) /= E_Component
2316 and then Ekind (C1_Ent) /= E_Discriminant
2317 then
2318 goto Continue_Main_Component_Loop;
2319 end if;
2320
2321 -- Skip overlap check if entity has no declaration node. This
2322 -- happens with discriminants in constrained derived types.
2323 -- Probably we are missing some checks as a result, but that
2324 -- does not seem terribly serious ???
2325
2326 if No (Declaration_Node (C1_Ent)) then
2327 goto Continue_Main_Component_Loop;
2328 end if;
2329
2330 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2331
2332 -- Loop through component lists that need checking. Check the
2333 -- current component list and all lists in variants above us.
2334
2335 Component_List_Loop : loop
2336
2337 -- If derived type definition, go to full declaration
2338 -- If at outer level, check discriminants if there are any
2339
2340 if Nkind (Clist) = N_Derived_Type_Definition then
2341 Clist := Parent (Clist);
2342 end if;
2343
2344 -- Outer level of record definition, check discriminants
2345
2346 if Nkind (Clist) = N_Full_Type_Declaration
2347 or else Nkind (Clist) = N_Private_Type_Declaration
2348 then
2349 if Has_Discriminants (Defining_Identifier (Clist)) then
2350 C2_Ent :=
2351 First_Discriminant (Defining_Identifier (Clist));
2352
2353 while Present (C2_Ent) loop
2354 exit when C1_Ent = C2_Ent;
2355 Check_Component_Overlap (C1_Ent, C2_Ent);
2356 Next_Discriminant (C2_Ent);
2357 end loop;
2358 end if;
2359
2360 -- Record extension case
2361
2362 elsif Nkind (Clist) = N_Derived_Type_Definition then
2363 Clist := Empty;
2364
2365 -- Otherwise check one component list
2366
2367 else
2368 Citem := First (Component_Items (Clist));
2369
2370 while Present (Citem) loop
2371 if Nkind (Citem) = N_Component_Declaration then
2372 C2_Ent := Defining_Identifier (Citem);
2373 exit when C1_Ent = C2_Ent;
2374 Check_Component_Overlap (C1_Ent, C2_Ent);
2375 end if;
2376
2377 Next (Citem);
2378 end loop;
2379 end if;
2380
2381 -- Check for variants above us (the parent of the Clist can
2382 -- be a variant, in which case its parent is a variant part,
2383 -- and the parent of the variant part is a component list
2384 -- whose components must all be checked against the current
2385 -- component for overlap.
2386
2387 if Nkind (Parent (Clist)) = N_Variant then
2388 Clist := Parent (Parent (Parent (Clist)));
2389
2390 -- Check for possible discriminant part in record, this is
2391 -- treated essentially as another level in the recursion.
2392 -- For this case we have the parent of the component list
2393 -- is the record definition, and its parent is the full
2394 -- type declaration which contains the discriminant
2395 -- specifications.
2396
2397 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2398 Clist := Parent (Parent ((Clist)));
2399
2400 -- If neither of these two cases, we are at the top of
2401 -- the tree
2402
2403 else
2404 exit Component_List_Loop;
2405 end if;
2406 end loop Component_List_Loop;
2407
2408 <<Continue_Main_Component_Loop>>
2409 Next_Entity (C1_Ent);
2410
2411 end loop Main_Component_Loop;
2412 end Overlap_Check2;
2413 end if;
2414
2415 -- For records that have component clauses for all components, and
2416 -- whose size is less than or equal to 32, we need to know the size
2417 -- in the front end to activate possible packed array processing
2418 -- where the component type is a record.
2419
2420 -- At this stage Hbit + 1 represents the first unused bit from all
2421 -- the component clauses processed, so if the component clauses are
2422 -- complete, then this is the length of the record.
2423
2424 -- For records longer than System.Storage_Unit, and for those where
2425 -- not all components have component clauses, the back end determines
2426 -- the length (it may for example be appopriate to round up the size
2427 -- to some convenient boundary, based on alignment considerations etc).
2428
2429 if Unknown_RM_Size (Rectype)
2430 and then Hbit + 1 <= 32
2431 then
2432 -- Nothing to do if at least one component with no component clause
2433
2434 Comp := First_Entity (Rectype);
2435 while Present (Comp) loop
2436 if Ekind (Comp) = E_Component
2437 or else Ekind (Comp) = E_Discriminant
2438 then
2439 if No (Component_Clause (Comp)) then
2440 return;
2441 end if;
2442 end if;
2443
2444 Next_Entity (Comp);
2445 end loop;
2446
2447 -- If we fall out of loop, all components have component clauses
2448 -- and so we can set the size to the maximum value.
2449
2450 Set_RM_Size (Rectype, Hbit + 1);
2451 end if;
2452 end Analyze_Record_Representation_Clause;
2453
2454 -----------------------------
2455 -- Check_Component_Overlap --
2456 -----------------------------
2457
2458 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2459 begin
2460 if Present (Component_Clause (C1_Ent))
2461 and then Present (Component_Clause (C2_Ent))
2462 then
2463 -- Exclude odd case where we have two tag fields in the same
2464 -- record, both at location zero. This seems a bit strange,
2465 -- but it seems to happen in some circumstances ???
2466
2467 if Chars (C1_Ent) = Name_uTag
2468 and then Chars (C2_Ent) = Name_uTag
2469 then
2470 return;
2471 end if;
2472
2473 -- Here we check if the two fields overlap
2474
2475 declare
2476 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2477 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2478 E1 : constant Uint := S1 + Esize (C1_Ent);
2479 E2 : constant Uint := S2 + Esize (C2_Ent);
2480
2481 begin
2482 if E2 <= S1 or else E1 <= S2 then
2483 null;
2484 else
2485 Error_Msg_Node_2 :=
2486 Component_Name (Component_Clause (C2_Ent));
2487 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2488 Error_Msg_Node_1 :=
2489 Component_Name (Component_Clause (C1_Ent));
2490 Error_Msg_N
2491 ("component& overlaps & #",
2492 Component_Name (Component_Clause (C1_Ent)));
2493 end if;
2494 end;
2495 end if;
2496 end Check_Component_Overlap;
2497
2498 -----------------------------------
2499 -- Check_Constant_Address_Clause --
2500 -----------------------------------
2501
2502 procedure Check_Constant_Address_Clause
2503 (Expr : Node_Id;
2504 U_Ent : Entity_Id)
2505 is
2506 procedure Check_At_Constant_Address (Nod : Node_Id);
2507 -- Checks that the given node N represents a name whose 'Address
2508 -- is constant (in the same sense as OK_Constant_Address_Clause,
2509 -- i.e. the address value is the same at the point of declaration
2510 -- of U_Ent and at the time of elaboration of the address clause.
2511
2512 procedure Check_Expr_Constants (Nod : Node_Id);
2513 -- Checks that Nod meets the requirements for a constant address
2514 -- clause in the sense of the enclosing procedure.
2515
2516 procedure Check_List_Constants (Lst : List_Id);
2517 -- Check that all elements of list Lst meet the requirements for a
2518 -- constant address clause in the sense of the enclosing procedure.
2519
2520 -------------------------------
2521 -- Check_At_Constant_Address --
2522 -------------------------------
2523
2524 procedure Check_At_Constant_Address (Nod : Node_Id) is
2525 begin
2526 if Is_Entity_Name (Nod) then
2527 if Present (Address_Clause (Entity ((Nod)))) then
2528 Error_Msg_NE
2529 ("invalid address clause for initialized object &!",
2530 Nod, U_Ent);
2531 Error_Msg_NE
2532 ("address for& cannot" &
2533 " depend on another address clause! ('R'M 13.1(22))!",
2534 Nod, U_Ent);
2535
2536 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2537 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2538 then
2539 Error_Msg_NE
2540 ("invalid address clause for initialized object &!",
2541 Nod, U_Ent);
2542 Error_Msg_Name_1 := Chars (Entity (Nod));
2543 Error_Msg_Name_2 := Chars (U_Ent);
2544 Error_Msg_N
2545 ("\% must be defined before % ('R'M 13.1(22))!",
2546 Nod);
2547 end if;
2548
2549 elsif Nkind (Nod) = N_Selected_Component then
2550 declare
2551 T : constant Entity_Id := Etype (Prefix (Nod));
2552
2553 begin
2554 if (Is_Record_Type (T)
2555 and then Has_Discriminants (T))
2556 or else
2557 (Is_Access_Type (T)
2558 and then Is_Record_Type (Designated_Type (T))
2559 and then Has_Discriminants (Designated_Type (T)))
2560 then
2561 Error_Msg_NE
2562 ("invalid address clause for initialized object &!",
2563 Nod, U_Ent);
2564 Error_Msg_N
2565 ("\address cannot depend on component" &
2566 " of discriminated record ('R'M 13.1(22))!",
2567 Nod);
2568 else
2569 Check_At_Constant_Address (Prefix (Nod));
2570 end if;
2571 end;
2572
2573 elsif Nkind (Nod) = N_Indexed_Component then
2574 Check_At_Constant_Address (Prefix (Nod));
2575 Check_List_Constants (Expressions (Nod));
2576
2577 else
2578 Check_Expr_Constants (Nod);
2579 end if;
2580 end Check_At_Constant_Address;
2581
2582 --------------------------
2583 -- Check_Expr_Constants --
2584 --------------------------
2585
2586 procedure Check_Expr_Constants (Nod : Node_Id) is
2587 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2588 Ent : Entity_Id := Empty;
2589
2590 begin
2591 if Nkind (Nod) in N_Has_Etype
2592 and then Etype (Nod) = Any_Type
2593 then
2594 return;
2595 end if;
2596
2597 case Nkind (Nod) is
2598 when N_Empty | N_Error =>
2599 return;
2600
2601 when N_Identifier | N_Expanded_Name =>
2602 Ent := Entity (Nod);
2603
2604 -- We need to look at the original node if it is different
2605 -- from the node, since we may have rewritten things and
2606 -- substituted an identifier representing the rewrite.
2607
2608 if Original_Node (Nod) /= Nod then
2609 Check_Expr_Constants (Original_Node (Nod));
2610
2611 -- If the node is an object declaration without initial
2612 -- value, some code has been expanded, and the expression
2613 -- is not constant, even if the constituents might be
2614 -- acceptable, as in A'Address + offset.
2615
2616 if Ekind (Ent) = E_Variable
2617 and then Nkind (Declaration_Node (Ent))
2618 = N_Object_Declaration
2619 and then
2620 No (Expression (Declaration_Node (Ent)))
2621 then
2622 Error_Msg_NE
2623 ("invalid address clause for initialized object &!",
2624 Nod, U_Ent);
2625
2626 -- If entity is constant, it may be the result of expanding
2627 -- a check. We must verify that its declaration appears
2628 -- before the object in question, else we also reject the
2629 -- address clause.
2630
2631 elsif Ekind (Ent) = E_Constant
2632 and then In_Same_Source_Unit (Ent, U_Ent)
2633 and then Sloc (Ent) > Loc_U_Ent
2634 then
2635 Error_Msg_NE
2636 ("invalid address clause for initialized object &!",
2637 Nod, U_Ent);
2638 end if;
2639
2640 return;
2641 end if;
2642
2643 -- Otherwise look at the identifier and see if it is OK.
2644
2645 if Ekind (Ent) = E_Named_Integer
2646 or else
2647 Ekind (Ent) = E_Named_Real
2648 or else
2649 Is_Type (Ent)
2650 then
2651 return;
2652
2653 elsif
2654 Ekind (Ent) = E_Constant
2655 or else
2656 Ekind (Ent) = E_In_Parameter
2657 then
2658 -- This is the case where we must have Ent defined
2659 -- before U_Ent. Clearly if they are in different
2660 -- units this requirement is met since the unit
2661 -- containing Ent is already processed.
2662
2663 if not In_Same_Source_Unit (Ent, U_Ent) then
2664 return;
2665
2666 -- Otherwise location of Ent must be before the
2667 -- location of U_Ent, that's what prior defined means.
2668
2669 elsif Sloc (Ent) < Loc_U_Ent then
2670 return;
2671
2672 else
2673 Error_Msg_NE
2674 ("invalid address clause for initialized object &!",
2675 Nod, U_Ent);
2676 Error_Msg_Name_1 := Chars (Ent);
2677 Error_Msg_Name_2 := Chars (U_Ent);
2678 Error_Msg_N
2679 ("\% must be defined before % ('R'M 13.1(22))!",
2680 Nod);
2681 end if;
2682
2683 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2684 Check_Expr_Constants (Original_Node (Nod));
2685
2686 else
2687 Error_Msg_NE
2688 ("invalid address clause for initialized object &!",
2689 Nod, U_Ent);
2690
2691 if Comes_From_Source (Ent) then
2692 Error_Msg_Name_1 := Chars (Ent);
2693 Error_Msg_N
2694 ("\reference to variable% not allowed"
2695 & " ('R'M 13.1(22))!", Nod);
2696 else
2697 Error_Msg_N
2698 ("non-static expression not allowed"
2699 & " ('R'M 13.1(22))!", Nod);
2700 end if;
2701 end if;
2702
2703 when N_Integer_Literal =>
2704
2705 -- If this is a rewritten unchecked conversion, in a system
2706 -- where Address is an integer type, always use the base type
2707 -- for a literal value. This is user-friendly and prevents
2708 -- order-of-elaboration issues with instances of unchecked
2709 -- conversion.
2710
2711 if Nkind (Original_Node (Nod)) = N_Function_Call then
2712 Set_Etype (Nod, Base_Type (Etype (Nod)));
2713 end if;
2714
2715 when N_Real_Literal |
2716 N_String_Literal |
2717 N_Character_Literal =>
2718 return;
2719
2720 when N_Range =>
2721 Check_Expr_Constants (Low_Bound (Nod));
2722 Check_Expr_Constants (High_Bound (Nod));
2723
2724 when N_Explicit_Dereference =>
2725 Check_Expr_Constants (Prefix (Nod));
2726
2727 when N_Indexed_Component =>
2728 Check_Expr_Constants (Prefix (Nod));
2729 Check_List_Constants (Expressions (Nod));
2730
2731 when N_Slice =>
2732 Check_Expr_Constants (Prefix (Nod));
2733 Check_Expr_Constants (Discrete_Range (Nod));
2734
2735 when N_Selected_Component =>
2736 Check_Expr_Constants (Prefix (Nod));
2737
2738 when N_Attribute_Reference =>
2739
2740 if Attribute_Name (Nod) = Name_Address
2741 or else
2742 Attribute_Name (Nod) = Name_Access
2743 or else
2744 Attribute_Name (Nod) = Name_Unchecked_Access
2745 or else
2746 Attribute_Name (Nod) = Name_Unrestricted_Access
2747 then
2748 Check_At_Constant_Address (Prefix (Nod));
2749
2750 else
2751 Check_Expr_Constants (Prefix (Nod));
2752 Check_List_Constants (Expressions (Nod));
2753 end if;
2754
2755 when N_Aggregate =>
2756 Check_List_Constants (Component_Associations (Nod));
2757 Check_List_Constants (Expressions (Nod));
2758
2759 when N_Component_Association =>
2760 Check_Expr_Constants (Expression (Nod));
2761
2762 when N_Extension_Aggregate =>
2763 Check_Expr_Constants (Ancestor_Part (Nod));
2764 Check_List_Constants (Component_Associations (Nod));
2765 Check_List_Constants (Expressions (Nod));
2766
2767 when N_Null =>
2768 return;
2769
2770 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
2771 Check_Expr_Constants (Left_Opnd (Nod));
2772 Check_Expr_Constants (Right_Opnd (Nod));
2773
2774 when N_Unary_Op =>
2775 Check_Expr_Constants (Right_Opnd (Nod));
2776
2777 when N_Type_Conversion |
2778 N_Qualified_Expression |
2779 N_Allocator =>
2780 Check_Expr_Constants (Expression (Nod));
2781
2782 when N_Unchecked_Type_Conversion =>
2783 Check_Expr_Constants (Expression (Nod));
2784
2785 -- If this is a rewritten unchecked conversion, subtypes
2786 -- in this node are those created within the instance.
2787 -- To avoid order of elaboration issues, replace them
2788 -- with their base types. Note that address clauses can
2789 -- cause order of elaboration problems because they are
2790 -- elaborated by the back-end at the point of definition,
2791 -- and may mention entities declared in between (as long
2792 -- as everything is static). It is user-friendly to allow
2793 -- unchecked conversions in this context.
2794
2795 if Nkind (Original_Node (Nod)) = N_Function_Call then
2796 Set_Etype (Expression (Nod),
2797 Base_Type (Etype (Expression (Nod))));
2798 Set_Etype (Nod, Base_Type (Etype (Nod)));
2799 end if;
2800
2801 when N_Function_Call =>
2802 if not Is_Pure (Entity (Name (Nod))) then
2803 Error_Msg_NE
2804 ("invalid address clause for initialized object &!",
2805 Nod, U_Ent);
2806
2807 Error_Msg_NE
2808 ("\function & is not pure ('R'M 13.1(22))!",
2809 Nod, Entity (Name (Nod)));
2810
2811 else
2812 Check_List_Constants (Parameter_Associations (Nod));
2813 end if;
2814
2815 when N_Parameter_Association =>
2816 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
2817
2818 when others =>
2819 Error_Msg_NE
2820 ("invalid address clause for initialized object &!",
2821 Nod, U_Ent);
2822 Error_Msg_NE
2823 ("\must be constant defined before& ('R'M 13.1(22))!",
2824 Nod, U_Ent);
2825 end case;
2826 end Check_Expr_Constants;
2827
2828 --------------------------
2829 -- Check_List_Constants --
2830 --------------------------
2831
2832 procedure Check_List_Constants (Lst : List_Id) is
2833 Nod1 : Node_Id;
2834
2835 begin
2836 if Present (Lst) then
2837 Nod1 := First (Lst);
2838 while Present (Nod1) loop
2839 Check_Expr_Constants (Nod1);
2840 Next (Nod1);
2841 end loop;
2842 end if;
2843 end Check_List_Constants;
2844
2845 -- Start of processing for Check_Constant_Address_Clause
2846
2847 begin
2848 Check_Expr_Constants (Expr);
2849 end Check_Constant_Address_Clause;
2850
2851 ----------------
2852 -- Check_Size --
2853 ----------------
2854
2855 procedure Check_Size
2856 (N : Node_Id;
2857 T : Entity_Id;
2858 Siz : Uint;
2859 Biased : out Boolean)
2860 is
2861 UT : constant Entity_Id := Underlying_Type (T);
2862 M : Uint;
2863
2864 begin
2865 Biased := False;
2866
2867 -- Dismiss cases for generic types or types with previous errors
2868
2869 if No (UT)
2870 or else UT = Any_Type
2871 or else Is_Generic_Type (UT)
2872 or else Is_Generic_Type (Root_Type (UT))
2873 then
2874 return;
2875
2876 -- Check case of bit packed array
2877
2878 elsif Is_Array_Type (UT)
2879 and then Known_Static_Component_Size (UT)
2880 and then Is_Bit_Packed_Array (UT)
2881 then
2882 declare
2883 Asiz : Uint;
2884 Indx : Node_Id;
2885 Ityp : Entity_Id;
2886
2887 begin
2888 Asiz := Component_Size (UT);
2889 Indx := First_Index (UT);
2890 loop
2891 Ityp := Etype (Indx);
2892
2893 -- If non-static bound, then we are not in the business of
2894 -- trying to check the length, and indeed an error will be
2895 -- issued elsewhere, since sizes of non-static array types
2896 -- cannot be set implicitly or explicitly.
2897
2898 if not Is_Static_Subtype (Ityp) then
2899 return;
2900 end if;
2901
2902 -- Otherwise accumulate next dimension
2903
2904 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
2905 Expr_Value (Type_Low_Bound (Ityp)) +
2906 Uint_1);
2907
2908 Next_Index (Indx);
2909 exit when No (Indx);
2910 end loop;
2911
2912 if Asiz <= Siz then
2913 return;
2914 else
2915 Error_Msg_Uint_1 := Asiz;
2916 Error_Msg_NE
2917 ("size for& too small, minimum allowed is ^", N, T);
2918 Set_Esize (T, Asiz);
2919 Set_RM_Size (T, Asiz);
2920 end if;
2921 end;
2922
2923 -- All other composite types are ignored
2924
2925 elsif Is_Composite_Type (UT) then
2926 return;
2927
2928 -- For fixed-point types, don't check minimum if type is not frozen,
2929 -- since we don't know all the characteristics of the type that can
2930 -- affect the size (e.g. a specified small) till freeze time.
2931
2932 elsif Is_Fixed_Point_Type (UT)
2933 and then not Is_Frozen (UT)
2934 then
2935 null;
2936
2937 -- Cases for which a minimum check is required
2938
2939 else
2940 -- Ignore if specified size is correct for the type
2941
2942 if Known_Esize (UT) and then Siz = Esize (UT) then
2943 return;
2944 end if;
2945
2946 -- Otherwise get minimum size
2947
2948 M := UI_From_Int (Minimum_Size (UT));
2949
2950 if Siz < M then
2951
2952 -- Size is less than minimum size, but one possibility remains
2953 -- that we can manage with the new size if we bias the type
2954
2955 M := UI_From_Int (Minimum_Size (UT, Biased => True));
2956
2957 if Siz < M then
2958 Error_Msg_Uint_1 := M;
2959 Error_Msg_NE
2960 ("size for& too small, minimum allowed is ^", N, T);
2961 Set_Esize (T, M);
2962 Set_RM_Size (T, M);
2963 else
2964 Biased := True;
2965 end if;
2966 end if;
2967 end if;
2968 end Check_Size;
2969
2970 -------------------------
2971 -- Get_Alignment_Value --
2972 -------------------------
2973
2974 function Get_Alignment_Value (Expr : Node_Id) return Uint is
2975 Align : constant Uint := Static_Integer (Expr);
2976
2977 begin
2978 if Align = No_Uint then
2979 return No_Uint;
2980
2981 elsif Align <= 0 then
2982 Error_Msg_N ("alignment value must be positive", Expr);
2983 return No_Uint;
2984
2985 else
2986 for J in Int range 0 .. 64 loop
2987 declare
2988 M : constant Uint := Uint_2 ** J;
2989
2990 begin
2991 exit when M = Align;
2992
2993 if M > Align then
2994 Error_Msg_N
2995 ("alignment value must be power of 2", Expr);
2996 return No_Uint;
2997 end if;
2998 end;
2999 end loop;
3000
3001 return Align;
3002 end if;
3003 end Get_Alignment_Value;
3004
3005 ----------------
3006 -- Initialize --
3007 ----------------
3008
3009 procedure Initialize is
3010 begin
3011 Unchecked_Conversions.Init;
3012 end Initialize;
3013
3014 -------------------------
3015 -- Is_Operational_Item --
3016 -------------------------
3017
3018 function Is_Operational_Item (N : Node_Id) return Boolean is
3019 begin
3020 if Nkind (N) /= N_Attribute_Definition_Clause then
3021 return False;
3022 else
3023 declare
3024 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
3025
3026 begin
3027 return Id = Attribute_Input
3028 or else Id = Attribute_Output
3029 or else Id = Attribute_Read
3030 or else Id = Attribute_Write
3031 or else Id = Attribute_External_Tag;
3032 end;
3033 end if;
3034 end Is_Operational_Item;
3035
3036 --------------------------------------
3037 -- Mark_Aliased_Address_As_Volatile --
3038 --------------------------------------
3039
3040 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
3041 Ent : constant Entity_Id := Address_Aliased_Entity (N);
3042
3043 begin
3044 if Present (Ent) then
3045 Set_Treat_As_Volatile (Ent);
3046 end if;
3047 end Mark_Aliased_Address_As_Volatile;
3048
3049 ------------------
3050 -- Minimum_Size --
3051 ------------------
3052
3053 function Minimum_Size
3054 (T : Entity_Id;
3055 Biased : Boolean := False) return Nat
3056 is
3057 Lo : Uint := No_Uint;
3058 Hi : Uint := No_Uint;
3059 LoR : Ureal := No_Ureal;
3060 HiR : Ureal := No_Ureal;
3061 LoSet : Boolean := False;
3062 HiSet : Boolean := False;
3063 B : Uint;
3064 S : Nat;
3065 Ancest : Entity_Id;
3066 R_Typ : constant Entity_Id := Root_Type (T);
3067
3068 begin
3069 -- If bad type, return 0
3070
3071 if T = Any_Type then
3072 return 0;
3073
3074 -- For generic types, just return zero. There cannot be any legitimate
3075 -- need to know such a size, but this routine may be called with a
3076 -- generic type as part of normal processing.
3077
3078 elsif Is_Generic_Type (R_Typ)
3079 or else R_Typ = Any_Type
3080 then
3081 return 0;
3082
3083 -- Access types. Normally an access type cannot have a size smaller
3084 -- than the size of System.Address. The exception is on VMS, where
3085 -- we have short and long addresses, and it is possible for an access
3086 -- type to have a short address size (and thus be less than the size
3087 -- of System.Address itself). We simply skip the check for VMS, and
3088 -- leave the back end to do the check.
3089
3090 elsif Is_Access_Type (T) then
3091 if OpenVMS_On_Target then
3092 return 0;
3093 else
3094 return System_Address_Size;
3095 end if;
3096
3097 -- Floating-point types
3098
3099 elsif Is_Floating_Point_Type (T) then
3100 return UI_To_Int (Esize (R_Typ));
3101
3102 -- Discrete types
3103
3104 elsif Is_Discrete_Type (T) then
3105
3106 -- The following loop is looking for the nearest compile time
3107 -- known bounds following the ancestor subtype chain. The idea
3108 -- is to find the most restrictive known bounds information.
3109
3110 Ancest := T;
3111 loop
3112 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3113 return 0;
3114 end if;
3115
3116 if not LoSet then
3117 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
3118 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
3119 LoSet := True;
3120 exit when HiSet;
3121 end if;
3122 end if;
3123
3124 if not HiSet then
3125 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
3126 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
3127 HiSet := True;
3128 exit when LoSet;
3129 end if;
3130 end if;
3131
3132 Ancest := Ancestor_Subtype (Ancest);
3133
3134 if No (Ancest) then
3135 Ancest := Base_Type (T);
3136
3137 if Is_Generic_Type (Ancest) then
3138 return 0;
3139 end if;
3140 end if;
3141 end loop;
3142
3143 -- Fixed-point types. We can't simply use Expr_Value to get the
3144 -- Corresponding_Integer_Value values of the bounds, since these
3145 -- do not get set till the type is frozen, and this routine can
3146 -- be called before the type is frozen. Similarly the test for
3147 -- bounds being static needs to include the case where we have
3148 -- unanalyzed real literals for the same reason.
3149
3150 elsif Is_Fixed_Point_Type (T) then
3151
3152 -- The following loop is looking for the nearest compile time
3153 -- known bounds following the ancestor subtype chain. The idea
3154 -- is to find the most restrictive known bounds information.
3155
3156 Ancest := T;
3157 loop
3158 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3159 return 0;
3160 end if;
3161
3162 if not LoSet then
3163 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
3164 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
3165 then
3166 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
3167 LoSet := True;
3168 exit when HiSet;
3169 end if;
3170 end if;
3171
3172 if not HiSet then
3173 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3174 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3175 then
3176 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3177 HiSet := True;
3178 exit when LoSet;
3179 end if;
3180 end if;
3181
3182 Ancest := Ancestor_Subtype (Ancest);
3183
3184 if No (Ancest) then
3185 Ancest := Base_Type (T);
3186
3187 if Is_Generic_Type (Ancest) then
3188 return 0;
3189 end if;
3190 end if;
3191 end loop;
3192
3193 Lo := UR_To_Uint (LoR / Small_Value (T));
3194 Hi := UR_To_Uint (HiR / Small_Value (T));
3195
3196 -- No other types allowed
3197
3198 else
3199 raise Program_Error;
3200 end if;
3201
3202 -- Fall through with Hi and Lo set. Deal with biased case.
3203
3204 if (Biased and then not Is_Fixed_Point_Type (T))
3205 or else Has_Biased_Representation (T)
3206 then
3207 Hi := Hi - Lo;
3208 Lo := Uint_0;
3209 end if;
3210
3211 -- Signed case. Note that we consider types like range 1 .. -1 to be
3212 -- signed for the purpose of computing the size, since the bounds
3213 -- have to be accomodated in the base type.
3214
3215 if Lo < 0 or else Hi < 0 then
3216 S := 1;
3217 B := Uint_1;
3218
3219 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3220 -- Note that we accommodate the case where the bounds cross. This
3221 -- can happen either because of the way the bounds are declared
3222 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3223
3224 while Lo < -B
3225 or else Hi < -B
3226 or else Lo >= B
3227 or else Hi >= B
3228 loop
3229 B := Uint_2 ** S;
3230 S := S + 1;
3231 end loop;
3232
3233 -- Unsigned case
3234
3235 else
3236 -- If both bounds are positive, make sure that both are represen-
3237 -- table in the case where the bounds are crossed. This can happen
3238 -- either because of the way the bounds are declared, or because of
3239 -- the algorithm in Freeze_Fixed_Point_Type.
3240
3241 if Lo > Hi then
3242 Hi := Lo;
3243 end if;
3244
3245 -- S = size, (can accommodate 0 .. (2**size - 1))
3246
3247 S := 0;
3248 while Hi >= Uint_2 ** S loop
3249 S := S + 1;
3250 end loop;
3251 end if;
3252
3253 return S;
3254 end Minimum_Size;
3255
3256 -------------------------
3257 -- New_Stream_Function --
3258 -------------------------
3259
3260 procedure New_Stream_Function
3261 (N : Node_Id;
3262 Ent : Entity_Id;
3263 Subp : Entity_Id;
3264 Nam : TSS_Name_Type)
3265 is
3266 Loc : constant Source_Ptr := Sloc (N);
3267 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3268 Subp_Id : Entity_Id;
3269 Subp_Decl : Node_Id;
3270 F : Entity_Id;
3271 Etyp : Entity_Id;
3272
3273 function Build_Spec return Node_Id;
3274 -- Used for declaration and renaming declaration, so that this is
3275 -- treated as a renaming_as_body.
3276
3277 ----------------
3278 -- Build_Spec --
3279 ----------------
3280
3281 function Build_Spec return Node_Id is
3282 begin
3283 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3284
3285 return
3286 Make_Function_Specification (Loc,
3287 Defining_Unit_Name => Subp_Id,
3288 Parameter_Specifications =>
3289 New_List (
3290 Make_Parameter_Specification (Loc,
3291 Defining_Identifier =>
3292 Make_Defining_Identifier (Loc, Name_S),
3293 Parameter_Type =>
3294 Make_Access_Definition (Loc,
3295 Subtype_Mark =>
3296 New_Reference_To (
3297 Designated_Type (Etype (F)), Loc)))),
3298
3299 Subtype_Mark =>
3300 New_Reference_To (Etyp, Loc));
3301 end Build_Spec;
3302
3303 -- Start of processing for New_Stream_Function
3304
3305 begin
3306 F := First_Formal (Subp);
3307 Etyp := Etype (Subp);
3308
3309 if not Is_Tagged_Type (Ent) then
3310 Subp_Decl :=
3311 Make_Subprogram_Declaration (Loc,
3312 Specification => Build_Spec);
3313 Insert_Action (N, Subp_Decl);
3314 end if;
3315
3316 Subp_Decl :=
3317 Make_Subprogram_Renaming_Declaration (Loc,
3318 Specification => Build_Spec,
3319 Name => New_Reference_To (Subp, Loc));
3320
3321 if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
3322 Set_TSS (Base_Type (Ent), Subp_Id);
3323 else
3324 Insert_Action (N, Subp_Decl);
3325 Copy_TSS (Subp_Id, Base_Type (Ent));
3326 end if;
3327 end New_Stream_Function;
3328
3329 --------------------------
3330 -- New_Stream_Procedure --
3331 --------------------------
3332
3333 procedure New_Stream_Procedure
3334 (N : Node_Id;
3335 Ent : Entity_Id;
3336 Subp : Entity_Id;
3337 Nam : TSS_Name_Type;
3338 Out_P : Boolean := False)
3339 is
3340 Loc : constant Source_Ptr := Sloc (N);
3341 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3342 Subp_Id : Entity_Id;
3343 Subp_Decl : Node_Id;
3344 F : Entity_Id;
3345 Etyp : Entity_Id;
3346
3347 function Build_Spec return Node_Id;
3348 -- Used for declaration and renaming declaration, so that this is
3349 -- treated as a renaming_as_body.
3350
3351 ----------------
3352 -- Build_Spec --
3353 ----------------
3354
3355 function Build_Spec return Node_Id is
3356 begin
3357 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3358
3359 return
3360 Make_Procedure_Specification (Loc,
3361 Defining_Unit_Name => Subp_Id,
3362 Parameter_Specifications =>
3363 New_List (
3364 Make_Parameter_Specification (Loc,
3365 Defining_Identifier =>
3366 Make_Defining_Identifier (Loc, Name_S),
3367 Parameter_Type =>
3368 Make_Access_Definition (Loc,
3369 Subtype_Mark =>
3370 New_Reference_To (
3371 Designated_Type (Etype (F)), Loc))),
3372
3373 Make_Parameter_Specification (Loc,
3374 Defining_Identifier =>
3375 Make_Defining_Identifier (Loc, Name_V),
3376 Out_Present => Out_P,
3377 Parameter_Type =>
3378 New_Reference_To (Etyp, Loc))));
3379 end Build_Spec;
3380
3381 -- Start of processing for New_Stream_Procedure
3382
3383 begin
3384 F := First_Formal (Subp);
3385 Etyp := Etype (Next_Formal (F));
3386
3387 if not Is_Tagged_Type (Ent) then
3388 Subp_Decl :=
3389 Make_Subprogram_Declaration (Loc,
3390 Specification => Build_Spec);
3391 Insert_Action (N, Subp_Decl);
3392 end if;
3393
3394 Subp_Decl :=
3395 Make_Subprogram_Renaming_Declaration (Loc,
3396 Specification => Build_Spec,
3397 Name => New_Reference_To (Subp, Loc));
3398
3399 if Is_Tagged_Type (Ent) and then not Is_Limited_Type (Ent) then
3400 Set_TSS (Base_Type (Ent), Subp_Id);
3401 else
3402 Insert_Action (N, Subp_Decl);
3403 Copy_TSS (Subp_Id, Base_Type (Ent));
3404 end if;
3405 end New_Stream_Procedure;
3406
3407 ---------------------
3408 -- Record_Rep_Item --
3409 ---------------------
3410
3411 procedure Record_Rep_Item (T : Entity_Id; N : Node_Id) is
3412 begin
3413 Set_Next_Rep_Item (N, First_Rep_Item (T));
3414 Set_First_Rep_Item (T, N);
3415 end Record_Rep_Item;
3416
3417 ------------------------
3418 -- Rep_Item_Too_Early --
3419 ------------------------
3420
3421 function Rep_Item_Too_Early
3422 (T : Entity_Id;
3423 N : Node_Id) return Boolean
3424 is
3425 begin
3426 -- Cannot apply rep items that are not operational items
3427 -- to generic types
3428
3429 if Is_Operational_Item (N) then
3430 return False;
3431
3432 elsif Is_Type (T)
3433 and then Is_Generic_Type (Root_Type (T))
3434 then
3435 Error_Msg_N
3436 ("representation item not allowed for generic type", N);
3437 return True;
3438 end if;
3439
3440 -- Otherwise check for incompleted type
3441
3442 if Is_Incomplete_Or_Private_Type (T)
3443 and then No (Underlying_Type (T))
3444 then
3445 Error_Msg_N
3446 ("representation item must be after full type declaration", N);
3447 return True;
3448
3449 -- If the type has incompleted components, a representation clause is
3450 -- illegal but stream attributes and Convention pragmas are correct.
3451
3452 elsif Has_Private_Component (T) then
3453 if Nkind (N) = N_Pragma then
3454 return False;
3455 else
3456 Error_Msg_N
3457 ("representation item must appear after type is fully defined",
3458 N);
3459 return True;
3460 end if;
3461 else
3462 return False;
3463 end if;
3464 end Rep_Item_Too_Early;
3465
3466 -----------------------
3467 -- Rep_Item_Too_Late --
3468 -----------------------
3469
3470 function Rep_Item_Too_Late
3471 (T : Entity_Id;
3472 N : Node_Id;
3473 FOnly : Boolean := False) return Boolean
3474 is
3475 S : Entity_Id;
3476 Parent_Type : Entity_Id;
3477
3478 procedure Too_Late;
3479 -- Output the too late message
3480
3481 procedure Too_Late is
3482 begin
3483 Error_Msg_N ("representation item appears too late!", N);
3484 end Too_Late;
3485
3486 -- Start of processing for Rep_Item_Too_Late
3487
3488 begin
3489 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3490 -- types, which may be frozen if they appear in a representation clause
3491 -- for a local type.
3492
3493 if Is_Frozen (T)
3494 and then not From_With_Type (T)
3495 then
3496 Too_Late;
3497 S := First_Subtype (T);
3498
3499 if Present (Freeze_Node (S)) then
3500 Error_Msg_NE
3501 ("?no more representation items for }!", Freeze_Node (S), S);
3502 end if;
3503
3504 return True;
3505
3506 -- Check for case of non-tagged derived type whose parent either has
3507 -- primitive operations, or is a by reference type (RM 13.1(10)).
3508
3509 elsif Is_Type (T)
3510 and then not FOnly
3511 and then Is_Derived_Type (T)
3512 and then not Is_Tagged_Type (T)
3513 then
3514 Parent_Type := Etype (Base_Type (T));
3515
3516 if Has_Primitive_Operations (Parent_Type) then
3517 Too_Late;
3518 Error_Msg_NE
3519 ("primitive operations already defined for&!", N, Parent_Type);
3520 return True;
3521
3522 elsif Is_By_Reference_Type (Parent_Type) then
3523 Too_Late;
3524 Error_Msg_NE
3525 ("parent type & is a by reference type!", N, Parent_Type);
3526 return True;
3527 end if;
3528 end if;
3529
3530 -- No error, link item into head of chain of rep items for the entity
3531
3532 Record_Rep_Item (T, N);
3533 return False;
3534 end Rep_Item_Too_Late;
3535
3536 -------------------------
3537 -- Same_Representation --
3538 -------------------------
3539
3540 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3541 T1 : constant Entity_Id := Underlying_Type (Typ1);
3542 T2 : constant Entity_Id := Underlying_Type (Typ2);
3543
3544 begin
3545 -- A quick check, if base types are the same, then we definitely have
3546 -- the same representation, because the subtype specific representation
3547 -- attributes (Size and Alignment) do not affect representation from
3548 -- the point of view of this test.
3549
3550 if Base_Type (T1) = Base_Type (T2) then
3551 return True;
3552
3553 elsif Is_Private_Type (Base_Type (T2))
3554 and then Base_Type (T1) = Full_View (Base_Type (T2))
3555 then
3556 return True;
3557 end if;
3558
3559 -- Tagged types never have differing representations
3560
3561 if Is_Tagged_Type (T1) then
3562 return True;
3563 end if;
3564
3565 -- Representations are definitely different if conventions differ
3566
3567 if Convention (T1) /= Convention (T2) then
3568 return False;
3569 end if;
3570
3571 -- Representations are different if component alignments differ
3572
3573 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3574 and then
3575 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3576 and then Component_Alignment (T1) /= Component_Alignment (T2)
3577 then
3578 return False;
3579 end if;
3580
3581 -- For arrays, the only real issue is component size. If we know the
3582 -- component size for both arrays, and it is the same, then that's
3583 -- good enough to know we don't have a change of representation.
3584
3585 if Is_Array_Type (T1) then
3586 if Known_Component_Size (T1)
3587 and then Known_Component_Size (T2)
3588 and then Component_Size (T1) = Component_Size (T2)
3589 then
3590 return True;
3591 end if;
3592 end if;
3593
3594 -- Types definitely have same representation if neither has non-standard
3595 -- representation since default representations are always consistent.
3596 -- If only one has non-standard representation, and the other does not,
3597 -- then we consider that they do not have the same representation. They
3598 -- might, but there is no way of telling early enough.
3599
3600 if Has_Non_Standard_Rep (T1) then
3601 if not Has_Non_Standard_Rep (T2) then
3602 return False;
3603 end if;
3604 else
3605 return not Has_Non_Standard_Rep (T2);
3606 end if;
3607
3608 -- Here the two types both have non-standard representation, and we
3609 -- need to determine if they have the same non-standard representation
3610
3611 -- For arrays, we simply need to test if the component sizes are the
3612 -- same. Pragma Pack is reflected in modified component sizes, so this
3613 -- check also deals with pragma Pack.
3614
3615 if Is_Array_Type (T1) then
3616 return Component_Size (T1) = Component_Size (T2);
3617
3618 -- Tagged types always have the same representation, because it is not
3619 -- possible to specify different representations for common fields.
3620
3621 elsif Is_Tagged_Type (T1) then
3622 return True;
3623
3624 -- Case of record types
3625
3626 elsif Is_Record_Type (T1) then
3627
3628 -- Packed status must conform
3629
3630 if Is_Packed (T1) /= Is_Packed (T2) then
3631 return False;
3632
3633 -- Otherwise we must check components. Typ2 maybe a constrained
3634 -- subtype with fewer components, so we compare the components
3635 -- of the base types.
3636
3637 else
3638 Record_Case : declare
3639 CD1, CD2 : Entity_Id;
3640
3641 function Same_Rep return Boolean;
3642 -- CD1 and CD2 are either components or discriminants. This
3643 -- function tests whether the two have the same representation
3644
3645 function Same_Rep return Boolean is
3646 begin
3647 if No (Component_Clause (CD1)) then
3648 return No (Component_Clause (CD2));
3649
3650 else
3651 return
3652 Present (Component_Clause (CD2))
3653 and then
3654 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
3655 and then
3656 Esize (CD1) = Esize (CD2);
3657 end if;
3658 end Same_Rep;
3659
3660 -- Start processing for Record_Case
3661
3662 begin
3663 if Has_Discriminants (T1) then
3664 CD1 := First_Discriminant (T1);
3665 CD2 := First_Discriminant (T2);
3666
3667 -- The number of discriminants may be different if the
3668 -- derived type has fewer (constrained by values). The
3669 -- invisible discriminants retain the representation of
3670 -- the original, so the discrepancy does not per se
3671 -- indicate a different representation.
3672
3673 while Present (CD1)
3674 and then Present (CD2)
3675 loop
3676 if not Same_Rep then
3677 return False;
3678 else
3679 Next_Discriminant (CD1);
3680 Next_Discriminant (CD2);
3681 end if;
3682 end loop;
3683 end if;
3684
3685 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
3686 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
3687
3688 while Present (CD1) loop
3689 if not Same_Rep then
3690 return False;
3691 else
3692 Next_Component (CD1);
3693 Next_Component (CD2);
3694 end if;
3695 end loop;
3696
3697 return True;
3698 end Record_Case;
3699 end if;
3700
3701 -- For enumeration types, we must check each literal to see if the
3702 -- representation is the same. Note that we do not permit enumeration
3703 -- reprsentation clauses for Character and Wide_Character, so these
3704 -- cases were already dealt with.
3705
3706 elsif Is_Enumeration_Type (T1) then
3707
3708 Enumeration_Case : declare
3709 L1, L2 : Entity_Id;
3710
3711 begin
3712 L1 := First_Literal (T1);
3713 L2 := First_Literal (T2);
3714
3715 while Present (L1) loop
3716 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
3717 return False;
3718 else
3719 Next_Literal (L1);
3720 Next_Literal (L2);
3721 end if;
3722 end loop;
3723
3724 return True;
3725
3726 end Enumeration_Case;
3727
3728 -- Any other types have the same representation for these purposes
3729
3730 else
3731 return True;
3732 end if;
3733 end Same_Representation;
3734
3735 --------------------
3736 -- Set_Enum_Esize --
3737 --------------------
3738
3739 procedure Set_Enum_Esize (T : Entity_Id) is
3740 Lo : Uint;
3741 Hi : Uint;
3742 Sz : Nat;
3743
3744 begin
3745 Init_Alignment (T);
3746
3747 -- Find the minimum standard size (8,16,32,64) that fits
3748
3749 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
3750 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
3751
3752 if Lo < 0 then
3753 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
3754 Sz := Standard_Character_Size; -- May be > 8 on some targets
3755
3756 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
3757 Sz := 16;
3758
3759 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
3760 Sz := 32;
3761
3762 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
3763 Sz := 64;
3764 end if;
3765
3766 else
3767 if Hi < Uint_2**08 then
3768 Sz := Standard_Character_Size; -- May be > 8 on some targets
3769
3770 elsif Hi < Uint_2**16 then
3771 Sz := 16;
3772
3773 elsif Hi < Uint_2**32 then
3774 Sz := 32;
3775
3776 else pragma Assert (Hi < Uint_2**63);
3777 Sz := 64;
3778 end if;
3779 end if;
3780
3781 -- That minimum is the proper size unless we have a foreign convention
3782 -- and the size required is 32 or less, in which case we bump the size
3783 -- up to 32. This is required for C and C++ and seems reasonable for
3784 -- all other foreign conventions.
3785
3786 if Has_Foreign_Convention (T)
3787 and then Esize (T) < Standard_Integer_Size
3788 then
3789 Init_Esize (T, Standard_Integer_Size);
3790
3791 else
3792 Init_Esize (T, Sz);
3793 end if;
3794 end Set_Enum_Esize;
3795
3796 -----------------------------------
3797 -- Validate_Unchecked_Conversion --
3798 -----------------------------------
3799
3800 procedure Validate_Unchecked_Conversion
3801 (N : Node_Id;
3802 Act_Unit : Entity_Id)
3803 is
3804 Source : Entity_Id;
3805 Target : Entity_Id;
3806 Vnode : Node_Id;
3807
3808 begin
3809 -- Obtain source and target types. Note that we call Ancestor_Subtype
3810 -- here because the processing for generic instantiation always makes
3811 -- subtypes, and we want the original frozen actual types.
3812
3813 -- If we are dealing with private types, then do the check on their
3814 -- fully declared counterparts if the full declarations have been
3815 -- encountered (they don't have to be visible, but they must exist!)
3816
3817 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
3818
3819 if Is_Private_Type (Source)
3820 and then Present (Underlying_Type (Source))
3821 then
3822 Source := Underlying_Type (Source);
3823 end if;
3824
3825 Target := Ancestor_Subtype (Etype (Act_Unit));
3826
3827 -- If either type is generic, the instantiation happens within a
3828 -- generic unit, and there is nothing to check. The proper check
3829 -- will happen when the enclosing generic is instantiated.
3830
3831 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
3832 return;
3833 end if;
3834
3835 if Is_Private_Type (Target)
3836 and then Present (Underlying_Type (Target))
3837 then
3838 Target := Underlying_Type (Target);
3839 end if;
3840
3841 -- Source may be unconstrained array, but not target
3842
3843 if Is_Array_Type (Target)
3844 and then not Is_Constrained (Target)
3845 then
3846 Error_Msg_N
3847 ("unchecked conversion to unconstrained array not allowed", N);
3848 return;
3849 end if;
3850
3851 -- Make entry in unchecked conversion table for later processing
3852 -- by Validate_Unchecked_Conversions, which will check sizes and
3853 -- alignments (using values set by the back-end where possible).
3854 -- This is only done if the appropriate warning is active
3855
3856 if Warn_On_Unchecked_Conversion then
3857 Unchecked_Conversions.Append
3858 (New_Val => UC_Entry'
3859 (Enode => N,
3860 Source => Source,
3861 Target => Target));
3862
3863 -- If both sizes are known statically now, then back end annotation
3864 -- is not required to do a proper check but if either size is not
3865 -- known statically, then we need the annotation.
3866
3867 if Known_Static_RM_Size (Source)
3868 and then Known_Static_RM_Size (Target)
3869 then
3870 null;
3871 else
3872 Back_Annotate_Rep_Info := True;
3873 end if;
3874 end if;
3875
3876 -- If unchecked conversion to access type, and access type is
3877 -- declared in the same unit as the unchecked conversion, then
3878 -- set the No_Strict_Aliasing flag (no strict aliasing is
3879 -- implicit in this situation).
3880
3881 if Is_Access_Type (Target) and then
3882 In_Same_Source_Unit (Target, N)
3883 then
3884 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
3885 end if;
3886
3887 -- Generate N_Validate_Unchecked_Conversion node for back end in
3888 -- case the back end needs to perform special validation checks.
3889
3890 -- Shouldn't this be in exp_ch13, since the check only gets done
3891 -- if we have full expansion and the back end is called ???
3892
3893 Vnode :=
3894 Make_Validate_Unchecked_Conversion (Sloc (N));
3895 Set_Source_Type (Vnode, Source);
3896 Set_Target_Type (Vnode, Target);
3897
3898 -- If the unchecked conversion node is in a list, just insert before
3899 -- it. If not we have some strange case, not worth bothering about.
3900
3901 if Is_List_Member (N) then
3902 Insert_After (N, Vnode);
3903 end if;
3904 end Validate_Unchecked_Conversion;
3905
3906 ------------------------------------
3907 -- Validate_Unchecked_Conversions --
3908 ------------------------------------
3909
3910 procedure Validate_Unchecked_Conversions is
3911 begin
3912 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
3913 declare
3914 T : UC_Entry renames Unchecked_Conversions.Table (N);
3915
3916 Enode : constant Node_Id := T.Enode;
3917 Source : constant Entity_Id := T.Source;
3918 Target : constant Entity_Id := T.Target;
3919
3920 Source_Siz : Uint;
3921 Target_Siz : Uint;
3922
3923 begin
3924 -- This validation check, which warns if we have unequal sizes
3925 -- for unchecked conversion, and thus potentially implementation
3926 -- dependent semantics, is one of the few occasions on which we
3927 -- use the official RM size instead of Esize. See description
3928 -- in Einfo "Handling of Type'Size Values" for details.
3929
3930 if Serious_Errors_Detected = 0
3931 and then Known_Static_RM_Size (Source)
3932 and then Known_Static_RM_Size (Target)
3933 then
3934 Source_Siz := RM_Size (Source);
3935 Target_Siz := RM_Size (Target);
3936
3937 if Source_Siz /= Target_Siz then
3938 Error_Msg_N
3939 ("types for unchecked conversion have different sizes?",
3940 Enode);
3941
3942 if All_Errors_Mode then
3943 Error_Msg_Name_1 := Chars (Source);
3944 Error_Msg_Uint_1 := Source_Siz;
3945 Error_Msg_Name_2 := Chars (Target);
3946 Error_Msg_Uint_2 := Target_Siz;
3947 Error_Msg_N
3948 ("\size of % is ^, size of % is ^?", Enode);
3949
3950 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
3951
3952 if Is_Discrete_Type (Source)
3953 and then Is_Discrete_Type (Target)
3954 then
3955 if Source_Siz > Target_Siz then
3956 Error_Msg_N
3957 ("\^ high order bits of source will be ignored?",
3958 Enode);
3959
3960 elsif Is_Unsigned_Type (Source) then
3961 Error_Msg_N
3962 ("\source will be extended with ^ high order " &
3963 "zero bits?", Enode);
3964
3965 else
3966 Error_Msg_N
3967 ("\source will be extended with ^ high order " &
3968 "sign bits?",
3969 Enode);
3970 end if;
3971
3972 elsif Source_Siz < Target_Siz then
3973 if Is_Discrete_Type (Target) then
3974 if Bytes_Big_Endian then
3975 Error_Msg_N
3976 ("\target value will include ^ undefined " &
3977 "low order bits?",
3978 Enode);
3979 else
3980 Error_Msg_N
3981 ("\target value will include ^ undefined " &
3982 "high order bits?",
3983 Enode);
3984 end if;
3985
3986 else
3987 Error_Msg_N
3988 ("\^ trailing bits of target value will be " &
3989 "undefined?", Enode);
3990 end if;
3991
3992 else pragma Assert (Source_Siz > Target_Siz);
3993 Error_Msg_N
3994 ("\^ trailing bits of source will be ignored?",
3995 Enode);
3996 end if;
3997 end if;
3998 end if;
3999 end if;
4000
4001 -- If both types are access types, we need to check the alignment.
4002 -- If the alignment of both is specified, we can do it here.
4003
4004 if Serious_Errors_Detected = 0
4005 and then Ekind (Source) in Access_Kind
4006 and then Ekind (Target) in Access_Kind
4007 and then Target_Strict_Alignment
4008 and then Present (Designated_Type (Source))
4009 and then Present (Designated_Type (Target))
4010 then
4011 declare
4012 D_Source : constant Entity_Id := Designated_Type (Source);
4013 D_Target : constant Entity_Id := Designated_Type (Target);
4014
4015 begin
4016 if Known_Alignment (D_Source)
4017 and then Known_Alignment (D_Target)
4018 then
4019 declare
4020 Source_Align : constant Uint := Alignment (D_Source);
4021 Target_Align : constant Uint := Alignment (D_Target);
4022
4023 begin
4024 if Source_Align < Target_Align
4025 and then not Is_Tagged_Type (D_Source)
4026 then
4027 Error_Msg_Uint_1 := Target_Align;
4028 Error_Msg_Uint_2 := Source_Align;
4029 Error_Msg_Node_2 := D_Source;
4030 Error_Msg_NE
4031 ("alignment of & (^) is stricter than " &
4032 "alignment of & (^)?", Enode, D_Target);
4033
4034 if All_Errors_Mode then
4035 Error_Msg_N
4036 ("\resulting access value may have invalid " &
4037 "alignment?", Enode);
4038 end if;
4039 end if;
4040 end;
4041 end if;
4042 end;
4043 end if;
4044 end;
4045 end loop;
4046 end Validate_Unchecked_Conversions;
4047
4048 end Sem_Ch13;