[multiple changes]
[gcc.git] / gcc / ada / sem_ch13.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Restrict; use Restrict;
41 with Rident; use Rident;
42 with Rtsfind; use Rtsfind;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Table;
56 with Targparm; use Targparm;
57 with Ttypes; use Ttypes;
58 with Tbuild; use Tbuild;
59 with Urealp; use Urealp;
60
61 with GNAT.Heap_Sort_G;
62
63 package body Sem_Ch13 is
64
65 SSU : constant Pos := System_Storage_Unit;
66 -- Convenient short hand for commonly used constant
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
73 -- This routine is called after setting the Esize of type entity Typ.
74 -- The purpose is to deal with the situation where an alignment has been
75 -- inherited from a derived type that is no longer appropriate for the
76 -- new Esize value. In this case, we reset the Alignment to unknown.
77
78 function Get_Alignment_Value (Expr : Node_Id) return Uint;
79 -- Given the expression for an alignment value, returns the corresponding
80 -- Uint value. If the value is inappropriate, then error messages are
81 -- posted as required, and a value of No_Uint is returned.
82
83 function Is_Operational_Item (N : Node_Id) return Boolean;
84 -- A specification for a stream attribute is allowed before the full
85 -- type is declared, as explained in AI-00137 and the corrigendum.
86 -- Attributes that do not specify a representation characteristic are
87 -- operational attributes.
88
89 procedure New_Stream_Subprogram
90 (N : Node_Id;
91 Ent : Entity_Id;
92 Subp : Entity_Id;
93 Nam : TSS_Name_Type);
94 -- Create a subprogram renaming of a given stream attribute to the
95 -- designated subprogram and then in the tagged case, provide this as a
96 -- primitive operation, or in the non-tagged case make an appropriate TSS
97 -- entry. This is more properly an expansion activity than just semantics,
98 -- but the presence of user-defined stream functions for limited types is a
99 -- legality check, which is why this takes place here rather than in
100 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
101 -- function to be generated.
102 --
103 -- To avoid elaboration anomalies with freeze nodes, for untagged types
104 -- we generate both a subprogram declaration and a subprogram renaming
105 -- declaration, so that the attribute specification is handled as a
106 -- renaming_as_body. For tagged types, the specification is one of the
107 -- primitive specs.
108
109 ----------------------------------------------
110 -- Table for Validate_Unchecked_Conversions --
111 ----------------------------------------------
112
113 -- The following table collects unchecked conversions for validation.
114 -- Entries are made by Validate_Unchecked_Conversion and then the
115 -- call to Validate_Unchecked_Conversions does the actual error
116 -- checking and posting of warnings. The reason for this delayed
117 -- processing is to take advantage of back-annotations of size and
118 -- alignment values performed by the back end.
119
120 -- Note: the reason we store a Source_Ptr value instead of a Node_Id
121 -- is that by the time Validate_Unchecked_Conversions is called, Sprint
122 -- will already have modified all Sloc values if the -gnatD option is set.
123
124 type UC_Entry is record
125 Eloc : Source_Ptr; -- node used for posting warnings
126 Source : Entity_Id; -- source type for unchecked conversion
127 Target : Entity_Id; -- target type for unchecked conversion
128 end record;
129
130 package Unchecked_Conversions is new Table.Table (
131 Table_Component_Type => UC_Entry,
132 Table_Index_Type => Int,
133 Table_Low_Bound => 1,
134 Table_Initial => 50,
135 Table_Increment => 200,
136 Table_Name => "Unchecked_Conversions");
137
138 ----------------------------------------
139 -- Table for Validate_Address_Clauses --
140 ----------------------------------------
141
142 -- If an address clause has the form
143
144 -- for X'Address use Expr
145
146 -- where Expr is of the form Y'Address or recursively is a reference
147 -- to a constant of either of these forms, and X and Y are entities of
148 -- objects, then if Y has a smaller alignment than X, that merits a
149 -- warning about possible bad alignment. The following table collects
150 -- address clauses of this kind. We put these in a table so that they
151 -- can be checked after the back end has completed annotation of the
152 -- alignments of objects, since we can catch more cases that way.
153
154 type Address_Clause_Check_Record is record
155 N : Node_Id;
156 -- The address clause
157
158 X : Entity_Id;
159 -- The entity of the object overlaying Y
160
161 Y : Entity_Id;
162 -- The entity of the object being overlaid
163
164 Off : Boolean;
165 -- Whether the address is offseted within Y
166 end record;
167
168 package Address_Clause_Checks is new Table.Table (
169 Table_Component_Type => Address_Clause_Check_Record,
170 Table_Index_Type => Int,
171 Table_Low_Bound => 1,
172 Table_Initial => 20,
173 Table_Increment => 200,
174 Table_Name => "Address_Clause_Checks");
175
176 -----------------------------------------
177 -- Adjust_Record_For_Reverse_Bit_Order --
178 -----------------------------------------
179
180 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
181 Comp : Node_Id;
182 CC : Node_Id;
183
184 begin
185 -- Processing depends on version of Ada
186
187 -- For Ada 95, we just renumber bits within a storage unit. We do the
188 -- same for Ada 83 mode, since we recognize pragma Bit_Order in Ada 83,
189 -- and are free to add this extension.
190
191 if Ada_Version < Ada_2005 then
192 Comp := First_Component_Or_Discriminant (R);
193 while Present (Comp) loop
194 CC := Component_Clause (Comp);
195
196 -- If component clause is present, then deal with the non-default
197 -- bit order case for Ada 95 mode.
198
199 -- We only do this processing for the base type, and in fact that
200 -- is important, since otherwise if there are record subtypes, we
201 -- could reverse the bits once for each subtype, which is wrong.
202
203 if Present (CC)
204 and then Ekind (R) = E_Record_Type
205 then
206 declare
207 CFB : constant Uint := Component_Bit_Offset (Comp);
208 CSZ : constant Uint := Esize (Comp);
209 CLC : constant Node_Id := Component_Clause (Comp);
210 Pos : constant Node_Id := Position (CLC);
211 FB : constant Node_Id := First_Bit (CLC);
212
213 Storage_Unit_Offset : constant Uint :=
214 CFB / System_Storage_Unit;
215
216 Start_Bit : constant Uint :=
217 CFB mod System_Storage_Unit;
218
219 begin
220 -- Cases where field goes over storage unit boundary
221
222 if Start_Bit + CSZ > System_Storage_Unit then
223
224 -- Allow multi-byte field but generate warning
225
226 if Start_Bit mod System_Storage_Unit = 0
227 and then CSZ mod System_Storage_Unit = 0
228 then
229 Error_Msg_N
230 ("multi-byte field specified with non-standard"
231 & " Bit_Order?", CLC);
232
233 if Bytes_Big_Endian then
234 Error_Msg_N
235 ("bytes are not reversed "
236 & "(component is big-endian)?", CLC);
237 else
238 Error_Msg_N
239 ("bytes are not reversed "
240 & "(component is little-endian)?", CLC);
241 end if;
242
243 -- Do not allow non-contiguous field
244
245 else
246 Error_Msg_N
247 ("attempt to specify non-contiguous field "
248 & "not permitted", CLC);
249 Error_Msg_N
250 ("\caused by non-standard Bit_Order "
251 & "specified", CLC);
252 Error_Msg_N
253 ("\consider possibility of using "
254 & "Ada 2005 mode here", CLC);
255 end if;
256
257 -- Case where field fits in one storage unit
258
259 else
260 -- Give warning if suspicious component clause
261
262 if Intval (FB) >= System_Storage_Unit
263 and then Warn_On_Reverse_Bit_Order
264 then
265 Error_Msg_N
266 ("?Bit_Order clause does not affect " &
267 "byte ordering", Pos);
268 Error_Msg_Uint_1 :=
269 Intval (Pos) + Intval (FB) /
270 System_Storage_Unit;
271 Error_Msg_N
272 ("?position normalized to ^ before bit " &
273 "order interpreted", Pos);
274 end if;
275
276 -- Here is where we fix up the Component_Bit_Offset value
277 -- to account for the reverse bit order. Some examples of
278 -- what needs to be done are:
279
280 -- First_Bit .. Last_Bit Component_Bit_Offset
281 -- old new old new
282
283 -- 0 .. 0 7 .. 7 0 7
284 -- 0 .. 1 6 .. 7 0 6
285 -- 0 .. 2 5 .. 7 0 5
286 -- 0 .. 7 0 .. 7 0 4
287
288 -- 1 .. 1 6 .. 6 1 6
289 -- 1 .. 4 3 .. 6 1 3
290 -- 4 .. 7 0 .. 3 4 0
291
292 -- The rule is that the first bit is is obtained by
293 -- subtracting the old ending bit from storage_unit - 1.
294
295 Set_Component_Bit_Offset
296 (Comp,
297 (Storage_Unit_Offset * System_Storage_Unit) +
298 (System_Storage_Unit - 1) -
299 (Start_Bit + CSZ - 1));
300
301 Set_Normalized_First_Bit
302 (Comp,
303 Component_Bit_Offset (Comp) mod
304 System_Storage_Unit);
305 end if;
306 end;
307 end if;
308
309 Next_Component_Or_Discriminant (Comp);
310 end loop;
311
312 -- For Ada 2005, we do machine scalar processing, as fully described In
313 -- AI-133. This involves gathering all components which start at the
314 -- same byte offset and processing them together. Same approach is still
315 -- valid in later versions including Ada 2012.
316
317 else
318 declare
319 Max_Machine_Scalar_Size : constant Uint :=
320 UI_From_Int
321 (Standard_Long_Long_Integer_Size);
322 -- We use this as the maximum machine scalar size
323
324 Num_CC : Natural;
325 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
326
327 begin
328 -- This first loop through components does two things. First it
329 -- deals with the case of components with component clauses whose
330 -- length is greater than the maximum machine scalar size (either
331 -- accepting them or rejecting as needed). Second, it counts the
332 -- number of components with component clauses whose length does
333 -- not exceed this maximum for later processing.
334
335 Num_CC := 0;
336 Comp := First_Component_Or_Discriminant (R);
337 while Present (Comp) loop
338 CC := Component_Clause (Comp);
339
340 if Present (CC) then
341 declare
342 Fbit : constant Uint :=
343 Static_Integer (First_Bit (CC));
344
345 begin
346 -- Case of component with size > max machine scalar
347
348 if Esize (Comp) > Max_Machine_Scalar_Size then
349
350 -- Must begin on byte boundary
351
352 if Fbit mod SSU /= 0 then
353 Error_Msg_N
354 ("illegal first bit value for "
355 & "reverse bit order",
356 First_Bit (CC));
357 Error_Msg_Uint_1 := SSU;
358 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
359
360 Error_Msg_N
361 ("\must be a multiple of ^ "
362 & "if size greater than ^",
363 First_Bit (CC));
364
365 -- Must end on byte boundary
366
367 elsif Esize (Comp) mod SSU /= 0 then
368 Error_Msg_N
369 ("illegal last bit value for "
370 & "reverse bit order",
371 Last_Bit (CC));
372 Error_Msg_Uint_1 := SSU;
373 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
374
375 Error_Msg_N
376 ("\must be a multiple of ^ if size "
377 & "greater than ^",
378 Last_Bit (CC));
379
380 -- OK, give warning if enabled
381
382 elsif Warn_On_Reverse_Bit_Order then
383 Error_Msg_N
384 ("multi-byte field specified with "
385 & " non-standard Bit_Order?", CC);
386
387 if Bytes_Big_Endian then
388 Error_Msg_N
389 ("\bytes are not reversed "
390 & "(component is big-endian)?", CC);
391 else
392 Error_Msg_N
393 ("\bytes are not reversed "
394 & "(component is little-endian)?", CC);
395 end if;
396 end if;
397
398 -- Case where size is not greater than max machine
399 -- scalar. For now, we just count these.
400
401 else
402 Num_CC := Num_CC + 1;
403 end if;
404 end;
405 end if;
406
407 Next_Component_Or_Discriminant (Comp);
408 end loop;
409
410 -- We need to sort the component clauses on the basis of the
411 -- Position values in the clause, so we can group clauses with
412 -- the same Position. together to determine the relevant machine
413 -- scalar size.
414
415 Sort_CC : declare
416 Comps : array (0 .. Num_CC) of Entity_Id;
417 -- Array to collect component and discriminant entities. The
418 -- data starts at index 1, the 0'th entry is for the sort
419 -- routine.
420
421 function CP_Lt (Op1, Op2 : Natural) return Boolean;
422 -- Compare routine for Sort
423
424 procedure CP_Move (From : Natural; To : Natural);
425 -- Move routine for Sort
426
427 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
428
429 Start : Natural;
430 Stop : Natural;
431 -- Start and stop positions in the component list of the set of
432 -- components with the same starting position (that constitute
433 -- components in a single machine scalar).
434
435 MaxL : Uint;
436 -- Maximum last bit value of any component in this set
437
438 MSS : Uint;
439 -- Corresponding machine scalar size
440
441 -----------
442 -- CP_Lt --
443 -----------
444
445 function CP_Lt (Op1, Op2 : Natural) return Boolean is
446 begin
447 return Position (Component_Clause (Comps (Op1))) <
448 Position (Component_Clause (Comps (Op2)));
449 end CP_Lt;
450
451 -------------
452 -- CP_Move --
453 -------------
454
455 procedure CP_Move (From : Natural; To : Natural) is
456 begin
457 Comps (To) := Comps (From);
458 end CP_Move;
459
460 -- Start of processing for Sort_CC
461
462 begin
463 -- Collect the component clauses
464
465 Num_CC := 0;
466 Comp := First_Component_Or_Discriminant (R);
467 while Present (Comp) loop
468 if Present (Component_Clause (Comp))
469 and then Esize (Comp) <= Max_Machine_Scalar_Size
470 then
471 Num_CC := Num_CC + 1;
472 Comps (Num_CC) := Comp;
473 end if;
474
475 Next_Component_Or_Discriminant (Comp);
476 end loop;
477
478 -- Sort by ascending position number
479
480 Sorting.Sort (Num_CC);
481
482 -- We now have all the components whose size does not exceed
483 -- the max machine scalar value, sorted by starting position.
484 -- In this loop we gather groups of clauses starting at the
485 -- same position, to process them in accordance with AI-133.
486
487 Stop := 0;
488 while Stop < Num_CC loop
489 Start := Stop + 1;
490 Stop := Start;
491 MaxL :=
492 Static_Integer
493 (Last_Bit (Component_Clause (Comps (Start))));
494 while Stop < Num_CC loop
495 if Static_Integer
496 (Position (Component_Clause (Comps (Stop + 1)))) =
497 Static_Integer
498 (Position (Component_Clause (Comps (Stop))))
499 then
500 Stop := Stop + 1;
501 MaxL :=
502 UI_Max
503 (MaxL,
504 Static_Integer
505 (Last_Bit
506 (Component_Clause (Comps (Stop)))));
507 else
508 exit;
509 end if;
510 end loop;
511
512 -- Now we have a group of component clauses from Start to
513 -- Stop whose positions are identical, and MaxL is the
514 -- maximum last bit value of any of these components.
515
516 -- We need to determine the corresponding machine scalar
517 -- size. This loop assumes that machine scalar sizes are
518 -- even, and that each possible machine scalar has twice
519 -- as many bits as the next smaller one.
520
521 MSS := Max_Machine_Scalar_Size;
522 while MSS mod 2 = 0
523 and then (MSS / 2) >= SSU
524 and then (MSS / 2) > MaxL
525 loop
526 MSS := MSS / 2;
527 end loop;
528
529 -- Here is where we fix up the Component_Bit_Offset value
530 -- to account for the reverse bit order. Some examples of
531 -- what needs to be done for the case of a machine scalar
532 -- size of 8 are:
533
534 -- First_Bit .. Last_Bit Component_Bit_Offset
535 -- old new old new
536
537 -- 0 .. 0 7 .. 7 0 7
538 -- 0 .. 1 6 .. 7 0 6
539 -- 0 .. 2 5 .. 7 0 5
540 -- 0 .. 7 0 .. 7 0 4
541
542 -- 1 .. 1 6 .. 6 1 6
543 -- 1 .. 4 3 .. 6 1 3
544 -- 4 .. 7 0 .. 3 4 0
545
546 -- The rule is that the first bit is obtained by subtracting
547 -- the old ending bit from machine scalar size - 1.
548
549 for C in Start .. Stop loop
550 declare
551 Comp : constant Entity_Id := Comps (C);
552 CC : constant Node_Id :=
553 Component_Clause (Comp);
554 LB : constant Uint :=
555 Static_Integer (Last_Bit (CC));
556 NFB : constant Uint := MSS - Uint_1 - LB;
557 NLB : constant Uint := NFB + Esize (Comp) - 1;
558 Pos : constant Uint :=
559 Static_Integer (Position (CC));
560
561 begin
562 if Warn_On_Reverse_Bit_Order then
563 Error_Msg_Uint_1 := MSS;
564 Error_Msg_N
565 ("info: reverse bit order in machine " &
566 "scalar of length^?", First_Bit (CC));
567 Error_Msg_Uint_1 := NFB;
568 Error_Msg_Uint_2 := NLB;
569
570 if Bytes_Big_Endian then
571 Error_Msg_NE
572 ("?\info: big-endian range for "
573 & "component & is ^ .. ^",
574 First_Bit (CC), Comp);
575 else
576 Error_Msg_NE
577 ("?\info: little-endian range "
578 & "for component & is ^ .. ^",
579 First_Bit (CC), Comp);
580 end if;
581 end if;
582
583 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
584 Set_Normalized_First_Bit (Comp, NFB mod SSU);
585 end;
586 end loop;
587 end loop;
588 end Sort_CC;
589 end;
590 end if;
591 end Adjust_Record_For_Reverse_Bit_Order;
592
593 --------------------------------------
594 -- Alignment_Check_For_Esize_Change --
595 --------------------------------------
596
597 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
598 begin
599 -- If the alignment is known, and not set by a rep clause, and is
600 -- inconsistent with the size being set, then reset it to unknown,
601 -- we assume in this case that the size overrides the inherited
602 -- alignment, and that the alignment must be recomputed.
603
604 if Known_Alignment (Typ)
605 and then not Has_Alignment_Clause (Typ)
606 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
607 then
608 Init_Alignment (Typ);
609 end if;
610 end Alignment_Check_For_Esize_Change;
611
612 -----------------------
613 -- Analyze_At_Clause --
614 -----------------------
615
616 -- An at clause is replaced by the corresponding Address attribute
617 -- definition clause that is the preferred approach in Ada 95.
618
619 procedure Analyze_At_Clause (N : Node_Id) is
620 CS : constant Boolean := Comes_From_Source (N);
621
622 begin
623 -- This is an obsolescent feature
624
625 Check_Restriction (No_Obsolescent_Features, N);
626
627 if Warn_On_Obsolescent_Feature then
628 Error_Msg_N
629 ("at clause is an obsolescent feature (RM J.7(2))?", N);
630 Error_Msg_N
631 ("\use address attribute definition clause instead?", N);
632 end if;
633
634 -- Rewrite as address clause
635
636 Rewrite (N,
637 Make_Attribute_Definition_Clause (Sloc (N),
638 Name => Identifier (N),
639 Chars => Name_Address,
640 Expression => Expression (N)));
641
642 -- We preserve Comes_From_Source, since logically the clause still
643 -- comes from the source program even though it is changed in form.
644
645 Set_Comes_From_Source (N, CS);
646
647 -- Analyze rewritten clause
648
649 Analyze_Attribute_Definition_Clause (N);
650 end Analyze_At_Clause;
651
652 -----------------------------------------
653 -- Analyze_Attribute_Definition_Clause --
654 -----------------------------------------
655
656 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
657 Loc : constant Source_Ptr := Sloc (N);
658 Nam : constant Node_Id := Name (N);
659 Attr : constant Name_Id := Chars (N);
660 Expr : constant Node_Id := Expression (N);
661 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
662 Ent : Entity_Id;
663 U_Ent : Entity_Id;
664
665 FOnly : Boolean := False;
666 -- Reset to True for subtype specific attribute (Alignment, Size)
667 -- and for stream attributes, i.e. those cases where in the call
668 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
669 -- rules are checked. Note that the case of stream attributes is not
670 -- clear from the RM, but see AI95-00137. Also, the RM seems to
671 -- disallow Storage_Size for derived task types, but that is also
672 -- clearly unintentional.
673
674 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
675 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
676 -- definition clauses.
677
678 -----------------------------------
679 -- Analyze_Stream_TSS_Definition --
680 -----------------------------------
681
682 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
683 Subp : Entity_Id := Empty;
684 I : Interp_Index;
685 It : Interp;
686 Pnam : Entity_Id;
687
688 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
689
690 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
691 -- Return true if the entity is a subprogram with an appropriate
692 -- profile for the attribute being defined.
693
694 ----------------------
695 -- Has_Good_Profile --
696 ----------------------
697
698 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
699 F : Entity_Id;
700 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
701 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
702 (False => E_Procedure, True => E_Function);
703 Typ : Entity_Id;
704
705 begin
706 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
707 return False;
708 end if;
709
710 F := First_Formal (Subp);
711
712 if No (F)
713 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
714 or else Designated_Type (Etype (F)) /=
715 Class_Wide_Type (RTE (RE_Root_Stream_Type))
716 then
717 return False;
718 end if;
719
720 if not Is_Function then
721 Next_Formal (F);
722
723 declare
724 Expected_Mode : constant array (Boolean) of Entity_Kind :=
725 (False => E_In_Parameter,
726 True => E_Out_Parameter);
727 begin
728 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
729 return False;
730 end if;
731 end;
732
733 Typ := Etype (F);
734
735 else
736 Typ := Etype (Subp);
737 end if;
738
739 return Base_Type (Typ) = Base_Type (Ent)
740 and then No (Next_Formal (F));
741 end Has_Good_Profile;
742
743 -- Start of processing for Analyze_Stream_TSS_Definition
744
745 begin
746 FOnly := True;
747
748 if not Is_Type (U_Ent) then
749 Error_Msg_N ("local name must be a subtype", Nam);
750 return;
751 end if;
752
753 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
754
755 -- If Pnam is present, it can be either inherited from an ancestor
756 -- type (in which case it is legal to redefine it for this type), or
757 -- be a previous definition of the attribute for the same type (in
758 -- which case it is illegal).
759
760 -- In the first case, it will have been analyzed already, and we
761 -- can check that its profile does not match the expected profile
762 -- for a stream attribute of U_Ent. In the second case, either Pnam
763 -- has been analyzed (and has the expected profile), or it has not
764 -- been analyzed yet (case of a type that has not been frozen yet
765 -- and for which the stream attribute has been set using Set_TSS).
766
767 if Present (Pnam)
768 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
769 then
770 Error_Msg_Sloc := Sloc (Pnam);
771 Error_Msg_Name_1 := Attr;
772 Error_Msg_N ("% attribute already defined #", Nam);
773 return;
774 end if;
775
776 Analyze (Expr);
777
778 if Is_Entity_Name (Expr) then
779 if not Is_Overloaded (Expr) then
780 if Has_Good_Profile (Entity (Expr)) then
781 Subp := Entity (Expr);
782 end if;
783
784 else
785 Get_First_Interp (Expr, I, It);
786 while Present (It.Nam) loop
787 if Has_Good_Profile (It.Nam) then
788 Subp := It.Nam;
789 exit;
790 end if;
791
792 Get_Next_Interp (I, It);
793 end loop;
794 end if;
795 end if;
796
797 if Present (Subp) then
798 if Is_Abstract_Subprogram (Subp) then
799 Error_Msg_N ("stream subprogram must not be abstract", Expr);
800 return;
801 end if;
802
803 Set_Entity (Expr, Subp);
804 Set_Etype (Expr, Etype (Subp));
805
806 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
807
808 else
809 Error_Msg_Name_1 := Attr;
810 Error_Msg_N ("incorrect expression for% attribute", Expr);
811 end if;
812 end Analyze_Stream_TSS_Definition;
813
814 -- Start of processing for Analyze_Attribute_Definition_Clause
815
816 begin
817 -- Process Ignore_Rep_Clauses option
818
819 if Ignore_Rep_Clauses then
820 case Id is
821
822 -- The following should be ignored. They do not affect legality
823 -- and may be target dependent. The basic idea of -gnatI is to
824 -- ignore any rep clauses that may be target dependent but do not
825 -- affect legality (except possibly to be rejected because they
826 -- are incompatible with the compilation target).
827
828 when Attribute_Alignment |
829 Attribute_Bit_Order |
830 Attribute_Component_Size |
831 Attribute_Machine_Radix |
832 Attribute_Object_Size |
833 Attribute_Size |
834 Attribute_Small |
835 Attribute_Stream_Size |
836 Attribute_Value_Size =>
837
838 Rewrite (N, Make_Null_Statement (Sloc (N)));
839 return;
840
841 -- The following should not be ignored, because in the first place
842 -- they are reasonably portable, and should not cause problems in
843 -- compiling code from another target, and also they do affect
844 -- legality, e.g. failing to provide a stream attribute for a
845 -- type may make a program illegal.
846
847 when Attribute_External_Tag |
848 Attribute_Input |
849 Attribute_Output |
850 Attribute_Read |
851 Attribute_Storage_Pool |
852 Attribute_Storage_Size |
853 Attribute_Write =>
854 null;
855
856 -- Other cases are errors ("attribute& cannot be set with
857 -- definition clause"), which will be caught below.
858
859 when others =>
860 null;
861 end case;
862 end if;
863
864 Analyze (Nam);
865 Ent := Entity (Nam);
866
867 if Rep_Item_Too_Early (Ent, N) then
868 return;
869 end if;
870
871 -- Rep clause applies to full view of incomplete type or private type if
872 -- we have one (if not, this is a premature use of the type). However,
873 -- certain semantic checks need to be done on the specified entity (i.e.
874 -- the private view), so we save it in Ent.
875
876 if Is_Private_Type (Ent)
877 and then Is_Derived_Type (Ent)
878 and then not Is_Tagged_Type (Ent)
879 and then No (Full_View (Ent))
880 then
881 -- If this is a private type whose completion is a derivation from
882 -- another private type, there is no full view, and the attribute
883 -- belongs to the type itself, not its underlying parent.
884
885 U_Ent := Ent;
886
887 elsif Ekind (Ent) = E_Incomplete_Type then
888
889 -- The attribute applies to the full view, set the entity of the
890 -- attribute definition accordingly.
891
892 Ent := Underlying_Type (Ent);
893 U_Ent := Ent;
894 Set_Entity (Nam, Ent);
895
896 else
897 U_Ent := Underlying_Type (Ent);
898 end if;
899
900 -- Complete other routine error checks
901
902 if Etype (Nam) = Any_Type then
903 return;
904
905 elsif Scope (Ent) /= Current_Scope then
906 Error_Msg_N ("entity must be declared in this scope", Nam);
907 return;
908
909 elsif No (U_Ent) then
910 U_Ent := Ent;
911
912 elsif Is_Type (U_Ent)
913 and then not Is_First_Subtype (U_Ent)
914 and then Id /= Attribute_Object_Size
915 and then Id /= Attribute_Value_Size
916 and then not From_At_Mod (N)
917 then
918 Error_Msg_N ("cannot specify attribute for subtype", Nam);
919 return;
920 end if;
921
922 -- Switch on particular attribute
923
924 case Id is
925
926 -------------
927 -- Address --
928 -------------
929
930 -- Address attribute definition clause
931
932 when Attribute_Address => Address : begin
933
934 -- A little error check, catch for X'Address use X'Address;
935
936 if Nkind (Nam) = N_Identifier
937 and then Nkind (Expr) = N_Attribute_Reference
938 and then Attribute_Name (Expr) = Name_Address
939 and then Nkind (Prefix (Expr)) = N_Identifier
940 and then Chars (Nam) = Chars (Prefix (Expr))
941 then
942 Error_Msg_NE
943 ("address for & is self-referencing", Prefix (Expr), Ent);
944 return;
945 end if;
946
947 -- Not that special case, carry on with analysis of expression
948
949 Analyze_And_Resolve (Expr, RTE (RE_Address));
950
951 -- Even when ignoring rep clauses we need to indicate that the
952 -- entity has an address clause and thus it is legal to declare
953 -- it imported.
954
955 if Ignore_Rep_Clauses then
956 if Ekind_In (U_Ent, E_Variable, E_Constant) then
957 Record_Rep_Item (U_Ent, N);
958 end if;
959
960 return;
961 end if;
962
963 if Present (Address_Clause (U_Ent)) then
964 Error_Msg_N ("address already given for &", Nam);
965
966 -- Case of address clause for subprogram
967
968 elsif Is_Subprogram (U_Ent) then
969 if Has_Homonym (U_Ent) then
970 Error_Msg_N
971 ("address clause cannot be given " &
972 "for overloaded subprogram",
973 Nam);
974 return;
975 end if;
976
977 -- For subprograms, all address clauses are permitted, and we
978 -- mark the subprogram as having a deferred freeze so that Gigi
979 -- will not elaborate it too soon.
980
981 -- Above needs more comments, what is too soon about???
982
983 Set_Has_Delayed_Freeze (U_Ent);
984
985 -- Case of address clause for entry
986
987 elsif Ekind (U_Ent) = E_Entry then
988 if Nkind (Parent (N)) = N_Task_Body then
989 Error_Msg_N
990 ("entry address must be specified in task spec", Nam);
991 return;
992 end if;
993
994 -- For entries, we require a constant address
995
996 Check_Constant_Address_Clause (Expr, U_Ent);
997
998 -- Special checks for task types
999
1000 if Is_Task_Type (Scope (U_Ent))
1001 and then Comes_From_Source (Scope (U_Ent))
1002 then
1003 Error_Msg_N
1004 ("?entry address declared for entry in task type", N);
1005 Error_Msg_N
1006 ("\?only one task can be declared of this type", N);
1007 end if;
1008
1009 -- Entry address clauses are obsolescent
1010
1011 Check_Restriction (No_Obsolescent_Features, N);
1012
1013 if Warn_On_Obsolescent_Feature then
1014 Error_Msg_N
1015 ("attaching interrupt to task entry is an " &
1016 "obsolescent feature (RM J.7.1)?", N);
1017 Error_Msg_N
1018 ("\use interrupt procedure instead?", N);
1019 end if;
1020
1021 -- Case of an address clause for a controlled object which we
1022 -- consider to be erroneous.
1023
1024 elsif Is_Controlled (Etype (U_Ent))
1025 or else Has_Controlled_Component (Etype (U_Ent))
1026 then
1027 Error_Msg_NE
1028 ("?controlled object& must not be overlaid", Nam, U_Ent);
1029 Error_Msg_N
1030 ("\?Program_Error will be raised at run time", Nam);
1031 Insert_Action (Declaration_Node (U_Ent),
1032 Make_Raise_Program_Error (Loc,
1033 Reason => PE_Overlaid_Controlled_Object));
1034 return;
1035
1036 -- Case of address clause for a (non-controlled) object
1037
1038 elsif
1039 Ekind (U_Ent) = E_Variable
1040 or else
1041 Ekind (U_Ent) = E_Constant
1042 then
1043 declare
1044 Expr : constant Node_Id := Expression (N);
1045 O_Ent : Entity_Id;
1046 Off : Boolean;
1047
1048 begin
1049 -- Exported variables cannot have an address clause, because
1050 -- this cancels the effect of the pragma Export.
1051
1052 if Is_Exported (U_Ent) then
1053 Error_Msg_N
1054 ("cannot export object with address clause", Nam);
1055 return;
1056 end if;
1057
1058 Find_Overlaid_Entity (N, O_Ent, Off);
1059
1060 -- Overlaying controlled objects is erroneous
1061
1062 if Present (O_Ent)
1063 and then (Has_Controlled_Component (Etype (O_Ent))
1064 or else Is_Controlled (Etype (O_Ent)))
1065 then
1066 Error_Msg_N
1067 ("?cannot overlay with controlled object", Expr);
1068 Error_Msg_N
1069 ("\?Program_Error will be raised at run time", Expr);
1070 Insert_Action (Declaration_Node (U_Ent),
1071 Make_Raise_Program_Error (Loc,
1072 Reason => PE_Overlaid_Controlled_Object));
1073 return;
1074
1075 elsif Present (O_Ent)
1076 and then Ekind (U_Ent) = E_Constant
1077 and then not Is_Constant_Object (O_Ent)
1078 then
1079 Error_Msg_N ("constant overlays a variable?", Expr);
1080
1081 elsif Present (Renamed_Object (U_Ent)) then
1082 Error_Msg_N
1083 ("address clause not allowed"
1084 & " for a renaming declaration (RM 13.1(6))", Nam);
1085 return;
1086
1087 -- Imported variables can have an address clause, but then
1088 -- the import is pretty meaningless except to suppress
1089 -- initializations, so we do not need such variables to
1090 -- be statically allocated (and in fact it causes trouble
1091 -- if the address clause is a local value).
1092
1093 elsif Is_Imported (U_Ent) then
1094 Set_Is_Statically_Allocated (U_Ent, False);
1095 end if;
1096
1097 -- We mark a possible modification of a variable with an
1098 -- address clause, since it is likely aliasing is occurring.
1099
1100 Note_Possible_Modification (Nam, Sure => False);
1101
1102 -- Here we are checking for explicit overlap of one variable
1103 -- by another, and if we find this then mark the overlapped
1104 -- variable as also being volatile to prevent unwanted
1105 -- optimizations. This is a significant pessimization so
1106 -- avoid it when there is an offset, i.e. when the object
1107 -- is composite; they cannot be optimized easily anyway.
1108
1109 if Present (O_Ent)
1110 and then Is_Object (O_Ent)
1111 and then not Off
1112 then
1113 Set_Treat_As_Volatile (O_Ent);
1114 end if;
1115
1116 -- Legality checks on the address clause for initialized
1117 -- objects is deferred until the freeze point, because
1118 -- a subsequent pragma might indicate that the object is
1119 -- imported and thus not initialized.
1120
1121 Set_Has_Delayed_Freeze (U_Ent);
1122
1123 -- If an initialization call has been generated for this
1124 -- object, it needs to be deferred to after the freeze node
1125 -- we have just now added, otherwise GIGI will see a
1126 -- reference to the variable (as actual to the IP call)
1127 -- before its definition.
1128
1129 declare
1130 Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
1131 begin
1132 if Present (Init_Call) then
1133 Remove (Init_Call);
1134 Append_Freeze_Action (U_Ent, Init_Call);
1135 end if;
1136 end;
1137
1138 if Is_Exported (U_Ent) then
1139 Error_Msg_N
1140 ("& cannot be exported if an address clause is given",
1141 Nam);
1142 Error_Msg_N
1143 ("\define and export a variable " &
1144 "that holds its address instead",
1145 Nam);
1146 end if;
1147
1148 -- Entity has delayed freeze, so we will generate an
1149 -- alignment check at the freeze point unless suppressed.
1150
1151 if not Range_Checks_Suppressed (U_Ent)
1152 and then not Alignment_Checks_Suppressed (U_Ent)
1153 then
1154 Set_Check_Address_Alignment (N);
1155 end if;
1156
1157 -- Kill the size check code, since we are not allocating
1158 -- the variable, it is somewhere else.
1159
1160 Kill_Size_Check_Code (U_Ent);
1161
1162 -- If the address clause is of the form:
1163
1164 -- for Y'Address use X'Address
1165
1166 -- or
1167
1168 -- Const : constant Address := X'Address;
1169 -- ...
1170 -- for Y'Address use Const;
1171
1172 -- then we make an entry in the table for checking the size
1173 -- and alignment of the overlaying variable. We defer this
1174 -- check till after code generation to take full advantage
1175 -- of the annotation done by the back end. This entry is
1176 -- only made if the address clause comes from source.
1177 -- If the entity has a generic type, the check will be
1178 -- performed in the instance if the actual type justifies
1179 -- it, and we do not insert the clause in the table to
1180 -- prevent spurious warnings.
1181
1182 if Address_Clause_Overlay_Warnings
1183 and then Comes_From_Source (N)
1184 and then Present (O_Ent)
1185 and then Is_Object (O_Ent)
1186 then
1187 if not Is_Generic_Type (Etype (U_Ent)) then
1188 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
1189 end if;
1190
1191 -- If variable overlays a constant view, and we are
1192 -- warning on overlays, then mark the variable as
1193 -- overlaying a constant (we will give warnings later
1194 -- if this variable is assigned).
1195
1196 if Is_Constant_Object (O_Ent)
1197 and then Ekind (U_Ent) = E_Variable
1198 then
1199 Set_Overlays_Constant (U_Ent);
1200 end if;
1201 end if;
1202 end;
1203
1204 -- Not a valid entity for an address clause
1205
1206 else
1207 Error_Msg_N ("address cannot be given for &", Nam);
1208 end if;
1209 end Address;
1210
1211 ---------------
1212 -- Alignment --
1213 ---------------
1214
1215 -- Alignment attribute definition clause
1216
1217 when Attribute_Alignment => Alignment : declare
1218 Align : constant Uint := Get_Alignment_Value (Expr);
1219
1220 begin
1221 FOnly := True;
1222
1223 if not Is_Type (U_Ent)
1224 and then Ekind (U_Ent) /= E_Variable
1225 and then Ekind (U_Ent) /= E_Constant
1226 then
1227 Error_Msg_N ("alignment cannot be given for &", Nam);
1228
1229 elsif Has_Alignment_Clause (U_Ent) then
1230 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1231 Error_Msg_N ("alignment clause previously given#", N);
1232
1233 elsif Align /= No_Uint then
1234 Set_Has_Alignment_Clause (U_Ent);
1235 Set_Alignment (U_Ent, Align);
1236
1237 -- For an array type, U_Ent is the first subtype. In that case,
1238 -- also set the alignment of the anonymous base type so that
1239 -- other subtypes (such as the itypes for aggregates of the
1240 -- type) also receive the expected alignment.
1241
1242 if Is_Array_Type (U_Ent) then
1243 Set_Alignment (Base_Type (U_Ent), Align);
1244 end if;
1245 end if;
1246 end Alignment;
1247
1248 ---------------
1249 -- Bit_Order --
1250 ---------------
1251
1252 -- Bit_Order attribute definition clause
1253
1254 when Attribute_Bit_Order => Bit_Order : declare
1255 begin
1256 if not Is_Record_Type (U_Ent) then
1257 Error_Msg_N
1258 ("Bit_Order can only be defined for record type", Nam);
1259
1260 else
1261 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
1262
1263 if Etype (Expr) = Any_Type then
1264 return;
1265
1266 elsif not Is_Static_Expression (Expr) then
1267 Flag_Non_Static_Expr
1268 ("Bit_Order requires static expression!", Expr);
1269
1270 else
1271 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
1272 Set_Reverse_Bit_Order (U_Ent, True);
1273 end if;
1274 end if;
1275 end if;
1276 end Bit_Order;
1277
1278 --------------------
1279 -- Component_Size --
1280 --------------------
1281
1282 -- Component_Size attribute definition clause
1283
1284 when Attribute_Component_Size => Component_Size_Case : declare
1285 Csize : constant Uint := Static_Integer (Expr);
1286 Btype : Entity_Id;
1287 Biased : Boolean;
1288 New_Ctyp : Entity_Id;
1289 Decl : Node_Id;
1290
1291 begin
1292 if not Is_Array_Type (U_Ent) then
1293 Error_Msg_N ("component size requires array type", Nam);
1294 return;
1295 end if;
1296
1297 Btype := Base_Type (U_Ent);
1298
1299 if Has_Component_Size_Clause (Btype) then
1300 Error_Msg_N
1301 ("component size clause for& previously given", Nam);
1302
1303 elsif Csize /= No_Uint then
1304 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
1305
1306 if Has_Aliased_Components (Btype)
1307 and then Csize < 32
1308 and then Csize /= 8
1309 and then Csize /= 16
1310 then
1311 Error_Msg_N
1312 ("component size incorrect for aliased components", N);
1313 return;
1314 end if;
1315
1316 -- For the biased case, build a declaration for a subtype
1317 -- that will be used to represent the biased subtype that
1318 -- reflects the biased representation of components. We need
1319 -- this subtype to get proper conversions on referencing
1320 -- elements of the array. Note that component size clauses
1321 -- are ignored in VM mode.
1322
1323 if VM_Target = No_VM then
1324 if Biased then
1325 New_Ctyp :=
1326 Make_Defining_Identifier (Loc,
1327 Chars =>
1328 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
1329
1330 Decl :=
1331 Make_Subtype_Declaration (Loc,
1332 Defining_Identifier => New_Ctyp,
1333 Subtype_Indication =>
1334 New_Occurrence_Of (Component_Type (Btype), Loc));
1335
1336 Set_Parent (Decl, N);
1337 Analyze (Decl, Suppress => All_Checks);
1338
1339 Set_Has_Delayed_Freeze (New_Ctyp, False);
1340 Set_Esize (New_Ctyp, Csize);
1341 Set_RM_Size (New_Ctyp, Csize);
1342 Init_Alignment (New_Ctyp);
1343 Set_Has_Biased_Representation (New_Ctyp, True);
1344 Set_Is_Itype (New_Ctyp, True);
1345 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
1346
1347 Set_Component_Type (Btype, New_Ctyp);
1348
1349 if Warn_On_Biased_Representation then
1350 Error_Msg_N
1351 ("?component size clause forces biased "
1352 & "representation", N);
1353 end if;
1354 end if;
1355
1356 Set_Component_Size (Btype, Csize);
1357
1358 -- For VM case, we ignore component size clauses
1359
1360 else
1361 -- Give a warning unless we are in GNAT mode, in which case
1362 -- the warning is suppressed since it is not useful.
1363
1364 if not GNAT_Mode then
1365 Error_Msg_N
1366 ("?component size ignored in this configuration", N);
1367 end if;
1368 end if;
1369
1370 Set_Has_Component_Size_Clause (Btype, True);
1371 Set_Has_Non_Standard_Rep (Btype, True);
1372 end if;
1373 end Component_Size_Case;
1374
1375 ------------------
1376 -- External_Tag --
1377 ------------------
1378
1379 when Attribute_External_Tag => External_Tag :
1380 begin
1381 if not Is_Tagged_Type (U_Ent) then
1382 Error_Msg_N ("should be a tagged type", Nam);
1383 end if;
1384
1385 Analyze_And_Resolve (Expr, Standard_String);
1386
1387 if not Is_Static_Expression (Expr) then
1388 Flag_Non_Static_Expr
1389 ("static string required for tag name!", Nam);
1390 end if;
1391
1392 if VM_Target = No_VM then
1393 Set_Has_External_Tag_Rep_Clause (U_Ent);
1394 else
1395 Error_Msg_Name_1 := Attr;
1396 Error_Msg_N
1397 ("% attribute unsupported in this configuration", Nam);
1398 end if;
1399
1400 if not Is_Library_Level_Entity (U_Ent) then
1401 Error_Msg_NE
1402 ("?non-unique external tag supplied for &", N, U_Ent);
1403 Error_Msg_N
1404 ("?\same external tag applies to all subprogram calls", N);
1405 Error_Msg_N
1406 ("?\corresponding internal tag cannot be obtained", N);
1407 end if;
1408 end External_Tag;
1409
1410 -----------
1411 -- Input --
1412 -----------
1413
1414 when Attribute_Input =>
1415 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
1416 Set_Has_Specified_Stream_Input (Ent);
1417
1418 -------------------
1419 -- Machine_Radix --
1420 -------------------
1421
1422 -- Machine radix attribute definition clause
1423
1424 when Attribute_Machine_Radix => Machine_Radix : declare
1425 Radix : constant Uint := Static_Integer (Expr);
1426
1427 begin
1428 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
1429 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
1430
1431 elsif Has_Machine_Radix_Clause (U_Ent) then
1432 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1433 Error_Msg_N ("machine radix clause previously given#", N);
1434
1435 elsif Radix /= No_Uint then
1436 Set_Has_Machine_Radix_Clause (U_Ent);
1437 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
1438
1439 if Radix = 2 then
1440 null;
1441 elsif Radix = 10 then
1442 Set_Machine_Radix_10 (U_Ent);
1443 else
1444 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
1445 end if;
1446 end if;
1447 end Machine_Radix;
1448
1449 -----------------
1450 -- Object_Size --
1451 -----------------
1452
1453 -- Object_Size attribute definition clause
1454
1455 when Attribute_Object_Size => Object_Size : declare
1456 Size : constant Uint := Static_Integer (Expr);
1457
1458 Biased : Boolean;
1459 pragma Warnings (Off, Biased);
1460
1461 begin
1462 if not Is_Type (U_Ent) then
1463 Error_Msg_N ("Object_Size cannot be given for &", Nam);
1464
1465 elsif Has_Object_Size_Clause (U_Ent) then
1466 Error_Msg_N ("Object_Size already given for &", Nam);
1467
1468 else
1469 Check_Size (Expr, U_Ent, Size, Biased);
1470
1471 if Size /= 8
1472 and then
1473 Size /= 16
1474 and then
1475 Size /= 32
1476 and then
1477 UI_Mod (Size, 64) /= 0
1478 then
1479 Error_Msg_N
1480 ("Object_Size must be 8, 16, 32, or multiple of 64",
1481 Expr);
1482 end if;
1483
1484 Set_Esize (U_Ent, Size);
1485 Set_Has_Object_Size_Clause (U_Ent);
1486 Alignment_Check_For_Esize_Change (U_Ent);
1487 end if;
1488 end Object_Size;
1489
1490 ------------
1491 -- Output --
1492 ------------
1493
1494 when Attribute_Output =>
1495 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
1496 Set_Has_Specified_Stream_Output (Ent);
1497
1498 ----------
1499 -- Read --
1500 ----------
1501
1502 when Attribute_Read =>
1503 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
1504 Set_Has_Specified_Stream_Read (Ent);
1505
1506 ----------
1507 -- Size --
1508 ----------
1509
1510 -- Size attribute definition clause
1511
1512 when Attribute_Size => Size : declare
1513 Size : constant Uint := Static_Integer (Expr);
1514 Etyp : Entity_Id;
1515 Biased : Boolean;
1516
1517 begin
1518 FOnly := True;
1519
1520 if Has_Size_Clause (U_Ent) then
1521 Error_Msg_N ("size already given for &", Nam);
1522
1523 elsif not Is_Type (U_Ent)
1524 and then Ekind (U_Ent) /= E_Variable
1525 and then Ekind (U_Ent) /= E_Constant
1526 then
1527 Error_Msg_N ("size cannot be given for &", Nam);
1528
1529 elsif Is_Array_Type (U_Ent)
1530 and then not Is_Constrained (U_Ent)
1531 then
1532 Error_Msg_N
1533 ("size cannot be given for unconstrained array", Nam);
1534
1535 elsif Size /= No_Uint then
1536 if Is_Type (U_Ent) then
1537 Etyp := U_Ent;
1538 else
1539 Etyp := Etype (U_Ent);
1540 end if;
1541
1542 -- Check size, note that Gigi is in charge of checking that the
1543 -- size of an array or record type is OK. Also we do not check
1544 -- the size in the ordinary fixed-point case, since it is too
1545 -- early to do so (there may be subsequent small clause that
1546 -- affects the size). We can check the size if a small clause
1547 -- has already been given.
1548
1549 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1550 or else Has_Small_Clause (U_Ent)
1551 then
1552 Check_Size (Expr, Etyp, Size, Biased);
1553 Set_Has_Biased_Representation (U_Ent, Biased);
1554
1555 if Biased and Warn_On_Biased_Representation then
1556 Error_Msg_N
1557 ("?size clause forces biased representation", N);
1558 end if;
1559 end if;
1560
1561 -- For types set RM_Size and Esize if possible
1562
1563 if Is_Type (U_Ent) then
1564 Set_RM_Size (U_Ent, Size);
1565
1566 -- For scalar types, increase Object_Size to power of 2, but
1567 -- not less than a storage unit in any case (i.e., normally
1568 -- this means it will be byte addressable).
1569
1570 if Is_Scalar_Type (U_Ent) then
1571 if Size <= System_Storage_Unit then
1572 Init_Esize (U_Ent, System_Storage_Unit);
1573 elsif Size <= 16 then
1574 Init_Esize (U_Ent, 16);
1575 elsif Size <= 32 then
1576 Init_Esize (U_Ent, 32);
1577 else
1578 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1579 end if;
1580
1581 -- For all other types, object size = value size. The
1582 -- backend will adjust as needed.
1583
1584 else
1585 Set_Esize (U_Ent, Size);
1586 end if;
1587
1588 Alignment_Check_For_Esize_Change (U_Ent);
1589
1590 -- For objects, set Esize only
1591
1592 else
1593 if Is_Elementary_Type (Etyp) then
1594 if Size /= System_Storage_Unit
1595 and then
1596 Size /= System_Storage_Unit * 2
1597 and then
1598 Size /= System_Storage_Unit * 4
1599 and then
1600 Size /= System_Storage_Unit * 8
1601 then
1602 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1603 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
1604 Error_Msg_N
1605 ("size for primitive object must be a power of 2"
1606 & " in the range ^-^", N);
1607 end if;
1608 end if;
1609
1610 Set_Esize (U_Ent, Size);
1611 end if;
1612
1613 Set_Has_Size_Clause (U_Ent);
1614 end if;
1615 end Size;
1616
1617 -----------
1618 -- Small --
1619 -----------
1620
1621 -- Small attribute definition clause
1622
1623 when Attribute_Small => Small : declare
1624 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1625 Small : Ureal;
1626
1627 begin
1628 Analyze_And_Resolve (Expr, Any_Real);
1629
1630 if Etype (Expr) = Any_Type then
1631 return;
1632
1633 elsif not Is_Static_Expression (Expr) then
1634 Flag_Non_Static_Expr
1635 ("small requires static expression!", Expr);
1636 return;
1637
1638 else
1639 Small := Expr_Value_R (Expr);
1640
1641 if Small <= Ureal_0 then
1642 Error_Msg_N ("small value must be greater than zero", Expr);
1643 return;
1644 end if;
1645
1646 end if;
1647
1648 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1649 Error_Msg_N
1650 ("small requires an ordinary fixed point type", Nam);
1651
1652 elsif Has_Small_Clause (U_Ent) then
1653 Error_Msg_N ("small already given for &", Nam);
1654
1655 elsif Small > Delta_Value (U_Ent) then
1656 Error_Msg_N
1657 ("small value must not be greater then delta value", Nam);
1658
1659 else
1660 Set_Small_Value (U_Ent, Small);
1661 Set_Small_Value (Implicit_Base, Small);
1662 Set_Has_Small_Clause (U_Ent);
1663 Set_Has_Small_Clause (Implicit_Base);
1664 Set_Has_Non_Standard_Rep (Implicit_Base);
1665 end if;
1666 end Small;
1667
1668 ------------------
1669 -- Storage_Pool --
1670 ------------------
1671
1672 -- Storage_Pool attribute definition clause
1673
1674 when Attribute_Storage_Pool => Storage_Pool : declare
1675 Pool : Entity_Id;
1676 T : Entity_Id;
1677
1678 begin
1679 if Ekind (U_Ent) = E_Access_Subprogram_Type then
1680 Error_Msg_N
1681 ("storage pool cannot be given for access-to-subprogram type",
1682 Nam);
1683 return;
1684
1685 elsif not
1686 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
1687 then
1688 Error_Msg_N
1689 ("storage pool can only be given for access types", Nam);
1690 return;
1691
1692 elsif Is_Derived_Type (U_Ent) then
1693 Error_Msg_N
1694 ("storage pool cannot be given for a derived access type",
1695 Nam);
1696
1697 elsif Has_Storage_Size_Clause (U_Ent) then
1698 Error_Msg_N ("storage size already given for &", Nam);
1699 return;
1700
1701 elsif Present (Associated_Storage_Pool (U_Ent)) then
1702 Error_Msg_N ("storage pool already given for &", Nam);
1703 return;
1704 end if;
1705
1706 Analyze_And_Resolve
1707 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1708
1709 if not Denotes_Variable (Expr) then
1710 Error_Msg_N ("storage pool must be a variable", Expr);
1711 return;
1712 end if;
1713
1714 if Nkind (Expr) = N_Type_Conversion then
1715 T := Etype (Expression (Expr));
1716 else
1717 T := Etype (Expr);
1718 end if;
1719
1720 -- The Stack_Bounded_Pool is used internally for implementing
1721 -- access types with a Storage_Size. Since it only work
1722 -- properly when used on one specific type, we need to check
1723 -- that it is not hijacked improperly:
1724 -- type T is access Integer;
1725 -- for T'Storage_Size use n;
1726 -- type Q is access Float;
1727 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1728
1729 if RTE_Available (RE_Stack_Bounded_Pool)
1730 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
1731 then
1732 Error_Msg_N ("non-shareable internal Pool", Expr);
1733 return;
1734 end if;
1735
1736 -- If the argument is a name that is not an entity name, then
1737 -- we construct a renaming operation to define an entity of
1738 -- type storage pool.
1739
1740 if not Is_Entity_Name (Expr)
1741 and then Is_Object_Reference (Expr)
1742 then
1743 Pool := Make_Temporary (Loc, 'P', Expr);
1744
1745 declare
1746 Rnode : constant Node_Id :=
1747 Make_Object_Renaming_Declaration (Loc,
1748 Defining_Identifier => Pool,
1749 Subtype_Mark =>
1750 New_Occurrence_Of (Etype (Expr), Loc),
1751 Name => Expr);
1752
1753 begin
1754 Insert_Before (N, Rnode);
1755 Analyze (Rnode);
1756 Set_Associated_Storage_Pool (U_Ent, Pool);
1757 end;
1758
1759 elsif Is_Entity_Name (Expr) then
1760 Pool := Entity (Expr);
1761
1762 -- If pool is a renamed object, get original one. This can
1763 -- happen with an explicit renaming, and within instances.
1764
1765 while Present (Renamed_Object (Pool))
1766 and then Is_Entity_Name (Renamed_Object (Pool))
1767 loop
1768 Pool := Entity (Renamed_Object (Pool));
1769 end loop;
1770
1771 if Present (Renamed_Object (Pool))
1772 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1773 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1774 then
1775 Pool := Entity (Expression (Renamed_Object (Pool)));
1776 end if;
1777
1778 Set_Associated_Storage_Pool (U_Ent, Pool);
1779
1780 elsif Nkind (Expr) = N_Type_Conversion
1781 and then Is_Entity_Name (Expression (Expr))
1782 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1783 then
1784 Pool := Entity (Expression (Expr));
1785 Set_Associated_Storage_Pool (U_Ent, Pool);
1786
1787 else
1788 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1789 return;
1790 end if;
1791 end Storage_Pool;
1792
1793 ------------------
1794 -- Storage_Size --
1795 ------------------
1796
1797 -- Storage_Size attribute definition clause
1798
1799 when Attribute_Storage_Size => Storage_Size : declare
1800 Btype : constant Entity_Id := Base_Type (U_Ent);
1801 Sprag : Node_Id;
1802
1803 begin
1804 if Is_Task_Type (U_Ent) then
1805 Check_Restriction (No_Obsolescent_Features, N);
1806
1807 if Warn_On_Obsolescent_Feature then
1808 Error_Msg_N
1809 ("storage size clause for task is an " &
1810 "obsolescent feature (RM J.9)?", N);
1811 Error_Msg_N ("\use Storage_Size pragma instead?", N);
1812 end if;
1813
1814 FOnly := True;
1815 end if;
1816
1817 if not Is_Access_Type (U_Ent)
1818 and then Ekind (U_Ent) /= E_Task_Type
1819 then
1820 Error_Msg_N ("storage size cannot be given for &", Nam);
1821
1822 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1823 Error_Msg_N
1824 ("storage size cannot be given for a derived access type",
1825 Nam);
1826
1827 elsif Has_Storage_Size_Clause (Btype) then
1828 Error_Msg_N ("storage size already given for &", Nam);
1829
1830 else
1831 Analyze_And_Resolve (Expr, Any_Integer);
1832
1833 if Is_Access_Type (U_Ent) then
1834 if Present (Associated_Storage_Pool (U_Ent)) then
1835 Error_Msg_N ("storage pool already given for &", Nam);
1836 return;
1837 end if;
1838
1839 if Compile_Time_Known_Value (Expr)
1840 and then Expr_Value (Expr) = 0
1841 then
1842 Set_No_Pool_Assigned (Btype);
1843 end if;
1844
1845 else -- Is_Task_Type (U_Ent)
1846 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1847
1848 if Present (Sprag) then
1849 Error_Msg_Sloc := Sloc (Sprag);
1850 Error_Msg_N
1851 ("Storage_Size already specified#", Nam);
1852 return;
1853 end if;
1854 end if;
1855
1856 Set_Has_Storage_Size_Clause (Btype);
1857 end if;
1858 end Storage_Size;
1859
1860 -----------------
1861 -- Stream_Size --
1862 -----------------
1863
1864 when Attribute_Stream_Size => Stream_Size : declare
1865 Size : constant Uint := Static_Integer (Expr);
1866
1867 begin
1868 if Ada_Version <= Ada_95 then
1869 Check_Restriction (No_Implementation_Attributes, N);
1870 end if;
1871
1872 if Has_Stream_Size_Clause (U_Ent) then
1873 Error_Msg_N ("Stream_Size already given for &", Nam);
1874
1875 elsif Is_Elementary_Type (U_Ent) then
1876 if Size /= System_Storage_Unit
1877 and then
1878 Size /= System_Storage_Unit * 2
1879 and then
1880 Size /= System_Storage_Unit * 4
1881 and then
1882 Size /= System_Storage_Unit * 8
1883 then
1884 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1885 Error_Msg_N
1886 ("stream size for elementary type must be a"
1887 & " power of 2 and at least ^", N);
1888
1889 elsif RM_Size (U_Ent) > Size then
1890 Error_Msg_Uint_1 := RM_Size (U_Ent);
1891 Error_Msg_N
1892 ("stream size for elementary type must be a"
1893 & " power of 2 and at least ^", N);
1894 end if;
1895
1896 Set_Has_Stream_Size_Clause (U_Ent);
1897
1898 else
1899 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1900 end if;
1901 end Stream_Size;
1902
1903 ----------------
1904 -- Value_Size --
1905 ----------------
1906
1907 -- Value_Size attribute definition clause
1908
1909 when Attribute_Value_Size => Value_Size : declare
1910 Size : constant Uint := Static_Integer (Expr);
1911 Biased : Boolean;
1912
1913 begin
1914 if not Is_Type (U_Ent) then
1915 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1916
1917 elsif Present
1918 (Get_Attribute_Definition_Clause
1919 (U_Ent, Attribute_Value_Size))
1920 then
1921 Error_Msg_N ("Value_Size already given for &", Nam);
1922
1923 elsif Is_Array_Type (U_Ent)
1924 and then not Is_Constrained (U_Ent)
1925 then
1926 Error_Msg_N
1927 ("Value_Size cannot be given for unconstrained array", Nam);
1928
1929 else
1930 if Is_Elementary_Type (U_Ent) then
1931 Check_Size (Expr, U_Ent, Size, Biased);
1932 Set_Has_Biased_Representation (U_Ent, Biased);
1933
1934 if Biased and Warn_On_Biased_Representation then
1935 Error_Msg_N
1936 ("?value size clause forces biased representation", N);
1937 end if;
1938 end if;
1939
1940 Set_RM_Size (U_Ent, Size);
1941 end if;
1942 end Value_Size;
1943
1944 -----------
1945 -- Write --
1946 -----------
1947
1948 when Attribute_Write =>
1949 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1950 Set_Has_Specified_Stream_Write (Ent);
1951
1952 -- All other attributes cannot be set
1953
1954 when others =>
1955 Error_Msg_N
1956 ("attribute& cannot be set with definition clause", N);
1957 end case;
1958
1959 -- The test for the type being frozen must be performed after
1960 -- any expression the clause has been analyzed since the expression
1961 -- itself might cause freezing that makes the clause illegal.
1962
1963 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1964 return;
1965 end if;
1966 end Analyze_Attribute_Definition_Clause;
1967
1968 ----------------------------
1969 -- Analyze_Code_Statement --
1970 ----------------------------
1971
1972 procedure Analyze_Code_Statement (N : Node_Id) is
1973 HSS : constant Node_Id := Parent (N);
1974 SBody : constant Node_Id := Parent (HSS);
1975 Subp : constant Entity_Id := Current_Scope;
1976 Stmt : Node_Id;
1977 Decl : Node_Id;
1978 StmtO : Node_Id;
1979 DeclO : Node_Id;
1980
1981 begin
1982 -- Analyze and check we get right type, note that this implements the
1983 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1984 -- is the only way that Asm_Insn could possibly be visible.
1985
1986 Analyze_And_Resolve (Expression (N));
1987
1988 if Etype (Expression (N)) = Any_Type then
1989 return;
1990 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1991 Error_Msg_N ("incorrect type for code statement", N);
1992 return;
1993 end if;
1994
1995 Check_Code_Statement (N);
1996
1997 -- Make sure we appear in the handled statement sequence of a
1998 -- subprogram (RM 13.8(3)).
1999
2000 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
2001 or else Nkind (SBody) /= N_Subprogram_Body
2002 then
2003 Error_Msg_N
2004 ("code statement can only appear in body of subprogram", N);
2005 return;
2006 end if;
2007
2008 -- Do remaining checks (RM 13.8(3)) if not already done
2009
2010 if not Is_Machine_Code_Subprogram (Subp) then
2011 Set_Is_Machine_Code_Subprogram (Subp);
2012
2013 -- No exception handlers allowed
2014
2015 if Present (Exception_Handlers (HSS)) then
2016 Error_Msg_N
2017 ("exception handlers not permitted in machine code subprogram",
2018 First (Exception_Handlers (HSS)));
2019 end if;
2020
2021 -- No declarations other than use clauses and pragmas (we allow
2022 -- certain internally generated declarations as well).
2023
2024 Decl := First (Declarations (SBody));
2025 while Present (Decl) loop
2026 DeclO := Original_Node (Decl);
2027 if Comes_From_Source (DeclO)
2028 and not Nkind_In (DeclO, N_Pragma,
2029 N_Use_Package_Clause,
2030 N_Use_Type_Clause,
2031 N_Implicit_Label_Declaration)
2032 then
2033 Error_Msg_N
2034 ("this declaration not allowed in machine code subprogram",
2035 DeclO);
2036 end if;
2037
2038 Next (Decl);
2039 end loop;
2040
2041 -- No statements other than code statements, pragmas, and labels.
2042 -- Again we allow certain internally generated statements.
2043
2044 Stmt := First (Statements (HSS));
2045 while Present (Stmt) loop
2046 StmtO := Original_Node (Stmt);
2047 if Comes_From_Source (StmtO)
2048 and then not Nkind_In (StmtO, N_Pragma,
2049 N_Label,
2050 N_Code_Statement)
2051 then
2052 Error_Msg_N
2053 ("this statement is not allowed in machine code subprogram",
2054 StmtO);
2055 end if;
2056
2057 Next (Stmt);
2058 end loop;
2059 end if;
2060 end Analyze_Code_Statement;
2061
2062 -----------------------------------------------
2063 -- Analyze_Enumeration_Representation_Clause --
2064 -----------------------------------------------
2065
2066 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
2067 Ident : constant Node_Id := Identifier (N);
2068 Aggr : constant Node_Id := Array_Aggregate (N);
2069 Enumtype : Entity_Id;
2070 Elit : Entity_Id;
2071 Expr : Node_Id;
2072 Assoc : Node_Id;
2073 Choice : Node_Id;
2074 Val : Uint;
2075 Err : Boolean := False;
2076
2077 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
2078 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
2079 Min : Uint;
2080 Max : Uint;
2081
2082 begin
2083 if Ignore_Rep_Clauses then
2084 return;
2085 end if;
2086
2087 -- First some basic error checks
2088
2089 Find_Type (Ident);
2090 Enumtype := Entity (Ident);
2091
2092 if Enumtype = Any_Type
2093 or else Rep_Item_Too_Early (Enumtype, N)
2094 then
2095 return;
2096 else
2097 Enumtype := Underlying_Type (Enumtype);
2098 end if;
2099
2100 if not Is_Enumeration_Type (Enumtype) then
2101 Error_Msg_NE
2102 ("enumeration type required, found}",
2103 Ident, First_Subtype (Enumtype));
2104 return;
2105 end if;
2106
2107 -- Ignore rep clause on generic actual type. This will already have
2108 -- been flagged on the template as an error, and this is the safest
2109 -- way to ensure we don't get a junk cascaded message in the instance.
2110
2111 if Is_Generic_Actual_Type (Enumtype) then
2112 return;
2113
2114 -- Type must be in current scope
2115
2116 elsif Scope (Enumtype) /= Current_Scope then
2117 Error_Msg_N ("type must be declared in this scope", Ident);
2118 return;
2119
2120 -- Type must be a first subtype
2121
2122 elsif not Is_First_Subtype (Enumtype) then
2123 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
2124 return;
2125
2126 -- Ignore duplicate rep clause
2127
2128 elsif Has_Enumeration_Rep_Clause (Enumtype) then
2129 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
2130 return;
2131
2132 -- Don't allow rep clause for standard [wide_[wide_]]character
2133
2134 elsif Is_Standard_Character_Type (Enumtype) then
2135 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
2136 return;
2137
2138 -- Check that the expression is a proper aggregate (no parentheses)
2139
2140 elsif Paren_Count (Aggr) /= 0 then
2141 Error_Msg
2142 ("extra parentheses surrounding aggregate not allowed",
2143 First_Sloc (Aggr));
2144 return;
2145
2146 -- All tests passed, so set rep clause in place
2147
2148 else
2149 Set_Has_Enumeration_Rep_Clause (Enumtype);
2150 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
2151 end if;
2152
2153 -- Now we process the aggregate. Note that we don't use the normal
2154 -- aggregate code for this purpose, because we don't want any of the
2155 -- normal expansion activities, and a number of special semantic
2156 -- rules apply (including the component type being any integer type)
2157
2158 Elit := First_Literal (Enumtype);
2159
2160 -- First the positional entries if any
2161
2162 if Present (Expressions (Aggr)) then
2163 Expr := First (Expressions (Aggr));
2164 while Present (Expr) loop
2165 if No (Elit) then
2166 Error_Msg_N ("too many entries in aggregate", Expr);
2167 return;
2168 end if;
2169
2170 Val := Static_Integer (Expr);
2171
2172 -- Err signals that we found some incorrect entries processing
2173 -- the list. The final checks for completeness and ordering are
2174 -- skipped in this case.
2175
2176 if Val = No_Uint then
2177 Err := True;
2178 elsif Val < Lo or else Hi < Val then
2179 Error_Msg_N ("value outside permitted range", Expr);
2180 Err := True;
2181 end if;
2182
2183 Set_Enumeration_Rep (Elit, Val);
2184 Set_Enumeration_Rep_Expr (Elit, Expr);
2185 Next (Expr);
2186 Next (Elit);
2187 end loop;
2188 end if;
2189
2190 -- Now process the named entries if present
2191
2192 if Present (Component_Associations (Aggr)) then
2193 Assoc := First (Component_Associations (Aggr));
2194 while Present (Assoc) loop
2195 Choice := First (Choices (Assoc));
2196
2197 if Present (Next (Choice)) then
2198 Error_Msg_N
2199 ("multiple choice not allowed here", Next (Choice));
2200 Err := True;
2201 end if;
2202
2203 if Nkind (Choice) = N_Others_Choice then
2204 Error_Msg_N ("others choice not allowed here", Choice);
2205 Err := True;
2206
2207 elsif Nkind (Choice) = N_Range then
2208 -- ??? should allow zero/one element range here
2209 Error_Msg_N ("range not allowed here", Choice);
2210 Err := True;
2211
2212 else
2213 Analyze_And_Resolve (Choice, Enumtype);
2214
2215 if Is_Entity_Name (Choice)
2216 and then Is_Type (Entity (Choice))
2217 then
2218 Error_Msg_N ("subtype name not allowed here", Choice);
2219 Err := True;
2220 -- ??? should allow static subtype with zero/one entry
2221
2222 elsif Etype (Choice) = Base_Type (Enumtype) then
2223 if not Is_Static_Expression (Choice) then
2224 Flag_Non_Static_Expr
2225 ("non-static expression used for choice!", Choice);
2226 Err := True;
2227
2228 else
2229 Elit := Expr_Value_E (Choice);
2230
2231 if Present (Enumeration_Rep_Expr (Elit)) then
2232 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
2233 Error_Msg_NE
2234 ("representation for& previously given#",
2235 Choice, Elit);
2236 Err := True;
2237 end if;
2238
2239 Set_Enumeration_Rep_Expr (Elit, Choice);
2240
2241 Expr := Expression (Assoc);
2242 Val := Static_Integer (Expr);
2243
2244 if Val = No_Uint then
2245 Err := True;
2246
2247 elsif Val < Lo or else Hi < Val then
2248 Error_Msg_N ("value outside permitted range", Expr);
2249 Err := True;
2250 end if;
2251
2252 Set_Enumeration_Rep (Elit, Val);
2253 end if;
2254 end if;
2255 end if;
2256
2257 Next (Assoc);
2258 end loop;
2259 end if;
2260
2261 -- Aggregate is fully processed. Now we check that a full set of
2262 -- representations was given, and that they are in range and in order.
2263 -- These checks are only done if no other errors occurred.
2264
2265 if not Err then
2266 Min := No_Uint;
2267 Max := No_Uint;
2268
2269 Elit := First_Literal (Enumtype);
2270 while Present (Elit) loop
2271 if No (Enumeration_Rep_Expr (Elit)) then
2272 Error_Msg_NE ("missing representation for&!", N, Elit);
2273
2274 else
2275 Val := Enumeration_Rep (Elit);
2276
2277 if Min = No_Uint then
2278 Min := Val;
2279 end if;
2280
2281 if Val /= No_Uint then
2282 if Max /= No_Uint and then Val <= Max then
2283 Error_Msg_NE
2284 ("enumeration value for& not ordered!",
2285 Enumeration_Rep_Expr (Elit), Elit);
2286 end if;
2287
2288 Max := Val;
2289 end if;
2290
2291 -- If there is at least one literal whose representation
2292 -- is not equal to the Pos value, then note that this
2293 -- enumeration type has a non-standard representation.
2294
2295 if Val /= Enumeration_Pos (Elit) then
2296 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
2297 end if;
2298 end if;
2299
2300 Next (Elit);
2301 end loop;
2302
2303 -- Now set proper size information
2304
2305 declare
2306 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
2307
2308 begin
2309 if Has_Size_Clause (Enumtype) then
2310 if Esize (Enumtype) >= Minsize then
2311 null;
2312
2313 else
2314 Minsize :=
2315 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
2316
2317 if Esize (Enumtype) < Minsize then
2318 Error_Msg_N ("previously given size is too small", N);
2319
2320 else
2321 Set_Has_Biased_Representation (Enumtype);
2322 end if;
2323 end if;
2324
2325 else
2326 Set_RM_Size (Enumtype, Minsize);
2327 Set_Enum_Esize (Enumtype);
2328 end if;
2329
2330 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
2331 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
2332 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
2333 end;
2334 end if;
2335
2336 -- We repeat the too late test in case it froze itself!
2337
2338 if Rep_Item_Too_Late (Enumtype, N) then
2339 null;
2340 end if;
2341 end Analyze_Enumeration_Representation_Clause;
2342
2343 ----------------------------
2344 -- Analyze_Free_Statement --
2345 ----------------------------
2346
2347 procedure Analyze_Free_Statement (N : Node_Id) is
2348 begin
2349 Analyze (Expression (N));
2350 end Analyze_Free_Statement;
2351
2352 ---------------------------
2353 -- Analyze_Freeze_Entity --
2354 ---------------------------
2355
2356 procedure Analyze_Freeze_Entity (N : Node_Id) is
2357 E : constant Entity_Id := Entity (N);
2358
2359 begin
2360 -- For tagged types covering interfaces add internal entities that link
2361 -- the primitives of the interfaces with the primitives that cover them.
2362
2363 -- Note: These entities were originally generated only when generating
2364 -- code because their main purpose was to provide support to initialize
2365 -- the secondary dispatch tables. They are now generated also when
2366 -- compiling with no code generation to provide ASIS the relationship
2367 -- between interface primitives and tagged type primitives. They are
2368 -- also used to locate primitives covering interfaces when processing
2369 -- generics (see Derive_Subprograms).
2370
2371 if Ada_Version >= Ada_05
2372 and then Ekind (E) = E_Record_Type
2373 and then Is_Tagged_Type (E)
2374 and then not Is_Interface (E)
2375 and then Has_Interfaces (E)
2376 then
2377 -- This would be a good common place to call the routine that checks
2378 -- overriding of interface primitives (and thus factorize calls to
2379 -- Check_Abstract_Overriding located at different contexts in the
2380 -- compiler). However, this is not possible because it causes
2381 -- spurious errors in case of late overriding.
2382
2383 Add_Internal_Interface_Entities (E);
2384 end if;
2385
2386 -- Check CPP types
2387
2388 if Ekind (E) = E_Record_Type
2389 and then Is_CPP_Class (E)
2390 and then Is_Tagged_Type (E)
2391 and then Tagged_Type_Expansion
2392 and then Expander_Active
2393 then
2394 if CPP_Num_Prims (E) = 0 then
2395
2396 -- If the CPP type has user defined components then it must import
2397 -- primitives from C++. This is required because if the C++ class
2398 -- has no primitives then the C++ compiler does not added the _tag
2399 -- component to the type.
2400
2401 pragma Assert (Chars (First_Entity (E)) = Name_uTag);
2402
2403 if First_Entity (E) /= Last_Entity (E) then
2404 Error_Msg_N
2405 ("?'C'P'P type must import at least one primitive from C++",
2406 E);
2407 end if;
2408 end if;
2409
2410 -- Check that all its primitives are abstract or imported from C++.
2411 -- Check also availability of the C++ constructor.
2412
2413 declare
2414 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
2415 Elmt : Elmt_Id;
2416 Error_Reported : Boolean := False;
2417 Prim : Node_Id;
2418
2419 begin
2420 Elmt := First_Elmt (Primitive_Operations (E));
2421 while Present (Elmt) loop
2422 Prim := Node (Elmt);
2423
2424 if Comes_From_Source (Prim) then
2425 if Is_Abstract_Subprogram (Prim) then
2426 null;
2427
2428 elsif not Is_Imported (Prim)
2429 or else Convention (Prim) /= Convention_CPP
2430 then
2431 Error_Msg_N
2432 ("?primitives of 'C'P'P types must be imported from C++"
2433 & " or abstract", Prim);
2434
2435 elsif not Has_Constructors
2436 and then not Error_Reported
2437 then
2438 Error_Msg_Name_1 := Chars (E);
2439 Error_Msg_N
2440 ("?'C'P'P constructor required for type %", Prim);
2441 Error_Reported := True;
2442 end if;
2443 end if;
2444
2445 Next_Elmt (Elmt);
2446 end loop;
2447 end;
2448 end if;
2449 end Analyze_Freeze_Entity;
2450
2451 ------------------------------------------
2452 -- Analyze_Record_Representation_Clause --
2453 ------------------------------------------
2454
2455 -- Note: we check as much as we can here, but we can't do any checks
2456 -- based on the position values (e.g. overlap checks) until freeze time
2457 -- because especially in Ada 2005 (machine scalar mode), the processing
2458 -- for non-standard bit order can substantially change the positions.
2459 -- See procedure Check_Record_Representation_Clause (called from Freeze)
2460 -- for the remainder of this processing.
2461
2462 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
2463 Ident : constant Node_Id := Identifier (N);
2464 Rectype : Entity_Id;
2465 CC : Node_Id;
2466 Posit : Uint;
2467 Fbit : Uint;
2468 Lbit : Uint;
2469 Hbit : Uint := Uint_0;
2470 Comp : Entity_Id;
2471 Ocomp : Entity_Id;
2472 Biased : Boolean;
2473
2474 CR_Pragma : Node_Id := Empty;
2475 -- Points to N_Pragma node if Complete_Representation pragma present
2476
2477 begin
2478 if Ignore_Rep_Clauses then
2479 return;
2480 end if;
2481
2482 Find_Type (Ident);
2483 Rectype := Entity (Ident);
2484
2485 if Rectype = Any_Type
2486 or else Rep_Item_Too_Early (Rectype, N)
2487 then
2488 return;
2489 else
2490 Rectype := Underlying_Type (Rectype);
2491 end if;
2492
2493 -- First some basic error checks
2494
2495 if not Is_Record_Type (Rectype) then
2496 Error_Msg_NE
2497 ("record type required, found}", Ident, First_Subtype (Rectype));
2498 return;
2499
2500 elsif Is_Unchecked_Union (Rectype) then
2501 Error_Msg_N
2502 ("record rep clause not allowed for Unchecked_Union", N);
2503
2504 elsif Scope (Rectype) /= Current_Scope then
2505 Error_Msg_N ("type must be declared in this scope", N);
2506 return;
2507
2508 elsif not Is_First_Subtype (Rectype) then
2509 Error_Msg_N ("cannot give record rep clause for subtype", N);
2510 return;
2511
2512 elsif Has_Record_Rep_Clause (Rectype) then
2513 Error_Msg_N ("duplicate record rep clause ignored", N);
2514 return;
2515
2516 elsif Rep_Item_Too_Late (Rectype, N) then
2517 return;
2518 end if;
2519
2520 if Present (Mod_Clause (N)) then
2521 declare
2522 Loc : constant Source_Ptr := Sloc (N);
2523 M : constant Node_Id := Mod_Clause (N);
2524 P : constant List_Id := Pragmas_Before (M);
2525 AtM_Nod : Node_Id;
2526
2527 Mod_Val : Uint;
2528 pragma Warnings (Off, Mod_Val);
2529
2530 begin
2531 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
2532
2533 if Warn_On_Obsolescent_Feature then
2534 Error_Msg_N
2535 ("mod clause is an obsolescent feature (RM J.8)?", N);
2536 Error_Msg_N
2537 ("\use alignment attribute definition clause instead?", N);
2538 end if;
2539
2540 if Present (P) then
2541 Analyze_List (P);
2542 end if;
2543
2544 -- In ASIS_Mode mode, expansion is disabled, but we must convert
2545 -- the Mod clause into an alignment clause anyway, so that the
2546 -- back-end can compute and back-annotate properly the size and
2547 -- alignment of types that may include this record.
2548
2549 -- This seems dubious, this destroys the source tree in a manner
2550 -- not detectable by ASIS ???
2551
2552 if Operating_Mode = Check_Semantics
2553 and then ASIS_Mode
2554 then
2555 AtM_Nod :=
2556 Make_Attribute_Definition_Clause (Loc,
2557 Name => New_Reference_To (Base_Type (Rectype), Loc),
2558 Chars => Name_Alignment,
2559 Expression => Relocate_Node (Expression (M)));
2560
2561 Set_From_At_Mod (AtM_Nod);
2562 Insert_After (N, AtM_Nod);
2563 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
2564 Set_Mod_Clause (N, Empty);
2565
2566 else
2567 -- Get the alignment value to perform error checking
2568
2569 Mod_Val := Get_Alignment_Value (Expression (M));
2570 end if;
2571 end;
2572 end if;
2573
2574 -- For untagged types, clear any existing component clauses for the
2575 -- type. If the type is derived, this is what allows us to override
2576 -- a rep clause for the parent. For type extensions, the representation
2577 -- of the inherited components is inherited, so we want to keep previous
2578 -- component clauses for completeness.
2579
2580 if not Is_Tagged_Type (Rectype) then
2581 Comp := First_Component_Or_Discriminant (Rectype);
2582 while Present (Comp) loop
2583 Set_Component_Clause (Comp, Empty);
2584 Next_Component_Or_Discriminant (Comp);
2585 end loop;
2586 end if;
2587
2588 -- All done if no component clauses
2589
2590 CC := First (Component_Clauses (N));
2591
2592 if No (CC) then
2593 return;
2594 end if;
2595
2596 -- A representation like this applies to the base type
2597
2598 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2599 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2600 Set_Has_Specified_Layout (Base_Type (Rectype));
2601
2602 -- Process the component clauses
2603
2604 while Present (CC) loop
2605
2606 -- Pragma
2607
2608 if Nkind (CC) = N_Pragma then
2609 Analyze (CC);
2610
2611 -- The only pragma of interest is Complete_Representation
2612
2613 if Pragma_Name (CC) = Name_Complete_Representation then
2614 CR_Pragma := CC;
2615 end if;
2616
2617 -- Processing for real component clause
2618
2619 else
2620 Posit := Static_Integer (Position (CC));
2621 Fbit := Static_Integer (First_Bit (CC));
2622 Lbit := Static_Integer (Last_Bit (CC));
2623
2624 if Posit /= No_Uint
2625 and then Fbit /= No_Uint
2626 and then Lbit /= No_Uint
2627 then
2628 if Posit < 0 then
2629 Error_Msg_N
2630 ("position cannot be negative", Position (CC));
2631
2632 elsif Fbit < 0 then
2633 Error_Msg_N
2634 ("first bit cannot be negative", First_Bit (CC));
2635
2636 -- The Last_Bit specified in a component clause must not be
2637 -- less than the First_Bit minus one (RM-13.5.1(10)).
2638
2639 elsif Lbit < Fbit - 1 then
2640 Error_Msg_N
2641 ("last bit cannot be less than first bit minus one",
2642 Last_Bit (CC));
2643
2644 -- Values look OK, so find the corresponding record component
2645 -- Even though the syntax allows an attribute reference for
2646 -- implementation-defined components, GNAT does not allow the
2647 -- tag to get an explicit position.
2648
2649 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2650 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2651 Error_Msg_N ("position of tag cannot be specified", CC);
2652 else
2653 Error_Msg_N ("illegal component name", CC);
2654 end if;
2655
2656 else
2657 Comp := First_Entity (Rectype);
2658 while Present (Comp) loop
2659 exit when Chars (Comp) = Chars (Component_Name (CC));
2660 Next_Entity (Comp);
2661 end loop;
2662
2663 if No (Comp) then
2664
2665 -- Maybe component of base type that is absent from
2666 -- statically constrained first subtype.
2667
2668 Comp := First_Entity (Base_Type (Rectype));
2669 while Present (Comp) loop
2670 exit when Chars (Comp) = Chars (Component_Name (CC));
2671 Next_Entity (Comp);
2672 end loop;
2673 end if;
2674
2675 if No (Comp) then
2676 Error_Msg_N
2677 ("component clause is for non-existent field", CC);
2678
2679 elsif Present (Component_Clause (Comp)) then
2680
2681 -- Diagnose duplicate rep clause, or check consistency
2682 -- if this is an inherited component. In a double fault,
2683 -- there may be a duplicate inconsistent clause for an
2684 -- inherited component.
2685
2686 if Scope (Original_Record_Component (Comp)) = Rectype
2687 or else Parent (Component_Clause (Comp)) = N
2688 then
2689 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2690 Error_Msg_N ("component clause previously given#", CC);
2691
2692 else
2693 declare
2694 Rep1 : constant Node_Id := Component_Clause (Comp);
2695 begin
2696 if Intval (Position (Rep1)) /=
2697 Intval (Position (CC))
2698 or else Intval (First_Bit (Rep1)) /=
2699 Intval (First_Bit (CC))
2700 or else Intval (Last_Bit (Rep1)) /=
2701 Intval (Last_Bit (CC))
2702 then
2703 Error_Msg_N ("component clause inconsistent "
2704 & "with representation of ancestor", CC);
2705 elsif Warn_On_Redundant_Constructs then
2706 Error_Msg_N ("?redundant component clause "
2707 & "for inherited component!", CC);
2708 end if;
2709 end;
2710 end if;
2711
2712 -- Normal case where this is the first component clause we
2713 -- have seen for this entity, so set it up properly.
2714
2715 else
2716 -- Make reference for field in record rep clause and set
2717 -- appropriate entity field in the field identifier.
2718
2719 Generate_Reference
2720 (Comp, Component_Name (CC), Set_Ref => False);
2721 Set_Entity (Component_Name (CC), Comp);
2722
2723 -- Update Fbit and Lbit to the actual bit number
2724
2725 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2726 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2727
2728 if Has_Size_Clause (Rectype)
2729 and then Esize (Rectype) <= Lbit
2730 then
2731 Error_Msg_N
2732 ("bit number out of range of specified size",
2733 Last_Bit (CC));
2734 else
2735 Set_Component_Clause (Comp, CC);
2736 Set_Component_Bit_Offset (Comp, Fbit);
2737 Set_Esize (Comp, 1 + (Lbit - Fbit));
2738 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2739 Set_Normalized_Position (Comp, Fbit / SSU);
2740
2741 -- This information is also set in the corresponding
2742 -- component of the base type, found by accessing the
2743 -- Original_Record_Component link if it is present.
2744
2745 Ocomp := Original_Record_Component (Comp);
2746
2747 if Hbit < Lbit then
2748 Hbit := Lbit;
2749 end if;
2750
2751 Check_Size
2752 (Component_Name (CC),
2753 Etype (Comp),
2754 Esize (Comp),
2755 Biased);
2756
2757 Set_Has_Biased_Representation (Comp, Biased);
2758
2759 if Biased and Warn_On_Biased_Representation then
2760 Error_Msg_F
2761 ("?component clause forces biased "
2762 & "representation", CC);
2763 end if;
2764
2765 if Present (Ocomp) then
2766 Set_Component_Clause (Ocomp, CC);
2767 Set_Component_Bit_Offset (Ocomp, Fbit);
2768 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2769 Set_Normalized_Position (Ocomp, Fbit / SSU);
2770 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2771
2772 Set_Normalized_Position_Max
2773 (Ocomp, Normalized_Position (Ocomp));
2774
2775 Set_Has_Biased_Representation
2776 (Ocomp, Has_Biased_Representation (Comp));
2777 end if;
2778
2779 if Esize (Comp) < 0 then
2780 Error_Msg_N ("component size is negative", CC);
2781 end if;
2782 end if;
2783 end if;
2784 end if;
2785 end if;
2786 end if;
2787
2788 Next (CC);
2789 end loop;
2790
2791 -- Check missing components if Complete_Representation pragma appeared
2792
2793 if Present (CR_Pragma) then
2794 Comp := First_Component_Or_Discriminant (Rectype);
2795 while Present (Comp) loop
2796 if No (Component_Clause (Comp)) then
2797 Error_Msg_NE
2798 ("missing component clause for &", CR_Pragma, Comp);
2799 end if;
2800
2801 Next_Component_Or_Discriminant (Comp);
2802 end loop;
2803
2804 -- If no Complete_Representation pragma, warn if missing components
2805
2806 elsif Warn_On_Unrepped_Components then
2807 declare
2808 Num_Repped_Components : Nat := 0;
2809 Num_Unrepped_Components : Nat := 0;
2810
2811 begin
2812 -- First count number of repped and unrepped components
2813
2814 Comp := First_Component_Or_Discriminant (Rectype);
2815 while Present (Comp) loop
2816 if Present (Component_Clause (Comp)) then
2817 Num_Repped_Components := Num_Repped_Components + 1;
2818 else
2819 Num_Unrepped_Components := Num_Unrepped_Components + 1;
2820 end if;
2821
2822 Next_Component_Or_Discriminant (Comp);
2823 end loop;
2824
2825 -- We are only interested in the case where there is at least one
2826 -- unrepped component, and at least half the components have rep
2827 -- clauses. We figure that if less than half have them, then the
2828 -- partial rep clause is really intentional. If the component
2829 -- type has no underlying type set at this point (as for a generic
2830 -- formal type), we don't know enough to give a warning on the
2831 -- component.
2832
2833 if Num_Unrepped_Components > 0
2834 and then Num_Unrepped_Components < Num_Repped_Components
2835 then
2836 Comp := First_Component_Or_Discriminant (Rectype);
2837 while Present (Comp) loop
2838 if No (Component_Clause (Comp))
2839 and then Comes_From_Source (Comp)
2840 and then Present (Underlying_Type (Etype (Comp)))
2841 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
2842 or else Size_Known_At_Compile_Time
2843 (Underlying_Type (Etype (Comp))))
2844 and then not Has_Warnings_Off (Rectype)
2845 then
2846 Error_Msg_Sloc := Sloc (Comp);
2847 Error_Msg_NE
2848 ("?no component clause given for & declared #",
2849 N, Comp);
2850 end if;
2851
2852 Next_Component_Or_Discriminant (Comp);
2853 end loop;
2854 end if;
2855 end;
2856 end if;
2857 end Analyze_Record_Representation_Clause;
2858
2859 -----------------------------------
2860 -- Check_Constant_Address_Clause --
2861 -----------------------------------
2862
2863 procedure Check_Constant_Address_Clause
2864 (Expr : Node_Id;
2865 U_Ent : Entity_Id)
2866 is
2867 procedure Check_At_Constant_Address (Nod : Node_Id);
2868 -- Checks that the given node N represents a name whose 'Address is
2869 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
2870 -- address value is the same at the point of declaration of U_Ent and at
2871 -- the time of elaboration of the address clause.
2872
2873 procedure Check_Expr_Constants (Nod : Node_Id);
2874 -- Checks that Nod meets the requirements for a constant address clause
2875 -- in the sense of the enclosing procedure.
2876
2877 procedure Check_List_Constants (Lst : List_Id);
2878 -- Check that all elements of list Lst meet the requirements for a
2879 -- constant address clause in the sense of the enclosing procedure.
2880
2881 -------------------------------
2882 -- Check_At_Constant_Address --
2883 -------------------------------
2884
2885 procedure Check_At_Constant_Address (Nod : Node_Id) is
2886 begin
2887 if Is_Entity_Name (Nod) then
2888 if Present (Address_Clause (Entity ((Nod)))) then
2889 Error_Msg_NE
2890 ("invalid address clause for initialized object &!",
2891 Nod, U_Ent);
2892 Error_Msg_NE
2893 ("address for& cannot" &
2894 " depend on another address clause! (RM 13.1(22))!",
2895 Nod, U_Ent);
2896
2897 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2898 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2899 then
2900 Error_Msg_NE
2901 ("invalid address clause for initialized object &!",
2902 Nod, U_Ent);
2903 Error_Msg_Node_2 := U_Ent;
2904 Error_Msg_NE
2905 ("\& must be defined before & (RM 13.1(22))!",
2906 Nod, Entity (Nod));
2907 end if;
2908
2909 elsif Nkind (Nod) = N_Selected_Component then
2910 declare
2911 T : constant Entity_Id := Etype (Prefix (Nod));
2912
2913 begin
2914 if (Is_Record_Type (T)
2915 and then Has_Discriminants (T))
2916 or else
2917 (Is_Access_Type (T)
2918 and then Is_Record_Type (Designated_Type (T))
2919 and then Has_Discriminants (Designated_Type (T)))
2920 then
2921 Error_Msg_NE
2922 ("invalid address clause for initialized object &!",
2923 Nod, U_Ent);
2924 Error_Msg_N
2925 ("\address cannot depend on component" &
2926 " of discriminated record (RM 13.1(22))!",
2927 Nod);
2928 else
2929 Check_At_Constant_Address (Prefix (Nod));
2930 end if;
2931 end;
2932
2933 elsif Nkind (Nod) = N_Indexed_Component then
2934 Check_At_Constant_Address (Prefix (Nod));
2935 Check_List_Constants (Expressions (Nod));
2936
2937 else
2938 Check_Expr_Constants (Nod);
2939 end if;
2940 end Check_At_Constant_Address;
2941
2942 --------------------------
2943 -- Check_Expr_Constants --
2944 --------------------------
2945
2946 procedure Check_Expr_Constants (Nod : Node_Id) is
2947 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2948 Ent : Entity_Id := Empty;
2949
2950 begin
2951 if Nkind (Nod) in N_Has_Etype
2952 and then Etype (Nod) = Any_Type
2953 then
2954 return;
2955 end if;
2956
2957 case Nkind (Nod) is
2958 when N_Empty | N_Error =>
2959 return;
2960
2961 when N_Identifier | N_Expanded_Name =>
2962 Ent := Entity (Nod);
2963
2964 -- We need to look at the original node if it is different
2965 -- from the node, since we may have rewritten things and
2966 -- substituted an identifier representing the rewrite.
2967
2968 if Original_Node (Nod) /= Nod then
2969 Check_Expr_Constants (Original_Node (Nod));
2970
2971 -- If the node is an object declaration without initial
2972 -- value, some code has been expanded, and the expression
2973 -- is not constant, even if the constituents might be
2974 -- acceptable, as in A'Address + offset.
2975
2976 if Ekind (Ent) = E_Variable
2977 and then
2978 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
2979 and then
2980 No (Expression (Declaration_Node (Ent)))
2981 then
2982 Error_Msg_NE
2983 ("invalid address clause for initialized object &!",
2984 Nod, U_Ent);
2985
2986 -- If entity is constant, it may be the result of expanding
2987 -- a check. We must verify that its declaration appears
2988 -- before the object in question, else we also reject the
2989 -- address clause.
2990
2991 elsif Ekind (Ent) = E_Constant
2992 and then In_Same_Source_Unit (Ent, U_Ent)
2993 and then Sloc (Ent) > Loc_U_Ent
2994 then
2995 Error_Msg_NE
2996 ("invalid address clause for initialized object &!",
2997 Nod, U_Ent);
2998 end if;
2999
3000 return;
3001 end if;
3002
3003 -- Otherwise look at the identifier and see if it is OK
3004
3005 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
3006 or else Is_Type (Ent)
3007 then
3008 return;
3009
3010 elsif
3011 Ekind (Ent) = E_Constant
3012 or else
3013 Ekind (Ent) = E_In_Parameter
3014 then
3015 -- This is the case where we must have Ent defined before
3016 -- U_Ent. Clearly if they are in different units this
3017 -- requirement is met since the unit containing Ent is
3018 -- already processed.
3019
3020 if not In_Same_Source_Unit (Ent, U_Ent) then
3021 return;
3022
3023 -- Otherwise location of Ent must be before the location
3024 -- of U_Ent, that's what prior defined means.
3025
3026 elsif Sloc (Ent) < Loc_U_Ent then
3027 return;
3028
3029 else
3030 Error_Msg_NE
3031 ("invalid address clause for initialized object &!",
3032 Nod, U_Ent);
3033 Error_Msg_Node_2 := U_Ent;
3034 Error_Msg_NE
3035 ("\& must be defined before & (RM 13.1(22))!",
3036 Nod, Ent);
3037 end if;
3038
3039 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
3040 Check_Expr_Constants (Original_Node (Nod));
3041
3042 else
3043 Error_Msg_NE
3044 ("invalid address clause for initialized object &!",
3045 Nod, U_Ent);
3046
3047 if Comes_From_Source (Ent) then
3048 Error_Msg_NE
3049 ("\reference to variable& not allowed"
3050 & " (RM 13.1(22))!", Nod, Ent);
3051 else
3052 Error_Msg_N
3053 ("non-static expression not allowed"
3054 & " (RM 13.1(22))!", Nod);
3055 end if;
3056 end if;
3057
3058 when N_Integer_Literal =>
3059
3060 -- If this is a rewritten unchecked conversion, in a system
3061 -- where Address is an integer type, always use the base type
3062 -- for a literal value. This is user-friendly and prevents
3063 -- order-of-elaboration issues with instances of unchecked
3064 -- conversion.
3065
3066 if Nkind (Original_Node (Nod)) = N_Function_Call then
3067 Set_Etype (Nod, Base_Type (Etype (Nod)));
3068 end if;
3069
3070 when N_Real_Literal |
3071 N_String_Literal |
3072 N_Character_Literal =>
3073 return;
3074
3075 when N_Range =>
3076 Check_Expr_Constants (Low_Bound (Nod));
3077 Check_Expr_Constants (High_Bound (Nod));
3078
3079 when N_Explicit_Dereference =>
3080 Check_Expr_Constants (Prefix (Nod));
3081
3082 when N_Indexed_Component =>
3083 Check_Expr_Constants (Prefix (Nod));
3084 Check_List_Constants (Expressions (Nod));
3085
3086 when N_Slice =>
3087 Check_Expr_Constants (Prefix (Nod));
3088 Check_Expr_Constants (Discrete_Range (Nod));
3089
3090 when N_Selected_Component =>
3091 Check_Expr_Constants (Prefix (Nod));
3092
3093 when N_Attribute_Reference =>
3094 if Attribute_Name (Nod) = Name_Address
3095 or else
3096 Attribute_Name (Nod) = Name_Access
3097 or else
3098 Attribute_Name (Nod) = Name_Unchecked_Access
3099 or else
3100 Attribute_Name (Nod) = Name_Unrestricted_Access
3101 then
3102 Check_At_Constant_Address (Prefix (Nod));
3103
3104 else
3105 Check_Expr_Constants (Prefix (Nod));
3106 Check_List_Constants (Expressions (Nod));
3107 end if;
3108
3109 when N_Aggregate =>
3110 Check_List_Constants (Component_Associations (Nod));
3111 Check_List_Constants (Expressions (Nod));
3112
3113 when N_Component_Association =>
3114 Check_Expr_Constants (Expression (Nod));
3115
3116 when N_Extension_Aggregate =>
3117 Check_Expr_Constants (Ancestor_Part (Nod));
3118 Check_List_Constants (Component_Associations (Nod));
3119 Check_List_Constants (Expressions (Nod));
3120
3121 when N_Null =>
3122 return;
3123
3124 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
3125 Check_Expr_Constants (Left_Opnd (Nod));
3126 Check_Expr_Constants (Right_Opnd (Nod));
3127
3128 when N_Unary_Op =>
3129 Check_Expr_Constants (Right_Opnd (Nod));
3130
3131 when N_Type_Conversion |
3132 N_Qualified_Expression |
3133 N_Allocator =>
3134 Check_Expr_Constants (Expression (Nod));
3135
3136 when N_Unchecked_Type_Conversion =>
3137 Check_Expr_Constants (Expression (Nod));
3138
3139 -- If this is a rewritten unchecked conversion, subtypes in
3140 -- this node are those created within the instance. To avoid
3141 -- order of elaboration issues, replace them with their base
3142 -- types. Note that address clauses can cause order of
3143 -- elaboration problems because they are elaborated by the
3144 -- back-end at the point of definition, and may mention
3145 -- entities declared in between (as long as everything is
3146 -- static). It is user-friendly to allow unchecked conversions
3147 -- in this context.
3148
3149 if Nkind (Original_Node (Nod)) = N_Function_Call then
3150 Set_Etype (Expression (Nod),
3151 Base_Type (Etype (Expression (Nod))));
3152 Set_Etype (Nod, Base_Type (Etype (Nod)));
3153 end if;
3154
3155 when N_Function_Call =>
3156 if not Is_Pure (Entity (Name (Nod))) then
3157 Error_Msg_NE
3158 ("invalid address clause for initialized object &!",
3159 Nod, U_Ent);
3160
3161 Error_Msg_NE
3162 ("\function & is not pure (RM 13.1(22))!",
3163 Nod, Entity (Name (Nod)));
3164
3165 else
3166 Check_List_Constants (Parameter_Associations (Nod));
3167 end if;
3168
3169 when N_Parameter_Association =>
3170 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
3171
3172 when others =>
3173 Error_Msg_NE
3174 ("invalid address clause for initialized object &!",
3175 Nod, U_Ent);
3176 Error_Msg_NE
3177 ("\must be constant defined before& (RM 13.1(22))!",
3178 Nod, U_Ent);
3179 end case;
3180 end Check_Expr_Constants;
3181
3182 --------------------------
3183 -- Check_List_Constants --
3184 --------------------------
3185
3186 procedure Check_List_Constants (Lst : List_Id) is
3187 Nod1 : Node_Id;
3188
3189 begin
3190 if Present (Lst) then
3191 Nod1 := First (Lst);
3192 while Present (Nod1) loop
3193 Check_Expr_Constants (Nod1);
3194 Next (Nod1);
3195 end loop;
3196 end if;
3197 end Check_List_Constants;
3198
3199 -- Start of processing for Check_Constant_Address_Clause
3200
3201 begin
3202 -- If rep_clauses are to be ignored, no need for legality checks. In
3203 -- particular, no need to pester user about rep clauses that violate
3204 -- the rule on constant addresses, given that these clauses will be
3205 -- removed by Freeze before they reach the back end.
3206
3207 if not Ignore_Rep_Clauses then
3208 Check_Expr_Constants (Expr);
3209 end if;
3210 end Check_Constant_Address_Clause;
3211
3212 ----------------------------------------
3213 -- Check_Record_Representation_Clause --
3214 ----------------------------------------
3215
3216 procedure Check_Record_Representation_Clause (N : Node_Id) is
3217 Loc : constant Source_Ptr := Sloc (N);
3218 Ident : constant Node_Id := Identifier (N);
3219 Rectype : Entity_Id;
3220 Fent : Entity_Id;
3221 CC : Node_Id;
3222 Fbit : Uint;
3223 Lbit : Uint;
3224 Hbit : Uint := Uint_0;
3225 Comp : Entity_Id;
3226 Pcomp : Entity_Id;
3227
3228 Max_Bit_So_Far : Uint;
3229 -- Records the maximum bit position so far. If all field positions
3230 -- are monotonically increasing, then we can skip the circuit for
3231 -- checking for overlap, since no overlap is possible.
3232
3233 Tagged_Parent : Entity_Id := Empty;
3234 -- This is set in the case of a derived tagged type for which we have
3235 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
3236 -- positioned by record representation clauses). In this case we must
3237 -- check for overlap between components of this tagged type, and the
3238 -- components of its parent. Tagged_Parent will point to this parent
3239 -- type. For all other cases Tagged_Parent is left set to Empty.
3240
3241 Parent_Last_Bit : Uint;
3242 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
3243 -- last bit position for any field in the parent type. We only need to
3244 -- check overlap for fields starting below this point.
3245
3246 Overlap_Check_Required : Boolean;
3247 -- Used to keep track of whether or not an overlap check is required
3248
3249 Ccount : Natural := 0;
3250 -- Number of component clauses in record rep clause
3251
3252 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
3253 -- Given two entities for record components or discriminants, checks
3254 -- if they have overlapping component clauses and issues errors if so.
3255
3256 procedure Find_Component;
3257 -- Finds component entity corresponding to current component clause (in
3258 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
3259 -- start/stop bits for the field. If there is no matching component or
3260 -- if the matching component does not have a component clause, then
3261 -- that's an error and Comp is set to Empty, but no error message is
3262 -- issued, since the message was already given. Comp is also set to
3263 -- Empty if the current "component clause" is in fact a pragma.
3264
3265 -----------------------------
3266 -- Check_Component_Overlap --
3267 -----------------------------
3268
3269 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
3270 CC1 : constant Node_Id := Component_Clause (C1_Ent);
3271 CC2 : constant Node_Id := Component_Clause (C2_Ent);
3272 begin
3273 if Present (CC1) and then Present (CC2) then
3274
3275 -- Exclude odd case where we have two tag fields in the same
3276 -- record, both at location zero. This seems a bit strange, but
3277 -- it seems to happen in some circumstances, perhaps on an error.
3278
3279 if Chars (C1_Ent) = Name_uTag
3280 and then
3281 Chars (C2_Ent) = Name_uTag
3282 then
3283 return;
3284 end if;
3285
3286 -- Here we check if the two fields overlap
3287
3288 declare
3289 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
3290 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
3291 E1 : constant Uint := S1 + Esize (C1_Ent);
3292 E2 : constant Uint := S2 + Esize (C2_Ent);
3293
3294 begin
3295 if E2 <= S1 or else E1 <= S2 then
3296 null;
3297 else
3298 Error_Msg_Node_2 := Component_Name (CC2);
3299 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
3300 Error_Msg_Node_1 := Component_Name (CC1);
3301 Error_Msg_N
3302 ("component& overlaps & #", Component_Name (CC1));
3303 end if;
3304 end;
3305 end if;
3306 end Check_Component_Overlap;
3307
3308 --------------------
3309 -- Find_Component --
3310 --------------------
3311
3312 procedure Find_Component is
3313
3314 procedure Search_Component (R : Entity_Id);
3315 -- Search components of R for a match. If found, Comp is set.
3316
3317 ----------------------
3318 -- Search_Component --
3319 ----------------------
3320
3321 procedure Search_Component (R : Entity_Id) is
3322 begin
3323 Comp := First_Component_Or_Discriminant (R);
3324 while Present (Comp) loop
3325
3326 -- Ignore error of attribute name for component name (we
3327 -- already gave an error message for this, so no need to
3328 -- complain here)
3329
3330 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
3331 null;
3332 else
3333 exit when Chars (Comp) = Chars (Component_Name (CC));
3334 end if;
3335
3336 Next_Component_Or_Discriminant (Comp);
3337 end loop;
3338 end Search_Component;
3339
3340 -- Start of processing for Find_Component
3341
3342 begin
3343 -- Return with Comp set to Empty if we have a pragma
3344
3345 if Nkind (CC) = N_Pragma then
3346 Comp := Empty;
3347 return;
3348 end if;
3349
3350 -- Search current record for matching component
3351
3352 Search_Component (Rectype);
3353
3354 -- If not found, maybe component of base type that is absent from
3355 -- statically constrained first subtype.
3356
3357 if No (Comp) then
3358 Search_Component (Base_Type (Rectype));
3359 end if;
3360
3361 -- If no component, or the component does not reference the component
3362 -- clause in question, then there was some previous error for which
3363 -- we already gave a message, so just return with Comp Empty.
3364
3365 if No (Comp)
3366 or else Component_Clause (Comp) /= CC
3367 then
3368 Comp := Empty;
3369
3370 -- Normal case where we have a component clause
3371
3372 else
3373 Fbit := Component_Bit_Offset (Comp);
3374 Lbit := Fbit + Esize (Comp) - 1;
3375 end if;
3376 end Find_Component;
3377
3378 -- Start of processing for Check_Record_Representation_Clause
3379
3380 begin
3381 Find_Type (Ident);
3382 Rectype := Entity (Ident);
3383
3384 if Rectype = Any_Type then
3385 return;
3386 else
3387 Rectype := Underlying_Type (Rectype);
3388 end if;
3389
3390 -- See if we have a fully repped derived tagged type
3391
3392 declare
3393 PS : constant Entity_Id := Parent_Subtype (Rectype);
3394
3395 begin
3396 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
3397 Tagged_Parent := PS;
3398
3399 -- Find maximum bit of any component of the parent type
3400
3401 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
3402 Pcomp := First_Entity (Tagged_Parent);
3403 while Present (Pcomp) loop
3404 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
3405 if Component_Bit_Offset (Pcomp) /= No_Uint
3406 and then Known_Static_Esize (Pcomp)
3407 then
3408 Parent_Last_Bit :=
3409 UI_Max
3410 (Parent_Last_Bit,
3411 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
3412 end if;
3413
3414 Next_Entity (Pcomp);
3415 end if;
3416 end loop;
3417 end if;
3418 end;
3419
3420 -- All done if no component clauses
3421
3422 CC := First (Component_Clauses (N));
3423
3424 if No (CC) then
3425 return;
3426 end if;
3427
3428 -- If a tag is present, then create a component clause that places it
3429 -- at the start of the record (otherwise gigi may place it after other
3430 -- fields that have rep clauses).
3431
3432 Fent := First_Entity (Rectype);
3433
3434 if Nkind (Fent) = N_Defining_Identifier
3435 and then Chars (Fent) = Name_uTag
3436 then
3437 Set_Component_Bit_Offset (Fent, Uint_0);
3438 Set_Normalized_Position (Fent, Uint_0);
3439 Set_Normalized_First_Bit (Fent, Uint_0);
3440 Set_Normalized_Position_Max (Fent, Uint_0);
3441 Init_Esize (Fent, System_Address_Size);
3442
3443 Set_Component_Clause (Fent,
3444 Make_Component_Clause (Loc,
3445 Component_Name =>
3446 Make_Identifier (Loc,
3447 Chars => Name_uTag),
3448
3449 Position =>
3450 Make_Integer_Literal (Loc,
3451 Intval => Uint_0),
3452
3453 First_Bit =>
3454 Make_Integer_Literal (Loc,
3455 Intval => Uint_0),
3456
3457 Last_Bit =>
3458 Make_Integer_Literal (Loc,
3459 UI_From_Int (System_Address_Size))));
3460
3461 Ccount := Ccount + 1;
3462 end if;
3463
3464 Max_Bit_So_Far := Uint_Minus_1;
3465 Overlap_Check_Required := False;
3466
3467 -- Process the component clauses
3468
3469 while Present (CC) loop
3470 Find_Component;
3471
3472 if Present (Comp) then
3473 Ccount := Ccount + 1;
3474
3475 if Fbit <= Max_Bit_So_Far then
3476 Overlap_Check_Required := True;
3477 else
3478 Max_Bit_So_Far := Lbit;
3479 end if;
3480
3481 -- Check bit position out of range of specified size
3482
3483 if Has_Size_Clause (Rectype)
3484 and then Esize (Rectype) <= Lbit
3485 then
3486 Error_Msg_N
3487 ("bit number out of range of specified size",
3488 Last_Bit (CC));
3489
3490 -- Check for overlap with tag field
3491
3492 else
3493 if Is_Tagged_Type (Rectype)
3494 and then Fbit < System_Address_Size
3495 then
3496 Error_Msg_NE
3497 ("component overlaps tag field of&",
3498 Component_Name (CC), Rectype);
3499 end if;
3500
3501 if Hbit < Lbit then
3502 Hbit := Lbit;
3503 end if;
3504 end if;
3505
3506 -- Check parent overlap if component might overlap parent field
3507
3508 if Present (Tagged_Parent)
3509 and then Fbit <= Parent_Last_Bit
3510 then
3511 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
3512 while Present (Pcomp) loop
3513 if not Is_Tag (Pcomp)
3514 and then Chars (Pcomp) /= Name_uParent
3515 then
3516 Check_Component_Overlap (Comp, Pcomp);
3517 end if;
3518
3519 Next_Component_Or_Discriminant (Pcomp);
3520 end loop;
3521 end if;
3522 end if;
3523
3524 Next (CC);
3525 end loop;
3526
3527 -- Now that we have processed all the component clauses, check for
3528 -- overlap. We have to leave this till last, since the components can
3529 -- appear in any arbitrary order in the representation clause.
3530
3531 -- We do not need this check if all specified ranges were monotonic,
3532 -- as recorded by Overlap_Check_Required being False at this stage.
3533
3534 -- This first section checks if there are any overlapping entries at
3535 -- all. It does this by sorting all entries and then seeing if there are
3536 -- any overlaps. If there are none, then that is decisive, but if there
3537 -- are overlaps, they may still be OK (they may result from fields in
3538 -- different variants).
3539
3540 if Overlap_Check_Required then
3541 Overlap_Check1 : declare
3542
3543 OC_Fbit : array (0 .. Ccount) of Uint;
3544 -- First-bit values for component clauses, the value is the offset
3545 -- of the first bit of the field from start of record. The zero
3546 -- entry is for use in sorting.
3547
3548 OC_Lbit : array (0 .. Ccount) of Uint;
3549 -- Last-bit values for component clauses, the value is the offset
3550 -- of the last bit of the field from start of record. The zero
3551 -- entry is for use in sorting.
3552
3553 OC_Count : Natural := 0;
3554 -- Count of entries in OC_Fbit and OC_Lbit
3555
3556 function OC_Lt (Op1, Op2 : Natural) return Boolean;
3557 -- Compare routine for Sort
3558
3559 procedure OC_Move (From : Natural; To : Natural);
3560 -- Move routine for Sort
3561
3562 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
3563
3564 -----------
3565 -- OC_Lt --
3566 -----------
3567
3568 function OC_Lt (Op1, Op2 : Natural) return Boolean is
3569 begin
3570 return OC_Fbit (Op1) < OC_Fbit (Op2);
3571 end OC_Lt;
3572
3573 -------------
3574 -- OC_Move --
3575 -------------
3576
3577 procedure OC_Move (From : Natural; To : Natural) is
3578 begin
3579 OC_Fbit (To) := OC_Fbit (From);
3580 OC_Lbit (To) := OC_Lbit (From);
3581 end OC_Move;
3582
3583 -- Start of processing for Overlap_Check
3584
3585 begin
3586 CC := First (Component_Clauses (N));
3587 while Present (CC) loop
3588
3589 -- Exclude component clause already marked in error
3590
3591 if not Error_Posted (CC) then
3592 Find_Component;
3593
3594 if Present (Comp) then
3595 OC_Count := OC_Count + 1;
3596 OC_Fbit (OC_Count) := Fbit;
3597 OC_Lbit (OC_Count) := Lbit;
3598 end if;
3599 end if;
3600
3601 Next (CC);
3602 end loop;
3603
3604 Sorting.Sort (OC_Count);
3605
3606 Overlap_Check_Required := False;
3607 for J in 1 .. OC_Count - 1 loop
3608 if OC_Lbit (J) >= OC_Fbit (J + 1) then
3609 Overlap_Check_Required := True;
3610 exit;
3611 end if;
3612 end loop;
3613 end Overlap_Check1;
3614 end if;
3615
3616 -- If Overlap_Check_Required is still True, then we have to do the full
3617 -- scale overlap check, since we have at least two fields that do
3618 -- overlap, and we need to know if that is OK since they are in
3619 -- different variant, or whether we have a definite problem.
3620
3621 if Overlap_Check_Required then
3622 Overlap_Check2 : declare
3623 C1_Ent, C2_Ent : Entity_Id;
3624 -- Entities of components being checked for overlap
3625
3626 Clist : Node_Id;
3627 -- Component_List node whose Component_Items are being checked
3628
3629 Citem : Node_Id;
3630 -- Component declaration for component being checked
3631
3632 begin
3633 C1_Ent := First_Entity (Base_Type (Rectype));
3634
3635 -- Loop through all components in record. For each component check
3636 -- for overlap with any of the preceding elements on the component
3637 -- list containing the component and also, if the component is in
3638 -- a variant, check against components outside the case structure.
3639 -- This latter test is repeated recursively up the variant tree.
3640
3641 Main_Component_Loop : while Present (C1_Ent) loop
3642 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
3643 goto Continue_Main_Component_Loop;
3644 end if;
3645
3646 -- Skip overlap check if entity has no declaration node. This
3647 -- happens with discriminants in constrained derived types.
3648 -- Probably we are missing some checks as a result, but that
3649 -- does not seem terribly serious ???
3650
3651 if No (Declaration_Node (C1_Ent)) then
3652 goto Continue_Main_Component_Loop;
3653 end if;
3654
3655 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
3656
3657 -- Loop through component lists that need checking. Check the
3658 -- current component list and all lists in variants above us.
3659
3660 Component_List_Loop : loop
3661
3662 -- If derived type definition, go to full declaration
3663 -- If at outer level, check discriminants if there are any.
3664
3665 if Nkind (Clist) = N_Derived_Type_Definition then
3666 Clist := Parent (Clist);
3667 end if;
3668
3669 -- Outer level of record definition, check discriminants
3670
3671 if Nkind_In (Clist, N_Full_Type_Declaration,
3672 N_Private_Type_Declaration)
3673 then
3674 if Has_Discriminants (Defining_Identifier (Clist)) then
3675 C2_Ent :=
3676 First_Discriminant (Defining_Identifier (Clist));
3677 while Present (C2_Ent) loop
3678 exit when C1_Ent = C2_Ent;
3679 Check_Component_Overlap (C1_Ent, C2_Ent);
3680 Next_Discriminant (C2_Ent);
3681 end loop;
3682 end if;
3683
3684 -- Record extension case
3685
3686 elsif Nkind (Clist) = N_Derived_Type_Definition then
3687 Clist := Empty;
3688
3689 -- Otherwise check one component list
3690
3691 else
3692 Citem := First (Component_Items (Clist));
3693
3694 while Present (Citem) loop
3695 if Nkind (Citem) = N_Component_Declaration then
3696 C2_Ent := Defining_Identifier (Citem);
3697 exit when C1_Ent = C2_Ent;
3698 Check_Component_Overlap (C1_Ent, C2_Ent);
3699 end if;
3700
3701 Next (Citem);
3702 end loop;
3703 end if;
3704
3705 -- Check for variants above us (the parent of the Clist can
3706 -- be a variant, in which case its parent is a variant part,
3707 -- and the parent of the variant part is a component list
3708 -- whose components must all be checked against the current
3709 -- component for overlap).
3710
3711 if Nkind (Parent (Clist)) = N_Variant then
3712 Clist := Parent (Parent (Parent (Clist)));
3713
3714 -- Check for possible discriminant part in record, this
3715 -- is treated essentially as another level in the
3716 -- recursion. For this case the parent of the component
3717 -- list is the record definition, and its parent is the
3718 -- full type declaration containing the discriminant
3719 -- specifications.
3720
3721 elsif Nkind (Parent (Clist)) = N_Record_Definition then
3722 Clist := Parent (Parent ((Clist)));
3723
3724 -- If neither of these two cases, we are at the top of
3725 -- the tree.
3726
3727 else
3728 exit Component_List_Loop;
3729 end if;
3730 end loop Component_List_Loop;
3731
3732 <<Continue_Main_Component_Loop>>
3733 Next_Entity (C1_Ent);
3734
3735 end loop Main_Component_Loop;
3736 end Overlap_Check2;
3737 end if;
3738
3739 -- For records that have component clauses for all components, and whose
3740 -- size is less than or equal to 32, we need to know the size in the
3741 -- front end to activate possible packed array processing where the
3742 -- component type is a record.
3743
3744 -- At this stage Hbit + 1 represents the first unused bit from all the
3745 -- component clauses processed, so if the component clauses are
3746 -- complete, then this is the length of the record.
3747
3748 -- For records longer than System.Storage_Unit, and for those where not
3749 -- all components have component clauses, the back end determines the
3750 -- length (it may for example be appropriate to round up the size
3751 -- to some convenient boundary, based on alignment considerations, etc).
3752
3753 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
3754
3755 -- Nothing to do if at least one component has no component clause
3756
3757 Comp := First_Component_Or_Discriminant (Rectype);
3758 while Present (Comp) loop
3759 exit when No (Component_Clause (Comp));
3760 Next_Component_Or_Discriminant (Comp);
3761 end loop;
3762
3763 -- If we fall out of loop, all components have component clauses
3764 -- and so we can set the size to the maximum value.
3765
3766 if No (Comp) then
3767 Set_RM_Size (Rectype, Hbit + 1);
3768 end if;
3769 end if;
3770 end Check_Record_Representation_Clause;
3771
3772 ----------------
3773 -- Check_Size --
3774 ----------------
3775
3776 procedure Check_Size
3777 (N : Node_Id;
3778 T : Entity_Id;
3779 Siz : Uint;
3780 Biased : out Boolean)
3781 is
3782 UT : constant Entity_Id := Underlying_Type (T);
3783 M : Uint;
3784
3785 begin
3786 Biased := False;
3787
3788 -- Dismiss cases for generic types or types with previous errors
3789
3790 if No (UT)
3791 or else UT = Any_Type
3792 or else Is_Generic_Type (UT)
3793 or else Is_Generic_Type (Root_Type (UT))
3794 then
3795 return;
3796
3797 -- Check case of bit packed array
3798
3799 elsif Is_Array_Type (UT)
3800 and then Known_Static_Component_Size (UT)
3801 and then Is_Bit_Packed_Array (UT)
3802 then
3803 declare
3804 Asiz : Uint;
3805 Indx : Node_Id;
3806 Ityp : Entity_Id;
3807
3808 begin
3809 Asiz := Component_Size (UT);
3810 Indx := First_Index (UT);
3811 loop
3812 Ityp := Etype (Indx);
3813
3814 -- If non-static bound, then we are not in the business of
3815 -- trying to check the length, and indeed an error will be
3816 -- issued elsewhere, since sizes of non-static array types
3817 -- cannot be set implicitly or explicitly.
3818
3819 if not Is_Static_Subtype (Ityp) then
3820 return;
3821 end if;
3822
3823 -- Otherwise accumulate next dimension
3824
3825 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
3826 Expr_Value (Type_Low_Bound (Ityp)) +
3827 Uint_1);
3828
3829 Next_Index (Indx);
3830 exit when No (Indx);
3831 end loop;
3832
3833 if Asiz <= Siz then
3834 return;
3835 else
3836 Error_Msg_Uint_1 := Asiz;
3837 Error_Msg_NE
3838 ("size for& too small, minimum allowed is ^", N, T);
3839 Set_Esize (T, Asiz);
3840 Set_RM_Size (T, Asiz);
3841 end if;
3842 end;
3843
3844 -- All other composite types are ignored
3845
3846 elsif Is_Composite_Type (UT) then
3847 return;
3848
3849 -- For fixed-point types, don't check minimum if type is not frozen,
3850 -- since we don't know all the characteristics of the type that can
3851 -- affect the size (e.g. a specified small) till freeze time.
3852
3853 elsif Is_Fixed_Point_Type (UT)
3854 and then not Is_Frozen (UT)
3855 then
3856 null;
3857
3858 -- Cases for which a minimum check is required
3859
3860 else
3861 -- Ignore if specified size is correct for the type
3862
3863 if Known_Esize (UT) and then Siz = Esize (UT) then
3864 return;
3865 end if;
3866
3867 -- Otherwise get minimum size
3868
3869 M := UI_From_Int (Minimum_Size (UT));
3870
3871 if Siz < M then
3872
3873 -- Size is less than minimum size, but one possibility remains
3874 -- that we can manage with the new size if we bias the type.
3875
3876 M := UI_From_Int (Minimum_Size (UT, Biased => True));
3877
3878 if Siz < M then
3879 Error_Msg_Uint_1 := M;
3880 Error_Msg_NE
3881 ("size for& too small, minimum allowed is ^", N, T);
3882 Set_Esize (T, M);
3883 Set_RM_Size (T, M);
3884 else
3885 Biased := True;
3886 end if;
3887 end if;
3888 end if;
3889 end Check_Size;
3890
3891 -------------------------
3892 -- Get_Alignment_Value --
3893 -------------------------
3894
3895 function Get_Alignment_Value (Expr : Node_Id) return Uint is
3896 Align : constant Uint := Static_Integer (Expr);
3897
3898 begin
3899 if Align = No_Uint then
3900 return No_Uint;
3901
3902 elsif Align <= 0 then
3903 Error_Msg_N ("alignment value must be positive", Expr);
3904 return No_Uint;
3905
3906 else
3907 for J in Int range 0 .. 64 loop
3908 declare
3909 M : constant Uint := Uint_2 ** J;
3910
3911 begin
3912 exit when M = Align;
3913
3914 if M > Align then
3915 Error_Msg_N
3916 ("alignment value must be power of 2", Expr);
3917 return No_Uint;
3918 end if;
3919 end;
3920 end loop;
3921
3922 return Align;
3923 end if;
3924 end Get_Alignment_Value;
3925
3926 ----------------
3927 -- Initialize --
3928 ----------------
3929
3930 procedure Initialize is
3931 begin
3932 Unchecked_Conversions.Init;
3933 end Initialize;
3934
3935 -------------------------
3936 -- Is_Operational_Item --
3937 -------------------------
3938
3939 function Is_Operational_Item (N : Node_Id) return Boolean is
3940 begin
3941 if Nkind (N) /= N_Attribute_Definition_Clause then
3942 return False;
3943 else
3944 declare
3945 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
3946 begin
3947 return Id = Attribute_Input
3948 or else Id = Attribute_Output
3949 or else Id = Attribute_Read
3950 or else Id = Attribute_Write
3951 or else Id = Attribute_External_Tag;
3952 end;
3953 end if;
3954 end Is_Operational_Item;
3955
3956 ------------------
3957 -- Minimum_Size --
3958 ------------------
3959
3960 function Minimum_Size
3961 (T : Entity_Id;
3962 Biased : Boolean := False) return Nat
3963 is
3964 Lo : Uint := No_Uint;
3965 Hi : Uint := No_Uint;
3966 LoR : Ureal := No_Ureal;
3967 HiR : Ureal := No_Ureal;
3968 LoSet : Boolean := False;
3969 HiSet : Boolean := False;
3970 B : Uint;
3971 S : Nat;
3972 Ancest : Entity_Id;
3973 R_Typ : constant Entity_Id := Root_Type (T);
3974
3975 begin
3976 -- If bad type, return 0
3977
3978 if T = Any_Type then
3979 return 0;
3980
3981 -- For generic types, just return zero. There cannot be any legitimate
3982 -- need to know such a size, but this routine may be called with a
3983 -- generic type as part of normal processing.
3984
3985 elsif Is_Generic_Type (R_Typ)
3986 or else R_Typ = Any_Type
3987 then
3988 return 0;
3989
3990 -- Access types. Normally an access type cannot have a size smaller
3991 -- than the size of System.Address. The exception is on VMS, where
3992 -- we have short and long addresses, and it is possible for an access
3993 -- type to have a short address size (and thus be less than the size
3994 -- of System.Address itself). We simply skip the check for VMS, and
3995 -- leave it to the back end to do the check.
3996
3997 elsif Is_Access_Type (T) then
3998 if OpenVMS_On_Target then
3999 return 0;
4000 else
4001 return System_Address_Size;
4002 end if;
4003
4004 -- Floating-point types
4005
4006 elsif Is_Floating_Point_Type (T) then
4007 return UI_To_Int (Esize (R_Typ));
4008
4009 -- Discrete types
4010
4011 elsif Is_Discrete_Type (T) then
4012
4013 -- The following loop is looking for the nearest compile time known
4014 -- bounds following the ancestor subtype chain. The idea is to find
4015 -- the most restrictive known bounds information.
4016
4017 Ancest := T;
4018 loop
4019 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
4020 return 0;
4021 end if;
4022
4023 if not LoSet then
4024 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
4025 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
4026 LoSet := True;
4027 exit when HiSet;
4028 end if;
4029 end if;
4030
4031 if not HiSet then
4032 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
4033 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
4034 HiSet := True;
4035 exit when LoSet;
4036 end if;
4037 end if;
4038
4039 Ancest := Ancestor_Subtype (Ancest);
4040
4041 if No (Ancest) then
4042 Ancest := Base_Type (T);
4043
4044 if Is_Generic_Type (Ancest) then
4045 return 0;
4046 end if;
4047 end if;
4048 end loop;
4049
4050 -- Fixed-point types. We can't simply use Expr_Value to get the
4051 -- Corresponding_Integer_Value values of the bounds, since these do not
4052 -- get set till the type is frozen, and this routine can be called
4053 -- before the type is frozen. Similarly the test for bounds being static
4054 -- needs to include the case where we have unanalyzed real literals for
4055 -- the same reason.
4056
4057 elsif Is_Fixed_Point_Type (T) then
4058
4059 -- The following loop is looking for the nearest compile time known
4060 -- bounds following the ancestor subtype chain. The idea is to find
4061 -- the most restrictive known bounds information.
4062
4063 Ancest := T;
4064 loop
4065 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
4066 return 0;
4067 end if;
4068
4069 -- Note: In the following two tests for LoSet and HiSet, it may
4070 -- seem redundant to test for N_Real_Literal here since normally
4071 -- one would assume that the test for the value being known at
4072 -- compile time includes this case. However, there is a glitch.
4073 -- If the real literal comes from folding a non-static expression,
4074 -- then we don't consider any non- static expression to be known
4075 -- at compile time if we are in configurable run time mode (needed
4076 -- in some cases to give a clearer definition of what is and what
4077 -- is not accepted). So the test is indeed needed. Without it, we
4078 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
4079
4080 if not LoSet then
4081 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
4082 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
4083 then
4084 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
4085 LoSet := True;
4086 exit when HiSet;
4087 end if;
4088 end if;
4089
4090 if not HiSet then
4091 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
4092 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
4093 then
4094 HiR := Expr_Value_R (Type_High_Bound (Ancest));
4095 HiSet := True;
4096 exit when LoSet;
4097 end if;
4098 end if;
4099
4100 Ancest := Ancestor_Subtype (Ancest);
4101
4102 if No (Ancest) then
4103 Ancest := Base_Type (T);
4104
4105 if Is_Generic_Type (Ancest) then
4106 return 0;
4107 end if;
4108 end if;
4109 end loop;
4110
4111 Lo := UR_To_Uint (LoR / Small_Value (T));
4112 Hi := UR_To_Uint (HiR / Small_Value (T));
4113
4114 -- No other types allowed
4115
4116 else
4117 raise Program_Error;
4118 end if;
4119
4120 -- Fall through with Hi and Lo set. Deal with biased case
4121
4122 if (Biased
4123 and then not Is_Fixed_Point_Type (T)
4124 and then not (Is_Enumeration_Type (T)
4125 and then Has_Non_Standard_Rep (T)))
4126 or else Has_Biased_Representation (T)
4127 then
4128 Hi := Hi - Lo;
4129 Lo := Uint_0;
4130 end if;
4131
4132 -- Signed case. Note that we consider types like range 1 .. -1 to be
4133 -- signed for the purpose of computing the size, since the bounds have
4134 -- to be accommodated in the base type.
4135
4136 if Lo < 0 or else Hi < 0 then
4137 S := 1;
4138 B := Uint_1;
4139
4140 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
4141 -- Note that we accommodate the case where the bounds cross. This
4142 -- can happen either because of the way the bounds are declared
4143 -- or because of the algorithm in Freeze_Fixed_Point_Type.
4144
4145 while Lo < -B
4146 or else Hi < -B
4147 or else Lo >= B
4148 or else Hi >= B
4149 loop
4150 B := Uint_2 ** S;
4151 S := S + 1;
4152 end loop;
4153
4154 -- Unsigned case
4155
4156 else
4157 -- If both bounds are positive, make sure that both are represen-
4158 -- table in the case where the bounds are crossed. This can happen
4159 -- either because of the way the bounds are declared, or because of
4160 -- the algorithm in Freeze_Fixed_Point_Type.
4161
4162 if Lo > Hi then
4163 Hi := Lo;
4164 end if;
4165
4166 -- S = size, (can accommodate 0 .. (2**size - 1))
4167
4168 S := 0;
4169 while Hi >= Uint_2 ** S loop
4170 S := S + 1;
4171 end loop;
4172 end if;
4173
4174 return S;
4175 end Minimum_Size;
4176
4177 ---------------------------
4178 -- New_Stream_Subprogram --
4179 ---------------------------
4180
4181 procedure New_Stream_Subprogram
4182 (N : Node_Id;
4183 Ent : Entity_Id;
4184 Subp : Entity_Id;
4185 Nam : TSS_Name_Type)
4186 is
4187 Loc : constant Source_Ptr := Sloc (N);
4188 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
4189 Subp_Id : Entity_Id;
4190 Subp_Decl : Node_Id;
4191 F : Entity_Id;
4192 Etyp : Entity_Id;
4193
4194 Defer_Declaration : constant Boolean :=
4195 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
4196 -- For a tagged type, there is a declaration for each stream attribute
4197 -- at the freeze point, and we must generate only a completion of this
4198 -- declaration. We do the same for private types, because the full view
4199 -- might be tagged. Otherwise we generate a declaration at the point of
4200 -- the attribute definition clause.
4201
4202 function Build_Spec return Node_Id;
4203 -- Used for declaration and renaming declaration, so that this is
4204 -- treated as a renaming_as_body.
4205
4206 ----------------
4207 -- Build_Spec --
4208 ----------------
4209
4210 function Build_Spec return Node_Id is
4211 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
4212 Formals : List_Id;
4213 Spec : Node_Id;
4214 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
4215
4216 begin
4217 Subp_Id := Make_Defining_Identifier (Loc, Sname);
4218
4219 -- S : access Root_Stream_Type'Class
4220
4221 Formals := New_List (
4222 Make_Parameter_Specification (Loc,
4223 Defining_Identifier =>
4224 Make_Defining_Identifier (Loc, Name_S),
4225 Parameter_Type =>
4226 Make_Access_Definition (Loc,
4227 Subtype_Mark =>
4228 New_Reference_To (
4229 Designated_Type (Etype (F)), Loc))));
4230
4231 if Nam = TSS_Stream_Input then
4232 Spec := Make_Function_Specification (Loc,
4233 Defining_Unit_Name => Subp_Id,
4234 Parameter_Specifications => Formals,
4235 Result_Definition => T_Ref);
4236 else
4237 -- V : [out] T
4238
4239 Append_To (Formals,
4240 Make_Parameter_Specification (Loc,
4241 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
4242 Out_Present => Out_P,
4243 Parameter_Type => T_Ref));
4244
4245 Spec :=
4246 Make_Procedure_Specification (Loc,
4247 Defining_Unit_Name => Subp_Id,
4248 Parameter_Specifications => Formals);
4249 end if;
4250
4251 return Spec;
4252 end Build_Spec;
4253
4254 -- Start of processing for New_Stream_Subprogram
4255
4256 begin
4257 F := First_Formal (Subp);
4258
4259 if Ekind (Subp) = E_Procedure then
4260 Etyp := Etype (Next_Formal (F));
4261 else
4262 Etyp := Etype (Subp);
4263 end if;
4264
4265 -- Prepare subprogram declaration and insert it as an action on the
4266 -- clause node. The visibility for this entity is used to test for
4267 -- visibility of the attribute definition clause (in the sense of
4268 -- 8.3(23) as amended by AI-195).
4269
4270 if not Defer_Declaration then
4271 Subp_Decl :=
4272 Make_Subprogram_Declaration (Loc,
4273 Specification => Build_Spec);
4274
4275 -- For a tagged type, there is always a visible declaration for each
4276 -- stream TSS (it is a predefined primitive operation), and the
4277 -- completion of this declaration occurs at the freeze point, which is
4278 -- not always visible at places where the attribute definition clause is
4279 -- visible. So, we create a dummy entity here for the purpose of
4280 -- tracking the visibility of the attribute definition clause itself.
4281
4282 else
4283 Subp_Id :=
4284 Make_Defining_Identifier (Loc,
4285 Chars => New_External_Name (Sname, 'V'));
4286 Subp_Decl :=
4287 Make_Object_Declaration (Loc,
4288 Defining_Identifier => Subp_Id,
4289 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
4290 end if;
4291
4292 Insert_Action (N, Subp_Decl);
4293 Set_Entity (N, Subp_Id);
4294
4295 Subp_Decl :=
4296 Make_Subprogram_Renaming_Declaration (Loc,
4297 Specification => Build_Spec,
4298 Name => New_Reference_To (Subp, Loc));
4299
4300 if Defer_Declaration then
4301 Set_TSS (Base_Type (Ent), Subp_Id);
4302 else
4303 Insert_Action (N, Subp_Decl);
4304 Copy_TSS (Subp_Id, Base_Type (Ent));
4305 end if;
4306 end New_Stream_Subprogram;
4307
4308 ------------------------
4309 -- Rep_Item_Too_Early --
4310 ------------------------
4311
4312 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
4313 begin
4314 -- Cannot apply non-operational rep items to generic types
4315
4316 if Is_Operational_Item (N) then
4317 return False;
4318
4319 elsif Is_Type (T)
4320 and then Is_Generic_Type (Root_Type (T))
4321 then
4322 Error_Msg_N ("representation item not allowed for generic type", N);
4323 return True;
4324 end if;
4325
4326 -- Otherwise check for incomplete type
4327
4328 if Is_Incomplete_Or_Private_Type (T)
4329 and then No (Underlying_Type (T))
4330 then
4331 Error_Msg_N
4332 ("representation item must be after full type declaration", N);
4333 return True;
4334
4335 -- If the type has incomplete components, a representation clause is
4336 -- illegal but stream attributes and Convention pragmas are correct.
4337
4338 elsif Has_Private_Component (T) then
4339 if Nkind (N) = N_Pragma then
4340 return False;
4341 else
4342 Error_Msg_N
4343 ("representation item must appear after type is fully defined",
4344 N);
4345 return True;
4346 end if;
4347 else
4348 return False;
4349 end if;
4350 end Rep_Item_Too_Early;
4351
4352 -----------------------
4353 -- Rep_Item_Too_Late --
4354 -----------------------
4355
4356 function Rep_Item_Too_Late
4357 (T : Entity_Id;
4358 N : Node_Id;
4359 FOnly : Boolean := False) return Boolean
4360 is
4361 S : Entity_Id;
4362 Parent_Type : Entity_Id;
4363
4364 procedure Too_Late;
4365 -- Output the too late message. Note that this is not considered a
4366 -- serious error, since the effect is simply that we ignore the
4367 -- representation clause in this case.
4368
4369 --------------
4370 -- Too_Late --
4371 --------------
4372
4373 procedure Too_Late is
4374 begin
4375 Error_Msg_N ("|representation item appears too late!", N);
4376 end Too_Late;
4377
4378 -- Start of processing for Rep_Item_Too_Late
4379
4380 begin
4381 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
4382 -- types, which may be frozen if they appear in a representation clause
4383 -- for a local type.
4384
4385 if Is_Frozen (T)
4386 and then not From_With_Type (T)
4387 then
4388 Too_Late;
4389 S := First_Subtype (T);
4390
4391 if Present (Freeze_Node (S)) then
4392 Error_Msg_NE
4393 ("?no more representation items for }", Freeze_Node (S), S);
4394 end if;
4395
4396 return True;
4397
4398 -- Check for case of non-tagged derived type whose parent either has
4399 -- primitive operations, or is a by reference type (RM 13.1(10)).
4400
4401 elsif Is_Type (T)
4402 and then not FOnly
4403 and then Is_Derived_Type (T)
4404 and then not Is_Tagged_Type (T)
4405 then
4406 Parent_Type := Etype (Base_Type (T));
4407
4408 if Has_Primitive_Operations (Parent_Type) then
4409 Too_Late;
4410 Error_Msg_NE
4411 ("primitive operations already defined for&!", N, Parent_Type);
4412 return True;
4413
4414 elsif Is_By_Reference_Type (Parent_Type) then
4415 Too_Late;
4416 Error_Msg_NE
4417 ("parent type & is a by reference type!", N, Parent_Type);
4418 return True;
4419 end if;
4420 end if;
4421
4422 -- No error, link item into head of chain of rep items for the entity,
4423 -- but avoid chaining if we have an overloadable entity, and the pragma
4424 -- is one that can apply to multiple overloaded entities.
4425
4426 if Is_Overloadable (T)
4427 and then Nkind (N) = N_Pragma
4428 then
4429 declare
4430 Pname : constant Name_Id := Pragma_Name (N);
4431 begin
4432 if Pname = Name_Convention or else
4433 Pname = Name_Import or else
4434 Pname = Name_Export or else
4435 Pname = Name_External or else
4436 Pname = Name_Interface
4437 then
4438 return False;
4439 end if;
4440 end;
4441 end if;
4442
4443 Record_Rep_Item (T, N);
4444 return False;
4445 end Rep_Item_Too_Late;
4446
4447 -------------------------
4448 -- Same_Representation --
4449 -------------------------
4450
4451 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
4452 T1 : constant Entity_Id := Underlying_Type (Typ1);
4453 T2 : constant Entity_Id := Underlying_Type (Typ2);
4454
4455 begin
4456 -- A quick check, if base types are the same, then we definitely have
4457 -- the same representation, because the subtype specific representation
4458 -- attributes (Size and Alignment) do not affect representation from
4459 -- the point of view of this test.
4460
4461 if Base_Type (T1) = Base_Type (T2) then
4462 return True;
4463
4464 elsif Is_Private_Type (Base_Type (T2))
4465 and then Base_Type (T1) = Full_View (Base_Type (T2))
4466 then
4467 return True;
4468 end if;
4469
4470 -- Tagged types never have differing representations
4471
4472 if Is_Tagged_Type (T1) then
4473 return True;
4474 end if;
4475
4476 -- Representations are definitely different if conventions differ
4477
4478 if Convention (T1) /= Convention (T2) then
4479 return False;
4480 end if;
4481
4482 -- Representations are different if component alignments differ
4483
4484 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
4485 and then
4486 (Is_Record_Type (T2) or else Is_Array_Type (T2))
4487 and then Component_Alignment (T1) /= Component_Alignment (T2)
4488 then
4489 return False;
4490 end if;
4491
4492 -- For arrays, the only real issue is component size. If we know the
4493 -- component size for both arrays, and it is the same, then that's
4494 -- good enough to know we don't have a change of representation.
4495
4496 if Is_Array_Type (T1) then
4497 if Known_Component_Size (T1)
4498 and then Known_Component_Size (T2)
4499 and then Component_Size (T1) = Component_Size (T2)
4500 then
4501 return True;
4502 end if;
4503 end if;
4504
4505 -- Types definitely have same representation if neither has non-standard
4506 -- representation since default representations are always consistent.
4507 -- If only one has non-standard representation, and the other does not,
4508 -- then we consider that they do not have the same representation. They
4509 -- might, but there is no way of telling early enough.
4510
4511 if Has_Non_Standard_Rep (T1) then
4512 if not Has_Non_Standard_Rep (T2) then
4513 return False;
4514 end if;
4515 else
4516 return not Has_Non_Standard_Rep (T2);
4517 end if;
4518
4519 -- Here the two types both have non-standard representation, and we need
4520 -- to determine if they have the same non-standard representation.
4521
4522 -- For arrays, we simply need to test if the component sizes are the
4523 -- same. Pragma Pack is reflected in modified component sizes, so this
4524 -- check also deals with pragma Pack.
4525
4526 if Is_Array_Type (T1) then
4527 return Component_Size (T1) = Component_Size (T2);
4528
4529 -- Tagged types always have the same representation, because it is not
4530 -- possible to specify different representations for common fields.
4531
4532 elsif Is_Tagged_Type (T1) then
4533 return True;
4534
4535 -- Case of record types
4536
4537 elsif Is_Record_Type (T1) then
4538
4539 -- Packed status must conform
4540
4541 if Is_Packed (T1) /= Is_Packed (T2) then
4542 return False;
4543
4544 -- Otherwise we must check components. Typ2 maybe a constrained
4545 -- subtype with fewer components, so we compare the components
4546 -- of the base types.
4547
4548 else
4549 Record_Case : declare
4550 CD1, CD2 : Entity_Id;
4551
4552 function Same_Rep return Boolean;
4553 -- CD1 and CD2 are either components or discriminants. This
4554 -- function tests whether the two have the same representation
4555
4556 --------------
4557 -- Same_Rep --
4558 --------------
4559
4560 function Same_Rep return Boolean is
4561 begin
4562 if No (Component_Clause (CD1)) then
4563 return No (Component_Clause (CD2));
4564
4565 else
4566 return
4567 Present (Component_Clause (CD2))
4568 and then
4569 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
4570 and then
4571 Esize (CD1) = Esize (CD2);
4572 end if;
4573 end Same_Rep;
4574
4575 -- Start of processing for Record_Case
4576
4577 begin
4578 if Has_Discriminants (T1) then
4579 CD1 := First_Discriminant (T1);
4580 CD2 := First_Discriminant (T2);
4581
4582 -- The number of discriminants may be different if the
4583 -- derived type has fewer (constrained by values). The
4584 -- invisible discriminants retain the representation of
4585 -- the original, so the discrepancy does not per se
4586 -- indicate a different representation.
4587
4588 while Present (CD1)
4589 and then Present (CD2)
4590 loop
4591 if not Same_Rep then
4592 return False;
4593 else
4594 Next_Discriminant (CD1);
4595 Next_Discriminant (CD2);
4596 end if;
4597 end loop;
4598 end if;
4599
4600 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
4601 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
4602
4603 while Present (CD1) loop
4604 if not Same_Rep then
4605 return False;
4606 else
4607 Next_Component (CD1);
4608 Next_Component (CD2);
4609 end if;
4610 end loop;
4611
4612 return True;
4613 end Record_Case;
4614 end if;
4615
4616 -- For enumeration types, we must check each literal to see if the
4617 -- representation is the same. Note that we do not permit enumeration
4618 -- representation clauses for Character and Wide_Character, so these
4619 -- cases were already dealt with.
4620
4621 elsif Is_Enumeration_Type (T1) then
4622
4623 Enumeration_Case : declare
4624 L1, L2 : Entity_Id;
4625
4626 begin
4627 L1 := First_Literal (T1);
4628 L2 := First_Literal (T2);
4629
4630 while Present (L1) loop
4631 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
4632 return False;
4633 else
4634 Next_Literal (L1);
4635 Next_Literal (L2);
4636 end if;
4637 end loop;
4638
4639 return True;
4640
4641 end Enumeration_Case;
4642
4643 -- Any other types have the same representation for these purposes
4644
4645 else
4646 return True;
4647 end if;
4648 end Same_Representation;
4649
4650 --------------------
4651 -- Set_Enum_Esize --
4652 --------------------
4653
4654 procedure Set_Enum_Esize (T : Entity_Id) is
4655 Lo : Uint;
4656 Hi : Uint;
4657 Sz : Nat;
4658
4659 begin
4660 Init_Alignment (T);
4661
4662 -- Find the minimum standard size (8,16,32,64) that fits
4663
4664 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
4665 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
4666
4667 if Lo < 0 then
4668 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
4669 Sz := Standard_Character_Size; -- May be > 8 on some targets
4670
4671 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
4672 Sz := 16;
4673
4674 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
4675 Sz := 32;
4676
4677 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
4678 Sz := 64;
4679 end if;
4680
4681 else
4682 if Hi < Uint_2**08 then
4683 Sz := Standard_Character_Size; -- May be > 8 on some targets
4684
4685 elsif Hi < Uint_2**16 then
4686 Sz := 16;
4687
4688 elsif Hi < Uint_2**32 then
4689 Sz := 32;
4690
4691 else pragma Assert (Hi < Uint_2**63);
4692 Sz := 64;
4693 end if;
4694 end if;
4695
4696 -- That minimum is the proper size unless we have a foreign convention
4697 -- and the size required is 32 or less, in which case we bump the size
4698 -- up to 32. This is required for C and C++ and seems reasonable for
4699 -- all other foreign conventions.
4700
4701 if Has_Foreign_Convention (T)
4702 and then Esize (T) < Standard_Integer_Size
4703 then
4704 Init_Esize (T, Standard_Integer_Size);
4705 else
4706 Init_Esize (T, Sz);
4707 end if;
4708 end Set_Enum_Esize;
4709
4710 ------------------------------
4711 -- Validate_Address_Clauses --
4712 ------------------------------
4713
4714 procedure Validate_Address_Clauses is
4715 begin
4716 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
4717 declare
4718 ACCR : Address_Clause_Check_Record
4719 renames Address_Clause_Checks.Table (J);
4720
4721 Expr : Node_Id;
4722
4723 X_Alignment : Uint;
4724 Y_Alignment : Uint;
4725
4726 X_Size : Uint;
4727 Y_Size : Uint;
4728
4729 begin
4730 -- Skip processing of this entry if warning already posted
4731
4732 if not Address_Warning_Posted (ACCR.N) then
4733
4734 Expr := Original_Node (Expression (ACCR.N));
4735
4736 -- Get alignments
4737
4738 X_Alignment := Alignment (ACCR.X);
4739 Y_Alignment := Alignment (ACCR.Y);
4740
4741 -- Similarly obtain sizes
4742
4743 X_Size := Esize (ACCR.X);
4744 Y_Size := Esize (ACCR.Y);
4745
4746 -- Check for large object overlaying smaller one
4747
4748 if Y_Size > Uint_0
4749 and then X_Size > Uint_0
4750 and then X_Size > Y_Size
4751 then
4752 Error_Msg_NE
4753 ("?& overlays smaller object", ACCR.N, ACCR.X);
4754 Error_Msg_N
4755 ("\?program execution may be erroneous", ACCR.N);
4756 Error_Msg_Uint_1 := X_Size;
4757 Error_Msg_NE
4758 ("\?size of & is ^", ACCR.N, ACCR.X);
4759 Error_Msg_Uint_1 := Y_Size;
4760 Error_Msg_NE
4761 ("\?size of & is ^", ACCR.N, ACCR.Y);
4762
4763 -- Check for inadequate alignment, both of the base object
4764 -- and of the offset, if any.
4765
4766 -- Note: we do not check the alignment if we gave a size
4767 -- warning, since it would likely be redundant.
4768
4769 elsif Y_Alignment /= Uint_0
4770 and then (Y_Alignment < X_Alignment
4771 or else (ACCR.Off
4772 and then
4773 Nkind (Expr) = N_Attribute_Reference
4774 and then
4775 Attribute_Name (Expr) = Name_Address
4776 and then
4777 Has_Compatible_Alignment
4778 (ACCR.X, Prefix (Expr))
4779 /= Known_Compatible))
4780 then
4781 Error_Msg_NE
4782 ("?specified address for& may be inconsistent "
4783 & "with alignment",
4784 ACCR.N, ACCR.X);
4785 Error_Msg_N
4786 ("\?program execution may be erroneous (RM 13.3(27))",
4787 ACCR.N);
4788 Error_Msg_Uint_1 := X_Alignment;
4789 Error_Msg_NE
4790 ("\?alignment of & is ^",
4791 ACCR.N, ACCR.X);
4792 Error_Msg_Uint_1 := Y_Alignment;
4793 Error_Msg_NE
4794 ("\?alignment of & is ^",
4795 ACCR.N, ACCR.Y);
4796 if Y_Alignment >= X_Alignment then
4797 Error_Msg_N
4798 ("\?but offset is not multiple of alignment",
4799 ACCR.N);
4800 end if;
4801 end if;
4802 end if;
4803 end;
4804 end loop;
4805 end Validate_Address_Clauses;
4806
4807 -----------------------------------
4808 -- Validate_Unchecked_Conversion --
4809 -----------------------------------
4810
4811 procedure Validate_Unchecked_Conversion
4812 (N : Node_Id;
4813 Act_Unit : Entity_Id)
4814 is
4815 Source : Entity_Id;
4816 Target : Entity_Id;
4817 Vnode : Node_Id;
4818
4819 begin
4820 -- Obtain source and target types. Note that we call Ancestor_Subtype
4821 -- here because the processing for generic instantiation always makes
4822 -- subtypes, and we want the original frozen actual types.
4823
4824 -- If we are dealing with private types, then do the check on their
4825 -- fully declared counterparts if the full declarations have been
4826 -- encountered (they don't have to be visible, but they must exist!)
4827
4828 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
4829
4830 if Is_Private_Type (Source)
4831 and then Present (Underlying_Type (Source))
4832 then
4833 Source := Underlying_Type (Source);
4834 end if;
4835
4836 Target := Ancestor_Subtype (Etype (Act_Unit));
4837
4838 -- If either type is generic, the instantiation happens within a generic
4839 -- unit, and there is nothing to check. The proper check
4840 -- will happen when the enclosing generic is instantiated.
4841
4842 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
4843 return;
4844 end if;
4845
4846 if Is_Private_Type (Target)
4847 and then Present (Underlying_Type (Target))
4848 then
4849 Target := Underlying_Type (Target);
4850 end if;
4851
4852 -- Source may be unconstrained array, but not target
4853
4854 if Is_Array_Type (Target)
4855 and then not Is_Constrained (Target)
4856 then
4857 Error_Msg_N
4858 ("unchecked conversion to unconstrained array not allowed", N);
4859 return;
4860 end if;
4861
4862 -- Warn if conversion between two different convention pointers
4863
4864 if Is_Access_Type (Target)
4865 and then Is_Access_Type (Source)
4866 and then Convention (Target) /= Convention (Source)
4867 and then Warn_On_Unchecked_Conversion
4868 then
4869 -- Give warnings for subprogram pointers only on most targets. The
4870 -- exception is VMS, where data pointers can have different lengths
4871 -- depending on the pointer convention.
4872
4873 if Is_Access_Subprogram_Type (Target)
4874 or else Is_Access_Subprogram_Type (Source)
4875 or else OpenVMS_On_Target
4876 then
4877 Error_Msg_N
4878 ("?conversion between pointers with different conventions!", N);
4879 end if;
4880 end if;
4881
4882 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
4883 -- warning when compiling GNAT-related sources.
4884
4885 if Warn_On_Unchecked_Conversion
4886 and then not In_Predefined_Unit (N)
4887 and then RTU_Loaded (Ada_Calendar)
4888 and then
4889 (Chars (Source) = Name_Time
4890 or else
4891 Chars (Target) = Name_Time)
4892 then
4893 -- If Ada.Calendar is loaded and the name of one of the operands is
4894 -- Time, there is a good chance that this is Ada.Calendar.Time.
4895
4896 declare
4897 Calendar_Time : constant Entity_Id :=
4898 Full_View (RTE (RO_CA_Time));
4899 begin
4900 pragma Assert (Present (Calendar_Time));
4901
4902 if Source = Calendar_Time
4903 or else Target = Calendar_Time
4904 then
4905 Error_Msg_N
4906 ("?representation of 'Time values may change between " &
4907 "'G'N'A'T versions", N);
4908 end if;
4909 end;
4910 end if;
4911
4912 -- Make entry in unchecked conversion table for later processing by
4913 -- Validate_Unchecked_Conversions, which will check sizes and alignments
4914 -- (using values set by the back-end where possible). This is only done
4915 -- if the appropriate warning is active.
4916
4917 if Warn_On_Unchecked_Conversion then
4918 Unchecked_Conversions.Append
4919 (New_Val => UC_Entry'
4920 (Eloc => Sloc (N),
4921 Source => Source,
4922 Target => Target));
4923
4924 -- If both sizes are known statically now, then back end annotation
4925 -- is not required to do a proper check but if either size is not
4926 -- known statically, then we need the annotation.
4927
4928 if Known_Static_RM_Size (Source)
4929 and then Known_Static_RM_Size (Target)
4930 then
4931 null;
4932 else
4933 Back_Annotate_Rep_Info := True;
4934 end if;
4935 end if;
4936
4937 -- If unchecked conversion to access type, and access type is declared
4938 -- in the same unit as the unchecked conversion, then set the
4939 -- No_Strict_Aliasing flag (no strict aliasing is implicit in this
4940 -- situation).
4941
4942 if Is_Access_Type (Target) and then
4943 In_Same_Source_Unit (Target, N)
4944 then
4945 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
4946 end if;
4947
4948 -- Generate N_Validate_Unchecked_Conversion node for back end in
4949 -- case the back end needs to perform special validation checks.
4950
4951 -- Shouldn't this be in Exp_Ch13, since the check only gets done
4952 -- if we have full expansion and the back end is called ???
4953
4954 Vnode :=
4955 Make_Validate_Unchecked_Conversion (Sloc (N));
4956 Set_Source_Type (Vnode, Source);
4957 Set_Target_Type (Vnode, Target);
4958
4959 -- If the unchecked conversion node is in a list, just insert before it.
4960 -- If not we have some strange case, not worth bothering about.
4961
4962 if Is_List_Member (N) then
4963 Insert_After (N, Vnode);
4964 end if;
4965 end Validate_Unchecked_Conversion;
4966
4967 ------------------------------------
4968 -- Validate_Unchecked_Conversions --
4969 ------------------------------------
4970
4971 procedure Validate_Unchecked_Conversions is
4972 begin
4973 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
4974 declare
4975 T : UC_Entry renames Unchecked_Conversions.Table (N);
4976
4977 Eloc : constant Source_Ptr := T.Eloc;
4978 Source : constant Entity_Id := T.Source;
4979 Target : constant Entity_Id := T.Target;
4980
4981 Source_Siz : Uint;
4982 Target_Siz : Uint;
4983
4984 begin
4985 -- This validation check, which warns if we have unequal sizes for
4986 -- unchecked conversion, and thus potentially implementation
4987 -- dependent semantics, is one of the few occasions on which we
4988 -- use the official RM size instead of Esize. See description in
4989 -- Einfo "Handling of Type'Size Values" for details.
4990
4991 if Serious_Errors_Detected = 0
4992 and then Known_Static_RM_Size (Source)
4993 and then Known_Static_RM_Size (Target)
4994
4995 -- Don't do the check if warnings off for either type, note the
4996 -- deliberate use of OR here instead of OR ELSE to get the flag
4997 -- Warnings_Off_Used set for both types if appropriate.
4998
4999 and then not (Has_Warnings_Off (Source)
5000 or
5001 Has_Warnings_Off (Target))
5002 then
5003 Source_Siz := RM_Size (Source);
5004 Target_Siz := RM_Size (Target);
5005
5006 if Source_Siz /= Target_Siz then
5007 Error_Msg
5008 ("?types for unchecked conversion have different sizes!",
5009 Eloc);
5010
5011 if All_Errors_Mode then
5012 Error_Msg_Name_1 := Chars (Source);
5013 Error_Msg_Uint_1 := Source_Siz;
5014 Error_Msg_Name_2 := Chars (Target);
5015 Error_Msg_Uint_2 := Target_Siz;
5016 Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
5017
5018 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
5019
5020 if Is_Discrete_Type (Source)
5021 and then Is_Discrete_Type (Target)
5022 then
5023 if Source_Siz > Target_Siz then
5024 Error_Msg
5025 ("\?^ high order bits of source will be ignored!",
5026 Eloc);
5027
5028 elsif Is_Unsigned_Type (Source) then
5029 Error_Msg
5030 ("\?source will be extended with ^ high order " &
5031 "zero bits?!", Eloc);
5032
5033 else
5034 Error_Msg
5035 ("\?source will be extended with ^ high order " &
5036 "sign bits!",
5037 Eloc);
5038 end if;
5039
5040 elsif Source_Siz < Target_Siz then
5041 if Is_Discrete_Type (Target) then
5042 if Bytes_Big_Endian then
5043 Error_Msg
5044 ("\?target value will include ^ undefined " &
5045 "low order bits!",
5046 Eloc);
5047 else
5048 Error_Msg
5049 ("\?target value will include ^ undefined " &
5050 "high order bits!",
5051 Eloc);
5052 end if;
5053
5054 else
5055 Error_Msg
5056 ("\?^ trailing bits of target value will be " &
5057 "undefined!", Eloc);
5058 end if;
5059
5060 else pragma Assert (Source_Siz > Target_Siz);
5061 Error_Msg
5062 ("\?^ trailing bits of source will be ignored!",
5063 Eloc);
5064 end if;
5065 end if;
5066 end if;
5067 end if;
5068
5069 -- If both types are access types, we need to check the alignment.
5070 -- If the alignment of both is specified, we can do it here.
5071
5072 if Serious_Errors_Detected = 0
5073 and then Ekind (Source) in Access_Kind
5074 and then Ekind (Target) in Access_Kind
5075 and then Target_Strict_Alignment
5076 and then Present (Designated_Type (Source))
5077 and then Present (Designated_Type (Target))
5078 then
5079 declare
5080 D_Source : constant Entity_Id := Designated_Type (Source);
5081 D_Target : constant Entity_Id := Designated_Type (Target);
5082
5083 begin
5084 if Known_Alignment (D_Source)
5085 and then Known_Alignment (D_Target)
5086 then
5087 declare
5088 Source_Align : constant Uint := Alignment (D_Source);
5089 Target_Align : constant Uint := Alignment (D_Target);
5090
5091 begin
5092 if Source_Align < Target_Align
5093 and then not Is_Tagged_Type (D_Source)
5094
5095 -- Suppress warning if warnings suppressed on either
5096 -- type or either designated type. Note the use of
5097 -- OR here instead of OR ELSE. That is intentional,
5098 -- we would like to set flag Warnings_Off_Used in
5099 -- all types for which warnings are suppressed.
5100
5101 and then not (Has_Warnings_Off (D_Source)
5102 or
5103 Has_Warnings_Off (D_Target)
5104 or
5105 Has_Warnings_Off (Source)
5106 or
5107 Has_Warnings_Off (Target))
5108 then
5109 Error_Msg_Uint_1 := Target_Align;
5110 Error_Msg_Uint_2 := Source_Align;
5111 Error_Msg_Node_1 := D_Target;
5112 Error_Msg_Node_2 := D_Source;
5113 Error_Msg
5114 ("?alignment of & (^) is stricter than " &
5115 "alignment of & (^)!", Eloc);
5116 Error_Msg
5117 ("\?resulting access value may have invalid " &
5118 "alignment!", Eloc);
5119 end if;
5120 end;
5121 end if;
5122 end;
5123 end if;
5124 end;
5125 end loop;
5126 end Validate_Unchecked_Conversions;
5127
5128 end Sem_Ch13;