[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83
84 package body Sem_Ch3 is
85
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
89
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
94
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The aspects to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
104
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
126 --
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
129
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
137
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
145
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
153
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
161
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
168
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
178
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
193
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
201
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
215
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
224 --
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
227 --
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 --
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
238
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
247
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
259
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
266
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
280
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
284
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
288
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
292
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
305
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
309
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
317
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
335
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
339
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
343
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
357
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraint
365 -- Constraints for Typ and a component of Typ, with type Compon_Type,
366 -- create and return the type corresponding to Compon_type where all
367 -- discriminant references are replaced with the corresponding constraint.
368 -- If no discriminant references occur in Compon_Typ then return it as is.
369 -- Constrained_Typ is the final constrained subtype to which the
370 -- constrained Compon_Type belongs. Related_Node is the node where we will
371 -- attach all the itypes created.
372 --
373 -- Above description is confused, what is Compon_Type???
374
375 procedure Constrain_Access
376 (Def_Id : in out Entity_Id;
377 S : Node_Id;
378 Related_Nod : Node_Id);
379 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
380 -- an anonymous type created for a subtype indication. In that case it is
381 -- created in the procedure and attached to Related_Nod.
382
383 procedure Constrain_Array
384 (Def_Id : in out Entity_Id;
385 SI : Node_Id;
386 Related_Nod : Node_Id;
387 Related_Id : Entity_Id;
388 Suffix : Character);
389 -- Apply a list of index constraints to an unconstrained array type. The
390 -- first parameter is the entity for the resulting subtype. A value of
391 -- Empty for Def_Id indicates that an implicit type must be created, but
392 -- creation is delayed (and must be done by this procedure) because other
393 -- subsidiary implicit types must be created first (which is why Def_Id
394 -- is an in/out parameter). The second parameter is a subtype indication
395 -- node for the constrained array to be created (e.g. something of the
396 -- form string (1 .. 10)). Related_Nod gives the place where this type
397 -- has to be inserted in the tree. The Related_Id and Suffix parameters
398 -- are used to build the associated Implicit type name.
399
400 procedure Constrain_Concurrent
401 (Def_Id : in out Entity_Id;
402 SI : Node_Id;
403 Related_Nod : Node_Id;
404 Related_Id : Entity_Id;
405 Suffix : Character);
406 -- Apply list of discriminant constraints to an unconstrained concurrent
407 -- type.
408 --
409 -- SI is the N_Subtype_Indication node containing the constraint and
410 -- the unconstrained type to constrain.
411 --
412 -- Def_Id is the entity for the resulting constrained subtype. A value
413 -- of Empty for Def_Id indicates that an implicit type must be created,
414 -- but creation is delayed (and must be done by this procedure) because
415 -- other subsidiary implicit types must be created first (which is why
416 -- Def_Id is an in/out parameter).
417 --
418 -- Related_Nod gives the place where this type has to be inserted
419 -- in the tree
420 --
421 -- The last two arguments are used to create its external name if needed.
422
423 function Constrain_Corresponding_Record
424 (Prot_Subt : Entity_Id;
425 Corr_Rec : Entity_Id;
426 Related_Nod : Node_Id;
427 Related_Id : Entity_Id) return Entity_Id;
428 -- When constraining a protected type or task type with discriminants,
429 -- constrain the corresponding record with the same discriminant values.
430
431 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain a decimal fixed point type with a digits constraint and/or a
433 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
434
435 procedure Constrain_Discriminated_Type
436 (Def_Id : Entity_Id;
437 S : Node_Id;
438 Related_Nod : Node_Id;
439 For_Access : Boolean := False);
440 -- Process discriminant constraints of composite type. Verify that values
441 -- have been provided for all discriminants, that the original type is
442 -- unconstrained, and that the types of the supplied expressions match
443 -- the discriminant types. The first three parameters are like in routine
444 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
445 -- of For_Access.
446
447 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain an enumeration type with a range constraint. This is identical
449 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
450
451 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
452 -- Constrain a floating point type with either a digits constraint
453 -- and/or a range constraint, building a E_Floating_Point_Subtype.
454
455 procedure Constrain_Index
456 (Index : Node_Id;
457 S : Node_Id;
458 Related_Nod : Node_Id;
459 Related_Id : Entity_Id;
460 Suffix : Character;
461 Suffix_Index : Nat);
462 -- Process an index constraint S in a constrained array declaration. The
463 -- constraint can be a subtype name, or a range with or without an explicit
464 -- subtype mark. The index is the corresponding index of the unconstrained
465 -- array. The Related_Id and Suffix parameters are used to build the
466 -- associated Implicit type name.
467
468 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
469 -- Build subtype of a signed or modular integer type
470
471 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
472 -- Constrain an ordinary fixed point type with a range constraint, and
473 -- build an E_Ordinary_Fixed_Point_Subtype entity.
474
475 procedure Copy_And_Swap (Priv, Full : Entity_Id);
476 -- Copy the Priv entity into the entity of its full declaration then swap
477 -- the two entities in such a manner that the former private type is now
478 -- seen as a full type.
479
480 procedure Decimal_Fixed_Point_Type_Declaration
481 (T : Entity_Id;
482 Def : Node_Id);
483 -- Create a new decimal fixed point type, and apply the constraint to
484 -- obtain a subtype of this new type.
485
486 procedure Complete_Private_Subtype
487 (Priv : Entity_Id;
488 Full : Entity_Id;
489 Full_Base : Entity_Id;
490 Related_Nod : Node_Id);
491 -- Complete the implicit full view of a private subtype by setting the
492 -- appropriate semantic fields. If the full view of the parent is a record
493 -- type, build constrained components of subtype.
494
495 procedure Derive_Progenitor_Subprograms
496 (Parent_Type : Entity_Id;
497 Tagged_Type : Entity_Id);
498 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
499 -- operations of progenitors of Tagged_Type, and replace the subsidiary
500 -- subtypes with Tagged_Type, to build the specs of the inherited interface
501 -- primitives. The derived primitives are aliased to those of the
502 -- interface. This routine takes care also of transferring to the full view
503 -- subprograms associated with the partial view of Tagged_Type that cover
504 -- interface primitives.
505
506 procedure Derived_Standard_Character
507 (N : Node_Id;
508 Parent_Type : Entity_Id;
509 Derived_Type : Entity_Id);
510 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
511 -- derivations from types Standard.Character and Standard.Wide_Character.
512
513 procedure Derived_Type_Declaration
514 (T : Entity_Id;
515 N : Node_Id;
516 Is_Completion : Boolean);
517 -- Process a derived type declaration. Build_Derived_Type is invoked
518 -- to process the actual derived type definition. Parameters N and
519 -- Is_Completion have the same meaning as in Build_Derived_Type.
520 -- T is the N_Defining_Identifier for the entity defined in the
521 -- N_Full_Type_Declaration node N, that is T is the derived type.
522
523 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
524 -- Insert each literal in symbol table, as an overloadable identifier. Each
525 -- enumeration type is mapped into a sequence of integers, and each literal
526 -- is defined as a constant with integer value. If any of the literals are
527 -- character literals, the type is a character type, which means that
528 -- strings are legal aggregates for arrays of components of the type.
529
530 function Expand_To_Stored_Constraint
531 (Typ : Entity_Id;
532 Constraint : Elist_Id) return Elist_Id;
533 -- Given a constraint (i.e. a list of expressions) on the discriminants of
534 -- Typ, expand it into a constraint on the stored discriminants and return
535 -- the new list of expressions constraining the stored discriminants.
536
537 function Find_Type_Of_Object
538 (Obj_Def : Node_Id;
539 Related_Nod : Node_Id) return Entity_Id;
540 -- Get type entity for object referenced by Obj_Def, attaching the
541 -- implicit types generated to Related_Nod
542
543 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
544 -- Create a new float and apply the constraint to obtain subtype of it
545
546 function Has_Range_Constraint (N : Node_Id) return Boolean;
547 -- Given an N_Subtype_Indication node N, return True if a range constraint
548 -- is present, either directly, or as part of a digits or delta constraint.
549 -- In addition, a digits constraint in the decimal case returns True, since
550 -- it establishes a default range if no explicit range is present.
551
552 function Inherit_Components
553 (N : Node_Id;
554 Parent_Base : Entity_Id;
555 Derived_Base : Entity_Id;
556 Is_Tagged : Boolean;
557 Inherit_Discr : Boolean;
558 Discs : Elist_Id) return Elist_Id;
559 -- Called from Build_Derived_Record_Type to inherit the components of
560 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
561 -- For more information on derived types and component inheritance please
562 -- consult the comment above the body of Build_Derived_Record_Type.
563 --
564 -- N is the original derived type declaration
565 --
566 -- Is_Tagged is set if we are dealing with tagged types
567 --
568 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
569 -- Parent_Base, otherwise no discriminants are inherited.
570 --
571 -- Discs gives the list of constraints that apply to Parent_Base in the
572 -- derived type declaration. If Discs is set to No_Elist, then we have
573 -- the following situation:
574 --
575 -- type Parent (D1..Dn : ..) is [tagged] record ...;
576 -- type Derived is new Parent [with ...];
577 --
578 -- which gets treated as
579 --
580 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
581 --
582 -- For untagged types the returned value is an association list. The list
583 -- starts from the association (Parent_Base => Derived_Base), and then it
584 -- contains a sequence of the associations of the form
585 --
586 -- (Old_Component => New_Component),
587 --
588 -- where Old_Component is the Entity_Id of a component in Parent_Base and
589 -- New_Component is the Entity_Id of the corresponding component in
590 -- Derived_Base. For untagged records, this association list is needed when
591 -- copying the record declaration for the derived base. In the tagged case
592 -- the value returned is irrelevant.
593
594 function Is_Valid_Constraint_Kind
595 (T_Kind : Type_Kind;
596 Constraint_Kind : Node_Kind) return Boolean;
597 -- Returns True if it is legal to apply the given kind of constraint to the
598 -- given kind of type (index constraint to an array type, for example).
599
600 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
601 -- Create new modular type. Verify that modulus is in bounds
602
603 procedure New_Concatenation_Op (Typ : Entity_Id);
604 -- Create an abbreviated declaration for an operator in order to
605 -- materialize concatenation on array types.
606
607 procedure Ordinary_Fixed_Point_Type_Declaration
608 (T : Entity_Id;
609 Def : Node_Id);
610 -- Create a new ordinary fixed point type, and apply the constraint to
611 -- obtain subtype of it.
612
613 procedure Prepare_Private_Subtype_Completion
614 (Id : Entity_Id;
615 Related_Nod : Node_Id);
616 -- Id is a subtype of some private type. Creates the full declaration
617 -- associated with Id whenever possible, i.e. when the full declaration
618 -- of the base type is already known. Records each subtype into
619 -- Private_Dependents of the base type.
620
621 procedure Process_Incomplete_Dependents
622 (N : Node_Id;
623 Full_T : Entity_Id;
624 Inc_T : Entity_Id);
625 -- Process all entities that depend on an incomplete type. There include
626 -- subtypes, subprogram types that mention the incomplete type in their
627 -- profiles, and subprogram with access parameters that designate the
628 -- incomplete type.
629
630 -- Inc_T is the defining identifier of an incomplete type declaration, its
631 -- Ekind is E_Incomplete_Type.
632 --
633 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 --
635 -- Full_T is N's defining identifier.
636 --
637 -- Subtypes of incomplete types with discriminants are completed when the
638 -- parent type is. This is simpler than private subtypes, because they can
639 -- only appear in the same scope, and there is no need to exchange views.
640 -- Similarly, access_to_subprogram types may have a parameter or a return
641 -- type that is an incomplete type, and that must be replaced with the
642 -- full type.
643 --
644 -- If the full type is tagged, subprogram with access parameters that
645 -- designated the incomplete may be primitive operations of the full type,
646 -- and have to be processed accordingly.
647
648 procedure Process_Real_Range_Specification (Def : Node_Id);
649 -- Given the type definition for a real type, this procedure processes and
650 -- checks the real range specification of this type definition if one is
651 -- present. If errors are found, error messages are posted, and the
652 -- Real_Range_Specification of Def is reset to Empty.
653
654 procedure Record_Type_Declaration
655 (T : Entity_Id;
656 N : Node_Id;
657 Prev : Entity_Id);
658 -- Process a record type declaration (for both untagged and tagged
659 -- records). Parameters T and N are exactly like in procedure
660 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
661 -- for this routine. If this is the completion of an incomplete type
662 -- declaration, Prev is the entity of the incomplete declaration, used for
663 -- cross-referencing. Otherwise Prev = T.
664
665 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
666 -- This routine is used to process the actual record type definition (both
667 -- for untagged and tagged records). Def is a record type definition node.
668 -- This procedure analyzes the components in this record type definition.
669 -- Prev_T is the entity for the enclosing record type. It is provided so
670 -- that its Has_Task flag can be set if any of the component have Has_Task
671 -- set. If the declaration is the completion of an incomplete type
672 -- declaration, Prev_T is the original incomplete type, whose full view is
673 -- the record type.
674
675 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
676 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
677 -- build a copy of the declaration tree of the parent, and we create
678 -- independently the list of components for the derived type. Semantic
679 -- information uses the component entities, but record representation
680 -- clauses are validated on the declaration tree. This procedure replaces
681 -- discriminants and components in the declaration with those that have
682 -- been created by Inherit_Components.
683
684 procedure Set_Fixed_Range
685 (E : Entity_Id;
686 Loc : Source_Ptr;
687 Lo : Ureal;
688 Hi : Ureal);
689 -- Build a range node with the given bounds and set it as the Scalar_Range
690 -- of the given fixed-point type entity. Loc is the source location used
691 -- for the constructed range. See body for further details.
692
693 procedure Set_Scalar_Range_For_Subtype
694 (Def_Id : Entity_Id;
695 R : Node_Id;
696 Subt : Entity_Id);
697 -- This routine is used to set the scalar range field for a subtype given
698 -- Def_Id, the entity for the subtype, and R, the range expression for the
699 -- scalar range. Subt provides the parent subtype to be used to analyze,
700 -- resolve, and check the given range.
701
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
705
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
710
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
714
715 -----------------------
716 -- Access_Definition --
717 -----------------------
718
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
722 is
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
727
728 begin
729 Check_SPARK_Restriction ("access type is not allowed", N);
730
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
737
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
740
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
744
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
749
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
753
754 declare
755 Par : Node_Id;
756
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
764
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
769
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
777
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
785
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
790
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
793
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
799
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
802
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
806
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
809
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
812
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
815
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
819
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
829
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
832
833 if Present (Access_To_Subprogram_Definition (N)) then
834
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
838
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
840
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
844
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind
850 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
851 end if;
852
853 Set_Can_Use_Internal_Rep
854 (Anon_Type, not Always_Compatible_Rep_On_Target);
855
856 -- If the anonymous access is associated with a protected operation,
857 -- create a reference to it after the enclosing protected definition
858 -- because the itype will be used in the subsequent bodies.
859
860 if Ekind (Current_Scope) = E_Protected_Type then
861 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
862 end if;
863
864 return Anon_Type;
865 end if;
866
867 Find_Type (Subtype_Mark (N));
868 Desig_Type := Entity (Subtype_Mark (N));
869
870 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
871 Set_Etype (Anon_Type, Anon_Type);
872
873 -- Make sure the anonymous access type has size and alignment fields
874 -- set, as required by gigi. This is necessary in the case of the
875 -- Task_Body_Procedure.
876
877 if not Has_Private_Component (Desig_Type) then
878 Layout_Type (Anon_Type);
879 end if;
880
881 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
882 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
883 -- the null value is allowed. In Ada 95 the null value is never allowed.
884
885 if Ada_Version >= Ada_2005 then
886 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
887 else
888 Set_Can_Never_Be_Null (Anon_Type, True);
889 end if;
890
891 -- The anonymous access type is as public as the discriminated type or
892 -- subprogram that defines it. It is imported (for back-end purposes)
893 -- if the designated type is.
894
895 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
896
897 -- Ada 2005 (AI-231): Propagate the access-constant attribute
898
899 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
900
901 -- The context is either a subprogram declaration, object declaration,
902 -- or an access discriminant, in a private or a full type declaration.
903 -- In the case of a subprogram, if the designated type is incomplete,
904 -- the operation will be a primitive operation of the full type, to be
905 -- updated subsequently. If the type is imported through a limited_with
906 -- clause, the subprogram is not a primitive operation of the type
907 -- (which is declared elsewhere in some other scope).
908
909 if Ekind (Desig_Type) = E_Incomplete_Type
910 and then not From_Limited_With (Desig_Type)
911 and then Is_Overloadable (Current_Scope)
912 then
913 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
914 Set_Has_Delayed_Freeze (Current_Scope);
915 end if;
916
917 -- Ada 2005: If the designated type is an interface that may contain
918 -- tasks, create a Master entity for the declaration. This must be done
919 -- before expansion of the full declaration, because the declaration may
920 -- include an expression that is an allocator, whose expansion needs the
921 -- proper Master for the created tasks.
922
923 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
924 then
925 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
926 then
927 Build_Class_Wide_Master (Anon_Type);
928
929 -- Similarly, if the type is an anonymous access that designates
930 -- tasks, create a master entity for it in the current context.
931
932 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
933 then
934 Build_Master_Entity (Defining_Identifier (Related_Nod));
935 Build_Master_Renaming (Anon_Type);
936 end if;
937 end if;
938
939 -- For a private component of a protected type, it is imperative that
940 -- the back-end elaborate the type immediately after the protected
941 -- declaration, because this type will be used in the declarations
942 -- created for the component within each protected body, so we must
943 -- create an itype reference for it now.
944
945 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
946 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
947
948 -- Similarly, if the access definition is the return result of a
949 -- function, create an itype reference for it because it will be used
950 -- within the function body. For a regular function that is not a
951 -- compilation unit, insert reference after the declaration. For a
952 -- protected operation, insert it after the enclosing protected type
953 -- declaration. In either case, do not create a reference for a type
954 -- obtained through a limited_with clause, because this would introduce
955 -- semantic dependencies.
956
957 -- Similarly, do not create a reference if the designated type is a
958 -- generic formal, because no use of it will reach the backend.
959
960 elsif Nkind (Related_Nod) = N_Function_Specification
961 and then not From_Limited_With (Desig_Type)
962 and then not Is_Generic_Type (Desig_Type)
963 then
964 if Present (Enclosing_Prot_Type) then
965 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
966
967 elsif Is_List_Member (Parent (Related_Nod))
968 and then Nkind (Parent (N)) /= N_Parameter_Specification
969 then
970 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
971 end if;
972
973 -- Finally, create an itype reference for an object declaration of an
974 -- anonymous access type. This is strictly necessary only for deferred
975 -- constants, but in any case will avoid out-of-scope problems in the
976 -- back-end.
977
978 elsif Nkind (Related_Nod) = N_Object_Declaration then
979 Build_Itype_Reference (Anon_Type, Related_Nod);
980 end if;
981
982 return Anon_Type;
983 end Access_Definition;
984
985 -----------------------------------
986 -- Access_Subprogram_Declaration --
987 -----------------------------------
988
989 procedure Access_Subprogram_Declaration
990 (T_Name : Entity_Id;
991 T_Def : Node_Id)
992 is
993 procedure Check_For_Premature_Usage (Def : Node_Id);
994 -- Check that type T_Name is not used, directly or recursively, as a
995 -- parameter or a return type in Def. Def is either a subtype, an
996 -- access_definition, or an access_to_subprogram_definition.
997
998 -------------------------------
999 -- Check_For_Premature_Usage --
1000 -------------------------------
1001
1002 procedure Check_For_Premature_Usage (Def : Node_Id) is
1003 Param : Node_Id;
1004
1005 begin
1006 -- Check for a subtype mark
1007
1008 if Nkind (Def) in N_Has_Etype then
1009 if Etype (Def) = T_Name then
1010 Error_Msg_N
1011 ("type& cannot be used before end of its declaration", Def);
1012 end if;
1013
1014 -- If this is not a subtype, then this is an access_definition
1015
1016 elsif Nkind (Def) = N_Access_Definition then
1017 if Present (Access_To_Subprogram_Definition (Def)) then
1018 Check_For_Premature_Usage
1019 (Access_To_Subprogram_Definition (Def));
1020 else
1021 Check_For_Premature_Usage (Subtype_Mark (Def));
1022 end if;
1023
1024 -- The only cases left are N_Access_Function_Definition and
1025 -- N_Access_Procedure_Definition.
1026
1027 else
1028 if Present (Parameter_Specifications (Def)) then
1029 Param := First (Parameter_Specifications (Def));
1030 while Present (Param) loop
1031 Check_For_Premature_Usage (Parameter_Type (Param));
1032 Param := Next (Param);
1033 end loop;
1034 end if;
1035
1036 if Nkind (Def) = N_Access_Function_Definition then
1037 Check_For_Premature_Usage (Result_Definition (Def));
1038 end if;
1039 end if;
1040 end Check_For_Premature_Usage;
1041
1042 -- Local variables
1043
1044 Formals : constant List_Id := Parameter_Specifications (T_Def);
1045 Formal : Entity_Id;
1046 D_Ityp : Node_Id;
1047 Desig_Type : constant Entity_Id :=
1048 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1049
1050 -- Start of processing for Access_Subprogram_Declaration
1051
1052 begin
1053 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1054
1055 -- Associate the Itype node with the inner full-type declaration or
1056 -- subprogram spec or entry body. This is required to handle nested
1057 -- anonymous declarations. For example:
1058
1059 -- procedure P
1060 -- (X : access procedure
1061 -- (Y : access procedure
1062 -- (Z : access T)))
1063
1064 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1065 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1066 N_Private_Type_Declaration,
1067 N_Private_Extension_Declaration,
1068 N_Procedure_Specification,
1069 N_Function_Specification,
1070 N_Entry_Body)
1071
1072 or else
1073 Nkind_In (D_Ityp, N_Object_Declaration,
1074 N_Object_Renaming_Declaration,
1075 N_Formal_Object_Declaration,
1076 N_Formal_Type_Declaration,
1077 N_Task_Type_Declaration,
1078 N_Protected_Type_Declaration))
1079 loop
1080 D_Ityp := Parent (D_Ityp);
1081 pragma Assert (D_Ityp /= Empty);
1082 end loop;
1083
1084 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1085
1086 if Nkind_In (D_Ityp, N_Procedure_Specification,
1087 N_Function_Specification)
1088 then
1089 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1090
1091 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1092 N_Object_Declaration,
1093 N_Object_Renaming_Declaration,
1094 N_Formal_Type_Declaration)
1095 then
1096 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1097 end if;
1098
1099 if Nkind (T_Def) = N_Access_Function_Definition then
1100 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1101 declare
1102 Acc : constant Node_Id := Result_Definition (T_Def);
1103
1104 begin
1105 if Present (Access_To_Subprogram_Definition (Acc))
1106 and then
1107 Protected_Present (Access_To_Subprogram_Definition (Acc))
1108 then
1109 Set_Etype
1110 (Desig_Type,
1111 Replace_Anonymous_Access_To_Protected_Subprogram
1112 (T_Def));
1113
1114 else
1115 Set_Etype
1116 (Desig_Type,
1117 Access_Definition (T_Def, Result_Definition (T_Def)));
1118 end if;
1119 end;
1120
1121 else
1122 Analyze (Result_Definition (T_Def));
1123
1124 declare
1125 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1126
1127 begin
1128 -- If a null exclusion is imposed on the result type, then
1129 -- create a null-excluding itype (an access subtype) and use
1130 -- it as the function's Etype.
1131
1132 if Is_Access_Type (Typ)
1133 and then Null_Exclusion_In_Return_Present (T_Def)
1134 then
1135 Set_Etype (Desig_Type,
1136 Create_Null_Excluding_Itype
1137 (T => Typ,
1138 Related_Nod => T_Def,
1139 Scope_Id => Current_Scope));
1140
1141 else
1142 if From_Limited_With (Typ) then
1143
1144 -- AI05-151: Incomplete types are allowed in all basic
1145 -- declarations, including access to subprograms.
1146
1147 if Ada_Version >= Ada_2012 then
1148 null;
1149
1150 else
1151 Error_Msg_NE
1152 ("illegal use of incomplete type&",
1153 Result_Definition (T_Def), Typ);
1154 end if;
1155
1156 elsif Ekind (Current_Scope) = E_Package
1157 and then In_Private_Part (Current_Scope)
1158 then
1159 if Ekind (Typ) = E_Incomplete_Type then
1160 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1161
1162 elsif Is_Class_Wide_Type (Typ)
1163 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1164 then
1165 Append_Elmt
1166 (Desig_Type, Private_Dependents (Etype (Typ)));
1167 end if;
1168 end if;
1169
1170 Set_Etype (Desig_Type, Typ);
1171 end if;
1172 end;
1173 end if;
1174
1175 if not (Is_Type (Etype (Desig_Type))) then
1176 Error_Msg_N
1177 ("expect type in function specification",
1178 Result_Definition (T_Def));
1179 end if;
1180
1181 else
1182 Set_Etype (Desig_Type, Standard_Void_Type);
1183 end if;
1184
1185 if Present (Formals) then
1186 Push_Scope (Desig_Type);
1187
1188 -- Some special tests here. These special tests can be removed
1189 -- if and when Itypes always have proper parent pointers to their
1190 -- declarations???
1191
1192 -- Special test 1) Link defining_identifier of formals. Required by
1193 -- First_Formal to provide its functionality.
1194
1195 declare
1196 F : Node_Id;
1197
1198 begin
1199 F := First (Formals);
1200
1201 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1202 -- when it is part of an unconstrained type and subtype expansion
1203 -- is disabled. To avoid back-end problems with shared profiles,
1204 -- use previous subprogram type as the designated type, and then
1205 -- remove scope added above.
1206
1207 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1208 then
1209 Set_Etype (T_Name, T_Name);
1210 Init_Size_Align (T_Name);
1211 Set_Directly_Designated_Type (T_Name,
1212 Scope (Defining_Identifier (F)));
1213 End_Scope;
1214 return;
1215 end if;
1216
1217 while Present (F) loop
1218 if No (Parent (Defining_Identifier (F))) then
1219 Set_Parent (Defining_Identifier (F), F);
1220 end if;
1221
1222 Next (F);
1223 end loop;
1224 end;
1225
1226 Process_Formals (Formals, Parent (T_Def));
1227
1228 -- Special test 2) End_Scope requires that the parent pointer be set
1229 -- to something reasonable, but Itypes don't have parent pointers. So
1230 -- we set it and then unset it ???
1231
1232 Set_Parent (Desig_Type, T_Name);
1233 End_Scope;
1234 Set_Parent (Desig_Type, Empty);
1235 end if;
1236
1237 -- Check for premature usage of the type being defined
1238
1239 Check_For_Premature_Usage (T_Def);
1240
1241 -- The return type and/or any parameter type may be incomplete. Mark the
1242 -- subprogram_type as depending on the incomplete type, so that it can
1243 -- be updated when the full type declaration is seen. This only applies
1244 -- to incomplete types declared in some enclosing scope, not to limited
1245 -- views from other packages.
1246
1247 -- Prior to Ada 2012, access to functions can only have in_parameters.
1248
1249 if Present (Formals) then
1250 Formal := First_Formal (Desig_Type);
1251 while Present (Formal) loop
1252 if Ekind (Formal) /= E_In_Parameter
1253 and then Nkind (T_Def) = N_Access_Function_Definition
1254 and then Ada_Version < Ada_2012
1255 then
1256 Error_Msg_N ("functions can only have IN parameters", Formal);
1257 end if;
1258
1259 if Ekind (Etype (Formal)) = E_Incomplete_Type
1260 and then In_Open_Scopes (Scope (Etype (Formal)))
1261 then
1262 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1263 Set_Has_Delayed_Freeze (Desig_Type);
1264 end if;
1265
1266 Next_Formal (Formal);
1267 end loop;
1268 end if;
1269
1270 -- Check whether an indirect call without actuals may be possible. This
1271 -- is used when resolving calls whose result is then indexed.
1272
1273 May_Need_Actuals (Desig_Type);
1274
1275 -- If the return type is incomplete, this is legal as long as the type
1276 -- is declared in the current scope and will be completed in it (rather
1277 -- than being part of limited view).
1278
1279 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1280 and then not Has_Delayed_Freeze (Desig_Type)
1281 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1282 then
1283 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1284 Set_Has_Delayed_Freeze (Desig_Type);
1285 end if;
1286
1287 Check_Delayed_Subprogram (Desig_Type);
1288
1289 if Protected_Present (T_Def) then
1290 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1291 Set_Convention (Desig_Type, Convention_Protected);
1292 else
1293 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1294 end if;
1295
1296 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1297
1298 Set_Etype (T_Name, T_Name);
1299 Init_Size_Align (T_Name);
1300 Set_Directly_Designated_Type (T_Name, Desig_Type);
1301
1302 Generate_Reference_To_Formals (T_Name);
1303
1304 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1305
1306 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1307
1308 Check_Restriction (No_Access_Subprograms, T_Def);
1309 end Access_Subprogram_Declaration;
1310
1311 ----------------------------
1312 -- Access_Type_Declaration --
1313 ----------------------------
1314
1315 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1316 P : constant Node_Id := Parent (Def);
1317 S : constant Node_Id := Subtype_Indication (Def);
1318
1319 Full_Desig : Entity_Id;
1320
1321 begin
1322 Check_SPARK_Restriction ("access type is not allowed", Def);
1323
1324 -- Check for permissible use of incomplete type
1325
1326 if Nkind (S) /= N_Subtype_Indication then
1327 Analyze (S);
1328
1329 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1330 Set_Directly_Designated_Type (T, Entity (S));
1331 else
1332 Set_Directly_Designated_Type (T,
1333 Process_Subtype (S, P, T, 'P'));
1334 end if;
1335
1336 else
1337 Set_Directly_Designated_Type (T,
1338 Process_Subtype (S, P, T, 'P'));
1339 end if;
1340
1341 if All_Present (Def) or Constant_Present (Def) then
1342 Set_Ekind (T, E_General_Access_Type);
1343 else
1344 Set_Ekind (T, E_Access_Type);
1345 end if;
1346
1347 Full_Desig := Designated_Type (T);
1348
1349 if Base_Type (Full_Desig) = T then
1350 Error_Msg_N ("access type cannot designate itself", S);
1351
1352 -- In Ada 2005, the type may have a limited view through some unit in
1353 -- its own context, allowing the following circularity that cannot be
1354 -- detected earlier
1355
1356 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1357 then
1358 Error_Msg_N
1359 ("access type cannot designate its own classwide type", S);
1360
1361 -- Clean up indication of tagged status to prevent cascaded errors
1362
1363 Set_Is_Tagged_Type (T, False);
1364 end if;
1365
1366 Set_Etype (T, T);
1367
1368 -- If the type has appeared already in a with_type clause, it is frozen
1369 -- and the pointer size is already set. Else, initialize.
1370
1371 if not From_Limited_With (T) then
1372 Init_Size_Align (T);
1373 end if;
1374
1375 -- Note that Has_Task is always false, since the access type itself
1376 -- is not a task type. See Einfo for more description on this point.
1377 -- Exactly the same consideration applies to Has_Controlled_Component.
1378
1379 Set_Has_Task (T, False);
1380 Set_Has_Controlled_Component (T, False);
1381
1382 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1383 -- problems where an incomplete view of this entity has been previously
1384 -- established by a limited with and an overlaid version of this field
1385 -- (Stored_Constraint) was initialized for the incomplete view.
1386
1387 -- This reset is performed in most cases except where the access type
1388 -- has been created for the purposes of allocating or deallocating a
1389 -- build-in-place object. Such access types have explicitly set pools
1390 -- and finalization masters.
1391
1392 if No (Associated_Storage_Pool (T)) then
1393 Set_Finalization_Master (T, Empty);
1394 end if;
1395
1396 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1397 -- attributes
1398
1399 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1400 Set_Is_Access_Constant (T, Constant_Present (Def));
1401 end Access_Type_Declaration;
1402
1403 ----------------------------------
1404 -- Add_Interface_Tag_Components --
1405 ----------------------------------
1406
1407 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1408 Loc : constant Source_Ptr := Sloc (N);
1409 L : List_Id;
1410 Last_Tag : Node_Id;
1411
1412 procedure Add_Tag (Iface : Entity_Id);
1413 -- Add tag for one of the progenitor interfaces
1414
1415 -------------
1416 -- Add_Tag --
1417 -------------
1418
1419 procedure Add_Tag (Iface : Entity_Id) is
1420 Decl : Node_Id;
1421 Def : Node_Id;
1422 Tag : Entity_Id;
1423 Offset : Entity_Id;
1424
1425 begin
1426 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1427
1428 -- This is a reasonable place to propagate predicates
1429
1430 if Has_Predicates (Iface) then
1431 Set_Has_Predicates (Typ);
1432 end if;
1433
1434 Def :=
1435 Make_Component_Definition (Loc,
1436 Aliased_Present => True,
1437 Subtype_Indication =>
1438 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1439
1440 Tag := Make_Temporary (Loc, 'V');
1441
1442 Decl :=
1443 Make_Component_Declaration (Loc,
1444 Defining_Identifier => Tag,
1445 Component_Definition => Def);
1446
1447 Analyze_Component_Declaration (Decl);
1448
1449 Set_Analyzed (Decl);
1450 Set_Ekind (Tag, E_Component);
1451 Set_Is_Tag (Tag);
1452 Set_Is_Aliased (Tag);
1453 Set_Related_Type (Tag, Iface);
1454 Init_Component_Location (Tag);
1455
1456 pragma Assert (Is_Frozen (Iface));
1457
1458 Set_DT_Entry_Count (Tag,
1459 DT_Entry_Count (First_Entity (Iface)));
1460
1461 if No (Last_Tag) then
1462 Prepend (Decl, L);
1463 else
1464 Insert_After (Last_Tag, Decl);
1465 end if;
1466
1467 Last_Tag := Decl;
1468
1469 -- If the ancestor has discriminants we need to give special support
1470 -- to store the offset_to_top value of the secondary dispatch tables.
1471 -- For this purpose we add a supplementary component just after the
1472 -- field that contains the tag associated with each secondary DT.
1473
1474 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1475 Def :=
1476 Make_Component_Definition (Loc,
1477 Subtype_Indication =>
1478 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1479
1480 Offset := Make_Temporary (Loc, 'V');
1481
1482 Decl :=
1483 Make_Component_Declaration (Loc,
1484 Defining_Identifier => Offset,
1485 Component_Definition => Def);
1486
1487 Analyze_Component_Declaration (Decl);
1488
1489 Set_Analyzed (Decl);
1490 Set_Ekind (Offset, E_Component);
1491 Set_Is_Aliased (Offset);
1492 Set_Related_Type (Offset, Iface);
1493 Init_Component_Location (Offset);
1494 Insert_After (Last_Tag, Decl);
1495 Last_Tag := Decl;
1496 end if;
1497 end Add_Tag;
1498
1499 -- Local variables
1500
1501 Elmt : Elmt_Id;
1502 Ext : Node_Id;
1503 Comp : Node_Id;
1504
1505 -- Start of processing for Add_Interface_Tag_Components
1506
1507 begin
1508 if not RTE_Available (RE_Interface_Tag) then
1509 Error_Msg
1510 ("(Ada 2005) interface types not supported by this run-time!",
1511 Sloc (N));
1512 return;
1513 end if;
1514
1515 if Ekind (Typ) /= E_Record_Type
1516 or else (Is_Concurrent_Record_Type (Typ)
1517 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1518 or else (not Is_Concurrent_Record_Type (Typ)
1519 and then No (Interfaces (Typ))
1520 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1521 then
1522 return;
1523 end if;
1524
1525 -- Find the current last tag
1526
1527 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1528 Ext := Record_Extension_Part (Type_Definition (N));
1529 else
1530 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1531 Ext := Type_Definition (N);
1532 end if;
1533
1534 Last_Tag := Empty;
1535
1536 if not (Present (Component_List (Ext))) then
1537 Set_Null_Present (Ext, False);
1538 L := New_List;
1539 Set_Component_List (Ext,
1540 Make_Component_List (Loc,
1541 Component_Items => L,
1542 Null_Present => False));
1543 else
1544 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1545 L := Component_Items
1546 (Component_List
1547 (Record_Extension_Part
1548 (Type_Definition (N))));
1549 else
1550 L := Component_Items
1551 (Component_List
1552 (Type_Definition (N)));
1553 end if;
1554
1555 -- Find the last tag component
1556
1557 Comp := First (L);
1558 while Present (Comp) loop
1559 if Nkind (Comp) = N_Component_Declaration
1560 and then Is_Tag (Defining_Identifier (Comp))
1561 then
1562 Last_Tag := Comp;
1563 end if;
1564
1565 Next (Comp);
1566 end loop;
1567 end if;
1568
1569 -- At this point L references the list of components and Last_Tag
1570 -- references the current last tag (if any). Now we add the tag
1571 -- corresponding with all the interfaces that are not implemented
1572 -- by the parent.
1573
1574 if Present (Interfaces (Typ)) then
1575 Elmt := First_Elmt (Interfaces (Typ));
1576 while Present (Elmt) loop
1577 Add_Tag (Node (Elmt));
1578 Next_Elmt (Elmt);
1579 end loop;
1580 end if;
1581 end Add_Interface_Tag_Components;
1582
1583 -------------------------------------
1584 -- Add_Internal_Interface_Entities --
1585 -------------------------------------
1586
1587 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1588 Elmt : Elmt_Id;
1589 Iface : Entity_Id;
1590 Iface_Elmt : Elmt_Id;
1591 Iface_Prim : Entity_Id;
1592 Ifaces_List : Elist_Id;
1593 New_Subp : Entity_Id := Empty;
1594 Prim : Entity_Id;
1595 Restore_Scope : Boolean := False;
1596
1597 begin
1598 pragma Assert (Ada_Version >= Ada_2005
1599 and then Is_Record_Type (Tagged_Type)
1600 and then Is_Tagged_Type (Tagged_Type)
1601 and then Has_Interfaces (Tagged_Type)
1602 and then not Is_Interface (Tagged_Type));
1603
1604 -- Ensure that the internal entities are added to the scope of the type
1605
1606 if Scope (Tagged_Type) /= Current_Scope then
1607 Push_Scope (Scope (Tagged_Type));
1608 Restore_Scope := True;
1609 end if;
1610
1611 Collect_Interfaces (Tagged_Type, Ifaces_List);
1612
1613 Iface_Elmt := First_Elmt (Ifaces_List);
1614 while Present (Iface_Elmt) loop
1615 Iface := Node (Iface_Elmt);
1616
1617 -- Originally we excluded here from this processing interfaces that
1618 -- are parents of Tagged_Type because their primitives are located
1619 -- in the primary dispatch table (and hence no auxiliary internal
1620 -- entities are required to handle secondary dispatch tables in such
1621 -- case). However, these auxiliary entities are also required to
1622 -- handle derivations of interfaces in formals of generics (see
1623 -- Derive_Subprograms).
1624
1625 Elmt := First_Elmt (Primitive_Operations (Iface));
1626 while Present (Elmt) loop
1627 Iface_Prim := Node (Elmt);
1628
1629 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1630 Prim :=
1631 Find_Primitive_Covering_Interface
1632 (Tagged_Type => Tagged_Type,
1633 Iface_Prim => Iface_Prim);
1634
1635 if No (Prim) and then Serious_Errors_Detected > 0 then
1636 goto Continue;
1637 end if;
1638
1639 pragma Assert (Present (Prim));
1640
1641 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1642 -- differs from the name of the interface primitive then it is
1643 -- a private primitive inherited from a parent type. In such
1644 -- case, given that Tagged_Type covers the interface, the
1645 -- inherited private primitive becomes visible. For such
1646 -- purpose we add a new entity that renames the inherited
1647 -- private primitive.
1648
1649 if Chars (Prim) /= Chars (Iface_Prim) then
1650 pragma Assert (Has_Suffix (Prim, 'P'));
1651 Derive_Subprogram
1652 (New_Subp => New_Subp,
1653 Parent_Subp => Iface_Prim,
1654 Derived_Type => Tagged_Type,
1655 Parent_Type => Iface);
1656 Set_Alias (New_Subp, Prim);
1657 Set_Is_Abstract_Subprogram
1658 (New_Subp, Is_Abstract_Subprogram (Prim));
1659 end if;
1660
1661 Derive_Subprogram
1662 (New_Subp => New_Subp,
1663 Parent_Subp => Iface_Prim,
1664 Derived_Type => Tagged_Type,
1665 Parent_Type => Iface);
1666
1667 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1668 -- associated with interface types. These entities are
1669 -- only registered in the list of primitives of its
1670 -- corresponding tagged type because they are only used
1671 -- to fill the contents of the secondary dispatch tables.
1672 -- Therefore they are removed from the homonym chains.
1673
1674 Set_Is_Hidden (New_Subp);
1675 Set_Is_Internal (New_Subp);
1676 Set_Alias (New_Subp, Prim);
1677 Set_Is_Abstract_Subprogram
1678 (New_Subp, Is_Abstract_Subprogram (Prim));
1679 Set_Interface_Alias (New_Subp, Iface_Prim);
1680
1681 -- If the returned type is an interface then propagate it to
1682 -- the returned type. Needed by the thunk to generate the code
1683 -- which displaces "this" to reference the corresponding
1684 -- secondary dispatch table in the returned object.
1685
1686 if Is_Interface (Etype (Iface_Prim)) then
1687 Set_Etype (New_Subp, Etype (Iface_Prim));
1688 end if;
1689
1690 -- Internal entities associated with interface types are
1691 -- only registered in the list of primitives of the tagged
1692 -- type. They are only used to fill the contents of the
1693 -- secondary dispatch tables. Therefore they are not needed
1694 -- in the homonym chains.
1695
1696 Remove_Homonym (New_Subp);
1697
1698 -- Hidden entities associated with interfaces must have set
1699 -- the Has_Delay_Freeze attribute to ensure that, in case of
1700 -- locally defined tagged types (or compiling with static
1701 -- dispatch tables generation disabled) the corresponding
1702 -- entry of the secondary dispatch table is filled when
1703 -- such an entity is frozen.
1704
1705 Set_Has_Delayed_Freeze (New_Subp);
1706 end if;
1707
1708 <<Continue>>
1709 Next_Elmt (Elmt);
1710 end loop;
1711
1712 Next_Elmt (Iface_Elmt);
1713 end loop;
1714
1715 if Restore_Scope then
1716 Pop_Scope;
1717 end if;
1718 end Add_Internal_Interface_Entities;
1719
1720 -----------------------------------
1721 -- Analyze_Component_Declaration --
1722 -----------------------------------
1723
1724 procedure Analyze_Component_Declaration (N : Node_Id) is
1725 Id : constant Entity_Id := Defining_Identifier (N);
1726 E : constant Node_Id := Expression (N);
1727 Typ : constant Node_Id :=
1728 Subtype_Indication (Component_Definition (N));
1729 T : Entity_Id;
1730 P : Entity_Id;
1731
1732 function Contains_POC (Constr : Node_Id) return Boolean;
1733 -- Determines whether a constraint uses the discriminant of a record
1734 -- type thus becoming a per-object constraint (POC).
1735
1736 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1737 -- Typ is the type of the current component, check whether this type is
1738 -- a limited type. Used to validate declaration against that of
1739 -- enclosing record.
1740
1741 ------------------
1742 -- Contains_POC --
1743 ------------------
1744
1745 function Contains_POC (Constr : Node_Id) return Boolean is
1746 begin
1747 -- Prevent cascaded errors
1748
1749 if Error_Posted (Constr) then
1750 return False;
1751 end if;
1752
1753 case Nkind (Constr) is
1754 when N_Attribute_Reference =>
1755 return Attribute_Name (Constr) = Name_Access
1756 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1757
1758 when N_Discriminant_Association =>
1759 return Denotes_Discriminant (Expression (Constr));
1760
1761 when N_Identifier =>
1762 return Denotes_Discriminant (Constr);
1763
1764 when N_Index_Or_Discriminant_Constraint =>
1765 declare
1766 IDC : Node_Id;
1767
1768 begin
1769 IDC := First (Constraints (Constr));
1770 while Present (IDC) loop
1771
1772 -- One per-object constraint is sufficient
1773
1774 if Contains_POC (IDC) then
1775 return True;
1776 end if;
1777
1778 Next (IDC);
1779 end loop;
1780
1781 return False;
1782 end;
1783
1784 when N_Range =>
1785 return Denotes_Discriminant (Low_Bound (Constr))
1786 or else
1787 Denotes_Discriminant (High_Bound (Constr));
1788
1789 when N_Range_Constraint =>
1790 return Denotes_Discriminant (Range_Expression (Constr));
1791
1792 when others =>
1793 return False;
1794
1795 end case;
1796 end Contains_POC;
1797
1798 ----------------------
1799 -- Is_Known_Limited --
1800 ----------------------
1801
1802 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1803 P : constant Entity_Id := Etype (Typ);
1804 R : constant Entity_Id := Root_Type (Typ);
1805
1806 begin
1807 if Is_Limited_Record (Typ) then
1808 return True;
1809
1810 -- If the root type is limited (and not a limited interface)
1811 -- so is the current type
1812
1813 elsif Is_Limited_Record (R)
1814 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1815 then
1816 return True;
1817
1818 -- Else the type may have a limited interface progenitor, but a
1819 -- limited record parent.
1820
1821 elsif R /= P and then Is_Limited_Record (P) then
1822 return True;
1823
1824 else
1825 return False;
1826 end if;
1827 end Is_Known_Limited;
1828
1829 -- Start of processing for Analyze_Component_Declaration
1830
1831 begin
1832 Generate_Definition (Id);
1833 Enter_Name (Id);
1834
1835 if Present (Typ) then
1836 T := Find_Type_Of_Object
1837 (Subtype_Indication (Component_Definition (N)), N);
1838
1839 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1840 Check_SPARK_Restriction ("subtype mark required", Typ);
1841 end if;
1842
1843 -- Ada 2005 (AI-230): Access Definition case
1844
1845 else
1846 pragma Assert (Present
1847 (Access_Definition (Component_Definition (N))));
1848
1849 T := Access_Definition
1850 (Related_Nod => N,
1851 N => Access_Definition (Component_Definition (N)));
1852 Set_Is_Local_Anonymous_Access (T);
1853
1854 -- Ada 2005 (AI-254)
1855
1856 if Present (Access_To_Subprogram_Definition
1857 (Access_Definition (Component_Definition (N))))
1858 and then Protected_Present (Access_To_Subprogram_Definition
1859 (Access_Definition
1860 (Component_Definition (N))))
1861 then
1862 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1863 end if;
1864 end if;
1865
1866 -- If the subtype is a constrained subtype of the enclosing record,
1867 -- (which must have a partial view) the back-end does not properly
1868 -- handle the recursion. Rewrite the component declaration with an
1869 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1870 -- the tree directly because side effects have already been removed from
1871 -- discriminant constraints.
1872
1873 if Ekind (T) = E_Access_Subtype
1874 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1875 and then Comes_From_Source (T)
1876 and then Nkind (Parent (T)) = N_Subtype_Declaration
1877 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1878 then
1879 Rewrite
1880 (Subtype_Indication (Component_Definition (N)),
1881 New_Copy_Tree (Subtype_Indication (Parent (T))));
1882 T := Find_Type_Of_Object
1883 (Subtype_Indication (Component_Definition (N)), N);
1884 end if;
1885
1886 -- If the component declaration includes a default expression, then we
1887 -- check that the component is not of a limited type (RM 3.7(5)),
1888 -- and do the special preanalysis of the expression (see section on
1889 -- "Handling of Default and Per-Object Expressions" in the spec of
1890 -- package Sem).
1891
1892 if Present (E) then
1893 Check_SPARK_Restriction ("default expression is not allowed", E);
1894 Preanalyze_Spec_Expression (E, T);
1895 Check_Initialization (T, E);
1896
1897 if Ada_Version >= Ada_2005
1898 and then Ekind (T) = E_Anonymous_Access_Type
1899 and then Etype (E) /= Any_Type
1900 then
1901 -- Check RM 3.9.2(9): "if the expected type for an expression is
1902 -- an anonymous access-to-specific tagged type, then the object
1903 -- designated by the expression shall not be dynamically tagged
1904 -- unless it is a controlling operand in a call on a dispatching
1905 -- operation"
1906
1907 if Is_Tagged_Type (Directly_Designated_Type (T))
1908 and then
1909 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1910 and then
1911 Ekind (Directly_Designated_Type (Etype (E))) =
1912 E_Class_Wide_Type
1913 then
1914 Error_Msg_N
1915 ("access to specific tagged type required (RM 3.9.2(9))", E);
1916 end if;
1917
1918 -- (Ada 2005: AI-230): Accessibility check for anonymous
1919 -- components
1920
1921 if Type_Access_Level (Etype (E)) >
1922 Deepest_Type_Access_Level (T)
1923 then
1924 Error_Msg_N
1925 ("expression has deeper access level than component " &
1926 "(RM 3.10.2 (12.2))", E);
1927 end if;
1928
1929 -- The initialization expression is a reference to an access
1930 -- discriminant. The type of the discriminant is always deeper
1931 -- than any access type.
1932
1933 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1934 and then Is_Entity_Name (E)
1935 and then Ekind (Entity (E)) = E_In_Parameter
1936 and then Present (Discriminal_Link (Entity (E)))
1937 then
1938 Error_Msg_N
1939 ("discriminant has deeper accessibility level than target",
1940 E);
1941 end if;
1942 end if;
1943 end if;
1944
1945 -- The parent type may be a private view with unknown discriminants,
1946 -- and thus unconstrained. Regular components must be constrained.
1947
1948 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1949 if Is_Class_Wide_Type (T) then
1950 Error_Msg_N
1951 ("class-wide subtype with unknown discriminants" &
1952 " in component declaration",
1953 Subtype_Indication (Component_Definition (N)));
1954 else
1955 Error_Msg_N
1956 ("unconstrained subtype in component declaration",
1957 Subtype_Indication (Component_Definition (N)));
1958 end if;
1959
1960 -- Components cannot be abstract, except for the special case of
1961 -- the _Parent field (case of extending an abstract tagged type)
1962
1963 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1964 Error_Msg_N ("type of a component cannot be abstract", N);
1965 end if;
1966
1967 Set_Etype (Id, T);
1968 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1969
1970 -- The component declaration may have a per-object constraint, set
1971 -- the appropriate flag in the defining identifier of the subtype.
1972
1973 if Present (Subtype_Indication (Component_Definition (N))) then
1974 declare
1975 Sindic : constant Node_Id :=
1976 Subtype_Indication (Component_Definition (N));
1977 begin
1978 if Nkind (Sindic) = N_Subtype_Indication
1979 and then Present (Constraint (Sindic))
1980 and then Contains_POC (Constraint (Sindic))
1981 then
1982 Set_Has_Per_Object_Constraint (Id);
1983 end if;
1984 end;
1985 end if;
1986
1987 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1988 -- out some static checks.
1989
1990 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1991 Null_Exclusion_Static_Checks (N);
1992 end if;
1993
1994 -- If this component is private (or depends on a private type), flag the
1995 -- record type to indicate that some operations are not available.
1996
1997 P := Private_Component (T);
1998
1999 if Present (P) then
2000
2001 -- Check for circular definitions
2002
2003 if P = Any_Type then
2004 Set_Etype (Id, Any_Type);
2005
2006 -- There is a gap in the visibility of operations only if the
2007 -- component type is not defined in the scope of the record type.
2008
2009 elsif Scope (P) = Scope (Current_Scope) then
2010 null;
2011
2012 elsif Is_Limited_Type (P) then
2013 Set_Is_Limited_Composite (Current_Scope);
2014
2015 else
2016 Set_Is_Private_Composite (Current_Scope);
2017 end if;
2018 end if;
2019
2020 if P /= Any_Type
2021 and then Is_Limited_Type (T)
2022 and then Chars (Id) /= Name_uParent
2023 and then Is_Tagged_Type (Current_Scope)
2024 then
2025 if Is_Derived_Type (Current_Scope)
2026 and then not Is_Known_Limited (Current_Scope)
2027 then
2028 Error_Msg_N
2029 ("extension of nonlimited type cannot have limited components",
2030 N);
2031
2032 if Is_Interface (Root_Type (Current_Scope)) then
2033 Error_Msg_N
2034 ("\limitedness is not inherited from limited interface", N);
2035 Error_Msg_N ("\add LIMITED to type indication", N);
2036 end if;
2037
2038 Explain_Limited_Type (T, N);
2039 Set_Etype (Id, Any_Type);
2040 Set_Is_Limited_Composite (Current_Scope, False);
2041
2042 elsif not Is_Derived_Type (Current_Scope)
2043 and then not Is_Limited_Record (Current_Scope)
2044 and then not Is_Concurrent_Type (Current_Scope)
2045 then
2046 Error_Msg_N
2047 ("nonlimited tagged type cannot have limited components", N);
2048 Explain_Limited_Type (T, N);
2049 Set_Etype (Id, Any_Type);
2050 Set_Is_Limited_Composite (Current_Scope, False);
2051 end if;
2052 end if;
2053
2054 Set_Original_Record_Component (Id, Id);
2055
2056 if Has_Aspects (N) then
2057 Analyze_Aspect_Specifications (N, Id);
2058 end if;
2059
2060 Analyze_Dimension (N);
2061 end Analyze_Component_Declaration;
2062
2063 --------------------------
2064 -- Analyze_Declarations --
2065 --------------------------
2066
2067 procedure Analyze_Declarations (L : List_Id) is
2068 Decl : Node_Id;
2069
2070 procedure Adjust_Decl;
2071 -- Adjust Decl not to include implicit label declarations, since these
2072 -- have strange Sloc values that result in elaboration check problems.
2073 -- (They have the sloc of the label as found in the source, and that
2074 -- is ahead of the current declarative part).
2075
2076 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2077 -- Determine whether Body_Decl denotes the body of a late controlled
2078 -- primitive (either Initialize, Adjust or Finalize). If this is the
2079 -- case, add a proper spec if the body lacks one. The spec is inserted
2080 -- before Body_Decl and immedately analyzed.
2081
2082 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2083 -- Spec_Id is the entity of a package that may define abstract states.
2084 -- If the states have visible refinement, remove the visibility of each
2085 -- constituent at the end of the package body declarations.
2086
2087 -----------------
2088 -- Adjust_Decl --
2089 -----------------
2090
2091 procedure Adjust_Decl is
2092 begin
2093 while Present (Prev (Decl))
2094 and then Nkind (Decl) = N_Implicit_Label_Declaration
2095 loop
2096 Prev (Decl);
2097 end loop;
2098 end Adjust_Decl;
2099
2100 --------------------------------------
2101 -- Handle_Late_Controlled_Primitive --
2102 --------------------------------------
2103
2104 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2105 Body_Spec : constant Node_Id := Specification (Body_Decl);
2106 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2107 Loc : constant Source_Ptr := Sloc (Body_Id);
2108 Params : constant List_Id :=
2109 Parameter_Specifications (Body_Spec);
2110 Spec : Node_Id;
2111 Spec_Id : Entity_Id;
2112
2113 Dummy : Entity_Id;
2114 pragma Unreferenced (Dummy);
2115 -- A dummy variable used to capture the unused result of subprogram
2116 -- spec analysis.
2117
2118 begin
2119 -- Consider only procedure bodies whose name matches one of the three
2120 -- controlled primitives.
2121
2122 if Nkind (Body_Spec) /= N_Procedure_Specification
2123 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2124 Name_Finalize,
2125 Name_Initialize)
2126 then
2127 return;
2128
2129 -- A controlled primitive must have exactly one formal
2130
2131 elsif List_Length (Params) /= 1 then
2132 return;
2133 end if;
2134
2135 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2136
2137 -- The type of the formal must be derived from [Limited_]Controlled
2138
2139 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2140 return;
2141 end if;
2142
2143 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2144
2145 -- The body has a matching spec, therefore it cannot be a late
2146 -- primitive.
2147
2148 if Present (Spec_Id) then
2149 return;
2150 end if;
2151
2152 -- At this point the body is known to be a late controlled primitive.
2153 -- Generate a matching spec and insert it before the body. Note the
2154 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2155 -- tree in this case.
2156
2157 Spec := Copy_Separate_Tree (Body_Spec);
2158
2159 -- Ensure that the subprogram declaration does not inherit the null
2160 -- indicator from the body as we now have a proper spec/body pair.
2161
2162 Set_Null_Present (Spec, False);
2163
2164 Insert_Before_And_Analyze (Body_Decl,
2165 Make_Subprogram_Declaration (Loc,
2166 Specification => Spec));
2167 end Handle_Late_Controlled_Primitive;
2168
2169 --------------------------------
2170 -- Remove_Visible_Refinements --
2171 --------------------------------
2172
2173 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2174 State_Elmt : Elmt_Id;
2175 begin
2176 if Present (Abstract_States (Spec_Id)) then
2177 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2178 while Present (State_Elmt) loop
2179 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2180 Next_Elmt (State_Elmt);
2181 end loop;
2182 end if;
2183 end Remove_Visible_Refinements;
2184
2185 -- Local variables
2186
2187 Context : Node_Id;
2188 Freeze_From : Entity_Id := Empty;
2189 Next_Decl : Node_Id;
2190 Spec_Id : Entity_Id;
2191
2192 Body_Seen : Boolean := False;
2193 -- Flag set when the first body [stub] is encountered
2194
2195 In_Package_Body : Boolean := False;
2196 -- Flag set when the current declaration list belongs to a package body
2197
2198 -- Start of processing for Analyze_Declarations
2199
2200 begin
2201 if Restriction_Check_Required (SPARK_05) then
2202 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2203 end if;
2204
2205 Decl := First (L);
2206 while Present (Decl) loop
2207
2208 -- Package spec cannot contain a package declaration in SPARK
2209
2210 if Nkind (Decl) = N_Package_Declaration
2211 and then Nkind (Parent (L)) = N_Package_Specification
2212 then
2213 Check_SPARK_Restriction
2214 ("package specification cannot contain a package declaration",
2215 Decl);
2216 end if;
2217
2218 -- Complete analysis of declaration
2219
2220 Analyze (Decl);
2221 Next_Decl := Next (Decl);
2222
2223 if No (Freeze_From) then
2224 Freeze_From := First_Entity (Current_Scope);
2225 end if;
2226
2227 -- At the end of a declarative part, freeze remaining entities
2228 -- declared in it. The end of the visible declarations of package
2229 -- specification is not the end of a declarative part if private
2230 -- declarations are present. The end of a package declaration is a
2231 -- freezing point only if it a library package. A task definition or
2232 -- protected type definition is not a freeze point either. Finally,
2233 -- we do not freeze entities in generic scopes, because there is no
2234 -- code generated for them and freeze nodes will be generated for
2235 -- the instance.
2236
2237 -- The end of a package instantiation is not a freeze point, but
2238 -- for now we make it one, because the generic body is inserted
2239 -- (currently) immediately after. Generic instantiations will not
2240 -- be a freeze point once delayed freezing of bodies is implemented.
2241 -- (This is needed in any case for early instantiations ???).
2242
2243 if No (Next_Decl) then
2244 if Nkind_In (Parent (L), N_Component_List,
2245 N_Task_Definition,
2246 N_Protected_Definition)
2247 then
2248 null;
2249
2250 elsif Nkind (Parent (L)) /= N_Package_Specification then
2251 if Nkind (Parent (L)) = N_Package_Body then
2252 Freeze_From := First_Entity (Current_Scope);
2253 end if;
2254
2255 -- There may have been several freezing points previously,
2256 -- for example object declarations or subprogram bodies, but
2257 -- at the end of a declarative part we check freezing from
2258 -- the beginning, even though entities may already be frozen,
2259 -- in order to perform visibility checks on delayed aspects.
2260
2261 Adjust_Decl;
2262 Freeze_All (First_Entity (Current_Scope), Decl);
2263 Freeze_From := Last_Entity (Current_Scope);
2264
2265 elsif Scope (Current_Scope) /= Standard_Standard
2266 and then not Is_Child_Unit (Current_Scope)
2267 and then No (Generic_Parent (Parent (L)))
2268 then
2269 null;
2270
2271 elsif L /= Visible_Declarations (Parent (L))
2272 or else No (Private_Declarations (Parent (L)))
2273 or else Is_Empty_List (Private_Declarations (Parent (L)))
2274 then
2275 Adjust_Decl;
2276 Freeze_All (First_Entity (Current_Scope), Decl);
2277 Freeze_From := Last_Entity (Current_Scope);
2278 end if;
2279
2280 -- If next node is a body then freeze all types before the body.
2281 -- An exception occurs for some expander-generated bodies. If these
2282 -- are generated at places where in general language rules would not
2283 -- allow a freeze point, then we assume that the expander has
2284 -- explicitly checked that all required types are properly frozen,
2285 -- and we do not cause general freezing here. This special circuit
2286 -- is used when the encountered body is marked as having already
2287 -- been analyzed.
2288
2289 -- In all other cases (bodies that come from source, and expander
2290 -- generated bodies that have not been analyzed yet), freeze all
2291 -- types now. Note that in the latter case, the expander must take
2292 -- care to attach the bodies at a proper place in the tree so as to
2293 -- not cause unwanted freezing at that point.
2294
2295 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2296
2297 -- When a controlled type is frozen, the expander generates stream
2298 -- and controlled type support routines. If the freeze is caused
2299 -- by the stand alone body of Initialize, Adjust and Finalize, the
2300 -- expander will end up using the wrong version of these routines
2301 -- as the body has not been processed yet. To remedy this, detect
2302 -- a late controlled primitive and create a proper spec for it.
2303 -- This ensures that the primitive will override its inherited
2304 -- counterpart before the freeze takes place.
2305
2306 -- If the declaration we just processed is a body, do not attempt
2307 -- to examine Next_Decl as the late primitive idiom can only apply
2308 -- to the first encountered body.
2309
2310 -- The spec of the late primitive is not generated in ASIS mode to
2311 -- ensure a consistent list of primitives that indicates the true
2312 -- semantic structure of the program (which is not relevant when
2313 -- generating executable code.
2314
2315 -- ??? a cleaner approach may be possible and/or this solution
2316 -- could be extended to general-purpose late primitives, TBD.
2317
2318 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2319 then
2320 Body_Seen := True;
2321
2322 if Nkind (Next_Decl) = N_Subprogram_Body then
2323 Handle_Late_Controlled_Primitive (Next_Decl);
2324 end if;
2325 end if;
2326
2327 Adjust_Decl;
2328 Freeze_All (Freeze_From, Decl);
2329 Freeze_From := Last_Entity (Current_Scope);
2330 end if;
2331
2332 Decl := Next_Decl;
2333 end loop;
2334
2335 -- Analyze the contracts of packages and their bodies
2336
2337 if Present (L) then
2338 Context := Parent (L);
2339
2340 if Nkind (Context) = N_Package_Specification then
2341
2342 -- When a package has private declarations, its contract must be
2343 -- analyzed at the end of the said declarations. This way both the
2344 -- analysis and freeze actions are properly synchronized in case
2345 -- of private type use within the contract.
2346
2347 if L = Private_Declarations (Context) then
2348 Analyze_Package_Contract (Defining_Entity (Context));
2349
2350 -- Otherwise the contract is analyzed at the end of the visible
2351 -- declarations.
2352
2353 elsif L = Visible_Declarations (Context)
2354 and then No (Private_Declarations (Context))
2355 then
2356 Analyze_Package_Contract (Defining_Entity (Context));
2357 end if;
2358
2359 elsif Nkind (Context) = N_Package_Body then
2360 In_Package_Body := True;
2361 Spec_Id := Corresponding_Spec (Context);
2362
2363 Analyze_Package_Body_Contract (Defining_Entity (Context));
2364 end if;
2365 end if;
2366
2367 -- Analyze the contracts of subprogram declarations, subprogram bodies
2368 -- and variables now due to the delayed visibility requirements of their
2369 -- aspects.
2370
2371 Decl := First (L);
2372 while Present (Decl) loop
2373 if Nkind (Decl) = N_Object_Declaration then
2374 Analyze_Object_Contract (Defining_Entity (Decl));
2375
2376 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2377 N_Subprogram_Declaration)
2378 then
2379 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2380
2381 elsif Nkind (Decl) = N_Subprogram_Body then
2382 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2383
2384 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2385 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2386 end if;
2387
2388 Next (Decl);
2389 end loop;
2390
2391 -- State refinements are visible upto the end the of the package body
2392 -- declarations. Hide the refinements from visibility to restore the
2393 -- original state conditions.
2394
2395 if In_Package_Body then
2396 Remove_Visible_Refinements (Spec_Id);
2397 end if;
2398 end Analyze_Declarations;
2399
2400 -----------------------------------
2401 -- Analyze_Full_Type_Declaration --
2402 -----------------------------------
2403
2404 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2405 Def : constant Node_Id := Type_Definition (N);
2406 Def_Id : constant Entity_Id := Defining_Identifier (N);
2407 T : Entity_Id;
2408 Prev : Entity_Id;
2409
2410 Is_Remote : constant Boolean :=
2411 (Is_Remote_Types (Current_Scope)
2412 or else Is_Remote_Call_Interface (Current_Scope))
2413 and then not (In_Private_Part (Current_Scope)
2414 or else In_Package_Body (Current_Scope));
2415
2416 procedure Check_Ops_From_Incomplete_Type;
2417 -- If there is a tagged incomplete partial view of the type, traverse
2418 -- the primitives of the incomplete view and change the type of any
2419 -- controlling formals and result to indicate the full view. The
2420 -- primitives will be added to the full type's primitive operations
2421 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2422 -- is called from Process_Incomplete_Dependents).
2423
2424 ------------------------------------
2425 -- Check_Ops_From_Incomplete_Type --
2426 ------------------------------------
2427
2428 procedure Check_Ops_From_Incomplete_Type is
2429 Elmt : Elmt_Id;
2430 Formal : Entity_Id;
2431 Op : Entity_Id;
2432
2433 begin
2434 if Prev /= T
2435 and then Ekind (Prev) = E_Incomplete_Type
2436 and then Is_Tagged_Type (Prev)
2437 and then Is_Tagged_Type (T)
2438 then
2439 Elmt := First_Elmt (Primitive_Operations (Prev));
2440 while Present (Elmt) loop
2441 Op := Node (Elmt);
2442
2443 Formal := First_Formal (Op);
2444 while Present (Formal) loop
2445 if Etype (Formal) = Prev then
2446 Set_Etype (Formal, T);
2447 end if;
2448
2449 Next_Formal (Formal);
2450 end loop;
2451
2452 if Etype (Op) = Prev then
2453 Set_Etype (Op, T);
2454 end if;
2455
2456 Next_Elmt (Elmt);
2457 end loop;
2458 end if;
2459 end Check_Ops_From_Incomplete_Type;
2460
2461 -- Start of processing for Analyze_Full_Type_Declaration
2462
2463 begin
2464 Prev := Find_Type_Name (N);
2465
2466 -- The full view, if present, now points to the current type
2467
2468 -- Ada 2005 (AI-50217): If the type was previously decorated when
2469 -- imported through a LIMITED WITH clause, it appears as incomplete
2470 -- but has no full view.
2471
2472 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2473 then
2474 T := Full_View (Prev);
2475 else
2476 T := Prev;
2477 end if;
2478
2479 Set_Is_Pure (T, Is_Pure (Current_Scope));
2480
2481 -- We set the flag Is_First_Subtype here. It is needed to set the
2482 -- corresponding flag for the Implicit class-wide-type created
2483 -- during tagged types processing.
2484
2485 Set_Is_First_Subtype (T, True);
2486
2487 -- Only composite types other than array types are allowed to have
2488 -- discriminants.
2489
2490 case Nkind (Def) is
2491
2492 -- For derived types, the rule will be checked once we've figured
2493 -- out the parent type.
2494
2495 when N_Derived_Type_Definition =>
2496 null;
2497
2498 -- For record types, discriminants are allowed, unless we are in
2499 -- SPARK.
2500
2501 when N_Record_Definition =>
2502 if Present (Discriminant_Specifications (N)) then
2503 Check_SPARK_Restriction
2504 ("discriminant type is not allowed",
2505 Defining_Identifier
2506 (First (Discriminant_Specifications (N))));
2507 end if;
2508
2509 when others =>
2510 if Present (Discriminant_Specifications (N)) then
2511 Error_Msg_N
2512 ("elementary or array type cannot have discriminants",
2513 Defining_Identifier
2514 (First (Discriminant_Specifications (N))));
2515 end if;
2516 end case;
2517
2518 -- Elaborate the type definition according to kind, and generate
2519 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2520 -- already done (this happens during the reanalysis that follows a call
2521 -- to the high level optimizer).
2522
2523 if not Analyzed (T) then
2524 Set_Analyzed (T);
2525
2526 case Nkind (Def) is
2527
2528 when N_Access_To_Subprogram_Definition =>
2529 Access_Subprogram_Declaration (T, Def);
2530
2531 -- If this is a remote access to subprogram, we must create the
2532 -- equivalent fat pointer type, and related subprograms.
2533
2534 if Is_Remote then
2535 Process_Remote_AST_Declaration (N);
2536 end if;
2537
2538 -- Validate categorization rule against access type declaration
2539 -- usually a violation in Pure unit, Shared_Passive unit.
2540
2541 Validate_Access_Type_Declaration (T, N);
2542
2543 when N_Access_To_Object_Definition =>
2544 Access_Type_Declaration (T, Def);
2545
2546 -- Validate categorization rule against access type declaration
2547 -- usually a violation in Pure unit, Shared_Passive unit.
2548
2549 Validate_Access_Type_Declaration (T, N);
2550
2551 -- If we are in a Remote_Call_Interface package and define a
2552 -- RACW, then calling stubs and specific stream attributes
2553 -- must be added.
2554
2555 if Is_Remote
2556 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2557 then
2558 Add_RACW_Features (Def_Id);
2559 end if;
2560
2561 -- Set no strict aliasing flag if config pragma seen
2562
2563 if Opt.No_Strict_Aliasing then
2564 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2565 end if;
2566
2567 when N_Array_Type_Definition =>
2568 Array_Type_Declaration (T, Def);
2569
2570 when N_Derived_Type_Definition =>
2571 Derived_Type_Declaration (T, N, T /= Def_Id);
2572
2573 when N_Enumeration_Type_Definition =>
2574 Enumeration_Type_Declaration (T, Def);
2575
2576 when N_Floating_Point_Definition =>
2577 Floating_Point_Type_Declaration (T, Def);
2578
2579 when N_Decimal_Fixed_Point_Definition =>
2580 Decimal_Fixed_Point_Type_Declaration (T, Def);
2581
2582 when N_Ordinary_Fixed_Point_Definition =>
2583 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2584
2585 when N_Signed_Integer_Type_Definition =>
2586 Signed_Integer_Type_Declaration (T, Def);
2587
2588 when N_Modular_Type_Definition =>
2589 Modular_Type_Declaration (T, Def);
2590
2591 when N_Record_Definition =>
2592 Record_Type_Declaration (T, N, Prev);
2593
2594 -- If declaration has a parse error, nothing to elaborate.
2595
2596 when N_Error =>
2597 null;
2598
2599 when others =>
2600 raise Program_Error;
2601
2602 end case;
2603 end if;
2604
2605 if Etype (T) = Any_Type then
2606 return;
2607 end if;
2608
2609 -- Controlled type is not allowed in SPARK
2610
2611 if Is_Visibly_Controlled (T) then
2612 Check_SPARK_Restriction ("controlled type is not allowed", N);
2613 end if;
2614
2615 -- Some common processing for all types
2616
2617 Set_Depends_On_Private (T, Has_Private_Component (T));
2618 Check_Ops_From_Incomplete_Type;
2619
2620 -- Both the declared entity, and its anonymous base type if one
2621 -- was created, need freeze nodes allocated.
2622
2623 declare
2624 B : constant Entity_Id := Base_Type (T);
2625
2626 begin
2627 -- In the case where the base type differs from the first subtype, we
2628 -- pre-allocate a freeze node, and set the proper link to the first
2629 -- subtype. Freeze_Entity will use this preallocated freeze node when
2630 -- it freezes the entity.
2631
2632 -- This does not apply if the base type is a generic type, whose
2633 -- declaration is independent of the current derived definition.
2634
2635 if B /= T and then not Is_Generic_Type (B) then
2636 Ensure_Freeze_Node (B);
2637 Set_First_Subtype_Link (Freeze_Node (B), T);
2638 end if;
2639
2640 -- A type that is imported through a limited_with clause cannot
2641 -- generate any code, and thus need not be frozen. However, an access
2642 -- type with an imported designated type needs a finalization list,
2643 -- which may be referenced in some other package that has non-limited
2644 -- visibility on the designated type. Thus we must create the
2645 -- finalization list at the point the access type is frozen, to
2646 -- prevent unsatisfied references at link time.
2647
2648 if not From_Limited_With (T) or else Is_Access_Type (T) then
2649 Set_Has_Delayed_Freeze (T);
2650 end if;
2651 end;
2652
2653 -- Case where T is the full declaration of some private type which has
2654 -- been swapped in Defining_Identifier (N).
2655
2656 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2657 Process_Full_View (N, T, Def_Id);
2658
2659 -- Record the reference. The form of this is a little strange, since
2660 -- the full declaration has been swapped in. So the first parameter
2661 -- here represents the entity to which a reference is made which is
2662 -- the "real" entity, i.e. the one swapped in, and the second
2663 -- parameter provides the reference location.
2664
2665 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2666 -- since we don't want a complaint about the full type being an
2667 -- unwanted reference to the private type
2668
2669 declare
2670 B : constant Boolean := Has_Pragma_Unreferenced (T);
2671 begin
2672 Set_Has_Pragma_Unreferenced (T, False);
2673 Generate_Reference (T, T, 'c');
2674 Set_Has_Pragma_Unreferenced (T, B);
2675 end;
2676
2677 Set_Completion_Referenced (Def_Id);
2678
2679 -- For completion of incomplete type, process incomplete dependents
2680 -- and always mark the full type as referenced (it is the incomplete
2681 -- type that we get for any real reference).
2682
2683 elsif Ekind (Prev) = E_Incomplete_Type then
2684 Process_Incomplete_Dependents (N, T, Prev);
2685 Generate_Reference (Prev, Def_Id, 'c');
2686 Set_Completion_Referenced (Def_Id);
2687
2688 -- If not private type or incomplete type completion, this is a real
2689 -- definition of a new entity, so record it.
2690
2691 else
2692 Generate_Definition (Def_Id);
2693 end if;
2694
2695 if Chars (Scope (Def_Id)) = Name_System
2696 and then Chars (Def_Id) = Name_Address
2697 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2698 then
2699 Set_Is_Descendent_Of_Address (Def_Id);
2700 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2701 Set_Is_Descendent_Of_Address (Prev);
2702 end if;
2703
2704 Set_Optimize_Alignment_Flags (Def_Id);
2705 Check_Eliminated (Def_Id);
2706
2707 -- If the declaration is a completion and aspects are present, apply
2708 -- them to the entity for the type which is currently the partial
2709 -- view, but which is the one that will be frozen.
2710
2711 if Has_Aspects (N) then
2712 if Prev /= Def_Id then
2713 Analyze_Aspect_Specifications (N, Prev);
2714 else
2715 Analyze_Aspect_Specifications (N, Def_Id);
2716 end if;
2717 end if;
2718 end Analyze_Full_Type_Declaration;
2719
2720 ----------------------------------
2721 -- Analyze_Incomplete_Type_Decl --
2722 ----------------------------------
2723
2724 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2725 F : constant Boolean := Is_Pure (Current_Scope);
2726 T : Entity_Id;
2727
2728 begin
2729 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2730
2731 Generate_Definition (Defining_Identifier (N));
2732
2733 -- Process an incomplete declaration. The identifier must not have been
2734 -- declared already in the scope. However, an incomplete declaration may
2735 -- appear in the private part of a package, for a private type that has
2736 -- already been declared.
2737
2738 -- In this case, the discriminants (if any) must match
2739
2740 T := Find_Type_Name (N);
2741
2742 Set_Ekind (T, E_Incomplete_Type);
2743 Init_Size_Align (T);
2744 Set_Is_First_Subtype (T, True);
2745 Set_Etype (T, T);
2746
2747 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2748 -- incomplete types.
2749
2750 if Tagged_Present (N) then
2751 Set_Is_Tagged_Type (T);
2752 Make_Class_Wide_Type (T);
2753 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2754 end if;
2755
2756 Push_Scope (T);
2757
2758 Set_Stored_Constraint (T, No_Elist);
2759
2760 if Present (Discriminant_Specifications (N)) then
2761 Process_Discriminants (N);
2762 end if;
2763
2764 End_Scope;
2765
2766 -- If the type has discriminants, non-trivial subtypes may be
2767 -- declared before the full view of the type. The full views of those
2768 -- subtypes will be built after the full view of the type.
2769
2770 Set_Private_Dependents (T, New_Elmt_List);
2771 Set_Is_Pure (T, F);
2772 end Analyze_Incomplete_Type_Decl;
2773
2774 -----------------------------------
2775 -- Analyze_Interface_Declaration --
2776 -----------------------------------
2777
2778 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2779 CW : constant Entity_Id := Class_Wide_Type (T);
2780
2781 begin
2782 Set_Is_Tagged_Type (T);
2783
2784 Set_Is_Limited_Record (T, Limited_Present (Def)
2785 or else Task_Present (Def)
2786 or else Protected_Present (Def)
2787 or else Synchronized_Present (Def));
2788
2789 -- Type is abstract if full declaration carries keyword, or if previous
2790 -- partial view did.
2791
2792 Set_Is_Abstract_Type (T);
2793 Set_Is_Interface (T);
2794
2795 -- Type is a limited interface if it includes the keyword limited, task,
2796 -- protected, or synchronized.
2797
2798 Set_Is_Limited_Interface
2799 (T, Limited_Present (Def)
2800 or else Protected_Present (Def)
2801 or else Synchronized_Present (Def)
2802 or else Task_Present (Def));
2803
2804 Set_Interfaces (T, New_Elmt_List);
2805 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2806
2807 -- Complete the decoration of the class-wide entity if it was already
2808 -- built (i.e. during the creation of the limited view)
2809
2810 if Present (CW) then
2811 Set_Is_Interface (CW);
2812 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2813 end if;
2814
2815 -- Check runtime support for synchronized interfaces
2816
2817 if VM_Target = No_VM
2818 and then (Is_Task_Interface (T)
2819 or else Is_Protected_Interface (T)
2820 or else Is_Synchronized_Interface (T))
2821 and then not RTE_Available (RE_Select_Specific_Data)
2822 then
2823 Error_Msg_CRT ("synchronized interfaces", T);
2824 end if;
2825 end Analyze_Interface_Declaration;
2826
2827 -----------------------------
2828 -- Analyze_Itype_Reference --
2829 -----------------------------
2830
2831 -- Nothing to do. This node is placed in the tree only for the benefit of
2832 -- back end processing, and has no effect on the semantic processing.
2833
2834 procedure Analyze_Itype_Reference (N : Node_Id) is
2835 begin
2836 pragma Assert (Is_Itype (Itype (N)));
2837 null;
2838 end Analyze_Itype_Reference;
2839
2840 --------------------------------
2841 -- Analyze_Number_Declaration --
2842 --------------------------------
2843
2844 procedure Analyze_Number_Declaration (N : Node_Id) is
2845 Id : constant Entity_Id := Defining_Identifier (N);
2846 E : constant Node_Id := Expression (N);
2847 T : Entity_Id;
2848 Index : Interp_Index;
2849 It : Interp;
2850
2851 begin
2852 Generate_Definition (Id);
2853 Enter_Name (Id);
2854
2855 -- This is an optimization of a common case of an integer literal
2856
2857 if Nkind (E) = N_Integer_Literal then
2858 Set_Is_Static_Expression (E, True);
2859 Set_Etype (E, Universal_Integer);
2860
2861 Set_Etype (Id, Universal_Integer);
2862 Set_Ekind (Id, E_Named_Integer);
2863 Set_Is_Frozen (Id, True);
2864 return;
2865 end if;
2866
2867 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2868
2869 -- Process expression, replacing error by integer zero, to avoid
2870 -- cascaded errors or aborts further along in the processing
2871
2872 -- Replace Error by integer zero, which seems least likely to cause
2873 -- cascaded errors.
2874
2875 if E = Error then
2876 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2877 Set_Error_Posted (E);
2878 end if;
2879
2880 Analyze (E);
2881
2882 -- Verify that the expression is static and numeric. If
2883 -- the expression is overloaded, we apply the preference
2884 -- rule that favors root numeric types.
2885
2886 if not Is_Overloaded (E) then
2887 T := Etype (E);
2888
2889 else
2890 T := Any_Type;
2891
2892 Get_First_Interp (E, Index, It);
2893 while Present (It.Typ) loop
2894 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2895 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2896 then
2897 if T = Any_Type then
2898 T := It.Typ;
2899
2900 elsif It.Typ = Universal_Real
2901 or else It.Typ = Universal_Integer
2902 then
2903 -- Choose universal interpretation over any other
2904
2905 T := It.Typ;
2906 exit;
2907 end if;
2908 end if;
2909
2910 Get_Next_Interp (Index, It);
2911 end loop;
2912 end if;
2913
2914 if Is_Integer_Type (T) then
2915 Resolve (E, T);
2916 Set_Etype (Id, Universal_Integer);
2917 Set_Ekind (Id, E_Named_Integer);
2918
2919 elsif Is_Real_Type (T) then
2920
2921 -- Because the real value is converted to universal_real, this is a
2922 -- legal context for a universal fixed expression.
2923
2924 if T = Universal_Fixed then
2925 declare
2926 Loc : constant Source_Ptr := Sloc (N);
2927 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2928 Subtype_Mark =>
2929 New_Occurrence_Of (Universal_Real, Loc),
2930 Expression => Relocate_Node (E));
2931
2932 begin
2933 Rewrite (E, Conv);
2934 Analyze (E);
2935 end;
2936
2937 elsif T = Any_Fixed then
2938 Error_Msg_N ("illegal context for mixed mode operation", E);
2939
2940 -- Expression is of the form : universal_fixed * integer. Try to
2941 -- resolve as universal_real.
2942
2943 T := Universal_Real;
2944 Set_Etype (E, T);
2945 end if;
2946
2947 Resolve (E, T);
2948 Set_Etype (Id, Universal_Real);
2949 Set_Ekind (Id, E_Named_Real);
2950
2951 else
2952 Wrong_Type (E, Any_Numeric);
2953 Resolve (E, T);
2954
2955 Set_Etype (Id, T);
2956 Set_Ekind (Id, E_Constant);
2957 Set_Never_Set_In_Source (Id, True);
2958 Set_Is_True_Constant (Id, True);
2959 return;
2960 end if;
2961
2962 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2963 Set_Etype (E, Etype (Id));
2964 end if;
2965
2966 if not Is_OK_Static_Expression (E) then
2967 Flag_Non_Static_Expr
2968 ("non-static expression used in number declaration!", E);
2969 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2970 Set_Etype (E, Any_Type);
2971 end if;
2972 end Analyze_Number_Declaration;
2973
2974 -----------------------------
2975 -- Analyze_Object_Contract --
2976 -----------------------------
2977
2978 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
2979 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
2980 AR_Val : Boolean := False;
2981 AW_Val : Boolean := False;
2982 ER_Val : Boolean := False;
2983 EW_Val : Boolean := False;
2984 Prag : Node_Id;
2985 Seen : Boolean := False;
2986
2987 begin
2988 if Ekind (Obj_Id) = E_Constant then
2989
2990 -- A constant cannot be volatile. This check is only relevant when
2991 -- SPARK_Mode is on as it is not standard Ada legality rule. Do not
2992 -- flag internally-generated constants that map generic formals to
2993 -- actuals in instantiations (SPARK RM 7.1.3(6)).
2994
2995 if SPARK_Mode = On
2996 and then Is_SPARK_Volatile (Obj_Id)
2997 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
2998 then
2999 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3000 end if;
3001
3002 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3003
3004 -- The following checks are only relevant when SPARK_Mode is on as
3005 -- they are not standard Ada legality rules.
3006
3007 if SPARK_Mode = On then
3008 if Is_SPARK_Volatile (Obj_Id) then
3009
3010 -- The declaration of a volatile object must appear at the
3011 -- library level (SPARK RM 7.1.3(7), C.6(6)).
3012
3013 if not Is_Library_Level_Entity (Obj_Id) then
3014 Error_Msg_N
3015 ("volatile variable & must be declared at library level",
3016 Obj_Id);
3017
3018 -- An object of a discriminated type cannot be volatile
3019 -- (SPARK RM C.6(4)).
3020
3021 elsif Has_Discriminants (Obj_Typ) then
3022 Error_Msg_N
3023 ("discriminated object & cannot be volatile", Obj_Id);
3024
3025 -- An object of a tagged type cannot be volatile
3026 -- (SPARK RM C.6(5)).
3027
3028 elsif Is_Tagged_Type (Obj_Typ) then
3029 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3030 end if;
3031
3032 -- The object is not volatile
3033
3034 else
3035 -- A non-volatile object cannot have volatile components
3036 -- (SPARK RM 7.1.3(7)).
3037
3038 if not Is_SPARK_Volatile (Obj_Id)
3039 and then Has_Volatile_Component (Obj_Typ)
3040 then
3041 Error_Msg_N
3042 ("non-volatile object & cannot have volatile components",
3043 Obj_Id);
3044 end if;
3045 end if;
3046 end if;
3047
3048 -- Analyze all external properties
3049
3050 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3051
3052 if Present (Prag) then
3053 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3054 Seen := True;
3055 end if;
3056
3057 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3058
3059 if Present (Prag) then
3060 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3061 Seen := True;
3062 end if;
3063
3064 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3065
3066 if Present (Prag) then
3067 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3068 Seen := True;
3069 end if;
3070
3071 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3072
3073 if Present (Prag) then
3074 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3075 Seen := True;
3076 end if;
3077
3078 -- Verify the mutual interaction of the various external properties
3079
3080 if Seen then
3081 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3082 end if;
3083
3084 -- Check whether the lack of indicator Part_Of agrees with the
3085 -- placement of the variable with respect to the state space.
3086
3087 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3088
3089 if No (Prag) then
3090 Check_Missing_Part_Of (Obj_Id);
3091 end if;
3092 end if;
3093 end Analyze_Object_Contract;
3094
3095 --------------------------------
3096 -- Analyze_Object_Declaration --
3097 --------------------------------
3098
3099 procedure Analyze_Object_Declaration (N : Node_Id) is
3100 Loc : constant Source_Ptr := Sloc (N);
3101 Id : constant Entity_Id := Defining_Identifier (N);
3102 T : Entity_Id;
3103 Act_T : Entity_Id;
3104
3105 E : Node_Id := Expression (N);
3106 -- E is set to Expression (N) throughout this routine. When
3107 -- Expression (N) is modified, E is changed accordingly.
3108
3109 Prev_Entity : Entity_Id := Empty;
3110
3111 function Count_Tasks (T : Entity_Id) return Uint;
3112 -- This function is called when a non-generic library level object of a
3113 -- task type is declared. Its function is to count the static number of
3114 -- tasks declared within the type (it is only called if Has_Tasks is set
3115 -- for T). As a side effect, if an array of tasks with non-static bounds
3116 -- or a variant record type is encountered, Check_Restrictions is called
3117 -- indicating the count is unknown.
3118
3119 -----------------
3120 -- Count_Tasks --
3121 -----------------
3122
3123 function Count_Tasks (T : Entity_Id) return Uint is
3124 C : Entity_Id;
3125 X : Node_Id;
3126 V : Uint;
3127
3128 begin
3129 if Is_Task_Type (T) then
3130 return Uint_1;
3131
3132 elsif Is_Record_Type (T) then
3133 if Has_Discriminants (T) then
3134 Check_Restriction (Max_Tasks, N);
3135 return Uint_0;
3136
3137 else
3138 V := Uint_0;
3139 C := First_Component (T);
3140 while Present (C) loop
3141 V := V + Count_Tasks (Etype (C));
3142 Next_Component (C);
3143 end loop;
3144
3145 return V;
3146 end if;
3147
3148 elsif Is_Array_Type (T) then
3149 X := First_Index (T);
3150 V := Count_Tasks (Component_Type (T));
3151 while Present (X) loop
3152 C := Etype (X);
3153
3154 if not Is_Static_Subtype (C) then
3155 Check_Restriction (Max_Tasks, N);
3156 return Uint_0;
3157 else
3158 V := V * (UI_Max (Uint_0,
3159 Expr_Value (Type_High_Bound (C)) -
3160 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3161 end if;
3162
3163 Next_Index (X);
3164 end loop;
3165
3166 return V;
3167
3168 else
3169 return Uint_0;
3170 end if;
3171 end Count_Tasks;
3172
3173 -- Start of processing for Analyze_Object_Declaration
3174
3175 begin
3176 -- There are three kinds of implicit types generated by an
3177 -- object declaration:
3178
3179 -- 1. Those generated by the original Object Definition
3180
3181 -- 2. Those generated by the Expression
3182
3183 -- 3. Those used to constrain the Object Definition with the
3184 -- expression constraints when the definition is unconstrained.
3185
3186 -- They must be generated in this order to avoid order of elaboration
3187 -- issues. Thus the first step (after entering the name) is to analyze
3188 -- the object definition.
3189
3190 if Constant_Present (N) then
3191 Prev_Entity := Current_Entity_In_Scope (Id);
3192
3193 if Present (Prev_Entity)
3194 and then
3195 -- If the homograph is an implicit subprogram, it is overridden
3196 -- by the current declaration.
3197
3198 ((Is_Overloadable (Prev_Entity)
3199 and then Is_Inherited_Operation (Prev_Entity))
3200
3201 -- The current object is a discriminal generated for an entry
3202 -- family index. Even though the index is a constant, in this
3203 -- particular context there is no true constant redeclaration.
3204 -- Enter_Name will handle the visibility.
3205
3206 or else
3207 (Is_Discriminal (Id)
3208 and then Ekind (Discriminal_Link (Id)) =
3209 E_Entry_Index_Parameter)
3210
3211 -- The current object is the renaming for a generic declared
3212 -- within the instance.
3213
3214 or else
3215 (Ekind (Prev_Entity) = E_Package
3216 and then Nkind (Parent (Prev_Entity)) =
3217 N_Package_Renaming_Declaration
3218 and then not Comes_From_Source (Prev_Entity)
3219 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3220 then
3221 Prev_Entity := Empty;
3222 end if;
3223 end if;
3224
3225 if Present (Prev_Entity) then
3226 Constant_Redeclaration (Id, N, T);
3227
3228 Generate_Reference (Prev_Entity, Id, 'c');
3229 Set_Completion_Referenced (Id);
3230
3231 if Error_Posted (N) then
3232
3233 -- Type mismatch or illegal redeclaration, Do not analyze
3234 -- expression to avoid cascaded errors.
3235
3236 T := Find_Type_Of_Object (Object_Definition (N), N);
3237 Set_Etype (Id, T);
3238 Set_Ekind (Id, E_Variable);
3239 goto Leave;
3240 end if;
3241
3242 -- In the normal case, enter identifier at the start to catch premature
3243 -- usage in the initialization expression.
3244
3245 else
3246 Generate_Definition (Id);
3247 Enter_Name (Id);
3248
3249 Mark_Coextensions (N, Object_Definition (N));
3250
3251 T := Find_Type_Of_Object (Object_Definition (N), N);
3252
3253 if Nkind (Object_Definition (N)) = N_Access_Definition
3254 and then Present
3255 (Access_To_Subprogram_Definition (Object_Definition (N)))
3256 and then Protected_Present
3257 (Access_To_Subprogram_Definition (Object_Definition (N)))
3258 then
3259 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3260 end if;
3261
3262 if Error_Posted (Id) then
3263 Set_Etype (Id, T);
3264 Set_Ekind (Id, E_Variable);
3265 goto Leave;
3266 end if;
3267 end if;
3268
3269 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3270 -- out some static checks
3271
3272 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3273
3274 -- In case of aggregates we must also take care of the correct
3275 -- initialization of nested aggregates bug this is done at the
3276 -- point of the analysis of the aggregate (see sem_aggr.adb).
3277
3278 if Present (Expression (N))
3279 and then Nkind (Expression (N)) = N_Aggregate
3280 then
3281 null;
3282
3283 else
3284 declare
3285 Save_Typ : constant Entity_Id := Etype (Id);
3286 begin
3287 Set_Etype (Id, T); -- Temp. decoration for static checks
3288 Null_Exclusion_Static_Checks (N);
3289 Set_Etype (Id, Save_Typ);
3290 end;
3291 end if;
3292 end if;
3293
3294 -- Object is marked pure if it is in a pure scope
3295
3296 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3297
3298 -- If deferred constant, make sure context is appropriate. We detect
3299 -- a deferred constant as a constant declaration with no expression.
3300 -- A deferred constant can appear in a package body if its completion
3301 -- is by means of an interface pragma.
3302
3303 if Constant_Present (N) and then No (E) then
3304
3305 -- A deferred constant may appear in the declarative part of the
3306 -- following constructs:
3307
3308 -- blocks
3309 -- entry bodies
3310 -- extended return statements
3311 -- package specs
3312 -- package bodies
3313 -- subprogram bodies
3314 -- task bodies
3315
3316 -- When declared inside a package spec, a deferred constant must be
3317 -- completed by a full constant declaration or pragma Import. In all
3318 -- other cases, the only proper completion is pragma Import. Extended
3319 -- return statements are flagged as invalid contexts because they do
3320 -- not have a declarative part and so cannot accommodate the pragma.
3321
3322 if Ekind (Current_Scope) = E_Return_Statement then
3323 Error_Msg_N
3324 ("invalid context for deferred constant declaration (RM 7.4)",
3325 N);
3326 Error_Msg_N
3327 ("\declaration requires an initialization expression",
3328 N);
3329 Set_Constant_Present (N, False);
3330
3331 -- In Ada 83, deferred constant must be of private type
3332
3333 elsif not Is_Private_Type (T) then
3334 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3335 Error_Msg_N
3336 ("(Ada 83) deferred constant must be private type", N);
3337 end if;
3338 end if;
3339
3340 -- If not a deferred constant, then object declaration freezes its type
3341
3342 else
3343 Check_Fully_Declared (T, N);
3344 Freeze_Before (N, T);
3345 end if;
3346
3347 -- If the object was created by a constrained array definition, then
3348 -- set the link in both the anonymous base type and anonymous subtype
3349 -- that are built to represent the array type to point to the object.
3350
3351 if Nkind (Object_Definition (Declaration_Node (Id))) =
3352 N_Constrained_Array_Definition
3353 then
3354 Set_Related_Array_Object (T, Id);
3355 Set_Related_Array_Object (Base_Type (T), Id);
3356 end if;
3357
3358 -- Special checks for protected objects not at library level
3359
3360 if Is_Protected_Type (T)
3361 and then not Is_Library_Level_Entity (Id)
3362 then
3363 Check_Restriction (No_Local_Protected_Objects, Id);
3364
3365 -- Protected objects with interrupt handlers must be at library level
3366
3367 -- Ada 2005: This test is not needed (and the corresponding clause
3368 -- in the RM is removed) because accessibility checks are sufficient
3369 -- to make handlers not at the library level illegal.
3370
3371 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3372 -- applies to the '95 version of the language as well.
3373
3374 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3375 Error_Msg_N
3376 ("interrupt object can only be declared at library level", Id);
3377 end if;
3378 end if;
3379
3380 -- The actual subtype of the object is the nominal subtype, unless
3381 -- the nominal one is unconstrained and obtained from the expression.
3382
3383 Act_T := T;
3384
3385 -- These checks should be performed before the initialization expression
3386 -- is considered, so that the Object_Definition node is still the same
3387 -- as in source code.
3388
3389 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3390 -- shall not be unconstrained. (The only exception to this is the
3391 -- admission of declarations of constants of type String.)
3392
3393 if not
3394 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3395 then
3396 Check_SPARK_Restriction
3397 ("subtype mark required", Object_Definition (N));
3398
3399 elsif Is_Array_Type (T)
3400 and then not Is_Constrained (T)
3401 and then T /= Standard_String
3402 then
3403 Check_SPARK_Restriction
3404 ("subtype mark of constrained type expected",
3405 Object_Definition (N));
3406 end if;
3407
3408 -- There are no aliased objects in SPARK
3409
3410 if Aliased_Present (N) then
3411 Check_SPARK_Restriction ("aliased object is not allowed", N);
3412 end if;
3413
3414 -- Process initialization expression if present and not in error
3415
3416 if Present (E) and then E /= Error then
3417
3418 -- Generate an error in case of CPP class-wide object initialization.
3419 -- Required because otherwise the expansion of the class-wide
3420 -- assignment would try to use 'size to initialize the object
3421 -- (primitive that is not available in CPP tagged types).
3422
3423 if Is_Class_Wide_Type (Act_T)
3424 and then
3425 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3426 or else
3427 (Present (Full_View (Root_Type (Etype (Act_T))))
3428 and then
3429 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3430 then
3431 Error_Msg_N
3432 ("predefined assignment not available for 'C'P'P tagged types",
3433 E);
3434 end if;
3435
3436 Mark_Coextensions (N, E);
3437 Analyze (E);
3438
3439 -- In case of errors detected in the analysis of the expression,
3440 -- decorate it with the expected type to avoid cascaded errors
3441
3442 if No (Etype (E)) then
3443 Set_Etype (E, T);
3444 end if;
3445
3446 -- If an initialization expression is present, then we set the
3447 -- Is_True_Constant flag. It will be reset if this is a variable
3448 -- and it is indeed modified.
3449
3450 Set_Is_True_Constant (Id, True);
3451
3452 -- If we are analyzing a constant declaration, set its completion
3453 -- flag after analyzing and resolving the expression.
3454
3455 if Constant_Present (N) then
3456 Set_Has_Completion (Id);
3457 end if;
3458
3459 -- Set type and resolve (type may be overridden later on). Note:
3460 -- Ekind (Id) must still be E_Void at this point so that incorrect
3461 -- early usage within E is properly diagnosed.
3462
3463 Set_Etype (Id, T);
3464 Resolve (E, T);
3465
3466 -- No further action needed if E is a call to an inlined function
3467 -- which returns an unconstrained type and it has been expanded into
3468 -- a procedure call. In that case N has been replaced by an object
3469 -- declaration without initializing expression and it has been
3470 -- analyzed (see Expand_Inlined_Call).
3471
3472 if Debug_Flag_Dot_K
3473 and then Expander_Active
3474 and then Nkind (E) = N_Function_Call
3475 and then Nkind (Name (E)) in N_Has_Entity
3476 and then Is_Inlined (Entity (Name (E)))
3477 and then not Is_Constrained (Etype (E))
3478 and then Analyzed (N)
3479 and then No (Expression (N))
3480 then
3481 return;
3482 end if;
3483
3484 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3485 -- node (which was marked already-analyzed), we need to set the type
3486 -- to something other than Any_Access in order to keep gigi happy.
3487
3488 if Etype (E) = Any_Access then
3489 Set_Etype (E, T);
3490 end if;
3491
3492 -- If the object is an access to variable, the initialization
3493 -- expression cannot be an access to constant.
3494
3495 if Is_Access_Type (T)
3496 and then not Is_Access_Constant (T)
3497 and then Is_Access_Type (Etype (E))
3498 and then Is_Access_Constant (Etype (E))
3499 then
3500 Error_Msg_N
3501 ("access to variable cannot be initialized "
3502 & "with an access-to-constant expression", E);
3503 end if;
3504
3505 if not Assignment_OK (N) then
3506 Check_Initialization (T, E);
3507 end if;
3508
3509 Check_Unset_Reference (E);
3510
3511 -- If this is a variable, then set current value. If this is a
3512 -- declared constant of a scalar type with a static expression,
3513 -- indicate that it is always valid.
3514
3515 if not Constant_Present (N) then
3516 if Compile_Time_Known_Value (E) then
3517 Set_Current_Value (Id, E);
3518 end if;
3519
3520 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3521 Set_Is_Known_Valid (Id);
3522 end if;
3523
3524 -- Deal with setting of null flags
3525
3526 if Is_Access_Type (T) then
3527 if Known_Non_Null (E) then
3528 Set_Is_Known_Non_Null (Id, True);
3529 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3530 Set_Is_Known_Null (Id, True);
3531 end if;
3532 end if;
3533
3534 -- Check incorrect use of dynamically tagged expressions
3535
3536 if Is_Tagged_Type (T) then
3537 Check_Dynamically_Tagged_Expression
3538 (Expr => E,
3539 Typ => T,
3540 Related_Nod => N);
3541 end if;
3542
3543 Apply_Scalar_Range_Check (E, T);
3544 Apply_Static_Length_Check (E, T);
3545
3546 if Nkind (Original_Node (N)) = N_Object_Declaration
3547 and then Comes_From_Source (Original_Node (N))
3548
3549 -- Only call test if needed
3550
3551 and then Restriction_Check_Required (SPARK_05)
3552 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3553 then
3554 Check_SPARK_Restriction
3555 ("initialization expression is not appropriate", E);
3556 end if;
3557 end if;
3558
3559 -- If the No_Streams restriction is set, check that the type of the
3560 -- object is not, and does not contain, any subtype derived from
3561 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3562 -- Has_Stream just for efficiency reasons. There is no point in
3563 -- spending time on a Has_Stream check if the restriction is not set.
3564
3565 if Restriction_Check_Required (No_Streams) then
3566 if Has_Stream (T) then
3567 Check_Restriction (No_Streams, N);
3568 end if;
3569 end if;
3570
3571 -- Deal with predicate check before we start to do major rewriting. It
3572 -- is OK to initialize and then check the initialized value, since the
3573 -- object goes out of scope if we get a predicate failure. Note that we
3574 -- do this in the analyzer and not the expander because the analyzer
3575 -- does some substantial rewriting in some cases.
3576
3577 -- We need a predicate check if the type has predicates, and if either
3578 -- there is an initializing expression, or for default initialization
3579 -- when we have at least one case of an explicit default initial value
3580 -- and then this is not an internal declaration whose initialization
3581 -- comes later (as for an aggregate expansion).
3582
3583 if not Suppress_Assignment_Checks (N)
3584 and then Present (Predicate_Function (T))
3585 and then not No_Initialization (N)
3586 and then
3587 (Present (E)
3588 or else
3589 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3590 then
3591 -- If the type has a static predicate and the expression is known at
3592 -- compile time, see if the expression satisfies the predicate.
3593
3594 if Present (E) then
3595 Check_Expression_Against_Static_Predicate (E, T);
3596 end if;
3597
3598 Insert_After (N,
3599 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3600 end if;
3601
3602 -- Case of unconstrained type
3603
3604 if Is_Indefinite_Subtype (T) then
3605
3606 -- In SPARK, a declaration of unconstrained type is allowed
3607 -- only for constants of type string.
3608
3609 if Is_String_Type (T) and then not Constant_Present (N) then
3610 Check_SPARK_Restriction
3611 ("declaration of object of unconstrained type not allowed", N);
3612 end if;
3613
3614 -- Nothing to do in deferred constant case
3615
3616 if Constant_Present (N) and then No (E) then
3617 null;
3618
3619 -- Case of no initialization present
3620
3621 elsif No (E) then
3622 if No_Initialization (N) then
3623 null;
3624
3625 elsif Is_Class_Wide_Type (T) then
3626 Error_Msg_N
3627 ("initialization required in class-wide declaration ", N);
3628
3629 else
3630 Error_Msg_N
3631 ("unconstrained subtype not allowed (need initialization)",
3632 Object_Definition (N));
3633
3634 if Is_Record_Type (T) and then Has_Discriminants (T) then
3635 Error_Msg_N
3636 ("\provide initial value or explicit discriminant values",
3637 Object_Definition (N));
3638
3639 Error_Msg_NE
3640 ("\or give default discriminant values for type&",
3641 Object_Definition (N), T);
3642
3643 elsif Is_Array_Type (T) then
3644 Error_Msg_N
3645 ("\provide initial value or explicit array bounds",
3646 Object_Definition (N));
3647 end if;
3648 end if;
3649
3650 -- Case of initialization present but in error. Set initial
3651 -- expression as absent (but do not make above complaints)
3652
3653 elsif E = Error then
3654 Set_Expression (N, Empty);
3655 E := Empty;
3656
3657 -- Case of initialization present
3658
3659 else
3660 -- Check restrictions in Ada 83
3661
3662 if not Constant_Present (N) then
3663
3664 -- Unconstrained variables not allowed in Ada 83 mode
3665
3666 if Ada_Version = Ada_83
3667 and then Comes_From_Source (Object_Definition (N))
3668 then
3669 Error_Msg_N
3670 ("(Ada 83) unconstrained variable not allowed",
3671 Object_Definition (N));
3672 end if;
3673 end if;
3674
3675 -- Now we constrain the variable from the initializing expression
3676
3677 -- If the expression is an aggregate, it has been expanded into
3678 -- individual assignments. Retrieve the actual type from the
3679 -- expanded construct.
3680
3681 if Is_Array_Type (T)
3682 and then No_Initialization (N)
3683 and then Nkind (Original_Node (E)) = N_Aggregate
3684 then
3685 Act_T := Etype (E);
3686
3687 -- In case of class-wide interface object declarations we delay
3688 -- the generation of the equivalent record type declarations until
3689 -- its expansion because there are cases in they are not required.
3690
3691 elsif Is_Interface (T) then
3692 null;
3693
3694 else
3695 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3696 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3697 end if;
3698
3699 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3700
3701 if Aliased_Present (N) then
3702 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3703 end if;
3704
3705 Freeze_Before (N, Act_T);
3706 Freeze_Before (N, T);
3707 end if;
3708
3709 elsif Is_Array_Type (T)
3710 and then No_Initialization (N)
3711 and then Nkind (Original_Node (E)) = N_Aggregate
3712 then
3713 if not Is_Entity_Name (Object_Definition (N)) then
3714 Act_T := Etype (E);
3715 Check_Compile_Time_Size (Act_T);
3716
3717 if Aliased_Present (N) then
3718 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3719 end if;
3720 end if;
3721
3722 -- When the given object definition and the aggregate are specified
3723 -- independently, and their lengths might differ do a length check.
3724 -- This cannot happen if the aggregate is of the form (others =>...)
3725
3726 if not Is_Constrained (T) then
3727 null;
3728
3729 elsif Nkind (E) = N_Raise_Constraint_Error then
3730
3731 -- Aggregate is statically illegal. Place back in declaration
3732
3733 Set_Expression (N, E);
3734 Set_No_Initialization (N, False);
3735
3736 elsif T = Etype (E) then
3737 null;
3738
3739 elsif Nkind (E) = N_Aggregate
3740 and then Present (Component_Associations (E))
3741 and then Present (Choices (First (Component_Associations (E))))
3742 and then Nkind (First
3743 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3744 then
3745 null;
3746
3747 else
3748 Apply_Length_Check (E, T);
3749 end if;
3750
3751 -- If the type is limited unconstrained with defaulted discriminants and
3752 -- there is no expression, then the object is constrained by the
3753 -- defaults, so it is worthwhile building the corresponding subtype.
3754
3755 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3756 and then not Is_Constrained (T)
3757 and then Has_Discriminants (T)
3758 then
3759 if No (E) then
3760 Act_T := Build_Default_Subtype (T, N);
3761 else
3762 -- Ada 2005: A limited object may be initialized by means of an
3763 -- aggregate. If the type has default discriminants it has an
3764 -- unconstrained nominal type, Its actual subtype will be obtained
3765 -- from the aggregate, and not from the default discriminants.
3766
3767 Act_T := Etype (E);
3768 end if;
3769
3770 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3771
3772 elsif Nkind (E) = N_Function_Call
3773 and then Constant_Present (N)
3774 and then Has_Unconstrained_Elements (Etype (E))
3775 then
3776 -- The back-end has problems with constants of a discriminated type
3777 -- with defaults, if the initial value is a function call. We
3778 -- generate an intermediate temporary that will receive a reference
3779 -- to the result of the call. The initialization expression then
3780 -- becomes a dereference of that temporary.
3781
3782 Remove_Side_Effects (E);
3783
3784 -- If this is a constant declaration of an unconstrained type and
3785 -- the initialization is an aggregate, we can use the subtype of the
3786 -- aggregate for the declared entity because it is immutable.
3787
3788 elsif not Is_Constrained (T)
3789 and then Has_Discriminants (T)
3790 and then Constant_Present (N)
3791 and then not Has_Unchecked_Union (T)
3792 and then Nkind (E) = N_Aggregate
3793 then
3794 Act_T := Etype (E);
3795 end if;
3796
3797 -- Check No_Wide_Characters restriction
3798
3799 Check_Wide_Character_Restriction (T, Object_Definition (N));
3800
3801 -- Indicate this is not set in source. Certainly true for constants, and
3802 -- true for variables so far (will be reset for a variable if and when
3803 -- we encounter a modification in the source).
3804
3805 Set_Never_Set_In_Source (Id, True);
3806
3807 -- Now establish the proper kind and type of the object
3808
3809 if Constant_Present (N) then
3810 Set_Ekind (Id, E_Constant);
3811 Set_Is_True_Constant (Id);
3812
3813 else
3814 Set_Ekind (Id, E_Variable);
3815
3816 -- A variable is set as shared passive if it appears in a shared
3817 -- passive package, and is at the outer level. This is not done for
3818 -- entities generated during expansion, because those are always
3819 -- manipulated locally.
3820
3821 if Is_Shared_Passive (Current_Scope)
3822 and then Is_Library_Level_Entity (Id)
3823 and then Comes_From_Source (Id)
3824 then
3825 Set_Is_Shared_Passive (Id);
3826 Check_Shared_Var (Id, T, N);
3827 end if;
3828
3829 -- Set Has_Initial_Value if initializing expression present. Note
3830 -- that if there is no initializing expression, we leave the state
3831 -- of this flag unchanged (usually it will be False, but notably in
3832 -- the case of exception choice variables, it will already be true).
3833
3834 if Present (E) then
3835 Set_Has_Initial_Value (Id, True);
3836 end if;
3837
3838 Set_Contract (Id, Make_Contract (Sloc (Id)));
3839 end if;
3840
3841 -- Initialize alignment and size and capture alignment setting
3842
3843 Init_Alignment (Id);
3844 Init_Esize (Id);
3845 Set_Optimize_Alignment_Flags (Id);
3846
3847 -- Deal with aliased case
3848
3849 if Aliased_Present (N) then
3850 Set_Is_Aliased (Id);
3851
3852 -- If the object is aliased and the type is unconstrained with
3853 -- defaulted discriminants and there is no expression, then the
3854 -- object is constrained by the defaults, so it is worthwhile
3855 -- building the corresponding subtype.
3856
3857 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3858 -- unconstrained, then only establish an actual subtype if the
3859 -- nominal subtype is indefinite. In definite cases the object is
3860 -- unconstrained in Ada 2005.
3861
3862 if No (E)
3863 and then Is_Record_Type (T)
3864 and then not Is_Constrained (T)
3865 and then Has_Discriminants (T)
3866 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3867 then
3868 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3869 end if;
3870 end if;
3871
3872 -- Now we can set the type of the object
3873
3874 Set_Etype (Id, Act_T);
3875
3876 -- Object is marked to be treated as volatile if type is volatile and
3877 -- we clear the Current_Value setting that may have been set above.
3878
3879 if Treat_As_Volatile (Etype (Id)) then
3880 Set_Treat_As_Volatile (Id);
3881 Set_Current_Value (Id, Empty);
3882 end if;
3883
3884 -- Deal with controlled types
3885
3886 if Has_Controlled_Component (Etype (Id))
3887 or else Is_Controlled (Etype (Id))
3888 then
3889 if not Is_Library_Level_Entity (Id) then
3890 Check_Restriction (No_Nested_Finalization, N);
3891 else
3892 Validate_Controlled_Object (Id);
3893 end if;
3894 end if;
3895
3896 if Has_Task (Etype (Id)) then
3897 Check_Restriction (No_Tasking, N);
3898
3899 -- Deal with counting max tasks
3900
3901 -- Nothing to do if inside a generic
3902
3903 if Inside_A_Generic then
3904 null;
3905
3906 -- If library level entity, then count tasks
3907
3908 elsif Is_Library_Level_Entity (Id) then
3909 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3910
3911 -- If not library level entity, then indicate we don't know max
3912 -- tasks and also check task hierarchy restriction and blocking
3913 -- operation (since starting a task is definitely blocking).
3914
3915 else
3916 Check_Restriction (Max_Tasks, N);
3917 Check_Restriction (No_Task_Hierarchy, N);
3918 Check_Potentially_Blocking_Operation (N);
3919 end if;
3920
3921 -- A rather specialized test. If we see two tasks being declared
3922 -- of the same type in the same object declaration, and the task
3923 -- has an entry with an address clause, we know that program error
3924 -- will be raised at run time since we can't have two tasks with
3925 -- entries at the same address.
3926
3927 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3928 declare
3929 E : Entity_Id;
3930
3931 begin
3932 E := First_Entity (Etype (Id));
3933 while Present (E) loop
3934 if Ekind (E) = E_Entry
3935 and then Present (Get_Attribute_Definition_Clause
3936 (E, Attribute_Address))
3937 then
3938 Error_Msg_Warn := SPARK_Mode /= On;
3939 Error_Msg_N
3940 ("more than one task with same entry address<<", N);
3941 Error_Msg_N ("\Program_Error [<<", N);
3942 Insert_Action (N,
3943 Make_Raise_Program_Error (Loc,
3944 Reason => PE_Duplicated_Entry_Address));
3945 exit;
3946 end if;
3947
3948 Next_Entity (E);
3949 end loop;
3950 end;
3951 end if;
3952 end if;
3953
3954 -- Some simple constant-propagation: if the expression is a constant
3955 -- string initialized with a literal, share the literal. This avoids
3956 -- a run-time copy.
3957
3958 if Present (E)
3959 and then Is_Entity_Name (E)
3960 and then Ekind (Entity (E)) = E_Constant
3961 and then Base_Type (Etype (E)) = Standard_String
3962 then
3963 declare
3964 Val : constant Node_Id := Constant_Value (Entity (E));
3965 begin
3966 if Present (Val) and then Nkind (Val) = N_String_Literal then
3967 Rewrite (E, New_Copy (Val));
3968 end if;
3969 end;
3970 end if;
3971
3972 -- Another optimization: if the nominal subtype is unconstrained and
3973 -- the expression is a function call that returns an unconstrained
3974 -- type, rewrite the declaration as a renaming of the result of the
3975 -- call. The exceptions below are cases where the copy is expected,
3976 -- either by the back end (Aliased case) or by the semantics, as for
3977 -- initializing controlled types or copying tags for classwide types.
3978
3979 if Present (E)
3980 and then Nkind (E) = N_Explicit_Dereference
3981 and then Nkind (Original_Node (E)) = N_Function_Call
3982 and then not Is_Library_Level_Entity (Id)
3983 and then not Is_Constrained (Underlying_Type (T))
3984 and then not Is_Aliased (Id)
3985 and then not Is_Class_Wide_Type (T)
3986 and then not Is_Controlled (T)
3987 and then not Has_Controlled_Component (Base_Type (T))
3988 and then Expander_Active
3989 then
3990 Rewrite (N,
3991 Make_Object_Renaming_Declaration (Loc,
3992 Defining_Identifier => Id,
3993 Access_Definition => Empty,
3994 Subtype_Mark => New_Occurrence_Of
3995 (Base_Type (Etype (Id)), Loc),
3996 Name => E));
3997
3998 Set_Renamed_Object (Id, E);
3999
4000 -- Force generation of debugging information for the constant and for
4001 -- the renamed function call.
4002
4003 Set_Debug_Info_Needed (Id);
4004 Set_Debug_Info_Needed (Entity (Prefix (E)));
4005 end if;
4006
4007 if Present (Prev_Entity)
4008 and then Is_Frozen (Prev_Entity)
4009 and then not Error_Posted (Id)
4010 then
4011 Error_Msg_N ("full constant declaration appears too late", N);
4012 end if;
4013
4014 Check_Eliminated (Id);
4015
4016 -- Deal with setting In_Private_Part flag if in private part
4017
4018 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4019 then
4020 Set_In_Private_Part (Id);
4021 end if;
4022
4023 -- Check for violation of No_Local_Timing_Events
4024
4025 if Restriction_Check_Required (No_Local_Timing_Events)
4026 and then not Is_Library_Level_Entity (Id)
4027 and then Is_RTE (Etype (Id), RE_Timing_Event)
4028 then
4029 Check_Restriction (No_Local_Timing_Events, N);
4030 end if;
4031
4032 <<Leave>>
4033 -- Initialize the refined state of a variable here because this is a
4034 -- common destination for legal and illegal object declarations.
4035
4036 if Ekind (Id) = E_Variable then
4037 Set_Encapsulating_State (Id, Empty);
4038 end if;
4039
4040 if Has_Aspects (N) then
4041 Analyze_Aspect_Specifications (N, Id);
4042 end if;
4043
4044 Analyze_Dimension (N);
4045
4046 -- Verify whether the object declaration introduces an illegal hidden
4047 -- state within a package subject to a null abstract state.
4048
4049 if Ekind (Id) = E_Variable then
4050 Check_No_Hidden_State (Id);
4051 end if;
4052 end Analyze_Object_Declaration;
4053
4054 ---------------------------
4055 -- Analyze_Others_Choice --
4056 ---------------------------
4057
4058 -- Nothing to do for the others choice node itself, the semantic analysis
4059 -- of the others choice will occur as part of the processing of the parent
4060
4061 procedure Analyze_Others_Choice (N : Node_Id) is
4062 pragma Warnings (Off, N);
4063 begin
4064 null;
4065 end Analyze_Others_Choice;
4066
4067 -------------------------------------------
4068 -- Analyze_Private_Extension_Declaration --
4069 -------------------------------------------
4070
4071 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4072 T : constant Entity_Id := Defining_Identifier (N);
4073 Indic : constant Node_Id := Subtype_Indication (N);
4074 Parent_Type : Entity_Id;
4075 Parent_Base : Entity_Id;
4076
4077 begin
4078 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4079
4080 if Is_Non_Empty_List (Interface_List (N)) then
4081 declare
4082 Intf : Node_Id;
4083 T : Entity_Id;
4084
4085 begin
4086 Intf := First (Interface_List (N));
4087 while Present (Intf) loop
4088 T := Find_Type_Of_Subtype_Indic (Intf);
4089
4090 Diagnose_Interface (Intf, T);
4091 Next (Intf);
4092 end loop;
4093 end;
4094 end if;
4095
4096 Generate_Definition (T);
4097
4098 -- For other than Ada 2012, just enter the name in the current scope
4099
4100 if Ada_Version < Ada_2012 then
4101 Enter_Name (T);
4102
4103 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4104 -- case of private type that completes an incomplete type.
4105
4106 else
4107 declare
4108 Prev : Entity_Id;
4109
4110 begin
4111 Prev := Find_Type_Name (N);
4112
4113 pragma Assert (Prev = T
4114 or else (Ekind (Prev) = E_Incomplete_Type
4115 and then Present (Full_View (Prev))
4116 and then Full_View (Prev) = T));
4117 end;
4118 end if;
4119
4120 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4121 Parent_Base := Base_Type (Parent_Type);
4122
4123 if Parent_Type = Any_Type
4124 or else Etype (Parent_Type) = Any_Type
4125 then
4126 Set_Ekind (T, Ekind (Parent_Type));
4127 Set_Etype (T, Any_Type);
4128 goto Leave;
4129
4130 elsif not Is_Tagged_Type (Parent_Type) then
4131 Error_Msg_N
4132 ("parent of type extension must be a tagged type ", Indic);
4133 goto Leave;
4134
4135 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4136 Error_Msg_N ("premature derivation of incomplete type", Indic);
4137 goto Leave;
4138
4139 elsif Is_Concurrent_Type (Parent_Type) then
4140 Error_Msg_N
4141 ("parent type of a private extension cannot be "
4142 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4143
4144 Set_Etype (T, Any_Type);
4145 Set_Ekind (T, E_Limited_Private_Type);
4146 Set_Private_Dependents (T, New_Elmt_List);
4147 Set_Error_Posted (T);
4148 goto Leave;
4149 end if;
4150
4151 -- Perhaps the parent type should be changed to the class-wide type's
4152 -- specific type in this case to prevent cascading errors ???
4153
4154 if Is_Class_Wide_Type (Parent_Type) then
4155 Error_Msg_N
4156 ("parent of type extension must not be a class-wide type", Indic);
4157 goto Leave;
4158 end if;
4159
4160 if (not Is_Package_Or_Generic_Package (Current_Scope)
4161 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4162 or else In_Private_Part (Current_Scope)
4163
4164 then
4165 Error_Msg_N ("invalid context for private extension", N);
4166 end if;
4167
4168 -- Set common attributes
4169
4170 Set_Is_Pure (T, Is_Pure (Current_Scope));
4171 Set_Scope (T, Current_Scope);
4172 Set_Ekind (T, E_Record_Type_With_Private);
4173 Init_Size_Align (T);
4174
4175 Set_Etype (T, Parent_Base);
4176 Set_Has_Task (T, Has_Task (Parent_Base));
4177
4178 Set_Convention (T, Convention (Parent_Type));
4179 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4180 Set_Is_First_Subtype (T);
4181 Make_Class_Wide_Type (T);
4182
4183 if Unknown_Discriminants_Present (N) then
4184 Set_Discriminant_Constraint (T, No_Elist);
4185 end if;
4186
4187 Build_Derived_Record_Type (N, Parent_Type, T);
4188
4189 -- Propagate inherited invariant information. The new type has
4190 -- invariants, if the parent type has inheritable invariants,
4191 -- and these invariants can in turn be inherited.
4192
4193 if Has_Inheritable_Invariants (Parent_Type) then
4194 Set_Has_Inheritable_Invariants (T);
4195 Set_Has_Invariants (T);
4196 end if;
4197
4198 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4199 -- synchronized formal derived type.
4200
4201 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4202 Set_Is_Limited_Record (T);
4203
4204 -- Formal derived type case
4205
4206 if Is_Generic_Type (T) then
4207
4208 -- The parent must be a tagged limited type or a synchronized
4209 -- interface.
4210
4211 if (not Is_Tagged_Type (Parent_Type)
4212 or else not Is_Limited_Type (Parent_Type))
4213 and then
4214 (not Is_Interface (Parent_Type)
4215 or else not Is_Synchronized_Interface (Parent_Type))
4216 then
4217 Error_Msg_NE ("parent type of & must be tagged limited " &
4218 "or synchronized", N, T);
4219 end if;
4220
4221 -- The progenitors (if any) must be limited or synchronized
4222 -- interfaces.
4223
4224 if Present (Interfaces (T)) then
4225 declare
4226 Iface : Entity_Id;
4227 Iface_Elmt : Elmt_Id;
4228
4229 begin
4230 Iface_Elmt := First_Elmt (Interfaces (T));
4231 while Present (Iface_Elmt) loop
4232 Iface := Node (Iface_Elmt);
4233
4234 if not Is_Limited_Interface (Iface)
4235 and then not Is_Synchronized_Interface (Iface)
4236 then
4237 Error_Msg_NE ("progenitor & must be limited " &
4238 "or synchronized", N, Iface);
4239 end if;
4240
4241 Next_Elmt (Iface_Elmt);
4242 end loop;
4243 end;
4244 end if;
4245
4246 -- Regular derived extension, the parent must be a limited or
4247 -- synchronized interface.
4248
4249 else
4250 if not Is_Interface (Parent_Type)
4251 or else (not Is_Limited_Interface (Parent_Type)
4252 and then not Is_Synchronized_Interface (Parent_Type))
4253 then
4254 Error_Msg_NE
4255 ("parent type of & must be limited interface", N, T);
4256 end if;
4257 end if;
4258
4259 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4260 -- extension with a synchronized parent must be explicitly declared
4261 -- synchronized, because the full view will be a synchronized type.
4262 -- This must be checked before the check for limited types below,
4263 -- to ensure that types declared limited are not allowed to extend
4264 -- synchronized interfaces.
4265
4266 elsif Is_Interface (Parent_Type)
4267 and then Is_Synchronized_Interface (Parent_Type)
4268 and then not Synchronized_Present (N)
4269 then
4270 Error_Msg_NE
4271 ("private extension of& must be explicitly synchronized",
4272 N, Parent_Type);
4273
4274 elsif Limited_Present (N) then
4275 Set_Is_Limited_Record (T);
4276
4277 if not Is_Limited_Type (Parent_Type)
4278 and then
4279 (not Is_Interface (Parent_Type)
4280 or else not Is_Limited_Interface (Parent_Type))
4281 then
4282 Error_Msg_NE ("parent type& of limited extension must be limited",
4283 N, Parent_Type);
4284 end if;
4285 end if;
4286
4287 <<Leave>>
4288 if Has_Aspects (N) then
4289 Analyze_Aspect_Specifications (N, T);
4290 end if;
4291 end Analyze_Private_Extension_Declaration;
4292
4293 ---------------------------------
4294 -- Analyze_Subtype_Declaration --
4295 ---------------------------------
4296
4297 procedure Analyze_Subtype_Declaration
4298 (N : Node_Id;
4299 Skip : Boolean := False)
4300 is
4301 Id : constant Entity_Id := Defining_Identifier (N);
4302 T : Entity_Id;
4303 R_Checks : Check_Result;
4304
4305 begin
4306 Generate_Definition (Id);
4307 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4308 Init_Size_Align (Id);
4309
4310 -- The following guard condition on Enter_Name is to handle cases where
4311 -- the defining identifier has already been entered into the scope but
4312 -- the declaration as a whole needs to be analyzed.
4313
4314 -- This case in particular happens for derived enumeration types. The
4315 -- derived enumeration type is processed as an inserted enumeration type
4316 -- declaration followed by a rewritten subtype declaration. The defining
4317 -- identifier, however, is entered into the name scope very early in the
4318 -- processing of the original type declaration and therefore needs to be
4319 -- avoided here, when the created subtype declaration is analyzed. (See
4320 -- Build_Derived_Types)
4321
4322 -- This also happens when the full view of a private type is derived
4323 -- type with constraints. In this case the entity has been introduced
4324 -- in the private declaration.
4325
4326 -- Finally this happens in some complex cases when validity checks are
4327 -- enabled, where the same subtype declaration may be analyzed twice.
4328 -- This can happen if the subtype is created by the pre-analysis of
4329 -- an attribute tht gives the range of a loop statement, and the loop
4330 -- itself appears within an if_statement that will be rewritten during
4331 -- expansion.
4332
4333 if Skip
4334 or else (Present (Etype (Id))
4335 and then (Is_Private_Type (Etype (Id))
4336 or else Is_Task_Type (Etype (Id))
4337 or else Is_Rewrite_Substitution (N)))
4338 then
4339 null;
4340
4341 elsif Current_Entity (Id) = Id then
4342 null;
4343
4344 else
4345 Enter_Name (Id);
4346 end if;
4347
4348 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4349
4350 -- Class-wide equivalent types of records with unknown discriminants
4351 -- involve the generation of an itype which serves as the private view
4352 -- of a constrained record subtype. In such cases the base type of the
4353 -- current subtype we are processing is the private itype. Use the full
4354 -- of the private itype when decorating various attributes.
4355
4356 if Is_Itype (T)
4357 and then Is_Private_Type (T)
4358 and then Present (Full_View (T))
4359 then
4360 T := Full_View (T);
4361 end if;
4362
4363 -- Inherit common attributes
4364
4365 Set_Is_Volatile (Id, Is_Volatile (T));
4366 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4367 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4368 Set_Convention (Id, Convention (T));
4369
4370 -- If ancestor has predicates then so does the subtype, and in addition
4371 -- we must delay the freeze to properly arrange predicate inheritance.
4372
4373 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4374 -- in which T = ID, so the above tests and assignments do nothing???
4375
4376 if Has_Predicates (T)
4377 or else (Present (Ancestor_Subtype (T))
4378 and then Has_Predicates (Ancestor_Subtype (T)))
4379 then
4380 Set_Has_Predicates (Id);
4381 Set_Has_Delayed_Freeze (Id);
4382 end if;
4383
4384 -- Subtype of Boolean cannot have a constraint in SPARK
4385
4386 if Is_Boolean_Type (T)
4387 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4388 then
4389 Check_SPARK_Restriction
4390 ("subtype of Boolean cannot have constraint", N);
4391 end if;
4392
4393 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4394 declare
4395 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4396 One_Cstr : Node_Id;
4397 Low : Node_Id;
4398 High : Node_Id;
4399
4400 begin
4401 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4402 One_Cstr := First (Constraints (Cstr));
4403 while Present (One_Cstr) loop
4404
4405 -- Index or discriminant constraint in SPARK must be a
4406 -- subtype mark.
4407
4408 if not
4409 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4410 then
4411 Check_SPARK_Restriction
4412 ("subtype mark required", One_Cstr);
4413
4414 -- String subtype must have a lower bound of 1 in SPARK.
4415 -- Note that we do not need to test for the non-static case
4416 -- here, since that was already taken care of in
4417 -- Process_Range_Expr_In_Decl.
4418
4419 elsif Base_Type (T) = Standard_String then
4420 Get_Index_Bounds (One_Cstr, Low, High);
4421
4422 if Is_OK_Static_Expression (Low)
4423 and then Expr_Value (Low) /= 1
4424 then
4425 Check_SPARK_Restriction
4426 ("String subtype must have lower bound of 1", N);
4427 end if;
4428 end if;
4429
4430 Next (One_Cstr);
4431 end loop;
4432 end if;
4433 end;
4434 end if;
4435
4436 -- In the case where there is no constraint given in the subtype
4437 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4438 -- semantic attributes must be established here.
4439
4440 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4441 Set_Etype (Id, Base_Type (T));
4442
4443 -- Subtype of unconstrained array without constraint is not allowed
4444 -- in SPARK.
4445
4446 if Is_Array_Type (T) and then not Is_Constrained (T) then
4447 Check_SPARK_Restriction
4448 ("subtype of unconstrained array must have constraint", N);
4449 end if;
4450
4451 case Ekind (T) is
4452 when Array_Kind =>
4453 Set_Ekind (Id, E_Array_Subtype);
4454 Copy_Array_Subtype_Attributes (Id, T);
4455
4456 when Decimal_Fixed_Point_Kind =>
4457 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4458 Set_Digits_Value (Id, Digits_Value (T));
4459 Set_Delta_Value (Id, Delta_Value (T));
4460 Set_Scale_Value (Id, Scale_Value (T));
4461 Set_Small_Value (Id, Small_Value (T));
4462 Set_Scalar_Range (Id, Scalar_Range (T));
4463 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4464 Set_Is_Constrained (Id, Is_Constrained (T));
4465 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4466 Set_RM_Size (Id, RM_Size (T));
4467
4468 when Enumeration_Kind =>
4469 Set_Ekind (Id, E_Enumeration_Subtype);
4470 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4471 Set_Scalar_Range (Id, Scalar_Range (T));
4472 Set_Is_Character_Type (Id, Is_Character_Type (T));
4473 Set_Is_Constrained (Id, Is_Constrained (T));
4474 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4475 Set_RM_Size (Id, RM_Size (T));
4476
4477 when Ordinary_Fixed_Point_Kind =>
4478 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4479 Set_Scalar_Range (Id, Scalar_Range (T));
4480 Set_Small_Value (Id, Small_Value (T));
4481 Set_Delta_Value (Id, Delta_Value (T));
4482 Set_Is_Constrained (Id, Is_Constrained (T));
4483 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4484 Set_RM_Size (Id, RM_Size (T));
4485
4486 when Float_Kind =>
4487 Set_Ekind (Id, E_Floating_Point_Subtype);
4488 Set_Scalar_Range (Id, Scalar_Range (T));
4489 Set_Digits_Value (Id, Digits_Value (T));
4490 Set_Is_Constrained (Id, Is_Constrained (T));
4491
4492 when Signed_Integer_Kind =>
4493 Set_Ekind (Id, E_Signed_Integer_Subtype);
4494 Set_Scalar_Range (Id, Scalar_Range (T));
4495 Set_Is_Constrained (Id, Is_Constrained (T));
4496 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4497 Set_RM_Size (Id, RM_Size (T));
4498
4499 when Modular_Integer_Kind =>
4500 Set_Ekind (Id, E_Modular_Integer_Subtype);
4501 Set_Scalar_Range (Id, Scalar_Range (T));
4502 Set_Is_Constrained (Id, Is_Constrained (T));
4503 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4504 Set_RM_Size (Id, RM_Size (T));
4505
4506 when Class_Wide_Kind =>
4507 Set_Ekind (Id, E_Class_Wide_Subtype);
4508 Set_First_Entity (Id, First_Entity (T));
4509 Set_Last_Entity (Id, Last_Entity (T));
4510 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4511 Set_Cloned_Subtype (Id, T);
4512 Set_Is_Tagged_Type (Id, True);
4513 Set_Has_Unknown_Discriminants
4514 (Id, True);
4515
4516 if Ekind (T) = E_Class_Wide_Subtype then
4517 Set_Equivalent_Type (Id, Equivalent_Type (T));
4518 end if;
4519
4520 when E_Record_Type | E_Record_Subtype =>
4521 Set_Ekind (Id, E_Record_Subtype);
4522
4523 if Ekind (T) = E_Record_Subtype
4524 and then Present (Cloned_Subtype (T))
4525 then
4526 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4527 else
4528 Set_Cloned_Subtype (Id, T);
4529 end if;
4530
4531 Set_First_Entity (Id, First_Entity (T));
4532 Set_Last_Entity (Id, Last_Entity (T));
4533 Set_Has_Discriminants (Id, Has_Discriminants (T));
4534 Set_Is_Constrained (Id, Is_Constrained (T));
4535 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4536 Set_Has_Implicit_Dereference
4537 (Id, Has_Implicit_Dereference (T));
4538 Set_Has_Unknown_Discriminants
4539 (Id, Has_Unknown_Discriminants (T));
4540
4541 if Has_Discriminants (T) then
4542 Set_Discriminant_Constraint
4543 (Id, Discriminant_Constraint (T));
4544 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4545
4546 elsif Has_Unknown_Discriminants (Id) then
4547 Set_Discriminant_Constraint (Id, No_Elist);
4548 end if;
4549
4550 if Is_Tagged_Type (T) then
4551 Set_Is_Tagged_Type (Id);
4552 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4553 Set_Direct_Primitive_Operations
4554 (Id, Direct_Primitive_Operations (T));
4555 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4556
4557 if Is_Interface (T) then
4558 Set_Is_Interface (Id);
4559 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4560 end if;
4561 end if;
4562
4563 when Private_Kind =>
4564 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4565 Set_Has_Discriminants (Id, Has_Discriminants (T));
4566 Set_Is_Constrained (Id, Is_Constrained (T));
4567 Set_First_Entity (Id, First_Entity (T));
4568 Set_Last_Entity (Id, Last_Entity (T));
4569 Set_Private_Dependents (Id, New_Elmt_List);
4570 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4571 Set_Has_Implicit_Dereference
4572 (Id, Has_Implicit_Dereference (T));
4573 Set_Has_Unknown_Discriminants
4574 (Id, Has_Unknown_Discriminants (T));
4575 Set_Known_To_Have_Preelab_Init
4576 (Id, Known_To_Have_Preelab_Init (T));
4577
4578 if Is_Tagged_Type (T) then
4579 Set_Is_Tagged_Type (Id);
4580 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4581 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4582 Set_Direct_Primitive_Operations (Id,
4583 Direct_Primitive_Operations (T));
4584 end if;
4585
4586 -- In general the attributes of the subtype of a private type
4587 -- are the attributes of the partial view of parent. However,
4588 -- the full view may be a discriminated type, and the subtype
4589 -- must share the discriminant constraint to generate correct
4590 -- calls to initialization procedures.
4591
4592 if Has_Discriminants (T) then
4593 Set_Discriminant_Constraint
4594 (Id, Discriminant_Constraint (T));
4595 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4596
4597 elsif Present (Full_View (T))
4598 and then Has_Discriminants (Full_View (T))
4599 then
4600 Set_Discriminant_Constraint
4601 (Id, Discriminant_Constraint (Full_View (T)));
4602 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4603
4604 -- This would seem semantically correct, but apparently
4605 -- generates spurious errors about missing components ???
4606
4607 -- Set_Has_Discriminants (Id);
4608 end if;
4609
4610 Prepare_Private_Subtype_Completion (Id, N);
4611
4612 -- If this is the subtype of a constrained private type with
4613 -- discriminants that has got a full view and we also have
4614 -- built a completion just above, show that the completion
4615 -- is a clone of the full view to the back-end.
4616
4617 if Has_Discriminants (T)
4618 and then not Has_Unknown_Discriminants (T)
4619 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4620 and then Present (Full_View (T))
4621 and then Present (Full_View (Id))
4622 then
4623 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4624 end if;
4625
4626 when Access_Kind =>
4627 Set_Ekind (Id, E_Access_Subtype);
4628 Set_Is_Constrained (Id, Is_Constrained (T));
4629 Set_Is_Access_Constant
4630 (Id, Is_Access_Constant (T));
4631 Set_Directly_Designated_Type
4632 (Id, Designated_Type (T));
4633 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4634
4635 -- A Pure library_item must not contain the declaration of a
4636 -- named access type, except within a subprogram, generic
4637 -- subprogram, task unit, or protected unit, or if it has
4638 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4639
4640 if Comes_From_Source (Id)
4641 and then In_Pure_Unit
4642 and then not In_Subprogram_Task_Protected_Unit
4643 and then not No_Pool_Assigned (Id)
4644 then
4645 Error_Msg_N
4646 ("named access types not allowed in pure unit", N);
4647 end if;
4648
4649 when Concurrent_Kind =>
4650 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4651 Set_Corresponding_Record_Type (Id,
4652 Corresponding_Record_Type (T));
4653 Set_First_Entity (Id, First_Entity (T));
4654 Set_First_Private_Entity (Id, First_Private_Entity (T));
4655 Set_Has_Discriminants (Id, Has_Discriminants (T));
4656 Set_Is_Constrained (Id, Is_Constrained (T));
4657 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4658 Set_Last_Entity (Id, Last_Entity (T));
4659
4660 if Has_Discriminants (T) then
4661 Set_Discriminant_Constraint (Id,
4662 Discriminant_Constraint (T));
4663 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4664 end if;
4665
4666 when E_Incomplete_Type =>
4667 if Ada_Version >= Ada_2005 then
4668
4669 -- In Ada 2005 an incomplete type can be explicitly tagged:
4670 -- propagate indication.
4671
4672 Set_Ekind (Id, E_Incomplete_Subtype);
4673 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4674 Set_Private_Dependents (Id, New_Elmt_List);
4675
4676 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4677 -- incomplete type visible through a limited with clause.
4678
4679 if From_Limited_With (T)
4680 and then Present (Non_Limited_View (T))
4681 then
4682 Set_From_Limited_With (Id);
4683 Set_Non_Limited_View (Id, Non_Limited_View (T));
4684
4685 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4686 -- to the private dependents of the original incomplete
4687 -- type for future transformation.
4688
4689 else
4690 Append_Elmt (Id, Private_Dependents (T));
4691 end if;
4692
4693 -- If the subtype name denotes an incomplete type an error
4694 -- was already reported by Process_Subtype.
4695
4696 else
4697 Set_Etype (Id, Any_Type);
4698 end if;
4699
4700 when others =>
4701 raise Program_Error;
4702 end case;
4703 end if;
4704
4705 if Etype (Id) = Any_Type then
4706 goto Leave;
4707 end if;
4708
4709 -- Some common processing on all types
4710
4711 Set_Size_Info (Id, T);
4712 Set_First_Rep_Item (Id, First_Rep_Item (T));
4713
4714 -- If the parent type is a generic actual, so is the subtype. This may
4715 -- happen in a nested instance. Why Comes_From_Source test???
4716
4717 if not Comes_From_Source (N) then
4718 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4719 end if;
4720
4721 T := Etype (Id);
4722
4723 Set_Is_Immediately_Visible (Id, True);
4724 Set_Depends_On_Private (Id, Has_Private_Component (T));
4725 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4726
4727 if Is_Interface (T) then
4728 Set_Is_Interface (Id);
4729 end if;
4730
4731 if Present (Generic_Parent_Type (N))
4732 and then
4733 (Nkind (Parent (Generic_Parent_Type (N))) /=
4734 N_Formal_Type_Declaration
4735 or else Nkind
4736 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4737 N_Formal_Private_Type_Definition)
4738 then
4739 if Is_Tagged_Type (Id) then
4740
4741 -- If this is a generic actual subtype for a synchronized type,
4742 -- the primitive operations are those of the corresponding record
4743 -- for which there is a separate subtype declaration.
4744
4745 if Is_Concurrent_Type (Id) then
4746 null;
4747 elsif Is_Class_Wide_Type (Id) then
4748 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4749 else
4750 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4751 end if;
4752
4753 elsif Scope (Etype (Id)) /= Standard_Standard then
4754 Derive_Subprograms (Generic_Parent_Type (N), Id);
4755 end if;
4756 end if;
4757
4758 if Is_Private_Type (T) and then Present (Full_View (T)) then
4759 Conditional_Delay (Id, Full_View (T));
4760
4761 -- The subtypes of components or subcomponents of protected types
4762 -- do not need freeze nodes, which would otherwise appear in the
4763 -- wrong scope (before the freeze node for the protected type). The
4764 -- proper subtypes are those of the subcomponents of the corresponding
4765 -- record.
4766
4767 elsif Ekind (Scope (Id)) /= E_Protected_Type
4768 and then Present (Scope (Scope (Id))) -- error defense
4769 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4770 then
4771 Conditional_Delay (Id, T);
4772 end if;
4773
4774 -- Check that Constraint_Error is raised for a scalar subtype indication
4775 -- when the lower or upper bound of a non-null range lies outside the
4776 -- range of the type mark.
4777
4778 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4779 if Is_Scalar_Type (Etype (Id))
4780 and then Scalar_Range (Id) /=
4781 Scalar_Range (Etype (Subtype_Mark
4782 (Subtype_Indication (N))))
4783 then
4784 Apply_Range_Check
4785 (Scalar_Range (Id),
4786 Etype (Subtype_Mark (Subtype_Indication (N))));
4787
4788 -- In the array case, check compatibility for each index
4789
4790 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4791 then
4792 -- This really should be a subprogram that finds the indications
4793 -- to check???
4794
4795 declare
4796 Subt_Index : Node_Id := First_Index (Id);
4797 Target_Index : Node_Id :=
4798 First_Index (Etype
4799 (Subtype_Mark (Subtype_Indication (N))));
4800 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4801
4802 begin
4803 while Present (Subt_Index) loop
4804 if ((Nkind (Subt_Index) = N_Identifier
4805 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4806 or else Nkind (Subt_Index) = N_Subtype_Indication)
4807 and then
4808 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4809 then
4810 declare
4811 Target_Typ : constant Entity_Id :=
4812 Etype (Target_Index);
4813 begin
4814 R_Checks :=
4815 Get_Range_Checks
4816 (Scalar_Range (Etype (Subt_Index)),
4817 Target_Typ,
4818 Etype (Subt_Index),
4819 Defining_Identifier (N));
4820
4821 -- Reset Has_Dynamic_Range_Check on the subtype to
4822 -- prevent elision of the index check due to a dynamic
4823 -- check generated for a preceding index (needed since
4824 -- Insert_Range_Checks tries to avoid generating
4825 -- redundant checks on a given declaration).
4826
4827 Set_Has_Dynamic_Range_Check (N, False);
4828
4829 Insert_Range_Checks
4830 (R_Checks,
4831 N,
4832 Target_Typ,
4833 Sloc (Defining_Identifier (N)));
4834
4835 -- Record whether this index involved a dynamic check
4836
4837 Has_Dyn_Chk :=
4838 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4839 end;
4840 end if;
4841
4842 Next_Index (Subt_Index);
4843 Next_Index (Target_Index);
4844 end loop;
4845
4846 -- Finally, mark whether the subtype involves dynamic checks
4847
4848 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4849 end;
4850 end if;
4851 end if;
4852
4853 -- Make sure that generic actual types are properly frozen. The subtype
4854 -- is marked as a generic actual type when the enclosing instance is
4855 -- analyzed, so here we identify the subtype from the tree structure.
4856
4857 if Expander_Active
4858 and then Is_Generic_Actual_Type (Id)
4859 and then In_Instance
4860 and then not Comes_From_Source (N)
4861 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4862 and then Is_Frozen (T)
4863 then
4864 Freeze_Before (N, Id);
4865 end if;
4866
4867 Set_Optimize_Alignment_Flags (Id);
4868 Check_Eliminated (Id);
4869
4870 <<Leave>>
4871 if Has_Aspects (N) then
4872 Analyze_Aspect_Specifications (N, Id);
4873 end if;
4874
4875 Analyze_Dimension (N);
4876 end Analyze_Subtype_Declaration;
4877
4878 --------------------------------
4879 -- Analyze_Subtype_Indication --
4880 --------------------------------
4881
4882 procedure Analyze_Subtype_Indication (N : Node_Id) is
4883 T : constant Entity_Id := Subtype_Mark (N);
4884 R : constant Node_Id := Range_Expression (Constraint (N));
4885
4886 begin
4887 Analyze (T);
4888
4889 if R /= Error then
4890 Analyze (R);
4891 Set_Etype (N, Etype (R));
4892 Resolve (R, Entity (T));
4893 else
4894 Set_Error_Posted (R);
4895 Set_Error_Posted (T);
4896 end if;
4897 end Analyze_Subtype_Indication;
4898
4899 --------------------------
4900 -- Analyze_Variant_Part --
4901 --------------------------
4902
4903 procedure Analyze_Variant_Part (N : Node_Id) is
4904 Discr_Name : Node_Id;
4905 Discr_Type : Entity_Id;
4906
4907 procedure Process_Variant (A : Node_Id);
4908 -- Analyze declarations for a single variant
4909
4910 package Analyze_Variant_Choices is
4911 new Generic_Analyze_Choices (Process_Variant);
4912 use Analyze_Variant_Choices;
4913
4914 ---------------------
4915 -- Process_Variant --
4916 ---------------------
4917
4918 procedure Process_Variant (A : Node_Id) is
4919 CL : constant Node_Id := Component_List (A);
4920 begin
4921 if not Null_Present (CL) then
4922 Analyze_Declarations (Component_Items (CL));
4923
4924 if Present (Variant_Part (CL)) then
4925 Analyze (Variant_Part (CL));
4926 end if;
4927 end if;
4928 end Process_Variant;
4929
4930 -- Start of processing for Analyze_Variant_Part
4931
4932 begin
4933 Discr_Name := Name (N);
4934 Analyze (Discr_Name);
4935
4936 -- If Discr_Name bad, get out (prevent cascaded errors)
4937
4938 if Etype (Discr_Name) = Any_Type then
4939 return;
4940 end if;
4941
4942 -- Check invalid discriminant in variant part
4943
4944 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4945 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4946 end if;
4947
4948 Discr_Type := Etype (Entity (Discr_Name));
4949
4950 if not Is_Discrete_Type (Discr_Type) then
4951 Error_Msg_N
4952 ("discriminant in a variant part must be of a discrete type",
4953 Name (N));
4954 return;
4955 end if;
4956
4957 -- Now analyze the choices, which also analyzes the declarations that
4958 -- are associated with each choice.
4959
4960 Analyze_Choices (Variants (N), Discr_Type);
4961
4962 -- Note: we used to instantiate and call Check_Choices here to check
4963 -- that the choices covered the discriminant, but it's too early to do
4964 -- that because of statically predicated subtypes, whose analysis may
4965 -- be deferred to their freeze point which may be as late as the freeze
4966 -- point of the containing record. So this call is now to be found in
4967 -- Freeze_Record_Declaration.
4968
4969 end Analyze_Variant_Part;
4970
4971 ----------------------------
4972 -- Array_Type_Declaration --
4973 ----------------------------
4974
4975 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4976 Component_Def : constant Node_Id := Component_Definition (Def);
4977 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4978 Element_Type : Entity_Id;
4979 Implicit_Base : Entity_Id;
4980 Index : Node_Id;
4981 Related_Id : Entity_Id := Empty;
4982 Nb_Index : Nat;
4983 P : constant Node_Id := Parent (Def);
4984 Priv : Entity_Id;
4985
4986 begin
4987 if Nkind (Def) = N_Constrained_Array_Definition then
4988 Index := First (Discrete_Subtype_Definitions (Def));
4989 else
4990 Index := First (Subtype_Marks (Def));
4991 end if;
4992
4993 -- Find proper names for the implicit types which may be public. In case
4994 -- of anonymous arrays we use the name of the first object of that type
4995 -- as prefix.
4996
4997 if No (T) then
4998 Related_Id := Defining_Identifier (P);
4999 else
5000 Related_Id := T;
5001 end if;
5002
5003 Nb_Index := 1;
5004 while Present (Index) loop
5005 Analyze (Index);
5006
5007 -- Test for odd case of trying to index a type by the type itself
5008
5009 if Is_Entity_Name (Index) and then Entity (Index) = T then
5010 Error_Msg_N ("type& cannot be indexed by itself", Index);
5011 Set_Entity (Index, Standard_Boolean);
5012 Set_Etype (Index, Standard_Boolean);
5013 end if;
5014
5015 -- Check SPARK restriction requiring a subtype mark
5016
5017 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5018 Check_SPARK_Restriction ("subtype mark required", Index);
5019 end if;
5020
5021 -- Add a subtype declaration for each index of private array type
5022 -- declaration whose etype is also private. For example:
5023
5024 -- package Pkg is
5025 -- type Index is private;
5026 -- private
5027 -- type Table is array (Index) of ...
5028 -- end;
5029
5030 -- This is currently required by the expander for the internally
5031 -- generated equality subprogram of records with variant parts in
5032 -- which the etype of some component is such private type.
5033
5034 if Ekind (Current_Scope) = E_Package
5035 and then In_Private_Part (Current_Scope)
5036 and then Has_Private_Declaration (Etype (Index))
5037 then
5038 declare
5039 Loc : constant Source_Ptr := Sloc (Def);
5040 New_E : Entity_Id;
5041 Decl : Entity_Id;
5042
5043 begin
5044 New_E := Make_Temporary (Loc, 'T');
5045 Set_Is_Internal (New_E);
5046
5047 Decl :=
5048 Make_Subtype_Declaration (Loc,
5049 Defining_Identifier => New_E,
5050 Subtype_Indication =>
5051 New_Occurrence_Of (Etype (Index), Loc));
5052
5053 Insert_Before (Parent (Def), Decl);
5054 Analyze (Decl);
5055 Set_Etype (Index, New_E);
5056
5057 -- If the index is a range the Entity attribute is not
5058 -- available. Example:
5059
5060 -- package Pkg is
5061 -- type T is private;
5062 -- private
5063 -- type T is new Natural;
5064 -- Table : array (T(1) .. T(10)) of Boolean;
5065 -- end Pkg;
5066
5067 if Nkind (Index) /= N_Range then
5068 Set_Entity (Index, New_E);
5069 end if;
5070 end;
5071 end if;
5072
5073 Make_Index (Index, P, Related_Id, Nb_Index);
5074
5075 -- Check error of subtype with predicate for index type
5076
5077 Bad_Predicated_Subtype_Use
5078 ("subtype& has predicate, not allowed as index subtype",
5079 Index, Etype (Index));
5080
5081 -- Move to next index
5082
5083 Next_Index (Index);
5084 Nb_Index := Nb_Index + 1;
5085 end loop;
5086
5087 -- Process subtype indication if one is present
5088
5089 if Present (Component_Typ) then
5090 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5091
5092 Set_Etype (Component_Typ, Element_Type);
5093
5094 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5095 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5096 end if;
5097
5098 -- Ada 2005 (AI-230): Access Definition case
5099
5100 else pragma Assert (Present (Access_Definition (Component_Def)));
5101
5102 -- Indicate that the anonymous access type is created by the
5103 -- array type declaration.
5104
5105 Element_Type := Access_Definition
5106 (Related_Nod => P,
5107 N => Access_Definition (Component_Def));
5108 Set_Is_Local_Anonymous_Access (Element_Type);
5109
5110 -- Propagate the parent. This field is needed if we have to generate
5111 -- the master_id associated with an anonymous access to task type
5112 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5113
5114 Set_Parent (Element_Type, Parent (T));
5115
5116 -- Ada 2005 (AI-230): In case of components that are anonymous access
5117 -- types the level of accessibility depends on the enclosing type
5118 -- declaration
5119
5120 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5121
5122 -- Ada 2005 (AI-254)
5123
5124 declare
5125 CD : constant Node_Id :=
5126 Access_To_Subprogram_Definition
5127 (Access_Definition (Component_Def));
5128 begin
5129 if Present (CD) and then Protected_Present (CD) then
5130 Element_Type :=
5131 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5132 end if;
5133 end;
5134 end if;
5135
5136 -- Constrained array case
5137
5138 if No (T) then
5139 T := Create_Itype (E_Void, P, Related_Id, 'T');
5140 end if;
5141
5142 if Nkind (Def) = N_Constrained_Array_Definition then
5143
5144 -- Establish Implicit_Base as unconstrained base type
5145
5146 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5147
5148 Set_Etype (Implicit_Base, Implicit_Base);
5149 Set_Scope (Implicit_Base, Current_Scope);
5150 Set_Has_Delayed_Freeze (Implicit_Base);
5151
5152 -- The constrained array type is a subtype of the unconstrained one
5153
5154 Set_Ekind (T, E_Array_Subtype);
5155 Init_Size_Align (T);
5156 Set_Etype (T, Implicit_Base);
5157 Set_Scope (T, Current_Scope);
5158 Set_Is_Constrained (T, True);
5159 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5160 Set_Has_Delayed_Freeze (T);
5161
5162 -- Complete setup of implicit base type
5163
5164 Set_First_Index (Implicit_Base, First_Index (T));
5165 Set_Component_Type (Implicit_Base, Element_Type);
5166 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5167 Set_Component_Size (Implicit_Base, Uint_0);
5168 Set_Packed_Array_Type (Implicit_Base, Empty);
5169 Set_Has_Controlled_Component
5170 (Implicit_Base, Has_Controlled_Component
5171 (Element_Type)
5172 or else Is_Controlled
5173 (Element_Type));
5174 Set_Finalize_Storage_Only
5175 (Implicit_Base, Finalize_Storage_Only
5176 (Element_Type));
5177
5178 -- Unconstrained array case
5179
5180 else
5181 Set_Ekind (T, E_Array_Type);
5182 Init_Size_Align (T);
5183 Set_Etype (T, T);
5184 Set_Scope (T, Current_Scope);
5185 Set_Component_Size (T, Uint_0);
5186 Set_Is_Constrained (T, False);
5187 Set_First_Index (T, First (Subtype_Marks (Def)));
5188 Set_Has_Delayed_Freeze (T, True);
5189 Set_Has_Task (T, Has_Task (Element_Type));
5190 Set_Has_Controlled_Component (T, Has_Controlled_Component
5191 (Element_Type)
5192 or else
5193 Is_Controlled (Element_Type));
5194 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5195 (Element_Type));
5196 end if;
5197
5198 -- Common attributes for both cases
5199
5200 Set_Component_Type (Base_Type (T), Element_Type);
5201 Set_Packed_Array_Type (T, Empty);
5202
5203 if Aliased_Present (Component_Definition (Def)) then
5204 Check_SPARK_Restriction
5205 ("aliased is not allowed", Component_Definition (Def));
5206 Set_Has_Aliased_Components (Etype (T));
5207 end if;
5208
5209 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5210 -- array type to ensure that objects of this type are initialized.
5211
5212 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5213 Set_Can_Never_Be_Null (T);
5214
5215 if Null_Exclusion_Present (Component_Definition (Def))
5216
5217 -- No need to check itypes because in their case this check was
5218 -- done at their point of creation
5219
5220 and then not Is_Itype (Element_Type)
5221 then
5222 Error_Msg_N
5223 ("`NOT NULL` not allowed (null already excluded)",
5224 Subtype_Indication (Component_Definition (Def)));
5225 end if;
5226 end if;
5227
5228 Priv := Private_Component (Element_Type);
5229
5230 if Present (Priv) then
5231
5232 -- Check for circular definitions
5233
5234 if Priv = Any_Type then
5235 Set_Component_Type (Etype (T), Any_Type);
5236
5237 -- There is a gap in the visibility of operations on the composite
5238 -- type only if the component type is defined in a different scope.
5239
5240 elsif Scope (Priv) = Current_Scope then
5241 null;
5242
5243 elsif Is_Limited_Type (Priv) then
5244 Set_Is_Limited_Composite (Etype (T));
5245 Set_Is_Limited_Composite (T);
5246 else
5247 Set_Is_Private_Composite (Etype (T));
5248 Set_Is_Private_Composite (T);
5249 end if;
5250 end if;
5251
5252 -- A syntax error in the declaration itself may lead to an empty index
5253 -- list, in which case do a minimal patch.
5254
5255 if No (First_Index (T)) then
5256 Error_Msg_N ("missing index definition in array type declaration", T);
5257
5258 declare
5259 Indexes : constant List_Id :=
5260 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5261 begin
5262 Set_Discrete_Subtype_Definitions (Def, Indexes);
5263 Set_First_Index (T, First (Indexes));
5264 return;
5265 end;
5266 end if;
5267
5268 -- Create a concatenation operator for the new type. Internal array
5269 -- types created for packed entities do not need such, they are
5270 -- compatible with the user-defined type.
5271
5272 if Number_Dimensions (T) = 1 and then not Is_Packed_Array_Type (T) then
5273 New_Concatenation_Op (T);
5274 end if;
5275
5276 -- In the case of an unconstrained array the parser has already verified
5277 -- that all the indexes are unconstrained but we still need to make sure
5278 -- that the element type is constrained.
5279
5280 if Is_Indefinite_Subtype (Element_Type) then
5281 Error_Msg_N
5282 ("unconstrained element type in array declaration",
5283 Subtype_Indication (Component_Def));
5284
5285 elsif Is_Abstract_Type (Element_Type) then
5286 Error_Msg_N
5287 ("the type of a component cannot be abstract",
5288 Subtype_Indication (Component_Def));
5289 end if;
5290
5291 -- There may be an invariant declared for the component type, but
5292 -- the construction of the component invariant checking procedure
5293 -- takes place during expansion.
5294 end Array_Type_Declaration;
5295
5296 ------------------------------------------------------
5297 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5298 ------------------------------------------------------
5299
5300 function Replace_Anonymous_Access_To_Protected_Subprogram
5301 (N : Node_Id) return Entity_Id
5302 is
5303 Loc : constant Source_Ptr := Sloc (N);
5304
5305 Curr_Scope : constant Scope_Stack_Entry :=
5306 Scope_Stack.Table (Scope_Stack.Last);
5307
5308 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5309
5310 Acc : Node_Id;
5311 -- Access definition in declaration
5312
5313 Comp : Node_Id;
5314 -- Object definition or formal definition with an access definition
5315
5316 Decl : Node_Id;
5317 -- Declaration of anonymous access to subprogram type
5318
5319 Spec : Node_Id;
5320 -- Original specification in access to subprogram
5321
5322 P : Node_Id;
5323
5324 begin
5325 Set_Is_Internal (Anon);
5326
5327 case Nkind (N) is
5328 when N_Component_Declaration |
5329 N_Unconstrained_Array_Definition |
5330 N_Constrained_Array_Definition =>
5331 Comp := Component_Definition (N);
5332 Acc := Access_Definition (Comp);
5333
5334 when N_Discriminant_Specification =>
5335 Comp := Discriminant_Type (N);
5336 Acc := Comp;
5337
5338 when N_Parameter_Specification =>
5339 Comp := Parameter_Type (N);
5340 Acc := Comp;
5341
5342 when N_Access_Function_Definition =>
5343 Comp := Result_Definition (N);
5344 Acc := Comp;
5345
5346 when N_Object_Declaration =>
5347 Comp := Object_Definition (N);
5348 Acc := Comp;
5349
5350 when N_Function_Specification =>
5351 Comp := Result_Definition (N);
5352 Acc := Comp;
5353
5354 when others =>
5355 raise Program_Error;
5356 end case;
5357
5358 Spec := Access_To_Subprogram_Definition (Acc);
5359
5360 Decl :=
5361 Make_Full_Type_Declaration (Loc,
5362 Defining_Identifier => Anon,
5363 Type_Definition => Copy_Separate_Tree (Spec));
5364
5365 Mark_Rewrite_Insertion (Decl);
5366
5367 -- In ASIS mode, analyze the profile on the original node, because
5368 -- the separate copy does not provide enough links to recover the
5369 -- original tree. Analysis is limited to type annotations, within
5370 -- a temporary scope that serves as an anonymous subprogram to collect
5371 -- otherwise useless temporaries and itypes.
5372
5373 if ASIS_Mode then
5374 declare
5375 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5376
5377 begin
5378 if Nkind (Spec) = N_Access_Function_Definition then
5379 Set_Ekind (Typ, E_Function);
5380 else
5381 Set_Ekind (Typ, E_Procedure);
5382 end if;
5383
5384 Set_Parent (Typ, N);
5385 Set_Scope (Typ, Current_Scope);
5386 Push_Scope (Typ);
5387
5388 Process_Formals (Parameter_Specifications (Spec), Spec);
5389
5390 if Nkind (Spec) = N_Access_Function_Definition then
5391 declare
5392 Def : constant Node_Id := Result_Definition (Spec);
5393
5394 begin
5395 -- The result might itself be an anonymous access type, so
5396 -- have to recurse.
5397
5398 if Nkind (Def) = N_Access_Definition then
5399 if Present (Access_To_Subprogram_Definition (Def)) then
5400 Set_Etype
5401 (Def,
5402 Replace_Anonymous_Access_To_Protected_Subprogram
5403 (Spec));
5404 else
5405 Find_Type (Subtype_Mark (Def));
5406 end if;
5407
5408 else
5409 Find_Type (Def);
5410 end if;
5411 end;
5412 end if;
5413
5414 End_Scope;
5415 end;
5416 end if;
5417
5418 -- Insert the new declaration in the nearest enclosing scope. If the
5419 -- node is a body and N is its return type, the declaration belongs in
5420 -- the enclosing scope.
5421
5422 P := Parent (N);
5423
5424 if Nkind (P) = N_Subprogram_Body
5425 and then Nkind (N) = N_Function_Specification
5426 then
5427 P := Parent (P);
5428 end if;
5429
5430 while Present (P) and then not Has_Declarations (P) loop
5431 P := Parent (P);
5432 end loop;
5433
5434 pragma Assert (Present (P));
5435
5436 if Nkind (P) = N_Package_Specification then
5437 Prepend (Decl, Visible_Declarations (P));
5438 else
5439 Prepend (Decl, Declarations (P));
5440 end if;
5441
5442 -- Replace the anonymous type with an occurrence of the new declaration.
5443 -- In all cases the rewritten node does not have the null-exclusion
5444 -- attribute because (if present) it was already inherited by the
5445 -- anonymous entity (Anon). Thus, in case of components we do not
5446 -- inherit this attribute.
5447
5448 if Nkind (N) = N_Parameter_Specification then
5449 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5450 Set_Etype (Defining_Identifier (N), Anon);
5451 Set_Null_Exclusion_Present (N, False);
5452
5453 elsif Nkind (N) = N_Object_Declaration then
5454 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5455 Set_Etype (Defining_Identifier (N), Anon);
5456
5457 elsif Nkind (N) = N_Access_Function_Definition then
5458 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5459
5460 elsif Nkind (N) = N_Function_Specification then
5461 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5462 Set_Etype (Defining_Unit_Name (N), Anon);
5463
5464 else
5465 Rewrite (Comp,
5466 Make_Component_Definition (Loc,
5467 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5468 end if;
5469
5470 Mark_Rewrite_Insertion (Comp);
5471
5472 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5473 Analyze (Decl);
5474
5475 else
5476 -- Temporarily remove the current scope (record or subprogram) from
5477 -- the stack to add the new declarations to the enclosing scope.
5478
5479 Scope_Stack.Decrement_Last;
5480 Analyze (Decl);
5481 Set_Is_Itype (Anon);
5482 Scope_Stack.Append (Curr_Scope);
5483 end if;
5484
5485 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5486 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5487 return Anon;
5488 end Replace_Anonymous_Access_To_Protected_Subprogram;
5489
5490 -------------------------------
5491 -- Build_Derived_Access_Type --
5492 -------------------------------
5493
5494 procedure Build_Derived_Access_Type
5495 (N : Node_Id;
5496 Parent_Type : Entity_Id;
5497 Derived_Type : Entity_Id)
5498 is
5499 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5500
5501 Desig_Type : Entity_Id;
5502 Discr : Entity_Id;
5503 Discr_Con_Elist : Elist_Id;
5504 Discr_Con_El : Elmt_Id;
5505 Subt : Entity_Id;
5506
5507 begin
5508 -- Set the designated type so it is available in case this is an access
5509 -- to a self-referential type, e.g. a standard list type with a next
5510 -- pointer. Will be reset after subtype is built.
5511
5512 Set_Directly_Designated_Type
5513 (Derived_Type, Designated_Type (Parent_Type));
5514
5515 Subt := Process_Subtype (S, N);
5516
5517 if Nkind (S) /= N_Subtype_Indication
5518 and then Subt /= Base_Type (Subt)
5519 then
5520 Set_Ekind (Derived_Type, E_Access_Subtype);
5521 end if;
5522
5523 if Ekind (Derived_Type) = E_Access_Subtype then
5524 declare
5525 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5526 Ibase : constant Entity_Id :=
5527 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5528 Svg_Chars : constant Name_Id := Chars (Ibase);
5529 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5530
5531 begin
5532 Copy_Node (Pbase, Ibase);
5533
5534 Set_Chars (Ibase, Svg_Chars);
5535 Set_Next_Entity (Ibase, Svg_Next_E);
5536 Set_Sloc (Ibase, Sloc (Derived_Type));
5537 Set_Scope (Ibase, Scope (Derived_Type));
5538 Set_Freeze_Node (Ibase, Empty);
5539 Set_Is_Frozen (Ibase, False);
5540 Set_Comes_From_Source (Ibase, False);
5541 Set_Is_First_Subtype (Ibase, False);
5542
5543 Set_Etype (Ibase, Pbase);
5544 Set_Etype (Derived_Type, Ibase);
5545 end;
5546 end if;
5547
5548 Set_Directly_Designated_Type
5549 (Derived_Type, Designated_Type (Subt));
5550
5551 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5552 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5553 Set_Size_Info (Derived_Type, Parent_Type);
5554 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5555 Set_Depends_On_Private (Derived_Type,
5556 Has_Private_Component (Derived_Type));
5557 Conditional_Delay (Derived_Type, Subt);
5558
5559 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5560 -- that it is not redundant.
5561
5562 if Null_Exclusion_Present (Type_Definition (N)) then
5563 Set_Can_Never_Be_Null (Derived_Type);
5564
5565 -- What is with the "AND THEN FALSE" here ???
5566
5567 if Can_Never_Be_Null (Parent_Type)
5568 and then False
5569 then
5570 Error_Msg_NE
5571 ("`NOT NULL` not allowed (& already excludes null)",
5572 N, Parent_Type);
5573 end if;
5574
5575 elsif Can_Never_Be_Null (Parent_Type) then
5576 Set_Can_Never_Be_Null (Derived_Type);
5577 end if;
5578
5579 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5580 -- the root type for this information.
5581
5582 -- Apply range checks to discriminants for derived record case
5583 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5584
5585 Desig_Type := Designated_Type (Derived_Type);
5586 if Is_Composite_Type (Desig_Type)
5587 and then (not Is_Array_Type (Desig_Type))
5588 and then Has_Discriminants (Desig_Type)
5589 and then Base_Type (Desig_Type) /= Desig_Type
5590 then
5591 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5592 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5593
5594 Discr := First_Discriminant (Base_Type (Desig_Type));
5595 while Present (Discr_Con_El) loop
5596 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5597 Next_Elmt (Discr_Con_El);
5598 Next_Discriminant (Discr);
5599 end loop;
5600 end if;
5601 end Build_Derived_Access_Type;
5602
5603 ------------------------------
5604 -- Build_Derived_Array_Type --
5605 ------------------------------
5606
5607 procedure Build_Derived_Array_Type
5608 (N : Node_Id;
5609 Parent_Type : Entity_Id;
5610 Derived_Type : Entity_Id)
5611 is
5612 Loc : constant Source_Ptr := Sloc (N);
5613 Tdef : constant Node_Id := Type_Definition (N);
5614 Indic : constant Node_Id := Subtype_Indication (Tdef);
5615 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5616 Implicit_Base : Entity_Id;
5617 New_Indic : Node_Id;
5618
5619 procedure Make_Implicit_Base;
5620 -- If the parent subtype is constrained, the derived type is a subtype
5621 -- of an implicit base type derived from the parent base.
5622
5623 ------------------------
5624 -- Make_Implicit_Base --
5625 ------------------------
5626
5627 procedure Make_Implicit_Base is
5628 begin
5629 Implicit_Base :=
5630 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5631
5632 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5633 Set_Etype (Implicit_Base, Parent_Base);
5634
5635 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5636 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5637
5638 Set_Has_Delayed_Freeze (Implicit_Base, True);
5639 end Make_Implicit_Base;
5640
5641 -- Start of processing for Build_Derived_Array_Type
5642
5643 begin
5644 if not Is_Constrained (Parent_Type) then
5645 if Nkind (Indic) /= N_Subtype_Indication then
5646 Set_Ekind (Derived_Type, E_Array_Type);
5647
5648 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5649 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5650
5651 Set_Has_Delayed_Freeze (Derived_Type, True);
5652
5653 else
5654 Make_Implicit_Base;
5655 Set_Etype (Derived_Type, Implicit_Base);
5656
5657 New_Indic :=
5658 Make_Subtype_Declaration (Loc,
5659 Defining_Identifier => Derived_Type,
5660 Subtype_Indication =>
5661 Make_Subtype_Indication (Loc,
5662 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5663 Constraint => Constraint (Indic)));
5664
5665 Rewrite (N, New_Indic);
5666 Analyze (N);
5667 end if;
5668
5669 else
5670 if Nkind (Indic) /= N_Subtype_Indication then
5671 Make_Implicit_Base;
5672
5673 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5674 Set_Etype (Derived_Type, Implicit_Base);
5675 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5676
5677 else
5678 Error_Msg_N ("illegal constraint on constrained type", Indic);
5679 end if;
5680 end if;
5681
5682 -- If parent type is not a derived type itself, and is declared in
5683 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5684 -- the new type's concatenation operator since Derive_Subprograms
5685 -- will not inherit the parent's operator. If the parent type is
5686 -- unconstrained, the operator is of the unconstrained base type.
5687
5688 if Number_Dimensions (Parent_Type) = 1
5689 and then not Is_Limited_Type (Parent_Type)
5690 and then not Is_Derived_Type (Parent_Type)
5691 and then not Is_Package_Or_Generic_Package
5692 (Scope (Base_Type (Parent_Type)))
5693 then
5694 if not Is_Constrained (Parent_Type)
5695 and then Is_Constrained (Derived_Type)
5696 then
5697 New_Concatenation_Op (Implicit_Base);
5698 else
5699 New_Concatenation_Op (Derived_Type);
5700 end if;
5701 end if;
5702 end Build_Derived_Array_Type;
5703
5704 -----------------------------------
5705 -- Build_Derived_Concurrent_Type --
5706 -----------------------------------
5707
5708 procedure Build_Derived_Concurrent_Type
5709 (N : Node_Id;
5710 Parent_Type : Entity_Id;
5711 Derived_Type : Entity_Id)
5712 is
5713 Loc : constant Source_Ptr := Sloc (N);
5714
5715 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5716 Corr_Decl : Node_Id;
5717 Corr_Decl_Needed : Boolean;
5718 -- If the derived type has fewer discriminants than its parent, the
5719 -- corresponding record is also a derived type, in order to account for
5720 -- the bound discriminants. We create a full type declaration for it in
5721 -- this case.
5722
5723 Constraint_Present : constant Boolean :=
5724 Nkind (Subtype_Indication (Type_Definition (N))) =
5725 N_Subtype_Indication;
5726
5727 D_Constraint : Node_Id;
5728 New_Constraint : Elist_Id;
5729 Old_Disc : Entity_Id;
5730 New_Disc : Entity_Id;
5731 New_N : Node_Id;
5732
5733 begin
5734 Set_Stored_Constraint (Derived_Type, No_Elist);
5735 Corr_Decl_Needed := False;
5736 Old_Disc := Empty;
5737
5738 if Present (Discriminant_Specifications (N))
5739 and then Constraint_Present
5740 then
5741 Old_Disc := First_Discriminant (Parent_Type);
5742 New_Disc := First (Discriminant_Specifications (N));
5743 while Present (New_Disc) and then Present (Old_Disc) loop
5744 Next_Discriminant (Old_Disc);
5745 Next (New_Disc);
5746 end loop;
5747 end if;
5748
5749 if Present (Old_Disc) and then Expander_Active then
5750
5751 -- The new type has fewer discriminants, so we need to create a new
5752 -- corresponding record, which is derived from the corresponding
5753 -- record of the parent, and has a stored constraint that captures
5754 -- the values of the discriminant constraints. The corresponding
5755 -- record is needed only if expander is active and code generation is
5756 -- enabled.
5757
5758 -- The type declaration for the derived corresponding record has the
5759 -- same discriminant part and constraints as the current declaration.
5760 -- Copy the unanalyzed tree to build declaration.
5761
5762 Corr_Decl_Needed := True;
5763 New_N := Copy_Separate_Tree (N);
5764
5765 Corr_Decl :=
5766 Make_Full_Type_Declaration (Loc,
5767 Defining_Identifier => Corr_Record,
5768 Discriminant_Specifications =>
5769 Discriminant_Specifications (New_N),
5770 Type_Definition =>
5771 Make_Derived_Type_Definition (Loc,
5772 Subtype_Indication =>
5773 Make_Subtype_Indication (Loc,
5774 Subtype_Mark =>
5775 New_Occurrence_Of
5776 (Corresponding_Record_Type (Parent_Type), Loc),
5777 Constraint =>
5778 Constraint
5779 (Subtype_Indication (Type_Definition (New_N))))));
5780 end if;
5781
5782 -- Copy Storage_Size and Relative_Deadline variables if task case
5783
5784 if Is_Task_Type (Parent_Type) then
5785 Set_Storage_Size_Variable (Derived_Type,
5786 Storage_Size_Variable (Parent_Type));
5787 Set_Relative_Deadline_Variable (Derived_Type,
5788 Relative_Deadline_Variable (Parent_Type));
5789 end if;
5790
5791 if Present (Discriminant_Specifications (N)) then
5792 Push_Scope (Derived_Type);
5793 Check_Or_Process_Discriminants (N, Derived_Type);
5794
5795 if Constraint_Present then
5796 New_Constraint :=
5797 Expand_To_Stored_Constraint
5798 (Parent_Type,
5799 Build_Discriminant_Constraints
5800 (Parent_Type,
5801 Subtype_Indication (Type_Definition (N)), True));
5802 end if;
5803
5804 End_Scope;
5805
5806 elsif Constraint_Present then
5807
5808 -- Build constrained subtype, copying the constraint, and derive
5809 -- from it to create a derived constrained type.
5810
5811 declare
5812 Loc : constant Source_Ptr := Sloc (N);
5813 Anon : constant Entity_Id :=
5814 Make_Defining_Identifier (Loc,
5815 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5816 Decl : Node_Id;
5817
5818 begin
5819 Decl :=
5820 Make_Subtype_Declaration (Loc,
5821 Defining_Identifier => Anon,
5822 Subtype_Indication =>
5823 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5824 Insert_Before (N, Decl);
5825 Analyze (Decl);
5826
5827 Rewrite (Subtype_Indication (Type_Definition (N)),
5828 New_Occurrence_Of (Anon, Loc));
5829 Set_Analyzed (Derived_Type, False);
5830 Analyze (N);
5831 return;
5832 end;
5833 end if;
5834
5835 -- By default, operations and private data are inherited from parent.
5836 -- However, in the presence of bound discriminants, a new corresponding
5837 -- record will be created, see below.
5838
5839 Set_Has_Discriminants
5840 (Derived_Type, Has_Discriminants (Parent_Type));
5841 Set_Corresponding_Record_Type
5842 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5843
5844 -- Is_Constrained is set according the parent subtype, but is set to
5845 -- False if the derived type is declared with new discriminants.
5846
5847 Set_Is_Constrained
5848 (Derived_Type,
5849 (Is_Constrained (Parent_Type) or else Constraint_Present)
5850 and then not Present (Discriminant_Specifications (N)));
5851
5852 if Constraint_Present then
5853 if not Has_Discriminants (Parent_Type) then
5854 Error_Msg_N ("untagged parent must have discriminants", N);
5855
5856 elsif Present (Discriminant_Specifications (N)) then
5857
5858 -- Verify that new discriminants are used to constrain old ones
5859
5860 D_Constraint :=
5861 First
5862 (Constraints
5863 (Constraint (Subtype_Indication (Type_Definition (N)))));
5864
5865 Old_Disc := First_Discriminant (Parent_Type);
5866
5867 while Present (D_Constraint) loop
5868 if Nkind (D_Constraint) /= N_Discriminant_Association then
5869
5870 -- Positional constraint. If it is a reference to a new
5871 -- discriminant, it constrains the corresponding old one.
5872
5873 if Nkind (D_Constraint) = N_Identifier then
5874 New_Disc := First_Discriminant (Derived_Type);
5875 while Present (New_Disc) loop
5876 exit when Chars (New_Disc) = Chars (D_Constraint);
5877 Next_Discriminant (New_Disc);
5878 end loop;
5879
5880 if Present (New_Disc) then
5881 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5882 end if;
5883 end if;
5884
5885 Next_Discriminant (Old_Disc);
5886
5887 -- if this is a named constraint, search by name for the old
5888 -- discriminants constrained by the new one.
5889
5890 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5891
5892 -- Find new discriminant with that name
5893
5894 New_Disc := First_Discriminant (Derived_Type);
5895 while Present (New_Disc) loop
5896 exit when
5897 Chars (New_Disc) = Chars (Expression (D_Constraint));
5898 Next_Discriminant (New_Disc);
5899 end loop;
5900
5901 if Present (New_Disc) then
5902
5903 -- Verify that new discriminant renames some discriminant
5904 -- of the parent type, and associate the new discriminant
5905 -- with one or more old ones that it renames.
5906
5907 declare
5908 Selector : Node_Id;
5909
5910 begin
5911 Selector := First (Selector_Names (D_Constraint));
5912 while Present (Selector) loop
5913 Old_Disc := First_Discriminant (Parent_Type);
5914 while Present (Old_Disc) loop
5915 exit when Chars (Old_Disc) = Chars (Selector);
5916 Next_Discriminant (Old_Disc);
5917 end loop;
5918
5919 if Present (Old_Disc) then
5920 Set_Corresponding_Discriminant
5921 (New_Disc, Old_Disc);
5922 end if;
5923
5924 Next (Selector);
5925 end loop;
5926 end;
5927 end if;
5928 end if;
5929
5930 Next (D_Constraint);
5931 end loop;
5932
5933 New_Disc := First_Discriminant (Derived_Type);
5934 while Present (New_Disc) loop
5935 if No (Corresponding_Discriminant (New_Disc)) then
5936 Error_Msg_NE
5937 ("new discriminant& must constrain old one", N, New_Disc);
5938
5939 elsif not
5940 Subtypes_Statically_Compatible
5941 (Etype (New_Disc),
5942 Etype (Corresponding_Discriminant (New_Disc)))
5943 then
5944 Error_Msg_NE
5945 ("& not statically compatible with parent discriminant",
5946 N, New_Disc);
5947 end if;
5948
5949 Next_Discriminant (New_Disc);
5950 end loop;
5951 end if;
5952
5953 elsif Present (Discriminant_Specifications (N)) then
5954 Error_Msg_N
5955 ("missing discriminant constraint in untagged derivation", N);
5956 end if;
5957
5958 -- The entity chain of the derived type includes the new discriminants
5959 -- but shares operations with the parent.
5960
5961 if Present (Discriminant_Specifications (N)) then
5962 Old_Disc := First_Discriminant (Parent_Type);
5963 while Present (Old_Disc) loop
5964 if No (Next_Entity (Old_Disc))
5965 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5966 then
5967 Set_Next_Entity
5968 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5969 exit;
5970 end if;
5971
5972 Next_Discriminant (Old_Disc);
5973 end loop;
5974
5975 else
5976 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5977 if Has_Discriminants (Parent_Type) then
5978 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5979 Set_Discriminant_Constraint (
5980 Derived_Type, Discriminant_Constraint (Parent_Type));
5981 end if;
5982 end if;
5983
5984 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5985
5986 Set_Has_Completion (Derived_Type);
5987
5988 if Corr_Decl_Needed then
5989 Set_Stored_Constraint (Derived_Type, New_Constraint);
5990 Insert_After (N, Corr_Decl);
5991 Analyze (Corr_Decl);
5992 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5993 end if;
5994 end Build_Derived_Concurrent_Type;
5995
5996 ------------------------------------
5997 -- Build_Derived_Enumeration_Type --
5998 ------------------------------------
5999
6000 procedure Build_Derived_Enumeration_Type
6001 (N : Node_Id;
6002 Parent_Type : Entity_Id;
6003 Derived_Type : Entity_Id)
6004 is
6005 Loc : constant Source_Ptr := Sloc (N);
6006 Def : constant Node_Id := Type_Definition (N);
6007 Indic : constant Node_Id := Subtype_Indication (Def);
6008 Implicit_Base : Entity_Id;
6009 Literal : Entity_Id;
6010 New_Lit : Entity_Id;
6011 Literals_List : List_Id;
6012 Type_Decl : Node_Id;
6013 Hi, Lo : Node_Id;
6014 Rang_Expr : Node_Id;
6015
6016 begin
6017 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6018 -- not have explicit literals lists we need to process types derived
6019 -- from them specially. This is handled by Derived_Standard_Character.
6020 -- If the parent type is a generic type, there are no literals either,
6021 -- and we construct the same skeletal representation as for the generic
6022 -- parent type.
6023
6024 if Is_Standard_Character_Type (Parent_Type) then
6025 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6026
6027 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6028 declare
6029 Lo : Node_Id;
6030 Hi : Node_Id;
6031
6032 begin
6033 if Nkind (Indic) /= N_Subtype_Indication then
6034 Lo :=
6035 Make_Attribute_Reference (Loc,
6036 Attribute_Name => Name_First,
6037 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6038 Set_Etype (Lo, Derived_Type);
6039
6040 Hi :=
6041 Make_Attribute_Reference (Loc,
6042 Attribute_Name => Name_Last,
6043 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6044 Set_Etype (Hi, Derived_Type);
6045
6046 Set_Scalar_Range (Derived_Type,
6047 Make_Range (Loc,
6048 Low_Bound => Lo,
6049 High_Bound => Hi));
6050 else
6051
6052 -- Analyze subtype indication and verify compatibility
6053 -- with parent type.
6054
6055 if Base_Type (Process_Subtype (Indic, N)) /=
6056 Base_Type (Parent_Type)
6057 then
6058 Error_Msg_N
6059 ("illegal constraint for formal discrete type", N);
6060 end if;
6061 end if;
6062 end;
6063
6064 else
6065 -- If a constraint is present, analyze the bounds to catch
6066 -- premature usage of the derived literals.
6067
6068 if Nkind (Indic) = N_Subtype_Indication
6069 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6070 then
6071 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6072 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6073 end if;
6074
6075 -- Introduce an implicit base type for the derived type even if there
6076 -- is no constraint attached to it, since this seems closer to the
6077 -- Ada semantics. Build a full type declaration tree for the derived
6078 -- type using the implicit base type as the defining identifier. The
6079 -- build a subtype declaration tree which applies the constraint (if
6080 -- any) have it replace the derived type declaration.
6081
6082 Literal := First_Literal (Parent_Type);
6083 Literals_List := New_List;
6084 while Present (Literal)
6085 and then Ekind (Literal) = E_Enumeration_Literal
6086 loop
6087 -- Literals of the derived type have the same representation as
6088 -- those of the parent type, but this representation can be
6089 -- overridden by an explicit representation clause. Indicate
6090 -- that there is no explicit representation given yet. These
6091 -- derived literals are implicit operations of the new type,
6092 -- and can be overridden by explicit ones.
6093
6094 if Nkind (Literal) = N_Defining_Character_Literal then
6095 New_Lit :=
6096 Make_Defining_Character_Literal (Loc, Chars (Literal));
6097 else
6098 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6099 end if;
6100
6101 Set_Ekind (New_Lit, E_Enumeration_Literal);
6102 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6103 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6104 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6105 Set_Alias (New_Lit, Literal);
6106 Set_Is_Known_Valid (New_Lit, True);
6107
6108 Append (New_Lit, Literals_List);
6109 Next_Literal (Literal);
6110 end loop;
6111
6112 Implicit_Base :=
6113 Make_Defining_Identifier (Sloc (Derived_Type),
6114 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6115
6116 -- Indicate the proper nature of the derived type. This must be done
6117 -- before analysis of the literals, to recognize cases when a literal
6118 -- may be hidden by a previous explicit function definition (cf.
6119 -- c83031a).
6120
6121 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6122 Set_Etype (Derived_Type, Implicit_Base);
6123
6124 Type_Decl :=
6125 Make_Full_Type_Declaration (Loc,
6126 Defining_Identifier => Implicit_Base,
6127 Discriminant_Specifications => No_List,
6128 Type_Definition =>
6129 Make_Enumeration_Type_Definition (Loc, Literals_List));
6130
6131 Mark_Rewrite_Insertion (Type_Decl);
6132 Insert_Before (N, Type_Decl);
6133 Analyze (Type_Decl);
6134
6135 -- After the implicit base is analyzed its Etype needs to be changed
6136 -- to reflect the fact that it is derived from the parent type which
6137 -- was ignored during analysis. We also set the size at this point.
6138
6139 Set_Etype (Implicit_Base, Parent_Type);
6140
6141 Set_Size_Info (Implicit_Base, Parent_Type);
6142 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6143 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6144
6145 -- Copy other flags from parent type
6146
6147 Set_Has_Non_Standard_Rep
6148 (Implicit_Base, Has_Non_Standard_Rep
6149 (Parent_Type));
6150 Set_Has_Pragma_Ordered
6151 (Implicit_Base, Has_Pragma_Ordered
6152 (Parent_Type));
6153 Set_Has_Delayed_Freeze (Implicit_Base);
6154
6155 -- Process the subtype indication including a validation check on the
6156 -- constraint, if any. If a constraint is given, its bounds must be
6157 -- implicitly converted to the new type.
6158
6159 if Nkind (Indic) = N_Subtype_Indication then
6160 declare
6161 R : constant Node_Id :=
6162 Range_Expression (Constraint (Indic));
6163
6164 begin
6165 if Nkind (R) = N_Range then
6166 Hi := Build_Scalar_Bound
6167 (High_Bound (R), Parent_Type, Implicit_Base);
6168 Lo := Build_Scalar_Bound
6169 (Low_Bound (R), Parent_Type, Implicit_Base);
6170
6171 else
6172 -- Constraint is a Range attribute. Replace with explicit
6173 -- mention of the bounds of the prefix, which must be a
6174 -- subtype.
6175
6176 Analyze (Prefix (R));
6177 Hi :=
6178 Convert_To (Implicit_Base,
6179 Make_Attribute_Reference (Loc,
6180 Attribute_Name => Name_Last,
6181 Prefix =>
6182 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6183
6184 Lo :=
6185 Convert_To (Implicit_Base,
6186 Make_Attribute_Reference (Loc,
6187 Attribute_Name => Name_First,
6188 Prefix =>
6189 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6190 end if;
6191 end;
6192
6193 else
6194 Hi :=
6195 Build_Scalar_Bound
6196 (Type_High_Bound (Parent_Type),
6197 Parent_Type, Implicit_Base);
6198 Lo :=
6199 Build_Scalar_Bound
6200 (Type_Low_Bound (Parent_Type),
6201 Parent_Type, Implicit_Base);
6202 end if;
6203
6204 Rang_Expr :=
6205 Make_Range (Loc,
6206 Low_Bound => Lo,
6207 High_Bound => Hi);
6208
6209 -- If we constructed a default range for the case where no range
6210 -- was given, then the expressions in the range must not freeze
6211 -- since they do not correspond to expressions in the source.
6212
6213 if Nkind (Indic) /= N_Subtype_Indication then
6214 Set_Must_Not_Freeze (Lo);
6215 Set_Must_Not_Freeze (Hi);
6216 Set_Must_Not_Freeze (Rang_Expr);
6217 end if;
6218
6219 Rewrite (N,
6220 Make_Subtype_Declaration (Loc,
6221 Defining_Identifier => Derived_Type,
6222 Subtype_Indication =>
6223 Make_Subtype_Indication (Loc,
6224 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6225 Constraint =>
6226 Make_Range_Constraint (Loc,
6227 Range_Expression => Rang_Expr))));
6228
6229 Analyze (N);
6230
6231 -- Apply a range check. Since this range expression doesn't have an
6232 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6233 -- this right???
6234
6235 if Nkind (Indic) = N_Subtype_Indication then
6236 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6237 Parent_Type,
6238 Source_Typ => Entity (Subtype_Mark (Indic)));
6239 end if;
6240 end if;
6241 end Build_Derived_Enumeration_Type;
6242
6243 --------------------------------
6244 -- Build_Derived_Numeric_Type --
6245 --------------------------------
6246
6247 procedure Build_Derived_Numeric_Type
6248 (N : Node_Id;
6249 Parent_Type : Entity_Id;
6250 Derived_Type : Entity_Id)
6251 is
6252 Loc : constant Source_Ptr := Sloc (N);
6253 Tdef : constant Node_Id := Type_Definition (N);
6254 Indic : constant Node_Id := Subtype_Indication (Tdef);
6255 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6256 No_Constraint : constant Boolean := Nkind (Indic) /=
6257 N_Subtype_Indication;
6258 Implicit_Base : Entity_Id;
6259
6260 Lo : Node_Id;
6261 Hi : Node_Id;
6262
6263 begin
6264 -- Process the subtype indication including a validation check on
6265 -- the constraint if any.
6266
6267 Discard_Node (Process_Subtype (Indic, N));
6268
6269 -- Introduce an implicit base type for the derived type even if there
6270 -- is no constraint attached to it, since this seems closer to the Ada
6271 -- semantics.
6272
6273 Implicit_Base :=
6274 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6275
6276 Set_Etype (Implicit_Base, Parent_Base);
6277 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6278 Set_Size_Info (Implicit_Base, Parent_Base);
6279 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6280 Set_Parent (Implicit_Base, Parent (Derived_Type));
6281 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6282
6283 -- Set RM Size for discrete type or decimal fixed-point type
6284 -- Ordinary fixed-point is excluded, why???
6285
6286 if Is_Discrete_Type (Parent_Base)
6287 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6288 then
6289 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6290 end if;
6291
6292 Set_Has_Delayed_Freeze (Implicit_Base);
6293
6294 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6295 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6296
6297 Set_Scalar_Range (Implicit_Base,
6298 Make_Range (Loc,
6299 Low_Bound => Lo,
6300 High_Bound => Hi));
6301
6302 if Has_Infinities (Parent_Base) then
6303 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6304 end if;
6305
6306 -- The Derived_Type, which is the entity of the declaration, is a
6307 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6308 -- absence of an explicit constraint.
6309
6310 Set_Etype (Derived_Type, Implicit_Base);
6311
6312 -- If we did not have a constraint, then the Ekind is set from the
6313 -- parent type (otherwise Process_Subtype has set the bounds)
6314
6315 if No_Constraint then
6316 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6317 end if;
6318
6319 -- If we did not have a range constraint, then set the range from the
6320 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6321
6322 if No_Constraint
6323 or else not Has_Range_Constraint (Indic)
6324 then
6325 Set_Scalar_Range (Derived_Type,
6326 Make_Range (Loc,
6327 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6328 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6329 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6330
6331 if Has_Infinities (Parent_Type) then
6332 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6333 end if;
6334
6335 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6336 end if;
6337
6338 Set_Is_Descendent_Of_Address (Derived_Type,
6339 Is_Descendent_Of_Address (Parent_Type));
6340 Set_Is_Descendent_Of_Address (Implicit_Base,
6341 Is_Descendent_Of_Address (Parent_Type));
6342
6343 -- Set remaining type-specific fields, depending on numeric type
6344
6345 if Is_Modular_Integer_Type (Parent_Type) then
6346 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6347
6348 Set_Non_Binary_Modulus
6349 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6350
6351 Set_Is_Known_Valid
6352 (Implicit_Base, Is_Known_Valid (Parent_Base));
6353
6354 elsif Is_Floating_Point_Type (Parent_Type) then
6355
6356 -- Digits of base type is always copied from the digits value of
6357 -- the parent base type, but the digits of the derived type will
6358 -- already have been set if there was a constraint present.
6359
6360 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6361 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6362
6363 if No_Constraint then
6364 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6365 end if;
6366
6367 elsif Is_Fixed_Point_Type (Parent_Type) then
6368
6369 -- Small of base type and derived type are always copied from the
6370 -- parent base type, since smalls never change. The delta of the
6371 -- base type is also copied from the parent base type. However the
6372 -- delta of the derived type will have been set already if a
6373 -- constraint was present.
6374
6375 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6376 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6377 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6378
6379 if No_Constraint then
6380 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6381 end if;
6382
6383 -- The scale and machine radix in the decimal case are always
6384 -- copied from the parent base type.
6385
6386 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6387 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6388 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6389
6390 Set_Machine_Radix_10
6391 (Derived_Type, Machine_Radix_10 (Parent_Base));
6392 Set_Machine_Radix_10
6393 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6394
6395 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6396
6397 if No_Constraint then
6398 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6399
6400 else
6401 -- the analysis of the subtype_indication sets the
6402 -- digits value of the derived type.
6403
6404 null;
6405 end if;
6406 end if;
6407 end if;
6408
6409 if Is_Integer_Type (Parent_Type) then
6410 Set_Has_Shift_Operator
6411 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6412 end if;
6413
6414 -- The type of the bounds is that of the parent type, and they
6415 -- must be converted to the derived type.
6416
6417 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6418
6419 -- The implicit_base should be frozen when the derived type is frozen,
6420 -- but note that it is used in the conversions of the bounds. For fixed
6421 -- types we delay the determination of the bounds until the proper
6422 -- freezing point. For other numeric types this is rejected by GCC, for
6423 -- reasons that are currently unclear (???), so we choose to freeze the
6424 -- implicit base now. In the case of integers and floating point types
6425 -- this is harmless because subsequent representation clauses cannot
6426 -- affect anything, but it is still baffling that we cannot use the
6427 -- same mechanism for all derived numeric types.
6428
6429 -- There is a further complication: actually some representation
6430 -- clauses can affect the implicit base type. For example, attribute
6431 -- definition clauses for stream-oriented attributes need to set the
6432 -- corresponding TSS entries on the base type, and this normally
6433 -- cannot be done after the base type is frozen, so the circuitry in
6434 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6435 -- and not use Set_TSS in this case.
6436
6437 -- There are also consequences for the case of delayed representation
6438 -- aspects for some cases. For example, a Size aspect is delayed and
6439 -- should not be evaluated to the freeze point. This early freezing
6440 -- means that the size attribute evaluation happens too early???
6441
6442 if Is_Fixed_Point_Type (Parent_Type) then
6443 Conditional_Delay (Implicit_Base, Parent_Type);
6444 else
6445 Freeze_Before (N, Implicit_Base);
6446 end if;
6447 end Build_Derived_Numeric_Type;
6448
6449 --------------------------------
6450 -- Build_Derived_Private_Type --
6451 --------------------------------
6452
6453 procedure Build_Derived_Private_Type
6454 (N : Node_Id;
6455 Parent_Type : Entity_Id;
6456 Derived_Type : Entity_Id;
6457 Is_Completion : Boolean;
6458 Derive_Subps : Boolean := True)
6459 is
6460 Loc : constant Source_Ptr := Sloc (N);
6461 Der_Base : Entity_Id;
6462 Discr : Entity_Id;
6463 Full_Decl : Node_Id := Empty;
6464 Full_Der : Entity_Id;
6465 Full_P : Entity_Id;
6466 Last_Discr : Entity_Id;
6467 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6468 Swapped : Boolean := False;
6469
6470 procedure Copy_And_Build;
6471 -- Copy derived type declaration, replace parent with its full view,
6472 -- and analyze new declaration.
6473
6474 --------------------
6475 -- Copy_And_Build --
6476 --------------------
6477
6478 procedure Copy_And_Build is
6479 Full_N : Node_Id;
6480
6481 begin
6482 if Ekind (Parent_Type) in Record_Kind
6483 or else
6484 (Ekind (Parent_Type) in Enumeration_Kind
6485 and then not Is_Standard_Character_Type (Parent_Type)
6486 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6487 then
6488 Full_N := New_Copy_Tree (N);
6489 Insert_After (N, Full_N);
6490 Build_Derived_Type (
6491 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6492
6493 else
6494 Build_Derived_Type (
6495 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6496 end if;
6497 end Copy_And_Build;
6498
6499 -- Start of processing for Build_Derived_Private_Type
6500
6501 begin
6502 if Is_Tagged_Type (Parent_Type) then
6503 Full_P := Full_View (Parent_Type);
6504
6505 -- A type extension of a type with unknown discriminants is an
6506 -- indefinite type that the back-end cannot handle directly.
6507 -- We treat it as a private type, and build a completion that is
6508 -- derived from the full view of the parent, and hopefully has
6509 -- known discriminants.
6510
6511 -- If the full view of the parent type has an underlying record view,
6512 -- use it to generate the underlying record view of this derived type
6513 -- (required for chains of derivations with unknown discriminants).
6514
6515 -- Minor optimization: we avoid the generation of useless underlying
6516 -- record view entities if the private type declaration has unknown
6517 -- discriminants but its corresponding full view has no
6518 -- discriminants.
6519
6520 if Has_Unknown_Discriminants (Parent_Type)
6521 and then Present (Full_P)
6522 and then (Has_Discriminants (Full_P)
6523 or else Present (Underlying_Record_View (Full_P)))
6524 and then not In_Open_Scopes (Par_Scope)
6525 and then Expander_Active
6526 then
6527 declare
6528 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6529 New_Ext : constant Node_Id :=
6530 Copy_Separate_Tree
6531 (Record_Extension_Part (Type_Definition (N)));
6532 Decl : Node_Id;
6533
6534 begin
6535 Build_Derived_Record_Type
6536 (N, Parent_Type, Derived_Type, Derive_Subps);
6537
6538 -- Build anonymous completion, as a derivation from the full
6539 -- view of the parent. This is not a completion in the usual
6540 -- sense, because the current type is not private.
6541
6542 Decl :=
6543 Make_Full_Type_Declaration (Loc,
6544 Defining_Identifier => Full_Der,
6545 Type_Definition =>
6546 Make_Derived_Type_Definition (Loc,
6547 Subtype_Indication =>
6548 New_Copy_Tree
6549 (Subtype_Indication (Type_Definition (N))),
6550 Record_Extension_Part => New_Ext));
6551
6552 -- If the parent type has an underlying record view, use it
6553 -- here to build the new underlying record view.
6554
6555 if Present (Underlying_Record_View (Full_P)) then
6556 pragma Assert
6557 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6558 = N_Identifier);
6559 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6560 Underlying_Record_View (Full_P));
6561 end if;
6562
6563 Install_Private_Declarations (Par_Scope);
6564 Install_Visible_Declarations (Par_Scope);
6565 Insert_Before (N, Decl);
6566
6567 -- Mark entity as an underlying record view before analysis,
6568 -- to avoid generating the list of its primitive operations
6569 -- (which is not really required for this entity) and thus
6570 -- prevent spurious errors associated with missing overriding
6571 -- of abstract primitives (overridden only for Derived_Type).
6572
6573 Set_Ekind (Full_Der, E_Record_Type);
6574 Set_Is_Underlying_Record_View (Full_Der);
6575
6576 Analyze (Decl);
6577
6578 pragma Assert (Has_Discriminants (Full_Der)
6579 and then not Has_Unknown_Discriminants (Full_Der));
6580
6581 Uninstall_Declarations (Par_Scope);
6582
6583 -- Freeze the underlying record view, to prevent generation of
6584 -- useless dispatching information, which is simply shared with
6585 -- the real derived type.
6586
6587 Set_Is_Frozen (Full_Der);
6588
6589 -- Set up links between real entity and underlying record view
6590
6591 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6592 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6593 end;
6594
6595 -- If discriminants are known, build derived record
6596
6597 else
6598 Build_Derived_Record_Type
6599 (N, Parent_Type, Derived_Type, Derive_Subps);
6600 end if;
6601
6602 return;
6603
6604 elsif Has_Discriminants (Parent_Type) then
6605 if Present (Full_View (Parent_Type)) then
6606 if not Is_Completion then
6607
6608 -- Copy declaration for subsequent analysis, to provide a
6609 -- completion for what is a private declaration. Indicate that
6610 -- the full type is internally generated.
6611
6612 Full_Decl := New_Copy_Tree (N);
6613 Full_Der := New_Copy (Derived_Type);
6614 Set_Comes_From_Source (Full_Decl, False);
6615 Set_Comes_From_Source (Full_Der, False);
6616 Set_Parent (Full_Der, Full_Decl);
6617
6618 Insert_After (N, Full_Decl);
6619
6620 else
6621 -- If this is a completion, the full view being built is itself
6622 -- private. We build a subtype of the parent with the same
6623 -- constraints as this full view, to convey to the back end the
6624 -- constrained components and the size of this subtype. If the
6625 -- parent is constrained, its full view can serve as the
6626 -- underlying full view of the derived type.
6627
6628 if No (Discriminant_Specifications (N)) then
6629 if Nkind (Subtype_Indication (Type_Definition (N))) =
6630 N_Subtype_Indication
6631 then
6632 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6633
6634 elsif Is_Constrained (Full_View (Parent_Type)) then
6635 Set_Underlying_Full_View
6636 (Derived_Type, Full_View (Parent_Type));
6637 end if;
6638
6639 else
6640 -- If there are new discriminants, the parent subtype is
6641 -- constrained by them, but it is not clear how to build
6642 -- the Underlying_Full_View in this case???
6643
6644 null;
6645 end if;
6646 end if;
6647 end if;
6648
6649 -- Build partial view of derived type from partial view of parent
6650
6651 Build_Derived_Record_Type
6652 (N, Parent_Type, Derived_Type, Derive_Subps);
6653
6654 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6655 if not In_Open_Scopes (Par_Scope)
6656 or else not In_Same_Source_Unit (N, Parent_Type)
6657 then
6658 -- Swap partial and full views temporarily
6659
6660 Install_Private_Declarations (Par_Scope);
6661 Install_Visible_Declarations (Par_Scope);
6662 Swapped := True;
6663 end if;
6664
6665 -- Build full view of derived type from full view of parent which
6666 -- is now installed. Subprograms have been derived on the partial
6667 -- view, the completion does not derive them anew.
6668
6669 if not Is_Tagged_Type (Parent_Type) then
6670
6671 -- If the parent is itself derived from another private type,
6672 -- installing the private declarations has not affected its
6673 -- privacy status, so use its own full view explicitly.
6674
6675 if Is_Private_Type (Parent_Type) then
6676 Build_Derived_Record_Type
6677 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6678 else
6679 Build_Derived_Record_Type
6680 (Full_Decl, Parent_Type, Full_Der, False);
6681 end if;
6682
6683 else
6684 -- If full view of parent is tagged, the completion inherits
6685 -- the proper primitive operations.
6686
6687 Set_Defining_Identifier (Full_Decl, Full_Der);
6688 Build_Derived_Record_Type
6689 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6690 end if;
6691
6692 -- The full declaration has been introduced into the tree and
6693 -- processed in the step above. It should not be analyzed again
6694 -- (when encountered later in the current list of declarations)
6695 -- to prevent spurious name conflicts. The full entity remains
6696 -- invisible.
6697
6698 Set_Analyzed (Full_Decl);
6699
6700 if Swapped then
6701 Uninstall_Declarations (Par_Scope);
6702
6703 if In_Open_Scopes (Par_Scope) then
6704 Install_Visible_Declarations (Par_Scope);
6705 end if;
6706 end if;
6707
6708 Der_Base := Base_Type (Derived_Type);
6709 Set_Full_View (Derived_Type, Full_Der);
6710 Set_Full_View (Der_Base, Base_Type (Full_Der));
6711
6712 -- Copy the discriminant list from full view to the partial views
6713 -- (base type and its subtype). Gigi requires that the partial and
6714 -- full views have the same discriminants.
6715
6716 -- Note that since the partial view is pointing to discriminants
6717 -- in the full view, their scope will be that of the full view.
6718 -- This might cause some front end problems and need adjustment???
6719
6720 Discr := First_Discriminant (Base_Type (Full_Der));
6721 Set_First_Entity (Der_Base, Discr);
6722
6723 loop
6724 Last_Discr := Discr;
6725 Next_Discriminant (Discr);
6726 exit when No (Discr);
6727 end loop;
6728
6729 Set_Last_Entity (Der_Base, Last_Discr);
6730
6731 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6732 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6733 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6734
6735 else
6736 -- If this is a completion, the derived type stays private and
6737 -- there is no need to create a further full view, except in the
6738 -- unusual case when the derivation is nested within a child unit,
6739 -- see below.
6740
6741 null;
6742 end if;
6743
6744 elsif Present (Full_View (Parent_Type))
6745 and then Has_Discriminants (Full_View (Parent_Type))
6746 then
6747 if Has_Unknown_Discriminants (Parent_Type)
6748 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6749 N_Subtype_Indication
6750 then
6751 Error_Msg_N
6752 ("cannot constrain type with unknown discriminants",
6753 Subtype_Indication (Type_Definition (N)));
6754 return;
6755 end if;
6756
6757 -- If full view of parent is a record type, build full view as a
6758 -- derivation from the parent's full view. Partial view remains
6759 -- private. For code generation and linking, the full view must have
6760 -- the same public status as the partial one. This full view is only
6761 -- needed if the parent type is in an enclosing scope, so that the
6762 -- full view may actually become visible, e.g. in a child unit. This
6763 -- is both more efficient, and avoids order of freezing problems with
6764 -- the added entities.
6765
6766 if not Is_Private_Type (Full_View (Parent_Type))
6767 and then (In_Open_Scopes (Scope (Parent_Type)))
6768 then
6769 Full_Der :=
6770 Make_Defining_Identifier (Sloc (Derived_Type),
6771 Chars => Chars (Derived_Type));
6772
6773 Set_Is_Itype (Full_Der);
6774 Set_Has_Private_Declaration (Full_Der);
6775 Set_Has_Private_Declaration (Derived_Type);
6776 Set_Associated_Node_For_Itype (Full_Der, N);
6777 Set_Parent (Full_Der, Parent (Derived_Type));
6778 Set_Full_View (Derived_Type, Full_Der);
6779 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6780 Full_P := Full_View (Parent_Type);
6781 Exchange_Declarations (Parent_Type);
6782 Copy_And_Build;
6783 Exchange_Declarations (Full_P);
6784
6785 else
6786 Build_Derived_Record_Type
6787 (N, Full_View (Parent_Type), Derived_Type,
6788 Derive_Subps => False);
6789
6790 -- Except in the context of the full view of the parent, there
6791 -- are no non-extension aggregates for the derived type.
6792
6793 Set_Has_Private_Ancestor (Derived_Type);
6794 end if;
6795
6796 -- In any case, the primitive operations are inherited from the
6797 -- parent type, not from the internal full view.
6798
6799 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6800
6801 if Derive_Subps then
6802 Derive_Subprograms (Parent_Type, Derived_Type);
6803 end if;
6804
6805 else
6806 -- Untagged type, No discriminants on either view
6807
6808 if Nkind (Subtype_Indication (Type_Definition (N))) =
6809 N_Subtype_Indication
6810 then
6811 Error_Msg_N
6812 ("illegal constraint on type without discriminants", N);
6813 end if;
6814
6815 if Present (Discriminant_Specifications (N))
6816 and then Present (Full_View (Parent_Type))
6817 and then not Is_Tagged_Type (Full_View (Parent_Type))
6818 then
6819 Error_Msg_N ("cannot add discriminants to untagged type", N);
6820 end if;
6821
6822 Set_Stored_Constraint (Derived_Type, No_Elist);
6823 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6824 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6825 Set_Has_Controlled_Component
6826 (Derived_Type, Has_Controlled_Component
6827 (Parent_Type));
6828
6829 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6830
6831 if not Is_Controlled (Parent_Type) then
6832 Set_Finalize_Storage_Only
6833 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6834 end if;
6835
6836 -- Construct the implicit full view by deriving from full view of the
6837 -- parent type. In order to get proper visibility, we install the
6838 -- parent scope and its declarations.
6839
6840 -- ??? If the parent is untagged private and its completion is
6841 -- tagged, this mechanism will not work because we cannot derive from
6842 -- the tagged full view unless we have an extension.
6843
6844 if Present (Full_View (Parent_Type))
6845 and then not Is_Tagged_Type (Full_View (Parent_Type))
6846 and then not Is_Completion
6847 then
6848 Full_Der :=
6849 Make_Defining_Identifier
6850 (Sloc (Derived_Type), Chars (Derived_Type));
6851 Set_Is_Itype (Full_Der);
6852 Set_Has_Private_Declaration (Full_Der);
6853 Set_Has_Private_Declaration (Derived_Type);
6854 Set_Associated_Node_For_Itype (Full_Der, N);
6855 Set_Parent (Full_Der, Parent (Derived_Type));
6856 Set_Full_View (Derived_Type, Full_Der);
6857
6858 if not In_Open_Scopes (Par_Scope) then
6859 Install_Private_Declarations (Par_Scope);
6860 Install_Visible_Declarations (Par_Scope);
6861 Copy_And_Build;
6862 Uninstall_Declarations (Par_Scope);
6863
6864 -- If parent scope is open and in another unit, and parent has a
6865 -- completion, then the derivation is taking place in the visible
6866 -- part of a child unit. In that case retrieve the full view of
6867 -- the parent momentarily.
6868
6869 elsif not In_Same_Source_Unit (N, Parent_Type) then
6870 Full_P := Full_View (Parent_Type);
6871 Exchange_Declarations (Parent_Type);
6872 Copy_And_Build;
6873 Exchange_Declarations (Full_P);
6874
6875 -- Otherwise it is a local derivation
6876
6877 else
6878 Copy_And_Build;
6879 end if;
6880
6881 Set_Scope (Full_Der, Current_Scope);
6882 Set_Is_First_Subtype (Full_Der,
6883 Is_First_Subtype (Derived_Type));
6884 Set_Has_Size_Clause (Full_Der, False);
6885 Set_Has_Alignment_Clause (Full_Der, False);
6886 Set_Next_Entity (Full_Der, Empty);
6887 Set_Has_Delayed_Freeze (Full_Der);
6888 Set_Is_Frozen (Full_Der, False);
6889 Set_Freeze_Node (Full_Der, Empty);
6890 Set_Depends_On_Private (Full_Der,
6891 Has_Private_Component (Full_Der));
6892 Set_Public_Status (Full_Der);
6893 end if;
6894 end if;
6895
6896 Set_Has_Unknown_Discriminants (Derived_Type,
6897 Has_Unknown_Discriminants (Parent_Type));
6898
6899 if Is_Private_Type (Derived_Type) then
6900 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6901 end if;
6902
6903 if Is_Private_Type (Parent_Type)
6904 and then Base_Type (Parent_Type) = Parent_Type
6905 and then In_Open_Scopes (Scope (Parent_Type))
6906 then
6907 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6908
6909 -- Check for unusual case where a type completed by a private
6910 -- derivation occurs within a package nested in a child unit, and
6911 -- the parent is declared in an ancestor.
6912
6913 if Is_Child_Unit (Scope (Current_Scope))
6914 and then Is_Completion
6915 and then In_Private_Part (Current_Scope)
6916 and then Scope (Parent_Type) /= Current_Scope
6917
6918 -- Note that if the parent has a completion in the private part,
6919 -- (which is itself a derivation from some other private type)
6920 -- it is that completion that is visible, there is no full view
6921 -- available, and no special processing is needed.
6922
6923 and then Present (Full_View (Parent_Type))
6924 then
6925 -- In this case, the full view of the parent type will become
6926 -- visible in the body of the enclosing child, and only then will
6927 -- the current type be possibly non-private. We build an
6928 -- underlying full view that will be installed when the enclosing
6929 -- child body is compiled.
6930
6931 Full_Der :=
6932 Make_Defining_Identifier
6933 (Sloc (Derived_Type), Chars (Derived_Type));
6934 Set_Is_Itype (Full_Der);
6935 Build_Itype_Reference (Full_Der, N);
6936
6937 -- The full view will be used to swap entities on entry/exit to
6938 -- the body, and must appear in the entity list for the package.
6939
6940 Append_Entity (Full_Der, Scope (Derived_Type));
6941 Set_Has_Private_Declaration (Full_Der);
6942 Set_Has_Private_Declaration (Derived_Type);
6943 Set_Associated_Node_For_Itype (Full_Der, N);
6944 Set_Parent (Full_Der, Parent (Derived_Type));
6945 Full_P := Full_View (Parent_Type);
6946 Exchange_Declarations (Parent_Type);
6947 Copy_And_Build;
6948 Exchange_Declarations (Full_P);
6949 Set_Underlying_Full_View (Derived_Type, Full_Der);
6950 end if;
6951 end if;
6952 end Build_Derived_Private_Type;
6953
6954 -------------------------------
6955 -- Build_Derived_Record_Type --
6956 -------------------------------
6957
6958 -- 1. INTRODUCTION
6959
6960 -- Ideally we would like to use the same model of type derivation for
6961 -- tagged and untagged record types. Unfortunately this is not quite
6962 -- possible because the semantics of representation clauses is different
6963 -- for tagged and untagged records under inheritance. Consider the
6964 -- following:
6965
6966 -- type R (...) is [tagged] record ... end record;
6967 -- type T (...) is new R (...) [with ...];
6968
6969 -- The representation clauses for T can specify a completely different
6970 -- record layout from R's. Hence the same component can be placed in two
6971 -- very different positions in objects of type T and R. If R and T are
6972 -- tagged types, representation clauses for T can only specify the layout
6973 -- of non inherited components, thus components that are common in R and T
6974 -- have the same position in objects of type R and T.
6975
6976 -- This has two implications. The first is that the entire tree for R's
6977 -- declaration needs to be copied for T in the untagged case, so that T
6978 -- can be viewed as a record type of its own with its own representation
6979 -- clauses. The second implication is the way we handle discriminants.
6980 -- Specifically, in the untagged case we need a way to communicate to Gigi
6981 -- what are the real discriminants in the record, while for the semantics
6982 -- we need to consider those introduced by the user to rename the
6983 -- discriminants in the parent type. This is handled by introducing the
6984 -- notion of stored discriminants. See below for more.
6985
6986 -- Fortunately the way regular components are inherited can be handled in
6987 -- the same way in tagged and untagged types.
6988
6989 -- To complicate things a bit more the private view of a private extension
6990 -- cannot be handled in the same way as the full view (for one thing the
6991 -- semantic rules are somewhat different). We will explain what differs
6992 -- below.
6993
6994 -- 2. DISCRIMINANTS UNDER INHERITANCE
6995
6996 -- The semantic rules governing the discriminants of derived types are
6997 -- quite subtle.
6998
6999 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7000 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7001
7002 -- If parent type has discriminants, then the discriminants that are
7003 -- declared in the derived type are [3.4 (11)]:
7004
7005 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7006 -- there is one;
7007
7008 -- o Otherwise, each discriminant of the parent type (implicitly declared
7009 -- in the same order with the same specifications). In this case, the
7010 -- discriminants are said to be "inherited", or if unknown in the parent
7011 -- are also unknown in the derived type.
7012
7013 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7014
7015 -- o The parent subtype shall be constrained;
7016
7017 -- o If the parent type is not a tagged type, then each discriminant of
7018 -- the derived type shall be used in the constraint defining a parent
7019 -- subtype. [Implementation note: This ensures that the new discriminant
7020 -- can share storage with an existing discriminant.]
7021
7022 -- For the derived type each discriminant of the parent type is either
7023 -- inherited, constrained to equal some new discriminant of the derived
7024 -- type, or constrained to the value of an expression.
7025
7026 -- When inherited or constrained to equal some new discriminant, the
7027 -- parent discriminant and the discriminant of the derived type are said
7028 -- to "correspond".
7029
7030 -- If a discriminant of the parent type is constrained to a specific value
7031 -- in the derived type definition, then the discriminant is said to be
7032 -- "specified" by that derived type definition.
7033
7034 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7035
7036 -- We have spoken about stored discriminants in point 1 (introduction)
7037 -- above. There are two sort of stored discriminants: implicit and
7038 -- explicit. As long as the derived type inherits the same discriminants as
7039 -- the root record type, stored discriminants are the same as regular
7040 -- discriminants, and are said to be implicit. However, if any discriminant
7041 -- in the root type was renamed in the derived type, then the derived
7042 -- type will contain explicit stored discriminants. Explicit stored
7043 -- discriminants are discriminants in addition to the semantically visible
7044 -- discriminants defined for the derived type. Stored discriminants are
7045 -- used by Gigi to figure out what are the physical discriminants in
7046 -- objects of the derived type (see precise definition in einfo.ads).
7047 -- As an example, consider the following:
7048
7049 -- type R (D1, D2, D3 : Int) is record ... end record;
7050 -- type T1 is new R;
7051 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7052 -- type T3 is new T2;
7053 -- type T4 (Y : Int) is new T3 (Y, 99);
7054
7055 -- The following table summarizes the discriminants and stored
7056 -- discriminants in R and T1 through T4.
7057
7058 -- Type Discrim Stored Discrim Comment
7059 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7060 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7061 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7062 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7063 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7064
7065 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7066 -- find the corresponding discriminant in the parent type, while
7067 -- Original_Record_Component (abbreviated ORC below), the actual physical
7068 -- component that is renamed. Finally the field Is_Completely_Hidden
7069 -- (abbreviated ICH below) is set for all explicit stored discriminants
7070 -- (see einfo.ads for more info). For the above example this gives:
7071
7072 -- Discrim CD ORC ICH
7073 -- ^^^^^^^ ^^ ^^^ ^^^
7074 -- D1 in R empty itself no
7075 -- D2 in R empty itself no
7076 -- D3 in R empty itself no
7077
7078 -- D1 in T1 D1 in R itself no
7079 -- D2 in T1 D2 in R itself no
7080 -- D3 in T1 D3 in R itself no
7081
7082 -- X1 in T2 D3 in T1 D3 in T2 no
7083 -- X2 in T2 D1 in T1 D1 in T2 no
7084 -- D1 in T2 empty itself yes
7085 -- D2 in T2 empty itself yes
7086 -- D3 in T2 empty itself yes
7087
7088 -- X1 in T3 X1 in T2 D3 in T3 no
7089 -- X2 in T3 X2 in T2 D1 in T3 no
7090 -- D1 in T3 empty itself yes
7091 -- D2 in T3 empty itself yes
7092 -- D3 in T3 empty itself yes
7093
7094 -- Y in T4 X1 in T3 D3 in T3 no
7095 -- D1 in T3 empty itself yes
7096 -- D2 in T3 empty itself yes
7097 -- D3 in T3 empty itself yes
7098
7099 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7100
7101 -- Type derivation for tagged types is fairly straightforward. If no
7102 -- discriminants are specified by the derived type, these are inherited
7103 -- from the parent. No explicit stored discriminants are ever necessary.
7104 -- The only manipulation that is done to the tree is that of adding a
7105 -- _parent field with parent type and constrained to the same constraint
7106 -- specified for the parent in the derived type definition. For instance:
7107
7108 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7109 -- type T1 is new R with null record;
7110 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7111
7112 -- are changed into:
7113
7114 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7115 -- _parent : R (D1, D2, D3);
7116 -- end record;
7117
7118 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7119 -- _parent : T1 (X2, 88, X1);
7120 -- end record;
7121
7122 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7123 -- ORC and ICH fields are:
7124
7125 -- Discrim CD ORC ICH
7126 -- ^^^^^^^ ^^ ^^^ ^^^
7127 -- D1 in R empty itself no
7128 -- D2 in R empty itself no
7129 -- D3 in R empty itself no
7130
7131 -- D1 in T1 D1 in R D1 in R no
7132 -- D2 in T1 D2 in R D2 in R no
7133 -- D3 in T1 D3 in R D3 in R no
7134
7135 -- X1 in T2 D3 in T1 D3 in R no
7136 -- X2 in T2 D1 in T1 D1 in R no
7137
7138 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7139 --
7140 -- Regardless of whether we dealing with a tagged or untagged type
7141 -- we will transform all derived type declarations of the form
7142 --
7143 -- type T is new R (...) [with ...];
7144 -- or
7145 -- subtype S is R (...);
7146 -- type T is new S [with ...];
7147 -- into
7148 -- type BT is new R [with ...];
7149 -- subtype T is BT (...);
7150 --
7151 -- That is, the base derived type is constrained only if it has no
7152 -- discriminants. The reason for doing this is that GNAT's semantic model
7153 -- assumes that a base type with discriminants is unconstrained.
7154 --
7155 -- Note that, strictly speaking, the above transformation is not always
7156 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7157 --
7158 -- procedure B34011A is
7159 -- type REC (D : integer := 0) is record
7160 -- I : Integer;
7161 -- end record;
7162
7163 -- package P is
7164 -- type T6 is new Rec;
7165 -- function F return T6;
7166 -- end P;
7167
7168 -- use P;
7169 -- package Q6 is
7170 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7171 -- end Q6;
7172 --
7173 -- The definition of Q6.U is illegal. However transforming Q6.U into
7174
7175 -- type BaseU is new T6;
7176 -- subtype U is BaseU (Q6.F.I)
7177
7178 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7179 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7180 -- the transformation described above.
7181
7182 -- There is another instance where the above transformation is incorrect.
7183 -- Consider:
7184
7185 -- package Pack is
7186 -- type Base (D : Integer) is tagged null record;
7187 -- procedure P (X : Base);
7188
7189 -- type Der is new Base (2) with null record;
7190 -- procedure P (X : Der);
7191 -- end Pack;
7192
7193 -- Then the above transformation turns this into
7194
7195 -- type Der_Base is new Base with null record;
7196 -- -- procedure P (X : Base) is implicitly inherited here
7197 -- -- as procedure P (X : Der_Base).
7198
7199 -- subtype Der is Der_Base (2);
7200 -- procedure P (X : Der);
7201 -- -- The overriding of P (X : Der_Base) is illegal since we
7202 -- -- have a parameter conformance problem.
7203
7204 -- To get around this problem, after having semantically processed Der_Base
7205 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7206 -- Discriminant_Constraint from Der so that when parameter conformance is
7207 -- checked when P is overridden, no semantic errors are flagged.
7208
7209 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7210
7211 -- Regardless of whether we are dealing with a tagged or untagged type
7212 -- we will transform all derived type declarations of the form
7213
7214 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7215 -- type T is new R [with ...];
7216 -- into
7217 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7218
7219 -- The reason for such transformation is that it allows us to implement a
7220 -- very clean form of component inheritance as explained below.
7221
7222 -- Note that this transformation is not achieved by direct tree rewriting
7223 -- and manipulation, but rather by redoing the semantic actions that the
7224 -- above transformation will entail. This is done directly in routine
7225 -- Inherit_Components.
7226
7227 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7228
7229 -- In both tagged and untagged derived types, regular non discriminant
7230 -- components are inherited in the derived type from the parent type. In
7231 -- the absence of discriminants component, inheritance is straightforward
7232 -- as components can simply be copied from the parent.
7233
7234 -- If the parent has discriminants, inheriting components constrained with
7235 -- these discriminants requires caution. Consider the following example:
7236
7237 -- type R (D1, D2 : Positive) is [tagged] record
7238 -- S : String (D1 .. D2);
7239 -- end record;
7240
7241 -- type T1 is new R [with null record];
7242 -- type T2 (X : positive) is new R (1, X) [with null record];
7243
7244 -- As explained in 6. above, T1 is rewritten as
7245 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7246 -- which makes the treatment for T1 and T2 identical.
7247
7248 -- What we want when inheriting S, is that references to D1 and D2 in R are
7249 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7250 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7251 -- with either discriminant references in the derived type or expressions.
7252 -- This replacement is achieved as follows: before inheriting R's
7253 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7254 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7255 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7256 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7257 -- by String (1 .. X).
7258
7259 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7260
7261 -- We explain here the rules governing private type extensions relevant to
7262 -- type derivation. These rules are explained on the following example:
7263
7264 -- type D [(...)] is new A [(...)] with private; <-- partial view
7265 -- type D [(...)] is new P [(...)] with null record; <-- full view
7266
7267 -- Type A is called the ancestor subtype of the private extension.
7268 -- Type P is the parent type of the full view of the private extension. It
7269 -- must be A or a type derived from A.
7270
7271 -- The rules concerning the discriminants of private type extensions are
7272 -- [7.3(10-13)]:
7273
7274 -- o If a private extension inherits known discriminants from the ancestor
7275 -- subtype, then the full view shall also inherit its discriminants from
7276 -- the ancestor subtype and the parent subtype of the full view shall be
7277 -- constrained if and only if the ancestor subtype is constrained.
7278
7279 -- o If a partial view has unknown discriminants, then the full view may
7280 -- define a definite or an indefinite subtype, with or without
7281 -- discriminants.
7282
7283 -- o If a partial view has neither known nor unknown discriminants, then
7284 -- the full view shall define a definite subtype.
7285
7286 -- o If the ancestor subtype of a private extension has constrained
7287 -- discriminants, then the parent subtype of the full view shall impose a
7288 -- statically matching constraint on those discriminants.
7289
7290 -- This means that only the following forms of private extensions are
7291 -- allowed:
7292
7293 -- type D is new A with private; <-- partial view
7294 -- type D is new P with null record; <-- full view
7295
7296 -- If A has no discriminants than P has no discriminants, otherwise P must
7297 -- inherit A's discriminants.
7298
7299 -- type D is new A (...) with private; <-- partial view
7300 -- type D is new P (:::) with null record; <-- full view
7301
7302 -- P must inherit A's discriminants and (...) and (:::) must statically
7303 -- match.
7304
7305 -- subtype A is R (...);
7306 -- type D is new A with private; <-- partial view
7307 -- type D is new P with null record; <-- full view
7308
7309 -- P must have inherited R's discriminants and must be derived from A or
7310 -- any of its subtypes.
7311
7312 -- type D (..) is new A with private; <-- partial view
7313 -- type D (..) is new P [(:::)] with null record; <-- full view
7314
7315 -- No specific constraints on P's discriminants or constraint (:::).
7316 -- Note that A can be unconstrained, but the parent subtype P must either
7317 -- be constrained or (:::) must be present.
7318
7319 -- type D (..) is new A [(...)] with private; <-- partial view
7320 -- type D (..) is new P [(:::)] with null record; <-- full view
7321
7322 -- P's constraints on A's discriminants must statically match those
7323 -- imposed by (...).
7324
7325 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7326
7327 -- The full view of a private extension is handled exactly as described
7328 -- above. The model chose for the private view of a private extension is
7329 -- the same for what concerns discriminants (i.e. they receive the same
7330 -- treatment as in the tagged case). However, the private view of the
7331 -- private extension always inherits the components of the parent base,
7332 -- without replacing any discriminant reference. Strictly speaking this is
7333 -- incorrect. However, Gigi never uses this view to generate code so this
7334 -- is a purely semantic issue. In theory, a set of transformations similar
7335 -- to those given in 5. and 6. above could be applied to private views of
7336 -- private extensions to have the same model of component inheritance as
7337 -- for non private extensions. However, this is not done because it would
7338 -- further complicate private type processing. Semantically speaking, this
7339 -- leaves us in an uncomfortable situation. As an example consider:
7340
7341 -- package Pack is
7342 -- type R (D : integer) is tagged record
7343 -- S : String (1 .. D);
7344 -- end record;
7345 -- procedure P (X : R);
7346 -- type T is new R (1) with private;
7347 -- private
7348 -- type T is new R (1) with null record;
7349 -- end;
7350
7351 -- This is transformed into:
7352
7353 -- package Pack is
7354 -- type R (D : integer) is tagged record
7355 -- S : String (1 .. D);
7356 -- end record;
7357 -- procedure P (X : R);
7358 -- type T is new R (1) with private;
7359 -- private
7360 -- type BaseT is new R with null record;
7361 -- subtype T is BaseT (1);
7362 -- end;
7363
7364 -- (strictly speaking the above is incorrect Ada)
7365
7366 -- From the semantic standpoint the private view of private extension T
7367 -- should be flagged as constrained since one can clearly have
7368 --
7369 -- Obj : T;
7370 --
7371 -- in a unit withing Pack. However, when deriving subprograms for the
7372 -- private view of private extension T, T must be seen as unconstrained
7373 -- since T has discriminants (this is a constraint of the current
7374 -- subprogram derivation model). Thus, when processing the private view of
7375 -- a private extension such as T, we first mark T as unconstrained, we
7376 -- process it, we perform program derivation and just before returning from
7377 -- Build_Derived_Record_Type we mark T as constrained.
7378
7379 -- ??? Are there are other uncomfortable cases that we will have to
7380 -- deal with.
7381
7382 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7383
7384 -- Types that are derived from a visible record type and have a private
7385 -- extension present other peculiarities. They behave mostly like private
7386 -- types, but if they have primitive operations defined, these will not
7387 -- have the proper signatures for further inheritance, because other
7388 -- primitive operations will use the implicit base that we define for
7389 -- private derivations below. This affect subprogram inheritance (see
7390 -- Derive_Subprograms for details). We also derive the implicit base from
7391 -- the base type of the full view, so that the implicit base is a record
7392 -- type and not another private type, This avoids infinite loops.
7393
7394 procedure Build_Derived_Record_Type
7395 (N : Node_Id;
7396 Parent_Type : Entity_Id;
7397 Derived_Type : Entity_Id;
7398 Derive_Subps : Boolean := True)
7399 is
7400 Discriminant_Specs : constant Boolean :=
7401 Present (Discriminant_Specifications (N));
7402 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7403 Loc : constant Source_Ptr := Sloc (N);
7404 Private_Extension : constant Boolean :=
7405 Nkind (N) = N_Private_Extension_Declaration;
7406 Assoc_List : Elist_Id;
7407 Constraint_Present : Boolean;
7408 Constrs : Elist_Id;
7409 Discrim : Entity_Id;
7410 Indic : Node_Id;
7411 Inherit_Discrims : Boolean := False;
7412 Last_Discrim : Entity_Id;
7413 New_Base : Entity_Id;
7414 New_Decl : Node_Id;
7415 New_Discrs : Elist_Id;
7416 New_Indic : Node_Id;
7417 Parent_Base : Entity_Id;
7418 Save_Etype : Entity_Id;
7419 Save_Discr_Constr : Elist_Id;
7420 Save_Next_Entity : Entity_Id;
7421 Type_Def : Node_Id;
7422
7423 Discs : Elist_Id := New_Elmt_List;
7424 -- An empty Discs list means that there were no constraints in the
7425 -- subtype indication or that there was an error processing it.
7426
7427 begin
7428 if Ekind (Parent_Type) = E_Record_Type_With_Private
7429 and then Present (Full_View (Parent_Type))
7430 and then Has_Discriminants (Parent_Type)
7431 then
7432 Parent_Base := Base_Type (Full_View (Parent_Type));
7433 else
7434 Parent_Base := Base_Type (Parent_Type);
7435 end if;
7436
7437 -- AI05-0115 : if this is a derivation from a private type in some
7438 -- other scope that may lead to invisible components for the derived
7439 -- type, mark it accordingly.
7440
7441 if Is_Private_Type (Parent_Type) then
7442 if Scope (Parent_Type) = Scope (Derived_Type) then
7443 null;
7444
7445 elsif In_Open_Scopes (Scope (Parent_Type))
7446 and then In_Private_Part (Scope (Parent_Type))
7447 then
7448 null;
7449
7450 else
7451 Set_Has_Private_Ancestor (Derived_Type);
7452 end if;
7453
7454 else
7455 Set_Has_Private_Ancestor
7456 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7457 end if;
7458
7459 -- Before we start the previously documented transformations, here is
7460 -- little fix for size and alignment of tagged types. Normally when we
7461 -- derive type D from type P, we copy the size and alignment of P as the
7462 -- default for D, and in the absence of explicit representation clauses
7463 -- for D, the size and alignment are indeed the same as the parent.
7464
7465 -- But this is wrong for tagged types, since fields may be added, and
7466 -- the default size may need to be larger, and the default alignment may
7467 -- need to be larger.
7468
7469 -- We therefore reset the size and alignment fields in the tagged case.
7470 -- Note that the size and alignment will in any case be at least as
7471 -- large as the parent type (since the derived type has a copy of the
7472 -- parent type in the _parent field)
7473
7474 -- The type is also marked as being tagged here, which is needed when
7475 -- processing components with a self-referential anonymous access type
7476 -- in the call to Check_Anonymous_Access_Components below. Note that
7477 -- this flag is also set later on for completeness.
7478
7479 if Is_Tagged then
7480 Set_Is_Tagged_Type (Derived_Type);
7481 Init_Size_Align (Derived_Type);
7482 end if;
7483
7484 -- STEP 0a: figure out what kind of derived type declaration we have
7485
7486 if Private_Extension then
7487 Type_Def := N;
7488 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7489
7490 else
7491 Type_Def := Type_Definition (N);
7492
7493 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7494 -- Parent_Base can be a private type or private extension. However,
7495 -- for tagged types with an extension the newly added fields are
7496 -- visible and hence the Derived_Type is always an E_Record_Type.
7497 -- (except that the parent may have its own private fields).
7498 -- For untagged types we preserve the Ekind of the Parent_Base.
7499
7500 if Present (Record_Extension_Part (Type_Def)) then
7501 Set_Ekind (Derived_Type, E_Record_Type);
7502
7503 -- Create internal access types for components with anonymous
7504 -- access types.
7505
7506 if Ada_Version >= Ada_2005 then
7507 Check_Anonymous_Access_Components
7508 (N, Derived_Type, Derived_Type,
7509 Component_List (Record_Extension_Part (Type_Def)));
7510 end if;
7511
7512 else
7513 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7514 end if;
7515 end if;
7516
7517 -- Indic can either be an N_Identifier if the subtype indication
7518 -- contains no constraint or an N_Subtype_Indication if the subtype
7519 -- indication has a constraint.
7520
7521 Indic := Subtype_Indication (Type_Def);
7522 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7523
7524 -- Check that the type has visible discriminants. The type may be
7525 -- a private type with unknown discriminants whose full view has
7526 -- discriminants which are invisible.
7527
7528 if Constraint_Present then
7529 if not Has_Discriminants (Parent_Base)
7530 or else
7531 (Has_Unknown_Discriminants (Parent_Base)
7532 and then Is_Private_Type (Parent_Base))
7533 then
7534 Error_Msg_N
7535 ("invalid constraint: type has no discriminant",
7536 Constraint (Indic));
7537
7538 Constraint_Present := False;
7539 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7540
7541 elsif Is_Constrained (Parent_Type) then
7542 Error_Msg_N
7543 ("invalid constraint: parent type is already constrained",
7544 Constraint (Indic));
7545
7546 Constraint_Present := False;
7547 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7548 end if;
7549 end if;
7550
7551 -- STEP 0b: If needed, apply transformation given in point 5. above
7552
7553 if not Private_Extension
7554 and then Has_Discriminants (Parent_Type)
7555 and then not Discriminant_Specs
7556 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7557 then
7558 -- First, we must analyze the constraint (see comment in point 5.)
7559 -- The constraint may come from the subtype indication of the full
7560 -- declaration.
7561
7562 if Constraint_Present then
7563 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7564
7565 -- If there is no explicit constraint, there might be one that is
7566 -- inherited from a constrained parent type. In that case verify that
7567 -- it conforms to the constraint in the partial view. In perverse
7568 -- cases the parent subtypes of the partial and full view can have
7569 -- different constraints.
7570
7571 elsif Present (Stored_Constraint (Parent_Type)) then
7572 New_Discrs := Stored_Constraint (Parent_Type);
7573
7574 else
7575 New_Discrs := No_Elist;
7576 end if;
7577
7578 if Has_Discriminants (Derived_Type)
7579 and then Has_Private_Declaration (Derived_Type)
7580 and then Present (Discriminant_Constraint (Derived_Type))
7581 and then Present (New_Discrs)
7582 then
7583 -- Verify that constraints of the full view statically match
7584 -- those given in the partial view.
7585
7586 declare
7587 C1, C2 : Elmt_Id;
7588
7589 begin
7590 C1 := First_Elmt (New_Discrs);
7591 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7592 while Present (C1) and then Present (C2) loop
7593 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7594 or else
7595 (Is_OK_Static_Expression (Node (C1))
7596 and then Is_OK_Static_Expression (Node (C2))
7597 and then
7598 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7599 then
7600 null;
7601
7602 else
7603 if Constraint_Present then
7604 Error_Msg_N
7605 ("constraint not conformant to previous declaration",
7606 Node (C1));
7607 else
7608 Error_Msg_N
7609 ("constraint of full view is incompatible "
7610 & "with partial view", N);
7611 end if;
7612 end if;
7613
7614 Next_Elmt (C1);
7615 Next_Elmt (C2);
7616 end loop;
7617 end;
7618 end if;
7619
7620 -- Insert and analyze the declaration for the unconstrained base type
7621
7622 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7623
7624 New_Decl :=
7625 Make_Full_Type_Declaration (Loc,
7626 Defining_Identifier => New_Base,
7627 Type_Definition =>
7628 Make_Derived_Type_Definition (Loc,
7629 Abstract_Present => Abstract_Present (Type_Def),
7630 Limited_Present => Limited_Present (Type_Def),
7631 Subtype_Indication =>
7632 New_Occurrence_Of (Parent_Base, Loc),
7633 Record_Extension_Part =>
7634 Relocate_Node (Record_Extension_Part (Type_Def)),
7635 Interface_List => Interface_List (Type_Def)));
7636
7637 Set_Parent (New_Decl, Parent (N));
7638 Mark_Rewrite_Insertion (New_Decl);
7639 Insert_Before (N, New_Decl);
7640
7641 -- In the extension case, make sure ancestor is frozen appropriately
7642 -- (see also non-discriminated case below).
7643
7644 if Present (Record_Extension_Part (Type_Def))
7645 or else Is_Interface (Parent_Base)
7646 then
7647 Freeze_Before (New_Decl, Parent_Type);
7648 end if;
7649
7650 -- Note that this call passes False for the Derive_Subps parameter
7651 -- because subprogram derivation is deferred until after creating
7652 -- the subtype (see below).
7653
7654 Build_Derived_Type
7655 (New_Decl, Parent_Base, New_Base,
7656 Is_Completion => True, Derive_Subps => False);
7657
7658 -- ??? This needs re-examination to determine whether the
7659 -- above call can simply be replaced by a call to Analyze.
7660
7661 Set_Analyzed (New_Decl);
7662
7663 -- Insert and analyze the declaration for the constrained subtype
7664
7665 if Constraint_Present then
7666 New_Indic :=
7667 Make_Subtype_Indication (Loc,
7668 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7669 Constraint => Relocate_Node (Constraint (Indic)));
7670
7671 else
7672 declare
7673 Constr_List : constant List_Id := New_List;
7674 C : Elmt_Id;
7675 Expr : Node_Id;
7676
7677 begin
7678 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7679 while Present (C) loop
7680 Expr := Node (C);
7681
7682 -- It is safe here to call New_Copy_Tree since
7683 -- Force_Evaluation was called on each constraint in
7684 -- Build_Discriminant_Constraints.
7685
7686 Append (New_Copy_Tree (Expr), To => Constr_List);
7687
7688 Next_Elmt (C);
7689 end loop;
7690
7691 New_Indic :=
7692 Make_Subtype_Indication (Loc,
7693 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7694 Constraint =>
7695 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7696 end;
7697 end if;
7698
7699 Rewrite (N,
7700 Make_Subtype_Declaration (Loc,
7701 Defining_Identifier => Derived_Type,
7702 Subtype_Indication => New_Indic));
7703
7704 Analyze (N);
7705
7706 -- Derivation of subprograms must be delayed until the full subtype
7707 -- has been established, to ensure proper overriding of subprograms
7708 -- inherited by full types. If the derivations occurred as part of
7709 -- the call to Build_Derived_Type above, then the check for type
7710 -- conformance would fail because earlier primitive subprograms
7711 -- could still refer to the full type prior the change to the new
7712 -- subtype and hence would not match the new base type created here.
7713 -- Subprograms are not derived, however, when Derive_Subps is False
7714 -- (since otherwise there could be redundant derivations).
7715
7716 if Derive_Subps then
7717 Derive_Subprograms (Parent_Type, Derived_Type);
7718 end if;
7719
7720 -- For tagged types the Discriminant_Constraint of the new base itype
7721 -- is inherited from the first subtype so that no subtype conformance
7722 -- problem arise when the first subtype overrides primitive
7723 -- operations inherited by the implicit base type.
7724
7725 if Is_Tagged then
7726 Set_Discriminant_Constraint
7727 (New_Base, Discriminant_Constraint (Derived_Type));
7728 end if;
7729
7730 return;
7731 end if;
7732
7733 -- If we get here Derived_Type will have no discriminants or it will be
7734 -- a discriminated unconstrained base type.
7735
7736 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7737
7738 if Is_Tagged then
7739
7740 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7741 -- The declaration of a specific descendant of an interface type
7742 -- freezes the interface type (RM 13.14).
7743
7744 if not Private_Extension or else Is_Interface (Parent_Base) then
7745 Freeze_Before (N, Parent_Type);
7746 end if;
7747
7748 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7749 -- cannot be declared at a deeper level than its parent type is
7750 -- removed. The check on derivation within a generic body is also
7751 -- relaxed, but there's a restriction that a derived tagged type
7752 -- cannot be declared in a generic body if it's derived directly
7753 -- or indirectly from a formal type of that generic.
7754
7755 if Ada_Version >= Ada_2005 then
7756 if Present (Enclosing_Generic_Body (Derived_Type)) then
7757 declare
7758 Ancestor_Type : Entity_Id;
7759
7760 begin
7761 -- Check to see if any ancestor of the derived type is a
7762 -- formal type.
7763
7764 Ancestor_Type := Parent_Type;
7765 while not Is_Generic_Type (Ancestor_Type)
7766 and then Etype (Ancestor_Type) /= Ancestor_Type
7767 loop
7768 Ancestor_Type := Etype (Ancestor_Type);
7769 end loop;
7770
7771 -- If the derived type does have a formal type as an
7772 -- ancestor, then it's an error if the derived type is
7773 -- declared within the body of the generic unit that
7774 -- declares the formal type in its generic formal part. It's
7775 -- sufficient to check whether the ancestor type is declared
7776 -- inside the same generic body as the derived type (such as
7777 -- within a nested generic spec), in which case the
7778 -- derivation is legal. If the formal type is declared
7779 -- outside of that generic body, then it's guaranteed that
7780 -- the derived type is declared within the generic body of
7781 -- the generic unit declaring the formal type.
7782
7783 if Is_Generic_Type (Ancestor_Type)
7784 and then Enclosing_Generic_Body (Ancestor_Type) /=
7785 Enclosing_Generic_Body (Derived_Type)
7786 then
7787 Error_Msg_NE
7788 ("parent type of& must not be descendant of formal type"
7789 & " of an enclosing generic body",
7790 Indic, Derived_Type);
7791 end if;
7792 end;
7793 end if;
7794
7795 elsif Type_Access_Level (Derived_Type) /=
7796 Type_Access_Level (Parent_Type)
7797 and then not Is_Generic_Type (Derived_Type)
7798 then
7799 if Is_Controlled (Parent_Type) then
7800 Error_Msg_N
7801 ("controlled type must be declared at the library level",
7802 Indic);
7803 else
7804 Error_Msg_N
7805 ("type extension at deeper accessibility level than parent",
7806 Indic);
7807 end if;
7808
7809 else
7810 declare
7811 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7812
7813 begin
7814 if Present (GB)
7815 and then GB /= Enclosing_Generic_Body (Parent_Base)
7816 then
7817 Error_Msg_NE
7818 ("parent type of& must not be outside generic body"
7819 & " (RM 3.9.1(4))",
7820 Indic, Derived_Type);
7821 end if;
7822 end;
7823 end if;
7824 end if;
7825
7826 -- Ada 2005 (AI-251)
7827
7828 if Ada_Version >= Ada_2005 and then Is_Tagged then
7829
7830 -- "The declaration of a specific descendant of an interface type
7831 -- freezes the interface type" (RM 13.14).
7832
7833 declare
7834 Iface : Node_Id;
7835 begin
7836 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7837 Iface := First (Interface_List (Type_Def));
7838 while Present (Iface) loop
7839 Freeze_Before (N, Etype (Iface));
7840 Next (Iface);
7841 end loop;
7842 end if;
7843 end;
7844 end if;
7845
7846 -- STEP 1b : preliminary cleanup of the full view of private types
7847
7848 -- If the type is already marked as having discriminants, then it's the
7849 -- completion of a private type or private extension and we need to
7850 -- retain the discriminants from the partial view if the current
7851 -- declaration has Discriminant_Specifications so that we can verify
7852 -- conformance. However, we must remove any existing components that
7853 -- were inherited from the parent (and attached in Copy_And_Swap)
7854 -- because the full type inherits all appropriate components anyway, and
7855 -- we do not want the partial view's components interfering.
7856
7857 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7858 Discrim := First_Discriminant (Derived_Type);
7859 loop
7860 Last_Discrim := Discrim;
7861 Next_Discriminant (Discrim);
7862 exit when No (Discrim);
7863 end loop;
7864
7865 Set_Last_Entity (Derived_Type, Last_Discrim);
7866
7867 -- In all other cases wipe out the list of inherited components (even
7868 -- inherited discriminants), it will be properly rebuilt here.
7869
7870 else
7871 Set_First_Entity (Derived_Type, Empty);
7872 Set_Last_Entity (Derived_Type, Empty);
7873 end if;
7874
7875 -- STEP 1c: Initialize some flags for the Derived_Type
7876
7877 -- The following flags must be initialized here so that
7878 -- Process_Discriminants can check that discriminants of tagged types do
7879 -- not have a default initial value and that access discriminants are
7880 -- only specified for limited records. For completeness, these flags are
7881 -- also initialized along with all the other flags below.
7882
7883 -- AI-419: Limitedness is not inherited from an interface parent, so to
7884 -- be limited in that case the type must be explicitly declared as
7885 -- limited. However, task and protected interfaces are always limited.
7886
7887 if Limited_Present (Type_Def) then
7888 Set_Is_Limited_Record (Derived_Type);
7889
7890 elsif Is_Limited_Record (Parent_Type)
7891 or else (Present (Full_View (Parent_Type))
7892 and then Is_Limited_Record (Full_View (Parent_Type)))
7893 then
7894 if not Is_Interface (Parent_Type)
7895 or else Is_Synchronized_Interface (Parent_Type)
7896 or else Is_Protected_Interface (Parent_Type)
7897 or else Is_Task_Interface (Parent_Type)
7898 then
7899 Set_Is_Limited_Record (Derived_Type);
7900 end if;
7901 end if;
7902
7903 -- STEP 2a: process discriminants of derived type if any
7904
7905 Push_Scope (Derived_Type);
7906
7907 if Discriminant_Specs then
7908 Set_Has_Unknown_Discriminants (Derived_Type, False);
7909
7910 -- The following call initializes fields Has_Discriminants and
7911 -- Discriminant_Constraint, unless we are processing the completion
7912 -- of a private type declaration.
7913
7914 Check_Or_Process_Discriminants (N, Derived_Type);
7915
7916 -- For untagged types, the constraint on the Parent_Type must be
7917 -- present and is used to rename the discriminants.
7918
7919 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7920 Error_Msg_N ("untagged parent must have discriminants", Indic);
7921
7922 elsif not Is_Tagged and then not Constraint_Present then
7923 Error_Msg_N
7924 ("discriminant constraint needed for derived untagged records",
7925 Indic);
7926
7927 -- Otherwise the parent subtype must be constrained unless we have a
7928 -- private extension.
7929
7930 elsif not Constraint_Present
7931 and then not Private_Extension
7932 and then not Is_Constrained (Parent_Type)
7933 then
7934 Error_Msg_N
7935 ("unconstrained type not allowed in this context", Indic);
7936
7937 elsif Constraint_Present then
7938 -- The following call sets the field Corresponding_Discriminant
7939 -- for the discriminants in the Derived_Type.
7940
7941 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7942
7943 -- For untagged types all new discriminants must rename
7944 -- discriminants in the parent. For private extensions new
7945 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7946
7947 Discrim := First_Discriminant (Derived_Type);
7948 while Present (Discrim) loop
7949 if not Is_Tagged
7950 and then No (Corresponding_Discriminant (Discrim))
7951 then
7952 Error_Msg_N
7953 ("new discriminants must constrain old ones", Discrim);
7954
7955 elsif Private_Extension
7956 and then Present (Corresponding_Discriminant (Discrim))
7957 then
7958 Error_Msg_N
7959 ("only static constraints allowed for parent"
7960 & " discriminants in the partial view", Indic);
7961 exit;
7962 end if;
7963
7964 -- If a new discriminant is used in the constraint, then its
7965 -- subtype must be statically compatible with the parent
7966 -- discriminant's subtype (3.7(15)).
7967
7968 -- However, if the record contains an array constrained by
7969 -- the discriminant but with some different bound, the compiler
7970 -- attemps to create a smaller range for the discriminant type.
7971 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7972 -- the discriminant type is a scalar type, the check must use
7973 -- the original discriminant type in the parent declaration.
7974
7975 declare
7976 Corr_Disc : constant Entity_Id :=
7977 Corresponding_Discriminant (Discrim);
7978 Disc_Type : constant Entity_Id := Etype (Discrim);
7979 Corr_Type : Entity_Id;
7980
7981 begin
7982 if Present (Corr_Disc) then
7983 if Is_Scalar_Type (Disc_Type) then
7984 Corr_Type :=
7985 Entity (Discriminant_Type (Parent (Corr_Disc)));
7986 else
7987 Corr_Type := Etype (Corr_Disc);
7988 end if;
7989
7990 if not
7991 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7992 then
7993 Error_Msg_N
7994 ("subtype must be compatible "
7995 & "with parent discriminant",
7996 Discrim);
7997 end if;
7998 end if;
7999 end;
8000
8001 Next_Discriminant (Discrim);
8002 end loop;
8003
8004 -- Check whether the constraints of the full view statically
8005 -- match those imposed by the parent subtype [7.3(13)].
8006
8007 if Present (Stored_Constraint (Derived_Type)) then
8008 declare
8009 C1, C2 : Elmt_Id;
8010
8011 begin
8012 C1 := First_Elmt (Discs);
8013 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8014 while Present (C1) and then Present (C2) loop
8015 if not
8016 Fully_Conformant_Expressions (Node (C1), Node (C2))
8017 then
8018 Error_Msg_N
8019 ("not conformant with previous declaration",
8020 Node (C1));
8021 end if;
8022
8023 Next_Elmt (C1);
8024 Next_Elmt (C2);
8025 end loop;
8026 end;
8027 end if;
8028 end if;
8029
8030 -- STEP 2b: No new discriminants, inherit discriminants if any
8031
8032 else
8033 if Private_Extension then
8034 Set_Has_Unknown_Discriminants
8035 (Derived_Type,
8036 Has_Unknown_Discriminants (Parent_Type)
8037 or else Unknown_Discriminants_Present (N));
8038
8039 -- The partial view of the parent may have unknown discriminants,
8040 -- but if the full view has discriminants and the parent type is
8041 -- in scope they must be inherited.
8042
8043 elsif Has_Unknown_Discriminants (Parent_Type)
8044 and then
8045 (not Has_Discriminants (Parent_Type)
8046 or else not In_Open_Scopes (Scope (Parent_Type)))
8047 then
8048 Set_Has_Unknown_Discriminants (Derived_Type);
8049 end if;
8050
8051 if not Has_Unknown_Discriminants (Derived_Type)
8052 and then not Has_Unknown_Discriminants (Parent_Base)
8053 and then Has_Discriminants (Parent_Type)
8054 then
8055 Inherit_Discrims := True;
8056 Set_Has_Discriminants
8057 (Derived_Type, True);
8058 Set_Discriminant_Constraint
8059 (Derived_Type, Discriminant_Constraint (Parent_Base));
8060 end if;
8061
8062 -- The following test is true for private types (remember
8063 -- transformation 5. is not applied to those) and in an error
8064 -- situation.
8065
8066 if Constraint_Present then
8067 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8068 end if;
8069
8070 -- For now mark a new derived type as constrained only if it has no
8071 -- discriminants. At the end of Build_Derived_Record_Type we properly
8072 -- set this flag in the case of private extensions. See comments in
8073 -- point 9. just before body of Build_Derived_Record_Type.
8074
8075 Set_Is_Constrained
8076 (Derived_Type,
8077 not (Inherit_Discrims
8078 or else Has_Unknown_Discriminants (Derived_Type)));
8079 end if;
8080
8081 -- STEP 3: initialize fields of derived type
8082
8083 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8084 Set_Stored_Constraint (Derived_Type, No_Elist);
8085
8086 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8087 -- but cannot be interfaces
8088
8089 if not Private_Extension
8090 and then Ekind (Derived_Type) /= E_Private_Type
8091 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8092 then
8093 if Interface_Present (Type_Def) then
8094 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8095 end if;
8096
8097 Set_Interfaces (Derived_Type, No_Elist);
8098 end if;
8099
8100 -- Fields inherited from the Parent_Type
8101
8102 Set_Has_Specified_Layout
8103 (Derived_Type, Has_Specified_Layout (Parent_Type));
8104 Set_Is_Limited_Composite
8105 (Derived_Type, Is_Limited_Composite (Parent_Type));
8106 Set_Is_Private_Composite
8107 (Derived_Type, Is_Private_Composite (Parent_Type));
8108
8109 -- Fields inherited from the Parent_Base
8110
8111 Set_Has_Controlled_Component
8112 (Derived_Type, Has_Controlled_Component (Parent_Base));
8113 Set_Has_Non_Standard_Rep
8114 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8115 Set_Has_Primitive_Operations
8116 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8117
8118 -- Fields inherited from the Parent_Base in the non-private case
8119
8120 if Ekind (Derived_Type) = E_Record_Type then
8121 Set_Has_Complex_Representation
8122 (Derived_Type, Has_Complex_Representation (Parent_Base));
8123 end if;
8124
8125 -- Fields inherited from the Parent_Base for record types
8126
8127 if Is_Record_Type (Derived_Type) then
8128
8129 declare
8130 Parent_Full : Entity_Id;
8131
8132 begin
8133 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8134 -- Parent_Base can be a private type or private extension. Go
8135 -- to the full view here to get the E_Record_Type specific flags.
8136
8137 if Present (Full_View (Parent_Base)) then
8138 Parent_Full := Full_View (Parent_Base);
8139 else
8140 Parent_Full := Parent_Base;
8141 end if;
8142
8143 Set_OK_To_Reorder_Components
8144 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8145 end;
8146 end if;
8147
8148 -- Set fields for private derived types
8149
8150 if Is_Private_Type (Derived_Type) then
8151 Set_Depends_On_Private (Derived_Type, True);
8152 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8153
8154 -- Inherit fields from non private record types. If this is the
8155 -- completion of a derivation from a private type, the parent itself
8156 -- is private, and the attributes come from its full view, which must
8157 -- be present.
8158
8159 else
8160 if Is_Private_Type (Parent_Base)
8161 and then not Is_Record_Type (Parent_Base)
8162 then
8163 Set_Component_Alignment
8164 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8165 Set_C_Pass_By_Copy
8166 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8167 else
8168 Set_Component_Alignment
8169 (Derived_Type, Component_Alignment (Parent_Base));
8170 Set_C_Pass_By_Copy
8171 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8172 end if;
8173 end if;
8174
8175 -- Set fields for tagged types
8176
8177 if Is_Tagged then
8178 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8179
8180 -- All tagged types defined in Ada.Finalization are controlled
8181
8182 if Chars (Scope (Derived_Type)) = Name_Finalization
8183 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8184 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8185 then
8186 Set_Is_Controlled (Derived_Type);
8187 else
8188 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8189 end if;
8190
8191 -- Minor optimization: there is no need to generate the class-wide
8192 -- entity associated with an underlying record view.
8193
8194 if not Is_Underlying_Record_View (Derived_Type) then
8195 Make_Class_Wide_Type (Derived_Type);
8196 end if;
8197
8198 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8199
8200 if Has_Discriminants (Derived_Type)
8201 and then Constraint_Present
8202 then
8203 Set_Stored_Constraint
8204 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8205 end if;
8206
8207 if Ada_Version >= Ada_2005 then
8208 declare
8209 Ifaces_List : Elist_Id;
8210
8211 begin
8212 -- Checks rules 3.9.4 (13/2 and 14/2)
8213
8214 if Comes_From_Source (Derived_Type)
8215 and then not Is_Private_Type (Derived_Type)
8216 and then Is_Interface (Parent_Type)
8217 and then not Is_Interface (Derived_Type)
8218 then
8219 if Is_Task_Interface (Parent_Type) then
8220 Error_Msg_N
8221 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8222 Derived_Type);
8223
8224 elsif Is_Protected_Interface (Parent_Type) then
8225 Error_Msg_N
8226 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8227 Derived_Type);
8228 end if;
8229 end if;
8230
8231 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8232
8233 Check_Interfaces (N, Type_Def);
8234
8235 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8236 -- not already in the parents.
8237
8238 Collect_Interfaces
8239 (T => Derived_Type,
8240 Ifaces_List => Ifaces_List,
8241 Exclude_Parents => True);
8242
8243 Set_Interfaces (Derived_Type, Ifaces_List);
8244
8245 -- If the derived type is the anonymous type created for
8246 -- a declaration whose parent has a constraint, propagate
8247 -- the interface list to the source type. This must be done
8248 -- prior to the completion of the analysis of the source type
8249 -- because the components in the extension may contain current
8250 -- instances whose legality depends on some ancestor.
8251
8252 if Is_Itype (Derived_Type) then
8253 declare
8254 Def : constant Node_Id :=
8255 Associated_Node_For_Itype (Derived_Type);
8256 begin
8257 if Present (Def)
8258 and then Nkind (Def) = N_Full_Type_Declaration
8259 then
8260 Set_Interfaces
8261 (Defining_Identifier (Def), Ifaces_List);
8262 end if;
8263 end;
8264 end if;
8265 end;
8266 end if;
8267
8268 else
8269 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8270 Set_Has_Non_Standard_Rep
8271 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8272 end if;
8273
8274 -- STEP 4: Inherit components from the parent base and constrain them.
8275 -- Apply the second transformation described in point 6. above.
8276
8277 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8278 or else not Has_Discriminants (Parent_Type)
8279 or else not Is_Constrained (Parent_Type)
8280 then
8281 Constrs := Discs;
8282 else
8283 Constrs := Discriminant_Constraint (Parent_Type);
8284 end if;
8285
8286 Assoc_List :=
8287 Inherit_Components
8288 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8289
8290 -- STEP 5a: Copy the parent record declaration for untagged types
8291
8292 if not Is_Tagged then
8293
8294 -- Discriminant_Constraint (Derived_Type) has been properly
8295 -- constructed. Save it and temporarily set it to Empty because we
8296 -- do not want the call to New_Copy_Tree below to mess this list.
8297
8298 if Has_Discriminants (Derived_Type) then
8299 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8300 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8301 else
8302 Save_Discr_Constr := No_Elist;
8303 end if;
8304
8305 -- Save the Etype field of Derived_Type. It is correctly set now,
8306 -- but the call to New_Copy tree may remap it to point to itself,
8307 -- which is not what we want. Ditto for the Next_Entity field.
8308
8309 Save_Etype := Etype (Derived_Type);
8310 Save_Next_Entity := Next_Entity (Derived_Type);
8311
8312 -- Assoc_List maps all stored discriminants in the Parent_Base to
8313 -- stored discriminants in the Derived_Type. It is fundamental that
8314 -- no types or itypes with discriminants other than the stored
8315 -- discriminants appear in the entities declared inside
8316 -- Derived_Type, since the back end cannot deal with it.
8317
8318 New_Decl :=
8319 New_Copy_Tree
8320 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8321
8322 -- Restore the fields saved prior to the New_Copy_Tree call
8323 -- and compute the stored constraint.
8324
8325 Set_Etype (Derived_Type, Save_Etype);
8326 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8327
8328 if Has_Discriminants (Derived_Type) then
8329 Set_Discriminant_Constraint
8330 (Derived_Type, Save_Discr_Constr);
8331 Set_Stored_Constraint
8332 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8333 Replace_Components (Derived_Type, New_Decl);
8334 Set_Has_Implicit_Dereference
8335 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8336 end if;
8337
8338 -- Insert the new derived type declaration
8339
8340 Rewrite (N, New_Decl);
8341
8342 -- STEP 5b: Complete the processing for record extensions in generics
8343
8344 -- There is no completion for record extensions declared in the
8345 -- parameter part of a generic, so we need to complete processing for
8346 -- these generic record extensions here. The Record_Type_Definition call
8347 -- will change the Ekind of the components from E_Void to E_Component.
8348
8349 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8350 Record_Type_Definition (Empty, Derived_Type);
8351
8352 -- STEP 5c: Process the record extension for non private tagged types
8353
8354 elsif not Private_Extension then
8355
8356 -- Add the _parent field in the derived type
8357
8358 Expand_Record_Extension (Derived_Type, Type_Def);
8359
8360 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8361 -- implemented interfaces if we are in expansion mode
8362
8363 if Expander_Active
8364 and then Has_Interfaces (Derived_Type)
8365 then
8366 Add_Interface_Tag_Components (N, Derived_Type);
8367 end if;
8368
8369 -- Analyze the record extension
8370
8371 Record_Type_Definition
8372 (Record_Extension_Part (Type_Def), Derived_Type);
8373 end if;
8374
8375 End_Scope;
8376
8377 -- Nothing else to do if there is an error in the derivation.
8378 -- An unusual case: the full view may be derived from a type in an
8379 -- instance, when the partial view was used illegally as an actual
8380 -- in that instance, leading to a circular definition.
8381
8382 if Etype (Derived_Type) = Any_Type
8383 or else Etype (Parent_Type) = Derived_Type
8384 then
8385 return;
8386 end if;
8387
8388 -- Set delayed freeze and then derive subprograms, we need to do
8389 -- this in this order so that derived subprograms inherit the
8390 -- derived freeze if necessary.
8391
8392 Set_Has_Delayed_Freeze (Derived_Type);
8393
8394 if Derive_Subps then
8395 Derive_Subprograms (Parent_Type, Derived_Type);
8396 end if;
8397
8398 -- If we have a private extension which defines a constrained derived
8399 -- type mark as constrained here after we have derived subprograms. See
8400 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8401
8402 if Private_Extension and then Inherit_Discrims then
8403 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8404 Set_Is_Constrained (Derived_Type, True);
8405 Set_Discriminant_Constraint (Derived_Type, Discs);
8406
8407 elsif Is_Constrained (Parent_Type) then
8408 Set_Is_Constrained
8409 (Derived_Type, True);
8410 Set_Discriminant_Constraint
8411 (Derived_Type, Discriminant_Constraint (Parent_Type));
8412 end if;
8413 end if;
8414
8415 -- Update the class-wide type, which shares the now-completed entity
8416 -- list with its specific type. In case of underlying record views,
8417 -- we do not generate the corresponding class wide entity.
8418
8419 if Is_Tagged
8420 and then not Is_Underlying_Record_View (Derived_Type)
8421 then
8422 Set_First_Entity
8423 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8424 Set_Last_Entity
8425 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8426 end if;
8427
8428 Check_Function_Writable_Actuals (N);
8429 end Build_Derived_Record_Type;
8430
8431 ------------------------
8432 -- Build_Derived_Type --
8433 ------------------------
8434
8435 procedure Build_Derived_Type
8436 (N : Node_Id;
8437 Parent_Type : Entity_Id;
8438 Derived_Type : Entity_Id;
8439 Is_Completion : Boolean;
8440 Derive_Subps : Boolean := True)
8441 is
8442 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8443
8444 begin
8445 -- Set common attributes
8446
8447 Set_Scope (Derived_Type, Current_Scope);
8448
8449 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8450 Set_Etype (Derived_Type, Parent_Base);
8451 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8452
8453 Set_Size_Info (Derived_Type, Parent_Type);
8454 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8455 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8456 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8457
8458 -- If the parent type is a private subtype, the convention on the base
8459 -- type may be set in the private part, and not propagated to the
8460 -- subtype until later, so we obtain the convention from the base type.
8461
8462 Set_Convention (Derived_Type, Convention (Parent_Base));
8463
8464 -- Propagate invariant information. The new type has invariants if
8465 -- they are inherited from the parent type, and these invariants can
8466 -- be further inherited, so both flags are set.
8467
8468 -- We similarly inherit predicates
8469
8470 if Has_Predicates (Parent_Type) then
8471 Set_Has_Predicates (Derived_Type);
8472 end if;
8473
8474 -- The derived type inherits the representation clauses of the parent.
8475 -- However, for a private type that is completed by a derivation, there
8476 -- may be operation attributes that have been specified already (stream
8477 -- attributes and External_Tag) and those must be provided. Finally,
8478 -- if the partial view is a private extension, the representation items
8479 -- of the parent have been inherited already, and should not be chained
8480 -- twice to the derived type.
8481
8482 if Is_Tagged_Type (Parent_Type)
8483 and then Present (First_Rep_Item (Derived_Type))
8484 then
8485 -- The existing items are either operational items or items inherited
8486 -- from a private extension declaration.
8487
8488 declare
8489 Rep : Node_Id;
8490 -- Used to iterate over representation items of the derived type
8491
8492 Last_Rep : Node_Id;
8493 -- Last representation item of the (non-empty) representation
8494 -- item list of the derived type.
8495
8496 Found : Boolean := False;
8497
8498 begin
8499 Rep := First_Rep_Item (Derived_Type);
8500 Last_Rep := Rep;
8501 while Present (Rep) loop
8502 if Rep = First_Rep_Item (Parent_Type) then
8503 Found := True;
8504 exit;
8505
8506 else
8507 Rep := Next_Rep_Item (Rep);
8508
8509 if Present (Rep) then
8510 Last_Rep := Rep;
8511 end if;
8512 end if;
8513 end loop;
8514
8515 -- Here if we either encountered the parent type's first rep
8516 -- item on the derived type's rep item list (in which case
8517 -- Found is True, and we have nothing else to do), or if we
8518 -- reached the last rep item of the derived type, which is
8519 -- Last_Rep, in which case we further chain the parent type's
8520 -- rep items to those of the derived type.
8521
8522 if not Found then
8523 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8524 end if;
8525 end;
8526
8527 else
8528 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8529 end if;
8530
8531 -- If the parent type has delayed rep aspects, then mark the derived
8532 -- type as possibly inheriting a delayed rep aspect.
8533
8534 if Has_Delayed_Rep_Aspects (Parent_Type) then
8535 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8536 end if;
8537
8538 -- Type dependent processing
8539
8540 case Ekind (Parent_Type) is
8541 when Numeric_Kind =>
8542 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8543
8544 when Array_Kind =>
8545 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8546
8547 when E_Record_Type
8548 | E_Record_Subtype
8549 | Class_Wide_Kind =>
8550 Build_Derived_Record_Type
8551 (N, Parent_Type, Derived_Type, Derive_Subps);
8552 return;
8553
8554 when Enumeration_Kind =>
8555 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8556
8557 when Access_Kind =>
8558 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8559
8560 when Incomplete_Or_Private_Kind =>
8561 Build_Derived_Private_Type
8562 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8563
8564 -- For discriminated types, the derivation includes deriving
8565 -- primitive operations. For others it is done below.
8566
8567 if Is_Tagged_Type (Parent_Type)
8568 or else Has_Discriminants (Parent_Type)
8569 or else (Present (Full_View (Parent_Type))
8570 and then Has_Discriminants (Full_View (Parent_Type)))
8571 then
8572 return;
8573 end if;
8574
8575 when Concurrent_Kind =>
8576 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8577
8578 when others =>
8579 raise Program_Error;
8580 end case;
8581
8582 -- Nothing more to do if some error occurred
8583
8584 if Etype (Derived_Type) = Any_Type then
8585 return;
8586 end if;
8587
8588 -- Set delayed freeze and then derive subprograms, we need to do this
8589 -- in this order so that derived subprograms inherit the derived freeze
8590 -- if necessary.
8591
8592 Set_Has_Delayed_Freeze (Derived_Type);
8593
8594 if Derive_Subps then
8595 Derive_Subprograms (Parent_Type, Derived_Type);
8596 end if;
8597
8598 Set_Has_Primitive_Operations
8599 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8600 end Build_Derived_Type;
8601
8602 -----------------------
8603 -- Build_Discriminal --
8604 -----------------------
8605
8606 procedure Build_Discriminal (Discrim : Entity_Id) is
8607 D_Minal : Entity_Id;
8608 CR_Disc : Entity_Id;
8609
8610 begin
8611 -- A discriminal has the same name as the discriminant
8612
8613 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8614
8615 Set_Ekind (D_Minal, E_In_Parameter);
8616 Set_Mechanism (D_Minal, Default_Mechanism);
8617 Set_Etype (D_Minal, Etype (Discrim));
8618 Set_Scope (D_Minal, Current_Scope);
8619
8620 Set_Discriminal (Discrim, D_Minal);
8621 Set_Discriminal_Link (D_Minal, Discrim);
8622
8623 -- For task types, build at once the discriminants of the corresponding
8624 -- record, which are needed if discriminants are used in entry defaults
8625 -- and in family bounds.
8626
8627 if Is_Concurrent_Type (Current_Scope)
8628 or else Is_Limited_Type (Current_Scope)
8629 then
8630 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8631
8632 Set_Ekind (CR_Disc, E_In_Parameter);
8633 Set_Mechanism (CR_Disc, Default_Mechanism);
8634 Set_Etype (CR_Disc, Etype (Discrim));
8635 Set_Scope (CR_Disc, Current_Scope);
8636 Set_Discriminal_Link (CR_Disc, Discrim);
8637 Set_CR_Discriminant (Discrim, CR_Disc);
8638 end if;
8639 end Build_Discriminal;
8640
8641 ------------------------------------
8642 -- Build_Discriminant_Constraints --
8643 ------------------------------------
8644
8645 function Build_Discriminant_Constraints
8646 (T : Entity_Id;
8647 Def : Node_Id;
8648 Derived_Def : Boolean := False) return Elist_Id
8649 is
8650 C : constant Node_Id := Constraint (Def);
8651 Nb_Discr : constant Nat := Number_Discriminants (T);
8652
8653 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8654 -- Saves the expression corresponding to a given discriminant in T
8655
8656 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8657 -- Return the Position number within array Discr_Expr of a discriminant
8658 -- D within the discriminant list of the discriminated type T.
8659
8660 procedure Process_Discriminant_Expression
8661 (Expr : Node_Id;
8662 D : Entity_Id);
8663 -- If this is a discriminant constraint on a partial view, do not
8664 -- generate an overflow check on the discriminant expression. The check
8665 -- will be generated when constraining the full view. Otherwise the
8666 -- backend creates duplicate symbols for the temporaries corresponding
8667 -- to the expressions to be checked, causing spurious assembler errors.
8668
8669 ------------------
8670 -- Pos_Of_Discr --
8671 ------------------
8672
8673 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8674 Disc : Entity_Id;
8675
8676 begin
8677 Disc := First_Discriminant (T);
8678 for J in Discr_Expr'Range loop
8679 if Disc = D then
8680 return J;
8681 end if;
8682
8683 Next_Discriminant (Disc);
8684 end loop;
8685
8686 -- Note: Since this function is called on discriminants that are
8687 -- known to belong to the discriminated type, falling through the
8688 -- loop with no match signals an internal compiler error.
8689
8690 raise Program_Error;
8691 end Pos_Of_Discr;
8692
8693 -------------------------------------
8694 -- Process_Discriminant_Expression --
8695 -------------------------------------
8696
8697 procedure Process_Discriminant_Expression
8698 (Expr : Node_Id;
8699 D : Entity_Id)
8700 is
8701 BDT : constant Entity_Id := Base_Type (Etype (D));
8702
8703 begin
8704 -- If this is a discriminant constraint on a partial view, do
8705 -- not generate an overflow on the discriminant expression. The
8706 -- check will be generated when constraining the full view.
8707
8708 if Is_Private_Type (T)
8709 and then Present (Full_View (T))
8710 then
8711 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8712 else
8713 Analyze_And_Resolve (Expr, BDT);
8714 end if;
8715 end Process_Discriminant_Expression;
8716
8717 -- Declarations local to Build_Discriminant_Constraints
8718
8719 Discr : Entity_Id;
8720 E : Entity_Id;
8721 Elist : constant Elist_Id := New_Elmt_List;
8722
8723 Constr : Node_Id;
8724 Expr : Node_Id;
8725 Id : Node_Id;
8726 Position : Nat;
8727 Found : Boolean;
8728
8729 Discrim_Present : Boolean := False;
8730
8731 -- Start of processing for Build_Discriminant_Constraints
8732
8733 begin
8734 -- The following loop will process positional associations only.
8735 -- For a positional association, the (single) discriminant is
8736 -- implicitly specified by position, in textual order (RM 3.7.2).
8737
8738 Discr := First_Discriminant (T);
8739 Constr := First (Constraints (C));
8740 for D in Discr_Expr'Range loop
8741 exit when Nkind (Constr) = N_Discriminant_Association;
8742
8743 if No (Constr) then
8744 Error_Msg_N ("too few discriminants given in constraint", C);
8745 return New_Elmt_List;
8746
8747 elsif Nkind (Constr) = N_Range
8748 or else (Nkind (Constr) = N_Attribute_Reference
8749 and then
8750 Attribute_Name (Constr) = Name_Range)
8751 then
8752 Error_Msg_N
8753 ("a range is not a valid discriminant constraint", Constr);
8754 Discr_Expr (D) := Error;
8755
8756 else
8757 Process_Discriminant_Expression (Constr, Discr);
8758 Discr_Expr (D) := Constr;
8759 end if;
8760
8761 Next_Discriminant (Discr);
8762 Next (Constr);
8763 end loop;
8764
8765 if No (Discr) and then Present (Constr) then
8766 Error_Msg_N ("too many discriminants given in constraint", Constr);
8767 return New_Elmt_List;
8768 end if;
8769
8770 -- Named associations can be given in any order, but if both positional
8771 -- and named associations are used in the same discriminant constraint,
8772 -- then positional associations must occur first, at their normal
8773 -- position. Hence once a named association is used, the rest of the
8774 -- discriminant constraint must use only named associations.
8775
8776 while Present (Constr) loop
8777
8778 -- Positional association forbidden after a named association
8779
8780 if Nkind (Constr) /= N_Discriminant_Association then
8781 Error_Msg_N ("positional association follows named one", Constr);
8782 return New_Elmt_List;
8783
8784 -- Otherwise it is a named association
8785
8786 else
8787 -- E records the type of the discriminants in the named
8788 -- association. All the discriminants specified in the same name
8789 -- association must have the same type.
8790
8791 E := Empty;
8792
8793 -- Search the list of discriminants in T to see if the simple name
8794 -- given in the constraint matches any of them.
8795
8796 Id := First (Selector_Names (Constr));
8797 while Present (Id) loop
8798 Found := False;
8799
8800 -- If Original_Discriminant is present, we are processing a
8801 -- generic instantiation and this is an instance node. We need
8802 -- to find the name of the corresponding discriminant in the
8803 -- actual record type T and not the name of the discriminant in
8804 -- the generic formal. Example:
8805
8806 -- generic
8807 -- type G (D : int) is private;
8808 -- package P is
8809 -- subtype W is G (D => 1);
8810 -- end package;
8811 -- type Rec (X : int) is record ... end record;
8812 -- package Q is new P (G => Rec);
8813
8814 -- At the point of the instantiation, formal type G is Rec
8815 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8816 -- which really looks like "subtype W is Rec (D => 1);" at
8817 -- the point of instantiation, we want to find the discriminant
8818 -- that corresponds to D in Rec, i.e. X.
8819
8820 if Present (Original_Discriminant (Id))
8821 and then In_Instance
8822 then
8823 Discr := Find_Corresponding_Discriminant (Id, T);
8824 Found := True;
8825
8826 else
8827 Discr := First_Discriminant (T);
8828 while Present (Discr) loop
8829 if Chars (Discr) = Chars (Id) then
8830 Found := True;
8831 exit;
8832 end if;
8833
8834 Next_Discriminant (Discr);
8835 end loop;
8836
8837 if not Found then
8838 Error_Msg_N ("& does not match any discriminant", Id);
8839 return New_Elmt_List;
8840
8841 -- If the parent type is a generic formal, preserve the
8842 -- name of the discriminant for subsequent instances.
8843 -- see comment at the beginning of this if statement.
8844
8845 elsif Is_Generic_Type (Root_Type (T)) then
8846 Set_Original_Discriminant (Id, Discr);
8847 end if;
8848 end if;
8849
8850 Position := Pos_Of_Discr (T, Discr);
8851
8852 if Present (Discr_Expr (Position)) then
8853 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8854
8855 else
8856 -- Each discriminant specified in the same named association
8857 -- must be associated with a separate copy of the
8858 -- corresponding expression.
8859
8860 if Present (Next (Id)) then
8861 Expr := New_Copy_Tree (Expression (Constr));
8862 Set_Parent (Expr, Parent (Expression (Constr)));
8863 else
8864 Expr := Expression (Constr);
8865 end if;
8866
8867 Discr_Expr (Position) := Expr;
8868 Process_Discriminant_Expression (Expr, Discr);
8869 end if;
8870
8871 -- A discriminant association with more than one discriminant
8872 -- name is only allowed if the named discriminants are all of
8873 -- the same type (RM 3.7.1(8)).
8874
8875 if E = Empty then
8876 E := Base_Type (Etype (Discr));
8877
8878 elsif Base_Type (Etype (Discr)) /= E then
8879 Error_Msg_N
8880 ("all discriminants in an association " &
8881 "must have the same type", Id);
8882 end if;
8883
8884 Next (Id);
8885 end loop;
8886 end if;
8887
8888 Next (Constr);
8889 end loop;
8890
8891 -- A discriminant constraint must provide exactly one value for each
8892 -- discriminant of the type (RM 3.7.1(8)).
8893
8894 for J in Discr_Expr'Range loop
8895 if No (Discr_Expr (J)) then
8896 Error_Msg_N ("too few discriminants given in constraint", C);
8897 return New_Elmt_List;
8898 end if;
8899 end loop;
8900
8901 -- Determine if there are discriminant expressions in the constraint
8902
8903 for J in Discr_Expr'Range loop
8904 if Denotes_Discriminant
8905 (Discr_Expr (J), Check_Concurrent => True)
8906 then
8907 Discrim_Present := True;
8908 end if;
8909 end loop;
8910
8911 -- Build an element list consisting of the expressions given in the
8912 -- discriminant constraint and apply the appropriate checks. The list
8913 -- is constructed after resolving any named discriminant associations
8914 -- and therefore the expressions appear in the textual order of the
8915 -- discriminants.
8916
8917 Discr := First_Discriminant (T);
8918 for J in Discr_Expr'Range loop
8919 if Discr_Expr (J) /= Error then
8920 Append_Elmt (Discr_Expr (J), Elist);
8921
8922 -- If any of the discriminant constraints is given by a
8923 -- discriminant and we are in a derived type declaration we
8924 -- have a discriminant renaming. Establish link between new
8925 -- and old discriminant.
8926
8927 if Denotes_Discriminant (Discr_Expr (J)) then
8928 if Derived_Def then
8929 Set_Corresponding_Discriminant
8930 (Entity (Discr_Expr (J)), Discr);
8931 end if;
8932
8933 -- Force the evaluation of non-discriminant expressions.
8934 -- If we have found a discriminant in the constraint 3.4(26)
8935 -- and 3.8(18) demand that no range checks are performed are
8936 -- after evaluation. If the constraint is for a component
8937 -- definition that has a per-object constraint, expressions are
8938 -- evaluated but not checked either. In all other cases perform
8939 -- a range check.
8940
8941 else
8942 if Discrim_Present then
8943 null;
8944
8945 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8946 and then
8947 Has_Per_Object_Constraint
8948 (Defining_Identifier (Parent (Parent (Def))))
8949 then
8950 null;
8951
8952 elsif Is_Access_Type (Etype (Discr)) then
8953 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8954
8955 else
8956 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8957 end if;
8958
8959 Force_Evaluation (Discr_Expr (J));
8960 end if;
8961
8962 -- Check that the designated type of an access discriminant's
8963 -- expression is not a class-wide type unless the discriminant's
8964 -- designated type is also class-wide.
8965
8966 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8967 and then not Is_Class_Wide_Type
8968 (Designated_Type (Etype (Discr)))
8969 and then Etype (Discr_Expr (J)) /= Any_Type
8970 and then Is_Class_Wide_Type
8971 (Designated_Type (Etype (Discr_Expr (J))))
8972 then
8973 Wrong_Type (Discr_Expr (J), Etype (Discr));
8974
8975 elsif Is_Access_Type (Etype (Discr))
8976 and then not Is_Access_Constant (Etype (Discr))
8977 and then Is_Access_Type (Etype (Discr_Expr (J)))
8978 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8979 then
8980 Error_Msg_NE
8981 ("constraint for discriminant& must be access to variable",
8982 Def, Discr);
8983 end if;
8984 end if;
8985
8986 Next_Discriminant (Discr);
8987 end loop;
8988
8989 return Elist;
8990 end Build_Discriminant_Constraints;
8991
8992 ---------------------------------
8993 -- Build_Discriminated_Subtype --
8994 ---------------------------------
8995
8996 procedure Build_Discriminated_Subtype
8997 (T : Entity_Id;
8998 Def_Id : Entity_Id;
8999 Elist : Elist_Id;
9000 Related_Nod : Node_Id;
9001 For_Access : Boolean := False)
9002 is
9003 Has_Discrs : constant Boolean := Has_Discriminants (T);
9004 Constrained : constant Boolean :=
9005 (Has_Discrs
9006 and then not Is_Empty_Elmt_List (Elist)
9007 and then not Is_Class_Wide_Type (T))
9008 or else Is_Constrained (T);
9009
9010 begin
9011 if Ekind (T) = E_Record_Type then
9012 if For_Access then
9013 Set_Ekind (Def_Id, E_Private_Subtype);
9014 Set_Is_For_Access_Subtype (Def_Id, True);
9015 else
9016 Set_Ekind (Def_Id, E_Record_Subtype);
9017 end if;
9018
9019 -- Inherit preelaboration flag from base, for types for which it
9020 -- may have been set: records, private types, protected types.
9021
9022 Set_Known_To_Have_Preelab_Init
9023 (Def_Id, Known_To_Have_Preelab_Init (T));
9024
9025 elsif Ekind (T) = E_Task_Type then
9026 Set_Ekind (Def_Id, E_Task_Subtype);
9027
9028 elsif Ekind (T) = E_Protected_Type then
9029 Set_Ekind (Def_Id, E_Protected_Subtype);
9030 Set_Known_To_Have_Preelab_Init
9031 (Def_Id, Known_To_Have_Preelab_Init (T));
9032
9033 elsif Is_Private_Type (T) then
9034 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9035 Set_Known_To_Have_Preelab_Init
9036 (Def_Id, Known_To_Have_Preelab_Init (T));
9037
9038 -- Private subtypes may have private dependents
9039
9040 Set_Private_Dependents (Def_Id, New_Elmt_List);
9041
9042 elsif Is_Class_Wide_Type (T) then
9043 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9044
9045 else
9046 -- Incomplete type. Attach subtype to list of dependents, to be
9047 -- completed with full view of parent type, unless is it the
9048 -- designated subtype of a record component within an init_proc.
9049 -- This last case arises for a component of an access type whose
9050 -- designated type is incomplete (e.g. a Taft Amendment type).
9051 -- The designated subtype is within an inner scope, and needs no
9052 -- elaboration, because only the access type is needed in the
9053 -- initialization procedure.
9054
9055 Set_Ekind (Def_Id, Ekind (T));
9056
9057 if For_Access and then Within_Init_Proc then
9058 null;
9059 else
9060 Append_Elmt (Def_Id, Private_Dependents (T));
9061 end if;
9062 end if;
9063
9064 Set_Etype (Def_Id, T);
9065 Init_Size_Align (Def_Id);
9066 Set_Has_Discriminants (Def_Id, Has_Discrs);
9067 Set_Is_Constrained (Def_Id, Constrained);
9068
9069 Set_First_Entity (Def_Id, First_Entity (T));
9070 Set_Last_Entity (Def_Id, Last_Entity (T));
9071 Set_Has_Implicit_Dereference
9072 (Def_Id, Has_Implicit_Dereference (T));
9073
9074 -- If the subtype is the completion of a private declaration, there may
9075 -- have been representation clauses for the partial view, and they must
9076 -- be preserved. Build_Derived_Type chains the inherited clauses with
9077 -- the ones appearing on the extension. If this comes from a subtype
9078 -- declaration, all clauses are inherited.
9079
9080 if No (First_Rep_Item (Def_Id)) then
9081 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9082 end if;
9083
9084 if Is_Tagged_Type (T) then
9085 Set_Is_Tagged_Type (Def_Id);
9086 Make_Class_Wide_Type (Def_Id);
9087 end if;
9088
9089 Set_Stored_Constraint (Def_Id, No_Elist);
9090
9091 if Has_Discrs then
9092 Set_Discriminant_Constraint (Def_Id, Elist);
9093 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9094 end if;
9095
9096 if Is_Tagged_Type (T) then
9097
9098 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9099 -- concurrent record type (which has the list of primitive
9100 -- operations).
9101
9102 if Ada_Version >= Ada_2005
9103 and then Is_Concurrent_Type (T)
9104 then
9105 Set_Corresponding_Record_Type (Def_Id,
9106 Corresponding_Record_Type (T));
9107 else
9108 Set_Direct_Primitive_Operations (Def_Id,
9109 Direct_Primitive_Operations (T));
9110 end if;
9111
9112 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9113 end if;
9114
9115 -- Subtypes introduced by component declarations do not need to be
9116 -- marked as delayed, and do not get freeze nodes, because the semantics
9117 -- verifies that the parents of the subtypes are frozen before the
9118 -- enclosing record is frozen.
9119
9120 if not Is_Type (Scope (Def_Id)) then
9121 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9122
9123 if Is_Private_Type (T)
9124 and then Present (Full_View (T))
9125 then
9126 Conditional_Delay (Def_Id, Full_View (T));
9127 else
9128 Conditional_Delay (Def_Id, T);
9129 end if;
9130 end if;
9131
9132 if Is_Record_Type (T) then
9133 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9134
9135 if Has_Discrs
9136 and then not Is_Empty_Elmt_List (Elist)
9137 and then not For_Access
9138 then
9139 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9140 elsif not For_Access then
9141 Set_Cloned_Subtype (Def_Id, T);
9142 end if;
9143 end if;
9144 end Build_Discriminated_Subtype;
9145
9146 ---------------------------
9147 -- Build_Itype_Reference --
9148 ---------------------------
9149
9150 procedure Build_Itype_Reference
9151 (Ityp : Entity_Id;
9152 Nod : Node_Id)
9153 is
9154 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9155 begin
9156
9157 -- Itype references are only created for use by the back-end
9158
9159 if Inside_A_Generic then
9160 return;
9161 else
9162 Set_Itype (IR, Ityp);
9163 Insert_After (Nod, IR);
9164 end if;
9165 end Build_Itype_Reference;
9166
9167 ------------------------
9168 -- Build_Scalar_Bound --
9169 ------------------------
9170
9171 function Build_Scalar_Bound
9172 (Bound : Node_Id;
9173 Par_T : Entity_Id;
9174 Der_T : Entity_Id) return Node_Id
9175 is
9176 New_Bound : Entity_Id;
9177
9178 begin
9179 -- Note: not clear why this is needed, how can the original bound
9180 -- be unanalyzed at this point? and if it is, what business do we
9181 -- have messing around with it? and why is the base type of the
9182 -- parent type the right type for the resolution. It probably is
9183 -- not. It is OK for the new bound we are creating, but not for
9184 -- the old one??? Still if it never happens, no problem.
9185
9186 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9187
9188 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9189 New_Bound := New_Copy (Bound);
9190 Set_Etype (New_Bound, Der_T);
9191 Set_Analyzed (New_Bound);
9192
9193 elsif Is_Entity_Name (Bound) then
9194 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9195
9196 -- The following is almost certainly wrong. What business do we have
9197 -- relocating a node (Bound) that is presumably still attached to
9198 -- the tree elsewhere???
9199
9200 else
9201 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9202 end if;
9203
9204 Set_Etype (New_Bound, Der_T);
9205 return New_Bound;
9206 end Build_Scalar_Bound;
9207
9208 --------------------------------
9209 -- Build_Underlying_Full_View --
9210 --------------------------------
9211
9212 procedure Build_Underlying_Full_View
9213 (N : Node_Id;
9214 Typ : Entity_Id;
9215 Par : Entity_Id)
9216 is
9217 Loc : constant Source_Ptr := Sloc (N);
9218 Subt : constant Entity_Id :=
9219 Make_Defining_Identifier
9220 (Loc, New_External_Name (Chars (Typ), 'S'));
9221
9222 Constr : Node_Id;
9223 Indic : Node_Id;
9224 C : Node_Id;
9225 Id : Node_Id;
9226
9227 procedure Set_Discriminant_Name (Id : Node_Id);
9228 -- If the derived type has discriminants, they may rename discriminants
9229 -- of the parent. When building the full view of the parent, we need to
9230 -- recover the names of the original discriminants if the constraint is
9231 -- given by named associations.
9232
9233 ---------------------------
9234 -- Set_Discriminant_Name --
9235 ---------------------------
9236
9237 procedure Set_Discriminant_Name (Id : Node_Id) is
9238 Disc : Entity_Id;
9239
9240 begin
9241 Set_Original_Discriminant (Id, Empty);
9242
9243 if Has_Discriminants (Typ) then
9244 Disc := First_Discriminant (Typ);
9245 while Present (Disc) loop
9246 if Chars (Disc) = Chars (Id)
9247 and then Present (Corresponding_Discriminant (Disc))
9248 then
9249 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9250 end if;
9251 Next_Discriminant (Disc);
9252 end loop;
9253 end if;
9254 end Set_Discriminant_Name;
9255
9256 -- Start of processing for Build_Underlying_Full_View
9257
9258 begin
9259 if Nkind (N) = N_Full_Type_Declaration then
9260 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9261
9262 elsif Nkind (N) = N_Subtype_Declaration then
9263 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9264
9265 elsif Nkind (N) = N_Component_Declaration then
9266 Constr :=
9267 New_Copy_Tree
9268 (Constraint (Subtype_Indication (Component_Definition (N))));
9269
9270 else
9271 raise Program_Error;
9272 end if;
9273
9274 C := First (Constraints (Constr));
9275 while Present (C) loop
9276 if Nkind (C) = N_Discriminant_Association then
9277 Id := First (Selector_Names (C));
9278 while Present (Id) loop
9279 Set_Discriminant_Name (Id);
9280 Next (Id);
9281 end loop;
9282 end if;
9283
9284 Next (C);
9285 end loop;
9286
9287 Indic :=
9288 Make_Subtype_Declaration (Loc,
9289 Defining_Identifier => Subt,
9290 Subtype_Indication =>
9291 Make_Subtype_Indication (Loc,
9292 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9293 Constraint => New_Copy_Tree (Constr)));
9294
9295 -- If this is a component subtype for an outer itype, it is not
9296 -- a list member, so simply set the parent link for analysis: if
9297 -- the enclosing type does not need to be in a declarative list,
9298 -- neither do the components.
9299
9300 if Is_List_Member (N)
9301 and then Nkind (N) /= N_Component_Declaration
9302 then
9303 Insert_Before (N, Indic);
9304 else
9305 Set_Parent (Indic, Parent (N));
9306 end if;
9307
9308 Analyze (Indic);
9309 Set_Underlying_Full_View (Typ, Full_View (Subt));
9310 end Build_Underlying_Full_View;
9311
9312 -------------------------------
9313 -- Check_Abstract_Overriding --
9314 -------------------------------
9315
9316 procedure Check_Abstract_Overriding (T : Entity_Id) is
9317 Alias_Subp : Entity_Id;
9318 Elmt : Elmt_Id;
9319 Op_List : Elist_Id;
9320 Subp : Entity_Id;
9321 Type_Def : Node_Id;
9322
9323 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9324 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9325 -- which has pragma Implemented already set. Check whether Subp's entity
9326 -- kind conforms to the implementation kind of the overridden routine.
9327
9328 procedure Check_Pragma_Implemented
9329 (Subp : Entity_Id;
9330 Iface_Subp : Entity_Id);
9331 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9332 -- Iface_Subp and both entities have pragma Implemented already set on
9333 -- them. Check whether the two implementation kinds are conforming.
9334
9335 procedure Inherit_Pragma_Implemented
9336 (Subp : Entity_Id;
9337 Iface_Subp : Entity_Id);
9338 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9339 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9340 -- Propagate the implementation kind of Iface_Subp to Subp.
9341
9342 ------------------------------
9343 -- Check_Pragma_Implemented --
9344 ------------------------------
9345
9346 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9347 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9348 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9349 Subp_Alias : constant Entity_Id := Alias (Subp);
9350 Contr_Typ : Entity_Id;
9351 Impl_Subp : Entity_Id;
9352
9353 begin
9354 -- Subp must have an alias since it is a hidden entity used to link
9355 -- an interface subprogram to its overriding counterpart.
9356
9357 pragma Assert (Present (Subp_Alias));
9358
9359 -- Handle aliases to synchronized wrappers
9360
9361 Impl_Subp := Subp_Alias;
9362
9363 if Is_Primitive_Wrapper (Impl_Subp) then
9364 Impl_Subp := Wrapped_Entity (Impl_Subp);
9365 end if;
9366
9367 -- Extract the type of the controlling formal
9368
9369 Contr_Typ := Etype (First_Formal (Subp_Alias));
9370
9371 if Is_Concurrent_Record_Type (Contr_Typ) then
9372 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9373 end if;
9374
9375 -- An interface subprogram whose implementation kind is By_Entry must
9376 -- be implemented by an entry.
9377
9378 if Impl_Kind = Name_By_Entry
9379 and then Ekind (Impl_Subp) /= E_Entry
9380 then
9381 Error_Msg_Node_2 := Iface_Alias;
9382 Error_Msg_NE
9383 ("type & must implement abstract subprogram & with an entry",
9384 Subp_Alias, Contr_Typ);
9385
9386 elsif Impl_Kind = Name_By_Protected_Procedure then
9387
9388 -- An interface subprogram whose implementation kind is By_
9389 -- Protected_Procedure cannot be implemented by a primitive
9390 -- procedure of a task type.
9391
9392 if Ekind (Contr_Typ) /= E_Protected_Type then
9393 Error_Msg_Node_2 := Contr_Typ;
9394 Error_Msg_NE
9395 ("interface subprogram & cannot be implemented by a " &
9396 "primitive procedure of task type &", Subp_Alias,
9397 Iface_Alias);
9398
9399 -- An interface subprogram whose implementation kind is By_
9400 -- Protected_Procedure must be implemented by a procedure.
9401
9402 elsif Ekind (Impl_Subp) /= E_Procedure then
9403 Error_Msg_Node_2 := Iface_Alias;
9404 Error_Msg_NE
9405 ("type & must implement abstract subprogram & with a " &
9406 "procedure", Subp_Alias, Contr_Typ);
9407
9408 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9409 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9410 then
9411 Error_Msg_Name_1 := Impl_Kind;
9412 Error_Msg_N
9413 ("overriding operation& must have synchronization%",
9414 Subp_Alias);
9415 end if;
9416
9417 -- If primitive has Optional synchronization, overriding operation
9418 -- must match if it has an explicit synchronization..
9419
9420 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9421 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9422 then
9423 Error_Msg_Name_1 := Impl_Kind;
9424 Error_Msg_N
9425 ("overriding operation& must have syncrhonization%",
9426 Subp_Alias);
9427 end if;
9428 end Check_Pragma_Implemented;
9429
9430 ------------------------------
9431 -- Check_Pragma_Implemented --
9432 ------------------------------
9433
9434 procedure Check_Pragma_Implemented
9435 (Subp : Entity_Id;
9436 Iface_Subp : Entity_Id)
9437 is
9438 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9439 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9440
9441 begin
9442 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9443 -- and overriding subprogram are different. In general this is an
9444 -- error except when the implementation kind of the overridden
9445 -- subprograms is By_Any or Optional.
9446
9447 if Iface_Kind /= Subp_Kind
9448 and then Iface_Kind /= Name_By_Any
9449 and then Iface_Kind /= Name_Optional
9450 then
9451 if Iface_Kind = Name_By_Entry then
9452 Error_Msg_N
9453 ("incompatible implementation kind, overridden subprogram " &
9454 "is marked By_Entry", Subp);
9455 else
9456 Error_Msg_N
9457 ("incompatible implementation kind, overridden subprogram " &
9458 "is marked By_Protected_Procedure", Subp);
9459 end if;
9460 end if;
9461 end Check_Pragma_Implemented;
9462
9463 --------------------------------
9464 -- Inherit_Pragma_Implemented --
9465 --------------------------------
9466
9467 procedure Inherit_Pragma_Implemented
9468 (Subp : Entity_Id;
9469 Iface_Subp : Entity_Id)
9470 is
9471 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9472 Loc : constant Source_Ptr := Sloc (Subp);
9473 Impl_Prag : Node_Id;
9474
9475 begin
9476 -- Since the implementation kind is stored as a representation item
9477 -- rather than a flag, create a pragma node.
9478
9479 Impl_Prag :=
9480 Make_Pragma (Loc,
9481 Chars => Name_Implemented,
9482 Pragma_Argument_Associations => New_List (
9483 Make_Pragma_Argument_Association (Loc,
9484 Expression => New_Occurrence_Of (Subp, Loc)),
9485
9486 Make_Pragma_Argument_Association (Loc,
9487 Expression => Make_Identifier (Loc, Iface_Kind))));
9488
9489 -- The pragma doesn't need to be analyzed because it is internally
9490 -- built. It is safe to directly register it as a rep item since we
9491 -- are only interested in the characters of the implementation kind.
9492
9493 Record_Rep_Item (Subp, Impl_Prag);
9494 end Inherit_Pragma_Implemented;
9495
9496 -- Start of processing for Check_Abstract_Overriding
9497
9498 begin
9499 Op_List := Primitive_Operations (T);
9500
9501 -- Loop to check primitive operations
9502
9503 Elmt := First_Elmt (Op_List);
9504 while Present (Elmt) loop
9505 Subp := Node (Elmt);
9506 Alias_Subp := Alias (Subp);
9507
9508 -- Inherited subprograms are identified by the fact that they do not
9509 -- come from source, and the associated source location is the
9510 -- location of the first subtype of the derived type.
9511
9512 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9513 -- subprograms that "require overriding".
9514
9515 -- Special exception, do not complain about failure to override the
9516 -- stream routines _Input and _Output, as well as the primitive
9517 -- operations used in dispatching selects since we always provide
9518 -- automatic overridings for these subprograms.
9519
9520 -- Also ignore this rule for convention CIL since .NET libraries
9521 -- do bizarre things with interfaces???
9522
9523 -- The partial view of T may have been a private extension, for
9524 -- which inherited functions dispatching on result are abstract.
9525 -- If the full view is a null extension, there is no need for
9526 -- overriding in Ada 2005, but wrappers need to be built for them
9527 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9528
9529 if Is_Null_Extension (T)
9530 and then Has_Controlling_Result (Subp)
9531 and then Ada_Version >= Ada_2005
9532 and then Present (Alias_Subp)
9533 and then not Comes_From_Source (Subp)
9534 and then not Is_Abstract_Subprogram (Alias_Subp)
9535 and then not Is_Access_Type (Etype (Subp))
9536 then
9537 null;
9538
9539 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9540 -- processing because this check is done with the aliased
9541 -- entity
9542
9543 elsif Present (Interface_Alias (Subp)) then
9544 null;
9545
9546 elsif (Is_Abstract_Subprogram (Subp)
9547 or else Requires_Overriding (Subp)
9548 or else
9549 (Has_Controlling_Result (Subp)
9550 and then Present (Alias_Subp)
9551 and then not Comes_From_Source (Subp)
9552 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9553 and then not Is_TSS (Subp, TSS_Stream_Input)
9554 and then not Is_TSS (Subp, TSS_Stream_Output)
9555 and then not Is_Abstract_Type (T)
9556 and then Convention (T) /= Convention_CIL
9557 and then not Is_Predefined_Interface_Primitive (Subp)
9558
9559 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9560 -- with abstract interface types because the check will be done
9561 -- with the aliased entity (otherwise we generate a duplicated
9562 -- error message).
9563
9564 and then not Present (Interface_Alias (Subp))
9565 then
9566 if Present (Alias_Subp) then
9567
9568 -- Only perform the check for a derived subprogram when the
9569 -- type has an explicit record extension. This avoids incorrect
9570 -- flagging of abstract subprograms for the case of a type
9571 -- without an extension that is derived from a formal type
9572 -- with a tagged actual (can occur within a private part).
9573
9574 -- Ada 2005 (AI-391): In the case of an inherited function with
9575 -- a controlling result of the type, the rule does not apply if
9576 -- the type is a null extension (unless the parent function
9577 -- itself is abstract, in which case the function must still be
9578 -- be overridden). The expander will generate an overriding
9579 -- wrapper function calling the parent subprogram (see
9580 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9581
9582 Type_Def := Type_Definition (Parent (T));
9583
9584 if Nkind (Type_Def) = N_Derived_Type_Definition
9585 and then Present (Record_Extension_Part (Type_Def))
9586 and then
9587 (Ada_Version < Ada_2005
9588 or else not Is_Null_Extension (T)
9589 or else Ekind (Subp) = E_Procedure
9590 or else not Has_Controlling_Result (Subp)
9591 or else Is_Abstract_Subprogram (Alias_Subp)
9592 or else Requires_Overriding (Subp)
9593 or else Is_Access_Type (Etype (Subp)))
9594 then
9595 -- Avoid reporting error in case of abstract predefined
9596 -- primitive inherited from interface type because the
9597 -- body of internally generated predefined primitives
9598 -- of tagged types are generated later by Freeze_Type
9599
9600 if Is_Interface (Root_Type (T))
9601 and then Is_Abstract_Subprogram (Subp)
9602 and then Is_Predefined_Dispatching_Operation (Subp)
9603 and then not Comes_From_Source (Ultimate_Alias (Subp))
9604 then
9605 null;
9606
9607 else
9608 Error_Msg_NE
9609 ("type must be declared abstract or & overridden",
9610 T, Subp);
9611
9612 -- Traverse the whole chain of aliased subprograms to
9613 -- complete the error notification. This is especially
9614 -- useful for traceability of the chain of entities when
9615 -- the subprogram corresponds with an interface
9616 -- subprogram (which may be defined in another package).
9617
9618 if Present (Alias_Subp) then
9619 declare
9620 E : Entity_Id;
9621
9622 begin
9623 E := Subp;
9624 while Present (Alias (E)) loop
9625
9626 -- Avoid reporting redundant errors on entities
9627 -- inherited from interfaces
9628
9629 if Sloc (E) /= Sloc (T) then
9630 Error_Msg_Sloc := Sloc (E);
9631 Error_Msg_NE
9632 ("\& has been inherited #", T, Subp);
9633 end if;
9634
9635 E := Alias (E);
9636 end loop;
9637
9638 Error_Msg_Sloc := Sloc (E);
9639
9640 -- AI05-0068: report if there is an overriding
9641 -- non-abstract subprogram that is invisible.
9642
9643 if Is_Hidden (E)
9644 and then not Is_Abstract_Subprogram (E)
9645 then
9646 Error_Msg_NE
9647 ("\& subprogram# is not visible",
9648 T, Subp);
9649
9650 else
9651 Error_Msg_NE
9652 ("\& has been inherited from subprogram #",
9653 T, Subp);
9654 end if;
9655 end;
9656 end if;
9657 end if;
9658
9659 -- Ada 2005 (AI-345): Protected or task type implementing
9660 -- abstract interfaces.
9661
9662 elsif Is_Concurrent_Record_Type (T)
9663 and then Present (Interfaces (T))
9664 then
9665 -- If an inherited subprogram is implemented by a protected
9666 -- procedure or an entry, then the first parameter of the
9667 -- inherited subprogram shall be of mode OUT or IN OUT, or
9668 -- an access-to-variable parameter (RM 9.4(11.9/3))
9669
9670 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9671 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9672 and then Ekind (Subp) /= E_Function
9673 and then not Is_Predefined_Dispatching_Operation (Subp)
9674 then
9675 Error_Msg_PT (T, Subp);
9676
9677 -- Some other kind of overriding failure
9678
9679 else
9680 Error_Msg_NE
9681 ("interface subprogram & must be overridden",
9682 T, Subp);
9683
9684 -- Examine primitive operations of synchronized type,
9685 -- to find homonyms that have the wrong profile.
9686
9687 declare
9688 Prim : Entity_Id;
9689
9690 begin
9691 Prim :=
9692 First_Entity (Corresponding_Concurrent_Type (T));
9693 while Present (Prim) loop
9694 if Chars (Prim) = Chars (Subp) then
9695 Error_Msg_NE
9696 ("profile is not type conformant with "
9697 & "prefixed view profile of "
9698 & "inherited operation&", Prim, Subp);
9699 end if;
9700
9701 Next_Entity (Prim);
9702 end loop;
9703 end;
9704 end if;
9705 end if;
9706
9707 else
9708 Error_Msg_Node_2 := T;
9709 Error_Msg_N
9710 ("abstract subprogram& not allowed for type&", Subp);
9711
9712 -- Also post unconditional warning on the type (unconditional
9713 -- so that if there are more than one of these cases, we get
9714 -- them all, and not just the first one).
9715
9716 Error_Msg_Node_2 := Subp;
9717 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9718 end if;
9719 end if;
9720
9721 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9722
9723 -- Subp is an expander-generated procedure which maps an interface
9724 -- alias to a protected wrapper. The interface alias is flagged by
9725 -- pragma Implemented. Ensure that Subp is a procedure when the
9726 -- implementation kind is By_Protected_Procedure or an entry when
9727 -- By_Entry.
9728
9729 if Ada_Version >= Ada_2012
9730 and then Is_Hidden (Subp)
9731 and then Present (Interface_Alias (Subp))
9732 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9733 then
9734 Check_Pragma_Implemented (Subp);
9735 end if;
9736
9737 -- Subp is an interface primitive which overrides another interface
9738 -- primitive marked with pragma Implemented.
9739
9740 if Ada_Version >= Ada_2012
9741 and then Present (Overridden_Operation (Subp))
9742 and then Has_Rep_Pragma
9743 (Overridden_Operation (Subp), Name_Implemented)
9744 then
9745 -- If the overriding routine is also marked by Implemented, check
9746 -- that the two implementation kinds are conforming.
9747
9748 if Has_Rep_Pragma (Subp, Name_Implemented) then
9749 Check_Pragma_Implemented
9750 (Subp => Subp,
9751 Iface_Subp => Overridden_Operation (Subp));
9752
9753 -- Otherwise the overriding routine inherits the implementation
9754 -- kind from the overridden subprogram.
9755
9756 else
9757 Inherit_Pragma_Implemented
9758 (Subp => Subp,
9759 Iface_Subp => Overridden_Operation (Subp));
9760 end if;
9761 end if;
9762
9763 -- If the operation is a wrapper for a synchronized primitive, it
9764 -- may be called indirectly through a dispatching select. We assume
9765 -- that it will be referenced elsewhere indirectly, and suppress
9766 -- warnings about an unused entity.
9767
9768 if Is_Primitive_Wrapper (Subp)
9769 and then Present (Wrapped_Entity (Subp))
9770 then
9771 Set_Referenced (Wrapped_Entity (Subp));
9772 end if;
9773
9774 Next_Elmt (Elmt);
9775 end loop;
9776 end Check_Abstract_Overriding;
9777
9778 ------------------------------------------------
9779 -- Check_Access_Discriminant_Requires_Limited --
9780 ------------------------------------------------
9781
9782 procedure Check_Access_Discriminant_Requires_Limited
9783 (D : Node_Id;
9784 Loc : Node_Id)
9785 is
9786 begin
9787 -- A discriminant_specification for an access discriminant shall appear
9788 -- only in the declaration for a task or protected type, or for a type
9789 -- with the reserved word 'limited' in its definition or in one of its
9790 -- ancestors (RM 3.7(10)).
9791
9792 -- AI-0063: The proper condition is that type must be immutably limited,
9793 -- or else be a partial view.
9794
9795 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9796 if Is_Limited_View (Current_Scope)
9797 or else
9798 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9799 and then Limited_Present (Parent (Current_Scope)))
9800 then
9801 null;
9802
9803 else
9804 Error_Msg_N
9805 ("access discriminants allowed only for limited types", Loc);
9806 end if;
9807 end if;
9808 end Check_Access_Discriminant_Requires_Limited;
9809
9810 -----------------------------------
9811 -- Check_Aliased_Component_Types --
9812 -----------------------------------
9813
9814 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9815 C : Entity_Id;
9816
9817 begin
9818 -- ??? Also need to check components of record extensions, but not
9819 -- components of protected types (which are always limited).
9820
9821 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9822 -- types to be unconstrained. This is safe because it is illegal to
9823 -- create access subtypes to such types with explicit discriminant
9824 -- constraints.
9825
9826 if not Is_Limited_Type (T) then
9827 if Ekind (T) = E_Record_Type then
9828 C := First_Component (T);
9829 while Present (C) loop
9830 if Is_Aliased (C)
9831 and then Has_Discriminants (Etype (C))
9832 and then not Is_Constrained (Etype (C))
9833 and then not In_Instance_Body
9834 and then Ada_Version < Ada_2005
9835 then
9836 Error_Msg_N
9837 ("aliased component must be constrained (RM 3.6(11))",
9838 C);
9839 end if;
9840
9841 Next_Component (C);
9842 end loop;
9843
9844 elsif Ekind (T) = E_Array_Type then
9845 if Has_Aliased_Components (T)
9846 and then Has_Discriminants (Component_Type (T))
9847 and then not Is_Constrained (Component_Type (T))
9848 and then not In_Instance_Body
9849 and then Ada_Version < Ada_2005
9850 then
9851 Error_Msg_N
9852 ("aliased component type must be constrained (RM 3.6(11))",
9853 T);
9854 end if;
9855 end if;
9856 end if;
9857 end Check_Aliased_Component_Types;
9858
9859 ----------------------
9860 -- Check_Completion --
9861 ----------------------
9862
9863 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9864 E : Entity_Id;
9865
9866 procedure Post_Error;
9867 -- Post error message for lack of completion for entity E
9868
9869 ----------------
9870 -- Post_Error --
9871 ----------------
9872
9873 procedure Post_Error is
9874
9875 procedure Missing_Body;
9876 -- Output missing body message
9877
9878 ------------------
9879 -- Missing_Body --
9880 ------------------
9881
9882 procedure Missing_Body is
9883 begin
9884 -- Spec is in same unit, so we can post on spec
9885
9886 if In_Same_Source_Unit (Body_Id, E) then
9887 Error_Msg_N ("missing body for &", E);
9888
9889 -- Spec is in a separate unit, so we have to post on the body
9890
9891 else
9892 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9893 end if;
9894 end Missing_Body;
9895
9896 -- Start of processing for Post_Error
9897
9898 begin
9899 if not Comes_From_Source (E) then
9900
9901 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9902 -- It may be an anonymous protected type created for a
9903 -- single variable. Post error on variable, if present.
9904
9905 declare
9906 Var : Entity_Id;
9907
9908 begin
9909 Var := First_Entity (Current_Scope);
9910 while Present (Var) loop
9911 exit when Etype (Var) = E
9912 and then Comes_From_Source (Var);
9913
9914 Next_Entity (Var);
9915 end loop;
9916
9917 if Present (Var) then
9918 E := Var;
9919 end if;
9920 end;
9921 end if;
9922 end if;
9923
9924 -- If a generated entity has no completion, then either previous
9925 -- semantic errors have disabled the expansion phase, or else we had
9926 -- missing subunits, or else we are compiling without expansion,
9927 -- or else something is very wrong.
9928
9929 if not Comes_From_Source (E) then
9930 pragma Assert
9931 (Serious_Errors_Detected > 0
9932 or else Configurable_Run_Time_Violations > 0
9933 or else Subunits_Missing
9934 or else not Expander_Active);
9935 return;
9936
9937 -- Here for source entity
9938
9939 else
9940 -- Here if no body to post the error message, so we post the error
9941 -- on the declaration that has no completion. This is not really
9942 -- the right place to post it, think about this later ???
9943
9944 if No (Body_Id) then
9945 if Is_Type (E) then
9946 Error_Msg_NE
9947 ("missing full declaration for }", Parent (E), E);
9948 else
9949 Error_Msg_NE ("missing body for &", Parent (E), E);
9950 end if;
9951
9952 -- Package body has no completion for a declaration that appears
9953 -- in the corresponding spec. Post error on the body, with a
9954 -- reference to the non-completed declaration.
9955
9956 else
9957 Error_Msg_Sloc := Sloc (E);
9958
9959 if Is_Type (E) then
9960 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9961
9962 elsif Is_Overloadable (E)
9963 and then Current_Entity_In_Scope (E) /= E
9964 then
9965 -- It may be that the completion is mistyped and appears as
9966 -- a distinct overloading of the entity.
9967
9968 declare
9969 Candidate : constant Entity_Id :=
9970 Current_Entity_In_Scope (E);
9971 Decl : constant Node_Id :=
9972 Unit_Declaration_Node (Candidate);
9973
9974 begin
9975 if Is_Overloadable (Candidate)
9976 and then Ekind (Candidate) = Ekind (E)
9977 and then Nkind (Decl) = N_Subprogram_Body
9978 and then Acts_As_Spec (Decl)
9979 then
9980 Check_Type_Conformant (Candidate, E);
9981
9982 else
9983 Missing_Body;
9984 end if;
9985 end;
9986
9987 else
9988 Missing_Body;
9989 end if;
9990 end if;
9991 end if;
9992 end Post_Error;
9993
9994 -- Start of processing for Check_Completion
9995
9996 begin
9997 E := First_Entity (Current_Scope);
9998 while Present (E) loop
9999 if Is_Intrinsic_Subprogram (E) then
10000 null;
10001
10002 -- The following situation requires special handling: a child unit
10003 -- that appears in the context clause of the body of its parent:
10004
10005 -- procedure Parent.Child (...);
10006
10007 -- with Parent.Child;
10008 -- package body Parent is
10009
10010 -- Here Parent.Child appears as a local entity, but should not be
10011 -- flagged as requiring completion, because it is a compilation
10012 -- unit.
10013
10014 -- Ignore missing completion for a subprogram that does not come from
10015 -- source (including the _Call primitive operation of RAS types,
10016 -- which has to have the flag Comes_From_Source for other purposes):
10017 -- we assume that the expander will provide the missing completion.
10018 -- In case of previous errors, other expansion actions that provide
10019 -- bodies for null procedures with not be invoked, so inhibit message
10020 -- in those cases.
10021
10022 -- Note that E_Operator is not in the list that follows, because
10023 -- this kind is reserved for predefined operators, that are
10024 -- intrinsic and do not need completion.
10025
10026 elsif Ekind (E) = E_Function
10027 or else Ekind (E) = E_Procedure
10028 or else Ekind (E) = E_Generic_Function
10029 or else Ekind (E) = E_Generic_Procedure
10030 then
10031 if Has_Completion (E) then
10032 null;
10033
10034 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10035 null;
10036
10037 elsif Is_Subprogram (E)
10038 and then (not Comes_From_Source (E)
10039 or else Chars (E) = Name_uCall)
10040 then
10041 null;
10042
10043 elsif
10044 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10045 then
10046 null;
10047
10048 elsif Nkind (Parent (E)) = N_Procedure_Specification
10049 and then Null_Present (Parent (E))
10050 and then Serious_Errors_Detected > 0
10051 then
10052 null;
10053
10054 else
10055 Post_Error;
10056 end if;
10057
10058 elsif Is_Entry (E) then
10059 if not Has_Completion (E) and then
10060 (Ekind (Scope (E)) = E_Protected_Object
10061 or else Ekind (Scope (E)) = E_Protected_Type)
10062 then
10063 Post_Error;
10064 end if;
10065
10066 elsif Is_Package_Or_Generic_Package (E) then
10067 if Unit_Requires_Body (E) then
10068 if not Has_Completion (E)
10069 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10070 N_Compilation_Unit
10071 then
10072 Post_Error;
10073 end if;
10074
10075 elsif not Is_Child_Unit (E) then
10076 May_Need_Implicit_Body (E);
10077 end if;
10078
10079 -- A formal incomplete type (Ada 2012) does not require a completion;
10080 -- other incomplete type declarations do.
10081
10082 elsif Ekind (E) = E_Incomplete_Type
10083 and then No (Underlying_Type (E))
10084 and then not Is_Generic_Type (E)
10085 then
10086 Post_Error;
10087
10088 elsif (Ekind (E) = E_Task_Type or else
10089 Ekind (E) = E_Protected_Type)
10090 and then not Has_Completion (E)
10091 then
10092 Post_Error;
10093
10094 -- A single task declared in the current scope is a constant, verify
10095 -- that the body of its anonymous type is in the same scope. If the
10096 -- task is defined elsewhere, this may be a renaming declaration for
10097 -- which no completion is needed.
10098
10099 elsif Ekind (E) = E_Constant
10100 and then Ekind (Etype (E)) = E_Task_Type
10101 and then not Has_Completion (Etype (E))
10102 and then Scope (Etype (E)) = Current_Scope
10103 then
10104 Post_Error;
10105
10106 elsif Ekind (E) = E_Protected_Object
10107 and then not Has_Completion (Etype (E))
10108 then
10109 Post_Error;
10110
10111 elsif Ekind (E) = E_Record_Type then
10112 if Is_Tagged_Type (E) then
10113 Check_Abstract_Overriding (E);
10114 Check_Conventions (E);
10115 end if;
10116
10117 Check_Aliased_Component_Types (E);
10118
10119 elsif Ekind (E) = E_Array_Type then
10120 Check_Aliased_Component_Types (E);
10121
10122 end if;
10123
10124 Next_Entity (E);
10125 end loop;
10126 end Check_Completion;
10127
10128 ------------------------------------
10129 -- Check_CPP_Type_Has_No_Defaults --
10130 ------------------------------------
10131
10132 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10133 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10134 Clist : Node_Id;
10135 Comp : Node_Id;
10136
10137 begin
10138 -- Obtain the component list
10139
10140 if Nkind (Tdef) = N_Record_Definition then
10141 Clist := Component_List (Tdef);
10142 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10143 Clist := Component_List (Record_Extension_Part (Tdef));
10144 end if;
10145
10146 -- Check all components to ensure no default expressions
10147
10148 if Present (Clist) then
10149 Comp := First (Component_Items (Clist));
10150 while Present (Comp) loop
10151 if Present (Expression (Comp)) then
10152 Error_Msg_N
10153 ("component of imported 'C'P'P type cannot have "
10154 & "default expression", Expression (Comp));
10155 end if;
10156
10157 Next (Comp);
10158 end loop;
10159 end if;
10160 end Check_CPP_Type_Has_No_Defaults;
10161
10162 ----------------------------
10163 -- Check_Delta_Expression --
10164 ----------------------------
10165
10166 procedure Check_Delta_Expression (E : Node_Id) is
10167 begin
10168 if not (Is_Real_Type (Etype (E))) then
10169 Wrong_Type (E, Any_Real);
10170
10171 elsif not Is_OK_Static_Expression (E) then
10172 Flag_Non_Static_Expr
10173 ("non-static expression used for delta value!", E);
10174
10175 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10176 Error_Msg_N ("delta expression must be positive", E);
10177
10178 else
10179 return;
10180 end if;
10181
10182 -- If any of above errors occurred, then replace the incorrect
10183 -- expression by the real 0.1, which should prevent further errors.
10184
10185 Rewrite (E,
10186 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10187 Analyze_And_Resolve (E, Standard_Float);
10188 end Check_Delta_Expression;
10189
10190 -----------------------------
10191 -- Check_Digits_Expression --
10192 -----------------------------
10193
10194 procedure Check_Digits_Expression (E : Node_Id) is
10195 begin
10196 if not (Is_Integer_Type (Etype (E))) then
10197 Wrong_Type (E, Any_Integer);
10198
10199 elsif not Is_OK_Static_Expression (E) then
10200 Flag_Non_Static_Expr
10201 ("non-static expression used for digits value!", E);
10202
10203 elsif Expr_Value (E) <= 0 then
10204 Error_Msg_N ("digits value must be greater than zero", E);
10205
10206 else
10207 return;
10208 end if;
10209
10210 -- If any of above errors occurred, then replace the incorrect
10211 -- expression by the integer 1, which should prevent further errors.
10212
10213 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10214 Analyze_And_Resolve (E, Standard_Integer);
10215
10216 end Check_Digits_Expression;
10217
10218 --------------------------
10219 -- Check_Initialization --
10220 --------------------------
10221
10222 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10223 begin
10224 if Is_Limited_Type (T)
10225 and then not In_Instance
10226 and then not In_Inlined_Body
10227 then
10228 if not OK_For_Limited_Init (T, Exp) then
10229
10230 -- In GNAT mode, this is just a warning, to allow it to be evilly
10231 -- turned off. Otherwise it is a real error.
10232
10233 if GNAT_Mode then
10234 Error_Msg_N
10235 ("??cannot initialize entities of limited type!", Exp);
10236
10237 elsif Ada_Version < Ada_2005 then
10238
10239 -- The side effect removal machinery may generate illegal Ada
10240 -- code to avoid the usage of access types and 'reference in
10241 -- SPARK mode. Since this is legal code with respect to theorem
10242 -- proving, do not emit the error.
10243
10244 if GNATprove_Mode
10245 and then Nkind (Exp) = N_Function_Call
10246 and then Nkind (Parent (Exp)) = N_Object_Declaration
10247 and then not Comes_From_Source
10248 (Defining_Identifier (Parent (Exp)))
10249 then
10250 null;
10251
10252 else
10253 Error_Msg_N
10254 ("cannot initialize entities of limited type", Exp);
10255 Explain_Limited_Type (T, Exp);
10256 end if;
10257
10258 else
10259 -- Specialize error message according to kind of illegal
10260 -- initial expression.
10261
10262 if Nkind (Exp) = N_Type_Conversion
10263 and then Nkind (Expression (Exp)) = N_Function_Call
10264 then
10265 Error_Msg_N
10266 ("illegal context for call"
10267 & " to function with limited result", Exp);
10268
10269 else
10270 Error_Msg_N
10271 ("initialization of limited object requires aggregate "
10272 & "or function call", Exp);
10273 end if;
10274 end if;
10275 end if;
10276 end if;
10277 end Check_Initialization;
10278
10279 ----------------------
10280 -- Check_Interfaces --
10281 ----------------------
10282
10283 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10284 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10285
10286 Iface : Node_Id;
10287 Iface_Def : Node_Id;
10288 Iface_Typ : Entity_Id;
10289 Parent_Node : Node_Id;
10290
10291 Is_Task : Boolean := False;
10292 -- Set True if parent type or any progenitor is a task interface
10293
10294 Is_Protected : Boolean := False;
10295 -- Set True if parent type or any progenitor is a protected interface
10296
10297 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10298 -- Check that a progenitor is compatible with declaration.
10299 -- Error is posted on Error_Node.
10300
10301 ------------------
10302 -- Check_Ifaces --
10303 ------------------
10304
10305 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10306 Iface_Id : constant Entity_Id :=
10307 Defining_Identifier (Parent (Iface_Def));
10308 Type_Def : Node_Id;
10309
10310 begin
10311 if Nkind (N) = N_Private_Extension_Declaration then
10312 Type_Def := N;
10313 else
10314 Type_Def := Type_Definition (N);
10315 end if;
10316
10317 if Is_Task_Interface (Iface_Id) then
10318 Is_Task := True;
10319
10320 elsif Is_Protected_Interface (Iface_Id) then
10321 Is_Protected := True;
10322 end if;
10323
10324 if Is_Synchronized_Interface (Iface_Id) then
10325
10326 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10327 -- extension derived from a synchronized interface must explicitly
10328 -- be declared synchronized, because the full view will be a
10329 -- synchronized type.
10330
10331 if Nkind (N) = N_Private_Extension_Declaration then
10332 if not Synchronized_Present (N) then
10333 Error_Msg_NE
10334 ("private extension of& must be explicitly synchronized",
10335 N, Iface_Id);
10336 end if;
10337
10338 -- However, by 3.9.4(16/2), a full type that is a record extension
10339 -- is never allowed to derive from a synchronized interface (note
10340 -- that interfaces must be excluded from this check, because those
10341 -- are represented by derived type definitions in some cases).
10342
10343 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10344 and then not Interface_Present (Type_Definition (N))
10345 then
10346 Error_Msg_N ("record extension cannot derive from synchronized"
10347 & " interface", Error_Node);
10348 end if;
10349 end if;
10350
10351 -- Check that the characteristics of the progenitor are compatible
10352 -- with the explicit qualifier in the declaration.
10353 -- The check only applies to qualifiers that come from source.
10354 -- Limited_Present also appears in the declaration of corresponding
10355 -- records, and the check does not apply to them.
10356
10357 if Limited_Present (Type_Def)
10358 and then not
10359 Is_Concurrent_Record_Type (Defining_Identifier (N))
10360 then
10361 if Is_Limited_Interface (Parent_Type)
10362 and then not Is_Limited_Interface (Iface_Id)
10363 then
10364 Error_Msg_NE
10365 ("progenitor& must be limited interface",
10366 Error_Node, Iface_Id);
10367
10368 elsif
10369 (Task_Present (Iface_Def)
10370 or else Protected_Present (Iface_Def)
10371 or else Synchronized_Present (Iface_Def))
10372 and then Nkind (N) /= N_Private_Extension_Declaration
10373 and then not Error_Posted (N)
10374 then
10375 Error_Msg_NE
10376 ("progenitor& must be limited interface",
10377 Error_Node, Iface_Id);
10378 end if;
10379
10380 -- Protected interfaces can only inherit from limited, synchronized
10381 -- or protected interfaces.
10382
10383 elsif Nkind (N) = N_Full_Type_Declaration
10384 and then Protected_Present (Type_Def)
10385 then
10386 if Limited_Present (Iface_Def)
10387 or else Synchronized_Present (Iface_Def)
10388 or else Protected_Present (Iface_Def)
10389 then
10390 null;
10391
10392 elsif Task_Present (Iface_Def) then
10393 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10394 & " from task interface", Error_Node);
10395
10396 else
10397 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10398 & " from non-limited interface", Error_Node);
10399 end if;
10400
10401 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10402 -- limited and synchronized.
10403
10404 elsif Synchronized_Present (Type_Def) then
10405 if Limited_Present (Iface_Def)
10406 or else Synchronized_Present (Iface_Def)
10407 then
10408 null;
10409
10410 elsif Protected_Present (Iface_Def)
10411 and then Nkind (N) /= N_Private_Extension_Declaration
10412 then
10413 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10414 & " from protected interface", Error_Node);
10415
10416 elsif Task_Present (Iface_Def)
10417 and then Nkind (N) /= N_Private_Extension_Declaration
10418 then
10419 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10420 & " from task interface", Error_Node);
10421
10422 elsif not Is_Limited_Interface (Iface_Id) then
10423 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10424 & " from non-limited interface", Error_Node);
10425 end if;
10426
10427 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10428 -- synchronized or task interfaces.
10429
10430 elsif Nkind (N) = N_Full_Type_Declaration
10431 and then Task_Present (Type_Def)
10432 then
10433 if Limited_Present (Iface_Def)
10434 or else Synchronized_Present (Iface_Def)
10435 or else Task_Present (Iface_Def)
10436 then
10437 null;
10438
10439 elsif Protected_Present (Iface_Def) then
10440 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10441 & " protected interface", Error_Node);
10442
10443 else
10444 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10445 & " non-limited interface", Error_Node);
10446 end if;
10447 end if;
10448 end Check_Ifaces;
10449
10450 -- Start of processing for Check_Interfaces
10451
10452 begin
10453 if Is_Interface (Parent_Type) then
10454 if Is_Task_Interface (Parent_Type) then
10455 Is_Task := True;
10456
10457 elsif Is_Protected_Interface (Parent_Type) then
10458 Is_Protected := True;
10459 end if;
10460 end if;
10461
10462 if Nkind (N) = N_Private_Extension_Declaration then
10463
10464 -- Check that progenitors are compatible with declaration
10465
10466 Iface := First (Interface_List (Def));
10467 while Present (Iface) loop
10468 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10469
10470 Parent_Node := Parent (Base_Type (Iface_Typ));
10471 Iface_Def := Type_Definition (Parent_Node);
10472
10473 if not Is_Interface (Iface_Typ) then
10474 Diagnose_Interface (Iface, Iface_Typ);
10475
10476 else
10477 Check_Ifaces (Iface_Def, Iface);
10478 end if;
10479
10480 Next (Iface);
10481 end loop;
10482
10483 if Is_Task and Is_Protected then
10484 Error_Msg_N
10485 ("type cannot derive from task and protected interface", N);
10486 end if;
10487
10488 return;
10489 end if;
10490
10491 -- Full type declaration of derived type.
10492 -- Check compatibility with parent if it is interface type
10493
10494 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10495 and then Is_Interface (Parent_Type)
10496 then
10497 Parent_Node := Parent (Parent_Type);
10498
10499 -- More detailed checks for interface varieties
10500
10501 Check_Ifaces
10502 (Iface_Def => Type_Definition (Parent_Node),
10503 Error_Node => Subtype_Indication (Type_Definition (N)));
10504 end if;
10505
10506 Iface := First (Interface_List (Def));
10507 while Present (Iface) loop
10508 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10509
10510 Parent_Node := Parent (Base_Type (Iface_Typ));
10511 Iface_Def := Type_Definition (Parent_Node);
10512
10513 if not Is_Interface (Iface_Typ) then
10514 Diagnose_Interface (Iface, Iface_Typ);
10515
10516 else
10517 -- "The declaration of a specific descendant of an interface
10518 -- type freezes the interface type" RM 13.14
10519
10520 Freeze_Before (N, Iface_Typ);
10521 Check_Ifaces (Iface_Def, Error_Node => Iface);
10522 end if;
10523
10524 Next (Iface);
10525 end loop;
10526
10527 if Is_Task and Is_Protected then
10528 Error_Msg_N
10529 ("type cannot derive from task and protected interface", N);
10530 end if;
10531 end Check_Interfaces;
10532
10533 ------------------------------------
10534 -- Check_Or_Process_Discriminants --
10535 ------------------------------------
10536
10537 -- If an incomplete or private type declaration was already given for the
10538 -- type, the discriminants may have already been processed if they were
10539 -- present on the incomplete declaration. In this case a full conformance
10540 -- check has been performed in Find_Type_Name, and we then recheck here
10541 -- some properties that can't be checked on the partial view alone.
10542 -- Otherwise we call Process_Discriminants.
10543
10544 procedure Check_Or_Process_Discriminants
10545 (N : Node_Id;
10546 T : Entity_Id;
10547 Prev : Entity_Id := Empty)
10548 is
10549 begin
10550 if Has_Discriminants (T) then
10551
10552 -- Discriminants are already set on T if they were already present
10553 -- on the partial view. Make them visible to component declarations.
10554
10555 declare
10556 D : Entity_Id;
10557 -- Discriminant on T (full view) referencing expr on partial view
10558
10559 Prev_D : Entity_Id;
10560 -- Entity of corresponding discriminant on partial view
10561
10562 New_D : Node_Id;
10563 -- Discriminant specification for full view, expression is the
10564 -- syntactic copy on full view (which has been checked for
10565 -- conformance with partial view), only used here to post error
10566 -- message.
10567
10568 begin
10569 D := First_Discriminant (T);
10570 New_D := First (Discriminant_Specifications (N));
10571 while Present (D) loop
10572 Prev_D := Current_Entity (D);
10573 Set_Current_Entity (D);
10574 Set_Is_Immediately_Visible (D);
10575 Set_Homonym (D, Prev_D);
10576
10577 -- Handle the case where there is an untagged partial view and
10578 -- the full view is tagged: must disallow discriminants with
10579 -- defaults, unless compiling for Ada 2012, which allows a
10580 -- limited tagged type to have defaulted discriminants (see
10581 -- AI05-0214). However, suppress error here if it was already
10582 -- reported on the default expression of the partial view.
10583
10584 if Is_Tagged_Type (T)
10585 and then Present (Expression (Parent (D)))
10586 and then (not Is_Limited_Type (Current_Scope)
10587 or else Ada_Version < Ada_2012)
10588 and then not Error_Posted (Expression (Parent (D)))
10589 then
10590 if Ada_Version >= Ada_2012 then
10591 Error_Msg_N
10592 ("discriminants of nonlimited tagged type cannot have"
10593 & " defaults",
10594 Expression (New_D));
10595 else
10596 Error_Msg_N
10597 ("discriminants of tagged type cannot have defaults",
10598 Expression (New_D));
10599 end if;
10600 end if;
10601
10602 -- Ada 2005 (AI-230): Access discriminant allowed in
10603 -- non-limited record types.
10604
10605 if Ada_Version < Ada_2005 then
10606
10607 -- This restriction gets applied to the full type here. It
10608 -- has already been applied earlier to the partial view.
10609
10610 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10611 end if;
10612
10613 Next_Discriminant (D);
10614 Next (New_D);
10615 end loop;
10616 end;
10617
10618 elsif Present (Discriminant_Specifications (N)) then
10619 Process_Discriminants (N, Prev);
10620 end if;
10621 end Check_Or_Process_Discriminants;
10622
10623 ----------------------
10624 -- Check_Real_Bound --
10625 ----------------------
10626
10627 procedure Check_Real_Bound (Bound : Node_Id) is
10628 begin
10629 if not Is_Real_Type (Etype (Bound)) then
10630 Error_Msg_N
10631 ("bound in real type definition must be of real type", Bound);
10632
10633 elsif not Is_OK_Static_Expression (Bound) then
10634 Flag_Non_Static_Expr
10635 ("non-static expression used for real type bound!", Bound);
10636
10637 else
10638 return;
10639 end if;
10640
10641 Rewrite
10642 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10643 Analyze (Bound);
10644 Resolve (Bound, Standard_Float);
10645 end Check_Real_Bound;
10646
10647 ------------------------------
10648 -- Complete_Private_Subtype --
10649 ------------------------------
10650
10651 procedure Complete_Private_Subtype
10652 (Priv : Entity_Id;
10653 Full : Entity_Id;
10654 Full_Base : Entity_Id;
10655 Related_Nod : Node_Id)
10656 is
10657 Save_Next_Entity : Entity_Id;
10658 Save_Homonym : Entity_Id;
10659
10660 begin
10661 -- Set semantic attributes for (implicit) private subtype completion.
10662 -- If the full type has no discriminants, then it is a copy of the full
10663 -- view of the base. Otherwise, it is a subtype of the base with a
10664 -- possible discriminant constraint. Save and restore the original
10665 -- Next_Entity field of full to ensure that the calls to Copy_Node
10666 -- do not corrupt the entity chain.
10667
10668 -- Note that the type of the full view is the same entity as the type of
10669 -- the partial view. In this fashion, the subtype has access to the
10670 -- correct view of the parent.
10671
10672 Save_Next_Entity := Next_Entity (Full);
10673 Save_Homonym := Homonym (Priv);
10674
10675 case Ekind (Full_Base) is
10676 when E_Record_Type |
10677 E_Record_Subtype |
10678 Class_Wide_Kind |
10679 Private_Kind |
10680 Task_Kind |
10681 Protected_Kind =>
10682 Copy_Node (Priv, Full);
10683
10684 Set_Has_Discriminants
10685 (Full, Has_Discriminants (Full_Base));
10686 Set_Has_Unknown_Discriminants
10687 (Full, Has_Unknown_Discriminants (Full_Base));
10688 Set_First_Entity (Full, First_Entity (Full_Base));
10689 Set_Last_Entity (Full, Last_Entity (Full_Base));
10690
10691 -- If the underlying base type is constrained, we know that the
10692 -- full view of the subtype is constrained as well (the converse
10693 -- is not necessarily true).
10694
10695 if Is_Constrained (Full_Base) then
10696 Set_Is_Constrained (Full);
10697 end if;
10698
10699 when others =>
10700 Copy_Node (Full_Base, Full);
10701
10702 Set_Chars (Full, Chars (Priv));
10703 Conditional_Delay (Full, Priv);
10704 Set_Sloc (Full, Sloc (Priv));
10705 end case;
10706
10707 Set_Next_Entity (Full, Save_Next_Entity);
10708 Set_Homonym (Full, Save_Homonym);
10709 Set_Associated_Node_For_Itype (Full, Related_Nod);
10710
10711 -- Set common attributes for all subtypes: kind, convention, etc.
10712
10713 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10714 Set_Convention (Full, Convention (Full_Base));
10715
10716 -- The Etype of the full view is inconsistent. Gigi needs to see the
10717 -- structural full view, which is what the current scheme gives:
10718 -- the Etype of the full view is the etype of the full base. However,
10719 -- if the full base is a derived type, the full view then looks like
10720 -- a subtype of the parent, not a subtype of the full base. If instead
10721 -- we write:
10722
10723 -- Set_Etype (Full, Full_Base);
10724
10725 -- then we get inconsistencies in the front-end (confusion between
10726 -- views). Several outstanding bugs are related to this ???
10727
10728 Set_Is_First_Subtype (Full, False);
10729 Set_Scope (Full, Scope (Priv));
10730 Set_Size_Info (Full, Full_Base);
10731 Set_RM_Size (Full, RM_Size (Full_Base));
10732 Set_Is_Itype (Full);
10733
10734 -- A subtype of a private-type-without-discriminants, whose full-view
10735 -- has discriminants with default expressions, is not constrained.
10736
10737 if not Has_Discriminants (Priv) then
10738 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10739
10740 if Has_Discriminants (Full_Base) then
10741 Set_Discriminant_Constraint
10742 (Full, Discriminant_Constraint (Full_Base));
10743
10744 -- The partial view may have been indefinite, the full view
10745 -- might not be.
10746
10747 Set_Has_Unknown_Discriminants
10748 (Full, Has_Unknown_Discriminants (Full_Base));
10749 end if;
10750 end if;
10751
10752 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10753 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10754
10755 -- Freeze the private subtype entity if its parent is delayed, and not
10756 -- already frozen. We skip this processing if the type is an anonymous
10757 -- subtype of a record component, or is the corresponding record of a
10758 -- protected type, since ???
10759
10760 if not Is_Type (Scope (Full)) then
10761 Set_Has_Delayed_Freeze (Full,
10762 Has_Delayed_Freeze (Full_Base)
10763 and then (not Is_Frozen (Full_Base)));
10764 end if;
10765
10766 Set_Freeze_Node (Full, Empty);
10767 Set_Is_Frozen (Full, False);
10768 Set_Full_View (Priv, Full);
10769
10770 if Has_Discriminants (Full) then
10771 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10772 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10773
10774 if Has_Unknown_Discriminants (Full) then
10775 Set_Discriminant_Constraint (Full, No_Elist);
10776 end if;
10777 end if;
10778
10779 if Ekind (Full_Base) = E_Record_Type
10780 and then Has_Discriminants (Full_Base)
10781 and then Has_Discriminants (Priv) -- might not, if errors
10782 and then not Has_Unknown_Discriminants (Priv)
10783 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10784 then
10785 Create_Constrained_Components
10786 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10787
10788 -- If the full base is itself derived from private, build a congruent
10789 -- subtype of its underlying type, for use by the back end. For a
10790 -- constrained record component, the declaration cannot be placed on
10791 -- the component list, but it must nevertheless be built an analyzed, to
10792 -- supply enough information for Gigi to compute the size of component.
10793
10794 elsif Ekind (Full_Base) in Private_Kind
10795 and then Is_Derived_Type (Full_Base)
10796 and then Has_Discriminants (Full_Base)
10797 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10798 then
10799 if not Is_Itype (Priv)
10800 and then
10801 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10802 then
10803 Build_Underlying_Full_View
10804 (Parent (Priv), Full, Etype (Full_Base));
10805
10806 elsif Nkind (Related_Nod) = N_Component_Declaration then
10807 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10808 end if;
10809
10810 elsif Is_Record_Type (Full_Base) then
10811
10812 -- Show Full is simply a renaming of Full_Base
10813
10814 Set_Cloned_Subtype (Full, Full_Base);
10815 end if;
10816
10817 -- It is unsafe to share the bounds of a scalar type, because the Itype
10818 -- is elaborated on demand, and if a bound is non-static then different
10819 -- orders of elaboration in different units will lead to different
10820 -- external symbols.
10821
10822 if Is_Scalar_Type (Full_Base) then
10823 Set_Scalar_Range (Full,
10824 Make_Range (Sloc (Related_Nod),
10825 Low_Bound =>
10826 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10827 High_Bound =>
10828 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10829
10830 -- This completion inherits the bounds of the full parent, but if
10831 -- the parent is an unconstrained floating point type, so is the
10832 -- completion.
10833
10834 if Is_Floating_Point_Type (Full_Base) then
10835 Set_Includes_Infinities
10836 (Scalar_Range (Full), Has_Infinities (Full_Base));
10837 end if;
10838 end if;
10839
10840 -- ??? It seems that a lot of fields are missing that should be copied
10841 -- from Full_Base to Full. Here are some that are introduced in a
10842 -- non-disruptive way but a cleanup is necessary.
10843
10844 if Is_Tagged_Type (Full_Base) then
10845 Set_Is_Tagged_Type (Full);
10846 Set_Direct_Primitive_Operations (Full,
10847 Direct_Primitive_Operations (Full_Base));
10848
10849 -- Inherit class_wide type of full_base in case the partial view was
10850 -- not tagged. Otherwise it has already been created when the private
10851 -- subtype was analyzed.
10852
10853 if No (Class_Wide_Type (Full)) then
10854 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10855 end if;
10856
10857 -- If this is a subtype of a protected or task type, constrain its
10858 -- corresponding record, unless this is a subtype without constraints,
10859 -- i.e. a simple renaming as with an actual subtype in an instance.
10860
10861 elsif Is_Concurrent_Type (Full_Base) then
10862 if Has_Discriminants (Full)
10863 and then Present (Corresponding_Record_Type (Full_Base))
10864 and then
10865 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10866 then
10867 Set_Corresponding_Record_Type (Full,
10868 Constrain_Corresponding_Record
10869 (Full, Corresponding_Record_Type (Full_Base),
10870 Related_Nod, Full_Base));
10871
10872 else
10873 Set_Corresponding_Record_Type (Full,
10874 Corresponding_Record_Type (Full_Base));
10875 end if;
10876 end if;
10877
10878 -- Link rep item chain, and also setting of Has_Predicates from private
10879 -- subtype to full subtype, since we will need these on the full subtype
10880 -- to create the predicate function. Note that the full subtype may
10881 -- already have rep items, inherited from the full view of the base
10882 -- type, so we must be sure not to overwrite these entries.
10883
10884 declare
10885 Append : Boolean;
10886 Item : Node_Id;
10887 Next_Item : Node_Id;
10888
10889 begin
10890 Item := First_Rep_Item (Full);
10891
10892 -- If no existing rep items on full type, we can just link directly
10893 -- to the list of items on the private type.
10894
10895 if No (Item) then
10896 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10897
10898 -- Otherwise, search to the end of items currently linked to the full
10899 -- subtype and append the private items to the end. However, if Priv
10900 -- and Full already have the same list of rep items, then the append
10901 -- is not done, as that would create a circularity.
10902
10903 elsif Item /= First_Rep_Item (Priv) then
10904 Append := True;
10905
10906 loop
10907 Next_Item := Next_Rep_Item (Item);
10908 exit when No (Next_Item);
10909 Item := Next_Item;
10910
10911 -- If the private view has aspect specifications, the full view
10912 -- inherits them. Since these aspects may already have been
10913 -- attached to the full view during derivation, do not append
10914 -- them if already present.
10915
10916 if Item = First_Rep_Item (Priv) then
10917 Append := False;
10918 exit;
10919 end if;
10920 end loop;
10921
10922 -- And link the private type items at the end of the chain
10923
10924 if Append then
10925 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10926 end if;
10927 end if;
10928 end;
10929
10930 -- Make sure Has_Predicates is set on full type if it is set on the
10931 -- private type. Note that it may already be set on the full type and
10932 -- if so, we don't want to unset it.
10933
10934 if Has_Predicates (Priv) then
10935 Set_Has_Predicates (Full);
10936 end if;
10937 end Complete_Private_Subtype;
10938
10939 ----------------------------
10940 -- Constant_Redeclaration --
10941 ----------------------------
10942
10943 procedure Constant_Redeclaration
10944 (Id : Entity_Id;
10945 N : Node_Id;
10946 T : out Entity_Id)
10947 is
10948 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10949 Obj_Def : constant Node_Id := Object_Definition (N);
10950 New_T : Entity_Id;
10951
10952 procedure Check_Possible_Deferred_Completion
10953 (Prev_Id : Entity_Id;
10954 Prev_Obj_Def : Node_Id;
10955 Curr_Obj_Def : Node_Id);
10956 -- Determine whether the two object definitions describe the partial
10957 -- and the full view of a constrained deferred constant. Generate
10958 -- a subtype for the full view and verify that it statically matches
10959 -- the subtype of the partial view.
10960
10961 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10962 -- If deferred constant is an access type initialized with an allocator,
10963 -- check whether there is an illegal recursion in the definition,
10964 -- through a default value of some record subcomponent. This is normally
10965 -- detected when generating init procs, but requires this additional
10966 -- mechanism when expansion is disabled.
10967
10968 ----------------------------------------
10969 -- Check_Possible_Deferred_Completion --
10970 ----------------------------------------
10971
10972 procedure Check_Possible_Deferred_Completion
10973 (Prev_Id : Entity_Id;
10974 Prev_Obj_Def : Node_Id;
10975 Curr_Obj_Def : Node_Id)
10976 is
10977 begin
10978 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10979 and then Present (Constraint (Prev_Obj_Def))
10980 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10981 and then Present (Constraint (Curr_Obj_Def))
10982 then
10983 declare
10984 Loc : constant Source_Ptr := Sloc (N);
10985 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10986 Decl : constant Node_Id :=
10987 Make_Subtype_Declaration (Loc,
10988 Defining_Identifier => Def_Id,
10989 Subtype_Indication =>
10990 Relocate_Node (Curr_Obj_Def));
10991
10992 begin
10993 Insert_Before_And_Analyze (N, Decl);
10994 Set_Etype (Id, Def_Id);
10995
10996 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10997 Error_Msg_Sloc := Sloc (Prev_Id);
10998 Error_Msg_N ("subtype does not statically match deferred " &
10999 "declaration#", N);
11000 end if;
11001 end;
11002 end if;
11003 end Check_Possible_Deferred_Completion;
11004
11005 ---------------------------------
11006 -- Check_Recursive_Declaration --
11007 ---------------------------------
11008
11009 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11010 Comp : Entity_Id;
11011
11012 begin
11013 if Is_Record_Type (Typ) then
11014 Comp := First_Component (Typ);
11015 while Present (Comp) loop
11016 if Comes_From_Source (Comp) then
11017 if Present (Expression (Parent (Comp)))
11018 and then Is_Entity_Name (Expression (Parent (Comp)))
11019 and then Entity (Expression (Parent (Comp))) = Prev
11020 then
11021 Error_Msg_Sloc := Sloc (Parent (Comp));
11022 Error_Msg_NE
11023 ("illegal circularity with declaration for&#",
11024 N, Comp);
11025 return;
11026
11027 elsif Is_Record_Type (Etype (Comp)) then
11028 Check_Recursive_Declaration (Etype (Comp));
11029 end if;
11030 end if;
11031
11032 Next_Component (Comp);
11033 end loop;
11034 end if;
11035 end Check_Recursive_Declaration;
11036
11037 -- Start of processing for Constant_Redeclaration
11038
11039 begin
11040 if Nkind (Parent (Prev)) = N_Object_Declaration then
11041 if Nkind (Object_Definition
11042 (Parent (Prev))) = N_Subtype_Indication
11043 then
11044 -- Find type of new declaration. The constraints of the two
11045 -- views must match statically, but there is no point in
11046 -- creating an itype for the full view.
11047
11048 if Nkind (Obj_Def) = N_Subtype_Indication then
11049 Find_Type (Subtype_Mark (Obj_Def));
11050 New_T := Entity (Subtype_Mark (Obj_Def));
11051
11052 else
11053 Find_Type (Obj_Def);
11054 New_T := Entity (Obj_Def);
11055 end if;
11056
11057 T := Etype (Prev);
11058
11059 else
11060 -- The full view may impose a constraint, even if the partial
11061 -- view does not, so construct the subtype.
11062
11063 New_T := Find_Type_Of_Object (Obj_Def, N);
11064 T := New_T;
11065 end if;
11066
11067 else
11068 -- Current declaration is illegal, diagnosed below in Enter_Name
11069
11070 T := Empty;
11071 New_T := Any_Type;
11072 end if;
11073
11074 -- If previous full declaration or a renaming declaration exists, or if
11075 -- a homograph is present, let Enter_Name handle it, either with an
11076 -- error or with the removal of an overridden implicit subprogram.
11077 -- The previous one is a full declaration if it has an expression
11078 -- (which in the case of an aggregate is indicated by the Init flag).
11079
11080 if Ekind (Prev) /= E_Constant
11081 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11082 or else Present (Expression (Parent (Prev)))
11083 or else Has_Init_Expression (Parent (Prev))
11084 or else Present (Full_View (Prev))
11085 then
11086 Enter_Name (Id);
11087
11088 -- Verify that types of both declarations match, or else that both types
11089 -- are anonymous access types whose designated subtypes statically match
11090 -- (as allowed in Ada 2005 by AI-385).
11091
11092 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11093 and then
11094 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11095 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11096 or else Is_Access_Constant (Etype (New_T)) /=
11097 Is_Access_Constant (Etype (Prev))
11098 or else Can_Never_Be_Null (Etype (New_T)) /=
11099 Can_Never_Be_Null (Etype (Prev))
11100 or else Null_Exclusion_Present (Parent (Prev)) /=
11101 Null_Exclusion_Present (Parent (Id))
11102 or else not Subtypes_Statically_Match
11103 (Designated_Type (Etype (Prev)),
11104 Designated_Type (Etype (New_T))))
11105 then
11106 Error_Msg_Sloc := Sloc (Prev);
11107 Error_Msg_N ("type does not match declaration#", N);
11108 Set_Full_View (Prev, Id);
11109 Set_Etype (Id, Any_Type);
11110
11111 elsif
11112 Null_Exclusion_Present (Parent (Prev))
11113 and then not Null_Exclusion_Present (N)
11114 then
11115 Error_Msg_Sloc := Sloc (Prev);
11116 Error_Msg_N ("null-exclusion does not match declaration#", N);
11117 Set_Full_View (Prev, Id);
11118 Set_Etype (Id, Any_Type);
11119
11120 -- If so, process the full constant declaration
11121
11122 else
11123 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11124 -- the deferred declaration is constrained, then the subtype defined
11125 -- by the subtype_indication in the full declaration shall match it
11126 -- statically.
11127
11128 Check_Possible_Deferred_Completion
11129 (Prev_Id => Prev,
11130 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11131 Curr_Obj_Def => Obj_Def);
11132
11133 Set_Full_View (Prev, Id);
11134 Set_Is_Public (Id, Is_Public (Prev));
11135 Set_Is_Internal (Id);
11136 Append_Entity (Id, Current_Scope);
11137
11138 -- Check ALIASED present if present before (RM 7.4(7))
11139
11140 if Is_Aliased (Prev)
11141 and then not Aliased_Present (N)
11142 then
11143 Error_Msg_Sloc := Sloc (Prev);
11144 Error_Msg_N ("ALIASED required (see declaration#)", N);
11145 end if;
11146
11147 -- Check that placement is in private part and that the incomplete
11148 -- declaration appeared in the visible part.
11149
11150 if Ekind (Current_Scope) = E_Package
11151 and then not In_Private_Part (Current_Scope)
11152 then
11153 Error_Msg_Sloc := Sloc (Prev);
11154 Error_Msg_N
11155 ("full constant for declaration#"
11156 & " must be in private part", N);
11157
11158 elsif Ekind (Current_Scope) = E_Package
11159 and then
11160 List_Containing (Parent (Prev)) /=
11161 Visible_Declarations (Package_Specification (Current_Scope))
11162 then
11163 Error_Msg_N
11164 ("deferred constant must be declared in visible part",
11165 Parent (Prev));
11166 end if;
11167
11168 if Is_Access_Type (T)
11169 and then Nkind (Expression (N)) = N_Allocator
11170 then
11171 Check_Recursive_Declaration (Designated_Type (T));
11172 end if;
11173
11174 -- A deferred constant is a visible entity. If type has invariants,
11175 -- verify that the initial value satisfies them.
11176
11177 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11178 Insert_After (N,
11179 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11180 end if;
11181 end if;
11182 end Constant_Redeclaration;
11183
11184 ----------------------
11185 -- Constrain_Access --
11186 ----------------------
11187
11188 procedure Constrain_Access
11189 (Def_Id : in out Entity_Id;
11190 S : Node_Id;
11191 Related_Nod : Node_Id)
11192 is
11193 T : constant Entity_Id := Entity (Subtype_Mark (S));
11194 Desig_Type : constant Entity_Id := Designated_Type (T);
11195 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11196 Constraint_OK : Boolean := True;
11197
11198 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
11199 -- Simple predicate to test for defaulted discriminants
11200 -- Shouldn't this be in sem_util???
11201
11202 ---------------------------------
11203 -- Has_Defaulted_Discriminants --
11204 ---------------------------------
11205
11206 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
11207 begin
11208 return Has_Discriminants (Typ)
11209 and then Present (First_Discriminant (Typ))
11210 and then Present
11211 (Discriminant_Default_Value (First_Discriminant (Typ)));
11212 end Has_Defaulted_Discriminants;
11213
11214 -- Start of processing for Constrain_Access
11215
11216 begin
11217 if Is_Array_Type (Desig_Type) then
11218 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11219
11220 elsif (Is_Record_Type (Desig_Type)
11221 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11222 and then not Is_Constrained (Desig_Type)
11223 then
11224 -- ??? The following code is a temporary bypass to ignore a
11225 -- discriminant constraint on access type if it is constraining
11226 -- the current record. Avoid creating the implicit subtype of the
11227 -- record we are currently compiling since right now, we cannot
11228 -- handle these. For now, just return the access type itself.
11229
11230 if Desig_Type = Current_Scope
11231 and then No (Def_Id)
11232 then
11233 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11234 Def_Id := Entity (Subtype_Mark (S));
11235
11236 -- This call added to ensure that the constraint is analyzed
11237 -- (needed for a B test). Note that we still return early from
11238 -- this procedure to avoid recursive processing. ???
11239
11240 Constrain_Discriminated_Type
11241 (Desig_Subtype, S, Related_Nod, For_Access => True);
11242 return;
11243 end if;
11244
11245 -- Enforce rule that the constraint is illegal if there is an
11246 -- unconstrained view of the designated type. This means that the
11247 -- partial view (either a private type declaration or a derivation
11248 -- from a private type) has no discriminants. (Defect Report
11249 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11250
11251 -- Rule updated for Ada 2005: The private type is said to have
11252 -- a constrained partial view, given that objects of the type
11253 -- can be declared. Furthermore, the rule applies to all access
11254 -- types, unlike the rule concerning default discriminants (see
11255 -- RM 3.7.1(7/3))
11256
11257 if (Ekind (T) = E_General_Access_Type
11258 or else Ada_Version >= Ada_2005)
11259 and then Has_Private_Declaration (Desig_Type)
11260 and then In_Open_Scopes (Scope (Desig_Type))
11261 and then Has_Discriminants (Desig_Type)
11262 then
11263 declare
11264 Pack : constant Node_Id :=
11265 Unit_Declaration_Node (Scope (Desig_Type));
11266 Decls : List_Id;
11267 Decl : Node_Id;
11268
11269 begin
11270 if Nkind (Pack) = N_Package_Declaration then
11271 Decls := Visible_Declarations (Specification (Pack));
11272 Decl := First (Decls);
11273 while Present (Decl) loop
11274 if (Nkind (Decl) = N_Private_Type_Declaration
11275 and then
11276 Chars (Defining_Identifier (Decl)) =
11277 Chars (Desig_Type))
11278
11279 or else
11280 (Nkind (Decl) = N_Full_Type_Declaration
11281 and then
11282 Chars (Defining_Identifier (Decl)) =
11283 Chars (Desig_Type)
11284 and then Is_Derived_Type (Desig_Type)
11285 and then
11286 Has_Private_Declaration (Etype (Desig_Type)))
11287 then
11288 if No (Discriminant_Specifications (Decl)) then
11289 Error_Msg_N
11290 ("cannot constrain access type if designated " &
11291 "type has constrained partial view", S);
11292 end if;
11293
11294 exit;
11295 end if;
11296
11297 Next (Decl);
11298 end loop;
11299 end if;
11300 end;
11301 end if;
11302
11303 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11304 For_Access => True);
11305
11306 elsif (Is_Task_Type (Desig_Type)
11307 or else Is_Protected_Type (Desig_Type))
11308 and then not Is_Constrained (Desig_Type)
11309 then
11310 Constrain_Concurrent
11311 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11312
11313 else
11314 Error_Msg_N ("invalid constraint on access type", S);
11315 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11316 Constraint_OK := False;
11317 end if;
11318
11319 if No (Def_Id) then
11320 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11321 else
11322 Set_Ekind (Def_Id, E_Access_Subtype);
11323 end if;
11324
11325 if Constraint_OK then
11326 Set_Etype (Def_Id, Base_Type (T));
11327
11328 if Is_Private_Type (Desig_Type) then
11329 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11330 end if;
11331 else
11332 Set_Etype (Def_Id, Any_Type);
11333 end if;
11334
11335 Set_Size_Info (Def_Id, T);
11336 Set_Is_Constrained (Def_Id, Constraint_OK);
11337 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11338 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11339 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11340
11341 Conditional_Delay (Def_Id, T);
11342
11343 -- AI-363 : Subtypes of general access types whose designated types have
11344 -- default discriminants are disallowed. In instances, the rule has to
11345 -- be checked against the actual, of which T is the subtype. In a
11346 -- generic body, the rule is checked assuming that the actual type has
11347 -- defaulted discriminants.
11348
11349 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11350 if Ekind (Base_Type (T)) = E_General_Access_Type
11351 and then Has_Defaulted_Discriminants (Desig_Type)
11352 then
11353 if Ada_Version < Ada_2005 then
11354 Error_Msg_N
11355 ("access subtype of general access type would not " &
11356 "be allowed in Ada 2005?y?", S);
11357 else
11358 Error_Msg_N
11359 ("access subtype of general access type not allowed", S);
11360 end if;
11361
11362 Error_Msg_N ("\discriminants have defaults", S);
11363
11364 elsif Is_Access_Type (T)
11365 and then Is_Generic_Type (Desig_Type)
11366 and then Has_Discriminants (Desig_Type)
11367 and then In_Package_Body (Current_Scope)
11368 then
11369 if Ada_Version < Ada_2005 then
11370 Error_Msg_N
11371 ("access subtype would not be allowed in generic body " &
11372 "in Ada 2005?y?", S);
11373 else
11374 Error_Msg_N
11375 ("access subtype not allowed in generic body", S);
11376 end if;
11377
11378 Error_Msg_N
11379 ("\designated type is a discriminated formal", S);
11380 end if;
11381 end if;
11382 end Constrain_Access;
11383
11384 ---------------------
11385 -- Constrain_Array --
11386 ---------------------
11387
11388 procedure Constrain_Array
11389 (Def_Id : in out Entity_Id;
11390 SI : Node_Id;
11391 Related_Nod : Node_Id;
11392 Related_Id : Entity_Id;
11393 Suffix : Character)
11394 is
11395 C : constant Node_Id := Constraint (SI);
11396 Number_Of_Constraints : Nat := 0;
11397 Index : Node_Id;
11398 S, T : Entity_Id;
11399 Constraint_OK : Boolean := True;
11400
11401 begin
11402 T := Entity (Subtype_Mark (SI));
11403
11404 if Is_Access_Type (T) then
11405 T := Designated_Type (T);
11406 end if;
11407
11408 -- If an index constraint follows a subtype mark in a subtype indication
11409 -- then the type or subtype denoted by the subtype mark must not already
11410 -- impose an index constraint. The subtype mark must denote either an
11411 -- unconstrained array type or an access type whose designated type
11412 -- is such an array type... (RM 3.6.1)
11413
11414 if Is_Constrained (T) then
11415 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11416 Constraint_OK := False;
11417
11418 else
11419 S := First (Constraints (C));
11420 while Present (S) loop
11421 Number_Of_Constraints := Number_Of_Constraints + 1;
11422 Next (S);
11423 end loop;
11424
11425 -- In either case, the index constraint must provide a discrete
11426 -- range for each index of the array type and the type of each
11427 -- discrete range must be the same as that of the corresponding
11428 -- index. (RM 3.6.1)
11429
11430 if Number_Of_Constraints /= Number_Dimensions (T) then
11431 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11432 Constraint_OK := False;
11433
11434 else
11435 S := First (Constraints (C));
11436 Index := First_Index (T);
11437 Analyze (Index);
11438
11439 -- Apply constraints to each index type
11440
11441 for J in 1 .. Number_Of_Constraints loop
11442 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11443 Next (Index);
11444 Next (S);
11445 end loop;
11446
11447 end if;
11448 end if;
11449
11450 if No (Def_Id) then
11451 Def_Id :=
11452 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11453 Set_Parent (Def_Id, Related_Nod);
11454
11455 else
11456 Set_Ekind (Def_Id, E_Array_Subtype);
11457 end if;
11458
11459 Set_Size_Info (Def_Id, (T));
11460 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11461 Set_Etype (Def_Id, Base_Type (T));
11462
11463 if Constraint_OK then
11464 Set_First_Index (Def_Id, First (Constraints (C)));
11465 else
11466 Set_First_Index (Def_Id, First_Index (T));
11467 end if;
11468
11469 Set_Is_Constrained (Def_Id, True);
11470 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11471 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11472
11473 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11474 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11475
11476 -- A subtype does not inherit the packed_array_type of is parent. We
11477 -- need to initialize the attribute because if Def_Id is previously
11478 -- analyzed through a limited_with clause, it will have the attributes
11479 -- of an incomplete type, one of which is an Elist that overlaps the
11480 -- Packed_Array_Type field.
11481
11482 Set_Packed_Array_Type (Def_Id, Empty);
11483
11484 -- Build a freeze node if parent still needs one. Also make sure that
11485 -- the Depends_On_Private status is set because the subtype will need
11486 -- reprocessing at the time the base type does, and also we must set a
11487 -- conditional delay.
11488
11489 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11490 Conditional_Delay (Def_Id, T);
11491 end Constrain_Array;
11492
11493 ------------------------------
11494 -- Constrain_Component_Type --
11495 ------------------------------
11496
11497 function Constrain_Component_Type
11498 (Comp : Entity_Id;
11499 Constrained_Typ : Entity_Id;
11500 Related_Node : Node_Id;
11501 Typ : Entity_Id;
11502 Constraints : Elist_Id) return Entity_Id
11503 is
11504 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11505 Compon_Type : constant Entity_Id := Etype (Comp);
11506 Array_Comp : Node_Id;
11507
11508 function Build_Constrained_Array_Type
11509 (Old_Type : Entity_Id) return Entity_Id;
11510 -- If Old_Type is an array type, one of whose indexes is constrained
11511 -- by a discriminant, build an Itype whose constraint replaces the
11512 -- discriminant with its value in the constraint.
11513
11514 function Build_Constrained_Discriminated_Type
11515 (Old_Type : Entity_Id) return Entity_Id;
11516 -- Ditto for record components
11517
11518 function Build_Constrained_Access_Type
11519 (Old_Type : Entity_Id) return Entity_Id;
11520 -- Ditto for access types. Makes use of previous two functions, to
11521 -- constrain designated type.
11522
11523 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11524 -- T is an array or discriminated type, C is a list of constraints
11525 -- that apply to T. This routine builds the constrained subtype.
11526
11527 function Is_Discriminant (Expr : Node_Id) return Boolean;
11528 -- Returns True if Expr is a discriminant
11529
11530 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11531 -- Find the value of discriminant Discrim in Constraint
11532
11533 -----------------------------------
11534 -- Build_Constrained_Access_Type --
11535 -----------------------------------
11536
11537 function Build_Constrained_Access_Type
11538 (Old_Type : Entity_Id) return Entity_Id
11539 is
11540 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11541 Itype : Entity_Id;
11542 Desig_Subtype : Entity_Id;
11543 Scop : Entity_Id;
11544
11545 begin
11546 -- if the original access type was not embedded in the enclosing
11547 -- type definition, there is no need to produce a new access
11548 -- subtype. In fact every access type with an explicit constraint
11549 -- generates an itype whose scope is the enclosing record.
11550
11551 if not Is_Type (Scope (Old_Type)) then
11552 return Old_Type;
11553
11554 elsif Is_Array_Type (Desig_Type) then
11555 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11556
11557 elsif Has_Discriminants (Desig_Type) then
11558
11559 -- This may be an access type to an enclosing record type for
11560 -- which we are constructing the constrained components. Return
11561 -- the enclosing record subtype. This is not always correct,
11562 -- but avoids infinite recursion. ???
11563
11564 Desig_Subtype := Any_Type;
11565
11566 for J in reverse 0 .. Scope_Stack.Last loop
11567 Scop := Scope_Stack.Table (J).Entity;
11568
11569 if Is_Type (Scop)
11570 and then Base_Type (Scop) = Base_Type (Desig_Type)
11571 then
11572 Desig_Subtype := Scop;
11573 end if;
11574
11575 exit when not Is_Type (Scop);
11576 end loop;
11577
11578 if Desig_Subtype = Any_Type then
11579 Desig_Subtype :=
11580 Build_Constrained_Discriminated_Type (Desig_Type);
11581 end if;
11582
11583 else
11584 return Old_Type;
11585 end if;
11586
11587 if Desig_Subtype /= Desig_Type then
11588
11589 -- The Related_Node better be here or else we won't be able
11590 -- to attach new itypes to a node in the tree.
11591
11592 pragma Assert (Present (Related_Node));
11593
11594 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11595
11596 Set_Etype (Itype, Base_Type (Old_Type));
11597 Set_Size_Info (Itype, (Old_Type));
11598 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11599 Set_Depends_On_Private (Itype, Has_Private_Component
11600 (Old_Type));
11601 Set_Is_Access_Constant (Itype, Is_Access_Constant
11602 (Old_Type));
11603
11604 -- The new itype needs freezing when it depends on a not frozen
11605 -- type and the enclosing subtype needs freezing.
11606
11607 if Has_Delayed_Freeze (Constrained_Typ)
11608 and then not Is_Frozen (Constrained_Typ)
11609 then
11610 Conditional_Delay (Itype, Base_Type (Old_Type));
11611 end if;
11612
11613 return Itype;
11614
11615 else
11616 return Old_Type;
11617 end if;
11618 end Build_Constrained_Access_Type;
11619
11620 ----------------------------------
11621 -- Build_Constrained_Array_Type --
11622 ----------------------------------
11623
11624 function Build_Constrained_Array_Type
11625 (Old_Type : Entity_Id) return Entity_Id
11626 is
11627 Lo_Expr : Node_Id;
11628 Hi_Expr : Node_Id;
11629 Old_Index : Node_Id;
11630 Range_Node : Node_Id;
11631 Constr_List : List_Id;
11632
11633 Need_To_Create_Itype : Boolean := False;
11634
11635 begin
11636 Old_Index := First_Index (Old_Type);
11637 while Present (Old_Index) loop
11638 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11639
11640 if Is_Discriminant (Lo_Expr)
11641 or else Is_Discriminant (Hi_Expr)
11642 then
11643 Need_To_Create_Itype := True;
11644 end if;
11645
11646 Next_Index (Old_Index);
11647 end loop;
11648
11649 if Need_To_Create_Itype then
11650 Constr_List := New_List;
11651
11652 Old_Index := First_Index (Old_Type);
11653 while Present (Old_Index) loop
11654 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11655
11656 if Is_Discriminant (Lo_Expr) then
11657 Lo_Expr := Get_Discr_Value (Lo_Expr);
11658 end if;
11659
11660 if Is_Discriminant (Hi_Expr) then
11661 Hi_Expr := Get_Discr_Value (Hi_Expr);
11662 end if;
11663
11664 Range_Node :=
11665 Make_Range
11666 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11667
11668 Append (Range_Node, To => Constr_List);
11669
11670 Next_Index (Old_Index);
11671 end loop;
11672
11673 return Build_Subtype (Old_Type, Constr_List);
11674
11675 else
11676 return Old_Type;
11677 end if;
11678 end Build_Constrained_Array_Type;
11679
11680 ------------------------------------------
11681 -- Build_Constrained_Discriminated_Type --
11682 ------------------------------------------
11683
11684 function Build_Constrained_Discriminated_Type
11685 (Old_Type : Entity_Id) return Entity_Id
11686 is
11687 Expr : Node_Id;
11688 Constr_List : List_Id;
11689 Old_Constraint : Elmt_Id;
11690
11691 Need_To_Create_Itype : Boolean := False;
11692
11693 begin
11694 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11695 while Present (Old_Constraint) loop
11696 Expr := Node (Old_Constraint);
11697
11698 if Is_Discriminant (Expr) then
11699 Need_To_Create_Itype := True;
11700 end if;
11701
11702 Next_Elmt (Old_Constraint);
11703 end loop;
11704
11705 if Need_To_Create_Itype then
11706 Constr_List := New_List;
11707
11708 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11709 while Present (Old_Constraint) loop
11710 Expr := Node (Old_Constraint);
11711
11712 if Is_Discriminant (Expr) then
11713 Expr := Get_Discr_Value (Expr);
11714 end if;
11715
11716 Append (New_Copy_Tree (Expr), To => Constr_List);
11717
11718 Next_Elmt (Old_Constraint);
11719 end loop;
11720
11721 return Build_Subtype (Old_Type, Constr_List);
11722
11723 else
11724 return Old_Type;
11725 end if;
11726 end Build_Constrained_Discriminated_Type;
11727
11728 -------------------
11729 -- Build_Subtype --
11730 -------------------
11731
11732 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11733 Indic : Node_Id;
11734 Subtyp_Decl : Node_Id;
11735 Def_Id : Entity_Id;
11736 Btyp : Entity_Id := Base_Type (T);
11737
11738 begin
11739 -- The Related_Node better be here or else we won't be able to
11740 -- attach new itypes to a node in the tree.
11741
11742 pragma Assert (Present (Related_Node));
11743
11744 -- If the view of the component's type is incomplete or private
11745 -- with unknown discriminants, then the constraint must be applied
11746 -- to the full type.
11747
11748 if Has_Unknown_Discriminants (Btyp)
11749 and then Present (Underlying_Type (Btyp))
11750 then
11751 Btyp := Underlying_Type (Btyp);
11752 end if;
11753
11754 Indic :=
11755 Make_Subtype_Indication (Loc,
11756 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11757 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11758
11759 Def_Id := Create_Itype (Ekind (T), Related_Node);
11760
11761 Subtyp_Decl :=
11762 Make_Subtype_Declaration (Loc,
11763 Defining_Identifier => Def_Id,
11764 Subtype_Indication => Indic);
11765
11766 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11767
11768 -- Itypes must be analyzed with checks off (see package Itypes)
11769
11770 Analyze (Subtyp_Decl, Suppress => All_Checks);
11771
11772 return Def_Id;
11773 end Build_Subtype;
11774
11775 ---------------------
11776 -- Get_Discr_Value --
11777 ---------------------
11778
11779 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11780 D : Entity_Id;
11781 E : Elmt_Id;
11782
11783 begin
11784 -- The discriminant may be declared for the type, in which case we
11785 -- find it by iterating over the list of discriminants. If the
11786 -- discriminant is inherited from a parent type, it appears as the
11787 -- corresponding discriminant of the current type. This will be the
11788 -- case when constraining an inherited component whose constraint is
11789 -- given by a discriminant of the parent.
11790
11791 D := First_Discriminant (Typ);
11792 E := First_Elmt (Constraints);
11793
11794 while Present (D) loop
11795 if D = Entity (Discrim)
11796 or else D = CR_Discriminant (Entity (Discrim))
11797 or else Corresponding_Discriminant (D) = Entity (Discrim)
11798 then
11799 return Node (E);
11800 end if;
11801
11802 Next_Discriminant (D);
11803 Next_Elmt (E);
11804 end loop;
11805
11806 -- The Corresponding_Discriminant mechanism is incomplete, because
11807 -- the correspondence between new and old discriminants is not one
11808 -- to one: one new discriminant can constrain several old ones. In
11809 -- that case, scan sequentially the stored_constraint, the list of
11810 -- discriminants of the parents, and the constraints.
11811
11812 -- Previous code checked for the present of the Stored_Constraint
11813 -- list for the derived type, but did not use it at all. Should it
11814 -- be present when the component is a discriminated task type?
11815
11816 if Is_Derived_Type (Typ)
11817 and then Scope (Entity (Discrim)) = Etype (Typ)
11818 then
11819 D := First_Discriminant (Etype (Typ));
11820 E := First_Elmt (Constraints);
11821 while Present (D) loop
11822 if D = Entity (Discrim) then
11823 return Node (E);
11824 end if;
11825
11826 Next_Discriminant (D);
11827 Next_Elmt (E);
11828 end loop;
11829 end if;
11830
11831 -- Something is wrong if we did not find the value
11832
11833 raise Program_Error;
11834 end Get_Discr_Value;
11835
11836 ---------------------
11837 -- Is_Discriminant --
11838 ---------------------
11839
11840 function Is_Discriminant (Expr : Node_Id) return Boolean is
11841 Discrim_Scope : Entity_Id;
11842
11843 begin
11844 if Denotes_Discriminant (Expr) then
11845 Discrim_Scope := Scope (Entity (Expr));
11846
11847 -- Either we have a reference to one of Typ's discriminants,
11848
11849 pragma Assert (Discrim_Scope = Typ
11850
11851 -- or to the discriminants of the parent type, in the case
11852 -- of a derivation of a tagged type with variants.
11853
11854 or else Discrim_Scope = Etype (Typ)
11855 or else Full_View (Discrim_Scope) = Etype (Typ)
11856
11857 -- or same as above for the case where the discriminants
11858 -- were declared in Typ's private view.
11859
11860 or else (Is_Private_Type (Discrim_Scope)
11861 and then Chars (Discrim_Scope) = Chars (Typ))
11862
11863 -- or else we are deriving from the full view and the
11864 -- discriminant is declared in the private entity.
11865
11866 or else (Is_Private_Type (Typ)
11867 and then Chars (Discrim_Scope) = Chars (Typ))
11868
11869 -- Or we are constrained the corresponding record of a
11870 -- synchronized type that completes a private declaration.
11871
11872 or else (Is_Concurrent_Record_Type (Typ)
11873 and then
11874 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11875
11876 -- or we have a class-wide type, in which case make sure the
11877 -- discriminant found belongs to the root type.
11878
11879 or else (Is_Class_Wide_Type (Typ)
11880 and then Etype (Typ) = Discrim_Scope));
11881
11882 return True;
11883 end if;
11884
11885 -- In all other cases we have something wrong
11886
11887 return False;
11888 end Is_Discriminant;
11889
11890 -- Start of processing for Constrain_Component_Type
11891
11892 begin
11893 if Nkind (Parent (Comp)) = N_Component_Declaration
11894 and then Comes_From_Source (Parent (Comp))
11895 and then Comes_From_Source
11896 (Subtype_Indication (Component_Definition (Parent (Comp))))
11897 and then
11898 Is_Entity_Name
11899 (Subtype_Indication (Component_Definition (Parent (Comp))))
11900 then
11901 return Compon_Type;
11902
11903 elsif Is_Array_Type (Compon_Type) then
11904 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11905
11906 -- If the component of the parent is packed, and the record type is
11907 -- already frozen, as is the case for an itype, the component type
11908 -- itself will not be frozen, and the packed array type for it must
11909 -- be constructed explicitly. Since the creation of packed types is
11910 -- an expansion activity, we only do this if expansion is active.
11911
11912 if Expander_Active
11913 and then Is_Packed (Compon_Type)
11914 and then Is_Frozen (Current_Scope)
11915 then
11916 Create_Packed_Array_Type (Array_Comp);
11917 end if;
11918
11919 return Array_Comp;
11920
11921 elsif Has_Discriminants (Compon_Type) then
11922 return Build_Constrained_Discriminated_Type (Compon_Type);
11923
11924 elsif Is_Access_Type (Compon_Type) then
11925 return Build_Constrained_Access_Type (Compon_Type);
11926
11927 else
11928 return Compon_Type;
11929 end if;
11930 end Constrain_Component_Type;
11931
11932 --------------------------
11933 -- Constrain_Concurrent --
11934 --------------------------
11935
11936 -- For concurrent types, the associated record value type carries the same
11937 -- discriminants, so when we constrain a concurrent type, we must constrain
11938 -- the corresponding record type as well.
11939
11940 procedure Constrain_Concurrent
11941 (Def_Id : in out Entity_Id;
11942 SI : Node_Id;
11943 Related_Nod : Node_Id;
11944 Related_Id : Entity_Id;
11945 Suffix : Character)
11946 is
11947 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11948 -- case of a private subtype (needed when only doing semantic analysis).
11949
11950 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11951 T_Val : Entity_Id;
11952
11953 begin
11954 if Is_Access_Type (T_Ent) then
11955 T_Ent := Designated_Type (T_Ent);
11956 end if;
11957
11958 T_Val := Corresponding_Record_Type (T_Ent);
11959
11960 if Present (T_Val) then
11961
11962 if No (Def_Id) then
11963 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11964 end if;
11965
11966 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11967
11968 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11969 Set_Corresponding_Record_Type (Def_Id,
11970 Constrain_Corresponding_Record
11971 (Def_Id, T_Val, Related_Nod, Related_Id));
11972
11973 else
11974 -- If there is no associated record, expansion is disabled and this
11975 -- is a generic context. Create a subtype in any case, so that
11976 -- semantic analysis can proceed.
11977
11978 if No (Def_Id) then
11979 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11980 end if;
11981
11982 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11983 end if;
11984 end Constrain_Concurrent;
11985
11986 ------------------------------------
11987 -- Constrain_Corresponding_Record --
11988 ------------------------------------
11989
11990 function Constrain_Corresponding_Record
11991 (Prot_Subt : Entity_Id;
11992 Corr_Rec : Entity_Id;
11993 Related_Nod : Node_Id;
11994 Related_Id : Entity_Id) return Entity_Id
11995 is
11996 T_Sub : constant Entity_Id :=
11997 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11998
11999 begin
12000 Set_Etype (T_Sub, Corr_Rec);
12001 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12002 Set_Is_Constrained (T_Sub, True);
12003 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12004 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12005
12006 -- As elsewhere, we do not want to create a freeze node for this itype
12007 -- if it is created for a constrained component of an enclosing record
12008 -- because references to outer discriminants will appear out of scope.
12009
12010 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12011 Conditional_Delay (T_Sub, Corr_Rec);
12012 else
12013 Set_Is_Frozen (T_Sub);
12014 end if;
12015
12016 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12017 Set_Discriminant_Constraint
12018 (T_Sub, Discriminant_Constraint (Prot_Subt));
12019 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12020 Create_Constrained_Components
12021 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12022 end if;
12023
12024 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12025
12026 return T_Sub;
12027 end Constrain_Corresponding_Record;
12028
12029 -----------------------
12030 -- Constrain_Decimal --
12031 -----------------------
12032
12033 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12034 T : constant Entity_Id := Entity (Subtype_Mark (S));
12035 C : constant Node_Id := Constraint (S);
12036 Loc : constant Source_Ptr := Sloc (C);
12037 Range_Expr : Node_Id;
12038 Digits_Expr : Node_Id;
12039 Digits_Val : Uint;
12040 Bound_Val : Ureal;
12041
12042 begin
12043 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12044
12045 if Nkind (C) = N_Range_Constraint then
12046 Range_Expr := Range_Expression (C);
12047 Digits_Val := Digits_Value (T);
12048
12049 else
12050 pragma Assert (Nkind (C) = N_Digits_Constraint);
12051
12052 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12053
12054 Digits_Expr := Digits_Expression (C);
12055 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12056
12057 Check_Digits_Expression (Digits_Expr);
12058 Digits_Val := Expr_Value (Digits_Expr);
12059
12060 if Digits_Val > Digits_Value (T) then
12061 Error_Msg_N
12062 ("digits expression is incompatible with subtype", C);
12063 Digits_Val := Digits_Value (T);
12064 end if;
12065
12066 if Present (Range_Constraint (C)) then
12067 Range_Expr := Range_Expression (Range_Constraint (C));
12068 else
12069 Range_Expr := Empty;
12070 end if;
12071 end if;
12072
12073 Set_Etype (Def_Id, Base_Type (T));
12074 Set_Size_Info (Def_Id, (T));
12075 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12076 Set_Delta_Value (Def_Id, Delta_Value (T));
12077 Set_Scale_Value (Def_Id, Scale_Value (T));
12078 Set_Small_Value (Def_Id, Small_Value (T));
12079 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12080 Set_Digits_Value (Def_Id, Digits_Val);
12081
12082 -- Manufacture range from given digits value if no range present
12083
12084 if No (Range_Expr) then
12085 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12086 Range_Expr :=
12087 Make_Range (Loc,
12088 Low_Bound =>
12089 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12090 High_Bound =>
12091 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12092 end if;
12093
12094 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12095 Set_Discrete_RM_Size (Def_Id);
12096
12097 -- Unconditionally delay the freeze, since we cannot set size
12098 -- information in all cases correctly until the freeze point.
12099
12100 Set_Has_Delayed_Freeze (Def_Id);
12101 end Constrain_Decimal;
12102
12103 ----------------------------------
12104 -- Constrain_Discriminated_Type --
12105 ----------------------------------
12106
12107 procedure Constrain_Discriminated_Type
12108 (Def_Id : Entity_Id;
12109 S : Node_Id;
12110 Related_Nod : Node_Id;
12111 For_Access : Boolean := False)
12112 is
12113 E : constant Entity_Id := Entity (Subtype_Mark (S));
12114 T : Entity_Id;
12115 C : Node_Id;
12116 Elist : Elist_Id := New_Elmt_List;
12117
12118 procedure Fixup_Bad_Constraint;
12119 -- This is called after finding a bad constraint, and after having
12120 -- posted an appropriate error message. The mission is to leave the
12121 -- entity T in as reasonable state as possible.
12122
12123 --------------------------
12124 -- Fixup_Bad_Constraint --
12125 --------------------------
12126
12127 procedure Fixup_Bad_Constraint is
12128 begin
12129 -- Set a reasonable Ekind for the entity. For an incomplete type,
12130 -- we can't do much, but for other types, we can set the proper
12131 -- corresponding subtype kind.
12132
12133 if Ekind (T) = E_Incomplete_Type then
12134 Set_Ekind (Def_Id, Ekind (T));
12135 else
12136 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12137 end if;
12138
12139 -- Set Etype to the known type, to reduce chances of cascaded errors
12140
12141 Set_Etype (Def_Id, E);
12142 Set_Error_Posted (Def_Id);
12143 end Fixup_Bad_Constraint;
12144
12145 -- Start of processing for Constrain_Discriminated_Type
12146
12147 begin
12148 C := Constraint (S);
12149
12150 -- A discriminant constraint is only allowed in a subtype indication,
12151 -- after a subtype mark. This subtype mark must denote either a type
12152 -- with discriminants, or an access type whose designated type is a
12153 -- type with discriminants. A discriminant constraint specifies the
12154 -- values of these discriminants (RM 3.7.2(5)).
12155
12156 T := Base_Type (Entity (Subtype_Mark (S)));
12157
12158 if Is_Access_Type (T) then
12159 T := Designated_Type (T);
12160 end if;
12161
12162 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12163 -- Avoid generating an error for access-to-incomplete subtypes.
12164
12165 if Ada_Version >= Ada_2005
12166 and then Ekind (T) = E_Incomplete_Type
12167 and then Nkind (Parent (S)) = N_Subtype_Declaration
12168 and then not Is_Itype (Def_Id)
12169 then
12170 -- A little sanity check, emit an error message if the type
12171 -- has discriminants to begin with. Type T may be a regular
12172 -- incomplete type or imported via a limited with clause.
12173
12174 if Has_Discriminants (T)
12175 or else (From_Limited_With (T)
12176 and then Present (Non_Limited_View (T))
12177 and then Nkind (Parent (Non_Limited_View (T))) =
12178 N_Full_Type_Declaration
12179 and then Present (Discriminant_Specifications
12180 (Parent (Non_Limited_View (T)))))
12181 then
12182 Error_Msg_N
12183 ("(Ada 2005) incomplete subtype may not be constrained", C);
12184 else
12185 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12186 end if;
12187
12188 Fixup_Bad_Constraint;
12189 return;
12190
12191 -- Check that the type has visible discriminants. The type may be
12192 -- a private type with unknown discriminants whose full view has
12193 -- discriminants which are invisible.
12194
12195 elsif not Has_Discriminants (T)
12196 or else
12197 (Has_Unknown_Discriminants (T)
12198 and then Is_Private_Type (T))
12199 then
12200 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12201 Fixup_Bad_Constraint;
12202 return;
12203
12204 elsif Is_Constrained (E)
12205 or else (Ekind (E) = E_Class_Wide_Subtype
12206 and then Present (Discriminant_Constraint (E)))
12207 then
12208 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12209 Fixup_Bad_Constraint;
12210 return;
12211 end if;
12212
12213 -- T may be an unconstrained subtype (e.g. a generic actual).
12214 -- Constraint applies to the base type.
12215
12216 T := Base_Type (T);
12217
12218 Elist := Build_Discriminant_Constraints (T, S);
12219
12220 -- If the list returned was empty we had an error in building the
12221 -- discriminant constraint. We have also already signalled an error
12222 -- in the incomplete type case
12223
12224 if Is_Empty_Elmt_List (Elist) then
12225 Fixup_Bad_Constraint;
12226 return;
12227 end if;
12228
12229 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12230 end Constrain_Discriminated_Type;
12231
12232 ---------------------------
12233 -- Constrain_Enumeration --
12234 ---------------------------
12235
12236 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12237 T : constant Entity_Id := Entity (Subtype_Mark (S));
12238 C : constant Node_Id := Constraint (S);
12239
12240 begin
12241 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12242
12243 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12244
12245 Set_Etype (Def_Id, Base_Type (T));
12246 Set_Size_Info (Def_Id, (T));
12247 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12248 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12249
12250 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12251
12252 Set_Discrete_RM_Size (Def_Id);
12253 end Constrain_Enumeration;
12254
12255 ----------------------
12256 -- Constrain_Float --
12257 ----------------------
12258
12259 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12260 T : constant Entity_Id := Entity (Subtype_Mark (S));
12261 C : Node_Id;
12262 D : Node_Id;
12263 Rais : Node_Id;
12264
12265 begin
12266 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12267
12268 Set_Etype (Def_Id, Base_Type (T));
12269 Set_Size_Info (Def_Id, (T));
12270 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12271
12272 -- Process the constraint
12273
12274 C := Constraint (S);
12275
12276 -- Digits constraint present
12277
12278 if Nkind (C) = N_Digits_Constraint then
12279
12280 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12281 Check_Restriction (No_Obsolescent_Features, C);
12282
12283 if Warn_On_Obsolescent_Feature then
12284 Error_Msg_N
12285 ("subtype digits constraint is an " &
12286 "obsolescent feature (RM J.3(8))?j?", C);
12287 end if;
12288
12289 D := Digits_Expression (C);
12290 Analyze_And_Resolve (D, Any_Integer);
12291 Check_Digits_Expression (D);
12292 Set_Digits_Value (Def_Id, Expr_Value (D));
12293
12294 -- Check that digits value is in range. Obviously we can do this
12295 -- at compile time, but it is strictly a runtime check, and of
12296 -- course there is an ACVC test that checks this.
12297
12298 if Digits_Value (Def_Id) > Digits_Value (T) then
12299 Error_Msg_Uint_1 := Digits_Value (T);
12300 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12301 Rais :=
12302 Make_Raise_Constraint_Error (Sloc (D),
12303 Reason => CE_Range_Check_Failed);
12304 Insert_Action (Declaration_Node (Def_Id), Rais);
12305 end if;
12306
12307 C := Range_Constraint (C);
12308
12309 -- No digits constraint present
12310
12311 else
12312 Set_Digits_Value (Def_Id, Digits_Value (T));
12313 end if;
12314
12315 -- Range constraint present
12316
12317 if Nkind (C) = N_Range_Constraint then
12318 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12319
12320 -- No range constraint present
12321
12322 else
12323 pragma Assert (No (C));
12324 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12325 end if;
12326
12327 Set_Is_Constrained (Def_Id);
12328 end Constrain_Float;
12329
12330 ---------------------
12331 -- Constrain_Index --
12332 ---------------------
12333
12334 procedure Constrain_Index
12335 (Index : Node_Id;
12336 S : Node_Id;
12337 Related_Nod : Node_Id;
12338 Related_Id : Entity_Id;
12339 Suffix : Character;
12340 Suffix_Index : Nat)
12341 is
12342 Def_Id : Entity_Id;
12343 R : Node_Id := Empty;
12344 T : constant Entity_Id := Etype (Index);
12345
12346 begin
12347 if Nkind (S) = N_Range
12348 or else
12349 (Nkind (S) = N_Attribute_Reference
12350 and then Attribute_Name (S) = Name_Range)
12351 then
12352 -- A Range attribute will be transformed into N_Range by Resolve
12353
12354 Analyze (S);
12355 Set_Etype (S, T);
12356 R := S;
12357
12358 Process_Range_Expr_In_Decl (R, T, Empty_List);
12359
12360 if not Error_Posted (S)
12361 and then
12362 (Nkind (S) /= N_Range
12363 or else not Covers (T, (Etype (Low_Bound (S))))
12364 or else not Covers (T, (Etype (High_Bound (S)))))
12365 then
12366 if Base_Type (T) /= Any_Type
12367 and then Etype (Low_Bound (S)) /= Any_Type
12368 and then Etype (High_Bound (S)) /= Any_Type
12369 then
12370 Error_Msg_N ("range expected", S);
12371 end if;
12372 end if;
12373
12374 elsif Nkind (S) = N_Subtype_Indication then
12375
12376 -- The parser has verified that this is a discrete indication
12377
12378 Resolve_Discrete_Subtype_Indication (S, T);
12379 R := Range_Expression (Constraint (S));
12380
12381 -- Capture values of bounds and generate temporaries for them if
12382 -- needed, since checks may cause duplication of the expressions
12383 -- which must not be reevaluated.
12384
12385 -- The forced evaluation removes side effects from expressions, which
12386 -- should occur also in GNATprove mode. Otherwise, we end up with
12387 -- unexpected insertions of actions at places where this is not
12388 -- supposed to occur, e.g. on default parameters of a call.
12389
12390 if Expander_Active or GNATprove_Mode then
12391 Force_Evaluation (Low_Bound (R));
12392 Force_Evaluation (High_Bound (R));
12393 end if;
12394
12395 elsif Nkind (S) = N_Discriminant_Association then
12396
12397 -- Syntactically valid in subtype indication
12398
12399 Error_Msg_N ("invalid index constraint", S);
12400 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12401 return;
12402
12403 -- Subtype_Mark case, no anonymous subtypes to construct
12404
12405 else
12406 Analyze (S);
12407
12408 if Is_Entity_Name (S) then
12409 if not Is_Type (Entity (S)) then
12410 Error_Msg_N ("expect subtype mark for index constraint", S);
12411
12412 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12413 Wrong_Type (S, Base_Type (T));
12414
12415 -- Check error of subtype with predicate in index constraint
12416
12417 else
12418 Bad_Predicated_Subtype_Use
12419 ("subtype& has predicate, not allowed in index constraint",
12420 S, Entity (S));
12421 end if;
12422
12423 return;
12424
12425 else
12426 Error_Msg_N ("invalid index constraint", S);
12427 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12428 return;
12429 end if;
12430 end if;
12431
12432 Def_Id :=
12433 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12434
12435 Set_Etype (Def_Id, Base_Type (T));
12436
12437 if Is_Modular_Integer_Type (T) then
12438 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12439
12440 elsif Is_Integer_Type (T) then
12441 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12442
12443 else
12444 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12445 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12446 Set_First_Literal (Def_Id, First_Literal (T));
12447 end if;
12448
12449 Set_Size_Info (Def_Id, (T));
12450 Set_RM_Size (Def_Id, RM_Size (T));
12451 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12452
12453 Set_Scalar_Range (Def_Id, R);
12454
12455 Set_Etype (S, Def_Id);
12456 Set_Discrete_RM_Size (Def_Id);
12457 end Constrain_Index;
12458
12459 -----------------------
12460 -- Constrain_Integer --
12461 -----------------------
12462
12463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12464 T : constant Entity_Id := Entity (Subtype_Mark (S));
12465 C : constant Node_Id := Constraint (S);
12466
12467 begin
12468 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12469
12470 if Is_Modular_Integer_Type (T) then
12471 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12472 else
12473 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12474 end if;
12475
12476 Set_Etype (Def_Id, Base_Type (T));
12477 Set_Size_Info (Def_Id, (T));
12478 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12479 Set_Discrete_RM_Size (Def_Id);
12480 end Constrain_Integer;
12481
12482 ------------------------------
12483 -- Constrain_Ordinary_Fixed --
12484 ------------------------------
12485
12486 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12487 T : constant Entity_Id := Entity (Subtype_Mark (S));
12488 C : Node_Id;
12489 D : Node_Id;
12490 Rais : Node_Id;
12491
12492 begin
12493 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12494 Set_Etype (Def_Id, Base_Type (T));
12495 Set_Size_Info (Def_Id, (T));
12496 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12497 Set_Small_Value (Def_Id, Small_Value (T));
12498
12499 -- Process the constraint
12500
12501 C := Constraint (S);
12502
12503 -- Delta constraint present
12504
12505 if Nkind (C) = N_Delta_Constraint then
12506
12507 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12508 Check_Restriction (No_Obsolescent_Features, C);
12509
12510 if Warn_On_Obsolescent_Feature then
12511 Error_Msg_S
12512 ("subtype delta constraint is an " &
12513 "obsolescent feature (RM J.3(7))?j?");
12514 end if;
12515
12516 D := Delta_Expression (C);
12517 Analyze_And_Resolve (D, Any_Real);
12518 Check_Delta_Expression (D);
12519 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12520
12521 -- Check that delta value is in range. Obviously we can do this
12522 -- at compile time, but it is strictly a runtime check, and of
12523 -- course there is an ACVC test that checks this.
12524
12525 if Delta_Value (Def_Id) < Delta_Value (T) then
12526 Error_Msg_N ("??delta value is too small", D);
12527 Rais :=
12528 Make_Raise_Constraint_Error (Sloc (D),
12529 Reason => CE_Range_Check_Failed);
12530 Insert_Action (Declaration_Node (Def_Id), Rais);
12531 end if;
12532
12533 C := Range_Constraint (C);
12534
12535 -- No delta constraint present
12536
12537 else
12538 Set_Delta_Value (Def_Id, Delta_Value (T));
12539 end if;
12540
12541 -- Range constraint present
12542
12543 if Nkind (C) = N_Range_Constraint then
12544 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12545
12546 -- No range constraint present
12547
12548 else
12549 pragma Assert (No (C));
12550 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12551
12552 end if;
12553
12554 Set_Discrete_RM_Size (Def_Id);
12555
12556 -- Unconditionally delay the freeze, since we cannot set size
12557 -- information in all cases correctly until the freeze point.
12558
12559 Set_Has_Delayed_Freeze (Def_Id);
12560 end Constrain_Ordinary_Fixed;
12561
12562 -----------------------
12563 -- Contain_Interface --
12564 -----------------------
12565
12566 function Contain_Interface
12567 (Iface : Entity_Id;
12568 Ifaces : Elist_Id) return Boolean
12569 is
12570 Iface_Elmt : Elmt_Id;
12571
12572 begin
12573 if Present (Ifaces) then
12574 Iface_Elmt := First_Elmt (Ifaces);
12575 while Present (Iface_Elmt) loop
12576 if Node (Iface_Elmt) = Iface then
12577 return True;
12578 end if;
12579
12580 Next_Elmt (Iface_Elmt);
12581 end loop;
12582 end if;
12583
12584 return False;
12585 end Contain_Interface;
12586
12587 ---------------------------
12588 -- Convert_Scalar_Bounds --
12589 ---------------------------
12590
12591 procedure Convert_Scalar_Bounds
12592 (N : Node_Id;
12593 Parent_Type : Entity_Id;
12594 Derived_Type : Entity_Id;
12595 Loc : Source_Ptr)
12596 is
12597 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12598
12599 Lo : Node_Id;
12600 Hi : Node_Id;
12601 Rng : Node_Id;
12602
12603 begin
12604 -- Defend against previous errors
12605
12606 if No (Scalar_Range (Derived_Type)) then
12607 Check_Error_Detected;
12608 return;
12609 end if;
12610
12611 Lo := Build_Scalar_Bound
12612 (Type_Low_Bound (Derived_Type),
12613 Parent_Type, Implicit_Base);
12614
12615 Hi := Build_Scalar_Bound
12616 (Type_High_Bound (Derived_Type),
12617 Parent_Type, Implicit_Base);
12618
12619 Rng :=
12620 Make_Range (Loc,
12621 Low_Bound => Lo,
12622 High_Bound => Hi);
12623
12624 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12625
12626 Set_Parent (Rng, N);
12627 Set_Scalar_Range (Derived_Type, Rng);
12628
12629 -- Analyze the bounds
12630
12631 Analyze_And_Resolve (Lo, Implicit_Base);
12632 Analyze_And_Resolve (Hi, Implicit_Base);
12633
12634 -- Analyze the range itself, except that we do not analyze it if
12635 -- the bounds are real literals, and we have a fixed-point type.
12636 -- The reason for this is that we delay setting the bounds in this
12637 -- case till we know the final Small and Size values (see circuit
12638 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12639
12640 if Is_Fixed_Point_Type (Parent_Type)
12641 and then Nkind (Lo) = N_Real_Literal
12642 and then Nkind (Hi) = N_Real_Literal
12643 then
12644 return;
12645
12646 -- Here we do the analysis of the range
12647
12648 -- Note: we do this manually, since if we do a normal Analyze and
12649 -- Resolve call, there are problems with the conversions used for
12650 -- the derived type range.
12651
12652 else
12653 Set_Etype (Rng, Implicit_Base);
12654 Set_Analyzed (Rng, True);
12655 end if;
12656 end Convert_Scalar_Bounds;
12657
12658 -------------------
12659 -- Copy_And_Swap --
12660 -------------------
12661
12662 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12663 begin
12664 -- Initialize new full declaration entity by copying the pertinent
12665 -- fields of the corresponding private declaration entity.
12666
12667 -- We temporarily set Ekind to a value appropriate for a type to
12668 -- avoid assert failures in Einfo from checking for setting type
12669 -- attributes on something that is not a type. Ekind (Priv) is an
12670 -- appropriate choice, since it allowed the attributes to be set
12671 -- in the first place. This Ekind value will be modified later.
12672
12673 Set_Ekind (Full, Ekind (Priv));
12674
12675 -- Also set Etype temporarily to Any_Type, again, in the absence
12676 -- of errors, it will be properly reset, and if there are errors,
12677 -- then we want a value of Any_Type to remain.
12678
12679 Set_Etype (Full, Any_Type);
12680
12681 -- Now start copying attributes
12682
12683 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12684
12685 if Has_Discriminants (Full) then
12686 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12687 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12688 end if;
12689
12690 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12691 Set_Homonym (Full, Homonym (Priv));
12692 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12693 Set_Is_Public (Full, Is_Public (Priv));
12694 Set_Is_Pure (Full, Is_Pure (Priv));
12695 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12696 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12697 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12698 Set_Has_Pragma_Unreferenced_Objects
12699 (Full, Has_Pragma_Unreferenced_Objects
12700 (Priv));
12701
12702 Conditional_Delay (Full, Priv);
12703
12704 if Is_Tagged_Type (Full) then
12705 Set_Direct_Primitive_Operations (Full,
12706 Direct_Primitive_Operations (Priv));
12707
12708 if Is_Base_Type (Priv) then
12709 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12710 end if;
12711 end if;
12712
12713 Set_Is_Volatile (Full, Is_Volatile (Priv));
12714 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12715 Set_Scope (Full, Scope (Priv));
12716 Set_Next_Entity (Full, Next_Entity (Priv));
12717 Set_First_Entity (Full, First_Entity (Priv));
12718 Set_Last_Entity (Full, Last_Entity (Priv));
12719
12720 -- If access types have been recorded for later handling, keep them in
12721 -- the full view so that they get handled when the full view freeze
12722 -- node is expanded.
12723
12724 if Present (Freeze_Node (Priv))
12725 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12726 then
12727 Ensure_Freeze_Node (Full);
12728 Set_Access_Types_To_Process
12729 (Freeze_Node (Full),
12730 Access_Types_To_Process (Freeze_Node (Priv)));
12731 end if;
12732
12733 -- Swap the two entities. Now Private is the full type entity and Full
12734 -- is the private one. They will be swapped back at the end of the
12735 -- private part. This swapping ensures that the entity that is visible
12736 -- in the private part is the full declaration.
12737
12738 Exchange_Entities (Priv, Full);
12739 Append_Entity (Full, Scope (Full));
12740 end Copy_And_Swap;
12741
12742 -------------------------------------
12743 -- Copy_Array_Base_Type_Attributes --
12744 -------------------------------------
12745
12746 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12747 begin
12748 Set_Component_Alignment (T1, Component_Alignment (T2));
12749 Set_Component_Type (T1, Component_Type (T2));
12750 Set_Component_Size (T1, Component_Size (T2));
12751 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12752 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12753 Set_Has_Task (T1, Has_Task (T2));
12754 Set_Is_Packed (T1, Is_Packed (T2));
12755 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12756 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12757 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12758 end Copy_Array_Base_Type_Attributes;
12759
12760 -----------------------------------
12761 -- Copy_Array_Subtype_Attributes --
12762 -----------------------------------
12763
12764 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12765 begin
12766 Set_Size_Info (T1, T2);
12767
12768 Set_First_Index (T1, First_Index (T2));
12769 Set_Is_Aliased (T1, Is_Aliased (T2));
12770 Set_Is_Volatile (T1, Is_Volatile (T2));
12771 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12772 Set_Is_Constrained (T1, Is_Constrained (T2));
12773 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12774 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12775 Set_Convention (T1, Convention (T2));
12776 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12777 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12778 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12779 end Copy_Array_Subtype_Attributes;
12780
12781 -----------------------------------
12782 -- Create_Constrained_Components --
12783 -----------------------------------
12784
12785 procedure Create_Constrained_Components
12786 (Subt : Entity_Id;
12787 Decl_Node : Node_Id;
12788 Typ : Entity_Id;
12789 Constraints : Elist_Id)
12790 is
12791 Loc : constant Source_Ptr := Sloc (Subt);
12792 Comp_List : constant Elist_Id := New_Elmt_List;
12793 Parent_Type : constant Entity_Id := Etype (Typ);
12794 Assoc_List : constant List_Id := New_List;
12795 Discr_Val : Elmt_Id;
12796 Errors : Boolean;
12797 New_C : Entity_Id;
12798 Old_C : Entity_Id;
12799 Is_Static : Boolean := True;
12800
12801 procedure Collect_Fixed_Components (Typ : Entity_Id);
12802 -- Collect parent type components that do not appear in a variant part
12803
12804 procedure Create_All_Components;
12805 -- Iterate over Comp_List to create the components of the subtype
12806
12807 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12808 -- Creates a new component from Old_Compon, copying all the fields from
12809 -- it, including its Etype, inserts the new component in the Subt entity
12810 -- chain and returns the new component.
12811
12812 function Is_Variant_Record (T : Entity_Id) return Boolean;
12813 -- If true, and discriminants are static, collect only components from
12814 -- variants selected by discriminant values.
12815
12816 ------------------------------
12817 -- Collect_Fixed_Components --
12818 ------------------------------
12819
12820 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12821 begin
12822 -- Build association list for discriminants, and find components of the
12823 -- variant part selected by the values of the discriminants.
12824
12825 Old_C := First_Discriminant (Typ);
12826 Discr_Val := First_Elmt (Constraints);
12827 while Present (Old_C) loop
12828 Append_To (Assoc_List,
12829 Make_Component_Association (Loc,
12830 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12831 Expression => New_Copy (Node (Discr_Val))));
12832
12833 Next_Elmt (Discr_Val);
12834 Next_Discriminant (Old_C);
12835 end loop;
12836
12837 -- The tag and the possible parent component are unconditionally in
12838 -- the subtype.
12839
12840 if Is_Tagged_Type (Typ)
12841 or else Has_Controlled_Component (Typ)
12842 then
12843 Old_C := First_Component (Typ);
12844 while Present (Old_C) loop
12845 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12846 Append_Elmt (Old_C, Comp_List);
12847 end if;
12848
12849 Next_Component (Old_C);
12850 end loop;
12851 end if;
12852 end Collect_Fixed_Components;
12853
12854 ---------------------------
12855 -- Create_All_Components --
12856 ---------------------------
12857
12858 procedure Create_All_Components is
12859 Comp : Elmt_Id;
12860
12861 begin
12862 Comp := First_Elmt (Comp_List);
12863 while Present (Comp) loop
12864 Old_C := Node (Comp);
12865 New_C := Create_Component (Old_C);
12866
12867 Set_Etype
12868 (New_C,
12869 Constrain_Component_Type
12870 (Old_C, Subt, Decl_Node, Typ, Constraints));
12871 Set_Is_Public (New_C, Is_Public (Subt));
12872
12873 Next_Elmt (Comp);
12874 end loop;
12875 end Create_All_Components;
12876
12877 ----------------------
12878 -- Create_Component --
12879 ----------------------
12880
12881 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12882 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12883
12884 begin
12885 if Ekind (Old_Compon) = E_Discriminant
12886 and then Is_Completely_Hidden (Old_Compon)
12887 then
12888 -- This is a shadow discriminant created for a discriminant of
12889 -- the parent type, which needs to be present in the subtype.
12890 -- Give the shadow discriminant an internal name that cannot
12891 -- conflict with that of visible components.
12892
12893 Set_Chars (New_Compon, New_Internal_Name ('C'));
12894 end if;
12895
12896 -- Set the parent so we have a proper link for freezing etc. This is
12897 -- not a real parent pointer, since of course our parent does not own
12898 -- up to us and reference us, we are an illegitimate child of the
12899 -- original parent.
12900
12901 Set_Parent (New_Compon, Parent (Old_Compon));
12902
12903 -- If the old component's Esize was already determined and is a
12904 -- static value, then the new component simply inherits it. Otherwise
12905 -- the old component's size may require run-time determination, but
12906 -- the new component's size still might be statically determinable
12907 -- (if, for example it has a static constraint). In that case we want
12908 -- Layout_Type to recompute the component's size, so we reset its
12909 -- size and positional fields.
12910
12911 if Frontend_Layout_On_Target
12912 and then not Known_Static_Esize (Old_Compon)
12913 then
12914 Set_Esize (New_Compon, Uint_0);
12915 Init_Normalized_First_Bit (New_Compon);
12916 Init_Normalized_Position (New_Compon);
12917 Init_Normalized_Position_Max (New_Compon);
12918 end if;
12919
12920 -- We do not want this node marked as Comes_From_Source, since
12921 -- otherwise it would get first class status and a separate cross-
12922 -- reference line would be generated. Illegitimate children do not
12923 -- rate such recognition.
12924
12925 Set_Comes_From_Source (New_Compon, False);
12926
12927 -- But it is a real entity, and a birth certificate must be properly
12928 -- registered by entering it into the entity list.
12929
12930 Enter_Name (New_Compon);
12931
12932 return New_Compon;
12933 end Create_Component;
12934
12935 -----------------------
12936 -- Is_Variant_Record --
12937 -----------------------
12938
12939 function Is_Variant_Record (T : Entity_Id) return Boolean is
12940 begin
12941 return Nkind (Parent (T)) = N_Full_Type_Declaration
12942 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12943 and then Present (Component_List (Type_Definition (Parent (T))))
12944 and then
12945 Present
12946 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12947 end Is_Variant_Record;
12948
12949 -- Start of processing for Create_Constrained_Components
12950
12951 begin
12952 pragma Assert (Subt /= Base_Type (Subt));
12953 pragma Assert (Typ = Base_Type (Typ));
12954
12955 Set_First_Entity (Subt, Empty);
12956 Set_Last_Entity (Subt, Empty);
12957
12958 -- Check whether constraint is fully static, in which case we can
12959 -- optimize the list of components.
12960
12961 Discr_Val := First_Elmt (Constraints);
12962 while Present (Discr_Val) loop
12963 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12964 Is_Static := False;
12965 exit;
12966 end if;
12967
12968 Next_Elmt (Discr_Val);
12969 end loop;
12970
12971 Set_Has_Static_Discriminants (Subt, Is_Static);
12972
12973 Push_Scope (Subt);
12974
12975 -- Inherit the discriminants of the parent type
12976
12977 Add_Discriminants : declare
12978 Num_Disc : Int;
12979 Num_Gird : Int;
12980
12981 begin
12982 Num_Disc := 0;
12983 Old_C := First_Discriminant (Typ);
12984
12985 while Present (Old_C) loop
12986 Num_Disc := Num_Disc + 1;
12987 New_C := Create_Component (Old_C);
12988 Set_Is_Public (New_C, Is_Public (Subt));
12989 Next_Discriminant (Old_C);
12990 end loop;
12991
12992 -- For an untagged derived subtype, the number of discriminants may
12993 -- be smaller than the number of inherited discriminants, because
12994 -- several of them may be renamed by a single new discriminant or
12995 -- constrained. In this case, add the hidden discriminants back into
12996 -- the subtype, because they need to be present if the optimizer of
12997 -- the GCC 4.x back-end decides to break apart assignments between
12998 -- objects using the parent view into member-wise assignments.
12999
13000 Num_Gird := 0;
13001
13002 if Is_Derived_Type (Typ)
13003 and then not Is_Tagged_Type (Typ)
13004 then
13005 Old_C := First_Stored_Discriminant (Typ);
13006
13007 while Present (Old_C) loop
13008 Num_Gird := Num_Gird + 1;
13009 Next_Stored_Discriminant (Old_C);
13010 end loop;
13011 end if;
13012
13013 if Num_Gird > Num_Disc then
13014
13015 -- Find out multiple uses of new discriminants, and add hidden
13016 -- components for the extra renamed discriminants. We recognize
13017 -- multiple uses through the Corresponding_Discriminant of a
13018 -- new discriminant: if it constrains several old discriminants,
13019 -- this field points to the last one in the parent type. The
13020 -- stored discriminants of the derived type have the same name
13021 -- as those of the parent.
13022
13023 declare
13024 Constr : Elmt_Id;
13025 New_Discr : Entity_Id;
13026 Old_Discr : Entity_Id;
13027
13028 begin
13029 Constr := First_Elmt (Stored_Constraint (Typ));
13030 Old_Discr := First_Stored_Discriminant (Typ);
13031 while Present (Constr) loop
13032 if Is_Entity_Name (Node (Constr))
13033 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13034 then
13035 New_Discr := Entity (Node (Constr));
13036
13037 if Chars (Corresponding_Discriminant (New_Discr)) /=
13038 Chars (Old_Discr)
13039 then
13040 -- The new discriminant has been used to rename a
13041 -- subsequent old discriminant. Introduce a shadow
13042 -- component for the current old discriminant.
13043
13044 New_C := Create_Component (Old_Discr);
13045 Set_Original_Record_Component (New_C, Old_Discr);
13046 end if;
13047
13048 else
13049 -- The constraint has eliminated the old discriminant.
13050 -- Introduce a shadow component.
13051
13052 New_C := Create_Component (Old_Discr);
13053 Set_Original_Record_Component (New_C, Old_Discr);
13054 end if;
13055
13056 Next_Elmt (Constr);
13057 Next_Stored_Discriminant (Old_Discr);
13058 end loop;
13059 end;
13060 end if;
13061 end Add_Discriminants;
13062
13063 if Is_Static
13064 and then Is_Variant_Record (Typ)
13065 then
13066 Collect_Fixed_Components (Typ);
13067
13068 Gather_Components (
13069 Typ,
13070 Component_List (Type_Definition (Parent (Typ))),
13071 Governed_By => Assoc_List,
13072 Into => Comp_List,
13073 Report_Errors => Errors);
13074 pragma Assert (not Errors);
13075
13076 Create_All_Components;
13077
13078 -- If the subtype declaration is created for a tagged type derivation
13079 -- with constraints, we retrieve the record definition of the parent
13080 -- type to select the components of the proper variant.
13081
13082 elsif Is_Static
13083 and then Is_Tagged_Type (Typ)
13084 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13085 and then
13086 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13087 and then Is_Variant_Record (Parent_Type)
13088 then
13089 Collect_Fixed_Components (Typ);
13090
13091 Gather_Components (
13092 Typ,
13093 Component_List (Type_Definition (Parent (Parent_Type))),
13094 Governed_By => Assoc_List,
13095 Into => Comp_List,
13096 Report_Errors => Errors);
13097 pragma Assert (not Errors);
13098
13099 -- If the tagged derivation has a type extension, collect all the
13100 -- new components therein.
13101
13102 if Present
13103 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13104 then
13105 Old_C := First_Component (Typ);
13106 while Present (Old_C) loop
13107 if Original_Record_Component (Old_C) = Old_C
13108 and then Chars (Old_C) /= Name_uTag
13109 and then Chars (Old_C) /= Name_uParent
13110 then
13111 Append_Elmt (Old_C, Comp_List);
13112 end if;
13113
13114 Next_Component (Old_C);
13115 end loop;
13116 end if;
13117
13118 Create_All_Components;
13119
13120 else
13121 -- If discriminants are not static, or if this is a multi-level type
13122 -- extension, we have to include all components of the parent type.
13123
13124 Old_C := First_Component (Typ);
13125 while Present (Old_C) loop
13126 New_C := Create_Component (Old_C);
13127
13128 Set_Etype
13129 (New_C,
13130 Constrain_Component_Type
13131 (Old_C, Subt, Decl_Node, Typ, Constraints));
13132 Set_Is_Public (New_C, Is_Public (Subt));
13133
13134 Next_Component (Old_C);
13135 end loop;
13136 end if;
13137
13138 End_Scope;
13139 end Create_Constrained_Components;
13140
13141 ------------------------------------------
13142 -- Decimal_Fixed_Point_Type_Declaration --
13143 ------------------------------------------
13144
13145 procedure Decimal_Fixed_Point_Type_Declaration
13146 (T : Entity_Id;
13147 Def : Node_Id)
13148 is
13149 Loc : constant Source_Ptr := Sloc (Def);
13150 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13151 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13152 Implicit_Base : Entity_Id;
13153 Digs_Val : Uint;
13154 Delta_Val : Ureal;
13155 Scale_Val : Uint;
13156 Bound_Val : Ureal;
13157
13158 begin
13159 Check_SPARK_Restriction
13160 ("decimal fixed point type is not allowed", Def);
13161 Check_Restriction (No_Fixed_Point, Def);
13162
13163 -- Create implicit base type
13164
13165 Implicit_Base :=
13166 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13167 Set_Etype (Implicit_Base, Implicit_Base);
13168
13169 -- Analyze and process delta expression
13170
13171 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13172
13173 Check_Delta_Expression (Delta_Expr);
13174 Delta_Val := Expr_Value_R (Delta_Expr);
13175
13176 -- Check delta is power of 10, and determine scale value from it
13177
13178 declare
13179 Val : Ureal;
13180
13181 begin
13182 Scale_Val := Uint_0;
13183 Val := Delta_Val;
13184
13185 if Val < Ureal_1 then
13186 while Val < Ureal_1 loop
13187 Val := Val * Ureal_10;
13188 Scale_Val := Scale_Val + 1;
13189 end loop;
13190
13191 if Scale_Val > 18 then
13192 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13193 Scale_Val := UI_From_Int (+18);
13194 end if;
13195
13196 else
13197 while Val > Ureal_1 loop
13198 Val := Val / Ureal_10;
13199 Scale_Val := Scale_Val - 1;
13200 end loop;
13201
13202 if Scale_Val < -18 then
13203 Error_Msg_N ("scale is less than minimum value of -18", Def);
13204 Scale_Val := UI_From_Int (-18);
13205 end if;
13206 end if;
13207
13208 if Val /= Ureal_1 then
13209 Error_Msg_N ("delta expression must be a power of 10", Def);
13210 Delta_Val := Ureal_10 ** (-Scale_Val);
13211 end if;
13212 end;
13213
13214 -- Set delta, scale and small (small = delta for decimal type)
13215
13216 Set_Delta_Value (Implicit_Base, Delta_Val);
13217 Set_Scale_Value (Implicit_Base, Scale_Val);
13218 Set_Small_Value (Implicit_Base, Delta_Val);
13219
13220 -- Analyze and process digits expression
13221
13222 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13223 Check_Digits_Expression (Digs_Expr);
13224 Digs_Val := Expr_Value (Digs_Expr);
13225
13226 if Digs_Val > 18 then
13227 Digs_Val := UI_From_Int (+18);
13228 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13229 end if;
13230
13231 Set_Digits_Value (Implicit_Base, Digs_Val);
13232 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13233
13234 -- Set range of base type from digits value for now. This will be
13235 -- expanded to represent the true underlying base range by Freeze.
13236
13237 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13238
13239 -- Note: We leave size as zero for now, size will be set at freeze
13240 -- time. We have to do this for ordinary fixed-point, because the size
13241 -- depends on the specified small, and we might as well do the same for
13242 -- decimal fixed-point.
13243
13244 pragma Assert (Esize (Implicit_Base) = Uint_0);
13245
13246 -- If there are bounds given in the declaration use them as the
13247 -- bounds of the first named subtype.
13248
13249 if Present (Real_Range_Specification (Def)) then
13250 declare
13251 RRS : constant Node_Id := Real_Range_Specification (Def);
13252 Low : constant Node_Id := Low_Bound (RRS);
13253 High : constant Node_Id := High_Bound (RRS);
13254 Low_Val : Ureal;
13255 High_Val : Ureal;
13256
13257 begin
13258 Analyze_And_Resolve (Low, Any_Real);
13259 Analyze_And_Resolve (High, Any_Real);
13260 Check_Real_Bound (Low);
13261 Check_Real_Bound (High);
13262 Low_Val := Expr_Value_R (Low);
13263 High_Val := Expr_Value_R (High);
13264
13265 if Low_Val < (-Bound_Val) then
13266 Error_Msg_N
13267 ("range low bound too small for digits value", Low);
13268 Low_Val := -Bound_Val;
13269 end if;
13270
13271 if High_Val > Bound_Val then
13272 Error_Msg_N
13273 ("range high bound too large for digits value", High);
13274 High_Val := Bound_Val;
13275 end if;
13276
13277 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13278 end;
13279
13280 -- If no explicit range, use range that corresponds to given
13281 -- digits value. This will end up as the final range for the
13282 -- first subtype.
13283
13284 else
13285 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13286 end if;
13287
13288 -- Complete entity for first subtype
13289
13290 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13291 Set_Etype (T, Implicit_Base);
13292 Set_Size_Info (T, Implicit_Base);
13293 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13294 Set_Digits_Value (T, Digs_Val);
13295 Set_Delta_Value (T, Delta_Val);
13296 Set_Small_Value (T, Delta_Val);
13297 Set_Scale_Value (T, Scale_Val);
13298 Set_Is_Constrained (T);
13299 end Decimal_Fixed_Point_Type_Declaration;
13300
13301 -----------------------------------
13302 -- Derive_Progenitor_Subprograms --
13303 -----------------------------------
13304
13305 procedure Derive_Progenitor_Subprograms
13306 (Parent_Type : Entity_Id;
13307 Tagged_Type : Entity_Id)
13308 is
13309 E : Entity_Id;
13310 Elmt : Elmt_Id;
13311 Iface : Entity_Id;
13312 Iface_Elmt : Elmt_Id;
13313 Iface_Subp : Entity_Id;
13314 New_Subp : Entity_Id := Empty;
13315 Prim_Elmt : Elmt_Id;
13316 Subp : Entity_Id;
13317 Typ : Entity_Id;
13318
13319 begin
13320 pragma Assert (Ada_Version >= Ada_2005
13321 and then Is_Record_Type (Tagged_Type)
13322 and then Is_Tagged_Type (Tagged_Type)
13323 and then Has_Interfaces (Tagged_Type));
13324
13325 -- Step 1: Transfer to the full-view primitives associated with the
13326 -- partial-view that cover interface primitives. Conceptually this
13327 -- work should be done later by Process_Full_View; done here to
13328 -- simplify its implementation at later stages. It can be safely
13329 -- done here because interfaces must be visible in the partial and
13330 -- private view (RM 7.3(7.3/2)).
13331
13332 -- Small optimization: This work is only required if the parent may
13333 -- have entities whose Alias attribute reference an interface primitive.
13334 -- Such a situation may occur if the parent is an abstract type and the
13335 -- primitive has not been yet overridden or if the parent is a generic
13336 -- formal type covering interfaces.
13337
13338 -- If the tagged type is not abstract, it cannot have abstract
13339 -- primitives (the only entities in the list of primitives of
13340 -- non-abstract tagged types that can reference abstract primitives
13341 -- through its Alias attribute are the internal entities that have
13342 -- attribute Interface_Alias, and these entities are generated later
13343 -- by Add_Internal_Interface_Entities).
13344
13345 if In_Private_Part (Current_Scope)
13346 and then (Is_Abstract_Type (Parent_Type)
13347 or else
13348 Is_Generic_Type (Parent_Type))
13349 then
13350 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13351 while Present (Elmt) loop
13352 Subp := Node (Elmt);
13353
13354 -- At this stage it is not possible to have entities in the list
13355 -- of primitives that have attribute Interface_Alias.
13356
13357 pragma Assert (No (Interface_Alias (Subp)));
13358
13359 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13360
13361 if Is_Interface (Typ) then
13362 E := Find_Primitive_Covering_Interface
13363 (Tagged_Type => Tagged_Type,
13364 Iface_Prim => Subp);
13365
13366 if Present (E)
13367 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13368 then
13369 Replace_Elmt (Elmt, E);
13370 Remove_Homonym (Subp);
13371 end if;
13372 end if;
13373
13374 Next_Elmt (Elmt);
13375 end loop;
13376 end if;
13377
13378 -- Step 2: Add primitives of progenitors that are not implemented by
13379 -- parents of Tagged_Type.
13380
13381 if Present (Interfaces (Base_Type (Tagged_Type))) then
13382 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13383 while Present (Iface_Elmt) loop
13384 Iface := Node (Iface_Elmt);
13385
13386 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13387 while Present (Prim_Elmt) loop
13388 Iface_Subp := Node (Prim_Elmt);
13389
13390 -- Exclude derivation of predefined primitives except those
13391 -- that come from source, or are inherited from one that comes
13392 -- from source. Required to catch declarations of equality
13393 -- operators of interfaces. For example:
13394
13395 -- type Iface is interface;
13396 -- function "=" (Left, Right : Iface) return Boolean;
13397
13398 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13399 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13400 then
13401 E := Find_Primitive_Covering_Interface
13402 (Tagged_Type => Tagged_Type,
13403 Iface_Prim => Iface_Subp);
13404
13405 -- If not found we derive a new primitive leaving its alias
13406 -- attribute referencing the interface primitive.
13407
13408 if No (E) then
13409 Derive_Subprogram
13410 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13411
13412 -- Ada 2012 (AI05-0197): If the covering primitive's name
13413 -- differs from the name of the interface primitive then it
13414 -- is a private primitive inherited from a parent type. In
13415 -- such case, given that Tagged_Type covers the interface,
13416 -- the inherited private primitive becomes visible. For such
13417 -- purpose we add a new entity that renames the inherited
13418 -- private primitive.
13419
13420 elsif Chars (E) /= Chars (Iface_Subp) then
13421 pragma Assert (Has_Suffix (E, 'P'));
13422 Derive_Subprogram
13423 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13424 Set_Alias (New_Subp, E);
13425 Set_Is_Abstract_Subprogram (New_Subp,
13426 Is_Abstract_Subprogram (E));
13427
13428 -- Propagate to the full view interface entities associated
13429 -- with the partial view.
13430
13431 elsif In_Private_Part (Current_Scope)
13432 and then Present (Alias (E))
13433 and then Alias (E) = Iface_Subp
13434 and then
13435 List_Containing (Parent (E)) /=
13436 Private_Declarations
13437 (Specification
13438 (Unit_Declaration_Node (Current_Scope)))
13439 then
13440 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13441 end if;
13442 end if;
13443
13444 Next_Elmt (Prim_Elmt);
13445 end loop;
13446
13447 Next_Elmt (Iface_Elmt);
13448 end loop;
13449 end if;
13450 end Derive_Progenitor_Subprograms;
13451
13452 -----------------------
13453 -- Derive_Subprogram --
13454 -----------------------
13455
13456 procedure Derive_Subprogram
13457 (New_Subp : in out Entity_Id;
13458 Parent_Subp : Entity_Id;
13459 Derived_Type : Entity_Id;
13460 Parent_Type : Entity_Id;
13461 Actual_Subp : Entity_Id := Empty)
13462 is
13463 Formal : Entity_Id;
13464 -- Formal parameter of parent primitive operation
13465
13466 Formal_Of_Actual : Entity_Id;
13467 -- Formal parameter of actual operation, when the derivation is to
13468 -- create a renaming for a primitive operation of an actual in an
13469 -- instantiation.
13470
13471 New_Formal : Entity_Id;
13472 -- Formal of inherited operation
13473
13474 Visible_Subp : Entity_Id := Parent_Subp;
13475
13476 function Is_Private_Overriding return Boolean;
13477 -- If Subp is a private overriding of a visible operation, the inherited
13478 -- operation derives from the overridden op (even though its body is the
13479 -- overriding one) and the inherited operation is visible now. See
13480 -- sem_disp to see the full details of the handling of the overridden
13481 -- subprogram, which is removed from the list of primitive operations of
13482 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13483 -- and used to diagnose abstract operations that need overriding in the
13484 -- derived type.
13485
13486 procedure Replace_Type (Id, New_Id : Entity_Id);
13487 -- When the type is an anonymous access type, create a new access type
13488 -- designating the derived type.
13489
13490 procedure Set_Derived_Name;
13491 -- This procedure sets the appropriate Chars name for New_Subp. This
13492 -- is normally just a copy of the parent name. An exception arises for
13493 -- type support subprograms, where the name is changed to reflect the
13494 -- name of the derived type, e.g. if type foo is derived from type bar,
13495 -- then a procedure barDA is derived with a name fooDA.
13496
13497 ---------------------------
13498 -- Is_Private_Overriding --
13499 ---------------------------
13500
13501 function Is_Private_Overriding return Boolean is
13502 Prev : Entity_Id;
13503
13504 begin
13505 -- If the parent is not a dispatching operation there is no
13506 -- need to investigate overridings
13507
13508 if not Is_Dispatching_Operation (Parent_Subp) then
13509 return False;
13510 end if;
13511
13512 -- The visible operation that is overridden is a homonym of the
13513 -- parent subprogram. We scan the homonym chain to find the one
13514 -- whose alias is the subprogram we are deriving.
13515
13516 Prev := Current_Entity (Parent_Subp);
13517 while Present (Prev) loop
13518 if Ekind (Prev) = Ekind (Parent_Subp)
13519 and then Alias (Prev) = Parent_Subp
13520 and then Scope (Parent_Subp) = Scope (Prev)
13521 and then not Is_Hidden (Prev)
13522 then
13523 Visible_Subp := Prev;
13524 return True;
13525 end if;
13526
13527 Prev := Homonym (Prev);
13528 end loop;
13529
13530 return False;
13531 end Is_Private_Overriding;
13532
13533 ------------------
13534 -- Replace_Type --
13535 ------------------
13536
13537 procedure Replace_Type (Id, New_Id : Entity_Id) is
13538 Acc_Type : Entity_Id;
13539 Par : constant Node_Id := Parent (Derived_Type);
13540
13541 begin
13542 -- When the type is an anonymous access type, create a new access
13543 -- type designating the derived type. This itype must be elaborated
13544 -- at the point of the derivation, not on subsequent calls that may
13545 -- be out of the proper scope for Gigi, so we insert a reference to
13546 -- it after the derivation.
13547
13548 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13549 declare
13550 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13551
13552 begin
13553 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13554 and then Present (Full_View (Desig_Typ))
13555 and then not Is_Private_Type (Parent_Type)
13556 then
13557 Desig_Typ := Full_View (Desig_Typ);
13558 end if;
13559
13560 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13561
13562 -- Ada 2005 (AI-251): Handle also derivations of abstract
13563 -- interface primitives.
13564
13565 or else (Is_Interface (Desig_Typ)
13566 and then not Is_Class_Wide_Type (Desig_Typ))
13567 then
13568 Acc_Type := New_Copy (Etype (Id));
13569 Set_Etype (Acc_Type, Acc_Type);
13570 Set_Scope (Acc_Type, New_Subp);
13571
13572 -- Set size of anonymous access type. If we have an access
13573 -- to an unconstrained array, this is a fat pointer, so it
13574 -- is sizes at twice addtress size.
13575
13576 if Is_Array_Type (Desig_Typ)
13577 and then not Is_Constrained (Desig_Typ)
13578 then
13579 Init_Size (Acc_Type, 2 * System_Address_Size);
13580
13581 -- Other cases use a thin pointer
13582
13583 else
13584 Init_Size (Acc_Type, System_Address_Size);
13585 end if;
13586
13587 -- Set remaining characterstics of anonymous access type
13588
13589 Init_Alignment (Acc_Type);
13590 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13591
13592 Set_Etype (New_Id, Acc_Type);
13593 Set_Scope (New_Id, New_Subp);
13594
13595 -- Create a reference to it
13596
13597 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13598
13599 else
13600 Set_Etype (New_Id, Etype (Id));
13601 end if;
13602 end;
13603
13604 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13605 or else
13606 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13607 and then Present (Full_View (Etype (Id)))
13608 and then
13609 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13610 then
13611 -- Constraint checks on formals are generated during expansion,
13612 -- based on the signature of the original subprogram. The bounds
13613 -- of the derived type are not relevant, and thus we can use
13614 -- the base type for the formals. However, the return type may be
13615 -- used in a context that requires that the proper static bounds
13616 -- be used (a case statement, for example) and for those cases
13617 -- we must use the derived type (first subtype), not its base.
13618
13619 -- If the derived_type_definition has no constraints, we know that
13620 -- the derived type has the same constraints as the first subtype
13621 -- of the parent, and we can also use it rather than its base,
13622 -- which can lead to more efficient code.
13623
13624 if Etype (Id) = Parent_Type then
13625 if Is_Scalar_Type (Parent_Type)
13626 and then
13627 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13628 then
13629 Set_Etype (New_Id, Derived_Type);
13630
13631 elsif Nkind (Par) = N_Full_Type_Declaration
13632 and then
13633 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13634 and then
13635 Is_Entity_Name
13636 (Subtype_Indication (Type_Definition (Par)))
13637 then
13638 Set_Etype (New_Id, Derived_Type);
13639
13640 else
13641 Set_Etype (New_Id, Base_Type (Derived_Type));
13642 end if;
13643
13644 else
13645 Set_Etype (New_Id, Base_Type (Derived_Type));
13646 end if;
13647
13648 else
13649 Set_Etype (New_Id, Etype (Id));
13650 end if;
13651 end Replace_Type;
13652
13653 ----------------------
13654 -- Set_Derived_Name --
13655 ----------------------
13656
13657 procedure Set_Derived_Name is
13658 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13659 begin
13660 if Nm = TSS_Null then
13661 Set_Chars (New_Subp, Chars (Parent_Subp));
13662 else
13663 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13664 end if;
13665 end Set_Derived_Name;
13666
13667 -- Start of processing for Derive_Subprogram
13668
13669 begin
13670 New_Subp :=
13671 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13672 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13673 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13674
13675 -- Check whether the inherited subprogram is a private operation that
13676 -- should be inherited but not yet made visible. Such subprograms can
13677 -- become visible at a later point (e.g., the private part of a public
13678 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13679 -- following predicate is true, then this is not such a private
13680 -- operation and the subprogram simply inherits the name of the parent
13681 -- subprogram. Note the special check for the names of controlled
13682 -- operations, which are currently exempted from being inherited with
13683 -- a hidden name because they must be findable for generation of
13684 -- implicit run-time calls.
13685
13686 if not Is_Hidden (Parent_Subp)
13687 or else Is_Internal (Parent_Subp)
13688 or else Is_Private_Overriding
13689 or else Is_Internal_Name (Chars (Parent_Subp))
13690 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13691 Name_Adjust,
13692 Name_Finalize)
13693 then
13694 Set_Derived_Name;
13695
13696 -- An inherited dispatching equality will be overridden by an internally
13697 -- generated one, or by an explicit one, so preserve its name and thus
13698 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13699 -- private operation it may become invisible if the full view has
13700 -- progenitors, and the dispatch table will be malformed.
13701 -- We check that the type is limited to handle the anomalous declaration
13702 -- of Limited_Controlled, which is derived from a non-limited type, and
13703 -- which is handled specially elsewhere as well.
13704
13705 elsif Chars (Parent_Subp) = Name_Op_Eq
13706 and then Is_Dispatching_Operation (Parent_Subp)
13707 and then Etype (Parent_Subp) = Standard_Boolean
13708 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13709 and then
13710 Etype (First_Formal (Parent_Subp)) =
13711 Etype (Next_Formal (First_Formal (Parent_Subp)))
13712 then
13713 Set_Derived_Name;
13714
13715 -- If parent is hidden, this can be a regular derivation if the
13716 -- parent is immediately visible in a non-instantiating context,
13717 -- or if we are in the private part of an instance. This test
13718 -- should still be refined ???
13719
13720 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13721 -- operation as a non-visible operation in cases where the parent
13722 -- subprogram might not be visible now, but was visible within the
13723 -- original generic, so it would be wrong to make the inherited
13724 -- subprogram non-visible now. (Not clear if this test is fully
13725 -- correct; are there any cases where we should declare the inherited
13726 -- operation as not visible to avoid it being overridden, e.g., when
13727 -- the parent type is a generic actual with private primitives ???)
13728
13729 -- (they should be treated the same as other private inherited
13730 -- subprograms, but it's not clear how to do this cleanly). ???
13731
13732 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13733 and then Is_Immediately_Visible (Parent_Subp)
13734 and then not In_Instance)
13735 or else In_Instance_Not_Visible
13736 then
13737 Set_Derived_Name;
13738
13739 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13740 -- overrides an interface primitive because interface primitives
13741 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13742
13743 elsif Ada_Version >= Ada_2005
13744 and then Is_Dispatching_Operation (Parent_Subp)
13745 and then Covers_Some_Interface (Parent_Subp)
13746 then
13747 Set_Derived_Name;
13748
13749 -- Otherwise, the type is inheriting a private operation, so enter
13750 -- it with a special name so it can't be overridden.
13751
13752 else
13753 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13754 end if;
13755
13756 Set_Parent (New_Subp, Parent (Derived_Type));
13757
13758 if Present (Actual_Subp) then
13759 Replace_Type (Actual_Subp, New_Subp);
13760 else
13761 Replace_Type (Parent_Subp, New_Subp);
13762 end if;
13763
13764 Conditional_Delay (New_Subp, Parent_Subp);
13765
13766 -- If we are creating a renaming for a primitive operation of an
13767 -- actual of a generic derived type, we must examine the signature
13768 -- of the actual primitive, not that of the generic formal, which for
13769 -- example may be an interface. However the name and initial value
13770 -- of the inherited operation are those of the formal primitive.
13771
13772 Formal := First_Formal (Parent_Subp);
13773
13774 if Present (Actual_Subp) then
13775 Formal_Of_Actual := First_Formal (Actual_Subp);
13776 else
13777 Formal_Of_Actual := Empty;
13778 end if;
13779
13780 while Present (Formal) loop
13781 New_Formal := New_Copy (Formal);
13782
13783 -- Normally we do not go copying parents, but in the case of
13784 -- formals, we need to link up to the declaration (which is the
13785 -- parameter specification), and it is fine to link up to the
13786 -- original formal's parameter specification in this case.
13787
13788 Set_Parent (New_Formal, Parent (Formal));
13789 Append_Entity (New_Formal, New_Subp);
13790
13791 if Present (Formal_Of_Actual) then
13792 Replace_Type (Formal_Of_Actual, New_Formal);
13793 Next_Formal (Formal_Of_Actual);
13794 else
13795 Replace_Type (Formal, New_Formal);
13796 end if;
13797
13798 Next_Formal (Formal);
13799 end loop;
13800
13801 -- If this derivation corresponds to a tagged generic actual, then
13802 -- primitive operations rename those of the actual. Otherwise the
13803 -- primitive operations rename those of the parent type, If the parent
13804 -- renames an intrinsic operator, so does the new subprogram. We except
13805 -- concatenation, which is always properly typed, and does not get
13806 -- expanded as other intrinsic operations.
13807
13808 if No (Actual_Subp) then
13809 if Is_Intrinsic_Subprogram (Parent_Subp) then
13810 Set_Is_Intrinsic_Subprogram (New_Subp);
13811
13812 if Present (Alias (Parent_Subp))
13813 and then Chars (Parent_Subp) /= Name_Op_Concat
13814 then
13815 Set_Alias (New_Subp, Alias (Parent_Subp));
13816 else
13817 Set_Alias (New_Subp, Parent_Subp);
13818 end if;
13819
13820 else
13821 Set_Alias (New_Subp, Parent_Subp);
13822 end if;
13823
13824 else
13825 Set_Alias (New_Subp, Actual_Subp);
13826 end if;
13827
13828 -- Derived subprograms of a tagged type must inherit the convention
13829 -- of the parent subprogram (a requirement of AI-117). Derived
13830 -- subprograms of untagged types simply get convention Ada by default.
13831
13832 -- If the derived type is a tagged generic formal type with unknown
13833 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13834
13835 -- However, if the type is derived from a generic formal, the further
13836 -- inherited subprogram has the convention of the non-generic ancestor.
13837 -- Otherwise there would be no way to override the operation.
13838 -- (This is subject to forthcoming ARG discussions).
13839
13840 if Is_Tagged_Type (Derived_Type) then
13841 if Is_Generic_Type (Derived_Type)
13842 and then Has_Unknown_Discriminants (Derived_Type)
13843 then
13844 Set_Convention (New_Subp, Convention_Intrinsic);
13845
13846 else
13847 if Is_Generic_Type (Parent_Type)
13848 and then Has_Unknown_Discriminants (Parent_Type)
13849 then
13850 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13851 else
13852 Set_Convention (New_Subp, Convention (Parent_Subp));
13853 end if;
13854 end if;
13855 end if;
13856
13857 -- Predefined controlled operations retain their name even if the parent
13858 -- is hidden (see above), but they are not primitive operations if the
13859 -- ancestor is not visible, for example if the parent is a private
13860 -- extension completed with a controlled extension. Note that a full
13861 -- type that is controlled can break privacy: the flag Is_Controlled is
13862 -- set on both views of the type.
13863
13864 if Is_Controlled (Parent_Type)
13865 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13866 Name_Adjust,
13867 Name_Finalize)
13868 and then Is_Hidden (Parent_Subp)
13869 and then not Is_Visibly_Controlled (Parent_Type)
13870 then
13871 Set_Is_Hidden (New_Subp);
13872 end if;
13873
13874 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13875 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13876
13877 if Ekind (Parent_Subp) = E_Procedure then
13878 Set_Is_Valued_Procedure
13879 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13880 else
13881 Set_Has_Controlling_Result
13882 (New_Subp, Has_Controlling_Result (Parent_Subp));
13883 end if;
13884
13885 -- No_Return must be inherited properly. If this is overridden in the
13886 -- case of a dispatching operation, then a check is made in Sem_Disp
13887 -- that the overriding operation is also No_Return (no such check is
13888 -- required for the case of non-dispatching operation.
13889
13890 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13891
13892 -- A derived function with a controlling result is abstract. If the
13893 -- Derived_Type is a nonabstract formal generic derived type, then
13894 -- inherited operations are not abstract: the required check is done at
13895 -- instantiation time. If the derivation is for a generic actual, the
13896 -- function is not abstract unless the actual is.
13897
13898 if Is_Generic_Type (Derived_Type)
13899 and then not Is_Abstract_Type (Derived_Type)
13900 then
13901 null;
13902
13903 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13904 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13905
13906 elsif Ada_Version >= Ada_2005
13907 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13908 or else (Is_Tagged_Type (Derived_Type)
13909 and then Etype (New_Subp) = Derived_Type
13910 and then not Is_Null_Extension (Derived_Type))
13911 or else (Is_Tagged_Type (Derived_Type)
13912 and then Ekind (Etype (New_Subp)) =
13913 E_Anonymous_Access_Type
13914 and then Designated_Type (Etype (New_Subp)) =
13915 Derived_Type
13916 and then not Is_Null_Extension (Derived_Type)))
13917 and then No (Actual_Subp)
13918 then
13919 if not Is_Tagged_Type (Derived_Type)
13920 or else Is_Abstract_Type (Derived_Type)
13921 or else Is_Abstract_Subprogram (Alias (New_Subp))
13922 then
13923 Set_Is_Abstract_Subprogram (New_Subp);
13924 else
13925 Set_Requires_Overriding (New_Subp);
13926 end if;
13927
13928 elsif Ada_Version < Ada_2005
13929 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13930 or else (Is_Tagged_Type (Derived_Type)
13931 and then Etype (New_Subp) = Derived_Type
13932 and then No (Actual_Subp)))
13933 then
13934 Set_Is_Abstract_Subprogram (New_Subp);
13935
13936 -- AI05-0097 : an inherited operation that dispatches on result is
13937 -- abstract if the derived type is abstract, even if the parent type
13938 -- is concrete and the derived type is a null extension.
13939
13940 elsif Has_Controlling_Result (Alias (New_Subp))
13941 and then Is_Abstract_Type (Etype (New_Subp))
13942 then
13943 Set_Is_Abstract_Subprogram (New_Subp);
13944
13945 -- Finally, if the parent type is abstract we must verify that all
13946 -- inherited operations are either non-abstract or overridden, or that
13947 -- the derived type itself is abstract (this check is performed at the
13948 -- end of a package declaration, in Check_Abstract_Overriding). A
13949 -- private overriding in the parent type will not be visible in the
13950 -- derivation if we are not in an inner package or in a child unit of
13951 -- the parent type, in which case the abstractness of the inherited
13952 -- operation is carried to the new subprogram.
13953
13954 elsif Is_Abstract_Type (Parent_Type)
13955 and then not In_Open_Scopes (Scope (Parent_Type))
13956 and then Is_Private_Overriding
13957 and then Is_Abstract_Subprogram (Visible_Subp)
13958 then
13959 if No (Actual_Subp) then
13960 Set_Alias (New_Subp, Visible_Subp);
13961 Set_Is_Abstract_Subprogram (New_Subp, True);
13962
13963 else
13964 -- If this is a derivation for an instance of a formal derived
13965 -- type, abstractness comes from the primitive operation of the
13966 -- actual, not from the operation inherited from the ancestor.
13967
13968 Set_Is_Abstract_Subprogram
13969 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13970 end if;
13971 end if;
13972
13973 New_Overloaded_Entity (New_Subp, Derived_Type);
13974
13975 -- Check for case of a derived subprogram for the instantiation of a
13976 -- formal derived tagged type, if so mark the subprogram as dispatching
13977 -- and inherit the dispatching attributes of the actual subprogram. The
13978 -- derived subprogram is effectively renaming of the actual subprogram,
13979 -- so it needs to have the same attributes as the actual.
13980
13981 if Present (Actual_Subp)
13982 and then Is_Dispatching_Operation (Actual_Subp)
13983 then
13984 Set_Is_Dispatching_Operation (New_Subp);
13985
13986 if Present (DTC_Entity (Actual_Subp)) then
13987 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13988 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13989 end if;
13990 end if;
13991
13992 -- Indicate that a derived subprogram does not require a body and that
13993 -- it does not require processing of default expressions.
13994
13995 Set_Has_Completion (New_Subp);
13996 Set_Default_Expressions_Processed (New_Subp);
13997
13998 if Ekind (New_Subp) = E_Function then
13999 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14000 end if;
14001 end Derive_Subprogram;
14002
14003 ------------------------
14004 -- Derive_Subprograms --
14005 ------------------------
14006
14007 procedure Derive_Subprograms
14008 (Parent_Type : Entity_Id;
14009 Derived_Type : Entity_Id;
14010 Generic_Actual : Entity_Id := Empty)
14011 is
14012 Op_List : constant Elist_Id :=
14013 Collect_Primitive_Operations (Parent_Type);
14014
14015 function Check_Derived_Type return Boolean;
14016 -- Check that all the entities derived from Parent_Type are found in
14017 -- the list of primitives of Derived_Type exactly in the same order.
14018
14019 procedure Derive_Interface_Subprogram
14020 (New_Subp : in out Entity_Id;
14021 Subp : Entity_Id;
14022 Actual_Subp : Entity_Id);
14023 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14024 -- (which is an interface primitive). If Generic_Actual is present then
14025 -- Actual_Subp is the actual subprogram corresponding with the generic
14026 -- subprogram Subp.
14027
14028 function Check_Derived_Type return Boolean is
14029 E : Entity_Id;
14030 Elmt : Elmt_Id;
14031 List : Elist_Id;
14032 New_Subp : Entity_Id;
14033 Op_Elmt : Elmt_Id;
14034 Subp : Entity_Id;
14035
14036 begin
14037 -- Traverse list of entities in the current scope searching for
14038 -- an incomplete type whose full-view is derived type
14039
14040 E := First_Entity (Scope (Derived_Type));
14041 while Present (E) and then E /= Derived_Type loop
14042 if Ekind (E) = E_Incomplete_Type
14043 and then Present (Full_View (E))
14044 and then Full_View (E) = Derived_Type
14045 then
14046 -- Disable this test if Derived_Type completes an incomplete
14047 -- type because in such case more primitives can be added
14048 -- later to the list of primitives of Derived_Type by routine
14049 -- Process_Incomplete_Dependents
14050
14051 return True;
14052 end if;
14053
14054 E := Next_Entity (E);
14055 end loop;
14056
14057 List := Collect_Primitive_Operations (Derived_Type);
14058 Elmt := First_Elmt (List);
14059
14060 Op_Elmt := First_Elmt (Op_List);
14061 while Present (Op_Elmt) loop
14062 Subp := Node (Op_Elmt);
14063 New_Subp := Node (Elmt);
14064
14065 -- At this early stage Derived_Type has no entities with attribute
14066 -- Interface_Alias. In addition, such primitives are always
14067 -- located at the end of the list of primitives of Parent_Type.
14068 -- Therefore, if found we can safely stop processing pending
14069 -- entities.
14070
14071 exit when Present (Interface_Alias (Subp));
14072
14073 -- Handle hidden entities
14074
14075 if not Is_Predefined_Dispatching_Operation (Subp)
14076 and then Is_Hidden (Subp)
14077 then
14078 if Present (New_Subp)
14079 and then Primitive_Names_Match (Subp, New_Subp)
14080 then
14081 Next_Elmt (Elmt);
14082 end if;
14083
14084 else
14085 if not Present (New_Subp)
14086 or else Ekind (Subp) /= Ekind (New_Subp)
14087 or else not Primitive_Names_Match (Subp, New_Subp)
14088 then
14089 return False;
14090 end if;
14091
14092 Next_Elmt (Elmt);
14093 end if;
14094
14095 Next_Elmt (Op_Elmt);
14096 end loop;
14097
14098 return True;
14099 end Check_Derived_Type;
14100
14101 ---------------------------------
14102 -- Derive_Interface_Subprogram --
14103 ---------------------------------
14104
14105 procedure Derive_Interface_Subprogram
14106 (New_Subp : in out Entity_Id;
14107 Subp : Entity_Id;
14108 Actual_Subp : Entity_Id)
14109 is
14110 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14111 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14112
14113 begin
14114 pragma Assert (Is_Interface (Iface_Type));
14115
14116 Derive_Subprogram
14117 (New_Subp => New_Subp,
14118 Parent_Subp => Iface_Subp,
14119 Derived_Type => Derived_Type,
14120 Parent_Type => Iface_Type,
14121 Actual_Subp => Actual_Subp);
14122
14123 -- Given that this new interface entity corresponds with a primitive
14124 -- of the parent that was not overridden we must leave it associated
14125 -- with its parent primitive to ensure that it will share the same
14126 -- dispatch table slot when overridden.
14127
14128 if No (Actual_Subp) then
14129 Set_Alias (New_Subp, Subp);
14130
14131 -- For instantiations this is not needed since the previous call to
14132 -- Derive_Subprogram leaves the entity well decorated.
14133
14134 else
14135 pragma Assert (Alias (New_Subp) = Actual_Subp);
14136 null;
14137 end if;
14138 end Derive_Interface_Subprogram;
14139
14140 -- Local variables
14141
14142 Alias_Subp : Entity_Id;
14143 Act_List : Elist_Id;
14144 Act_Elmt : Elmt_Id;
14145 Act_Subp : Entity_Id := Empty;
14146 Elmt : Elmt_Id;
14147 Need_Search : Boolean := False;
14148 New_Subp : Entity_Id := Empty;
14149 Parent_Base : Entity_Id;
14150 Subp : Entity_Id;
14151
14152 -- Start of processing for Derive_Subprograms
14153
14154 begin
14155 if Ekind (Parent_Type) = E_Record_Type_With_Private
14156 and then Has_Discriminants (Parent_Type)
14157 and then Present (Full_View (Parent_Type))
14158 then
14159 Parent_Base := Full_View (Parent_Type);
14160 else
14161 Parent_Base := Parent_Type;
14162 end if;
14163
14164 if Present (Generic_Actual) then
14165 Act_List := Collect_Primitive_Operations (Generic_Actual);
14166 Act_Elmt := First_Elmt (Act_List);
14167 else
14168 Act_List := No_Elist;
14169 Act_Elmt := No_Elmt;
14170 end if;
14171
14172 -- Derive primitives inherited from the parent. Note that if the generic
14173 -- actual is present, this is not really a type derivation, it is a
14174 -- completion within an instance.
14175
14176 -- Case 1: Derived_Type does not implement interfaces
14177
14178 if not Is_Tagged_Type (Derived_Type)
14179 or else (not Has_Interfaces (Derived_Type)
14180 and then not (Present (Generic_Actual)
14181 and then Has_Interfaces (Generic_Actual)))
14182 then
14183 Elmt := First_Elmt (Op_List);
14184 while Present (Elmt) loop
14185 Subp := Node (Elmt);
14186
14187 -- Literals are derived earlier in the process of building the
14188 -- derived type, and are skipped here.
14189
14190 if Ekind (Subp) = E_Enumeration_Literal then
14191 null;
14192
14193 -- The actual is a direct descendant and the common primitive
14194 -- operations appear in the same order.
14195
14196 -- If the generic parent type is present, the derived type is an
14197 -- instance of a formal derived type, and within the instance its
14198 -- operations are those of the actual. We derive from the formal
14199 -- type but make the inherited operations aliases of the
14200 -- corresponding operations of the actual.
14201
14202 else
14203 pragma Assert (No (Node (Act_Elmt))
14204 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14205 and then
14206 Type_Conformant
14207 (Subp, Node (Act_Elmt),
14208 Skip_Controlling_Formals => True)));
14209
14210 Derive_Subprogram
14211 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14212
14213 if Present (Act_Elmt) then
14214 Next_Elmt (Act_Elmt);
14215 end if;
14216 end if;
14217
14218 Next_Elmt (Elmt);
14219 end loop;
14220
14221 -- Case 2: Derived_Type implements interfaces
14222
14223 else
14224 -- If the parent type has no predefined primitives we remove
14225 -- predefined primitives from the list of primitives of generic
14226 -- actual to simplify the complexity of this algorithm.
14227
14228 if Present (Generic_Actual) then
14229 declare
14230 Has_Predefined_Primitives : Boolean := False;
14231
14232 begin
14233 -- Check if the parent type has predefined primitives
14234
14235 Elmt := First_Elmt (Op_List);
14236 while Present (Elmt) loop
14237 Subp := Node (Elmt);
14238
14239 if Is_Predefined_Dispatching_Operation (Subp)
14240 and then not Comes_From_Source (Ultimate_Alias (Subp))
14241 then
14242 Has_Predefined_Primitives := True;
14243 exit;
14244 end if;
14245
14246 Next_Elmt (Elmt);
14247 end loop;
14248
14249 -- Remove predefined primitives of Generic_Actual. We must use
14250 -- an auxiliary list because in case of tagged types the value
14251 -- returned by Collect_Primitive_Operations is the value stored
14252 -- in its Primitive_Operations attribute (and we don't want to
14253 -- modify its current contents).
14254
14255 if not Has_Predefined_Primitives then
14256 declare
14257 Aux_List : constant Elist_Id := New_Elmt_List;
14258
14259 begin
14260 Elmt := First_Elmt (Act_List);
14261 while Present (Elmt) loop
14262 Subp := Node (Elmt);
14263
14264 if not Is_Predefined_Dispatching_Operation (Subp)
14265 or else Comes_From_Source (Subp)
14266 then
14267 Append_Elmt (Subp, Aux_List);
14268 end if;
14269
14270 Next_Elmt (Elmt);
14271 end loop;
14272
14273 Act_List := Aux_List;
14274 end;
14275 end if;
14276
14277 Act_Elmt := First_Elmt (Act_List);
14278 Act_Subp := Node (Act_Elmt);
14279 end;
14280 end if;
14281
14282 -- Stage 1: If the generic actual is not present we derive the
14283 -- primitives inherited from the parent type. If the generic parent
14284 -- type is present, the derived type is an instance of a formal
14285 -- derived type, and within the instance its operations are those of
14286 -- the actual. We derive from the formal type but make the inherited
14287 -- operations aliases of the corresponding operations of the actual.
14288
14289 Elmt := First_Elmt (Op_List);
14290 while Present (Elmt) loop
14291 Subp := Node (Elmt);
14292 Alias_Subp := Ultimate_Alias (Subp);
14293
14294 -- Do not derive internal entities of the parent that link
14295 -- interface primitives with their covering primitive. These
14296 -- entities will be added to this type when frozen.
14297
14298 if Present (Interface_Alias (Subp)) then
14299 goto Continue;
14300 end if;
14301
14302 -- If the generic actual is present find the corresponding
14303 -- operation in the generic actual. If the parent type is a
14304 -- direct ancestor of the derived type then, even if it is an
14305 -- interface, the operations are inherited from the primary
14306 -- dispatch table and are in the proper order. If we detect here
14307 -- that primitives are not in the same order we traverse the list
14308 -- of primitive operations of the actual to find the one that
14309 -- implements the interface primitive.
14310
14311 if Need_Search
14312 or else
14313 (Present (Generic_Actual)
14314 and then Present (Act_Subp)
14315 and then not
14316 (Primitive_Names_Match (Subp, Act_Subp)
14317 and then
14318 Type_Conformant (Subp, Act_Subp,
14319 Skip_Controlling_Formals => True)))
14320 then
14321 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14322 Use_Full_View => True));
14323
14324 -- Remember that we need searching for all pending primitives
14325
14326 Need_Search := True;
14327
14328 -- Handle entities associated with interface primitives
14329
14330 if Present (Alias_Subp)
14331 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14332 and then not Is_Predefined_Dispatching_Operation (Subp)
14333 then
14334 -- Search for the primitive in the homonym chain
14335
14336 Act_Subp :=
14337 Find_Primitive_Covering_Interface
14338 (Tagged_Type => Generic_Actual,
14339 Iface_Prim => Alias_Subp);
14340
14341 -- Previous search may not locate primitives covering
14342 -- interfaces defined in generics units or instantiations.
14343 -- (it fails if the covering primitive has formals whose
14344 -- type is also defined in generics or instantiations).
14345 -- In such case we search in the list of primitives of the
14346 -- generic actual for the internal entity that links the
14347 -- interface primitive and the covering primitive.
14348
14349 if No (Act_Subp)
14350 and then Is_Generic_Type (Parent_Type)
14351 then
14352 -- This code has been designed to handle only generic
14353 -- formals that implement interfaces that are defined
14354 -- in a generic unit or instantiation. If this code is
14355 -- needed for other cases we must review it because
14356 -- (given that it relies on Original_Location to locate
14357 -- the primitive of Generic_Actual that covers the
14358 -- interface) it could leave linked through attribute
14359 -- Alias entities of unrelated instantiations).
14360
14361 pragma Assert
14362 (Is_Generic_Unit
14363 (Scope (Find_Dispatching_Type (Alias_Subp)))
14364 or else
14365 Instantiation_Depth
14366 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14367
14368 declare
14369 Iface_Prim_Loc : constant Source_Ptr :=
14370 Original_Location (Sloc (Alias_Subp));
14371
14372 Elmt : Elmt_Id;
14373 Prim : Entity_Id;
14374
14375 begin
14376 Elmt :=
14377 First_Elmt (Primitive_Operations (Generic_Actual));
14378
14379 Search : while Present (Elmt) loop
14380 Prim := Node (Elmt);
14381
14382 if Present (Interface_Alias (Prim))
14383 and then Original_Location
14384 (Sloc (Interface_Alias (Prim))) =
14385 Iface_Prim_Loc
14386 then
14387 Act_Subp := Alias (Prim);
14388 exit Search;
14389 end if;
14390
14391 Next_Elmt (Elmt);
14392 end loop Search;
14393 end;
14394 end if;
14395
14396 pragma Assert (Present (Act_Subp)
14397 or else Is_Abstract_Type (Generic_Actual)
14398 or else Serious_Errors_Detected > 0);
14399
14400 -- Handle predefined primitives plus the rest of user-defined
14401 -- primitives
14402
14403 else
14404 Act_Elmt := First_Elmt (Act_List);
14405 while Present (Act_Elmt) loop
14406 Act_Subp := Node (Act_Elmt);
14407
14408 exit when Primitive_Names_Match (Subp, Act_Subp)
14409 and then Type_Conformant
14410 (Subp, Act_Subp,
14411 Skip_Controlling_Formals => True)
14412 and then No (Interface_Alias (Act_Subp));
14413
14414 Next_Elmt (Act_Elmt);
14415 end loop;
14416
14417 if No (Act_Elmt) then
14418 Act_Subp := Empty;
14419 end if;
14420 end if;
14421 end if;
14422
14423 -- Case 1: If the parent is a limited interface then it has the
14424 -- predefined primitives of synchronized interfaces. However, the
14425 -- actual type may be a non-limited type and hence it does not
14426 -- have such primitives.
14427
14428 if Present (Generic_Actual)
14429 and then not Present (Act_Subp)
14430 and then Is_Limited_Interface (Parent_Base)
14431 and then Is_Predefined_Interface_Primitive (Subp)
14432 then
14433 null;
14434
14435 -- Case 2: Inherit entities associated with interfaces that were
14436 -- not covered by the parent type. We exclude here null interface
14437 -- primitives because they do not need special management.
14438
14439 -- We also exclude interface operations that are renamings. If the
14440 -- subprogram is an explicit renaming of an interface primitive,
14441 -- it is a regular primitive operation, and the presence of its
14442 -- alias is not relevant: it has to be derived like any other
14443 -- primitive.
14444
14445 elsif Present (Alias (Subp))
14446 and then Nkind (Unit_Declaration_Node (Subp)) /=
14447 N_Subprogram_Renaming_Declaration
14448 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14449 and then not
14450 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14451 and then Null_Present (Parent (Alias_Subp)))
14452 then
14453 -- If this is an abstract private type then we transfer the
14454 -- derivation of the interface primitive from the partial view
14455 -- to the full view. This is safe because all the interfaces
14456 -- must be visible in the partial view. Done to avoid adding
14457 -- a new interface derivation to the private part of the
14458 -- enclosing package; otherwise this new derivation would be
14459 -- decorated as hidden when the analysis of the enclosing
14460 -- package completes.
14461
14462 if Is_Abstract_Type (Derived_Type)
14463 and then In_Private_Part (Current_Scope)
14464 and then Has_Private_Declaration (Derived_Type)
14465 then
14466 declare
14467 Partial_View : Entity_Id;
14468 Elmt : Elmt_Id;
14469 Ent : Entity_Id;
14470
14471 begin
14472 Partial_View := First_Entity (Current_Scope);
14473 loop
14474 exit when No (Partial_View)
14475 or else (Has_Private_Declaration (Partial_View)
14476 and then
14477 Full_View (Partial_View) = Derived_Type);
14478
14479 Next_Entity (Partial_View);
14480 end loop;
14481
14482 -- If the partial view was not found then the source code
14483 -- has errors and the derivation is not needed.
14484
14485 if Present (Partial_View) then
14486 Elmt :=
14487 First_Elmt (Primitive_Operations (Partial_View));
14488 while Present (Elmt) loop
14489 Ent := Node (Elmt);
14490
14491 if Present (Alias (Ent))
14492 and then Ultimate_Alias (Ent) = Alias (Subp)
14493 then
14494 Append_Elmt
14495 (Ent, Primitive_Operations (Derived_Type));
14496 exit;
14497 end if;
14498
14499 Next_Elmt (Elmt);
14500 end loop;
14501
14502 -- If the interface primitive was not found in the
14503 -- partial view then this interface primitive was
14504 -- overridden. We add a derivation to activate in
14505 -- Derive_Progenitor_Subprograms the machinery to
14506 -- search for it.
14507
14508 if No (Elmt) then
14509 Derive_Interface_Subprogram
14510 (New_Subp => New_Subp,
14511 Subp => Subp,
14512 Actual_Subp => Act_Subp);
14513 end if;
14514 end if;
14515 end;
14516 else
14517 Derive_Interface_Subprogram
14518 (New_Subp => New_Subp,
14519 Subp => Subp,
14520 Actual_Subp => Act_Subp);
14521 end if;
14522
14523 -- Case 3: Common derivation
14524
14525 else
14526 Derive_Subprogram
14527 (New_Subp => New_Subp,
14528 Parent_Subp => Subp,
14529 Derived_Type => Derived_Type,
14530 Parent_Type => Parent_Base,
14531 Actual_Subp => Act_Subp);
14532 end if;
14533
14534 -- No need to update Act_Elm if we must search for the
14535 -- corresponding operation in the generic actual
14536
14537 if not Need_Search
14538 and then Present (Act_Elmt)
14539 then
14540 Next_Elmt (Act_Elmt);
14541 Act_Subp := Node (Act_Elmt);
14542 end if;
14543
14544 <<Continue>>
14545 Next_Elmt (Elmt);
14546 end loop;
14547
14548 -- Inherit additional operations from progenitors. If the derived
14549 -- type is a generic actual, there are not new primitive operations
14550 -- for the type because it has those of the actual, and therefore
14551 -- nothing needs to be done. The renamings generated above are not
14552 -- primitive operations, and their purpose is simply to make the
14553 -- proper operations visible within an instantiation.
14554
14555 if No (Generic_Actual) then
14556 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14557 end if;
14558 end if;
14559
14560 -- Final check: Direct descendants must have their primitives in the
14561 -- same order. We exclude from this test untagged types and instances
14562 -- of formal derived types. We skip this test if we have already
14563 -- reported serious errors in the sources.
14564
14565 pragma Assert (not Is_Tagged_Type (Derived_Type)
14566 or else Present (Generic_Actual)
14567 or else Serious_Errors_Detected > 0
14568 or else Check_Derived_Type);
14569 end Derive_Subprograms;
14570
14571 --------------------------------
14572 -- Derived_Standard_Character --
14573 --------------------------------
14574
14575 procedure Derived_Standard_Character
14576 (N : Node_Id;
14577 Parent_Type : Entity_Id;
14578 Derived_Type : Entity_Id)
14579 is
14580 Loc : constant Source_Ptr := Sloc (N);
14581 Def : constant Node_Id := Type_Definition (N);
14582 Indic : constant Node_Id := Subtype_Indication (Def);
14583 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14584 Implicit_Base : constant Entity_Id :=
14585 Create_Itype
14586 (E_Enumeration_Type, N, Derived_Type, 'B');
14587
14588 Lo : Node_Id;
14589 Hi : Node_Id;
14590
14591 begin
14592 Discard_Node (Process_Subtype (Indic, N));
14593
14594 Set_Etype (Implicit_Base, Parent_Base);
14595 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14596 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14597
14598 Set_Is_Character_Type (Implicit_Base, True);
14599 Set_Has_Delayed_Freeze (Implicit_Base);
14600
14601 -- The bounds of the implicit base are the bounds of the parent base.
14602 -- Note that their type is the parent base.
14603
14604 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14605 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14606
14607 Set_Scalar_Range (Implicit_Base,
14608 Make_Range (Loc,
14609 Low_Bound => Lo,
14610 High_Bound => Hi));
14611
14612 Conditional_Delay (Derived_Type, Parent_Type);
14613
14614 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14615 Set_Etype (Derived_Type, Implicit_Base);
14616 Set_Size_Info (Derived_Type, Parent_Type);
14617
14618 if Unknown_RM_Size (Derived_Type) then
14619 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14620 end if;
14621
14622 Set_Is_Character_Type (Derived_Type, True);
14623
14624 if Nkind (Indic) /= N_Subtype_Indication then
14625
14626 -- If no explicit constraint, the bounds are those
14627 -- of the parent type.
14628
14629 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14630 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14631 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14632 end if;
14633
14634 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14635
14636 -- Because the implicit base is used in the conversion of the bounds, we
14637 -- have to freeze it now. This is similar to what is done for numeric
14638 -- types, and it equally suspicious, but otherwise a non-static bound
14639 -- will have a reference to an unfrozen type, which is rejected by Gigi
14640 -- (???). This requires specific care for definition of stream
14641 -- attributes. For details, see comments at the end of
14642 -- Build_Derived_Numeric_Type.
14643
14644 Freeze_Before (N, Implicit_Base);
14645 end Derived_Standard_Character;
14646
14647 ------------------------------
14648 -- Derived_Type_Declaration --
14649 ------------------------------
14650
14651 procedure Derived_Type_Declaration
14652 (T : Entity_Id;
14653 N : Node_Id;
14654 Is_Completion : Boolean)
14655 is
14656 Parent_Type : Entity_Id;
14657
14658 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14659 -- Check whether the parent type is a generic formal, or derives
14660 -- directly or indirectly from one.
14661
14662 ------------------------
14663 -- Comes_From_Generic --
14664 ------------------------
14665
14666 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14667 begin
14668 if Is_Generic_Type (Typ) then
14669 return True;
14670
14671 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14672 return True;
14673
14674 elsif Is_Private_Type (Typ)
14675 and then Present (Full_View (Typ))
14676 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14677 then
14678 return True;
14679
14680 elsif Is_Generic_Actual_Type (Typ) then
14681 return True;
14682
14683 else
14684 return False;
14685 end if;
14686 end Comes_From_Generic;
14687
14688 -- Local variables
14689
14690 Def : constant Node_Id := Type_Definition (N);
14691 Iface_Def : Node_Id;
14692 Indic : constant Node_Id := Subtype_Indication (Def);
14693 Extension : constant Node_Id := Record_Extension_Part (Def);
14694 Parent_Node : Node_Id;
14695 Taggd : Boolean;
14696
14697 -- Start of processing for Derived_Type_Declaration
14698
14699 begin
14700 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14701
14702 -- Ada 2005 (AI-251): In case of interface derivation check that the
14703 -- parent is also an interface.
14704
14705 if Interface_Present (Def) then
14706 Check_SPARK_Restriction ("interface is not allowed", Def);
14707
14708 if not Is_Interface (Parent_Type) then
14709 Diagnose_Interface (Indic, Parent_Type);
14710
14711 else
14712 Parent_Node := Parent (Base_Type (Parent_Type));
14713 Iface_Def := Type_Definition (Parent_Node);
14714
14715 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14716 -- other limited interfaces.
14717
14718 if Limited_Present (Def) then
14719 if Limited_Present (Iface_Def) then
14720 null;
14721
14722 elsif Protected_Present (Iface_Def) then
14723 Error_Msg_NE
14724 ("descendant of& must be declared"
14725 & " as a protected interface",
14726 N, Parent_Type);
14727
14728 elsif Synchronized_Present (Iface_Def) then
14729 Error_Msg_NE
14730 ("descendant of& must be declared"
14731 & " as a synchronized interface",
14732 N, Parent_Type);
14733
14734 elsif Task_Present (Iface_Def) then
14735 Error_Msg_NE
14736 ("descendant of& must be declared as a task interface",
14737 N, Parent_Type);
14738
14739 else
14740 Error_Msg_N
14741 ("(Ada 2005) limited interface cannot "
14742 & "inherit from non-limited interface", Indic);
14743 end if;
14744
14745 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14746 -- from non-limited or limited interfaces.
14747
14748 elsif not Protected_Present (Def)
14749 and then not Synchronized_Present (Def)
14750 and then not Task_Present (Def)
14751 then
14752 if Limited_Present (Iface_Def) then
14753 null;
14754
14755 elsif Protected_Present (Iface_Def) then
14756 Error_Msg_NE
14757 ("descendant of& must be declared"
14758 & " as a protected interface",
14759 N, Parent_Type);
14760
14761 elsif Synchronized_Present (Iface_Def) then
14762 Error_Msg_NE
14763 ("descendant of& must be declared"
14764 & " as a synchronized interface",
14765 N, Parent_Type);
14766
14767 elsif Task_Present (Iface_Def) then
14768 Error_Msg_NE
14769 ("descendant of& must be declared as a task interface",
14770 N, Parent_Type);
14771 else
14772 null;
14773 end if;
14774 end if;
14775 end if;
14776 end if;
14777
14778 if Is_Tagged_Type (Parent_Type)
14779 and then Is_Concurrent_Type (Parent_Type)
14780 and then not Is_Interface (Parent_Type)
14781 then
14782 Error_Msg_N
14783 ("parent type of a record extension cannot be "
14784 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14785 Set_Etype (T, Any_Type);
14786 return;
14787 end if;
14788
14789 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14790 -- interfaces
14791
14792 if Is_Tagged_Type (Parent_Type)
14793 and then Is_Non_Empty_List (Interface_List (Def))
14794 then
14795 declare
14796 Intf : Node_Id;
14797 T : Entity_Id;
14798
14799 begin
14800 Intf := First (Interface_List (Def));
14801 while Present (Intf) loop
14802 T := Find_Type_Of_Subtype_Indic (Intf);
14803
14804 if not Is_Interface (T) then
14805 Diagnose_Interface (Intf, T);
14806
14807 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14808 -- a limited type from having a nonlimited progenitor.
14809
14810 elsif (Limited_Present (Def)
14811 or else (not Is_Interface (Parent_Type)
14812 and then Is_Limited_Type (Parent_Type)))
14813 and then not Is_Limited_Interface (T)
14814 then
14815 Error_Msg_NE
14816 ("progenitor interface& of limited type must be limited",
14817 N, T);
14818 end if;
14819
14820 Next (Intf);
14821 end loop;
14822 end;
14823 end if;
14824
14825 if Parent_Type = Any_Type
14826 or else Etype (Parent_Type) = Any_Type
14827 or else (Is_Class_Wide_Type (Parent_Type)
14828 and then Etype (Parent_Type) = T)
14829 then
14830 -- If Parent_Type is undefined or illegal, make new type into a
14831 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14832 -- errors. If this is a self-definition, emit error now.
14833
14834 if T = Parent_Type
14835 or else T = Etype (Parent_Type)
14836 then
14837 Error_Msg_N ("type cannot be used in its own definition", Indic);
14838 end if;
14839
14840 Set_Ekind (T, Ekind (Parent_Type));
14841 Set_Etype (T, Any_Type);
14842 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14843
14844 if Is_Tagged_Type (T)
14845 and then Is_Record_Type (T)
14846 then
14847 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14848 end if;
14849
14850 return;
14851 end if;
14852
14853 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14854 -- an interface is special because the list of interfaces in the full
14855 -- view can be given in any order. For example:
14856
14857 -- type A is interface;
14858 -- type B is interface and A;
14859 -- type D is new B with private;
14860 -- private
14861 -- type D is new A and B with null record; -- 1 --
14862
14863 -- In this case we perform the following transformation of -1-:
14864
14865 -- type D is new B and A with null record;
14866
14867 -- If the parent of the full-view covers the parent of the partial-view
14868 -- we have two possible cases:
14869
14870 -- 1) They have the same parent
14871 -- 2) The parent of the full-view implements some further interfaces
14872
14873 -- In both cases we do not need to perform the transformation. In the
14874 -- first case the source program is correct and the transformation is
14875 -- not needed; in the second case the source program does not fulfill
14876 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14877 -- later.
14878
14879 -- This transformation not only simplifies the rest of the analysis of
14880 -- this type declaration but also simplifies the correct generation of
14881 -- the object layout to the expander.
14882
14883 if In_Private_Part (Current_Scope)
14884 and then Is_Interface (Parent_Type)
14885 then
14886 declare
14887 Iface : Node_Id;
14888 Partial_View : Entity_Id;
14889 Partial_View_Parent : Entity_Id;
14890 New_Iface : Node_Id;
14891
14892 begin
14893 -- Look for the associated private type declaration
14894
14895 Partial_View := First_Entity (Current_Scope);
14896 loop
14897 exit when No (Partial_View)
14898 or else (Has_Private_Declaration (Partial_View)
14899 and then Full_View (Partial_View) = T);
14900
14901 Next_Entity (Partial_View);
14902 end loop;
14903
14904 -- If the partial view was not found then the source code has
14905 -- errors and the transformation is not needed.
14906
14907 if Present (Partial_View) then
14908 Partial_View_Parent := Etype (Partial_View);
14909
14910 -- If the parent of the full-view covers the parent of the
14911 -- partial-view we have nothing else to do.
14912
14913 if Interface_Present_In_Ancestor
14914 (Parent_Type, Partial_View_Parent)
14915 then
14916 null;
14917
14918 -- Traverse the list of interfaces of the full-view to look
14919 -- for the parent of the partial-view and perform the tree
14920 -- transformation.
14921
14922 else
14923 Iface := First (Interface_List (Def));
14924 while Present (Iface) loop
14925 if Etype (Iface) = Etype (Partial_View) then
14926 Rewrite (Subtype_Indication (Def),
14927 New_Copy (Subtype_Indication
14928 (Parent (Partial_View))));
14929
14930 New_Iface :=
14931 Make_Identifier (Sloc (N), Chars (Parent_Type));
14932 Append (New_Iface, Interface_List (Def));
14933
14934 -- Analyze the transformed code
14935
14936 Derived_Type_Declaration (T, N, Is_Completion);
14937 return;
14938 end if;
14939
14940 Next (Iface);
14941 end loop;
14942 end if;
14943 end if;
14944 end;
14945 end if;
14946
14947 -- Only composite types other than array types are allowed to have
14948 -- discriminants. In SPARK, no types are allowed to have discriminants.
14949
14950 if Present (Discriminant_Specifications (N)) then
14951 if (Is_Elementary_Type (Parent_Type)
14952 or else Is_Array_Type (Parent_Type))
14953 and then not Error_Posted (N)
14954 then
14955 Error_Msg_N
14956 ("elementary or array type cannot have discriminants",
14957 Defining_Identifier (First (Discriminant_Specifications (N))));
14958 Set_Has_Discriminants (T, False);
14959 else
14960 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14961 end if;
14962 end if;
14963
14964 -- In Ada 83, a derived type defined in a package specification cannot
14965 -- be used for further derivation until the end of its visible part.
14966 -- Note that derivation in the private part of the package is allowed.
14967
14968 if Ada_Version = Ada_83
14969 and then Is_Derived_Type (Parent_Type)
14970 and then In_Visible_Part (Scope (Parent_Type))
14971 then
14972 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14973 Error_Msg_N
14974 ("(Ada 83): premature use of type for derivation", Indic);
14975 end if;
14976 end if;
14977
14978 -- Check for early use of incomplete or private type
14979
14980 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14981 Error_Msg_N ("premature derivation of incomplete type", Indic);
14982 return;
14983
14984 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14985 and then not Comes_From_Generic (Parent_Type))
14986 or else Has_Private_Component (Parent_Type)
14987 then
14988 -- The ancestor type of a formal type can be incomplete, in which
14989 -- case only the operations of the partial view are available in the
14990 -- generic. Subsequent checks may be required when the full view is
14991 -- analyzed to verify that a derivation from a tagged type has an
14992 -- extension.
14993
14994 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14995 null;
14996
14997 elsif No (Underlying_Type (Parent_Type))
14998 or else Has_Private_Component (Parent_Type)
14999 then
15000 Error_Msg_N
15001 ("premature derivation of derived or private type", Indic);
15002
15003 -- Flag the type itself as being in error, this prevents some
15004 -- nasty problems with subsequent uses of the malformed type.
15005
15006 Set_Error_Posted (T);
15007
15008 -- Check that within the immediate scope of an untagged partial
15009 -- view it's illegal to derive from the partial view if the
15010 -- full view is tagged. (7.3(7))
15011
15012 -- We verify that the Parent_Type is a partial view by checking
15013 -- that it is not a Full_Type_Declaration (i.e. a private type or
15014 -- private extension declaration), to distinguish a partial view
15015 -- from a derivation from a private type which also appears as
15016 -- E_Private_Type. If the parent base type is not declared in an
15017 -- enclosing scope there is no need to check.
15018
15019 elsif Present (Full_View (Parent_Type))
15020 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15021 and then not Is_Tagged_Type (Parent_Type)
15022 and then Is_Tagged_Type (Full_View (Parent_Type))
15023 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15024 then
15025 Error_Msg_N
15026 ("premature derivation from type with tagged full view",
15027 Indic);
15028 end if;
15029 end if;
15030
15031 -- Check that form of derivation is appropriate
15032
15033 Taggd := Is_Tagged_Type (Parent_Type);
15034
15035 -- Perhaps the parent type should be changed to the class-wide type's
15036 -- specific type in this case to prevent cascading errors ???
15037
15038 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15039 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15040 return;
15041 end if;
15042
15043 if Present (Extension) and then not Taggd then
15044 Error_Msg_N
15045 ("type derived from untagged type cannot have extension", Indic);
15046
15047 elsif No (Extension) and then Taggd then
15048
15049 -- If this declaration is within a private part (or body) of a
15050 -- generic instantiation then the derivation is allowed (the parent
15051 -- type can only appear tagged in this case if it's a generic actual
15052 -- type, since it would otherwise have been rejected in the analysis
15053 -- of the generic template).
15054
15055 if not Is_Generic_Actual_Type (Parent_Type)
15056 or else In_Visible_Part (Scope (Parent_Type))
15057 then
15058 if Is_Class_Wide_Type (Parent_Type) then
15059 Error_Msg_N
15060 ("parent type must not be a class-wide type", Indic);
15061
15062 -- Use specific type to prevent cascaded errors.
15063
15064 Parent_Type := Etype (Parent_Type);
15065
15066 else
15067 Error_Msg_N
15068 ("type derived from tagged type must have extension", Indic);
15069 end if;
15070 end if;
15071 end if;
15072
15073 -- AI-443: Synchronized formal derived types require a private
15074 -- extension. There is no point in checking the ancestor type or
15075 -- the progenitors since the construct is wrong to begin with.
15076
15077 if Ada_Version >= Ada_2005
15078 and then Is_Generic_Type (T)
15079 and then Present (Original_Node (N))
15080 then
15081 declare
15082 Decl : constant Node_Id := Original_Node (N);
15083
15084 begin
15085 if Nkind (Decl) = N_Formal_Type_Declaration
15086 and then Nkind (Formal_Type_Definition (Decl)) =
15087 N_Formal_Derived_Type_Definition
15088 and then Synchronized_Present (Formal_Type_Definition (Decl))
15089 and then No (Extension)
15090
15091 -- Avoid emitting a duplicate error message
15092
15093 and then not Error_Posted (Indic)
15094 then
15095 Error_Msg_N
15096 ("synchronized derived type must have extension", N);
15097 end if;
15098 end;
15099 end if;
15100
15101 if Null_Exclusion_Present (Def)
15102 and then not Is_Access_Type (Parent_Type)
15103 then
15104 Error_Msg_N ("null exclusion can only apply to an access type", N);
15105 end if;
15106
15107 -- Avoid deriving parent primitives of underlying record views
15108
15109 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15110 Derive_Subps => not Is_Underlying_Record_View (T));
15111
15112 -- AI-419: The parent type of an explicitly limited derived type must
15113 -- be a limited type or a limited interface.
15114
15115 if Limited_Present (Def) then
15116 Set_Is_Limited_Record (T);
15117
15118 if Is_Interface (T) then
15119 Set_Is_Limited_Interface (T);
15120 end if;
15121
15122 if not Is_Limited_Type (Parent_Type)
15123 and then
15124 (not Is_Interface (Parent_Type)
15125 or else not Is_Limited_Interface (Parent_Type))
15126 then
15127 -- AI05-0096: a derivation in the private part of an instance is
15128 -- legal if the generic formal is untagged limited, and the actual
15129 -- is non-limited.
15130
15131 if Is_Generic_Actual_Type (Parent_Type)
15132 and then In_Private_Part (Current_Scope)
15133 and then
15134 not Is_Tagged_Type
15135 (Generic_Parent_Type (Parent (Parent_Type)))
15136 then
15137 null;
15138
15139 else
15140 Error_Msg_NE
15141 ("parent type& of limited type must be limited",
15142 N, Parent_Type);
15143 end if;
15144 end if;
15145 end if;
15146
15147 -- In SPARK, there are no derived type definitions other than type
15148 -- extensions of tagged record types.
15149
15150 if No (Extension) then
15151 Check_SPARK_Restriction
15152 ("derived type is not allowed", Original_Node (N));
15153 end if;
15154 end Derived_Type_Declaration;
15155
15156 ------------------------
15157 -- Diagnose_Interface --
15158 ------------------------
15159
15160 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15161 begin
15162 if not Is_Interface (E)
15163 and then E /= Any_Type
15164 then
15165 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15166 end if;
15167 end Diagnose_Interface;
15168
15169 ----------------------------------
15170 -- Enumeration_Type_Declaration --
15171 ----------------------------------
15172
15173 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15174 Ev : Uint;
15175 L : Node_Id;
15176 R_Node : Node_Id;
15177 B_Node : Node_Id;
15178
15179 begin
15180 -- Create identifier node representing lower bound
15181
15182 B_Node := New_Node (N_Identifier, Sloc (Def));
15183 L := First (Literals (Def));
15184 Set_Chars (B_Node, Chars (L));
15185 Set_Entity (B_Node, L);
15186 Set_Etype (B_Node, T);
15187 Set_Is_Static_Expression (B_Node, True);
15188
15189 R_Node := New_Node (N_Range, Sloc (Def));
15190 Set_Low_Bound (R_Node, B_Node);
15191
15192 Set_Ekind (T, E_Enumeration_Type);
15193 Set_First_Literal (T, L);
15194 Set_Etype (T, T);
15195 Set_Is_Constrained (T);
15196
15197 Ev := Uint_0;
15198
15199 -- Loop through literals of enumeration type setting pos and rep values
15200 -- except that if the Ekind is already set, then it means the literal
15201 -- was already constructed (case of a derived type declaration and we
15202 -- should not disturb the Pos and Rep values.
15203
15204 while Present (L) loop
15205 if Ekind (L) /= E_Enumeration_Literal then
15206 Set_Ekind (L, E_Enumeration_Literal);
15207 Set_Enumeration_Pos (L, Ev);
15208 Set_Enumeration_Rep (L, Ev);
15209 Set_Is_Known_Valid (L, True);
15210 end if;
15211
15212 Set_Etype (L, T);
15213 New_Overloaded_Entity (L);
15214 Generate_Definition (L);
15215 Set_Convention (L, Convention_Intrinsic);
15216
15217 -- Case of character literal
15218
15219 if Nkind (L) = N_Defining_Character_Literal then
15220 Set_Is_Character_Type (T, True);
15221
15222 -- Check violation of No_Wide_Characters
15223
15224 if Restriction_Check_Required (No_Wide_Characters) then
15225 Get_Name_String (Chars (L));
15226
15227 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15228 Check_Restriction (No_Wide_Characters, L);
15229 end if;
15230 end if;
15231 end if;
15232
15233 Ev := Ev + 1;
15234 Next (L);
15235 end loop;
15236
15237 -- Now create a node representing upper bound
15238
15239 B_Node := New_Node (N_Identifier, Sloc (Def));
15240 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15241 Set_Entity (B_Node, Last (Literals (Def)));
15242 Set_Etype (B_Node, T);
15243 Set_Is_Static_Expression (B_Node, True);
15244
15245 Set_High_Bound (R_Node, B_Node);
15246
15247 -- Initialize various fields of the type. Some of this information
15248 -- may be overwritten later through rep.clauses.
15249
15250 Set_Scalar_Range (T, R_Node);
15251 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15252 Set_Enum_Esize (T);
15253 Set_Enum_Pos_To_Rep (T, Empty);
15254
15255 -- Set Discard_Names if configuration pragma set, or if there is
15256 -- a parameterless pragma in the current declarative region
15257
15258 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15259 Set_Discard_Names (T);
15260 end if;
15261
15262 -- Process end label if there is one
15263
15264 if Present (Def) then
15265 Process_End_Label (Def, 'e', T);
15266 end if;
15267 end Enumeration_Type_Declaration;
15268
15269 ---------------------------------
15270 -- Expand_To_Stored_Constraint --
15271 ---------------------------------
15272
15273 function Expand_To_Stored_Constraint
15274 (Typ : Entity_Id;
15275 Constraint : Elist_Id) return Elist_Id
15276 is
15277 Explicitly_Discriminated_Type : Entity_Id;
15278 Expansion : Elist_Id;
15279 Discriminant : Entity_Id;
15280
15281 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15282 -- Find the nearest type that actually specifies discriminants
15283
15284 ---------------------------------
15285 -- Type_With_Explicit_Discrims --
15286 ---------------------------------
15287
15288 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15289 Typ : constant E := Base_Type (Id);
15290
15291 begin
15292 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15293 if Present (Full_View (Typ)) then
15294 return Type_With_Explicit_Discrims (Full_View (Typ));
15295 end if;
15296
15297 else
15298 if Has_Discriminants (Typ) then
15299 return Typ;
15300 end if;
15301 end if;
15302
15303 if Etype (Typ) = Typ then
15304 return Empty;
15305 elsif Has_Discriminants (Typ) then
15306 return Typ;
15307 else
15308 return Type_With_Explicit_Discrims (Etype (Typ));
15309 end if;
15310
15311 end Type_With_Explicit_Discrims;
15312
15313 -- Start of processing for Expand_To_Stored_Constraint
15314
15315 begin
15316 if No (Constraint)
15317 or else Is_Empty_Elmt_List (Constraint)
15318 then
15319 return No_Elist;
15320 end if;
15321
15322 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15323
15324 if No (Explicitly_Discriminated_Type) then
15325 return No_Elist;
15326 end if;
15327
15328 Expansion := New_Elmt_List;
15329
15330 Discriminant :=
15331 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15332 while Present (Discriminant) loop
15333 Append_Elmt (
15334 Get_Discriminant_Value (
15335 Discriminant, Explicitly_Discriminated_Type, Constraint),
15336 Expansion);
15337 Next_Stored_Discriminant (Discriminant);
15338 end loop;
15339
15340 return Expansion;
15341 end Expand_To_Stored_Constraint;
15342
15343 ---------------------------
15344 -- Find_Hidden_Interface --
15345 ---------------------------
15346
15347 function Find_Hidden_Interface
15348 (Src : Elist_Id;
15349 Dest : Elist_Id) return Entity_Id
15350 is
15351 Iface : Entity_Id;
15352 Iface_Elmt : Elmt_Id;
15353
15354 begin
15355 if Present (Src) and then Present (Dest) then
15356 Iface_Elmt := First_Elmt (Src);
15357 while Present (Iface_Elmt) loop
15358 Iface := Node (Iface_Elmt);
15359
15360 if Is_Interface (Iface)
15361 and then not Contain_Interface (Iface, Dest)
15362 then
15363 return Iface;
15364 end if;
15365
15366 Next_Elmt (Iface_Elmt);
15367 end loop;
15368 end if;
15369
15370 return Empty;
15371 end Find_Hidden_Interface;
15372
15373 --------------------
15374 -- Find_Type_Name --
15375 --------------------
15376
15377 function Find_Type_Name (N : Node_Id) return Entity_Id is
15378 Id : constant Entity_Id := Defining_Identifier (N);
15379 Prev : Entity_Id;
15380 New_Id : Entity_Id;
15381 Prev_Par : Node_Id;
15382
15383 procedure Check_Duplicate_Aspects;
15384 -- Check that aspects specified in a completion have not been specified
15385 -- already in the partial view. Type_Invariant and others can be
15386 -- specified on either view but never on both.
15387
15388 procedure Tag_Mismatch;
15389 -- Diagnose a tagged partial view whose full view is untagged.
15390 -- We post the message on the full view, with a reference to
15391 -- the previous partial view. The partial view can be private
15392 -- or incomplete, and these are handled in a different manner,
15393 -- so we determine the position of the error message from the
15394 -- respective slocs of both.
15395
15396 -----------------------------
15397 -- Check_Duplicate_Aspects --
15398 -----------------------------
15399 procedure Check_Duplicate_Aspects is
15400 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15401 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15402 F_Spec, P_Spec : Node_Id;
15403
15404 begin
15405 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15406 F_Spec := First (Full_Aspects);
15407 while Present (F_Spec) loop
15408 P_Spec := First (Prev_Aspects);
15409 while Present (P_Spec) loop
15410 if
15411 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15412 then
15413 Error_Msg_N
15414 ("aspect already specified in private declaration",
15415 F_Spec);
15416 Remove (F_Spec);
15417 return;
15418 end if;
15419
15420 Next (P_Spec);
15421 end loop;
15422
15423 Next (F_Spec);
15424 end loop;
15425 end if;
15426 end Check_Duplicate_Aspects;
15427
15428 ------------------
15429 -- Tag_Mismatch --
15430 ------------------
15431
15432 procedure Tag_Mismatch is
15433 begin
15434 if Sloc (Prev) < Sloc (Id) then
15435 if Ada_Version >= Ada_2012
15436 and then Nkind (N) = N_Private_Type_Declaration
15437 then
15438 Error_Msg_NE
15439 ("declaration of private } must be a tagged type ", Id, Prev);
15440 else
15441 Error_Msg_NE
15442 ("full declaration of } must be a tagged type ", Id, Prev);
15443 end if;
15444
15445 else
15446 if Ada_Version >= Ada_2012
15447 and then Nkind (N) = N_Private_Type_Declaration
15448 then
15449 Error_Msg_NE
15450 ("declaration of private } must be a tagged type ", Prev, Id);
15451 else
15452 Error_Msg_NE
15453 ("full declaration of } must be a tagged type ", Prev, Id);
15454 end if;
15455 end if;
15456 end Tag_Mismatch;
15457
15458 -- Start of processing for Find_Type_Name
15459
15460 begin
15461 -- Find incomplete declaration, if one was given
15462
15463 Prev := Current_Entity_In_Scope (Id);
15464
15465 -- New type declaration
15466
15467 if No (Prev) then
15468 Enter_Name (Id);
15469 return Id;
15470
15471 -- Previous declaration exists
15472
15473 else
15474 Prev_Par := Parent (Prev);
15475
15476 -- Error if not incomplete/private case except if previous
15477 -- declaration is implicit, etc. Enter_Name will emit error if
15478 -- appropriate.
15479
15480 if not Is_Incomplete_Or_Private_Type (Prev) then
15481 Enter_Name (Id);
15482 New_Id := Id;
15483
15484 -- Check invalid completion of private or incomplete type
15485
15486 elsif not Nkind_In (N, N_Full_Type_Declaration,
15487 N_Task_Type_Declaration,
15488 N_Protected_Type_Declaration)
15489 and then
15490 (Ada_Version < Ada_2012
15491 or else not Is_Incomplete_Type (Prev)
15492 or else not Nkind_In (N, N_Private_Type_Declaration,
15493 N_Private_Extension_Declaration))
15494 then
15495 -- Completion must be a full type declarations (RM 7.3(4))
15496
15497 Error_Msg_Sloc := Sloc (Prev);
15498 Error_Msg_NE ("invalid completion of }", Id, Prev);
15499
15500 -- Set scope of Id to avoid cascaded errors. Entity is never
15501 -- examined again, except when saving globals in generics.
15502
15503 Set_Scope (Id, Current_Scope);
15504 New_Id := Id;
15505
15506 -- If this is a repeated incomplete declaration, no further
15507 -- checks are possible.
15508
15509 if Nkind (N) = N_Incomplete_Type_Declaration then
15510 return Prev;
15511 end if;
15512
15513 -- Case of full declaration of incomplete type
15514
15515 elsif Ekind (Prev) = E_Incomplete_Type
15516 and then (Ada_Version < Ada_2012
15517 or else No (Full_View (Prev))
15518 or else not Is_Private_Type (Full_View (Prev)))
15519 then
15520 -- Indicate that the incomplete declaration has a matching full
15521 -- declaration. The defining occurrence of the incomplete
15522 -- declaration remains the visible one, and the procedure
15523 -- Get_Full_View dereferences it whenever the type is used.
15524
15525 if Present (Full_View (Prev)) then
15526 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15527 end if;
15528
15529 Set_Full_View (Prev, Id);
15530 Append_Entity (Id, Current_Scope);
15531 Set_Is_Public (Id, Is_Public (Prev));
15532 Set_Is_Internal (Id);
15533 New_Id := Prev;
15534
15535 -- If the incomplete view is tagged, a class_wide type has been
15536 -- created already. Use it for the private type as well, in order
15537 -- to prevent multiple incompatible class-wide types that may be
15538 -- created for self-referential anonymous access components.
15539
15540 if Is_Tagged_Type (Prev)
15541 and then Present (Class_Wide_Type (Prev))
15542 then
15543 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15544 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15545
15546 -- If the incomplete type is completed by a private declaration
15547 -- the class-wide type remains associated with the incomplete
15548 -- type, to prevent order-of-elaboration issues in gigi, else
15549 -- we associate the class-wide type with the known full view.
15550
15551 if Nkind (N) /= N_Private_Type_Declaration then
15552 Set_Etype (Class_Wide_Type (Id), Id);
15553 end if;
15554 end if;
15555
15556 -- Case of full declaration of private type
15557
15558 else
15559 -- If the private type was a completion of an incomplete type then
15560 -- update Prev to reference the private type
15561
15562 if Ada_Version >= Ada_2012
15563 and then Ekind (Prev) = E_Incomplete_Type
15564 and then Present (Full_View (Prev))
15565 and then Is_Private_Type (Full_View (Prev))
15566 then
15567 Prev := Full_View (Prev);
15568 Prev_Par := Parent (Prev);
15569 end if;
15570
15571 if Nkind (N) = N_Full_Type_Declaration
15572 and then Nkind_In
15573 (Type_Definition (N), N_Record_Definition,
15574 N_Derived_Type_Definition)
15575 and then Interface_Present (Type_Definition (N))
15576 then
15577 Error_Msg_N
15578 ("completion of private type cannot be an interface", N);
15579 end if;
15580
15581 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15582 if Etype (Prev) /= Prev then
15583
15584 -- Prev is a private subtype or a derived type, and needs
15585 -- no completion.
15586
15587 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15588 New_Id := Id;
15589
15590 elsif Ekind (Prev) = E_Private_Type
15591 and then Nkind_In (N, N_Task_Type_Declaration,
15592 N_Protected_Type_Declaration)
15593 then
15594 Error_Msg_N
15595 ("completion of nonlimited type cannot be limited", N);
15596
15597 elsif Ekind (Prev) = E_Record_Type_With_Private
15598 and then Nkind_In (N, N_Task_Type_Declaration,
15599 N_Protected_Type_Declaration)
15600 then
15601 if not Is_Limited_Record (Prev) then
15602 Error_Msg_N
15603 ("completion of nonlimited type cannot be limited", N);
15604
15605 elsif No (Interface_List (N)) then
15606 Error_Msg_N
15607 ("completion of tagged private type must be tagged",
15608 N);
15609 end if;
15610 end if;
15611
15612 -- Ada 2005 (AI-251): Private extension declaration of a task
15613 -- type or a protected type. This case arises when covering
15614 -- interface types.
15615
15616 elsif Nkind_In (N, N_Task_Type_Declaration,
15617 N_Protected_Type_Declaration)
15618 then
15619 null;
15620
15621 elsif Nkind (N) /= N_Full_Type_Declaration
15622 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15623 then
15624 Error_Msg_N
15625 ("full view of private extension must be an extension", N);
15626
15627 elsif not (Abstract_Present (Parent (Prev)))
15628 and then Abstract_Present (Type_Definition (N))
15629 then
15630 Error_Msg_N
15631 ("full view of non-abstract extension cannot be abstract", N);
15632 end if;
15633
15634 if not In_Private_Part (Current_Scope) then
15635 Error_Msg_N
15636 ("declaration of full view must appear in private part", N);
15637 end if;
15638
15639 if Ada_Version >= Ada_2012 then
15640 Check_Duplicate_Aspects;
15641 end if;
15642
15643 Copy_And_Swap (Prev, Id);
15644 Set_Has_Private_Declaration (Prev);
15645 Set_Has_Private_Declaration (Id);
15646
15647 -- Preserve aspect and iterator flags that may have been set on
15648 -- the partial view.
15649
15650 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15651 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15652
15653 -- If no error, propagate freeze_node from private to full view.
15654 -- It may have been generated for an early operational item.
15655
15656 if Present (Freeze_Node (Id))
15657 and then Serious_Errors_Detected = 0
15658 and then No (Full_View (Id))
15659 then
15660 Set_Freeze_Node (Prev, Freeze_Node (Id));
15661 Set_Freeze_Node (Id, Empty);
15662 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15663 end if;
15664
15665 Set_Full_View (Id, Prev);
15666 New_Id := Prev;
15667 end if;
15668
15669 -- Verify that full declaration conforms to partial one
15670
15671 if Is_Incomplete_Or_Private_Type (Prev)
15672 and then Present (Discriminant_Specifications (Prev_Par))
15673 then
15674 if Present (Discriminant_Specifications (N)) then
15675 if Ekind (Prev) = E_Incomplete_Type then
15676 Check_Discriminant_Conformance (N, Prev, Prev);
15677 else
15678 Check_Discriminant_Conformance (N, Prev, Id);
15679 end if;
15680
15681 else
15682 Error_Msg_N
15683 ("missing discriminants in full type declaration", N);
15684
15685 -- To avoid cascaded errors on subsequent use, share the
15686 -- discriminants of the partial view.
15687
15688 Set_Discriminant_Specifications (N,
15689 Discriminant_Specifications (Prev_Par));
15690 end if;
15691 end if;
15692
15693 -- A prior untagged partial view can have an associated class-wide
15694 -- type due to use of the class attribute, and in this case the full
15695 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15696 -- of incomplete tagged declarations, but we check for it.
15697
15698 if Is_Type (Prev)
15699 and then (Is_Tagged_Type (Prev)
15700 or else Present (Class_Wide_Type (Prev)))
15701 then
15702 -- Ada 2012 (AI05-0162): A private type may be the completion of
15703 -- an incomplete type.
15704
15705 if Ada_Version >= Ada_2012
15706 and then Is_Incomplete_Type (Prev)
15707 and then Nkind_In (N, N_Private_Type_Declaration,
15708 N_Private_Extension_Declaration)
15709 then
15710 -- No need to check private extensions since they are tagged
15711
15712 if Nkind (N) = N_Private_Type_Declaration
15713 and then not Tagged_Present (N)
15714 then
15715 Tag_Mismatch;
15716 end if;
15717
15718 -- The full declaration is either a tagged type (including
15719 -- a synchronized type that implements interfaces) or a
15720 -- type extension, otherwise this is an error.
15721
15722 elsif Nkind_In (N, N_Task_Type_Declaration,
15723 N_Protected_Type_Declaration)
15724 then
15725 if No (Interface_List (N))
15726 and then not Error_Posted (N)
15727 then
15728 Tag_Mismatch;
15729 end if;
15730
15731 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15732
15733 -- Indicate that the previous declaration (tagged incomplete
15734 -- or private declaration) requires the same on the full one.
15735
15736 if not Tagged_Present (Type_Definition (N)) then
15737 Tag_Mismatch;
15738 Set_Is_Tagged_Type (Id);
15739 end if;
15740
15741 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15742 if No (Record_Extension_Part (Type_Definition (N))) then
15743 Error_Msg_NE
15744 ("full declaration of } must be a record extension",
15745 Prev, Id);
15746
15747 -- Set some attributes to produce a usable full view
15748
15749 Set_Is_Tagged_Type (Id);
15750 end if;
15751
15752 else
15753 Tag_Mismatch;
15754 end if;
15755 end if;
15756
15757 if Present (Prev)
15758 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15759 and then Present (Premature_Use (Parent (Prev)))
15760 then
15761 Error_Msg_Sloc := Sloc (N);
15762 Error_Msg_N
15763 ("\full declaration #", Premature_Use (Parent (Prev)));
15764 end if;
15765
15766 return New_Id;
15767 end if;
15768 end Find_Type_Name;
15769
15770 -------------------------
15771 -- Find_Type_Of_Object --
15772 -------------------------
15773
15774 function Find_Type_Of_Object
15775 (Obj_Def : Node_Id;
15776 Related_Nod : Node_Id) return Entity_Id
15777 is
15778 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15779 P : Node_Id := Parent (Obj_Def);
15780 T : Entity_Id;
15781 Nam : Name_Id;
15782
15783 begin
15784 -- If the parent is a component_definition node we climb to the
15785 -- component_declaration node
15786
15787 if Nkind (P) = N_Component_Definition then
15788 P := Parent (P);
15789 end if;
15790
15791 -- Case of an anonymous array subtype
15792
15793 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15794 N_Unconstrained_Array_Definition)
15795 then
15796 T := Empty;
15797 Array_Type_Declaration (T, Obj_Def);
15798
15799 -- Create an explicit subtype whenever possible
15800
15801 elsif Nkind (P) /= N_Component_Declaration
15802 and then Def_Kind = N_Subtype_Indication
15803 then
15804 -- Base name of subtype on object name, which will be unique in
15805 -- the current scope.
15806
15807 -- If this is a duplicate declaration, return base type, to avoid
15808 -- generating duplicate anonymous types.
15809
15810 if Error_Posted (P) then
15811 Analyze (Subtype_Mark (Obj_Def));
15812 return Entity (Subtype_Mark (Obj_Def));
15813 end if;
15814
15815 Nam :=
15816 New_External_Name
15817 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15818
15819 T := Make_Defining_Identifier (Sloc (P), Nam);
15820
15821 Insert_Action (Obj_Def,
15822 Make_Subtype_Declaration (Sloc (P),
15823 Defining_Identifier => T,
15824 Subtype_Indication => Relocate_Node (Obj_Def)));
15825
15826 -- This subtype may need freezing, and this will not be done
15827 -- automatically if the object declaration is not in declarative
15828 -- part. Since this is an object declaration, the type cannot always
15829 -- be frozen here. Deferred constants do not freeze their type
15830 -- (which often enough will be private).
15831
15832 if Nkind (P) = N_Object_Declaration
15833 and then Constant_Present (P)
15834 and then No (Expression (P))
15835 then
15836 null;
15837
15838 -- Here we freeze the base type of object type to catch premature use
15839 -- of discriminated private type without a full view.
15840
15841 else
15842 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15843 end if;
15844
15845 -- Ada 2005 AI-406: the object definition in an object declaration
15846 -- can be an access definition.
15847
15848 elsif Def_Kind = N_Access_Definition then
15849 T := Access_Definition (Related_Nod, Obj_Def);
15850
15851 Set_Is_Local_Anonymous_Access
15852 (T,
15853 V => (Ada_Version < Ada_2012)
15854 or else (Nkind (P) /= N_Object_Declaration)
15855 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15856
15857 -- Otherwise, the object definition is just a subtype_mark
15858
15859 else
15860 T := Process_Subtype (Obj_Def, Related_Nod);
15861
15862 -- If expansion is disabled an object definition that is an aggregate
15863 -- will not get expanded and may lead to scoping problems in the back
15864 -- end, if the object is referenced in an inner scope. In that case
15865 -- create an itype reference for the object definition now. This
15866 -- may be redundant in some cases, but harmless.
15867
15868 if Is_Itype (T)
15869 and then Nkind (Related_Nod) = N_Object_Declaration
15870 and then ASIS_Mode
15871 then
15872 Build_Itype_Reference (T, Related_Nod);
15873 end if;
15874 end if;
15875
15876 return T;
15877 end Find_Type_Of_Object;
15878
15879 --------------------------------
15880 -- Find_Type_Of_Subtype_Indic --
15881 --------------------------------
15882
15883 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15884 Typ : Entity_Id;
15885
15886 begin
15887 -- Case of subtype mark with a constraint
15888
15889 if Nkind (S) = N_Subtype_Indication then
15890 Find_Type (Subtype_Mark (S));
15891 Typ := Entity (Subtype_Mark (S));
15892
15893 if not
15894 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15895 then
15896 Error_Msg_N
15897 ("incorrect constraint for this kind of type", Constraint (S));
15898 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15899 end if;
15900
15901 -- Otherwise we have a subtype mark without a constraint
15902
15903 elsif Error_Posted (S) then
15904 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15905 return Any_Type;
15906
15907 else
15908 Find_Type (S);
15909 Typ := Entity (S);
15910 end if;
15911
15912 -- Check No_Wide_Characters restriction
15913
15914 Check_Wide_Character_Restriction (Typ, S);
15915
15916 return Typ;
15917 end Find_Type_Of_Subtype_Indic;
15918
15919 -------------------------------------
15920 -- Floating_Point_Type_Declaration --
15921 -------------------------------------
15922
15923 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15924 Digs : constant Node_Id := Digits_Expression (Def);
15925 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15926 Digs_Val : Uint;
15927 Base_Typ : Entity_Id;
15928 Implicit_Base : Entity_Id;
15929 Bound : Node_Id;
15930
15931 function Can_Derive_From (E : Entity_Id) return Boolean;
15932 -- Find if given digits value, and possibly a specified range, allows
15933 -- derivation from specified type
15934
15935 function Find_Base_Type return Entity_Id;
15936 -- Find a predefined base type that Def can derive from, or generate
15937 -- an error and substitute Long_Long_Float if none exists.
15938
15939 ---------------------
15940 -- Can_Derive_From --
15941 ---------------------
15942
15943 function Can_Derive_From (E : Entity_Id) return Boolean is
15944 Spec : constant Entity_Id := Real_Range_Specification (Def);
15945
15946 begin
15947 -- Check specified "digits" constraint
15948
15949 if Digs_Val > Digits_Value (E) then
15950 return False;
15951 end if;
15952
15953 -- Avoid types not matching pragma Float_Representation, if present
15954
15955 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15956 or else
15957 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15958 then
15959 return False;
15960 end if;
15961
15962 -- Check for matching range, if specified
15963
15964 if Present (Spec) then
15965 if Expr_Value_R (Type_Low_Bound (E)) >
15966 Expr_Value_R (Low_Bound (Spec))
15967 then
15968 return False;
15969 end if;
15970
15971 if Expr_Value_R (Type_High_Bound (E)) <
15972 Expr_Value_R (High_Bound (Spec))
15973 then
15974 return False;
15975 end if;
15976 end if;
15977
15978 return True;
15979 end Can_Derive_From;
15980
15981 --------------------
15982 -- Find_Base_Type --
15983 --------------------
15984
15985 function Find_Base_Type return Entity_Id is
15986 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15987
15988 begin
15989 -- Iterate over the predefined types in order, returning the first
15990 -- one that Def can derive from.
15991
15992 while Present (Choice) loop
15993 if Can_Derive_From (Node (Choice)) then
15994 return Node (Choice);
15995 end if;
15996
15997 Next_Elmt (Choice);
15998 end loop;
15999
16000 -- If we can't derive from any existing type, use Long_Long_Float
16001 -- and give appropriate message explaining the problem.
16002
16003 if Digs_Val > Max_Digs_Val then
16004 -- It might be the case that there is a type with the requested
16005 -- range, just not the combination of digits and range.
16006
16007 Error_Msg_N
16008 ("no predefined type has requested range and precision",
16009 Real_Range_Specification (Def));
16010
16011 else
16012 Error_Msg_N
16013 ("range too large for any predefined type",
16014 Real_Range_Specification (Def));
16015 end if;
16016
16017 return Standard_Long_Long_Float;
16018 end Find_Base_Type;
16019
16020 -- Start of processing for Floating_Point_Type_Declaration
16021
16022 begin
16023 Check_Restriction (No_Floating_Point, Def);
16024
16025 -- Create an implicit base type
16026
16027 Implicit_Base :=
16028 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16029
16030 -- Analyze and verify digits value
16031
16032 Analyze_And_Resolve (Digs, Any_Integer);
16033 Check_Digits_Expression (Digs);
16034 Digs_Val := Expr_Value (Digs);
16035
16036 -- Process possible range spec and find correct type to derive from
16037
16038 Process_Real_Range_Specification (Def);
16039
16040 -- Check that requested number of digits is not too high.
16041
16042 if Digs_Val > Max_Digs_Val then
16043 -- The check for Max_Base_Digits may be somewhat expensive, as it
16044 -- requires reading System, so only do it when necessary.
16045
16046 declare
16047 Max_Base_Digits : constant Uint :=
16048 Expr_Value
16049 (Expression
16050 (Parent (RTE (RE_Max_Base_Digits))));
16051
16052 begin
16053 if Digs_Val > Max_Base_Digits then
16054 Error_Msg_Uint_1 := Max_Base_Digits;
16055 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16056
16057 elsif No (Real_Range_Specification (Def)) then
16058 Error_Msg_Uint_1 := Max_Digs_Val;
16059 Error_Msg_N ("types with more than ^ digits need range spec "
16060 & "(RM 3.5.7(6))", Digs);
16061 end if;
16062 end;
16063 end if;
16064
16065 -- Find a suitable type to derive from or complain and use a substitute
16066
16067 Base_Typ := Find_Base_Type;
16068
16069 -- If there are bounds given in the declaration use them as the bounds
16070 -- of the type, otherwise use the bounds of the predefined base type
16071 -- that was chosen based on the Digits value.
16072
16073 if Present (Real_Range_Specification (Def)) then
16074 Set_Scalar_Range (T, Real_Range_Specification (Def));
16075 Set_Is_Constrained (T);
16076
16077 -- The bounds of this range must be converted to machine numbers
16078 -- in accordance with RM 4.9(38).
16079
16080 Bound := Type_Low_Bound (T);
16081
16082 if Nkind (Bound) = N_Real_Literal then
16083 Set_Realval
16084 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16085 Set_Is_Machine_Number (Bound);
16086 end if;
16087
16088 Bound := Type_High_Bound (T);
16089
16090 if Nkind (Bound) = N_Real_Literal then
16091 Set_Realval
16092 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16093 Set_Is_Machine_Number (Bound);
16094 end if;
16095
16096 else
16097 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16098 end if;
16099
16100 -- Complete definition of implicit base and declared first subtype
16101
16102 Set_Etype (Implicit_Base, Base_Typ);
16103
16104 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16105 Set_Size_Info (Implicit_Base, (Base_Typ));
16106 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16107 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16108 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16109 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16110
16111 Set_Ekind (T, E_Floating_Point_Subtype);
16112 Set_Etype (T, Implicit_Base);
16113
16114 Set_Size_Info (T, (Implicit_Base));
16115 Set_RM_Size (T, RM_Size (Implicit_Base));
16116 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16117 Set_Digits_Value (T, Digs_Val);
16118 end Floating_Point_Type_Declaration;
16119
16120 ----------------------------
16121 -- Get_Discriminant_Value --
16122 ----------------------------
16123
16124 -- This is the situation:
16125
16126 -- There is a non-derived type
16127
16128 -- type T0 (Dx, Dy, Dz...)
16129
16130 -- There are zero or more levels of derivation, with each derivation
16131 -- either purely inheriting the discriminants, or defining its own.
16132
16133 -- type Ti is new Ti-1
16134 -- or
16135 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16136 -- or
16137 -- subtype Ti is ...
16138
16139 -- The subtype issue is avoided by the use of Original_Record_Component,
16140 -- and the fact that derived subtypes also derive the constraints.
16141
16142 -- This chain leads back from
16143
16144 -- Typ_For_Constraint
16145
16146 -- Typ_For_Constraint has discriminants, and the value for each
16147 -- discriminant is given by its corresponding Elmt of Constraints.
16148
16149 -- Discriminant is some discriminant in this hierarchy
16150
16151 -- We need to return its value
16152
16153 -- We do this by recursively searching each level, and looking for
16154 -- Discriminant. Once we get to the bottom, we start backing up
16155 -- returning the value for it which may in turn be a discriminant
16156 -- further up, so on the backup we continue the substitution.
16157
16158 function Get_Discriminant_Value
16159 (Discriminant : Entity_Id;
16160 Typ_For_Constraint : Entity_Id;
16161 Constraint : Elist_Id) return Node_Id
16162 is
16163 function Root_Corresponding_Discriminant
16164 (Discr : Entity_Id) return Entity_Id;
16165 -- Given a discriminant, traverse the chain of inherited discriminants
16166 -- and return the topmost discriminant.
16167
16168 function Search_Derivation_Levels
16169 (Ti : Entity_Id;
16170 Discrim_Values : Elist_Id;
16171 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16172 -- This is the routine that performs the recursive search of levels
16173 -- as described above.
16174
16175 -------------------------------------
16176 -- Root_Corresponding_Discriminant --
16177 -------------------------------------
16178
16179 function Root_Corresponding_Discriminant
16180 (Discr : Entity_Id) return Entity_Id
16181 is
16182 D : Entity_Id;
16183
16184 begin
16185 D := Discr;
16186 while Present (Corresponding_Discriminant (D)) loop
16187 D := Corresponding_Discriminant (D);
16188 end loop;
16189
16190 return D;
16191 end Root_Corresponding_Discriminant;
16192
16193 ------------------------------
16194 -- Search_Derivation_Levels --
16195 ------------------------------
16196
16197 function Search_Derivation_Levels
16198 (Ti : Entity_Id;
16199 Discrim_Values : Elist_Id;
16200 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16201 is
16202 Assoc : Elmt_Id;
16203 Disc : Entity_Id;
16204 Result : Node_Or_Entity_Id;
16205 Result_Entity : Node_Id;
16206
16207 begin
16208 -- If inappropriate type, return Error, this happens only in
16209 -- cascaded error situations, and we want to avoid a blow up.
16210
16211 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16212 return Error;
16213 end if;
16214
16215 -- Look deeper if possible. Use Stored_Constraints only for
16216 -- untagged types. For tagged types use the given constraint.
16217 -- This asymmetry needs explanation???
16218
16219 if not Stored_Discrim_Values
16220 and then Present (Stored_Constraint (Ti))
16221 and then not Is_Tagged_Type (Ti)
16222 then
16223 Result :=
16224 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16225 else
16226 declare
16227 Td : constant Entity_Id := Etype (Ti);
16228
16229 begin
16230 if Td = Ti then
16231 Result := Discriminant;
16232
16233 else
16234 if Present (Stored_Constraint (Ti)) then
16235 Result :=
16236 Search_Derivation_Levels
16237 (Td, Stored_Constraint (Ti), True);
16238 else
16239 Result :=
16240 Search_Derivation_Levels
16241 (Td, Discrim_Values, Stored_Discrim_Values);
16242 end if;
16243 end if;
16244 end;
16245 end if;
16246
16247 -- Extra underlying places to search, if not found above. For
16248 -- concurrent types, the relevant discriminant appears in the
16249 -- corresponding record. For a type derived from a private type
16250 -- without discriminant, the full view inherits the discriminants
16251 -- of the full view of the parent.
16252
16253 if Result = Discriminant then
16254 if Is_Concurrent_Type (Ti)
16255 and then Present (Corresponding_Record_Type (Ti))
16256 then
16257 Result :=
16258 Search_Derivation_Levels (
16259 Corresponding_Record_Type (Ti),
16260 Discrim_Values,
16261 Stored_Discrim_Values);
16262
16263 elsif Is_Private_Type (Ti)
16264 and then not Has_Discriminants (Ti)
16265 and then Present (Full_View (Ti))
16266 and then Etype (Full_View (Ti)) /= Ti
16267 then
16268 Result :=
16269 Search_Derivation_Levels (
16270 Full_View (Ti),
16271 Discrim_Values,
16272 Stored_Discrim_Values);
16273 end if;
16274 end if;
16275
16276 -- If Result is not a (reference to a) discriminant, return it,
16277 -- otherwise set Result_Entity to the discriminant.
16278
16279 if Nkind (Result) = N_Defining_Identifier then
16280 pragma Assert (Result = Discriminant);
16281 Result_Entity := Result;
16282
16283 else
16284 if not Denotes_Discriminant (Result) then
16285 return Result;
16286 end if;
16287
16288 Result_Entity := Entity (Result);
16289 end if;
16290
16291 -- See if this level of derivation actually has discriminants
16292 -- because tagged derivations can add them, hence the lower
16293 -- levels need not have any.
16294
16295 if not Has_Discriminants (Ti) then
16296 return Result;
16297 end if;
16298
16299 -- Scan Ti's discriminants for Result_Entity,
16300 -- and return its corresponding value, if any.
16301
16302 Result_Entity := Original_Record_Component (Result_Entity);
16303
16304 Assoc := First_Elmt (Discrim_Values);
16305
16306 if Stored_Discrim_Values then
16307 Disc := First_Stored_Discriminant (Ti);
16308 else
16309 Disc := First_Discriminant (Ti);
16310 end if;
16311
16312 while Present (Disc) loop
16313 pragma Assert (Present (Assoc));
16314
16315 if Original_Record_Component (Disc) = Result_Entity then
16316 return Node (Assoc);
16317 end if;
16318
16319 Next_Elmt (Assoc);
16320
16321 if Stored_Discrim_Values then
16322 Next_Stored_Discriminant (Disc);
16323 else
16324 Next_Discriminant (Disc);
16325 end if;
16326 end loop;
16327
16328 -- Could not find it
16329 --
16330 return Result;
16331 end Search_Derivation_Levels;
16332
16333 -- Local Variables
16334
16335 Result : Node_Or_Entity_Id;
16336
16337 -- Start of processing for Get_Discriminant_Value
16338
16339 begin
16340 -- ??? This routine is a gigantic mess and will be deleted. For the
16341 -- time being just test for the trivial case before calling recurse.
16342
16343 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16344 declare
16345 D : Entity_Id;
16346 E : Elmt_Id;
16347
16348 begin
16349 D := First_Discriminant (Typ_For_Constraint);
16350 E := First_Elmt (Constraint);
16351 while Present (D) loop
16352 if Chars (D) = Chars (Discriminant) then
16353 return Node (E);
16354 end if;
16355
16356 Next_Discriminant (D);
16357 Next_Elmt (E);
16358 end loop;
16359 end;
16360 end if;
16361
16362 Result := Search_Derivation_Levels
16363 (Typ_For_Constraint, Constraint, False);
16364
16365 -- ??? hack to disappear when this routine is gone
16366
16367 if Nkind (Result) = N_Defining_Identifier then
16368 declare
16369 D : Entity_Id;
16370 E : Elmt_Id;
16371
16372 begin
16373 D := First_Discriminant (Typ_For_Constraint);
16374 E := First_Elmt (Constraint);
16375 while Present (D) loop
16376 if Root_Corresponding_Discriminant (D) = Discriminant then
16377 return Node (E);
16378 end if;
16379
16380 Next_Discriminant (D);
16381 Next_Elmt (E);
16382 end loop;
16383 end;
16384 end if;
16385
16386 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16387 return Result;
16388 end Get_Discriminant_Value;
16389
16390 --------------------------
16391 -- Has_Range_Constraint --
16392 --------------------------
16393
16394 function Has_Range_Constraint (N : Node_Id) return Boolean is
16395 C : constant Node_Id := Constraint (N);
16396
16397 begin
16398 if Nkind (C) = N_Range_Constraint then
16399 return True;
16400
16401 elsif Nkind (C) = N_Digits_Constraint then
16402 return
16403 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16404 or else
16405 Present (Range_Constraint (C));
16406
16407 elsif Nkind (C) = N_Delta_Constraint then
16408 return Present (Range_Constraint (C));
16409
16410 else
16411 return False;
16412 end if;
16413 end Has_Range_Constraint;
16414
16415 ------------------------
16416 -- Inherit_Components --
16417 ------------------------
16418
16419 function Inherit_Components
16420 (N : Node_Id;
16421 Parent_Base : Entity_Id;
16422 Derived_Base : Entity_Id;
16423 Is_Tagged : Boolean;
16424 Inherit_Discr : Boolean;
16425 Discs : Elist_Id) return Elist_Id
16426 is
16427 Assoc_List : constant Elist_Id := New_Elmt_List;
16428
16429 procedure Inherit_Component
16430 (Old_C : Entity_Id;
16431 Plain_Discrim : Boolean := False;
16432 Stored_Discrim : Boolean := False);
16433 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16434 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16435 -- True, Old_C is a stored discriminant. If they are both false then
16436 -- Old_C is a regular component.
16437
16438 -----------------------
16439 -- Inherit_Component --
16440 -----------------------
16441
16442 procedure Inherit_Component
16443 (Old_C : Entity_Id;
16444 Plain_Discrim : Boolean := False;
16445 Stored_Discrim : Boolean := False)
16446 is
16447 procedure Set_Anonymous_Type (Id : Entity_Id);
16448 -- Id denotes the entity of an access discriminant or anonymous
16449 -- access component. Set the type of Id to either the same type of
16450 -- Old_C or create a new one depending on whether the parent and
16451 -- the child types are in the same scope.
16452
16453 ------------------------
16454 -- Set_Anonymous_Type --
16455 ------------------------
16456
16457 procedure Set_Anonymous_Type (Id : Entity_Id) is
16458 Old_Typ : constant Entity_Id := Etype (Old_C);
16459
16460 begin
16461 if Scope (Parent_Base) = Scope (Derived_Base) then
16462 Set_Etype (Id, Old_Typ);
16463
16464 -- The parent and the derived type are in two different scopes.
16465 -- Reuse the type of the original discriminant / component by
16466 -- copying it in order to preserve all attributes.
16467
16468 else
16469 declare
16470 Typ : constant Entity_Id := New_Copy (Old_Typ);
16471
16472 begin
16473 Set_Etype (Id, Typ);
16474
16475 -- Since we do not generate component declarations for
16476 -- inherited components, associate the itype with the
16477 -- derived type.
16478
16479 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16480 Set_Scope (Typ, Derived_Base);
16481 end;
16482 end if;
16483 end Set_Anonymous_Type;
16484
16485 -- Local variables and constants
16486
16487 New_C : constant Entity_Id := New_Copy (Old_C);
16488
16489 Corr_Discrim : Entity_Id;
16490 Discrim : Entity_Id;
16491
16492 -- Start of processing for Inherit_Component
16493
16494 begin
16495 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16496
16497 Set_Parent (New_C, Parent (Old_C));
16498
16499 -- Regular discriminants and components must be inserted in the scope
16500 -- of the Derived_Base. Do it here.
16501
16502 if not Stored_Discrim then
16503 Enter_Name (New_C);
16504 end if;
16505
16506 -- For tagged types the Original_Record_Component must point to
16507 -- whatever this field was pointing to in the parent type. This has
16508 -- already been achieved by the call to New_Copy above.
16509
16510 if not Is_Tagged then
16511 Set_Original_Record_Component (New_C, New_C);
16512 end if;
16513
16514 -- Set the proper type of an access discriminant
16515
16516 if Ekind (New_C) = E_Discriminant
16517 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16518 then
16519 Set_Anonymous_Type (New_C);
16520 end if;
16521
16522 -- If we have inherited a component then see if its Etype contains
16523 -- references to Parent_Base discriminants. In this case, replace
16524 -- these references with the constraints given in Discs. We do not
16525 -- do this for the partial view of private types because this is
16526 -- not needed (only the components of the full view will be used
16527 -- for code generation) and cause problem. We also avoid this
16528 -- transformation in some error situations.
16529
16530 if Ekind (New_C) = E_Component then
16531
16532 -- Set the proper type of an anonymous access component
16533
16534 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16535 Set_Anonymous_Type (New_C);
16536
16537 elsif (Is_Private_Type (Derived_Base)
16538 and then not Is_Generic_Type (Derived_Base))
16539 or else (Is_Empty_Elmt_List (Discs)
16540 and then not Expander_Active)
16541 then
16542 Set_Etype (New_C, Etype (Old_C));
16543
16544 else
16545 -- The current component introduces a circularity of the
16546 -- following kind:
16547
16548 -- limited with Pack_2;
16549 -- package Pack_1 is
16550 -- type T_1 is tagged record
16551 -- Comp : access Pack_2.T_2;
16552 -- ...
16553 -- end record;
16554 -- end Pack_1;
16555
16556 -- with Pack_1;
16557 -- package Pack_2 is
16558 -- type T_2 is new Pack_1.T_1 with ...;
16559 -- end Pack_2;
16560
16561 Set_Etype
16562 (New_C,
16563 Constrain_Component_Type
16564 (Old_C, Derived_Base, N, Parent_Base, Discs));
16565 end if;
16566 end if;
16567
16568 -- In derived tagged types it is illegal to reference a non
16569 -- discriminant component in the parent type. To catch this, mark
16570 -- these components with an Ekind of E_Void. This will be reset in
16571 -- Record_Type_Definition after processing the record extension of
16572 -- the derived type.
16573
16574 -- If the declaration is a private extension, there is no further
16575 -- record extension to process, and the components retain their
16576 -- current kind, because they are visible at this point.
16577
16578 if Is_Tagged and then Ekind (New_C) = E_Component
16579 and then Nkind (N) /= N_Private_Extension_Declaration
16580 then
16581 Set_Ekind (New_C, E_Void);
16582 end if;
16583
16584 if Plain_Discrim then
16585 Set_Corresponding_Discriminant (New_C, Old_C);
16586 Build_Discriminal (New_C);
16587
16588 -- If we are explicitly inheriting a stored discriminant it will be
16589 -- completely hidden.
16590
16591 elsif Stored_Discrim then
16592 Set_Corresponding_Discriminant (New_C, Empty);
16593 Set_Discriminal (New_C, Empty);
16594 Set_Is_Completely_Hidden (New_C);
16595
16596 -- Set the Original_Record_Component of each discriminant in the
16597 -- derived base to point to the corresponding stored that we just
16598 -- created.
16599
16600 Discrim := First_Discriminant (Derived_Base);
16601 while Present (Discrim) loop
16602 Corr_Discrim := Corresponding_Discriminant (Discrim);
16603
16604 -- Corr_Discrim could be missing in an error situation
16605
16606 if Present (Corr_Discrim)
16607 and then Original_Record_Component (Corr_Discrim) = Old_C
16608 then
16609 Set_Original_Record_Component (Discrim, New_C);
16610 end if;
16611
16612 Next_Discriminant (Discrim);
16613 end loop;
16614
16615 Append_Entity (New_C, Derived_Base);
16616 end if;
16617
16618 if not Is_Tagged then
16619 Append_Elmt (Old_C, Assoc_List);
16620 Append_Elmt (New_C, Assoc_List);
16621 end if;
16622 end Inherit_Component;
16623
16624 -- Variables local to Inherit_Component
16625
16626 Loc : constant Source_Ptr := Sloc (N);
16627
16628 Parent_Discrim : Entity_Id;
16629 Stored_Discrim : Entity_Id;
16630 D : Entity_Id;
16631 Component : Entity_Id;
16632
16633 -- Start of processing for Inherit_Components
16634
16635 begin
16636 if not Is_Tagged then
16637 Append_Elmt (Parent_Base, Assoc_List);
16638 Append_Elmt (Derived_Base, Assoc_List);
16639 end if;
16640
16641 -- Inherit parent discriminants if needed
16642
16643 if Inherit_Discr then
16644 Parent_Discrim := First_Discriminant (Parent_Base);
16645 while Present (Parent_Discrim) loop
16646 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16647 Next_Discriminant (Parent_Discrim);
16648 end loop;
16649 end if;
16650
16651 -- Create explicit stored discrims for untagged types when necessary
16652
16653 if not Has_Unknown_Discriminants (Derived_Base)
16654 and then Has_Discriminants (Parent_Base)
16655 and then not Is_Tagged
16656 and then
16657 (not Inherit_Discr
16658 or else First_Discriminant (Parent_Base) /=
16659 First_Stored_Discriminant (Parent_Base))
16660 then
16661 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16662 while Present (Stored_Discrim) loop
16663 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16664 Next_Stored_Discriminant (Stored_Discrim);
16665 end loop;
16666 end if;
16667
16668 -- See if we can apply the second transformation for derived types, as
16669 -- explained in point 6. in the comments above Build_Derived_Record_Type
16670 -- This is achieved by appending Derived_Base discriminants into Discs,
16671 -- which has the side effect of returning a non empty Discs list to the
16672 -- caller of Inherit_Components, which is what we want. This must be
16673 -- done for private derived types if there are explicit stored
16674 -- discriminants, to ensure that we can retrieve the values of the
16675 -- constraints provided in the ancestors.
16676
16677 if Inherit_Discr
16678 and then Is_Empty_Elmt_List (Discs)
16679 and then Present (First_Discriminant (Derived_Base))
16680 and then
16681 (not Is_Private_Type (Derived_Base)
16682 or else Is_Completely_Hidden
16683 (First_Stored_Discriminant (Derived_Base))
16684 or else Is_Generic_Type (Derived_Base))
16685 then
16686 D := First_Discriminant (Derived_Base);
16687 while Present (D) loop
16688 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16689 Next_Discriminant (D);
16690 end loop;
16691 end if;
16692
16693 -- Finally, inherit non-discriminant components unless they are not
16694 -- visible because defined or inherited from the full view of the
16695 -- parent. Don't inherit the _parent field of the parent type.
16696
16697 Component := First_Entity (Parent_Base);
16698 while Present (Component) loop
16699
16700 -- Ada 2005 (AI-251): Do not inherit components associated with
16701 -- secondary tags of the parent.
16702
16703 if Ekind (Component) = E_Component
16704 and then Present (Related_Type (Component))
16705 then
16706 null;
16707
16708 elsif Ekind (Component) /= E_Component
16709 or else Chars (Component) = Name_uParent
16710 then
16711 null;
16712
16713 -- If the derived type is within the parent type's declarative
16714 -- region, then the components can still be inherited even though
16715 -- they aren't visible at this point. This can occur for cases
16716 -- such as within public child units where the components must
16717 -- become visible upon entering the child unit's private part.
16718
16719 elsif not Is_Visible_Component (Component)
16720 and then not In_Open_Scopes (Scope (Parent_Base))
16721 then
16722 null;
16723
16724 elsif Ekind_In (Derived_Base, E_Private_Type,
16725 E_Limited_Private_Type)
16726 then
16727 null;
16728
16729 else
16730 Inherit_Component (Component);
16731 end if;
16732
16733 Next_Entity (Component);
16734 end loop;
16735
16736 -- For tagged derived types, inherited discriminants cannot be used in
16737 -- component declarations of the record extension part. To achieve this
16738 -- we mark the inherited discriminants as not visible.
16739
16740 if Is_Tagged and then Inherit_Discr then
16741 D := First_Discriminant (Derived_Base);
16742 while Present (D) loop
16743 Set_Is_Immediately_Visible (D, False);
16744 Next_Discriminant (D);
16745 end loop;
16746 end if;
16747
16748 return Assoc_List;
16749 end Inherit_Components;
16750
16751 -----------------------
16752 -- Is_Null_Extension --
16753 -----------------------
16754
16755 function Is_Null_Extension (T : Entity_Id) return Boolean is
16756 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16757 Comp_List : Node_Id;
16758 Comp : Node_Id;
16759
16760 begin
16761 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16762 or else not Is_Tagged_Type (T)
16763 or else Nkind (Type_Definition (Type_Decl)) /=
16764 N_Derived_Type_Definition
16765 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16766 then
16767 return False;
16768 end if;
16769
16770 Comp_List :=
16771 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16772
16773 if Present (Discriminant_Specifications (Type_Decl)) then
16774 return False;
16775
16776 elsif Present (Comp_List)
16777 and then Is_Non_Empty_List (Component_Items (Comp_List))
16778 then
16779 Comp := First (Component_Items (Comp_List));
16780
16781 -- Only user-defined components are relevant. The component list
16782 -- may also contain a parent component and internal components
16783 -- corresponding to secondary tags, but these do not determine
16784 -- whether this is a null extension.
16785
16786 while Present (Comp) loop
16787 if Comes_From_Source (Comp) then
16788 return False;
16789 end if;
16790
16791 Next (Comp);
16792 end loop;
16793
16794 return True;
16795 else
16796 return True;
16797 end if;
16798 end Is_Null_Extension;
16799
16800 ------------------------------
16801 -- Is_Valid_Constraint_Kind --
16802 ------------------------------
16803
16804 function Is_Valid_Constraint_Kind
16805 (T_Kind : Type_Kind;
16806 Constraint_Kind : Node_Kind) return Boolean
16807 is
16808 begin
16809 case T_Kind is
16810 when Enumeration_Kind |
16811 Integer_Kind =>
16812 return Constraint_Kind = N_Range_Constraint;
16813
16814 when Decimal_Fixed_Point_Kind =>
16815 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16816 N_Range_Constraint);
16817
16818 when Ordinary_Fixed_Point_Kind =>
16819 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16820 N_Range_Constraint);
16821
16822 when Float_Kind =>
16823 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16824 N_Range_Constraint);
16825
16826 when Access_Kind |
16827 Array_Kind |
16828 E_Record_Type |
16829 E_Record_Subtype |
16830 Class_Wide_Kind |
16831 E_Incomplete_Type |
16832 Private_Kind |
16833 Concurrent_Kind =>
16834 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16835
16836 when others =>
16837 return True; -- Error will be detected later
16838 end case;
16839 end Is_Valid_Constraint_Kind;
16840
16841 --------------------------
16842 -- Is_Visible_Component --
16843 --------------------------
16844
16845 function Is_Visible_Component
16846 (C : Entity_Id;
16847 N : Node_Id := Empty) return Boolean
16848 is
16849 Original_Comp : Entity_Id := Empty;
16850 Original_Scope : Entity_Id;
16851 Type_Scope : Entity_Id;
16852
16853 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16854 -- Check whether parent type of inherited component is declared locally,
16855 -- possibly within a nested package or instance. The current scope is
16856 -- the derived record itself.
16857
16858 -------------------
16859 -- Is_Local_Type --
16860 -------------------
16861
16862 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16863 Scop : Entity_Id;
16864
16865 begin
16866 Scop := Scope (Typ);
16867 while Present (Scop)
16868 and then Scop /= Standard_Standard
16869 loop
16870 if Scop = Scope (Current_Scope) then
16871 return True;
16872 end if;
16873
16874 Scop := Scope (Scop);
16875 end loop;
16876
16877 return False;
16878 end Is_Local_Type;
16879
16880 -- Start of processing for Is_Visible_Component
16881
16882 begin
16883 if Ekind_In (C, E_Component, E_Discriminant) then
16884 Original_Comp := Original_Record_Component (C);
16885 end if;
16886
16887 if No (Original_Comp) then
16888
16889 -- Premature usage, or previous error
16890
16891 return False;
16892
16893 else
16894 Original_Scope := Scope (Original_Comp);
16895 Type_Scope := Scope (Base_Type (Scope (C)));
16896 end if;
16897
16898 -- For an untagged type derived from a private type, the only visible
16899 -- components are new discriminants. In an instance all components are
16900 -- visible (see Analyze_Selected_Component).
16901
16902 if not Is_Tagged_Type (Original_Scope) then
16903 return not Has_Private_Ancestor (Original_Scope)
16904 or else In_Open_Scopes (Scope (Original_Scope))
16905 or else In_Instance
16906 or else (Ekind (Original_Comp) = E_Discriminant
16907 and then Original_Scope = Type_Scope);
16908
16909 -- If it is _Parent or _Tag, there is no visibility issue
16910
16911 elsif not Comes_From_Source (Original_Comp) then
16912 return True;
16913
16914 -- Discriminants are visible unless the (private) type has unknown
16915 -- discriminants. If the discriminant reference is inserted for a
16916 -- discriminant check on a full view it is also visible.
16917
16918 elsif Ekind (Original_Comp) = E_Discriminant
16919 and then
16920 (not Has_Unknown_Discriminants (Original_Scope)
16921 or else (Present (N)
16922 and then Nkind (N) = N_Selected_Component
16923 and then Nkind (Prefix (N)) = N_Type_Conversion
16924 and then not Comes_From_Source (Prefix (N))))
16925 then
16926 return True;
16927
16928 -- In the body of an instantiation, no need to check for the visibility
16929 -- of a component.
16930
16931 elsif In_Instance_Body then
16932 return True;
16933
16934 -- If the component has been declared in an ancestor which is currently
16935 -- a private type, then it is not visible. The same applies if the
16936 -- component's containing type is not in an open scope and the original
16937 -- component's enclosing type is a visible full view of a private type
16938 -- (which can occur in cases where an attempt is being made to reference
16939 -- a component in a sibling package that is inherited from a visible
16940 -- component of a type in an ancestor package; the component in the
16941 -- sibling package should not be visible even though the component it
16942 -- inherited from is visible). This does not apply however in the case
16943 -- where the scope of the type is a private child unit, or when the
16944 -- parent comes from a local package in which the ancestor is currently
16945 -- visible. The latter suppression of visibility is needed for cases
16946 -- that are tested in B730006.
16947
16948 elsif Is_Private_Type (Original_Scope)
16949 or else
16950 (not Is_Private_Descendant (Type_Scope)
16951 and then not In_Open_Scopes (Type_Scope)
16952 and then Has_Private_Declaration (Original_Scope))
16953 then
16954 -- If the type derives from an entity in a formal package, there
16955 -- are no additional visible components.
16956
16957 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16958 N_Formal_Package_Declaration
16959 then
16960 return False;
16961
16962 -- if we are not in the private part of the current package, there
16963 -- are no additional visible components.
16964
16965 elsif Ekind (Scope (Current_Scope)) = E_Package
16966 and then not In_Private_Part (Scope (Current_Scope))
16967 then
16968 return False;
16969 else
16970 return
16971 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16972 and then In_Open_Scopes (Scope (Original_Scope))
16973 and then Is_Local_Type (Type_Scope);
16974 end if;
16975
16976 -- There is another weird way in which a component may be invisible when
16977 -- the private and the full view are not derived from the same ancestor.
16978 -- Here is an example :
16979
16980 -- type A1 is tagged record F1 : integer; end record;
16981 -- type A2 is new A1 with record F2 : integer; end record;
16982 -- type T is new A1 with private;
16983 -- private
16984 -- type T is new A2 with null record;
16985
16986 -- In this case, the full view of T inherits F1 and F2 but the private
16987 -- view inherits only F1
16988
16989 else
16990 declare
16991 Ancestor : Entity_Id := Scope (C);
16992
16993 begin
16994 loop
16995 if Ancestor = Original_Scope then
16996 return True;
16997 elsif Ancestor = Etype (Ancestor) then
16998 return False;
16999 end if;
17000
17001 Ancestor := Etype (Ancestor);
17002 end loop;
17003 end;
17004 end if;
17005 end Is_Visible_Component;
17006
17007 --------------------------
17008 -- Make_Class_Wide_Type --
17009 --------------------------
17010
17011 procedure Make_Class_Wide_Type (T : Entity_Id) is
17012 CW_Type : Entity_Id;
17013 CW_Name : Name_Id;
17014 Next_E : Entity_Id;
17015
17016 begin
17017 if Present (Class_Wide_Type (T)) then
17018
17019 -- The class-wide type is a partially decorated entity created for a
17020 -- unanalyzed tagged type referenced through a limited with clause.
17021 -- When the tagged type is analyzed, its class-wide type needs to be
17022 -- redecorated. Note that we reuse the entity created by Decorate_
17023 -- Tagged_Type in order to preserve all links.
17024
17025 if Materialize_Entity (Class_Wide_Type (T)) then
17026 CW_Type := Class_Wide_Type (T);
17027 Set_Materialize_Entity (CW_Type, False);
17028
17029 -- The class wide type can have been defined by the partial view, in
17030 -- which case everything is already done.
17031
17032 else
17033 return;
17034 end if;
17035
17036 -- Default case, we need to create a new class-wide type
17037
17038 else
17039 CW_Type :=
17040 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17041 end if;
17042
17043 -- Inherit root type characteristics
17044
17045 CW_Name := Chars (CW_Type);
17046 Next_E := Next_Entity (CW_Type);
17047 Copy_Node (T, CW_Type);
17048 Set_Comes_From_Source (CW_Type, False);
17049 Set_Chars (CW_Type, CW_Name);
17050 Set_Parent (CW_Type, Parent (T));
17051 Set_Next_Entity (CW_Type, Next_E);
17052
17053 -- Ensure we have a new freeze node for the class-wide type. The partial
17054 -- view may have freeze action of its own, requiring a proper freeze
17055 -- node, and the same freeze node cannot be shared between the two
17056 -- types.
17057
17058 Set_Has_Delayed_Freeze (CW_Type);
17059 Set_Freeze_Node (CW_Type, Empty);
17060
17061 -- Customize the class-wide type: It has no prim. op., it cannot be
17062 -- abstract and its Etype points back to the specific root type.
17063
17064 Set_Ekind (CW_Type, E_Class_Wide_Type);
17065 Set_Is_Tagged_Type (CW_Type, True);
17066 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17067 Set_Is_Abstract_Type (CW_Type, False);
17068 Set_Is_Constrained (CW_Type, False);
17069 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17070
17071 if Ekind (T) = E_Class_Wide_Subtype then
17072 Set_Etype (CW_Type, Etype (Base_Type (T)));
17073 else
17074 Set_Etype (CW_Type, T);
17075 end if;
17076
17077 -- If this is the class_wide type of a constrained subtype, it does
17078 -- not have discriminants.
17079
17080 Set_Has_Discriminants (CW_Type,
17081 Has_Discriminants (T) and then not Is_Constrained (T));
17082
17083 Set_Has_Unknown_Discriminants (CW_Type, True);
17084 Set_Class_Wide_Type (T, CW_Type);
17085 Set_Equivalent_Type (CW_Type, Empty);
17086
17087 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17088
17089 Set_Class_Wide_Type (CW_Type, CW_Type);
17090 end Make_Class_Wide_Type;
17091
17092 ----------------
17093 -- Make_Index --
17094 ----------------
17095
17096 procedure Make_Index
17097 (I : Node_Id;
17098 Related_Nod : Node_Id;
17099 Related_Id : Entity_Id := Empty;
17100 Suffix_Index : Nat := 1;
17101 In_Iter_Schm : Boolean := False)
17102 is
17103 R : Node_Id;
17104 T : Entity_Id;
17105 Def_Id : Entity_Id := Empty;
17106 Found : Boolean := False;
17107
17108 begin
17109 -- For a discrete range used in a constrained array definition and
17110 -- defined by a range, an implicit conversion to the predefined type
17111 -- INTEGER is assumed if each bound is either a numeric literal, a named
17112 -- number, or an attribute, and the type of both bounds (prior to the
17113 -- implicit conversion) is the type universal_integer. Otherwise, both
17114 -- bounds must be of the same discrete type, other than universal
17115 -- integer; this type must be determinable independently of the
17116 -- context, but using the fact that the type must be discrete and that
17117 -- both bounds must have the same type.
17118
17119 -- Character literals also have a universal type in the absence of
17120 -- of additional context, and are resolved to Standard_Character.
17121
17122 if Nkind (I) = N_Range then
17123
17124 -- The index is given by a range constraint. The bounds are known
17125 -- to be of a consistent type.
17126
17127 if not Is_Overloaded (I) then
17128 T := Etype (I);
17129
17130 -- For universal bounds, choose the specific predefined type
17131
17132 if T = Universal_Integer then
17133 T := Standard_Integer;
17134
17135 elsif T = Any_Character then
17136 Ambiguous_Character (Low_Bound (I));
17137
17138 T := Standard_Character;
17139 end if;
17140
17141 -- The node may be overloaded because some user-defined operators
17142 -- are available, but if a universal interpretation exists it is
17143 -- also the selected one.
17144
17145 elsif Universal_Interpretation (I) = Universal_Integer then
17146 T := Standard_Integer;
17147
17148 else
17149 T := Any_Type;
17150
17151 declare
17152 Ind : Interp_Index;
17153 It : Interp;
17154
17155 begin
17156 Get_First_Interp (I, Ind, It);
17157 while Present (It.Typ) loop
17158 if Is_Discrete_Type (It.Typ) then
17159
17160 if Found
17161 and then not Covers (It.Typ, T)
17162 and then not Covers (T, It.Typ)
17163 then
17164 Error_Msg_N ("ambiguous bounds in discrete range", I);
17165 exit;
17166 else
17167 T := It.Typ;
17168 Found := True;
17169 end if;
17170 end if;
17171
17172 Get_Next_Interp (Ind, It);
17173 end loop;
17174
17175 if T = Any_Type then
17176 Error_Msg_N ("discrete type required for range", I);
17177 Set_Etype (I, Any_Type);
17178 return;
17179
17180 elsif T = Universal_Integer then
17181 T := Standard_Integer;
17182 end if;
17183 end;
17184 end if;
17185
17186 if not Is_Discrete_Type (T) then
17187 Error_Msg_N ("discrete type required for range", I);
17188 Set_Etype (I, Any_Type);
17189 return;
17190 end if;
17191
17192 if Nkind (Low_Bound (I)) = N_Attribute_Reference
17193 and then Attribute_Name (Low_Bound (I)) = Name_First
17194 and then Is_Entity_Name (Prefix (Low_Bound (I)))
17195 and then Is_Type (Entity (Prefix (Low_Bound (I))))
17196 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
17197 then
17198 -- The type of the index will be the type of the prefix, as long
17199 -- as the upper bound is 'Last of the same type.
17200
17201 Def_Id := Entity (Prefix (Low_Bound (I)));
17202
17203 if Nkind (High_Bound (I)) /= N_Attribute_Reference
17204 or else Attribute_Name (High_Bound (I)) /= Name_Last
17205 or else not Is_Entity_Name (Prefix (High_Bound (I)))
17206 or else Entity (Prefix (High_Bound (I))) /= Def_Id
17207 then
17208 Def_Id := Empty;
17209 end if;
17210 end if;
17211
17212 R := I;
17213 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17214
17215 elsif Nkind (I) = N_Subtype_Indication then
17216
17217 -- The index is given by a subtype with a range constraint
17218
17219 T := Base_Type (Entity (Subtype_Mark (I)));
17220
17221 if not Is_Discrete_Type (T) then
17222 Error_Msg_N ("discrete type required for range", I);
17223 Set_Etype (I, Any_Type);
17224 return;
17225 end if;
17226
17227 R := Range_Expression (Constraint (I));
17228
17229 Resolve (R, T);
17230 Process_Range_Expr_In_Decl
17231 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
17232
17233 elsif Nkind (I) = N_Attribute_Reference then
17234
17235 -- The parser guarantees that the attribute is a RANGE attribute
17236
17237 -- If the node denotes the range of a type mark, that is also the
17238 -- resulting type, and we do no need to create an Itype for it.
17239
17240 if Is_Entity_Name (Prefix (I))
17241 and then Comes_From_Source (I)
17242 and then Is_Type (Entity (Prefix (I)))
17243 and then Is_Discrete_Type (Entity (Prefix (I)))
17244 then
17245 Def_Id := Entity (Prefix (I));
17246 end if;
17247
17248 Analyze_And_Resolve (I);
17249 T := Etype (I);
17250 R := I;
17251
17252 -- If none of the above, must be a subtype. We convert this to a
17253 -- range attribute reference because in the case of declared first
17254 -- named subtypes, the types in the range reference can be different
17255 -- from the type of the entity. A range attribute normalizes the
17256 -- reference and obtains the correct types for the bounds.
17257
17258 -- This transformation is in the nature of an expansion, is only
17259 -- done if expansion is active. In particular, it is not done on
17260 -- formal generic types, because we need to retain the name of the
17261 -- original index for instantiation purposes.
17262
17263 else
17264 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17265 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17266 Set_Etype (I, Any_Integer);
17267 return;
17268
17269 else
17270 -- The type mark may be that of an incomplete type. It is only
17271 -- now that we can get the full view, previous analysis does
17272 -- not look specifically for a type mark.
17273
17274 Set_Entity (I, Get_Full_View (Entity (I)));
17275 Set_Etype (I, Entity (I));
17276 Def_Id := Entity (I);
17277
17278 if not Is_Discrete_Type (Def_Id) then
17279 Error_Msg_N ("discrete type required for index", I);
17280 Set_Etype (I, Any_Type);
17281 return;
17282 end if;
17283 end if;
17284
17285 if Expander_Active then
17286 Rewrite (I,
17287 Make_Attribute_Reference (Sloc (I),
17288 Attribute_Name => Name_Range,
17289 Prefix => Relocate_Node (I)));
17290
17291 -- The original was a subtype mark that does not freeze. This
17292 -- means that the rewritten version must not freeze either.
17293
17294 Set_Must_Not_Freeze (I);
17295 Set_Must_Not_Freeze (Prefix (I));
17296 Analyze_And_Resolve (I);
17297 T := Etype (I);
17298 R := I;
17299
17300 -- If expander is inactive, type is legal, nothing else to construct
17301
17302 else
17303 return;
17304 end if;
17305 end if;
17306
17307 if not Is_Discrete_Type (T) then
17308 Error_Msg_N ("discrete type required for range", I);
17309 Set_Etype (I, Any_Type);
17310 return;
17311
17312 elsif T = Any_Type then
17313 Set_Etype (I, Any_Type);
17314 return;
17315 end if;
17316
17317 -- We will now create the appropriate Itype to describe the range, but
17318 -- first a check. If we originally had a subtype, then we just label
17319 -- the range with this subtype. Not only is there no need to construct
17320 -- a new subtype, but it is wrong to do so for two reasons:
17321
17322 -- 1. A legality concern, if we have a subtype, it must not freeze,
17323 -- and the Itype would cause freezing incorrectly
17324
17325 -- 2. An efficiency concern, if we created an Itype, it would not be
17326 -- recognized as the same type for the purposes of eliminating
17327 -- checks in some circumstances.
17328
17329 -- We signal this case by setting the subtype entity in Def_Id
17330
17331 if No (Def_Id) then
17332 Def_Id :=
17333 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17334 Set_Etype (Def_Id, Base_Type (T));
17335
17336 if Is_Signed_Integer_Type (T) then
17337 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17338
17339 elsif Is_Modular_Integer_Type (T) then
17340 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17341
17342 else
17343 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17344 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17345 Set_First_Literal (Def_Id, First_Literal (T));
17346 end if;
17347
17348 Set_Size_Info (Def_Id, (T));
17349 Set_RM_Size (Def_Id, RM_Size (T));
17350 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17351
17352 Set_Scalar_Range (Def_Id, R);
17353 Conditional_Delay (Def_Id, T);
17354
17355 -- In the subtype indication case, if the immediate parent of the
17356 -- new subtype is non-static, then the subtype we create is non-
17357 -- static, even if its bounds are static.
17358
17359 if Nkind (I) = N_Subtype_Indication
17360 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17361 then
17362 Set_Is_Non_Static_Subtype (Def_Id);
17363 end if;
17364 end if;
17365
17366 -- Final step is to label the index with this constructed type
17367
17368 Set_Etype (I, Def_Id);
17369 end Make_Index;
17370
17371 ------------------------------
17372 -- Modular_Type_Declaration --
17373 ------------------------------
17374
17375 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17376 Mod_Expr : constant Node_Id := Expression (Def);
17377 M_Val : Uint;
17378
17379 procedure Set_Modular_Size (Bits : Int);
17380 -- Sets RM_Size to Bits, and Esize to normal word size above this
17381
17382 ----------------------
17383 -- Set_Modular_Size --
17384 ----------------------
17385
17386 procedure Set_Modular_Size (Bits : Int) is
17387 begin
17388 Set_RM_Size (T, UI_From_Int (Bits));
17389
17390 if Bits <= 8 then
17391 Init_Esize (T, 8);
17392
17393 elsif Bits <= 16 then
17394 Init_Esize (T, 16);
17395
17396 elsif Bits <= 32 then
17397 Init_Esize (T, 32);
17398
17399 else
17400 Init_Esize (T, System_Max_Binary_Modulus_Power);
17401 end if;
17402
17403 if not Non_Binary_Modulus (T)
17404 and then Esize (T) = RM_Size (T)
17405 then
17406 Set_Is_Known_Valid (T);
17407 end if;
17408 end Set_Modular_Size;
17409
17410 -- Start of processing for Modular_Type_Declaration
17411
17412 begin
17413 -- If the mod expression is (exactly) 2 * literal, where literal is
17414 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17415
17416 if Warn_On_Suspicious_Modulus_Value
17417 and then Nkind (Mod_Expr) = N_Op_Multiply
17418 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17419 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17420 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17421 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17422 then
17423 Error_Msg_N
17424 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17425 end if;
17426
17427 -- Proceed with analysis of mod expression
17428
17429 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17430 Set_Etype (T, T);
17431 Set_Ekind (T, E_Modular_Integer_Type);
17432 Init_Alignment (T);
17433 Set_Is_Constrained (T);
17434
17435 if not Is_OK_Static_Expression (Mod_Expr) then
17436 Flag_Non_Static_Expr
17437 ("non-static expression used for modular type bound!", Mod_Expr);
17438 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17439 else
17440 M_Val := Expr_Value (Mod_Expr);
17441 end if;
17442
17443 if M_Val < 1 then
17444 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17445 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17446 end if;
17447
17448 if M_Val > 2 ** Standard_Long_Integer_Size then
17449 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17450 end if;
17451
17452 Set_Modulus (T, M_Val);
17453
17454 -- Create bounds for the modular type based on the modulus given in
17455 -- the type declaration and then analyze and resolve those bounds.
17456
17457 Set_Scalar_Range (T,
17458 Make_Range (Sloc (Mod_Expr),
17459 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17460 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17461
17462 -- Properly analyze the literals for the range. We do this manually
17463 -- because we can't go calling Resolve, since we are resolving these
17464 -- bounds with the type, and this type is certainly not complete yet.
17465
17466 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17467 Set_Etype (High_Bound (Scalar_Range (T)), T);
17468 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17469 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17470
17471 -- Loop through powers of two to find number of bits required
17472
17473 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17474
17475 -- Binary case
17476
17477 if M_Val = 2 ** Bits then
17478 Set_Modular_Size (Bits);
17479 return;
17480
17481 -- Non-binary case
17482
17483 elsif M_Val < 2 ** Bits then
17484 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17485 Set_Non_Binary_Modulus (T);
17486
17487 if Bits > System_Max_Nonbinary_Modulus_Power then
17488 Error_Msg_Uint_1 :=
17489 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17490 Error_Msg_F
17491 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17492 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17493 return;
17494
17495 else
17496 -- In the non-binary case, set size as per RM 13.3(55)
17497
17498 Set_Modular_Size (Bits);
17499 return;
17500 end if;
17501 end if;
17502
17503 end loop;
17504
17505 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17506 -- so we just signal an error and set the maximum size.
17507
17508 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17509 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17510
17511 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17512 Init_Alignment (T);
17513
17514 end Modular_Type_Declaration;
17515
17516 --------------------------
17517 -- New_Concatenation_Op --
17518 --------------------------
17519
17520 procedure New_Concatenation_Op (Typ : Entity_Id) is
17521 Loc : constant Source_Ptr := Sloc (Typ);
17522 Op : Entity_Id;
17523
17524 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17525 -- Create abbreviated declaration for the formal of a predefined
17526 -- Operator 'Op' of type 'Typ'
17527
17528 --------------------
17529 -- Make_Op_Formal --
17530 --------------------
17531
17532 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17533 Formal : Entity_Id;
17534 begin
17535 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17536 Set_Etype (Formal, Typ);
17537 Set_Mechanism (Formal, Default_Mechanism);
17538 return Formal;
17539 end Make_Op_Formal;
17540
17541 -- Start of processing for New_Concatenation_Op
17542
17543 begin
17544 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17545
17546 Set_Ekind (Op, E_Operator);
17547 Set_Scope (Op, Current_Scope);
17548 Set_Etype (Op, Typ);
17549 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17550 Set_Is_Immediately_Visible (Op);
17551 Set_Is_Intrinsic_Subprogram (Op);
17552 Set_Has_Completion (Op);
17553 Append_Entity (Op, Current_Scope);
17554
17555 Set_Name_Entity_Id (Name_Op_Concat, Op);
17556
17557 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17558 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17559 end New_Concatenation_Op;
17560
17561 -------------------------
17562 -- OK_For_Limited_Init --
17563 -------------------------
17564
17565 -- ???Check all calls of this, and compare the conditions under which it's
17566 -- called.
17567
17568 function OK_For_Limited_Init
17569 (Typ : Entity_Id;
17570 Exp : Node_Id) return Boolean
17571 is
17572 begin
17573 return Is_CPP_Constructor_Call (Exp)
17574 or else (Ada_Version >= Ada_2005
17575 and then not Debug_Flag_Dot_L
17576 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17577 end OK_For_Limited_Init;
17578
17579 -------------------------------
17580 -- OK_For_Limited_Init_In_05 --
17581 -------------------------------
17582
17583 function OK_For_Limited_Init_In_05
17584 (Typ : Entity_Id;
17585 Exp : Node_Id) return Boolean
17586 is
17587 begin
17588 -- An object of a limited interface type can be initialized with any
17589 -- expression of a nonlimited descendant type.
17590
17591 if Is_Class_Wide_Type (Typ)
17592 and then Is_Limited_Interface (Typ)
17593 and then not Is_Limited_Type (Etype (Exp))
17594 then
17595 return True;
17596 end if;
17597
17598 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17599 -- case of limited aggregates (including extension aggregates), and
17600 -- function calls. The function call may have been given in prefixed
17601 -- notation, in which case the original node is an indexed component.
17602 -- If the function is parameterless, the original node was an explicit
17603 -- dereference. The function may also be parameterless, in which case
17604 -- the source node is just an identifier.
17605
17606 case Nkind (Original_Node (Exp)) is
17607 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17608 return True;
17609
17610 when N_Identifier =>
17611 return Present (Entity (Original_Node (Exp)))
17612 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17613
17614 when N_Qualified_Expression =>
17615 return
17616 OK_For_Limited_Init_In_05
17617 (Typ, Expression (Original_Node (Exp)));
17618
17619 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17620 -- with a function call, the expander has rewritten the call into an
17621 -- N_Type_Conversion node to force displacement of the pointer to
17622 -- reference the component containing the secondary dispatch table.
17623 -- Otherwise a type conversion is not a legal context.
17624 -- A return statement for a build-in-place function returning a
17625 -- synchronized type also introduces an unchecked conversion.
17626
17627 when N_Type_Conversion |
17628 N_Unchecked_Type_Conversion =>
17629 return not Comes_From_Source (Exp)
17630 and then
17631 OK_For_Limited_Init_In_05
17632 (Typ, Expression (Original_Node (Exp)));
17633
17634 when N_Indexed_Component |
17635 N_Selected_Component |
17636 N_Explicit_Dereference =>
17637 return Nkind (Exp) = N_Function_Call;
17638
17639 -- A use of 'Input is a function call, hence allowed. Normally the
17640 -- attribute will be changed to a call, but the attribute by itself
17641 -- can occur with -gnatc.
17642
17643 when N_Attribute_Reference =>
17644 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17645
17646 -- For a case expression, all dependent expressions must be legal
17647
17648 when N_Case_Expression =>
17649 declare
17650 Alt : Node_Id;
17651
17652 begin
17653 Alt := First (Alternatives (Original_Node (Exp)));
17654 while Present (Alt) loop
17655 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17656 return False;
17657 end if;
17658
17659 Next (Alt);
17660 end loop;
17661
17662 return True;
17663 end;
17664
17665 -- For an if expression, all dependent expressions must be legal
17666
17667 when N_If_Expression =>
17668 declare
17669 Then_Expr : constant Node_Id :=
17670 Next (First (Expressions (Original_Node (Exp))));
17671 Else_Expr : constant Node_Id := Next (Then_Expr);
17672 begin
17673 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17674 and then
17675 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17676 end;
17677
17678 when others =>
17679 return False;
17680 end case;
17681 end OK_For_Limited_Init_In_05;
17682
17683 -------------------------------------------
17684 -- Ordinary_Fixed_Point_Type_Declaration --
17685 -------------------------------------------
17686
17687 procedure Ordinary_Fixed_Point_Type_Declaration
17688 (T : Entity_Id;
17689 Def : Node_Id)
17690 is
17691 Loc : constant Source_Ptr := Sloc (Def);
17692 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17693 RRS : constant Node_Id := Real_Range_Specification (Def);
17694 Implicit_Base : Entity_Id;
17695 Delta_Val : Ureal;
17696 Small_Val : Ureal;
17697 Low_Val : Ureal;
17698 High_Val : Ureal;
17699
17700 begin
17701 Check_Restriction (No_Fixed_Point, Def);
17702
17703 -- Create implicit base type
17704
17705 Implicit_Base :=
17706 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17707 Set_Etype (Implicit_Base, Implicit_Base);
17708
17709 -- Analyze and process delta expression
17710
17711 Analyze_And_Resolve (Delta_Expr, Any_Real);
17712
17713 Check_Delta_Expression (Delta_Expr);
17714 Delta_Val := Expr_Value_R (Delta_Expr);
17715
17716 Set_Delta_Value (Implicit_Base, Delta_Val);
17717
17718 -- Compute default small from given delta, which is the largest power
17719 -- of two that does not exceed the given delta value.
17720
17721 declare
17722 Tmp : Ureal;
17723 Scale : Int;
17724
17725 begin
17726 Tmp := Ureal_1;
17727 Scale := 0;
17728
17729 if Delta_Val < Ureal_1 then
17730 while Delta_Val < Tmp loop
17731 Tmp := Tmp / Ureal_2;
17732 Scale := Scale + 1;
17733 end loop;
17734
17735 else
17736 loop
17737 Tmp := Tmp * Ureal_2;
17738 exit when Tmp > Delta_Val;
17739 Scale := Scale - 1;
17740 end loop;
17741 end if;
17742
17743 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17744 end;
17745
17746 Set_Small_Value (Implicit_Base, Small_Val);
17747
17748 -- If no range was given, set a dummy range
17749
17750 if RRS <= Empty_Or_Error then
17751 Low_Val := -Small_Val;
17752 High_Val := Small_Val;
17753
17754 -- Otherwise analyze and process given range
17755
17756 else
17757 declare
17758 Low : constant Node_Id := Low_Bound (RRS);
17759 High : constant Node_Id := High_Bound (RRS);
17760
17761 begin
17762 Analyze_And_Resolve (Low, Any_Real);
17763 Analyze_And_Resolve (High, Any_Real);
17764 Check_Real_Bound (Low);
17765 Check_Real_Bound (High);
17766
17767 -- Obtain and set the range
17768
17769 Low_Val := Expr_Value_R (Low);
17770 High_Val := Expr_Value_R (High);
17771
17772 if Low_Val > High_Val then
17773 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17774 end if;
17775 end;
17776 end if;
17777
17778 -- The range for both the implicit base and the declared first subtype
17779 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17780 -- set a temporary range in place. Note that the bounds of the base
17781 -- type will be widened to be symmetrical and to fill the available
17782 -- bits when the type is frozen.
17783
17784 -- We could do this with all discrete types, and probably should, but
17785 -- we absolutely have to do it for fixed-point, since the end-points
17786 -- of the range and the size are determined by the small value, which
17787 -- could be reset before the freeze point.
17788
17789 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17790 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17791
17792 -- Complete definition of first subtype
17793
17794 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17795 Set_Etype (T, Implicit_Base);
17796 Init_Size_Align (T);
17797 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17798 Set_Small_Value (T, Small_Val);
17799 Set_Delta_Value (T, Delta_Val);
17800 Set_Is_Constrained (T);
17801
17802 end Ordinary_Fixed_Point_Type_Declaration;
17803
17804 ----------------------------------------
17805 -- Prepare_Private_Subtype_Completion --
17806 ----------------------------------------
17807
17808 procedure Prepare_Private_Subtype_Completion
17809 (Id : Entity_Id;
17810 Related_Nod : Node_Id)
17811 is
17812 Id_B : constant Entity_Id := Base_Type (Id);
17813 Full_B : constant Entity_Id := Full_View (Id_B);
17814 Full : Entity_Id;
17815
17816 begin
17817 if Present (Full_B) then
17818
17819 -- The Base_Type is already completed, we can complete the subtype
17820 -- now. We have to create a new entity with the same name, Thus we
17821 -- can't use Create_Itype.
17822
17823 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17824 Set_Is_Itype (Full);
17825 Set_Associated_Node_For_Itype (Full, Related_Nod);
17826 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17827 end if;
17828
17829 -- The parent subtype may be private, but the base might not, in some
17830 -- nested instances. In that case, the subtype does not need to be
17831 -- exchanged. It would still be nice to make private subtypes and their
17832 -- bases consistent at all times ???
17833
17834 if Is_Private_Type (Id_B) then
17835 Append_Elmt (Id, Private_Dependents (Id_B));
17836 end if;
17837 end Prepare_Private_Subtype_Completion;
17838
17839 ---------------------------
17840 -- Process_Discriminants --
17841 ---------------------------
17842
17843 procedure Process_Discriminants
17844 (N : Node_Id;
17845 Prev : Entity_Id := Empty)
17846 is
17847 Elist : constant Elist_Id := New_Elmt_List;
17848 Id : Node_Id;
17849 Discr : Node_Id;
17850 Discr_Number : Uint;
17851 Discr_Type : Entity_Id;
17852 Default_Present : Boolean := False;
17853 Default_Not_Present : Boolean := False;
17854
17855 begin
17856 -- A composite type other than an array type can have discriminants.
17857 -- On entry, the current scope is the composite type.
17858
17859 -- The discriminants are initially entered into the scope of the type
17860 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17861 -- use, as explained at the end of this procedure.
17862
17863 Discr := First (Discriminant_Specifications (N));
17864 while Present (Discr) loop
17865 Enter_Name (Defining_Identifier (Discr));
17866
17867 -- For navigation purposes we add a reference to the discriminant
17868 -- in the entity for the type. If the current declaration is a
17869 -- completion, place references on the partial view. Otherwise the
17870 -- type is the current scope.
17871
17872 if Present (Prev) then
17873
17874 -- The references go on the partial view, if present. If the
17875 -- partial view has discriminants, the references have been
17876 -- generated already.
17877
17878 if not Has_Discriminants (Prev) then
17879 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17880 end if;
17881 else
17882 Generate_Reference
17883 (Current_Scope, Defining_Identifier (Discr), 'd');
17884 end if;
17885
17886 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17887 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17888
17889 -- Ada 2005 (AI-254)
17890
17891 if Present (Access_To_Subprogram_Definition
17892 (Discriminant_Type (Discr)))
17893 and then Protected_Present (Access_To_Subprogram_Definition
17894 (Discriminant_Type (Discr)))
17895 then
17896 Discr_Type :=
17897 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17898 end if;
17899
17900 else
17901 Find_Type (Discriminant_Type (Discr));
17902 Discr_Type := Etype (Discriminant_Type (Discr));
17903
17904 if Error_Posted (Discriminant_Type (Discr)) then
17905 Discr_Type := Any_Type;
17906 end if;
17907 end if;
17908
17909 if Is_Access_Type (Discr_Type) then
17910
17911 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17912 -- record types
17913
17914 if Ada_Version < Ada_2005 then
17915 Check_Access_Discriminant_Requires_Limited
17916 (Discr, Discriminant_Type (Discr));
17917 end if;
17918
17919 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17920 Error_Msg_N
17921 ("(Ada 83) access discriminant not allowed", Discr);
17922 end if;
17923
17924 elsif not Is_Discrete_Type (Discr_Type) then
17925 Error_Msg_N ("discriminants must have a discrete or access type",
17926 Discriminant_Type (Discr));
17927 end if;
17928
17929 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17930
17931 -- If a discriminant specification includes the assignment compound
17932 -- delimiter followed by an expression, the expression is the default
17933 -- expression of the discriminant; the default expression must be of
17934 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17935 -- a default expression, we do the special preanalysis, since this
17936 -- expression does not freeze (see "Handling of Default and Per-
17937 -- Object Expressions" in spec of package Sem).
17938
17939 if Present (Expression (Discr)) then
17940 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17941
17942 if Nkind (N) = N_Formal_Type_Declaration then
17943 Error_Msg_N
17944 ("discriminant defaults not allowed for formal type",
17945 Expression (Discr));
17946
17947 -- Flag an error for a tagged type with defaulted discriminants,
17948 -- excluding limited tagged types when compiling for Ada 2012
17949 -- (see AI05-0214).
17950
17951 elsif Is_Tagged_Type (Current_Scope)
17952 and then (not Is_Limited_Type (Current_Scope)
17953 or else Ada_Version < Ada_2012)
17954 and then Comes_From_Source (N)
17955 then
17956 -- Note: see similar test in Check_Or_Process_Discriminants, to
17957 -- handle the (illegal) case of the completion of an untagged
17958 -- view with discriminants with defaults by a tagged full view.
17959 -- We skip the check if Discr does not come from source, to
17960 -- account for the case of an untagged derived type providing
17961 -- defaults for a renamed discriminant from a private untagged
17962 -- ancestor with a tagged full view (ACATS B460006).
17963
17964 if Ada_Version >= Ada_2012 then
17965 Error_Msg_N
17966 ("discriminants of nonlimited tagged type cannot have"
17967 & " defaults",
17968 Expression (Discr));
17969 else
17970 Error_Msg_N
17971 ("discriminants of tagged type cannot have defaults",
17972 Expression (Discr));
17973 end if;
17974
17975 else
17976 Default_Present := True;
17977 Append_Elmt (Expression (Discr), Elist);
17978
17979 -- Tag the defining identifiers for the discriminants with
17980 -- their corresponding default expressions from the tree.
17981
17982 Set_Discriminant_Default_Value
17983 (Defining_Identifier (Discr), Expression (Discr));
17984 end if;
17985
17986 else
17987 Default_Not_Present := True;
17988 end if;
17989
17990 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17991 -- Discr_Type but with the null-exclusion attribute
17992
17993 if Ada_Version >= Ada_2005 then
17994
17995 -- Ada 2005 (AI-231): Static checks
17996
17997 if Can_Never_Be_Null (Discr_Type) then
17998 Null_Exclusion_Static_Checks (Discr);
17999
18000 elsif Is_Access_Type (Discr_Type)
18001 and then Null_Exclusion_Present (Discr)
18002
18003 -- No need to check itypes because in their case this check
18004 -- was done at their point of creation
18005
18006 and then not Is_Itype (Discr_Type)
18007 then
18008 if Can_Never_Be_Null (Discr_Type) then
18009 Error_Msg_NE
18010 ("`NOT NULL` not allowed (& already excludes null)",
18011 Discr,
18012 Discr_Type);
18013 end if;
18014
18015 Set_Etype (Defining_Identifier (Discr),
18016 Create_Null_Excluding_Itype
18017 (T => Discr_Type,
18018 Related_Nod => Discr));
18019
18020 -- Check for improper null exclusion if the type is otherwise
18021 -- legal for a discriminant.
18022
18023 elsif Null_Exclusion_Present (Discr)
18024 and then Is_Discrete_Type (Discr_Type)
18025 then
18026 Error_Msg_N
18027 ("null exclusion can only apply to an access type", Discr);
18028 end if;
18029
18030 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18031 -- can't have defaults. Synchronized types, or types that are
18032 -- explicitly limited are fine, but special tests apply to derived
18033 -- types in generics: in a generic body we have to assume the
18034 -- worst, and therefore defaults are not allowed if the parent is
18035 -- a generic formal private type (see ACATS B370001).
18036
18037 if Is_Access_Type (Discr_Type) and then Default_Present then
18038 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18039 or else Is_Limited_Record (Current_Scope)
18040 or else Is_Concurrent_Type (Current_Scope)
18041 or else Is_Concurrent_Record_Type (Current_Scope)
18042 or else Ekind (Current_Scope) = E_Limited_Private_Type
18043 then
18044 if not Is_Derived_Type (Current_Scope)
18045 or else not Is_Generic_Type (Etype (Current_Scope))
18046 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18047 or else Limited_Present
18048 (Type_Definition (Parent (Current_Scope)))
18049 then
18050 null;
18051
18052 else
18053 Error_Msg_N ("access discriminants of nonlimited types",
18054 Expression (Discr));
18055 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18056 end if;
18057
18058 elsif Present (Expression (Discr)) then
18059 Error_Msg_N
18060 ("(Ada 2005) access discriminants of nonlimited types",
18061 Expression (Discr));
18062 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18063 end if;
18064 end if;
18065 end if;
18066
18067 -- A discriminant cannot be volatile. This check is only relevant
18068 -- when SPARK_Mode is on as it is not standard Ada legality rule
18069 -- (SPARK RM 7.1.3(6)).
18070
18071 if SPARK_Mode = On
18072 and then Is_SPARK_Volatile (Defining_Identifier (Discr))
18073 then
18074 Error_Msg_N ("discriminant cannot be volatile", Discr);
18075 end if;
18076
18077 Next (Discr);
18078 end loop;
18079
18080 -- An element list consisting of the default expressions of the
18081 -- discriminants is constructed in the above loop and used to set
18082 -- the Discriminant_Constraint attribute for the type. If an object
18083 -- is declared of this (record or task) type without any explicit
18084 -- discriminant constraint given, this element list will form the
18085 -- actual parameters for the corresponding initialization procedure
18086 -- for the type.
18087
18088 Set_Discriminant_Constraint (Current_Scope, Elist);
18089 Set_Stored_Constraint (Current_Scope, No_Elist);
18090
18091 -- Default expressions must be provided either for all or for none
18092 -- of the discriminants of a discriminant part. (RM 3.7.1)
18093
18094 if Default_Present and then Default_Not_Present then
18095 Error_Msg_N
18096 ("incomplete specification of defaults for discriminants", N);
18097 end if;
18098
18099 -- The use of the name of a discriminant is not allowed in default
18100 -- expressions of a discriminant part if the specification of the
18101 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18102
18103 -- To detect this, the discriminant names are entered initially with an
18104 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18105 -- attempt to use a void entity (for example in an expression that is
18106 -- type-checked) produces the error message: premature usage. Now after
18107 -- completing the semantic analysis of the discriminant part, we can set
18108 -- the Ekind of all the discriminants appropriately.
18109
18110 Discr := First (Discriminant_Specifications (N));
18111 Discr_Number := Uint_1;
18112 while Present (Discr) loop
18113 Id := Defining_Identifier (Discr);
18114 Set_Ekind (Id, E_Discriminant);
18115 Init_Component_Location (Id);
18116 Init_Esize (Id);
18117 Set_Discriminant_Number (Id, Discr_Number);
18118
18119 -- Make sure this is always set, even in illegal programs
18120
18121 Set_Corresponding_Discriminant (Id, Empty);
18122
18123 -- Initialize the Original_Record_Component to the entity itself.
18124 -- Inherit_Components will propagate the right value to
18125 -- discriminants in derived record types.
18126
18127 Set_Original_Record_Component (Id, Id);
18128
18129 -- Create the discriminal for the discriminant
18130
18131 Build_Discriminal (Id);
18132
18133 Next (Discr);
18134 Discr_Number := Discr_Number + 1;
18135 end loop;
18136
18137 Set_Has_Discriminants (Current_Scope);
18138 end Process_Discriminants;
18139
18140 -----------------------
18141 -- Process_Full_View --
18142 -----------------------
18143
18144 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18145 Priv_Parent : Entity_Id;
18146 Full_Parent : Entity_Id;
18147 Full_Indic : Node_Id;
18148
18149 procedure Collect_Implemented_Interfaces
18150 (Typ : Entity_Id;
18151 Ifaces : Elist_Id);
18152 -- Ada 2005: Gather all the interfaces that Typ directly or
18153 -- inherently implements. Duplicate entries are not added to
18154 -- the list Ifaces.
18155
18156 ------------------------------------
18157 -- Collect_Implemented_Interfaces --
18158 ------------------------------------
18159
18160 procedure Collect_Implemented_Interfaces
18161 (Typ : Entity_Id;
18162 Ifaces : Elist_Id)
18163 is
18164 Iface : Entity_Id;
18165 Iface_Elmt : Elmt_Id;
18166
18167 begin
18168 -- Abstract interfaces are only associated with tagged record types
18169
18170 if not Is_Tagged_Type (Typ)
18171 or else not Is_Record_Type (Typ)
18172 then
18173 return;
18174 end if;
18175
18176 -- Recursively climb to the ancestors
18177
18178 if Etype (Typ) /= Typ
18179
18180 -- Protect the frontend against wrong cyclic declarations like:
18181
18182 -- type B is new A with private;
18183 -- type C is new A with private;
18184 -- private
18185 -- type B is new C with null record;
18186 -- type C is new B with null record;
18187
18188 and then Etype (Typ) /= Priv_T
18189 and then Etype (Typ) /= Full_T
18190 then
18191 -- Keep separate the management of private type declarations
18192
18193 if Ekind (Typ) = E_Record_Type_With_Private then
18194
18195 -- Handle the following illegal usage:
18196 -- type Private_Type is tagged private;
18197 -- private
18198 -- type Private_Type is new Type_Implementing_Iface;
18199
18200 if Present (Full_View (Typ))
18201 and then Etype (Typ) /= Full_View (Typ)
18202 then
18203 if Is_Interface (Etype (Typ)) then
18204 Append_Unique_Elmt (Etype (Typ), Ifaces);
18205 end if;
18206
18207 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18208 end if;
18209
18210 -- Non-private types
18211
18212 else
18213 if Is_Interface (Etype (Typ)) then
18214 Append_Unique_Elmt (Etype (Typ), Ifaces);
18215 end if;
18216
18217 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18218 end if;
18219 end if;
18220
18221 -- Handle entities in the list of abstract interfaces
18222
18223 if Present (Interfaces (Typ)) then
18224 Iface_Elmt := First_Elmt (Interfaces (Typ));
18225 while Present (Iface_Elmt) loop
18226 Iface := Node (Iface_Elmt);
18227
18228 pragma Assert (Is_Interface (Iface));
18229
18230 if not Contain_Interface (Iface, Ifaces) then
18231 Append_Elmt (Iface, Ifaces);
18232 Collect_Implemented_Interfaces (Iface, Ifaces);
18233 end if;
18234
18235 Next_Elmt (Iface_Elmt);
18236 end loop;
18237 end if;
18238 end Collect_Implemented_Interfaces;
18239
18240 -- Start of processing for Process_Full_View
18241
18242 begin
18243 -- First some sanity checks that must be done after semantic
18244 -- decoration of the full view and thus cannot be placed with other
18245 -- similar checks in Find_Type_Name
18246
18247 if not Is_Limited_Type (Priv_T)
18248 and then (Is_Limited_Type (Full_T)
18249 or else Is_Limited_Composite (Full_T))
18250 then
18251 if In_Instance then
18252 null;
18253 else
18254 Error_Msg_N
18255 ("completion of nonlimited type cannot be limited", Full_T);
18256 Explain_Limited_Type (Full_T, Full_T);
18257 end if;
18258
18259 elsif Is_Abstract_Type (Full_T)
18260 and then not Is_Abstract_Type (Priv_T)
18261 then
18262 Error_Msg_N
18263 ("completion of nonabstract type cannot be abstract", Full_T);
18264
18265 elsif Is_Tagged_Type (Priv_T)
18266 and then Is_Limited_Type (Priv_T)
18267 and then not Is_Limited_Type (Full_T)
18268 then
18269 -- If pragma CPP_Class was applied to the private declaration
18270 -- propagate the limitedness to the full-view
18271
18272 if Is_CPP_Class (Priv_T) then
18273 Set_Is_Limited_Record (Full_T);
18274
18275 -- GNAT allow its own definition of Limited_Controlled to disobey
18276 -- this rule in order in ease the implementation. This test is safe
18277 -- because Root_Controlled is defined in a child of System that
18278 -- normal programs are not supposed to use.
18279
18280 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18281 Set_Is_Limited_Composite (Full_T);
18282 else
18283 Error_Msg_N
18284 ("completion of limited tagged type must be limited", Full_T);
18285 end if;
18286
18287 elsif Is_Generic_Type (Priv_T) then
18288 Error_Msg_N ("generic type cannot have a completion", Full_T);
18289 end if;
18290
18291 -- Check that ancestor interfaces of private and full views are
18292 -- consistent. We omit this check for synchronized types because
18293 -- they are performed on the corresponding record type when frozen.
18294
18295 if Ada_Version >= Ada_2005
18296 and then Is_Tagged_Type (Priv_T)
18297 and then Is_Tagged_Type (Full_T)
18298 and then not Is_Concurrent_Type (Full_T)
18299 then
18300 declare
18301 Iface : Entity_Id;
18302 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18303 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18304
18305 begin
18306 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18307 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18308
18309 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18310 -- an interface type if and only if the full type is descendant
18311 -- of the interface type (AARM 7.3 (7.3/2)).
18312
18313 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18314
18315 if Present (Iface) then
18316 Error_Msg_NE
18317 ("interface in partial view& not implemented by full type "
18318 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18319 end if;
18320
18321 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18322
18323 if Present (Iface) then
18324 Error_Msg_NE
18325 ("interface & not implemented by partial view "
18326 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18327 end if;
18328 end;
18329 end if;
18330
18331 if Is_Tagged_Type (Priv_T)
18332 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18333 and then Is_Derived_Type (Full_T)
18334 then
18335 Priv_Parent := Etype (Priv_T);
18336
18337 -- The full view of a private extension may have been transformed
18338 -- into an unconstrained derived type declaration and a subtype
18339 -- declaration (see build_derived_record_type for details).
18340
18341 if Nkind (N) = N_Subtype_Declaration then
18342 Full_Indic := Subtype_Indication (N);
18343 Full_Parent := Etype (Base_Type (Full_T));
18344 else
18345 Full_Indic := Subtype_Indication (Type_Definition (N));
18346 Full_Parent := Etype (Full_T);
18347 end if;
18348
18349 -- Check that the parent type of the full type is a descendant of
18350 -- the ancestor subtype given in the private extension. If either
18351 -- entity has an Etype equal to Any_Type then we had some previous
18352 -- error situation [7.3(8)].
18353
18354 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18355 return;
18356
18357 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18358 -- any order. Therefore we don't have to check that its parent must
18359 -- be a descendant of the parent of the private type declaration.
18360
18361 elsif Is_Interface (Priv_Parent)
18362 and then Is_Interface (Full_Parent)
18363 then
18364 null;
18365
18366 -- Ada 2005 (AI-251): If the parent of the private type declaration
18367 -- is an interface there is no need to check that it is an ancestor
18368 -- of the associated full type declaration. The required tests for
18369 -- this case are performed by Build_Derived_Record_Type.
18370
18371 elsif not Is_Interface (Base_Type (Priv_Parent))
18372 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18373 then
18374 Error_Msg_N
18375 ("parent of full type must descend from parent"
18376 & " of private extension", Full_Indic);
18377
18378 -- First check a formal restriction, and then proceed with checking
18379 -- Ada rules. Since the formal restriction is not a serious error, we
18380 -- don't prevent further error detection for this check, hence the
18381 -- ELSE.
18382
18383 else
18384
18385 -- In formal mode, when completing a private extension the type
18386 -- named in the private part must be exactly the same as that
18387 -- named in the visible part.
18388
18389 if Priv_Parent /= Full_Parent then
18390 Error_Msg_Name_1 := Chars (Priv_Parent);
18391 Check_SPARK_Restriction ("% expected", Full_Indic);
18392 end if;
18393
18394 -- Check the rules of 7.3(10): if the private extension inherits
18395 -- known discriminants, then the full type must also inherit those
18396 -- discriminants from the same (ancestor) type, and the parent
18397 -- subtype of the full type must be constrained if and only if
18398 -- the ancestor subtype of the private extension is constrained.
18399
18400 if No (Discriminant_Specifications (Parent (Priv_T)))
18401 and then not Has_Unknown_Discriminants (Priv_T)
18402 and then Has_Discriminants (Base_Type (Priv_Parent))
18403 then
18404 declare
18405 Priv_Indic : constant Node_Id :=
18406 Subtype_Indication (Parent (Priv_T));
18407
18408 Priv_Constr : constant Boolean :=
18409 Is_Constrained (Priv_Parent)
18410 or else
18411 Nkind (Priv_Indic) = N_Subtype_Indication
18412 or else
18413 Is_Constrained (Entity (Priv_Indic));
18414
18415 Full_Constr : constant Boolean :=
18416 Is_Constrained (Full_Parent)
18417 or else
18418 Nkind (Full_Indic) = N_Subtype_Indication
18419 or else
18420 Is_Constrained (Entity (Full_Indic));
18421
18422 Priv_Discr : Entity_Id;
18423 Full_Discr : Entity_Id;
18424
18425 begin
18426 Priv_Discr := First_Discriminant (Priv_Parent);
18427 Full_Discr := First_Discriminant (Full_Parent);
18428 while Present (Priv_Discr) and then Present (Full_Discr) loop
18429 if Original_Record_Component (Priv_Discr) =
18430 Original_Record_Component (Full_Discr)
18431 or else
18432 Corresponding_Discriminant (Priv_Discr) =
18433 Corresponding_Discriminant (Full_Discr)
18434 then
18435 null;
18436 else
18437 exit;
18438 end if;
18439
18440 Next_Discriminant (Priv_Discr);
18441 Next_Discriminant (Full_Discr);
18442 end loop;
18443
18444 if Present (Priv_Discr) or else Present (Full_Discr) then
18445 Error_Msg_N
18446 ("full view must inherit discriminants of the parent"
18447 & " type used in the private extension", Full_Indic);
18448
18449 elsif Priv_Constr and then not Full_Constr then
18450 Error_Msg_N
18451 ("parent subtype of full type must be constrained",
18452 Full_Indic);
18453
18454 elsif Full_Constr and then not Priv_Constr then
18455 Error_Msg_N
18456 ("parent subtype of full type must be unconstrained",
18457 Full_Indic);
18458 end if;
18459 end;
18460
18461 -- Check the rules of 7.3(12): if a partial view has neither
18462 -- known or unknown discriminants, then the full type
18463 -- declaration shall define a definite subtype.
18464
18465 elsif not Has_Unknown_Discriminants (Priv_T)
18466 and then not Has_Discriminants (Priv_T)
18467 and then not Is_Constrained (Full_T)
18468 then
18469 Error_Msg_N
18470 ("full view must define a constrained type if partial view"
18471 & " has no discriminants", Full_T);
18472 end if;
18473
18474 -- ??????? Do we implement the following properly ?????
18475 -- If the ancestor subtype of a private extension has constrained
18476 -- discriminants, then the parent subtype of the full view shall
18477 -- impose a statically matching constraint on those discriminants
18478 -- [7.3(13)].
18479 end if;
18480
18481 else
18482 -- For untagged types, verify that a type without discriminants is
18483 -- not completed with an unconstrained type. A separate error message
18484 -- is produced if the full type has defaulted discriminants.
18485
18486 if not Is_Indefinite_Subtype (Priv_T)
18487 and then Is_Indefinite_Subtype (Full_T)
18488 then
18489 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18490 Error_Msg_NE
18491 ("full view of& not compatible with declaration#",
18492 Full_T, Priv_T);
18493
18494 if not Is_Tagged_Type (Full_T) then
18495 Error_Msg_N
18496 ("\one is constrained, the other unconstrained", Full_T);
18497 end if;
18498 end if;
18499 end if;
18500
18501 -- AI-419: verify that the use of "limited" is consistent
18502
18503 declare
18504 Orig_Decl : constant Node_Id := Original_Node (N);
18505
18506 begin
18507 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18508 and then not Limited_Present (Parent (Priv_T))
18509 and then not Synchronized_Present (Parent (Priv_T))
18510 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18511 and then Nkind
18512 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18513 and then Limited_Present (Type_Definition (Orig_Decl))
18514 then
18515 Error_Msg_N
18516 ("full view of non-limited extension cannot be limited", N);
18517 end if;
18518 end;
18519
18520 -- Ada 2005 (AI-443): A synchronized private extension must be
18521 -- completed by a task or protected type.
18522
18523 if Ada_Version >= Ada_2005
18524 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18525 and then Synchronized_Present (Parent (Priv_T))
18526 and then not Is_Concurrent_Type (Full_T)
18527 then
18528 Error_Msg_N ("full view of synchronized extension must " &
18529 "be synchronized type", N);
18530 end if;
18531
18532 -- Ada 2005 AI-363: if the full view has discriminants with
18533 -- defaults, it is illegal to declare constrained access subtypes
18534 -- whose designated type is the current type. This allows objects
18535 -- of the type that are declared in the heap to be unconstrained.
18536
18537 if not Has_Unknown_Discriminants (Priv_T)
18538 and then not Has_Discriminants (Priv_T)
18539 and then Has_Discriminants (Full_T)
18540 and then
18541 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18542 then
18543 Set_Has_Constrained_Partial_View (Full_T);
18544 Set_Has_Constrained_Partial_View (Priv_T);
18545 end if;
18546
18547 -- Create a full declaration for all its subtypes recorded in
18548 -- Private_Dependents and swap them similarly to the base type. These
18549 -- are subtypes that have been define before the full declaration of
18550 -- the private type. We also swap the entry in Private_Dependents list
18551 -- so we can properly restore the private view on exit from the scope.
18552
18553 declare
18554 Priv_Elmt : Elmt_Id;
18555 Priv : Entity_Id;
18556 Full : Entity_Id;
18557
18558 begin
18559 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18560 while Present (Priv_Elmt) loop
18561 Priv := Node (Priv_Elmt);
18562
18563 if Ekind_In (Priv, E_Private_Subtype,
18564 E_Limited_Private_Subtype,
18565 E_Record_Subtype_With_Private)
18566 then
18567 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18568 Set_Is_Itype (Full);
18569 Set_Parent (Full, Parent (Priv));
18570 Set_Associated_Node_For_Itype (Full, N);
18571
18572 -- Now we need to complete the private subtype, but since the
18573 -- base type has already been swapped, we must also swap the
18574 -- subtypes (and thus, reverse the arguments in the call to
18575 -- Complete_Private_Subtype).
18576
18577 Copy_And_Swap (Priv, Full);
18578 Complete_Private_Subtype (Full, Priv, Full_T, N);
18579 Replace_Elmt (Priv_Elmt, Full);
18580 end if;
18581
18582 Next_Elmt (Priv_Elmt);
18583 end loop;
18584 end;
18585
18586 -- If the private view was tagged, copy the new primitive operations
18587 -- from the private view to the full view.
18588
18589 if Is_Tagged_Type (Full_T) then
18590 declare
18591 Disp_Typ : Entity_Id;
18592 Full_List : Elist_Id;
18593 Prim : Entity_Id;
18594 Prim_Elmt : Elmt_Id;
18595 Priv_List : Elist_Id;
18596
18597 function Contains
18598 (E : Entity_Id;
18599 L : Elist_Id) return Boolean;
18600 -- Determine whether list L contains element E
18601
18602 --------------
18603 -- Contains --
18604 --------------
18605
18606 function Contains
18607 (E : Entity_Id;
18608 L : Elist_Id) return Boolean
18609 is
18610 List_Elmt : Elmt_Id;
18611
18612 begin
18613 List_Elmt := First_Elmt (L);
18614 while Present (List_Elmt) loop
18615 if Node (List_Elmt) = E then
18616 return True;
18617 end if;
18618
18619 Next_Elmt (List_Elmt);
18620 end loop;
18621
18622 return False;
18623 end Contains;
18624
18625 -- Start of processing
18626
18627 begin
18628 if Is_Tagged_Type (Priv_T) then
18629 Priv_List := Primitive_Operations (Priv_T);
18630 Prim_Elmt := First_Elmt (Priv_List);
18631
18632 -- In the case of a concurrent type completing a private tagged
18633 -- type, primitives may have been declared in between the two
18634 -- views. These subprograms need to be wrapped the same way
18635 -- entries and protected procedures are handled because they
18636 -- cannot be directly shared by the two views.
18637
18638 if Is_Concurrent_Type (Full_T) then
18639 declare
18640 Conc_Typ : constant Entity_Id :=
18641 Corresponding_Record_Type (Full_T);
18642 Curr_Nod : Node_Id := Parent (Conc_Typ);
18643 Wrap_Spec : Node_Id;
18644
18645 begin
18646 while Present (Prim_Elmt) loop
18647 Prim := Node (Prim_Elmt);
18648
18649 if Comes_From_Source (Prim)
18650 and then not Is_Abstract_Subprogram (Prim)
18651 then
18652 Wrap_Spec :=
18653 Make_Subprogram_Declaration (Sloc (Prim),
18654 Specification =>
18655 Build_Wrapper_Spec
18656 (Subp_Id => Prim,
18657 Obj_Typ => Conc_Typ,
18658 Formals =>
18659 Parameter_Specifications (
18660 Parent (Prim))));
18661
18662 Insert_After (Curr_Nod, Wrap_Spec);
18663 Curr_Nod := Wrap_Spec;
18664
18665 Analyze (Wrap_Spec);
18666 end if;
18667
18668 Next_Elmt (Prim_Elmt);
18669 end loop;
18670
18671 return;
18672 end;
18673
18674 -- For non-concurrent types, transfer explicit primitives, but
18675 -- omit those inherited from the parent of the private view
18676 -- since they will be re-inherited later on.
18677
18678 else
18679 Full_List := Primitive_Operations (Full_T);
18680
18681 while Present (Prim_Elmt) loop
18682 Prim := Node (Prim_Elmt);
18683
18684 if Comes_From_Source (Prim)
18685 and then not Contains (Prim, Full_List)
18686 then
18687 Append_Elmt (Prim, Full_List);
18688 end if;
18689
18690 Next_Elmt (Prim_Elmt);
18691 end loop;
18692 end if;
18693
18694 -- Untagged private view
18695
18696 else
18697 Full_List := Primitive_Operations (Full_T);
18698
18699 -- In this case the partial view is untagged, so here we locate
18700 -- all of the earlier primitives that need to be treated as
18701 -- dispatching (those that appear between the two views). Note
18702 -- that these additional operations must all be new operations
18703 -- (any earlier operations that override inherited operations
18704 -- of the full view will already have been inserted in the
18705 -- primitives list, marked by Check_Operation_From_Private_View
18706 -- as dispatching. Note that implicit "/=" operators are
18707 -- excluded from being added to the primitives list since they
18708 -- shouldn't be treated as dispatching (tagged "/=" is handled
18709 -- specially).
18710
18711 Prim := Next_Entity (Full_T);
18712 while Present (Prim) and then Prim /= Priv_T loop
18713 if Ekind_In (Prim, E_Procedure, E_Function) then
18714 Disp_Typ := Find_Dispatching_Type (Prim);
18715
18716 if Disp_Typ = Full_T
18717 and then (Chars (Prim) /= Name_Op_Ne
18718 or else Comes_From_Source (Prim))
18719 then
18720 Check_Controlling_Formals (Full_T, Prim);
18721
18722 if not Is_Dispatching_Operation (Prim) then
18723 Append_Elmt (Prim, Full_List);
18724 Set_Is_Dispatching_Operation (Prim, True);
18725 Set_DT_Position (Prim, No_Uint);
18726 end if;
18727
18728 elsif Is_Dispatching_Operation (Prim)
18729 and then Disp_Typ /= Full_T
18730 then
18731
18732 -- Verify that it is not otherwise controlled by a
18733 -- formal or a return value of type T.
18734
18735 Check_Controlling_Formals (Disp_Typ, Prim);
18736 end if;
18737 end if;
18738
18739 Next_Entity (Prim);
18740 end loop;
18741 end if;
18742
18743 -- For the tagged case, the two views can share the same primitive
18744 -- operations list and the same class-wide type. Update attributes
18745 -- of the class-wide type which depend on the full declaration.
18746
18747 if Is_Tagged_Type (Priv_T) then
18748 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18749 Set_Class_Wide_Type
18750 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18751
18752 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18753 end if;
18754 end;
18755 end if;
18756
18757 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18758
18759 if Known_To_Have_Preelab_Init (Priv_T) then
18760
18761 -- Case where there is a pragma Preelaborable_Initialization. We
18762 -- always allow this in predefined units, which is cheating a bit,
18763 -- but it means we don't have to struggle to meet the requirements in
18764 -- the RM for having Preelaborable Initialization. Otherwise we
18765 -- require that the type meets the RM rules. But we can't check that
18766 -- yet, because of the rule about overriding Initialize, so we simply
18767 -- set a flag that will be checked at freeze time.
18768
18769 if not In_Predefined_Unit (Full_T) then
18770 Set_Must_Have_Preelab_Init (Full_T);
18771 end if;
18772 end if;
18773
18774 -- If pragma CPP_Class was applied to the private type declaration,
18775 -- propagate it now to the full type declaration.
18776
18777 if Is_CPP_Class (Priv_T) then
18778 Set_Is_CPP_Class (Full_T);
18779 Set_Convention (Full_T, Convention_CPP);
18780
18781 -- Check that components of imported CPP types do not have default
18782 -- expressions.
18783
18784 Check_CPP_Type_Has_No_Defaults (Full_T);
18785 end if;
18786
18787 -- If the private view has user specified stream attributes, then so has
18788 -- the full view.
18789
18790 -- Why the test, how could these flags be already set in Full_T ???
18791
18792 if Has_Specified_Stream_Read (Priv_T) then
18793 Set_Has_Specified_Stream_Read (Full_T);
18794 end if;
18795
18796 if Has_Specified_Stream_Write (Priv_T) then
18797 Set_Has_Specified_Stream_Write (Full_T);
18798 end if;
18799
18800 if Has_Specified_Stream_Input (Priv_T) then
18801 Set_Has_Specified_Stream_Input (Full_T);
18802 end if;
18803
18804 if Has_Specified_Stream_Output (Priv_T) then
18805 Set_Has_Specified_Stream_Output (Full_T);
18806 end if;
18807
18808 -- Propagate invariants to full type
18809
18810 if Has_Invariants (Priv_T) then
18811 Set_Has_Invariants (Full_T);
18812 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18813 end if;
18814
18815 if Has_Inheritable_Invariants (Priv_T) then
18816 Set_Has_Inheritable_Invariants (Full_T);
18817 end if;
18818
18819 -- Propagate predicates to full type, and predicate function if already
18820 -- defined. It is not clear that this can actually happen? the partial
18821 -- view cannot be frozen yet, and the predicate function has not been
18822 -- built. Still it is a cheap check and seems safer to make it.
18823
18824 if Has_Predicates (Priv_T) then
18825 if Present (Predicate_Function (Priv_T)) then
18826 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18827 end if;
18828
18829 Set_Has_Predicates (Full_T);
18830 end if;
18831 end Process_Full_View;
18832
18833 -----------------------------------
18834 -- Process_Incomplete_Dependents --
18835 -----------------------------------
18836
18837 procedure Process_Incomplete_Dependents
18838 (N : Node_Id;
18839 Full_T : Entity_Id;
18840 Inc_T : Entity_Id)
18841 is
18842 Inc_Elmt : Elmt_Id;
18843 Priv_Dep : Entity_Id;
18844 New_Subt : Entity_Id;
18845
18846 Disc_Constraint : Elist_Id;
18847
18848 begin
18849 if No (Private_Dependents (Inc_T)) then
18850 return;
18851 end if;
18852
18853 -- Itypes that may be generated by the completion of an incomplete
18854 -- subtype are not used by the back-end and not attached to the tree.
18855 -- They are created only for constraint-checking purposes.
18856
18857 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18858 while Present (Inc_Elmt) loop
18859 Priv_Dep := Node (Inc_Elmt);
18860
18861 if Ekind (Priv_Dep) = E_Subprogram_Type then
18862
18863 -- An Access_To_Subprogram type may have a return type or a
18864 -- parameter type that is incomplete. Replace with the full view.
18865
18866 if Etype (Priv_Dep) = Inc_T then
18867 Set_Etype (Priv_Dep, Full_T);
18868 end if;
18869
18870 declare
18871 Formal : Entity_Id;
18872
18873 begin
18874 Formal := First_Formal (Priv_Dep);
18875 while Present (Formal) loop
18876 if Etype (Formal) = Inc_T then
18877 Set_Etype (Formal, Full_T);
18878 end if;
18879
18880 Next_Formal (Formal);
18881 end loop;
18882 end;
18883
18884 elsif Is_Overloadable (Priv_Dep) then
18885
18886 -- If a subprogram in the incomplete dependents list is primitive
18887 -- for a tagged full type then mark it as a dispatching operation,
18888 -- check whether it overrides an inherited subprogram, and check
18889 -- restrictions on its controlling formals. Note that a protected
18890 -- operation is never dispatching: only its wrapper operation
18891 -- (which has convention Ada) is.
18892
18893 if Is_Tagged_Type (Full_T)
18894 and then Is_Primitive (Priv_Dep)
18895 and then Convention (Priv_Dep) /= Convention_Protected
18896 then
18897 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18898 Set_Is_Dispatching_Operation (Priv_Dep);
18899 Check_Controlling_Formals (Full_T, Priv_Dep);
18900 end if;
18901
18902 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18903
18904 -- Can happen during processing of a body before the completion
18905 -- of a TA type. Ignore, because spec is also on dependent list.
18906
18907 return;
18908
18909 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18910 -- corresponding subtype of the full view.
18911
18912 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18913 Set_Subtype_Indication
18914 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
18915 Set_Etype (Priv_Dep, Full_T);
18916 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18917 Set_Analyzed (Parent (Priv_Dep), False);
18918
18919 -- Reanalyze the declaration, suppressing the call to
18920 -- Enter_Name to avoid duplicate names.
18921
18922 Analyze_Subtype_Declaration
18923 (N => Parent (Priv_Dep),
18924 Skip => True);
18925
18926 -- Dependent is a subtype
18927
18928 else
18929 -- We build a new subtype indication using the full view of the
18930 -- incomplete parent. The discriminant constraints have been
18931 -- elaborated already at the point of the subtype declaration.
18932
18933 New_Subt := Create_Itype (E_Void, N);
18934
18935 if Has_Discriminants (Full_T) then
18936 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18937 else
18938 Disc_Constraint := No_Elist;
18939 end if;
18940
18941 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18942 Set_Full_View (Priv_Dep, New_Subt);
18943 end if;
18944
18945 Next_Elmt (Inc_Elmt);
18946 end loop;
18947 end Process_Incomplete_Dependents;
18948
18949 --------------------------------
18950 -- Process_Range_Expr_In_Decl --
18951 --------------------------------
18952
18953 procedure Process_Range_Expr_In_Decl
18954 (R : Node_Id;
18955 T : Entity_Id;
18956 Check_List : List_Id := Empty_List;
18957 R_Check_Off : Boolean := False;
18958 In_Iter_Schm : Boolean := False)
18959 is
18960 Lo, Hi : Node_Id;
18961 R_Checks : Check_Result;
18962 Insert_Node : Node_Id;
18963 Def_Id : Entity_Id;
18964
18965 begin
18966 Analyze_And_Resolve (R, Base_Type (T));
18967
18968 if Nkind (R) = N_Range then
18969
18970 -- In SPARK, all ranges should be static, with the exception of the
18971 -- discrete type definition of a loop parameter specification.
18972
18973 if not In_Iter_Schm
18974 and then not Is_Static_Range (R)
18975 then
18976 Check_SPARK_Restriction ("range should be static", R);
18977 end if;
18978
18979 Lo := Low_Bound (R);
18980 Hi := High_Bound (R);
18981
18982 -- We need to ensure validity of the bounds here, because if we
18983 -- go ahead and do the expansion, then the expanded code will get
18984 -- analyzed with range checks suppressed and we miss the check.
18985 -- Validity checks on the range of a quantified expression are
18986 -- delayed until the construct is transformed into a loop.
18987
18988 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
18989 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
18990 then
18991 Validity_Check_Range (R);
18992 end if;
18993
18994 -- If there were errors in the declaration, try and patch up some
18995 -- common mistakes in the bounds. The cases handled are literals
18996 -- which are Integer where the expected type is Real and vice versa.
18997 -- These corrections allow the compilation process to proceed further
18998 -- along since some basic assumptions of the format of the bounds
18999 -- are guaranteed.
19000
19001 if Etype (R) = Any_Type then
19002 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19003 Rewrite (Lo,
19004 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19005
19006 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19007 Rewrite (Hi,
19008 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19009
19010 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19011 Rewrite (Lo,
19012 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19013
19014 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19015 Rewrite (Hi,
19016 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19017 end if;
19018
19019 Set_Etype (Lo, T);
19020 Set_Etype (Hi, T);
19021 end if;
19022
19023 -- If the bounds of the range have been mistakenly given as string
19024 -- literals (perhaps in place of character literals), then an error
19025 -- has already been reported, but we rewrite the string literal as a
19026 -- bound of the range's type to avoid blowups in later processing
19027 -- that looks at static values.
19028
19029 if Nkind (Lo) = N_String_Literal then
19030 Rewrite (Lo,
19031 Make_Attribute_Reference (Sloc (Lo),
19032 Attribute_Name => Name_First,
19033 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19034 Analyze_And_Resolve (Lo);
19035 end if;
19036
19037 if Nkind (Hi) = N_String_Literal then
19038 Rewrite (Hi,
19039 Make_Attribute_Reference (Sloc (Hi),
19040 Attribute_Name => Name_First,
19041 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19042 Analyze_And_Resolve (Hi);
19043 end if;
19044
19045 -- If bounds aren't scalar at this point then exit, avoiding
19046 -- problems with further processing of the range in this procedure.
19047
19048 if not Is_Scalar_Type (Etype (Lo)) then
19049 return;
19050 end if;
19051
19052 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19053 -- then range of the base type. Here we check whether the bounds
19054 -- are in the range of the subtype itself. Note that if the bounds
19055 -- represent the null range the Constraint_Error exception should
19056 -- not be raised.
19057
19058 -- ??? The following code should be cleaned up as follows
19059
19060 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19061 -- is done in the call to Range_Check (R, T); below
19062
19063 -- 2. The use of R_Check_Off should be investigated and possibly
19064 -- removed, this would clean up things a bit.
19065
19066 if Is_Null_Range (Lo, Hi) then
19067 null;
19068
19069 else
19070 -- Capture values of bounds and generate temporaries for them
19071 -- if needed, before applying checks, since checks may cause
19072 -- duplication of the expression without forcing evaluation.
19073
19074 -- The forced evaluation removes side effects from expressions,
19075 -- which should occur also in GNATprove mode. Otherwise, we end up
19076 -- with unexpected insertions of actions at places where this is
19077 -- not supposed to occur, e.g. on default parameters of a call.
19078
19079 if Expander_Active or GNATprove_Mode then
19080 Force_Evaluation (Lo);
19081 Force_Evaluation (Hi);
19082 end if;
19083
19084 -- We use a flag here instead of suppressing checks on the
19085 -- type because the type we check against isn't necessarily
19086 -- the place where we put the check.
19087
19088 if not R_Check_Off then
19089 R_Checks := Get_Range_Checks (R, T);
19090
19091 -- Look up tree to find an appropriate insertion point. We
19092 -- can't just use insert_actions because later processing
19093 -- depends on the insertion node. Prior to Ada 2012 the
19094 -- insertion point could only be a declaration or a loop, but
19095 -- quantified expressions can appear within any context in an
19096 -- expression, and the insertion point can be any statement,
19097 -- pragma, or declaration.
19098
19099 Insert_Node := Parent (R);
19100 while Present (Insert_Node) loop
19101 exit when
19102 Nkind (Insert_Node) in N_Declaration
19103 and then
19104 not Nkind_In
19105 (Insert_Node, N_Component_Declaration,
19106 N_Loop_Parameter_Specification,
19107 N_Function_Specification,
19108 N_Procedure_Specification);
19109
19110 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19111 or else Nkind (Insert_Node) in
19112 N_Statement_Other_Than_Procedure_Call
19113 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19114 N_Pragma);
19115
19116 Insert_Node := Parent (Insert_Node);
19117 end loop;
19118
19119 -- Why would Type_Decl not be present??? Without this test,
19120 -- short regression tests fail.
19121
19122 if Present (Insert_Node) then
19123
19124 -- Case of loop statement. Verify that the range is part
19125 -- of the subtype indication of the iteration scheme.
19126
19127 if Nkind (Insert_Node) = N_Loop_Statement then
19128 declare
19129 Indic : Node_Id;
19130
19131 begin
19132 Indic := Parent (R);
19133 while Present (Indic)
19134 and then Nkind (Indic) /= N_Subtype_Indication
19135 loop
19136 Indic := Parent (Indic);
19137 end loop;
19138
19139 if Present (Indic) then
19140 Def_Id := Etype (Subtype_Mark (Indic));
19141
19142 Insert_Range_Checks
19143 (R_Checks,
19144 Insert_Node,
19145 Def_Id,
19146 Sloc (Insert_Node),
19147 R,
19148 Do_Before => True);
19149 end if;
19150 end;
19151
19152 -- Insertion before a declaration. If the declaration
19153 -- includes discriminants, the list of applicable checks
19154 -- is given by the caller.
19155
19156 elsif Nkind (Insert_Node) in N_Declaration then
19157 Def_Id := Defining_Identifier (Insert_Node);
19158
19159 if (Ekind (Def_Id) = E_Record_Type
19160 and then Depends_On_Discriminant (R))
19161 or else
19162 (Ekind (Def_Id) = E_Protected_Type
19163 and then Has_Discriminants (Def_Id))
19164 then
19165 Append_Range_Checks
19166 (R_Checks,
19167 Check_List, Def_Id, Sloc (Insert_Node), R);
19168
19169 else
19170 Insert_Range_Checks
19171 (R_Checks,
19172 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19173
19174 end if;
19175
19176 -- Insertion before a statement. Range appears in the
19177 -- context of a quantified expression. Insertion will
19178 -- take place when expression is expanded.
19179
19180 else
19181 null;
19182 end if;
19183 end if;
19184 end if;
19185 end if;
19186
19187 -- Case of other than an explicit N_Range node
19188
19189 -- The forced evaluation removes side effects from expressions, which
19190 -- should occur also in GNATprove mode. Otherwise, we end up with
19191 -- unexpected insertions of actions at places where this is not
19192 -- supposed to occur, e.g. on default parameters of a call.
19193
19194 elsif Expander_Active or GNATprove_Mode then
19195 Get_Index_Bounds (R, Lo, Hi);
19196 Force_Evaluation (Lo);
19197 Force_Evaluation (Hi);
19198 end if;
19199 end Process_Range_Expr_In_Decl;
19200
19201 --------------------------------------
19202 -- Process_Real_Range_Specification --
19203 --------------------------------------
19204
19205 procedure Process_Real_Range_Specification (Def : Node_Id) is
19206 Spec : constant Node_Id := Real_Range_Specification (Def);
19207 Lo : Node_Id;
19208 Hi : Node_Id;
19209 Err : Boolean := False;
19210
19211 procedure Analyze_Bound (N : Node_Id);
19212 -- Analyze and check one bound
19213
19214 -------------------
19215 -- Analyze_Bound --
19216 -------------------
19217
19218 procedure Analyze_Bound (N : Node_Id) is
19219 begin
19220 Analyze_And_Resolve (N, Any_Real);
19221
19222 if not Is_OK_Static_Expression (N) then
19223 Flag_Non_Static_Expr
19224 ("bound in real type definition is not static!", N);
19225 Err := True;
19226 end if;
19227 end Analyze_Bound;
19228
19229 -- Start of processing for Process_Real_Range_Specification
19230
19231 begin
19232 if Present (Spec) then
19233 Lo := Low_Bound (Spec);
19234 Hi := High_Bound (Spec);
19235 Analyze_Bound (Lo);
19236 Analyze_Bound (Hi);
19237
19238 -- If error, clear away junk range specification
19239
19240 if Err then
19241 Set_Real_Range_Specification (Def, Empty);
19242 end if;
19243 end if;
19244 end Process_Real_Range_Specification;
19245
19246 ---------------------
19247 -- Process_Subtype --
19248 ---------------------
19249
19250 function Process_Subtype
19251 (S : Node_Id;
19252 Related_Nod : Node_Id;
19253 Related_Id : Entity_Id := Empty;
19254 Suffix : Character := ' ') return Entity_Id
19255 is
19256 P : Node_Id;
19257 Def_Id : Entity_Id;
19258 Error_Node : Node_Id;
19259 Full_View_Id : Entity_Id;
19260 Subtype_Mark_Id : Entity_Id;
19261
19262 May_Have_Null_Exclusion : Boolean;
19263
19264 procedure Check_Incomplete (T : Entity_Id);
19265 -- Called to verify that an incomplete type is not used prematurely
19266
19267 ----------------------
19268 -- Check_Incomplete --
19269 ----------------------
19270
19271 procedure Check_Incomplete (T : Entity_Id) is
19272 begin
19273 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19274
19275 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19276 and then
19277 not (Ada_Version >= Ada_2005
19278 and then
19279 (Nkind (Parent (T)) = N_Subtype_Declaration
19280 or else
19281 (Nkind (Parent (T)) = N_Subtype_Indication
19282 and then Nkind (Parent (Parent (T))) =
19283 N_Subtype_Declaration)))
19284 then
19285 Error_Msg_N ("invalid use of type before its full declaration", T);
19286 end if;
19287 end Check_Incomplete;
19288
19289 -- Start of processing for Process_Subtype
19290
19291 begin
19292 -- Case of no constraints present
19293
19294 if Nkind (S) /= N_Subtype_Indication then
19295 Find_Type (S);
19296 Check_Incomplete (S);
19297 P := Parent (S);
19298
19299 -- Ada 2005 (AI-231): Static check
19300
19301 if Ada_Version >= Ada_2005
19302 and then Present (P)
19303 and then Null_Exclusion_Present (P)
19304 and then Nkind (P) /= N_Access_To_Object_Definition
19305 and then not Is_Access_Type (Entity (S))
19306 then
19307 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19308 end if;
19309
19310 -- The following is ugly, can't we have a range or even a flag???
19311
19312 May_Have_Null_Exclusion :=
19313 Nkind_In (P, N_Access_Definition,
19314 N_Access_Function_Definition,
19315 N_Access_Procedure_Definition,
19316 N_Access_To_Object_Definition,
19317 N_Allocator,
19318 N_Component_Definition)
19319 or else
19320 Nkind_In (P, N_Derived_Type_Definition,
19321 N_Discriminant_Specification,
19322 N_Formal_Object_Declaration,
19323 N_Object_Declaration,
19324 N_Object_Renaming_Declaration,
19325 N_Parameter_Specification,
19326 N_Subtype_Declaration);
19327
19328 -- Create an Itype that is a duplicate of Entity (S) but with the
19329 -- null-exclusion attribute.
19330
19331 if May_Have_Null_Exclusion
19332 and then Is_Access_Type (Entity (S))
19333 and then Null_Exclusion_Present (P)
19334
19335 -- No need to check the case of an access to object definition.
19336 -- It is correct to define double not-null pointers.
19337
19338 -- Example:
19339 -- type Not_Null_Int_Ptr is not null access Integer;
19340 -- type Acc is not null access Not_Null_Int_Ptr;
19341
19342 and then Nkind (P) /= N_Access_To_Object_Definition
19343 then
19344 if Can_Never_Be_Null (Entity (S)) then
19345 case Nkind (Related_Nod) is
19346 when N_Full_Type_Declaration =>
19347 if Nkind (Type_Definition (Related_Nod))
19348 in N_Array_Type_Definition
19349 then
19350 Error_Node :=
19351 Subtype_Indication
19352 (Component_Definition
19353 (Type_Definition (Related_Nod)));
19354 else
19355 Error_Node :=
19356 Subtype_Indication (Type_Definition (Related_Nod));
19357 end if;
19358
19359 when N_Subtype_Declaration =>
19360 Error_Node := Subtype_Indication (Related_Nod);
19361
19362 when N_Object_Declaration =>
19363 Error_Node := Object_Definition (Related_Nod);
19364
19365 when N_Component_Declaration =>
19366 Error_Node :=
19367 Subtype_Indication (Component_Definition (Related_Nod));
19368
19369 when N_Allocator =>
19370 Error_Node := Expression (Related_Nod);
19371
19372 when others =>
19373 pragma Assert (False);
19374 Error_Node := Related_Nod;
19375 end case;
19376
19377 Error_Msg_NE
19378 ("`NOT NULL` not allowed (& already excludes null)",
19379 Error_Node,
19380 Entity (S));
19381 end if;
19382
19383 Set_Etype (S,
19384 Create_Null_Excluding_Itype
19385 (T => Entity (S),
19386 Related_Nod => P));
19387 Set_Entity (S, Etype (S));
19388 end if;
19389
19390 return Entity (S);
19391
19392 -- Case of constraint present, so that we have an N_Subtype_Indication
19393 -- node (this node is created only if constraints are present).
19394
19395 else
19396 Find_Type (Subtype_Mark (S));
19397
19398 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19399 and then not
19400 (Nkind (Parent (S)) = N_Subtype_Declaration
19401 and then Is_Itype (Defining_Identifier (Parent (S))))
19402 then
19403 Check_Incomplete (Subtype_Mark (S));
19404 end if;
19405
19406 P := Parent (S);
19407 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19408
19409 -- Explicit subtype declaration case
19410
19411 if Nkind (P) = N_Subtype_Declaration then
19412 Def_Id := Defining_Identifier (P);
19413
19414 -- Explicit derived type definition case
19415
19416 elsif Nkind (P) = N_Derived_Type_Definition then
19417 Def_Id := Defining_Identifier (Parent (P));
19418
19419 -- Implicit case, the Def_Id must be created as an implicit type.
19420 -- The one exception arises in the case of concurrent types, array
19421 -- and access types, where other subsidiary implicit types may be
19422 -- created and must appear before the main implicit type. In these
19423 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19424 -- has not yet been called to create Def_Id.
19425
19426 else
19427 if Is_Array_Type (Subtype_Mark_Id)
19428 or else Is_Concurrent_Type (Subtype_Mark_Id)
19429 or else Is_Access_Type (Subtype_Mark_Id)
19430 then
19431 Def_Id := Empty;
19432
19433 -- For the other cases, we create a new unattached Itype,
19434 -- and set the indication to ensure it gets attached later.
19435
19436 else
19437 Def_Id :=
19438 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19439 end if;
19440 end if;
19441
19442 -- If the kind of constraint is invalid for this kind of type,
19443 -- then give an error, and then pretend no constraint was given.
19444
19445 if not Is_Valid_Constraint_Kind
19446 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19447 then
19448 Error_Msg_N
19449 ("incorrect constraint for this kind of type", Constraint (S));
19450
19451 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19452
19453 -- Set Ekind of orphan itype, to prevent cascaded errors
19454
19455 if Present (Def_Id) then
19456 Set_Ekind (Def_Id, Ekind (Any_Type));
19457 end if;
19458
19459 -- Make recursive call, having got rid of the bogus constraint
19460
19461 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19462 end if;
19463
19464 -- Remaining processing depends on type. Select on Base_Type kind to
19465 -- ensure getting to the concrete type kind in the case of a private
19466 -- subtype (needed when only doing semantic analysis).
19467
19468 case Ekind (Base_Type (Subtype_Mark_Id)) is
19469 when Access_Kind =>
19470
19471 -- If this is a constraint on a class-wide type, discard it.
19472 -- There is currently no way to express a partial discriminant
19473 -- constraint on a type with unknown discriminants. This is
19474 -- a pathology that the ACATS wisely decides not to test.
19475
19476 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19477 if Comes_From_Source (S) then
19478 Error_Msg_N
19479 ("constraint on class-wide type ignored??",
19480 Constraint (S));
19481 end if;
19482
19483 if Nkind (P) = N_Subtype_Declaration then
19484 Set_Subtype_Indication (P,
19485 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19486 end if;
19487
19488 return Subtype_Mark_Id;
19489 end if;
19490
19491 Constrain_Access (Def_Id, S, Related_Nod);
19492
19493 if Expander_Active
19494 and then Is_Itype (Designated_Type (Def_Id))
19495 and then Nkind (Related_Nod) = N_Subtype_Declaration
19496 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19497 then
19498 Build_Itype_Reference
19499 (Designated_Type (Def_Id), Related_Nod);
19500 end if;
19501
19502 when Array_Kind =>
19503 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19504
19505 when Decimal_Fixed_Point_Kind =>
19506 Constrain_Decimal (Def_Id, S);
19507
19508 when Enumeration_Kind =>
19509 Constrain_Enumeration (Def_Id, S);
19510
19511 when Ordinary_Fixed_Point_Kind =>
19512 Constrain_Ordinary_Fixed (Def_Id, S);
19513
19514 when Float_Kind =>
19515 Constrain_Float (Def_Id, S);
19516
19517 when Integer_Kind =>
19518 Constrain_Integer (Def_Id, S);
19519
19520 when E_Record_Type |
19521 E_Record_Subtype |
19522 Class_Wide_Kind |
19523 E_Incomplete_Type =>
19524 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19525
19526 if Ekind (Def_Id) = E_Incomplete_Type then
19527 Set_Private_Dependents (Def_Id, New_Elmt_List);
19528 end if;
19529
19530 when Private_Kind =>
19531 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19532 Set_Private_Dependents (Def_Id, New_Elmt_List);
19533
19534 -- In case of an invalid constraint prevent further processing
19535 -- since the type constructed is missing expected fields.
19536
19537 if Etype (Def_Id) = Any_Type then
19538 return Def_Id;
19539 end if;
19540
19541 -- If the full view is that of a task with discriminants,
19542 -- we must constrain both the concurrent type and its
19543 -- corresponding record type. Otherwise we will just propagate
19544 -- the constraint to the full view, if available.
19545
19546 if Present (Full_View (Subtype_Mark_Id))
19547 and then Has_Discriminants (Subtype_Mark_Id)
19548 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19549 then
19550 Full_View_Id :=
19551 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19552
19553 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19554 Constrain_Concurrent (Full_View_Id, S,
19555 Related_Nod, Related_Id, Suffix);
19556 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19557 Set_Full_View (Def_Id, Full_View_Id);
19558
19559 -- Introduce an explicit reference to the private subtype,
19560 -- to prevent scope anomalies in gigi if first use appears
19561 -- in a nested context, e.g. a later function body.
19562 -- Should this be generated in other contexts than a full
19563 -- type declaration?
19564
19565 if Is_Itype (Def_Id)
19566 and then
19567 Nkind (Parent (P)) = N_Full_Type_Declaration
19568 then
19569 Build_Itype_Reference (Def_Id, Parent (P));
19570 end if;
19571
19572 else
19573 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19574 end if;
19575
19576 when Concurrent_Kind =>
19577 Constrain_Concurrent (Def_Id, S,
19578 Related_Nod, Related_Id, Suffix);
19579
19580 when others =>
19581 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19582 end case;
19583
19584 -- Size and Convention are always inherited from the base type
19585
19586 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19587 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19588
19589 return Def_Id;
19590 end if;
19591 end Process_Subtype;
19592
19593 ---------------------------------------
19594 -- Check_Anonymous_Access_Components --
19595 ---------------------------------------
19596
19597 procedure Check_Anonymous_Access_Components
19598 (Typ_Decl : Node_Id;
19599 Typ : Entity_Id;
19600 Prev : Entity_Id;
19601 Comp_List : Node_Id)
19602 is
19603 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19604 Anon_Access : Entity_Id;
19605 Acc_Def : Node_Id;
19606 Comp : Node_Id;
19607 Comp_Def : Node_Id;
19608 Decl : Node_Id;
19609 Type_Def : Node_Id;
19610
19611 procedure Build_Incomplete_Type_Declaration;
19612 -- If the record type contains components that include an access to the
19613 -- current record, then create an incomplete type declaration for the
19614 -- record, to be used as the designated type of the anonymous access.
19615 -- This is done only once, and only if there is no previous partial
19616 -- view of the type.
19617
19618 function Designates_T (Subt : Node_Id) return Boolean;
19619 -- Check whether a node designates the enclosing record type, or 'Class
19620 -- of that type
19621
19622 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19623 -- Check whether an access definition includes a reference to
19624 -- the enclosing record type. The reference can be a subtype mark
19625 -- in the access definition itself, a 'Class attribute reference, or
19626 -- recursively a reference appearing in a parameter specification
19627 -- or result definition of an access_to_subprogram definition.
19628
19629 --------------------------------------
19630 -- Build_Incomplete_Type_Declaration --
19631 --------------------------------------
19632
19633 procedure Build_Incomplete_Type_Declaration is
19634 Decl : Node_Id;
19635 Inc_T : Entity_Id;
19636 H : Entity_Id;
19637
19638 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19639 -- it's "is new ... with record" or else "is tagged record ...".
19640
19641 Is_Tagged : constant Boolean :=
19642 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19643 and then
19644 Present
19645 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19646 or else
19647 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19648 and then Tagged_Present (Type_Definition (Typ_Decl)));
19649
19650 begin
19651 -- If there is a previous partial view, no need to create a new one
19652 -- If the partial view, given by Prev, is incomplete, If Prev is
19653 -- a private declaration, full declaration is flagged accordingly.
19654
19655 if Prev /= Typ then
19656 if Is_Tagged then
19657 Make_Class_Wide_Type (Prev);
19658 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19659 Set_Etype (Class_Wide_Type (Typ), Typ);
19660 end if;
19661
19662 return;
19663
19664 elsif Has_Private_Declaration (Typ) then
19665
19666 -- If we refer to T'Class inside T, and T is the completion of a
19667 -- private type, then we need to make sure the class-wide type
19668 -- exists.
19669
19670 if Is_Tagged then
19671 Make_Class_Wide_Type (Typ);
19672 end if;
19673
19674 return;
19675
19676 -- If there was a previous anonymous access type, the incomplete
19677 -- type declaration will have been created already.
19678
19679 elsif Present (Current_Entity (Typ))
19680 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19681 and then Full_View (Current_Entity (Typ)) = Typ
19682 then
19683 if Is_Tagged
19684 and then Comes_From_Source (Current_Entity (Typ))
19685 and then not Is_Tagged_Type (Current_Entity (Typ))
19686 then
19687 Make_Class_Wide_Type (Typ);
19688 Error_Msg_N
19689 ("incomplete view of tagged type should be declared tagged??",
19690 Parent (Current_Entity (Typ)));
19691 end if;
19692 return;
19693
19694 else
19695 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19696 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19697
19698 -- Type has already been inserted into the current scope. Remove
19699 -- it, and add incomplete declaration for type, so that subsequent
19700 -- anonymous access types can use it. The entity is unchained from
19701 -- the homonym list and from immediate visibility. After analysis,
19702 -- the entity in the incomplete declaration becomes immediately
19703 -- visible in the record declaration that follows.
19704
19705 H := Current_Entity (Typ);
19706
19707 if H = Typ then
19708 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19709 else
19710 while Present (H)
19711 and then Homonym (H) /= Typ
19712 loop
19713 H := Homonym (Typ);
19714 end loop;
19715
19716 Set_Homonym (H, Homonym (Typ));
19717 end if;
19718
19719 Insert_Before (Typ_Decl, Decl);
19720 Analyze (Decl);
19721 Set_Full_View (Inc_T, Typ);
19722
19723 if Is_Tagged then
19724
19725 -- Create a common class-wide type for both views, and set the
19726 -- Etype of the class-wide type to the full view.
19727
19728 Make_Class_Wide_Type (Inc_T);
19729 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19730 Set_Etype (Class_Wide_Type (Typ), Typ);
19731 end if;
19732 end if;
19733 end Build_Incomplete_Type_Declaration;
19734
19735 ------------------
19736 -- Designates_T --
19737 ------------------
19738
19739 function Designates_T (Subt : Node_Id) return Boolean is
19740 Type_Id : constant Name_Id := Chars (Typ);
19741
19742 function Names_T (Nam : Node_Id) return Boolean;
19743 -- The record type has not been introduced in the current scope
19744 -- yet, so we must examine the name of the type itself, either
19745 -- an identifier T, or an expanded name of the form P.T, where
19746 -- P denotes the current scope.
19747
19748 -------------
19749 -- Names_T --
19750 -------------
19751
19752 function Names_T (Nam : Node_Id) return Boolean is
19753 begin
19754 if Nkind (Nam) = N_Identifier then
19755 return Chars (Nam) = Type_Id;
19756
19757 elsif Nkind (Nam) = N_Selected_Component then
19758 if Chars (Selector_Name (Nam)) = Type_Id then
19759 if Nkind (Prefix (Nam)) = N_Identifier then
19760 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19761
19762 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19763 return Chars (Selector_Name (Prefix (Nam))) =
19764 Chars (Current_Scope);
19765 else
19766 return False;
19767 end if;
19768
19769 else
19770 return False;
19771 end if;
19772
19773 else
19774 return False;
19775 end if;
19776 end Names_T;
19777
19778 -- Start of processing for Designates_T
19779
19780 begin
19781 if Nkind (Subt) = N_Identifier then
19782 return Chars (Subt) = Type_Id;
19783
19784 -- Reference can be through an expanded name which has not been
19785 -- analyzed yet, and which designates enclosing scopes.
19786
19787 elsif Nkind (Subt) = N_Selected_Component then
19788 if Names_T (Subt) then
19789 return True;
19790
19791 -- Otherwise it must denote an entity that is already visible.
19792 -- The access definition may name a subtype of the enclosing
19793 -- type, if there is a previous incomplete declaration for it.
19794
19795 else
19796 Find_Selected_Component (Subt);
19797 return
19798 Is_Entity_Name (Subt)
19799 and then Scope (Entity (Subt)) = Current_Scope
19800 and then
19801 (Chars (Base_Type (Entity (Subt))) = Type_Id
19802 or else
19803 (Is_Class_Wide_Type (Entity (Subt))
19804 and then
19805 Chars (Etype (Base_Type (Entity (Subt)))) =
19806 Type_Id));
19807 end if;
19808
19809 -- A reference to the current type may appear as the prefix of
19810 -- a 'Class attribute.
19811
19812 elsif Nkind (Subt) = N_Attribute_Reference
19813 and then Attribute_Name (Subt) = Name_Class
19814 then
19815 return Names_T (Prefix (Subt));
19816
19817 else
19818 return False;
19819 end if;
19820 end Designates_T;
19821
19822 ----------------
19823 -- Mentions_T --
19824 ----------------
19825
19826 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19827 Param_Spec : Node_Id;
19828
19829 Acc_Subprg : constant Node_Id :=
19830 Access_To_Subprogram_Definition (Acc_Def);
19831
19832 begin
19833 if No (Acc_Subprg) then
19834 return Designates_T (Subtype_Mark (Acc_Def));
19835 end if;
19836
19837 -- Component is an access_to_subprogram: examine its formals,
19838 -- and result definition in the case of an access_to_function.
19839
19840 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19841 while Present (Param_Spec) loop
19842 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19843 and then Mentions_T (Parameter_Type (Param_Spec))
19844 then
19845 return True;
19846
19847 elsif Designates_T (Parameter_Type (Param_Spec)) then
19848 return True;
19849 end if;
19850
19851 Next (Param_Spec);
19852 end loop;
19853
19854 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19855 if Nkind (Result_Definition (Acc_Subprg)) =
19856 N_Access_Definition
19857 then
19858 return Mentions_T (Result_Definition (Acc_Subprg));
19859 else
19860 return Designates_T (Result_Definition (Acc_Subprg));
19861 end if;
19862 end if;
19863
19864 return False;
19865 end Mentions_T;
19866
19867 -- Start of processing for Check_Anonymous_Access_Components
19868
19869 begin
19870 if No (Comp_List) then
19871 return;
19872 end if;
19873
19874 Comp := First (Component_Items (Comp_List));
19875 while Present (Comp) loop
19876 if Nkind (Comp) = N_Component_Declaration
19877 and then Present
19878 (Access_Definition (Component_Definition (Comp)))
19879 and then
19880 Mentions_T (Access_Definition (Component_Definition (Comp)))
19881 then
19882 Comp_Def := Component_Definition (Comp);
19883 Acc_Def :=
19884 Access_To_Subprogram_Definition
19885 (Access_Definition (Comp_Def));
19886
19887 Build_Incomplete_Type_Declaration;
19888 Anon_Access := Make_Temporary (Loc, 'S');
19889
19890 -- Create a declaration for the anonymous access type: either
19891 -- an access_to_object or an access_to_subprogram.
19892
19893 if Present (Acc_Def) then
19894 if Nkind (Acc_Def) = N_Access_Function_Definition then
19895 Type_Def :=
19896 Make_Access_Function_Definition (Loc,
19897 Parameter_Specifications =>
19898 Parameter_Specifications (Acc_Def),
19899 Result_Definition => Result_Definition (Acc_Def));
19900 else
19901 Type_Def :=
19902 Make_Access_Procedure_Definition (Loc,
19903 Parameter_Specifications =>
19904 Parameter_Specifications (Acc_Def));
19905 end if;
19906
19907 else
19908 Type_Def :=
19909 Make_Access_To_Object_Definition (Loc,
19910 Subtype_Indication =>
19911 Relocate_Node
19912 (Subtype_Mark
19913 (Access_Definition (Comp_Def))));
19914
19915 Set_Constant_Present
19916 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19917 Set_All_Present
19918 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19919 end if;
19920
19921 Set_Null_Exclusion_Present
19922 (Type_Def,
19923 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19924
19925 Decl :=
19926 Make_Full_Type_Declaration (Loc,
19927 Defining_Identifier => Anon_Access,
19928 Type_Definition => Type_Def);
19929
19930 Insert_Before (Typ_Decl, Decl);
19931 Analyze (Decl);
19932
19933 -- If an access to subprogram, create the extra formals
19934
19935 if Present (Acc_Def) then
19936 Create_Extra_Formals (Designated_Type (Anon_Access));
19937
19938 -- If an access to object, preserve entity of designated type,
19939 -- for ASIS use, before rewriting the component definition.
19940
19941 else
19942 declare
19943 Desig : Entity_Id;
19944
19945 begin
19946 Desig := Entity (Subtype_Indication (Type_Def));
19947
19948 -- If the access definition is to the current record,
19949 -- the visible entity at this point is an incomplete
19950 -- type. Retrieve the full view to simplify ASIS queries
19951
19952 if Ekind (Desig) = E_Incomplete_Type then
19953 Desig := Full_View (Desig);
19954 end if;
19955
19956 Set_Entity
19957 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19958 end;
19959 end if;
19960
19961 Rewrite (Comp_Def,
19962 Make_Component_Definition (Loc,
19963 Subtype_Indication =>
19964 New_Occurrence_Of (Anon_Access, Loc)));
19965
19966 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19967 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19968 else
19969 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19970 end if;
19971
19972 Set_Is_Local_Anonymous_Access (Anon_Access);
19973 end if;
19974
19975 Next (Comp);
19976 end loop;
19977
19978 if Present (Variant_Part (Comp_List)) then
19979 declare
19980 V : Node_Id;
19981 begin
19982 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19983 while Present (V) loop
19984 Check_Anonymous_Access_Components
19985 (Typ_Decl, Typ, Prev, Component_List (V));
19986 Next_Non_Pragma (V);
19987 end loop;
19988 end;
19989 end if;
19990 end Check_Anonymous_Access_Components;
19991
19992 ----------------------------------
19993 -- Preanalyze_Assert_Expression --
19994 ----------------------------------
19995
19996 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19997 begin
19998 In_Assertion_Expr := In_Assertion_Expr + 1;
19999 Preanalyze_Spec_Expression (N, T);
20000 In_Assertion_Expr := In_Assertion_Expr - 1;
20001 end Preanalyze_Assert_Expression;
20002
20003 --------------------------------
20004 -- Preanalyze_Spec_Expression --
20005 --------------------------------
20006
20007 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20008 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20009 begin
20010 In_Spec_Expression := True;
20011 Preanalyze_And_Resolve (N, T);
20012 In_Spec_Expression := Save_In_Spec_Expression;
20013 end Preanalyze_Spec_Expression;
20014
20015 -----------------------------
20016 -- Record_Type_Declaration --
20017 -----------------------------
20018
20019 procedure Record_Type_Declaration
20020 (T : Entity_Id;
20021 N : Node_Id;
20022 Prev : Entity_Id)
20023 is
20024 Def : constant Node_Id := Type_Definition (N);
20025 Is_Tagged : Boolean;
20026 Tag_Comp : Entity_Id;
20027
20028 begin
20029 -- These flags must be initialized before calling Process_Discriminants
20030 -- because this routine makes use of them.
20031
20032 Set_Ekind (T, E_Record_Type);
20033 Set_Etype (T, T);
20034 Init_Size_Align (T);
20035 Set_Interfaces (T, No_Elist);
20036 Set_Stored_Constraint (T, No_Elist);
20037
20038 -- Normal case
20039
20040 if Ada_Version < Ada_2005
20041 or else not Interface_Present (Def)
20042 then
20043 if Limited_Present (Def) then
20044 Check_SPARK_Restriction ("limited is not allowed", N);
20045 end if;
20046
20047 if Abstract_Present (Def) then
20048 Check_SPARK_Restriction ("abstract is not allowed", N);
20049 end if;
20050
20051 -- The flag Is_Tagged_Type might have already been set by
20052 -- Find_Type_Name if it detected an error for declaration T. This
20053 -- arises in the case of private tagged types where the full view
20054 -- omits the word tagged.
20055
20056 Is_Tagged :=
20057 Tagged_Present (Def)
20058 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20059
20060 Set_Is_Tagged_Type (T, Is_Tagged);
20061 Set_Is_Limited_Record (T, Limited_Present (Def));
20062
20063 -- Type is abstract if full declaration carries keyword, or if
20064 -- previous partial view did.
20065
20066 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20067 or else Abstract_Present (Def));
20068
20069 else
20070 Check_SPARK_Restriction ("interface is not allowed", N);
20071
20072 Is_Tagged := True;
20073 Analyze_Interface_Declaration (T, Def);
20074
20075 if Present (Discriminant_Specifications (N)) then
20076 Error_Msg_N
20077 ("interface types cannot have discriminants",
20078 Defining_Identifier
20079 (First (Discriminant_Specifications (N))));
20080 end if;
20081 end if;
20082
20083 -- First pass: if there are self-referential access components,
20084 -- create the required anonymous access type declarations, and if
20085 -- need be an incomplete type declaration for T itself.
20086
20087 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20088
20089 if Ada_Version >= Ada_2005
20090 and then Present (Interface_List (Def))
20091 then
20092 Check_Interfaces (N, Def);
20093
20094 declare
20095 Ifaces_List : Elist_Id;
20096
20097 begin
20098 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20099 -- already in the parents.
20100
20101 Collect_Interfaces
20102 (T => T,
20103 Ifaces_List => Ifaces_List,
20104 Exclude_Parents => True);
20105
20106 Set_Interfaces (T, Ifaces_List);
20107 end;
20108 end if;
20109
20110 -- Records constitute a scope for the component declarations within.
20111 -- The scope is created prior to the processing of these declarations.
20112 -- Discriminants are processed first, so that they are visible when
20113 -- processing the other components. The Ekind of the record type itself
20114 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20115
20116 -- Enter record scope
20117
20118 Push_Scope (T);
20119
20120 -- If an incomplete or private type declaration was already given for
20121 -- the type, then this scope already exists, and the discriminants have
20122 -- been declared within. We must verify that the full declaration
20123 -- matches the incomplete one.
20124
20125 Check_Or_Process_Discriminants (N, T, Prev);
20126
20127 Set_Is_Constrained (T, not Has_Discriminants (T));
20128 Set_Has_Delayed_Freeze (T, True);
20129
20130 -- For tagged types add a manually analyzed component corresponding
20131 -- to the component _tag, the corresponding piece of tree will be
20132 -- expanded as part of the freezing actions if it is not a CPP_Class.
20133
20134 if Is_Tagged then
20135
20136 -- Do not add the tag unless we are in expansion mode
20137
20138 if Expander_Active then
20139 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20140 Enter_Name (Tag_Comp);
20141
20142 Set_Ekind (Tag_Comp, E_Component);
20143 Set_Is_Tag (Tag_Comp);
20144 Set_Is_Aliased (Tag_Comp);
20145 Set_Etype (Tag_Comp, RTE (RE_Tag));
20146 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20147 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20148 Init_Component_Location (Tag_Comp);
20149
20150 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20151 -- implemented interfaces.
20152
20153 if Has_Interfaces (T) then
20154 Add_Interface_Tag_Components (N, T);
20155 end if;
20156 end if;
20157
20158 Make_Class_Wide_Type (T);
20159 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20160 end if;
20161
20162 -- We must suppress range checks when processing record components in
20163 -- the presence of discriminants, since we don't want spurious checks to
20164 -- be generated during their analysis, but Suppress_Range_Checks flags
20165 -- must be reset the after processing the record definition.
20166
20167 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20168 -- couldn't we just use the normal range check suppression method here.
20169 -- That would seem cleaner ???
20170
20171 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20172 Set_Kill_Range_Checks (T, True);
20173 Record_Type_Definition (Def, Prev);
20174 Set_Kill_Range_Checks (T, False);
20175 else
20176 Record_Type_Definition (Def, Prev);
20177 end if;
20178
20179 -- Exit from record scope
20180
20181 End_Scope;
20182
20183 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20184 -- the implemented interfaces and associate them an aliased entity.
20185
20186 if Is_Tagged
20187 and then not Is_Empty_List (Interface_List (Def))
20188 then
20189 Derive_Progenitor_Subprograms (T, T);
20190 end if;
20191
20192 Check_Function_Writable_Actuals (N);
20193 end Record_Type_Declaration;
20194
20195 ----------------------------
20196 -- Record_Type_Definition --
20197 ----------------------------
20198
20199 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20200 Component : Entity_Id;
20201 Ctrl_Components : Boolean := False;
20202 Final_Storage_Only : Boolean;
20203 T : Entity_Id;
20204
20205 begin
20206 if Ekind (Prev_T) = E_Incomplete_Type then
20207 T := Full_View (Prev_T);
20208 else
20209 T := Prev_T;
20210 end if;
20211
20212 -- In SPARK, tagged types and type extensions may only be declared in
20213 -- the specification of library unit packages.
20214
20215 if Present (Def) and then Is_Tagged_Type (T) then
20216 declare
20217 Typ : Node_Id;
20218 Ctxt : Node_Id;
20219
20220 begin
20221 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20222 Typ := Parent (Def);
20223 else
20224 pragma Assert
20225 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20226 Typ := Parent (Parent (Def));
20227 end if;
20228
20229 Ctxt := Parent (Typ);
20230
20231 if Nkind (Ctxt) = N_Package_Body
20232 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20233 then
20234 Check_SPARK_Restriction
20235 ("type should be defined in package specification", Typ);
20236
20237 elsif Nkind (Ctxt) /= N_Package_Specification
20238 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20239 then
20240 Check_SPARK_Restriction
20241 ("type should be defined in library unit package", Typ);
20242 end if;
20243 end;
20244 end if;
20245
20246 Final_Storage_Only := not Is_Controlled (T);
20247
20248 -- Ada 2005: Check whether an explicit Limited is present in a derived
20249 -- type declaration.
20250
20251 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20252 and then Limited_Present (Parent (Def))
20253 then
20254 Set_Is_Limited_Record (T);
20255 end if;
20256
20257 -- If the component list of a record type is defined by the reserved
20258 -- word null and there is no discriminant part, then the record type has
20259 -- no components and all records of the type are null records (RM 3.7)
20260 -- This procedure is also called to process the extension part of a
20261 -- record extension, in which case the current scope may have inherited
20262 -- components.
20263
20264 if No (Def)
20265 or else No (Component_List (Def))
20266 or else Null_Present (Component_List (Def))
20267 then
20268 if not Is_Tagged_Type (T) then
20269 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
20270 end if;
20271
20272 else
20273 Analyze_Declarations (Component_Items (Component_List (Def)));
20274
20275 if Present (Variant_Part (Component_List (Def))) then
20276 Check_SPARK_Restriction ("variant part is not allowed", Def);
20277 Analyze (Variant_Part (Component_List (Def)));
20278 end if;
20279 end if;
20280
20281 -- After completing the semantic analysis of the record definition,
20282 -- record components, both new and inherited, are accessible. Set their
20283 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20284 -- whose Ekind may be void.
20285
20286 Component := First_Entity (Current_Scope);
20287 while Present (Component) loop
20288 if Ekind (Component) = E_Void
20289 and then not Is_Itype (Component)
20290 then
20291 Set_Ekind (Component, E_Component);
20292 Init_Component_Location (Component);
20293 end if;
20294
20295 if Has_Task (Etype (Component)) then
20296 Set_Has_Task (T);
20297 end if;
20298
20299 if Ekind (Component) /= E_Component then
20300 null;
20301
20302 -- Do not set Has_Controlled_Component on a class-wide equivalent
20303 -- type. See Make_CW_Equivalent_Type.
20304
20305 elsif not Is_Class_Wide_Equivalent_Type (T)
20306 and then (Has_Controlled_Component (Etype (Component))
20307 or else (Chars (Component) /= Name_uParent
20308 and then Is_Controlled (Etype (Component))))
20309 then
20310 Set_Has_Controlled_Component (T, True);
20311 Final_Storage_Only :=
20312 Final_Storage_Only
20313 and then Finalize_Storage_Only (Etype (Component));
20314 Ctrl_Components := True;
20315 end if;
20316
20317 Next_Entity (Component);
20318 end loop;
20319
20320 -- A Type is Finalize_Storage_Only only if all its controlled components
20321 -- are also.
20322
20323 if Ctrl_Components then
20324 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20325 end if;
20326
20327 -- Place reference to end record on the proper entity, which may
20328 -- be a partial view.
20329
20330 if Present (Def) then
20331 Process_End_Label (Def, 'e', Prev_T);
20332 end if;
20333 end Record_Type_Definition;
20334
20335 ------------------------
20336 -- Replace_Components --
20337 ------------------------
20338
20339 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20340 function Process (N : Node_Id) return Traverse_Result;
20341
20342 -------------
20343 -- Process --
20344 -------------
20345
20346 function Process (N : Node_Id) return Traverse_Result is
20347 Comp : Entity_Id;
20348
20349 begin
20350 if Nkind (N) = N_Discriminant_Specification then
20351 Comp := First_Discriminant (Typ);
20352 while Present (Comp) loop
20353 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20354 Set_Defining_Identifier (N, Comp);
20355 exit;
20356 end if;
20357
20358 Next_Discriminant (Comp);
20359 end loop;
20360
20361 elsif Nkind (N) = N_Component_Declaration then
20362 Comp := First_Component (Typ);
20363 while Present (Comp) loop
20364 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20365 Set_Defining_Identifier (N, Comp);
20366 exit;
20367 end if;
20368
20369 Next_Component (Comp);
20370 end loop;
20371 end if;
20372
20373 return OK;
20374 end Process;
20375
20376 procedure Replace is new Traverse_Proc (Process);
20377
20378 -- Start of processing for Replace_Components
20379
20380 begin
20381 Replace (Decl);
20382 end Replace_Components;
20383
20384 -------------------------------
20385 -- Set_Completion_Referenced --
20386 -------------------------------
20387
20388 procedure Set_Completion_Referenced (E : Entity_Id) is
20389 begin
20390 -- If in main unit, mark entity that is a completion as referenced,
20391 -- warnings go on the partial view when needed.
20392
20393 if In_Extended_Main_Source_Unit (E) then
20394 Set_Referenced (E);
20395 end if;
20396 end Set_Completion_Referenced;
20397
20398 ---------------------
20399 -- Set_Fixed_Range --
20400 ---------------------
20401
20402 -- The range for fixed-point types is complicated by the fact that we
20403 -- do not know the exact end points at the time of the declaration. This
20404 -- is true for three reasons:
20405
20406 -- A size clause may affect the fudging of the end-points.
20407 -- A small clause may affect the values of the end-points.
20408 -- We try to include the end-points if it does not affect the size.
20409
20410 -- This means that the actual end-points must be established at the
20411 -- point when the type is frozen. Meanwhile, we first narrow the range
20412 -- as permitted (so that it will fit if necessary in a small specified
20413 -- size), and then build a range subtree with these narrowed bounds.
20414 -- Set_Fixed_Range constructs the range from real literal values, and
20415 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20416
20417 -- The parent of this range is set to point to the entity so that it is
20418 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20419 -- other scalar types, which are just pointers to the range in the
20420 -- original tree, this would otherwise be an orphan).
20421
20422 -- The tree is left unanalyzed. When the type is frozen, the processing
20423 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20424 -- analyzed, and uses this as an indication that it should complete
20425 -- work on the range (it will know the final small and size values).
20426
20427 procedure Set_Fixed_Range
20428 (E : Entity_Id;
20429 Loc : Source_Ptr;
20430 Lo : Ureal;
20431 Hi : Ureal)
20432 is
20433 S : constant Node_Id :=
20434 Make_Range (Loc,
20435 Low_Bound => Make_Real_Literal (Loc, Lo),
20436 High_Bound => Make_Real_Literal (Loc, Hi));
20437 begin
20438 Set_Scalar_Range (E, S);
20439 Set_Parent (S, E);
20440
20441 -- Before the freeze point, the bounds of a fixed point are universal
20442 -- and carry the corresponding type.
20443
20444 Set_Etype (Low_Bound (S), Universal_Real);
20445 Set_Etype (High_Bound (S), Universal_Real);
20446 end Set_Fixed_Range;
20447
20448 ----------------------------------
20449 -- Set_Scalar_Range_For_Subtype --
20450 ----------------------------------
20451
20452 procedure Set_Scalar_Range_For_Subtype
20453 (Def_Id : Entity_Id;
20454 R : Node_Id;
20455 Subt : Entity_Id)
20456 is
20457 Kind : constant Entity_Kind := Ekind (Def_Id);
20458
20459 begin
20460 -- Defend against previous error
20461
20462 if Nkind (R) = N_Error then
20463 return;
20464 end if;
20465
20466 Set_Scalar_Range (Def_Id, R);
20467
20468 -- We need to link the range into the tree before resolving it so
20469 -- that types that are referenced, including importantly the subtype
20470 -- itself, are properly frozen (Freeze_Expression requires that the
20471 -- expression be properly linked into the tree). Of course if it is
20472 -- already linked in, then we do not disturb the current link.
20473
20474 if No (Parent (R)) then
20475 Set_Parent (R, Def_Id);
20476 end if;
20477
20478 -- Reset the kind of the subtype during analysis of the range, to
20479 -- catch possible premature use in the bounds themselves.
20480
20481 Set_Ekind (Def_Id, E_Void);
20482 Process_Range_Expr_In_Decl (R, Subt);
20483 Set_Ekind (Def_Id, Kind);
20484 end Set_Scalar_Range_For_Subtype;
20485
20486 --------------------------------------------------------
20487 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20488 --------------------------------------------------------
20489
20490 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20491 (E : Entity_Id)
20492 is
20493 begin
20494 -- Make sure set if encountered during Expand_To_Stored_Constraint
20495
20496 Set_Stored_Constraint (E, No_Elist);
20497
20498 -- Give it the right value
20499
20500 if Is_Constrained (E) and then Has_Discriminants (E) then
20501 Set_Stored_Constraint (E,
20502 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20503 end if;
20504 end Set_Stored_Constraint_From_Discriminant_Constraint;
20505
20506 -------------------------------------
20507 -- Signed_Integer_Type_Declaration --
20508 -------------------------------------
20509
20510 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20511 Implicit_Base : Entity_Id;
20512 Base_Typ : Entity_Id;
20513 Lo_Val : Uint;
20514 Hi_Val : Uint;
20515 Errs : Boolean := False;
20516 Lo : Node_Id;
20517 Hi : Node_Id;
20518
20519 function Can_Derive_From (E : Entity_Id) return Boolean;
20520 -- Determine whether given bounds allow derivation from specified type
20521
20522 procedure Check_Bound (Expr : Node_Id);
20523 -- Check bound to make sure it is integral and static. If not, post
20524 -- appropriate error message and set Errs flag
20525
20526 ---------------------
20527 -- Can_Derive_From --
20528 ---------------------
20529
20530 -- Note we check both bounds against both end values, to deal with
20531 -- strange types like ones with a range of 0 .. -12341234.
20532
20533 function Can_Derive_From (E : Entity_Id) return Boolean is
20534 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20535 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20536 begin
20537 return Lo <= Lo_Val and then Lo_Val <= Hi
20538 and then
20539 Lo <= Hi_Val and then Hi_Val <= Hi;
20540 end Can_Derive_From;
20541
20542 -----------------
20543 -- Check_Bound --
20544 -----------------
20545
20546 procedure Check_Bound (Expr : Node_Id) is
20547 begin
20548 -- If a range constraint is used as an integer type definition, each
20549 -- bound of the range must be defined by a static expression of some
20550 -- integer type, but the two bounds need not have the same integer
20551 -- type (Negative bounds are allowed.) (RM 3.5.4)
20552
20553 if not Is_Integer_Type (Etype (Expr)) then
20554 Error_Msg_N
20555 ("integer type definition bounds must be of integer type", Expr);
20556 Errs := True;
20557
20558 elsif not Is_OK_Static_Expression (Expr) then
20559 Flag_Non_Static_Expr
20560 ("non-static expression used for integer type bound!", Expr);
20561 Errs := True;
20562
20563 -- The bounds are folded into literals, and we set their type to be
20564 -- universal, to avoid typing difficulties: we cannot set the type
20565 -- of the literal to the new type, because this would be a forward
20566 -- reference for the back end, and if the original type is user-
20567 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20568
20569 else
20570 if Is_Entity_Name (Expr) then
20571 Fold_Uint (Expr, Expr_Value (Expr), True);
20572 end if;
20573
20574 Set_Etype (Expr, Universal_Integer);
20575 end if;
20576 end Check_Bound;
20577
20578 -- Start of processing for Signed_Integer_Type_Declaration
20579
20580 begin
20581 -- Create an anonymous base type
20582
20583 Implicit_Base :=
20584 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20585
20586 -- Analyze and check the bounds, they can be of any integer type
20587
20588 Lo := Low_Bound (Def);
20589 Hi := High_Bound (Def);
20590
20591 -- Arbitrarily use Integer as the type if either bound had an error
20592
20593 if Hi = Error or else Lo = Error then
20594 Base_Typ := Any_Integer;
20595 Set_Error_Posted (T, True);
20596
20597 -- Here both bounds are OK expressions
20598
20599 else
20600 Analyze_And_Resolve (Lo, Any_Integer);
20601 Analyze_And_Resolve (Hi, Any_Integer);
20602
20603 Check_Bound (Lo);
20604 Check_Bound (Hi);
20605
20606 if Errs then
20607 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20608 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20609 end if;
20610
20611 -- Find type to derive from
20612
20613 Lo_Val := Expr_Value (Lo);
20614 Hi_Val := Expr_Value (Hi);
20615
20616 if Can_Derive_From (Standard_Short_Short_Integer) then
20617 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20618
20619 elsif Can_Derive_From (Standard_Short_Integer) then
20620 Base_Typ := Base_Type (Standard_Short_Integer);
20621
20622 elsif Can_Derive_From (Standard_Integer) then
20623 Base_Typ := Base_Type (Standard_Integer);
20624
20625 elsif Can_Derive_From (Standard_Long_Integer) then
20626 Base_Typ := Base_Type (Standard_Long_Integer);
20627
20628 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20629 Check_Restriction (No_Long_Long_Integers, Def);
20630 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20631
20632 else
20633 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20634 Error_Msg_N ("integer type definition bounds out of range", Def);
20635 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20636 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20637 end if;
20638 end if;
20639
20640 -- Complete both implicit base and declared first subtype entities
20641
20642 Set_Etype (Implicit_Base, Base_Typ);
20643 Set_Size_Info (Implicit_Base, (Base_Typ));
20644 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20645 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20646
20647 Set_Ekind (T, E_Signed_Integer_Subtype);
20648 Set_Etype (T, Implicit_Base);
20649
20650 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20651
20652 Set_Size_Info (T, (Implicit_Base));
20653 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20654 Set_Scalar_Range (T, Def);
20655 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20656 Set_Is_Constrained (T);
20657 end Signed_Integer_Type_Declaration;
20658
20659 end Sem_Ch3;