[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
81
82 package body Sem_Ch3 is
83
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
87
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
92
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
114 --
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
117
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
125
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
133
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
141
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
149
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
156
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
166
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
181
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
189
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
203
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
212 --
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
215 --
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 --
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
226
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
235
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
247
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
254
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
268
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
272
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
276
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
280
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
293
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
297
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
305
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
323
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
327
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
331
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
345
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
359
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
367
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
384
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
393 --
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
396 --
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
402 --
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
405 --
406 -- The last two arguments are used to create its external name if needed.
407
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
414
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
418
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
430
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
434
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
438
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
451
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
454
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
458
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
463
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
469
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
478
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
489
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
496
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
506
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
513
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
520
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
526
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
529
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
535
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
547 --
548 -- N is the original derived type declaration
549 --
550 -- Is_Tagged is set if we are dealing with tagged types
551 --
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
554 --
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
558 --
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
561 --
562 -- which gets treated as
563 --
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
565 --
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
569 --
570 -- (Old_Component => New_Component),
571 --
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
577
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
581
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
587
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
593
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
596
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
600
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
606
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
614
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
623
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
626 --
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
628 --
629 -- Full_T is N's defining identifier.
630 --
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
637 --
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
641
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
647
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
658
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
668
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
677
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
686
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
695
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
700
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
704
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
709
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
713
714 -----------------------
715 -- Access_Definition --
716 -----------------------
717
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
721 is
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
726
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
729
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
736
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
739
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
743
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
748
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
752
753 declare
754 Par : Node_Id;
755
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
763
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
768
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
776
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
784
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
789
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
792
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
798
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
801
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
805
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
808
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
811
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
814
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
818
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
822
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
828
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
831
832 if Present (Access_To_Subprogram_Definition (N)) then
833
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
837
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
839
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
843
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
850
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
853
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
857
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
862
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
868
869 return Anon_Type;
870 end if;
871
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
874
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
877
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
881
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
885
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
889
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
895
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
899
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
901
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
903
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
905
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
913
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
921
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
927
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
933
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
936
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
943
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
949
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
952
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
961
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
964
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
971
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
977
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
982
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
986
987 return Anon_Type;
988 end Access_Definition;
989
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
993
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
997 is
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1002
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1006
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1009
1010 begin
1011 -- Check for a subtype mark
1012
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1018
1019 -- If this is not a subtype, then this is an access_definition
1020
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1028
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1031
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1040
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1046
1047 -- Local variables
1048
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1054
1055 -- Start of processing for Access_Subprogram_Declaration
1056
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1059
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1063
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1068
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1076
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1088
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1090
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1095
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1103
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1108
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1118
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1125
1126 else
1127 Analyze (Result_Definition (T_Def));
1128
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1131
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1136
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1145
1146 else
1147 if From_Limited_With (Typ) then
1148
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1151
1152 if Ada_Version >= Ada_2012 then
1153 null;
1154
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1160
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1166
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1174
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1179
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1185
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1189
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1192
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1196
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1199
1200 declare
1201 F : Node_Id;
1202
1203 begin
1204 F := First (Formals);
1205
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1211
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1221
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1226
1227 Next (F);
1228 end loop;
1229 end;
1230
1231 Process_Formals (Formals, Parent (T_Def));
1232
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1236
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1241
1242 -- Check for premature usage of the type being defined
1243
1244 Check_For_Premature_Usage (T_Def);
1245
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1251
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1253
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1263
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1270
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1274
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1277
1278 May_Need_Actuals (Desig_Type);
1279
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1283
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1291
1292 Check_Delayed_Subprogram (Desig_Type);
1293
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1300
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1302
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1306
1307 Generate_Reference_To_Formals (T_Name);
1308
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1310
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1312
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1315
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1319
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1323
1324 Full_Desig : Entity_Id;
1325
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1328
1329 -- Check for permissible use of incomplete type
1330
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1333
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1338
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1344
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1352
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1356
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1360
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1364
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1370
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1384
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1389
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1395
1396 Full_Desig := Designated_Type (T);
1397
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1400
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1404
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1409
1410 -- Clean up indication of tagged status to prevent cascaded errors
1411
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1414
1415 Set_Etype (T, T);
1416
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1419
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1423
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1428
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1433
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1438
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1443
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1447
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1450
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1454
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1458
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1463
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1466
1467 -------------
1468 -- Add_Tag --
1469 -------------
1470
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1476
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1479
1480 -- This is a reasonable place to propagate predicates
1481
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1485
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1491
1492 Tag := Make_Temporary (Loc, 'V');
1493
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1498
1499 Analyze_Component_Declaration (Decl);
1500
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1507
1508 pragma Assert (Is_Frozen (Iface));
1509
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1512
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1518
1519 Last_Tag := Decl;
1520
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1525
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1531
1532 Offset := Make_Temporary (Loc, 'V');
1533
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1538
1539 Analyze_Component_Declaration (Decl);
1540
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1550
1551 -- Local variables
1552
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1556
1557 -- Start of processing for Add_Interface_Tag_Components
1558
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1566
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1576
1577 -- Find the current last tag
1578
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1585
1586 Last_Tag := Empty;
1587
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1606
1607 -- Find the last tag component
1608
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1616
1617 Next (Comp);
1618 end loop;
1619 end if;
1620
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1625
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1634
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1638
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1648
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1655
1656 -- Ensure that the internal entities are added to the scope of the type
1657
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1662
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1664
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1668
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1676
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1680
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1686
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1690
1691 pragma Assert (Present (Prim));
1692
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1700
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1712
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1718
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1729
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1733
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1746
1747 -- The inherited operation must be overridden
1748
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1757
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1764
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1771
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1776
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1780
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1786
1787 Remove_Homonym (New_Subp);
1788
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1797
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1802
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1806
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1809
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1814
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1818
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1827
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1831
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1836
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1840
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1844
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1848
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1853
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1856
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1859
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1863
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1867
1868 -- One per-object constraint is sufficient
1869
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1873
1874 Next (IDC);
1875 end loop;
1876
1877 return False;
1878 end;
1879
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1884
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1887
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1892
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1896
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1900
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1904
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1907
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1912
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1915
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1918
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1923
1924 -- Start of processing for Analyze_Component_Declaration
1925
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1929
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1933
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1937
1938 -- Ada 2005 (AI-230): Access Definition case
1939
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1943
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1948
1949 -- Ada 2005 (AI-254)
1950
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1960
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1967
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1980
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1986
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1991
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2001
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2012
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2015
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2023
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2027
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2035 E);
2036 end if;
2037 end if;
2038 end if;
2039
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2042
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2054
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2057
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2061
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2064
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2067
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2081
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2084
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2088
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2091
2092 P := Private_Component (T);
2093
2094 if Present (P) then
2095
2096 -- Check for circular definitions
2097
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2100
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2103
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2106
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2109
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2114
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2125 N);
2126
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2132
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2136
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2148
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2154
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2162
2163 begin
2164 Set_Etype (Id, Act_T);
2165
2166 -- Rewrite component definition to use the constrained subtype
2167
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2173
2174 Set_Original_Record_Component (Id, Id);
2175
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2179
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2182
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2186
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2189
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2195
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2200 --
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2204 --
2205 -- Context denotes the owner of the declarative list.
2206
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2213
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2219
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2226
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2231
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2235
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2239
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2243
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2252
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2256
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2261 --
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2265
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2269
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2274
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2278
2279 if Nkind (Context) = N_Package_Specification then
2280
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2287
2288 if Is_Interface (Typ) then
2289
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2294
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2300
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2305
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2315
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2319
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2329
2330 -- Local variables
2331
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2334
2335 -- Start of processing for Build_Assertion_Bodies
2336
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2342
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2347
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2351
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2355
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2360
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2364
2365 -- This only concerns entries with pre/postconditions
2366
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2374
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2378
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2386
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2389
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2392
2393 End_Scope;
2394 end if;
2395
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2399
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2403
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2413
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2417
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2424
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2427
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2431
2432 Typ := Parameter_Type (First (Params));
2433
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2437
2438 Find_Type (Typ);
2439
2440 -- The type of the formal must be derived from [Limited_]Controlled
2441
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2445
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2452
2453 Spec_Id := Current_Entity (Body_Id);
2454
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2465
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2468
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2473
2474 Spec := Copy_Separate_Tree (Body_Spec);
2475
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2478
2479 Set_Null_Present (Spec, False);
2480
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2483
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2485
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2488
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2492
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2503
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2506
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2511
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2515
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2527
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2531
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2534
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2542
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2546
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2549
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2553
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2560
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2568
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2573
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2576
2577 -- Local variables
2578
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2582
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2585
2586 -- Start of processing for Analyze_Declarations
2587
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2592
2593 Decl := First (L);
2594 while Present (Decl) loop
2595
2596 -- Package spec cannot contain a package declaration in SPARK
2597
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2605
2606 -- Complete analysis of declaration
2607
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2610
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2614
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2624
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2630
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2634
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2639
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2644
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2650
2651 Adjust_Decl;
2652 Freeze_All (First_Entity (Current_Scope), Decl);
2653 Freeze_From := Last_Entity (Current_Scope);
2654
2655 -- Current scope is a package specification
2656
2657 elsif Scope (Current_Scope) /= Standard_Standard
2658 and then not Is_Child_Unit (Current_Scope)
2659 and then No (Generic_Parent (Parent (L)))
2660 then
2661 -- This is needed in all cases to catch visibility errors in
2662 -- aspect expressions, but several large user tests are now
2663 -- rejected. Pending notification we restrict this call to
2664 -- ASIS mode.
2665
2666 if ASIS_Mode then
2667 Resolve_Aspects;
2668 end if;
2669
2670 elsif L /= Visible_Declarations (Parent (L))
2671 or else No (Private_Declarations (Parent (L)))
2672 or else Is_Empty_List (Private_Declarations (Parent (L)))
2673 then
2674 Adjust_Decl;
2675
2676 -- End of a package declaration
2677
2678 -- In compilation mode the expansion of freeze node takes care
2679 -- of resolving expressions of all aspects in the list. In ASIS
2680 -- mode this must be done explicitly.
2681
2682 if ASIS_Mode
2683 and then Scope (Current_Scope) = Standard_Standard
2684 then
2685 Resolve_Aspects;
2686 end if;
2687
2688 -- This is a freeze point because it is the end of a
2689 -- compilation unit.
2690
2691 Freeze_All (First_Entity (Current_Scope), Decl);
2692 Freeze_From := Last_Entity (Current_Scope);
2693
2694 -- At the end of the visible declarations the expressions in
2695 -- aspects of all entities declared so far must be resolved.
2696 -- The entities themselves might be frozen later, and the
2697 -- generated pragmas and attribute definition clauses analyzed
2698 -- in full at that point, but name resolution must take place
2699 -- now.
2700 -- In addition to being the proper semantics, this is mandatory
2701 -- within generic units, because global name capture requires
2702 -- those expressions to be analyzed, given that the generated
2703 -- pragmas do not appear in the original generic tree.
2704
2705 elsif Serious_Errors_Detected = 0 then
2706 Resolve_Aspects;
2707 end if;
2708
2709 -- If next node is a body then freeze all types before the body.
2710 -- An exception occurs for some expander-generated bodies. If these
2711 -- are generated at places where in general language rules would not
2712 -- allow a freeze point, then we assume that the expander has
2713 -- explicitly checked that all required types are properly frozen,
2714 -- and we do not cause general freezing here. This special circuit
2715 -- is used when the encountered body is marked as having already
2716 -- been analyzed.
2717
2718 -- In all other cases (bodies that come from source, and expander
2719 -- generated bodies that have not been analyzed yet), freeze all
2720 -- types now. Note that in the latter case, the expander must take
2721 -- care to attach the bodies at a proper place in the tree so as to
2722 -- not cause unwanted freezing at that point.
2723
2724 -- It is also necessary to check for a case where both an expression
2725 -- function is used and the current scope depends on an unseen
2726 -- private type from a library unit, otherwise premature freezing of
2727 -- the private type will occur.
2728
2729 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2730 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2731 or else not Was_Expression_Function (Next_Decl))
2732 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2733 then
2734 -- When a controlled type is frozen, the expander generates stream
2735 -- and controlled-type support routines. If the freeze is caused
2736 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2737 -- expander will end up using the wrong version of these routines,
2738 -- as the body has not been processed yet. To remedy this, detect
2739 -- a late controlled primitive and create a proper spec for it.
2740 -- This ensures that the primitive will override its inherited
2741 -- counterpart before the freeze takes place.
2742
2743 -- If the declaration we just processed is a body, do not attempt
2744 -- to examine Next_Decl as the late primitive idiom can only apply
2745 -- to the first encountered body.
2746
2747 -- The spec of the late primitive is not generated in ASIS mode to
2748 -- ensure a consistent list of primitives that indicates the true
2749 -- semantic structure of the program (which is not relevant when
2750 -- generating executable code).
2751
2752 -- ??? A cleaner approach may be possible and/or this solution
2753 -- could be extended to general-purpose late primitives, TBD.
2754
2755 if not ASIS_Mode
2756 and then not Body_Seen
2757 and then not Is_Body (Decl)
2758 then
2759 Body_Seen := True;
2760
2761 if Nkind (Next_Decl) = N_Subprogram_Body then
2762 Handle_Late_Controlled_Primitive (Next_Decl);
2763 end if;
2764 end if;
2765
2766 Adjust_Decl;
2767
2768 -- The generated body of an expression function does not freeze,
2769 -- unless it is a completion, in which case only the expression
2770 -- itself freezes. This is handled when the body itself is
2771 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2772
2773 Freeze_All (Freeze_From, Decl);
2774 Freeze_From := Last_Entity (Current_Scope);
2775 end if;
2776
2777 Decl := Next_Decl;
2778 end loop;
2779
2780 -- Post-freezing actions
2781
2782 if Present (L) then
2783 Context := Parent (L);
2784
2785 -- Analyze the contracts of packages and their bodies
2786
2787 if Nkind (Context) = N_Package_Specification then
2788
2789 -- When a package has private declarations, its contract must be
2790 -- analyzed at the end of the said declarations. This way both the
2791 -- analysis and freeze actions are properly synchronized in case
2792 -- of private type use within the contract.
2793
2794 if L = Private_Declarations (Context) then
2795 Analyze_Package_Contract (Defining_Entity (Context));
2796
2797 -- Otherwise the contract is analyzed at the end of the visible
2798 -- declarations.
2799
2800 elsif L = Visible_Declarations (Context)
2801 and then No (Private_Declarations (Context))
2802 then
2803 Analyze_Package_Contract (Defining_Entity (Context));
2804 end if;
2805
2806 elsif Nkind (Context) = N_Package_Body then
2807 Analyze_Package_Body_Contract (Defining_Entity (Context));
2808 end if;
2809
2810 -- Analyze the contracts of various constructs now due to the delayed
2811 -- visibility needs of their aspects and pragmas.
2812
2813 Analyze_Contracts (L);
2814
2815 if Nkind (Context) = N_Package_Body then
2816
2817 -- Ensure that all abstract states and objects declared in the
2818 -- state space of a package body are utilized as constituents.
2819
2820 Check_Unused_Body_States (Defining_Entity (Context));
2821
2822 -- State refinements are visible up to the end of the package body
2823 -- declarations. Hide the state refinements from visibility to
2824 -- restore the original state conditions.
2825
2826 Remove_Visible_Refinements (Corresponding_Spec (Context));
2827 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2828
2829 elsif Nkind (Context) = N_Package_Declaration then
2830
2831 -- Partial state refinements are visible up to the end of the
2832 -- package spec declarations. Hide the partial state refinements
2833 -- from visibility to restore the original state conditions.
2834
2835 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2836 end if;
2837
2838 -- Verify that all abstract states found in any package declared in
2839 -- the input declarative list have proper refinements. The check is
2840 -- performed only when the context denotes a block, entry, package,
2841 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2842
2843 Check_State_Refinements (Context);
2844
2845 -- Create the subprogram bodies which verify the run-time semantics
2846 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2847 -- types within the current declarative list. This ensures that all
2848 -- assertion expressions are preanalyzed and resolved at the end of
2849 -- the declarative part. Note that the resolution happens even when
2850 -- freezing does not take place.
2851
2852 Build_Assertion_Bodies (L, Context);
2853 end if;
2854 end Analyze_Declarations;
2855
2856 -----------------------------------
2857 -- Analyze_Full_Type_Declaration --
2858 -----------------------------------
2859
2860 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2861 Def : constant Node_Id := Type_Definition (N);
2862 Def_Id : constant Entity_Id := Defining_Identifier (N);
2863 T : Entity_Id;
2864 Prev : Entity_Id;
2865
2866 Is_Remote : constant Boolean :=
2867 (Is_Remote_Types (Current_Scope)
2868 or else Is_Remote_Call_Interface (Current_Scope))
2869 and then not (In_Private_Part (Current_Scope)
2870 or else In_Package_Body (Current_Scope));
2871
2872 procedure Check_Nonoverridable_Aspects;
2873 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2874 -- be overridden, and can only be confirmed on derivation.
2875
2876 procedure Check_Ops_From_Incomplete_Type;
2877 -- If there is a tagged incomplete partial view of the type, traverse
2878 -- the primitives of the incomplete view and change the type of any
2879 -- controlling formals and result to indicate the full view. The
2880 -- primitives will be added to the full type's primitive operations
2881 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2882 -- is called from Process_Incomplete_Dependents).
2883
2884 ----------------------------------
2885 -- Check_Nonoverridable_Aspects --
2886 ----------------------------------
2887
2888 procedure Check_Nonoverridable_Aspects is
2889 function Get_Aspect_Spec
2890 (Specs : List_Id;
2891 Aspect_Name : Name_Id) return Node_Id;
2892 -- Check whether a list of aspect specifications includes an entry
2893 -- for a specific aspect. The list is either that of a partial or
2894 -- a full view.
2895
2896 ---------------------
2897 -- Get_Aspect_Spec --
2898 ---------------------
2899
2900 function Get_Aspect_Spec
2901 (Specs : List_Id;
2902 Aspect_Name : Name_Id) return Node_Id
2903 is
2904 Spec : Node_Id;
2905
2906 begin
2907 Spec := First (Specs);
2908 while Present (Spec) loop
2909 if Chars (Identifier (Spec)) = Aspect_Name then
2910 return Spec;
2911 end if;
2912 Next (Spec);
2913 end loop;
2914
2915 return Empty;
2916 end Get_Aspect_Spec;
2917
2918 -- Local variables
2919
2920 Prev_Aspects : constant List_Id :=
2921 Aspect_Specifications (Parent (Def_Id));
2922 Par_Type : Entity_Id;
2923 Prev_Aspect : Node_Id;
2924
2925 -- Start of processing for Check_Nonoverridable_Aspects
2926
2927 begin
2928 -- Get parent type of derived type. Note that Prev is the entity in
2929 -- the partial declaration, but its contents are now those of full
2930 -- view, while Def_Id reflects the partial view.
2931
2932 if Is_Private_Type (Def_Id) then
2933 Par_Type := Etype (Full_View (Def_Id));
2934 else
2935 Par_Type := Etype (Def_Id);
2936 end if;
2937
2938 -- If there is an inherited Implicit_Dereference, verify that it is
2939 -- made explicit in the partial view.
2940
2941 if Has_Discriminants (Base_Type (Par_Type))
2942 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2943 and then Present (Discriminant_Specifications (Parent (Prev)))
2944 and then Present (Get_Reference_Discriminant (Par_Type))
2945 then
2946 Prev_Aspect :=
2947 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2948
2949 if No (Prev_Aspect)
2950 and then Present
2951 (Discriminant_Specifications
2952 (Original_Node (Parent (Prev))))
2953 then
2954 Error_Msg_N
2955 ("type does not inherit implicit dereference", Prev);
2956
2957 else
2958 -- If one of the views has the aspect specified, verify that it
2959 -- is consistent with that of the parent.
2960
2961 declare
2962 Par_Discr : constant Entity_Id :=
2963 Get_Reference_Discriminant (Par_Type);
2964 Cur_Discr : constant Entity_Id :=
2965 Get_Reference_Discriminant (Prev);
2966
2967 begin
2968 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2969 Error_Msg_N ("aspect incosistent with that of parent", N);
2970 end if;
2971
2972 -- Check that specification in partial view matches the
2973 -- inherited aspect. Compare names directly because aspect
2974 -- expression may not be analyzed.
2975
2976 if Present (Prev_Aspect)
2977 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
2978 and then Chars (Expression (Prev_Aspect)) /=
2979 Chars (Cur_Discr)
2980 then
2981 Error_Msg_N
2982 ("aspect incosistent with that of parent", N);
2983 end if;
2984 end;
2985 end if;
2986 end if;
2987
2988 -- TBD : other nonoverridable aspects.
2989 end Check_Nonoverridable_Aspects;
2990
2991 ------------------------------------
2992 -- Check_Ops_From_Incomplete_Type --
2993 ------------------------------------
2994
2995 procedure Check_Ops_From_Incomplete_Type is
2996 Elmt : Elmt_Id;
2997 Formal : Entity_Id;
2998 Op : Entity_Id;
2999
3000 begin
3001 if Prev /= T
3002 and then Ekind (Prev) = E_Incomplete_Type
3003 and then Is_Tagged_Type (Prev)
3004 and then Is_Tagged_Type (T)
3005 then
3006 Elmt := First_Elmt (Primitive_Operations (Prev));
3007 while Present (Elmt) loop
3008 Op := Node (Elmt);
3009
3010 Formal := First_Formal (Op);
3011 while Present (Formal) loop
3012 if Etype (Formal) = Prev then
3013 Set_Etype (Formal, T);
3014 end if;
3015
3016 Next_Formal (Formal);
3017 end loop;
3018
3019 if Etype (Op) = Prev then
3020 Set_Etype (Op, T);
3021 end if;
3022
3023 Next_Elmt (Elmt);
3024 end loop;
3025 end if;
3026 end Check_Ops_From_Incomplete_Type;
3027
3028 -- Start of processing for Analyze_Full_Type_Declaration
3029
3030 begin
3031 Prev := Find_Type_Name (N);
3032
3033 -- The full view, if present, now points to the current type. If there
3034 -- is an incomplete partial view, set a link to it, to simplify the
3035 -- retrieval of primitive operations of the type.
3036
3037 -- Ada 2005 (AI-50217): If the type was previously decorated when
3038 -- imported through a LIMITED WITH clause, it appears as incomplete
3039 -- but has no full view.
3040
3041 if Ekind (Prev) = E_Incomplete_Type
3042 and then Present (Full_View (Prev))
3043 then
3044 T := Full_View (Prev);
3045 Set_Incomplete_View (N, Parent (Prev));
3046 else
3047 T := Prev;
3048 end if;
3049
3050 Set_Is_Pure (T, Is_Pure (Current_Scope));
3051
3052 -- We set the flag Is_First_Subtype here. It is needed to set the
3053 -- corresponding flag for the Implicit class-wide-type created
3054 -- during tagged types processing.
3055
3056 Set_Is_First_Subtype (T, True);
3057
3058 -- Only composite types other than array types are allowed to have
3059 -- discriminants.
3060
3061 case Nkind (Def) is
3062
3063 -- For derived types, the rule will be checked once we've figured
3064 -- out the parent type.
3065
3066 when N_Derived_Type_Definition =>
3067 null;
3068
3069 -- For record types, discriminants are allowed, unless we are in
3070 -- SPARK.
3071
3072 when N_Record_Definition =>
3073 if Present (Discriminant_Specifications (N)) then
3074 Check_SPARK_05_Restriction
3075 ("discriminant type is not allowed",
3076 Defining_Identifier
3077 (First (Discriminant_Specifications (N))));
3078 end if;
3079
3080 when others =>
3081 if Present (Discriminant_Specifications (N)) then
3082 Error_Msg_N
3083 ("elementary or array type cannot have discriminants",
3084 Defining_Identifier
3085 (First (Discriminant_Specifications (N))));
3086 end if;
3087 end case;
3088
3089 -- Elaborate the type definition according to kind, and generate
3090 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3091 -- already done (this happens during the reanalysis that follows a call
3092 -- to the high level optimizer).
3093
3094 if not Analyzed (T) then
3095 Set_Analyzed (T);
3096
3097 case Nkind (Def) is
3098 when N_Access_To_Subprogram_Definition =>
3099 Access_Subprogram_Declaration (T, Def);
3100
3101 -- If this is a remote access to subprogram, we must create the
3102 -- equivalent fat pointer type, and related subprograms.
3103
3104 if Is_Remote then
3105 Process_Remote_AST_Declaration (N);
3106 end if;
3107
3108 -- Validate categorization rule against access type declaration
3109 -- usually a violation in Pure unit, Shared_Passive unit.
3110
3111 Validate_Access_Type_Declaration (T, N);
3112
3113 when N_Access_To_Object_Definition =>
3114 Access_Type_Declaration (T, Def);
3115
3116 -- Validate categorization rule against access type declaration
3117 -- usually a violation in Pure unit, Shared_Passive unit.
3118
3119 Validate_Access_Type_Declaration (T, N);
3120
3121 -- If we are in a Remote_Call_Interface package and define a
3122 -- RACW, then calling stubs and specific stream attributes
3123 -- must be added.
3124
3125 if Is_Remote
3126 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3127 then
3128 Add_RACW_Features (Def_Id);
3129 end if;
3130
3131 when N_Array_Type_Definition =>
3132 Array_Type_Declaration (T, Def);
3133
3134 when N_Derived_Type_Definition =>
3135 Derived_Type_Declaration (T, N, T /= Def_Id);
3136
3137 -- Inherit predicates from parent, and protect against illegal
3138 -- derivations.
3139
3140 if Is_Type (T) and then Has_Predicates (T) then
3141 Set_Has_Predicates (Def_Id);
3142 end if;
3143
3144 when N_Enumeration_Type_Definition =>
3145 Enumeration_Type_Declaration (T, Def);
3146
3147 when N_Floating_Point_Definition =>
3148 Floating_Point_Type_Declaration (T, Def);
3149
3150 when N_Decimal_Fixed_Point_Definition =>
3151 Decimal_Fixed_Point_Type_Declaration (T, Def);
3152
3153 when N_Ordinary_Fixed_Point_Definition =>
3154 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3155
3156 when N_Signed_Integer_Type_Definition =>
3157 Signed_Integer_Type_Declaration (T, Def);
3158
3159 when N_Modular_Type_Definition =>
3160 Modular_Type_Declaration (T, Def);
3161
3162 when N_Record_Definition =>
3163 Record_Type_Declaration (T, N, Prev);
3164
3165 -- If declaration has a parse error, nothing to elaborate.
3166
3167 when N_Error =>
3168 null;
3169
3170 when others =>
3171 raise Program_Error;
3172 end case;
3173 end if;
3174
3175 if Etype (T) = Any_Type then
3176 return;
3177 end if;
3178
3179 -- Controlled type is not allowed in SPARK
3180
3181 if Is_Visibly_Controlled (T) then
3182 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3183 end if;
3184
3185 -- Some common processing for all types
3186
3187 Set_Depends_On_Private (T, Has_Private_Component (T));
3188 Check_Ops_From_Incomplete_Type;
3189
3190 -- Both the declared entity, and its anonymous base type if one was
3191 -- created, need freeze nodes allocated.
3192
3193 declare
3194 B : constant Entity_Id := Base_Type (T);
3195
3196 begin
3197 -- In the case where the base type differs from the first subtype, we
3198 -- pre-allocate a freeze node, and set the proper link to the first
3199 -- subtype. Freeze_Entity will use this preallocated freeze node when
3200 -- it freezes the entity.
3201
3202 -- This does not apply if the base type is a generic type, whose
3203 -- declaration is independent of the current derived definition.
3204
3205 if B /= T and then not Is_Generic_Type (B) then
3206 Ensure_Freeze_Node (B);
3207 Set_First_Subtype_Link (Freeze_Node (B), T);
3208 end if;
3209
3210 -- A type that is imported through a limited_with clause cannot
3211 -- generate any code, and thus need not be frozen. However, an access
3212 -- type with an imported designated type needs a finalization list,
3213 -- which may be referenced in some other package that has non-limited
3214 -- visibility on the designated type. Thus we must create the
3215 -- finalization list at the point the access type is frozen, to
3216 -- prevent unsatisfied references at link time.
3217
3218 if not From_Limited_With (T) or else Is_Access_Type (T) then
3219 Set_Has_Delayed_Freeze (T);
3220 end if;
3221 end;
3222
3223 -- Case where T is the full declaration of some private type which has
3224 -- been swapped in Defining_Identifier (N).
3225
3226 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3227 Process_Full_View (N, T, Def_Id);
3228
3229 -- Record the reference. The form of this is a little strange, since
3230 -- the full declaration has been swapped in. So the first parameter
3231 -- here represents the entity to which a reference is made which is
3232 -- the "real" entity, i.e. the one swapped in, and the second
3233 -- parameter provides the reference location.
3234
3235 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3236 -- since we don't want a complaint about the full type being an
3237 -- unwanted reference to the private type
3238
3239 declare
3240 B : constant Boolean := Has_Pragma_Unreferenced (T);
3241 begin
3242 Set_Has_Pragma_Unreferenced (T, False);
3243 Generate_Reference (T, T, 'c');
3244 Set_Has_Pragma_Unreferenced (T, B);
3245 end;
3246
3247 Set_Completion_Referenced (Def_Id);
3248
3249 -- For completion of incomplete type, process incomplete dependents
3250 -- and always mark the full type as referenced (it is the incomplete
3251 -- type that we get for any real reference).
3252
3253 elsif Ekind (Prev) = E_Incomplete_Type then
3254 Process_Incomplete_Dependents (N, T, Prev);
3255 Generate_Reference (Prev, Def_Id, 'c');
3256 Set_Completion_Referenced (Def_Id);
3257
3258 -- If not private type or incomplete type completion, this is a real
3259 -- definition of a new entity, so record it.
3260
3261 else
3262 Generate_Definition (Def_Id);
3263 end if;
3264
3265 -- Propagate any pending access types whose finalization masters need to
3266 -- be fully initialized from the partial to the full view. Guard against
3267 -- an illegal full view that remains unanalyzed.
3268
3269 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3270 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3271 end if;
3272
3273 if Chars (Scope (Def_Id)) = Name_System
3274 and then Chars (Def_Id) = Name_Address
3275 and then In_Predefined_Unit (N)
3276 then
3277 Set_Is_Descendant_Of_Address (Def_Id);
3278 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3279 Set_Is_Descendant_Of_Address (Prev);
3280 end if;
3281
3282 Set_Optimize_Alignment_Flags (Def_Id);
3283 Check_Eliminated (Def_Id);
3284
3285 -- If the declaration is a completion and aspects are present, apply
3286 -- them to the entity for the type which is currently the partial
3287 -- view, but which is the one that will be frozen.
3288
3289 if Has_Aspects (N) then
3290
3291 -- In most cases the partial view is a private type, and both views
3292 -- appear in different declarative parts. In the unusual case where
3293 -- the partial view is incomplete, perform the analysis on the
3294 -- full view, to prevent freezing anomalies with the corresponding
3295 -- class-wide type, which otherwise might be frozen before the
3296 -- dispatch table is built.
3297
3298 if Prev /= Def_Id
3299 and then Ekind (Prev) /= E_Incomplete_Type
3300 then
3301 Analyze_Aspect_Specifications (N, Prev);
3302
3303 -- Normal case
3304
3305 else
3306 Analyze_Aspect_Specifications (N, Def_Id);
3307 end if;
3308 end if;
3309
3310 if Is_Derived_Type (Prev)
3311 and then Def_Id /= Prev
3312 then
3313 Check_Nonoverridable_Aspects;
3314 end if;
3315 end Analyze_Full_Type_Declaration;
3316
3317 ----------------------------------
3318 -- Analyze_Incomplete_Type_Decl --
3319 ----------------------------------
3320
3321 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3322 F : constant Boolean := Is_Pure (Current_Scope);
3323 T : Entity_Id;
3324
3325 begin
3326 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3327
3328 Generate_Definition (Defining_Identifier (N));
3329
3330 -- Process an incomplete declaration. The identifier must not have been
3331 -- declared already in the scope. However, an incomplete declaration may
3332 -- appear in the private part of a package, for a private type that has
3333 -- already been declared.
3334
3335 -- In this case, the discriminants (if any) must match
3336
3337 T := Find_Type_Name (N);
3338
3339 Set_Ekind (T, E_Incomplete_Type);
3340 Init_Size_Align (T);
3341 Set_Is_First_Subtype (T, True);
3342 Set_Etype (T, T);
3343
3344 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3345 -- incomplete types.
3346
3347 if Tagged_Present (N) then
3348 Set_Is_Tagged_Type (T, True);
3349 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3350 Make_Class_Wide_Type (T);
3351 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3352 end if;
3353
3354 Set_Stored_Constraint (T, No_Elist);
3355
3356 if Present (Discriminant_Specifications (N)) then
3357 Push_Scope (T);
3358 Process_Discriminants (N);
3359 End_Scope;
3360 end if;
3361
3362 -- If the type has discriminants, nontrivial subtypes may be declared
3363 -- before the full view of the type. The full views of those subtypes
3364 -- will be built after the full view of the type.
3365
3366 Set_Private_Dependents (T, New_Elmt_List);
3367 Set_Is_Pure (T, F);
3368 end Analyze_Incomplete_Type_Decl;
3369
3370 -----------------------------------
3371 -- Analyze_Interface_Declaration --
3372 -----------------------------------
3373
3374 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3375 CW : constant Entity_Id := Class_Wide_Type (T);
3376
3377 begin
3378 Set_Is_Tagged_Type (T);
3379 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3380
3381 Set_Is_Limited_Record (T, Limited_Present (Def)
3382 or else Task_Present (Def)
3383 or else Protected_Present (Def)
3384 or else Synchronized_Present (Def));
3385
3386 -- Type is abstract if full declaration carries keyword, or if previous
3387 -- partial view did.
3388
3389 Set_Is_Abstract_Type (T);
3390 Set_Is_Interface (T);
3391
3392 -- Type is a limited interface if it includes the keyword limited, task,
3393 -- protected, or synchronized.
3394
3395 Set_Is_Limited_Interface
3396 (T, Limited_Present (Def)
3397 or else Protected_Present (Def)
3398 or else Synchronized_Present (Def)
3399 or else Task_Present (Def));
3400
3401 Set_Interfaces (T, New_Elmt_List);
3402 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3403
3404 -- Complete the decoration of the class-wide entity if it was already
3405 -- built (i.e. during the creation of the limited view)
3406
3407 if Present (CW) then
3408 Set_Is_Interface (CW);
3409 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3410 end if;
3411
3412 -- Check runtime support for synchronized interfaces
3413
3414 if (Is_Task_Interface (T)
3415 or else Is_Protected_Interface (T)
3416 or else Is_Synchronized_Interface (T))
3417 and then not RTE_Available (RE_Select_Specific_Data)
3418 then
3419 Error_Msg_CRT ("synchronized interfaces", T);
3420 end if;
3421 end Analyze_Interface_Declaration;
3422
3423 -----------------------------
3424 -- Analyze_Itype_Reference --
3425 -----------------------------
3426
3427 -- Nothing to do. This node is placed in the tree only for the benefit of
3428 -- back end processing, and has no effect on the semantic processing.
3429
3430 procedure Analyze_Itype_Reference (N : Node_Id) is
3431 begin
3432 pragma Assert (Is_Itype (Itype (N)));
3433 null;
3434 end Analyze_Itype_Reference;
3435
3436 --------------------------------
3437 -- Analyze_Number_Declaration --
3438 --------------------------------
3439
3440 procedure Analyze_Number_Declaration (N : Node_Id) is
3441 E : constant Node_Id := Expression (N);
3442 Id : constant Entity_Id := Defining_Identifier (N);
3443 Index : Interp_Index;
3444 It : Interp;
3445 T : Entity_Id;
3446
3447 begin
3448 Generate_Definition (Id);
3449 Enter_Name (Id);
3450
3451 -- This is an optimization of a common case of an integer literal
3452
3453 if Nkind (E) = N_Integer_Literal then
3454 Set_Is_Static_Expression (E, True);
3455 Set_Etype (E, Universal_Integer);
3456
3457 Set_Etype (Id, Universal_Integer);
3458 Set_Ekind (Id, E_Named_Integer);
3459 Set_Is_Frozen (Id, True);
3460 return;
3461 end if;
3462
3463 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3464
3465 -- Process expression, replacing error by integer zero, to avoid
3466 -- cascaded errors or aborts further along in the processing
3467
3468 -- Replace Error by integer zero, which seems least likely to cause
3469 -- cascaded errors.
3470
3471 if E = Error then
3472 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3473 Set_Error_Posted (E);
3474 end if;
3475
3476 Analyze (E);
3477
3478 -- Verify that the expression is static and numeric. If
3479 -- the expression is overloaded, we apply the preference
3480 -- rule that favors root numeric types.
3481
3482 if not Is_Overloaded (E) then
3483 T := Etype (E);
3484 if Has_Dynamic_Predicate_Aspect (T) then
3485 Error_Msg_N
3486 ("subtype has dynamic predicate, "
3487 & "not allowed in number declaration", N);
3488 end if;
3489
3490 else
3491 T := Any_Type;
3492
3493 Get_First_Interp (E, Index, It);
3494 while Present (It.Typ) loop
3495 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3496 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3497 then
3498 if T = Any_Type then
3499 T := It.Typ;
3500
3501 elsif It.Typ = Universal_Real
3502 or else
3503 It.Typ = Universal_Integer
3504 then
3505 -- Choose universal interpretation over any other
3506
3507 T := It.Typ;
3508 exit;
3509 end if;
3510 end if;
3511
3512 Get_Next_Interp (Index, It);
3513 end loop;
3514 end if;
3515
3516 if Is_Integer_Type (T) then
3517 Resolve (E, T);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520
3521 elsif Is_Real_Type (T) then
3522
3523 -- Because the real value is converted to universal_real, this is a
3524 -- legal context for a universal fixed expression.
3525
3526 if T = Universal_Fixed then
3527 declare
3528 Loc : constant Source_Ptr := Sloc (N);
3529 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3530 Subtype_Mark =>
3531 New_Occurrence_Of (Universal_Real, Loc),
3532 Expression => Relocate_Node (E));
3533
3534 begin
3535 Rewrite (E, Conv);
3536 Analyze (E);
3537 end;
3538
3539 elsif T = Any_Fixed then
3540 Error_Msg_N ("illegal context for mixed mode operation", E);
3541
3542 -- Expression is of the form : universal_fixed * integer. Try to
3543 -- resolve as universal_real.
3544
3545 T := Universal_Real;
3546 Set_Etype (E, T);
3547 end if;
3548
3549 Resolve (E, T);
3550 Set_Etype (Id, Universal_Real);
3551 Set_Ekind (Id, E_Named_Real);
3552
3553 else
3554 Wrong_Type (E, Any_Numeric);
3555 Resolve (E, T);
3556
3557 Set_Etype (Id, T);
3558 Set_Ekind (Id, E_Constant);
3559 Set_Never_Set_In_Source (Id, True);
3560 Set_Is_True_Constant (Id, True);
3561 return;
3562 end if;
3563
3564 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3565 Set_Etype (E, Etype (Id));
3566 end if;
3567
3568 if not Is_OK_Static_Expression (E) then
3569 Flag_Non_Static_Expr
3570 ("non-static expression used in number declaration!", E);
3571 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3572 Set_Etype (E, Any_Type);
3573 end if;
3574
3575 Analyze_Dimension (N);
3576 end Analyze_Number_Declaration;
3577
3578 --------------------------------
3579 -- Analyze_Object_Declaration --
3580 --------------------------------
3581
3582 -- WARNING: This routine manages Ghost regions. Return statements must be
3583 -- replaced by gotos which jump to the end of the routine and restore the
3584 -- Ghost mode.
3585
3586 procedure Analyze_Object_Declaration (N : Node_Id) is
3587 Loc : constant Source_Ptr := Sloc (N);
3588 Id : constant Entity_Id := Defining_Identifier (N);
3589 Act_T : Entity_Id;
3590 T : Entity_Id;
3591
3592 E : Node_Id := Expression (N);
3593 -- E is set to Expression (N) throughout this routine. When Expression
3594 -- (N) is modified, E is changed accordingly.
3595
3596 Prev_Entity : Entity_Id := Empty;
3597
3598 procedure Check_Dynamic_Object (Typ : Entity_Id);
3599 -- A library-level object with non-static discriminant constraints may
3600 -- require dynamic allocation. The declaration is illegal if the
3601 -- profile includes the restriction No_Implicit_Heap_Allocations.
3602
3603 procedure Check_For_Null_Excluding_Components
3604 (Obj_Typ : Entity_Id;
3605 Obj_Decl : Node_Id);
3606 -- Verify that each null-excluding component of object declaration
3607 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3608 -- a compile-time warning if this is not the case.
3609
3610 function Count_Tasks (T : Entity_Id) return Uint;
3611 -- This function is called when a non-generic library level object of a
3612 -- task type is declared. Its function is to count the static number of
3613 -- tasks declared within the type (it is only called if Has_Task is set
3614 -- for T). As a side effect, if an array of tasks with non-static bounds
3615 -- or a variant record type is encountered, Check_Restriction is called
3616 -- indicating the count is unknown.
3617
3618 function Delayed_Aspect_Present return Boolean;
3619 -- If the declaration has an expression that is an aggregate, and it
3620 -- has aspects that require delayed analysis, the resolution of the
3621 -- aggregate must be deferred to the freeze point of the objet. This
3622 -- special processing was created for address clauses, but it must
3623 -- also apply to Alignment. This must be done before the aspect
3624 -- specifications are analyzed because we must handle the aggregate
3625 -- before the analysis of the object declaration is complete.
3626
3627 -- Any other relevant delayed aspects on object declarations ???
3628
3629 --------------------------
3630 -- Check_Dynamic_Object --
3631 --------------------------
3632
3633 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3634 Comp : Entity_Id;
3635 Obj_Type : Entity_Id;
3636
3637 begin
3638 Obj_Type := Typ;
3639
3640 if Is_Private_Type (Obj_Type)
3641 and then Present (Full_View (Obj_Type))
3642 then
3643 Obj_Type := Full_View (Obj_Type);
3644 end if;
3645
3646 if Known_Static_Esize (Obj_Type) then
3647 return;
3648 end if;
3649
3650 if Restriction_Active (No_Implicit_Heap_Allocations)
3651 and then Expander_Active
3652 and then Has_Discriminants (Obj_Type)
3653 then
3654 Comp := First_Component (Obj_Type);
3655 while Present (Comp) loop
3656 if Known_Static_Esize (Etype (Comp))
3657 or else Size_Known_At_Compile_Time (Etype (Comp))
3658 then
3659 null;
3660
3661 elsif not Discriminated_Size (Comp)
3662 and then Comes_From_Source (Comp)
3663 then
3664 Error_Msg_NE
3665 ("component& of non-static size will violate restriction "
3666 & "No_Implicit_Heap_Allocation?", N, Comp);
3667
3668 elsif Is_Record_Type (Etype (Comp)) then
3669 Check_Dynamic_Object (Etype (Comp));
3670 end if;
3671
3672 Next_Component (Comp);
3673 end loop;
3674 end if;
3675 end Check_Dynamic_Object;
3676
3677 -----------------------------------------
3678 -- Check_For_Null_Excluding_Components --
3679 -----------------------------------------
3680
3681 procedure Check_For_Null_Excluding_Components
3682 (Obj_Typ : Entity_Id;
3683 Obj_Decl : Node_Id)
3684 is
3685 procedure Check_Component
3686 (Comp_Typ : Entity_Id;
3687 Comp_Decl : Node_Id := Empty;
3688 Array_Comp : Boolean := False);
3689 -- Apply a compile-time null-exclusion check on a component denoted
3690 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3691 -- subcomponents (if any).
3692
3693 ---------------------
3694 -- Check_Component --
3695 ---------------------
3696
3697 procedure Check_Component
3698 (Comp_Typ : Entity_Id;
3699 Comp_Decl : Node_Id := Empty;
3700 Array_Comp : Boolean := False)
3701 is
3702 Comp : Entity_Id;
3703 T : Entity_Id;
3704
3705 begin
3706 -- Do not consider internally-generated components or those that
3707 -- are already initialized.
3708
3709 if Present (Comp_Decl)
3710 and then (not Comes_From_Source (Comp_Decl)
3711 or else Present (Expression (Comp_Decl)))
3712 then
3713 return;
3714 end if;
3715
3716 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3717 and then Present (Full_View (Comp_Typ))
3718 then
3719 T := Full_View (Comp_Typ);
3720 else
3721 T := Comp_Typ;
3722 end if;
3723
3724 -- Verify a component of a null-excluding access type
3725
3726 if Is_Access_Type (T)
3727 and then Can_Never_Be_Null (T)
3728 then
3729 if Comp_Decl = Obj_Decl then
3730 Null_Exclusion_Static_Checks
3731 (N => Obj_Decl,
3732 Comp => Empty,
3733 Array_Comp => Array_Comp);
3734
3735 else
3736 Null_Exclusion_Static_Checks
3737 (N => Obj_Decl,
3738 Comp => Comp_Decl,
3739 Array_Comp => Array_Comp);
3740 end if;
3741
3742 -- Check array components
3743
3744 elsif Is_Array_Type (T) then
3745
3746 -- There is no suitable component when the object is of an
3747 -- array type. However, a namable component may appear at some
3748 -- point during the recursive inspection, but not at the top
3749 -- level. At the top level just indicate array component case.
3750
3751 if Comp_Decl = Obj_Decl then
3752 Check_Component (Component_Type (T), Array_Comp => True);
3753 else
3754 Check_Component (Component_Type (T), Comp_Decl);
3755 end if;
3756
3757 -- Verify all components of type T
3758
3759 -- Note: No checks are performed on types with discriminants due
3760 -- to complexities involving variants. ???
3761
3762 elsif (Is_Concurrent_Type (T)
3763 or else Is_Incomplete_Or_Private_Type (T)
3764 or else Is_Record_Type (T))
3765 and then not Has_Discriminants (T)
3766 then
3767 Comp := First_Component (T);
3768 while Present (Comp) loop
3769 Check_Component (Etype (Comp), Parent (Comp));
3770
3771 Comp := Next_Component (Comp);
3772 end loop;
3773 end if;
3774 end Check_Component;
3775
3776 -- Start processing for Check_For_Null_Excluding_Components
3777
3778 begin
3779 Check_Component (Obj_Typ, Obj_Decl);
3780 end Check_For_Null_Excluding_Components;
3781
3782 -----------------
3783 -- Count_Tasks --
3784 -----------------
3785
3786 function Count_Tasks (T : Entity_Id) return Uint is
3787 C : Entity_Id;
3788 X : Node_Id;
3789 V : Uint;
3790
3791 begin
3792 if Is_Task_Type (T) then
3793 return Uint_1;
3794
3795 elsif Is_Record_Type (T) then
3796 if Has_Discriminants (T) then
3797 Check_Restriction (Max_Tasks, N);
3798 return Uint_0;
3799
3800 else
3801 V := Uint_0;
3802 C := First_Component (T);
3803 while Present (C) loop
3804 V := V + Count_Tasks (Etype (C));
3805 Next_Component (C);
3806 end loop;
3807
3808 return V;
3809 end if;
3810
3811 elsif Is_Array_Type (T) then
3812 X := First_Index (T);
3813 V := Count_Tasks (Component_Type (T));
3814 while Present (X) loop
3815 C := Etype (X);
3816
3817 if not Is_OK_Static_Subtype (C) then
3818 Check_Restriction (Max_Tasks, N);
3819 return Uint_0;
3820 else
3821 V := V * (UI_Max (Uint_0,
3822 Expr_Value (Type_High_Bound (C)) -
3823 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3824 end if;
3825
3826 Next_Index (X);
3827 end loop;
3828
3829 return V;
3830
3831 else
3832 return Uint_0;
3833 end if;
3834 end Count_Tasks;
3835
3836 ----------------------------
3837 -- Delayed_Aspect_Present --
3838 ----------------------------
3839
3840 function Delayed_Aspect_Present return Boolean is
3841 A : Node_Id;
3842 A_Id : Aspect_Id;
3843
3844 begin
3845 if Present (Aspect_Specifications (N)) then
3846 A := First (Aspect_Specifications (N));
3847 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3848 while Present (A) loop
3849 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3850 return True;
3851 end if;
3852
3853 Next (A);
3854 end loop;
3855 end if;
3856
3857 return False;
3858 end Delayed_Aspect_Present;
3859
3860 -- Local variables
3861
3862 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3863 -- Save the Ghost mode to restore on exit
3864
3865 Related_Id : Entity_Id;
3866
3867 -- Start of processing for Analyze_Object_Declaration
3868
3869 begin
3870 -- There are three kinds of implicit types generated by an
3871 -- object declaration:
3872
3873 -- 1. Those generated by the original Object Definition
3874
3875 -- 2. Those generated by the Expression
3876
3877 -- 3. Those used to constrain the Object Definition with the
3878 -- expression constraints when the definition is unconstrained.
3879
3880 -- They must be generated in this order to avoid order of elaboration
3881 -- issues. Thus the first step (after entering the name) is to analyze
3882 -- the object definition.
3883
3884 if Constant_Present (N) then
3885 Prev_Entity := Current_Entity_In_Scope (Id);
3886
3887 if Present (Prev_Entity)
3888 and then
3889 -- If the homograph is an implicit subprogram, it is overridden
3890 -- by the current declaration.
3891
3892 ((Is_Overloadable (Prev_Entity)
3893 and then Is_Inherited_Operation (Prev_Entity))
3894
3895 -- The current object is a discriminal generated for an entry
3896 -- family index. Even though the index is a constant, in this
3897 -- particular context there is no true constant redeclaration.
3898 -- Enter_Name will handle the visibility.
3899
3900 or else
3901 (Is_Discriminal (Id)
3902 and then Ekind (Discriminal_Link (Id)) =
3903 E_Entry_Index_Parameter)
3904
3905 -- The current object is the renaming for a generic declared
3906 -- within the instance.
3907
3908 or else
3909 (Ekind (Prev_Entity) = E_Package
3910 and then Nkind (Parent (Prev_Entity)) =
3911 N_Package_Renaming_Declaration
3912 and then not Comes_From_Source (Prev_Entity)
3913 and then
3914 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3915
3916 -- The entity may be a homonym of a private component of the
3917 -- enclosing protected object, for which we create a local
3918 -- renaming declaration. The declaration is legal, even if
3919 -- useless when it just captures that component.
3920
3921 or else
3922 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3923 and then Nkind (Parent (Prev_Entity)) =
3924 N_Object_Renaming_Declaration))
3925 then
3926 Prev_Entity := Empty;
3927 end if;
3928 end if;
3929
3930 if Present (Prev_Entity) then
3931
3932 -- The object declaration is Ghost when it completes a deferred Ghost
3933 -- constant.
3934
3935 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3936
3937 Constant_Redeclaration (Id, N, T);
3938
3939 Generate_Reference (Prev_Entity, Id, 'c');
3940 Set_Completion_Referenced (Id);
3941
3942 if Error_Posted (N) then
3943
3944 -- Type mismatch or illegal redeclaration; do not analyze
3945 -- expression to avoid cascaded errors.
3946
3947 T := Find_Type_Of_Object (Object_Definition (N), N);
3948 Set_Etype (Id, T);
3949 Set_Ekind (Id, E_Variable);
3950 goto Leave;
3951 end if;
3952
3953 -- In the normal case, enter identifier at the start to catch premature
3954 -- usage in the initialization expression.
3955
3956 else
3957 Generate_Definition (Id);
3958 Enter_Name (Id);
3959
3960 Mark_Coextensions (N, Object_Definition (N));
3961
3962 T := Find_Type_Of_Object (Object_Definition (N), N);
3963
3964 if Nkind (Object_Definition (N)) = N_Access_Definition
3965 and then Present
3966 (Access_To_Subprogram_Definition (Object_Definition (N)))
3967 and then Protected_Present
3968 (Access_To_Subprogram_Definition (Object_Definition (N)))
3969 then
3970 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3971 end if;
3972
3973 if Error_Posted (Id) then
3974 Set_Etype (Id, T);
3975 Set_Ekind (Id, E_Variable);
3976 goto Leave;
3977 end if;
3978 end if;
3979
3980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3981 -- out some static checks.
3982
3983 if Ada_Version >= Ada_2005 then
3984
3985 -- In case of aggregates we must also take care of the correct
3986 -- initialization of nested aggregates bug this is done at the
3987 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3988
3989 if Can_Never_Be_Null (T) then
3990 if Present (Expression (N))
3991 and then Nkind (Expression (N)) = N_Aggregate
3992 then
3993 null;
3994
3995 else
3996 declare
3997 Save_Typ : constant Entity_Id := Etype (Id);
3998 begin
3999 Set_Etype (Id, T); -- Temp. decoration for static checks
4000 Null_Exclusion_Static_Checks (N);
4001 Set_Etype (Id, Save_Typ);
4002 end;
4003 end if;
4004
4005 -- We might be dealing with an object of a composite type containing
4006 -- null-excluding components without an aggregate, so we must verify
4007 -- that such components have default initialization.
4008
4009 else
4010 Check_For_Null_Excluding_Components (T, N);
4011 end if;
4012 end if;
4013
4014 -- Object is marked pure if it is in a pure scope
4015
4016 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4017
4018 -- If deferred constant, make sure context is appropriate. We detect
4019 -- a deferred constant as a constant declaration with no expression.
4020 -- A deferred constant can appear in a package body if its completion
4021 -- is by means of an interface pragma.
4022
4023 if Constant_Present (N) and then No (E) then
4024
4025 -- A deferred constant may appear in the declarative part of the
4026 -- following constructs:
4027
4028 -- blocks
4029 -- entry bodies
4030 -- extended return statements
4031 -- package specs
4032 -- package bodies
4033 -- subprogram bodies
4034 -- task bodies
4035
4036 -- When declared inside a package spec, a deferred constant must be
4037 -- completed by a full constant declaration or pragma Import. In all
4038 -- other cases, the only proper completion is pragma Import. Extended
4039 -- return statements are flagged as invalid contexts because they do
4040 -- not have a declarative part and so cannot accommodate the pragma.
4041
4042 if Ekind (Current_Scope) = E_Return_Statement then
4043 Error_Msg_N
4044 ("invalid context for deferred constant declaration (RM 7.4)",
4045 N);
4046 Error_Msg_N
4047 ("\declaration requires an initialization expression",
4048 N);
4049 Set_Constant_Present (N, False);
4050
4051 -- In Ada 83, deferred constant must be of private type
4052
4053 elsif not Is_Private_Type (T) then
4054 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4055 Error_Msg_N
4056 ("(Ada 83) deferred constant must be private type", N);
4057 end if;
4058 end if;
4059
4060 -- If not a deferred constant, then the object declaration freezes
4061 -- its type, unless the object is of an anonymous type and has delayed
4062 -- aspects. In that case the type is frozen when the object itself is.
4063
4064 else
4065 Check_Fully_Declared (T, N);
4066
4067 if Has_Delayed_Aspects (Id)
4068 and then Is_Array_Type (T)
4069 and then Is_Itype (T)
4070 then
4071 Set_Has_Delayed_Freeze (T);
4072 else
4073 Freeze_Before (N, T);
4074 end if;
4075 end if;
4076
4077 -- If the object was created by a constrained array definition, then
4078 -- set the link in both the anonymous base type and anonymous subtype
4079 -- that are built to represent the array type to point to the object.
4080
4081 if Nkind (Object_Definition (Declaration_Node (Id))) =
4082 N_Constrained_Array_Definition
4083 then
4084 Set_Related_Array_Object (T, Id);
4085 Set_Related_Array_Object (Base_Type (T), Id);
4086 end if;
4087
4088 -- Special checks for protected objects not at library level
4089
4090 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4091 Check_Restriction (No_Local_Protected_Objects, Id);
4092
4093 -- Protected objects with interrupt handlers must be at library level
4094
4095 -- Ada 2005: This test is not needed (and the corresponding clause
4096 -- in the RM is removed) because accessibility checks are sufficient
4097 -- to make handlers not at the library level illegal.
4098
4099 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4100 -- applies to the '95 version of the language as well.
4101
4102 if Is_Protected_Type (T)
4103 and then Has_Interrupt_Handler (T)
4104 and then Ada_Version < Ada_95
4105 then
4106 Error_Msg_N
4107 ("interrupt object can only be declared at library level", Id);
4108 end if;
4109 end if;
4110
4111 -- Check for violation of No_Local_Timing_Events
4112
4113 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4114 Check_Restriction (No_Local_Timing_Events, Id);
4115 end if;
4116
4117 -- The actual subtype of the object is the nominal subtype, unless
4118 -- the nominal one is unconstrained and obtained from the expression.
4119
4120 Act_T := T;
4121
4122 -- These checks should be performed before the initialization expression
4123 -- is considered, so that the Object_Definition node is still the same
4124 -- as in source code.
4125
4126 -- In SPARK, the nominal subtype is always given by a subtype mark
4127 -- and must not be unconstrained. (The only exception to this is the
4128 -- acceptance of declarations of constants of type String.)
4129
4130 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("subtype mark required", Object_Definition (N));
4134
4135 elsif Is_Array_Type (T)
4136 and then not Is_Constrained (T)
4137 and then T /= Standard_String
4138 then
4139 Check_SPARK_05_Restriction
4140 ("subtype mark of constrained type expected",
4141 Object_Definition (N));
4142 end if;
4143
4144 if Is_Library_Level_Entity (Id) then
4145 Check_Dynamic_Object (T);
4146 end if;
4147
4148 -- There are no aliased objects in SPARK
4149
4150 if Aliased_Present (N) then
4151 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4152 end if;
4153
4154 -- Process initialization expression if present and not in error
4155
4156 if Present (E) and then E /= Error then
4157
4158 -- Generate an error in case of CPP class-wide object initialization.
4159 -- Required because otherwise the expansion of the class-wide
4160 -- assignment would try to use 'size to initialize the object
4161 -- (primitive that is not available in CPP tagged types).
4162
4163 if Is_Class_Wide_Type (Act_T)
4164 and then
4165 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4166 or else
4167 (Present (Full_View (Root_Type (Etype (Act_T))))
4168 and then
4169 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4170 then
4171 Error_Msg_N
4172 ("predefined assignment not available for 'C'P'P tagged types",
4173 E);
4174 end if;
4175
4176 Mark_Coextensions (N, E);
4177 Analyze (E);
4178
4179 -- In case of errors detected in the analysis of the expression,
4180 -- decorate it with the expected type to avoid cascaded errors
4181
4182 if No (Etype (E)) then
4183 Set_Etype (E, T);
4184 end if;
4185
4186 -- If an initialization expression is present, then we set the
4187 -- Is_True_Constant flag. It will be reset if this is a variable
4188 -- and it is indeed modified.
4189
4190 Set_Is_True_Constant (Id, True);
4191
4192 -- If we are analyzing a constant declaration, set its completion
4193 -- flag after analyzing and resolving the expression.
4194
4195 if Constant_Present (N) then
4196 Set_Has_Completion (Id);
4197 end if;
4198
4199 -- Set type and resolve (type may be overridden later on). Note:
4200 -- Ekind (Id) must still be E_Void at this point so that incorrect
4201 -- early usage within E is properly diagnosed.
4202
4203 Set_Etype (Id, T);
4204
4205 -- If the expression is an aggregate we must look ahead to detect
4206 -- the possible presence of an address clause, and defer resolution
4207 -- and expansion of the aggregate to the freeze point of the entity.
4208
4209 -- This is not always legal because the aggregate may contain other
4210 -- references that need freezing, e.g. references to other entities
4211 -- with address clauses. In any case, when compiling with -gnatI the
4212 -- presence of the address clause must be ignored.
4213
4214 if Comes_From_Source (N)
4215 and then Expander_Active
4216 and then Nkind (E) = N_Aggregate
4217 and then
4218 ((Present (Following_Address_Clause (N))
4219 and then not Ignore_Rep_Clauses)
4220 or else Delayed_Aspect_Present)
4221 then
4222 Set_Etype (E, T);
4223
4224 else
4225 Resolve (E, T);
4226 end if;
4227
4228 -- No further action needed if E is a call to an inlined function
4229 -- which returns an unconstrained type and it has been expanded into
4230 -- a procedure call. In that case N has been replaced by an object
4231 -- declaration without initializing expression and it has been
4232 -- analyzed (see Expand_Inlined_Call).
4233
4234 if Back_End_Inlining
4235 and then Expander_Active
4236 and then Nkind (E) = N_Function_Call
4237 and then Nkind (Name (E)) in N_Has_Entity
4238 and then Is_Inlined (Entity (Name (E)))
4239 and then not Is_Constrained (Etype (E))
4240 and then Analyzed (N)
4241 and then No (Expression (N))
4242 then
4243 goto Leave;
4244 end if;
4245
4246 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4247 -- node (which was marked already-analyzed), we need to set the type
4248 -- to something other than Any_Access in order to keep gigi happy.
4249
4250 if Etype (E) = Any_Access then
4251 Set_Etype (E, T);
4252 end if;
4253
4254 -- If the object is an access to variable, the initialization
4255 -- expression cannot be an access to constant.
4256
4257 if Is_Access_Type (T)
4258 and then not Is_Access_Constant (T)
4259 and then Is_Access_Type (Etype (E))
4260 and then Is_Access_Constant (Etype (E))
4261 then
4262 Error_Msg_N
4263 ("access to variable cannot be initialized with an "
4264 & "access-to-constant expression", E);
4265 end if;
4266
4267 if not Assignment_OK (N) then
4268 Check_Initialization (T, E);
4269 end if;
4270
4271 Check_Unset_Reference (E);
4272
4273 -- If this is a variable, then set current value. If this is a
4274 -- declared constant of a scalar type with a static expression,
4275 -- indicate that it is always valid.
4276
4277 if not Constant_Present (N) then
4278 if Compile_Time_Known_Value (E) then
4279 Set_Current_Value (Id, E);
4280 end if;
4281
4282 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4283 Set_Is_Known_Valid (Id);
4284 end if;
4285
4286 -- Deal with setting of null flags
4287
4288 if Is_Access_Type (T) then
4289 if Known_Non_Null (E) then
4290 Set_Is_Known_Non_Null (Id, True);
4291 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4292 Set_Is_Known_Null (Id, True);
4293 end if;
4294 end if;
4295
4296 -- Check incorrect use of dynamically tagged expressions
4297
4298 if Is_Tagged_Type (T) then
4299 Check_Dynamically_Tagged_Expression
4300 (Expr => E,
4301 Typ => T,
4302 Related_Nod => N);
4303 end if;
4304
4305 Apply_Scalar_Range_Check (E, T);
4306 Apply_Static_Length_Check (E, T);
4307
4308 if Nkind (Original_Node (N)) = N_Object_Declaration
4309 and then Comes_From_Source (Original_Node (N))
4310
4311 -- Only call test if needed
4312
4313 and then Restriction_Check_Required (SPARK_05)
4314 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4315 then
4316 Check_SPARK_05_Restriction
4317 ("initialization expression is not appropriate", E);
4318 end if;
4319
4320 -- A formal parameter of a specific tagged type whose related
4321 -- subprogram is subject to pragma Extensions_Visible with value
4322 -- "False" cannot be implicitly converted to a class-wide type by
4323 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4324 -- not consider internally generated expressions.
4325
4326 if Is_Class_Wide_Type (T)
4327 and then Comes_From_Source (E)
4328 and then Is_EVF_Expression (E)
4329 then
4330 Error_Msg_N
4331 ("formal parameter cannot be implicitly converted to "
4332 & "class-wide type when Extensions_Visible is False", E);
4333 end if;
4334 end if;
4335
4336 -- If the No_Streams restriction is set, check that the type of the
4337 -- object is not, and does not contain, any subtype derived from
4338 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4339 -- Has_Stream just for efficiency reasons. There is no point in
4340 -- spending time on a Has_Stream check if the restriction is not set.
4341
4342 if Restriction_Check_Required (No_Streams) then
4343 if Has_Stream (T) then
4344 Check_Restriction (No_Streams, N);
4345 end if;
4346 end if;
4347
4348 -- Deal with predicate check before we start to do major rewriting. It
4349 -- is OK to initialize and then check the initialized value, since the
4350 -- object goes out of scope if we get a predicate failure. Note that we
4351 -- do this in the analyzer and not the expander because the analyzer
4352 -- does some substantial rewriting in some cases.
4353
4354 -- We need a predicate check if the type has predicates that are not
4355 -- ignored, and if either there is an initializing expression, or for
4356 -- default initialization when we have at least one case of an explicit
4357 -- default initial value and then this is not an internal declaration
4358 -- whose initialization comes later (as for an aggregate expansion).
4359
4360 if not Suppress_Assignment_Checks (N)
4361 and then Present (Predicate_Function (T))
4362 and then not Predicates_Ignored (T)
4363 and then not No_Initialization (N)
4364 and then
4365 (Present (E)
4366 or else
4367 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4368 then
4369 -- If the type has a static predicate and the expression is known at
4370 -- compile time, see if the expression satisfies the predicate.
4371
4372 if Present (E) then
4373 Check_Expression_Against_Static_Predicate (E, T);
4374 end if;
4375
4376 -- If the type is a null record and there is no explicit initial
4377 -- expression, no predicate check applies.
4378
4379 if No (E) and then Is_Null_Record_Type (T) then
4380 null;
4381
4382 -- Do not generate a predicate check if the initialization expression
4383 -- is a type conversion because the conversion has been subjected to
4384 -- the same check. This is a small optimization which avoid redundant
4385 -- checks.
4386
4387 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4388 null;
4389
4390 else
4391 Insert_After (N,
4392 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4393 end if;
4394 end if;
4395
4396 -- Case of unconstrained type
4397
4398 if not Is_Definite_Subtype (T) then
4399
4400 -- In SPARK, a declaration of unconstrained type is allowed
4401 -- only for constants of type string.
4402
4403 if Is_String_Type (T) and then not Constant_Present (N) then
4404 Check_SPARK_05_Restriction
4405 ("declaration of object of unconstrained type not allowed", N);
4406 end if;
4407
4408 -- Nothing to do in deferred constant case
4409
4410 if Constant_Present (N) and then No (E) then
4411 null;
4412
4413 -- Case of no initialization present
4414
4415 elsif No (E) then
4416 if No_Initialization (N) then
4417 null;
4418
4419 elsif Is_Class_Wide_Type (T) then
4420 Error_Msg_N
4421 ("initialization required in class-wide declaration ", N);
4422
4423 else
4424 Error_Msg_N
4425 ("unconstrained subtype not allowed (need initialization)",
4426 Object_Definition (N));
4427
4428 if Is_Record_Type (T) and then Has_Discriminants (T) then
4429 Error_Msg_N
4430 ("\provide initial value or explicit discriminant values",
4431 Object_Definition (N));
4432
4433 Error_Msg_NE
4434 ("\or give default discriminant values for type&",
4435 Object_Definition (N), T);
4436
4437 elsif Is_Array_Type (T) then
4438 Error_Msg_N
4439 ("\provide initial value or explicit array bounds",
4440 Object_Definition (N));
4441 end if;
4442 end if;
4443
4444 -- Case of initialization present but in error. Set initial
4445 -- expression as absent (but do not make above complaints)
4446
4447 elsif E = Error then
4448 Set_Expression (N, Empty);
4449 E := Empty;
4450
4451 -- Case of initialization present
4452
4453 else
4454 -- Check restrictions in Ada 83
4455
4456 if not Constant_Present (N) then
4457
4458 -- Unconstrained variables not allowed in Ada 83 mode
4459
4460 if Ada_Version = Ada_83
4461 and then Comes_From_Source (Object_Definition (N))
4462 then
4463 Error_Msg_N
4464 ("(Ada 83) unconstrained variable not allowed",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4468
4469 -- Now we constrain the variable from the initializing expression
4470
4471 -- If the expression is an aggregate, it has been expanded into
4472 -- individual assignments. Retrieve the actual type from the
4473 -- expanded construct.
4474
4475 if Is_Array_Type (T)
4476 and then No_Initialization (N)
4477 and then Nkind (Original_Node (E)) = N_Aggregate
4478 then
4479 Act_T := Etype (E);
4480
4481 -- In case of class-wide interface object declarations we delay
4482 -- the generation of the equivalent record type declarations until
4483 -- its expansion because there are cases in they are not required.
4484
4485 elsif Is_Interface (T) then
4486 null;
4487
4488 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4489 -- we should prevent the generation of another Itype with the
4490 -- same name as the one already generated, or we end up with
4491 -- two identical types in GNATprove.
4492
4493 elsif GNATprove_Mode then
4494 null;
4495
4496 -- If the type is an unchecked union, no subtype can be built from
4497 -- the expression. Rewrite declaration as a renaming, which the
4498 -- back-end can handle properly. This is a rather unusual case,
4499 -- because most unchecked_union declarations have default values
4500 -- for discriminants and are thus not indefinite.
4501
4502 elsif Is_Unchecked_Union (T) then
4503 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4504 Set_Ekind (Id, E_Constant);
4505 else
4506 Set_Ekind (Id, E_Variable);
4507 end if;
4508
4509 Rewrite (N,
4510 Make_Object_Renaming_Declaration (Loc,
4511 Defining_Identifier => Id,
4512 Subtype_Mark => New_Occurrence_Of (T, Loc),
4513 Name => E));
4514
4515 Set_Renamed_Object (Id, E);
4516 Freeze_Before (N, T);
4517 Set_Is_Frozen (Id);
4518 goto Leave;
4519
4520 else
4521 -- Ensure that the generated subtype has a unique external name
4522 -- when the related object is public. This guarantees that the
4523 -- subtype and its bounds will not be affected by switches or
4524 -- pragmas that may offset the internal counter due to extra
4525 -- generated code.
4526
4527 if Is_Public (Id) then
4528 Related_Id := Id;
4529 else
4530 Related_Id := Empty;
4531 end if;
4532
4533 Expand_Subtype_From_Expr
4534 (N => N,
4535 Unc_Type => T,
4536 Subtype_Indic => Object_Definition (N),
4537 Exp => E,
4538 Related_Id => Related_Id);
4539
4540 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4541 end if;
4542
4543 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4544
4545 if Aliased_Present (N) then
4546 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4547 end if;
4548
4549 Freeze_Before (N, Act_T);
4550 Freeze_Before (N, T);
4551 end if;
4552
4553 elsif Is_Array_Type (T)
4554 and then No_Initialization (N)
4555 and then (Nkind (Original_Node (E)) = N_Aggregate
4556 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4557 and then Nkind (Original_Node (Expression
4558 (Original_Node (E)))) = N_Aggregate))
4559 then
4560 if not Is_Entity_Name (Object_Definition (N)) then
4561 Act_T := Etype (E);
4562 Check_Compile_Time_Size (Act_T);
4563
4564 if Aliased_Present (N) then
4565 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4566 end if;
4567 end if;
4568
4569 -- When the given object definition and the aggregate are specified
4570 -- independently, and their lengths might differ do a length check.
4571 -- This cannot happen if the aggregate is of the form (others =>...)
4572
4573 if not Is_Constrained (T) then
4574 null;
4575
4576 elsif Nkind (E) = N_Raise_Constraint_Error then
4577
4578 -- Aggregate is statically illegal. Place back in declaration
4579
4580 Set_Expression (N, E);
4581 Set_No_Initialization (N, False);
4582
4583 elsif T = Etype (E) then
4584 null;
4585
4586 elsif Nkind (E) = N_Aggregate
4587 and then Present (Component_Associations (E))
4588 and then Present (Choice_List (First (Component_Associations (E))))
4589 and then
4590 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4591 N_Others_Choice
4592 then
4593 null;
4594
4595 else
4596 Apply_Length_Check (E, T);
4597 end if;
4598
4599 -- If the type is limited unconstrained with defaulted discriminants and
4600 -- there is no expression, then the object is constrained by the
4601 -- defaults, so it is worthwhile building the corresponding subtype.
4602
4603 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4604 and then not Is_Constrained (T)
4605 and then Has_Discriminants (T)
4606 then
4607 if No (E) then
4608 Act_T := Build_Default_Subtype (T, N);
4609 else
4610 -- Ada 2005: A limited object may be initialized by means of an
4611 -- aggregate. If the type has default discriminants it has an
4612 -- unconstrained nominal type, Its actual subtype will be obtained
4613 -- from the aggregate, and not from the default discriminants.
4614
4615 Act_T := Etype (E);
4616 end if;
4617
4618 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4619
4620 elsif Nkind (E) = N_Function_Call
4621 and then Constant_Present (N)
4622 and then Has_Unconstrained_Elements (Etype (E))
4623 then
4624 -- The back-end has problems with constants of a discriminated type
4625 -- with defaults, if the initial value is a function call. We
4626 -- generate an intermediate temporary that will receive a reference
4627 -- to the result of the call. The initialization expression then
4628 -- becomes a dereference of that temporary.
4629
4630 Remove_Side_Effects (E);
4631
4632 -- If this is a constant declaration of an unconstrained type and
4633 -- the initialization is an aggregate, we can use the subtype of the
4634 -- aggregate for the declared entity because it is immutable.
4635
4636 elsif not Is_Constrained (T)
4637 and then Has_Discriminants (T)
4638 and then Constant_Present (N)
4639 and then not Has_Unchecked_Union (T)
4640 and then Nkind (E) = N_Aggregate
4641 then
4642 Act_T := Etype (E);
4643 end if;
4644
4645 -- Check No_Wide_Characters restriction
4646
4647 Check_Wide_Character_Restriction (T, Object_Definition (N));
4648
4649 -- Indicate this is not set in source. Certainly true for constants, and
4650 -- true for variables so far (will be reset for a variable if and when
4651 -- we encounter a modification in the source).
4652
4653 Set_Never_Set_In_Source (Id);
4654
4655 -- Now establish the proper kind and type of the object
4656
4657 if Constant_Present (N) then
4658 Set_Ekind (Id, E_Constant);
4659 Set_Is_True_Constant (Id);
4660
4661 else
4662 Set_Ekind (Id, E_Variable);
4663
4664 -- A variable is set as shared passive if it appears in a shared
4665 -- passive package, and is at the outer level. This is not done for
4666 -- entities generated during expansion, because those are always
4667 -- manipulated locally.
4668
4669 if Is_Shared_Passive (Current_Scope)
4670 and then Is_Library_Level_Entity (Id)
4671 and then Comes_From_Source (Id)
4672 then
4673 Set_Is_Shared_Passive (Id);
4674 Check_Shared_Var (Id, T, N);
4675 end if;
4676
4677 -- Set Has_Initial_Value if initializing expression present. Note
4678 -- that if there is no initializing expression, we leave the state
4679 -- of this flag unchanged (usually it will be False, but notably in
4680 -- the case of exception choice variables, it will already be true).
4681
4682 if Present (E) then
4683 Set_Has_Initial_Value (Id);
4684 end if;
4685 end if;
4686
4687 -- Initialize alignment and size and capture alignment setting
4688
4689 Init_Alignment (Id);
4690 Init_Esize (Id);
4691 Set_Optimize_Alignment_Flags (Id);
4692
4693 -- Deal with aliased case
4694
4695 if Aliased_Present (N) then
4696 Set_Is_Aliased (Id);
4697
4698 -- If the object is aliased and the type is unconstrained with
4699 -- defaulted discriminants and there is no expression, then the
4700 -- object is constrained by the defaults, so it is worthwhile
4701 -- building the corresponding subtype.
4702
4703 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4704 -- unconstrained, then only establish an actual subtype if the
4705 -- nominal subtype is indefinite. In definite cases the object is
4706 -- unconstrained in Ada 2005.
4707
4708 if No (E)
4709 and then Is_Record_Type (T)
4710 and then not Is_Constrained (T)
4711 and then Has_Discriminants (T)
4712 and then (Ada_Version < Ada_2005
4713 or else not Is_Definite_Subtype (T))
4714 then
4715 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4716 end if;
4717 end if;
4718
4719 -- Now we can set the type of the object
4720
4721 Set_Etype (Id, Act_T);
4722
4723 -- Non-constant object is marked to be treated as volatile if type is
4724 -- volatile and we clear the Current_Value setting that may have been
4725 -- set above. Doing so for constants isn't required and might interfere
4726 -- with possible uses of the object as a static expression in contexts
4727 -- incompatible with volatility (e.g. as a case-statement alternative).
4728
4729 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4730 Set_Treat_As_Volatile (Id);
4731 Set_Current_Value (Id, Empty);
4732 end if;
4733
4734 -- Deal with controlled types
4735
4736 if Has_Controlled_Component (Etype (Id))
4737 or else Is_Controlled (Etype (Id))
4738 then
4739 if not Is_Library_Level_Entity (Id) then
4740 Check_Restriction (No_Nested_Finalization, N);
4741 else
4742 Validate_Controlled_Object (Id);
4743 end if;
4744 end if;
4745
4746 if Has_Task (Etype (Id)) then
4747 Check_Restriction (No_Tasking, N);
4748
4749 -- Deal with counting max tasks
4750
4751 -- Nothing to do if inside a generic
4752
4753 if Inside_A_Generic then
4754 null;
4755
4756 -- If library level entity, then count tasks
4757
4758 elsif Is_Library_Level_Entity (Id) then
4759 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4760
4761 -- If not library level entity, then indicate we don't know max
4762 -- tasks and also check task hierarchy restriction and blocking
4763 -- operation (since starting a task is definitely blocking).
4764
4765 else
4766 Check_Restriction (Max_Tasks, N);
4767 Check_Restriction (No_Task_Hierarchy, N);
4768 Check_Potentially_Blocking_Operation (N);
4769 end if;
4770
4771 -- A rather specialized test. If we see two tasks being declared
4772 -- of the same type in the same object declaration, and the task
4773 -- has an entry with an address clause, we know that program error
4774 -- will be raised at run time since we can't have two tasks with
4775 -- entries at the same address.
4776
4777 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4778 declare
4779 E : Entity_Id;
4780
4781 begin
4782 E := First_Entity (Etype (Id));
4783 while Present (E) loop
4784 if Ekind (E) = E_Entry
4785 and then Present (Get_Attribute_Definition_Clause
4786 (E, Attribute_Address))
4787 then
4788 Error_Msg_Warn := SPARK_Mode /= On;
4789 Error_Msg_N
4790 ("more than one task with same entry address<<", N);
4791 Error_Msg_N ("\Program_Error [<<", N);
4792 Insert_Action (N,
4793 Make_Raise_Program_Error (Loc,
4794 Reason => PE_Duplicated_Entry_Address));
4795 exit;
4796 end if;
4797
4798 Next_Entity (E);
4799 end loop;
4800 end;
4801 end if;
4802 end if;
4803
4804 -- Some simple constant-propagation: if the expression is a constant
4805 -- string initialized with a literal, share the literal. This avoids
4806 -- a run-time copy.
4807
4808 if Present (E)
4809 and then Is_Entity_Name (E)
4810 and then Ekind (Entity (E)) = E_Constant
4811 and then Base_Type (Etype (E)) = Standard_String
4812 then
4813 declare
4814 Val : constant Node_Id := Constant_Value (Entity (E));
4815 begin
4816 if Present (Val) and then Nkind (Val) = N_String_Literal then
4817 Rewrite (E, New_Copy (Val));
4818 end if;
4819 end;
4820 end if;
4821
4822 -- Another optimization: if the nominal subtype is unconstrained and
4823 -- the expression is a function call that returns an unconstrained
4824 -- type, rewrite the declaration as a renaming of the result of the
4825 -- call. The exceptions below are cases where the copy is expected,
4826 -- either by the back end (Aliased case) or by the semantics, as for
4827 -- initializing controlled types or copying tags for class-wide types.
4828
4829 if Present (E)
4830 and then Nkind (E) = N_Explicit_Dereference
4831 and then Nkind (Original_Node (E)) = N_Function_Call
4832 and then not Is_Library_Level_Entity (Id)
4833 and then not Is_Constrained (Underlying_Type (T))
4834 and then not Is_Aliased (Id)
4835 and then not Is_Class_Wide_Type (T)
4836 and then not Is_Controlled_Active (T)
4837 and then not Has_Controlled_Component (Base_Type (T))
4838 and then Expander_Active
4839 then
4840 Rewrite (N,
4841 Make_Object_Renaming_Declaration (Loc,
4842 Defining_Identifier => Id,
4843 Access_Definition => Empty,
4844 Subtype_Mark => New_Occurrence_Of
4845 (Base_Type (Etype (Id)), Loc),
4846 Name => E));
4847
4848 Set_Renamed_Object (Id, E);
4849
4850 -- Force generation of debugging information for the constant and for
4851 -- the renamed function call.
4852
4853 Set_Debug_Info_Needed (Id);
4854 Set_Debug_Info_Needed (Entity (Prefix (E)));
4855 end if;
4856
4857 if Present (Prev_Entity)
4858 and then Is_Frozen (Prev_Entity)
4859 and then not Error_Posted (Id)
4860 then
4861 Error_Msg_N ("full constant declaration appears too late", N);
4862 end if;
4863
4864 Check_Eliminated (Id);
4865
4866 -- Deal with setting In_Private_Part flag if in private part
4867
4868 if Ekind (Scope (Id)) = E_Package
4869 and then In_Private_Part (Scope (Id))
4870 then
4871 Set_In_Private_Part (Id);
4872 end if;
4873
4874 <<Leave>>
4875 -- Initialize the refined state of a variable here because this is a
4876 -- common destination for legal and illegal object declarations.
4877
4878 if Ekind (Id) = E_Variable then
4879 Set_Encapsulating_State (Id, Empty);
4880 end if;
4881
4882 if Has_Aspects (N) then
4883 Analyze_Aspect_Specifications (N, Id);
4884 end if;
4885
4886 Analyze_Dimension (N);
4887
4888 -- Verify whether the object declaration introduces an illegal hidden
4889 -- state within a package subject to a null abstract state.
4890
4891 if Ekind (Id) = E_Variable then
4892 Check_No_Hidden_State (Id);
4893 end if;
4894
4895 Restore_Ghost_Mode (Saved_GM);
4896 end Analyze_Object_Declaration;
4897
4898 ---------------------------
4899 -- Analyze_Others_Choice --
4900 ---------------------------
4901
4902 -- Nothing to do for the others choice node itself, the semantic analysis
4903 -- of the others choice will occur as part of the processing of the parent
4904
4905 procedure Analyze_Others_Choice (N : Node_Id) is
4906 pragma Warnings (Off, N);
4907 begin
4908 null;
4909 end Analyze_Others_Choice;
4910
4911 -------------------------------------------
4912 -- Analyze_Private_Extension_Declaration --
4913 -------------------------------------------
4914
4915 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4916 Indic : constant Node_Id := Subtype_Indication (N);
4917 T : constant Entity_Id := Defining_Identifier (N);
4918 Iface : Entity_Id;
4919 Iface_Elmt : Elmt_Id;
4920 Parent_Base : Entity_Id;
4921 Parent_Type : Entity_Id;
4922
4923 begin
4924 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4925
4926 if Is_Non_Empty_List (Interface_List (N)) then
4927 declare
4928 Intf : Node_Id;
4929 T : Entity_Id;
4930
4931 begin
4932 Intf := First (Interface_List (N));
4933 while Present (Intf) loop
4934 T := Find_Type_Of_Subtype_Indic (Intf);
4935
4936 Diagnose_Interface (Intf, T);
4937 Next (Intf);
4938 end loop;
4939 end;
4940 end if;
4941
4942 Generate_Definition (T);
4943
4944 -- For other than Ada 2012, just enter the name in the current scope
4945
4946 if Ada_Version < Ada_2012 then
4947 Enter_Name (T);
4948
4949 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4950 -- case of private type that completes an incomplete type.
4951
4952 else
4953 declare
4954 Prev : Entity_Id;
4955
4956 begin
4957 Prev := Find_Type_Name (N);
4958
4959 pragma Assert (Prev = T
4960 or else (Ekind (Prev) = E_Incomplete_Type
4961 and then Present (Full_View (Prev))
4962 and then Full_View (Prev) = T));
4963 end;
4964 end if;
4965
4966 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4967 Parent_Base := Base_Type (Parent_Type);
4968
4969 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4970 Set_Ekind (T, Ekind (Parent_Type));
4971 Set_Etype (T, Any_Type);
4972 goto Leave;
4973
4974 elsif not Is_Tagged_Type (Parent_Type) then
4975 Error_Msg_N
4976 ("parent of type extension must be a tagged type ", Indic);
4977 goto Leave;
4978
4979 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4980 Error_Msg_N ("premature derivation of incomplete type", Indic);
4981 goto Leave;
4982
4983 elsif Is_Concurrent_Type (Parent_Type) then
4984 Error_Msg_N
4985 ("parent type of a private extension cannot be a synchronized "
4986 & "tagged type (RM 3.9.1 (3/1))", N);
4987
4988 Set_Etype (T, Any_Type);
4989 Set_Ekind (T, E_Limited_Private_Type);
4990 Set_Private_Dependents (T, New_Elmt_List);
4991 Set_Error_Posted (T);
4992 goto Leave;
4993 end if;
4994
4995 -- Perhaps the parent type should be changed to the class-wide type's
4996 -- specific type in this case to prevent cascading errors ???
4997
4998 if Is_Class_Wide_Type (Parent_Type) then
4999 Error_Msg_N
5000 ("parent of type extension must not be a class-wide type", Indic);
5001 goto Leave;
5002 end if;
5003
5004 if (not Is_Package_Or_Generic_Package (Current_Scope)
5005 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5006 or else In_Private_Part (Current_Scope)
5007 then
5008 Error_Msg_N ("invalid context for private extension", N);
5009 end if;
5010
5011 -- Set common attributes
5012
5013 Set_Is_Pure (T, Is_Pure (Current_Scope));
5014 Set_Scope (T, Current_Scope);
5015 Set_Ekind (T, E_Record_Type_With_Private);
5016 Init_Size_Align (T);
5017 Set_Default_SSO (T);
5018
5019 Set_Etype (T, Parent_Base);
5020 Propagate_Concurrent_Flags (T, Parent_Base);
5021
5022 Set_Convention (T, Convention (Parent_Type));
5023 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5024 Set_Is_First_Subtype (T);
5025 Make_Class_Wide_Type (T);
5026
5027 if Unknown_Discriminants_Present (N) then
5028 Set_Discriminant_Constraint (T, No_Elist);
5029 end if;
5030
5031 Build_Derived_Record_Type (N, Parent_Type, T);
5032
5033 -- A private extension inherits the Default_Initial_Condition pragma
5034 -- coming from any parent type within the derivation chain.
5035
5036 if Has_DIC (Parent_Type) then
5037 Set_Has_Inherited_DIC (T);
5038 end if;
5039
5040 -- A private extension inherits any class-wide invariants coming from a
5041 -- parent type or an interface. Note that the invariant procedure of the
5042 -- parent type should not be inherited because the private extension may
5043 -- define invariants of its own.
5044
5045 if Has_Inherited_Invariants (Parent_Type)
5046 or else Has_Inheritable_Invariants (Parent_Type)
5047 then
5048 Set_Has_Inherited_Invariants (T);
5049
5050 elsif Present (Interfaces (T)) then
5051 Iface_Elmt := First_Elmt (Interfaces (T));
5052 while Present (Iface_Elmt) loop
5053 Iface := Node (Iface_Elmt);
5054
5055 if Has_Inheritable_Invariants (Iface) then
5056 Set_Has_Inherited_Invariants (T);
5057 exit;
5058 end if;
5059
5060 Next_Elmt (Iface_Elmt);
5061 end loop;
5062 end if;
5063
5064 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5065 -- synchronized formal derived type.
5066
5067 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5068 Set_Is_Limited_Record (T);
5069
5070 -- Formal derived type case
5071
5072 if Is_Generic_Type (T) then
5073
5074 -- The parent must be a tagged limited type or a synchronized
5075 -- interface.
5076
5077 if (not Is_Tagged_Type (Parent_Type)
5078 or else not Is_Limited_Type (Parent_Type))
5079 and then
5080 (not Is_Interface (Parent_Type)
5081 or else not Is_Synchronized_Interface (Parent_Type))
5082 then
5083 Error_Msg_NE
5084 ("parent type of & must be tagged limited or synchronized",
5085 N, T);
5086 end if;
5087
5088 -- The progenitors (if any) must be limited or synchronized
5089 -- interfaces.
5090
5091 if Present (Interfaces (T)) then
5092 Iface_Elmt := First_Elmt (Interfaces (T));
5093 while Present (Iface_Elmt) loop
5094 Iface := Node (Iface_Elmt);
5095
5096 if not Is_Limited_Interface (Iface)
5097 and then not Is_Synchronized_Interface (Iface)
5098 then
5099 Error_Msg_NE
5100 ("progenitor & must be limited or synchronized",
5101 N, Iface);
5102 end if;
5103
5104 Next_Elmt (Iface_Elmt);
5105 end loop;
5106 end if;
5107
5108 -- Regular derived extension, the parent must be a limited or
5109 -- synchronized interface.
5110
5111 else
5112 if not Is_Interface (Parent_Type)
5113 or else (not Is_Limited_Interface (Parent_Type)
5114 and then not Is_Synchronized_Interface (Parent_Type))
5115 then
5116 Error_Msg_NE
5117 ("parent type of & must be limited interface", N, T);
5118 end if;
5119 end if;
5120
5121 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5122 -- extension with a synchronized parent must be explicitly declared
5123 -- synchronized, because the full view will be a synchronized type.
5124 -- This must be checked before the check for limited types below,
5125 -- to ensure that types declared limited are not allowed to extend
5126 -- synchronized interfaces.
5127
5128 elsif Is_Interface (Parent_Type)
5129 and then Is_Synchronized_Interface (Parent_Type)
5130 and then not Synchronized_Present (N)
5131 then
5132 Error_Msg_NE
5133 ("private extension of& must be explicitly synchronized",
5134 N, Parent_Type);
5135
5136 elsif Limited_Present (N) then
5137 Set_Is_Limited_Record (T);
5138
5139 if not Is_Limited_Type (Parent_Type)
5140 and then
5141 (not Is_Interface (Parent_Type)
5142 or else not Is_Limited_Interface (Parent_Type))
5143 then
5144 Error_Msg_NE ("parent type& of limited extension must be limited",
5145 N, Parent_Type);
5146 end if;
5147 end if;
5148
5149 -- Remember that its parent type has a private extension. Used to warn
5150 -- on public primitives of the parent type defined after its private
5151 -- extensions (see Check_Dispatching_Operation).
5152
5153 Set_Has_Private_Extension (Parent_Type);
5154
5155 <<Leave>>
5156 if Has_Aspects (N) then
5157 Analyze_Aspect_Specifications (N, T);
5158 end if;
5159 end Analyze_Private_Extension_Declaration;
5160
5161 ---------------------------------
5162 -- Analyze_Subtype_Declaration --
5163 ---------------------------------
5164
5165 procedure Analyze_Subtype_Declaration
5166 (N : Node_Id;
5167 Skip : Boolean := False)
5168 is
5169 Id : constant Entity_Id := Defining_Identifier (N);
5170 R_Checks : Check_Result;
5171 T : Entity_Id;
5172
5173 begin
5174 Generate_Definition (Id);
5175 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5176 Init_Size_Align (Id);
5177
5178 -- The following guard condition on Enter_Name is to handle cases where
5179 -- the defining identifier has already been entered into the scope but
5180 -- the declaration as a whole needs to be analyzed.
5181
5182 -- This case in particular happens for derived enumeration types. The
5183 -- derived enumeration type is processed as an inserted enumeration type
5184 -- declaration followed by a rewritten subtype declaration. The defining
5185 -- identifier, however, is entered into the name scope very early in the
5186 -- processing of the original type declaration and therefore needs to be
5187 -- avoided here, when the created subtype declaration is analyzed. (See
5188 -- Build_Derived_Types)
5189
5190 -- This also happens when the full view of a private type is derived
5191 -- type with constraints. In this case the entity has been introduced
5192 -- in the private declaration.
5193
5194 -- Finally this happens in some complex cases when validity checks are
5195 -- enabled, where the same subtype declaration may be analyzed twice.
5196 -- This can happen if the subtype is created by the pre-analysis of
5197 -- an attribute tht gives the range of a loop statement, and the loop
5198 -- itself appears within an if_statement that will be rewritten during
5199 -- expansion.
5200
5201 if Skip
5202 or else (Present (Etype (Id))
5203 and then (Is_Private_Type (Etype (Id))
5204 or else Is_Task_Type (Etype (Id))
5205 or else Is_Rewrite_Substitution (N)))
5206 then
5207 null;
5208
5209 elsif Current_Entity (Id) = Id then
5210 null;
5211
5212 else
5213 Enter_Name (Id);
5214 end if;
5215
5216 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5217
5218 -- Class-wide equivalent types of records with unknown discriminants
5219 -- involve the generation of an itype which serves as the private view
5220 -- of a constrained record subtype. In such cases the base type of the
5221 -- current subtype we are processing is the private itype. Use the full
5222 -- of the private itype when decorating various attributes.
5223
5224 if Is_Itype (T)
5225 and then Is_Private_Type (T)
5226 and then Present (Full_View (T))
5227 then
5228 T := Full_View (T);
5229 end if;
5230
5231 -- Inherit common attributes
5232
5233 Set_Is_Volatile (Id, Is_Volatile (T));
5234 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5235 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5236 Set_Convention (Id, Convention (T));
5237
5238 -- If ancestor has predicates then so does the subtype, and in addition
5239 -- we must delay the freeze to properly arrange predicate inheritance.
5240
5241 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5242 -- in which T = ID, so the above tests and assignments do nothing???
5243
5244 if Has_Predicates (T)
5245 or else (Present (Ancestor_Subtype (T))
5246 and then Has_Predicates (Ancestor_Subtype (T)))
5247 then
5248 Set_Has_Predicates (Id);
5249 Set_Has_Delayed_Freeze (Id);
5250
5251 -- Generated subtypes inherit the predicate function from the parent
5252 -- (no aspects to examine on the generated declaration).
5253
5254 if not Comes_From_Source (N) then
5255 Set_Ekind (Id, Ekind (T));
5256
5257 if Present (Predicate_Function (T)) then
5258 Set_Predicate_Function (Id, Predicate_Function (T));
5259
5260 elsif Present (Ancestor_Subtype (T))
5261 and then Has_Predicates (Ancestor_Subtype (T))
5262 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5263 then
5264 Set_Predicate_Function (Id,
5265 Predicate_Function (Ancestor_Subtype (T)));
5266 end if;
5267 end if;
5268 end if;
5269
5270 -- Subtype of Boolean cannot have a constraint in SPARK
5271
5272 if Is_Boolean_Type (T)
5273 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5274 then
5275 Check_SPARK_05_Restriction
5276 ("subtype of Boolean cannot have constraint", N);
5277 end if;
5278
5279 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5280 declare
5281 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5282 One_Cstr : Node_Id;
5283 Low : Node_Id;
5284 High : Node_Id;
5285
5286 begin
5287 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5288 One_Cstr := First (Constraints (Cstr));
5289 while Present (One_Cstr) loop
5290
5291 -- Index or discriminant constraint in SPARK must be a
5292 -- subtype mark.
5293
5294 if not
5295 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5296 then
5297 Check_SPARK_05_Restriction
5298 ("subtype mark required", One_Cstr);
5299
5300 -- String subtype must have a lower bound of 1 in SPARK.
5301 -- Note that we do not need to test for the non-static case
5302 -- here, since that was already taken care of in
5303 -- Process_Range_Expr_In_Decl.
5304
5305 elsif Base_Type (T) = Standard_String then
5306 Get_Index_Bounds (One_Cstr, Low, High);
5307
5308 if Is_OK_Static_Expression (Low)
5309 and then Expr_Value (Low) /= 1
5310 then
5311 Check_SPARK_05_Restriction
5312 ("String subtype must have lower bound of 1", N);
5313 end if;
5314 end if;
5315
5316 Next (One_Cstr);
5317 end loop;
5318 end if;
5319 end;
5320 end if;
5321
5322 -- In the case where there is no constraint given in the subtype
5323 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5324 -- semantic attributes must be established here.
5325
5326 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5327 Set_Etype (Id, Base_Type (T));
5328
5329 -- Subtype of unconstrained array without constraint is not allowed
5330 -- in SPARK.
5331
5332 if Is_Array_Type (T) and then not Is_Constrained (T) then
5333 Check_SPARK_05_Restriction
5334 ("subtype of unconstrained array must have constraint", N);
5335 end if;
5336
5337 case Ekind (T) is
5338 when Array_Kind =>
5339 Set_Ekind (Id, E_Array_Subtype);
5340 Copy_Array_Subtype_Attributes (Id, T);
5341
5342 when Decimal_Fixed_Point_Kind =>
5343 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5344 Set_Digits_Value (Id, Digits_Value (T));
5345 Set_Delta_Value (Id, Delta_Value (T));
5346 Set_Scale_Value (Id, Scale_Value (T));
5347 Set_Small_Value (Id, Small_Value (T));
5348 Set_Scalar_Range (Id, Scalar_Range (T));
5349 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5350 Set_Is_Constrained (Id, Is_Constrained (T));
5351 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5352 Set_RM_Size (Id, RM_Size (T));
5353
5354 when Enumeration_Kind =>
5355 Set_Ekind (Id, E_Enumeration_Subtype);
5356 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5357 Set_Scalar_Range (Id, Scalar_Range (T));
5358 Set_Is_Character_Type (Id, Is_Character_Type (T));
5359 Set_Is_Constrained (Id, Is_Constrained (T));
5360 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5361 Set_RM_Size (Id, RM_Size (T));
5362 Inherit_Predicate_Flags (Id, T);
5363
5364 when Ordinary_Fixed_Point_Kind =>
5365 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5366 Set_Scalar_Range (Id, Scalar_Range (T));
5367 Set_Small_Value (Id, Small_Value (T));
5368 Set_Delta_Value (Id, Delta_Value (T));
5369 Set_Is_Constrained (Id, Is_Constrained (T));
5370 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5371 Set_RM_Size (Id, RM_Size (T));
5372
5373 when Float_Kind =>
5374 Set_Ekind (Id, E_Floating_Point_Subtype);
5375 Set_Scalar_Range (Id, Scalar_Range (T));
5376 Set_Digits_Value (Id, Digits_Value (T));
5377 Set_Is_Constrained (Id, Is_Constrained (T));
5378
5379 -- If the floating point type has dimensions, these will be
5380 -- inherited subsequently when Analyze_Dimensions is called.
5381
5382 when Signed_Integer_Kind =>
5383 Set_Ekind (Id, E_Signed_Integer_Subtype);
5384 Set_Scalar_Range (Id, Scalar_Range (T));
5385 Set_Is_Constrained (Id, Is_Constrained (T));
5386 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5387 Set_RM_Size (Id, RM_Size (T));
5388 Inherit_Predicate_Flags (Id, T);
5389
5390 when Modular_Integer_Kind =>
5391 Set_Ekind (Id, E_Modular_Integer_Subtype);
5392 Set_Scalar_Range (Id, Scalar_Range (T));
5393 Set_Is_Constrained (Id, Is_Constrained (T));
5394 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5395 Set_RM_Size (Id, RM_Size (T));
5396 Inherit_Predicate_Flags (Id, T);
5397
5398 when Class_Wide_Kind =>
5399 Set_Ekind (Id, E_Class_Wide_Subtype);
5400 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5401 Set_Cloned_Subtype (Id, T);
5402 Set_Is_Tagged_Type (Id, True);
5403 Set_Has_Unknown_Discriminants
5404 (Id, True);
5405 Set_No_Tagged_Streams_Pragma
5406 (Id, No_Tagged_Streams_Pragma (T));
5407
5408 if Ekind (T) = E_Class_Wide_Subtype then
5409 Set_Equivalent_Type (Id, Equivalent_Type (T));
5410 end if;
5411
5412 when E_Record_Subtype
5413 | E_Record_Type
5414 =>
5415 Set_Ekind (Id, E_Record_Subtype);
5416
5417 if Ekind (T) = E_Record_Subtype
5418 and then Present (Cloned_Subtype (T))
5419 then
5420 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5421 else
5422 Set_Cloned_Subtype (Id, T);
5423 end if;
5424
5425 Set_First_Entity (Id, First_Entity (T));
5426 Set_Last_Entity (Id, Last_Entity (T));
5427 Set_Has_Discriminants (Id, Has_Discriminants (T));
5428 Set_Is_Constrained (Id, Is_Constrained (T));
5429 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5430 Set_Has_Implicit_Dereference
5431 (Id, Has_Implicit_Dereference (T));
5432 Set_Has_Unknown_Discriminants
5433 (Id, Has_Unknown_Discriminants (T));
5434
5435 if Has_Discriminants (T) then
5436 Set_Discriminant_Constraint
5437 (Id, Discriminant_Constraint (T));
5438 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5439
5440 elsif Has_Unknown_Discriminants (Id) then
5441 Set_Discriminant_Constraint (Id, No_Elist);
5442 end if;
5443
5444 if Is_Tagged_Type (T) then
5445 Set_Is_Tagged_Type (Id, True);
5446 Set_No_Tagged_Streams_Pragma
5447 (Id, No_Tagged_Streams_Pragma (T));
5448 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5449 Set_Direct_Primitive_Operations
5450 (Id, Direct_Primitive_Operations (T));
5451 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5452
5453 if Is_Interface (T) then
5454 Set_Is_Interface (Id);
5455 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5456 end if;
5457 end if;
5458
5459 when Private_Kind =>
5460 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5461 Set_Has_Discriminants (Id, Has_Discriminants (T));
5462 Set_Is_Constrained (Id, Is_Constrained (T));
5463 Set_First_Entity (Id, First_Entity (T));
5464 Set_Last_Entity (Id, Last_Entity (T));
5465 Set_Private_Dependents (Id, New_Elmt_List);
5466 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5467 Set_Has_Implicit_Dereference
5468 (Id, Has_Implicit_Dereference (T));
5469 Set_Has_Unknown_Discriminants
5470 (Id, Has_Unknown_Discriminants (T));
5471 Set_Known_To_Have_Preelab_Init
5472 (Id, Known_To_Have_Preelab_Init (T));
5473
5474 if Is_Tagged_Type (T) then
5475 Set_Is_Tagged_Type (Id);
5476 Set_No_Tagged_Streams_Pragma (Id,
5477 No_Tagged_Streams_Pragma (T));
5478 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5479 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5480 Set_Direct_Primitive_Operations (Id,
5481 Direct_Primitive_Operations (T));
5482 end if;
5483
5484 -- In general the attributes of the subtype of a private type
5485 -- are the attributes of the partial view of parent. However,
5486 -- the full view may be a discriminated type, and the subtype
5487 -- must share the discriminant constraint to generate correct
5488 -- calls to initialization procedures.
5489
5490 if Has_Discriminants (T) then
5491 Set_Discriminant_Constraint
5492 (Id, Discriminant_Constraint (T));
5493 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5494
5495 elsif Present (Full_View (T))
5496 and then Has_Discriminants (Full_View (T))
5497 then
5498 Set_Discriminant_Constraint
5499 (Id, Discriminant_Constraint (Full_View (T)));
5500 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5501
5502 -- This would seem semantically correct, but apparently
5503 -- generates spurious errors about missing components ???
5504
5505 -- Set_Has_Discriminants (Id);
5506 end if;
5507
5508 Prepare_Private_Subtype_Completion (Id, N);
5509
5510 -- If this is the subtype of a constrained private type with
5511 -- discriminants that has got a full view and we also have
5512 -- built a completion just above, show that the completion
5513 -- is a clone of the full view to the back-end.
5514
5515 if Has_Discriminants (T)
5516 and then not Has_Unknown_Discriminants (T)
5517 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5518 and then Present (Full_View (T))
5519 and then Present (Full_View (Id))
5520 then
5521 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5522 end if;
5523
5524 when Access_Kind =>
5525 Set_Ekind (Id, E_Access_Subtype);
5526 Set_Is_Constrained (Id, Is_Constrained (T));
5527 Set_Is_Access_Constant
5528 (Id, Is_Access_Constant (T));
5529 Set_Directly_Designated_Type
5530 (Id, Designated_Type (T));
5531 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5532
5533 -- A Pure library_item must not contain the declaration of a
5534 -- named access type, except within a subprogram, generic
5535 -- subprogram, task unit, or protected unit, or if it has
5536 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5537
5538 if Comes_From_Source (Id)
5539 and then In_Pure_Unit
5540 and then not In_Subprogram_Task_Protected_Unit
5541 and then not No_Pool_Assigned (Id)
5542 then
5543 Error_Msg_N
5544 ("named access types not allowed in pure unit", N);
5545 end if;
5546
5547 when Concurrent_Kind =>
5548 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5549 Set_Corresponding_Record_Type (Id,
5550 Corresponding_Record_Type (T));
5551 Set_First_Entity (Id, First_Entity (T));
5552 Set_First_Private_Entity (Id, First_Private_Entity (T));
5553 Set_Has_Discriminants (Id, Has_Discriminants (T));
5554 Set_Is_Constrained (Id, Is_Constrained (T));
5555 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5556 Set_Last_Entity (Id, Last_Entity (T));
5557
5558 if Is_Tagged_Type (T) then
5559 Set_No_Tagged_Streams_Pragma
5560 (Id, No_Tagged_Streams_Pragma (T));
5561 end if;
5562
5563 if Has_Discriminants (T) then
5564 Set_Discriminant_Constraint
5565 (Id, Discriminant_Constraint (T));
5566 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5567 end if;
5568
5569 when Incomplete_Kind =>
5570 if Ada_Version >= Ada_2005 then
5571
5572 -- In Ada 2005 an incomplete type can be explicitly tagged:
5573 -- propagate indication. Note that we also have to include
5574 -- subtypes for Ada 2012 extended use of incomplete types.
5575
5576 Set_Ekind (Id, E_Incomplete_Subtype);
5577 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5578 Set_Private_Dependents (Id, New_Elmt_List);
5579
5580 if Is_Tagged_Type (Id) then
5581 Set_No_Tagged_Streams_Pragma
5582 (Id, No_Tagged_Streams_Pragma (T));
5583 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5584 end if;
5585
5586 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5587 -- incomplete type visible through a limited with clause.
5588
5589 if From_Limited_With (T)
5590 and then Present (Non_Limited_View (T))
5591 then
5592 Set_From_Limited_With (Id);
5593 Set_Non_Limited_View (Id, Non_Limited_View (T));
5594
5595 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5596 -- to the private dependents of the original incomplete
5597 -- type for future transformation.
5598
5599 else
5600 Append_Elmt (Id, Private_Dependents (T));
5601 end if;
5602
5603 -- If the subtype name denotes an incomplete type an error
5604 -- was already reported by Process_Subtype.
5605
5606 else
5607 Set_Etype (Id, Any_Type);
5608 end if;
5609
5610 when others =>
5611 raise Program_Error;
5612 end case;
5613 end if;
5614
5615 if Etype (Id) = Any_Type then
5616 goto Leave;
5617 end if;
5618
5619 -- Some common processing on all types
5620
5621 Set_Size_Info (Id, T);
5622 Set_First_Rep_Item (Id, First_Rep_Item (T));
5623
5624 -- If the parent type is a generic actual, so is the subtype. This may
5625 -- happen in a nested instance. Why Comes_From_Source test???
5626
5627 if not Comes_From_Source (N) then
5628 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5629 end if;
5630
5631 -- If this is a subtype declaration for an actual in an instance,
5632 -- inherit static and dynamic predicates if any.
5633
5634 -- If declaration has no aspect specifications, inherit predicate
5635 -- info as well. Unclear how to handle the case of both specified
5636 -- and inherited predicates ??? Other inherited aspects, such as
5637 -- invariants, should be OK, but the combination with later pragmas
5638 -- may also require special merging.
5639
5640 if Has_Predicates (T)
5641 and then Present (Predicate_Function (T))
5642 and then
5643 ((In_Instance and then not Comes_From_Source (N))
5644 or else No (Aspect_Specifications (N)))
5645 then
5646 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5647
5648 if Has_Static_Predicate (T) then
5649 Set_Has_Static_Predicate (Id);
5650 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5651 end if;
5652 end if;
5653
5654 -- Remaining processing depends on characteristics of base type
5655
5656 T := Etype (Id);
5657
5658 Set_Is_Immediately_Visible (Id, True);
5659 Set_Depends_On_Private (Id, Has_Private_Component (T));
5660 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5661
5662 if Is_Interface (T) then
5663 Set_Is_Interface (Id);
5664 end if;
5665
5666 if Present (Generic_Parent_Type (N))
5667 and then
5668 (Nkind (Parent (Generic_Parent_Type (N))) /=
5669 N_Formal_Type_Declaration
5670 or else Nkind (Formal_Type_Definition
5671 (Parent (Generic_Parent_Type (N)))) /=
5672 N_Formal_Private_Type_Definition)
5673 then
5674 if Is_Tagged_Type (Id) then
5675
5676 -- If this is a generic actual subtype for a synchronized type,
5677 -- the primitive operations are those of the corresponding record
5678 -- for which there is a separate subtype declaration.
5679
5680 if Is_Concurrent_Type (Id) then
5681 null;
5682 elsif Is_Class_Wide_Type (Id) then
5683 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5684 else
5685 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5686 end if;
5687
5688 elsif Scope (Etype (Id)) /= Standard_Standard then
5689 Derive_Subprograms (Generic_Parent_Type (N), Id);
5690 end if;
5691 end if;
5692
5693 if Is_Private_Type (T) and then Present (Full_View (T)) then
5694 Conditional_Delay (Id, Full_View (T));
5695
5696 -- The subtypes of components or subcomponents of protected types
5697 -- do not need freeze nodes, which would otherwise appear in the
5698 -- wrong scope (before the freeze node for the protected type). The
5699 -- proper subtypes are those of the subcomponents of the corresponding
5700 -- record.
5701
5702 elsif Ekind (Scope (Id)) /= E_Protected_Type
5703 and then Present (Scope (Scope (Id))) -- error defense
5704 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5705 then
5706 Conditional_Delay (Id, T);
5707 end if;
5708
5709 -- Check that Constraint_Error is raised for a scalar subtype indication
5710 -- when the lower or upper bound of a non-null range lies outside the
5711 -- range of the type mark.
5712
5713 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5714 if Is_Scalar_Type (Etype (Id))
5715 and then Scalar_Range (Id) /=
5716 Scalar_Range
5717 (Etype (Subtype_Mark (Subtype_Indication (N))))
5718 then
5719 Apply_Range_Check
5720 (Scalar_Range (Id),
5721 Etype (Subtype_Mark (Subtype_Indication (N))));
5722
5723 -- In the array case, check compatibility for each index
5724
5725 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5726 then
5727 -- This really should be a subprogram that finds the indications
5728 -- to check???
5729
5730 declare
5731 Subt_Index : Node_Id := First_Index (Id);
5732 Target_Index : Node_Id :=
5733 First_Index (Etype
5734 (Subtype_Mark (Subtype_Indication (N))));
5735 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5736
5737 begin
5738 while Present (Subt_Index) loop
5739 if ((Nkind (Subt_Index) = N_Identifier
5740 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5741 or else Nkind (Subt_Index) = N_Subtype_Indication)
5742 and then
5743 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5744 then
5745 declare
5746 Target_Typ : constant Entity_Id :=
5747 Etype (Target_Index);
5748 begin
5749 R_Checks :=
5750 Get_Range_Checks
5751 (Scalar_Range (Etype (Subt_Index)),
5752 Target_Typ,
5753 Etype (Subt_Index),
5754 Defining_Identifier (N));
5755
5756 -- Reset Has_Dynamic_Range_Check on the subtype to
5757 -- prevent elision of the index check due to a dynamic
5758 -- check generated for a preceding index (needed since
5759 -- Insert_Range_Checks tries to avoid generating
5760 -- redundant checks on a given declaration).
5761
5762 Set_Has_Dynamic_Range_Check (N, False);
5763
5764 Insert_Range_Checks
5765 (R_Checks,
5766 N,
5767 Target_Typ,
5768 Sloc (Defining_Identifier (N)));
5769
5770 -- Record whether this index involved a dynamic check
5771
5772 Has_Dyn_Chk :=
5773 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5774 end;
5775 end if;
5776
5777 Next_Index (Subt_Index);
5778 Next_Index (Target_Index);
5779 end loop;
5780
5781 -- Finally, mark whether the subtype involves dynamic checks
5782
5783 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5784 end;
5785 end if;
5786 end if;
5787
5788 Set_Optimize_Alignment_Flags (Id);
5789 Check_Eliminated (Id);
5790
5791 <<Leave>>
5792 if Has_Aspects (N) then
5793 Analyze_Aspect_Specifications (N, Id);
5794 end if;
5795
5796 Analyze_Dimension (N);
5797
5798 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5799 -- indications on composite types where the constraints are dynamic.
5800 -- Note that object declarations and aggregates generate implicit
5801 -- subtype declarations, which this covers. One special case is that the
5802 -- implicitly generated "=" for discriminated types includes an
5803 -- offending subtype declaration, which is harmless, so we ignore it
5804 -- here.
5805
5806 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5807 declare
5808 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5809 begin
5810 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5811 and then not (Is_Internal (Id)
5812 and then Is_TSS (Scope (Id),
5813 TSS_Composite_Equality))
5814 and then not Within_Init_Proc
5815 and then not All_Composite_Constraints_Static (Cstr)
5816 then
5817 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5818 end if;
5819 end;
5820 end if;
5821 end Analyze_Subtype_Declaration;
5822
5823 --------------------------------
5824 -- Analyze_Subtype_Indication --
5825 --------------------------------
5826
5827 procedure Analyze_Subtype_Indication (N : Node_Id) is
5828 T : constant Entity_Id := Subtype_Mark (N);
5829 R : constant Node_Id := Range_Expression (Constraint (N));
5830
5831 begin
5832 Analyze (T);
5833
5834 if R /= Error then
5835 Analyze (R);
5836 Set_Etype (N, Etype (R));
5837 Resolve (R, Entity (T));
5838 else
5839 Set_Error_Posted (R);
5840 Set_Error_Posted (T);
5841 end if;
5842 end Analyze_Subtype_Indication;
5843
5844 --------------------------
5845 -- Analyze_Variant_Part --
5846 --------------------------
5847
5848 procedure Analyze_Variant_Part (N : Node_Id) is
5849 Discr_Name : Node_Id;
5850 Discr_Type : Entity_Id;
5851
5852 procedure Process_Variant (A : Node_Id);
5853 -- Analyze declarations for a single variant
5854
5855 package Analyze_Variant_Choices is
5856 new Generic_Analyze_Choices (Process_Variant);
5857 use Analyze_Variant_Choices;
5858
5859 ---------------------
5860 -- Process_Variant --
5861 ---------------------
5862
5863 procedure Process_Variant (A : Node_Id) is
5864 CL : constant Node_Id := Component_List (A);
5865 begin
5866 if not Null_Present (CL) then
5867 Analyze_Declarations (Component_Items (CL));
5868
5869 if Present (Variant_Part (CL)) then
5870 Analyze (Variant_Part (CL));
5871 end if;
5872 end if;
5873 end Process_Variant;
5874
5875 -- Start of processing for Analyze_Variant_Part
5876
5877 begin
5878 Discr_Name := Name (N);
5879 Analyze (Discr_Name);
5880
5881 -- If Discr_Name bad, get out (prevent cascaded errors)
5882
5883 if Etype (Discr_Name) = Any_Type then
5884 return;
5885 end if;
5886
5887 -- Check invalid discriminant in variant part
5888
5889 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5890 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5891 end if;
5892
5893 Discr_Type := Etype (Entity (Discr_Name));
5894
5895 if not Is_Discrete_Type (Discr_Type) then
5896 Error_Msg_N
5897 ("discriminant in a variant part must be of a discrete type",
5898 Name (N));
5899 return;
5900 end if;
5901
5902 -- Now analyze the choices, which also analyzes the declarations that
5903 -- are associated with each choice.
5904
5905 Analyze_Choices (Variants (N), Discr_Type);
5906
5907 -- Note: we used to instantiate and call Check_Choices here to check
5908 -- that the choices covered the discriminant, but it's too early to do
5909 -- that because of statically predicated subtypes, whose analysis may
5910 -- be deferred to their freeze point which may be as late as the freeze
5911 -- point of the containing record. So this call is now to be found in
5912 -- Freeze_Record_Declaration.
5913
5914 end Analyze_Variant_Part;
5915
5916 ----------------------------
5917 -- Array_Type_Declaration --
5918 ----------------------------
5919
5920 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5921 Component_Def : constant Node_Id := Component_Definition (Def);
5922 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5923 P : constant Node_Id := Parent (Def);
5924 Element_Type : Entity_Id;
5925 Implicit_Base : Entity_Id;
5926 Index : Node_Id;
5927 Nb_Index : Nat;
5928 Priv : Entity_Id;
5929 Related_Id : Entity_Id := Empty;
5930
5931 begin
5932 if Nkind (Def) = N_Constrained_Array_Definition then
5933 Index := First (Discrete_Subtype_Definitions (Def));
5934 else
5935 Index := First (Subtype_Marks (Def));
5936 end if;
5937
5938 -- Find proper names for the implicit types which may be public. In case
5939 -- of anonymous arrays we use the name of the first object of that type
5940 -- as prefix.
5941
5942 if No (T) then
5943 Related_Id := Defining_Identifier (P);
5944 else
5945 Related_Id := T;
5946 end if;
5947
5948 Nb_Index := 1;
5949 while Present (Index) loop
5950 Analyze (Index);
5951
5952 -- Test for odd case of trying to index a type by the type itself
5953
5954 if Is_Entity_Name (Index) and then Entity (Index) = T then
5955 Error_Msg_N ("type& cannot be indexed by itself", Index);
5956 Set_Entity (Index, Standard_Boolean);
5957 Set_Etype (Index, Standard_Boolean);
5958 end if;
5959
5960 -- Check SPARK restriction requiring a subtype mark
5961
5962 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5963 Check_SPARK_05_Restriction ("subtype mark required", Index);
5964 end if;
5965
5966 -- Add a subtype declaration for each index of private array type
5967 -- declaration whose etype is also private. For example:
5968
5969 -- package Pkg is
5970 -- type Index is private;
5971 -- private
5972 -- type Table is array (Index) of ...
5973 -- end;
5974
5975 -- This is currently required by the expander for the internally
5976 -- generated equality subprogram of records with variant parts in
5977 -- which the etype of some component is such private type.
5978
5979 if Ekind (Current_Scope) = E_Package
5980 and then In_Private_Part (Current_Scope)
5981 and then Has_Private_Declaration (Etype (Index))
5982 then
5983 declare
5984 Loc : constant Source_Ptr := Sloc (Def);
5985 Decl : Entity_Id;
5986 New_E : Entity_Id;
5987
5988 begin
5989 New_E := Make_Temporary (Loc, 'T');
5990 Set_Is_Internal (New_E);
5991
5992 Decl :=
5993 Make_Subtype_Declaration (Loc,
5994 Defining_Identifier => New_E,
5995 Subtype_Indication =>
5996 New_Occurrence_Of (Etype (Index), Loc));
5997
5998 Insert_Before (Parent (Def), Decl);
5999 Analyze (Decl);
6000 Set_Etype (Index, New_E);
6001
6002 -- If the index is a range the Entity attribute is not
6003 -- available. Example:
6004
6005 -- package Pkg is
6006 -- type T is private;
6007 -- private
6008 -- type T is new Natural;
6009 -- Table : array (T(1) .. T(10)) of Boolean;
6010 -- end Pkg;
6011
6012 if Nkind (Index) /= N_Range then
6013 Set_Entity (Index, New_E);
6014 end if;
6015 end;
6016 end if;
6017
6018 Make_Index (Index, P, Related_Id, Nb_Index);
6019
6020 -- Check error of subtype with predicate for index type
6021
6022 Bad_Predicated_Subtype_Use
6023 ("subtype& has predicate, not allowed as index subtype",
6024 Index, Etype (Index));
6025
6026 -- Move to next index
6027
6028 Next_Index (Index);
6029 Nb_Index := Nb_Index + 1;
6030 end loop;
6031
6032 -- Process subtype indication if one is present
6033
6034 if Present (Component_Typ) then
6035 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6036
6037 Set_Etype (Component_Typ, Element_Type);
6038
6039 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6040 Check_SPARK_05_Restriction
6041 ("subtype mark required", Component_Typ);
6042 end if;
6043
6044 -- Ada 2005 (AI-230): Access Definition case
6045
6046 else pragma Assert (Present (Access_Definition (Component_Def)));
6047
6048 -- Indicate that the anonymous access type is created by the
6049 -- array type declaration.
6050
6051 Element_Type := Access_Definition
6052 (Related_Nod => P,
6053 N => Access_Definition (Component_Def));
6054 Set_Is_Local_Anonymous_Access (Element_Type);
6055
6056 -- Propagate the parent. This field is needed if we have to generate
6057 -- the master_id associated with an anonymous access to task type
6058 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6059
6060 Set_Parent (Element_Type, Parent (T));
6061
6062 -- Ada 2005 (AI-230): In case of components that are anonymous access
6063 -- types the level of accessibility depends on the enclosing type
6064 -- declaration
6065
6066 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6067
6068 -- Ada 2005 (AI-254)
6069
6070 declare
6071 CD : constant Node_Id :=
6072 Access_To_Subprogram_Definition
6073 (Access_Definition (Component_Def));
6074 begin
6075 if Present (CD) and then Protected_Present (CD) then
6076 Element_Type :=
6077 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6078 end if;
6079 end;
6080 end if;
6081
6082 -- Constrained array case
6083
6084 if No (T) then
6085 T := Create_Itype (E_Void, P, Related_Id, 'T');
6086 end if;
6087
6088 if Nkind (Def) = N_Constrained_Array_Definition then
6089
6090 -- Establish Implicit_Base as unconstrained base type
6091
6092 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6093
6094 Set_Etype (Implicit_Base, Implicit_Base);
6095 Set_Scope (Implicit_Base, Current_Scope);
6096 Set_Has_Delayed_Freeze (Implicit_Base);
6097 Set_Default_SSO (Implicit_Base);
6098
6099 -- The constrained array type is a subtype of the unconstrained one
6100
6101 Set_Ekind (T, E_Array_Subtype);
6102 Init_Size_Align (T);
6103 Set_Etype (T, Implicit_Base);
6104 Set_Scope (T, Current_Scope);
6105 Set_Is_Constrained (T);
6106 Set_First_Index (T,
6107 First (Discrete_Subtype_Definitions (Def)));
6108 Set_Has_Delayed_Freeze (T);
6109
6110 -- Complete setup of implicit base type
6111
6112 Set_Component_Size (Implicit_Base, Uint_0);
6113 Set_Component_Type (Implicit_Base, Element_Type);
6114 Set_Finalize_Storage_Only
6115 (Implicit_Base,
6116 Finalize_Storage_Only (Element_Type));
6117 Set_First_Index (Implicit_Base, First_Index (T));
6118 Set_Has_Controlled_Component
6119 (Implicit_Base,
6120 Has_Controlled_Component (Element_Type)
6121 or else Is_Controlled_Active (Element_Type));
6122 Set_Packed_Array_Impl_Type
6123 (Implicit_Base, Empty);
6124
6125 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6126
6127 -- Unconstrained array case
6128
6129 else
6130 Set_Ekind (T, E_Array_Type);
6131 Init_Size_Align (T);
6132 Set_Etype (T, T);
6133 Set_Scope (T, Current_Scope);
6134 Set_Component_Size (T, Uint_0);
6135 Set_Is_Constrained (T, False);
6136 Set_First_Index (T, First (Subtype_Marks (Def)));
6137 Set_Has_Delayed_Freeze (T, True);
6138 Propagate_Concurrent_Flags (T, Element_Type);
6139 Set_Has_Controlled_Component (T, Has_Controlled_Component
6140 (Element_Type)
6141 or else
6142 Is_Controlled_Active (Element_Type));
6143 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6144 (Element_Type));
6145 Set_Default_SSO (T);
6146 end if;
6147
6148 -- Common attributes for both cases
6149
6150 Set_Component_Type (Base_Type (T), Element_Type);
6151 Set_Packed_Array_Impl_Type (T, Empty);
6152
6153 if Aliased_Present (Component_Definition (Def)) then
6154 Check_SPARK_05_Restriction
6155 ("aliased is not allowed", Component_Definition (Def));
6156 Set_Has_Aliased_Components (Etype (T));
6157 end if;
6158
6159 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6160 -- array type to ensure that objects of this type are initialized.
6161
6162 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6163 Set_Can_Never_Be_Null (T);
6164
6165 if Null_Exclusion_Present (Component_Definition (Def))
6166
6167 -- No need to check itypes because in their case this check was
6168 -- done at their point of creation
6169
6170 and then not Is_Itype (Element_Type)
6171 then
6172 Error_Msg_N
6173 ("`NOT NULL` not allowed (null already excluded)",
6174 Subtype_Indication (Component_Definition (Def)));
6175 end if;
6176 end if;
6177
6178 Priv := Private_Component (Element_Type);
6179
6180 if Present (Priv) then
6181
6182 -- Check for circular definitions
6183
6184 if Priv = Any_Type then
6185 Set_Component_Type (Etype (T), Any_Type);
6186
6187 -- There is a gap in the visibility of operations on the composite
6188 -- type only if the component type is defined in a different scope.
6189
6190 elsif Scope (Priv) = Current_Scope then
6191 null;
6192
6193 elsif Is_Limited_Type (Priv) then
6194 Set_Is_Limited_Composite (Etype (T));
6195 Set_Is_Limited_Composite (T);
6196 else
6197 Set_Is_Private_Composite (Etype (T));
6198 Set_Is_Private_Composite (T);
6199 end if;
6200 end if;
6201
6202 -- A syntax error in the declaration itself may lead to an empty index
6203 -- list, in which case do a minimal patch.
6204
6205 if No (First_Index (T)) then
6206 Error_Msg_N ("missing index definition in array type declaration", T);
6207
6208 declare
6209 Indexes : constant List_Id :=
6210 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6211 begin
6212 Set_Discrete_Subtype_Definitions (Def, Indexes);
6213 Set_First_Index (T, First (Indexes));
6214 return;
6215 end;
6216 end if;
6217
6218 -- Create a concatenation operator for the new type. Internal array
6219 -- types created for packed entities do not need such, they are
6220 -- compatible with the user-defined type.
6221
6222 if Number_Dimensions (T) = 1
6223 and then not Is_Packed_Array_Impl_Type (T)
6224 then
6225 New_Concatenation_Op (T);
6226 end if;
6227
6228 -- In the case of an unconstrained array the parser has already verified
6229 -- that all the indexes are unconstrained but we still need to make sure
6230 -- that the element type is constrained.
6231
6232 if not Is_Definite_Subtype (Element_Type) then
6233 Error_Msg_N
6234 ("unconstrained element type in array declaration",
6235 Subtype_Indication (Component_Def));
6236
6237 elsif Is_Abstract_Type (Element_Type) then
6238 Error_Msg_N
6239 ("the type of a component cannot be abstract",
6240 Subtype_Indication (Component_Def));
6241 end if;
6242
6243 -- There may be an invariant declared for the component type, but
6244 -- the construction of the component invariant checking procedure
6245 -- takes place during expansion.
6246 end Array_Type_Declaration;
6247
6248 ------------------------------------------------------
6249 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6250 ------------------------------------------------------
6251
6252 function Replace_Anonymous_Access_To_Protected_Subprogram
6253 (N : Node_Id) return Entity_Id
6254 is
6255 Loc : constant Source_Ptr := Sloc (N);
6256
6257 Curr_Scope : constant Scope_Stack_Entry :=
6258 Scope_Stack.Table (Scope_Stack.Last);
6259
6260 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6261
6262 Acc : Node_Id;
6263 -- Access definition in declaration
6264
6265 Comp : Node_Id;
6266 -- Object definition or formal definition with an access definition
6267
6268 Decl : Node_Id;
6269 -- Declaration of anonymous access to subprogram type
6270
6271 Spec : Node_Id;
6272 -- Original specification in access to subprogram
6273
6274 P : Node_Id;
6275
6276 begin
6277 Set_Is_Internal (Anon);
6278
6279 case Nkind (N) is
6280 when N_Constrained_Array_Definition
6281 | N_Component_Declaration
6282 | N_Unconstrained_Array_Definition
6283 =>
6284 Comp := Component_Definition (N);
6285 Acc := Access_Definition (Comp);
6286
6287 when N_Discriminant_Specification =>
6288 Comp := Discriminant_Type (N);
6289 Acc := Comp;
6290
6291 when N_Parameter_Specification =>
6292 Comp := Parameter_Type (N);
6293 Acc := Comp;
6294
6295 when N_Access_Function_Definition =>
6296 Comp := Result_Definition (N);
6297 Acc := Comp;
6298
6299 when N_Object_Declaration =>
6300 Comp := Object_Definition (N);
6301 Acc := Comp;
6302
6303 when N_Function_Specification =>
6304 Comp := Result_Definition (N);
6305 Acc := Comp;
6306
6307 when others =>
6308 raise Program_Error;
6309 end case;
6310
6311 Spec := Access_To_Subprogram_Definition (Acc);
6312
6313 Decl :=
6314 Make_Full_Type_Declaration (Loc,
6315 Defining_Identifier => Anon,
6316 Type_Definition => Copy_Separate_Tree (Spec));
6317
6318 Mark_Rewrite_Insertion (Decl);
6319
6320 -- In ASIS mode, analyze the profile on the original node, because
6321 -- the separate copy does not provide enough links to recover the
6322 -- original tree. Analysis is limited to type annotations, within
6323 -- a temporary scope that serves as an anonymous subprogram to collect
6324 -- otherwise useless temporaries and itypes.
6325
6326 if ASIS_Mode then
6327 declare
6328 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6329
6330 begin
6331 if Nkind (Spec) = N_Access_Function_Definition then
6332 Set_Ekind (Typ, E_Function);
6333 else
6334 Set_Ekind (Typ, E_Procedure);
6335 end if;
6336
6337 Set_Parent (Typ, N);
6338 Set_Scope (Typ, Current_Scope);
6339 Push_Scope (Typ);
6340
6341 -- Nothing to do if procedure is parameterless
6342
6343 if Present (Parameter_Specifications (Spec)) then
6344 Process_Formals (Parameter_Specifications (Spec), Spec);
6345 end if;
6346
6347 if Nkind (Spec) = N_Access_Function_Definition then
6348 declare
6349 Def : constant Node_Id := Result_Definition (Spec);
6350
6351 begin
6352 -- The result might itself be an anonymous access type, so
6353 -- have to recurse.
6354
6355 if Nkind (Def) = N_Access_Definition then
6356 if Present (Access_To_Subprogram_Definition (Def)) then
6357 Set_Etype
6358 (Def,
6359 Replace_Anonymous_Access_To_Protected_Subprogram
6360 (Spec));
6361 else
6362 Find_Type (Subtype_Mark (Def));
6363 end if;
6364
6365 else
6366 Find_Type (Def);
6367 end if;
6368 end;
6369 end if;
6370
6371 End_Scope;
6372 end;
6373 end if;
6374
6375 -- Insert the new declaration in the nearest enclosing scope. If the
6376 -- parent is a body and N is its return type, the declaration belongs
6377 -- in the enclosing scope. Likewise if N is the type of a parameter.
6378
6379 P := Parent (N);
6380
6381 if Nkind (N) = N_Function_Specification
6382 and then Nkind (P) = N_Subprogram_Body
6383 then
6384 P := Parent (P);
6385 elsif Nkind (N) = N_Parameter_Specification
6386 and then Nkind (P) in N_Subprogram_Specification
6387 and then Nkind (Parent (P)) = N_Subprogram_Body
6388 then
6389 P := Parent (Parent (P));
6390 end if;
6391
6392 while Present (P) and then not Has_Declarations (P) loop
6393 P := Parent (P);
6394 end loop;
6395
6396 pragma Assert (Present (P));
6397
6398 if Nkind (P) = N_Package_Specification then
6399 Prepend (Decl, Visible_Declarations (P));
6400 else
6401 Prepend (Decl, Declarations (P));
6402 end if;
6403
6404 -- Replace the anonymous type with an occurrence of the new declaration.
6405 -- In all cases the rewritten node does not have the null-exclusion
6406 -- attribute because (if present) it was already inherited by the
6407 -- anonymous entity (Anon). Thus, in case of components we do not
6408 -- inherit this attribute.
6409
6410 if Nkind (N) = N_Parameter_Specification then
6411 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6412 Set_Etype (Defining_Identifier (N), Anon);
6413 Set_Null_Exclusion_Present (N, False);
6414
6415 elsif Nkind (N) = N_Object_Declaration then
6416 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6417 Set_Etype (Defining_Identifier (N), Anon);
6418
6419 elsif Nkind (N) = N_Access_Function_Definition then
6420 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6421
6422 elsif Nkind (N) = N_Function_Specification then
6423 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6424 Set_Etype (Defining_Unit_Name (N), Anon);
6425
6426 else
6427 Rewrite (Comp,
6428 Make_Component_Definition (Loc,
6429 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6430 end if;
6431
6432 Mark_Rewrite_Insertion (Comp);
6433
6434 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6435 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6436 and then not Is_Type (Current_Scope))
6437 then
6438
6439 -- Declaration can be analyzed in the current scope.
6440
6441 Analyze (Decl);
6442
6443 else
6444 -- Temporarily remove the current scope (record or subprogram) from
6445 -- the stack to add the new declarations to the enclosing scope.
6446 -- The anonymous entity is an Itype with the proper attributes.
6447
6448 Scope_Stack.Decrement_Last;
6449 Analyze (Decl);
6450 Set_Is_Itype (Anon);
6451 Set_Associated_Node_For_Itype (Anon, N);
6452 Scope_Stack.Append (Curr_Scope);
6453 end if;
6454
6455 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6456 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6457 return Anon;
6458 end Replace_Anonymous_Access_To_Protected_Subprogram;
6459
6460 -------------------------------
6461 -- Build_Derived_Access_Type --
6462 -------------------------------
6463
6464 procedure Build_Derived_Access_Type
6465 (N : Node_Id;
6466 Parent_Type : Entity_Id;
6467 Derived_Type : Entity_Id)
6468 is
6469 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6470
6471 Desig_Type : Entity_Id;
6472 Discr : Entity_Id;
6473 Discr_Con_Elist : Elist_Id;
6474 Discr_Con_El : Elmt_Id;
6475 Subt : Entity_Id;
6476
6477 begin
6478 -- Set the designated type so it is available in case this is an access
6479 -- to a self-referential type, e.g. a standard list type with a next
6480 -- pointer. Will be reset after subtype is built.
6481
6482 Set_Directly_Designated_Type
6483 (Derived_Type, Designated_Type (Parent_Type));
6484
6485 Subt := Process_Subtype (S, N);
6486
6487 if Nkind (S) /= N_Subtype_Indication
6488 and then Subt /= Base_Type (Subt)
6489 then
6490 Set_Ekind (Derived_Type, E_Access_Subtype);
6491 end if;
6492
6493 if Ekind (Derived_Type) = E_Access_Subtype then
6494 declare
6495 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6496 Ibase : constant Entity_Id :=
6497 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6498 Svg_Chars : constant Name_Id := Chars (Ibase);
6499 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6500
6501 begin
6502 Copy_Node (Pbase, Ibase);
6503
6504 -- Restore Itype status after Copy_Node
6505
6506 Set_Is_Itype (Ibase);
6507 Set_Associated_Node_For_Itype (Ibase, N);
6508
6509 Set_Chars (Ibase, Svg_Chars);
6510 Set_Next_Entity (Ibase, Svg_Next_E);
6511 Set_Sloc (Ibase, Sloc (Derived_Type));
6512 Set_Scope (Ibase, Scope (Derived_Type));
6513 Set_Freeze_Node (Ibase, Empty);
6514 Set_Is_Frozen (Ibase, False);
6515 Set_Comes_From_Source (Ibase, False);
6516 Set_Is_First_Subtype (Ibase, False);
6517
6518 Set_Etype (Ibase, Pbase);
6519 Set_Etype (Derived_Type, Ibase);
6520 end;
6521 end if;
6522
6523 Set_Directly_Designated_Type
6524 (Derived_Type, Designated_Type (Subt));
6525
6526 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6527 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6528 Set_Size_Info (Derived_Type, Parent_Type);
6529 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6530 Set_Depends_On_Private (Derived_Type,
6531 Has_Private_Component (Derived_Type));
6532 Conditional_Delay (Derived_Type, Subt);
6533
6534 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6535 -- that it is not redundant.
6536
6537 if Null_Exclusion_Present (Type_Definition (N)) then
6538 Set_Can_Never_Be_Null (Derived_Type);
6539
6540 elsif Can_Never_Be_Null (Parent_Type) then
6541 Set_Can_Never_Be_Null (Derived_Type);
6542 end if;
6543
6544 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6545 -- the root type for this information.
6546
6547 -- Apply range checks to discriminants for derived record case
6548 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6549
6550 Desig_Type := Designated_Type (Derived_Type);
6551
6552 if Is_Composite_Type (Desig_Type)
6553 and then (not Is_Array_Type (Desig_Type))
6554 and then Has_Discriminants (Desig_Type)
6555 and then Base_Type (Desig_Type) /= Desig_Type
6556 then
6557 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6558 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6559
6560 Discr := First_Discriminant (Base_Type (Desig_Type));
6561 while Present (Discr_Con_El) loop
6562 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6563 Next_Elmt (Discr_Con_El);
6564 Next_Discriminant (Discr);
6565 end loop;
6566 end if;
6567 end Build_Derived_Access_Type;
6568
6569 ------------------------------
6570 -- Build_Derived_Array_Type --
6571 ------------------------------
6572
6573 procedure Build_Derived_Array_Type
6574 (N : Node_Id;
6575 Parent_Type : Entity_Id;
6576 Derived_Type : Entity_Id)
6577 is
6578 Loc : constant Source_Ptr := Sloc (N);
6579 Tdef : constant Node_Id := Type_Definition (N);
6580 Indic : constant Node_Id := Subtype_Indication (Tdef);
6581 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6582 Implicit_Base : Entity_Id;
6583 New_Indic : Node_Id;
6584
6585 procedure Make_Implicit_Base;
6586 -- If the parent subtype is constrained, the derived type is a subtype
6587 -- of an implicit base type derived from the parent base.
6588
6589 ------------------------
6590 -- Make_Implicit_Base --
6591 ------------------------
6592
6593 procedure Make_Implicit_Base is
6594 begin
6595 Implicit_Base :=
6596 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6597
6598 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6599 Set_Etype (Implicit_Base, Parent_Base);
6600
6601 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6602 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6603
6604 Set_Has_Delayed_Freeze (Implicit_Base, True);
6605 end Make_Implicit_Base;
6606
6607 -- Start of processing for Build_Derived_Array_Type
6608
6609 begin
6610 if not Is_Constrained (Parent_Type) then
6611 if Nkind (Indic) /= N_Subtype_Indication then
6612 Set_Ekind (Derived_Type, E_Array_Type);
6613
6614 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6615 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6616
6617 Set_Has_Delayed_Freeze (Derived_Type, True);
6618
6619 else
6620 Make_Implicit_Base;
6621 Set_Etype (Derived_Type, Implicit_Base);
6622
6623 New_Indic :=
6624 Make_Subtype_Declaration (Loc,
6625 Defining_Identifier => Derived_Type,
6626 Subtype_Indication =>
6627 Make_Subtype_Indication (Loc,
6628 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6629 Constraint => Constraint (Indic)));
6630
6631 Rewrite (N, New_Indic);
6632 Analyze (N);
6633 end if;
6634
6635 else
6636 if Nkind (Indic) /= N_Subtype_Indication then
6637 Make_Implicit_Base;
6638
6639 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6640 Set_Etype (Derived_Type, Implicit_Base);
6641 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6642
6643 else
6644 Error_Msg_N ("illegal constraint on constrained type", Indic);
6645 end if;
6646 end if;
6647
6648 -- If parent type is not a derived type itself, and is declared in
6649 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6650 -- the new type's concatenation operator since Derive_Subprograms
6651 -- will not inherit the parent's operator. If the parent type is
6652 -- unconstrained, the operator is of the unconstrained base type.
6653
6654 if Number_Dimensions (Parent_Type) = 1
6655 and then not Is_Limited_Type (Parent_Type)
6656 and then not Is_Derived_Type (Parent_Type)
6657 and then not Is_Package_Or_Generic_Package
6658 (Scope (Base_Type (Parent_Type)))
6659 then
6660 if not Is_Constrained (Parent_Type)
6661 and then Is_Constrained (Derived_Type)
6662 then
6663 New_Concatenation_Op (Implicit_Base);
6664 else
6665 New_Concatenation_Op (Derived_Type);
6666 end if;
6667 end if;
6668 end Build_Derived_Array_Type;
6669
6670 -----------------------------------
6671 -- Build_Derived_Concurrent_Type --
6672 -----------------------------------
6673
6674 procedure Build_Derived_Concurrent_Type
6675 (N : Node_Id;
6676 Parent_Type : Entity_Id;
6677 Derived_Type : Entity_Id)
6678 is
6679 Loc : constant Source_Ptr := Sloc (N);
6680
6681 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6682 Corr_Decl : Node_Id;
6683 Corr_Decl_Needed : Boolean;
6684 -- If the derived type has fewer discriminants than its parent, the
6685 -- corresponding record is also a derived type, in order to account for
6686 -- the bound discriminants. We create a full type declaration for it in
6687 -- this case.
6688
6689 Constraint_Present : constant Boolean :=
6690 Nkind (Subtype_Indication (Type_Definition (N))) =
6691 N_Subtype_Indication;
6692
6693 D_Constraint : Node_Id;
6694 New_Constraint : Elist_Id;
6695 Old_Disc : Entity_Id;
6696 New_Disc : Entity_Id;
6697 New_N : Node_Id;
6698
6699 begin
6700 Set_Stored_Constraint (Derived_Type, No_Elist);
6701 Corr_Decl_Needed := False;
6702 Old_Disc := Empty;
6703
6704 if Present (Discriminant_Specifications (N))
6705 and then Constraint_Present
6706 then
6707 Old_Disc := First_Discriminant (Parent_Type);
6708 New_Disc := First (Discriminant_Specifications (N));
6709 while Present (New_Disc) and then Present (Old_Disc) loop
6710 Next_Discriminant (Old_Disc);
6711 Next (New_Disc);
6712 end loop;
6713 end if;
6714
6715 if Present (Old_Disc) and then Expander_Active then
6716
6717 -- The new type has fewer discriminants, so we need to create a new
6718 -- corresponding record, which is derived from the corresponding
6719 -- record of the parent, and has a stored constraint that captures
6720 -- the values of the discriminant constraints. The corresponding
6721 -- record is needed only if expander is active and code generation is
6722 -- enabled.
6723
6724 -- The type declaration for the derived corresponding record has the
6725 -- same discriminant part and constraints as the current declaration.
6726 -- Copy the unanalyzed tree to build declaration.
6727
6728 Corr_Decl_Needed := True;
6729 New_N := Copy_Separate_Tree (N);
6730
6731 Corr_Decl :=
6732 Make_Full_Type_Declaration (Loc,
6733 Defining_Identifier => Corr_Record,
6734 Discriminant_Specifications =>
6735 Discriminant_Specifications (New_N),
6736 Type_Definition =>
6737 Make_Derived_Type_Definition (Loc,
6738 Subtype_Indication =>
6739 Make_Subtype_Indication (Loc,
6740 Subtype_Mark =>
6741 New_Occurrence_Of
6742 (Corresponding_Record_Type (Parent_Type), Loc),
6743 Constraint =>
6744 Constraint
6745 (Subtype_Indication (Type_Definition (New_N))))));
6746 end if;
6747
6748 -- Copy Storage_Size and Relative_Deadline variables if task case
6749
6750 if Is_Task_Type (Parent_Type) then
6751 Set_Storage_Size_Variable (Derived_Type,
6752 Storage_Size_Variable (Parent_Type));
6753 Set_Relative_Deadline_Variable (Derived_Type,
6754 Relative_Deadline_Variable (Parent_Type));
6755 end if;
6756
6757 if Present (Discriminant_Specifications (N)) then
6758 Push_Scope (Derived_Type);
6759 Check_Or_Process_Discriminants (N, Derived_Type);
6760
6761 if Constraint_Present then
6762 New_Constraint :=
6763 Expand_To_Stored_Constraint
6764 (Parent_Type,
6765 Build_Discriminant_Constraints
6766 (Parent_Type,
6767 Subtype_Indication (Type_Definition (N)), True));
6768 end if;
6769
6770 End_Scope;
6771
6772 elsif Constraint_Present then
6773
6774 -- Build constrained subtype, copying the constraint, and derive
6775 -- from it to create a derived constrained type.
6776
6777 declare
6778 Loc : constant Source_Ptr := Sloc (N);
6779 Anon : constant Entity_Id :=
6780 Make_Defining_Identifier (Loc,
6781 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6782 Decl : Node_Id;
6783
6784 begin
6785 Decl :=
6786 Make_Subtype_Declaration (Loc,
6787 Defining_Identifier => Anon,
6788 Subtype_Indication =>
6789 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6790 Insert_Before (N, Decl);
6791 Analyze (Decl);
6792
6793 Rewrite (Subtype_Indication (Type_Definition (N)),
6794 New_Occurrence_Of (Anon, Loc));
6795 Set_Analyzed (Derived_Type, False);
6796 Analyze (N);
6797 return;
6798 end;
6799 end if;
6800
6801 -- By default, operations and private data are inherited from parent.
6802 -- However, in the presence of bound discriminants, a new corresponding
6803 -- record will be created, see below.
6804
6805 Set_Has_Discriminants
6806 (Derived_Type, Has_Discriminants (Parent_Type));
6807 Set_Corresponding_Record_Type
6808 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6809
6810 -- Is_Constrained is set according the parent subtype, but is set to
6811 -- False if the derived type is declared with new discriminants.
6812
6813 Set_Is_Constrained
6814 (Derived_Type,
6815 (Is_Constrained (Parent_Type) or else Constraint_Present)
6816 and then not Present (Discriminant_Specifications (N)));
6817
6818 if Constraint_Present then
6819 if not Has_Discriminants (Parent_Type) then
6820 Error_Msg_N ("untagged parent must have discriminants", N);
6821
6822 elsif Present (Discriminant_Specifications (N)) then
6823
6824 -- Verify that new discriminants are used to constrain old ones
6825
6826 D_Constraint :=
6827 First
6828 (Constraints
6829 (Constraint (Subtype_Indication (Type_Definition (N)))));
6830
6831 Old_Disc := First_Discriminant (Parent_Type);
6832
6833 while Present (D_Constraint) loop
6834 if Nkind (D_Constraint) /= N_Discriminant_Association then
6835
6836 -- Positional constraint. If it is a reference to a new
6837 -- discriminant, it constrains the corresponding old one.
6838
6839 if Nkind (D_Constraint) = N_Identifier then
6840 New_Disc := First_Discriminant (Derived_Type);
6841 while Present (New_Disc) loop
6842 exit when Chars (New_Disc) = Chars (D_Constraint);
6843 Next_Discriminant (New_Disc);
6844 end loop;
6845
6846 if Present (New_Disc) then
6847 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6848 end if;
6849 end if;
6850
6851 Next_Discriminant (Old_Disc);
6852
6853 -- if this is a named constraint, search by name for the old
6854 -- discriminants constrained by the new one.
6855
6856 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6857
6858 -- Find new discriminant with that name
6859
6860 New_Disc := First_Discriminant (Derived_Type);
6861 while Present (New_Disc) loop
6862 exit when
6863 Chars (New_Disc) = Chars (Expression (D_Constraint));
6864 Next_Discriminant (New_Disc);
6865 end loop;
6866
6867 if Present (New_Disc) then
6868
6869 -- Verify that new discriminant renames some discriminant
6870 -- of the parent type, and associate the new discriminant
6871 -- with one or more old ones that it renames.
6872
6873 declare
6874 Selector : Node_Id;
6875
6876 begin
6877 Selector := First (Selector_Names (D_Constraint));
6878 while Present (Selector) loop
6879 Old_Disc := First_Discriminant (Parent_Type);
6880 while Present (Old_Disc) loop
6881 exit when Chars (Old_Disc) = Chars (Selector);
6882 Next_Discriminant (Old_Disc);
6883 end loop;
6884
6885 if Present (Old_Disc) then
6886 Set_Corresponding_Discriminant
6887 (New_Disc, Old_Disc);
6888 end if;
6889
6890 Next (Selector);
6891 end loop;
6892 end;
6893 end if;
6894 end if;
6895
6896 Next (D_Constraint);
6897 end loop;
6898
6899 New_Disc := First_Discriminant (Derived_Type);
6900 while Present (New_Disc) loop
6901 if No (Corresponding_Discriminant (New_Disc)) then
6902 Error_Msg_NE
6903 ("new discriminant& must constrain old one", N, New_Disc);
6904
6905 elsif not
6906 Subtypes_Statically_Compatible
6907 (Etype (New_Disc),
6908 Etype (Corresponding_Discriminant (New_Disc)))
6909 then
6910 Error_Msg_NE
6911 ("& not statically compatible with parent discriminant",
6912 N, New_Disc);
6913 end if;
6914
6915 Next_Discriminant (New_Disc);
6916 end loop;
6917 end if;
6918
6919 elsif Present (Discriminant_Specifications (N)) then
6920 Error_Msg_N
6921 ("missing discriminant constraint in untagged derivation", N);
6922 end if;
6923
6924 -- The entity chain of the derived type includes the new discriminants
6925 -- but shares operations with the parent.
6926
6927 if Present (Discriminant_Specifications (N)) then
6928 Old_Disc := First_Discriminant (Parent_Type);
6929 while Present (Old_Disc) loop
6930 if No (Next_Entity (Old_Disc))
6931 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6932 then
6933 Set_Next_Entity
6934 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6935 exit;
6936 end if;
6937
6938 Next_Discriminant (Old_Disc);
6939 end loop;
6940
6941 else
6942 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6943 if Has_Discriminants (Parent_Type) then
6944 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6945 Set_Discriminant_Constraint (
6946 Derived_Type, Discriminant_Constraint (Parent_Type));
6947 end if;
6948 end if;
6949
6950 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6951
6952 Set_Has_Completion (Derived_Type);
6953
6954 if Corr_Decl_Needed then
6955 Set_Stored_Constraint (Derived_Type, New_Constraint);
6956 Insert_After (N, Corr_Decl);
6957 Analyze (Corr_Decl);
6958 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6959 end if;
6960 end Build_Derived_Concurrent_Type;
6961
6962 ------------------------------------
6963 -- Build_Derived_Enumeration_Type --
6964 ------------------------------------
6965
6966 procedure Build_Derived_Enumeration_Type
6967 (N : Node_Id;
6968 Parent_Type : Entity_Id;
6969 Derived_Type : Entity_Id)
6970 is
6971 Loc : constant Source_Ptr := Sloc (N);
6972 Def : constant Node_Id := Type_Definition (N);
6973 Indic : constant Node_Id := Subtype_Indication (Def);
6974 Implicit_Base : Entity_Id;
6975 Literal : Entity_Id;
6976 New_Lit : Entity_Id;
6977 Literals_List : List_Id;
6978 Type_Decl : Node_Id;
6979 Hi, Lo : Node_Id;
6980 Rang_Expr : Node_Id;
6981
6982 begin
6983 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6984 -- not have explicit literals lists we need to process types derived
6985 -- from them specially. This is handled by Derived_Standard_Character.
6986 -- If the parent type is a generic type, there are no literals either,
6987 -- and we construct the same skeletal representation as for the generic
6988 -- parent type.
6989
6990 if Is_Standard_Character_Type (Parent_Type) then
6991 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6992
6993 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6994 declare
6995 Lo : Node_Id;
6996 Hi : Node_Id;
6997
6998 begin
6999 if Nkind (Indic) /= N_Subtype_Indication then
7000 Lo :=
7001 Make_Attribute_Reference (Loc,
7002 Attribute_Name => Name_First,
7003 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7004 Set_Etype (Lo, Derived_Type);
7005
7006 Hi :=
7007 Make_Attribute_Reference (Loc,
7008 Attribute_Name => Name_Last,
7009 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7010 Set_Etype (Hi, Derived_Type);
7011
7012 Set_Scalar_Range (Derived_Type,
7013 Make_Range (Loc,
7014 Low_Bound => Lo,
7015 High_Bound => Hi));
7016 else
7017
7018 -- Analyze subtype indication and verify compatibility
7019 -- with parent type.
7020
7021 if Base_Type (Process_Subtype (Indic, N)) /=
7022 Base_Type (Parent_Type)
7023 then
7024 Error_Msg_N
7025 ("illegal constraint for formal discrete type", N);
7026 end if;
7027 end if;
7028 end;
7029
7030 else
7031 -- If a constraint is present, analyze the bounds to catch
7032 -- premature usage of the derived literals.
7033
7034 if Nkind (Indic) = N_Subtype_Indication
7035 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7036 then
7037 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7038 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7039 end if;
7040
7041 -- Introduce an implicit base type for the derived type even if there
7042 -- is no constraint attached to it, since this seems closer to the
7043 -- Ada semantics. Build a full type declaration tree for the derived
7044 -- type using the implicit base type as the defining identifier. The
7045 -- build a subtype declaration tree which applies the constraint (if
7046 -- any) have it replace the derived type declaration.
7047
7048 Literal := First_Literal (Parent_Type);
7049 Literals_List := New_List;
7050 while Present (Literal)
7051 and then Ekind (Literal) = E_Enumeration_Literal
7052 loop
7053 -- Literals of the derived type have the same representation as
7054 -- those of the parent type, but this representation can be
7055 -- overridden by an explicit representation clause. Indicate
7056 -- that there is no explicit representation given yet. These
7057 -- derived literals are implicit operations of the new type,
7058 -- and can be overridden by explicit ones.
7059
7060 if Nkind (Literal) = N_Defining_Character_Literal then
7061 New_Lit :=
7062 Make_Defining_Character_Literal (Loc, Chars (Literal));
7063 else
7064 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7065 end if;
7066
7067 Set_Ekind (New_Lit, E_Enumeration_Literal);
7068 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7069 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7070 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7071 Set_Alias (New_Lit, Literal);
7072 Set_Is_Known_Valid (New_Lit, True);
7073
7074 Append (New_Lit, Literals_List);
7075 Next_Literal (Literal);
7076 end loop;
7077
7078 Implicit_Base :=
7079 Make_Defining_Identifier (Sloc (Derived_Type),
7080 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7081
7082 -- Indicate the proper nature of the derived type. This must be done
7083 -- before analysis of the literals, to recognize cases when a literal
7084 -- may be hidden by a previous explicit function definition (cf.
7085 -- c83031a).
7086
7087 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7088 Set_Etype (Derived_Type, Implicit_Base);
7089
7090 Type_Decl :=
7091 Make_Full_Type_Declaration (Loc,
7092 Defining_Identifier => Implicit_Base,
7093 Discriminant_Specifications => No_List,
7094 Type_Definition =>
7095 Make_Enumeration_Type_Definition (Loc, Literals_List));
7096
7097 Mark_Rewrite_Insertion (Type_Decl);
7098 Insert_Before (N, Type_Decl);
7099 Analyze (Type_Decl);
7100
7101 -- The anonymous base now has a full declaration, but this base
7102 -- is not a first subtype.
7103
7104 Set_Is_First_Subtype (Implicit_Base, False);
7105
7106 -- After the implicit base is analyzed its Etype needs to be changed
7107 -- to reflect the fact that it is derived from the parent type which
7108 -- was ignored during analysis. We also set the size at this point.
7109
7110 Set_Etype (Implicit_Base, Parent_Type);
7111
7112 Set_Size_Info (Implicit_Base, Parent_Type);
7113 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7114 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7115
7116 -- Copy other flags from parent type
7117
7118 Set_Has_Non_Standard_Rep
7119 (Implicit_Base, Has_Non_Standard_Rep
7120 (Parent_Type));
7121 Set_Has_Pragma_Ordered
7122 (Implicit_Base, Has_Pragma_Ordered
7123 (Parent_Type));
7124 Set_Has_Delayed_Freeze (Implicit_Base);
7125
7126 -- Process the subtype indication including a validation check on the
7127 -- constraint, if any. If a constraint is given, its bounds must be
7128 -- implicitly converted to the new type.
7129
7130 if Nkind (Indic) = N_Subtype_Indication then
7131 declare
7132 R : constant Node_Id :=
7133 Range_Expression (Constraint (Indic));
7134
7135 begin
7136 if Nkind (R) = N_Range then
7137 Hi := Build_Scalar_Bound
7138 (High_Bound (R), Parent_Type, Implicit_Base);
7139 Lo := Build_Scalar_Bound
7140 (Low_Bound (R), Parent_Type, Implicit_Base);
7141
7142 else
7143 -- Constraint is a Range attribute. Replace with explicit
7144 -- mention of the bounds of the prefix, which must be a
7145 -- subtype.
7146
7147 Analyze (Prefix (R));
7148 Hi :=
7149 Convert_To (Implicit_Base,
7150 Make_Attribute_Reference (Loc,
7151 Attribute_Name => Name_Last,
7152 Prefix =>
7153 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7154
7155 Lo :=
7156 Convert_To (Implicit_Base,
7157 Make_Attribute_Reference (Loc,
7158 Attribute_Name => Name_First,
7159 Prefix =>
7160 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7161 end if;
7162 end;
7163
7164 else
7165 Hi :=
7166 Build_Scalar_Bound
7167 (Type_High_Bound (Parent_Type),
7168 Parent_Type, Implicit_Base);
7169 Lo :=
7170 Build_Scalar_Bound
7171 (Type_Low_Bound (Parent_Type),
7172 Parent_Type, Implicit_Base);
7173 end if;
7174
7175 Rang_Expr :=
7176 Make_Range (Loc,
7177 Low_Bound => Lo,
7178 High_Bound => Hi);
7179
7180 -- If we constructed a default range for the case where no range
7181 -- was given, then the expressions in the range must not freeze
7182 -- since they do not correspond to expressions in the source.
7183 -- However, if the type inherits predicates the expressions will
7184 -- be elaborated earlier and must freeze.
7185
7186 if Nkind (Indic) /= N_Subtype_Indication
7187 and then not Has_Predicates (Derived_Type)
7188 then
7189 Set_Must_Not_Freeze (Lo);
7190 Set_Must_Not_Freeze (Hi);
7191 Set_Must_Not_Freeze (Rang_Expr);
7192 end if;
7193
7194 Rewrite (N,
7195 Make_Subtype_Declaration (Loc,
7196 Defining_Identifier => Derived_Type,
7197 Subtype_Indication =>
7198 Make_Subtype_Indication (Loc,
7199 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7200 Constraint =>
7201 Make_Range_Constraint (Loc,
7202 Range_Expression => Rang_Expr))));
7203
7204 Analyze (N);
7205
7206 -- Propagate the aspects from the original type declaration to the
7207 -- declaration of the implicit base.
7208
7209 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7210
7211 -- Apply a range check. Since this range expression doesn't have an
7212 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7213 -- this right???
7214
7215 if Nkind (Indic) = N_Subtype_Indication then
7216 Apply_Range_Check
7217 (Range_Expression (Constraint (Indic)), Parent_Type,
7218 Source_Typ => Entity (Subtype_Mark (Indic)));
7219 end if;
7220 end if;
7221 end Build_Derived_Enumeration_Type;
7222
7223 --------------------------------
7224 -- Build_Derived_Numeric_Type --
7225 --------------------------------
7226
7227 procedure Build_Derived_Numeric_Type
7228 (N : Node_Id;
7229 Parent_Type : Entity_Id;
7230 Derived_Type : Entity_Id)
7231 is
7232 Loc : constant Source_Ptr := Sloc (N);
7233 Tdef : constant Node_Id := Type_Definition (N);
7234 Indic : constant Node_Id := Subtype_Indication (Tdef);
7235 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7236 No_Constraint : constant Boolean := Nkind (Indic) /=
7237 N_Subtype_Indication;
7238 Implicit_Base : Entity_Id;
7239
7240 Lo : Node_Id;
7241 Hi : Node_Id;
7242
7243 begin
7244 -- Process the subtype indication including a validation check on
7245 -- the constraint if any.
7246
7247 Discard_Node (Process_Subtype (Indic, N));
7248
7249 -- Introduce an implicit base type for the derived type even if there
7250 -- is no constraint attached to it, since this seems closer to the Ada
7251 -- semantics.
7252
7253 Implicit_Base :=
7254 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7255
7256 Set_Etype (Implicit_Base, Parent_Base);
7257 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7258 Set_Size_Info (Implicit_Base, Parent_Base);
7259 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7260 Set_Parent (Implicit_Base, Parent (Derived_Type));
7261 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7262
7263 -- Set RM Size for discrete type or decimal fixed-point type
7264 -- Ordinary fixed-point is excluded, why???
7265
7266 if Is_Discrete_Type (Parent_Base)
7267 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7268 then
7269 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7270 end if;
7271
7272 Set_Has_Delayed_Freeze (Implicit_Base);
7273
7274 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7275 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7276
7277 Set_Scalar_Range (Implicit_Base,
7278 Make_Range (Loc,
7279 Low_Bound => Lo,
7280 High_Bound => Hi));
7281
7282 if Has_Infinities (Parent_Base) then
7283 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7284 end if;
7285
7286 -- The Derived_Type, which is the entity of the declaration, is a
7287 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7288 -- absence of an explicit constraint.
7289
7290 Set_Etype (Derived_Type, Implicit_Base);
7291
7292 -- If we did not have a constraint, then the Ekind is set from the
7293 -- parent type (otherwise Process_Subtype has set the bounds)
7294
7295 if No_Constraint then
7296 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7297 end if;
7298
7299 -- If we did not have a range constraint, then set the range from the
7300 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7301
7302 if No_Constraint or else not Has_Range_Constraint (Indic) then
7303 Set_Scalar_Range (Derived_Type,
7304 Make_Range (Loc,
7305 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7306 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7307 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7308
7309 if Has_Infinities (Parent_Type) then
7310 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7311 end if;
7312
7313 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7314 end if;
7315
7316 Set_Is_Descendant_Of_Address (Derived_Type,
7317 Is_Descendant_Of_Address (Parent_Type));
7318 Set_Is_Descendant_Of_Address (Implicit_Base,
7319 Is_Descendant_Of_Address (Parent_Type));
7320
7321 -- Set remaining type-specific fields, depending on numeric type
7322
7323 if Is_Modular_Integer_Type (Parent_Type) then
7324 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7325
7326 Set_Non_Binary_Modulus
7327 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7328
7329 Set_Is_Known_Valid
7330 (Implicit_Base, Is_Known_Valid (Parent_Base));
7331
7332 elsif Is_Floating_Point_Type (Parent_Type) then
7333
7334 -- Digits of base type is always copied from the digits value of
7335 -- the parent base type, but the digits of the derived type will
7336 -- already have been set if there was a constraint present.
7337
7338 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7339 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7340
7341 if No_Constraint then
7342 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7343 end if;
7344
7345 elsif Is_Fixed_Point_Type (Parent_Type) then
7346
7347 -- Small of base type and derived type are always copied from the
7348 -- parent base type, since smalls never change. The delta of the
7349 -- base type is also copied from the parent base type. However the
7350 -- delta of the derived type will have been set already if a
7351 -- constraint was present.
7352
7353 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7354 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7355 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7356
7357 if No_Constraint then
7358 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7359 end if;
7360
7361 -- The scale and machine radix in the decimal case are always
7362 -- copied from the parent base type.
7363
7364 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7365 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7366 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7367
7368 Set_Machine_Radix_10
7369 (Derived_Type, Machine_Radix_10 (Parent_Base));
7370 Set_Machine_Radix_10
7371 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7372
7373 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7374
7375 if No_Constraint then
7376 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7377
7378 else
7379 -- the analysis of the subtype_indication sets the
7380 -- digits value of the derived type.
7381
7382 null;
7383 end if;
7384 end if;
7385 end if;
7386
7387 if Is_Integer_Type (Parent_Type) then
7388 Set_Has_Shift_Operator
7389 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7390 end if;
7391
7392 -- The type of the bounds is that of the parent type, and they
7393 -- must be converted to the derived type.
7394
7395 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7396
7397 -- The implicit_base should be frozen when the derived type is frozen,
7398 -- but note that it is used in the conversions of the bounds. For fixed
7399 -- types we delay the determination of the bounds until the proper
7400 -- freezing point. For other numeric types this is rejected by GCC, for
7401 -- reasons that are currently unclear (???), so we choose to freeze the
7402 -- implicit base now. In the case of integers and floating point types
7403 -- this is harmless because subsequent representation clauses cannot
7404 -- affect anything, but it is still baffling that we cannot use the
7405 -- same mechanism for all derived numeric types.
7406
7407 -- There is a further complication: actually some representation
7408 -- clauses can affect the implicit base type. For example, attribute
7409 -- definition clauses for stream-oriented attributes need to set the
7410 -- corresponding TSS entries on the base type, and this normally
7411 -- cannot be done after the base type is frozen, so the circuitry in
7412 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7413 -- and not use Set_TSS in this case.
7414
7415 -- There are also consequences for the case of delayed representation
7416 -- aspects for some cases. For example, a Size aspect is delayed and
7417 -- should not be evaluated to the freeze point. This early freezing
7418 -- means that the size attribute evaluation happens too early???
7419
7420 if Is_Fixed_Point_Type (Parent_Type) then
7421 Conditional_Delay (Implicit_Base, Parent_Type);
7422 else
7423 Freeze_Before (N, Implicit_Base);
7424 end if;
7425 end Build_Derived_Numeric_Type;
7426
7427 --------------------------------
7428 -- Build_Derived_Private_Type --
7429 --------------------------------
7430
7431 procedure Build_Derived_Private_Type
7432 (N : Node_Id;
7433 Parent_Type : Entity_Id;
7434 Derived_Type : Entity_Id;
7435 Is_Completion : Boolean;
7436 Derive_Subps : Boolean := True)
7437 is
7438 Loc : constant Source_Ptr := Sloc (N);
7439 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7440 Par_Scope : constant Entity_Id := Scope (Par_Base);
7441 Full_N : constant Node_Id := New_Copy_Tree (N);
7442 Full_Der : Entity_Id := New_Copy (Derived_Type);
7443 Full_P : Entity_Id;
7444
7445 procedure Build_Full_Derivation;
7446 -- Build full derivation, i.e. derive from the full view
7447
7448 procedure Copy_And_Build;
7449 -- Copy derived type declaration, replace parent with its full view,
7450 -- and build derivation
7451
7452 ---------------------------
7453 -- Build_Full_Derivation --
7454 ---------------------------
7455
7456 procedure Build_Full_Derivation is
7457 begin
7458 -- If parent scope is not open, install the declarations
7459
7460 if not In_Open_Scopes (Par_Scope) then
7461 Install_Private_Declarations (Par_Scope);
7462 Install_Visible_Declarations (Par_Scope);
7463 Copy_And_Build;
7464 Uninstall_Declarations (Par_Scope);
7465
7466 -- If parent scope is open and in another unit, and parent has a
7467 -- completion, then the derivation is taking place in the visible
7468 -- part of a child unit. In that case retrieve the full view of
7469 -- the parent momentarily.
7470
7471 elsif not In_Same_Source_Unit (N, Parent_Type) then
7472 Full_P := Full_View (Parent_Type);
7473 Exchange_Declarations (Parent_Type);
7474 Copy_And_Build;
7475 Exchange_Declarations (Full_P);
7476
7477 -- Otherwise it is a local derivation
7478
7479 else
7480 Copy_And_Build;
7481 end if;
7482 end Build_Full_Derivation;
7483
7484 --------------------
7485 -- Copy_And_Build --
7486 --------------------
7487
7488 procedure Copy_And_Build is
7489 Full_Parent : Entity_Id := Parent_Type;
7490
7491 begin
7492 -- If the parent is itself derived from another private type,
7493 -- installing the private declarations has not affected its
7494 -- privacy status, so use its own full view explicitly.
7495
7496 if Is_Private_Type (Full_Parent)
7497 and then Present (Full_View (Full_Parent))
7498 then
7499 Full_Parent := Full_View (Full_Parent);
7500 end if;
7501
7502 -- And its underlying full view if necessary
7503
7504 if Is_Private_Type (Full_Parent)
7505 and then Present (Underlying_Full_View (Full_Parent))
7506 then
7507 Full_Parent := Underlying_Full_View (Full_Parent);
7508 end if;
7509
7510 -- For record, access and most enumeration types, derivation from
7511 -- the full view requires a fully-fledged declaration. In the other
7512 -- cases, just use an itype.
7513
7514 if Ekind (Full_Parent) in Record_Kind
7515 or else Ekind (Full_Parent) in Access_Kind
7516 or else
7517 (Ekind (Full_Parent) in Enumeration_Kind
7518 and then not Is_Standard_Character_Type (Full_Parent)
7519 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7520 then
7521 -- Copy and adjust declaration to provide a completion for what
7522 -- is originally a private declaration. Indicate that full view
7523 -- is internally generated.
7524
7525 Set_Comes_From_Source (Full_N, False);
7526 Set_Comes_From_Source (Full_Der, False);
7527 Set_Parent (Full_Der, Full_N);
7528 Set_Defining_Identifier (Full_N, Full_Der);
7529
7530 -- If there are no constraints, adjust the subtype mark
7531
7532 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7533 N_Subtype_Indication
7534 then
7535 Set_Subtype_Indication
7536 (Type_Definition (Full_N),
7537 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7538 end if;
7539
7540 Insert_After (N, Full_N);
7541
7542 -- Build full view of derived type from full view of parent which
7543 -- is now installed. Subprograms have been derived on the partial
7544 -- view, the completion does not derive them anew.
7545
7546 if Ekind (Full_Parent) in Record_Kind then
7547
7548 -- If parent type is tagged, the completion inherits the proper
7549 -- primitive operations.
7550
7551 if Is_Tagged_Type (Parent_Type) then
7552 Build_Derived_Record_Type
7553 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7554 else
7555 Build_Derived_Record_Type
7556 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7557 end if;
7558
7559 else
7560 Build_Derived_Type
7561 (Full_N, Full_Parent, Full_Der,
7562 Is_Completion => False, Derive_Subps => False);
7563 end if;
7564
7565 -- The full declaration has been introduced into the tree and
7566 -- processed in the step above. It should not be analyzed again
7567 -- (when encountered later in the current list of declarations)
7568 -- to prevent spurious name conflicts. The full entity remains
7569 -- invisible.
7570
7571 Set_Analyzed (Full_N);
7572
7573 else
7574 Full_Der :=
7575 Make_Defining_Identifier (Sloc (Derived_Type),
7576 Chars => Chars (Derived_Type));
7577 Set_Is_Itype (Full_Der);
7578 Set_Associated_Node_For_Itype (Full_Der, N);
7579 Set_Parent (Full_Der, N);
7580 Build_Derived_Type
7581 (N, Full_Parent, Full_Der,
7582 Is_Completion => False, Derive_Subps => False);
7583 end if;
7584
7585 Set_Has_Private_Declaration (Full_Der);
7586 Set_Has_Private_Declaration (Derived_Type);
7587
7588 Set_Scope (Full_Der, Scope (Derived_Type));
7589 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7590 Set_Has_Size_Clause (Full_Der, False);
7591 Set_Has_Alignment_Clause (Full_Der, False);
7592 Set_Has_Delayed_Freeze (Full_Der);
7593 Set_Is_Frozen (Full_Der, False);
7594 Set_Freeze_Node (Full_Der, Empty);
7595 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7596 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7597
7598 -- The convention on the base type may be set in the private part
7599 -- and not propagated to the subtype until later, so we obtain the
7600 -- convention from the base type of the parent.
7601
7602 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7603 end Copy_And_Build;
7604
7605 -- Start of processing for Build_Derived_Private_Type
7606
7607 begin
7608 if Is_Tagged_Type (Parent_Type) then
7609 Full_P := Full_View (Parent_Type);
7610
7611 -- A type extension of a type with unknown discriminants is an
7612 -- indefinite type that the back-end cannot handle directly.
7613 -- We treat it as a private type, and build a completion that is
7614 -- derived from the full view of the parent, and hopefully has
7615 -- known discriminants.
7616
7617 -- If the full view of the parent type has an underlying record view,
7618 -- use it to generate the underlying record view of this derived type
7619 -- (required for chains of derivations with unknown discriminants).
7620
7621 -- Minor optimization: we avoid the generation of useless underlying
7622 -- record view entities if the private type declaration has unknown
7623 -- discriminants but its corresponding full view has no
7624 -- discriminants.
7625
7626 if Has_Unknown_Discriminants (Parent_Type)
7627 and then Present (Full_P)
7628 and then (Has_Discriminants (Full_P)
7629 or else Present (Underlying_Record_View (Full_P)))
7630 and then not In_Open_Scopes (Par_Scope)
7631 and then Expander_Active
7632 then
7633 declare
7634 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7635 New_Ext : constant Node_Id :=
7636 Copy_Separate_Tree
7637 (Record_Extension_Part (Type_Definition (N)));
7638 Decl : Node_Id;
7639
7640 begin
7641 Build_Derived_Record_Type
7642 (N, Parent_Type, Derived_Type, Derive_Subps);
7643
7644 -- Build anonymous completion, as a derivation from the full
7645 -- view of the parent. This is not a completion in the usual
7646 -- sense, because the current type is not private.
7647
7648 Decl :=
7649 Make_Full_Type_Declaration (Loc,
7650 Defining_Identifier => Full_Der,
7651 Type_Definition =>
7652 Make_Derived_Type_Definition (Loc,
7653 Subtype_Indication =>
7654 New_Copy_Tree
7655 (Subtype_Indication (Type_Definition (N))),
7656 Record_Extension_Part => New_Ext));
7657
7658 -- If the parent type has an underlying record view, use it
7659 -- here to build the new underlying record view.
7660
7661 if Present (Underlying_Record_View (Full_P)) then
7662 pragma Assert
7663 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7664 = N_Identifier);
7665 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7666 Underlying_Record_View (Full_P));
7667 end if;
7668
7669 Install_Private_Declarations (Par_Scope);
7670 Install_Visible_Declarations (Par_Scope);
7671 Insert_Before (N, Decl);
7672
7673 -- Mark entity as an underlying record view before analysis,
7674 -- to avoid generating the list of its primitive operations
7675 -- (which is not really required for this entity) and thus
7676 -- prevent spurious errors associated with missing overriding
7677 -- of abstract primitives (overridden only for Derived_Type).
7678
7679 Set_Ekind (Full_Der, E_Record_Type);
7680 Set_Is_Underlying_Record_View (Full_Der);
7681 Set_Default_SSO (Full_Der);
7682
7683 Analyze (Decl);
7684
7685 pragma Assert (Has_Discriminants (Full_Der)
7686 and then not Has_Unknown_Discriminants (Full_Der));
7687
7688 Uninstall_Declarations (Par_Scope);
7689
7690 -- Freeze the underlying record view, to prevent generation of
7691 -- useless dispatching information, which is simply shared with
7692 -- the real derived type.
7693
7694 Set_Is_Frozen (Full_Der);
7695
7696 -- If the derived type has access discriminants, create
7697 -- references to their anonymous types now, to prevent
7698 -- back-end problems when their first use is in generated
7699 -- bodies of primitives.
7700
7701 declare
7702 E : Entity_Id;
7703
7704 begin
7705 E := First_Entity (Full_Der);
7706
7707 while Present (E) loop
7708 if Ekind (E) = E_Discriminant
7709 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7710 then
7711 Build_Itype_Reference (Etype (E), Decl);
7712 end if;
7713
7714 Next_Entity (E);
7715 end loop;
7716 end;
7717
7718 -- Set up links between real entity and underlying record view
7719
7720 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7721 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7722 end;
7723
7724 -- If discriminants are known, build derived record
7725
7726 else
7727 Build_Derived_Record_Type
7728 (N, Parent_Type, Derived_Type, Derive_Subps);
7729 end if;
7730
7731 return;
7732
7733 elsif Has_Discriminants (Parent_Type) then
7734
7735 -- Build partial view of derived type from partial view of parent.
7736 -- This must be done before building the full derivation because the
7737 -- second derivation will modify the discriminants of the first and
7738 -- the discriminants are chained with the rest of the components in
7739 -- the full derivation.
7740
7741 Build_Derived_Record_Type
7742 (N, Parent_Type, Derived_Type, Derive_Subps);
7743
7744 -- Build the full derivation if this is not the anonymous derived
7745 -- base type created by Build_Derived_Record_Type in the constrained
7746 -- case (see point 5. of its head comment) since we build it for the
7747 -- derived subtype. And skip it for protected types altogether, as
7748 -- gigi does not use these types directly.
7749
7750 if Present (Full_View (Parent_Type))
7751 and then not Is_Itype (Derived_Type)
7752 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7753 then
7754 declare
7755 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7756 Discr : Entity_Id;
7757 Last_Discr : Entity_Id;
7758
7759 begin
7760 -- If this is not a completion, construct the implicit full
7761 -- view by deriving from the full view of the parent type.
7762 -- But if this is a completion, the derived private type
7763 -- being built is a full view and the full derivation can
7764 -- only be its underlying full view.
7765
7766 Build_Full_Derivation;
7767
7768 if not Is_Completion then
7769 Set_Full_View (Derived_Type, Full_Der);
7770 else
7771 Set_Underlying_Full_View (Derived_Type, Full_Der);
7772 Set_Is_Underlying_Full_View (Full_Der);
7773 end if;
7774
7775 if not Is_Base_Type (Derived_Type) then
7776 Set_Full_View (Der_Base, Base_Type (Full_Der));
7777 end if;
7778
7779 -- Copy the discriminant list from full view to the partial
7780 -- view (base type and its subtype). Gigi requires that the
7781 -- partial and full views have the same discriminants.
7782
7783 -- Note that since the partial view points to discriminants
7784 -- in the full view, their scope will be that of the full
7785 -- view. This might cause some front end problems and need
7786 -- adjustment???
7787
7788 Discr := First_Discriminant (Base_Type (Full_Der));
7789 Set_First_Entity (Der_Base, Discr);
7790
7791 loop
7792 Last_Discr := Discr;
7793 Next_Discriminant (Discr);
7794 exit when No (Discr);
7795 end loop;
7796
7797 Set_Last_Entity (Der_Base, Last_Discr);
7798 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7799 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7800 end;
7801 end if;
7802
7803 elsif Present (Full_View (Parent_Type))
7804 and then Has_Discriminants (Full_View (Parent_Type))
7805 then
7806 if Has_Unknown_Discriminants (Parent_Type)
7807 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7808 N_Subtype_Indication
7809 then
7810 Error_Msg_N
7811 ("cannot constrain type with unknown discriminants",
7812 Subtype_Indication (Type_Definition (N)));
7813 return;
7814 end if;
7815
7816 -- If this is not a completion, construct the implicit full view by
7817 -- deriving from the full view of the parent type. But if this is a
7818 -- completion, the derived private type being built is a full view
7819 -- and the full derivation can only be its underlying full view.
7820
7821 Build_Full_Derivation;
7822
7823 if not Is_Completion then
7824 Set_Full_View (Derived_Type, Full_Der);
7825 else
7826 Set_Underlying_Full_View (Derived_Type, Full_Der);
7827 Set_Is_Underlying_Full_View (Full_Der);
7828 end if;
7829
7830 -- In any case, the primitive operations are inherited from the
7831 -- parent type, not from the internal full view.
7832
7833 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7834
7835 if Derive_Subps then
7836 Derive_Subprograms (Parent_Type, Derived_Type);
7837 end if;
7838
7839 Set_Stored_Constraint (Derived_Type, No_Elist);
7840 Set_Is_Constrained
7841 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7842
7843 else
7844 -- Untagged type, No discriminants on either view
7845
7846 if Nkind (Subtype_Indication (Type_Definition (N))) =
7847 N_Subtype_Indication
7848 then
7849 Error_Msg_N
7850 ("illegal constraint on type without discriminants", N);
7851 end if;
7852
7853 if Present (Discriminant_Specifications (N))
7854 and then Present (Full_View (Parent_Type))
7855 and then not Is_Tagged_Type (Full_View (Parent_Type))
7856 then
7857 Error_Msg_N ("cannot add discriminants to untagged type", N);
7858 end if;
7859
7860 Set_Stored_Constraint (Derived_Type, No_Elist);
7861 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7862 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7863 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7864 (Parent_Type));
7865 Set_Has_Controlled_Component
7866 (Derived_Type, Has_Controlled_Component
7867 (Parent_Type));
7868
7869 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7870
7871 if not Is_Controlled_Active (Parent_Type) then
7872 Set_Finalize_Storage_Only
7873 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7874 end if;
7875
7876 -- If this is not a completion, construct the implicit full view by
7877 -- deriving from the full view of the parent type.
7878
7879 -- ??? If the parent is untagged private and its completion is
7880 -- tagged, this mechanism will not work because we cannot derive from
7881 -- the tagged full view unless we have an extension.
7882
7883 if Present (Full_View (Parent_Type))
7884 and then not Is_Tagged_Type (Full_View (Parent_Type))
7885 and then not Is_Completion
7886 then
7887 Build_Full_Derivation;
7888 Set_Full_View (Derived_Type, Full_Der);
7889 end if;
7890 end if;
7891
7892 Set_Has_Unknown_Discriminants (Derived_Type,
7893 Has_Unknown_Discriminants (Parent_Type));
7894
7895 if Is_Private_Type (Derived_Type) then
7896 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7897 end if;
7898
7899 -- If the parent base type is in scope, add the derived type to its
7900 -- list of private dependents, because its full view may become
7901 -- visible subsequently (in a nested private part, a body, or in a
7902 -- further child unit).
7903
7904 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7905 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7906
7907 -- Check for unusual case where a type completed by a private
7908 -- derivation occurs within a package nested in a child unit, and
7909 -- the parent is declared in an ancestor.
7910
7911 if Is_Child_Unit (Scope (Current_Scope))
7912 and then Is_Completion
7913 and then In_Private_Part (Current_Scope)
7914 and then Scope (Parent_Type) /= Current_Scope
7915
7916 -- Note that if the parent has a completion in the private part,
7917 -- (which is itself a derivation from some other private type)
7918 -- it is that completion that is visible, there is no full view
7919 -- available, and no special processing is needed.
7920
7921 and then Present (Full_View (Parent_Type))
7922 then
7923 -- In this case, the full view of the parent type will become
7924 -- visible in the body of the enclosing child, and only then will
7925 -- the current type be possibly non-private. Build an underlying
7926 -- full view that will be installed when the enclosing child body
7927 -- is compiled.
7928
7929 if Present (Underlying_Full_View (Derived_Type)) then
7930 Full_Der := Underlying_Full_View (Derived_Type);
7931 else
7932 Build_Full_Derivation;
7933 Set_Underlying_Full_View (Derived_Type, Full_Der);
7934 Set_Is_Underlying_Full_View (Full_Der);
7935 end if;
7936
7937 -- The full view will be used to swap entities on entry/exit to
7938 -- the body, and must appear in the entity list for the package.
7939
7940 Append_Entity (Full_Der, Scope (Derived_Type));
7941 end if;
7942 end if;
7943 end Build_Derived_Private_Type;
7944
7945 -------------------------------
7946 -- Build_Derived_Record_Type --
7947 -------------------------------
7948
7949 -- 1. INTRODUCTION
7950
7951 -- Ideally we would like to use the same model of type derivation for
7952 -- tagged and untagged record types. Unfortunately this is not quite
7953 -- possible because the semantics of representation clauses is different
7954 -- for tagged and untagged records under inheritance. Consider the
7955 -- following:
7956
7957 -- type R (...) is [tagged] record ... end record;
7958 -- type T (...) is new R (...) [with ...];
7959
7960 -- The representation clauses for T can specify a completely different
7961 -- record layout from R's. Hence the same component can be placed in two
7962 -- very different positions in objects of type T and R. If R and T are
7963 -- tagged types, representation clauses for T can only specify the layout
7964 -- of non inherited components, thus components that are common in R and T
7965 -- have the same position in objects of type R and T.
7966
7967 -- This has two implications. The first is that the entire tree for R's
7968 -- declaration needs to be copied for T in the untagged case, so that T
7969 -- can be viewed as a record type of its own with its own representation
7970 -- clauses. The second implication is the way we handle discriminants.
7971 -- Specifically, in the untagged case we need a way to communicate to Gigi
7972 -- what are the real discriminants in the record, while for the semantics
7973 -- we need to consider those introduced by the user to rename the
7974 -- discriminants in the parent type. This is handled by introducing the
7975 -- notion of stored discriminants. See below for more.
7976
7977 -- Fortunately the way regular components are inherited can be handled in
7978 -- the same way in tagged and untagged types.
7979
7980 -- To complicate things a bit more the private view of a private extension
7981 -- cannot be handled in the same way as the full view (for one thing the
7982 -- semantic rules are somewhat different). We will explain what differs
7983 -- below.
7984
7985 -- 2. DISCRIMINANTS UNDER INHERITANCE
7986
7987 -- The semantic rules governing the discriminants of derived types are
7988 -- quite subtle.
7989
7990 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7991 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7992
7993 -- If parent type has discriminants, then the discriminants that are
7994 -- declared in the derived type are [3.4 (11)]:
7995
7996 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7997 -- there is one;
7998
7999 -- o Otherwise, each discriminant of the parent type (implicitly declared
8000 -- in the same order with the same specifications). In this case, the
8001 -- discriminants are said to be "inherited", or if unknown in the parent
8002 -- are also unknown in the derived type.
8003
8004 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8005
8006 -- o The parent subtype must be constrained;
8007
8008 -- o If the parent type is not a tagged type, then each discriminant of
8009 -- the derived type must be used in the constraint defining a parent
8010 -- subtype. [Implementation note: This ensures that the new discriminant
8011 -- can share storage with an existing discriminant.]
8012
8013 -- For the derived type each discriminant of the parent type is either
8014 -- inherited, constrained to equal some new discriminant of the derived
8015 -- type, or constrained to the value of an expression.
8016
8017 -- When inherited or constrained to equal some new discriminant, the
8018 -- parent discriminant and the discriminant of the derived type are said
8019 -- to "correspond".
8020
8021 -- If a discriminant of the parent type is constrained to a specific value
8022 -- in the derived type definition, then the discriminant is said to be
8023 -- "specified" by that derived type definition.
8024
8025 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8026
8027 -- We have spoken about stored discriminants in point 1 (introduction)
8028 -- above. There are two sorts of stored discriminants: implicit and
8029 -- explicit. As long as the derived type inherits the same discriminants as
8030 -- the root record type, stored discriminants are the same as regular
8031 -- discriminants, and are said to be implicit. However, if any discriminant
8032 -- in the root type was renamed in the derived type, then the derived
8033 -- type will contain explicit stored discriminants. Explicit stored
8034 -- discriminants are discriminants in addition to the semantically visible
8035 -- discriminants defined for the derived type. Stored discriminants are
8036 -- used by Gigi to figure out what are the physical discriminants in
8037 -- objects of the derived type (see precise definition in einfo.ads).
8038 -- As an example, consider the following:
8039
8040 -- type R (D1, D2, D3 : Int) is record ... end record;
8041 -- type T1 is new R;
8042 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8043 -- type T3 is new T2;
8044 -- type T4 (Y : Int) is new T3 (Y, 99);
8045
8046 -- The following table summarizes the discriminants and stored
8047 -- discriminants in R and T1 through T4:
8048
8049 -- Type Discrim Stored Discrim Comment
8050 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8051 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8052 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8053 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8054 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8055
8056 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8057 -- find the corresponding discriminant in the parent type, while
8058 -- Original_Record_Component (abbreviated ORC below) the actual physical
8059 -- component that is renamed. Finally the field Is_Completely_Hidden
8060 -- (abbreviated ICH below) is set for all explicit stored discriminants
8061 -- (see einfo.ads for more info). For the above example this gives:
8062
8063 -- Discrim CD ORC ICH
8064 -- ^^^^^^^ ^^ ^^^ ^^^
8065 -- D1 in R empty itself no
8066 -- D2 in R empty itself no
8067 -- D3 in R empty itself no
8068
8069 -- D1 in T1 D1 in R itself no
8070 -- D2 in T1 D2 in R itself no
8071 -- D3 in T1 D3 in R itself no
8072
8073 -- X1 in T2 D3 in T1 D3 in T2 no
8074 -- X2 in T2 D1 in T1 D1 in T2 no
8075 -- D1 in T2 empty itself yes
8076 -- D2 in T2 empty itself yes
8077 -- D3 in T2 empty itself yes
8078
8079 -- X1 in T3 X1 in T2 D3 in T3 no
8080 -- X2 in T3 X2 in T2 D1 in T3 no
8081 -- D1 in T3 empty itself yes
8082 -- D2 in T3 empty itself yes
8083 -- D3 in T3 empty itself yes
8084
8085 -- Y in T4 X1 in T3 D3 in T4 no
8086 -- D1 in T4 empty itself yes
8087 -- D2 in T4 empty itself yes
8088 -- D3 in T4 empty itself yes
8089
8090 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8091
8092 -- Type derivation for tagged types is fairly straightforward. If no
8093 -- discriminants are specified by the derived type, these are inherited
8094 -- from the parent. No explicit stored discriminants are ever necessary.
8095 -- The only manipulation that is done to the tree is that of adding a
8096 -- _parent field with parent type and constrained to the same constraint
8097 -- specified for the parent in the derived type definition. For instance:
8098
8099 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8100 -- type T1 is new R with null record;
8101 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8102
8103 -- are changed into:
8104
8105 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8106 -- _parent : R (D1, D2, D3);
8107 -- end record;
8108
8109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8110 -- _parent : T1 (X2, 88, X1);
8111 -- end record;
8112
8113 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8114 -- ORC and ICH fields are:
8115
8116 -- Discrim CD ORC ICH
8117 -- ^^^^^^^ ^^ ^^^ ^^^
8118 -- D1 in R empty itself no
8119 -- D2 in R empty itself no
8120 -- D3 in R empty itself no
8121
8122 -- D1 in T1 D1 in R D1 in R no
8123 -- D2 in T1 D2 in R D2 in R no
8124 -- D3 in T1 D3 in R D3 in R no
8125
8126 -- X1 in T2 D3 in T1 D3 in R no
8127 -- X2 in T2 D1 in T1 D1 in R no
8128
8129 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8130 --
8131 -- Regardless of whether we dealing with a tagged or untagged type
8132 -- we will transform all derived type declarations of the form
8133 --
8134 -- type T is new R (...) [with ...];
8135 -- or
8136 -- subtype S is R (...);
8137 -- type T is new S [with ...];
8138 -- into
8139 -- type BT is new R [with ...];
8140 -- subtype T is BT (...);
8141 --
8142 -- That is, the base derived type is constrained only if it has no
8143 -- discriminants. The reason for doing this is that GNAT's semantic model
8144 -- assumes that a base type with discriminants is unconstrained.
8145 --
8146 -- Note that, strictly speaking, the above transformation is not always
8147 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8148 --
8149 -- procedure B34011A is
8150 -- type REC (D : integer := 0) is record
8151 -- I : Integer;
8152 -- end record;
8153
8154 -- package P is
8155 -- type T6 is new Rec;
8156 -- function F return T6;
8157 -- end P;
8158
8159 -- use P;
8160 -- package Q6 is
8161 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8162 -- end Q6;
8163 --
8164 -- The definition of Q6.U is illegal. However transforming Q6.U into
8165
8166 -- type BaseU is new T6;
8167 -- subtype U is BaseU (Q6.F.I)
8168
8169 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8170 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8171 -- the transformation described above.
8172
8173 -- There is another instance where the above transformation is incorrect.
8174 -- Consider:
8175
8176 -- package Pack is
8177 -- type Base (D : Integer) is tagged null record;
8178 -- procedure P (X : Base);
8179
8180 -- type Der is new Base (2) with null record;
8181 -- procedure P (X : Der);
8182 -- end Pack;
8183
8184 -- Then the above transformation turns this into
8185
8186 -- type Der_Base is new Base with null record;
8187 -- -- procedure P (X : Base) is implicitly inherited here
8188 -- -- as procedure P (X : Der_Base).
8189
8190 -- subtype Der is Der_Base (2);
8191 -- procedure P (X : Der);
8192 -- -- The overriding of P (X : Der_Base) is illegal since we
8193 -- -- have a parameter conformance problem.
8194
8195 -- To get around this problem, after having semantically processed Der_Base
8196 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8197 -- Discriminant_Constraint from Der so that when parameter conformance is
8198 -- checked when P is overridden, no semantic errors are flagged.
8199
8200 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8201
8202 -- Regardless of whether we are dealing with a tagged or untagged type
8203 -- we will transform all derived type declarations of the form
8204
8205 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8206 -- type T is new R [with ...];
8207 -- into
8208 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8209
8210 -- The reason for such transformation is that it allows us to implement a
8211 -- very clean form of component inheritance as explained below.
8212
8213 -- Note that this transformation is not achieved by direct tree rewriting
8214 -- and manipulation, but rather by redoing the semantic actions that the
8215 -- above transformation will entail. This is done directly in routine
8216 -- Inherit_Components.
8217
8218 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8219
8220 -- In both tagged and untagged derived types, regular non discriminant
8221 -- components are inherited in the derived type from the parent type. In
8222 -- the absence of discriminants component, inheritance is straightforward
8223 -- as components can simply be copied from the parent.
8224
8225 -- If the parent has discriminants, inheriting components constrained with
8226 -- these discriminants requires caution. Consider the following example:
8227
8228 -- type R (D1, D2 : Positive) is [tagged] record
8229 -- S : String (D1 .. D2);
8230 -- end record;
8231
8232 -- type T1 is new R [with null record];
8233 -- type T2 (X : positive) is new R (1, X) [with null record];
8234
8235 -- As explained in 6. above, T1 is rewritten as
8236 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8237 -- which makes the treatment for T1 and T2 identical.
8238
8239 -- What we want when inheriting S, is that references to D1 and D2 in R are
8240 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8241 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8242 -- with either discriminant references in the derived type or expressions.
8243 -- This replacement is achieved as follows: before inheriting R's
8244 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8245 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8246 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8247 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8248 -- by String (1 .. X).
8249
8250 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8251
8252 -- We explain here the rules governing private type extensions relevant to
8253 -- type derivation. These rules are explained on the following example:
8254
8255 -- type D [(...)] is new A [(...)] with private; <-- partial view
8256 -- type D [(...)] is new P [(...)] with null record; <-- full view
8257
8258 -- Type A is called the ancestor subtype of the private extension.
8259 -- Type P is the parent type of the full view of the private extension. It
8260 -- must be A or a type derived from A.
8261
8262 -- The rules concerning the discriminants of private type extensions are
8263 -- [7.3(10-13)]:
8264
8265 -- o If a private extension inherits known discriminants from the ancestor
8266 -- subtype, then the full view must also inherit its discriminants from
8267 -- the ancestor subtype and the parent subtype of the full view must be
8268 -- constrained if and only if the ancestor subtype is constrained.
8269
8270 -- o If a partial view has unknown discriminants, then the full view may
8271 -- define a definite or an indefinite subtype, with or without
8272 -- discriminants.
8273
8274 -- o If a partial view has neither known nor unknown discriminants, then
8275 -- the full view must define a definite subtype.
8276
8277 -- o If the ancestor subtype of a private extension has constrained
8278 -- discriminants, then the parent subtype of the full view must impose a
8279 -- statically matching constraint on those discriminants.
8280
8281 -- This means that only the following forms of private extensions are
8282 -- allowed:
8283
8284 -- type D is new A with private; <-- partial view
8285 -- type D is new P with null record; <-- full view
8286
8287 -- If A has no discriminants than P has no discriminants, otherwise P must
8288 -- inherit A's discriminants.
8289
8290 -- type D is new A (...) with private; <-- partial view
8291 -- type D is new P (:::) with null record; <-- full view
8292
8293 -- P must inherit A's discriminants and (...) and (:::) must statically
8294 -- match.
8295
8296 -- subtype A is R (...);
8297 -- type D is new A with private; <-- partial view
8298 -- type D is new P with null record; <-- full view
8299
8300 -- P must have inherited R's discriminants and must be derived from A or
8301 -- any of its subtypes.
8302
8303 -- type D (..) is new A with private; <-- partial view
8304 -- type D (..) is new P [(:::)] with null record; <-- full view
8305
8306 -- No specific constraints on P's discriminants or constraint (:::).
8307 -- Note that A can be unconstrained, but the parent subtype P must either
8308 -- be constrained or (:::) must be present.
8309
8310 -- type D (..) is new A [(...)] with private; <-- partial view
8311 -- type D (..) is new P [(:::)] with null record; <-- full view
8312
8313 -- P's constraints on A's discriminants must statically match those
8314 -- imposed by (...).
8315
8316 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8317
8318 -- The full view of a private extension is handled exactly as described
8319 -- above. The model chose for the private view of a private extension is
8320 -- the same for what concerns discriminants (i.e. they receive the same
8321 -- treatment as in the tagged case). However, the private view of the
8322 -- private extension always inherits the components of the parent base,
8323 -- without replacing any discriminant reference. Strictly speaking this is
8324 -- incorrect. However, Gigi never uses this view to generate code so this
8325 -- is a purely semantic issue. In theory, a set of transformations similar
8326 -- to those given in 5. and 6. above could be applied to private views of
8327 -- private extensions to have the same model of component inheritance as
8328 -- for non private extensions. However, this is not done because it would
8329 -- further complicate private type processing. Semantically speaking, this
8330 -- leaves us in an uncomfortable situation. As an example consider:
8331
8332 -- package Pack is
8333 -- type R (D : integer) is tagged record
8334 -- S : String (1 .. D);
8335 -- end record;
8336 -- procedure P (X : R);
8337 -- type T is new R (1) with private;
8338 -- private
8339 -- type T is new R (1) with null record;
8340 -- end;
8341
8342 -- This is transformed into:
8343
8344 -- package Pack is
8345 -- type R (D : integer) is tagged record
8346 -- S : String (1 .. D);
8347 -- end record;
8348 -- procedure P (X : R);
8349 -- type T is new R (1) with private;
8350 -- private
8351 -- type BaseT is new R with null record;
8352 -- subtype T is BaseT (1);
8353 -- end;
8354
8355 -- (strictly speaking the above is incorrect Ada)
8356
8357 -- From the semantic standpoint the private view of private extension T
8358 -- should be flagged as constrained since one can clearly have
8359 --
8360 -- Obj : T;
8361 --
8362 -- in a unit withing Pack. However, when deriving subprograms for the
8363 -- private view of private extension T, T must be seen as unconstrained
8364 -- since T has discriminants (this is a constraint of the current
8365 -- subprogram derivation model). Thus, when processing the private view of
8366 -- a private extension such as T, we first mark T as unconstrained, we
8367 -- process it, we perform program derivation and just before returning from
8368 -- Build_Derived_Record_Type we mark T as constrained.
8369
8370 -- ??? Are there are other uncomfortable cases that we will have to
8371 -- deal with.
8372
8373 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8374
8375 -- Types that are derived from a visible record type and have a private
8376 -- extension present other peculiarities. They behave mostly like private
8377 -- types, but if they have primitive operations defined, these will not
8378 -- have the proper signatures for further inheritance, because other
8379 -- primitive operations will use the implicit base that we define for
8380 -- private derivations below. This affect subprogram inheritance (see
8381 -- Derive_Subprograms for details). We also derive the implicit base from
8382 -- the base type of the full view, so that the implicit base is a record
8383 -- type and not another private type, This avoids infinite loops.
8384
8385 procedure Build_Derived_Record_Type
8386 (N : Node_Id;
8387 Parent_Type : Entity_Id;
8388 Derived_Type : Entity_Id;
8389 Derive_Subps : Boolean := True)
8390 is
8391 Discriminant_Specs : constant Boolean :=
8392 Present (Discriminant_Specifications (N));
8393 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8394 Loc : constant Source_Ptr := Sloc (N);
8395 Private_Extension : constant Boolean :=
8396 Nkind (N) = N_Private_Extension_Declaration;
8397 Assoc_List : Elist_Id;
8398 Constraint_Present : Boolean;
8399 Constrs : Elist_Id;
8400 Discrim : Entity_Id;
8401 Indic : Node_Id;
8402 Inherit_Discrims : Boolean := False;
8403 Last_Discrim : Entity_Id;
8404 New_Base : Entity_Id;
8405 New_Decl : Node_Id;
8406 New_Discrs : Elist_Id;
8407 New_Indic : Node_Id;
8408 Parent_Base : Entity_Id;
8409 Save_Etype : Entity_Id;
8410 Save_Discr_Constr : Elist_Id;
8411 Save_Next_Entity : Entity_Id;
8412 Type_Def : Node_Id;
8413
8414 Discs : Elist_Id := New_Elmt_List;
8415 -- An empty Discs list means that there were no constraints in the
8416 -- subtype indication or that there was an error processing it.
8417
8418 begin
8419 if Ekind (Parent_Type) = E_Record_Type_With_Private
8420 and then Present (Full_View (Parent_Type))
8421 and then Has_Discriminants (Parent_Type)
8422 then
8423 Parent_Base := Base_Type (Full_View (Parent_Type));
8424 else
8425 Parent_Base := Base_Type (Parent_Type);
8426 end if;
8427
8428 -- AI05-0115 : if this is a derivation from a private type in some
8429 -- other scope that may lead to invisible components for the derived
8430 -- type, mark it accordingly.
8431
8432 if Is_Private_Type (Parent_Type) then
8433 if Scope (Parent_Type) = Scope (Derived_Type) then
8434 null;
8435
8436 elsif In_Open_Scopes (Scope (Parent_Type))
8437 and then In_Private_Part (Scope (Parent_Type))
8438 then
8439 null;
8440
8441 else
8442 Set_Has_Private_Ancestor (Derived_Type);
8443 end if;
8444
8445 else
8446 Set_Has_Private_Ancestor
8447 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8448 end if;
8449
8450 -- Before we start the previously documented transformations, here is
8451 -- little fix for size and alignment of tagged types. Normally when we
8452 -- derive type D from type P, we copy the size and alignment of P as the
8453 -- default for D, and in the absence of explicit representation clauses
8454 -- for D, the size and alignment are indeed the same as the parent.
8455
8456 -- But this is wrong for tagged types, since fields may be added, and
8457 -- the default size may need to be larger, and the default alignment may
8458 -- need to be larger.
8459
8460 -- We therefore reset the size and alignment fields in the tagged case.
8461 -- Note that the size and alignment will in any case be at least as
8462 -- large as the parent type (since the derived type has a copy of the
8463 -- parent type in the _parent field)
8464
8465 -- The type is also marked as being tagged here, which is needed when
8466 -- processing components with a self-referential anonymous access type
8467 -- in the call to Check_Anonymous_Access_Components below. Note that
8468 -- this flag is also set later on for completeness.
8469
8470 if Is_Tagged then
8471 Set_Is_Tagged_Type (Derived_Type);
8472 Init_Size_Align (Derived_Type);
8473 end if;
8474
8475 -- STEP 0a: figure out what kind of derived type declaration we have
8476
8477 if Private_Extension then
8478 Type_Def := N;
8479 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8480 Set_Default_SSO (Derived_Type);
8481
8482 else
8483 Type_Def := Type_Definition (N);
8484
8485 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8486 -- Parent_Base can be a private type or private extension. However,
8487 -- for tagged types with an extension the newly added fields are
8488 -- visible and hence the Derived_Type is always an E_Record_Type.
8489 -- (except that the parent may have its own private fields).
8490 -- For untagged types we preserve the Ekind of the Parent_Base.
8491
8492 if Present (Record_Extension_Part (Type_Def)) then
8493 Set_Ekind (Derived_Type, E_Record_Type);
8494 Set_Default_SSO (Derived_Type);
8495
8496 -- Create internal access types for components with anonymous
8497 -- access types.
8498
8499 if Ada_Version >= Ada_2005 then
8500 Check_Anonymous_Access_Components
8501 (N, Derived_Type, Derived_Type,
8502 Component_List (Record_Extension_Part (Type_Def)));
8503 end if;
8504
8505 else
8506 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8507 end if;
8508 end if;
8509
8510 -- Indic can either be an N_Identifier if the subtype indication
8511 -- contains no constraint or an N_Subtype_Indication if the subtype
8512 -- indication has a constraint.
8513
8514 Indic := Subtype_Indication (Type_Def);
8515 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8516
8517 -- Check that the type has visible discriminants. The type may be
8518 -- a private type with unknown discriminants whose full view has
8519 -- discriminants which are invisible.
8520
8521 if Constraint_Present then
8522 if not Has_Discriminants (Parent_Base)
8523 or else
8524 (Has_Unknown_Discriminants (Parent_Base)
8525 and then Is_Private_Type (Parent_Base))
8526 then
8527 Error_Msg_N
8528 ("invalid constraint: type has no discriminant",
8529 Constraint (Indic));
8530
8531 Constraint_Present := False;
8532 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8533
8534 elsif Is_Constrained (Parent_Type) then
8535 Error_Msg_N
8536 ("invalid constraint: parent type is already constrained",
8537 Constraint (Indic));
8538
8539 Constraint_Present := False;
8540 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8541 end if;
8542 end if;
8543
8544 -- STEP 0b: If needed, apply transformation given in point 5. above
8545
8546 if not Private_Extension
8547 and then Has_Discriminants (Parent_Type)
8548 and then not Discriminant_Specs
8549 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8550 then
8551 -- First, we must analyze the constraint (see comment in point 5.)
8552 -- The constraint may come from the subtype indication of the full
8553 -- declaration.
8554
8555 if Constraint_Present then
8556 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8557
8558 -- If there is no explicit constraint, there might be one that is
8559 -- inherited from a constrained parent type. In that case verify that
8560 -- it conforms to the constraint in the partial view. In perverse
8561 -- cases the parent subtypes of the partial and full view can have
8562 -- different constraints.
8563
8564 elsif Present (Stored_Constraint (Parent_Type)) then
8565 New_Discrs := Stored_Constraint (Parent_Type);
8566
8567 else
8568 New_Discrs := No_Elist;
8569 end if;
8570
8571 if Has_Discriminants (Derived_Type)
8572 and then Has_Private_Declaration (Derived_Type)
8573 and then Present (Discriminant_Constraint (Derived_Type))
8574 and then Present (New_Discrs)
8575 then
8576 -- Verify that constraints of the full view statically match
8577 -- those given in the partial view.
8578
8579 declare
8580 C1, C2 : Elmt_Id;
8581
8582 begin
8583 C1 := First_Elmt (New_Discrs);
8584 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8585 while Present (C1) and then Present (C2) loop
8586 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8587 or else
8588 (Is_OK_Static_Expression (Node (C1))
8589 and then Is_OK_Static_Expression (Node (C2))
8590 and then
8591 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8592 then
8593 null;
8594
8595 else
8596 if Constraint_Present then
8597 Error_Msg_N
8598 ("constraint not conformant to previous declaration",
8599 Node (C1));
8600 else
8601 Error_Msg_N
8602 ("constraint of full view is incompatible "
8603 & "with partial view", N);
8604 end if;
8605 end if;
8606
8607 Next_Elmt (C1);
8608 Next_Elmt (C2);
8609 end loop;
8610 end;
8611 end if;
8612
8613 -- Insert and analyze the declaration for the unconstrained base type
8614
8615 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8616
8617 New_Decl :=
8618 Make_Full_Type_Declaration (Loc,
8619 Defining_Identifier => New_Base,
8620 Type_Definition =>
8621 Make_Derived_Type_Definition (Loc,
8622 Abstract_Present => Abstract_Present (Type_Def),
8623 Limited_Present => Limited_Present (Type_Def),
8624 Subtype_Indication =>
8625 New_Occurrence_Of (Parent_Base, Loc),
8626 Record_Extension_Part =>
8627 Relocate_Node (Record_Extension_Part (Type_Def)),
8628 Interface_List => Interface_List (Type_Def)));
8629
8630 Set_Parent (New_Decl, Parent (N));
8631 Mark_Rewrite_Insertion (New_Decl);
8632 Insert_Before (N, New_Decl);
8633
8634 -- In the extension case, make sure ancestor is frozen appropriately
8635 -- (see also non-discriminated case below).
8636
8637 if Present (Record_Extension_Part (Type_Def))
8638 or else Is_Interface (Parent_Base)
8639 then
8640 Freeze_Before (New_Decl, Parent_Type);
8641 end if;
8642
8643 -- Note that this call passes False for the Derive_Subps parameter
8644 -- because subprogram derivation is deferred until after creating
8645 -- the subtype (see below).
8646
8647 Build_Derived_Type
8648 (New_Decl, Parent_Base, New_Base,
8649 Is_Completion => False, Derive_Subps => False);
8650
8651 -- ??? This needs re-examination to determine whether the
8652 -- above call can simply be replaced by a call to Analyze.
8653
8654 Set_Analyzed (New_Decl);
8655
8656 -- Insert and analyze the declaration for the constrained subtype
8657
8658 if Constraint_Present then
8659 New_Indic :=
8660 Make_Subtype_Indication (Loc,
8661 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8662 Constraint => Relocate_Node (Constraint (Indic)));
8663
8664 else
8665 declare
8666 Constr_List : constant List_Id := New_List;
8667 C : Elmt_Id;
8668 Expr : Node_Id;
8669
8670 begin
8671 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8672 while Present (C) loop
8673 Expr := Node (C);
8674
8675 -- It is safe here to call New_Copy_Tree since we called
8676 -- Force_Evaluation on each constraint previously
8677 -- in Build_Discriminant_Constraints.
8678
8679 Append (New_Copy_Tree (Expr), To => Constr_List);
8680
8681 Next_Elmt (C);
8682 end loop;
8683
8684 New_Indic :=
8685 Make_Subtype_Indication (Loc,
8686 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8687 Constraint =>
8688 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8689 end;
8690 end if;
8691
8692 Rewrite (N,
8693 Make_Subtype_Declaration (Loc,
8694 Defining_Identifier => Derived_Type,
8695 Subtype_Indication => New_Indic));
8696
8697 Analyze (N);
8698
8699 -- Derivation of subprograms must be delayed until the full subtype
8700 -- has been established, to ensure proper overriding of subprograms
8701 -- inherited by full types. If the derivations occurred as part of
8702 -- the call to Build_Derived_Type above, then the check for type
8703 -- conformance would fail because earlier primitive subprograms
8704 -- could still refer to the full type prior the change to the new
8705 -- subtype and hence would not match the new base type created here.
8706 -- Subprograms are not derived, however, when Derive_Subps is False
8707 -- (since otherwise there could be redundant derivations).
8708
8709 if Derive_Subps then
8710 Derive_Subprograms (Parent_Type, Derived_Type);
8711 end if;
8712
8713 -- For tagged types the Discriminant_Constraint of the new base itype
8714 -- is inherited from the first subtype so that no subtype conformance
8715 -- problem arise when the first subtype overrides primitive
8716 -- operations inherited by the implicit base type.
8717
8718 if Is_Tagged then
8719 Set_Discriminant_Constraint
8720 (New_Base, Discriminant_Constraint (Derived_Type));
8721 end if;
8722
8723 return;
8724 end if;
8725
8726 -- If we get here Derived_Type will have no discriminants or it will be
8727 -- a discriminated unconstrained base type.
8728
8729 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8730
8731 if Is_Tagged then
8732
8733 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8734 -- The declaration of a specific descendant of an interface type
8735 -- freezes the interface type (RM 13.14).
8736
8737 if not Private_Extension or else Is_Interface (Parent_Base) then
8738 Freeze_Before (N, Parent_Type);
8739 end if;
8740
8741 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8742 -- cannot be declared at a deeper level than its parent type is
8743 -- removed. The check on derivation within a generic body is also
8744 -- relaxed, but there's a restriction that a derived tagged type
8745 -- cannot be declared in a generic body if it's derived directly
8746 -- or indirectly from a formal type of that generic.
8747
8748 if Ada_Version >= Ada_2005 then
8749 if Present (Enclosing_Generic_Body (Derived_Type)) then
8750 declare
8751 Ancestor_Type : Entity_Id;
8752
8753 begin
8754 -- Check to see if any ancestor of the derived type is a
8755 -- formal type.
8756
8757 Ancestor_Type := Parent_Type;
8758 while not Is_Generic_Type (Ancestor_Type)
8759 and then Etype (Ancestor_Type) /= Ancestor_Type
8760 loop
8761 Ancestor_Type := Etype (Ancestor_Type);
8762 end loop;
8763
8764 -- If the derived type does have a formal type as an
8765 -- ancestor, then it's an error if the derived type is
8766 -- declared within the body of the generic unit that
8767 -- declares the formal type in its generic formal part. It's
8768 -- sufficient to check whether the ancestor type is declared
8769 -- inside the same generic body as the derived type (such as
8770 -- within a nested generic spec), in which case the
8771 -- derivation is legal. If the formal type is declared
8772 -- outside of that generic body, then it's guaranteed that
8773 -- the derived type is declared within the generic body of
8774 -- the generic unit declaring the formal type.
8775
8776 if Is_Generic_Type (Ancestor_Type)
8777 and then Enclosing_Generic_Body (Ancestor_Type) /=
8778 Enclosing_Generic_Body (Derived_Type)
8779 then
8780 Error_Msg_NE
8781 ("parent type of& must not be descendant of formal type"
8782 & " of an enclosing generic body",
8783 Indic, Derived_Type);
8784 end if;
8785 end;
8786 end if;
8787
8788 elsif Type_Access_Level (Derived_Type) /=
8789 Type_Access_Level (Parent_Type)
8790 and then not Is_Generic_Type (Derived_Type)
8791 then
8792 if Is_Controlled (Parent_Type) then
8793 Error_Msg_N
8794 ("controlled type must be declared at the library level",
8795 Indic);
8796 else
8797 Error_Msg_N
8798 ("type extension at deeper accessibility level than parent",
8799 Indic);
8800 end if;
8801
8802 else
8803 declare
8804 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8805 begin
8806 if Present (GB)
8807 and then GB /= Enclosing_Generic_Body (Parent_Base)
8808 then
8809 Error_Msg_NE
8810 ("parent type of& must not be outside generic body"
8811 & " (RM 3.9.1(4))",
8812 Indic, Derived_Type);
8813 end if;
8814 end;
8815 end if;
8816 end if;
8817
8818 -- Ada 2005 (AI-251)
8819
8820 if Ada_Version >= Ada_2005 and then Is_Tagged then
8821
8822 -- "The declaration of a specific descendant of an interface type
8823 -- freezes the interface type" (RM 13.14).
8824
8825 declare
8826 Iface : Node_Id;
8827 begin
8828 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8829 Iface := First (Interface_List (Type_Def));
8830 while Present (Iface) loop
8831 Freeze_Before (N, Etype (Iface));
8832 Next (Iface);
8833 end loop;
8834 end if;
8835 end;
8836 end if;
8837
8838 -- STEP 1b : preliminary cleanup of the full view of private types
8839
8840 -- If the type is already marked as having discriminants, then it's the
8841 -- completion of a private type or private extension and we need to
8842 -- retain the discriminants from the partial view if the current
8843 -- declaration has Discriminant_Specifications so that we can verify
8844 -- conformance. However, we must remove any existing components that
8845 -- were inherited from the parent (and attached in Copy_And_Swap)
8846 -- because the full type inherits all appropriate components anyway, and
8847 -- we do not want the partial view's components interfering.
8848
8849 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8850 Discrim := First_Discriminant (Derived_Type);
8851 loop
8852 Last_Discrim := Discrim;
8853 Next_Discriminant (Discrim);
8854 exit when No (Discrim);
8855 end loop;
8856
8857 Set_Last_Entity (Derived_Type, Last_Discrim);
8858
8859 -- In all other cases wipe out the list of inherited components (even
8860 -- inherited discriminants), it will be properly rebuilt here.
8861
8862 else
8863 Set_First_Entity (Derived_Type, Empty);
8864 Set_Last_Entity (Derived_Type, Empty);
8865 end if;
8866
8867 -- STEP 1c: Initialize some flags for the Derived_Type
8868
8869 -- The following flags must be initialized here so that
8870 -- Process_Discriminants can check that discriminants of tagged types do
8871 -- not have a default initial value and that access discriminants are
8872 -- only specified for limited records. For completeness, these flags are
8873 -- also initialized along with all the other flags below.
8874
8875 -- AI-419: Limitedness is not inherited from an interface parent, so to
8876 -- be limited in that case the type must be explicitly declared as
8877 -- limited. However, task and protected interfaces are always limited.
8878
8879 if Limited_Present (Type_Def) then
8880 Set_Is_Limited_Record (Derived_Type);
8881
8882 elsif Is_Limited_Record (Parent_Type)
8883 or else (Present (Full_View (Parent_Type))
8884 and then Is_Limited_Record (Full_View (Parent_Type)))
8885 then
8886 if not Is_Interface (Parent_Type)
8887 or else Is_Synchronized_Interface (Parent_Type)
8888 or else Is_Protected_Interface (Parent_Type)
8889 or else Is_Task_Interface (Parent_Type)
8890 then
8891 Set_Is_Limited_Record (Derived_Type);
8892 end if;
8893 end if;
8894
8895 -- STEP 2a: process discriminants of derived type if any
8896
8897 Push_Scope (Derived_Type);
8898
8899 if Discriminant_Specs then
8900 Set_Has_Unknown_Discriminants (Derived_Type, False);
8901
8902 -- The following call initializes fields Has_Discriminants and
8903 -- Discriminant_Constraint, unless we are processing the completion
8904 -- of a private type declaration.
8905
8906 Check_Or_Process_Discriminants (N, Derived_Type);
8907
8908 -- For untagged types, the constraint on the Parent_Type must be
8909 -- present and is used to rename the discriminants.
8910
8911 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8912 Error_Msg_N ("untagged parent must have discriminants", Indic);
8913
8914 elsif not Is_Tagged and then not Constraint_Present then
8915 Error_Msg_N
8916 ("discriminant constraint needed for derived untagged records",
8917 Indic);
8918
8919 -- Otherwise the parent subtype must be constrained unless we have a
8920 -- private extension.
8921
8922 elsif not Constraint_Present
8923 and then not Private_Extension
8924 and then not Is_Constrained (Parent_Type)
8925 then
8926 Error_Msg_N
8927 ("unconstrained type not allowed in this context", Indic);
8928
8929 elsif Constraint_Present then
8930 -- The following call sets the field Corresponding_Discriminant
8931 -- for the discriminants in the Derived_Type.
8932
8933 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8934
8935 -- For untagged types all new discriminants must rename
8936 -- discriminants in the parent. For private extensions new
8937 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8938
8939 Discrim := First_Discriminant (Derived_Type);
8940 while Present (Discrim) loop
8941 if not Is_Tagged
8942 and then No (Corresponding_Discriminant (Discrim))
8943 then
8944 Error_Msg_N
8945 ("new discriminants must constrain old ones", Discrim);
8946
8947 elsif Private_Extension
8948 and then Present (Corresponding_Discriminant (Discrim))
8949 then
8950 Error_Msg_N
8951 ("only static constraints allowed for parent"
8952 & " discriminants in the partial view", Indic);
8953 exit;
8954 end if;
8955
8956 -- If a new discriminant is used in the constraint, then its
8957 -- subtype must be statically compatible with the parent
8958 -- discriminant's subtype (3.7(15)).
8959
8960 -- However, if the record contains an array constrained by
8961 -- the discriminant but with some different bound, the compiler
8962 -- tries to create a smaller range for the discriminant type.
8963 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8964 -- the discriminant type is a scalar type, the check must use
8965 -- the original discriminant type in the parent declaration.
8966
8967 declare
8968 Corr_Disc : constant Entity_Id :=
8969 Corresponding_Discriminant (Discrim);
8970 Disc_Type : constant Entity_Id := Etype (Discrim);
8971 Corr_Type : Entity_Id;
8972
8973 begin
8974 if Present (Corr_Disc) then
8975 if Is_Scalar_Type (Disc_Type) then
8976 Corr_Type :=
8977 Entity (Discriminant_Type (Parent (Corr_Disc)));
8978 else
8979 Corr_Type := Etype (Corr_Disc);
8980 end if;
8981
8982 if not
8983 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8984 then
8985 Error_Msg_N
8986 ("subtype must be compatible "
8987 & "with parent discriminant",
8988 Discrim);
8989 end if;
8990 end if;
8991 end;
8992
8993 Next_Discriminant (Discrim);
8994 end loop;
8995
8996 -- Check whether the constraints of the full view statically
8997 -- match those imposed by the parent subtype [7.3(13)].
8998
8999 if Present (Stored_Constraint (Derived_Type)) then
9000 declare
9001 C1, C2 : Elmt_Id;
9002
9003 begin
9004 C1 := First_Elmt (Discs);
9005 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9006 while Present (C1) and then Present (C2) loop
9007 if not
9008 Fully_Conformant_Expressions (Node (C1), Node (C2))
9009 then
9010 Error_Msg_N
9011 ("not conformant with previous declaration",
9012 Node (C1));
9013 end if;
9014
9015 Next_Elmt (C1);
9016 Next_Elmt (C2);
9017 end loop;
9018 end;
9019 end if;
9020 end if;
9021
9022 -- STEP 2b: No new discriminants, inherit discriminants if any
9023
9024 else
9025 if Private_Extension then
9026 Set_Has_Unknown_Discriminants
9027 (Derived_Type,
9028 Has_Unknown_Discriminants (Parent_Type)
9029 or else Unknown_Discriminants_Present (N));
9030
9031 -- The partial view of the parent may have unknown discriminants,
9032 -- but if the full view has discriminants and the parent type is
9033 -- in scope they must be inherited.
9034
9035 elsif Has_Unknown_Discriminants (Parent_Type)
9036 and then
9037 (not Has_Discriminants (Parent_Type)
9038 or else not In_Open_Scopes (Scope (Parent_Type)))
9039 then
9040 Set_Has_Unknown_Discriminants (Derived_Type);
9041 end if;
9042
9043 if not Has_Unknown_Discriminants (Derived_Type)
9044 and then not Has_Unknown_Discriminants (Parent_Base)
9045 and then Has_Discriminants (Parent_Type)
9046 then
9047 Inherit_Discrims := True;
9048 Set_Has_Discriminants
9049 (Derived_Type, True);
9050 Set_Discriminant_Constraint
9051 (Derived_Type, Discriminant_Constraint (Parent_Base));
9052 end if;
9053
9054 -- The following test is true for private types (remember
9055 -- transformation 5. is not applied to those) and in an error
9056 -- situation.
9057
9058 if Constraint_Present then
9059 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9060 end if;
9061
9062 -- For now mark a new derived type as constrained only if it has no
9063 -- discriminants. At the end of Build_Derived_Record_Type we properly
9064 -- set this flag in the case of private extensions. See comments in
9065 -- point 9. just before body of Build_Derived_Record_Type.
9066
9067 Set_Is_Constrained
9068 (Derived_Type,
9069 not (Inherit_Discrims
9070 or else Has_Unknown_Discriminants (Derived_Type)));
9071 end if;
9072
9073 -- STEP 3: initialize fields of derived type
9074
9075 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9076 Set_Stored_Constraint (Derived_Type, No_Elist);
9077
9078 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9079 -- but cannot be interfaces
9080
9081 if not Private_Extension
9082 and then Ekind (Derived_Type) /= E_Private_Type
9083 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9084 then
9085 if Interface_Present (Type_Def) then
9086 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9087 end if;
9088
9089 Set_Interfaces (Derived_Type, No_Elist);
9090 end if;
9091
9092 -- Fields inherited from the Parent_Type
9093
9094 Set_Has_Specified_Layout
9095 (Derived_Type, Has_Specified_Layout (Parent_Type));
9096 Set_Is_Limited_Composite
9097 (Derived_Type, Is_Limited_Composite (Parent_Type));
9098 Set_Is_Private_Composite
9099 (Derived_Type, Is_Private_Composite (Parent_Type));
9100
9101 if Is_Tagged_Type (Parent_Type) then
9102 Set_No_Tagged_Streams_Pragma
9103 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9104 end if;
9105
9106 -- Fields inherited from the Parent_Base
9107
9108 Set_Has_Controlled_Component
9109 (Derived_Type, Has_Controlled_Component (Parent_Base));
9110 Set_Has_Non_Standard_Rep
9111 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9112 Set_Has_Primitive_Operations
9113 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9114
9115 -- Fields inherited from the Parent_Base in the non-private case
9116
9117 if Ekind (Derived_Type) = E_Record_Type then
9118 Set_Has_Complex_Representation
9119 (Derived_Type, Has_Complex_Representation (Parent_Base));
9120 end if;
9121
9122 -- Fields inherited from the Parent_Base for record types
9123
9124 if Is_Record_Type (Derived_Type) then
9125 declare
9126 Parent_Full : Entity_Id;
9127
9128 begin
9129 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
9130 -- Parent_Base can be a private type or private extension. Go
9131 -- to the full view here to get the E_Record_Type specific flags.
9132
9133 if Present (Full_View (Parent_Base)) then
9134 Parent_Full := Full_View (Parent_Base);
9135 else
9136 Parent_Full := Parent_Base;
9137 end if;
9138
9139 Set_OK_To_Reorder_Components
9140 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
9141 end;
9142 end if;
9143
9144 -- Set fields for private derived types
9145
9146 if Is_Private_Type (Derived_Type) then
9147 Set_Depends_On_Private (Derived_Type, True);
9148 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9149
9150 -- Inherit fields from non private record types. If this is the
9151 -- completion of a derivation from a private type, the parent itself
9152 -- is private, and the attributes come from its full view, which must
9153 -- be present.
9154
9155 else
9156 if Is_Private_Type (Parent_Base)
9157 and then not Is_Record_Type (Parent_Base)
9158 then
9159 Set_Component_Alignment
9160 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
9161 Set_C_Pass_By_Copy
9162 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
9163 else
9164 Set_Component_Alignment
9165 (Derived_Type, Component_Alignment (Parent_Base));
9166 Set_C_Pass_By_Copy
9167 (Derived_Type, C_Pass_By_Copy (Parent_Base));
9168 end if;
9169 end if;
9170
9171 -- Set fields for tagged types
9172
9173 if Is_Tagged then
9174 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9175
9176 -- All tagged types defined in Ada.Finalization are controlled
9177
9178 if Chars (Scope (Derived_Type)) = Name_Finalization
9179 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9180 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9181 then
9182 Set_Is_Controlled (Derived_Type);
9183 else
9184 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
9185 end if;
9186
9187 -- Minor optimization: there is no need to generate the class-wide
9188 -- entity associated with an underlying record view.
9189
9190 if not Is_Underlying_Record_View (Derived_Type) then
9191 Make_Class_Wide_Type (Derived_Type);
9192 end if;
9193
9194 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9195
9196 if Has_Discriminants (Derived_Type)
9197 and then Constraint_Present
9198 then
9199 Set_Stored_Constraint
9200 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9201 end if;
9202
9203 if Ada_Version >= Ada_2005 then
9204 declare
9205 Ifaces_List : Elist_Id;
9206
9207 begin
9208 -- Checks rules 3.9.4 (13/2 and 14/2)
9209
9210 if Comes_From_Source (Derived_Type)
9211 and then not Is_Private_Type (Derived_Type)
9212 and then Is_Interface (Parent_Type)
9213 and then not Is_Interface (Derived_Type)
9214 then
9215 if Is_Task_Interface (Parent_Type) then
9216 Error_Msg_N
9217 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9218 Derived_Type);
9219
9220 elsif Is_Protected_Interface (Parent_Type) then
9221 Error_Msg_N
9222 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9223 Derived_Type);
9224 end if;
9225 end if;
9226
9227 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9228
9229 Check_Interfaces (N, Type_Def);
9230
9231 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9232 -- not already in the parents.
9233
9234 Collect_Interfaces
9235 (T => Derived_Type,
9236 Ifaces_List => Ifaces_List,
9237 Exclude_Parents => True);
9238
9239 Set_Interfaces (Derived_Type, Ifaces_List);
9240
9241 -- If the derived type is the anonymous type created for
9242 -- a declaration whose parent has a constraint, propagate
9243 -- the interface list to the source type. This must be done
9244 -- prior to the completion of the analysis of the source type
9245 -- because the components in the extension may contain current
9246 -- instances whose legality depends on some ancestor.
9247
9248 if Is_Itype (Derived_Type) then
9249 declare
9250 Def : constant Node_Id :=
9251 Associated_Node_For_Itype (Derived_Type);
9252 begin
9253 if Present (Def)
9254 and then Nkind (Def) = N_Full_Type_Declaration
9255 then
9256 Set_Interfaces
9257 (Defining_Identifier (Def), Ifaces_List);
9258 end if;
9259 end;
9260 end if;
9261
9262 -- A type extension is automatically Ghost when one of its
9263 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9264 -- also inherited when the parent type is Ghost, but this is
9265 -- done in Build_Derived_Type as the mechanism also handles
9266 -- untagged derivations.
9267
9268 if Implements_Ghost_Interface (Derived_Type) then
9269 Set_Is_Ghost_Entity (Derived_Type);
9270 end if;
9271 end;
9272 end if;
9273
9274 else
9275 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
9276 Set_Has_Non_Standard_Rep
9277 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9278 end if;
9279
9280 -- STEP 4: Inherit components from the parent base and constrain them.
9281 -- Apply the second transformation described in point 6. above.
9282
9283 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9284 or else not Has_Discriminants (Parent_Type)
9285 or else not Is_Constrained (Parent_Type)
9286 then
9287 Constrs := Discs;
9288 else
9289 Constrs := Discriminant_Constraint (Parent_Type);
9290 end if;
9291
9292 Assoc_List :=
9293 Inherit_Components
9294 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9295
9296 -- STEP 5a: Copy the parent record declaration for untagged types
9297
9298 Set_Has_Implicit_Dereference
9299 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9300
9301 if not Is_Tagged then
9302
9303 -- Discriminant_Constraint (Derived_Type) has been properly
9304 -- constructed. Save it and temporarily set it to Empty because we
9305 -- do not want the call to New_Copy_Tree below to mess this list.
9306
9307 if Has_Discriminants (Derived_Type) then
9308 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9309 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9310 else
9311 Save_Discr_Constr := No_Elist;
9312 end if;
9313
9314 -- Save the Etype field of Derived_Type. It is correctly set now,
9315 -- but the call to New_Copy tree may remap it to point to itself,
9316 -- which is not what we want. Ditto for the Next_Entity field.
9317
9318 Save_Etype := Etype (Derived_Type);
9319 Save_Next_Entity := Next_Entity (Derived_Type);
9320
9321 -- Assoc_List maps all stored discriminants in the Parent_Base to
9322 -- stored discriminants in the Derived_Type. It is fundamental that
9323 -- no types or itypes with discriminants other than the stored
9324 -- discriminants appear in the entities declared inside
9325 -- Derived_Type, since the back end cannot deal with it.
9326
9327 New_Decl :=
9328 New_Copy_Tree
9329 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9330
9331 -- Restore the fields saved prior to the New_Copy_Tree call
9332 -- and compute the stored constraint.
9333
9334 Set_Etype (Derived_Type, Save_Etype);
9335 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9336
9337 if Has_Discriminants (Derived_Type) then
9338 Set_Discriminant_Constraint
9339 (Derived_Type, Save_Discr_Constr);
9340 Set_Stored_Constraint
9341 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9342 Replace_Components (Derived_Type, New_Decl);
9343 end if;
9344
9345 -- Insert the new derived type declaration
9346
9347 Rewrite (N, New_Decl);
9348
9349 -- STEP 5b: Complete the processing for record extensions in generics
9350
9351 -- There is no completion for record extensions declared in the
9352 -- parameter part of a generic, so we need to complete processing for
9353 -- these generic record extensions here. The Record_Type_Definition call
9354 -- will change the Ekind of the components from E_Void to E_Component.
9355
9356 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9357 Record_Type_Definition (Empty, Derived_Type);
9358
9359 -- STEP 5c: Process the record extension for non private tagged types
9360
9361 elsif not Private_Extension then
9362 Expand_Record_Extension (Derived_Type, Type_Def);
9363
9364 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9365 -- derived type to propagate some semantic information. This led
9366 -- to other ASIS failures and has been removed.
9367
9368 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9369 -- implemented interfaces if we are in expansion mode
9370
9371 if Expander_Active
9372 and then Has_Interfaces (Derived_Type)
9373 then
9374 Add_Interface_Tag_Components (N, Derived_Type);
9375 end if;
9376
9377 -- Analyze the record extension
9378
9379 Record_Type_Definition
9380 (Record_Extension_Part (Type_Def), Derived_Type);
9381 end if;
9382
9383 End_Scope;
9384
9385 -- Nothing else to do if there is an error in the derivation.
9386 -- An unusual case: the full view may be derived from a type in an
9387 -- instance, when the partial view was used illegally as an actual
9388 -- in that instance, leading to a circular definition.
9389
9390 if Etype (Derived_Type) = Any_Type
9391 or else Etype (Parent_Type) = Derived_Type
9392 then
9393 return;
9394 end if;
9395
9396 -- Set delayed freeze and then derive subprograms, we need to do
9397 -- this in this order so that derived subprograms inherit the
9398 -- derived freeze if necessary.
9399
9400 Set_Has_Delayed_Freeze (Derived_Type);
9401
9402 if Derive_Subps then
9403 Derive_Subprograms (Parent_Type, Derived_Type);
9404 end if;
9405
9406 -- If we have a private extension which defines a constrained derived
9407 -- type mark as constrained here after we have derived subprograms. See
9408 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9409
9410 if Private_Extension and then Inherit_Discrims then
9411 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9412 Set_Is_Constrained (Derived_Type, True);
9413 Set_Discriminant_Constraint (Derived_Type, Discs);
9414
9415 elsif Is_Constrained (Parent_Type) then
9416 Set_Is_Constrained
9417 (Derived_Type, True);
9418 Set_Discriminant_Constraint
9419 (Derived_Type, Discriminant_Constraint (Parent_Type));
9420 end if;
9421 end if;
9422
9423 -- Update the class-wide type, which shares the now-completed entity
9424 -- list with its specific type. In case of underlying record views,
9425 -- we do not generate the corresponding class wide entity.
9426
9427 if Is_Tagged
9428 and then not Is_Underlying_Record_View (Derived_Type)
9429 then
9430 Set_First_Entity
9431 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9432 Set_Last_Entity
9433 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9434 end if;
9435
9436 Check_Function_Writable_Actuals (N);
9437 end Build_Derived_Record_Type;
9438
9439 ------------------------
9440 -- Build_Derived_Type --
9441 ------------------------
9442
9443 procedure Build_Derived_Type
9444 (N : Node_Id;
9445 Parent_Type : Entity_Id;
9446 Derived_Type : Entity_Id;
9447 Is_Completion : Boolean;
9448 Derive_Subps : Boolean := True)
9449 is
9450 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9451
9452 begin
9453 -- Set common attributes
9454
9455 Set_Scope (Derived_Type, Current_Scope);
9456
9457 Set_Etype (Derived_Type, Parent_Base);
9458 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9459 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9460
9461 Set_Size_Info (Derived_Type, Parent_Type);
9462 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9463 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
9464 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9465
9466 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9467 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9468
9469 if Is_Tagged_Type (Derived_Type) then
9470 Set_No_Tagged_Streams_Pragma
9471 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9472 end if;
9473
9474 -- If the parent has primitive routines, set the derived type link
9475
9476 if Has_Primitive_Operations (Parent_Type) then
9477 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9478 end if;
9479
9480 -- If the parent type is a private subtype, the convention on the base
9481 -- type may be set in the private part, and not propagated to the
9482 -- subtype until later, so we obtain the convention from the base type.
9483
9484 Set_Convention (Derived_Type, Convention (Parent_Base));
9485
9486 -- Set SSO default for record or array type
9487
9488 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9489 and then Is_Base_Type (Derived_Type)
9490 then
9491 Set_Default_SSO (Derived_Type);
9492 end if;
9493
9494 -- A derived type inherits the Default_Initial_Condition pragma coming
9495 -- from any parent type within the derivation chain.
9496
9497 if Has_DIC (Parent_Type) then
9498 Set_Has_Inherited_DIC (Derived_Type);
9499 end if;
9500
9501 -- A derived type inherits any class-wide invariants coming from a
9502 -- parent type or an interface. Note that the invariant procedure of
9503 -- the parent type should not be inherited because the derived type may
9504 -- define invariants of its own.
9505
9506 if not Is_Interface (Derived_Type) then
9507 if Has_Inherited_Invariants (Parent_Type)
9508 or else Has_Inheritable_Invariants (Parent_Type)
9509 then
9510 Set_Has_Inherited_Invariants (Derived_Type);
9511
9512 elsif Is_Concurrent_Type (Derived_Type)
9513 or else Is_Tagged_Type (Derived_Type)
9514 then
9515 declare
9516 Iface : Entity_Id;
9517 Ifaces : Elist_Id;
9518 Iface_Elmt : Elmt_Id;
9519
9520 begin
9521 Collect_Interfaces
9522 (T => Derived_Type,
9523 Ifaces_List => Ifaces,
9524 Exclude_Parents => True);
9525
9526 if Present (Ifaces) then
9527 Iface_Elmt := First_Elmt (Ifaces);
9528 while Present (Iface_Elmt) loop
9529 Iface := Node (Iface_Elmt);
9530
9531 if Has_Inheritable_Invariants (Iface) then
9532 Set_Has_Inherited_Invariants (Derived_Type);
9533 exit;
9534 end if;
9535
9536 Next_Elmt (Iface_Elmt);
9537 end loop;
9538 end if;
9539 end;
9540 end if;
9541 end if;
9542
9543 -- We similarly inherit predicates. Note that for scalar derived types
9544 -- the predicate is inherited from the first subtype, and not from its
9545 -- (anonymous) base type.
9546
9547 if Has_Predicates (Parent_Type)
9548 or else Has_Predicates (First_Subtype (Parent_Type))
9549 then
9550 Set_Has_Predicates (Derived_Type);
9551 end if;
9552
9553 -- The derived type inherits the representation clauses of the parent
9554
9555 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9556
9557 -- If the parent type has delayed rep aspects, then mark the derived
9558 -- type as possibly inheriting a delayed rep aspect.
9559
9560 if Has_Delayed_Rep_Aspects (Parent_Type) then
9561 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9562 end if;
9563
9564 -- A derived type becomes Ghost when its parent type is also Ghost
9565 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9566 -- directly inherited because the Ghost policy in effect may differ.
9567
9568 if Is_Ghost_Entity (Parent_Type) then
9569 Set_Is_Ghost_Entity (Derived_Type);
9570 end if;
9571
9572 -- Type dependent processing
9573
9574 case Ekind (Parent_Type) is
9575 when Numeric_Kind =>
9576 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9577
9578 when Array_Kind =>
9579 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9580
9581 when Class_Wide_Kind
9582 | E_Record_Subtype
9583 | E_Record_Type
9584 =>
9585 Build_Derived_Record_Type
9586 (N, Parent_Type, Derived_Type, Derive_Subps);
9587 return;
9588
9589 when Enumeration_Kind =>
9590 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9591
9592 when Access_Kind =>
9593 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9594
9595 when Incomplete_Or_Private_Kind =>
9596 Build_Derived_Private_Type
9597 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9598
9599 -- For discriminated types, the derivation includes deriving
9600 -- primitive operations. For others it is done below.
9601
9602 if Is_Tagged_Type (Parent_Type)
9603 or else Has_Discriminants (Parent_Type)
9604 or else (Present (Full_View (Parent_Type))
9605 and then Has_Discriminants (Full_View (Parent_Type)))
9606 then
9607 return;
9608 end if;
9609
9610 when Concurrent_Kind =>
9611 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9612
9613 when others =>
9614 raise Program_Error;
9615 end case;
9616
9617 -- Nothing more to do if some error occurred
9618
9619 if Etype (Derived_Type) = Any_Type then
9620 return;
9621 end if;
9622
9623 -- Set delayed freeze and then derive subprograms, we need to do this
9624 -- in this order so that derived subprograms inherit the derived freeze
9625 -- if necessary.
9626
9627 Set_Has_Delayed_Freeze (Derived_Type);
9628
9629 if Derive_Subps then
9630 Derive_Subprograms (Parent_Type, Derived_Type);
9631 end if;
9632
9633 Set_Has_Primitive_Operations
9634 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9635 end Build_Derived_Type;
9636
9637 -----------------------
9638 -- Build_Discriminal --
9639 -----------------------
9640
9641 procedure Build_Discriminal (Discrim : Entity_Id) is
9642 D_Minal : Entity_Id;
9643 CR_Disc : Entity_Id;
9644
9645 begin
9646 -- A discriminal has the same name as the discriminant
9647
9648 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9649
9650 Set_Ekind (D_Minal, E_In_Parameter);
9651 Set_Mechanism (D_Minal, Default_Mechanism);
9652 Set_Etype (D_Minal, Etype (Discrim));
9653 Set_Scope (D_Minal, Current_Scope);
9654 Set_Parent (D_Minal, Parent (Discrim));
9655
9656 Set_Discriminal (Discrim, D_Minal);
9657 Set_Discriminal_Link (D_Minal, Discrim);
9658
9659 -- For task types, build at once the discriminants of the corresponding
9660 -- record, which are needed if discriminants are used in entry defaults
9661 -- and in family bounds.
9662
9663 if Is_Concurrent_Type (Current_Scope)
9664 or else
9665 Is_Limited_Type (Current_Scope)
9666 then
9667 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9668
9669 Set_Ekind (CR_Disc, E_In_Parameter);
9670 Set_Mechanism (CR_Disc, Default_Mechanism);
9671 Set_Etype (CR_Disc, Etype (Discrim));
9672 Set_Scope (CR_Disc, Current_Scope);
9673 Set_Discriminal_Link (CR_Disc, Discrim);
9674 Set_CR_Discriminant (Discrim, CR_Disc);
9675 end if;
9676 end Build_Discriminal;
9677
9678 ------------------------------------
9679 -- Build_Discriminant_Constraints --
9680 ------------------------------------
9681
9682 function Build_Discriminant_Constraints
9683 (T : Entity_Id;
9684 Def : Node_Id;
9685 Derived_Def : Boolean := False) return Elist_Id
9686 is
9687 C : constant Node_Id := Constraint (Def);
9688 Nb_Discr : constant Nat := Number_Discriminants (T);
9689
9690 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9691 -- Saves the expression corresponding to a given discriminant in T
9692
9693 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9694 -- Return the Position number within array Discr_Expr of a discriminant
9695 -- D within the discriminant list of the discriminated type T.
9696
9697 procedure Process_Discriminant_Expression
9698 (Expr : Node_Id;
9699 D : Entity_Id);
9700 -- If this is a discriminant constraint on a partial view, do not
9701 -- generate an overflow check on the discriminant expression. The check
9702 -- will be generated when constraining the full view. Otherwise the
9703 -- backend creates duplicate symbols for the temporaries corresponding
9704 -- to the expressions to be checked, causing spurious assembler errors.
9705
9706 ------------------
9707 -- Pos_Of_Discr --
9708 ------------------
9709
9710 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9711 Disc : Entity_Id;
9712
9713 begin
9714 Disc := First_Discriminant (T);
9715 for J in Discr_Expr'Range loop
9716 if Disc = D then
9717 return J;
9718 end if;
9719
9720 Next_Discriminant (Disc);
9721 end loop;
9722
9723 -- Note: Since this function is called on discriminants that are
9724 -- known to belong to the discriminated type, falling through the
9725 -- loop with no match signals an internal compiler error.
9726
9727 raise Program_Error;
9728 end Pos_Of_Discr;
9729
9730 -------------------------------------
9731 -- Process_Discriminant_Expression --
9732 -------------------------------------
9733
9734 procedure Process_Discriminant_Expression
9735 (Expr : Node_Id;
9736 D : Entity_Id)
9737 is
9738 BDT : constant Entity_Id := Base_Type (Etype (D));
9739
9740 begin
9741 -- If this is a discriminant constraint on a partial view, do
9742 -- not generate an overflow on the discriminant expression. The
9743 -- check will be generated when constraining the full view.
9744
9745 if Is_Private_Type (T)
9746 and then Present (Full_View (T))
9747 then
9748 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9749 else
9750 Analyze_And_Resolve (Expr, BDT);
9751 end if;
9752 end Process_Discriminant_Expression;
9753
9754 -- Declarations local to Build_Discriminant_Constraints
9755
9756 Discr : Entity_Id;
9757 E : Entity_Id;
9758 Elist : constant Elist_Id := New_Elmt_List;
9759
9760 Constr : Node_Id;
9761 Expr : Node_Id;
9762 Id : Node_Id;
9763 Position : Nat;
9764 Found : Boolean;
9765
9766 Discrim_Present : Boolean := False;
9767
9768 -- Start of processing for Build_Discriminant_Constraints
9769
9770 begin
9771 -- The following loop will process positional associations only.
9772 -- For a positional association, the (single) discriminant is
9773 -- implicitly specified by position, in textual order (RM 3.7.2).
9774
9775 Discr := First_Discriminant (T);
9776 Constr := First (Constraints (C));
9777 for D in Discr_Expr'Range loop
9778 exit when Nkind (Constr) = N_Discriminant_Association;
9779
9780 if No (Constr) then
9781 Error_Msg_N ("too few discriminants given in constraint", C);
9782 return New_Elmt_List;
9783
9784 elsif Nkind (Constr) = N_Range
9785 or else (Nkind (Constr) = N_Attribute_Reference
9786 and then Attribute_Name (Constr) = Name_Range)
9787 then
9788 Error_Msg_N
9789 ("a range is not a valid discriminant constraint", Constr);
9790 Discr_Expr (D) := Error;
9791
9792 else
9793 Process_Discriminant_Expression (Constr, Discr);
9794 Discr_Expr (D) := Constr;
9795 end if;
9796
9797 Next_Discriminant (Discr);
9798 Next (Constr);
9799 end loop;
9800
9801 if No (Discr) and then Present (Constr) then
9802 Error_Msg_N ("too many discriminants given in constraint", Constr);
9803 return New_Elmt_List;
9804 end if;
9805
9806 -- Named associations can be given in any order, but if both positional
9807 -- and named associations are used in the same discriminant constraint,
9808 -- then positional associations must occur first, at their normal
9809 -- position. Hence once a named association is used, the rest of the
9810 -- discriminant constraint must use only named associations.
9811
9812 while Present (Constr) loop
9813
9814 -- Positional association forbidden after a named association
9815
9816 if Nkind (Constr) /= N_Discriminant_Association then
9817 Error_Msg_N ("positional association follows named one", Constr);
9818 return New_Elmt_List;
9819
9820 -- Otherwise it is a named association
9821
9822 else
9823 -- E records the type of the discriminants in the named
9824 -- association. All the discriminants specified in the same name
9825 -- association must have the same type.
9826
9827 E := Empty;
9828
9829 -- Search the list of discriminants in T to see if the simple name
9830 -- given in the constraint matches any of them.
9831
9832 Id := First (Selector_Names (Constr));
9833 while Present (Id) loop
9834 Found := False;
9835
9836 -- If Original_Discriminant is present, we are processing a
9837 -- generic instantiation and this is an instance node. We need
9838 -- to find the name of the corresponding discriminant in the
9839 -- actual record type T and not the name of the discriminant in
9840 -- the generic formal. Example:
9841
9842 -- generic
9843 -- type G (D : int) is private;
9844 -- package P is
9845 -- subtype W is G (D => 1);
9846 -- end package;
9847 -- type Rec (X : int) is record ... end record;
9848 -- package Q is new P (G => Rec);
9849
9850 -- At the point of the instantiation, formal type G is Rec
9851 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9852 -- which really looks like "subtype W is Rec (D => 1);" at
9853 -- the point of instantiation, we want to find the discriminant
9854 -- that corresponds to D in Rec, i.e. X.
9855
9856 if Present (Original_Discriminant (Id))
9857 and then In_Instance
9858 then
9859 Discr := Find_Corresponding_Discriminant (Id, T);
9860 Found := True;
9861
9862 else
9863 Discr := First_Discriminant (T);
9864 while Present (Discr) loop
9865 if Chars (Discr) = Chars (Id) then
9866 Found := True;
9867 exit;
9868 end if;
9869
9870 Next_Discriminant (Discr);
9871 end loop;
9872
9873 if not Found then
9874 Error_Msg_N ("& does not match any discriminant", Id);
9875 return New_Elmt_List;
9876
9877 -- If the parent type is a generic formal, preserve the
9878 -- name of the discriminant for subsequent instances.
9879 -- see comment at the beginning of this if statement.
9880
9881 elsif Is_Generic_Type (Root_Type (T)) then
9882 Set_Original_Discriminant (Id, Discr);
9883 end if;
9884 end if;
9885
9886 Position := Pos_Of_Discr (T, Discr);
9887
9888 if Present (Discr_Expr (Position)) then
9889 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9890
9891 else
9892 -- Each discriminant specified in the same named association
9893 -- must be associated with a separate copy of the
9894 -- corresponding expression.
9895
9896 if Present (Next (Id)) then
9897 Expr := New_Copy_Tree (Expression (Constr));
9898 Set_Parent (Expr, Parent (Expression (Constr)));
9899 else
9900 Expr := Expression (Constr);
9901 end if;
9902
9903 Discr_Expr (Position) := Expr;
9904 Process_Discriminant_Expression (Expr, Discr);
9905 end if;
9906
9907 -- A discriminant association with more than one discriminant
9908 -- name is only allowed if the named discriminants are all of
9909 -- the same type (RM 3.7.1(8)).
9910
9911 if E = Empty then
9912 E := Base_Type (Etype (Discr));
9913
9914 elsif Base_Type (Etype (Discr)) /= E then
9915 Error_Msg_N
9916 ("all discriminants in an association " &
9917 "must have the same type", Id);
9918 end if;
9919
9920 Next (Id);
9921 end loop;
9922 end if;
9923
9924 Next (Constr);
9925 end loop;
9926
9927 -- A discriminant constraint must provide exactly one value for each
9928 -- discriminant of the type (RM 3.7.1(8)).
9929
9930 for J in Discr_Expr'Range loop
9931 if No (Discr_Expr (J)) then
9932 Error_Msg_N ("too few discriminants given in constraint", C);
9933 return New_Elmt_List;
9934 end if;
9935 end loop;
9936
9937 -- Determine if there are discriminant expressions in the constraint
9938
9939 for J in Discr_Expr'Range loop
9940 if Denotes_Discriminant
9941 (Discr_Expr (J), Check_Concurrent => True)
9942 then
9943 Discrim_Present := True;
9944 end if;
9945 end loop;
9946
9947 -- Build an element list consisting of the expressions given in the
9948 -- discriminant constraint and apply the appropriate checks. The list
9949 -- is constructed after resolving any named discriminant associations
9950 -- and therefore the expressions appear in the textual order of the
9951 -- discriminants.
9952
9953 Discr := First_Discriminant (T);
9954 for J in Discr_Expr'Range loop
9955 if Discr_Expr (J) /= Error then
9956 Append_Elmt (Discr_Expr (J), Elist);
9957
9958 -- If any of the discriminant constraints is given by a
9959 -- discriminant and we are in a derived type declaration we
9960 -- have a discriminant renaming. Establish link between new
9961 -- and old discriminant. The new discriminant has an implicit
9962 -- dereference if the old one does.
9963
9964 if Denotes_Discriminant (Discr_Expr (J)) then
9965 if Derived_Def then
9966 declare
9967 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
9968
9969 begin
9970 Set_Corresponding_Discriminant (New_Discr, Discr);
9971 Set_Has_Implicit_Dereference (New_Discr,
9972 Has_Implicit_Dereference (Discr));
9973 end;
9974 end if;
9975
9976 -- Force the evaluation of non-discriminant expressions.
9977 -- If we have found a discriminant in the constraint 3.4(26)
9978 -- and 3.8(18) demand that no range checks are performed are
9979 -- after evaluation. If the constraint is for a component
9980 -- definition that has a per-object constraint, expressions are
9981 -- evaluated but not checked either. In all other cases perform
9982 -- a range check.
9983
9984 else
9985 if Discrim_Present then
9986 null;
9987
9988 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9989 and then Has_Per_Object_Constraint
9990 (Defining_Identifier (Parent (Parent (Def))))
9991 then
9992 null;
9993
9994 elsif Is_Access_Type (Etype (Discr)) then
9995 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9996
9997 else
9998 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9999 end if;
10000
10001 Force_Evaluation (Discr_Expr (J));
10002 end if;
10003
10004 -- Check that the designated type of an access discriminant's
10005 -- expression is not a class-wide type unless the discriminant's
10006 -- designated type is also class-wide.
10007
10008 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10009 and then not Is_Class_Wide_Type
10010 (Designated_Type (Etype (Discr)))
10011 and then Etype (Discr_Expr (J)) /= Any_Type
10012 and then Is_Class_Wide_Type
10013 (Designated_Type (Etype (Discr_Expr (J))))
10014 then
10015 Wrong_Type (Discr_Expr (J), Etype (Discr));
10016
10017 elsif Is_Access_Type (Etype (Discr))
10018 and then not Is_Access_Constant (Etype (Discr))
10019 and then Is_Access_Type (Etype (Discr_Expr (J)))
10020 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10021 then
10022 Error_Msg_NE
10023 ("constraint for discriminant& must be access to variable",
10024 Def, Discr);
10025 end if;
10026 end if;
10027
10028 Next_Discriminant (Discr);
10029 end loop;
10030
10031 return Elist;
10032 end Build_Discriminant_Constraints;
10033
10034 ---------------------------------
10035 -- Build_Discriminated_Subtype --
10036 ---------------------------------
10037
10038 procedure Build_Discriminated_Subtype
10039 (T : Entity_Id;
10040 Def_Id : Entity_Id;
10041 Elist : Elist_Id;
10042 Related_Nod : Node_Id;
10043 For_Access : Boolean := False)
10044 is
10045 Has_Discrs : constant Boolean := Has_Discriminants (T);
10046 Constrained : constant Boolean :=
10047 (Has_Discrs
10048 and then not Is_Empty_Elmt_List (Elist)
10049 and then not Is_Class_Wide_Type (T))
10050 or else Is_Constrained (T);
10051
10052 begin
10053 if Ekind (T) = E_Record_Type then
10054 if For_Access then
10055 Set_Ekind (Def_Id, E_Private_Subtype);
10056 Set_Is_For_Access_Subtype (Def_Id, True);
10057 else
10058 Set_Ekind (Def_Id, E_Record_Subtype);
10059 end if;
10060
10061 -- Inherit preelaboration flag from base, for types for which it
10062 -- may have been set: records, private types, protected types.
10063
10064 Set_Known_To_Have_Preelab_Init
10065 (Def_Id, Known_To_Have_Preelab_Init (T));
10066
10067 elsif Ekind (T) = E_Task_Type then
10068 Set_Ekind (Def_Id, E_Task_Subtype);
10069
10070 elsif Ekind (T) = E_Protected_Type then
10071 Set_Ekind (Def_Id, E_Protected_Subtype);
10072 Set_Known_To_Have_Preelab_Init
10073 (Def_Id, Known_To_Have_Preelab_Init (T));
10074
10075 elsif Is_Private_Type (T) then
10076 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10077 Set_Known_To_Have_Preelab_Init
10078 (Def_Id, Known_To_Have_Preelab_Init (T));
10079
10080 -- Private subtypes may have private dependents
10081
10082 Set_Private_Dependents (Def_Id, New_Elmt_List);
10083
10084 elsif Is_Class_Wide_Type (T) then
10085 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10086
10087 else
10088 -- Incomplete type. Attach subtype to list of dependents, to be
10089 -- completed with full view of parent type, unless is it the
10090 -- designated subtype of a record component within an init_proc.
10091 -- This last case arises for a component of an access type whose
10092 -- designated type is incomplete (e.g. a Taft Amendment type).
10093 -- The designated subtype is within an inner scope, and needs no
10094 -- elaboration, because only the access type is needed in the
10095 -- initialization procedure.
10096
10097 if Ekind (T) = E_Incomplete_Type then
10098 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10099 else
10100 Set_Ekind (Def_Id, Ekind (T));
10101 end if;
10102
10103 if For_Access and then Within_Init_Proc then
10104 null;
10105 else
10106 Append_Elmt (Def_Id, Private_Dependents (T));
10107 end if;
10108 end if;
10109
10110 Set_Etype (Def_Id, T);
10111 Init_Size_Align (Def_Id);
10112 Set_Has_Discriminants (Def_Id, Has_Discrs);
10113 Set_Is_Constrained (Def_Id, Constrained);
10114
10115 Set_First_Entity (Def_Id, First_Entity (T));
10116 Set_Last_Entity (Def_Id, Last_Entity (T));
10117 Set_Has_Implicit_Dereference
10118 (Def_Id, Has_Implicit_Dereference (T));
10119 Set_Has_Pragma_Unreferenced_Objects
10120 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10121
10122 -- If the subtype is the completion of a private declaration, there may
10123 -- have been representation clauses for the partial view, and they must
10124 -- be preserved. Build_Derived_Type chains the inherited clauses with
10125 -- the ones appearing on the extension. If this comes from a subtype
10126 -- declaration, all clauses are inherited.
10127
10128 if No (First_Rep_Item (Def_Id)) then
10129 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10130 end if;
10131
10132 if Is_Tagged_Type (T) then
10133 Set_Is_Tagged_Type (Def_Id);
10134 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10135 Make_Class_Wide_Type (Def_Id);
10136 end if;
10137
10138 Set_Stored_Constraint (Def_Id, No_Elist);
10139
10140 if Has_Discrs then
10141 Set_Discriminant_Constraint (Def_Id, Elist);
10142 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10143 end if;
10144
10145 if Is_Tagged_Type (T) then
10146
10147 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10148 -- concurrent record type (which has the list of primitive
10149 -- operations).
10150
10151 if Ada_Version >= Ada_2005
10152 and then Is_Concurrent_Type (T)
10153 then
10154 Set_Corresponding_Record_Type (Def_Id,
10155 Corresponding_Record_Type (T));
10156 else
10157 Set_Direct_Primitive_Operations (Def_Id,
10158 Direct_Primitive_Operations (T));
10159 end if;
10160
10161 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10162 end if;
10163
10164 -- Subtypes introduced by component declarations do not need to be
10165 -- marked as delayed, and do not get freeze nodes, because the semantics
10166 -- verifies that the parents of the subtypes are frozen before the
10167 -- enclosing record is frozen.
10168
10169 if not Is_Type (Scope (Def_Id)) then
10170 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10171
10172 if Is_Private_Type (T)
10173 and then Present (Full_View (T))
10174 then
10175 Conditional_Delay (Def_Id, Full_View (T));
10176 else
10177 Conditional_Delay (Def_Id, T);
10178 end if;
10179 end if;
10180
10181 if Is_Record_Type (T) then
10182 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10183
10184 if Has_Discrs
10185 and then not Is_Empty_Elmt_List (Elist)
10186 and then not For_Access
10187 then
10188 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10189 elsif not For_Access then
10190 Set_Cloned_Subtype (Def_Id, T);
10191 end if;
10192 end if;
10193 end Build_Discriminated_Subtype;
10194
10195 ---------------------------
10196 -- Build_Itype_Reference --
10197 ---------------------------
10198
10199 procedure Build_Itype_Reference
10200 (Ityp : Entity_Id;
10201 Nod : Node_Id)
10202 is
10203 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10204 begin
10205
10206 -- Itype references are only created for use by the back-end
10207
10208 if Inside_A_Generic then
10209 return;
10210 else
10211 Set_Itype (IR, Ityp);
10212 Insert_After (Nod, IR);
10213 end if;
10214 end Build_Itype_Reference;
10215
10216 ------------------------
10217 -- Build_Scalar_Bound --
10218 ------------------------
10219
10220 function Build_Scalar_Bound
10221 (Bound : Node_Id;
10222 Par_T : Entity_Id;
10223 Der_T : Entity_Id) return Node_Id
10224 is
10225 New_Bound : Entity_Id;
10226
10227 begin
10228 -- Note: not clear why this is needed, how can the original bound
10229 -- be unanalyzed at this point? and if it is, what business do we
10230 -- have messing around with it? and why is the base type of the
10231 -- parent type the right type for the resolution. It probably is
10232 -- not. It is OK for the new bound we are creating, but not for
10233 -- the old one??? Still if it never happens, no problem.
10234
10235 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10236
10237 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10238 New_Bound := New_Copy (Bound);
10239 Set_Etype (New_Bound, Der_T);
10240 Set_Analyzed (New_Bound);
10241
10242 elsif Is_Entity_Name (Bound) then
10243 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10244
10245 -- The following is almost certainly wrong. What business do we have
10246 -- relocating a node (Bound) that is presumably still attached to
10247 -- the tree elsewhere???
10248
10249 else
10250 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10251 end if;
10252
10253 Set_Etype (New_Bound, Der_T);
10254 return New_Bound;
10255 end Build_Scalar_Bound;
10256
10257 --------------------------------
10258 -- Build_Underlying_Full_View --
10259 --------------------------------
10260
10261 procedure Build_Underlying_Full_View
10262 (N : Node_Id;
10263 Typ : Entity_Id;
10264 Par : Entity_Id)
10265 is
10266 Loc : constant Source_Ptr := Sloc (N);
10267 Subt : constant Entity_Id :=
10268 Make_Defining_Identifier
10269 (Loc, New_External_Name (Chars (Typ), 'S'));
10270
10271 Constr : Node_Id;
10272 Indic : Node_Id;
10273 C : Node_Id;
10274 Id : Node_Id;
10275
10276 procedure Set_Discriminant_Name (Id : Node_Id);
10277 -- If the derived type has discriminants, they may rename discriminants
10278 -- of the parent. When building the full view of the parent, we need to
10279 -- recover the names of the original discriminants if the constraint is
10280 -- given by named associations.
10281
10282 ---------------------------
10283 -- Set_Discriminant_Name --
10284 ---------------------------
10285
10286 procedure Set_Discriminant_Name (Id : Node_Id) is
10287 Disc : Entity_Id;
10288
10289 begin
10290 Set_Original_Discriminant (Id, Empty);
10291
10292 if Has_Discriminants (Typ) then
10293 Disc := First_Discriminant (Typ);
10294 while Present (Disc) loop
10295 if Chars (Disc) = Chars (Id)
10296 and then Present (Corresponding_Discriminant (Disc))
10297 then
10298 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10299 end if;
10300 Next_Discriminant (Disc);
10301 end loop;
10302 end if;
10303 end Set_Discriminant_Name;
10304
10305 -- Start of processing for Build_Underlying_Full_View
10306
10307 begin
10308 if Nkind (N) = N_Full_Type_Declaration then
10309 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10310
10311 elsif Nkind (N) = N_Subtype_Declaration then
10312 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10313
10314 elsif Nkind (N) = N_Component_Declaration then
10315 Constr :=
10316 New_Copy_Tree
10317 (Constraint (Subtype_Indication (Component_Definition (N))));
10318
10319 else
10320 raise Program_Error;
10321 end if;
10322
10323 C := First (Constraints (Constr));
10324 while Present (C) loop
10325 if Nkind (C) = N_Discriminant_Association then
10326 Id := First (Selector_Names (C));
10327 while Present (Id) loop
10328 Set_Discriminant_Name (Id);
10329 Next (Id);
10330 end loop;
10331 end if;
10332
10333 Next (C);
10334 end loop;
10335
10336 Indic :=
10337 Make_Subtype_Declaration (Loc,
10338 Defining_Identifier => Subt,
10339 Subtype_Indication =>
10340 Make_Subtype_Indication (Loc,
10341 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10342 Constraint => New_Copy_Tree (Constr)));
10343
10344 -- If this is a component subtype for an outer itype, it is not
10345 -- a list member, so simply set the parent link for analysis: if
10346 -- the enclosing type does not need to be in a declarative list,
10347 -- neither do the components.
10348
10349 if Is_List_Member (N)
10350 and then Nkind (N) /= N_Component_Declaration
10351 then
10352 Insert_Before (N, Indic);
10353 else
10354 Set_Parent (Indic, Parent (N));
10355 end if;
10356
10357 Analyze (Indic);
10358 Set_Underlying_Full_View (Typ, Full_View (Subt));
10359 Set_Is_Underlying_Full_View (Full_View (Subt));
10360 end Build_Underlying_Full_View;
10361
10362 -------------------------------
10363 -- Check_Abstract_Overriding --
10364 -------------------------------
10365
10366 procedure Check_Abstract_Overriding (T : Entity_Id) is
10367 Alias_Subp : Entity_Id;
10368 Elmt : Elmt_Id;
10369 Op_List : Elist_Id;
10370 Subp : Entity_Id;
10371 Type_Def : Node_Id;
10372
10373 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10374 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10375 -- which has pragma Implemented already set. Check whether Subp's entity
10376 -- kind conforms to the implementation kind of the overridden routine.
10377
10378 procedure Check_Pragma_Implemented
10379 (Subp : Entity_Id;
10380 Iface_Subp : Entity_Id);
10381 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10382 -- Iface_Subp and both entities have pragma Implemented already set on
10383 -- them. Check whether the two implementation kinds are conforming.
10384
10385 procedure Inherit_Pragma_Implemented
10386 (Subp : Entity_Id;
10387 Iface_Subp : Entity_Id);
10388 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10389 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10390 -- Propagate the implementation kind of Iface_Subp to Subp.
10391
10392 ------------------------------
10393 -- Check_Pragma_Implemented --
10394 ------------------------------
10395
10396 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10397 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10398 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10399 Subp_Alias : constant Entity_Id := Alias (Subp);
10400 Contr_Typ : Entity_Id;
10401 Impl_Subp : Entity_Id;
10402
10403 begin
10404 -- Subp must have an alias since it is a hidden entity used to link
10405 -- an interface subprogram to its overriding counterpart.
10406
10407 pragma Assert (Present (Subp_Alias));
10408
10409 -- Handle aliases to synchronized wrappers
10410
10411 Impl_Subp := Subp_Alias;
10412
10413 if Is_Primitive_Wrapper (Impl_Subp) then
10414 Impl_Subp := Wrapped_Entity (Impl_Subp);
10415 end if;
10416
10417 -- Extract the type of the controlling formal
10418
10419 Contr_Typ := Etype (First_Formal (Subp_Alias));
10420
10421 if Is_Concurrent_Record_Type (Contr_Typ) then
10422 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10423 end if;
10424
10425 -- An interface subprogram whose implementation kind is By_Entry must
10426 -- be implemented by an entry.
10427
10428 if Impl_Kind = Name_By_Entry
10429 and then Ekind (Impl_Subp) /= E_Entry
10430 then
10431 Error_Msg_Node_2 := Iface_Alias;
10432 Error_Msg_NE
10433 ("type & must implement abstract subprogram & with an entry",
10434 Subp_Alias, Contr_Typ);
10435
10436 elsif Impl_Kind = Name_By_Protected_Procedure then
10437
10438 -- An interface subprogram whose implementation kind is By_
10439 -- Protected_Procedure cannot be implemented by a primitive
10440 -- procedure of a task type.
10441
10442 if Ekind (Contr_Typ) /= E_Protected_Type then
10443 Error_Msg_Node_2 := Contr_Typ;
10444 Error_Msg_NE
10445 ("interface subprogram & cannot be implemented by a " &
10446 "primitive procedure of task type &", Subp_Alias,
10447 Iface_Alias);
10448
10449 -- An interface subprogram whose implementation kind is By_
10450 -- Protected_Procedure must be implemented by a procedure.
10451
10452 elsif Ekind (Impl_Subp) /= E_Procedure then
10453 Error_Msg_Node_2 := Iface_Alias;
10454 Error_Msg_NE
10455 ("type & must implement abstract subprogram & with a " &
10456 "procedure", Subp_Alias, Contr_Typ);
10457
10458 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10459 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10460 then
10461 Error_Msg_Name_1 := Impl_Kind;
10462 Error_Msg_N
10463 ("overriding operation& must have synchronization%",
10464 Subp_Alias);
10465 end if;
10466
10467 -- If primitive has Optional synchronization, overriding operation
10468 -- must match if it has an explicit synchronization..
10469
10470 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10471 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10472 then
10473 Error_Msg_Name_1 := Impl_Kind;
10474 Error_Msg_N
10475 ("overriding operation& must have syncrhonization%",
10476 Subp_Alias);
10477 end if;
10478 end Check_Pragma_Implemented;
10479
10480 ------------------------------
10481 -- Check_Pragma_Implemented --
10482 ------------------------------
10483
10484 procedure Check_Pragma_Implemented
10485 (Subp : Entity_Id;
10486 Iface_Subp : Entity_Id)
10487 is
10488 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10489 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10490
10491 begin
10492 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10493 -- and overriding subprogram are different. In general this is an
10494 -- error except when the implementation kind of the overridden
10495 -- subprograms is By_Any or Optional.
10496
10497 if Iface_Kind /= Subp_Kind
10498 and then Iface_Kind /= Name_By_Any
10499 and then Iface_Kind /= Name_Optional
10500 then
10501 if Iface_Kind = Name_By_Entry then
10502 Error_Msg_N
10503 ("incompatible implementation kind, overridden subprogram " &
10504 "is marked By_Entry", Subp);
10505 else
10506 Error_Msg_N
10507 ("incompatible implementation kind, overridden subprogram " &
10508 "is marked By_Protected_Procedure", Subp);
10509 end if;
10510 end if;
10511 end Check_Pragma_Implemented;
10512
10513 --------------------------------
10514 -- Inherit_Pragma_Implemented --
10515 --------------------------------
10516
10517 procedure Inherit_Pragma_Implemented
10518 (Subp : Entity_Id;
10519 Iface_Subp : Entity_Id)
10520 is
10521 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10522 Loc : constant Source_Ptr := Sloc (Subp);
10523 Impl_Prag : Node_Id;
10524
10525 begin
10526 -- Since the implementation kind is stored as a representation item
10527 -- rather than a flag, create a pragma node.
10528
10529 Impl_Prag :=
10530 Make_Pragma (Loc,
10531 Chars => Name_Implemented,
10532 Pragma_Argument_Associations => New_List (
10533 Make_Pragma_Argument_Association (Loc,
10534 Expression => New_Occurrence_Of (Subp, Loc)),
10535
10536 Make_Pragma_Argument_Association (Loc,
10537 Expression => Make_Identifier (Loc, Iface_Kind))));
10538
10539 -- The pragma doesn't need to be analyzed because it is internally
10540 -- built. It is safe to directly register it as a rep item since we
10541 -- are only interested in the characters of the implementation kind.
10542
10543 Record_Rep_Item (Subp, Impl_Prag);
10544 end Inherit_Pragma_Implemented;
10545
10546 -- Start of processing for Check_Abstract_Overriding
10547
10548 begin
10549 Op_List := Primitive_Operations (T);
10550
10551 -- Loop to check primitive operations
10552
10553 Elmt := First_Elmt (Op_List);
10554 while Present (Elmt) loop
10555 Subp := Node (Elmt);
10556 Alias_Subp := Alias (Subp);
10557
10558 -- Inherited subprograms are identified by the fact that they do not
10559 -- come from source, and the associated source location is the
10560 -- location of the first subtype of the derived type.
10561
10562 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10563 -- subprograms that "require overriding".
10564
10565 -- Special exception, do not complain about failure to override the
10566 -- stream routines _Input and _Output, as well as the primitive
10567 -- operations used in dispatching selects since we always provide
10568 -- automatic overridings for these subprograms.
10569
10570 -- The partial view of T may have been a private extension, for
10571 -- which inherited functions dispatching on result are abstract.
10572 -- If the full view is a null extension, there is no need for
10573 -- overriding in Ada 2005, but wrappers need to be built for them
10574 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10575
10576 if Is_Null_Extension (T)
10577 and then Has_Controlling_Result (Subp)
10578 and then Ada_Version >= Ada_2005
10579 and then Present (Alias_Subp)
10580 and then not Comes_From_Source (Subp)
10581 and then not Is_Abstract_Subprogram (Alias_Subp)
10582 and then not Is_Access_Type (Etype (Subp))
10583 then
10584 null;
10585
10586 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10587 -- processing because this check is done with the aliased
10588 -- entity
10589
10590 elsif Present (Interface_Alias (Subp)) then
10591 null;
10592
10593 elsif (Is_Abstract_Subprogram (Subp)
10594 or else Requires_Overriding (Subp)
10595 or else
10596 (Has_Controlling_Result (Subp)
10597 and then Present (Alias_Subp)
10598 and then not Comes_From_Source (Subp)
10599 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10600 and then not Is_TSS (Subp, TSS_Stream_Input)
10601 and then not Is_TSS (Subp, TSS_Stream_Output)
10602 and then not Is_Abstract_Type (T)
10603 and then not Is_Predefined_Interface_Primitive (Subp)
10604
10605 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10606 -- with abstract interface types because the check will be done
10607 -- with the aliased entity (otherwise we generate a duplicated
10608 -- error message).
10609
10610 and then not Present (Interface_Alias (Subp))
10611 then
10612 if Present (Alias_Subp) then
10613
10614 -- Only perform the check for a derived subprogram when the
10615 -- type has an explicit record extension. This avoids incorrect
10616 -- flagging of abstract subprograms for the case of a type
10617 -- without an extension that is derived from a formal type
10618 -- with a tagged actual (can occur within a private part).
10619
10620 -- Ada 2005 (AI-391): In the case of an inherited function with
10621 -- a controlling result of the type, the rule does not apply if
10622 -- the type is a null extension (unless the parent function
10623 -- itself is abstract, in which case the function must still be
10624 -- be overridden). The expander will generate an overriding
10625 -- wrapper function calling the parent subprogram (see
10626 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10627
10628 Type_Def := Type_Definition (Parent (T));
10629
10630 if Nkind (Type_Def) = N_Derived_Type_Definition
10631 and then Present (Record_Extension_Part (Type_Def))
10632 and then
10633 (Ada_Version < Ada_2005
10634 or else not Is_Null_Extension (T)
10635 or else Ekind (Subp) = E_Procedure
10636 or else not Has_Controlling_Result (Subp)
10637 or else Is_Abstract_Subprogram (Alias_Subp)
10638 or else Requires_Overriding (Subp)
10639 or else Is_Access_Type (Etype (Subp)))
10640 then
10641 -- Avoid reporting error in case of abstract predefined
10642 -- primitive inherited from interface type because the
10643 -- body of internally generated predefined primitives
10644 -- of tagged types are generated later by Freeze_Type
10645
10646 if Is_Interface (Root_Type (T))
10647 and then Is_Abstract_Subprogram (Subp)
10648 and then Is_Predefined_Dispatching_Operation (Subp)
10649 and then not Comes_From_Source (Ultimate_Alias (Subp))
10650 then
10651 null;
10652
10653 -- A null extension is not obliged to override an inherited
10654 -- procedure subject to pragma Extensions_Visible with value
10655 -- False and at least one controlling OUT parameter
10656 -- (SPARK RM 6.1.7(6)).
10657
10658 elsif Is_Null_Extension (T)
10659 and then Is_EVF_Procedure (Subp)
10660 then
10661 null;
10662
10663 else
10664 Error_Msg_NE
10665 ("type must be declared abstract or & overridden",
10666 T, Subp);
10667
10668 -- Traverse the whole chain of aliased subprograms to
10669 -- complete the error notification. This is especially
10670 -- useful for traceability of the chain of entities when
10671 -- the subprogram corresponds with an interface
10672 -- subprogram (which may be defined in another package).
10673
10674 if Present (Alias_Subp) then
10675 declare
10676 E : Entity_Id;
10677
10678 begin
10679 E := Subp;
10680 while Present (Alias (E)) loop
10681
10682 -- Avoid reporting redundant errors on entities
10683 -- inherited from interfaces
10684
10685 if Sloc (E) /= Sloc (T) then
10686 Error_Msg_Sloc := Sloc (E);
10687 Error_Msg_NE
10688 ("\& has been inherited #", T, Subp);
10689 end if;
10690
10691 E := Alias (E);
10692 end loop;
10693
10694 Error_Msg_Sloc := Sloc (E);
10695
10696 -- AI05-0068: report if there is an overriding
10697 -- non-abstract subprogram that is invisible.
10698
10699 if Is_Hidden (E)
10700 and then not Is_Abstract_Subprogram (E)
10701 then
10702 Error_Msg_NE
10703 ("\& subprogram# is not visible",
10704 T, Subp);
10705
10706 -- Clarify the case where a non-null extension must
10707 -- override inherited procedure subject to pragma
10708 -- Extensions_Visible with value False and at least
10709 -- one controlling OUT param.
10710
10711 elsif Is_EVF_Procedure (E) then
10712 Error_Msg_NE
10713 ("\& # is subject to Extensions_Visible False",
10714 T, Subp);
10715
10716 else
10717 Error_Msg_NE
10718 ("\& has been inherited from subprogram #",
10719 T, Subp);
10720 end if;
10721 end;
10722 end if;
10723 end if;
10724
10725 -- Ada 2005 (AI-345): Protected or task type implementing
10726 -- abstract interfaces.
10727
10728 elsif Is_Concurrent_Record_Type (T)
10729 and then Present (Interfaces (T))
10730 then
10731 -- There is no need to check here RM 9.4(11.9/3) since we
10732 -- are processing the corresponding record type and the
10733 -- mode of the overriding subprograms was verified by
10734 -- Check_Conformance when the corresponding concurrent
10735 -- type declaration was analyzed.
10736
10737 Error_Msg_NE
10738 ("interface subprogram & must be overridden", T, Subp);
10739
10740 -- Examine primitive operations of synchronized type to find
10741 -- homonyms that have the wrong profile.
10742
10743 declare
10744 Prim : Entity_Id;
10745
10746 begin
10747 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10748 while Present (Prim) loop
10749 if Chars (Prim) = Chars (Subp) then
10750 Error_Msg_NE
10751 ("profile is not type conformant with prefixed "
10752 & "view profile of inherited operation&",
10753 Prim, Subp);
10754 end if;
10755
10756 Next_Entity (Prim);
10757 end loop;
10758 end;
10759 end if;
10760
10761 else
10762 Error_Msg_Node_2 := T;
10763 Error_Msg_N
10764 ("abstract subprogram& not allowed for type&", Subp);
10765
10766 -- Also post unconditional warning on the type (unconditional
10767 -- so that if there are more than one of these cases, we get
10768 -- them all, and not just the first one).
10769
10770 Error_Msg_Node_2 := Subp;
10771 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10772 end if;
10773
10774 -- A subprogram subject to pragma Extensions_Visible with value
10775 -- "True" cannot override a subprogram subject to the same pragma
10776 -- with value "False" (SPARK RM 6.1.7(5)).
10777
10778 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10779 and then Present (Overridden_Operation (Subp))
10780 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10781 Extensions_Visible_False
10782 then
10783 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10784 Error_Msg_N
10785 ("subprogram & with Extensions_Visible True cannot override "
10786 & "subprogram # with Extensions_Visible False", Subp);
10787 end if;
10788
10789 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10790
10791 -- Subp is an expander-generated procedure which maps an interface
10792 -- alias to a protected wrapper. The interface alias is flagged by
10793 -- pragma Implemented. Ensure that Subp is a procedure when the
10794 -- implementation kind is By_Protected_Procedure or an entry when
10795 -- By_Entry.
10796
10797 if Ada_Version >= Ada_2012
10798 and then Is_Hidden (Subp)
10799 and then Present (Interface_Alias (Subp))
10800 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10801 then
10802 Check_Pragma_Implemented (Subp);
10803 end if;
10804
10805 -- Subp is an interface primitive which overrides another interface
10806 -- primitive marked with pragma Implemented.
10807
10808 if Ada_Version >= Ada_2012
10809 and then Present (Overridden_Operation (Subp))
10810 and then Has_Rep_Pragma
10811 (Overridden_Operation (Subp), Name_Implemented)
10812 then
10813 -- If the overriding routine is also marked by Implemented, check
10814 -- that the two implementation kinds are conforming.
10815
10816 if Has_Rep_Pragma (Subp, Name_Implemented) then
10817 Check_Pragma_Implemented
10818 (Subp => Subp,
10819 Iface_Subp => Overridden_Operation (Subp));
10820
10821 -- Otherwise the overriding routine inherits the implementation
10822 -- kind from the overridden subprogram.
10823
10824 else
10825 Inherit_Pragma_Implemented
10826 (Subp => Subp,
10827 Iface_Subp => Overridden_Operation (Subp));
10828 end if;
10829 end if;
10830
10831 -- If the operation is a wrapper for a synchronized primitive, it
10832 -- may be called indirectly through a dispatching select. We assume
10833 -- that it will be referenced elsewhere indirectly, and suppress
10834 -- warnings about an unused entity.
10835
10836 if Is_Primitive_Wrapper (Subp)
10837 and then Present (Wrapped_Entity (Subp))
10838 then
10839 Set_Referenced (Wrapped_Entity (Subp));
10840 end if;
10841
10842 Next_Elmt (Elmt);
10843 end loop;
10844 end Check_Abstract_Overriding;
10845
10846 ------------------------------------------------
10847 -- Check_Access_Discriminant_Requires_Limited --
10848 ------------------------------------------------
10849
10850 procedure Check_Access_Discriminant_Requires_Limited
10851 (D : Node_Id;
10852 Loc : Node_Id)
10853 is
10854 begin
10855 -- A discriminant_specification for an access discriminant shall appear
10856 -- only in the declaration for a task or protected type, or for a type
10857 -- with the reserved word 'limited' in its definition or in one of its
10858 -- ancestors (RM 3.7(10)).
10859
10860 -- AI-0063: The proper condition is that type must be immutably limited,
10861 -- or else be a partial view.
10862
10863 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10864 if Is_Limited_View (Current_Scope)
10865 or else
10866 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10867 and then Limited_Present (Parent (Current_Scope)))
10868 then
10869 null;
10870
10871 else
10872 Error_Msg_N
10873 ("access discriminants allowed only for limited types", Loc);
10874 end if;
10875 end if;
10876 end Check_Access_Discriminant_Requires_Limited;
10877
10878 -----------------------------------
10879 -- Check_Aliased_Component_Types --
10880 -----------------------------------
10881
10882 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10883 C : Entity_Id;
10884
10885 begin
10886 -- ??? Also need to check components of record extensions, but not
10887 -- components of protected types (which are always limited).
10888
10889 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10890 -- types to be unconstrained. This is safe because it is illegal to
10891 -- create access subtypes to such types with explicit discriminant
10892 -- constraints.
10893
10894 if not Is_Limited_Type (T) then
10895 if Ekind (T) = E_Record_Type then
10896 C := First_Component (T);
10897 while Present (C) loop
10898 if Is_Aliased (C)
10899 and then Has_Discriminants (Etype (C))
10900 and then not Is_Constrained (Etype (C))
10901 and then not In_Instance_Body
10902 and then Ada_Version < Ada_2005
10903 then
10904 Error_Msg_N
10905 ("aliased component must be constrained (RM 3.6(11))",
10906 C);
10907 end if;
10908
10909 Next_Component (C);
10910 end loop;
10911
10912 elsif Ekind (T) = E_Array_Type then
10913 if Has_Aliased_Components (T)
10914 and then Has_Discriminants (Component_Type (T))
10915 and then not Is_Constrained (Component_Type (T))
10916 and then not In_Instance_Body
10917 and then Ada_Version < Ada_2005
10918 then
10919 Error_Msg_N
10920 ("aliased component type must be constrained (RM 3.6(11))",
10921 T);
10922 end if;
10923 end if;
10924 end if;
10925 end Check_Aliased_Component_Types;
10926
10927 ---------------------------------------
10928 -- Check_Anonymous_Access_Components --
10929 ---------------------------------------
10930
10931 procedure Check_Anonymous_Access_Components
10932 (Typ_Decl : Node_Id;
10933 Typ : Entity_Id;
10934 Prev : Entity_Id;
10935 Comp_List : Node_Id)
10936 is
10937 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10938 Anon_Access : Entity_Id;
10939 Acc_Def : Node_Id;
10940 Comp : Node_Id;
10941 Comp_Def : Node_Id;
10942 Decl : Node_Id;
10943 Type_Def : Node_Id;
10944
10945 procedure Build_Incomplete_Type_Declaration;
10946 -- If the record type contains components that include an access to the
10947 -- current record, then create an incomplete type declaration for the
10948 -- record, to be used as the designated type of the anonymous access.
10949 -- This is done only once, and only if there is no previous partial
10950 -- view of the type.
10951
10952 function Designates_T (Subt : Node_Id) return Boolean;
10953 -- Check whether a node designates the enclosing record type, or 'Class
10954 -- of that type
10955
10956 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10957 -- Check whether an access definition includes a reference to
10958 -- the enclosing record type. The reference can be a subtype mark
10959 -- in the access definition itself, a 'Class attribute reference, or
10960 -- recursively a reference appearing in a parameter specification
10961 -- or result definition of an access_to_subprogram definition.
10962
10963 --------------------------------------
10964 -- Build_Incomplete_Type_Declaration --
10965 --------------------------------------
10966
10967 procedure Build_Incomplete_Type_Declaration is
10968 Decl : Node_Id;
10969 Inc_T : Entity_Id;
10970 H : Entity_Id;
10971
10972 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10973 -- it's "is new ... with record" or else "is tagged record ...".
10974
10975 Is_Tagged : constant Boolean :=
10976 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10977 and then
10978 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10979 or else
10980 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10981 and then Tagged_Present (Type_Definition (Typ_Decl)));
10982
10983 begin
10984 -- If there is a previous partial view, no need to create a new one
10985 -- If the partial view, given by Prev, is incomplete, If Prev is
10986 -- a private declaration, full declaration is flagged accordingly.
10987
10988 if Prev /= Typ then
10989 if Is_Tagged then
10990 Make_Class_Wide_Type (Prev);
10991 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10992 Set_Etype (Class_Wide_Type (Typ), Typ);
10993 end if;
10994
10995 return;
10996
10997 elsif Has_Private_Declaration (Typ) then
10998
10999 -- If we refer to T'Class inside T, and T is the completion of a
11000 -- private type, then make sure the class-wide type exists.
11001
11002 if Is_Tagged then
11003 Make_Class_Wide_Type (Typ);
11004 end if;
11005
11006 return;
11007
11008 -- If there was a previous anonymous access type, the incomplete
11009 -- type declaration will have been created already.
11010
11011 elsif Present (Current_Entity (Typ))
11012 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11013 and then Full_View (Current_Entity (Typ)) = Typ
11014 then
11015 if Is_Tagged
11016 and then Comes_From_Source (Current_Entity (Typ))
11017 and then not Is_Tagged_Type (Current_Entity (Typ))
11018 then
11019 Make_Class_Wide_Type (Typ);
11020 Error_Msg_N
11021 ("incomplete view of tagged type should be declared tagged??",
11022 Parent (Current_Entity (Typ)));
11023 end if;
11024 return;
11025
11026 else
11027 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11028 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11029
11030 -- Type has already been inserted into the current scope. Remove
11031 -- it, and add incomplete declaration for type, so that subsequent
11032 -- anonymous access types can use it. The entity is unchained from
11033 -- the homonym list and from immediate visibility. After analysis,
11034 -- the entity in the incomplete declaration becomes immediately
11035 -- visible in the record declaration that follows.
11036
11037 H := Current_Entity (Typ);
11038
11039 if H = Typ then
11040 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11041 else
11042 while Present (H)
11043 and then Homonym (H) /= Typ
11044 loop
11045 H := Homonym (Typ);
11046 end loop;
11047
11048 Set_Homonym (H, Homonym (Typ));
11049 end if;
11050
11051 Insert_Before (Typ_Decl, Decl);
11052 Analyze (Decl);
11053 Set_Full_View (Inc_T, Typ);
11054
11055 if Is_Tagged then
11056
11057 -- Create a common class-wide type for both views, and set the
11058 -- Etype of the class-wide type to the full view.
11059
11060 Make_Class_Wide_Type (Inc_T);
11061 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11062 Set_Etype (Class_Wide_Type (Typ), Typ);
11063 end if;
11064 end if;
11065 end Build_Incomplete_Type_Declaration;
11066
11067 ------------------
11068 -- Designates_T --
11069 ------------------
11070
11071 function Designates_T (Subt : Node_Id) return Boolean is
11072 Type_Id : constant Name_Id := Chars (Typ);
11073
11074 function Names_T (Nam : Node_Id) return Boolean;
11075 -- The record type has not been introduced in the current scope
11076 -- yet, so we must examine the name of the type itself, either
11077 -- an identifier T, or an expanded name of the form P.T, where
11078 -- P denotes the current scope.
11079
11080 -------------
11081 -- Names_T --
11082 -------------
11083
11084 function Names_T (Nam : Node_Id) return Boolean is
11085 begin
11086 if Nkind (Nam) = N_Identifier then
11087 return Chars (Nam) = Type_Id;
11088
11089 elsif Nkind (Nam) = N_Selected_Component then
11090 if Chars (Selector_Name (Nam)) = Type_Id then
11091 if Nkind (Prefix (Nam)) = N_Identifier then
11092 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11093
11094 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11095 return Chars (Selector_Name (Prefix (Nam))) =
11096 Chars (Current_Scope);
11097 else
11098 return False;
11099 end if;
11100
11101 else
11102 return False;
11103 end if;
11104
11105 else
11106 return False;
11107 end if;
11108 end Names_T;
11109
11110 -- Start of processing for Designates_T
11111
11112 begin
11113 if Nkind (Subt) = N_Identifier then
11114 return Chars (Subt) = Type_Id;
11115
11116 -- Reference can be through an expanded name which has not been
11117 -- analyzed yet, and which designates enclosing scopes.
11118
11119 elsif Nkind (Subt) = N_Selected_Component then
11120 if Names_T (Subt) then
11121 return True;
11122
11123 -- Otherwise it must denote an entity that is already visible.
11124 -- The access definition may name a subtype of the enclosing
11125 -- type, if there is a previous incomplete declaration for it.
11126
11127 else
11128 Find_Selected_Component (Subt);
11129 return
11130 Is_Entity_Name (Subt)
11131 and then Scope (Entity (Subt)) = Current_Scope
11132 and then
11133 (Chars (Base_Type (Entity (Subt))) = Type_Id
11134 or else
11135 (Is_Class_Wide_Type (Entity (Subt))
11136 and then
11137 Chars (Etype (Base_Type (Entity (Subt)))) =
11138 Type_Id));
11139 end if;
11140
11141 -- A reference to the current type may appear as the prefix of
11142 -- a 'Class attribute.
11143
11144 elsif Nkind (Subt) = N_Attribute_Reference
11145 and then Attribute_Name (Subt) = Name_Class
11146 then
11147 return Names_T (Prefix (Subt));
11148
11149 else
11150 return False;
11151 end if;
11152 end Designates_T;
11153
11154 ----------------
11155 -- Mentions_T --
11156 ----------------
11157
11158 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11159 Param_Spec : Node_Id;
11160
11161 Acc_Subprg : constant Node_Id :=
11162 Access_To_Subprogram_Definition (Acc_Def);
11163
11164 begin
11165 if No (Acc_Subprg) then
11166 return Designates_T (Subtype_Mark (Acc_Def));
11167 end if;
11168
11169 -- Component is an access_to_subprogram: examine its formals,
11170 -- and result definition in the case of an access_to_function.
11171
11172 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11173 while Present (Param_Spec) loop
11174 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11175 and then Mentions_T (Parameter_Type (Param_Spec))
11176 then
11177 return True;
11178
11179 elsif Designates_T (Parameter_Type (Param_Spec)) then
11180 return True;
11181 end if;
11182
11183 Next (Param_Spec);
11184 end loop;
11185
11186 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11187 if Nkind (Result_Definition (Acc_Subprg)) =
11188 N_Access_Definition
11189 then
11190 return Mentions_T (Result_Definition (Acc_Subprg));
11191 else
11192 return Designates_T (Result_Definition (Acc_Subprg));
11193 end if;
11194 end if;
11195
11196 return False;
11197 end Mentions_T;
11198
11199 -- Start of processing for Check_Anonymous_Access_Components
11200
11201 begin
11202 if No (Comp_List) then
11203 return;
11204 end if;
11205
11206 Comp := First (Component_Items (Comp_List));
11207 while Present (Comp) loop
11208 if Nkind (Comp) = N_Component_Declaration
11209 and then Present
11210 (Access_Definition (Component_Definition (Comp)))
11211 and then
11212 Mentions_T (Access_Definition (Component_Definition (Comp)))
11213 then
11214 Comp_Def := Component_Definition (Comp);
11215 Acc_Def :=
11216 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11217
11218 Build_Incomplete_Type_Declaration;
11219 Anon_Access := Make_Temporary (Loc, 'S');
11220
11221 -- Create a declaration for the anonymous access type: either
11222 -- an access_to_object or an access_to_subprogram.
11223
11224 if Present (Acc_Def) then
11225 if Nkind (Acc_Def) = N_Access_Function_Definition then
11226 Type_Def :=
11227 Make_Access_Function_Definition (Loc,
11228 Parameter_Specifications =>
11229 Parameter_Specifications (Acc_Def),
11230 Result_Definition => Result_Definition (Acc_Def));
11231 else
11232 Type_Def :=
11233 Make_Access_Procedure_Definition (Loc,
11234 Parameter_Specifications =>
11235 Parameter_Specifications (Acc_Def));
11236 end if;
11237
11238 else
11239 Type_Def :=
11240 Make_Access_To_Object_Definition (Loc,
11241 Subtype_Indication =>
11242 Relocate_Node
11243 (Subtype_Mark (Access_Definition (Comp_Def))));
11244
11245 Set_Constant_Present
11246 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11247 Set_All_Present
11248 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11249 end if;
11250
11251 Set_Null_Exclusion_Present
11252 (Type_Def,
11253 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11254
11255 Decl :=
11256 Make_Full_Type_Declaration (Loc,
11257 Defining_Identifier => Anon_Access,
11258 Type_Definition => Type_Def);
11259
11260 Insert_Before (Typ_Decl, Decl);
11261 Analyze (Decl);
11262
11263 -- If an access to subprogram, create the extra formals
11264
11265 if Present (Acc_Def) then
11266 Create_Extra_Formals (Designated_Type (Anon_Access));
11267
11268 -- If an access to object, preserve entity of designated type,
11269 -- for ASIS use, before rewriting the component definition.
11270
11271 else
11272 declare
11273 Desig : Entity_Id;
11274
11275 begin
11276 Desig := Entity (Subtype_Indication (Type_Def));
11277
11278 -- If the access definition is to the current record,
11279 -- the visible entity at this point is an incomplete
11280 -- type. Retrieve the full view to simplify ASIS queries
11281
11282 if Ekind (Desig) = E_Incomplete_Type then
11283 Desig := Full_View (Desig);
11284 end if;
11285
11286 Set_Entity
11287 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11288 end;
11289 end if;
11290
11291 Rewrite (Comp_Def,
11292 Make_Component_Definition (Loc,
11293 Subtype_Indication =>
11294 New_Occurrence_Of (Anon_Access, Loc)));
11295
11296 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11297 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11298 else
11299 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11300 end if;
11301
11302 Set_Is_Local_Anonymous_Access (Anon_Access);
11303 end if;
11304
11305 Next (Comp);
11306 end loop;
11307
11308 if Present (Variant_Part (Comp_List)) then
11309 declare
11310 V : Node_Id;
11311 begin
11312 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11313 while Present (V) loop
11314 Check_Anonymous_Access_Components
11315 (Typ_Decl, Typ, Prev, Component_List (V));
11316 Next_Non_Pragma (V);
11317 end loop;
11318 end;
11319 end if;
11320 end Check_Anonymous_Access_Components;
11321
11322 ----------------------
11323 -- Check_Completion --
11324 ----------------------
11325
11326 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11327 E : Entity_Id;
11328
11329 procedure Post_Error;
11330 -- Post error message for lack of completion for entity E
11331
11332 ----------------
11333 -- Post_Error --
11334 ----------------
11335
11336 procedure Post_Error is
11337 procedure Missing_Body;
11338 -- Output missing body message
11339
11340 ------------------
11341 -- Missing_Body --
11342 ------------------
11343
11344 procedure Missing_Body is
11345 begin
11346 -- Spec is in same unit, so we can post on spec
11347
11348 if In_Same_Source_Unit (Body_Id, E) then
11349 Error_Msg_N ("missing body for &", E);
11350
11351 -- Spec is in a separate unit, so we have to post on the body
11352
11353 else
11354 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11355 end if;
11356 end Missing_Body;
11357
11358 -- Start of processing for Post_Error
11359
11360 begin
11361 if not Comes_From_Source (E) then
11362 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11363
11364 -- It may be an anonymous protected type created for a
11365 -- single variable. Post error on variable, if present.
11366
11367 declare
11368 Var : Entity_Id;
11369
11370 begin
11371 Var := First_Entity (Current_Scope);
11372 while Present (Var) loop
11373 exit when Etype (Var) = E
11374 and then Comes_From_Source (Var);
11375
11376 Next_Entity (Var);
11377 end loop;
11378
11379 if Present (Var) then
11380 E := Var;
11381 end if;
11382 end;
11383 end if;
11384 end if;
11385
11386 -- If a generated entity has no completion, then either previous
11387 -- semantic errors have disabled the expansion phase, or else we had
11388 -- missing subunits, or else we are compiling without expansion,
11389 -- or else something is very wrong.
11390
11391 if not Comes_From_Source (E) then
11392 pragma Assert
11393 (Serious_Errors_Detected > 0
11394 or else Configurable_Run_Time_Violations > 0
11395 or else Subunits_Missing
11396 or else not Expander_Active);
11397 return;
11398
11399 -- Here for source entity
11400
11401 else
11402 -- Here if no body to post the error message, so we post the error
11403 -- on the declaration that has no completion. This is not really
11404 -- the right place to post it, think about this later ???
11405
11406 if No (Body_Id) then
11407 if Is_Type (E) then
11408 Error_Msg_NE
11409 ("missing full declaration for }", Parent (E), E);
11410 else
11411 Error_Msg_NE ("missing body for &", Parent (E), E);
11412 end if;
11413
11414 -- Package body has no completion for a declaration that appears
11415 -- in the corresponding spec. Post error on the body, with a
11416 -- reference to the non-completed declaration.
11417
11418 else
11419 Error_Msg_Sloc := Sloc (E);
11420
11421 if Is_Type (E) then
11422 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11423
11424 elsif Is_Overloadable (E)
11425 and then Current_Entity_In_Scope (E) /= E
11426 then
11427 -- It may be that the completion is mistyped and appears as
11428 -- a distinct overloading of the entity.
11429
11430 declare
11431 Candidate : constant Entity_Id :=
11432 Current_Entity_In_Scope (E);
11433 Decl : constant Node_Id :=
11434 Unit_Declaration_Node (Candidate);
11435
11436 begin
11437 if Is_Overloadable (Candidate)
11438 and then Ekind (Candidate) = Ekind (E)
11439 and then Nkind (Decl) = N_Subprogram_Body
11440 and then Acts_As_Spec (Decl)
11441 then
11442 Check_Type_Conformant (Candidate, E);
11443
11444 else
11445 Missing_Body;
11446 end if;
11447 end;
11448
11449 else
11450 Missing_Body;
11451 end if;
11452 end if;
11453 end if;
11454 end Post_Error;
11455
11456 -- Local variables
11457
11458 Pack_Id : constant Entity_Id := Current_Scope;
11459
11460 -- Start of processing for Check_Completion
11461
11462 begin
11463 E := First_Entity (Pack_Id);
11464 while Present (E) loop
11465 if Is_Intrinsic_Subprogram (E) then
11466 null;
11467
11468 -- The following situation requires special handling: a child unit
11469 -- that appears in the context clause of the body of its parent:
11470
11471 -- procedure Parent.Child (...);
11472
11473 -- with Parent.Child;
11474 -- package body Parent is
11475
11476 -- Here Parent.Child appears as a local entity, but should not be
11477 -- flagged as requiring completion, because it is a compilation
11478 -- unit.
11479
11480 -- Ignore missing completion for a subprogram that does not come from
11481 -- source (including the _Call primitive operation of RAS types,
11482 -- which has to have the flag Comes_From_Source for other purposes):
11483 -- we assume that the expander will provide the missing completion.
11484 -- In case of previous errors, other expansion actions that provide
11485 -- bodies for null procedures with not be invoked, so inhibit message
11486 -- in those cases.
11487
11488 -- Note that E_Operator is not in the list that follows, because
11489 -- this kind is reserved for predefined operators, that are
11490 -- intrinsic and do not need completion.
11491
11492 elsif Ekind_In (E, E_Function,
11493 E_Procedure,
11494 E_Generic_Function,
11495 E_Generic_Procedure)
11496 then
11497 if Has_Completion (E) then
11498 null;
11499
11500 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11501 null;
11502
11503 elsif Is_Subprogram (E)
11504 and then (not Comes_From_Source (E)
11505 or else Chars (E) = Name_uCall)
11506 then
11507 null;
11508
11509 elsif
11510 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11511 then
11512 null;
11513
11514 elsif Nkind (Parent (E)) = N_Procedure_Specification
11515 and then Null_Present (Parent (E))
11516 and then Serious_Errors_Detected > 0
11517 then
11518 null;
11519
11520 else
11521 Post_Error;
11522 end if;
11523
11524 elsif Is_Entry (E) then
11525 if not Has_Completion (E) and then
11526 (Ekind (Scope (E)) = E_Protected_Object
11527 or else Ekind (Scope (E)) = E_Protected_Type)
11528 then
11529 Post_Error;
11530 end if;
11531
11532 elsif Is_Package_Or_Generic_Package (E) then
11533 if Unit_Requires_Body (E) then
11534 if not Has_Completion (E)
11535 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11536 N_Compilation_Unit
11537 then
11538 Post_Error;
11539 end if;
11540
11541 elsif not Is_Child_Unit (E) then
11542 May_Need_Implicit_Body (E);
11543 end if;
11544
11545 -- A formal incomplete type (Ada 2012) does not require a completion;
11546 -- other incomplete type declarations do.
11547
11548 elsif Ekind (E) = E_Incomplete_Type
11549 and then No (Underlying_Type (E))
11550 and then not Is_Generic_Type (E)
11551 then
11552 Post_Error;
11553
11554 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11555 and then not Has_Completion (E)
11556 then
11557 Post_Error;
11558
11559 -- A single task declared in the current scope is a constant, verify
11560 -- that the body of its anonymous type is in the same scope. If the
11561 -- task is defined elsewhere, this may be a renaming declaration for
11562 -- which no completion is needed.
11563
11564 elsif Ekind (E) = E_Constant
11565 and then Ekind (Etype (E)) = E_Task_Type
11566 and then not Has_Completion (Etype (E))
11567 and then Scope (Etype (E)) = Current_Scope
11568 then
11569 Post_Error;
11570
11571 elsif Ekind (E) = E_Protected_Object
11572 and then not Has_Completion (Etype (E))
11573 then
11574 Post_Error;
11575
11576 elsif Ekind (E) = E_Record_Type then
11577 if Is_Tagged_Type (E) then
11578 Check_Abstract_Overriding (E);
11579 Check_Conventions (E);
11580 end if;
11581
11582 Check_Aliased_Component_Types (E);
11583
11584 elsif Ekind (E) = E_Array_Type then
11585 Check_Aliased_Component_Types (E);
11586
11587 end if;
11588
11589 Next_Entity (E);
11590 end loop;
11591 end Check_Completion;
11592
11593 ------------------------------------
11594 -- Check_CPP_Type_Has_No_Defaults --
11595 ------------------------------------
11596
11597 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11598 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11599 Clist : Node_Id;
11600 Comp : Node_Id;
11601
11602 begin
11603 -- Obtain the component list
11604
11605 if Nkind (Tdef) = N_Record_Definition then
11606 Clist := Component_List (Tdef);
11607 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11608 Clist := Component_List (Record_Extension_Part (Tdef));
11609 end if;
11610
11611 -- Check all components to ensure no default expressions
11612
11613 if Present (Clist) then
11614 Comp := First (Component_Items (Clist));
11615 while Present (Comp) loop
11616 if Present (Expression (Comp)) then
11617 Error_Msg_N
11618 ("component of imported 'C'P'P type cannot have "
11619 & "default expression", Expression (Comp));
11620 end if;
11621
11622 Next (Comp);
11623 end loop;
11624 end if;
11625 end Check_CPP_Type_Has_No_Defaults;
11626
11627 ----------------------------
11628 -- Check_Delta_Expression --
11629 ----------------------------
11630
11631 procedure Check_Delta_Expression (E : Node_Id) is
11632 begin
11633 if not (Is_Real_Type (Etype (E))) then
11634 Wrong_Type (E, Any_Real);
11635
11636 elsif not Is_OK_Static_Expression (E) then
11637 Flag_Non_Static_Expr
11638 ("non-static expression used for delta value!", E);
11639
11640 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11641 Error_Msg_N ("delta expression must be positive", E);
11642
11643 else
11644 return;
11645 end if;
11646
11647 -- If any of above errors occurred, then replace the incorrect
11648 -- expression by the real 0.1, which should prevent further errors.
11649
11650 Rewrite (E,
11651 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11652 Analyze_And_Resolve (E, Standard_Float);
11653 end Check_Delta_Expression;
11654
11655 -----------------------------
11656 -- Check_Digits_Expression --
11657 -----------------------------
11658
11659 procedure Check_Digits_Expression (E : Node_Id) is
11660 begin
11661 if not (Is_Integer_Type (Etype (E))) then
11662 Wrong_Type (E, Any_Integer);
11663
11664 elsif not Is_OK_Static_Expression (E) then
11665 Flag_Non_Static_Expr
11666 ("non-static expression used for digits value!", E);
11667
11668 elsif Expr_Value (E) <= 0 then
11669 Error_Msg_N ("digits value must be greater than zero", E);
11670
11671 else
11672 return;
11673 end if;
11674
11675 -- If any of above errors occurred, then replace the incorrect
11676 -- expression by the integer 1, which should prevent further errors.
11677
11678 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11679 Analyze_And_Resolve (E, Standard_Integer);
11680
11681 end Check_Digits_Expression;
11682
11683 --------------------------
11684 -- Check_Initialization --
11685 --------------------------
11686
11687 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11688 begin
11689 -- Special processing for limited types
11690
11691 if Is_Limited_Type (T)
11692 and then not In_Instance
11693 and then not In_Inlined_Body
11694 then
11695 if not OK_For_Limited_Init (T, Exp) then
11696
11697 -- In GNAT mode, this is just a warning, to allow it to be evilly
11698 -- turned off. Otherwise it is a real error.
11699
11700 if GNAT_Mode then
11701 Error_Msg_N
11702 ("??cannot initialize entities of limited type!", Exp);
11703
11704 elsif Ada_Version < Ada_2005 then
11705
11706 -- The side effect removal machinery may generate illegal Ada
11707 -- code to avoid the usage of access types and 'reference in
11708 -- SPARK mode. Since this is legal code with respect to theorem
11709 -- proving, do not emit the error.
11710
11711 if GNATprove_Mode
11712 and then Nkind (Exp) = N_Function_Call
11713 and then Nkind (Parent (Exp)) = N_Object_Declaration
11714 and then not Comes_From_Source
11715 (Defining_Identifier (Parent (Exp)))
11716 then
11717 null;
11718
11719 else
11720 Error_Msg_N
11721 ("cannot initialize entities of limited type", Exp);
11722 Explain_Limited_Type (T, Exp);
11723 end if;
11724
11725 else
11726 -- Specialize error message according to kind of illegal
11727 -- initial expression.
11728
11729 if Nkind (Exp) = N_Type_Conversion
11730 and then Nkind (Expression (Exp)) = N_Function_Call
11731 then
11732 Error_Msg_N
11733 ("illegal context for call"
11734 & " to function with limited result", Exp);
11735
11736 else
11737 Error_Msg_N
11738 ("initialization of limited object requires aggregate "
11739 & "or function call", Exp);
11740 end if;
11741 end if;
11742 end if;
11743 end if;
11744
11745 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11746 -- set unless we can be sure that no range check is required.
11747
11748 if (GNATprove_Mode or not Expander_Active)
11749 and then Is_Scalar_Type (T)
11750 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11751 then
11752 Set_Do_Range_Check (Exp);
11753 end if;
11754 end Check_Initialization;
11755
11756 ----------------------
11757 -- Check_Interfaces --
11758 ----------------------
11759
11760 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11761 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11762
11763 Iface : Node_Id;
11764 Iface_Def : Node_Id;
11765 Iface_Typ : Entity_Id;
11766 Parent_Node : Node_Id;
11767
11768 Is_Task : Boolean := False;
11769 -- Set True if parent type or any progenitor is a task interface
11770
11771 Is_Protected : Boolean := False;
11772 -- Set True if parent type or any progenitor is a protected interface
11773
11774 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11775 -- Check that a progenitor is compatible with declaration. If an error
11776 -- message is output, it is posted on Error_Node.
11777
11778 ------------------
11779 -- Check_Ifaces --
11780 ------------------
11781
11782 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11783 Iface_Id : constant Entity_Id :=
11784 Defining_Identifier (Parent (Iface_Def));
11785 Type_Def : Node_Id;
11786
11787 begin
11788 if Nkind (N) = N_Private_Extension_Declaration then
11789 Type_Def := N;
11790 else
11791 Type_Def := Type_Definition (N);
11792 end if;
11793
11794 if Is_Task_Interface (Iface_Id) then
11795 Is_Task := True;
11796
11797 elsif Is_Protected_Interface (Iface_Id) then
11798 Is_Protected := True;
11799 end if;
11800
11801 if Is_Synchronized_Interface (Iface_Id) then
11802
11803 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11804 -- extension derived from a synchronized interface must explicitly
11805 -- be declared synchronized, because the full view will be a
11806 -- synchronized type.
11807
11808 if Nkind (N) = N_Private_Extension_Declaration then
11809 if not Synchronized_Present (N) then
11810 Error_Msg_NE
11811 ("private extension of& must be explicitly synchronized",
11812 N, Iface_Id);
11813 end if;
11814
11815 -- However, by 3.9.4(16/2), a full type that is a record extension
11816 -- is never allowed to derive from a synchronized interface (note
11817 -- that interfaces must be excluded from this check, because those
11818 -- are represented by derived type definitions in some cases).
11819
11820 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11821 and then not Interface_Present (Type_Definition (N))
11822 then
11823 Error_Msg_N ("record extension cannot derive from synchronized "
11824 & "interface", Error_Node);
11825 end if;
11826 end if;
11827
11828 -- Check that the characteristics of the progenitor are compatible
11829 -- with the explicit qualifier in the declaration.
11830 -- The check only applies to qualifiers that come from source.
11831 -- Limited_Present also appears in the declaration of corresponding
11832 -- records, and the check does not apply to them.
11833
11834 if Limited_Present (Type_Def)
11835 and then not
11836 Is_Concurrent_Record_Type (Defining_Identifier (N))
11837 then
11838 if Is_Limited_Interface (Parent_Type)
11839 and then not Is_Limited_Interface (Iface_Id)
11840 then
11841 Error_Msg_NE
11842 ("progenitor & must be limited interface",
11843 Error_Node, Iface_Id);
11844
11845 elsif
11846 (Task_Present (Iface_Def)
11847 or else Protected_Present (Iface_Def)
11848 or else Synchronized_Present (Iface_Def))
11849 and then Nkind (N) /= N_Private_Extension_Declaration
11850 and then not Error_Posted (N)
11851 then
11852 Error_Msg_NE
11853 ("progenitor & must be limited interface",
11854 Error_Node, Iface_Id);
11855 end if;
11856
11857 -- Protected interfaces can only inherit from limited, synchronized
11858 -- or protected interfaces.
11859
11860 elsif Nkind (N) = N_Full_Type_Declaration
11861 and then Protected_Present (Type_Def)
11862 then
11863 if Limited_Present (Iface_Def)
11864 or else Synchronized_Present (Iface_Def)
11865 or else Protected_Present (Iface_Def)
11866 then
11867 null;
11868
11869 elsif Task_Present (Iface_Def) then
11870 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11871 & "from task interface", Error_Node);
11872
11873 else
11874 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11875 & "from non-limited interface", Error_Node);
11876 end if;
11877
11878 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11879 -- limited and synchronized.
11880
11881 elsif Synchronized_Present (Type_Def) then
11882 if Limited_Present (Iface_Def)
11883 or else Synchronized_Present (Iface_Def)
11884 then
11885 null;
11886
11887 elsif Protected_Present (Iface_Def)
11888 and then Nkind (N) /= N_Private_Extension_Declaration
11889 then
11890 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11891 & "from protected interface", Error_Node);
11892
11893 elsif Task_Present (Iface_Def)
11894 and then Nkind (N) /= N_Private_Extension_Declaration
11895 then
11896 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11897 & "from task interface", Error_Node);
11898
11899 elsif not Is_Limited_Interface (Iface_Id) then
11900 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11901 & "from non-limited interface", Error_Node);
11902 end if;
11903
11904 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11905 -- synchronized or task interfaces.
11906
11907 elsif Nkind (N) = N_Full_Type_Declaration
11908 and then Task_Present (Type_Def)
11909 then
11910 if Limited_Present (Iface_Def)
11911 or else Synchronized_Present (Iface_Def)
11912 or else Task_Present (Iface_Def)
11913 then
11914 null;
11915
11916 elsif Protected_Present (Iface_Def) then
11917 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11918 & "protected interface", Error_Node);
11919
11920 else
11921 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11922 & "non-limited interface", Error_Node);
11923 end if;
11924 end if;
11925 end Check_Ifaces;
11926
11927 -- Start of processing for Check_Interfaces
11928
11929 begin
11930 if Is_Interface (Parent_Type) then
11931 if Is_Task_Interface (Parent_Type) then
11932 Is_Task := True;
11933
11934 elsif Is_Protected_Interface (Parent_Type) then
11935 Is_Protected := True;
11936 end if;
11937 end if;
11938
11939 if Nkind (N) = N_Private_Extension_Declaration then
11940
11941 -- Check that progenitors are compatible with declaration
11942
11943 Iface := First (Interface_List (Def));
11944 while Present (Iface) loop
11945 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11946
11947 Parent_Node := Parent (Base_Type (Iface_Typ));
11948 Iface_Def := Type_Definition (Parent_Node);
11949
11950 if not Is_Interface (Iface_Typ) then
11951 Diagnose_Interface (Iface, Iface_Typ);
11952 else
11953 Check_Ifaces (Iface_Def, Iface);
11954 end if;
11955
11956 Next (Iface);
11957 end loop;
11958
11959 if Is_Task and Is_Protected then
11960 Error_Msg_N
11961 ("type cannot derive from task and protected interface", N);
11962 end if;
11963
11964 return;
11965 end if;
11966
11967 -- Full type declaration of derived type.
11968 -- Check compatibility with parent if it is interface type
11969
11970 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11971 and then Is_Interface (Parent_Type)
11972 then
11973 Parent_Node := Parent (Parent_Type);
11974
11975 -- More detailed checks for interface varieties
11976
11977 Check_Ifaces
11978 (Iface_Def => Type_Definition (Parent_Node),
11979 Error_Node => Subtype_Indication (Type_Definition (N)));
11980 end if;
11981
11982 Iface := First (Interface_List (Def));
11983 while Present (Iface) loop
11984 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11985
11986 Parent_Node := Parent (Base_Type (Iface_Typ));
11987 Iface_Def := Type_Definition (Parent_Node);
11988
11989 if not Is_Interface (Iface_Typ) then
11990 Diagnose_Interface (Iface, Iface_Typ);
11991
11992 else
11993 -- "The declaration of a specific descendant of an interface
11994 -- type freezes the interface type" RM 13.14
11995
11996 Freeze_Before (N, Iface_Typ);
11997 Check_Ifaces (Iface_Def, Error_Node => Iface);
11998 end if;
11999
12000 Next (Iface);
12001 end loop;
12002
12003 if Is_Task and Is_Protected then
12004 Error_Msg_N
12005 ("type cannot derive from task and protected interface", N);
12006 end if;
12007 end Check_Interfaces;
12008
12009 ------------------------------------
12010 -- Check_Or_Process_Discriminants --
12011 ------------------------------------
12012
12013 -- If an incomplete or private type declaration was already given for the
12014 -- type, the discriminants may have already been processed if they were
12015 -- present on the incomplete declaration. In this case a full conformance
12016 -- check has been performed in Find_Type_Name, and we then recheck here
12017 -- some properties that can't be checked on the partial view alone.
12018 -- Otherwise we call Process_Discriminants.
12019
12020 procedure Check_Or_Process_Discriminants
12021 (N : Node_Id;
12022 T : Entity_Id;
12023 Prev : Entity_Id := Empty)
12024 is
12025 begin
12026 if Has_Discriminants (T) then
12027
12028 -- Discriminants are already set on T if they were already present
12029 -- on the partial view. Make them visible to component declarations.
12030
12031 declare
12032 D : Entity_Id;
12033 -- Discriminant on T (full view) referencing expr on partial view
12034
12035 Prev_D : Entity_Id;
12036 -- Entity of corresponding discriminant on partial view
12037
12038 New_D : Node_Id;
12039 -- Discriminant specification for full view, expression is
12040 -- the syntactic copy on full view (which has been checked for
12041 -- conformance with partial view), only used here to post error
12042 -- message.
12043
12044 begin
12045 D := First_Discriminant (T);
12046 New_D := First (Discriminant_Specifications (N));
12047 while Present (D) loop
12048 Prev_D := Current_Entity (D);
12049 Set_Current_Entity (D);
12050 Set_Is_Immediately_Visible (D);
12051 Set_Homonym (D, Prev_D);
12052
12053 -- Handle the case where there is an untagged partial view and
12054 -- the full view is tagged: must disallow discriminants with
12055 -- defaults, unless compiling for Ada 2012, which allows a
12056 -- limited tagged type to have defaulted discriminants (see
12057 -- AI05-0214). However, suppress error here if it was already
12058 -- reported on the default expression of the partial view.
12059
12060 if Is_Tagged_Type (T)
12061 and then Present (Expression (Parent (D)))
12062 and then (not Is_Limited_Type (Current_Scope)
12063 or else Ada_Version < Ada_2012)
12064 and then not Error_Posted (Expression (Parent (D)))
12065 then
12066 if Ada_Version >= Ada_2012 then
12067 Error_Msg_N
12068 ("discriminants of nonlimited tagged type cannot have "
12069 & "defaults",
12070 Expression (New_D));
12071 else
12072 Error_Msg_N
12073 ("discriminants of tagged type cannot have defaults",
12074 Expression (New_D));
12075 end if;
12076 end if;
12077
12078 -- Ada 2005 (AI-230): Access discriminant allowed in
12079 -- non-limited record types.
12080
12081 if Ada_Version < Ada_2005 then
12082
12083 -- This restriction gets applied to the full type here. It
12084 -- has already been applied earlier to the partial view.
12085
12086 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12087 end if;
12088
12089 Next_Discriminant (D);
12090 Next (New_D);
12091 end loop;
12092 end;
12093
12094 elsif Present (Discriminant_Specifications (N)) then
12095 Process_Discriminants (N, Prev);
12096 end if;
12097 end Check_Or_Process_Discriminants;
12098
12099 ----------------------
12100 -- Check_Real_Bound --
12101 ----------------------
12102
12103 procedure Check_Real_Bound (Bound : Node_Id) is
12104 begin
12105 if not Is_Real_Type (Etype (Bound)) then
12106 Error_Msg_N
12107 ("bound in real type definition must be of real type", Bound);
12108
12109 elsif not Is_OK_Static_Expression (Bound) then
12110 Flag_Non_Static_Expr
12111 ("non-static expression used for real type bound!", Bound);
12112
12113 else
12114 return;
12115 end if;
12116
12117 Rewrite
12118 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12119 Analyze (Bound);
12120 Resolve (Bound, Standard_Float);
12121 end Check_Real_Bound;
12122
12123 ------------------------------
12124 -- Complete_Private_Subtype --
12125 ------------------------------
12126
12127 procedure Complete_Private_Subtype
12128 (Priv : Entity_Id;
12129 Full : Entity_Id;
12130 Full_Base : Entity_Id;
12131 Related_Nod : Node_Id)
12132 is
12133 Save_Next_Entity : Entity_Id;
12134 Save_Homonym : Entity_Id;
12135
12136 begin
12137 -- Set semantic attributes for (implicit) private subtype completion.
12138 -- If the full type has no discriminants, then it is a copy of the
12139 -- full view of the base. Otherwise, it is a subtype of the base with
12140 -- a possible discriminant constraint. Save and restore the original
12141 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12142 -- not corrupt the entity chain.
12143
12144 -- Note that the type of the full view is the same entity as the type
12145 -- of the partial view. In this fashion, the subtype has access to the
12146 -- correct view of the parent.
12147
12148 Save_Next_Entity := Next_Entity (Full);
12149 Save_Homonym := Homonym (Priv);
12150
12151 case Ekind (Full_Base) is
12152 when Class_Wide_Kind
12153 | Private_Kind
12154 | Protected_Kind
12155 | Task_Kind
12156 | E_Record_Subtype
12157 | E_Record_Type
12158 =>
12159 Copy_Node (Priv, Full);
12160
12161 Set_Has_Discriminants
12162 (Full, Has_Discriminants (Full_Base));
12163 Set_Has_Unknown_Discriminants
12164 (Full, Has_Unknown_Discriminants (Full_Base));
12165 Set_First_Entity (Full, First_Entity (Full_Base));
12166 Set_Last_Entity (Full, Last_Entity (Full_Base));
12167
12168 -- If the underlying base type is constrained, we know that the
12169 -- full view of the subtype is constrained as well (the converse
12170 -- is not necessarily true).
12171
12172 if Is_Constrained (Full_Base) then
12173 Set_Is_Constrained (Full);
12174 end if;
12175
12176 when others =>
12177 Copy_Node (Full_Base, Full);
12178
12179 Set_Chars (Full, Chars (Priv));
12180 Conditional_Delay (Full, Priv);
12181 Set_Sloc (Full, Sloc (Priv));
12182 end case;
12183
12184 Set_Next_Entity (Full, Save_Next_Entity);
12185 Set_Homonym (Full, Save_Homonym);
12186 Set_Associated_Node_For_Itype (Full, Related_Nod);
12187
12188 -- Set common attributes for all subtypes: kind, convention, etc.
12189
12190 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12191 Set_Convention (Full, Convention (Full_Base));
12192
12193 -- The Etype of the full view is inconsistent. Gigi needs to see the
12194 -- structural full view, which is what the current scheme gives: the
12195 -- Etype of the full view is the etype of the full base. However, if the
12196 -- full base is a derived type, the full view then looks like a subtype
12197 -- of the parent, not a subtype of the full base. If instead we write:
12198
12199 -- Set_Etype (Full, Full_Base);
12200
12201 -- then we get inconsistencies in the front-end (confusion between
12202 -- views). Several outstanding bugs are related to this ???
12203
12204 Set_Is_First_Subtype (Full, False);
12205 Set_Scope (Full, Scope (Priv));
12206 Set_Size_Info (Full, Full_Base);
12207 Set_RM_Size (Full, RM_Size (Full_Base));
12208 Set_Is_Itype (Full);
12209
12210 -- A subtype of a private-type-without-discriminants, whose full-view
12211 -- has discriminants with default expressions, is not constrained.
12212
12213 if not Has_Discriminants (Priv) then
12214 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12215
12216 if Has_Discriminants (Full_Base) then
12217 Set_Discriminant_Constraint
12218 (Full, Discriminant_Constraint (Full_Base));
12219
12220 -- The partial view may have been indefinite, the full view
12221 -- might not be.
12222
12223 Set_Has_Unknown_Discriminants
12224 (Full, Has_Unknown_Discriminants (Full_Base));
12225 end if;
12226 end if;
12227
12228 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12229 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12230
12231 -- Freeze the private subtype entity if its parent is delayed, and not
12232 -- already frozen. We skip this processing if the type is an anonymous
12233 -- subtype of a record component, or is the corresponding record of a
12234 -- protected type, since these are processed when the enclosing type
12235 -- is frozen. If the parent type is declared in a nested package then
12236 -- the freezing of the private and full views also happens later.
12237
12238 if not Is_Type (Scope (Full)) then
12239 if Is_Itype (Priv)
12240 and then In_Same_Source_Unit (Full, Full_Base)
12241 and then Scope (Full_Base) /= Scope (Full)
12242 then
12243 Set_Has_Delayed_Freeze (Full);
12244 Set_Has_Delayed_Freeze (Priv);
12245
12246 else
12247 Set_Has_Delayed_Freeze (Full,
12248 Has_Delayed_Freeze (Full_Base)
12249 and then not Is_Frozen (Full_Base));
12250 end if;
12251 end if;
12252
12253 Set_Freeze_Node (Full, Empty);
12254 Set_Is_Frozen (Full, False);
12255 Set_Full_View (Priv, Full);
12256
12257 if Has_Discriminants (Full) then
12258 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12259 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12260
12261 if Has_Unknown_Discriminants (Full) then
12262 Set_Discriminant_Constraint (Full, No_Elist);
12263 end if;
12264 end if;
12265
12266 if Ekind (Full_Base) = E_Record_Type
12267 and then Has_Discriminants (Full_Base)
12268 and then Has_Discriminants (Priv) -- might not, if errors
12269 and then not Has_Unknown_Discriminants (Priv)
12270 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12271 then
12272 Create_Constrained_Components
12273 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12274
12275 -- If the full base is itself derived from private, build a congruent
12276 -- subtype of its underlying type, for use by the back end. For a
12277 -- constrained record component, the declaration cannot be placed on
12278 -- the component list, but it must nevertheless be built an analyzed, to
12279 -- supply enough information for Gigi to compute the size of component.
12280
12281 elsif Ekind (Full_Base) in Private_Kind
12282 and then Is_Derived_Type (Full_Base)
12283 and then Has_Discriminants (Full_Base)
12284 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12285 then
12286 if not Is_Itype (Priv)
12287 and then
12288 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12289 then
12290 Build_Underlying_Full_View
12291 (Parent (Priv), Full, Etype (Full_Base));
12292
12293 elsif Nkind (Related_Nod) = N_Component_Declaration then
12294 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12295 end if;
12296
12297 elsif Is_Record_Type (Full_Base) then
12298
12299 -- Show Full is simply a renaming of Full_Base
12300
12301 Set_Cloned_Subtype (Full, Full_Base);
12302 end if;
12303
12304 -- It is unsafe to share the bounds of a scalar type, because the Itype
12305 -- is elaborated on demand, and if a bound is non-static then different
12306 -- orders of elaboration in different units will lead to different
12307 -- external symbols.
12308
12309 if Is_Scalar_Type (Full_Base) then
12310 Set_Scalar_Range (Full,
12311 Make_Range (Sloc (Related_Nod),
12312 Low_Bound =>
12313 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12314 High_Bound =>
12315 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12316
12317 -- This completion inherits the bounds of the full parent, but if
12318 -- the parent is an unconstrained floating point type, so is the
12319 -- completion.
12320
12321 if Is_Floating_Point_Type (Full_Base) then
12322 Set_Includes_Infinities
12323 (Scalar_Range (Full), Has_Infinities (Full_Base));
12324 end if;
12325 end if;
12326
12327 -- ??? It seems that a lot of fields are missing that should be copied
12328 -- from Full_Base to Full. Here are some that are introduced in a
12329 -- non-disruptive way but a cleanup is necessary.
12330
12331 if Is_Tagged_Type (Full_Base) then
12332 Set_Is_Tagged_Type (Full);
12333 Set_Direct_Primitive_Operations
12334 (Full, Direct_Primitive_Operations (Full_Base));
12335 Set_No_Tagged_Streams_Pragma
12336 (Full, No_Tagged_Streams_Pragma (Full_Base));
12337
12338 -- Inherit class_wide type of full_base in case the partial view was
12339 -- not tagged. Otherwise it has already been created when the private
12340 -- subtype was analyzed.
12341
12342 if No (Class_Wide_Type (Full)) then
12343 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12344 end if;
12345
12346 -- If this is a subtype of a protected or task type, constrain its
12347 -- corresponding record, unless this is a subtype without constraints,
12348 -- i.e. a simple renaming as with an actual subtype in an instance.
12349
12350 elsif Is_Concurrent_Type (Full_Base) then
12351 if Has_Discriminants (Full)
12352 and then Present (Corresponding_Record_Type (Full_Base))
12353 and then
12354 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12355 then
12356 Set_Corresponding_Record_Type (Full,
12357 Constrain_Corresponding_Record
12358 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12359
12360 else
12361 Set_Corresponding_Record_Type (Full,
12362 Corresponding_Record_Type (Full_Base));
12363 end if;
12364 end if;
12365
12366 -- Link rep item chain, and also setting of Has_Predicates from private
12367 -- subtype to full subtype, since we will need these on the full subtype
12368 -- to create the predicate function. Note that the full subtype may
12369 -- already have rep items, inherited from the full view of the base
12370 -- type, so we must be sure not to overwrite these entries.
12371
12372 declare
12373 Append : Boolean;
12374 Item : Node_Id;
12375 Next_Item : Node_Id;
12376 Priv_Item : Node_Id;
12377
12378 begin
12379 Item := First_Rep_Item (Full);
12380 Priv_Item := First_Rep_Item (Priv);
12381
12382 -- If no existing rep items on full type, we can just link directly
12383 -- to the list of items on the private type, if any exist.. Same if
12384 -- the rep items are only those inherited from the base
12385
12386 if (No (Item)
12387 or else Nkind (Item) /= N_Aspect_Specification
12388 or else Entity (Item) = Full_Base)
12389 and then Present (First_Rep_Item (Priv))
12390 then
12391 Set_First_Rep_Item (Full, Priv_Item);
12392
12393 -- Otherwise, search to the end of items currently linked to the full
12394 -- subtype and append the private items to the end. However, if Priv
12395 -- and Full already have the same list of rep items, then the append
12396 -- is not done, as that would create a circularity.
12397 --
12398 -- The partial view may have a predicate and the rep item lists of
12399 -- both views agree when inherited from the same ancestor. In that
12400 -- case, simply propagate the list from one view to the other.
12401 -- A more complex analysis needed here ???
12402
12403 elsif Present (Priv_Item)
12404 and then Item = Next_Rep_Item (Priv_Item)
12405 then
12406 Set_First_Rep_Item (Full, Priv_Item);
12407
12408 elsif Item /= Priv_Item then
12409 Append := True;
12410 loop
12411 Next_Item := Next_Rep_Item (Item);
12412 exit when No (Next_Item);
12413 Item := Next_Item;
12414
12415 -- If the private view has aspect specifications, the full view
12416 -- inherits them. Since these aspects may already have been
12417 -- attached to the full view during derivation, do not append
12418 -- them if already present.
12419
12420 if Item = First_Rep_Item (Priv) then
12421 Append := False;
12422 exit;
12423 end if;
12424 end loop;
12425
12426 -- And link the private type items at the end of the chain
12427
12428 if Append then
12429 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12430 end if;
12431 end if;
12432 end;
12433
12434 -- Make sure Has_Predicates is set on full type if it is set on the
12435 -- private type. Note that it may already be set on the full type and
12436 -- if so, we don't want to unset it. Similarly, propagate information
12437 -- about delayed aspects, because the corresponding pragmas must be
12438 -- analyzed when one of the views is frozen. This last step is needed
12439 -- in particular when the full type is a scalar type for which an
12440 -- anonymous base type is constructed.
12441
12442 -- The predicate functions are generated either at the freeze point
12443 -- of the type or at the end of the visible part, and we must avoid
12444 -- generating them twice.
12445
12446 if Has_Predicates (Priv) then
12447 Set_Has_Predicates (Full);
12448
12449 if Present (Predicate_Function (Priv))
12450 and then No (Predicate_Function (Full))
12451 then
12452 Set_Predicate_Function (Full, Predicate_Function (Priv));
12453 end if;
12454 end if;
12455
12456 if Has_Delayed_Aspects (Priv) then
12457 Set_Has_Delayed_Aspects (Full);
12458 end if;
12459 end Complete_Private_Subtype;
12460
12461 ----------------------------
12462 -- Constant_Redeclaration --
12463 ----------------------------
12464
12465 procedure Constant_Redeclaration
12466 (Id : Entity_Id;
12467 N : Node_Id;
12468 T : out Entity_Id)
12469 is
12470 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12471 Obj_Def : constant Node_Id := Object_Definition (N);
12472 New_T : Entity_Id;
12473
12474 procedure Check_Possible_Deferred_Completion
12475 (Prev_Id : Entity_Id;
12476 Prev_Obj_Def : Node_Id;
12477 Curr_Obj_Def : Node_Id);
12478 -- Determine whether the two object definitions describe the partial
12479 -- and the full view of a constrained deferred constant. Generate
12480 -- a subtype for the full view and verify that it statically matches
12481 -- the subtype of the partial view.
12482
12483 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12484 -- If deferred constant is an access type initialized with an allocator,
12485 -- check whether there is an illegal recursion in the definition,
12486 -- through a default value of some record subcomponent. This is normally
12487 -- detected when generating init procs, but requires this additional
12488 -- mechanism when expansion is disabled.
12489
12490 ----------------------------------------
12491 -- Check_Possible_Deferred_Completion --
12492 ----------------------------------------
12493
12494 procedure Check_Possible_Deferred_Completion
12495 (Prev_Id : Entity_Id;
12496 Prev_Obj_Def : Node_Id;
12497 Curr_Obj_Def : Node_Id)
12498 is
12499 begin
12500 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12501 and then Present (Constraint (Prev_Obj_Def))
12502 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12503 and then Present (Constraint (Curr_Obj_Def))
12504 then
12505 declare
12506 Loc : constant Source_Ptr := Sloc (N);
12507 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12508 Decl : constant Node_Id :=
12509 Make_Subtype_Declaration (Loc,
12510 Defining_Identifier => Def_Id,
12511 Subtype_Indication =>
12512 Relocate_Node (Curr_Obj_Def));
12513
12514 begin
12515 Insert_Before_And_Analyze (N, Decl);
12516 Set_Etype (Id, Def_Id);
12517
12518 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12519 Error_Msg_Sloc := Sloc (Prev_Id);
12520 Error_Msg_N ("subtype does not statically match deferred "
12521 & "declaration #", N);
12522 end if;
12523 end;
12524 end if;
12525 end Check_Possible_Deferred_Completion;
12526
12527 ---------------------------------
12528 -- Check_Recursive_Declaration --
12529 ---------------------------------
12530
12531 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12532 Comp : Entity_Id;
12533
12534 begin
12535 if Is_Record_Type (Typ) then
12536 Comp := First_Component (Typ);
12537 while Present (Comp) loop
12538 if Comes_From_Source (Comp) then
12539 if Present (Expression (Parent (Comp)))
12540 and then Is_Entity_Name (Expression (Parent (Comp)))
12541 and then Entity (Expression (Parent (Comp))) = Prev
12542 then
12543 Error_Msg_Sloc := Sloc (Parent (Comp));
12544 Error_Msg_NE
12545 ("illegal circularity with declaration for & #",
12546 N, Comp);
12547 return;
12548
12549 elsif Is_Record_Type (Etype (Comp)) then
12550 Check_Recursive_Declaration (Etype (Comp));
12551 end if;
12552 end if;
12553
12554 Next_Component (Comp);
12555 end loop;
12556 end if;
12557 end Check_Recursive_Declaration;
12558
12559 -- Start of processing for Constant_Redeclaration
12560
12561 begin
12562 if Nkind (Parent (Prev)) = N_Object_Declaration then
12563 if Nkind (Object_Definition
12564 (Parent (Prev))) = N_Subtype_Indication
12565 then
12566 -- Find type of new declaration. The constraints of the two
12567 -- views must match statically, but there is no point in
12568 -- creating an itype for the full view.
12569
12570 if Nkind (Obj_Def) = N_Subtype_Indication then
12571 Find_Type (Subtype_Mark (Obj_Def));
12572 New_T := Entity (Subtype_Mark (Obj_Def));
12573
12574 else
12575 Find_Type (Obj_Def);
12576 New_T := Entity (Obj_Def);
12577 end if;
12578
12579 T := Etype (Prev);
12580
12581 else
12582 -- The full view may impose a constraint, even if the partial
12583 -- view does not, so construct the subtype.
12584
12585 New_T := Find_Type_Of_Object (Obj_Def, N);
12586 T := New_T;
12587 end if;
12588
12589 else
12590 -- Current declaration is illegal, diagnosed below in Enter_Name
12591
12592 T := Empty;
12593 New_T := Any_Type;
12594 end if;
12595
12596 -- If previous full declaration or a renaming declaration exists, or if
12597 -- a homograph is present, let Enter_Name handle it, either with an
12598 -- error or with the removal of an overridden implicit subprogram.
12599 -- The previous one is a full declaration if it has an expression
12600 -- (which in the case of an aggregate is indicated by the Init flag).
12601
12602 if Ekind (Prev) /= E_Constant
12603 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12604 or else Present (Expression (Parent (Prev)))
12605 or else Has_Init_Expression (Parent (Prev))
12606 or else Present (Full_View (Prev))
12607 then
12608 Enter_Name (Id);
12609
12610 -- Verify that types of both declarations match, or else that both types
12611 -- are anonymous access types whose designated subtypes statically match
12612 -- (as allowed in Ada 2005 by AI-385).
12613
12614 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12615 and then
12616 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12617 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12618 or else Is_Access_Constant (Etype (New_T)) /=
12619 Is_Access_Constant (Etype (Prev))
12620 or else Can_Never_Be_Null (Etype (New_T)) /=
12621 Can_Never_Be_Null (Etype (Prev))
12622 or else Null_Exclusion_Present (Parent (Prev)) /=
12623 Null_Exclusion_Present (Parent (Id))
12624 or else not Subtypes_Statically_Match
12625 (Designated_Type (Etype (Prev)),
12626 Designated_Type (Etype (New_T))))
12627 then
12628 Error_Msg_Sloc := Sloc (Prev);
12629 Error_Msg_N ("type does not match declaration#", N);
12630 Set_Full_View (Prev, Id);
12631 Set_Etype (Id, Any_Type);
12632
12633 -- A deferred constant whose type is an anonymous array is always
12634 -- illegal (unless imported). A detailed error message might be
12635 -- helpful for Ada beginners.
12636
12637 if Nkind (Object_Definition (Parent (Prev)))
12638 = N_Constrained_Array_Definition
12639 and then Nkind (Object_Definition (N))
12640 = N_Constrained_Array_Definition
12641 then
12642 Error_Msg_N ("\each anonymous array is a distinct type", N);
12643 Error_Msg_N ("a deferred constant must have a named type",
12644 Object_Definition (Parent (Prev)));
12645 end if;
12646
12647 elsif
12648 Null_Exclusion_Present (Parent (Prev))
12649 and then not Null_Exclusion_Present (N)
12650 then
12651 Error_Msg_Sloc := Sloc (Prev);
12652 Error_Msg_N ("null-exclusion does not match declaration#", N);
12653 Set_Full_View (Prev, Id);
12654 Set_Etype (Id, Any_Type);
12655
12656 -- If so, process the full constant declaration
12657
12658 else
12659 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12660 -- the deferred declaration is constrained, then the subtype defined
12661 -- by the subtype_indication in the full declaration shall match it
12662 -- statically.
12663
12664 Check_Possible_Deferred_Completion
12665 (Prev_Id => Prev,
12666 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12667 Curr_Obj_Def => Obj_Def);
12668
12669 Set_Full_View (Prev, Id);
12670 Set_Is_Public (Id, Is_Public (Prev));
12671 Set_Is_Internal (Id);
12672 Append_Entity (Id, Current_Scope);
12673
12674 -- Check ALIASED present if present before (RM 7.4(7))
12675
12676 if Is_Aliased (Prev)
12677 and then not Aliased_Present (N)
12678 then
12679 Error_Msg_Sloc := Sloc (Prev);
12680 Error_Msg_N ("ALIASED required (see declaration #)", N);
12681 end if;
12682
12683 -- Check that placement is in private part and that the incomplete
12684 -- declaration appeared in the visible part.
12685
12686 if Ekind (Current_Scope) = E_Package
12687 and then not In_Private_Part (Current_Scope)
12688 then
12689 Error_Msg_Sloc := Sloc (Prev);
12690 Error_Msg_N
12691 ("full constant for declaration # must be in private part", N);
12692
12693 elsif Ekind (Current_Scope) = E_Package
12694 and then
12695 List_Containing (Parent (Prev)) /=
12696 Visible_Declarations (Package_Specification (Current_Scope))
12697 then
12698 Error_Msg_N
12699 ("deferred constant must be declared in visible part",
12700 Parent (Prev));
12701 end if;
12702
12703 if Is_Access_Type (T)
12704 and then Nkind (Expression (N)) = N_Allocator
12705 then
12706 Check_Recursive_Declaration (Designated_Type (T));
12707 end if;
12708
12709 -- A deferred constant is a visible entity. If type has invariants,
12710 -- verify that the initial value satisfies them.
12711
12712 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12713 Insert_After (N,
12714 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12715 end if;
12716 end if;
12717 end Constant_Redeclaration;
12718
12719 ----------------------
12720 -- Constrain_Access --
12721 ----------------------
12722
12723 procedure Constrain_Access
12724 (Def_Id : in out Entity_Id;
12725 S : Node_Id;
12726 Related_Nod : Node_Id)
12727 is
12728 T : constant Entity_Id := Entity (Subtype_Mark (S));
12729 Desig_Type : constant Entity_Id := Designated_Type (T);
12730 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12731 Constraint_OK : Boolean := True;
12732
12733 begin
12734 if Is_Array_Type (Desig_Type) then
12735 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12736
12737 elsif (Is_Record_Type (Desig_Type)
12738 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12739 and then not Is_Constrained (Desig_Type)
12740 then
12741 -- ??? The following code is a temporary bypass to ignore a
12742 -- discriminant constraint on access type if it is constraining
12743 -- the current record. Avoid creating the implicit subtype of the
12744 -- record we are currently compiling since right now, we cannot
12745 -- handle these. For now, just return the access type itself.
12746
12747 if Desig_Type = Current_Scope
12748 and then No (Def_Id)
12749 then
12750 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12751 Def_Id := Entity (Subtype_Mark (S));
12752
12753 -- This call added to ensure that the constraint is analyzed
12754 -- (needed for a B test). Note that we still return early from
12755 -- this procedure to avoid recursive processing. ???
12756
12757 Constrain_Discriminated_Type
12758 (Desig_Subtype, S, Related_Nod, For_Access => True);
12759 return;
12760 end if;
12761
12762 -- Enforce rule that the constraint is illegal if there is an
12763 -- unconstrained view of the designated type. This means that the
12764 -- partial view (either a private type declaration or a derivation
12765 -- from a private type) has no discriminants. (Defect Report
12766 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12767
12768 -- Rule updated for Ada 2005: The private type is said to have
12769 -- a constrained partial view, given that objects of the type
12770 -- can be declared. Furthermore, the rule applies to all access
12771 -- types, unlike the rule concerning default discriminants (see
12772 -- RM 3.7.1(7/3))
12773
12774 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12775 and then Has_Private_Declaration (Desig_Type)
12776 and then In_Open_Scopes (Scope (Desig_Type))
12777 and then Has_Discriminants (Desig_Type)
12778 then
12779 declare
12780 Pack : constant Node_Id :=
12781 Unit_Declaration_Node (Scope (Desig_Type));
12782 Decls : List_Id;
12783 Decl : Node_Id;
12784
12785 begin
12786 if Nkind (Pack) = N_Package_Declaration then
12787 Decls := Visible_Declarations (Specification (Pack));
12788 Decl := First (Decls);
12789 while Present (Decl) loop
12790 if (Nkind (Decl) = N_Private_Type_Declaration
12791 and then Chars (Defining_Identifier (Decl)) =
12792 Chars (Desig_Type))
12793
12794 or else
12795 (Nkind (Decl) = N_Full_Type_Declaration
12796 and then
12797 Chars (Defining_Identifier (Decl)) =
12798 Chars (Desig_Type)
12799 and then Is_Derived_Type (Desig_Type)
12800 and then
12801 Has_Private_Declaration (Etype (Desig_Type)))
12802 then
12803 if No (Discriminant_Specifications (Decl)) then
12804 Error_Msg_N
12805 ("cannot constrain access type if designated "
12806 & "type has constrained partial view", S);
12807 end if;
12808
12809 exit;
12810 end if;
12811
12812 Next (Decl);
12813 end loop;
12814 end if;
12815 end;
12816 end if;
12817
12818 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12819 For_Access => True);
12820
12821 elsif Is_Concurrent_Type (Desig_Type)
12822 and then not Is_Constrained (Desig_Type)
12823 then
12824 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12825
12826 else
12827 Error_Msg_N ("invalid constraint on access type", S);
12828
12829 -- We simply ignore an invalid constraint
12830
12831 Desig_Subtype := Desig_Type;
12832 Constraint_OK := False;
12833 end if;
12834
12835 if No (Def_Id) then
12836 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12837 else
12838 Set_Ekind (Def_Id, E_Access_Subtype);
12839 end if;
12840
12841 if Constraint_OK then
12842 Set_Etype (Def_Id, Base_Type (T));
12843
12844 if Is_Private_Type (Desig_Type) then
12845 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12846 end if;
12847 else
12848 Set_Etype (Def_Id, Any_Type);
12849 end if;
12850
12851 Set_Size_Info (Def_Id, T);
12852 Set_Is_Constrained (Def_Id, Constraint_OK);
12853 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12854 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12855 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12856
12857 Conditional_Delay (Def_Id, T);
12858
12859 -- AI-363 : Subtypes of general access types whose designated types have
12860 -- default discriminants are disallowed. In instances, the rule has to
12861 -- be checked against the actual, of which T is the subtype. In a
12862 -- generic body, the rule is checked assuming that the actual type has
12863 -- defaulted discriminants.
12864
12865 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12866 if Ekind (Base_Type (T)) = E_General_Access_Type
12867 and then Has_Defaulted_Discriminants (Desig_Type)
12868 then
12869 if Ada_Version < Ada_2005 then
12870 Error_Msg_N
12871 ("access subtype of general access type would not " &
12872 "be allowed in Ada 2005?y?", S);
12873 else
12874 Error_Msg_N
12875 ("access subtype of general access type not allowed", S);
12876 end if;
12877
12878 Error_Msg_N ("\discriminants have defaults", S);
12879
12880 elsif Is_Access_Type (T)
12881 and then Is_Generic_Type (Desig_Type)
12882 and then Has_Discriminants (Desig_Type)
12883 and then In_Package_Body (Current_Scope)
12884 then
12885 if Ada_Version < Ada_2005 then
12886 Error_Msg_N
12887 ("access subtype would not be allowed in generic body "
12888 & "in Ada 2005?y?", S);
12889 else
12890 Error_Msg_N
12891 ("access subtype not allowed in generic body", S);
12892 end if;
12893
12894 Error_Msg_N
12895 ("\designated type is a discriminated formal", S);
12896 end if;
12897 end if;
12898 end Constrain_Access;
12899
12900 ---------------------
12901 -- Constrain_Array --
12902 ---------------------
12903
12904 procedure Constrain_Array
12905 (Def_Id : in out Entity_Id;
12906 SI : Node_Id;
12907 Related_Nod : Node_Id;
12908 Related_Id : Entity_Id;
12909 Suffix : Character)
12910 is
12911 C : constant Node_Id := Constraint (SI);
12912 Number_Of_Constraints : Nat := 0;
12913 Index : Node_Id;
12914 S, T : Entity_Id;
12915 Constraint_OK : Boolean := True;
12916
12917 begin
12918 T := Entity (Subtype_Mark (SI));
12919
12920 if Is_Access_Type (T) then
12921 T := Designated_Type (T);
12922 end if;
12923
12924 -- If an index constraint follows a subtype mark in a subtype indication
12925 -- then the type or subtype denoted by the subtype mark must not already
12926 -- impose an index constraint. The subtype mark must denote either an
12927 -- unconstrained array type or an access type whose designated type
12928 -- is such an array type... (RM 3.6.1)
12929
12930 if Is_Constrained (T) then
12931 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12932 Constraint_OK := False;
12933
12934 else
12935 S := First (Constraints (C));
12936 while Present (S) loop
12937 Number_Of_Constraints := Number_Of_Constraints + 1;
12938 Next (S);
12939 end loop;
12940
12941 -- In either case, the index constraint must provide a discrete
12942 -- range for each index of the array type and the type of each
12943 -- discrete range must be the same as that of the corresponding
12944 -- index. (RM 3.6.1)
12945
12946 if Number_Of_Constraints /= Number_Dimensions (T) then
12947 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12948 Constraint_OK := False;
12949
12950 else
12951 S := First (Constraints (C));
12952 Index := First_Index (T);
12953 Analyze (Index);
12954
12955 -- Apply constraints to each index type
12956
12957 for J in 1 .. Number_Of_Constraints loop
12958 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12959 Next (Index);
12960 Next (S);
12961 end loop;
12962
12963 end if;
12964 end if;
12965
12966 if No (Def_Id) then
12967 Def_Id :=
12968 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12969 Set_Parent (Def_Id, Related_Nod);
12970
12971 else
12972 Set_Ekind (Def_Id, E_Array_Subtype);
12973 end if;
12974
12975 Set_Size_Info (Def_Id, (T));
12976 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12977 Set_Etype (Def_Id, Base_Type (T));
12978
12979 if Constraint_OK then
12980 Set_First_Index (Def_Id, First (Constraints (C)));
12981 else
12982 Set_First_Index (Def_Id, First_Index (T));
12983 end if;
12984
12985 Set_Is_Constrained (Def_Id, True);
12986 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12987 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12988
12989 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12990 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12991
12992 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12993 -- We need to initialize the attribute because if Def_Id is previously
12994 -- analyzed through a limited_with clause, it will have the attributes
12995 -- of an incomplete type, one of which is an Elist that overlaps the
12996 -- Packed_Array_Impl_Type field.
12997
12998 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12999
13000 -- Build a freeze node if parent still needs one. Also make sure that
13001 -- the Depends_On_Private status is set because the subtype will need
13002 -- reprocessing at the time the base type does, and also we must set a
13003 -- conditional delay.
13004
13005 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13006 Conditional_Delay (Def_Id, T);
13007 end Constrain_Array;
13008
13009 ------------------------------
13010 -- Constrain_Component_Type --
13011 ------------------------------
13012
13013 function Constrain_Component_Type
13014 (Comp : Entity_Id;
13015 Constrained_Typ : Entity_Id;
13016 Related_Node : Node_Id;
13017 Typ : Entity_Id;
13018 Constraints : Elist_Id) return Entity_Id
13019 is
13020 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13021 Compon_Type : constant Entity_Id := Etype (Comp);
13022
13023 function Build_Constrained_Array_Type
13024 (Old_Type : Entity_Id) return Entity_Id;
13025 -- If Old_Type is an array type, one of whose indexes is constrained
13026 -- by a discriminant, build an Itype whose constraint replaces the
13027 -- discriminant with its value in the constraint.
13028
13029 function Build_Constrained_Discriminated_Type
13030 (Old_Type : Entity_Id) return Entity_Id;
13031 -- Ditto for record components
13032
13033 function Build_Constrained_Access_Type
13034 (Old_Type : Entity_Id) return Entity_Id;
13035 -- Ditto for access types. Makes use of previous two functions, to
13036 -- constrain designated type.
13037
13038 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13039 -- T is an array or discriminated type, C is a list of constraints
13040 -- that apply to T. This routine builds the constrained subtype.
13041
13042 function Is_Discriminant (Expr : Node_Id) return Boolean;
13043 -- Returns True if Expr is a discriminant
13044
13045 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13046 -- Find the value of discriminant Discrim in Constraint
13047
13048 -----------------------------------
13049 -- Build_Constrained_Access_Type --
13050 -----------------------------------
13051
13052 function Build_Constrained_Access_Type
13053 (Old_Type : Entity_Id) return Entity_Id
13054 is
13055 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13056 Itype : Entity_Id;
13057 Desig_Subtype : Entity_Id;
13058 Scop : Entity_Id;
13059
13060 begin
13061 -- if the original access type was not embedded in the enclosing
13062 -- type definition, there is no need to produce a new access
13063 -- subtype. In fact every access type with an explicit constraint
13064 -- generates an itype whose scope is the enclosing record.
13065
13066 if not Is_Type (Scope (Old_Type)) then
13067 return Old_Type;
13068
13069 elsif Is_Array_Type (Desig_Type) then
13070 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13071
13072 elsif Has_Discriminants (Desig_Type) then
13073
13074 -- This may be an access type to an enclosing record type for
13075 -- which we are constructing the constrained components. Return
13076 -- the enclosing record subtype. This is not always correct,
13077 -- but avoids infinite recursion. ???
13078
13079 Desig_Subtype := Any_Type;
13080
13081 for J in reverse 0 .. Scope_Stack.Last loop
13082 Scop := Scope_Stack.Table (J).Entity;
13083
13084 if Is_Type (Scop)
13085 and then Base_Type (Scop) = Base_Type (Desig_Type)
13086 then
13087 Desig_Subtype := Scop;
13088 end if;
13089
13090 exit when not Is_Type (Scop);
13091 end loop;
13092
13093 if Desig_Subtype = Any_Type then
13094 Desig_Subtype :=
13095 Build_Constrained_Discriminated_Type (Desig_Type);
13096 end if;
13097
13098 else
13099 return Old_Type;
13100 end if;
13101
13102 if Desig_Subtype /= Desig_Type then
13103
13104 -- The Related_Node better be here or else we won't be able
13105 -- to attach new itypes to a node in the tree.
13106
13107 pragma Assert (Present (Related_Node));
13108
13109 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13110
13111 Set_Etype (Itype, Base_Type (Old_Type));
13112 Set_Size_Info (Itype, (Old_Type));
13113 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13114 Set_Depends_On_Private (Itype, Has_Private_Component
13115 (Old_Type));
13116 Set_Is_Access_Constant (Itype, Is_Access_Constant
13117 (Old_Type));
13118
13119 -- The new itype needs freezing when it depends on a not frozen
13120 -- type and the enclosing subtype needs freezing.
13121
13122 if Has_Delayed_Freeze (Constrained_Typ)
13123 and then not Is_Frozen (Constrained_Typ)
13124 then
13125 Conditional_Delay (Itype, Base_Type (Old_Type));
13126 end if;
13127
13128 return Itype;
13129
13130 else
13131 return Old_Type;
13132 end if;
13133 end Build_Constrained_Access_Type;
13134
13135 ----------------------------------
13136 -- Build_Constrained_Array_Type --
13137 ----------------------------------
13138
13139 function Build_Constrained_Array_Type
13140 (Old_Type : Entity_Id) return Entity_Id
13141 is
13142 Lo_Expr : Node_Id;
13143 Hi_Expr : Node_Id;
13144 Old_Index : Node_Id;
13145 Range_Node : Node_Id;
13146 Constr_List : List_Id;
13147
13148 Need_To_Create_Itype : Boolean := False;
13149
13150 begin
13151 Old_Index := First_Index (Old_Type);
13152 while Present (Old_Index) loop
13153 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13154
13155 if Is_Discriminant (Lo_Expr)
13156 or else
13157 Is_Discriminant (Hi_Expr)
13158 then
13159 Need_To_Create_Itype := True;
13160 end if;
13161
13162 Next_Index (Old_Index);
13163 end loop;
13164
13165 if Need_To_Create_Itype then
13166 Constr_List := New_List;
13167
13168 Old_Index := First_Index (Old_Type);
13169 while Present (Old_Index) loop
13170 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13171
13172 if Is_Discriminant (Lo_Expr) then
13173 Lo_Expr := Get_Discr_Value (Lo_Expr);
13174 end if;
13175
13176 if Is_Discriminant (Hi_Expr) then
13177 Hi_Expr := Get_Discr_Value (Hi_Expr);
13178 end if;
13179
13180 Range_Node :=
13181 Make_Range
13182 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13183
13184 Append (Range_Node, To => Constr_List);
13185
13186 Next_Index (Old_Index);
13187 end loop;
13188
13189 return Build_Subtype (Old_Type, Constr_List);
13190
13191 else
13192 return Old_Type;
13193 end if;
13194 end Build_Constrained_Array_Type;
13195
13196 ------------------------------------------
13197 -- Build_Constrained_Discriminated_Type --
13198 ------------------------------------------
13199
13200 function Build_Constrained_Discriminated_Type
13201 (Old_Type : Entity_Id) return Entity_Id
13202 is
13203 Expr : Node_Id;
13204 Constr_List : List_Id;
13205 Old_Constraint : Elmt_Id;
13206
13207 Need_To_Create_Itype : Boolean := False;
13208
13209 begin
13210 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13211 while Present (Old_Constraint) loop
13212 Expr := Node (Old_Constraint);
13213
13214 if Is_Discriminant (Expr) then
13215 Need_To_Create_Itype := True;
13216 end if;
13217
13218 Next_Elmt (Old_Constraint);
13219 end loop;
13220
13221 if Need_To_Create_Itype then
13222 Constr_List := New_List;
13223
13224 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13225 while Present (Old_Constraint) loop
13226 Expr := Node (Old_Constraint);
13227
13228 if Is_Discriminant (Expr) then
13229 Expr := Get_Discr_Value (Expr);
13230 end if;
13231
13232 Append (New_Copy_Tree (Expr), To => Constr_List);
13233
13234 Next_Elmt (Old_Constraint);
13235 end loop;
13236
13237 return Build_Subtype (Old_Type, Constr_List);
13238
13239 else
13240 return Old_Type;
13241 end if;
13242 end Build_Constrained_Discriminated_Type;
13243
13244 -------------------
13245 -- Build_Subtype --
13246 -------------------
13247
13248 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13249 Indic : Node_Id;
13250 Subtyp_Decl : Node_Id;
13251 Def_Id : Entity_Id;
13252 Btyp : Entity_Id := Base_Type (T);
13253
13254 begin
13255 -- The Related_Node better be here or else we won't be able to
13256 -- attach new itypes to a node in the tree.
13257
13258 pragma Assert (Present (Related_Node));
13259
13260 -- If the view of the component's type is incomplete or private
13261 -- with unknown discriminants, then the constraint must be applied
13262 -- to the full type.
13263
13264 if Has_Unknown_Discriminants (Btyp)
13265 and then Present (Underlying_Type (Btyp))
13266 then
13267 Btyp := Underlying_Type (Btyp);
13268 end if;
13269
13270 Indic :=
13271 Make_Subtype_Indication (Loc,
13272 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13273 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13274
13275 Def_Id := Create_Itype (Ekind (T), Related_Node);
13276
13277 Subtyp_Decl :=
13278 Make_Subtype_Declaration (Loc,
13279 Defining_Identifier => Def_Id,
13280 Subtype_Indication => Indic);
13281
13282 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13283
13284 -- Itypes must be analyzed with checks off (see package Itypes)
13285
13286 Analyze (Subtyp_Decl, Suppress => All_Checks);
13287
13288 return Def_Id;
13289 end Build_Subtype;
13290
13291 ---------------------
13292 -- Get_Discr_Value --
13293 ---------------------
13294
13295 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13296 D : Entity_Id;
13297 E : Elmt_Id;
13298
13299 begin
13300 -- The discriminant may be declared for the type, in which case we
13301 -- find it by iterating over the list of discriminants. If the
13302 -- discriminant is inherited from a parent type, it appears as the
13303 -- corresponding discriminant of the current type. This will be the
13304 -- case when constraining an inherited component whose constraint is
13305 -- given by a discriminant of the parent.
13306
13307 D := First_Discriminant (Typ);
13308 E := First_Elmt (Constraints);
13309
13310 while Present (D) loop
13311 if D = Entity (Discrim)
13312 or else D = CR_Discriminant (Entity (Discrim))
13313 or else Corresponding_Discriminant (D) = Entity (Discrim)
13314 then
13315 return Node (E);
13316 end if;
13317
13318 Next_Discriminant (D);
13319 Next_Elmt (E);
13320 end loop;
13321
13322 -- The Corresponding_Discriminant mechanism is incomplete, because
13323 -- the correspondence between new and old discriminants is not one
13324 -- to one: one new discriminant can constrain several old ones. In
13325 -- that case, scan sequentially the stored_constraint, the list of
13326 -- discriminants of the parents, and the constraints.
13327
13328 -- Previous code checked for the present of the Stored_Constraint
13329 -- list for the derived type, but did not use it at all. Should it
13330 -- be present when the component is a discriminated task type?
13331
13332 if Is_Derived_Type (Typ)
13333 and then Scope (Entity (Discrim)) = Etype (Typ)
13334 then
13335 D := First_Discriminant (Etype (Typ));
13336 E := First_Elmt (Constraints);
13337 while Present (D) loop
13338 if D = Entity (Discrim) then
13339 return Node (E);
13340 end if;
13341
13342 Next_Discriminant (D);
13343 Next_Elmt (E);
13344 end loop;
13345 end if;
13346
13347 -- Something is wrong if we did not find the value
13348
13349 raise Program_Error;
13350 end Get_Discr_Value;
13351
13352 ---------------------
13353 -- Is_Discriminant --
13354 ---------------------
13355
13356 function Is_Discriminant (Expr : Node_Id) return Boolean is
13357 Discrim_Scope : Entity_Id;
13358
13359 begin
13360 if Denotes_Discriminant (Expr) then
13361 Discrim_Scope := Scope (Entity (Expr));
13362
13363 -- Either we have a reference to one of Typ's discriminants,
13364
13365 pragma Assert (Discrim_Scope = Typ
13366
13367 -- or to the discriminants of the parent type, in the case
13368 -- of a derivation of a tagged type with variants.
13369
13370 or else Discrim_Scope = Etype (Typ)
13371 or else Full_View (Discrim_Scope) = Etype (Typ)
13372
13373 -- or same as above for the case where the discriminants
13374 -- were declared in Typ's private view.
13375
13376 or else (Is_Private_Type (Discrim_Scope)
13377 and then Chars (Discrim_Scope) = Chars (Typ))
13378
13379 -- or else we are deriving from the full view and the
13380 -- discriminant is declared in the private entity.
13381
13382 or else (Is_Private_Type (Typ)
13383 and then Chars (Discrim_Scope) = Chars (Typ))
13384
13385 -- Or we are constrained the corresponding record of a
13386 -- synchronized type that completes a private declaration.
13387
13388 or else (Is_Concurrent_Record_Type (Typ)
13389 and then
13390 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13391
13392 -- or we have a class-wide type, in which case make sure the
13393 -- discriminant found belongs to the root type.
13394
13395 or else (Is_Class_Wide_Type (Typ)
13396 and then Etype (Typ) = Discrim_Scope));
13397
13398 return True;
13399 end if;
13400
13401 -- In all other cases we have something wrong
13402
13403 return False;
13404 end Is_Discriminant;
13405
13406 -- Start of processing for Constrain_Component_Type
13407
13408 begin
13409 if Nkind (Parent (Comp)) = N_Component_Declaration
13410 and then Comes_From_Source (Parent (Comp))
13411 and then Comes_From_Source
13412 (Subtype_Indication (Component_Definition (Parent (Comp))))
13413 and then
13414 Is_Entity_Name
13415 (Subtype_Indication (Component_Definition (Parent (Comp))))
13416 then
13417 return Compon_Type;
13418
13419 elsif Is_Array_Type (Compon_Type) then
13420 return Build_Constrained_Array_Type (Compon_Type);
13421
13422 elsif Has_Discriminants (Compon_Type) then
13423 return Build_Constrained_Discriminated_Type (Compon_Type);
13424
13425 elsif Is_Access_Type (Compon_Type) then
13426 return Build_Constrained_Access_Type (Compon_Type);
13427
13428 else
13429 return Compon_Type;
13430 end if;
13431 end Constrain_Component_Type;
13432
13433 --------------------------
13434 -- Constrain_Concurrent --
13435 --------------------------
13436
13437 -- For concurrent types, the associated record value type carries the same
13438 -- discriminants, so when we constrain a concurrent type, we must constrain
13439 -- the corresponding record type as well.
13440
13441 procedure Constrain_Concurrent
13442 (Def_Id : in out Entity_Id;
13443 SI : Node_Id;
13444 Related_Nod : Node_Id;
13445 Related_Id : Entity_Id;
13446 Suffix : Character)
13447 is
13448 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13449 -- case of a private subtype (needed when only doing semantic analysis).
13450
13451 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13452 T_Val : Entity_Id;
13453
13454 begin
13455 if Is_Access_Type (T_Ent) then
13456 T_Ent := Designated_Type (T_Ent);
13457 end if;
13458
13459 T_Val := Corresponding_Record_Type (T_Ent);
13460
13461 if Present (T_Val) then
13462
13463 if No (Def_Id) then
13464 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13465
13466 -- Elaborate itype now, as it may be used in a subsequent
13467 -- synchronized operation in another scope.
13468
13469 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13470 Build_Itype_Reference (Def_Id, Related_Nod);
13471 end if;
13472 end if;
13473
13474 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13475
13476 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13477 Set_Corresponding_Record_Type (Def_Id,
13478 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13479
13480 else
13481 -- If there is no associated record, expansion is disabled and this
13482 -- is a generic context. Create a subtype in any case, so that
13483 -- semantic analysis can proceed.
13484
13485 if No (Def_Id) then
13486 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13487 end if;
13488
13489 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13490 end if;
13491 end Constrain_Concurrent;
13492
13493 ------------------------------------
13494 -- Constrain_Corresponding_Record --
13495 ------------------------------------
13496
13497 function Constrain_Corresponding_Record
13498 (Prot_Subt : Entity_Id;
13499 Corr_Rec : Entity_Id;
13500 Related_Nod : Node_Id) return Entity_Id
13501 is
13502 T_Sub : constant Entity_Id :=
13503 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13504
13505 begin
13506 Set_Etype (T_Sub, Corr_Rec);
13507 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13508 Set_Is_Constrained (T_Sub, True);
13509 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13510 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13511
13512 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13513 Set_Discriminant_Constraint
13514 (T_Sub, Discriminant_Constraint (Prot_Subt));
13515 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13516 Create_Constrained_Components
13517 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13518 end if;
13519
13520 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13521
13522 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13523 Conditional_Delay (T_Sub, Corr_Rec);
13524
13525 else
13526 -- This is a component subtype: it will be frozen in the context of
13527 -- the enclosing record's init_proc, so that discriminant references
13528 -- are resolved to discriminals. (Note: we used to skip freezing
13529 -- altogether in that case, which caused errors downstream for
13530 -- components of a bit packed array type).
13531
13532 Set_Has_Delayed_Freeze (T_Sub);
13533 end if;
13534
13535 return T_Sub;
13536 end Constrain_Corresponding_Record;
13537
13538 -----------------------
13539 -- Constrain_Decimal --
13540 -----------------------
13541
13542 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13543 T : constant Entity_Id := Entity (Subtype_Mark (S));
13544 C : constant Node_Id := Constraint (S);
13545 Loc : constant Source_Ptr := Sloc (C);
13546 Range_Expr : Node_Id;
13547 Digits_Expr : Node_Id;
13548 Digits_Val : Uint;
13549 Bound_Val : Ureal;
13550
13551 begin
13552 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13553
13554 if Nkind (C) = N_Range_Constraint then
13555 Range_Expr := Range_Expression (C);
13556 Digits_Val := Digits_Value (T);
13557
13558 else
13559 pragma Assert (Nkind (C) = N_Digits_Constraint);
13560
13561 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13562
13563 Digits_Expr := Digits_Expression (C);
13564 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13565
13566 Check_Digits_Expression (Digits_Expr);
13567 Digits_Val := Expr_Value (Digits_Expr);
13568
13569 if Digits_Val > Digits_Value (T) then
13570 Error_Msg_N
13571 ("digits expression is incompatible with subtype", C);
13572 Digits_Val := Digits_Value (T);
13573 end if;
13574
13575 if Present (Range_Constraint (C)) then
13576 Range_Expr := Range_Expression (Range_Constraint (C));
13577 else
13578 Range_Expr := Empty;
13579 end if;
13580 end if;
13581
13582 Set_Etype (Def_Id, Base_Type (T));
13583 Set_Size_Info (Def_Id, (T));
13584 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13585 Set_Delta_Value (Def_Id, Delta_Value (T));
13586 Set_Scale_Value (Def_Id, Scale_Value (T));
13587 Set_Small_Value (Def_Id, Small_Value (T));
13588 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13589 Set_Digits_Value (Def_Id, Digits_Val);
13590
13591 -- Manufacture range from given digits value if no range present
13592
13593 if No (Range_Expr) then
13594 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13595 Range_Expr :=
13596 Make_Range (Loc,
13597 Low_Bound =>
13598 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13599 High_Bound =>
13600 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13601 end if;
13602
13603 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13604 Set_Discrete_RM_Size (Def_Id);
13605
13606 -- Unconditionally delay the freeze, since we cannot set size
13607 -- information in all cases correctly until the freeze point.
13608
13609 Set_Has_Delayed_Freeze (Def_Id);
13610 end Constrain_Decimal;
13611
13612 ----------------------------------
13613 -- Constrain_Discriminated_Type --
13614 ----------------------------------
13615
13616 procedure Constrain_Discriminated_Type
13617 (Def_Id : Entity_Id;
13618 S : Node_Id;
13619 Related_Nod : Node_Id;
13620 For_Access : Boolean := False)
13621 is
13622 E : Entity_Id := Entity (Subtype_Mark (S));
13623 T : Entity_Id;
13624
13625 procedure Fixup_Bad_Constraint;
13626 -- Called after finding a bad constraint, and after having posted an
13627 -- appropriate error message. The goal is to leave type Def_Id in as
13628 -- reasonable state as possible.
13629
13630 --------------------------
13631 -- Fixup_Bad_Constraint --
13632 --------------------------
13633
13634 procedure Fixup_Bad_Constraint is
13635 begin
13636 -- Set a reasonable Ekind for the entity, including incomplete types.
13637
13638 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13639
13640 -- Set Etype to the known type, to reduce chances of cascaded errors
13641
13642 Set_Etype (Def_Id, E);
13643 Set_Error_Posted (Def_Id);
13644 end Fixup_Bad_Constraint;
13645
13646 -- Local variables
13647
13648 C : Node_Id;
13649 Constr : Elist_Id := New_Elmt_List;
13650
13651 -- Start of processing for Constrain_Discriminated_Type
13652
13653 begin
13654 C := Constraint (S);
13655
13656 -- A discriminant constraint is only allowed in a subtype indication,
13657 -- after a subtype mark. This subtype mark must denote either a type
13658 -- with discriminants, or an access type whose designated type is a
13659 -- type with discriminants. A discriminant constraint specifies the
13660 -- values of these discriminants (RM 3.7.2(5)).
13661
13662 T := Base_Type (Entity (Subtype_Mark (S)));
13663
13664 if Is_Access_Type (T) then
13665 T := Designated_Type (T);
13666 end if;
13667
13668 -- In an instance it may be necessary to retrieve the full view of a
13669 -- type with unknown discriminants, or a full view with defaulted
13670 -- discriminants. In other contexts the constraint is illegal.
13671
13672 if In_Instance
13673 and then Is_Private_Type (T)
13674 and then Present (Full_View (T))
13675 and then
13676 (Has_Unknown_Discriminants (T)
13677 or else
13678 (not Has_Discriminants (T)
13679 and then Has_Discriminants (Full_View (T))
13680 and then Present (Discriminant_Default_Value
13681 (First_Discriminant (Full_View (T))))))
13682 then
13683 T := Full_View (T);
13684 E := Full_View (E);
13685 end if;
13686
13687 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13688 -- generating an error for access-to-incomplete subtypes.
13689
13690 if Ada_Version >= Ada_2005
13691 and then Ekind (T) = E_Incomplete_Type
13692 and then Nkind (Parent (S)) = N_Subtype_Declaration
13693 and then not Is_Itype (Def_Id)
13694 then
13695 -- A little sanity check: emit an error message if the type has
13696 -- discriminants to begin with. Type T may be a regular incomplete
13697 -- type or imported via a limited with clause.
13698
13699 if Has_Discriminants (T)
13700 or else (From_Limited_With (T)
13701 and then Present (Non_Limited_View (T))
13702 and then Nkind (Parent (Non_Limited_View (T))) =
13703 N_Full_Type_Declaration
13704 and then Present (Discriminant_Specifications
13705 (Parent (Non_Limited_View (T)))))
13706 then
13707 Error_Msg_N
13708 ("(Ada 2005) incomplete subtype may not be constrained", C);
13709 else
13710 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13711 end if;
13712
13713 Fixup_Bad_Constraint;
13714 return;
13715
13716 -- Check that the type has visible discriminants. The type may be
13717 -- a private type with unknown discriminants whose full view has
13718 -- discriminants which are invisible.
13719
13720 elsif not Has_Discriminants (T)
13721 or else
13722 (Has_Unknown_Discriminants (T)
13723 and then Is_Private_Type (T))
13724 then
13725 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13726 Fixup_Bad_Constraint;
13727 return;
13728
13729 elsif Is_Constrained (E)
13730 or else (Ekind (E) = E_Class_Wide_Subtype
13731 and then Present (Discriminant_Constraint (E)))
13732 then
13733 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13734 Fixup_Bad_Constraint;
13735 return;
13736 end if;
13737
13738 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13739 -- applies to the base type.
13740
13741 T := Base_Type (T);
13742
13743 Constr := Build_Discriminant_Constraints (T, S);
13744
13745 -- If the list returned was empty we had an error in building the
13746 -- discriminant constraint. We have also already signalled an error
13747 -- in the incomplete type case
13748
13749 if Is_Empty_Elmt_List (Constr) then
13750 Fixup_Bad_Constraint;
13751 return;
13752 end if;
13753
13754 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13755 end Constrain_Discriminated_Type;
13756
13757 ---------------------------
13758 -- Constrain_Enumeration --
13759 ---------------------------
13760
13761 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13762 T : constant Entity_Id := Entity (Subtype_Mark (S));
13763 C : constant Node_Id := Constraint (S);
13764
13765 begin
13766 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13767
13768 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13769
13770 Set_Etype (Def_Id, Base_Type (T));
13771 Set_Size_Info (Def_Id, (T));
13772 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13773 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13774
13775 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13776
13777 Set_Discrete_RM_Size (Def_Id);
13778 end Constrain_Enumeration;
13779
13780 ----------------------
13781 -- Constrain_Float --
13782 ----------------------
13783
13784 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13785 T : constant Entity_Id := Entity (Subtype_Mark (S));
13786 C : Node_Id;
13787 D : Node_Id;
13788 Rais : Node_Id;
13789
13790 begin
13791 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13792
13793 Set_Etype (Def_Id, Base_Type (T));
13794 Set_Size_Info (Def_Id, (T));
13795 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13796
13797 -- Process the constraint
13798
13799 C := Constraint (S);
13800
13801 -- Digits constraint present
13802
13803 if Nkind (C) = N_Digits_Constraint then
13804
13805 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13806 Check_Restriction (No_Obsolescent_Features, C);
13807
13808 if Warn_On_Obsolescent_Feature then
13809 Error_Msg_N
13810 ("subtype digits constraint is an " &
13811 "obsolescent feature (RM J.3(8))?j?", C);
13812 end if;
13813
13814 D := Digits_Expression (C);
13815 Analyze_And_Resolve (D, Any_Integer);
13816 Check_Digits_Expression (D);
13817 Set_Digits_Value (Def_Id, Expr_Value (D));
13818
13819 -- Check that digits value is in range. Obviously we can do this
13820 -- at compile time, but it is strictly a runtime check, and of
13821 -- course there is an ACVC test that checks this.
13822
13823 if Digits_Value (Def_Id) > Digits_Value (T) then
13824 Error_Msg_Uint_1 := Digits_Value (T);
13825 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13826 Rais :=
13827 Make_Raise_Constraint_Error (Sloc (D),
13828 Reason => CE_Range_Check_Failed);
13829 Insert_Action (Declaration_Node (Def_Id), Rais);
13830 end if;
13831
13832 C := Range_Constraint (C);
13833
13834 -- No digits constraint present
13835
13836 else
13837 Set_Digits_Value (Def_Id, Digits_Value (T));
13838 end if;
13839
13840 -- Range constraint present
13841
13842 if Nkind (C) = N_Range_Constraint then
13843 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13844
13845 -- No range constraint present
13846
13847 else
13848 pragma Assert (No (C));
13849 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13850 end if;
13851
13852 Set_Is_Constrained (Def_Id);
13853 end Constrain_Float;
13854
13855 ---------------------
13856 -- Constrain_Index --
13857 ---------------------
13858
13859 procedure Constrain_Index
13860 (Index : Node_Id;
13861 S : Node_Id;
13862 Related_Nod : Node_Id;
13863 Related_Id : Entity_Id;
13864 Suffix : Character;
13865 Suffix_Index : Nat)
13866 is
13867 Def_Id : Entity_Id;
13868 R : Node_Id := Empty;
13869 T : constant Entity_Id := Etype (Index);
13870
13871 begin
13872 Def_Id :=
13873 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13874 Set_Etype (Def_Id, Base_Type (T));
13875
13876 if Nkind (S) = N_Range
13877 or else
13878 (Nkind (S) = N_Attribute_Reference
13879 and then Attribute_Name (S) = Name_Range)
13880 then
13881 -- A Range attribute will be transformed into N_Range by Resolve
13882
13883 Analyze (S);
13884 Set_Etype (S, T);
13885 R := S;
13886
13887 Process_Range_Expr_In_Decl (R, T);
13888
13889 if not Error_Posted (S)
13890 and then
13891 (Nkind (S) /= N_Range
13892 or else not Covers (T, (Etype (Low_Bound (S))))
13893 or else not Covers (T, (Etype (High_Bound (S)))))
13894 then
13895 if Base_Type (T) /= Any_Type
13896 and then Etype (Low_Bound (S)) /= Any_Type
13897 and then Etype (High_Bound (S)) /= Any_Type
13898 then
13899 Error_Msg_N ("range expected", S);
13900 end if;
13901 end if;
13902
13903 elsif Nkind (S) = N_Subtype_Indication then
13904
13905 -- The parser has verified that this is a discrete indication
13906
13907 Resolve_Discrete_Subtype_Indication (S, T);
13908 Bad_Predicated_Subtype_Use
13909 ("subtype& has predicate, not allowed in index constraint",
13910 S, Entity (Subtype_Mark (S)));
13911
13912 R := Range_Expression (Constraint (S));
13913
13914 -- Capture values of bounds and generate temporaries for them if
13915 -- needed, since checks may cause duplication of the expressions
13916 -- which must not be reevaluated.
13917
13918 -- The forced evaluation removes side effects from expressions, which
13919 -- should occur also in GNATprove mode. Otherwise, we end up with
13920 -- unexpected insertions of actions at places where this is not
13921 -- supposed to occur, e.g. on default parameters of a call.
13922
13923 if Expander_Active or GNATprove_Mode then
13924 Force_Evaluation
13925 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13926 Force_Evaluation
13927 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13928 end if;
13929
13930 elsif Nkind (S) = N_Discriminant_Association then
13931
13932 -- Syntactically valid in subtype indication
13933
13934 Error_Msg_N ("invalid index constraint", S);
13935 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13936 return;
13937
13938 -- Subtype_Mark case, no anonymous subtypes to construct
13939
13940 else
13941 Analyze (S);
13942
13943 if Is_Entity_Name (S) then
13944 if not Is_Type (Entity (S)) then
13945 Error_Msg_N ("expect subtype mark for index constraint", S);
13946
13947 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13948 Wrong_Type (S, Base_Type (T));
13949
13950 -- Check error of subtype with predicate in index constraint
13951
13952 else
13953 Bad_Predicated_Subtype_Use
13954 ("subtype& has predicate, not allowed in index constraint",
13955 S, Entity (S));
13956 end if;
13957
13958 return;
13959
13960 else
13961 Error_Msg_N ("invalid index constraint", S);
13962 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13963 return;
13964 end if;
13965 end if;
13966
13967 -- Complete construction of the Itype
13968
13969 if Is_Modular_Integer_Type (T) then
13970 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13971
13972 elsif Is_Integer_Type (T) then
13973 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13974
13975 else
13976 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13977 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13978 Set_First_Literal (Def_Id, First_Literal (T));
13979 end if;
13980
13981 Set_Size_Info (Def_Id, (T));
13982 Set_RM_Size (Def_Id, RM_Size (T));
13983 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13984
13985 Set_Scalar_Range (Def_Id, R);
13986
13987 Set_Etype (S, Def_Id);
13988 Set_Discrete_RM_Size (Def_Id);
13989 end Constrain_Index;
13990
13991 -----------------------
13992 -- Constrain_Integer --
13993 -----------------------
13994
13995 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13996 T : constant Entity_Id := Entity (Subtype_Mark (S));
13997 C : constant Node_Id := Constraint (S);
13998
13999 begin
14000 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14001
14002 if Is_Modular_Integer_Type (T) then
14003 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14004 else
14005 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14006 end if;
14007
14008 Set_Etype (Def_Id, Base_Type (T));
14009 Set_Size_Info (Def_Id, (T));
14010 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14011 Set_Discrete_RM_Size (Def_Id);
14012 end Constrain_Integer;
14013
14014 ------------------------------
14015 -- Constrain_Ordinary_Fixed --
14016 ------------------------------
14017
14018 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14019 T : constant Entity_Id := Entity (Subtype_Mark (S));
14020 C : Node_Id;
14021 D : Node_Id;
14022 Rais : Node_Id;
14023
14024 begin
14025 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14026 Set_Etype (Def_Id, Base_Type (T));
14027 Set_Size_Info (Def_Id, (T));
14028 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14029 Set_Small_Value (Def_Id, Small_Value (T));
14030
14031 -- Process the constraint
14032
14033 C := Constraint (S);
14034
14035 -- Delta constraint present
14036
14037 if Nkind (C) = N_Delta_Constraint then
14038
14039 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14040 Check_Restriction (No_Obsolescent_Features, C);
14041
14042 if Warn_On_Obsolescent_Feature then
14043 Error_Msg_S
14044 ("subtype delta constraint is an " &
14045 "obsolescent feature (RM J.3(7))?j?");
14046 end if;
14047
14048 D := Delta_Expression (C);
14049 Analyze_And_Resolve (D, Any_Real);
14050 Check_Delta_Expression (D);
14051 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14052
14053 -- Check that delta value is in range. Obviously we can do this
14054 -- at compile time, but it is strictly a runtime check, and of
14055 -- course there is an ACVC test that checks this.
14056
14057 if Delta_Value (Def_Id) < Delta_Value (T) then
14058 Error_Msg_N ("??delta value is too small", D);
14059 Rais :=
14060 Make_Raise_Constraint_Error (Sloc (D),
14061 Reason => CE_Range_Check_Failed);
14062 Insert_Action (Declaration_Node (Def_Id), Rais);
14063 end if;
14064
14065 C := Range_Constraint (C);
14066
14067 -- No delta constraint present
14068
14069 else
14070 Set_Delta_Value (Def_Id, Delta_Value (T));
14071 end if;
14072
14073 -- Range constraint present
14074
14075 if Nkind (C) = N_Range_Constraint then
14076 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14077
14078 -- No range constraint present
14079
14080 else
14081 pragma Assert (No (C));
14082 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14083 end if;
14084
14085 Set_Discrete_RM_Size (Def_Id);
14086
14087 -- Unconditionally delay the freeze, since we cannot set size
14088 -- information in all cases correctly until the freeze point.
14089
14090 Set_Has_Delayed_Freeze (Def_Id);
14091 end Constrain_Ordinary_Fixed;
14092
14093 -----------------------
14094 -- Contain_Interface --
14095 -----------------------
14096
14097 function Contain_Interface
14098 (Iface : Entity_Id;
14099 Ifaces : Elist_Id) return Boolean
14100 is
14101 Iface_Elmt : Elmt_Id;
14102
14103 begin
14104 if Present (Ifaces) then
14105 Iface_Elmt := First_Elmt (Ifaces);
14106 while Present (Iface_Elmt) loop
14107 if Node (Iface_Elmt) = Iface then
14108 return True;
14109 end if;
14110
14111 Next_Elmt (Iface_Elmt);
14112 end loop;
14113 end if;
14114
14115 return False;
14116 end Contain_Interface;
14117
14118 ---------------------------
14119 -- Convert_Scalar_Bounds --
14120 ---------------------------
14121
14122 procedure Convert_Scalar_Bounds
14123 (N : Node_Id;
14124 Parent_Type : Entity_Id;
14125 Derived_Type : Entity_Id;
14126 Loc : Source_Ptr)
14127 is
14128 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14129
14130 Lo : Node_Id;
14131 Hi : Node_Id;
14132 Rng : Node_Id;
14133
14134 begin
14135 -- Defend against previous errors
14136
14137 if No (Scalar_Range (Derived_Type)) then
14138 Check_Error_Detected;
14139 return;
14140 end if;
14141
14142 Lo := Build_Scalar_Bound
14143 (Type_Low_Bound (Derived_Type),
14144 Parent_Type, Implicit_Base);
14145
14146 Hi := Build_Scalar_Bound
14147 (Type_High_Bound (Derived_Type),
14148 Parent_Type, Implicit_Base);
14149
14150 Rng :=
14151 Make_Range (Loc,
14152 Low_Bound => Lo,
14153 High_Bound => Hi);
14154
14155 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14156
14157 Set_Parent (Rng, N);
14158 Set_Scalar_Range (Derived_Type, Rng);
14159
14160 -- Analyze the bounds
14161
14162 Analyze_And_Resolve (Lo, Implicit_Base);
14163 Analyze_And_Resolve (Hi, Implicit_Base);
14164
14165 -- Analyze the range itself, except that we do not analyze it if
14166 -- the bounds are real literals, and we have a fixed-point type.
14167 -- The reason for this is that we delay setting the bounds in this
14168 -- case till we know the final Small and Size values (see circuit
14169 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14170
14171 if Is_Fixed_Point_Type (Parent_Type)
14172 and then Nkind (Lo) = N_Real_Literal
14173 and then Nkind (Hi) = N_Real_Literal
14174 then
14175 return;
14176
14177 -- Here we do the analysis of the range
14178
14179 -- Note: we do this manually, since if we do a normal Analyze and
14180 -- Resolve call, there are problems with the conversions used for
14181 -- the derived type range.
14182
14183 else
14184 Set_Etype (Rng, Implicit_Base);
14185 Set_Analyzed (Rng, True);
14186 end if;
14187 end Convert_Scalar_Bounds;
14188
14189 -------------------
14190 -- Copy_And_Swap --
14191 -------------------
14192
14193 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14194 begin
14195 -- Initialize new full declaration entity by copying the pertinent
14196 -- fields of the corresponding private declaration entity.
14197
14198 -- We temporarily set Ekind to a value appropriate for a type to
14199 -- avoid assert failures in Einfo from checking for setting type
14200 -- attributes on something that is not a type. Ekind (Priv) is an
14201 -- appropriate choice, since it allowed the attributes to be set
14202 -- in the first place. This Ekind value will be modified later.
14203
14204 Set_Ekind (Full, Ekind (Priv));
14205
14206 -- Also set Etype temporarily to Any_Type, again, in the absence
14207 -- of errors, it will be properly reset, and if there are errors,
14208 -- then we want a value of Any_Type to remain.
14209
14210 Set_Etype (Full, Any_Type);
14211
14212 -- Now start copying attributes
14213
14214 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14215
14216 if Has_Discriminants (Full) then
14217 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14218 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14219 end if;
14220
14221 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14222 Set_Homonym (Full, Homonym (Priv));
14223 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14224 Set_Is_Public (Full, Is_Public (Priv));
14225 Set_Is_Pure (Full, Is_Pure (Priv));
14226 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14227 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14228 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14229 Set_Has_Pragma_Unreferenced_Objects
14230 (Full, Has_Pragma_Unreferenced_Objects
14231 (Priv));
14232
14233 Conditional_Delay (Full, Priv);
14234
14235 if Is_Tagged_Type (Full) then
14236 Set_Direct_Primitive_Operations
14237 (Full, Direct_Primitive_Operations (Priv));
14238 Set_No_Tagged_Streams_Pragma
14239 (Full, No_Tagged_Streams_Pragma (Priv));
14240
14241 if Is_Base_Type (Priv) then
14242 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14243 end if;
14244 end if;
14245
14246 Set_Is_Volatile (Full, Is_Volatile (Priv));
14247 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14248 Set_Scope (Full, Scope (Priv));
14249 Set_Next_Entity (Full, Next_Entity (Priv));
14250 Set_First_Entity (Full, First_Entity (Priv));
14251 Set_Last_Entity (Full, Last_Entity (Priv));
14252
14253 -- If access types have been recorded for later handling, keep them in
14254 -- the full view so that they get handled when the full view freeze
14255 -- node is expanded.
14256
14257 if Present (Freeze_Node (Priv))
14258 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14259 then
14260 Ensure_Freeze_Node (Full);
14261 Set_Access_Types_To_Process
14262 (Freeze_Node (Full),
14263 Access_Types_To_Process (Freeze_Node (Priv)));
14264 end if;
14265
14266 -- Swap the two entities. Now Private is the full type entity and Full
14267 -- is the private one. They will be swapped back at the end of the
14268 -- private part. This swapping ensures that the entity that is visible
14269 -- in the private part is the full declaration.
14270
14271 Exchange_Entities (Priv, Full);
14272 Append_Entity (Full, Scope (Full));
14273 end Copy_And_Swap;
14274
14275 -------------------------------------
14276 -- Copy_Array_Base_Type_Attributes --
14277 -------------------------------------
14278
14279 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14280 begin
14281 Set_Component_Alignment (T1, Component_Alignment (T2));
14282 Set_Component_Type (T1, Component_Type (T2));
14283 Set_Component_Size (T1, Component_Size (T2));
14284 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14285 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14286 Propagate_Concurrent_Flags (T1, T2);
14287 Set_Is_Packed (T1, Is_Packed (T2));
14288 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14289 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14290 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14291 end Copy_Array_Base_Type_Attributes;
14292
14293 -----------------------------------
14294 -- Copy_Array_Subtype_Attributes --
14295 -----------------------------------
14296
14297 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14298 begin
14299 Set_Size_Info (T1, T2);
14300
14301 Set_First_Index (T1, First_Index (T2));
14302 Set_Is_Aliased (T1, Is_Aliased (T2));
14303 Set_Is_Volatile (T1, Is_Volatile (T2));
14304 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14305 Set_Is_Constrained (T1, Is_Constrained (T2));
14306 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14307 Inherit_Rep_Item_Chain (T1, T2);
14308 Set_Convention (T1, Convention (T2));
14309 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14310 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14311 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14312 end Copy_Array_Subtype_Attributes;
14313
14314 -----------------------------------
14315 -- Create_Constrained_Components --
14316 -----------------------------------
14317
14318 procedure Create_Constrained_Components
14319 (Subt : Entity_Id;
14320 Decl_Node : Node_Id;
14321 Typ : Entity_Id;
14322 Constraints : Elist_Id)
14323 is
14324 Loc : constant Source_Ptr := Sloc (Subt);
14325 Comp_List : constant Elist_Id := New_Elmt_List;
14326 Parent_Type : constant Entity_Id := Etype (Typ);
14327 Assoc_List : constant List_Id := New_List;
14328 Discr_Val : Elmt_Id;
14329 Errors : Boolean;
14330 New_C : Entity_Id;
14331 Old_C : Entity_Id;
14332 Is_Static : Boolean := True;
14333
14334 procedure Collect_Fixed_Components (Typ : Entity_Id);
14335 -- Collect parent type components that do not appear in a variant part
14336
14337 procedure Create_All_Components;
14338 -- Iterate over Comp_List to create the components of the subtype
14339
14340 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14341 -- Creates a new component from Old_Compon, copying all the fields from
14342 -- it, including its Etype, inserts the new component in the Subt entity
14343 -- chain and returns the new component.
14344
14345 function Is_Variant_Record (T : Entity_Id) return Boolean;
14346 -- If true, and discriminants are static, collect only components from
14347 -- variants selected by discriminant values.
14348
14349 ------------------------------
14350 -- Collect_Fixed_Components --
14351 ------------------------------
14352
14353 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14354 begin
14355 -- Build association list for discriminants, and find components of the
14356 -- variant part selected by the values of the discriminants.
14357
14358 Old_C := First_Discriminant (Typ);
14359 Discr_Val := First_Elmt (Constraints);
14360 while Present (Old_C) loop
14361 Append_To (Assoc_List,
14362 Make_Component_Association (Loc,
14363 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14364 Expression => New_Copy (Node (Discr_Val))));
14365
14366 Next_Elmt (Discr_Val);
14367 Next_Discriminant (Old_C);
14368 end loop;
14369
14370 -- The tag and the possible parent component are unconditionally in
14371 -- the subtype.
14372
14373 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14374 Old_C := First_Component (Typ);
14375 while Present (Old_C) loop
14376 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14377 Append_Elmt (Old_C, Comp_List);
14378 end if;
14379
14380 Next_Component (Old_C);
14381 end loop;
14382 end if;
14383 end Collect_Fixed_Components;
14384
14385 ---------------------------
14386 -- Create_All_Components --
14387 ---------------------------
14388
14389 procedure Create_All_Components is
14390 Comp : Elmt_Id;
14391
14392 begin
14393 Comp := First_Elmt (Comp_List);
14394 while Present (Comp) loop
14395 Old_C := Node (Comp);
14396 New_C := Create_Component (Old_C);
14397
14398 Set_Etype
14399 (New_C,
14400 Constrain_Component_Type
14401 (Old_C, Subt, Decl_Node, Typ, Constraints));
14402 Set_Is_Public (New_C, Is_Public (Subt));
14403
14404 Next_Elmt (Comp);
14405 end loop;
14406 end Create_All_Components;
14407
14408 ----------------------
14409 -- Create_Component --
14410 ----------------------
14411
14412 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14413 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14414
14415 begin
14416 if Ekind (Old_Compon) = E_Discriminant
14417 and then Is_Completely_Hidden (Old_Compon)
14418 then
14419 -- This is a shadow discriminant created for a discriminant of
14420 -- the parent type, which needs to be present in the subtype.
14421 -- Give the shadow discriminant an internal name that cannot
14422 -- conflict with that of visible components.
14423
14424 Set_Chars (New_Compon, New_Internal_Name ('C'));
14425 end if;
14426
14427 -- Set the parent so we have a proper link for freezing etc. This is
14428 -- not a real parent pointer, since of course our parent does not own
14429 -- up to us and reference us, we are an illegitimate child of the
14430 -- original parent.
14431
14432 Set_Parent (New_Compon, Parent (Old_Compon));
14433
14434 -- If the old component's Esize was already determined and is a
14435 -- static value, then the new component simply inherits it. Otherwise
14436 -- the old component's size may require run-time determination, but
14437 -- the new component's size still might be statically determinable
14438 -- (if, for example it has a static constraint). In that case we want
14439 -- Layout_Type to recompute the component's size, so we reset its
14440 -- size and positional fields.
14441
14442 if Frontend_Layout_On_Target
14443 and then not Known_Static_Esize (Old_Compon)
14444 then
14445 Set_Esize (New_Compon, Uint_0);
14446 Init_Normalized_First_Bit (New_Compon);
14447 Init_Normalized_Position (New_Compon);
14448 Init_Normalized_Position_Max (New_Compon);
14449 end if;
14450
14451 -- We do not want this node marked as Comes_From_Source, since
14452 -- otherwise it would get first class status and a separate cross-
14453 -- reference line would be generated. Illegitimate children do not
14454 -- rate such recognition.
14455
14456 Set_Comes_From_Source (New_Compon, False);
14457
14458 -- But it is a real entity, and a birth certificate must be properly
14459 -- registered by entering it into the entity list.
14460
14461 Enter_Name (New_Compon);
14462
14463 return New_Compon;
14464 end Create_Component;
14465
14466 -----------------------
14467 -- Is_Variant_Record --
14468 -----------------------
14469
14470 function Is_Variant_Record (T : Entity_Id) return Boolean is
14471 begin
14472 return Nkind (Parent (T)) = N_Full_Type_Declaration
14473 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14474 and then Present (Component_List (Type_Definition (Parent (T))))
14475 and then
14476 Present
14477 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14478 end Is_Variant_Record;
14479
14480 -- Start of processing for Create_Constrained_Components
14481
14482 begin
14483 pragma Assert (Subt /= Base_Type (Subt));
14484 pragma Assert (Typ = Base_Type (Typ));
14485
14486 Set_First_Entity (Subt, Empty);
14487 Set_Last_Entity (Subt, Empty);
14488
14489 -- Check whether constraint is fully static, in which case we can
14490 -- optimize the list of components.
14491
14492 Discr_Val := First_Elmt (Constraints);
14493 while Present (Discr_Val) loop
14494 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14495 Is_Static := False;
14496 exit;
14497 end if;
14498
14499 Next_Elmt (Discr_Val);
14500 end loop;
14501
14502 Set_Has_Static_Discriminants (Subt, Is_Static);
14503
14504 Push_Scope (Subt);
14505
14506 -- Inherit the discriminants of the parent type
14507
14508 Add_Discriminants : declare
14509 Num_Disc : Nat;
14510 Num_Gird : Nat;
14511
14512 begin
14513 Num_Disc := 0;
14514 Old_C := First_Discriminant (Typ);
14515
14516 while Present (Old_C) loop
14517 Num_Disc := Num_Disc + 1;
14518 New_C := Create_Component (Old_C);
14519 Set_Is_Public (New_C, Is_Public (Subt));
14520 Next_Discriminant (Old_C);
14521 end loop;
14522
14523 -- For an untagged derived subtype, the number of discriminants may
14524 -- be smaller than the number of inherited discriminants, because
14525 -- several of them may be renamed by a single new discriminant or
14526 -- constrained. In this case, add the hidden discriminants back into
14527 -- the subtype, because they need to be present if the optimizer of
14528 -- the GCC 4.x back-end decides to break apart assignments between
14529 -- objects using the parent view into member-wise assignments.
14530
14531 Num_Gird := 0;
14532
14533 if Is_Derived_Type (Typ)
14534 and then not Is_Tagged_Type (Typ)
14535 then
14536 Old_C := First_Stored_Discriminant (Typ);
14537
14538 while Present (Old_C) loop
14539 Num_Gird := Num_Gird + 1;
14540 Next_Stored_Discriminant (Old_C);
14541 end loop;
14542 end if;
14543
14544 if Num_Gird > Num_Disc then
14545
14546 -- Find out multiple uses of new discriminants, and add hidden
14547 -- components for the extra renamed discriminants. We recognize
14548 -- multiple uses through the Corresponding_Discriminant of a
14549 -- new discriminant: if it constrains several old discriminants,
14550 -- this field points to the last one in the parent type. The
14551 -- stored discriminants of the derived type have the same name
14552 -- as those of the parent.
14553
14554 declare
14555 Constr : Elmt_Id;
14556 New_Discr : Entity_Id;
14557 Old_Discr : Entity_Id;
14558
14559 begin
14560 Constr := First_Elmt (Stored_Constraint (Typ));
14561 Old_Discr := First_Stored_Discriminant (Typ);
14562 while Present (Constr) loop
14563 if Is_Entity_Name (Node (Constr))
14564 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14565 then
14566 New_Discr := Entity (Node (Constr));
14567
14568 if Chars (Corresponding_Discriminant (New_Discr)) /=
14569 Chars (Old_Discr)
14570 then
14571 -- The new discriminant has been used to rename a
14572 -- subsequent old discriminant. Introduce a shadow
14573 -- component for the current old discriminant.
14574
14575 New_C := Create_Component (Old_Discr);
14576 Set_Original_Record_Component (New_C, Old_Discr);
14577 end if;
14578
14579 else
14580 -- The constraint has eliminated the old discriminant.
14581 -- Introduce a shadow component.
14582
14583 New_C := Create_Component (Old_Discr);
14584 Set_Original_Record_Component (New_C, Old_Discr);
14585 end if;
14586
14587 Next_Elmt (Constr);
14588 Next_Stored_Discriminant (Old_Discr);
14589 end loop;
14590 end;
14591 end if;
14592 end Add_Discriminants;
14593
14594 if Is_Static
14595 and then Is_Variant_Record (Typ)
14596 then
14597 Collect_Fixed_Components (Typ);
14598
14599 Gather_Components (
14600 Typ,
14601 Component_List (Type_Definition (Parent (Typ))),
14602 Governed_By => Assoc_List,
14603 Into => Comp_List,
14604 Report_Errors => Errors);
14605 pragma Assert (not Errors
14606 or else Serious_Errors_Detected > 0);
14607
14608 Create_All_Components;
14609
14610 -- If the subtype declaration is created for a tagged type derivation
14611 -- with constraints, we retrieve the record definition of the parent
14612 -- type to select the components of the proper variant.
14613
14614 elsif Is_Static
14615 and then Is_Tagged_Type (Typ)
14616 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14617 and then
14618 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14619 and then Is_Variant_Record (Parent_Type)
14620 then
14621 Collect_Fixed_Components (Typ);
14622
14623 Gather_Components
14624 (Typ,
14625 Component_List (Type_Definition (Parent (Parent_Type))),
14626 Governed_By => Assoc_List,
14627 Into => Comp_List,
14628 Report_Errors => Errors);
14629
14630 -- Note: previously there was a check at this point that no errors
14631 -- were detected. As a consequence of AI05-220 there may be an error
14632 -- if an inherited discriminant that controls a variant has a non-
14633 -- static constraint.
14634
14635 -- If the tagged derivation has a type extension, collect all the
14636 -- new components therein.
14637
14638 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14639 then
14640 Old_C := First_Component (Typ);
14641 while Present (Old_C) loop
14642 if Original_Record_Component (Old_C) = Old_C
14643 and then Chars (Old_C) /= Name_uTag
14644 and then Chars (Old_C) /= Name_uParent
14645 then
14646 Append_Elmt (Old_C, Comp_List);
14647 end if;
14648
14649 Next_Component (Old_C);
14650 end loop;
14651 end if;
14652
14653 Create_All_Components;
14654
14655 else
14656 -- If discriminants are not static, or if this is a multi-level type
14657 -- extension, we have to include all components of the parent type.
14658
14659 Old_C := First_Component (Typ);
14660 while Present (Old_C) loop
14661 New_C := Create_Component (Old_C);
14662
14663 Set_Etype
14664 (New_C,
14665 Constrain_Component_Type
14666 (Old_C, Subt, Decl_Node, Typ, Constraints));
14667 Set_Is_Public (New_C, Is_Public (Subt));
14668
14669 Next_Component (Old_C);
14670 end loop;
14671 end if;
14672
14673 End_Scope;
14674 end Create_Constrained_Components;
14675
14676 ------------------------------------------
14677 -- Decimal_Fixed_Point_Type_Declaration --
14678 ------------------------------------------
14679
14680 procedure Decimal_Fixed_Point_Type_Declaration
14681 (T : Entity_Id;
14682 Def : Node_Id)
14683 is
14684 Loc : constant Source_Ptr := Sloc (Def);
14685 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14686 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14687 Implicit_Base : Entity_Id;
14688 Digs_Val : Uint;
14689 Delta_Val : Ureal;
14690 Scale_Val : Uint;
14691 Bound_Val : Ureal;
14692
14693 begin
14694 Check_SPARK_05_Restriction
14695 ("decimal fixed point type is not allowed", Def);
14696 Check_Restriction (No_Fixed_Point, Def);
14697
14698 -- Create implicit base type
14699
14700 Implicit_Base :=
14701 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14702 Set_Etype (Implicit_Base, Implicit_Base);
14703
14704 -- Analyze and process delta expression
14705
14706 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14707
14708 Check_Delta_Expression (Delta_Expr);
14709 Delta_Val := Expr_Value_R (Delta_Expr);
14710
14711 -- Check delta is power of 10, and determine scale value from it
14712
14713 declare
14714 Val : Ureal;
14715
14716 begin
14717 Scale_Val := Uint_0;
14718 Val := Delta_Val;
14719
14720 if Val < Ureal_1 then
14721 while Val < Ureal_1 loop
14722 Val := Val * Ureal_10;
14723 Scale_Val := Scale_Val + 1;
14724 end loop;
14725
14726 if Scale_Val > 18 then
14727 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14728 Scale_Val := UI_From_Int (+18);
14729 end if;
14730
14731 else
14732 while Val > Ureal_1 loop
14733 Val := Val / Ureal_10;
14734 Scale_Val := Scale_Val - 1;
14735 end loop;
14736
14737 if Scale_Val < -18 then
14738 Error_Msg_N ("scale is less than minimum value of -18", Def);
14739 Scale_Val := UI_From_Int (-18);
14740 end if;
14741 end if;
14742
14743 if Val /= Ureal_1 then
14744 Error_Msg_N ("delta expression must be a power of 10", Def);
14745 Delta_Val := Ureal_10 ** (-Scale_Val);
14746 end if;
14747 end;
14748
14749 -- Set delta, scale and small (small = delta for decimal type)
14750
14751 Set_Delta_Value (Implicit_Base, Delta_Val);
14752 Set_Scale_Value (Implicit_Base, Scale_Val);
14753 Set_Small_Value (Implicit_Base, Delta_Val);
14754
14755 -- Analyze and process digits expression
14756
14757 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14758 Check_Digits_Expression (Digs_Expr);
14759 Digs_Val := Expr_Value (Digs_Expr);
14760
14761 if Digs_Val > 18 then
14762 Digs_Val := UI_From_Int (+18);
14763 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14764 end if;
14765
14766 Set_Digits_Value (Implicit_Base, Digs_Val);
14767 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14768
14769 -- Set range of base type from digits value for now. This will be
14770 -- expanded to represent the true underlying base range by Freeze.
14771
14772 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14773
14774 -- Note: We leave size as zero for now, size will be set at freeze
14775 -- time. We have to do this for ordinary fixed-point, because the size
14776 -- depends on the specified small, and we might as well do the same for
14777 -- decimal fixed-point.
14778
14779 pragma Assert (Esize (Implicit_Base) = Uint_0);
14780
14781 -- If there are bounds given in the declaration use them as the
14782 -- bounds of the first named subtype.
14783
14784 if Present (Real_Range_Specification (Def)) then
14785 declare
14786 RRS : constant Node_Id := Real_Range_Specification (Def);
14787 Low : constant Node_Id := Low_Bound (RRS);
14788 High : constant Node_Id := High_Bound (RRS);
14789 Low_Val : Ureal;
14790 High_Val : Ureal;
14791
14792 begin
14793 Analyze_And_Resolve (Low, Any_Real);
14794 Analyze_And_Resolve (High, Any_Real);
14795 Check_Real_Bound (Low);
14796 Check_Real_Bound (High);
14797 Low_Val := Expr_Value_R (Low);
14798 High_Val := Expr_Value_R (High);
14799
14800 if Low_Val < (-Bound_Val) then
14801 Error_Msg_N
14802 ("range low bound too small for digits value", Low);
14803 Low_Val := -Bound_Val;
14804 end if;
14805
14806 if High_Val > Bound_Val then
14807 Error_Msg_N
14808 ("range high bound too large for digits value", High);
14809 High_Val := Bound_Val;
14810 end if;
14811
14812 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14813 end;
14814
14815 -- If no explicit range, use range that corresponds to given
14816 -- digits value. This will end up as the final range for the
14817 -- first subtype.
14818
14819 else
14820 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14821 end if;
14822
14823 -- Complete entity for first subtype. The inheritance of the rep item
14824 -- chain ensures that SPARK-related pragmas are not clobbered when the
14825 -- decimal fixed point type acts as a full view of a private type.
14826
14827 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14828 Set_Etype (T, Implicit_Base);
14829 Set_Size_Info (T, Implicit_Base);
14830 Inherit_Rep_Item_Chain (T, Implicit_Base);
14831 Set_Digits_Value (T, Digs_Val);
14832 Set_Delta_Value (T, Delta_Val);
14833 Set_Small_Value (T, Delta_Val);
14834 Set_Scale_Value (T, Scale_Val);
14835 Set_Is_Constrained (T);
14836 end Decimal_Fixed_Point_Type_Declaration;
14837
14838 -----------------------------------
14839 -- Derive_Progenitor_Subprograms --
14840 -----------------------------------
14841
14842 procedure Derive_Progenitor_Subprograms
14843 (Parent_Type : Entity_Id;
14844 Tagged_Type : Entity_Id)
14845 is
14846 E : Entity_Id;
14847 Elmt : Elmt_Id;
14848 Iface : Entity_Id;
14849 Iface_Elmt : Elmt_Id;
14850 Iface_Subp : Entity_Id;
14851 New_Subp : Entity_Id := Empty;
14852 Prim_Elmt : Elmt_Id;
14853 Subp : Entity_Id;
14854 Typ : Entity_Id;
14855
14856 begin
14857 pragma Assert (Ada_Version >= Ada_2005
14858 and then Is_Record_Type (Tagged_Type)
14859 and then Is_Tagged_Type (Tagged_Type)
14860 and then Has_Interfaces (Tagged_Type));
14861
14862 -- Step 1: Transfer to the full-view primitives associated with the
14863 -- partial-view that cover interface primitives. Conceptually this
14864 -- work should be done later by Process_Full_View; done here to
14865 -- simplify its implementation at later stages. It can be safely
14866 -- done here because interfaces must be visible in the partial and
14867 -- private view (RM 7.3(7.3/2)).
14868
14869 -- Small optimization: This work is only required if the parent may
14870 -- have entities whose Alias attribute reference an interface primitive.
14871 -- Such a situation may occur if the parent is an abstract type and the
14872 -- primitive has not been yet overridden or if the parent is a generic
14873 -- formal type covering interfaces.
14874
14875 -- If the tagged type is not abstract, it cannot have abstract
14876 -- primitives (the only entities in the list of primitives of
14877 -- non-abstract tagged types that can reference abstract primitives
14878 -- through its Alias attribute are the internal entities that have
14879 -- attribute Interface_Alias, and these entities are generated later
14880 -- by Add_Internal_Interface_Entities).
14881
14882 if In_Private_Part (Current_Scope)
14883 and then (Is_Abstract_Type (Parent_Type)
14884 or else
14885 Is_Generic_Type (Parent_Type))
14886 then
14887 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14888 while Present (Elmt) loop
14889 Subp := Node (Elmt);
14890
14891 -- At this stage it is not possible to have entities in the list
14892 -- of primitives that have attribute Interface_Alias.
14893
14894 pragma Assert (No (Interface_Alias (Subp)));
14895
14896 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14897
14898 if Is_Interface (Typ) then
14899 E := Find_Primitive_Covering_Interface
14900 (Tagged_Type => Tagged_Type,
14901 Iface_Prim => Subp);
14902
14903 if Present (E)
14904 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14905 then
14906 Replace_Elmt (Elmt, E);
14907 Remove_Homonym (Subp);
14908 end if;
14909 end if;
14910
14911 Next_Elmt (Elmt);
14912 end loop;
14913 end if;
14914
14915 -- Step 2: Add primitives of progenitors that are not implemented by
14916 -- parents of Tagged_Type.
14917
14918 if Present (Interfaces (Base_Type (Tagged_Type))) then
14919 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14920 while Present (Iface_Elmt) loop
14921 Iface := Node (Iface_Elmt);
14922
14923 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14924 while Present (Prim_Elmt) loop
14925 Iface_Subp := Node (Prim_Elmt);
14926
14927 -- Exclude derivation of predefined primitives except those
14928 -- that come from source, or are inherited from one that comes
14929 -- from source. Required to catch declarations of equality
14930 -- operators of interfaces. For example:
14931
14932 -- type Iface is interface;
14933 -- function "=" (Left, Right : Iface) return Boolean;
14934
14935 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14936 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14937 then
14938 E := Find_Primitive_Covering_Interface
14939 (Tagged_Type => Tagged_Type,
14940 Iface_Prim => Iface_Subp);
14941
14942 -- If not found we derive a new primitive leaving its alias
14943 -- attribute referencing the interface primitive.
14944
14945 if No (E) then
14946 Derive_Subprogram
14947 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14948
14949 -- Ada 2012 (AI05-0197): If the covering primitive's name
14950 -- differs from the name of the interface primitive then it
14951 -- is a private primitive inherited from a parent type. In
14952 -- such case, given that Tagged_Type covers the interface,
14953 -- the inherited private primitive becomes visible. For such
14954 -- purpose we add a new entity that renames the inherited
14955 -- private primitive.
14956
14957 elsif Chars (E) /= Chars (Iface_Subp) then
14958 pragma Assert (Has_Suffix (E, 'P'));
14959 Derive_Subprogram
14960 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14961 Set_Alias (New_Subp, E);
14962 Set_Is_Abstract_Subprogram (New_Subp,
14963 Is_Abstract_Subprogram (E));
14964
14965 -- Propagate to the full view interface entities associated
14966 -- with the partial view.
14967
14968 elsif In_Private_Part (Current_Scope)
14969 and then Present (Alias (E))
14970 and then Alias (E) = Iface_Subp
14971 and then
14972 List_Containing (Parent (E)) /=
14973 Private_Declarations
14974 (Specification
14975 (Unit_Declaration_Node (Current_Scope)))
14976 then
14977 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14978 end if;
14979 end if;
14980
14981 Next_Elmt (Prim_Elmt);
14982 end loop;
14983
14984 Next_Elmt (Iface_Elmt);
14985 end loop;
14986 end if;
14987 end Derive_Progenitor_Subprograms;
14988
14989 -----------------------
14990 -- Derive_Subprogram --
14991 -----------------------
14992
14993 procedure Derive_Subprogram
14994 (New_Subp : out Entity_Id;
14995 Parent_Subp : Entity_Id;
14996 Derived_Type : Entity_Id;
14997 Parent_Type : Entity_Id;
14998 Actual_Subp : Entity_Id := Empty)
14999 is
15000 Formal : Entity_Id;
15001 -- Formal parameter of parent primitive operation
15002
15003 Formal_Of_Actual : Entity_Id;
15004 -- Formal parameter of actual operation, when the derivation is to
15005 -- create a renaming for a primitive operation of an actual in an
15006 -- instantiation.
15007
15008 New_Formal : Entity_Id;
15009 -- Formal of inherited operation
15010
15011 Visible_Subp : Entity_Id := Parent_Subp;
15012
15013 function Is_Private_Overriding return Boolean;
15014 -- If Subp is a private overriding of a visible operation, the inherited
15015 -- operation derives from the overridden op (even though its body is the
15016 -- overriding one) and the inherited operation is visible now. See
15017 -- sem_disp to see the full details of the handling of the overridden
15018 -- subprogram, which is removed from the list of primitive operations of
15019 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15020 -- and used to diagnose abstract operations that need overriding in the
15021 -- derived type.
15022
15023 procedure Replace_Type (Id, New_Id : Entity_Id);
15024 -- When the type is an anonymous access type, create a new access type
15025 -- designating the derived type.
15026
15027 procedure Set_Derived_Name;
15028 -- This procedure sets the appropriate Chars name for New_Subp. This
15029 -- is normally just a copy of the parent name. An exception arises for
15030 -- type support subprograms, where the name is changed to reflect the
15031 -- name of the derived type, e.g. if type foo is derived from type bar,
15032 -- then a procedure barDA is derived with a name fooDA.
15033
15034 ---------------------------
15035 -- Is_Private_Overriding --
15036 ---------------------------
15037
15038 function Is_Private_Overriding return Boolean is
15039 Prev : Entity_Id;
15040
15041 begin
15042 -- If the parent is not a dispatching operation there is no
15043 -- need to investigate overridings
15044
15045 if not Is_Dispatching_Operation (Parent_Subp) then
15046 return False;
15047 end if;
15048
15049 -- The visible operation that is overridden is a homonym of the
15050 -- parent subprogram. We scan the homonym chain to find the one
15051 -- whose alias is the subprogram we are deriving.
15052
15053 Prev := Current_Entity (Parent_Subp);
15054 while Present (Prev) loop
15055 if Ekind (Prev) = Ekind (Parent_Subp)
15056 and then Alias (Prev) = Parent_Subp
15057 and then Scope (Parent_Subp) = Scope (Prev)
15058 and then not Is_Hidden (Prev)
15059 then
15060 Visible_Subp := Prev;
15061 return True;
15062 end if;
15063
15064 Prev := Homonym (Prev);
15065 end loop;
15066
15067 return False;
15068 end Is_Private_Overriding;
15069
15070 ------------------
15071 -- Replace_Type --
15072 ------------------
15073
15074 procedure Replace_Type (Id, New_Id : Entity_Id) is
15075 Id_Type : constant Entity_Id := Etype (Id);
15076 Acc_Type : Entity_Id;
15077 Par : constant Node_Id := Parent (Derived_Type);
15078
15079 begin
15080 -- When the type is an anonymous access type, create a new access
15081 -- type designating the derived type. This itype must be elaborated
15082 -- at the point of the derivation, not on subsequent calls that may
15083 -- be out of the proper scope for Gigi, so we insert a reference to
15084 -- it after the derivation.
15085
15086 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15087 declare
15088 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15089
15090 begin
15091 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15092 and then Present (Full_View (Desig_Typ))
15093 and then not Is_Private_Type (Parent_Type)
15094 then
15095 Desig_Typ := Full_View (Desig_Typ);
15096 end if;
15097
15098 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15099
15100 -- Ada 2005 (AI-251): Handle also derivations of abstract
15101 -- interface primitives.
15102
15103 or else (Is_Interface (Desig_Typ)
15104 and then not Is_Class_Wide_Type (Desig_Typ))
15105 then
15106 Acc_Type := New_Copy (Id_Type);
15107 Set_Etype (Acc_Type, Acc_Type);
15108 Set_Scope (Acc_Type, New_Subp);
15109
15110 -- Set size of anonymous access type. If we have an access
15111 -- to an unconstrained array, this is a fat pointer, so it
15112 -- is sizes at twice addtress size.
15113
15114 if Is_Array_Type (Desig_Typ)
15115 and then not Is_Constrained (Desig_Typ)
15116 then
15117 Init_Size (Acc_Type, 2 * System_Address_Size);
15118
15119 -- Other cases use a thin pointer
15120
15121 else
15122 Init_Size (Acc_Type, System_Address_Size);
15123 end if;
15124
15125 -- Set remaining characterstics of anonymous access type
15126
15127 Init_Alignment (Acc_Type);
15128 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15129
15130 Set_Etype (New_Id, Acc_Type);
15131 Set_Scope (New_Id, New_Subp);
15132
15133 -- Create a reference to it
15134
15135 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15136
15137 else
15138 Set_Etype (New_Id, Id_Type);
15139 end if;
15140 end;
15141
15142 -- In Ada2012, a formal may have an incomplete type but the type
15143 -- derivation that inherits the primitive follows the full view.
15144
15145 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15146 or else
15147 (Ekind (Id_Type) = E_Record_Type_With_Private
15148 and then Present (Full_View (Id_Type))
15149 and then
15150 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15151 or else
15152 (Ada_Version >= Ada_2012
15153 and then Ekind (Id_Type) = E_Incomplete_Type
15154 and then Full_View (Id_Type) = Parent_Type)
15155 then
15156 -- Constraint checks on formals are generated during expansion,
15157 -- based on the signature of the original subprogram. The bounds
15158 -- of the derived type are not relevant, and thus we can use
15159 -- the base type for the formals. However, the return type may be
15160 -- used in a context that requires that the proper static bounds
15161 -- be used (a case statement, for example) and for those cases
15162 -- we must use the derived type (first subtype), not its base.
15163
15164 -- If the derived_type_definition has no constraints, we know that
15165 -- the derived type has the same constraints as the first subtype
15166 -- of the parent, and we can also use it rather than its base,
15167 -- which can lead to more efficient code.
15168
15169 if Etype (Id) = Parent_Type then
15170 if Is_Scalar_Type (Parent_Type)
15171 and then
15172 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15173 then
15174 Set_Etype (New_Id, Derived_Type);
15175
15176 elsif Nkind (Par) = N_Full_Type_Declaration
15177 and then
15178 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15179 and then
15180 Is_Entity_Name
15181 (Subtype_Indication (Type_Definition (Par)))
15182 then
15183 Set_Etype (New_Id, Derived_Type);
15184
15185 else
15186 Set_Etype (New_Id, Base_Type (Derived_Type));
15187 end if;
15188
15189 else
15190 Set_Etype (New_Id, Base_Type (Derived_Type));
15191 end if;
15192
15193 else
15194 Set_Etype (New_Id, Etype (Id));
15195 end if;
15196 end Replace_Type;
15197
15198 ----------------------
15199 -- Set_Derived_Name --
15200 ----------------------
15201
15202 procedure Set_Derived_Name is
15203 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15204 begin
15205 if Nm = TSS_Null then
15206 Set_Chars (New_Subp, Chars (Parent_Subp));
15207 else
15208 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15209 end if;
15210 end Set_Derived_Name;
15211
15212 -- Start of processing for Derive_Subprogram
15213
15214 begin
15215 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15216 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15217
15218 -- Check whether the inherited subprogram is a private operation that
15219 -- should be inherited but not yet made visible. Such subprograms can
15220 -- become visible at a later point (e.g., the private part of a public
15221 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15222 -- following predicate is true, then this is not such a private
15223 -- operation and the subprogram simply inherits the name of the parent
15224 -- subprogram. Note the special check for the names of controlled
15225 -- operations, which are currently exempted from being inherited with
15226 -- a hidden name because they must be findable for generation of
15227 -- implicit run-time calls.
15228
15229 if not Is_Hidden (Parent_Subp)
15230 or else Is_Internal (Parent_Subp)
15231 or else Is_Private_Overriding
15232 or else Is_Internal_Name (Chars (Parent_Subp))
15233 or else (Is_Controlled (Parent_Type)
15234 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15235 Name_Finalize,
15236 Name_Initialize))
15237 then
15238 Set_Derived_Name;
15239
15240 -- An inherited dispatching equality will be overridden by an internally
15241 -- generated one, or by an explicit one, so preserve its name and thus
15242 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15243 -- private operation it may become invisible if the full view has
15244 -- progenitors, and the dispatch table will be malformed.
15245 -- We check that the type is limited to handle the anomalous declaration
15246 -- of Limited_Controlled, which is derived from a non-limited type, and
15247 -- which is handled specially elsewhere as well.
15248
15249 elsif Chars (Parent_Subp) = Name_Op_Eq
15250 and then Is_Dispatching_Operation (Parent_Subp)
15251 and then Etype (Parent_Subp) = Standard_Boolean
15252 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15253 and then
15254 Etype (First_Formal (Parent_Subp)) =
15255 Etype (Next_Formal (First_Formal (Parent_Subp)))
15256 then
15257 Set_Derived_Name;
15258
15259 -- If parent is hidden, this can be a regular derivation if the
15260 -- parent is immediately visible in a non-instantiating context,
15261 -- or if we are in the private part of an instance. This test
15262 -- should still be refined ???
15263
15264 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15265 -- operation as a non-visible operation in cases where the parent
15266 -- subprogram might not be visible now, but was visible within the
15267 -- original generic, so it would be wrong to make the inherited
15268 -- subprogram non-visible now. (Not clear if this test is fully
15269 -- correct; are there any cases where we should declare the inherited
15270 -- operation as not visible to avoid it being overridden, e.g., when
15271 -- the parent type is a generic actual with private primitives ???)
15272
15273 -- (they should be treated the same as other private inherited
15274 -- subprograms, but it's not clear how to do this cleanly). ???
15275
15276 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15277 and then Is_Immediately_Visible (Parent_Subp)
15278 and then not In_Instance)
15279 or else In_Instance_Not_Visible
15280 then
15281 Set_Derived_Name;
15282
15283 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15284 -- overrides an interface primitive because interface primitives
15285 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15286
15287 elsif Ada_Version >= Ada_2005
15288 and then Is_Dispatching_Operation (Parent_Subp)
15289 and then Present (Covered_Interface_Op (Parent_Subp))
15290 then
15291 Set_Derived_Name;
15292
15293 -- Otherwise, the type is inheriting a private operation, so enter it
15294 -- with a special name so it can't be overridden.
15295
15296 else
15297 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15298 end if;
15299
15300 Set_Parent (New_Subp, Parent (Derived_Type));
15301
15302 if Present (Actual_Subp) then
15303 Replace_Type (Actual_Subp, New_Subp);
15304 else
15305 Replace_Type (Parent_Subp, New_Subp);
15306 end if;
15307
15308 Conditional_Delay (New_Subp, Parent_Subp);
15309
15310 -- If we are creating a renaming for a primitive operation of an
15311 -- actual of a generic derived type, we must examine the signature
15312 -- of the actual primitive, not that of the generic formal, which for
15313 -- example may be an interface. However the name and initial value
15314 -- of the inherited operation are those of the formal primitive.
15315
15316 Formal := First_Formal (Parent_Subp);
15317
15318 if Present (Actual_Subp) then
15319 Formal_Of_Actual := First_Formal (Actual_Subp);
15320 else
15321 Formal_Of_Actual := Empty;
15322 end if;
15323
15324 while Present (Formal) loop
15325 New_Formal := New_Copy (Formal);
15326
15327 -- Normally we do not go copying parents, but in the case of
15328 -- formals, we need to link up to the declaration (which is the
15329 -- parameter specification), and it is fine to link up to the
15330 -- original formal's parameter specification in this case.
15331
15332 Set_Parent (New_Formal, Parent (Formal));
15333 Append_Entity (New_Formal, New_Subp);
15334
15335 if Present (Formal_Of_Actual) then
15336 Replace_Type (Formal_Of_Actual, New_Formal);
15337 Next_Formal (Formal_Of_Actual);
15338 else
15339 Replace_Type (Formal, New_Formal);
15340 end if;
15341
15342 Next_Formal (Formal);
15343 end loop;
15344
15345 -- If this derivation corresponds to a tagged generic actual, then
15346 -- primitive operations rename those of the actual. Otherwise the
15347 -- primitive operations rename those of the parent type, If the parent
15348 -- renames an intrinsic operator, so does the new subprogram. We except
15349 -- concatenation, which is always properly typed, and does not get
15350 -- expanded as other intrinsic operations.
15351
15352 if No (Actual_Subp) then
15353 if Is_Intrinsic_Subprogram (Parent_Subp) then
15354 Set_Is_Intrinsic_Subprogram (New_Subp);
15355
15356 if Present (Alias (Parent_Subp))
15357 and then Chars (Parent_Subp) /= Name_Op_Concat
15358 then
15359 Set_Alias (New_Subp, Alias (Parent_Subp));
15360 else
15361 Set_Alias (New_Subp, Parent_Subp);
15362 end if;
15363
15364 else
15365 Set_Alias (New_Subp, Parent_Subp);
15366 end if;
15367
15368 else
15369 Set_Alias (New_Subp, Actual_Subp);
15370 end if;
15371
15372 -- Derived subprograms of a tagged type must inherit the convention
15373 -- of the parent subprogram (a requirement of AI-117). Derived
15374 -- subprograms of untagged types simply get convention Ada by default.
15375
15376 -- If the derived type is a tagged generic formal type with unknown
15377 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15378
15379 -- However, if the type is derived from a generic formal, the further
15380 -- inherited subprogram has the convention of the non-generic ancestor.
15381 -- Otherwise there would be no way to override the operation.
15382 -- (This is subject to forthcoming ARG discussions).
15383
15384 if Is_Tagged_Type (Derived_Type) then
15385 if Is_Generic_Type (Derived_Type)
15386 and then Has_Unknown_Discriminants (Derived_Type)
15387 then
15388 Set_Convention (New_Subp, Convention_Intrinsic);
15389
15390 else
15391 if Is_Generic_Type (Parent_Type)
15392 and then Has_Unknown_Discriminants (Parent_Type)
15393 then
15394 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15395 else
15396 Set_Convention (New_Subp, Convention (Parent_Subp));
15397 end if;
15398 end if;
15399 end if;
15400
15401 -- Predefined controlled operations retain their name even if the parent
15402 -- is hidden (see above), but they are not primitive operations if the
15403 -- ancestor is not visible, for example if the parent is a private
15404 -- extension completed with a controlled extension. Note that a full
15405 -- type that is controlled can break privacy: the flag Is_Controlled is
15406 -- set on both views of the type.
15407
15408 if Is_Controlled (Parent_Type)
15409 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15410 Name_Adjust,
15411 Name_Finalize)
15412 and then Is_Hidden (Parent_Subp)
15413 and then not Is_Visibly_Controlled (Parent_Type)
15414 then
15415 Set_Is_Hidden (New_Subp);
15416 end if;
15417
15418 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15419 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15420
15421 if Ekind (Parent_Subp) = E_Procedure then
15422 Set_Is_Valued_Procedure
15423 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15424 else
15425 Set_Has_Controlling_Result
15426 (New_Subp, Has_Controlling_Result (Parent_Subp));
15427 end if;
15428
15429 -- No_Return must be inherited properly. If this is overridden in the
15430 -- case of a dispatching operation, then a check is made in Sem_Disp
15431 -- that the overriding operation is also No_Return (no such check is
15432 -- required for the case of non-dispatching operation.
15433
15434 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15435
15436 -- A derived function with a controlling result is abstract. If the
15437 -- Derived_Type is a nonabstract formal generic derived type, then
15438 -- inherited operations are not abstract: the required check is done at
15439 -- instantiation time. If the derivation is for a generic actual, the
15440 -- function is not abstract unless the actual is.
15441
15442 if Is_Generic_Type (Derived_Type)
15443 and then not Is_Abstract_Type (Derived_Type)
15444 then
15445 null;
15446
15447 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15448 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15449
15450 -- A subprogram subject to pragma Extensions_Visible with value False
15451 -- requires overriding if the subprogram has at least one controlling
15452 -- OUT parameter (SPARK RM 6.1.7(6)).
15453
15454 elsif Ada_Version >= Ada_2005
15455 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15456 or else (Is_Tagged_Type (Derived_Type)
15457 and then Etype (New_Subp) = Derived_Type
15458 and then not Is_Null_Extension (Derived_Type))
15459 or else (Is_Tagged_Type (Derived_Type)
15460 and then Ekind (Etype (New_Subp)) =
15461 E_Anonymous_Access_Type
15462 and then Designated_Type (Etype (New_Subp)) =
15463 Derived_Type
15464 and then not Is_Null_Extension (Derived_Type))
15465 or else (Comes_From_Source (Alias (New_Subp))
15466 and then Is_EVF_Procedure (Alias (New_Subp))))
15467 and then No (Actual_Subp)
15468 then
15469 if not Is_Tagged_Type (Derived_Type)
15470 or else Is_Abstract_Type (Derived_Type)
15471 or else Is_Abstract_Subprogram (Alias (New_Subp))
15472 then
15473 Set_Is_Abstract_Subprogram (New_Subp);
15474 else
15475 Set_Requires_Overriding (New_Subp);
15476 end if;
15477
15478 elsif Ada_Version < Ada_2005
15479 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15480 or else (Is_Tagged_Type (Derived_Type)
15481 and then Etype (New_Subp) = Derived_Type
15482 and then No (Actual_Subp)))
15483 then
15484 Set_Is_Abstract_Subprogram (New_Subp);
15485
15486 -- AI05-0097 : an inherited operation that dispatches on result is
15487 -- abstract if the derived type is abstract, even if the parent type
15488 -- is concrete and the derived type is a null extension.
15489
15490 elsif Has_Controlling_Result (Alias (New_Subp))
15491 and then Is_Abstract_Type (Etype (New_Subp))
15492 then
15493 Set_Is_Abstract_Subprogram (New_Subp);
15494
15495 -- Finally, if the parent type is abstract we must verify that all
15496 -- inherited operations are either non-abstract or overridden, or that
15497 -- the derived type itself is abstract (this check is performed at the
15498 -- end of a package declaration, in Check_Abstract_Overriding). A
15499 -- private overriding in the parent type will not be visible in the
15500 -- derivation if we are not in an inner package or in a child unit of
15501 -- the parent type, in which case the abstractness of the inherited
15502 -- operation is carried to the new subprogram.
15503
15504 elsif Is_Abstract_Type (Parent_Type)
15505 and then not In_Open_Scopes (Scope (Parent_Type))
15506 and then Is_Private_Overriding
15507 and then Is_Abstract_Subprogram (Visible_Subp)
15508 then
15509 if No (Actual_Subp) then
15510 Set_Alias (New_Subp, Visible_Subp);
15511 Set_Is_Abstract_Subprogram (New_Subp, True);
15512
15513 else
15514 -- If this is a derivation for an instance of a formal derived
15515 -- type, abstractness comes from the primitive operation of the
15516 -- actual, not from the operation inherited from the ancestor.
15517
15518 Set_Is_Abstract_Subprogram
15519 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15520 end if;
15521 end if;
15522
15523 New_Overloaded_Entity (New_Subp, Derived_Type);
15524
15525 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15526 -- preconditions and the derived type is abstract, the derived operation
15527 -- is abstract as well if parent subprogram is not abstract or null.
15528
15529 if Is_Abstract_Type (Derived_Type)
15530 and then Has_Non_Trivial_Precondition (Parent_Subp)
15531 and then Present (Interfaces (Derived_Type))
15532 then
15533
15534 -- Add useful attributes of subprogram before the freeze point,
15535 -- in case freezing is delayed or there are previous errors.
15536
15537 Set_Is_Dispatching_Operation (New_Subp);
15538
15539 declare
15540 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15541
15542 begin
15543 if Present (Iface_Prim)
15544 and then Has_Non_Trivial_Precondition (Iface_Prim)
15545 then
15546 Set_Is_Abstract_Subprogram (New_Subp);
15547 end if;
15548 end;
15549 end if;
15550
15551 -- Check for case of a derived subprogram for the instantiation of a
15552 -- formal derived tagged type, if so mark the subprogram as dispatching
15553 -- and inherit the dispatching attributes of the actual subprogram. The
15554 -- derived subprogram is effectively renaming of the actual subprogram,
15555 -- so it needs to have the same attributes as the actual.
15556
15557 if Present (Actual_Subp)
15558 and then Is_Dispatching_Operation (Actual_Subp)
15559 then
15560 Set_Is_Dispatching_Operation (New_Subp);
15561
15562 if Present (DTC_Entity (Actual_Subp)) then
15563 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15564 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15565 end if;
15566 end if;
15567
15568 -- Indicate that a derived subprogram does not require a body and that
15569 -- it does not require processing of default expressions.
15570
15571 Set_Has_Completion (New_Subp);
15572 Set_Default_Expressions_Processed (New_Subp);
15573
15574 if Ekind (New_Subp) = E_Function then
15575 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15576 end if;
15577 end Derive_Subprogram;
15578
15579 ------------------------
15580 -- Derive_Subprograms --
15581 ------------------------
15582
15583 procedure Derive_Subprograms
15584 (Parent_Type : Entity_Id;
15585 Derived_Type : Entity_Id;
15586 Generic_Actual : Entity_Id := Empty)
15587 is
15588 Op_List : constant Elist_Id :=
15589 Collect_Primitive_Operations (Parent_Type);
15590
15591 function Check_Derived_Type return Boolean;
15592 -- Check that all the entities derived from Parent_Type are found in
15593 -- the list of primitives of Derived_Type exactly in the same order.
15594
15595 procedure Derive_Interface_Subprogram
15596 (New_Subp : out Entity_Id;
15597 Subp : Entity_Id;
15598 Actual_Subp : Entity_Id);
15599 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15600 -- (which is an interface primitive). If Generic_Actual is present then
15601 -- Actual_Subp is the actual subprogram corresponding with the generic
15602 -- subprogram Subp.
15603
15604 ------------------------
15605 -- Check_Derived_Type --
15606 ------------------------
15607
15608 function Check_Derived_Type return Boolean is
15609 E : Entity_Id;
15610 Elmt : Elmt_Id;
15611 List : Elist_Id;
15612 New_Subp : Entity_Id;
15613 Op_Elmt : Elmt_Id;
15614 Subp : Entity_Id;
15615
15616 begin
15617 -- Traverse list of entities in the current scope searching for
15618 -- an incomplete type whose full-view is derived type.
15619
15620 E := First_Entity (Scope (Derived_Type));
15621 while Present (E) and then E /= Derived_Type loop
15622 if Ekind (E) = E_Incomplete_Type
15623 and then Present (Full_View (E))
15624 and then Full_View (E) = Derived_Type
15625 then
15626 -- Disable this test if Derived_Type completes an incomplete
15627 -- type because in such case more primitives can be added
15628 -- later to the list of primitives of Derived_Type by routine
15629 -- Process_Incomplete_Dependents
15630
15631 return True;
15632 end if;
15633
15634 E := Next_Entity (E);
15635 end loop;
15636
15637 List := Collect_Primitive_Operations (Derived_Type);
15638 Elmt := First_Elmt (List);
15639
15640 Op_Elmt := First_Elmt (Op_List);
15641 while Present (Op_Elmt) loop
15642 Subp := Node (Op_Elmt);
15643 New_Subp := Node (Elmt);
15644
15645 -- At this early stage Derived_Type has no entities with attribute
15646 -- Interface_Alias. In addition, such primitives are always
15647 -- located at the end of the list of primitives of Parent_Type.
15648 -- Therefore, if found we can safely stop processing pending
15649 -- entities.
15650
15651 exit when Present (Interface_Alias (Subp));
15652
15653 -- Handle hidden entities
15654
15655 if not Is_Predefined_Dispatching_Operation (Subp)
15656 and then Is_Hidden (Subp)
15657 then
15658 if Present (New_Subp)
15659 and then Primitive_Names_Match (Subp, New_Subp)
15660 then
15661 Next_Elmt (Elmt);
15662 end if;
15663
15664 else
15665 if not Present (New_Subp)
15666 or else Ekind (Subp) /= Ekind (New_Subp)
15667 or else not Primitive_Names_Match (Subp, New_Subp)
15668 then
15669 return False;
15670 end if;
15671
15672 Next_Elmt (Elmt);
15673 end if;
15674
15675 Next_Elmt (Op_Elmt);
15676 end loop;
15677
15678 return True;
15679 end Check_Derived_Type;
15680
15681 ---------------------------------
15682 -- Derive_Interface_Subprogram --
15683 ---------------------------------
15684
15685 procedure Derive_Interface_Subprogram
15686 (New_Subp : out Entity_Id;
15687 Subp : Entity_Id;
15688 Actual_Subp : Entity_Id)
15689 is
15690 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15691 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15692
15693 begin
15694 pragma Assert (Is_Interface (Iface_Type));
15695
15696 Derive_Subprogram
15697 (New_Subp => New_Subp,
15698 Parent_Subp => Iface_Subp,
15699 Derived_Type => Derived_Type,
15700 Parent_Type => Iface_Type,
15701 Actual_Subp => Actual_Subp);
15702
15703 -- Given that this new interface entity corresponds with a primitive
15704 -- of the parent that was not overridden we must leave it associated
15705 -- with its parent primitive to ensure that it will share the same
15706 -- dispatch table slot when overridden. We must set the Alias to Subp
15707 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15708 -- (in case we inherited Subp from Iface_Type via a nonabstract
15709 -- generic formal type).
15710
15711 if No (Actual_Subp) then
15712 Set_Alias (New_Subp, Subp);
15713
15714 declare
15715 T : Entity_Id := Find_Dispatching_Type (Subp);
15716 begin
15717 while Etype (T) /= T loop
15718 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15719 Set_Is_Abstract_Subprogram (New_Subp, False);
15720 exit;
15721 end if;
15722
15723 T := Etype (T);
15724 end loop;
15725 end;
15726
15727 -- For instantiations this is not needed since the previous call to
15728 -- Derive_Subprogram leaves the entity well decorated.
15729
15730 else
15731 pragma Assert (Alias (New_Subp) = Actual_Subp);
15732 null;
15733 end if;
15734 end Derive_Interface_Subprogram;
15735
15736 -- Local variables
15737
15738 Alias_Subp : Entity_Id;
15739 Act_List : Elist_Id;
15740 Act_Elmt : Elmt_Id;
15741 Act_Subp : Entity_Id := Empty;
15742 Elmt : Elmt_Id;
15743 Need_Search : Boolean := False;
15744 New_Subp : Entity_Id := Empty;
15745 Parent_Base : Entity_Id;
15746 Subp : Entity_Id;
15747
15748 -- Start of processing for Derive_Subprograms
15749
15750 begin
15751 if Ekind (Parent_Type) = E_Record_Type_With_Private
15752 and then Has_Discriminants (Parent_Type)
15753 and then Present (Full_View (Parent_Type))
15754 then
15755 Parent_Base := Full_View (Parent_Type);
15756 else
15757 Parent_Base := Parent_Type;
15758 end if;
15759
15760 if Present (Generic_Actual) then
15761 Act_List := Collect_Primitive_Operations (Generic_Actual);
15762 Act_Elmt := First_Elmt (Act_List);
15763 else
15764 Act_List := No_Elist;
15765 Act_Elmt := No_Elmt;
15766 end if;
15767
15768 -- Derive primitives inherited from the parent. Note that if the generic
15769 -- actual is present, this is not really a type derivation, it is a
15770 -- completion within an instance.
15771
15772 -- Case 1: Derived_Type does not implement interfaces
15773
15774 if not Is_Tagged_Type (Derived_Type)
15775 or else (not Has_Interfaces (Derived_Type)
15776 and then not (Present (Generic_Actual)
15777 and then Has_Interfaces (Generic_Actual)))
15778 then
15779 Elmt := First_Elmt (Op_List);
15780 while Present (Elmt) loop
15781 Subp := Node (Elmt);
15782
15783 -- Literals are derived earlier in the process of building the
15784 -- derived type, and are skipped here.
15785
15786 if Ekind (Subp) = E_Enumeration_Literal then
15787 null;
15788
15789 -- The actual is a direct descendant and the common primitive
15790 -- operations appear in the same order.
15791
15792 -- If the generic parent type is present, the derived type is an
15793 -- instance of a formal derived type, and within the instance its
15794 -- operations are those of the actual. We derive from the formal
15795 -- type but make the inherited operations aliases of the
15796 -- corresponding operations of the actual.
15797
15798 else
15799 pragma Assert (No (Node (Act_Elmt))
15800 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15801 and then
15802 Type_Conformant
15803 (Subp, Node (Act_Elmt),
15804 Skip_Controlling_Formals => True)));
15805
15806 Derive_Subprogram
15807 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15808
15809 if Present (Act_Elmt) then
15810 Next_Elmt (Act_Elmt);
15811 end if;
15812 end if;
15813
15814 Next_Elmt (Elmt);
15815 end loop;
15816
15817 -- Case 2: Derived_Type implements interfaces
15818
15819 else
15820 -- If the parent type has no predefined primitives we remove
15821 -- predefined primitives from the list of primitives of generic
15822 -- actual to simplify the complexity of this algorithm.
15823
15824 if Present (Generic_Actual) then
15825 declare
15826 Has_Predefined_Primitives : Boolean := False;
15827
15828 begin
15829 -- Check if the parent type has predefined primitives
15830
15831 Elmt := First_Elmt (Op_List);
15832 while Present (Elmt) loop
15833 Subp := Node (Elmt);
15834
15835 if Is_Predefined_Dispatching_Operation (Subp)
15836 and then not Comes_From_Source (Ultimate_Alias (Subp))
15837 then
15838 Has_Predefined_Primitives := True;
15839 exit;
15840 end if;
15841
15842 Next_Elmt (Elmt);
15843 end loop;
15844
15845 -- Remove predefined primitives of Generic_Actual. We must use
15846 -- an auxiliary list because in case of tagged types the value
15847 -- returned by Collect_Primitive_Operations is the value stored
15848 -- in its Primitive_Operations attribute (and we don't want to
15849 -- modify its current contents).
15850
15851 if not Has_Predefined_Primitives then
15852 declare
15853 Aux_List : constant Elist_Id := New_Elmt_List;
15854
15855 begin
15856 Elmt := First_Elmt (Act_List);
15857 while Present (Elmt) loop
15858 Subp := Node (Elmt);
15859
15860 if not Is_Predefined_Dispatching_Operation (Subp)
15861 or else Comes_From_Source (Subp)
15862 then
15863 Append_Elmt (Subp, Aux_List);
15864 end if;
15865
15866 Next_Elmt (Elmt);
15867 end loop;
15868
15869 Act_List := Aux_List;
15870 end;
15871 end if;
15872
15873 Act_Elmt := First_Elmt (Act_List);
15874 Act_Subp := Node (Act_Elmt);
15875 end;
15876 end if;
15877
15878 -- Stage 1: If the generic actual is not present we derive the
15879 -- primitives inherited from the parent type. If the generic parent
15880 -- type is present, the derived type is an instance of a formal
15881 -- derived type, and within the instance its operations are those of
15882 -- the actual. We derive from the formal type but make the inherited
15883 -- operations aliases of the corresponding operations of the actual.
15884
15885 Elmt := First_Elmt (Op_List);
15886 while Present (Elmt) loop
15887 Subp := Node (Elmt);
15888 Alias_Subp := Ultimate_Alias (Subp);
15889
15890 -- Do not derive internal entities of the parent that link
15891 -- interface primitives with their covering primitive. These
15892 -- entities will be added to this type when frozen.
15893
15894 if Present (Interface_Alias (Subp)) then
15895 goto Continue;
15896 end if;
15897
15898 -- If the generic actual is present find the corresponding
15899 -- operation in the generic actual. If the parent type is a
15900 -- direct ancestor of the derived type then, even if it is an
15901 -- interface, the operations are inherited from the primary
15902 -- dispatch table and are in the proper order. If we detect here
15903 -- that primitives are not in the same order we traverse the list
15904 -- of primitive operations of the actual to find the one that
15905 -- implements the interface primitive.
15906
15907 if Need_Search
15908 or else
15909 (Present (Generic_Actual)
15910 and then Present (Act_Subp)
15911 and then not
15912 (Primitive_Names_Match (Subp, Act_Subp)
15913 and then
15914 Type_Conformant (Subp, Act_Subp,
15915 Skip_Controlling_Formals => True)))
15916 then
15917 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15918 Use_Full_View => True));
15919
15920 -- Remember that we need searching for all pending primitives
15921
15922 Need_Search := True;
15923
15924 -- Handle entities associated with interface primitives
15925
15926 if Present (Alias_Subp)
15927 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15928 and then not Is_Predefined_Dispatching_Operation (Subp)
15929 then
15930 -- Search for the primitive in the homonym chain
15931
15932 Act_Subp :=
15933 Find_Primitive_Covering_Interface
15934 (Tagged_Type => Generic_Actual,
15935 Iface_Prim => Alias_Subp);
15936
15937 -- Previous search may not locate primitives covering
15938 -- interfaces defined in generics units or instantiations.
15939 -- (it fails if the covering primitive has formals whose
15940 -- type is also defined in generics or instantiations).
15941 -- In such case we search in the list of primitives of the
15942 -- generic actual for the internal entity that links the
15943 -- interface primitive and the covering primitive.
15944
15945 if No (Act_Subp)
15946 and then Is_Generic_Type (Parent_Type)
15947 then
15948 -- This code has been designed to handle only generic
15949 -- formals that implement interfaces that are defined
15950 -- in a generic unit or instantiation. If this code is
15951 -- needed for other cases we must review it because
15952 -- (given that it relies on Original_Location to locate
15953 -- the primitive of Generic_Actual that covers the
15954 -- interface) it could leave linked through attribute
15955 -- Alias entities of unrelated instantiations).
15956
15957 pragma Assert
15958 (Is_Generic_Unit
15959 (Scope (Find_Dispatching_Type (Alias_Subp)))
15960 or else
15961 Instantiation_Depth
15962 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15963
15964 declare
15965 Iface_Prim_Loc : constant Source_Ptr :=
15966 Original_Location (Sloc (Alias_Subp));
15967
15968 Elmt : Elmt_Id;
15969 Prim : Entity_Id;
15970
15971 begin
15972 Elmt :=
15973 First_Elmt (Primitive_Operations (Generic_Actual));
15974
15975 Search : while Present (Elmt) loop
15976 Prim := Node (Elmt);
15977
15978 if Present (Interface_Alias (Prim))
15979 and then Original_Location
15980 (Sloc (Interface_Alias (Prim))) =
15981 Iface_Prim_Loc
15982 then
15983 Act_Subp := Alias (Prim);
15984 exit Search;
15985 end if;
15986
15987 Next_Elmt (Elmt);
15988 end loop Search;
15989 end;
15990 end if;
15991
15992 pragma Assert (Present (Act_Subp)
15993 or else Is_Abstract_Type (Generic_Actual)
15994 or else Serious_Errors_Detected > 0);
15995
15996 -- Handle predefined primitives plus the rest of user-defined
15997 -- primitives
15998
15999 else
16000 Act_Elmt := First_Elmt (Act_List);
16001 while Present (Act_Elmt) loop
16002 Act_Subp := Node (Act_Elmt);
16003
16004 exit when Primitive_Names_Match (Subp, Act_Subp)
16005 and then Type_Conformant
16006 (Subp, Act_Subp,
16007 Skip_Controlling_Formals => True)
16008 and then No (Interface_Alias (Act_Subp));
16009
16010 Next_Elmt (Act_Elmt);
16011 end loop;
16012
16013 if No (Act_Elmt) then
16014 Act_Subp := Empty;
16015 end if;
16016 end if;
16017 end if;
16018
16019 -- Case 1: If the parent is a limited interface then it has the
16020 -- predefined primitives of synchronized interfaces. However, the
16021 -- actual type may be a non-limited type and hence it does not
16022 -- have such primitives.
16023
16024 if Present (Generic_Actual)
16025 and then not Present (Act_Subp)
16026 and then Is_Limited_Interface (Parent_Base)
16027 and then Is_Predefined_Interface_Primitive (Subp)
16028 then
16029 null;
16030
16031 -- Case 2: Inherit entities associated with interfaces that were
16032 -- not covered by the parent type. We exclude here null interface
16033 -- primitives because they do not need special management.
16034
16035 -- We also exclude interface operations that are renamings. If the
16036 -- subprogram is an explicit renaming of an interface primitive,
16037 -- it is a regular primitive operation, and the presence of its
16038 -- alias is not relevant: it has to be derived like any other
16039 -- primitive.
16040
16041 elsif Present (Alias (Subp))
16042 and then Nkind (Unit_Declaration_Node (Subp)) /=
16043 N_Subprogram_Renaming_Declaration
16044 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16045 and then not
16046 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16047 and then Null_Present (Parent (Alias_Subp)))
16048 then
16049 -- If this is an abstract private type then we transfer the
16050 -- derivation of the interface primitive from the partial view
16051 -- to the full view. This is safe because all the interfaces
16052 -- must be visible in the partial view. Done to avoid adding
16053 -- a new interface derivation to the private part of the
16054 -- enclosing package; otherwise this new derivation would be
16055 -- decorated as hidden when the analysis of the enclosing
16056 -- package completes.
16057
16058 if Is_Abstract_Type (Derived_Type)
16059 and then In_Private_Part (Current_Scope)
16060 and then Has_Private_Declaration (Derived_Type)
16061 then
16062 declare
16063 Partial_View : Entity_Id;
16064 Elmt : Elmt_Id;
16065 Ent : Entity_Id;
16066
16067 begin
16068 Partial_View := First_Entity (Current_Scope);
16069 loop
16070 exit when No (Partial_View)
16071 or else (Has_Private_Declaration (Partial_View)
16072 and then
16073 Full_View (Partial_View) = Derived_Type);
16074
16075 Next_Entity (Partial_View);
16076 end loop;
16077
16078 -- If the partial view was not found then the source code
16079 -- has errors and the derivation is not needed.
16080
16081 if Present (Partial_View) then
16082 Elmt :=
16083 First_Elmt (Primitive_Operations (Partial_View));
16084 while Present (Elmt) loop
16085 Ent := Node (Elmt);
16086
16087 if Present (Alias (Ent))
16088 and then Ultimate_Alias (Ent) = Alias (Subp)
16089 then
16090 Append_Elmt
16091 (Ent, Primitive_Operations (Derived_Type));
16092 exit;
16093 end if;
16094
16095 Next_Elmt (Elmt);
16096 end loop;
16097
16098 -- If the interface primitive was not found in the
16099 -- partial view then this interface primitive was
16100 -- overridden. We add a derivation to activate in
16101 -- Derive_Progenitor_Subprograms the machinery to
16102 -- search for it.
16103
16104 if No (Elmt) then
16105 Derive_Interface_Subprogram
16106 (New_Subp => New_Subp,
16107 Subp => Subp,
16108 Actual_Subp => Act_Subp);
16109 end if;
16110 end if;
16111 end;
16112 else
16113 Derive_Interface_Subprogram
16114 (New_Subp => New_Subp,
16115 Subp => Subp,
16116 Actual_Subp => Act_Subp);
16117 end if;
16118
16119 -- Case 3: Common derivation
16120
16121 else
16122 Derive_Subprogram
16123 (New_Subp => New_Subp,
16124 Parent_Subp => Subp,
16125 Derived_Type => Derived_Type,
16126 Parent_Type => Parent_Base,
16127 Actual_Subp => Act_Subp);
16128 end if;
16129
16130 -- No need to update Act_Elm if we must search for the
16131 -- corresponding operation in the generic actual
16132
16133 if not Need_Search
16134 and then Present (Act_Elmt)
16135 then
16136 Next_Elmt (Act_Elmt);
16137 Act_Subp := Node (Act_Elmt);
16138 end if;
16139
16140 <<Continue>>
16141 Next_Elmt (Elmt);
16142 end loop;
16143
16144 -- Inherit additional operations from progenitors. If the derived
16145 -- type is a generic actual, there are not new primitive operations
16146 -- for the type because it has those of the actual, and therefore
16147 -- nothing needs to be done. The renamings generated above are not
16148 -- primitive operations, and their purpose is simply to make the
16149 -- proper operations visible within an instantiation.
16150
16151 if No (Generic_Actual) then
16152 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16153 end if;
16154 end if;
16155
16156 -- Final check: Direct descendants must have their primitives in the
16157 -- same order. We exclude from this test untagged types and instances
16158 -- of formal derived types. We skip this test if we have already
16159 -- reported serious errors in the sources.
16160
16161 pragma Assert (not Is_Tagged_Type (Derived_Type)
16162 or else Present (Generic_Actual)
16163 or else Serious_Errors_Detected > 0
16164 or else Check_Derived_Type);
16165 end Derive_Subprograms;
16166
16167 --------------------------------
16168 -- Derived_Standard_Character --
16169 --------------------------------
16170
16171 procedure Derived_Standard_Character
16172 (N : Node_Id;
16173 Parent_Type : Entity_Id;
16174 Derived_Type : Entity_Id)
16175 is
16176 Loc : constant Source_Ptr := Sloc (N);
16177 Def : constant Node_Id := Type_Definition (N);
16178 Indic : constant Node_Id := Subtype_Indication (Def);
16179 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16180 Implicit_Base : constant Entity_Id :=
16181 Create_Itype
16182 (E_Enumeration_Type, N, Derived_Type, 'B');
16183
16184 Lo : Node_Id;
16185 Hi : Node_Id;
16186
16187 begin
16188 Discard_Node (Process_Subtype (Indic, N));
16189
16190 Set_Etype (Implicit_Base, Parent_Base);
16191 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16192 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16193
16194 Set_Is_Character_Type (Implicit_Base, True);
16195 Set_Has_Delayed_Freeze (Implicit_Base);
16196
16197 -- The bounds of the implicit base are the bounds of the parent base.
16198 -- Note that their type is the parent base.
16199
16200 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16201 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16202
16203 Set_Scalar_Range (Implicit_Base,
16204 Make_Range (Loc,
16205 Low_Bound => Lo,
16206 High_Bound => Hi));
16207
16208 Conditional_Delay (Derived_Type, Parent_Type);
16209
16210 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16211 Set_Etype (Derived_Type, Implicit_Base);
16212 Set_Size_Info (Derived_Type, Parent_Type);
16213
16214 if Unknown_RM_Size (Derived_Type) then
16215 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16216 end if;
16217
16218 Set_Is_Character_Type (Derived_Type, True);
16219
16220 if Nkind (Indic) /= N_Subtype_Indication then
16221
16222 -- If no explicit constraint, the bounds are those
16223 -- of the parent type.
16224
16225 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16226 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16227 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16228 end if;
16229
16230 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16231
16232 -- Because the implicit base is used in the conversion of the bounds, we
16233 -- have to freeze it now. This is similar to what is done for numeric
16234 -- types, and it equally suspicious, but otherwise a non-static bound
16235 -- will have a reference to an unfrozen type, which is rejected by Gigi
16236 -- (???). This requires specific care for definition of stream
16237 -- attributes. For details, see comments at the end of
16238 -- Build_Derived_Numeric_Type.
16239
16240 Freeze_Before (N, Implicit_Base);
16241 end Derived_Standard_Character;
16242
16243 ------------------------------
16244 -- Derived_Type_Declaration --
16245 ------------------------------
16246
16247 procedure Derived_Type_Declaration
16248 (T : Entity_Id;
16249 N : Node_Id;
16250 Is_Completion : Boolean)
16251 is
16252 Parent_Type : Entity_Id;
16253
16254 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16255 -- Check whether the parent type is a generic formal, or derives
16256 -- directly or indirectly from one.
16257
16258 ------------------------
16259 -- Comes_From_Generic --
16260 ------------------------
16261
16262 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16263 begin
16264 if Is_Generic_Type (Typ) then
16265 return True;
16266
16267 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16268 return True;
16269
16270 elsif Is_Private_Type (Typ)
16271 and then Present (Full_View (Typ))
16272 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16273 then
16274 return True;
16275
16276 elsif Is_Generic_Actual_Type (Typ) then
16277 return True;
16278
16279 else
16280 return False;
16281 end if;
16282 end Comes_From_Generic;
16283
16284 -- Local variables
16285
16286 Def : constant Node_Id := Type_Definition (N);
16287 Iface_Def : Node_Id;
16288 Indic : constant Node_Id := Subtype_Indication (Def);
16289 Extension : constant Node_Id := Record_Extension_Part (Def);
16290 Parent_Node : Node_Id;
16291 Taggd : Boolean;
16292
16293 -- Start of processing for Derived_Type_Declaration
16294
16295 begin
16296 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16297
16298 -- Ada 2005 (AI-251): In case of interface derivation check that the
16299 -- parent is also an interface.
16300
16301 if Interface_Present (Def) then
16302 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16303
16304 if not Is_Interface (Parent_Type) then
16305 Diagnose_Interface (Indic, Parent_Type);
16306
16307 else
16308 Parent_Node := Parent (Base_Type (Parent_Type));
16309 Iface_Def := Type_Definition (Parent_Node);
16310
16311 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16312 -- other limited interfaces.
16313
16314 if Limited_Present (Def) then
16315 if Limited_Present (Iface_Def) then
16316 null;
16317
16318 elsif Protected_Present (Iface_Def) then
16319 Error_Msg_NE
16320 ("descendant of & must be declared as a protected "
16321 & "interface", N, Parent_Type);
16322
16323 elsif Synchronized_Present (Iface_Def) then
16324 Error_Msg_NE
16325 ("descendant of & must be declared as a synchronized "
16326 & "interface", N, Parent_Type);
16327
16328 elsif Task_Present (Iface_Def) then
16329 Error_Msg_NE
16330 ("descendant of & must be declared as a task interface",
16331 N, Parent_Type);
16332
16333 else
16334 Error_Msg_N
16335 ("(Ada 2005) limited interface cannot inherit from "
16336 & "non-limited interface", Indic);
16337 end if;
16338
16339 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16340 -- from non-limited or limited interfaces.
16341
16342 elsif not Protected_Present (Def)
16343 and then not Synchronized_Present (Def)
16344 and then not Task_Present (Def)
16345 then
16346 if Limited_Present (Iface_Def) then
16347 null;
16348
16349 elsif Protected_Present (Iface_Def) then
16350 Error_Msg_NE
16351 ("descendant of & must be declared as a protected "
16352 & "interface", N, Parent_Type);
16353
16354 elsif Synchronized_Present (Iface_Def) then
16355 Error_Msg_NE
16356 ("descendant of & must be declared as a synchronized "
16357 & "interface", N, Parent_Type);
16358
16359 elsif Task_Present (Iface_Def) then
16360 Error_Msg_NE
16361 ("descendant of & must be declared as a task interface",
16362 N, Parent_Type);
16363 else
16364 null;
16365 end if;
16366 end if;
16367 end if;
16368 end if;
16369
16370 if Is_Tagged_Type (Parent_Type)
16371 and then Is_Concurrent_Type (Parent_Type)
16372 and then not Is_Interface (Parent_Type)
16373 then
16374 Error_Msg_N
16375 ("parent type of a record extension cannot be a synchronized "
16376 & "tagged type (RM 3.9.1 (3/1))", N);
16377 Set_Etype (T, Any_Type);
16378 return;
16379 end if;
16380
16381 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16382 -- interfaces
16383
16384 if Is_Tagged_Type (Parent_Type)
16385 and then Is_Non_Empty_List (Interface_List (Def))
16386 then
16387 declare
16388 Intf : Node_Id;
16389 T : Entity_Id;
16390
16391 begin
16392 Intf := First (Interface_List (Def));
16393 while Present (Intf) loop
16394 T := Find_Type_Of_Subtype_Indic (Intf);
16395
16396 if not Is_Interface (T) then
16397 Diagnose_Interface (Intf, T);
16398
16399 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16400 -- a limited type from having a nonlimited progenitor.
16401
16402 elsif (Limited_Present (Def)
16403 or else (not Is_Interface (Parent_Type)
16404 and then Is_Limited_Type (Parent_Type)))
16405 and then not Is_Limited_Interface (T)
16406 then
16407 Error_Msg_NE
16408 ("progenitor interface& of limited type must be limited",
16409 N, T);
16410 end if;
16411
16412 Next (Intf);
16413 end loop;
16414 end;
16415 end if;
16416
16417 if Parent_Type = Any_Type
16418 or else Etype (Parent_Type) = Any_Type
16419 or else (Is_Class_Wide_Type (Parent_Type)
16420 and then Etype (Parent_Type) = T)
16421 then
16422 -- If Parent_Type is undefined or illegal, make new type into a
16423 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16424 -- errors. If this is a self-definition, emit error now.
16425
16426 if T = Parent_Type or else T = Etype (Parent_Type) then
16427 Error_Msg_N ("type cannot be used in its own definition", Indic);
16428 end if;
16429
16430 Set_Ekind (T, Ekind (Parent_Type));
16431 Set_Etype (T, Any_Type);
16432 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16433
16434 if Is_Tagged_Type (T)
16435 and then Is_Record_Type (T)
16436 then
16437 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16438 end if;
16439
16440 return;
16441 end if;
16442
16443 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16444 -- an interface is special because the list of interfaces in the full
16445 -- view can be given in any order. For example:
16446
16447 -- type A is interface;
16448 -- type B is interface and A;
16449 -- type D is new B with private;
16450 -- private
16451 -- type D is new A and B with null record; -- 1 --
16452
16453 -- In this case we perform the following transformation of -1-:
16454
16455 -- type D is new B and A with null record;
16456
16457 -- If the parent of the full-view covers the parent of the partial-view
16458 -- we have two possible cases:
16459
16460 -- 1) They have the same parent
16461 -- 2) The parent of the full-view implements some further interfaces
16462
16463 -- In both cases we do not need to perform the transformation. In the
16464 -- first case the source program is correct and the transformation is
16465 -- not needed; in the second case the source program does not fulfill
16466 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16467 -- later.
16468
16469 -- This transformation not only simplifies the rest of the analysis of
16470 -- this type declaration but also simplifies the correct generation of
16471 -- the object layout to the expander.
16472
16473 if In_Private_Part (Current_Scope)
16474 and then Is_Interface (Parent_Type)
16475 then
16476 declare
16477 Iface : Node_Id;
16478 Partial_View : Entity_Id;
16479 Partial_View_Parent : Entity_Id;
16480 New_Iface : Node_Id;
16481
16482 begin
16483 -- Look for the associated private type declaration
16484
16485 Partial_View := First_Entity (Current_Scope);
16486 loop
16487 exit when No (Partial_View)
16488 or else (Has_Private_Declaration (Partial_View)
16489 and then Full_View (Partial_View) = T);
16490
16491 Next_Entity (Partial_View);
16492 end loop;
16493
16494 -- If the partial view was not found then the source code has
16495 -- errors and the transformation is not needed.
16496
16497 if Present (Partial_View) then
16498 Partial_View_Parent := Etype (Partial_View);
16499
16500 -- If the parent of the full-view covers the parent of the
16501 -- partial-view we have nothing else to do.
16502
16503 if Interface_Present_In_Ancestor
16504 (Parent_Type, Partial_View_Parent)
16505 then
16506 null;
16507
16508 -- Traverse the list of interfaces of the full-view to look
16509 -- for the parent of the partial-view and perform the tree
16510 -- transformation.
16511
16512 else
16513 Iface := First (Interface_List (Def));
16514 while Present (Iface) loop
16515 if Etype (Iface) = Etype (Partial_View) then
16516 Rewrite (Subtype_Indication (Def),
16517 New_Copy (Subtype_Indication
16518 (Parent (Partial_View))));
16519
16520 New_Iface :=
16521 Make_Identifier (Sloc (N), Chars (Parent_Type));
16522 Append (New_Iface, Interface_List (Def));
16523
16524 -- Analyze the transformed code
16525
16526 Derived_Type_Declaration (T, N, Is_Completion);
16527 return;
16528 end if;
16529
16530 Next (Iface);
16531 end loop;
16532 end if;
16533 end if;
16534 end;
16535 end if;
16536
16537 -- Only composite types other than array types are allowed to have
16538 -- discriminants.
16539
16540 if Present (Discriminant_Specifications (N)) then
16541 if (Is_Elementary_Type (Parent_Type)
16542 or else
16543 Is_Array_Type (Parent_Type))
16544 and then not Error_Posted (N)
16545 then
16546 Error_Msg_N
16547 ("elementary or array type cannot have discriminants",
16548 Defining_Identifier (First (Discriminant_Specifications (N))));
16549 Set_Has_Discriminants (T, False);
16550
16551 -- The type is allowed to have discriminants
16552
16553 else
16554 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16555 end if;
16556 end if;
16557
16558 -- In Ada 83, a derived type defined in a package specification cannot
16559 -- be used for further derivation until the end of its visible part.
16560 -- Note that derivation in the private part of the package is allowed.
16561
16562 if Ada_Version = Ada_83
16563 and then Is_Derived_Type (Parent_Type)
16564 and then In_Visible_Part (Scope (Parent_Type))
16565 then
16566 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16567 Error_Msg_N
16568 ("(Ada 83): premature use of type for derivation", Indic);
16569 end if;
16570 end if;
16571
16572 -- Check for early use of incomplete or private type
16573
16574 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16575 Error_Msg_N ("premature derivation of incomplete type", Indic);
16576 return;
16577
16578 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16579 and then not Comes_From_Generic (Parent_Type))
16580 or else Has_Private_Component (Parent_Type)
16581 then
16582 -- The ancestor type of a formal type can be incomplete, in which
16583 -- case only the operations of the partial view are available in the
16584 -- generic. Subsequent checks may be required when the full view is
16585 -- analyzed to verify that a derivation from a tagged type has an
16586 -- extension.
16587
16588 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16589 null;
16590
16591 elsif No (Underlying_Type (Parent_Type))
16592 or else Has_Private_Component (Parent_Type)
16593 then
16594 Error_Msg_N
16595 ("premature derivation of derived or private type", Indic);
16596
16597 -- Flag the type itself as being in error, this prevents some
16598 -- nasty problems with subsequent uses of the malformed type.
16599
16600 Set_Error_Posted (T);
16601
16602 -- Check that within the immediate scope of an untagged partial
16603 -- view it's illegal to derive from the partial view if the
16604 -- full view is tagged. (7.3(7))
16605
16606 -- We verify that the Parent_Type is a partial view by checking
16607 -- that it is not a Full_Type_Declaration (i.e. a private type or
16608 -- private extension declaration), to distinguish a partial view
16609 -- from a derivation from a private type which also appears as
16610 -- E_Private_Type. If the parent base type is not declared in an
16611 -- enclosing scope there is no need to check.
16612
16613 elsif Present (Full_View (Parent_Type))
16614 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16615 and then not Is_Tagged_Type (Parent_Type)
16616 and then Is_Tagged_Type (Full_View (Parent_Type))
16617 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16618 then
16619 Error_Msg_N
16620 ("premature derivation from type with tagged full view",
16621 Indic);
16622 end if;
16623 end if;
16624
16625 -- Check that form of derivation is appropriate
16626
16627 Taggd := Is_Tagged_Type (Parent_Type);
16628
16629 -- Set the parent type to the class-wide type's specific type in this
16630 -- case to prevent cascading errors
16631
16632 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16633 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16634 Set_Etype (T, Etype (Parent_Type));
16635 return;
16636 end if;
16637
16638 if Present (Extension) and then not Taggd then
16639 Error_Msg_N
16640 ("type derived from untagged type cannot have extension", Indic);
16641
16642 elsif No (Extension) and then Taggd then
16643
16644 -- If this declaration is within a private part (or body) of a
16645 -- generic instantiation then the derivation is allowed (the parent
16646 -- type can only appear tagged in this case if it's a generic actual
16647 -- type, since it would otherwise have been rejected in the analysis
16648 -- of the generic template).
16649
16650 if not Is_Generic_Actual_Type (Parent_Type)
16651 or else In_Visible_Part (Scope (Parent_Type))
16652 then
16653 if Is_Class_Wide_Type (Parent_Type) then
16654 Error_Msg_N
16655 ("parent type must not be a class-wide type", Indic);
16656
16657 -- Use specific type to prevent cascaded errors.
16658
16659 Parent_Type := Etype (Parent_Type);
16660
16661 else
16662 Error_Msg_N
16663 ("type derived from tagged type must have extension", Indic);
16664 end if;
16665 end if;
16666 end if;
16667
16668 -- AI-443: Synchronized formal derived types require a private
16669 -- extension. There is no point in checking the ancestor type or
16670 -- the progenitors since the construct is wrong to begin with.
16671
16672 if Ada_Version >= Ada_2005
16673 and then Is_Generic_Type (T)
16674 and then Present (Original_Node (N))
16675 then
16676 declare
16677 Decl : constant Node_Id := Original_Node (N);
16678
16679 begin
16680 if Nkind (Decl) = N_Formal_Type_Declaration
16681 and then Nkind (Formal_Type_Definition (Decl)) =
16682 N_Formal_Derived_Type_Definition
16683 and then Synchronized_Present (Formal_Type_Definition (Decl))
16684 and then No (Extension)
16685
16686 -- Avoid emitting a duplicate error message
16687
16688 and then not Error_Posted (Indic)
16689 then
16690 Error_Msg_N
16691 ("synchronized derived type must have extension", N);
16692 end if;
16693 end;
16694 end if;
16695
16696 if Null_Exclusion_Present (Def)
16697 and then not Is_Access_Type (Parent_Type)
16698 then
16699 Error_Msg_N ("null exclusion can only apply to an access type", N);
16700 end if;
16701
16702 -- Avoid deriving parent primitives of underlying record views
16703
16704 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16705 Derive_Subps => not Is_Underlying_Record_View (T));
16706
16707 -- AI-419: The parent type of an explicitly limited derived type must
16708 -- be a limited type or a limited interface.
16709
16710 if Limited_Present (Def) then
16711 Set_Is_Limited_Record (T);
16712
16713 if Is_Interface (T) then
16714 Set_Is_Limited_Interface (T);
16715 end if;
16716
16717 if not Is_Limited_Type (Parent_Type)
16718 and then
16719 (not Is_Interface (Parent_Type)
16720 or else not Is_Limited_Interface (Parent_Type))
16721 then
16722 -- AI05-0096: a derivation in the private part of an instance is
16723 -- legal if the generic formal is untagged limited, and the actual
16724 -- is non-limited.
16725
16726 if Is_Generic_Actual_Type (Parent_Type)
16727 and then In_Private_Part (Current_Scope)
16728 and then
16729 not Is_Tagged_Type
16730 (Generic_Parent_Type (Parent (Parent_Type)))
16731 then
16732 null;
16733
16734 else
16735 Error_Msg_NE
16736 ("parent type& of limited type must be limited",
16737 N, Parent_Type);
16738 end if;
16739 end if;
16740 end if;
16741
16742 -- In SPARK, there are no derived type definitions other than type
16743 -- extensions of tagged record types.
16744
16745 if No (Extension) then
16746 Check_SPARK_05_Restriction
16747 ("derived type is not allowed", Original_Node (N));
16748 end if;
16749 end Derived_Type_Declaration;
16750
16751 ------------------------
16752 -- Diagnose_Interface --
16753 ------------------------
16754
16755 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16756 begin
16757 if not Is_Interface (E) and then E /= Any_Type then
16758 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16759 end if;
16760 end Diagnose_Interface;
16761
16762 ----------------------------------
16763 -- Enumeration_Type_Declaration --
16764 ----------------------------------
16765
16766 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16767 Ev : Uint;
16768 L : Node_Id;
16769 R_Node : Node_Id;
16770 B_Node : Node_Id;
16771
16772 begin
16773 -- Create identifier node representing lower bound
16774
16775 B_Node := New_Node (N_Identifier, Sloc (Def));
16776 L := First (Literals (Def));
16777 Set_Chars (B_Node, Chars (L));
16778 Set_Entity (B_Node, L);
16779 Set_Etype (B_Node, T);
16780 Set_Is_Static_Expression (B_Node, True);
16781
16782 R_Node := New_Node (N_Range, Sloc (Def));
16783 Set_Low_Bound (R_Node, B_Node);
16784
16785 Set_Ekind (T, E_Enumeration_Type);
16786 Set_First_Literal (T, L);
16787 Set_Etype (T, T);
16788 Set_Is_Constrained (T);
16789
16790 Ev := Uint_0;
16791
16792 -- Loop through literals of enumeration type setting pos and rep values
16793 -- except that if the Ekind is already set, then it means the literal
16794 -- was already constructed (case of a derived type declaration and we
16795 -- should not disturb the Pos and Rep values.
16796
16797 while Present (L) loop
16798 if Ekind (L) /= E_Enumeration_Literal then
16799 Set_Ekind (L, E_Enumeration_Literal);
16800 Set_Enumeration_Pos (L, Ev);
16801 Set_Enumeration_Rep (L, Ev);
16802 Set_Is_Known_Valid (L, True);
16803 end if;
16804
16805 Set_Etype (L, T);
16806 New_Overloaded_Entity (L);
16807 Generate_Definition (L);
16808 Set_Convention (L, Convention_Intrinsic);
16809
16810 -- Case of character literal
16811
16812 if Nkind (L) = N_Defining_Character_Literal then
16813 Set_Is_Character_Type (T, True);
16814
16815 -- Check violation of No_Wide_Characters
16816
16817 if Restriction_Check_Required (No_Wide_Characters) then
16818 Get_Name_String (Chars (L));
16819
16820 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16821 Check_Restriction (No_Wide_Characters, L);
16822 end if;
16823 end if;
16824 end if;
16825
16826 Ev := Ev + 1;
16827 Next (L);
16828 end loop;
16829
16830 -- Now create a node representing upper bound
16831
16832 B_Node := New_Node (N_Identifier, Sloc (Def));
16833 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16834 Set_Entity (B_Node, Last (Literals (Def)));
16835 Set_Etype (B_Node, T);
16836 Set_Is_Static_Expression (B_Node, True);
16837
16838 Set_High_Bound (R_Node, B_Node);
16839
16840 -- Initialize various fields of the type. Some of this information
16841 -- may be overwritten later through rep.clauses.
16842
16843 Set_Scalar_Range (T, R_Node);
16844 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16845 Set_Enum_Esize (T);
16846 Set_Enum_Pos_To_Rep (T, Empty);
16847
16848 -- Set Discard_Names if configuration pragma set, or if there is
16849 -- a parameterless pragma in the current declarative region
16850
16851 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16852 Set_Discard_Names (T);
16853 end if;
16854
16855 -- Process end label if there is one
16856
16857 if Present (Def) then
16858 Process_End_Label (Def, 'e', T);
16859 end if;
16860 end Enumeration_Type_Declaration;
16861
16862 ---------------------------------
16863 -- Expand_To_Stored_Constraint --
16864 ---------------------------------
16865
16866 function Expand_To_Stored_Constraint
16867 (Typ : Entity_Id;
16868 Constraint : Elist_Id) return Elist_Id
16869 is
16870 Explicitly_Discriminated_Type : Entity_Id;
16871 Expansion : Elist_Id;
16872 Discriminant : Entity_Id;
16873
16874 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16875 -- Find the nearest type that actually specifies discriminants
16876
16877 ---------------------------------
16878 -- Type_With_Explicit_Discrims --
16879 ---------------------------------
16880
16881 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16882 Typ : constant E := Base_Type (Id);
16883
16884 begin
16885 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16886 if Present (Full_View (Typ)) then
16887 return Type_With_Explicit_Discrims (Full_View (Typ));
16888 end if;
16889
16890 else
16891 if Has_Discriminants (Typ) then
16892 return Typ;
16893 end if;
16894 end if;
16895
16896 if Etype (Typ) = Typ then
16897 return Empty;
16898 elsif Has_Discriminants (Typ) then
16899 return Typ;
16900 else
16901 return Type_With_Explicit_Discrims (Etype (Typ));
16902 end if;
16903
16904 end Type_With_Explicit_Discrims;
16905
16906 -- Start of processing for Expand_To_Stored_Constraint
16907
16908 begin
16909 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16910 return No_Elist;
16911 end if;
16912
16913 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16914
16915 if No (Explicitly_Discriminated_Type) then
16916 return No_Elist;
16917 end if;
16918
16919 Expansion := New_Elmt_List;
16920
16921 Discriminant :=
16922 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16923 while Present (Discriminant) loop
16924 Append_Elmt
16925 (Get_Discriminant_Value
16926 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16927 To => Expansion);
16928 Next_Stored_Discriminant (Discriminant);
16929 end loop;
16930
16931 return Expansion;
16932 end Expand_To_Stored_Constraint;
16933
16934 ---------------------------
16935 -- Find_Hidden_Interface --
16936 ---------------------------
16937
16938 function Find_Hidden_Interface
16939 (Src : Elist_Id;
16940 Dest : Elist_Id) return Entity_Id
16941 is
16942 Iface : Entity_Id;
16943 Iface_Elmt : Elmt_Id;
16944
16945 begin
16946 if Present (Src) and then Present (Dest) then
16947 Iface_Elmt := First_Elmt (Src);
16948 while Present (Iface_Elmt) loop
16949 Iface := Node (Iface_Elmt);
16950
16951 if Is_Interface (Iface)
16952 and then not Contain_Interface (Iface, Dest)
16953 then
16954 return Iface;
16955 end if;
16956
16957 Next_Elmt (Iface_Elmt);
16958 end loop;
16959 end if;
16960
16961 return Empty;
16962 end Find_Hidden_Interface;
16963
16964 --------------------
16965 -- Find_Type_Name --
16966 --------------------
16967
16968 function Find_Type_Name (N : Node_Id) return Entity_Id is
16969 Id : constant Entity_Id := Defining_Identifier (N);
16970 New_Id : Entity_Id;
16971 Prev : Entity_Id;
16972 Prev_Par : Node_Id;
16973
16974 procedure Check_Duplicate_Aspects;
16975 -- Check that aspects specified in a completion have not been specified
16976 -- already in the partial view.
16977
16978 procedure Tag_Mismatch;
16979 -- Diagnose a tagged partial view whose full view is untagged. We post
16980 -- the message on the full view, with a reference to the previous
16981 -- partial view. The partial view can be private or incomplete, and
16982 -- these are handled in a different manner, so we determine the position
16983 -- of the error message from the respective slocs of both.
16984
16985 -----------------------------
16986 -- Check_Duplicate_Aspects --
16987 -----------------------------
16988
16989 procedure Check_Duplicate_Aspects is
16990 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
16991 -- Return the corresponding aspect of the partial view which matches
16992 -- the aspect id of Asp. Return Empty is no such aspect exists.
16993
16994 -----------------------------
16995 -- Get_Partial_View_Aspect --
16996 -----------------------------
16997
16998 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
16999 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17000 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17001 Prev_Asp : Node_Id;
17002
17003 begin
17004 if Present (Prev_Asps) then
17005 Prev_Asp := First (Prev_Asps);
17006 while Present (Prev_Asp) loop
17007 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17008 return Prev_Asp;
17009 end if;
17010
17011 Next (Prev_Asp);
17012 end loop;
17013 end if;
17014
17015 return Empty;
17016 end Get_Partial_View_Aspect;
17017
17018 -- Local variables
17019
17020 Full_Asps : constant List_Id := Aspect_Specifications (N);
17021 Full_Asp : Node_Id;
17022 Part_Asp : Node_Id;
17023
17024 -- Start of processing for Check_Duplicate_Aspects
17025
17026 begin
17027 if Present (Full_Asps) then
17028 Full_Asp := First (Full_Asps);
17029 while Present (Full_Asp) loop
17030 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17031
17032 -- An aspect and its class-wide counterpart are two distinct
17033 -- aspects and may apply to both views of an entity.
17034
17035 if Present (Part_Asp)
17036 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17037 then
17038 Error_Msg_N
17039 ("aspect already specified in private declaration",
17040 Full_Asp);
17041
17042 Remove (Full_Asp);
17043 return;
17044 end if;
17045
17046 if Has_Discriminants (Prev)
17047 and then not Has_Unknown_Discriminants (Prev)
17048 and then Get_Aspect_Id (Full_Asp) =
17049 Aspect_Implicit_Dereference
17050 then
17051 Error_Msg_N
17052 ("cannot specify aspect if partial view has known "
17053 & "discriminants", Full_Asp);
17054 end if;
17055
17056 Next (Full_Asp);
17057 end loop;
17058 end if;
17059 end Check_Duplicate_Aspects;
17060
17061 ------------------
17062 -- Tag_Mismatch --
17063 ------------------
17064
17065 procedure Tag_Mismatch is
17066 begin
17067 if Sloc (Prev) < Sloc (Id) then
17068 if Ada_Version >= Ada_2012
17069 and then Nkind (N) = N_Private_Type_Declaration
17070 then
17071 Error_Msg_NE
17072 ("declaration of private } must be a tagged type ", Id, Prev);
17073 else
17074 Error_Msg_NE
17075 ("full declaration of } must be a tagged type ", Id, Prev);
17076 end if;
17077
17078 else
17079 if Ada_Version >= Ada_2012
17080 and then Nkind (N) = N_Private_Type_Declaration
17081 then
17082 Error_Msg_NE
17083 ("declaration of private } must be a tagged type ", Prev, Id);
17084 else
17085 Error_Msg_NE
17086 ("full declaration of } must be a tagged type ", Prev, Id);
17087 end if;
17088 end if;
17089 end Tag_Mismatch;
17090
17091 -- Start of processing for Find_Type_Name
17092
17093 begin
17094 -- Find incomplete declaration, if one was given
17095
17096 Prev := Current_Entity_In_Scope (Id);
17097
17098 -- New type declaration
17099
17100 if No (Prev) then
17101 Enter_Name (Id);
17102 return Id;
17103
17104 -- Previous declaration exists
17105
17106 else
17107 Prev_Par := Parent (Prev);
17108
17109 -- Error if not incomplete/private case except if previous
17110 -- declaration is implicit, etc. Enter_Name will emit error if
17111 -- appropriate.
17112
17113 if not Is_Incomplete_Or_Private_Type (Prev) then
17114 Enter_Name (Id);
17115 New_Id := Id;
17116
17117 -- Check invalid completion of private or incomplete type
17118
17119 elsif not Nkind_In (N, N_Full_Type_Declaration,
17120 N_Task_Type_Declaration,
17121 N_Protected_Type_Declaration)
17122 and then
17123 (Ada_Version < Ada_2012
17124 or else not Is_Incomplete_Type (Prev)
17125 or else not Nkind_In (N, N_Private_Type_Declaration,
17126 N_Private_Extension_Declaration))
17127 then
17128 -- Completion must be a full type declarations (RM 7.3(4))
17129
17130 Error_Msg_Sloc := Sloc (Prev);
17131 Error_Msg_NE ("invalid completion of }", Id, Prev);
17132
17133 -- Set scope of Id to avoid cascaded errors. Entity is never
17134 -- examined again, except when saving globals in generics.
17135
17136 Set_Scope (Id, Current_Scope);
17137 New_Id := Id;
17138
17139 -- If this is a repeated incomplete declaration, no further
17140 -- checks are possible.
17141
17142 if Nkind (N) = N_Incomplete_Type_Declaration then
17143 return Prev;
17144 end if;
17145
17146 -- Case of full declaration of incomplete type
17147
17148 elsif Ekind (Prev) = E_Incomplete_Type
17149 and then (Ada_Version < Ada_2012
17150 or else No (Full_View (Prev))
17151 or else not Is_Private_Type (Full_View (Prev)))
17152 then
17153 -- Indicate that the incomplete declaration has a matching full
17154 -- declaration. The defining occurrence of the incomplete
17155 -- declaration remains the visible one, and the procedure
17156 -- Get_Full_View dereferences it whenever the type is used.
17157
17158 if Present (Full_View (Prev)) then
17159 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17160 end if;
17161
17162 Set_Full_View (Prev, Id);
17163 Append_Entity (Id, Current_Scope);
17164 Set_Is_Public (Id, Is_Public (Prev));
17165 Set_Is_Internal (Id);
17166 New_Id := Prev;
17167
17168 -- If the incomplete view is tagged, a class_wide type has been
17169 -- created already. Use it for the private type as well, in order
17170 -- to prevent multiple incompatible class-wide types that may be
17171 -- created for self-referential anonymous access components.
17172
17173 if Is_Tagged_Type (Prev)
17174 and then Present (Class_Wide_Type (Prev))
17175 then
17176 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17177 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17178
17179 -- Type of the class-wide type is the current Id. Previously
17180 -- this was not done for private declarations because of order-
17181 -- of-elaboration issues in the back end, but gigi now handles
17182 -- this properly.
17183
17184 Set_Etype (Class_Wide_Type (Id), Id);
17185 end if;
17186
17187 -- Case of full declaration of private type
17188
17189 else
17190 -- If the private type was a completion of an incomplete type then
17191 -- update Prev to reference the private type
17192
17193 if Ada_Version >= Ada_2012
17194 and then Ekind (Prev) = E_Incomplete_Type
17195 and then Present (Full_View (Prev))
17196 and then Is_Private_Type (Full_View (Prev))
17197 then
17198 Prev := Full_View (Prev);
17199 Prev_Par := Parent (Prev);
17200 end if;
17201
17202 if Nkind (N) = N_Full_Type_Declaration
17203 and then Nkind_In
17204 (Type_Definition (N), N_Record_Definition,
17205 N_Derived_Type_Definition)
17206 and then Interface_Present (Type_Definition (N))
17207 then
17208 Error_Msg_N
17209 ("completion of private type cannot be an interface", N);
17210 end if;
17211
17212 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17213 if Etype (Prev) /= Prev then
17214
17215 -- Prev is a private subtype or a derived type, and needs
17216 -- no completion.
17217
17218 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17219 New_Id := Id;
17220
17221 elsif Ekind (Prev) = E_Private_Type
17222 and then Nkind_In (N, N_Task_Type_Declaration,
17223 N_Protected_Type_Declaration)
17224 then
17225 Error_Msg_N
17226 ("completion of nonlimited type cannot be limited", N);
17227
17228 elsif Ekind (Prev) = E_Record_Type_With_Private
17229 and then Nkind_In (N, N_Task_Type_Declaration,
17230 N_Protected_Type_Declaration)
17231 then
17232 if not Is_Limited_Record (Prev) then
17233 Error_Msg_N
17234 ("completion of nonlimited type cannot be limited", N);
17235
17236 elsif No (Interface_List (N)) then
17237 Error_Msg_N
17238 ("completion of tagged private type must be tagged",
17239 N);
17240 end if;
17241 end if;
17242
17243 -- Ada 2005 (AI-251): Private extension declaration of a task
17244 -- type or a protected type. This case arises when covering
17245 -- interface types.
17246
17247 elsif Nkind_In (N, N_Task_Type_Declaration,
17248 N_Protected_Type_Declaration)
17249 then
17250 null;
17251
17252 elsif Nkind (N) /= N_Full_Type_Declaration
17253 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17254 then
17255 Error_Msg_N
17256 ("full view of private extension must be an extension", N);
17257
17258 elsif not (Abstract_Present (Parent (Prev)))
17259 and then Abstract_Present (Type_Definition (N))
17260 then
17261 Error_Msg_N
17262 ("full view of non-abstract extension cannot be abstract", N);
17263 end if;
17264
17265 if not In_Private_Part (Current_Scope) then
17266 Error_Msg_N
17267 ("declaration of full view must appear in private part", N);
17268 end if;
17269
17270 if Ada_Version >= Ada_2012 then
17271 Check_Duplicate_Aspects;
17272 end if;
17273
17274 Copy_And_Swap (Prev, Id);
17275 Set_Has_Private_Declaration (Prev);
17276 Set_Has_Private_Declaration (Id);
17277
17278 -- AI12-0133: Indicate whether we have a partial view with
17279 -- unknown discriminants, in which case initialization of objects
17280 -- of the type do not receive an invariant check.
17281
17282 Set_Partial_View_Has_Unknown_Discr
17283 (Prev, Has_Unknown_Discriminants (Id));
17284
17285 -- Preserve aspect and iterator flags that may have been set on
17286 -- the partial view.
17287
17288 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17289 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17290
17291 -- If no error, propagate freeze_node from private to full view.
17292 -- It may have been generated for an early operational item.
17293
17294 if Present (Freeze_Node (Id))
17295 and then Serious_Errors_Detected = 0
17296 and then No (Full_View (Id))
17297 then
17298 Set_Freeze_Node (Prev, Freeze_Node (Id));
17299 Set_Freeze_Node (Id, Empty);
17300 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17301 end if;
17302
17303 Set_Full_View (Id, Prev);
17304 New_Id := Prev;
17305 end if;
17306
17307 -- Verify that full declaration conforms to partial one
17308
17309 if Is_Incomplete_Or_Private_Type (Prev)
17310 and then Present (Discriminant_Specifications (Prev_Par))
17311 then
17312 if Present (Discriminant_Specifications (N)) then
17313 if Ekind (Prev) = E_Incomplete_Type then
17314 Check_Discriminant_Conformance (N, Prev, Prev);
17315 else
17316 Check_Discriminant_Conformance (N, Prev, Id);
17317 end if;
17318
17319 else
17320 Error_Msg_N
17321 ("missing discriminants in full type declaration", N);
17322
17323 -- To avoid cascaded errors on subsequent use, share the
17324 -- discriminants of the partial view.
17325
17326 Set_Discriminant_Specifications (N,
17327 Discriminant_Specifications (Prev_Par));
17328 end if;
17329 end if;
17330
17331 -- A prior untagged partial view can have an associated class-wide
17332 -- type due to use of the class attribute, and in this case the full
17333 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17334 -- of incomplete tagged declarations, but we check for it.
17335
17336 if Is_Type (Prev)
17337 and then (Is_Tagged_Type (Prev)
17338 or else Present (Class_Wide_Type (Prev)))
17339 then
17340 -- Ada 2012 (AI05-0162): A private type may be the completion of
17341 -- an incomplete type.
17342
17343 if Ada_Version >= Ada_2012
17344 and then Is_Incomplete_Type (Prev)
17345 and then Nkind_In (N, N_Private_Type_Declaration,
17346 N_Private_Extension_Declaration)
17347 then
17348 -- No need to check private extensions since they are tagged
17349
17350 if Nkind (N) = N_Private_Type_Declaration
17351 and then not Tagged_Present (N)
17352 then
17353 Tag_Mismatch;
17354 end if;
17355
17356 -- The full declaration is either a tagged type (including
17357 -- a synchronized type that implements interfaces) or a
17358 -- type extension, otherwise this is an error.
17359
17360 elsif Nkind_In (N, N_Task_Type_Declaration,
17361 N_Protected_Type_Declaration)
17362 then
17363 if No (Interface_List (N)) and then not Error_Posted (N) then
17364 Tag_Mismatch;
17365 end if;
17366
17367 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17368
17369 -- Indicate that the previous declaration (tagged incomplete
17370 -- or private declaration) requires the same on the full one.
17371
17372 if not Tagged_Present (Type_Definition (N)) then
17373 Tag_Mismatch;
17374 Set_Is_Tagged_Type (Id);
17375 end if;
17376
17377 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17378 if No (Record_Extension_Part (Type_Definition (N))) then
17379 Error_Msg_NE
17380 ("full declaration of } must be a record extension",
17381 Prev, Id);
17382
17383 -- Set some attributes to produce a usable full view
17384
17385 Set_Is_Tagged_Type (Id);
17386 end if;
17387
17388 else
17389 Tag_Mismatch;
17390 end if;
17391 end if;
17392
17393 if Present (Prev)
17394 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17395 and then Present (Premature_Use (Parent (Prev)))
17396 then
17397 Error_Msg_Sloc := Sloc (N);
17398 Error_Msg_N
17399 ("\full declaration #", Premature_Use (Parent (Prev)));
17400 end if;
17401
17402 return New_Id;
17403 end if;
17404 end Find_Type_Name;
17405
17406 -------------------------
17407 -- Find_Type_Of_Object --
17408 -------------------------
17409
17410 function Find_Type_Of_Object
17411 (Obj_Def : Node_Id;
17412 Related_Nod : Node_Id) return Entity_Id
17413 is
17414 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17415 P : Node_Id := Parent (Obj_Def);
17416 T : Entity_Id;
17417 Nam : Name_Id;
17418
17419 begin
17420 -- If the parent is a component_definition node we climb to the
17421 -- component_declaration node
17422
17423 if Nkind (P) = N_Component_Definition then
17424 P := Parent (P);
17425 end if;
17426
17427 -- Case of an anonymous array subtype
17428
17429 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17430 N_Unconstrained_Array_Definition)
17431 then
17432 T := Empty;
17433 Array_Type_Declaration (T, Obj_Def);
17434
17435 -- Create an explicit subtype whenever possible
17436
17437 elsif Nkind (P) /= N_Component_Declaration
17438 and then Def_Kind = N_Subtype_Indication
17439 then
17440 -- Base name of subtype on object name, which will be unique in
17441 -- the current scope.
17442
17443 -- If this is a duplicate declaration, return base type, to avoid
17444 -- generating duplicate anonymous types.
17445
17446 if Error_Posted (P) then
17447 Analyze (Subtype_Mark (Obj_Def));
17448 return Entity (Subtype_Mark (Obj_Def));
17449 end if;
17450
17451 Nam :=
17452 New_External_Name
17453 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17454
17455 T := Make_Defining_Identifier (Sloc (P), Nam);
17456
17457 Insert_Action (Obj_Def,
17458 Make_Subtype_Declaration (Sloc (P),
17459 Defining_Identifier => T,
17460 Subtype_Indication => Relocate_Node (Obj_Def)));
17461
17462 -- This subtype may need freezing, and this will not be done
17463 -- automatically if the object declaration is not in declarative
17464 -- part. Since this is an object declaration, the type cannot always
17465 -- be frozen here. Deferred constants do not freeze their type
17466 -- (which often enough will be private).
17467
17468 if Nkind (P) = N_Object_Declaration
17469 and then Constant_Present (P)
17470 and then No (Expression (P))
17471 then
17472 null;
17473
17474 -- Here we freeze the base type of object type to catch premature use
17475 -- of discriminated private type without a full view.
17476
17477 else
17478 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17479 end if;
17480
17481 -- Ada 2005 AI-406: the object definition in an object declaration
17482 -- can be an access definition.
17483
17484 elsif Def_Kind = N_Access_Definition then
17485 T := Access_Definition (Related_Nod, Obj_Def);
17486
17487 Set_Is_Local_Anonymous_Access
17488 (T,
17489 V => (Ada_Version < Ada_2012)
17490 or else (Nkind (P) /= N_Object_Declaration)
17491 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17492
17493 -- Otherwise, the object definition is just a subtype_mark
17494
17495 else
17496 T := Process_Subtype (Obj_Def, Related_Nod);
17497
17498 -- If expansion is disabled an object definition that is an aggregate
17499 -- will not get expanded and may lead to scoping problems in the back
17500 -- end, if the object is referenced in an inner scope. In that case
17501 -- create an itype reference for the object definition now. This
17502 -- may be redundant in some cases, but harmless.
17503
17504 if Is_Itype (T)
17505 and then Nkind (Related_Nod) = N_Object_Declaration
17506 and then ASIS_Mode
17507 then
17508 Build_Itype_Reference (T, Related_Nod);
17509 end if;
17510 end if;
17511
17512 return T;
17513 end Find_Type_Of_Object;
17514
17515 --------------------------------
17516 -- Find_Type_Of_Subtype_Indic --
17517 --------------------------------
17518
17519 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17520 Typ : Entity_Id;
17521
17522 begin
17523 -- Case of subtype mark with a constraint
17524
17525 if Nkind (S) = N_Subtype_Indication then
17526 Find_Type (Subtype_Mark (S));
17527 Typ := Entity (Subtype_Mark (S));
17528
17529 if not
17530 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17531 then
17532 Error_Msg_N
17533 ("incorrect constraint for this kind of type", Constraint (S));
17534 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17535 end if;
17536
17537 -- Otherwise we have a subtype mark without a constraint
17538
17539 elsif Error_Posted (S) then
17540 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17541 return Any_Type;
17542
17543 else
17544 Find_Type (S);
17545 Typ := Entity (S);
17546 end if;
17547
17548 -- Check No_Wide_Characters restriction
17549
17550 Check_Wide_Character_Restriction (Typ, S);
17551
17552 return Typ;
17553 end Find_Type_Of_Subtype_Indic;
17554
17555 -------------------------------------
17556 -- Floating_Point_Type_Declaration --
17557 -------------------------------------
17558
17559 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17560 Digs : constant Node_Id := Digits_Expression (Def);
17561 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17562 Digs_Val : Uint;
17563 Base_Typ : Entity_Id;
17564 Implicit_Base : Entity_Id;
17565 Bound : Node_Id;
17566
17567 function Can_Derive_From (E : Entity_Id) return Boolean;
17568 -- Find if given digits value, and possibly a specified range, allows
17569 -- derivation from specified type
17570
17571 function Find_Base_Type return Entity_Id;
17572 -- Find a predefined base type that Def can derive from, or generate
17573 -- an error and substitute Long_Long_Float if none exists.
17574
17575 ---------------------
17576 -- Can_Derive_From --
17577 ---------------------
17578
17579 function Can_Derive_From (E : Entity_Id) return Boolean is
17580 Spec : constant Entity_Id := Real_Range_Specification (Def);
17581
17582 begin
17583 -- Check specified "digits" constraint
17584
17585 if Digs_Val > Digits_Value (E) then
17586 return False;
17587 end if;
17588
17589 -- Check for matching range, if specified
17590
17591 if Present (Spec) then
17592 if Expr_Value_R (Type_Low_Bound (E)) >
17593 Expr_Value_R (Low_Bound (Spec))
17594 then
17595 return False;
17596 end if;
17597
17598 if Expr_Value_R (Type_High_Bound (E)) <
17599 Expr_Value_R (High_Bound (Spec))
17600 then
17601 return False;
17602 end if;
17603 end if;
17604
17605 return True;
17606 end Can_Derive_From;
17607
17608 --------------------
17609 -- Find_Base_Type --
17610 --------------------
17611
17612 function Find_Base_Type return Entity_Id is
17613 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17614
17615 begin
17616 -- Iterate over the predefined types in order, returning the first
17617 -- one that Def can derive from.
17618
17619 while Present (Choice) loop
17620 if Can_Derive_From (Node (Choice)) then
17621 return Node (Choice);
17622 end if;
17623
17624 Next_Elmt (Choice);
17625 end loop;
17626
17627 -- If we can't derive from any existing type, use Long_Long_Float
17628 -- and give appropriate message explaining the problem.
17629
17630 if Digs_Val > Max_Digs_Val then
17631 -- It might be the case that there is a type with the requested
17632 -- range, just not the combination of digits and range.
17633
17634 Error_Msg_N
17635 ("no predefined type has requested range and precision",
17636 Real_Range_Specification (Def));
17637
17638 else
17639 Error_Msg_N
17640 ("range too large for any predefined type",
17641 Real_Range_Specification (Def));
17642 end if;
17643
17644 return Standard_Long_Long_Float;
17645 end Find_Base_Type;
17646
17647 -- Start of processing for Floating_Point_Type_Declaration
17648
17649 begin
17650 Check_Restriction (No_Floating_Point, Def);
17651
17652 -- Create an implicit base type
17653
17654 Implicit_Base :=
17655 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17656
17657 -- Analyze and verify digits value
17658
17659 Analyze_And_Resolve (Digs, Any_Integer);
17660 Check_Digits_Expression (Digs);
17661 Digs_Val := Expr_Value (Digs);
17662
17663 -- Process possible range spec and find correct type to derive from
17664
17665 Process_Real_Range_Specification (Def);
17666
17667 -- Check that requested number of digits is not too high.
17668
17669 if Digs_Val > Max_Digs_Val then
17670
17671 -- The check for Max_Base_Digits may be somewhat expensive, as it
17672 -- requires reading System, so only do it when necessary.
17673
17674 declare
17675 Max_Base_Digits : constant Uint :=
17676 Expr_Value
17677 (Expression
17678 (Parent (RTE (RE_Max_Base_Digits))));
17679
17680 begin
17681 if Digs_Val > Max_Base_Digits then
17682 Error_Msg_Uint_1 := Max_Base_Digits;
17683 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17684
17685 elsif No (Real_Range_Specification (Def)) then
17686 Error_Msg_Uint_1 := Max_Digs_Val;
17687 Error_Msg_N ("types with more than ^ digits need range spec "
17688 & "(RM 3.5.7(6))", Digs);
17689 end if;
17690 end;
17691 end if;
17692
17693 -- Find a suitable type to derive from or complain and use a substitute
17694
17695 Base_Typ := Find_Base_Type;
17696
17697 -- If there are bounds given in the declaration use them as the bounds
17698 -- of the type, otherwise use the bounds of the predefined base type
17699 -- that was chosen based on the Digits value.
17700
17701 if Present (Real_Range_Specification (Def)) then
17702 Set_Scalar_Range (T, Real_Range_Specification (Def));
17703 Set_Is_Constrained (T);
17704
17705 -- The bounds of this range must be converted to machine numbers
17706 -- in accordance with RM 4.9(38).
17707
17708 Bound := Type_Low_Bound (T);
17709
17710 if Nkind (Bound) = N_Real_Literal then
17711 Set_Realval
17712 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17713 Set_Is_Machine_Number (Bound);
17714 end if;
17715
17716 Bound := Type_High_Bound (T);
17717
17718 if Nkind (Bound) = N_Real_Literal then
17719 Set_Realval
17720 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17721 Set_Is_Machine_Number (Bound);
17722 end if;
17723
17724 else
17725 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17726 end if;
17727
17728 -- Complete definition of implicit base and declared first subtype. The
17729 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17730 -- are not clobbered when the floating point type acts as a full view of
17731 -- a private type.
17732
17733 Set_Etype (Implicit_Base, Base_Typ);
17734 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17735 Set_Size_Info (Implicit_Base, Base_Typ);
17736 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17737 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17738 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17739 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17740
17741 Set_Ekind (T, E_Floating_Point_Subtype);
17742 Set_Etype (T, Implicit_Base);
17743 Set_Size_Info (T, Implicit_Base);
17744 Set_RM_Size (T, RM_Size (Implicit_Base));
17745 Inherit_Rep_Item_Chain (T, Implicit_Base);
17746 Set_Digits_Value (T, Digs_Val);
17747 end Floating_Point_Type_Declaration;
17748
17749 ----------------------------
17750 -- Get_Discriminant_Value --
17751 ----------------------------
17752
17753 -- This is the situation:
17754
17755 -- There is a non-derived type
17756
17757 -- type T0 (Dx, Dy, Dz...)
17758
17759 -- There are zero or more levels of derivation, with each derivation
17760 -- either purely inheriting the discriminants, or defining its own.
17761
17762 -- type Ti is new Ti-1
17763 -- or
17764 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17765 -- or
17766 -- subtype Ti is ...
17767
17768 -- The subtype issue is avoided by the use of Original_Record_Component,
17769 -- and the fact that derived subtypes also derive the constraints.
17770
17771 -- This chain leads back from
17772
17773 -- Typ_For_Constraint
17774
17775 -- Typ_For_Constraint has discriminants, and the value for each
17776 -- discriminant is given by its corresponding Elmt of Constraints.
17777
17778 -- Discriminant is some discriminant in this hierarchy
17779
17780 -- We need to return its value
17781
17782 -- We do this by recursively searching each level, and looking for
17783 -- Discriminant. Once we get to the bottom, we start backing up
17784 -- returning the value for it which may in turn be a discriminant
17785 -- further up, so on the backup we continue the substitution.
17786
17787 function Get_Discriminant_Value
17788 (Discriminant : Entity_Id;
17789 Typ_For_Constraint : Entity_Id;
17790 Constraint : Elist_Id) return Node_Id
17791 is
17792 function Root_Corresponding_Discriminant
17793 (Discr : Entity_Id) return Entity_Id;
17794 -- Given a discriminant, traverse the chain of inherited discriminants
17795 -- and return the topmost discriminant.
17796
17797 function Search_Derivation_Levels
17798 (Ti : Entity_Id;
17799 Discrim_Values : Elist_Id;
17800 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17801 -- This is the routine that performs the recursive search of levels
17802 -- as described above.
17803
17804 -------------------------------------
17805 -- Root_Corresponding_Discriminant --
17806 -------------------------------------
17807
17808 function Root_Corresponding_Discriminant
17809 (Discr : Entity_Id) return Entity_Id
17810 is
17811 D : Entity_Id;
17812
17813 begin
17814 D := Discr;
17815 while Present (Corresponding_Discriminant (D)) loop
17816 D := Corresponding_Discriminant (D);
17817 end loop;
17818
17819 return D;
17820 end Root_Corresponding_Discriminant;
17821
17822 ------------------------------
17823 -- Search_Derivation_Levels --
17824 ------------------------------
17825
17826 function Search_Derivation_Levels
17827 (Ti : Entity_Id;
17828 Discrim_Values : Elist_Id;
17829 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17830 is
17831 Assoc : Elmt_Id;
17832 Disc : Entity_Id;
17833 Result : Node_Or_Entity_Id;
17834 Result_Entity : Node_Id;
17835
17836 begin
17837 -- If inappropriate type, return Error, this happens only in
17838 -- cascaded error situations, and we want to avoid a blow up.
17839
17840 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17841 return Error;
17842 end if;
17843
17844 -- Look deeper if possible. Use Stored_Constraints only for
17845 -- untagged types. For tagged types use the given constraint.
17846 -- This asymmetry needs explanation???
17847
17848 if not Stored_Discrim_Values
17849 and then Present (Stored_Constraint (Ti))
17850 and then not Is_Tagged_Type (Ti)
17851 then
17852 Result :=
17853 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17854 else
17855 declare
17856 Td : constant Entity_Id := Etype (Ti);
17857
17858 begin
17859 if Td = Ti then
17860 Result := Discriminant;
17861
17862 else
17863 if Present (Stored_Constraint (Ti)) then
17864 Result :=
17865 Search_Derivation_Levels
17866 (Td, Stored_Constraint (Ti), True);
17867 else
17868 Result :=
17869 Search_Derivation_Levels
17870 (Td, Discrim_Values, Stored_Discrim_Values);
17871 end if;
17872 end if;
17873 end;
17874 end if;
17875
17876 -- Extra underlying places to search, if not found above. For
17877 -- concurrent types, the relevant discriminant appears in the
17878 -- corresponding record. For a type derived from a private type
17879 -- without discriminant, the full view inherits the discriminants
17880 -- of the full view of the parent.
17881
17882 if Result = Discriminant then
17883 if Is_Concurrent_Type (Ti)
17884 and then Present (Corresponding_Record_Type (Ti))
17885 then
17886 Result :=
17887 Search_Derivation_Levels (
17888 Corresponding_Record_Type (Ti),
17889 Discrim_Values,
17890 Stored_Discrim_Values);
17891
17892 elsif Is_Private_Type (Ti)
17893 and then not Has_Discriminants (Ti)
17894 and then Present (Full_View (Ti))
17895 and then Etype (Full_View (Ti)) /= Ti
17896 then
17897 Result :=
17898 Search_Derivation_Levels (
17899 Full_View (Ti),
17900 Discrim_Values,
17901 Stored_Discrim_Values);
17902 end if;
17903 end if;
17904
17905 -- If Result is not a (reference to a) discriminant, return it,
17906 -- otherwise set Result_Entity to the discriminant.
17907
17908 if Nkind (Result) = N_Defining_Identifier then
17909 pragma Assert (Result = Discriminant);
17910 Result_Entity := Result;
17911
17912 else
17913 if not Denotes_Discriminant (Result) then
17914 return Result;
17915 end if;
17916
17917 Result_Entity := Entity (Result);
17918 end if;
17919
17920 -- See if this level of derivation actually has discriminants because
17921 -- tagged derivations can add them, hence the lower levels need not
17922 -- have any.
17923
17924 if not Has_Discriminants (Ti) then
17925 return Result;
17926 end if;
17927
17928 -- Scan Ti's discriminants for Result_Entity, and return its
17929 -- corresponding value, if any.
17930
17931 Result_Entity := Original_Record_Component (Result_Entity);
17932
17933 Assoc := First_Elmt (Discrim_Values);
17934
17935 if Stored_Discrim_Values then
17936 Disc := First_Stored_Discriminant (Ti);
17937 else
17938 Disc := First_Discriminant (Ti);
17939 end if;
17940
17941 while Present (Disc) loop
17942
17943 -- If no further associations return the discriminant, value will
17944 -- be found on the second pass.
17945
17946 if No (Assoc) then
17947 return Result;
17948 end if;
17949
17950 if Original_Record_Component (Disc) = Result_Entity then
17951 return Node (Assoc);
17952 end if;
17953
17954 Next_Elmt (Assoc);
17955
17956 if Stored_Discrim_Values then
17957 Next_Stored_Discriminant (Disc);
17958 else
17959 Next_Discriminant (Disc);
17960 end if;
17961 end loop;
17962
17963 -- Could not find it
17964
17965 return Result;
17966 end Search_Derivation_Levels;
17967
17968 -- Local Variables
17969
17970 Result : Node_Or_Entity_Id;
17971
17972 -- Start of processing for Get_Discriminant_Value
17973
17974 begin
17975 -- ??? This routine is a gigantic mess and will be deleted. For the
17976 -- time being just test for the trivial case before calling recurse.
17977
17978 -- We are now celebrating the 20th anniversary of this comment!
17979
17980 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17981 declare
17982 D : Entity_Id;
17983 E : Elmt_Id;
17984
17985 begin
17986 D := First_Discriminant (Typ_For_Constraint);
17987 E := First_Elmt (Constraint);
17988 while Present (D) loop
17989 if Chars (D) = Chars (Discriminant) then
17990 return Node (E);
17991 end if;
17992
17993 Next_Discriminant (D);
17994 Next_Elmt (E);
17995 end loop;
17996 end;
17997 end if;
17998
17999 Result := Search_Derivation_Levels
18000 (Typ_For_Constraint, Constraint, False);
18001
18002 -- ??? hack to disappear when this routine is gone
18003
18004 if Nkind (Result) = N_Defining_Identifier then
18005 declare
18006 D : Entity_Id;
18007 E : Elmt_Id;
18008
18009 begin
18010 D := First_Discriminant (Typ_For_Constraint);
18011 E := First_Elmt (Constraint);
18012 while Present (D) loop
18013 if Root_Corresponding_Discriminant (D) = Discriminant then
18014 return Node (E);
18015 end if;
18016
18017 Next_Discriminant (D);
18018 Next_Elmt (E);
18019 end loop;
18020 end;
18021 end if;
18022
18023 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18024 return Result;
18025 end Get_Discriminant_Value;
18026
18027 --------------------------
18028 -- Has_Range_Constraint --
18029 --------------------------
18030
18031 function Has_Range_Constraint (N : Node_Id) return Boolean is
18032 C : constant Node_Id := Constraint (N);
18033
18034 begin
18035 if Nkind (C) = N_Range_Constraint then
18036 return True;
18037
18038 elsif Nkind (C) = N_Digits_Constraint then
18039 return
18040 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18041 or else Present (Range_Constraint (C));
18042
18043 elsif Nkind (C) = N_Delta_Constraint then
18044 return Present (Range_Constraint (C));
18045
18046 else
18047 return False;
18048 end if;
18049 end Has_Range_Constraint;
18050
18051 ------------------------
18052 -- Inherit_Components --
18053 ------------------------
18054
18055 function Inherit_Components
18056 (N : Node_Id;
18057 Parent_Base : Entity_Id;
18058 Derived_Base : Entity_Id;
18059 Is_Tagged : Boolean;
18060 Inherit_Discr : Boolean;
18061 Discs : Elist_Id) return Elist_Id
18062 is
18063 Assoc_List : constant Elist_Id := New_Elmt_List;
18064
18065 procedure Inherit_Component
18066 (Old_C : Entity_Id;
18067 Plain_Discrim : Boolean := False;
18068 Stored_Discrim : Boolean := False);
18069 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18070 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18071 -- True, Old_C is a stored discriminant. If they are both false then
18072 -- Old_C is a regular component.
18073
18074 -----------------------
18075 -- Inherit_Component --
18076 -----------------------
18077
18078 procedure Inherit_Component
18079 (Old_C : Entity_Id;
18080 Plain_Discrim : Boolean := False;
18081 Stored_Discrim : Boolean := False)
18082 is
18083 procedure Set_Anonymous_Type (Id : Entity_Id);
18084 -- Id denotes the entity of an access discriminant or anonymous
18085 -- access component. Set the type of Id to either the same type of
18086 -- Old_C or create a new one depending on whether the parent and
18087 -- the child types are in the same scope.
18088
18089 ------------------------
18090 -- Set_Anonymous_Type --
18091 ------------------------
18092
18093 procedure Set_Anonymous_Type (Id : Entity_Id) is
18094 Old_Typ : constant Entity_Id := Etype (Old_C);
18095
18096 begin
18097 if Scope (Parent_Base) = Scope (Derived_Base) then
18098 Set_Etype (Id, Old_Typ);
18099
18100 -- The parent and the derived type are in two different scopes.
18101 -- Reuse the type of the original discriminant / component by
18102 -- copying it in order to preserve all attributes.
18103
18104 else
18105 declare
18106 Typ : constant Entity_Id := New_Copy (Old_Typ);
18107
18108 begin
18109 Set_Etype (Id, Typ);
18110
18111 -- Since we do not generate component declarations for
18112 -- inherited components, associate the itype with the
18113 -- derived type.
18114
18115 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18116 Set_Scope (Typ, Derived_Base);
18117 end;
18118 end if;
18119 end Set_Anonymous_Type;
18120
18121 -- Local variables and constants
18122
18123 New_C : constant Entity_Id := New_Copy (Old_C);
18124
18125 Corr_Discrim : Entity_Id;
18126 Discrim : Entity_Id;
18127
18128 -- Start of processing for Inherit_Component
18129
18130 begin
18131 pragma Assert (not Is_Tagged or not Stored_Discrim);
18132
18133 Set_Parent (New_C, Parent (Old_C));
18134
18135 -- Regular discriminants and components must be inserted in the scope
18136 -- of the Derived_Base. Do it here.
18137
18138 if not Stored_Discrim then
18139 Enter_Name (New_C);
18140 end if;
18141
18142 -- For tagged types the Original_Record_Component must point to
18143 -- whatever this field was pointing to in the parent type. This has
18144 -- already been achieved by the call to New_Copy above.
18145
18146 if not Is_Tagged then
18147 Set_Original_Record_Component (New_C, New_C);
18148 Set_Corresponding_Record_Component (New_C, Old_C);
18149 end if;
18150
18151 -- Set the proper type of an access discriminant
18152
18153 if Ekind (New_C) = E_Discriminant
18154 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18155 then
18156 Set_Anonymous_Type (New_C);
18157 end if;
18158
18159 -- If we have inherited a component then see if its Etype contains
18160 -- references to Parent_Base discriminants. In this case, replace
18161 -- these references with the constraints given in Discs. We do not
18162 -- do this for the partial view of private types because this is
18163 -- not needed (only the components of the full view will be used
18164 -- for code generation) and cause problem. We also avoid this
18165 -- transformation in some error situations.
18166
18167 if Ekind (New_C) = E_Component then
18168
18169 -- Set the proper type of an anonymous access component
18170
18171 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18172 Set_Anonymous_Type (New_C);
18173
18174 elsif (Is_Private_Type (Derived_Base)
18175 and then not Is_Generic_Type (Derived_Base))
18176 or else (Is_Empty_Elmt_List (Discs)
18177 and then not Expander_Active)
18178 then
18179 Set_Etype (New_C, Etype (Old_C));
18180
18181 else
18182 -- The current component introduces a circularity of the
18183 -- following kind:
18184
18185 -- limited with Pack_2;
18186 -- package Pack_1 is
18187 -- type T_1 is tagged record
18188 -- Comp : access Pack_2.T_2;
18189 -- ...
18190 -- end record;
18191 -- end Pack_1;
18192
18193 -- with Pack_1;
18194 -- package Pack_2 is
18195 -- type T_2 is new Pack_1.T_1 with ...;
18196 -- end Pack_2;
18197
18198 Set_Etype
18199 (New_C,
18200 Constrain_Component_Type
18201 (Old_C, Derived_Base, N, Parent_Base, Discs));
18202 end if;
18203 end if;
18204
18205 -- In derived tagged types it is illegal to reference a non
18206 -- discriminant component in the parent type. To catch this, mark
18207 -- these components with an Ekind of E_Void. This will be reset in
18208 -- Record_Type_Definition after processing the record extension of
18209 -- the derived type.
18210
18211 -- If the declaration is a private extension, there is no further
18212 -- record extension to process, and the components retain their
18213 -- current kind, because they are visible at this point.
18214
18215 if Is_Tagged and then Ekind (New_C) = E_Component
18216 and then Nkind (N) /= N_Private_Extension_Declaration
18217 then
18218 Set_Ekind (New_C, E_Void);
18219 end if;
18220
18221 if Plain_Discrim then
18222 Set_Corresponding_Discriminant (New_C, Old_C);
18223 Build_Discriminal (New_C);
18224
18225 -- If we are explicitly inheriting a stored discriminant it will be
18226 -- completely hidden.
18227
18228 elsif Stored_Discrim then
18229 Set_Corresponding_Discriminant (New_C, Empty);
18230 Set_Discriminal (New_C, Empty);
18231 Set_Is_Completely_Hidden (New_C);
18232
18233 -- Set the Original_Record_Component of each discriminant in the
18234 -- derived base to point to the corresponding stored that we just
18235 -- created.
18236
18237 Discrim := First_Discriminant (Derived_Base);
18238 while Present (Discrim) loop
18239 Corr_Discrim := Corresponding_Discriminant (Discrim);
18240
18241 -- Corr_Discrim could be missing in an error situation
18242
18243 if Present (Corr_Discrim)
18244 and then Original_Record_Component (Corr_Discrim) = Old_C
18245 then
18246 Set_Original_Record_Component (Discrim, New_C);
18247 Set_Corresponding_Record_Component (Discrim, Empty);
18248 end if;
18249
18250 Next_Discriminant (Discrim);
18251 end loop;
18252
18253 Append_Entity (New_C, Derived_Base);
18254 end if;
18255
18256 if not Is_Tagged then
18257 Append_Elmt (Old_C, Assoc_List);
18258 Append_Elmt (New_C, Assoc_List);
18259 end if;
18260 end Inherit_Component;
18261
18262 -- Variables local to Inherit_Component
18263
18264 Loc : constant Source_Ptr := Sloc (N);
18265
18266 Parent_Discrim : Entity_Id;
18267 Stored_Discrim : Entity_Id;
18268 D : Entity_Id;
18269 Component : Entity_Id;
18270
18271 -- Start of processing for Inherit_Components
18272
18273 begin
18274 if not Is_Tagged then
18275 Append_Elmt (Parent_Base, Assoc_List);
18276 Append_Elmt (Derived_Base, Assoc_List);
18277 end if;
18278
18279 -- Inherit parent discriminants if needed
18280
18281 if Inherit_Discr then
18282 Parent_Discrim := First_Discriminant (Parent_Base);
18283 while Present (Parent_Discrim) loop
18284 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18285 Next_Discriminant (Parent_Discrim);
18286 end loop;
18287 end if;
18288
18289 -- Create explicit stored discrims for untagged types when necessary
18290
18291 if not Has_Unknown_Discriminants (Derived_Base)
18292 and then Has_Discriminants (Parent_Base)
18293 and then not Is_Tagged
18294 and then
18295 (not Inherit_Discr
18296 or else First_Discriminant (Parent_Base) /=
18297 First_Stored_Discriminant (Parent_Base))
18298 then
18299 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18300 while Present (Stored_Discrim) loop
18301 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18302 Next_Stored_Discriminant (Stored_Discrim);
18303 end loop;
18304 end if;
18305
18306 -- See if we can apply the second transformation for derived types, as
18307 -- explained in point 6. in the comments above Build_Derived_Record_Type
18308 -- This is achieved by appending Derived_Base discriminants into Discs,
18309 -- which has the side effect of returning a non empty Discs list to the
18310 -- caller of Inherit_Components, which is what we want. This must be
18311 -- done for private derived types if there are explicit stored
18312 -- discriminants, to ensure that we can retrieve the values of the
18313 -- constraints provided in the ancestors.
18314
18315 if Inherit_Discr
18316 and then Is_Empty_Elmt_List (Discs)
18317 and then Present (First_Discriminant (Derived_Base))
18318 and then
18319 (not Is_Private_Type (Derived_Base)
18320 or else Is_Completely_Hidden
18321 (First_Stored_Discriminant (Derived_Base))
18322 or else Is_Generic_Type (Derived_Base))
18323 then
18324 D := First_Discriminant (Derived_Base);
18325 while Present (D) loop
18326 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18327 Next_Discriminant (D);
18328 end loop;
18329 end if;
18330
18331 -- Finally, inherit non-discriminant components unless they are not
18332 -- visible because defined or inherited from the full view of the
18333 -- parent. Don't inherit the _parent field of the parent type.
18334
18335 Component := First_Entity (Parent_Base);
18336 while Present (Component) loop
18337
18338 -- Ada 2005 (AI-251): Do not inherit components associated with
18339 -- secondary tags of the parent.
18340
18341 if Ekind (Component) = E_Component
18342 and then Present (Related_Type (Component))
18343 then
18344 null;
18345
18346 elsif Ekind (Component) /= E_Component
18347 or else Chars (Component) = Name_uParent
18348 then
18349 null;
18350
18351 -- If the derived type is within the parent type's declarative
18352 -- region, then the components can still be inherited even though
18353 -- they aren't visible at this point. This can occur for cases
18354 -- such as within public child units where the components must
18355 -- become visible upon entering the child unit's private part.
18356
18357 elsif not Is_Visible_Component (Component)
18358 and then not In_Open_Scopes (Scope (Parent_Base))
18359 then
18360 null;
18361
18362 elsif Ekind_In (Derived_Base, E_Private_Type,
18363 E_Limited_Private_Type)
18364 then
18365 null;
18366
18367 else
18368 Inherit_Component (Component);
18369 end if;
18370
18371 Next_Entity (Component);
18372 end loop;
18373
18374 -- For tagged derived types, inherited discriminants cannot be used in
18375 -- component declarations of the record extension part. To achieve this
18376 -- we mark the inherited discriminants as not visible.
18377
18378 if Is_Tagged and then Inherit_Discr then
18379 D := First_Discriminant (Derived_Base);
18380 while Present (D) loop
18381 Set_Is_Immediately_Visible (D, False);
18382 Next_Discriminant (D);
18383 end loop;
18384 end if;
18385
18386 return Assoc_List;
18387 end Inherit_Components;
18388
18389 -----------------------------
18390 -- Inherit_Predicate_Flags --
18391 -----------------------------
18392
18393 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18394 begin
18395 Set_Has_Predicates (Subt, Has_Predicates (Par));
18396 Set_Has_Static_Predicate_Aspect
18397 (Subt, Has_Static_Predicate_Aspect (Par));
18398 Set_Has_Dynamic_Predicate_Aspect
18399 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18400 end Inherit_Predicate_Flags;
18401
18402 ----------------------
18403 -- Is_EVF_Procedure --
18404 ----------------------
18405
18406 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18407 Formal : Entity_Id;
18408
18409 begin
18410 -- Examine the formals of an Extensions_Visible False procedure looking
18411 -- for a controlling OUT parameter.
18412
18413 if Ekind (Subp) = E_Procedure
18414 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18415 then
18416 Formal := First_Formal (Subp);
18417 while Present (Formal) loop
18418 if Ekind (Formal) = E_Out_Parameter
18419 and then Is_Controlling_Formal (Formal)
18420 then
18421 return True;
18422 end if;
18423
18424 Next_Formal (Formal);
18425 end loop;
18426 end if;
18427
18428 return False;
18429 end Is_EVF_Procedure;
18430
18431 -----------------------
18432 -- Is_Null_Extension --
18433 -----------------------
18434
18435 function Is_Null_Extension (T : Entity_Id) return Boolean is
18436 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18437 Comp_List : Node_Id;
18438 Comp : Node_Id;
18439
18440 begin
18441 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18442 or else not Is_Tagged_Type (T)
18443 or else Nkind (Type_Definition (Type_Decl)) /=
18444 N_Derived_Type_Definition
18445 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18446 then
18447 return False;
18448 end if;
18449
18450 Comp_List :=
18451 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18452
18453 if Present (Discriminant_Specifications (Type_Decl)) then
18454 return False;
18455
18456 elsif Present (Comp_List)
18457 and then Is_Non_Empty_List (Component_Items (Comp_List))
18458 then
18459 Comp := First (Component_Items (Comp_List));
18460
18461 -- Only user-defined components are relevant. The component list
18462 -- may also contain a parent component and internal components
18463 -- corresponding to secondary tags, but these do not determine
18464 -- whether this is a null extension.
18465
18466 while Present (Comp) loop
18467 if Comes_From_Source (Comp) then
18468 return False;
18469 end if;
18470
18471 Next (Comp);
18472 end loop;
18473
18474 return True;
18475
18476 else
18477 return True;
18478 end if;
18479 end Is_Null_Extension;
18480
18481 ------------------------------
18482 -- Is_Valid_Constraint_Kind --
18483 ------------------------------
18484
18485 function Is_Valid_Constraint_Kind
18486 (T_Kind : Type_Kind;
18487 Constraint_Kind : Node_Kind) return Boolean
18488 is
18489 begin
18490 case T_Kind is
18491 when Enumeration_Kind
18492 | Integer_Kind
18493 =>
18494 return Constraint_Kind = N_Range_Constraint;
18495
18496 when Decimal_Fixed_Point_Kind =>
18497 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18498 N_Range_Constraint);
18499
18500 when Ordinary_Fixed_Point_Kind =>
18501 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18502 N_Range_Constraint);
18503
18504 when Float_Kind =>
18505 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18506 N_Range_Constraint);
18507
18508 when Access_Kind
18509 | Array_Kind
18510 | Class_Wide_Kind
18511 | Concurrent_Kind
18512 | Private_Kind
18513 | E_Incomplete_Type
18514 | E_Record_Subtype
18515 | E_Record_Type
18516 =>
18517 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18518
18519 when others =>
18520 return True; -- Error will be detected later
18521 end case;
18522 end Is_Valid_Constraint_Kind;
18523
18524 --------------------------
18525 -- Is_Visible_Component --
18526 --------------------------
18527
18528 function Is_Visible_Component
18529 (C : Entity_Id;
18530 N : Node_Id := Empty) return Boolean
18531 is
18532 Original_Comp : Entity_Id := Empty;
18533 Original_Type : Entity_Id;
18534 Type_Scope : Entity_Id;
18535
18536 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18537 -- Check whether parent type of inherited component is declared locally,
18538 -- possibly within a nested package or instance. The current scope is
18539 -- the derived record itself.
18540
18541 -------------------
18542 -- Is_Local_Type --
18543 -------------------
18544
18545 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18546 Scop : Entity_Id;
18547
18548 begin
18549 Scop := Scope (Typ);
18550 while Present (Scop)
18551 and then Scop /= Standard_Standard
18552 loop
18553 if Scop = Scope (Current_Scope) then
18554 return True;
18555 end if;
18556
18557 Scop := Scope (Scop);
18558 end loop;
18559
18560 return False;
18561 end Is_Local_Type;
18562
18563 -- Start of processing for Is_Visible_Component
18564
18565 begin
18566 if Ekind_In (C, E_Component, E_Discriminant) then
18567 Original_Comp := Original_Record_Component (C);
18568 end if;
18569
18570 if No (Original_Comp) then
18571
18572 -- Premature usage, or previous error
18573
18574 return False;
18575
18576 else
18577 Original_Type := Scope (Original_Comp);
18578 Type_Scope := Scope (Base_Type (Scope (C)));
18579 end if;
18580
18581 -- This test only concerns tagged types
18582
18583 if not Is_Tagged_Type (Original_Type) then
18584 return True;
18585
18586 -- If it is _Parent or _Tag, there is no visibility issue
18587
18588 elsif not Comes_From_Source (Original_Comp) then
18589 return True;
18590
18591 -- Discriminants are visible unless the (private) type has unknown
18592 -- discriminants. If the discriminant reference is inserted for a
18593 -- discriminant check on a full view it is also visible.
18594
18595 elsif Ekind (Original_Comp) = E_Discriminant
18596 and then
18597 (not Has_Unknown_Discriminants (Original_Type)
18598 or else (Present (N)
18599 and then Nkind (N) = N_Selected_Component
18600 and then Nkind (Prefix (N)) = N_Type_Conversion
18601 and then not Comes_From_Source (Prefix (N))))
18602 then
18603 return True;
18604
18605 -- In the body of an instantiation, check the visibility of a component
18606 -- in case it has a homograph that is a primitive operation of a private
18607 -- type which was not visible in the generic unit.
18608
18609 -- Should Is_Prefixed_Call be propagated from template to instance???
18610
18611 elsif In_Instance_Body then
18612 if not Is_Tagged_Type (Original_Type)
18613 or else not Is_Private_Type (Original_Type)
18614 then
18615 return True;
18616
18617 else
18618 declare
18619 Subp_Elmt : Elmt_Id;
18620
18621 begin
18622 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18623 while Present (Subp_Elmt) loop
18624
18625 -- The component is hidden by a primitive operation
18626
18627 if Chars (Node (Subp_Elmt)) = Chars (C) then
18628 return False;
18629 end if;
18630
18631 Next_Elmt (Subp_Elmt);
18632 end loop;
18633
18634 return True;
18635 end;
18636 end if;
18637
18638 -- If the component has been declared in an ancestor which is currently
18639 -- a private type, then it is not visible. The same applies if the
18640 -- component's containing type is not in an open scope and the original
18641 -- component's enclosing type is a visible full view of a private type
18642 -- (which can occur in cases where an attempt is being made to reference
18643 -- a component in a sibling package that is inherited from a visible
18644 -- component of a type in an ancestor package; the component in the
18645 -- sibling package should not be visible even though the component it
18646 -- inherited from is visible). This does not apply however in the case
18647 -- where the scope of the type is a private child unit, or when the
18648 -- parent comes from a local package in which the ancestor is currently
18649 -- visible. The latter suppression of visibility is needed for cases
18650 -- that are tested in B730006.
18651
18652 elsif Is_Private_Type (Original_Type)
18653 or else
18654 (not Is_Private_Descendant (Type_Scope)
18655 and then not In_Open_Scopes (Type_Scope)
18656 and then Has_Private_Declaration (Original_Type))
18657 then
18658 -- If the type derives from an entity in a formal package, there
18659 -- are no additional visible components.
18660
18661 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18662 N_Formal_Package_Declaration
18663 then
18664 return False;
18665
18666 -- if we are not in the private part of the current package, there
18667 -- are no additional visible components.
18668
18669 elsif Ekind (Scope (Current_Scope)) = E_Package
18670 and then not In_Private_Part (Scope (Current_Scope))
18671 then
18672 return False;
18673 else
18674 return
18675 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18676 and then In_Open_Scopes (Scope (Original_Type))
18677 and then Is_Local_Type (Type_Scope);
18678 end if;
18679
18680 -- There is another weird way in which a component may be invisible when
18681 -- the private and the full view are not derived from the same ancestor.
18682 -- Here is an example :
18683
18684 -- type A1 is tagged record F1 : integer; end record;
18685 -- type A2 is new A1 with record F2 : integer; end record;
18686 -- type T is new A1 with private;
18687 -- private
18688 -- type T is new A2 with null record;
18689
18690 -- In this case, the full view of T inherits F1 and F2 but the private
18691 -- view inherits only F1
18692
18693 else
18694 declare
18695 Ancestor : Entity_Id := Scope (C);
18696
18697 begin
18698 loop
18699 if Ancestor = Original_Type then
18700 return True;
18701
18702 -- The ancestor may have a partial view of the original type,
18703 -- but if the full view is in scope, as in a child body, the
18704 -- component is visible.
18705
18706 elsif In_Private_Part (Scope (Original_Type))
18707 and then Full_View (Ancestor) = Original_Type
18708 then
18709 return True;
18710
18711 elsif Ancestor = Etype (Ancestor) then
18712
18713 -- No further ancestors to examine
18714
18715 return False;
18716 end if;
18717
18718 Ancestor := Etype (Ancestor);
18719 end loop;
18720 end;
18721 end if;
18722 end Is_Visible_Component;
18723
18724 --------------------------
18725 -- Make_Class_Wide_Type --
18726 --------------------------
18727
18728 procedure Make_Class_Wide_Type (T : Entity_Id) is
18729 CW_Type : Entity_Id;
18730 CW_Name : Name_Id;
18731 Next_E : Entity_Id;
18732
18733 begin
18734 if Present (Class_Wide_Type (T)) then
18735
18736 -- The class-wide type is a partially decorated entity created for a
18737 -- unanalyzed tagged type referenced through a limited with clause.
18738 -- When the tagged type is analyzed, its class-wide type needs to be
18739 -- redecorated. Note that we reuse the entity created by Decorate_
18740 -- Tagged_Type in order to preserve all links.
18741
18742 if Materialize_Entity (Class_Wide_Type (T)) then
18743 CW_Type := Class_Wide_Type (T);
18744 Set_Materialize_Entity (CW_Type, False);
18745
18746 -- The class wide type can have been defined by the partial view, in
18747 -- which case everything is already done.
18748
18749 else
18750 return;
18751 end if;
18752
18753 -- Default case, we need to create a new class-wide type
18754
18755 else
18756 CW_Type :=
18757 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18758 end if;
18759
18760 -- Inherit root type characteristics
18761
18762 CW_Name := Chars (CW_Type);
18763 Next_E := Next_Entity (CW_Type);
18764 Copy_Node (T, CW_Type);
18765 Set_Comes_From_Source (CW_Type, False);
18766 Set_Chars (CW_Type, CW_Name);
18767 Set_Parent (CW_Type, Parent (T));
18768 Set_Next_Entity (CW_Type, Next_E);
18769
18770 -- Ensure we have a new freeze node for the class-wide type. The partial
18771 -- view may have freeze action of its own, requiring a proper freeze
18772 -- node, and the same freeze node cannot be shared between the two
18773 -- types.
18774
18775 Set_Has_Delayed_Freeze (CW_Type);
18776 Set_Freeze_Node (CW_Type, Empty);
18777
18778 -- Customize the class-wide type: It has no prim. op., it cannot be
18779 -- abstract, its Etype points back to the specific root type, and it
18780 -- cannot have any invariants.
18781
18782 Set_Ekind (CW_Type, E_Class_Wide_Type);
18783 Set_Is_Tagged_Type (CW_Type, True);
18784 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18785 Set_Is_Abstract_Type (CW_Type, False);
18786 Set_Is_Constrained (CW_Type, False);
18787 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18788 Set_Default_SSO (CW_Type);
18789 Set_Has_Inheritable_Invariants (CW_Type, False);
18790 Set_Has_Inherited_Invariants (CW_Type, False);
18791 Set_Has_Own_Invariants (CW_Type, False);
18792
18793 if Ekind (T) = E_Class_Wide_Subtype then
18794 Set_Etype (CW_Type, Etype (Base_Type (T)));
18795 else
18796 Set_Etype (CW_Type, T);
18797 end if;
18798
18799 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18800
18801 -- If this is the class_wide type of a constrained subtype, it does
18802 -- not have discriminants.
18803
18804 Set_Has_Discriminants (CW_Type,
18805 Has_Discriminants (T) and then not Is_Constrained (T));
18806
18807 Set_Has_Unknown_Discriminants (CW_Type, True);
18808 Set_Class_Wide_Type (T, CW_Type);
18809 Set_Equivalent_Type (CW_Type, Empty);
18810
18811 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18812
18813 Set_Class_Wide_Type (CW_Type, CW_Type);
18814 end Make_Class_Wide_Type;
18815
18816 ----------------
18817 -- Make_Index --
18818 ----------------
18819
18820 procedure Make_Index
18821 (N : Node_Id;
18822 Related_Nod : Node_Id;
18823 Related_Id : Entity_Id := Empty;
18824 Suffix_Index : Nat := 1;
18825 In_Iter_Schm : Boolean := False)
18826 is
18827 R : Node_Id;
18828 T : Entity_Id;
18829 Def_Id : Entity_Id := Empty;
18830 Found : Boolean := False;
18831
18832 begin
18833 -- For a discrete range used in a constrained array definition and
18834 -- defined by a range, an implicit conversion to the predefined type
18835 -- INTEGER is assumed if each bound is either a numeric literal, a named
18836 -- number, or an attribute, and the type of both bounds (prior to the
18837 -- implicit conversion) is the type universal_integer. Otherwise, both
18838 -- bounds must be of the same discrete type, other than universal
18839 -- integer; this type must be determinable independently of the
18840 -- context, but using the fact that the type must be discrete and that
18841 -- both bounds must have the same type.
18842
18843 -- Character literals also have a universal type in the absence of
18844 -- of additional context, and are resolved to Standard_Character.
18845
18846 if Nkind (N) = N_Range then
18847
18848 -- The index is given by a range constraint. The bounds are known
18849 -- to be of a consistent type.
18850
18851 if not Is_Overloaded (N) then
18852 T := Etype (N);
18853
18854 -- For universal bounds, choose the specific predefined type
18855
18856 if T = Universal_Integer then
18857 T := Standard_Integer;
18858
18859 elsif T = Any_Character then
18860 Ambiguous_Character (Low_Bound (N));
18861
18862 T := Standard_Character;
18863 end if;
18864
18865 -- The node may be overloaded because some user-defined operators
18866 -- are available, but if a universal interpretation exists it is
18867 -- also the selected one.
18868
18869 elsif Universal_Interpretation (N) = Universal_Integer then
18870 T := Standard_Integer;
18871
18872 else
18873 T := Any_Type;
18874
18875 declare
18876 Ind : Interp_Index;
18877 It : Interp;
18878
18879 begin
18880 Get_First_Interp (N, Ind, It);
18881 while Present (It.Typ) loop
18882 if Is_Discrete_Type (It.Typ) then
18883
18884 if Found
18885 and then not Covers (It.Typ, T)
18886 and then not Covers (T, It.Typ)
18887 then
18888 Error_Msg_N ("ambiguous bounds in discrete range", N);
18889 exit;
18890 else
18891 T := It.Typ;
18892 Found := True;
18893 end if;
18894 end if;
18895
18896 Get_Next_Interp (Ind, It);
18897 end loop;
18898
18899 if T = Any_Type then
18900 Error_Msg_N ("discrete type required for range", N);
18901 Set_Etype (N, Any_Type);
18902 return;
18903
18904 elsif T = Universal_Integer then
18905 T := Standard_Integer;
18906 end if;
18907 end;
18908 end if;
18909
18910 if not Is_Discrete_Type (T) then
18911 Error_Msg_N ("discrete type required for range", N);
18912 Set_Etype (N, Any_Type);
18913 return;
18914 end if;
18915
18916 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18917 and then Attribute_Name (Low_Bound (N)) = Name_First
18918 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18919 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18920 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18921 then
18922 -- The type of the index will be the type of the prefix, as long
18923 -- as the upper bound is 'Last of the same type.
18924
18925 Def_Id := Entity (Prefix (Low_Bound (N)));
18926
18927 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18928 or else Attribute_Name (High_Bound (N)) /= Name_Last
18929 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18930 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18931 then
18932 Def_Id := Empty;
18933 end if;
18934 end if;
18935
18936 R := N;
18937 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18938
18939 elsif Nkind (N) = N_Subtype_Indication then
18940
18941 -- The index is given by a subtype with a range constraint
18942
18943 T := Base_Type (Entity (Subtype_Mark (N)));
18944
18945 if not Is_Discrete_Type (T) then
18946 Error_Msg_N ("discrete type required for range", N);
18947 Set_Etype (N, Any_Type);
18948 return;
18949 end if;
18950
18951 R := Range_Expression (Constraint (N));
18952
18953 Resolve (R, T);
18954 Process_Range_Expr_In_Decl
18955 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18956
18957 elsif Nkind (N) = N_Attribute_Reference then
18958
18959 -- Catch beginner's error (use of attribute other than 'Range)
18960
18961 if Attribute_Name (N) /= Name_Range then
18962 Error_Msg_N ("expect attribute ''Range", N);
18963 Set_Etype (N, Any_Type);
18964 return;
18965 end if;
18966
18967 -- If the node denotes the range of a type mark, that is also the
18968 -- resulting type, and we do not need to create an Itype for it.
18969
18970 if Is_Entity_Name (Prefix (N))
18971 and then Comes_From_Source (N)
18972 and then Is_Type (Entity (Prefix (N)))
18973 and then Is_Discrete_Type (Entity (Prefix (N)))
18974 then
18975 Def_Id := Entity (Prefix (N));
18976 end if;
18977
18978 Analyze_And_Resolve (N);
18979 T := Etype (N);
18980 R := N;
18981
18982 -- If none of the above, must be a subtype. We convert this to a
18983 -- range attribute reference because in the case of declared first
18984 -- named subtypes, the types in the range reference can be different
18985 -- from the type of the entity. A range attribute normalizes the
18986 -- reference and obtains the correct types for the bounds.
18987
18988 -- This transformation is in the nature of an expansion, is only
18989 -- done if expansion is active. In particular, it is not done on
18990 -- formal generic types, because we need to retain the name of the
18991 -- original index for instantiation purposes.
18992
18993 else
18994 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18995 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18996 Set_Etype (N, Any_Integer);
18997 return;
18998
18999 else
19000 -- The type mark may be that of an incomplete type. It is only
19001 -- now that we can get the full view, previous analysis does
19002 -- not look specifically for a type mark.
19003
19004 Set_Entity (N, Get_Full_View (Entity (N)));
19005 Set_Etype (N, Entity (N));
19006 Def_Id := Entity (N);
19007
19008 if not Is_Discrete_Type (Def_Id) then
19009 Error_Msg_N ("discrete type required for index", N);
19010 Set_Etype (N, Any_Type);
19011 return;
19012 end if;
19013 end if;
19014
19015 if Expander_Active then
19016 Rewrite (N,
19017 Make_Attribute_Reference (Sloc (N),
19018 Attribute_Name => Name_Range,
19019 Prefix => Relocate_Node (N)));
19020
19021 -- The original was a subtype mark that does not freeze. This
19022 -- means that the rewritten version must not freeze either.
19023
19024 Set_Must_Not_Freeze (N);
19025 Set_Must_Not_Freeze (Prefix (N));
19026 Analyze_And_Resolve (N);
19027 T := Etype (N);
19028 R := N;
19029
19030 -- If expander is inactive, type is legal, nothing else to construct
19031
19032 else
19033 return;
19034 end if;
19035 end if;
19036
19037 if not Is_Discrete_Type (T) then
19038 Error_Msg_N ("discrete type required for range", N);
19039 Set_Etype (N, Any_Type);
19040 return;
19041
19042 elsif T = Any_Type then
19043 Set_Etype (N, Any_Type);
19044 return;
19045 end if;
19046
19047 -- We will now create the appropriate Itype to describe the range, but
19048 -- first a check. If we originally had a subtype, then we just label
19049 -- the range with this subtype. Not only is there no need to construct
19050 -- a new subtype, but it is wrong to do so for two reasons:
19051
19052 -- 1. A legality concern, if we have a subtype, it must not freeze,
19053 -- and the Itype would cause freezing incorrectly
19054
19055 -- 2. An efficiency concern, if we created an Itype, it would not be
19056 -- recognized as the same type for the purposes of eliminating
19057 -- checks in some circumstances.
19058
19059 -- We signal this case by setting the subtype entity in Def_Id
19060
19061 if No (Def_Id) then
19062 Def_Id :=
19063 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19064 Set_Etype (Def_Id, Base_Type (T));
19065
19066 if Is_Signed_Integer_Type (T) then
19067 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19068
19069 elsif Is_Modular_Integer_Type (T) then
19070 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19071
19072 else
19073 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19074 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19075 Set_First_Literal (Def_Id, First_Literal (T));
19076 end if;
19077
19078 Set_Size_Info (Def_Id, (T));
19079 Set_RM_Size (Def_Id, RM_Size (T));
19080 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19081
19082 Set_Scalar_Range (Def_Id, R);
19083 Conditional_Delay (Def_Id, T);
19084
19085 if Nkind (N) = N_Subtype_Indication then
19086 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19087 end if;
19088
19089 -- In the subtype indication case, if the immediate parent of the
19090 -- new subtype is non-static, then the subtype we create is non-
19091 -- static, even if its bounds are static.
19092
19093 if Nkind (N) = N_Subtype_Indication
19094 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19095 then
19096 Set_Is_Non_Static_Subtype (Def_Id);
19097 end if;
19098 end if;
19099
19100 -- Final step is to label the index with this constructed type
19101
19102 Set_Etype (N, Def_Id);
19103 end Make_Index;
19104
19105 ------------------------------
19106 -- Modular_Type_Declaration --
19107 ------------------------------
19108
19109 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19110 Mod_Expr : constant Node_Id := Expression (Def);
19111 M_Val : Uint;
19112
19113 procedure Set_Modular_Size (Bits : Int);
19114 -- Sets RM_Size to Bits, and Esize to normal word size above this
19115
19116 ----------------------
19117 -- Set_Modular_Size --
19118 ----------------------
19119
19120 procedure Set_Modular_Size (Bits : Int) is
19121 begin
19122 Set_RM_Size (T, UI_From_Int (Bits));
19123
19124 if Bits <= 8 then
19125 Init_Esize (T, 8);
19126
19127 elsif Bits <= 16 then
19128 Init_Esize (T, 16);
19129
19130 elsif Bits <= 32 then
19131 Init_Esize (T, 32);
19132
19133 else
19134 Init_Esize (T, System_Max_Binary_Modulus_Power);
19135 end if;
19136
19137 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19138 Set_Is_Known_Valid (T);
19139 end if;
19140 end Set_Modular_Size;
19141
19142 -- Start of processing for Modular_Type_Declaration
19143
19144 begin
19145 -- If the mod expression is (exactly) 2 * literal, where literal is
19146 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19147
19148 if Warn_On_Suspicious_Modulus_Value
19149 and then Nkind (Mod_Expr) = N_Op_Multiply
19150 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19151 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19152 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19153 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19154 then
19155 Error_Msg_N
19156 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19157 end if;
19158
19159 -- Proceed with analysis of mod expression
19160
19161 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19162 Set_Etype (T, T);
19163 Set_Ekind (T, E_Modular_Integer_Type);
19164 Init_Alignment (T);
19165 Set_Is_Constrained (T);
19166
19167 if not Is_OK_Static_Expression (Mod_Expr) then
19168 Flag_Non_Static_Expr
19169 ("non-static expression used for modular type bound!", Mod_Expr);
19170 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19171 else
19172 M_Val := Expr_Value (Mod_Expr);
19173 end if;
19174
19175 if M_Val < 1 then
19176 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19177 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19178 end if;
19179
19180 if M_Val > 2 ** Standard_Long_Integer_Size then
19181 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19182 end if;
19183
19184 Set_Modulus (T, M_Val);
19185
19186 -- Create bounds for the modular type based on the modulus given in
19187 -- the type declaration and then analyze and resolve those bounds.
19188
19189 Set_Scalar_Range (T,
19190 Make_Range (Sloc (Mod_Expr),
19191 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19192 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19193
19194 -- Properly analyze the literals for the range. We do this manually
19195 -- because we can't go calling Resolve, since we are resolving these
19196 -- bounds with the type, and this type is certainly not complete yet.
19197
19198 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19199 Set_Etype (High_Bound (Scalar_Range (T)), T);
19200 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19201 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19202
19203 -- Loop through powers of two to find number of bits required
19204
19205 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19206
19207 -- Binary case
19208
19209 if M_Val = 2 ** Bits then
19210 Set_Modular_Size (Bits);
19211 return;
19212
19213 -- Nonbinary case
19214
19215 elsif M_Val < 2 ** Bits then
19216 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19217 Set_Non_Binary_Modulus (T);
19218
19219 if Bits > System_Max_Nonbinary_Modulus_Power then
19220 Error_Msg_Uint_1 :=
19221 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19222 Error_Msg_F
19223 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19224 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19225 return;
19226
19227 else
19228 -- In the nonbinary case, set size as per RM 13.3(55)
19229
19230 Set_Modular_Size (Bits);
19231 return;
19232 end if;
19233 end if;
19234
19235 end loop;
19236
19237 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19238 -- so we just signal an error and set the maximum size.
19239
19240 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19241 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19242
19243 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19244 Init_Alignment (T);
19245
19246 end Modular_Type_Declaration;
19247
19248 --------------------------
19249 -- New_Concatenation_Op --
19250 --------------------------
19251
19252 procedure New_Concatenation_Op (Typ : Entity_Id) is
19253 Loc : constant Source_Ptr := Sloc (Typ);
19254 Op : Entity_Id;
19255
19256 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19257 -- Create abbreviated declaration for the formal of a predefined
19258 -- Operator 'Op' of type 'Typ'
19259
19260 --------------------
19261 -- Make_Op_Formal --
19262 --------------------
19263
19264 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19265 Formal : Entity_Id;
19266 begin
19267 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19268 Set_Etype (Formal, Typ);
19269 Set_Mechanism (Formal, Default_Mechanism);
19270 return Formal;
19271 end Make_Op_Formal;
19272
19273 -- Start of processing for New_Concatenation_Op
19274
19275 begin
19276 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19277
19278 Set_Ekind (Op, E_Operator);
19279 Set_Scope (Op, Current_Scope);
19280 Set_Etype (Op, Typ);
19281 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19282 Set_Is_Immediately_Visible (Op);
19283 Set_Is_Intrinsic_Subprogram (Op);
19284 Set_Has_Completion (Op);
19285 Append_Entity (Op, Current_Scope);
19286
19287 Set_Name_Entity_Id (Name_Op_Concat, Op);
19288
19289 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19290 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19291 end New_Concatenation_Op;
19292
19293 -------------------------
19294 -- OK_For_Limited_Init --
19295 -------------------------
19296
19297 -- ???Check all calls of this, and compare the conditions under which it's
19298 -- called.
19299
19300 function OK_For_Limited_Init
19301 (Typ : Entity_Id;
19302 Exp : Node_Id) return Boolean
19303 is
19304 begin
19305 return Is_CPP_Constructor_Call (Exp)
19306 or else (Ada_Version >= Ada_2005
19307 and then not Debug_Flag_Dot_L
19308 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19309 end OK_For_Limited_Init;
19310
19311 -------------------------------
19312 -- OK_For_Limited_Init_In_05 --
19313 -------------------------------
19314
19315 function OK_For_Limited_Init_In_05
19316 (Typ : Entity_Id;
19317 Exp : Node_Id) return Boolean
19318 is
19319 begin
19320 -- An object of a limited interface type can be initialized with any
19321 -- expression of a nonlimited descendant type. However this does not
19322 -- apply if this is a view conversion of some other expression. This
19323 -- is checked below.
19324
19325 if Is_Class_Wide_Type (Typ)
19326 and then Is_Limited_Interface (Typ)
19327 and then not Is_Limited_Type (Etype (Exp))
19328 and then Nkind (Exp) /= N_Type_Conversion
19329 then
19330 return True;
19331 end if;
19332
19333 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19334 -- case of limited aggregates (including extension aggregates), and
19335 -- function calls. The function call may have been given in prefixed
19336 -- notation, in which case the original node is an indexed component.
19337 -- If the function is parameterless, the original node was an explicit
19338 -- dereference. The function may also be parameterless, in which case
19339 -- the source node is just an identifier.
19340
19341 -- A branch of a conditional expression may have been removed if the
19342 -- condition is statically known. This happens during expansion, and
19343 -- thus will not happen if previous errors were encountered. The check
19344 -- will have been performed on the chosen branch, which replaces the
19345 -- original conditional expression.
19346
19347 if No (Exp) then
19348 return True;
19349 end if;
19350
19351 case Nkind (Original_Node (Exp)) is
19352 when N_Aggregate
19353 | N_Extension_Aggregate
19354 | N_Function_Call
19355 | N_Op
19356 =>
19357 return True;
19358
19359 when N_Identifier =>
19360 return Present (Entity (Original_Node (Exp)))
19361 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19362
19363 when N_Qualified_Expression =>
19364 return
19365 OK_For_Limited_Init_In_05
19366 (Typ, Expression (Original_Node (Exp)));
19367
19368 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19369 -- with a function call, the expander has rewritten the call into an
19370 -- N_Type_Conversion node to force displacement of the pointer to
19371 -- reference the component containing the secondary dispatch table.
19372 -- Otherwise a type conversion is not a legal context.
19373 -- A return statement for a build-in-place function returning a
19374 -- synchronized type also introduces an unchecked conversion.
19375
19376 when N_Type_Conversion
19377 | N_Unchecked_Type_Conversion
19378 =>
19379 return not Comes_From_Source (Exp)
19380 and then
19381 OK_For_Limited_Init_In_05
19382 (Typ, Expression (Original_Node (Exp)));
19383
19384 when N_Explicit_Dereference
19385 | N_Indexed_Component
19386 | N_Selected_Component
19387 =>
19388 return Nkind (Exp) = N_Function_Call;
19389
19390 -- A use of 'Input is a function call, hence allowed. Normally the
19391 -- attribute will be changed to a call, but the attribute by itself
19392 -- can occur with -gnatc.
19393
19394 when N_Attribute_Reference =>
19395 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19396
19397 -- "return raise ..." is OK
19398
19399 when N_Raise_Expression =>
19400 return True;
19401
19402 -- For a case expression, all dependent expressions must be legal
19403
19404 when N_Case_Expression =>
19405 declare
19406 Alt : Node_Id;
19407
19408 begin
19409 Alt := First (Alternatives (Original_Node (Exp)));
19410 while Present (Alt) loop
19411 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19412 return False;
19413 end if;
19414
19415 Next (Alt);
19416 end loop;
19417
19418 return True;
19419 end;
19420
19421 -- For an if expression, all dependent expressions must be legal
19422
19423 when N_If_Expression =>
19424 declare
19425 Then_Expr : constant Node_Id :=
19426 Next (First (Expressions (Original_Node (Exp))));
19427 Else_Expr : constant Node_Id := Next (Then_Expr);
19428 begin
19429 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19430 and then
19431 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19432 end;
19433
19434 when others =>
19435 return False;
19436 end case;
19437 end OK_For_Limited_Init_In_05;
19438
19439 -------------------------------------------
19440 -- Ordinary_Fixed_Point_Type_Declaration --
19441 -------------------------------------------
19442
19443 procedure Ordinary_Fixed_Point_Type_Declaration
19444 (T : Entity_Id;
19445 Def : Node_Id)
19446 is
19447 Loc : constant Source_Ptr := Sloc (Def);
19448 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19449 RRS : constant Node_Id := Real_Range_Specification (Def);
19450 Implicit_Base : Entity_Id;
19451 Delta_Val : Ureal;
19452 Small_Val : Ureal;
19453 Low_Val : Ureal;
19454 High_Val : Ureal;
19455
19456 begin
19457 Check_Restriction (No_Fixed_Point, Def);
19458
19459 -- Create implicit base type
19460
19461 Implicit_Base :=
19462 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19463 Set_Etype (Implicit_Base, Implicit_Base);
19464
19465 -- Analyze and process delta expression
19466
19467 Analyze_And_Resolve (Delta_Expr, Any_Real);
19468
19469 Check_Delta_Expression (Delta_Expr);
19470 Delta_Val := Expr_Value_R (Delta_Expr);
19471
19472 Set_Delta_Value (Implicit_Base, Delta_Val);
19473
19474 -- Compute default small from given delta, which is the largest power
19475 -- of two that does not exceed the given delta value.
19476
19477 declare
19478 Tmp : Ureal;
19479 Scale : Int;
19480
19481 begin
19482 Tmp := Ureal_1;
19483 Scale := 0;
19484
19485 if Delta_Val < Ureal_1 then
19486 while Delta_Val < Tmp loop
19487 Tmp := Tmp / Ureal_2;
19488 Scale := Scale + 1;
19489 end loop;
19490
19491 else
19492 loop
19493 Tmp := Tmp * Ureal_2;
19494 exit when Tmp > Delta_Val;
19495 Scale := Scale - 1;
19496 end loop;
19497 end if;
19498
19499 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19500 end;
19501
19502 Set_Small_Value (Implicit_Base, Small_Val);
19503
19504 -- If no range was given, set a dummy range
19505
19506 if RRS <= Empty_Or_Error then
19507 Low_Val := -Small_Val;
19508 High_Val := Small_Val;
19509
19510 -- Otherwise analyze and process given range
19511
19512 else
19513 declare
19514 Low : constant Node_Id := Low_Bound (RRS);
19515 High : constant Node_Id := High_Bound (RRS);
19516
19517 begin
19518 Analyze_And_Resolve (Low, Any_Real);
19519 Analyze_And_Resolve (High, Any_Real);
19520 Check_Real_Bound (Low);
19521 Check_Real_Bound (High);
19522
19523 -- Obtain and set the range
19524
19525 Low_Val := Expr_Value_R (Low);
19526 High_Val := Expr_Value_R (High);
19527
19528 if Low_Val > High_Val then
19529 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19530 end if;
19531 end;
19532 end if;
19533
19534 -- The range for both the implicit base and the declared first subtype
19535 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19536 -- set a temporary range in place. Note that the bounds of the base
19537 -- type will be widened to be symmetrical and to fill the available
19538 -- bits when the type is frozen.
19539
19540 -- We could do this with all discrete types, and probably should, but
19541 -- we absolutely have to do it for fixed-point, since the end-points
19542 -- of the range and the size are determined by the small value, which
19543 -- could be reset before the freeze point.
19544
19545 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19546 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19547
19548 -- Complete definition of first subtype. The inheritance of the rep item
19549 -- chain ensures that SPARK-related pragmas are not clobbered when the
19550 -- ordinary fixed point type acts as a full view of a private type.
19551
19552 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19553 Set_Etype (T, Implicit_Base);
19554 Init_Size_Align (T);
19555 Inherit_Rep_Item_Chain (T, Implicit_Base);
19556 Set_Small_Value (T, Small_Val);
19557 Set_Delta_Value (T, Delta_Val);
19558 Set_Is_Constrained (T);
19559 end Ordinary_Fixed_Point_Type_Declaration;
19560
19561 ----------------------------------
19562 -- Preanalyze_Assert_Expression --
19563 ----------------------------------
19564
19565 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19566 begin
19567 In_Assertion_Expr := In_Assertion_Expr + 1;
19568 Preanalyze_Spec_Expression (N, T);
19569 In_Assertion_Expr := In_Assertion_Expr - 1;
19570 end Preanalyze_Assert_Expression;
19571
19572 -----------------------------------
19573 -- Preanalyze_Default_Expression --
19574 -----------------------------------
19575
19576 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19577 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19578 begin
19579 In_Default_Expr := True;
19580 Preanalyze_Spec_Expression (N, T);
19581 In_Default_Expr := Save_In_Default_Expr;
19582 end Preanalyze_Default_Expression;
19583
19584 --------------------------------
19585 -- Preanalyze_Spec_Expression --
19586 --------------------------------
19587
19588 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19589 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19590 begin
19591 In_Spec_Expression := True;
19592 Preanalyze_And_Resolve (N, T);
19593 In_Spec_Expression := Save_In_Spec_Expression;
19594 end Preanalyze_Spec_Expression;
19595
19596 ----------------------------------------
19597 -- Prepare_Private_Subtype_Completion --
19598 ----------------------------------------
19599
19600 procedure Prepare_Private_Subtype_Completion
19601 (Id : Entity_Id;
19602 Related_Nod : Node_Id)
19603 is
19604 Id_B : constant Entity_Id := Base_Type (Id);
19605 Full_B : Entity_Id := Full_View (Id_B);
19606 Full : Entity_Id;
19607
19608 begin
19609 if Present (Full_B) then
19610
19611 -- Get to the underlying full view if necessary
19612
19613 if Is_Private_Type (Full_B)
19614 and then Present (Underlying_Full_View (Full_B))
19615 then
19616 Full_B := Underlying_Full_View (Full_B);
19617 end if;
19618
19619 -- The Base_Type is already completed, we can complete the subtype
19620 -- now. We have to create a new entity with the same name, Thus we
19621 -- can't use Create_Itype.
19622
19623 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19624 Set_Is_Itype (Full);
19625 Set_Associated_Node_For_Itype (Full, Related_Nod);
19626 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19627 end if;
19628
19629 -- The parent subtype may be private, but the base might not, in some
19630 -- nested instances. In that case, the subtype does not need to be
19631 -- exchanged. It would still be nice to make private subtypes and their
19632 -- bases consistent at all times ???
19633
19634 if Is_Private_Type (Id_B) then
19635 Append_Elmt (Id, Private_Dependents (Id_B));
19636 end if;
19637 end Prepare_Private_Subtype_Completion;
19638
19639 ---------------------------
19640 -- Process_Discriminants --
19641 ---------------------------
19642
19643 procedure Process_Discriminants
19644 (N : Node_Id;
19645 Prev : Entity_Id := Empty)
19646 is
19647 Elist : constant Elist_Id := New_Elmt_List;
19648 Id : Node_Id;
19649 Discr : Node_Id;
19650 Discr_Number : Uint;
19651 Discr_Type : Entity_Id;
19652 Default_Present : Boolean := False;
19653 Default_Not_Present : Boolean := False;
19654
19655 begin
19656 -- A composite type other than an array type can have discriminants.
19657 -- On entry, the current scope is the composite type.
19658
19659 -- The discriminants are initially entered into the scope of the type
19660 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19661 -- use, as explained at the end of this procedure.
19662
19663 Discr := First (Discriminant_Specifications (N));
19664 while Present (Discr) loop
19665 Enter_Name (Defining_Identifier (Discr));
19666
19667 -- For navigation purposes we add a reference to the discriminant
19668 -- in the entity for the type. If the current declaration is a
19669 -- completion, place references on the partial view. Otherwise the
19670 -- type is the current scope.
19671
19672 if Present (Prev) then
19673
19674 -- The references go on the partial view, if present. If the
19675 -- partial view has discriminants, the references have been
19676 -- generated already.
19677
19678 if not Has_Discriminants (Prev) then
19679 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19680 end if;
19681 else
19682 Generate_Reference
19683 (Current_Scope, Defining_Identifier (Discr), 'd');
19684 end if;
19685
19686 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19687 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19688
19689 -- Ada 2005 (AI-254)
19690
19691 if Present (Access_To_Subprogram_Definition
19692 (Discriminant_Type (Discr)))
19693 and then Protected_Present (Access_To_Subprogram_Definition
19694 (Discriminant_Type (Discr)))
19695 then
19696 Discr_Type :=
19697 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19698 end if;
19699
19700 else
19701 Find_Type (Discriminant_Type (Discr));
19702 Discr_Type := Etype (Discriminant_Type (Discr));
19703
19704 if Error_Posted (Discriminant_Type (Discr)) then
19705 Discr_Type := Any_Type;
19706 end if;
19707 end if;
19708
19709 -- Handling of discriminants that are access types
19710
19711 if Is_Access_Type (Discr_Type) then
19712
19713 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19714 -- limited record types
19715
19716 if Ada_Version < Ada_2005 then
19717 Check_Access_Discriminant_Requires_Limited
19718 (Discr, Discriminant_Type (Discr));
19719 end if;
19720
19721 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19722 Error_Msg_N
19723 ("(Ada 83) access discriminant not allowed", Discr);
19724 end if;
19725
19726 -- If not access type, must be a discrete type
19727
19728 elsif not Is_Discrete_Type (Discr_Type) then
19729 Error_Msg_N
19730 ("discriminants must have a discrete or access type",
19731 Discriminant_Type (Discr));
19732 end if;
19733
19734 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19735
19736 -- If a discriminant specification includes the assignment compound
19737 -- delimiter followed by an expression, the expression is the default
19738 -- expression of the discriminant; the default expression must be of
19739 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19740 -- a default expression, we do the special preanalysis, since this
19741 -- expression does not freeze (see section "Handling of Default and
19742 -- Per-Object Expressions" in spec of package Sem).
19743
19744 if Present (Expression (Discr)) then
19745 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19746
19747 -- Legaity checks
19748
19749 if Nkind (N) = N_Formal_Type_Declaration then
19750 Error_Msg_N
19751 ("discriminant defaults not allowed for formal type",
19752 Expression (Discr));
19753
19754 -- Flag an error for a tagged type with defaulted discriminants,
19755 -- excluding limited tagged types when compiling for Ada 2012
19756 -- (see AI05-0214).
19757
19758 elsif Is_Tagged_Type (Current_Scope)
19759 and then (not Is_Limited_Type (Current_Scope)
19760 or else Ada_Version < Ada_2012)
19761 and then Comes_From_Source (N)
19762 then
19763 -- Note: see similar test in Check_Or_Process_Discriminants, to
19764 -- handle the (illegal) case of the completion of an untagged
19765 -- view with discriminants with defaults by a tagged full view.
19766 -- We skip the check if Discr does not come from source, to
19767 -- account for the case of an untagged derived type providing
19768 -- defaults for a renamed discriminant from a private untagged
19769 -- ancestor with a tagged full view (ACATS B460006).
19770
19771 if Ada_Version >= Ada_2012 then
19772 Error_Msg_N
19773 ("discriminants of nonlimited tagged type cannot have"
19774 & " defaults",
19775 Expression (Discr));
19776 else
19777 Error_Msg_N
19778 ("discriminants of tagged type cannot have defaults",
19779 Expression (Discr));
19780 end if;
19781
19782 else
19783 Default_Present := True;
19784 Append_Elmt (Expression (Discr), Elist);
19785
19786 -- Tag the defining identifiers for the discriminants with
19787 -- their corresponding default expressions from the tree.
19788
19789 Set_Discriminant_Default_Value
19790 (Defining_Identifier (Discr), Expression (Discr));
19791 end if;
19792
19793 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19794 -- gets set unless we can be sure that no range check is required.
19795
19796 if (GNATprove_Mode or not Expander_Active)
19797 and then not
19798 Is_In_Range
19799 (Expression (Discr), Discr_Type, Assume_Valid => True)
19800 then
19801 Set_Do_Range_Check (Expression (Discr));
19802 end if;
19803
19804 -- No default discriminant value given
19805
19806 else
19807 Default_Not_Present := True;
19808 end if;
19809
19810 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19811 -- Discr_Type but with the null-exclusion attribute
19812
19813 if Ada_Version >= Ada_2005 then
19814
19815 -- Ada 2005 (AI-231): Static checks
19816
19817 if Can_Never_Be_Null (Discr_Type) then
19818 Null_Exclusion_Static_Checks (Discr);
19819
19820 elsif Is_Access_Type (Discr_Type)
19821 and then Null_Exclusion_Present (Discr)
19822
19823 -- No need to check itypes because in their case this check
19824 -- was done at their point of creation
19825
19826 and then not Is_Itype (Discr_Type)
19827 then
19828 if Can_Never_Be_Null (Discr_Type) then
19829 Error_Msg_NE
19830 ("`NOT NULL` not allowed (& already excludes null)",
19831 Discr,
19832 Discr_Type);
19833 end if;
19834
19835 Set_Etype (Defining_Identifier (Discr),
19836 Create_Null_Excluding_Itype
19837 (T => Discr_Type,
19838 Related_Nod => Discr));
19839
19840 -- Check for improper null exclusion if the type is otherwise
19841 -- legal for a discriminant.
19842
19843 elsif Null_Exclusion_Present (Discr)
19844 and then Is_Discrete_Type (Discr_Type)
19845 then
19846 Error_Msg_N
19847 ("null exclusion can only apply to an access type", Discr);
19848 end if;
19849
19850 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19851 -- can't have defaults. Synchronized types, or types that are
19852 -- explicitly limited are fine, but special tests apply to derived
19853 -- types in generics: in a generic body we have to assume the
19854 -- worst, and therefore defaults are not allowed if the parent is
19855 -- a generic formal private type (see ACATS B370001).
19856
19857 if Is_Access_Type (Discr_Type) and then Default_Present then
19858 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19859 or else Is_Limited_Record (Current_Scope)
19860 or else Is_Concurrent_Type (Current_Scope)
19861 or else Is_Concurrent_Record_Type (Current_Scope)
19862 or else Ekind (Current_Scope) = E_Limited_Private_Type
19863 then
19864 if not Is_Derived_Type (Current_Scope)
19865 or else not Is_Generic_Type (Etype (Current_Scope))
19866 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19867 or else Limited_Present
19868 (Type_Definition (Parent (Current_Scope)))
19869 then
19870 null;
19871
19872 else
19873 Error_Msg_N
19874 ("access discriminants of nonlimited types cannot "
19875 & "have defaults", Expression (Discr));
19876 end if;
19877
19878 elsif Present (Expression (Discr)) then
19879 Error_Msg_N
19880 ("(Ada 2005) access discriminants of nonlimited types "
19881 & "cannot have defaults", Expression (Discr));
19882 end if;
19883 end if;
19884 end if;
19885
19886 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19887 -- This check is relevant only when SPARK_Mode is on as it is not a
19888 -- standard Ada legality rule.
19889
19890 if SPARK_Mode = On
19891 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19892 then
19893 Error_Msg_N ("discriminant cannot be volatile", Discr);
19894 end if;
19895
19896 Next (Discr);
19897 end loop;
19898
19899 -- An element list consisting of the default expressions of the
19900 -- discriminants is constructed in the above loop and used to set
19901 -- the Discriminant_Constraint attribute for the type. If an object
19902 -- is declared of this (record or task) type without any explicit
19903 -- discriminant constraint given, this element list will form the
19904 -- actual parameters for the corresponding initialization procedure
19905 -- for the type.
19906
19907 Set_Discriminant_Constraint (Current_Scope, Elist);
19908 Set_Stored_Constraint (Current_Scope, No_Elist);
19909
19910 -- Default expressions must be provided either for all or for none
19911 -- of the discriminants of a discriminant part. (RM 3.7.1)
19912
19913 if Default_Present and then Default_Not_Present then
19914 Error_Msg_N
19915 ("incomplete specification of defaults for discriminants", N);
19916 end if;
19917
19918 -- The use of the name of a discriminant is not allowed in default
19919 -- expressions of a discriminant part if the specification of the
19920 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19921
19922 -- To detect this, the discriminant names are entered initially with an
19923 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19924 -- attempt to use a void entity (for example in an expression that is
19925 -- type-checked) produces the error message: premature usage. Now after
19926 -- completing the semantic analysis of the discriminant part, we can set
19927 -- the Ekind of all the discriminants appropriately.
19928
19929 Discr := First (Discriminant_Specifications (N));
19930 Discr_Number := Uint_1;
19931 while Present (Discr) loop
19932 Id := Defining_Identifier (Discr);
19933 Set_Ekind (Id, E_Discriminant);
19934 Init_Component_Location (Id);
19935 Init_Esize (Id);
19936 Set_Discriminant_Number (Id, Discr_Number);
19937
19938 -- Make sure this is always set, even in illegal programs
19939
19940 Set_Corresponding_Discriminant (Id, Empty);
19941
19942 -- Initialize the Original_Record_Component to the entity itself.
19943 -- Inherit_Components will propagate the right value to
19944 -- discriminants in derived record types.
19945
19946 Set_Original_Record_Component (Id, Id);
19947
19948 -- Create the discriminal for the discriminant
19949
19950 Build_Discriminal (Id);
19951
19952 Next (Discr);
19953 Discr_Number := Discr_Number + 1;
19954 end loop;
19955
19956 Set_Has_Discriminants (Current_Scope);
19957 end Process_Discriminants;
19958
19959 -----------------------
19960 -- Process_Full_View --
19961 -----------------------
19962
19963 -- WARNING: This routine manages Ghost regions. Return statements must be
19964 -- replaced by gotos which jump to the end of the routine and restore the
19965 -- Ghost mode.
19966
19967 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19968 procedure Collect_Implemented_Interfaces
19969 (Typ : Entity_Id;
19970 Ifaces : Elist_Id);
19971 -- Ada 2005: Gather all the interfaces that Typ directly or
19972 -- inherently implements. Duplicate entries are not added to
19973 -- the list Ifaces.
19974
19975 ------------------------------------
19976 -- Collect_Implemented_Interfaces --
19977 ------------------------------------
19978
19979 procedure Collect_Implemented_Interfaces
19980 (Typ : Entity_Id;
19981 Ifaces : Elist_Id)
19982 is
19983 Iface : Entity_Id;
19984 Iface_Elmt : Elmt_Id;
19985
19986 begin
19987 -- Abstract interfaces are only associated with tagged record types
19988
19989 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19990 return;
19991 end if;
19992
19993 -- Recursively climb to the ancestors
19994
19995 if Etype (Typ) /= Typ
19996
19997 -- Protect the frontend against wrong cyclic declarations like:
19998
19999 -- type B is new A with private;
20000 -- type C is new A with private;
20001 -- private
20002 -- type B is new C with null record;
20003 -- type C is new B with null record;
20004
20005 and then Etype (Typ) /= Priv_T
20006 and then Etype (Typ) /= Full_T
20007 then
20008 -- Keep separate the management of private type declarations
20009
20010 if Ekind (Typ) = E_Record_Type_With_Private then
20011
20012 -- Handle the following illegal usage:
20013 -- type Private_Type is tagged private;
20014 -- private
20015 -- type Private_Type is new Type_Implementing_Iface;
20016
20017 if Present (Full_View (Typ))
20018 and then Etype (Typ) /= Full_View (Typ)
20019 then
20020 if Is_Interface (Etype (Typ)) then
20021 Append_Unique_Elmt (Etype (Typ), Ifaces);
20022 end if;
20023
20024 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20025 end if;
20026
20027 -- Non-private types
20028
20029 else
20030 if Is_Interface (Etype (Typ)) then
20031 Append_Unique_Elmt (Etype (Typ), Ifaces);
20032 end if;
20033
20034 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20035 end if;
20036 end if;
20037
20038 -- Handle entities in the list of abstract interfaces
20039
20040 if Present (Interfaces (Typ)) then
20041 Iface_Elmt := First_Elmt (Interfaces (Typ));
20042 while Present (Iface_Elmt) loop
20043 Iface := Node (Iface_Elmt);
20044
20045 pragma Assert (Is_Interface (Iface));
20046
20047 if not Contain_Interface (Iface, Ifaces) then
20048 Append_Elmt (Iface, Ifaces);
20049 Collect_Implemented_Interfaces (Iface, Ifaces);
20050 end if;
20051
20052 Next_Elmt (Iface_Elmt);
20053 end loop;
20054 end if;
20055 end Collect_Implemented_Interfaces;
20056
20057 -- Local variables
20058
20059 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20060
20061 Full_Indic : Node_Id;
20062 Full_Parent : Entity_Id;
20063 Priv_Parent : Entity_Id;
20064
20065 -- Start of processing for Process_Full_View
20066
20067 begin
20068 Mark_And_Set_Ghost_Completion (N, Priv_T);
20069
20070 -- First some sanity checks that must be done after semantic
20071 -- decoration of the full view and thus cannot be placed with other
20072 -- similar checks in Find_Type_Name
20073
20074 if not Is_Limited_Type (Priv_T)
20075 and then (Is_Limited_Type (Full_T)
20076 or else Is_Limited_Composite (Full_T))
20077 then
20078 if In_Instance then
20079 null;
20080 else
20081 Error_Msg_N
20082 ("completion of nonlimited type cannot be limited", Full_T);
20083 Explain_Limited_Type (Full_T, Full_T);
20084 end if;
20085
20086 elsif Is_Abstract_Type (Full_T)
20087 and then not Is_Abstract_Type (Priv_T)
20088 then
20089 Error_Msg_N
20090 ("completion of nonabstract type cannot be abstract", Full_T);
20091
20092 elsif Is_Tagged_Type (Priv_T)
20093 and then Is_Limited_Type (Priv_T)
20094 and then not Is_Limited_Type (Full_T)
20095 then
20096 -- If pragma CPP_Class was applied to the private declaration
20097 -- propagate the limitedness to the full-view
20098
20099 if Is_CPP_Class (Priv_T) then
20100 Set_Is_Limited_Record (Full_T);
20101
20102 -- GNAT allow its own definition of Limited_Controlled to disobey
20103 -- this rule in order in ease the implementation. This test is safe
20104 -- because Root_Controlled is defined in a child of System that
20105 -- normal programs are not supposed to use.
20106
20107 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20108 Set_Is_Limited_Composite (Full_T);
20109 else
20110 Error_Msg_N
20111 ("completion of limited tagged type must be limited", Full_T);
20112 end if;
20113
20114 elsif Is_Generic_Type (Priv_T) then
20115 Error_Msg_N ("generic type cannot have a completion", Full_T);
20116 end if;
20117
20118 -- Check that ancestor interfaces of private and full views are
20119 -- consistent. We omit this check for synchronized types because
20120 -- they are performed on the corresponding record type when frozen.
20121
20122 if Ada_Version >= Ada_2005
20123 and then Is_Tagged_Type (Priv_T)
20124 and then Is_Tagged_Type (Full_T)
20125 and then not Is_Concurrent_Type (Full_T)
20126 then
20127 declare
20128 Iface : Entity_Id;
20129 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20130 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20131
20132 begin
20133 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20134 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20135
20136 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20137 -- an interface type if and only if the full type is descendant
20138 -- of the interface type (AARM 7.3 (7.3/2)).
20139
20140 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20141
20142 if Present (Iface) then
20143 Error_Msg_NE
20144 ("interface in partial view& not implemented by full type "
20145 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20146 end if;
20147
20148 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20149
20150 if Present (Iface) then
20151 Error_Msg_NE
20152 ("interface & not implemented by partial view "
20153 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20154 end if;
20155 end;
20156 end if;
20157
20158 if Is_Tagged_Type (Priv_T)
20159 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20160 and then Is_Derived_Type (Full_T)
20161 then
20162 Priv_Parent := Etype (Priv_T);
20163
20164 -- The full view of a private extension may have been transformed
20165 -- into an unconstrained derived type declaration and a subtype
20166 -- declaration (see build_derived_record_type for details).
20167
20168 if Nkind (N) = N_Subtype_Declaration then
20169 Full_Indic := Subtype_Indication (N);
20170 Full_Parent := Etype (Base_Type (Full_T));
20171 else
20172 Full_Indic := Subtype_Indication (Type_Definition (N));
20173 Full_Parent := Etype (Full_T);
20174 end if;
20175
20176 -- Check that the parent type of the full type is a descendant of
20177 -- the ancestor subtype given in the private extension. If either
20178 -- entity has an Etype equal to Any_Type then we had some previous
20179 -- error situation [7.3(8)].
20180
20181 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20182 goto Leave;
20183
20184 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20185 -- any order. Therefore we don't have to check that its parent must
20186 -- be a descendant of the parent of the private type declaration.
20187
20188 elsif Is_Interface (Priv_Parent)
20189 and then Is_Interface (Full_Parent)
20190 then
20191 null;
20192
20193 -- Ada 2005 (AI-251): If the parent of the private type declaration
20194 -- is an interface there is no need to check that it is an ancestor
20195 -- of the associated full type declaration. The required tests for
20196 -- this case are performed by Build_Derived_Record_Type.
20197
20198 elsif not Is_Interface (Base_Type (Priv_Parent))
20199 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20200 then
20201 Error_Msg_N
20202 ("parent of full type must descend from parent of private "
20203 & "extension", Full_Indic);
20204
20205 -- First check a formal restriction, and then proceed with checking
20206 -- Ada rules. Since the formal restriction is not a serious error, we
20207 -- don't prevent further error detection for this check, hence the
20208 -- ELSE.
20209
20210 else
20211 -- In formal mode, when completing a private extension the type
20212 -- named in the private part must be exactly the same as that
20213 -- named in the visible part.
20214
20215 if Priv_Parent /= Full_Parent then
20216 Error_Msg_Name_1 := Chars (Priv_Parent);
20217 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20218 end if;
20219
20220 -- Check the rules of 7.3(10): if the private extension inherits
20221 -- known discriminants, then the full type must also inherit those
20222 -- discriminants from the same (ancestor) type, and the parent
20223 -- subtype of the full type must be constrained if and only if
20224 -- the ancestor subtype of the private extension is constrained.
20225
20226 if No (Discriminant_Specifications (Parent (Priv_T)))
20227 and then not Has_Unknown_Discriminants (Priv_T)
20228 and then Has_Discriminants (Base_Type (Priv_Parent))
20229 then
20230 declare
20231 Priv_Indic : constant Node_Id :=
20232 Subtype_Indication (Parent (Priv_T));
20233
20234 Priv_Constr : constant Boolean :=
20235 Is_Constrained (Priv_Parent)
20236 or else
20237 Nkind (Priv_Indic) = N_Subtype_Indication
20238 or else
20239 Is_Constrained (Entity (Priv_Indic));
20240
20241 Full_Constr : constant Boolean :=
20242 Is_Constrained (Full_Parent)
20243 or else
20244 Nkind (Full_Indic) = N_Subtype_Indication
20245 or else
20246 Is_Constrained (Entity (Full_Indic));
20247
20248 Priv_Discr : Entity_Id;
20249 Full_Discr : Entity_Id;
20250
20251 begin
20252 Priv_Discr := First_Discriminant (Priv_Parent);
20253 Full_Discr := First_Discriminant (Full_Parent);
20254 while Present (Priv_Discr) and then Present (Full_Discr) loop
20255 if Original_Record_Component (Priv_Discr) =
20256 Original_Record_Component (Full_Discr)
20257 or else
20258 Corresponding_Discriminant (Priv_Discr) =
20259 Corresponding_Discriminant (Full_Discr)
20260 then
20261 null;
20262 else
20263 exit;
20264 end if;
20265
20266 Next_Discriminant (Priv_Discr);
20267 Next_Discriminant (Full_Discr);
20268 end loop;
20269
20270 if Present (Priv_Discr) or else Present (Full_Discr) then
20271 Error_Msg_N
20272 ("full view must inherit discriminants of the parent "
20273 & "type used in the private extension", Full_Indic);
20274
20275 elsif Priv_Constr and then not Full_Constr then
20276 Error_Msg_N
20277 ("parent subtype of full type must be constrained",
20278 Full_Indic);
20279
20280 elsif Full_Constr and then not Priv_Constr then
20281 Error_Msg_N
20282 ("parent subtype of full type must be unconstrained",
20283 Full_Indic);
20284 end if;
20285 end;
20286
20287 -- Check the rules of 7.3(12): if a partial view has neither
20288 -- known or unknown discriminants, then the full type
20289 -- declaration shall define a definite subtype.
20290
20291 elsif not Has_Unknown_Discriminants (Priv_T)
20292 and then not Has_Discriminants (Priv_T)
20293 and then not Is_Constrained (Full_T)
20294 then
20295 Error_Msg_N
20296 ("full view must define a constrained type if partial view "
20297 & "has no discriminants", Full_T);
20298 end if;
20299
20300 -- ??????? Do we implement the following properly ?????
20301 -- If the ancestor subtype of a private extension has constrained
20302 -- discriminants, then the parent subtype of the full view shall
20303 -- impose a statically matching constraint on those discriminants
20304 -- [7.3(13)].
20305 end if;
20306
20307 else
20308 -- For untagged types, verify that a type without discriminants is
20309 -- not completed with an unconstrained type. A separate error message
20310 -- is produced if the full type has defaulted discriminants.
20311
20312 if Is_Definite_Subtype (Priv_T)
20313 and then not Is_Definite_Subtype (Full_T)
20314 then
20315 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20316 Error_Msg_NE
20317 ("full view of& not compatible with declaration#",
20318 Full_T, Priv_T);
20319
20320 if not Is_Tagged_Type (Full_T) then
20321 Error_Msg_N
20322 ("\one is constrained, the other unconstrained", Full_T);
20323 end if;
20324 end if;
20325 end if;
20326
20327 -- AI-419: verify that the use of "limited" is consistent
20328
20329 declare
20330 Orig_Decl : constant Node_Id := Original_Node (N);
20331
20332 begin
20333 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20334 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20335 and then Nkind
20336 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20337 then
20338 if not Limited_Present (Parent (Priv_T))
20339 and then not Synchronized_Present (Parent (Priv_T))
20340 and then Limited_Present (Type_Definition (Orig_Decl))
20341 then
20342 Error_Msg_N
20343 ("full view of non-limited extension cannot be limited", N);
20344
20345 -- Conversely, if the partial view carries the limited keyword,
20346 -- the full view must as well, even if it may be redundant.
20347
20348 elsif Limited_Present (Parent (Priv_T))
20349 and then not Limited_Present (Type_Definition (Orig_Decl))
20350 then
20351 Error_Msg_N
20352 ("full view of limited extension must be explicitly limited",
20353 N);
20354 end if;
20355 end if;
20356 end;
20357
20358 -- Ada 2005 (AI-443): A synchronized private extension must be
20359 -- completed by a task or protected type.
20360
20361 if Ada_Version >= Ada_2005
20362 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20363 and then Synchronized_Present (Parent (Priv_T))
20364 and then not Is_Concurrent_Type (Full_T)
20365 then
20366 Error_Msg_N ("full view of synchronized extension must " &
20367 "be synchronized type", N);
20368 end if;
20369
20370 -- Ada 2005 AI-363: if the full view has discriminants with
20371 -- defaults, it is illegal to declare constrained access subtypes
20372 -- whose designated type is the current type. This allows objects
20373 -- of the type that are declared in the heap to be unconstrained.
20374
20375 if not Has_Unknown_Discriminants (Priv_T)
20376 and then not Has_Discriminants (Priv_T)
20377 and then Has_Discriminants (Full_T)
20378 and then
20379 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20380 then
20381 Set_Has_Constrained_Partial_View (Full_T);
20382 Set_Has_Constrained_Partial_View (Priv_T);
20383 end if;
20384
20385 -- Create a full declaration for all its subtypes recorded in
20386 -- Private_Dependents and swap them similarly to the base type. These
20387 -- are subtypes that have been define before the full declaration of
20388 -- the private type. We also swap the entry in Private_Dependents list
20389 -- so we can properly restore the private view on exit from the scope.
20390
20391 declare
20392 Priv_Elmt : Elmt_Id;
20393 Priv_Scop : Entity_Id;
20394 Priv : Entity_Id;
20395 Full : Entity_Id;
20396
20397 begin
20398 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20399 while Present (Priv_Elmt) loop
20400 Priv := Node (Priv_Elmt);
20401 Priv_Scop := Scope (Priv);
20402
20403 if Ekind_In (Priv, E_Private_Subtype,
20404 E_Limited_Private_Subtype,
20405 E_Record_Subtype_With_Private)
20406 then
20407 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20408 Set_Is_Itype (Full);
20409 Set_Parent (Full, Parent (Priv));
20410 Set_Associated_Node_For_Itype (Full, N);
20411
20412 -- Now we need to complete the private subtype, but since the
20413 -- base type has already been swapped, we must also swap the
20414 -- subtypes (and thus, reverse the arguments in the call to
20415 -- Complete_Private_Subtype). Also note that we may need to
20416 -- re-establish the scope of the private subtype.
20417
20418 Copy_And_Swap (Priv, Full);
20419
20420 if not In_Open_Scopes (Priv_Scop) then
20421 Push_Scope (Priv_Scop);
20422
20423 else
20424 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20425
20426 Priv_Scop := Empty;
20427 end if;
20428
20429 Complete_Private_Subtype (Full, Priv, Full_T, N);
20430
20431 if Present (Priv_Scop) then
20432 Pop_Scope;
20433 end if;
20434
20435 Replace_Elmt (Priv_Elmt, Full);
20436 end if;
20437
20438 Next_Elmt (Priv_Elmt);
20439 end loop;
20440 end;
20441
20442 -- If the private view was tagged, copy the new primitive operations
20443 -- from the private view to the full view.
20444
20445 if Is_Tagged_Type (Full_T) then
20446 declare
20447 Disp_Typ : Entity_Id;
20448 Full_List : Elist_Id;
20449 Prim : Entity_Id;
20450 Prim_Elmt : Elmt_Id;
20451 Priv_List : Elist_Id;
20452
20453 function Contains
20454 (E : Entity_Id;
20455 L : Elist_Id) return Boolean;
20456 -- Determine whether list L contains element E
20457
20458 --------------
20459 -- Contains --
20460 --------------
20461
20462 function Contains
20463 (E : Entity_Id;
20464 L : Elist_Id) return Boolean
20465 is
20466 List_Elmt : Elmt_Id;
20467
20468 begin
20469 List_Elmt := First_Elmt (L);
20470 while Present (List_Elmt) loop
20471 if Node (List_Elmt) = E then
20472 return True;
20473 end if;
20474
20475 Next_Elmt (List_Elmt);
20476 end loop;
20477
20478 return False;
20479 end Contains;
20480
20481 -- Start of processing
20482
20483 begin
20484 if Is_Tagged_Type (Priv_T) then
20485 Priv_List := Primitive_Operations (Priv_T);
20486 Prim_Elmt := First_Elmt (Priv_List);
20487
20488 -- In the case of a concurrent type completing a private tagged
20489 -- type, primitives may have been declared in between the two
20490 -- views. These subprograms need to be wrapped the same way
20491 -- entries and protected procedures are handled because they
20492 -- cannot be directly shared by the two views.
20493
20494 if Is_Concurrent_Type (Full_T) then
20495 declare
20496 Conc_Typ : constant Entity_Id :=
20497 Corresponding_Record_Type (Full_T);
20498 Curr_Nod : Node_Id := Parent (Conc_Typ);
20499 Wrap_Spec : Node_Id;
20500
20501 begin
20502 while Present (Prim_Elmt) loop
20503 Prim := Node (Prim_Elmt);
20504
20505 if Comes_From_Source (Prim)
20506 and then not Is_Abstract_Subprogram (Prim)
20507 then
20508 Wrap_Spec :=
20509 Make_Subprogram_Declaration (Sloc (Prim),
20510 Specification =>
20511 Build_Wrapper_Spec
20512 (Subp_Id => Prim,
20513 Obj_Typ => Conc_Typ,
20514 Formals =>
20515 Parameter_Specifications
20516 (Parent (Prim))));
20517
20518 Insert_After (Curr_Nod, Wrap_Spec);
20519 Curr_Nod := Wrap_Spec;
20520
20521 Analyze (Wrap_Spec);
20522
20523 -- Remove the wrapper from visibility to avoid
20524 -- spurious conflict with the wrapped entity.
20525
20526 Set_Is_Immediately_Visible
20527 (Defining_Entity (Specification (Wrap_Spec)),
20528 False);
20529 end if;
20530
20531 Next_Elmt (Prim_Elmt);
20532 end loop;
20533
20534 goto Leave;
20535 end;
20536
20537 -- For non-concurrent types, transfer explicit primitives, but
20538 -- omit those inherited from the parent of the private view
20539 -- since they will be re-inherited later on.
20540
20541 else
20542 Full_List := Primitive_Operations (Full_T);
20543
20544 while Present (Prim_Elmt) loop
20545 Prim := Node (Prim_Elmt);
20546
20547 if Comes_From_Source (Prim)
20548 and then not Contains (Prim, Full_List)
20549 then
20550 Append_Elmt (Prim, Full_List);
20551 end if;
20552
20553 Next_Elmt (Prim_Elmt);
20554 end loop;
20555 end if;
20556
20557 -- Untagged private view
20558
20559 else
20560 Full_List := Primitive_Operations (Full_T);
20561
20562 -- In this case the partial view is untagged, so here we locate
20563 -- all of the earlier primitives that need to be treated as
20564 -- dispatching (those that appear between the two views). Note
20565 -- that these additional operations must all be new operations
20566 -- (any earlier operations that override inherited operations
20567 -- of the full view will already have been inserted in the
20568 -- primitives list, marked by Check_Operation_From_Private_View
20569 -- as dispatching. Note that implicit "/=" operators are
20570 -- excluded from being added to the primitives list since they
20571 -- shouldn't be treated as dispatching (tagged "/=" is handled
20572 -- specially).
20573
20574 Prim := Next_Entity (Full_T);
20575 while Present (Prim) and then Prim /= Priv_T loop
20576 if Ekind_In (Prim, E_Procedure, E_Function) then
20577 Disp_Typ := Find_Dispatching_Type (Prim);
20578
20579 if Disp_Typ = Full_T
20580 and then (Chars (Prim) /= Name_Op_Ne
20581 or else Comes_From_Source (Prim))
20582 then
20583 Check_Controlling_Formals (Full_T, Prim);
20584
20585 if not Is_Dispatching_Operation (Prim) then
20586 Append_Elmt (Prim, Full_List);
20587 Set_Is_Dispatching_Operation (Prim, True);
20588 Set_DT_Position_Value (Prim, No_Uint);
20589 end if;
20590
20591 elsif Is_Dispatching_Operation (Prim)
20592 and then Disp_Typ /= Full_T
20593 then
20594
20595 -- Verify that it is not otherwise controlled by a
20596 -- formal or a return value of type T.
20597
20598 Check_Controlling_Formals (Disp_Typ, Prim);
20599 end if;
20600 end if;
20601
20602 Next_Entity (Prim);
20603 end loop;
20604 end if;
20605
20606 -- For the tagged case, the two views can share the same primitive
20607 -- operations list and the same class-wide type. Update attributes
20608 -- of the class-wide type which depend on the full declaration.
20609
20610 if Is_Tagged_Type (Priv_T) then
20611 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20612 Set_Class_Wide_Type
20613 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20614
20615 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20616 end if;
20617 end;
20618 end if;
20619
20620 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20621
20622 if Known_To_Have_Preelab_Init (Priv_T) then
20623
20624 -- Case where there is a pragma Preelaborable_Initialization. We
20625 -- always allow this in predefined units, which is cheating a bit,
20626 -- but it means we don't have to struggle to meet the requirements in
20627 -- the RM for having Preelaborable Initialization. Otherwise we
20628 -- require that the type meets the RM rules. But we can't check that
20629 -- yet, because of the rule about overriding Initialize, so we simply
20630 -- set a flag that will be checked at freeze time.
20631
20632 if not In_Predefined_Unit (Full_T) then
20633 Set_Must_Have_Preelab_Init (Full_T);
20634 end if;
20635 end if;
20636
20637 -- If pragma CPP_Class was applied to the private type declaration,
20638 -- propagate it now to the full type declaration.
20639
20640 if Is_CPP_Class (Priv_T) then
20641 Set_Is_CPP_Class (Full_T);
20642 Set_Convention (Full_T, Convention_CPP);
20643
20644 -- Check that components of imported CPP types do not have default
20645 -- expressions.
20646
20647 Check_CPP_Type_Has_No_Defaults (Full_T);
20648 end if;
20649
20650 -- If the private view has user specified stream attributes, then so has
20651 -- the full view.
20652
20653 -- Why the test, how could these flags be already set in Full_T ???
20654
20655 if Has_Specified_Stream_Read (Priv_T) then
20656 Set_Has_Specified_Stream_Read (Full_T);
20657 end if;
20658
20659 if Has_Specified_Stream_Write (Priv_T) then
20660 Set_Has_Specified_Stream_Write (Full_T);
20661 end if;
20662
20663 if Has_Specified_Stream_Input (Priv_T) then
20664 Set_Has_Specified_Stream_Input (Full_T);
20665 end if;
20666
20667 if Has_Specified_Stream_Output (Priv_T) then
20668 Set_Has_Specified_Stream_Output (Full_T);
20669 end if;
20670
20671 -- Propagate Default_Initial_Condition-related attributes from the
20672 -- partial view to the full view and its base type.
20673
20674 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20675 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20676
20677 -- Propagate invariant-related attributes from the partial view to the
20678 -- full view and its base type.
20679
20680 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20681 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20682
20683 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20684 -- in the full view without advertising the inheritance in the partial
20685 -- view. This can only occur when the partial view has no parent type
20686 -- and the full view has an interface as a parent. Any other scenarios
20687 -- are illegal because implemented interfaces must match between the
20688 -- two views.
20689
20690 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20691 declare
20692 Full_Par : constant Entity_Id := Etype (Full_T);
20693 Priv_Par : constant Entity_Id := Etype (Priv_T);
20694
20695 begin
20696 if not Is_Interface (Priv_Par)
20697 and then Is_Interface (Full_Par)
20698 and then Has_Inheritable_Invariants (Full_Par)
20699 then
20700 Error_Msg_N
20701 ("hidden inheritance of class-wide type invariants not "
20702 & "allowed", N);
20703 end if;
20704 end;
20705 end if;
20706
20707 -- Propagate predicates to full type, and predicate function if already
20708 -- defined. It is not clear that this can actually happen? the partial
20709 -- view cannot be frozen yet, and the predicate function has not been
20710 -- built. Still it is a cheap check and seems safer to make it.
20711
20712 if Has_Predicates (Priv_T) then
20713 Set_Has_Predicates (Full_T);
20714
20715 if Present (Predicate_Function (Priv_T)) then
20716 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20717 end if;
20718 end if;
20719
20720 <<Leave>>
20721 Restore_Ghost_Mode (Saved_GM);
20722 end Process_Full_View;
20723
20724 -----------------------------------
20725 -- Process_Incomplete_Dependents --
20726 -----------------------------------
20727
20728 procedure Process_Incomplete_Dependents
20729 (N : Node_Id;
20730 Full_T : Entity_Id;
20731 Inc_T : Entity_Id)
20732 is
20733 Inc_Elmt : Elmt_Id;
20734 Priv_Dep : Entity_Id;
20735 New_Subt : Entity_Id;
20736
20737 Disc_Constraint : Elist_Id;
20738
20739 begin
20740 if No (Private_Dependents (Inc_T)) then
20741 return;
20742 end if;
20743
20744 -- Itypes that may be generated by the completion of an incomplete
20745 -- subtype are not used by the back-end and not attached to the tree.
20746 -- They are created only for constraint-checking purposes.
20747
20748 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20749 while Present (Inc_Elmt) loop
20750 Priv_Dep := Node (Inc_Elmt);
20751
20752 if Ekind (Priv_Dep) = E_Subprogram_Type then
20753
20754 -- An Access_To_Subprogram type may have a return type or a
20755 -- parameter type that is incomplete. Replace with the full view.
20756
20757 if Etype (Priv_Dep) = Inc_T then
20758 Set_Etype (Priv_Dep, Full_T);
20759 end if;
20760
20761 declare
20762 Formal : Entity_Id;
20763
20764 begin
20765 Formal := First_Formal (Priv_Dep);
20766 while Present (Formal) loop
20767 if Etype (Formal) = Inc_T then
20768 Set_Etype (Formal, Full_T);
20769 end if;
20770
20771 Next_Formal (Formal);
20772 end loop;
20773 end;
20774
20775 elsif Is_Overloadable (Priv_Dep) then
20776
20777 -- If a subprogram in the incomplete dependents list is primitive
20778 -- for a tagged full type then mark it as a dispatching operation,
20779 -- check whether it overrides an inherited subprogram, and check
20780 -- restrictions on its controlling formals. Note that a protected
20781 -- operation is never dispatching: only its wrapper operation
20782 -- (which has convention Ada) is.
20783
20784 if Is_Tagged_Type (Full_T)
20785 and then Is_Primitive (Priv_Dep)
20786 and then Convention (Priv_Dep) /= Convention_Protected
20787 then
20788 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20789 Set_Is_Dispatching_Operation (Priv_Dep);
20790 Check_Controlling_Formals (Full_T, Priv_Dep);
20791 end if;
20792
20793 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20794
20795 -- Can happen during processing of a body before the completion
20796 -- of a TA type. Ignore, because spec is also on dependent list.
20797
20798 return;
20799
20800 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20801 -- corresponding subtype of the full view.
20802
20803 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20804 and then Comes_From_Source (Priv_Dep)
20805 then
20806 Set_Subtype_Indication
20807 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20808 Set_Etype (Priv_Dep, Full_T);
20809 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20810 Set_Analyzed (Parent (Priv_Dep), False);
20811
20812 -- Reanalyze the declaration, suppressing the call to
20813 -- Enter_Name to avoid duplicate names.
20814
20815 Analyze_Subtype_Declaration
20816 (N => Parent (Priv_Dep),
20817 Skip => True);
20818
20819 -- Dependent is a subtype
20820
20821 else
20822 -- We build a new subtype indication using the full view of the
20823 -- incomplete parent. The discriminant constraints have been
20824 -- elaborated already at the point of the subtype declaration.
20825
20826 New_Subt := Create_Itype (E_Void, N);
20827
20828 if Has_Discriminants (Full_T) then
20829 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20830 else
20831 Disc_Constraint := No_Elist;
20832 end if;
20833
20834 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20835 Set_Full_View (Priv_Dep, New_Subt);
20836 end if;
20837
20838 Next_Elmt (Inc_Elmt);
20839 end loop;
20840 end Process_Incomplete_Dependents;
20841
20842 --------------------------------
20843 -- Process_Range_Expr_In_Decl --
20844 --------------------------------
20845
20846 procedure Process_Range_Expr_In_Decl
20847 (R : Node_Id;
20848 T : Entity_Id;
20849 Subtyp : Entity_Id := Empty;
20850 Check_List : List_Id := Empty_List;
20851 R_Check_Off : Boolean := False;
20852 In_Iter_Schm : Boolean := False)
20853 is
20854 Lo, Hi : Node_Id;
20855 R_Checks : Check_Result;
20856 Insert_Node : Node_Id;
20857 Def_Id : Entity_Id;
20858
20859 begin
20860 Analyze_And_Resolve (R, Base_Type (T));
20861
20862 if Nkind (R) = N_Range then
20863
20864 -- In SPARK, all ranges should be static, with the exception of the
20865 -- discrete type definition of a loop parameter specification.
20866
20867 if not In_Iter_Schm
20868 and then not Is_OK_Static_Range (R)
20869 then
20870 Check_SPARK_05_Restriction ("range should be static", R);
20871 end if;
20872
20873 Lo := Low_Bound (R);
20874 Hi := High_Bound (R);
20875
20876 -- Validity checks on the range of a quantified expression are
20877 -- delayed until the construct is transformed into a loop.
20878
20879 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20880 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20881 then
20882 null;
20883
20884 -- We need to ensure validity of the bounds here, because if we
20885 -- go ahead and do the expansion, then the expanded code will get
20886 -- analyzed with range checks suppressed and we miss the check.
20887
20888 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20889 -- the temporaries generated by routine Remove_Side_Effects by means
20890 -- of validity checks must use the same names. When a range appears
20891 -- in the parent of a generic, the range is processed with checks
20892 -- disabled as part of the generic context and with checks enabled
20893 -- for code generation purposes. This leads to link issues as the
20894 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20895 -- template sees the temporaries generated by Remove_Side_Effects.
20896
20897 else
20898 Validity_Check_Range (R, Subtyp);
20899 end if;
20900
20901 -- If there were errors in the declaration, try and patch up some
20902 -- common mistakes in the bounds. The cases handled are literals
20903 -- which are Integer where the expected type is Real and vice versa.
20904 -- These corrections allow the compilation process to proceed further
20905 -- along since some basic assumptions of the format of the bounds
20906 -- are guaranteed.
20907
20908 if Etype (R) = Any_Type then
20909 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20910 Rewrite (Lo,
20911 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20912
20913 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20914 Rewrite (Hi,
20915 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20916
20917 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20918 Rewrite (Lo,
20919 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20920
20921 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20922 Rewrite (Hi,
20923 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20924 end if;
20925
20926 Set_Etype (Lo, T);
20927 Set_Etype (Hi, T);
20928 end if;
20929
20930 -- If the bounds of the range have been mistakenly given as string
20931 -- literals (perhaps in place of character literals), then an error
20932 -- has already been reported, but we rewrite the string literal as a
20933 -- bound of the range's type to avoid blowups in later processing
20934 -- that looks at static values.
20935
20936 if Nkind (Lo) = N_String_Literal then
20937 Rewrite (Lo,
20938 Make_Attribute_Reference (Sloc (Lo),
20939 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20940 Attribute_Name => Name_First));
20941 Analyze_And_Resolve (Lo);
20942 end if;
20943
20944 if Nkind (Hi) = N_String_Literal then
20945 Rewrite (Hi,
20946 Make_Attribute_Reference (Sloc (Hi),
20947 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20948 Attribute_Name => Name_First));
20949 Analyze_And_Resolve (Hi);
20950 end if;
20951
20952 -- If bounds aren't scalar at this point then exit, avoiding
20953 -- problems with further processing of the range in this procedure.
20954
20955 if not Is_Scalar_Type (Etype (Lo)) then
20956 return;
20957 end if;
20958
20959 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20960 -- then range of the base type. Here we check whether the bounds
20961 -- are in the range of the subtype itself. Note that if the bounds
20962 -- represent the null range the Constraint_Error exception should
20963 -- not be raised.
20964
20965 -- ??? The following code should be cleaned up as follows
20966
20967 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20968 -- is done in the call to Range_Check (R, T); below
20969
20970 -- 2. The use of R_Check_Off should be investigated and possibly
20971 -- removed, this would clean up things a bit.
20972
20973 if Is_Null_Range (Lo, Hi) then
20974 null;
20975
20976 else
20977 -- Capture values of bounds and generate temporaries for them
20978 -- if needed, before applying checks, since checks may cause
20979 -- duplication of the expression without forcing evaluation.
20980
20981 -- The forced evaluation removes side effects from expressions,
20982 -- which should occur also in GNATprove mode. Otherwise, we end up
20983 -- with unexpected insertions of actions at places where this is
20984 -- not supposed to occur, e.g. on default parameters of a call.
20985
20986 if Expander_Active or GNATprove_Mode then
20987
20988 -- Call Force_Evaluation to create declarations as needed to
20989 -- deal with side effects, and also create typ_FIRST/LAST
20990 -- entities for bounds if we have a subtype name.
20991
20992 -- Note: we do this transformation even if expansion is not
20993 -- active if we are in GNATprove_Mode since the transformation
20994 -- is in general required to ensure that the resulting tree has
20995 -- proper Ada semantics.
20996
20997 Force_Evaluation
20998 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20999 Force_Evaluation
21000 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21001 end if;
21002
21003 -- We use a flag here instead of suppressing checks on the type
21004 -- because the type we check against isn't necessarily the place
21005 -- where we put the check.
21006
21007 if not R_Check_Off then
21008 R_Checks := Get_Range_Checks (R, T);
21009
21010 -- Look up tree to find an appropriate insertion point. We
21011 -- can't just use insert_actions because later processing
21012 -- depends on the insertion node. Prior to Ada 2012 the
21013 -- insertion point could only be a declaration or a loop, but
21014 -- quantified expressions can appear within any context in an
21015 -- expression, and the insertion point can be any statement,
21016 -- pragma, or declaration.
21017
21018 Insert_Node := Parent (R);
21019 while Present (Insert_Node) loop
21020 exit when
21021 Nkind (Insert_Node) in N_Declaration
21022 and then
21023 not Nkind_In
21024 (Insert_Node, N_Component_Declaration,
21025 N_Loop_Parameter_Specification,
21026 N_Function_Specification,
21027 N_Procedure_Specification);
21028
21029 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21030 or else Nkind (Insert_Node) in
21031 N_Statement_Other_Than_Procedure_Call
21032 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21033 N_Pragma);
21034
21035 Insert_Node := Parent (Insert_Node);
21036 end loop;
21037
21038 -- Why would Type_Decl not be present??? Without this test,
21039 -- short regression tests fail.
21040
21041 if Present (Insert_Node) then
21042
21043 -- Case of loop statement. Verify that the range is part
21044 -- of the subtype indication of the iteration scheme.
21045
21046 if Nkind (Insert_Node) = N_Loop_Statement then
21047 declare
21048 Indic : Node_Id;
21049
21050 begin
21051 Indic := Parent (R);
21052 while Present (Indic)
21053 and then Nkind (Indic) /= N_Subtype_Indication
21054 loop
21055 Indic := Parent (Indic);
21056 end loop;
21057
21058 if Present (Indic) then
21059 Def_Id := Etype (Subtype_Mark (Indic));
21060
21061 Insert_Range_Checks
21062 (R_Checks,
21063 Insert_Node,
21064 Def_Id,
21065 Sloc (Insert_Node),
21066 R,
21067 Do_Before => True);
21068 end if;
21069 end;
21070
21071 -- Insertion before a declaration. If the declaration
21072 -- includes discriminants, the list of applicable checks
21073 -- is given by the caller.
21074
21075 elsif Nkind (Insert_Node) in N_Declaration then
21076 Def_Id := Defining_Identifier (Insert_Node);
21077
21078 if (Ekind (Def_Id) = E_Record_Type
21079 and then Depends_On_Discriminant (R))
21080 or else
21081 (Ekind (Def_Id) = E_Protected_Type
21082 and then Has_Discriminants (Def_Id))
21083 then
21084 Append_Range_Checks
21085 (R_Checks,
21086 Check_List, Def_Id, Sloc (Insert_Node), R);
21087
21088 else
21089 Insert_Range_Checks
21090 (R_Checks,
21091 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21092
21093 end if;
21094
21095 -- Insertion before a statement. Range appears in the
21096 -- context of a quantified expression. Insertion will
21097 -- take place when expression is expanded.
21098
21099 else
21100 null;
21101 end if;
21102 end if;
21103 end if;
21104 end if;
21105
21106 -- Case of other than an explicit N_Range node
21107
21108 -- The forced evaluation removes side effects from expressions, which
21109 -- should occur also in GNATprove mode. Otherwise, we end up with
21110 -- unexpected insertions of actions at places where this is not
21111 -- supposed to occur, e.g. on default parameters of a call.
21112
21113 elsif Expander_Active or GNATprove_Mode then
21114 Get_Index_Bounds (R, Lo, Hi);
21115 Force_Evaluation (Lo);
21116 Force_Evaluation (Hi);
21117 end if;
21118 end Process_Range_Expr_In_Decl;
21119
21120 --------------------------------------
21121 -- Process_Real_Range_Specification --
21122 --------------------------------------
21123
21124 procedure Process_Real_Range_Specification (Def : Node_Id) is
21125 Spec : constant Node_Id := Real_Range_Specification (Def);
21126 Lo : Node_Id;
21127 Hi : Node_Id;
21128 Err : Boolean := False;
21129
21130 procedure Analyze_Bound (N : Node_Id);
21131 -- Analyze and check one bound
21132
21133 -------------------
21134 -- Analyze_Bound --
21135 -------------------
21136
21137 procedure Analyze_Bound (N : Node_Id) is
21138 begin
21139 Analyze_And_Resolve (N, Any_Real);
21140
21141 if not Is_OK_Static_Expression (N) then
21142 Flag_Non_Static_Expr
21143 ("bound in real type definition is not static!", N);
21144 Err := True;
21145 end if;
21146 end Analyze_Bound;
21147
21148 -- Start of processing for Process_Real_Range_Specification
21149
21150 begin
21151 if Present (Spec) then
21152 Lo := Low_Bound (Spec);
21153 Hi := High_Bound (Spec);
21154 Analyze_Bound (Lo);
21155 Analyze_Bound (Hi);
21156
21157 -- If error, clear away junk range specification
21158
21159 if Err then
21160 Set_Real_Range_Specification (Def, Empty);
21161 end if;
21162 end if;
21163 end Process_Real_Range_Specification;
21164
21165 ---------------------
21166 -- Process_Subtype --
21167 ---------------------
21168
21169 function Process_Subtype
21170 (S : Node_Id;
21171 Related_Nod : Node_Id;
21172 Related_Id : Entity_Id := Empty;
21173 Suffix : Character := ' ') return Entity_Id
21174 is
21175 P : Node_Id;
21176 Def_Id : Entity_Id;
21177 Error_Node : Node_Id;
21178 Full_View_Id : Entity_Id;
21179 Subtype_Mark_Id : Entity_Id;
21180
21181 May_Have_Null_Exclusion : Boolean;
21182
21183 procedure Check_Incomplete (T : Node_Id);
21184 -- Called to verify that an incomplete type is not used prematurely
21185
21186 ----------------------
21187 -- Check_Incomplete --
21188 ----------------------
21189
21190 procedure Check_Incomplete (T : Node_Id) is
21191 begin
21192 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21193
21194 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21195 and then
21196 not (Ada_Version >= Ada_2005
21197 and then
21198 (Nkind (Parent (T)) = N_Subtype_Declaration
21199 or else (Nkind (Parent (T)) = N_Subtype_Indication
21200 and then Nkind (Parent (Parent (T))) =
21201 N_Subtype_Declaration)))
21202 then
21203 Error_Msg_N ("invalid use of type before its full declaration", T);
21204 end if;
21205 end Check_Incomplete;
21206
21207 -- Start of processing for Process_Subtype
21208
21209 begin
21210 -- Case of no constraints present
21211
21212 if Nkind (S) /= N_Subtype_Indication then
21213 Find_Type (S);
21214 Check_Incomplete (S);
21215 P := Parent (S);
21216
21217 -- Ada 2005 (AI-231): Static check
21218
21219 if Ada_Version >= Ada_2005
21220 and then Present (P)
21221 and then Null_Exclusion_Present (P)
21222 and then Nkind (P) /= N_Access_To_Object_Definition
21223 and then not Is_Access_Type (Entity (S))
21224 then
21225 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21226 end if;
21227
21228 -- The following is ugly, can't we have a range or even a flag???
21229
21230 May_Have_Null_Exclusion :=
21231 Nkind_In (P, N_Access_Definition,
21232 N_Access_Function_Definition,
21233 N_Access_Procedure_Definition,
21234 N_Access_To_Object_Definition,
21235 N_Allocator,
21236 N_Component_Definition)
21237 or else
21238 Nkind_In (P, N_Derived_Type_Definition,
21239 N_Discriminant_Specification,
21240 N_Formal_Object_Declaration,
21241 N_Object_Declaration,
21242 N_Object_Renaming_Declaration,
21243 N_Parameter_Specification,
21244 N_Subtype_Declaration);
21245
21246 -- Create an Itype that is a duplicate of Entity (S) but with the
21247 -- null-exclusion attribute.
21248
21249 if May_Have_Null_Exclusion
21250 and then Is_Access_Type (Entity (S))
21251 and then Null_Exclusion_Present (P)
21252
21253 -- No need to check the case of an access to object definition.
21254 -- It is correct to define double not-null pointers.
21255
21256 -- Example:
21257 -- type Not_Null_Int_Ptr is not null access Integer;
21258 -- type Acc is not null access Not_Null_Int_Ptr;
21259
21260 and then Nkind (P) /= N_Access_To_Object_Definition
21261 then
21262 if Can_Never_Be_Null (Entity (S)) then
21263 case Nkind (Related_Nod) is
21264 when N_Full_Type_Declaration =>
21265 if Nkind (Type_Definition (Related_Nod))
21266 in N_Array_Type_Definition
21267 then
21268 Error_Node :=
21269 Subtype_Indication
21270 (Component_Definition
21271 (Type_Definition (Related_Nod)));
21272 else
21273 Error_Node :=
21274 Subtype_Indication (Type_Definition (Related_Nod));
21275 end if;
21276
21277 when N_Subtype_Declaration =>
21278 Error_Node := Subtype_Indication (Related_Nod);
21279
21280 when N_Object_Declaration =>
21281 Error_Node := Object_Definition (Related_Nod);
21282
21283 when N_Component_Declaration =>
21284 Error_Node :=
21285 Subtype_Indication (Component_Definition (Related_Nod));
21286
21287 when N_Allocator =>
21288 Error_Node := Expression (Related_Nod);
21289
21290 when others =>
21291 pragma Assert (False);
21292 Error_Node := Related_Nod;
21293 end case;
21294
21295 Error_Msg_NE
21296 ("`NOT NULL` not allowed (& already excludes null)",
21297 Error_Node,
21298 Entity (S));
21299 end if;
21300
21301 Set_Etype (S,
21302 Create_Null_Excluding_Itype
21303 (T => Entity (S),
21304 Related_Nod => P));
21305 Set_Entity (S, Etype (S));
21306 end if;
21307
21308 return Entity (S);
21309
21310 -- Case of constraint present, so that we have an N_Subtype_Indication
21311 -- node (this node is created only if constraints are present).
21312
21313 else
21314 Find_Type (Subtype_Mark (S));
21315
21316 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21317 and then not
21318 (Nkind (Parent (S)) = N_Subtype_Declaration
21319 and then Is_Itype (Defining_Identifier (Parent (S))))
21320 then
21321 Check_Incomplete (Subtype_Mark (S));
21322 end if;
21323
21324 P := Parent (S);
21325 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21326
21327 -- Explicit subtype declaration case
21328
21329 if Nkind (P) = N_Subtype_Declaration then
21330 Def_Id := Defining_Identifier (P);
21331
21332 -- Explicit derived type definition case
21333
21334 elsif Nkind (P) = N_Derived_Type_Definition then
21335 Def_Id := Defining_Identifier (Parent (P));
21336
21337 -- Implicit case, the Def_Id must be created as an implicit type.
21338 -- The one exception arises in the case of concurrent types, array
21339 -- and access types, where other subsidiary implicit types may be
21340 -- created and must appear before the main implicit type. In these
21341 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21342 -- has not yet been called to create Def_Id.
21343
21344 else
21345 if Is_Array_Type (Subtype_Mark_Id)
21346 or else Is_Concurrent_Type (Subtype_Mark_Id)
21347 or else Is_Access_Type (Subtype_Mark_Id)
21348 then
21349 Def_Id := Empty;
21350
21351 -- For the other cases, we create a new unattached Itype,
21352 -- and set the indication to ensure it gets attached later.
21353
21354 else
21355 Def_Id :=
21356 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21357 end if;
21358 end if;
21359
21360 -- If the kind of constraint is invalid for this kind of type,
21361 -- then give an error, and then pretend no constraint was given.
21362
21363 if not Is_Valid_Constraint_Kind
21364 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21365 then
21366 Error_Msg_N
21367 ("incorrect constraint for this kind of type", Constraint (S));
21368
21369 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21370
21371 -- Set Ekind of orphan itype, to prevent cascaded errors
21372
21373 if Present (Def_Id) then
21374 Set_Ekind (Def_Id, Ekind (Any_Type));
21375 end if;
21376
21377 -- Make recursive call, having got rid of the bogus constraint
21378
21379 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21380 end if;
21381
21382 -- Remaining processing depends on type. Select on Base_Type kind to
21383 -- ensure getting to the concrete type kind in the case of a private
21384 -- subtype (needed when only doing semantic analysis).
21385
21386 case Ekind (Base_Type (Subtype_Mark_Id)) is
21387 when Access_Kind =>
21388
21389 -- If this is a constraint on a class-wide type, discard it.
21390 -- There is currently no way to express a partial discriminant
21391 -- constraint on a type with unknown discriminants. This is
21392 -- a pathology that the ACATS wisely decides not to test.
21393
21394 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21395 if Comes_From_Source (S) then
21396 Error_Msg_N
21397 ("constraint on class-wide type ignored??",
21398 Constraint (S));
21399 end if;
21400
21401 if Nkind (P) = N_Subtype_Declaration then
21402 Set_Subtype_Indication (P,
21403 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21404 end if;
21405
21406 return Subtype_Mark_Id;
21407 end if;
21408
21409 Constrain_Access (Def_Id, S, Related_Nod);
21410
21411 if Expander_Active
21412 and then Is_Itype (Designated_Type (Def_Id))
21413 and then Nkind (Related_Nod) = N_Subtype_Declaration
21414 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21415 then
21416 Build_Itype_Reference
21417 (Designated_Type (Def_Id), Related_Nod);
21418 end if;
21419
21420 when Array_Kind =>
21421 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21422
21423 when Decimal_Fixed_Point_Kind =>
21424 Constrain_Decimal (Def_Id, S);
21425
21426 when Enumeration_Kind =>
21427 Constrain_Enumeration (Def_Id, S);
21428 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21429
21430 when Ordinary_Fixed_Point_Kind =>
21431 Constrain_Ordinary_Fixed (Def_Id, S);
21432
21433 when Float_Kind =>
21434 Constrain_Float (Def_Id, S);
21435
21436 when Integer_Kind =>
21437 Constrain_Integer (Def_Id, S);
21438 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21439
21440 when Class_Wide_Kind
21441 | E_Incomplete_Type
21442 | E_Record_Subtype
21443 | E_Record_Type
21444 =>
21445 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21446
21447 if Ekind (Def_Id) = E_Incomplete_Type then
21448 Set_Private_Dependents (Def_Id, New_Elmt_List);
21449 end if;
21450
21451 when Private_Kind =>
21452 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21453
21454 -- The base type may be private but Def_Id may be a full view
21455 -- in an instance.
21456
21457 if Is_Private_Type (Def_Id) then
21458 Set_Private_Dependents (Def_Id, New_Elmt_List);
21459 end if;
21460
21461 -- In case of an invalid constraint prevent further processing
21462 -- since the type constructed is missing expected fields.
21463
21464 if Etype (Def_Id) = Any_Type then
21465 return Def_Id;
21466 end if;
21467
21468 -- If the full view is that of a task with discriminants,
21469 -- we must constrain both the concurrent type and its
21470 -- corresponding record type. Otherwise we will just propagate
21471 -- the constraint to the full view, if available.
21472
21473 if Present (Full_View (Subtype_Mark_Id))
21474 and then Has_Discriminants (Subtype_Mark_Id)
21475 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21476 then
21477 Full_View_Id :=
21478 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21479
21480 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21481 Constrain_Concurrent (Full_View_Id, S,
21482 Related_Nod, Related_Id, Suffix);
21483 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21484 Set_Full_View (Def_Id, Full_View_Id);
21485
21486 -- Introduce an explicit reference to the private subtype,
21487 -- to prevent scope anomalies in gigi if first use appears
21488 -- in a nested context, e.g. a later function body.
21489 -- Should this be generated in other contexts than a full
21490 -- type declaration?
21491
21492 if Is_Itype (Def_Id)
21493 and then
21494 Nkind (Parent (P)) = N_Full_Type_Declaration
21495 then
21496 Build_Itype_Reference (Def_Id, Parent (P));
21497 end if;
21498
21499 else
21500 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21501 end if;
21502
21503 when Concurrent_Kind =>
21504 Constrain_Concurrent (Def_Id, S,
21505 Related_Nod, Related_Id, Suffix);
21506
21507 when others =>
21508 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21509 end case;
21510
21511 -- Size and Convention are always inherited from the base type
21512
21513 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21514 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21515
21516 return Def_Id;
21517 end if;
21518 end Process_Subtype;
21519
21520 -----------------------------
21521 -- Record_Type_Declaration --
21522 -----------------------------
21523
21524 procedure Record_Type_Declaration
21525 (T : Entity_Id;
21526 N : Node_Id;
21527 Prev : Entity_Id)
21528 is
21529 Def : constant Node_Id := Type_Definition (N);
21530 Is_Tagged : Boolean;
21531 Tag_Comp : Entity_Id;
21532
21533 begin
21534 -- These flags must be initialized before calling Process_Discriminants
21535 -- because this routine makes use of them.
21536
21537 Set_Ekind (T, E_Record_Type);
21538 Set_Etype (T, T);
21539 Init_Size_Align (T);
21540 Set_Interfaces (T, No_Elist);
21541 Set_Stored_Constraint (T, No_Elist);
21542 Set_Default_SSO (T);
21543
21544 -- Normal case
21545
21546 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21547 if Limited_Present (Def) then
21548 Check_SPARK_05_Restriction ("limited is not allowed", N);
21549 end if;
21550
21551 if Abstract_Present (Def) then
21552 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21553 end if;
21554
21555 -- The flag Is_Tagged_Type might have already been set by
21556 -- Find_Type_Name if it detected an error for declaration T. This
21557 -- arises in the case of private tagged types where the full view
21558 -- omits the word tagged.
21559
21560 Is_Tagged :=
21561 Tagged_Present (Def)
21562 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21563
21564 Set_Is_Limited_Record (T, Limited_Present (Def));
21565
21566 if Is_Tagged then
21567 Set_Is_Tagged_Type (T, True);
21568 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21569 end if;
21570
21571 -- Type is abstract if full declaration carries keyword, or if
21572 -- previous partial view did.
21573
21574 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21575 or else Abstract_Present (Def));
21576
21577 else
21578 Check_SPARK_05_Restriction ("interface is not allowed", N);
21579
21580 Is_Tagged := True;
21581 Analyze_Interface_Declaration (T, Def);
21582
21583 if Present (Discriminant_Specifications (N)) then
21584 Error_Msg_N
21585 ("interface types cannot have discriminants",
21586 Defining_Identifier
21587 (First (Discriminant_Specifications (N))));
21588 end if;
21589 end if;
21590
21591 -- First pass: if there are self-referential access components,
21592 -- create the required anonymous access type declarations, and if
21593 -- need be an incomplete type declaration for T itself.
21594
21595 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21596
21597 if Ada_Version >= Ada_2005
21598 and then Present (Interface_List (Def))
21599 then
21600 Check_Interfaces (N, Def);
21601
21602 declare
21603 Ifaces_List : Elist_Id;
21604
21605 begin
21606 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21607 -- already in the parents.
21608
21609 Collect_Interfaces
21610 (T => T,
21611 Ifaces_List => Ifaces_List,
21612 Exclude_Parents => True);
21613
21614 Set_Interfaces (T, Ifaces_List);
21615 end;
21616 end if;
21617
21618 -- Records constitute a scope for the component declarations within.
21619 -- The scope is created prior to the processing of these declarations.
21620 -- Discriminants are processed first, so that they are visible when
21621 -- processing the other components. The Ekind of the record type itself
21622 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21623
21624 -- Enter record scope
21625
21626 Push_Scope (T);
21627
21628 -- If an incomplete or private type declaration was already given for
21629 -- the type, then this scope already exists, and the discriminants have
21630 -- been declared within. We must verify that the full declaration
21631 -- matches the incomplete one.
21632
21633 Check_Or_Process_Discriminants (N, T, Prev);
21634
21635 Set_Is_Constrained (T, not Has_Discriminants (T));
21636 Set_Has_Delayed_Freeze (T, True);
21637
21638 -- For tagged types add a manually analyzed component corresponding
21639 -- to the component _tag, the corresponding piece of tree will be
21640 -- expanded as part of the freezing actions if it is not a CPP_Class.
21641
21642 if Is_Tagged then
21643
21644 -- Do not add the tag unless we are in expansion mode
21645
21646 if Expander_Active then
21647 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21648 Enter_Name (Tag_Comp);
21649
21650 Set_Ekind (Tag_Comp, E_Component);
21651 Set_Is_Tag (Tag_Comp);
21652 Set_Is_Aliased (Tag_Comp);
21653 Set_Etype (Tag_Comp, RTE (RE_Tag));
21654 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21655 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21656 Init_Component_Location (Tag_Comp);
21657
21658 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21659 -- implemented interfaces.
21660
21661 if Has_Interfaces (T) then
21662 Add_Interface_Tag_Components (N, T);
21663 end if;
21664 end if;
21665
21666 Make_Class_Wide_Type (T);
21667 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21668 end if;
21669
21670 -- We must suppress range checks when processing record components in
21671 -- the presence of discriminants, since we don't want spurious checks to
21672 -- be generated during their analysis, but Suppress_Range_Checks flags
21673 -- must be reset the after processing the record definition.
21674
21675 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21676 -- couldn't we just use the normal range check suppression method here.
21677 -- That would seem cleaner ???
21678
21679 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21680 Set_Kill_Range_Checks (T, True);
21681 Record_Type_Definition (Def, Prev);
21682 Set_Kill_Range_Checks (T, False);
21683 else
21684 Record_Type_Definition (Def, Prev);
21685 end if;
21686
21687 -- Exit from record scope
21688
21689 End_Scope;
21690
21691 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21692 -- the implemented interfaces and associate them an aliased entity.
21693
21694 if Is_Tagged
21695 and then not Is_Empty_List (Interface_List (Def))
21696 then
21697 Derive_Progenitor_Subprograms (T, T);
21698 end if;
21699
21700 Check_Function_Writable_Actuals (N);
21701 end Record_Type_Declaration;
21702
21703 ----------------------------
21704 -- Record_Type_Definition --
21705 ----------------------------
21706
21707 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21708 Component : Entity_Id;
21709 Ctrl_Components : Boolean := False;
21710 Final_Storage_Only : Boolean;
21711 T : Entity_Id;
21712
21713 begin
21714 if Ekind (Prev_T) = E_Incomplete_Type then
21715 T := Full_View (Prev_T);
21716 else
21717 T := Prev_T;
21718 end if;
21719
21720 -- In SPARK, tagged types and type extensions may only be declared in
21721 -- the specification of library unit packages.
21722
21723 if Present (Def) and then Is_Tagged_Type (T) then
21724 declare
21725 Typ : Node_Id;
21726 Ctxt : Node_Id;
21727
21728 begin
21729 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21730 Typ := Parent (Def);
21731 else
21732 pragma Assert
21733 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21734 Typ := Parent (Parent (Def));
21735 end if;
21736
21737 Ctxt := Parent (Typ);
21738
21739 if Nkind (Ctxt) = N_Package_Body
21740 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21741 then
21742 Check_SPARK_05_Restriction
21743 ("type should be defined in package specification", Typ);
21744
21745 elsif Nkind (Ctxt) /= N_Package_Specification
21746 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21747 then
21748 Check_SPARK_05_Restriction
21749 ("type should be defined in library unit package", Typ);
21750 end if;
21751 end;
21752 end if;
21753
21754 Final_Storage_Only := not Is_Controlled_Active (T);
21755
21756 -- Ada 2005: Check whether an explicit Limited is present in a derived
21757 -- type declaration.
21758
21759 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21760 and then Limited_Present (Parent (Def))
21761 then
21762 Set_Is_Limited_Record (T);
21763 end if;
21764
21765 -- If the component list of a record type is defined by the reserved
21766 -- word null and there is no discriminant part, then the record type has
21767 -- no components and all records of the type are null records (RM 3.7)
21768 -- This procedure is also called to process the extension part of a
21769 -- record extension, in which case the current scope may have inherited
21770 -- components.
21771
21772 if No (Def)
21773 or else No (Component_List (Def))
21774 or else Null_Present (Component_List (Def))
21775 then
21776 if not Is_Tagged_Type (T) then
21777 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21778 end if;
21779
21780 else
21781 Analyze_Declarations (Component_Items (Component_List (Def)));
21782
21783 if Present (Variant_Part (Component_List (Def))) then
21784 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21785 Analyze (Variant_Part (Component_List (Def)));
21786 end if;
21787 end if;
21788
21789 -- After completing the semantic analysis of the record definition,
21790 -- record components, both new and inherited, are accessible. Set their
21791 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21792 -- whose Ekind may be void.
21793
21794 Component := First_Entity (Current_Scope);
21795 while Present (Component) loop
21796 if Ekind (Component) = E_Void
21797 and then not Is_Itype (Component)
21798 then
21799 Set_Ekind (Component, E_Component);
21800 Init_Component_Location (Component);
21801 end if;
21802
21803 Propagate_Concurrent_Flags (T, Etype (Component));
21804
21805 if Ekind (Component) /= E_Component then
21806 null;
21807
21808 -- Do not set Has_Controlled_Component on a class-wide equivalent
21809 -- type. See Make_CW_Equivalent_Type.
21810
21811 elsif not Is_Class_Wide_Equivalent_Type (T)
21812 and then (Has_Controlled_Component (Etype (Component))
21813 or else (Chars (Component) /= Name_uParent
21814 and then Is_Controlled_Active
21815 (Etype (Component))))
21816 then
21817 Set_Has_Controlled_Component (T, True);
21818 Final_Storage_Only :=
21819 Final_Storage_Only
21820 and then Finalize_Storage_Only (Etype (Component));
21821 Ctrl_Components := True;
21822 end if;
21823
21824 Next_Entity (Component);
21825 end loop;
21826
21827 -- A Type is Finalize_Storage_Only only if all its controlled components
21828 -- are also.
21829
21830 if Ctrl_Components then
21831 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21832 end if;
21833
21834 -- Place reference to end record on the proper entity, which may
21835 -- be a partial view.
21836
21837 if Present (Def) then
21838 Process_End_Label (Def, 'e', Prev_T);
21839 end if;
21840 end Record_Type_Definition;
21841
21842 ------------------------
21843 -- Replace_Components --
21844 ------------------------
21845
21846 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21847 function Process (N : Node_Id) return Traverse_Result;
21848
21849 -------------
21850 -- Process --
21851 -------------
21852
21853 function Process (N : Node_Id) return Traverse_Result is
21854 Comp : Entity_Id;
21855
21856 begin
21857 if Nkind (N) = N_Discriminant_Specification then
21858 Comp := First_Discriminant (Typ);
21859 while Present (Comp) loop
21860 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21861 Set_Defining_Identifier (N, Comp);
21862 exit;
21863 end if;
21864
21865 Next_Discriminant (Comp);
21866 end loop;
21867
21868 elsif Nkind (N) = N_Component_Declaration then
21869 Comp := First_Component (Typ);
21870 while Present (Comp) loop
21871 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21872 Set_Defining_Identifier (N, Comp);
21873 exit;
21874 end if;
21875
21876 Next_Component (Comp);
21877 end loop;
21878 end if;
21879
21880 return OK;
21881 end Process;
21882
21883 procedure Replace is new Traverse_Proc (Process);
21884
21885 -- Start of processing for Replace_Components
21886
21887 begin
21888 Replace (Decl);
21889 end Replace_Components;
21890
21891 -------------------------------
21892 -- Set_Completion_Referenced --
21893 -------------------------------
21894
21895 procedure Set_Completion_Referenced (E : Entity_Id) is
21896 begin
21897 -- If in main unit, mark entity that is a completion as referenced,
21898 -- warnings go on the partial view when needed.
21899
21900 if In_Extended_Main_Source_Unit (E) then
21901 Set_Referenced (E);
21902 end if;
21903 end Set_Completion_Referenced;
21904
21905 ---------------------
21906 -- Set_Default_SSO --
21907 ---------------------
21908
21909 procedure Set_Default_SSO (T : Entity_Id) is
21910 begin
21911 case Opt.Default_SSO is
21912 when ' ' =>
21913 null;
21914 when 'L' =>
21915 Set_SSO_Set_Low_By_Default (T, True);
21916 when 'H' =>
21917 Set_SSO_Set_High_By_Default (T, True);
21918 when others =>
21919 raise Program_Error;
21920 end case;
21921 end Set_Default_SSO;
21922
21923 ---------------------
21924 -- Set_Fixed_Range --
21925 ---------------------
21926
21927 -- The range for fixed-point types is complicated by the fact that we
21928 -- do not know the exact end points at the time of the declaration. This
21929 -- is true for three reasons:
21930
21931 -- A size clause may affect the fudging of the end-points.
21932 -- A small clause may affect the values of the end-points.
21933 -- We try to include the end-points if it does not affect the size.
21934
21935 -- This means that the actual end-points must be established at the
21936 -- point when the type is frozen. Meanwhile, we first narrow the range
21937 -- as permitted (so that it will fit if necessary in a small specified
21938 -- size), and then build a range subtree with these narrowed bounds.
21939 -- Set_Fixed_Range constructs the range from real literal values, and
21940 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21941
21942 -- The parent of this range is set to point to the entity so that it is
21943 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21944 -- other scalar types, which are just pointers to the range in the
21945 -- original tree, this would otherwise be an orphan).
21946
21947 -- The tree is left unanalyzed. When the type is frozen, the processing
21948 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21949 -- analyzed, and uses this as an indication that it should complete
21950 -- work on the range (it will know the final small and size values).
21951
21952 procedure Set_Fixed_Range
21953 (E : Entity_Id;
21954 Loc : Source_Ptr;
21955 Lo : Ureal;
21956 Hi : Ureal)
21957 is
21958 S : constant Node_Id :=
21959 Make_Range (Loc,
21960 Low_Bound => Make_Real_Literal (Loc, Lo),
21961 High_Bound => Make_Real_Literal (Loc, Hi));
21962 begin
21963 Set_Scalar_Range (E, S);
21964 Set_Parent (S, E);
21965
21966 -- Before the freeze point, the bounds of a fixed point are universal
21967 -- and carry the corresponding type.
21968
21969 Set_Etype (Low_Bound (S), Universal_Real);
21970 Set_Etype (High_Bound (S), Universal_Real);
21971 end Set_Fixed_Range;
21972
21973 ----------------------------------
21974 -- Set_Scalar_Range_For_Subtype --
21975 ----------------------------------
21976
21977 procedure Set_Scalar_Range_For_Subtype
21978 (Def_Id : Entity_Id;
21979 R : Node_Id;
21980 Subt : Entity_Id)
21981 is
21982 Kind : constant Entity_Kind := Ekind (Def_Id);
21983
21984 begin
21985 -- Defend against previous error
21986
21987 if Nkind (R) = N_Error then
21988 return;
21989 end if;
21990
21991 Set_Scalar_Range (Def_Id, R);
21992
21993 -- We need to link the range into the tree before resolving it so
21994 -- that types that are referenced, including importantly the subtype
21995 -- itself, are properly frozen (Freeze_Expression requires that the
21996 -- expression be properly linked into the tree). Of course if it is
21997 -- already linked in, then we do not disturb the current link.
21998
21999 if No (Parent (R)) then
22000 Set_Parent (R, Def_Id);
22001 end if;
22002
22003 -- Reset the kind of the subtype during analysis of the range, to
22004 -- catch possible premature use in the bounds themselves.
22005
22006 Set_Ekind (Def_Id, E_Void);
22007 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22008 Set_Ekind (Def_Id, Kind);
22009 end Set_Scalar_Range_For_Subtype;
22010
22011 --------------------------------------------------------
22012 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22013 --------------------------------------------------------
22014
22015 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22016 (E : Entity_Id)
22017 is
22018 begin
22019 -- Make sure set if encountered during Expand_To_Stored_Constraint
22020
22021 Set_Stored_Constraint (E, No_Elist);
22022
22023 -- Give it the right value
22024
22025 if Is_Constrained (E) and then Has_Discriminants (E) then
22026 Set_Stored_Constraint (E,
22027 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22028 end if;
22029 end Set_Stored_Constraint_From_Discriminant_Constraint;
22030
22031 -------------------------------------
22032 -- Signed_Integer_Type_Declaration --
22033 -------------------------------------
22034
22035 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22036 Implicit_Base : Entity_Id;
22037 Base_Typ : Entity_Id;
22038 Lo_Val : Uint;
22039 Hi_Val : Uint;
22040 Errs : Boolean := False;
22041 Lo : Node_Id;
22042 Hi : Node_Id;
22043
22044 function Can_Derive_From (E : Entity_Id) return Boolean;
22045 -- Determine whether given bounds allow derivation from specified type
22046
22047 procedure Check_Bound (Expr : Node_Id);
22048 -- Check bound to make sure it is integral and static. If not, post
22049 -- appropriate error message and set Errs flag
22050
22051 ---------------------
22052 -- Can_Derive_From --
22053 ---------------------
22054
22055 -- Note we check both bounds against both end values, to deal with
22056 -- strange types like ones with a range of 0 .. -12341234.
22057
22058 function Can_Derive_From (E : Entity_Id) return Boolean is
22059 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22060 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22061 begin
22062 return Lo <= Lo_Val and then Lo_Val <= Hi
22063 and then
22064 Lo <= Hi_Val and then Hi_Val <= Hi;
22065 end Can_Derive_From;
22066
22067 -----------------
22068 -- Check_Bound --
22069 -----------------
22070
22071 procedure Check_Bound (Expr : Node_Id) is
22072 begin
22073 -- If a range constraint is used as an integer type definition, each
22074 -- bound of the range must be defined by a static expression of some
22075 -- integer type, but the two bounds need not have the same integer
22076 -- type (Negative bounds are allowed.) (RM 3.5.4)
22077
22078 if not Is_Integer_Type (Etype (Expr)) then
22079 Error_Msg_N
22080 ("integer type definition bounds must be of integer type", Expr);
22081 Errs := True;
22082
22083 elsif not Is_OK_Static_Expression (Expr) then
22084 Flag_Non_Static_Expr
22085 ("non-static expression used for integer type bound!", Expr);
22086 Errs := True;
22087
22088 -- The bounds are folded into literals, and we set their type to be
22089 -- universal, to avoid typing difficulties: we cannot set the type
22090 -- of the literal to the new type, because this would be a forward
22091 -- reference for the back end, and if the original type is user-
22092 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22093
22094 else
22095 if Is_Entity_Name (Expr) then
22096 Fold_Uint (Expr, Expr_Value (Expr), True);
22097 end if;
22098
22099 Set_Etype (Expr, Universal_Integer);
22100 end if;
22101 end Check_Bound;
22102
22103 -- Start of processing for Signed_Integer_Type_Declaration
22104
22105 begin
22106 -- Create an anonymous base type
22107
22108 Implicit_Base :=
22109 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22110
22111 -- Analyze and check the bounds, they can be of any integer type
22112
22113 Lo := Low_Bound (Def);
22114 Hi := High_Bound (Def);
22115
22116 -- Arbitrarily use Integer as the type if either bound had an error
22117
22118 if Hi = Error or else Lo = Error then
22119 Base_Typ := Any_Integer;
22120 Set_Error_Posted (T, True);
22121
22122 -- Here both bounds are OK expressions
22123
22124 else
22125 Analyze_And_Resolve (Lo, Any_Integer);
22126 Analyze_And_Resolve (Hi, Any_Integer);
22127
22128 Check_Bound (Lo);
22129 Check_Bound (Hi);
22130
22131 if Errs then
22132 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22133 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22134 end if;
22135
22136 -- Find type to derive from
22137
22138 Lo_Val := Expr_Value (Lo);
22139 Hi_Val := Expr_Value (Hi);
22140
22141 if Can_Derive_From (Standard_Short_Short_Integer) then
22142 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22143
22144 elsif Can_Derive_From (Standard_Short_Integer) then
22145 Base_Typ := Base_Type (Standard_Short_Integer);
22146
22147 elsif Can_Derive_From (Standard_Integer) then
22148 Base_Typ := Base_Type (Standard_Integer);
22149
22150 elsif Can_Derive_From (Standard_Long_Integer) then
22151 Base_Typ := Base_Type (Standard_Long_Integer);
22152
22153 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22154 Check_Restriction (No_Long_Long_Integers, Def);
22155 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22156
22157 else
22158 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22159 Error_Msg_N ("integer type definition bounds out of range", Def);
22160 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22161 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22162 end if;
22163 end if;
22164
22165 -- Complete both implicit base and declared first subtype entities. The
22166 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22167 -- are not clobbered when the signed integer type acts as a full view of
22168 -- a private type.
22169
22170 Set_Etype (Implicit_Base, Base_Typ);
22171 Set_Size_Info (Implicit_Base, Base_Typ);
22172 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22173 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22174 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22175
22176 Set_Ekind (T, E_Signed_Integer_Subtype);
22177 Set_Etype (T, Implicit_Base);
22178 Set_Size_Info (T, Implicit_Base);
22179 Inherit_Rep_Item_Chain (T, Implicit_Base);
22180 Set_Scalar_Range (T, Def);
22181 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22182 Set_Is_Constrained (T);
22183 end Signed_Integer_Type_Declaration;
22184
22185 end Sem_Ch3;