[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraint
354 -- Constraints for Typ and a component of Typ, with type Compon_Type,
355 -- create and return the type corresponding to Compon_type where all
356 -- discriminant references are replaced with the corresponding constraint.
357 -- If no discriminant references occur in Compon_Typ then return it as is.
358 -- Constrained_Typ is the final constrained subtype to which the
359 -- constrained Compon_Type belongs. Related_Node is the node where we will
360 -- attach all the itypes created.
361 --
362 -- Above description is confused, what is Compon_Type???
363
364 procedure Constrain_Access
365 (Def_Id : in out Entity_Id;
366 S : Node_Id;
367 Related_Nod : Node_Id);
368 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
369 -- an anonymous type created for a subtype indication. In that case it is
370 -- created in the procedure and attached to Related_Nod.
371
372 procedure Constrain_Array
373 (Def_Id : in out Entity_Id;
374 SI : Node_Id;
375 Related_Nod : Node_Id;
376 Related_Id : Entity_Id;
377 Suffix : Character);
378 -- Apply a list of index constraints to an unconstrained array type. The
379 -- first parameter is the entity for the resulting subtype. A value of
380 -- Empty for Def_Id indicates that an implicit type must be created, but
381 -- creation is delayed (and must be done by this procedure) because other
382 -- subsidiary implicit types must be created first (which is why Def_Id
383 -- is an in/out parameter). The second parameter is a subtype indication
384 -- node for the constrained array to be created (e.g. something of the
385 -- form string (1 .. 10)). Related_Nod gives the place where this type
386 -- has to be inserted in the tree. The Related_Id and Suffix parameters
387 -- are used to build the associated Implicit type name.
388
389 procedure Constrain_Concurrent
390 (Def_Id : in out Entity_Id;
391 SI : Node_Id;
392 Related_Nod : Node_Id;
393 Related_Id : Entity_Id;
394 Suffix : Character);
395 -- Apply list of discriminant constraints to an unconstrained concurrent
396 -- type.
397 --
398 -- SI is the N_Subtype_Indication node containing the constraint and
399 -- the unconstrained type to constrain.
400 --
401 -- Def_Id is the entity for the resulting constrained subtype. A value
402 -- of Empty for Def_Id indicates that an implicit type must be created,
403 -- but creation is delayed (and must be done by this procedure) because
404 -- other subsidiary implicit types must be created first (which is why
405 -- Def_Id is an in/out parameter).
406 --
407 -- Related_Nod gives the place where this type has to be inserted
408 -- in the tree
409 --
410 -- The last two arguments are used to create its external name if needed.
411
412 function Constrain_Corresponding_Record
413 (Prot_Subt : Entity_Id;
414 Corr_Rec : Entity_Id;
415 Related_Nod : Node_Id;
416 Related_Id : Entity_Id) return Entity_Id;
417 -- When constraining a protected type or task type with discriminants,
418 -- constrain the corresponding record with the same discriminant values.
419
420 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
421 -- Constrain a decimal fixed point type with a digits constraint and/or a
422 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
423
424 procedure Constrain_Discriminated_Type
425 (Def_Id : Entity_Id;
426 S : Node_Id;
427 Related_Nod : Node_Id;
428 For_Access : Boolean := False);
429 -- Process discriminant constraints of composite type. Verify that values
430 -- have been provided for all discriminants, that the original type is
431 -- unconstrained, and that the types of the supplied expressions match
432 -- the discriminant types. The first three parameters are like in routine
433 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
434 -- of For_Access.
435
436 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain an enumeration type with a range constraint. This is identical
438 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
439
440 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
441 -- Constrain a floating point type with either a digits constraint
442 -- and/or a range constraint, building a E_Floating_Point_Subtype.
443
444 procedure Constrain_Index
445 (Index : Node_Id;
446 S : Node_Id;
447 Related_Nod : Node_Id;
448 Related_Id : Entity_Id;
449 Suffix : Character;
450 Suffix_Index : Nat);
451 -- Process an index constraint S in a constrained array declaration. The
452 -- constraint can be a subtype name, or a range with or without an explicit
453 -- subtype mark. The index is the corresponding index of the unconstrained
454 -- array. The Related_Id and Suffix parameters are used to build the
455 -- associated Implicit type name.
456
457 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
458 -- Build subtype of a signed or modular integer type
459
460 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
461 -- Constrain an ordinary fixed point type with a range constraint, and
462 -- build an E_Ordinary_Fixed_Point_Subtype entity.
463
464 procedure Copy_And_Swap (Priv, Full : Entity_Id);
465 -- Copy the Priv entity into the entity of its full declaration then swap
466 -- the two entities in such a manner that the former private type is now
467 -- seen as a full type.
468
469 procedure Decimal_Fixed_Point_Type_Declaration
470 (T : Entity_Id;
471 Def : Node_Id);
472 -- Create a new decimal fixed point type, and apply the constraint to
473 -- obtain a subtype of this new type.
474
475 procedure Complete_Private_Subtype
476 (Priv : Entity_Id;
477 Full : Entity_Id;
478 Full_Base : Entity_Id;
479 Related_Nod : Node_Id);
480 -- Complete the implicit full view of a private subtype by setting the
481 -- appropriate semantic fields. If the full view of the parent is a record
482 -- type, build constrained components of subtype.
483
484 procedure Derive_Progenitor_Subprograms
485 (Parent_Type : Entity_Id;
486 Tagged_Type : Entity_Id);
487 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
488 -- operations of progenitors of Tagged_Type, and replace the subsidiary
489 -- subtypes with Tagged_Type, to build the specs of the inherited interface
490 -- primitives. The derived primitives are aliased to those of the
491 -- interface. This routine takes care also of transferring to the full view
492 -- subprograms associated with the partial view of Tagged_Type that cover
493 -- interface primitives.
494
495 procedure Derived_Standard_Character
496 (N : Node_Id;
497 Parent_Type : Entity_Id;
498 Derived_Type : Entity_Id);
499 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
500 -- derivations from types Standard.Character and Standard.Wide_Character.
501
502 procedure Derived_Type_Declaration
503 (T : Entity_Id;
504 N : Node_Id;
505 Is_Completion : Boolean);
506 -- Process a derived type declaration. Build_Derived_Type is invoked
507 -- to process the actual derived type definition. Parameters N and
508 -- Is_Completion have the same meaning as in Build_Derived_Type.
509 -- T is the N_Defining_Identifier for the entity defined in the
510 -- N_Full_Type_Declaration node N, that is T is the derived type.
511
512 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
513 -- Insert each literal in symbol table, as an overloadable identifier. Each
514 -- enumeration type is mapped into a sequence of integers, and each literal
515 -- is defined as a constant with integer value. If any of the literals are
516 -- character literals, the type is a character type, which means that
517 -- strings are legal aggregates for arrays of components of the type.
518
519 function Expand_To_Stored_Constraint
520 (Typ : Entity_Id;
521 Constraint : Elist_Id) return Elist_Id;
522 -- Given a constraint (i.e. a list of expressions) on the discriminants of
523 -- Typ, expand it into a constraint on the stored discriminants and return
524 -- the new list of expressions constraining the stored discriminants.
525
526 function Find_Type_Of_Object
527 (Obj_Def : Node_Id;
528 Related_Nod : Node_Id) return Entity_Id;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
531
532 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
533 -- Create a new float and apply the constraint to obtain subtype of it
534
535 function Has_Range_Constraint (N : Node_Id) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
540
541 function Inherit_Components
542 (N : Node_Id;
543 Parent_Base : Entity_Id;
544 Derived_Base : Entity_Id;
545 Is_Tagged : Boolean;
546 Inherit_Discr : Boolean;
547 Discs : Elist_Id) return Elist_Id;
548 -- Called from Build_Derived_Record_Type to inherit the components of
549 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
550 -- For more information on derived types and component inheritance please
551 -- consult the comment above the body of Build_Derived_Record_Type.
552 --
553 -- N is the original derived type declaration
554 --
555 -- Is_Tagged is set if we are dealing with tagged types
556 --
557 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
558 -- Parent_Base, otherwise no discriminants are inherited.
559 --
560 -- Discs gives the list of constraints that apply to Parent_Base in the
561 -- derived type declaration. If Discs is set to No_Elist, then we have
562 -- the following situation:
563 --
564 -- type Parent (D1..Dn : ..) is [tagged] record ...;
565 -- type Derived is new Parent [with ...];
566 --
567 -- which gets treated as
568 --
569 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
570 --
571 -- For untagged types the returned value is an association list. The list
572 -- starts from the association (Parent_Base => Derived_Base), and then it
573 -- contains a sequence of the associations of the form
574 --
575 -- (Old_Component => New_Component),
576 --
577 -- where Old_Component is the Entity_Id of a component in Parent_Base and
578 -- New_Component is the Entity_Id of the corresponding component in
579 -- Derived_Base. For untagged records, this association list is needed when
580 -- copying the record declaration for the derived base. In the tagged case
581 -- the value returned is irrelevant.
582
583 function Is_Valid_Constraint_Kind
584 (T_Kind : Type_Kind;
585 Constraint_Kind : Node_Kind) return Boolean;
586 -- Returns True if it is legal to apply the given kind of constraint to the
587 -- given kind of type (index constraint to an array type, for example).
588
589 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
590 -- Create new modular type. Verify that modulus is in bounds
591
592 procedure New_Concatenation_Op (Typ : Entity_Id);
593 -- Create an abbreviated declaration for an operator in order to
594 -- materialize concatenation on array types.
595
596 procedure Ordinary_Fixed_Point_Type_Declaration
597 (T : Entity_Id;
598 Def : Node_Id);
599 -- Create a new ordinary fixed point type, and apply the constraint to
600 -- obtain subtype of it.
601
602 procedure Prepare_Private_Subtype_Completion
603 (Id : Entity_Id;
604 Related_Nod : Node_Id);
605 -- Id is a subtype of some private type. Creates the full declaration
606 -- associated with Id whenever possible, i.e. when the full declaration
607 -- of the base type is already known. Records each subtype into
608 -- Private_Dependents of the base type.
609
610 procedure Process_Incomplete_Dependents
611 (N : Node_Id;
612 Full_T : Entity_Id;
613 Inc_T : Entity_Id);
614 -- Process all entities that depend on an incomplete type. There include
615 -- subtypes, subprogram types that mention the incomplete type in their
616 -- profiles, and subprogram with access parameters that designate the
617 -- incomplete type.
618
619 -- Inc_T is the defining identifier of an incomplete type declaration, its
620 -- Ekind is E_Incomplete_Type.
621 --
622 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
623 --
624 -- Full_T is N's defining identifier.
625 --
626 -- Subtypes of incomplete types with discriminants are completed when the
627 -- parent type is. This is simpler than private subtypes, because they can
628 -- only appear in the same scope, and there is no need to exchange views.
629 -- Similarly, access_to_subprogram types may have a parameter or a return
630 -- type that is an incomplete type, and that must be replaced with the
631 -- full type.
632 --
633 -- If the full type is tagged, subprogram with access parameters that
634 -- designated the incomplete may be primitive operations of the full type,
635 -- and have to be processed accordingly.
636
637 procedure Process_Real_Range_Specification (Def : Node_Id);
638 -- Given the type definition for a real type, this procedure processes and
639 -- checks the real range specification of this type definition if one is
640 -- present. If errors are found, error messages are posted, and the
641 -- Real_Range_Specification of Def is reset to Empty.
642
643 procedure Record_Type_Declaration
644 (T : Entity_Id;
645 N : Node_Id;
646 Prev : Entity_Id);
647 -- Process a record type declaration (for both untagged and tagged
648 -- records). Parameters T and N are exactly like in procedure
649 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
650 -- for this routine. If this is the completion of an incomplete type
651 -- declaration, Prev is the entity of the incomplete declaration, used for
652 -- cross-referencing. Otherwise Prev = T.
653
654 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
655 -- This routine is used to process the actual record type definition (both
656 -- for untagged and tagged records). Def is a record type definition node.
657 -- This procedure analyzes the components in this record type definition.
658 -- Prev_T is the entity for the enclosing record type. It is provided so
659 -- that its Has_Task flag can be set if any of the component have Has_Task
660 -- set. If the declaration is the completion of an incomplete type
661 -- declaration, Prev_T is the original incomplete type, whose full view is
662 -- the record type.
663
664 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
665 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
666 -- build a copy of the declaration tree of the parent, and we create
667 -- independently the list of components for the derived type. Semantic
668 -- information uses the component entities, but record representation
669 -- clauses are validated on the declaration tree. This procedure replaces
670 -- discriminants and components in the declaration with those that have
671 -- been created by Inherit_Components.
672
673 procedure Set_Fixed_Range
674 (E : Entity_Id;
675 Loc : Source_Ptr;
676 Lo : Ureal;
677 Hi : Ureal);
678 -- Build a range node with the given bounds and set it as the Scalar_Range
679 -- of the given fixed-point type entity. Loc is the source location used
680 -- for the constructed range. See body for further details.
681
682 procedure Set_Scalar_Range_For_Subtype
683 (Def_Id : Entity_Id;
684 R : Node_Id;
685 Subt : Entity_Id);
686 -- This routine is used to set the scalar range field for a subtype given
687 -- Def_Id, the entity for the subtype, and R, the range expression for the
688 -- scalar range. Subt provides the parent subtype to be used to analyze,
689 -- resolve, and check the given range.
690
691 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
692 -- Create a new signed integer entity, and apply the constraint to obtain
693 -- the required first named subtype of this type.
694
695 procedure Set_Stored_Constraint_From_Discriminant_Constraint
696 (E : Entity_Id);
697 -- E is some record type. This routine computes E's Stored_Constraint
698 -- from its Discriminant_Constraint.
699
700 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
701 -- Check that an entity in a list of progenitors is an interface,
702 -- emit error otherwise.
703
704 -----------------------
705 -- Access_Definition --
706 -----------------------
707
708 function Access_Definition
709 (Related_Nod : Node_Id;
710 N : Node_Id) return Entity_Id
711 is
712 Anon_Type : Entity_Id;
713 Anon_Scope : Entity_Id;
714 Desig_Type : Entity_Id;
715 Enclosing_Prot_Type : Entity_Id := Empty;
716
717 begin
718 Check_SPARK_Restriction ("access type is not allowed", N);
719
720 if Is_Entry (Current_Scope)
721 and then Is_Task_Type (Etype (Scope (Current_Scope)))
722 then
723 Error_Msg_N ("task entries cannot have access parameters", N);
724 return Empty;
725 end if;
726
727 -- Ada 2005: for an object declaration the corresponding anonymous
728 -- type is declared in the current scope.
729
730 -- If the access definition is the return type of another access to
731 -- function, scope is the current one, because it is the one of the
732 -- current type declaration, except for the pathological case below.
733
734 if Nkind_In (Related_Nod, N_Object_Declaration,
735 N_Access_Function_Definition)
736 then
737 Anon_Scope := Current_Scope;
738
739 -- A pathological case: function returning access functions that
740 -- return access functions, etc. Each anonymous access type created
741 -- is in the enclosing scope of the outermost function.
742
743 declare
744 Par : Node_Id;
745
746 begin
747 Par := Related_Nod;
748 while Nkind_In (Par, N_Access_Function_Definition,
749 N_Access_Definition)
750 loop
751 Par := Parent (Par);
752 end loop;
753
754 if Nkind (Par) = N_Function_Specification then
755 Anon_Scope := Scope (Defining_Entity (Par));
756 end if;
757 end;
758
759 -- For the anonymous function result case, retrieve the scope of the
760 -- function specification's associated entity rather than using the
761 -- current scope. The current scope will be the function itself if the
762 -- formal part is currently being analyzed, but will be the parent scope
763 -- in the case of a parameterless function, and we always want to use
764 -- the function's parent scope. Finally, if the function is a child
765 -- unit, we must traverse the tree to retrieve the proper entity.
766
767 elsif Nkind (Related_Nod) = N_Function_Specification
768 and then Nkind (Parent (N)) /= N_Parameter_Specification
769 then
770 -- If the current scope is a protected type, the anonymous access
771 -- is associated with one of the protected operations, and must
772 -- be available in the scope that encloses the protected declaration.
773 -- Otherwise the type is in the scope enclosing the subprogram.
774
775 -- If the function has formals, The return type of a subprogram
776 -- declaration is analyzed in the scope of the subprogram (see
777 -- Process_Formals) and thus the protected type, if present, is
778 -- the scope of the current function scope.
779
780 if Ekind (Current_Scope) = E_Protected_Type then
781 Enclosing_Prot_Type := Current_Scope;
782
783 elsif Ekind (Current_Scope) = E_Function
784 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
785 then
786 Enclosing_Prot_Type := Scope (Current_Scope);
787 end if;
788
789 if Present (Enclosing_Prot_Type) then
790 Anon_Scope := Scope (Enclosing_Prot_Type);
791
792 else
793 Anon_Scope := Scope (Defining_Entity (Related_Nod));
794 end if;
795
796 -- For an access type definition, if the current scope is a child
797 -- unit it is the scope of the type.
798
799 elsif Is_Compilation_Unit (Current_Scope) then
800 Anon_Scope := Current_Scope;
801
802 -- For access formals, access components, and access discriminants, the
803 -- scope is that of the enclosing declaration,
804
805 else
806 Anon_Scope := Scope (Current_Scope);
807 end if;
808
809 Anon_Type :=
810 Create_Itype
811 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
812
813 if All_Present (N)
814 and then Ada_Version >= Ada_2005
815 then
816 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
817 end if;
818
819 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
820 -- the corresponding semantic routine
821
822 if Present (Access_To_Subprogram_Definition (N)) then
823
824 -- Compiler runtime units are compiled in Ada 2005 mode when building
825 -- the runtime library but must also be compilable in Ada 95 mode
826 -- (when bootstrapping the compiler).
827
828 Check_Compiler_Unit (N);
829
830 Access_Subprogram_Declaration
831 (T_Name => Anon_Type,
832 T_Def => Access_To_Subprogram_Definition (N));
833
834 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
835 Set_Ekind
836 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
837 else
838 Set_Ekind
839 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
840 end if;
841
842 Set_Can_Use_Internal_Rep
843 (Anon_Type, not Always_Compatible_Rep_On_Target);
844
845 -- If the anonymous access is associated with a protected operation,
846 -- create a reference to it after the enclosing protected definition
847 -- because the itype will be used in the subsequent bodies.
848
849 if Ekind (Current_Scope) = E_Protected_Type then
850 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
851 end if;
852
853 return Anon_Type;
854 end if;
855
856 Find_Type (Subtype_Mark (N));
857 Desig_Type := Entity (Subtype_Mark (N));
858
859 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
860 Set_Etype (Anon_Type, Anon_Type);
861
862 -- Make sure the anonymous access type has size and alignment fields
863 -- set, as required by gigi. This is necessary in the case of the
864 -- Task_Body_Procedure.
865
866 if not Has_Private_Component (Desig_Type) then
867 Layout_Type (Anon_Type);
868 end if;
869
870 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
871 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
872 -- the null value is allowed. In Ada 95 the null value is never allowed.
873
874 if Ada_Version >= Ada_2005 then
875 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
876 else
877 Set_Can_Never_Be_Null (Anon_Type, True);
878 end if;
879
880 -- The anonymous access type is as public as the discriminated type or
881 -- subprogram that defines it. It is imported (for back-end purposes)
882 -- if the designated type is.
883
884 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
885
886 -- Ada 2005 (AI-231): Propagate the access-constant attribute
887
888 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
889
890 -- The context is either a subprogram declaration, object declaration,
891 -- or an access discriminant, in a private or a full type declaration.
892 -- In the case of a subprogram, if the designated type is incomplete,
893 -- the operation will be a primitive operation of the full type, to be
894 -- updated subsequently. If the type is imported through a limited_with
895 -- clause, the subprogram is not a primitive operation of the type
896 -- (which is declared elsewhere in some other scope).
897
898 if Ekind (Desig_Type) = E_Incomplete_Type
899 and then not From_With_Type (Desig_Type)
900 and then Is_Overloadable (Current_Scope)
901 then
902 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
903 Set_Has_Delayed_Freeze (Current_Scope);
904 end if;
905
906 -- Ada 2005: if the designated type is an interface that may contain
907 -- tasks, create a Master entity for the declaration. This must be done
908 -- before expansion of the full declaration, because the declaration may
909 -- include an expression that is an allocator, whose expansion needs the
910 -- proper Master for the created tasks.
911
912 if Nkind (Related_Nod) = N_Object_Declaration
913 and then Expander_Active
914 then
915 if Is_Interface (Desig_Type)
916 and then Is_Limited_Record (Desig_Type)
917 then
918 Build_Class_Wide_Master (Anon_Type);
919
920 -- Similarly, if the type is an anonymous access that designates
921 -- tasks, create a master entity for it in the current context.
922
923 elsif Has_Task (Desig_Type)
924 and then Comes_From_Source (Related_Nod)
925 then
926 Build_Master_Entity (Defining_Identifier (Related_Nod));
927 Build_Master_Renaming (Anon_Type);
928 end if;
929 end if;
930
931 -- For a private component of a protected type, it is imperative that
932 -- the back-end elaborate the type immediately after the protected
933 -- declaration, because this type will be used in the declarations
934 -- created for the component within each protected body, so we must
935 -- create an itype reference for it now.
936
937 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
938 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
939
940 -- Similarly, if the access definition is the return result of a
941 -- function, create an itype reference for it because it will be used
942 -- within the function body. For a regular function that is not a
943 -- compilation unit, insert reference after the declaration. For a
944 -- protected operation, insert it after the enclosing protected type
945 -- declaration. In either case, do not create a reference for a type
946 -- obtained through a limited_with clause, because this would introduce
947 -- semantic dependencies.
948
949 -- Similarly, do not create a reference if the designated type is a
950 -- generic formal, because no use of it will reach the backend.
951
952 elsif Nkind (Related_Nod) = N_Function_Specification
953 and then not From_With_Type (Desig_Type)
954 and then not Is_Generic_Type (Desig_Type)
955 then
956 if Present (Enclosing_Prot_Type) then
957 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
958
959 elsif Is_List_Member (Parent (Related_Nod))
960 and then Nkind (Parent (N)) /= N_Parameter_Specification
961 then
962 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
963 end if;
964
965 -- Finally, create an itype reference for an object declaration of an
966 -- anonymous access type. This is strictly necessary only for deferred
967 -- constants, but in any case will avoid out-of-scope problems in the
968 -- back-end.
969
970 elsif Nkind (Related_Nod) = N_Object_Declaration then
971 Build_Itype_Reference (Anon_Type, Related_Nod);
972 end if;
973
974 return Anon_Type;
975 end Access_Definition;
976
977 -----------------------------------
978 -- Access_Subprogram_Declaration --
979 -----------------------------------
980
981 procedure Access_Subprogram_Declaration
982 (T_Name : Entity_Id;
983 T_Def : Node_Id)
984 is
985 procedure Check_For_Premature_Usage (Def : Node_Id);
986 -- Check that type T_Name is not used, directly or recursively, as a
987 -- parameter or a return type in Def. Def is either a subtype, an
988 -- access_definition, or an access_to_subprogram_definition.
989
990 -------------------------------
991 -- Check_For_Premature_Usage --
992 -------------------------------
993
994 procedure Check_For_Premature_Usage (Def : Node_Id) is
995 Param : Node_Id;
996
997 begin
998 -- Check for a subtype mark
999
1000 if Nkind (Def) in N_Has_Etype then
1001 if Etype (Def) = T_Name then
1002 Error_Msg_N
1003 ("type& cannot be used before end of its declaration", Def);
1004 end if;
1005
1006 -- If this is not a subtype, then this is an access_definition
1007
1008 elsif Nkind (Def) = N_Access_Definition then
1009 if Present (Access_To_Subprogram_Definition (Def)) then
1010 Check_For_Premature_Usage
1011 (Access_To_Subprogram_Definition (Def));
1012 else
1013 Check_For_Premature_Usage (Subtype_Mark (Def));
1014 end if;
1015
1016 -- The only cases left are N_Access_Function_Definition and
1017 -- N_Access_Procedure_Definition.
1018
1019 else
1020 if Present (Parameter_Specifications (Def)) then
1021 Param := First (Parameter_Specifications (Def));
1022 while Present (Param) loop
1023 Check_For_Premature_Usage (Parameter_Type (Param));
1024 Param := Next (Param);
1025 end loop;
1026 end if;
1027
1028 if Nkind (Def) = N_Access_Function_Definition then
1029 Check_For_Premature_Usage (Result_Definition (Def));
1030 end if;
1031 end if;
1032 end Check_For_Premature_Usage;
1033
1034 -- Local variables
1035
1036 Formals : constant List_Id := Parameter_Specifications (T_Def);
1037 Formal : Entity_Id;
1038 D_Ityp : Node_Id;
1039 Desig_Type : constant Entity_Id :=
1040 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1041
1042 -- Start of processing for Access_Subprogram_Declaration
1043
1044 begin
1045 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1046
1047 -- Associate the Itype node with the inner full-type declaration or
1048 -- subprogram spec or entry body. This is required to handle nested
1049 -- anonymous declarations. For example:
1050
1051 -- procedure P
1052 -- (X : access procedure
1053 -- (Y : access procedure
1054 -- (Z : access T)))
1055
1056 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1057 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1058 N_Private_Type_Declaration,
1059 N_Private_Extension_Declaration,
1060 N_Procedure_Specification,
1061 N_Function_Specification,
1062 N_Entry_Body)
1063
1064 or else
1065 Nkind_In (D_Ityp, N_Object_Declaration,
1066 N_Object_Renaming_Declaration,
1067 N_Formal_Object_Declaration,
1068 N_Formal_Type_Declaration,
1069 N_Task_Type_Declaration,
1070 N_Protected_Type_Declaration))
1071 loop
1072 D_Ityp := Parent (D_Ityp);
1073 pragma Assert (D_Ityp /= Empty);
1074 end loop;
1075
1076 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1077
1078 if Nkind_In (D_Ityp, N_Procedure_Specification,
1079 N_Function_Specification)
1080 then
1081 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1082
1083 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1084 N_Object_Declaration,
1085 N_Object_Renaming_Declaration,
1086 N_Formal_Type_Declaration)
1087 then
1088 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1089 end if;
1090
1091 if Nkind (T_Def) = N_Access_Function_Definition then
1092 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1093 declare
1094 Acc : constant Node_Id := Result_Definition (T_Def);
1095
1096 begin
1097 if Present (Access_To_Subprogram_Definition (Acc))
1098 and then
1099 Protected_Present (Access_To_Subprogram_Definition (Acc))
1100 then
1101 Set_Etype
1102 (Desig_Type,
1103 Replace_Anonymous_Access_To_Protected_Subprogram
1104 (T_Def));
1105
1106 else
1107 Set_Etype
1108 (Desig_Type,
1109 Access_Definition (T_Def, Result_Definition (T_Def)));
1110 end if;
1111 end;
1112
1113 else
1114 Analyze (Result_Definition (T_Def));
1115
1116 declare
1117 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1118
1119 begin
1120 -- If a null exclusion is imposed on the result type, then
1121 -- create a null-excluding itype (an access subtype) and use
1122 -- it as the function's Etype.
1123
1124 if Is_Access_Type (Typ)
1125 and then Null_Exclusion_In_Return_Present (T_Def)
1126 then
1127 Set_Etype (Desig_Type,
1128 Create_Null_Excluding_Itype
1129 (T => Typ,
1130 Related_Nod => T_Def,
1131 Scope_Id => Current_Scope));
1132
1133 else
1134 if From_With_Type (Typ) then
1135
1136 -- AI05-151: Incomplete types are allowed in all basic
1137 -- declarations, including access to subprograms.
1138
1139 if Ada_Version >= Ada_2012 then
1140 null;
1141
1142 else
1143 Error_Msg_NE
1144 ("illegal use of incomplete type&",
1145 Result_Definition (T_Def), Typ);
1146 end if;
1147
1148 elsif Ekind (Current_Scope) = E_Package
1149 and then In_Private_Part (Current_Scope)
1150 then
1151 if Ekind (Typ) = E_Incomplete_Type then
1152 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1153
1154 elsif Is_Class_Wide_Type (Typ)
1155 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1156 then
1157 Append_Elmt
1158 (Desig_Type, Private_Dependents (Etype (Typ)));
1159 end if;
1160 end if;
1161
1162 Set_Etype (Desig_Type, Typ);
1163 end if;
1164 end;
1165 end if;
1166
1167 if not (Is_Type (Etype (Desig_Type))) then
1168 Error_Msg_N
1169 ("expect type in function specification",
1170 Result_Definition (T_Def));
1171 end if;
1172
1173 else
1174 Set_Etype (Desig_Type, Standard_Void_Type);
1175 end if;
1176
1177 if Present (Formals) then
1178 Push_Scope (Desig_Type);
1179
1180 -- A bit of a kludge here. These kludges will be removed when Itypes
1181 -- have proper parent pointers to their declarations???
1182
1183 -- Kludge 1) Link defining_identifier of formals. Required by
1184 -- First_Formal to provide its functionality.
1185
1186 declare
1187 F : Node_Id;
1188
1189 begin
1190 F := First (Formals);
1191
1192 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1193 -- when it is part of an unconstrained type and subtype expansion
1194 -- is disabled. To avoid back-end problems with shared profiles,
1195 -- use previous subprogram type as the designated type, and then
1196 -- remove scope added above.
1197
1198 if ASIS_Mode
1199 and then Present (Scope (Defining_Identifier (F)))
1200 then
1201 Set_Etype (T_Name, T_Name);
1202 Init_Size_Align (T_Name);
1203 Set_Directly_Designated_Type (T_Name,
1204 Scope (Defining_Identifier (F)));
1205 End_Scope;
1206 return;
1207 end if;
1208
1209 while Present (F) loop
1210 if No (Parent (Defining_Identifier (F))) then
1211 Set_Parent (Defining_Identifier (F), F);
1212 end if;
1213
1214 Next (F);
1215 end loop;
1216 end;
1217
1218 Process_Formals (Formals, Parent (T_Def));
1219
1220 -- Kludge 2) End_Scope requires that the parent pointer be set to
1221 -- something reasonable, but Itypes don't have parent pointers. So
1222 -- we set it and then unset it ???
1223
1224 Set_Parent (Desig_Type, T_Name);
1225 End_Scope;
1226 Set_Parent (Desig_Type, Empty);
1227 end if;
1228
1229 -- Check for premature usage of the type being defined
1230
1231 Check_For_Premature_Usage (T_Def);
1232
1233 -- The return type and/or any parameter type may be incomplete. Mark the
1234 -- subprogram_type as depending on the incomplete type, so that it can
1235 -- be updated when the full type declaration is seen. This only applies
1236 -- to incomplete types declared in some enclosing scope, not to limited
1237 -- views from other packages.
1238 -- Prior to Ada 2012, access to functions can only have in_parameters.
1239
1240 if Present (Formals) then
1241 Formal := First_Formal (Desig_Type);
1242 while Present (Formal) loop
1243 if Ekind (Formal) /= E_In_Parameter
1244 and then Nkind (T_Def) = N_Access_Function_Definition
1245 and then Ada_Version < Ada_2012
1246 then
1247 Error_Msg_N ("functions can only have IN parameters", Formal);
1248 end if;
1249
1250 if Ekind (Etype (Formal)) = E_Incomplete_Type
1251 and then In_Open_Scopes (Scope (Etype (Formal)))
1252 then
1253 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1254 Set_Has_Delayed_Freeze (Desig_Type);
1255 end if;
1256
1257 Next_Formal (Formal);
1258 end loop;
1259 end if;
1260
1261 -- Check whether an indirect call without actuals may be possible. This
1262 -- is used when resolving calls whose result is then indexed.
1263
1264 May_Need_Actuals (Desig_Type);
1265
1266 -- If the return type is incomplete, this is legal as long as the type
1267 -- is declared in the current scope and will be completed in it (rather
1268 -- than being part of limited view).
1269
1270 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1271 and then not Has_Delayed_Freeze (Desig_Type)
1272 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1273 then
1274 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1275 Set_Has_Delayed_Freeze (Desig_Type);
1276 end if;
1277
1278 Check_Delayed_Subprogram (Desig_Type);
1279
1280 if Protected_Present (T_Def) then
1281 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1282 Set_Convention (Desig_Type, Convention_Protected);
1283 else
1284 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1285 end if;
1286
1287 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1288
1289 Set_Etype (T_Name, T_Name);
1290 Init_Size_Align (T_Name);
1291 Set_Directly_Designated_Type (T_Name, Desig_Type);
1292
1293 Generate_Reference_To_Formals (T_Name);
1294
1295 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1296
1297 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1298
1299 Check_Restriction (No_Access_Subprograms, T_Def);
1300 end Access_Subprogram_Declaration;
1301
1302 ----------------------------
1303 -- Access_Type_Declaration --
1304 ----------------------------
1305
1306 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1307 P : constant Node_Id := Parent (Def);
1308 S : constant Node_Id := Subtype_Indication (Def);
1309
1310 Full_Desig : Entity_Id;
1311
1312 begin
1313 Check_SPARK_Restriction ("access type is not allowed", Def);
1314
1315 -- Check for permissible use of incomplete type
1316
1317 if Nkind (S) /= N_Subtype_Indication then
1318 Analyze (S);
1319
1320 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1321 Set_Directly_Designated_Type (T, Entity (S));
1322 else
1323 Set_Directly_Designated_Type (T,
1324 Process_Subtype (S, P, T, 'P'));
1325 end if;
1326
1327 else
1328 Set_Directly_Designated_Type (T,
1329 Process_Subtype (S, P, T, 'P'));
1330 end if;
1331
1332 if All_Present (Def) or Constant_Present (Def) then
1333 Set_Ekind (T, E_General_Access_Type);
1334 else
1335 Set_Ekind (T, E_Access_Type);
1336 end if;
1337
1338 Full_Desig := Designated_Type (T);
1339
1340 if Base_Type (Full_Desig) = T then
1341 Error_Msg_N ("access type cannot designate itself", S);
1342
1343 -- In Ada 2005, the type may have a limited view through some unit in
1344 -- its own context, allowing the following circularity that cannot be
1345 -- detected earlier
1346
1347 elsif Is_Class_Wide_Type (Full_Desig)
1348 and then Etype (Full_Desig) = T
1349 then
1350 Error_Msg_N
1351 ("access type cannot designate its own classwide type", S);
1352
1353 -- Clean up indication of tagged status to prevent cascaded errors
1354
1355 Set_Is_Tagged_Type (T, False);
1356 end if;
1357
1358 Set_Etype (T, T);
1359
1360 -- If the type has appeared already in a with_type clause, it is frozen
1361 -- and the pointer size is already set. Else, initialize.
1362
1363 if not From_With_Type (T) then
1364 Init_Size_Align (T);
1365 end if;
1366
1367 -- Note that Has_Task is always false, since the access type itself
1368 -- is not a task type. See Einfo for more description on this point.
1369 -- Exactly the same consideration applies to Has_Controlled_Component.
1370
1371 Set_Has_Task (T, False);
1372 Set_Has_Controlled_Component (T, False);
1373
1374 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1375 -- problems where an incomplete view of this entity has been previously
1376 -- established by a limited with and an overlaid version of this field
1377 -- (Stored_Constraint) was initialized for the incomplete view.
1378
1379 -- This reset is performed in most cases except where the access type
1380 -- has been created for the purposes of allocating or deallocating a
1381 -- build-in-place object. Such access types have explicitly set pools
1382 -- and finalization masters.
1383
1384 if No (Associated_Storage_Pool (T)) then
1385 Set_Finalization_Master (T, Empty);
1386 end if;
1387
1388 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1389 -- attributes
1390
1391 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1392 Set_Is_Access_Constant (T, Constant_Present (Def));
1393 end Access_Type_Declaration;
1394
1395 ----------------------------------
1396 -- Add_Interface_Tag_Components --
1397 ----------------------------------
1398
1399 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1400 Loc : constant Source_Ptr := Sloc (N);
1401 L : List_Id;
1402 Last_Tag : Node_Id;
1403
1404 procedure Add_Tag (Iface : Entity_Id);
1405 -- Add tag for one of the progenitor interfaces
1406
1407 -------------
1408 -- Add_Tag --
1409 -------------
1410
1411 procedure Add_Tag (Iface : Entity_Id) is
1412 Decl : Node_Id;
1413 Def : Node_Id;
1414 Tag : Entity_Id;
1415 Offset : Entity_Id;
1416
1417 begin
1418 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1419
1420 -- This is a reasonable place to propagate predicates
1421
1422 if Has_Predicates (Iface) then
1423 Set_Has_Predicates (Typ);
1424 end if;
1425
1426 Def :=
1427 Make_Component_Definition (Loc,
1428 Aliased_Present => True,
1429 Subtype_Indication =>
1430 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1431
1432 Tag := Make_Temporary (Loc, 'V');
1433
1434 Decl :=
1435 Make_Component_Declaration (Loc,
1436 Defining_Identifier => Tag,
1437 Component_Definition => Def);
1438
1439 Analyze_Component_Declaration (Decl);
1440
1441 Set_Analyzed (Decl);
1442 Set_Ekind (Tag, E_Component);
1443 Set_Is_Tag (Tag);
1444 Set_Is_Aliased (Tag);
1445 Set_Related_Type (Tag, Iface);
1446 Init_Component_Location (Tag);
1447
1448 pragma Assert (Is_Frozen (Iface));
1449
1450 Set_DT_Entry_Count (Tag,
1451 DT_Entry_Count (First_Entity (Iface)));
1452
1453 if No (Last_Tag) then
1454 Prepend (Decl, L);
1455 else
1456 Insert_After (Last_Tag, Decl);
1457 end if;
1458
1459 Last_Tag := Decl;
1460
1461 -- If the ancestor has discriminants we need to give special support
1462 -- to store the offset_to_top value of the secondary dispatch tables.
1463 -- For this purpose we add a supplementary component just after the
1464 -- field that contains the tag associated with each secondary DT.
1465
1466 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1467 Def :=
1468 Make_Component_Definition (Loc,
1469 Subtype_Indication =>
1470 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1471
1472 Offset := Make_Temporary (Loc, 'V');
1473
1474 Decl :=
1475 Make_Component_Declaration (Loc,
1476 Defining_Identifier => Offset,
1477 Component_Definition => Def);
1478
1479 Analyze_Component_Declaration (Decl);
1480
1481 Set_Analyzed (Decl);
1482 Set_Ekind (Offset, E_Component);
1483 Set_Is_Aliased (Offset);
1484 Set_Related_Type (Offset, Iface);
1485 Init_Component_Location (Offset);
1486 Insert_After (Last_Tag, Decl);
1487 Last_Tag := Decl;
1488 end if;
1489 end Add_Tag;
1490
1491 -- Local variables
1492
1493 Elmt : Elmt_Id;
1494 Ext : Node_Id;
1495 Comp : Node_Id;
1496
1497 -- Start of processing for Add_Interface_Tag_Components
1498
1499 begin
1500 if not RTE_Available (RE_Interface_Tag) then
1501 Error_Msg
1502 ("(Ada 2005) interface types not supported by this run-time!",
1503 Sloc (N));
1504 return;
1505 end if;
1506
1507 if Ekind (Typ) /= E_Record_Type
1508 or else (Is_Concurrent_Record_Type (Typ)
1509 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1510 or else (not Is_Concurrent_Record_Type (Typ)
1511 and then No (Interfaces (Typ))
1512 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1513 then
1514 return;
1515 end if;
1516
1517 -- Find the current last tag
1518
1519 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1520 Ext := Record_Extension_Part (Type_Definition (N));
1521 else
1522 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1523 Ext := Type_Definition (N);
1524 end if;
1525
1526 Last_Tag := Empty;
1527
1528 if not (Present (Component_List (Ext))) then
1529 Set_Null_Present (Ext, False);
1530 L := New_List;
1531 Set_Component_List (Ext,
1532 Make_Component_List (Loc,
1533 Component_Items => L,
1534 Null_Present => False));
1535 else
1536 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1537 L := Component_Items
1538 (Component_List
1539 (Record_Extension_Part
1540 (Type_Definition (N))));
1541 else
1542 L := Component_Items
1543 (Component_List
1544 (Type_Definition (N)));
1545 end if;
1546
1547 -- Find the last tag component
1548
1549 Comp := First (L);
1550 while Present (Comp) loop
1551 if Nkind (Comp) = N_Component_Declaration
1552 and then Is_Tag (Defining_Identifier (Comp))
1553 then
1554 Last_Tag := Comp;
1555 end if;
1556
1557 Next (Comp);
1558 end loop;
1559 end if;
1560
1561 -- At this point L references the list of components and Last_Tag
1562 -- references the current last tag (if any). Now we add the tag
1563 -- corresponding with all the interfaces that are not implemented
1564 -- by the parent.
1565
1566 if Present (Interfaces (Typ)) then
1567 Elmt := First_Elmt (Interfaces (Typ));
1568 while Present (Elmt) loop
1569 Add_Tag (Node (Elmt));
1570 Next_Elmt (Elmt);
1571 end loop;
1572 end if;
1573 end Add_Interface_Tag_Components;
1574
1575 -------------------------------------
1576 -- Add_Internal_Interface_Entities --
1577 -------------------------------------
1578
1579 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1580 Elmt : Elmt_Id;
1581 Iface : Entity_Id;
1582 Iface_Elmt : Elmt_Id;
1583 Iface_Prim : Entity_Id;
1584 Ifaces_List : Elist_Id;
1585 New_Subp : Entity_Id := Empty;
1586 Prim : Entity_Id;
1587 Restore_Scope : Boolean := False;
1588
1589 begin
1590 pragma Assert (Ada_Version >= Ada_2005
1591 and then Is_Record_Type (Tagged_Type)
1592 and then Is_Tagged_Type (Tagged_Type)
1593 and then Has_Interfaces (Tagged_Type)
1594 and then not Is_Interface (Tagged_Type));
1595
1596 -- Ensure that the internal entities are added to the scope of the type
1597
1598 if Scope (Tagged_Type) /= Current_Scope then
1599 Push_Scope (Scope (Tagged_Type));
1600 Restore_Scope := True;
1601 end if;
1602
1603 Collect_Interfaces (Tagged_Type, Ifaces_List);
1604
1605 Iface_Elmt := First_Elmt (Ifaces_List);
1606 while Present (Iface_Elmt) loop
1607 Iface := Node (Iface_Elmt);
1608
1609 -- Originally we excluded here from this processing interfaces that
1610 -- are parents of Tagged_Type because their primitives are located
1611 -- in the primary dispatch table (and hence no auxiliary internal
1612 -- entities are required to handle secondary dispatch tables in such
1613 -- case). However, these auxiliary entities are also required to
1614 -- handle derivations of interfaces in formals of generics (see
1615 -- Derive_Subprograms).
1616
1617 Elmt := First_Elmt (Primitive_Operations (Iface));
1618 while Present (Elmt) loop
1619 Iface_Prim := Node (Elmt);
1620
1621 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1622 Prim :=
1623 Find_Primitive_Covering_Interface
1624 (Tagged_Type => Tagged_Type,
1625 Iface_Prim => Iface_Prim);
1626
1627 if No (Prim) and then Serious_Errors_Detected > 0 then
1628 goto Continue;
1629 end if;
1630
1631 pragma Assert (Present (Prim));
1632
1633 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1634 -- differs from the name of the interface primitive then it is
1635 -- a private primitive inherited from a parent type. In such
1636 -- case, given that Tagged_Type covers the interface, the
1637 -- inherited private primitive becomes visible. For such
1638 -- purpose we add a new entity that renames the inherited
1639 -- private primitive.
1640
1641 if Chars (Prim) /= Chars (Iface_Prim) then
1642 pragma Assert (Has_Suffix (Prim, 'P'));
1643 Derive_Subprogram
1644 (New_Subp => New_Subp,
1645 Parent_Subp => Iface_Prim,
1646 Derived_Type => Tagged_Type,
1647 Parent_Type => Iface);
1648 Set_Alias (New_Subp, Prim);
1649 Set_Is_Abstract_Subprogram
1650 (New_Subp, Is_Abstract_Subprogram (Prim));
1651 end if;
1652
1653 Derive_Subprogram
1654 (New_Subp => New_Subp,
1655 Parent_Subp => Iface_Prim,
1656 Derived_Type => Tagged_Type,
1657 Parent_Type => Iface);
1658
1659 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1660 -- associated with interface types. These entities are
1661 -- only registered in the list of primitives of its
1662 -- corresponding tagged type because they are only used
1663 -- to fill the contents of the secondary dispatch tables.
1664 -- Therefore they are removed from the homonym chains.
1665
1666 Set_Is_Hidden (New_Subp);
1667 Set_Is_Internal (New_Subp);
1668 Set_Alias (New_Subp, Prim);
1669 Set_Is_Abstract_Subprogram
1670 (New_Subp, Is_Abstract_Subprogram (Prim));
1671 Set_Interface_Alias (New_Subp, Iface_Prim);
1672
1673 -- If the returned type is an interface then propagate it to
1674 -- the returned type. Needed by the thunk to generate the code
1675 -- which displaces "this" to reference the corresponding
1676 -- secondary dispatch table in the returned object.
1677
1678 if Is_Interface (Etype (Iface_Prim)) then
1679 Set_Etype (New_Subp, Etype (Iface_Prim));
1680 end if;
1681
1682 -- Internal entities associated with interface types are
1683 -- only registered in the list of primitives of the tagged
1684 -- type. They are only used to fill the contents of the
1685 -- secondary dispatch tables. Therefore they are not needed
1686 -- in the homonym chains.
1687
1688 Remove_Homonym (New_Subp);
1689
1690 -- Hidden entities associated with interfaces must have set
1691 -- the Has_Delay_Freeze attribute to ensure that, in case of
1692 -- locally defined tagged types (or compiling with static
1693 -- dispatch tables generation disabled) the corresponding
1694 -- entry of the secondary dispatch table is filled when
1695 -- such an entity is frozen.
1696
1697 Set_Has_Delayed_Freeze (New_Subp);
1698 end if;
1699
1700 <<Continue>>
1701 Next_Elmt (Elmt);
1702 end loop;
1703
1704 Next_Elmt (Iface_Elmt);
1705 end loop;
1706
1707 if Restore_Scope then
1708 Pop_Scope;
1709 end if;
1710 end Add_Internal_Interface_Entities;
1711
1712 -----------------------------------
1713 -- Analyze_Component_Declaration --
1714 -----------------------------------
1715
1716 procedure Analyze_Component_Declaration (N : Node_Id) is
1717 Id : constant Entity_Id := Defining_Identifier (N);
1718 E : constant Node_Id := Expression (N);
1719 Typ : constant Node_Id :=
1720 Subtype_Indication (Component_Definition (N));
1721 T : Entity_Id;
1722 P : Entity_Id;
1723
1724 function Contains_POC (Constr : Node_Id) return Boolean;
1725 -- Determines whether a constraint uses the discriminant of a record
1726 -- type thus becoming a per-object constraint (POC).
1727
1728 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1729 -- Typ is the type of the current component, check whether this type is
1730 -- a limited type. Used to validate declaration against that of
1731 -- enclosing record.
1732
1733 ------------------
1734 -- Contains_POC --
1735 ------------------
1736
1737 function Contains_POC (Constr : Node_Id) return Boolean is
1738 begin
1739 -- Prevent cascaded errors
1740
1741 if Error_Posted (Constr) then
1742 return False;
1743 end if;
1744
1745 case Nkind (Constr) is
1746 when N_Attribute_Reference =>
1747 return
1748 Attribute_Name (Constr) = Name_Access
1749 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1750
1751 when N_Discriminant_Association =>
1752 return Denotes_Discriminant (Expression (Constr));
1753
1754 when N_Identifier =>
1755 return Denotes_Discriminant (Constr);
1756
1757 when N_Index_Or_Discriminant_Constraint =>
1758 declare
1759 IDC : Node_Id;
1760
1761 begin
1762 IDC := First (Constraints (Constr));
1763 while Present (IDC) loop
1764
1765 -- One per-object constraint is sufficient
1766
1767 if Contains_POC (IDC) then
1768 return True;
1769 end if;
1770
1771 Next (IDC);
1772 end loop;
1773
1774 return False;
1775 end;
1776
1777 when N_Range =>
1778 return Denotes_Discriminant (Low_Bound (Constr))
1779 or else
1780 Denotes_Discriminant (High_Bound (Constr));
1781
1782 when N_Range_Constraint =>
1783 return Denotes_Discriminant (Range_Expression (Constr));
1784
1785 when others =>
1786 return False;
1787
1788 end case;
1789 end Contains_POC;
1790
1791 ----------------------
1792 -- Is_Known_Limited --
1793 ----------------------
1794
1795 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1796 P : constant Entity_Id := Etype (Typ);
1797 R : constant Entity_Id := Root_Type (Typ);
1798
1799 begin
1800 if Is_Limited_Record (Typ) then
1801 return True;
1802
1803 -- If the root type is limited (and not a limited interface)
1804 -- so is the current type
1805
1806 elsif Is_Limited_Record (R)
1807 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1808 then
1809 return True;
1810
1811 -- Else the type may have a limited interface progenitor, but a
1812 -- limited record parent.
1813
1814 elsif R /= P and then Is_Limited_Record (P) then
1815 return True;
1816
1817 else
1818 return False;
1819 end if;
1820 end Is_Known_Limited;
1821
1822 -- Start of processing for Analyze_Component_Declaration
1823
1824 begin
1825 Generate_Definition (Id);
1826 Enter_Name (Id);
1827
1828 if Present (Typ) then
1829 T := Find_Type_Of_Object
1830 (Subtype_Indication (Component_Definition (N)), N);
1831
1832 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1833 Check_SPARK_Restriction ("subtype mark required", Typ);
1834 end if;
1835
1836 -- Ada 2005 (AI-230): Access Definition case
1837
1838 else
1839 pragma Assert (Present
1840 (Access_Definition (Component_Definition (N))));
1841
1842 T := Access_Definition
1843 (Related_Nod => N,
1844 N => Access_Definition (Component_Definition (N)));
1845 Set_Is_Local_Anonymous_Access (T);
1846
1847 -- Ada 2005 (AI-254)
1848
1849 if Present (Access_To_Subprogram_Definition
1850 (Access_Definition (Component_Definition (N))))
1851 and then Protected_Present (Access_To_Subprogram_Definition
1852 (Access_Definition
1853 (Component_Definition (N))))
1854 then
1855 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1856 end if;
1857 end if;
1858
1859 -- If the subtype is a constrained subtype of the enclosing record,
1860 -- (which must have a partial view) the back-end does not properly
1861 -- handle the recursion. Rewrite the component declaration with an
1862 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1863 -- the tree directly because side effects have already been removed from
1864 -- discriminant constraints.
1865
1866 if Ekind (T) = E_Access_Subtype
1867 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1868 and then Comes_From_Source (T)
1869 and then Nkind (Parent (T)) = N_Subtype_Declaration
1870 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1871 then
1872 Rewrite
1873 (Subtype_Indication (Component_Definition (N)),
1874 New_Copy_Tree (Subtype_Indication (Parent (T))));
1875 T := Find_Type_Of_Object
1876 (Subtype_Indication (Component_Definition (N)), N);
1877 end if;
1878
1879 -- If the component declaration includes a default expression, then we
1880 -- check that the component is not of a limited type (RM 3.7(5)),
1881 -- and do the special preanalysis of the expression (see section on
1882 -- "Handling of Default and Per-Object Expressions" in the spec of
1883 -- package Sem).
1884
1885 if Present (E) then
1886 Check_SPARK_Restriction ("default expression is not allowed", E);
1887 Preanalyze_Spec_Expression (E, T);
1888 Check_Initialization (T, E);
1889
1890 if Ada_Version >= Ada_2005
1891 and then Ekind (T) = E_Anonymous_Access_Type
1892 and then Etype (E) /= Any_Type
1893 then
1894 -- Check RM 3.9.2(9): "if the expected type for an expression is
1895 -- an anonymous access-to-specific tagged type, then the object
1896 -- designated by the expression shall not be dynamically tagged
1897 -- unless it is a controlling operand in a call on a dispatching
1898 -- operation"
1899
1900 if Is_Tagged_Type (Directly_Designated_Type (T))
1901 and then
1902 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1903 and then
1904 Ekind (Directly_Designated_Type (Etype (E))) =
1905 E_Class_Wide_Type
1906 then
1907 Error_Msg_N
1908 ("access to specific tagged type required (RM 3.9.2(9))", E);
1909 end if;
1910
1911 -- (Ada 2005: AI-230): Accessibility check for anonymous
1912 -- components
1913
1914 if Type_Access_Level (Etype (E)) >
1915 Deepest_Type_Access_Level (T)
1916 then
1917 Error_Msg_N
1918 ("expression has deeper access level than component " &
1919 "(RM 3.10.2 (12.2))", E);
1920 end if;
1921
1922 -- The initialization expression is a reference to an access
1923 -- discriminant. The type of the discriminant is always deeper
1924 -- than any access type.
1925
1926 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1927 and then Is_Entity_Name (E)
1928 and then Ekind (Entity (E)) = E_In_Parameter
1929 and then Present (Discriminal_Link (Entity (E)))
1930 then
1931 Error_Msg_N
1932 ("discriminant has deeper accessibility level than target",
1933 E);
1934 end if;
1935 end if;
1936 end if;
1937
1938 -- The parent type may be a private view with unknown discriminants,
1939 -- and thus unconstrained. Regular components must be constrained.
1940
1941 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1942 if Is_Class_Wide_Type (T) then
1943 Error_Msg_N
1944 ("class-wide subtype with unknown discriminants" &
1945 " in component declaration",
1946 Subtype_Indication (Component_Definition (N)));
1947 else
1948 Error_Msg_N
1949 ("unconstrained subtype in component declaration",
1950 Subtype_Indication (Component_Definition (N)));
1951 end if;
1952
1953 -- Components cannot be abstract, except for the special case of
1954 -- the _Parent field (case of extending an abstract tagged type)
1955
1956 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1957 Error_Msg_N ("type of a component cannot be abstract", N);
1958 end if;
1959
1960 Set_Etype (Id, T);
1961 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1962
1963 -- The component declaration may have a per-object constraint, set
1964 -- the appropriate flag in the defining identifier of the subtype.
1965
1966 if Present (Subtype_Indication (Component_Definition (N))) then
1967 declare
1968 Sindic : constant Node_Id :=
1969 Subtype_Indication (Component_Definition (N));
1970 begin
1971 if Nkind (Sindic) = N_Subtype_Indication
1972 and then Present (Constraint (Sindic))
1973 and then Contains_POC (Constraint (Sindic))
1974 then
1975 Set_Has_Per_Object_Constraint (Id);
1976 end if;
1977 end;
1978 end if;
1979
1980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1981 -- out some static checks.
1982
1983 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1984 Null_Exclusion_Static_Checks (N);
1985 end if;
1986
1987 -- If this component is private (or depends on a private type), flag the
1988 -- record type to indicate that some operations are not available.
1989
1990 P := Private_Component (T);
1991
1992 if Present (P) then
1993
1994 -- Check for circular definitions
1995
1996 if P = Any_Type then
1997 Set_Etype (Id, Any_Type);
1998
1999 -- There is a gap in the visibility of operations only if the
2000 -- component type is not defined in the scope of the record type.
2001
2002 elsif Scope (P) = Scope (Current_Scope) then
2003 null;
2004
2005 elsif Is_Limited_Type (P) then
2006 Set_Is_Limited_Composite (Current_Scope);
2007
2008 else
2009 Set_Is_Private_Composite (Current_Scope);
2010 end if;
2011 end if;
2012
2013 if P /= Any_Type
2014 and then Is_Limited_Type (T)
2015 and then Chars (Id) /= Name_uParent
2016 and then Is_Tagged_Type (Current_Scope)
2017 then
2018 if Is_Derived_Type (Current_Scope)
2019 and then not Is_Known_Limited (Current_Scope)
2020 then
2021 Error_Msg_N
2022 ("extension of nonlimited type cannot have limited components",
2023 N);
2024
2025 if Is_Interface (Root_Type (Current_Scope)) then
2026 Error_Msg_N
2027 ("\limitedness is not inherited from limited interface", N);
2028 Error_Msg_N ("\add LIMITED to type indication", N);
2029 end if;
2030
2031 Explain_Limited_Type (T, N);
2032 Set_Etype (Id, Any_Type);
2033 Set_Is_Limited_Composite (Current_Scope, False);
2034
2035 elsif not Is_Derived_Type (Current_Scope)
2036 and then not Is_Limited_Record (Current_Scope)
2037 and then not Is_Concurrent_Type (Current_Scope)
2038 then
2039 Error_Msg_N
2040 ("nonlimited tagged type cannot have limited components", N);
2041 Explain_Limited_Type (T, N);
2042 Set_Etype (Id, Any_Type);
2043 Set_Is_Limited_Composite (Current_Scope, False);
2044 end if;
2045 end if;
2046
2047 Set_Original_Record_Component (Id, Id);
2048
2049 if Has_Aspects (N) then
2050 Analyze_Aspect_Specifications (N, Id);
2051 end if;
2052
2053 Analyze_Dimension (N);
2054 end Analyze_Component_Declaration;
2055
2056 --------------------------
2057 -- Analyze_Declarations --
2058 --------------------------
2059
2060 procedure Analyze_Declarations (L : List_Id) is
2061 Decl : Node_Id;
2062
2063 procedure Adjust_Decl;
2064 -- Adjust Decl not to include implicit label declarations, since these
2065 -- have strange Sloc values that result in elaboration check problems.
2066 -- (They have the sloc of the label as found in the source, and that
2067 -- is ahead of the current declarative part).
2068
2069 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2070 -- Spec_Id is the entity of a package that may define abstract states.
2071 -- If the states have visible refinement, remove the visibility of each
2072 -- constituent at the end of the package body declarations.
2073
2074 -----------------
2075 -- Adjust_Decl --
2076 -----------------
2077
2078 procedure Adjust_Decl is
2079 begin
2080 while Present (Prev (Decl))
2081 and then Nkind (Decl) = N_Implicit_Label_Declaration
2082 loop
2083 Prev (Decl);
2084 end loop;
2085 end Adjust_Decl;
2086
2087 --------------------------------
2088 -- Remove_Visible_Refinements --
2089 --------------------------------
2090
2091 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2092 State_Elmt : Elmt_Id;
2093 begin
2094 if Present (Abstract_States (Spec_Id)) then
2095 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2096 while Present (State_Elmt) loop
2097 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2098 Next_Elmt (State_Elmt);
2099 end loop;
2100 end if;
2101 end Remove_Visible_Refinements;
2102
2103 -- Local variables
2104
2105 Body_Id : Entity_Id;
2106 Context : Node_Id;
2107 Freeze_From : Entity_Id := Empty;
2108 Next_Decl : Node_Id;
2109 Prag : Node_Id;
2110 Spec_Id : Entity_Id;
2111
2112 In_Package_Body : Boolean := False;
2113 -- Flag set when the current declaration list belongs to a package body
2114
2115 -- Start of processing for Analyze_Declarations
2116
2117 begin
2118 if Restriction_Check_Required (SPARK_05) then
2119 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2120 end if;
2121
2122 Decl := First (L);
2123 while Present (Decl) loop
2124
2125 -- Package spec cannot contain a package declaration in SPARK
2126
2127 if Nkind (Decl) = N_Package_Declaration
2128 and then Nkind (Parent (L)) = N_Package_Specification
2129 then
2130 Check_SPARK_Restriction
2131 ("package specification cannot contain a package declaration",
2132 Decl);
2133 end if;
2134
2135 -- Complete analysis of declaration
2136
2137 Analyze (Decl);
2138 Next_Decl := Next (Decl);
2139
2140 if No (Freeze_From) then
2141 Freeze_From := First_Entity (Current_Scope);
2142 end if;
2143
2144 -- At the end of a declarative part, freeze remaining entities
2145 -- declared in it. The end of the visible declarations of package
2146 -- specification is not the end of a declarative part if private
2147 -- declarations are present. The end of a package declaration is a
2148 -- freezing point only if it a library package. A task definition or
2149 -- protected type definition is not a freeze point either. Finally,
2150 -- we do not freeze entities in generic scopes, because there is no
2151 -- code generated for them and freeze nodes will be generated for
2152 -- the instance.
2153
2154 -- The end of a package instantiation is not a freeze point, but
2155 -- for now we make it one, because the generic body is inserted
2156 -- (currently) immediately after. Generic instantiations will not
2157 -- be a freeze point once delayed freezing of bodies is implemented.
2158 -- (This is needed in any case for early instantiations ???).
2159
2160 if No (Next_Decl) then
2161 if Nkind_In (Parent (L), N_Component_List,
2162 N_Task_Definition,
2163 N_Protected_Definition)
2164 then
2165 null;
2166
2167 elsif Nkind (Parent (L)) /= N_Package_Specification then
2168 if Nkind (Parent (L)) = N_Package_Body then
2169 Freeze_From := First_Entity (Current_Scope);
2170 end if;
2171
2172 Adjust_Decl;
2173 Freeze_All (Freeze_From, Decl);
2174 Freeze_From := Last_Entity (Current_Scope);
2175
2176 elsif Scope (Current_Scope) /= Standard_Standard
2177 and then not Is_Child_Unit (Current_Scope)
2178 and then No (Generic_Parent (Parent (L)))
2179 then
2180 null;
2181
2182 elsif L /= Visible_Declarations (Parent (L))
2183 or else No (Private_Declarations (Parent (L)))
2184 or else Is_Empty_List (Private_Declarations (Parent (L)))
2185 then
2186 Adjust_Decl;
2187 Freeze_All (Freeze_From, Decl);
2188 Freeze_From := Last_Entity (Current_Scope);
2189 end if;
2190
2191 -- If next node is a body then freeze all types before the body.
2192 -- An exception occurs for some expander-generated bodies. If these
2193 -- are generated at places where in general language rules would not
2194 -- allow a freeze point, then we assume that the expander has
2195 -- explicitly checked that all required types are properly frozen,
2196 -- and we do not cause general freezing here. This special circuit
2197 -- is used when the encountered body is marked as having already
2198 -- been analyzed.
2199
2200 -- In all other cases (bodies that come from source, and expander
2201 -- generated bodies that have not been analyzed yet), freeze all
2202 -- types now. Note that in the latter case, the expander must take
2203 -- care to attach the bodies at a proper place in the tree so as to
2204 -- not cause unwanted freezing at that point.
2205
2206 elsif not Analyzed (Next_Decl)
2207 and then (Nkind_In (Next_Decl, N_Subprogram_Body,
2208 N_Entry_Body,
2209 N_Package_Body,
2210 N_Protected_Body,
2211 N_Task_Body)
2212 or else
2213 Nkind (Next_Decl) in N_Body_Stub)
2214 then
2215 Adjust_Decl;
2216 Freeze_All (Freeze_From, Decl);
2217 Freeze_From := Last_Entity (Current_Scope);
2218 end if;
2219
2220 Decl := Next_Decl;
2221 end loop;
2222
2223 if Present (L) then
2224 Context := Parent (L);
2225
2226 -- Analyze pragmas Initializes and Initial_Condition of a package at
2227 -- the end of the visible declarations as the pragmas have visibility
2228 -- over the said region.
2229
2230 if Nkind (Context) = N_Package_Specification
2231 and then L = Visible_Declarations (Context)
2232 then
2233 Spec_Id := Defining_Entity (Parent (Context));
2234 Prag := Get_Pragma (Spec_Id, Pragma_Initializes);
2235
2236 if Present (Prag) then
2237 Analyze_Initializes_In_Decl_Part (Prag);
2238 end if;
2239
2240 Prag := Get_Pragma (Spec_Id, Pragma_Initial_Condition);
2241
2242 if Present (Prag) then
2243 Analyze_Initial_Condition_In_Decl_Part (Prag);
2244 end if;
2245
2246 -- Analyze the state refinements within a package body now, after
2247 -- all hidden states have been encountered and freely visible.
2248 -- Refinements must be processed before pragmas Refined_Depends and
2249 -- Refined_Global because the last two may mention constituents.
2250
2251 elsif Nkind (Context) = N_Package_Body then
2252 In_Package_Body := True;
2253
2254 Body_Id := Defining_Entity (Context);
2255 Spec_Id := Corresponding_Spec (Context);
2256 Prag := Get_Pragma (Body_Id, Pragma_Refined_State);
2257
2258 -- The analysis of pragma Refined_State detects whether the spec
2259 -- has abstract states available for refinement.
2260
2261 if Present (Prag) then
2262 Analyze_Refined_State_In_Decl_Part (Prag);
2263
2264 -- State refinement is required when the package declaration has
2265 -- abstract states. Null states are not considered.
2266
2267 elsif Present (Abstract_States (Spec_Id))
2268 and then not Has_Null_Abstract_State (Spec_Id)
2269 then
2270 Error_Msg_NE
2271 ("package & requires state refinement", Context, Spec_Id);
2272 end if;
2273 end if;
2274 end if;
2275
2276 -- Analyze the contracts of a subprogram declaration or a body now due
2277 -- to delayed visibility requirements of aspects.
2278
2279 Decl := First (L);
2280 while Present (Decl) loop
2281 if Nkind (Decl) = N_Subprogram_Body then
2282 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2283
2284 elsif Nkind (Decl) = N_Subprogram_Declaration then
2285 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2286 end if;
2287
2288 Next (Decl);
2289 end loop;
2290
2291 -- State refinements are visible upto the end the of the package body
2292 -- declarations. Hide the refinements from visibility to restore the
2293 -- original state conditions.
2294
2295 if In_Package_Body then
2296 Remove_Visible_Refinements (Spec_Id);
2297 end if;
2298 end Analyze_Declarations;
2299
2300 -----------------------------------
2301 -- Analyze_Full_Type_Declaration --
2302 -----------------------------------
2303
2304 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2305 Def : constant Node_Id := Type_Definition (N);
2306 Def_Id : constant Entity_Id := Defining_Identifier (N);
2307 T : Entity_Id;
2308 Prev : Entity_Id;
2309
2310 Is_Remote : constant Boolean :=
2311 (Is_Remote_Types (Current_Scope)
2312 or else Is_Remote_Call_Interface (Current_Scope))
2313 and then not (In_Private_Part (Current_Scope)
2314 or else In_Package_Body (Current_Scope));
2315
2316 procedure Check_Ops_From_Incomplete_Type;
2317 -- If there is a tagged incomplete partial view of the type, traverse
2318 -- the primitives of the incomplete view and change the type of any
2319 -- controlling formals and result to indicate the full view. The
2320 -- primitives will be added to the full type's primitive operations
2321 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2322 -- is called from Process_Incomplete_Dependents).
2323
2324 ------------------------------------
2325 -- Check_Ops_From_Incomplete_Type --
2326 ------------------------------------
2327
2328 procedure Check_Ops_From_Incomplete_Type is
2329 Elmt : Elmt_Id;
2330 Formal : Entity_Id;
2331 Op : Entity_Id;
2332
2333 begin
2334 if Prev /= T
2335 and then Ekind (Prev) = E_Incomplete_Type
2336 and then Is_Tagged_Type (Prev)
2337 and then Is_Tagged_Type (T)
2338 then
2339 Elmt := First_Elmt (Primitive_Operations (Prev));
2340 while Present (Elmt) loop
2341 Op := Node (Elmt);
2342
2343 Formal := First_Formal (Op);
2344 while Present (Formal) loop
2345 if Etype (Formal) = Prev then
2346 Set_Etype (Formal, T);
2347 end if;
2348
2349 Next_Formal (Formal);
2350 end loop;
2351
2352 if Etype (Op) = Prev then
2353 Set_Etype (Op, T);
2354 end if;
2355
2356 Next_Elmt (Elmt);
2357 end loop;
2358 end if;
2359 end Check_Ops_From_Incomplete_Type;
2360
2361 -- Start of processing for Analyze_Full_Type_Declaration
2362
2363 begin
2364 Prev := Find_Type_Name (N);
2365
2366 -- The full view, if present, now points to the current type
2367
2368 -- Ada 2005 (AI-50217): If the type was previously decorated when
2369 -- imported through a LIMITED WITH clause, it appears as incomplete
2370 -- but has no full view.
2371
2372 if Ekind (Prev) = E_Incomplete_Type
2373 and then Present (Full_View (Prev))
2374 then
2375 T := Full_View (Prev);
2376 else
2377 T := Prev;
2378 end if;
2379
2380 Set_Is_Pure (T, Is_Pure (Current_Scope));
2381
2382 -- We set the flag Is_First_Subtype here. It is needed to set the
2383 -- corresponding flag for the Implicit class-wide-type created
2384 -- during tagged types processing.
2385
2386 Set_Is_First_Subtype (T, True);
2387
2388 -- Only composite types other than array types are allowed to have
2389 -- discriminants.
2390
2391 case Nkind (Def) is
2392
2393 -- For derived types, the rule will be checked once we've figured
2394 -- out the parent type.
2395
2396 when N_Derived_Type_Definition =>
2397 null;
2398
2399 -- For record types, discriminants are allowed, unless we are in
2400 -- SPARK.
2401
2402 when N_Record_Definition =>
2403 if Present (Discriminant_Specifications (N)) then
2404 Check_SPARK_Restriction
2405 ("discriminant type is not allowed",
2406 Defining_Identifier
2407 (First (Discriminant_Specifications (N))));
2408 end if;
2409
2410 when others =>
2411 if Present (Discriminant_Specifications (N)) then
2412 Error_Msg_N
2413 ("elementary or array type cannot have discriminants",
2414 Defining_Identifier
2415 (First (Discriminant_Specifications (N))));
2416 end if;
2417 end case;
2418
2419 -- Elaborate the type definition according to kind, and generate
2420 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2421 -- already done (this happens during the reanalysis that follows a call
2422 -- to the high level optimizer).
2423
2424 if not Analyzed (T) then
2425 Set_Analyzed (T);
2426
2427 case Nkind (Def) is
2428
2429 when N_Access_To_Subprogram_Definition =>
2430 Access_Subprogram_Declaration (T, Def);
2431
2432 -- If this is a remote access to subprogram, we must create the
2433 -- equivalent fat pointer type, and related subprograms.
2434
2435 if Is_Remote then
2436 Process_Remote_AST_Declaration (N);
2437 end if;
2438
2439 -- Validate categorization rule against access type declaration
2440 -- usually a violation in Pure unit, Shared_Passive unit.
2441
2442 Validate_Access_Type_Declaration (T, N);
2443
2444 when N_Access_To_Object_Definition =>
2445 Access_Type_Declaration (T, Def);
2446
2447 -- Validate categorization rule against access type declaration
2448 -- usually a violation in Pure unit, Shared_Passive unit.
2449
2450 Validate_Access_Type_Declaration (T, N);
2451
2452 -- If we are in a Remote_Call_Interface package and define a
2453 -- RACW, then calling stubs and specific stream attributes
2454 -- must be added.
2455
2456 if Is_Remote
2457 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2458 then
2459 Add_RACW_Features (Def_Id);
2460 end if;
2461
2462 -- Set no strict aliasing flag if config pragma seen
2463
2464 if Opt.No_Strict_Aliasing then
2465 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2466 end if;
2467
2468 when N_Array_Type_Definition =>
2469 Array_Type_Declaration (T, Def);
2470
2471 when N_Derived_Type_Definition =>
2472 Derived_Type_Declaration (T, N, T /= Def_Id);
2473
2474 when N_Enumeration_Type_Definition =>
2475 Enumeration_Type_Declaration (T, Def);
2476
2477 when N_Floating_Point_Definition =>
2478 Floating_Point_Type_Declaration (T, Def);
2479
2480 when N_Decimal_Fixed_Point_Definition =>
2481 Decimal_Fixed_Point_Type_Declaration (T, Def);
2482
2483 when N_Ordinary_Fixed_Point_Definition =>
2484 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2485
2486 when N_Signed_Integer_Type_Definition =>
2487 Signed_Integer_Type_Declaration (T, Def);
2488
2489 when N_Modular_Type_Definition =>
2490 Modular_Type_Declaration (T, Def);
2491
2492 when N_Record_Definition =>
2493 Record_Type_Declaration (T, N, Prev);
2494
2495 -- If declaration has a parse error, nothing to elaborate.
2496
2497 when N_Error =>
2498 null;
2499
2500 when others =>
2501 raise Program_Error;
2502
2503 end case;
2504 end if;
2505
2506 if Etype (T) = Any_Type then
2507 return;
2508 end if;
2509
2510 -- Controlled type is not allowed in SPARK
2511
2512 if Is_Visibly_Controlled (T) then
2513 Check_SPARK_Restriction ("controlled type is not allowed", N);
2514 end if;
2515
2516 -- Some common processing for all types
2517
2518 Set_Depends_On_Private (T, Has_Private_Component (T));
2519 Check_Ops_From_Incomplete_Type;
2520
2521 -- Both the declared entity, and its anonymous base type if one
2522 -- was created, need freeze nodes allocated.
2523
2524 declare
2525 B : constant Entity_Id := Base_Type (T);
2526
2527 begin
2528 -- In the case where the base type differs from the first subtype, we
2529 -- pre-allocate a freeze node, and set the proper link to the first
2530 -- subtype. Freeze_Entity will use this preallocated freeze node when
2531 -- it freezes the entity.
2532
2533 -- This does not apply if the base type is a generic type, whose
2534 -- declaration is independent of the current derived definition.
2535
2536 if B /= T and then not Is_Generic_Type (B) then
2537 Ensure_Freeze_Node (B);
2538 Set_First_Subtype_Link (Freeze_Node (B), T);
2539 end if;
2540
2541 -- A type that is imported through a limited_with clause cannot
2542 -- generate any code, and thus need not be frozen. However, an access
2543 -- type with an imported designated type needs a finalization list,
2544 -- which may be referenced in some other package that has non-limited
2545 -- visibility on the designated type. Thus we must create the
2546 -- finalization list at the point the access type is frozen, to
2547 -- prevent unsatisfied references at link time.
2548
2549 if not From_With_Type (T) or else Is_Access_Type (T) then
2550 Set_Has_Delayed_Freeze (T);
2551 end if;
2552 end;
2553
2554 -- Case where T is the full declaration of some private type which has
2555 -- been swapped in Defining_Identifier (N).
2556
2557 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2558 Process_Full_View (N, T, Def_Id);
2559
2560 -- Record the reference. The form of this is a little strange, since
2561 -- the full declaration has been swapped in. So the first parameter
2562 -- here represents the entity to which a reference is made which is
2563 -- the "real" entity, i.e. the one swapped in, and the second
2564 -- parameter provides the reference location.
2565
2566 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2567 -- since we don't want a complaint about the full type being an
2568 -- unwanted reference to the private type
2569
2570 declare
2571 B : constant Boolean := Has_Pragma_Unreferenced (T);
2572 begin
2573 Set_Has_Pragma_Unreferenced (T, False);
2574 Generate_Reference (T, T, 'c');
2575 Set_Has_Pragma_Unreferenced (T, B);
2576 end;
2577
2578 Set_Completion_Referenced (Def_Id);
2579
2580 -- For completion of incomplete type, process incomplete dependents
2581 -- and always mark the full type as referenced (it is the incomplete
2582 -- type that we get for any real reference).
2583
2584 elsif Ekind (Prev) = E_Incomplete_Type then
2585 Process_Incomplete_Dependents (N, T, Prev);
2586 Generate_Reference (Prev, Def_Id, 'c');
2587 Set_Completion_Referenced (Def_Id);
2588
2589 -- If not private type or incomplete type completion, this is a real
2590 -- definition of a new entity, so record it.
2591
2592 else
2593 Generate_Definition (Def_Id);
2594 end if;
2595
2596 if Chars (Scope (Def_Id)) = Name_System
2597 and then Chars (Def_Id) = Name_Address
2598 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2599 then
2600 Set_Is_Descendent_Of_Address (Def_Id);
2601 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2602 Set_Is_Descendent_Of_Address (Prev);
2603 end if;
2604
2605 Set_Optimize_Alignment_Flags (Def_Id);
2606 Check_Eliminated (Def_Id);
2607
2608 -- If the declaration is a completion and aspects are present, apply
2609 -- them to the entity for the type which is currently the partial
2610 -- view, but which is the one that will be frozen.
2611
2612 if Has_Aspects (N) then
2613 if Prev /= Def_Id then
2614 Analyze_Aspect_Specifications (N, Prev);
2615 else
2616 Analyze_Aspect_Specifications (N, Def_Id);
2617 end if;
2618 end if;
2619 end Analyze_Full_Type_Declaration;
2620
2621 ----------------------------------
2622 -- Analyze_Incomplete_Type_Decl --
2623 ----------------------------------
2624
2625 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2626 F : constant Boolean := Is_Pure (Current_Scope);
2627 T : Entity_Id;
2628
2629 begin
2630 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2631
2632 Generate_Definition (Defining_Identifier (N));
2633
2634 -- Process an incomplete declaration. The identifier must not have been
2635 -- declared already in the scope. However, an incomplete declaration may
2636 -- appear in the private part of a package, for a private type that has
2637 -- already been declared.
2638
2639 -- In this case, the discriminants (if any) must match
2640
2641 T := Find_Type_Name (N);
2642
2643 Set_Ekind (T, E_Incomplete_Type);
2644 Init_Size_Align (T);
2645 Set_Is_First_Subtype (T, True);
2646 Set_Etype (T, T);
2647
2648 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2649 -- incomplete types.
2650
2651 if Tagged_Present (N) then
2652 Set_Is_Tagged_Type (T);
2653 Make_Class_Wide_Type (T);
2654 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2655 end if;
2656
2657 Push_Scope (T);
2658
2659 Set_Stored_Constraint (T, No_Elist);
2660
2661 if Present (Discriminant_Specifications (N)) then
2662 Process_Discriminants (N);
2663 end if;
2664
2665 End_Scope;
2666
2667 -- If the type has discriminants, non-trivial subtypes may be
2668 -- declared before the full view of the type. The full views of those
2669 -- subtypes will be built after the full view of the type.
2670
2671 Set_Private_Dependents (T, New_Elmt_List);
2672 Set_Is_Pure (T, F);
2673 end Analyze_Incomplete_Type_Decl;
2674
2675 -----------------------------------
2676 -- Analyze_Interface_Declaration --
2677 -----------------------------------
2678
2679 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2680 CW : constant Entity_Id := Class_Wide_Type (T);
2681
2682 begin
2683 Set_Is_Tagged_Type (T);
2684
2685 Set_Is_Limited_Record (T, Limited_Present (Def)
2686 or else Task_Present (Def)
2687 or else Protected_Present (Def)
2688 or else Synchronized_Present (Def));
2689
2690 -- Type is abstract if full declaration carries keyword, or if previous
2691 -- partial view did.
2692
2693 Set_Is_Abstract_Type (T);
2694 Set_Is_Interface (T);
2695
2696 -- Type is a limited interface if it includes the keyword limited, task,
2697 -- protected, or synchronized.
2698
2699 Set_Is_Limited_Interface
2700 (T, Limited_Present (Def)
2701 or else Protected_Present (Def)
2702 or else Synchronized_Present (Def)
2703 or else Task_Present (Def));
2704
2705 Set_Interfaces (T, New_Elmt_List);
2706 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2707
2708 -- Complete the decoration of the class-wide entity if it was already
2709 -- built (i.e. during the creation of the limited view)
2710
2711 if Present (CW) then
2712 Set_Is_Interface (CW);
2713 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2714 end if;
2715
2716 -- Check runtime support for synchronized interfaces
2717
2718 if VM_Target = No_VM
2719 and then (Is_Task_Interface (T)
2720 or else Is_Protected_Interface (T)
2721 or else Is_Synchronized_Interface (T))
2722 and then not RTE_Available (RE_Select_Specific_Data)
2723 then
2724 Error_Msg_CRT ("synchronized interfaces", T);
2725 end if;
2726 end Analyze_Interface_Declaration;
2727
2728 -----------------------------
2729 -- Analyze_Itype_Reference --
2730 -----------------------------
2731
2732 -- Nothing to do. This node is placed in the tree only for the benefit of
2733 -- back end processing, and has no effect on the semantic processing.
2734
2735 procedure Analyze_Itype_Reference (N : Node_Id) is
2736 begin
2737 pragma Assert (Is_Itype (Itype (N)));
2738 null;
2739 end Analyze_Itype_Reference;
2740
2741 --------------------------------
2742 -- Analyze_Number_Declaration --
2743 --------------------------------
2744
2745 procedure Analyze_Number_Declaration (N : Node_Id) is
2746 Id : constant Entity_Id := Defining_Identifier (N);
2747 E : constant Node_Id := Expression (N);
2748 T : Entity_Id;
2749 Index : Interp_Index;
2750 It : Interp;
2751
2752 begin
2753 Generate_Definition (Id);
2754 Enter_Name (Id);
2755
2756 -- This is an optimization of a common case of an integer literal
2757
2758 if Nkind (E) = N_Integer_Literal then
2759 Set_Is_Static_Expression (E, True);
2760 Set_Etype (E, Universal_Integer);
2761
2762 Set_Etype (Id, Universal_Integer);
2763 Set_Ekind (Id, E_Named_Integer);
2764 Set_Is_Frozen (Id, True);
2765 return;
2766 end if;
2767
2768 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2769
2770 -- Process expression, replacing error by integer zero, to avoid
2771 -- cascaded errors or aborts further along in the processing
2772
2773 -- Replace Error by integer zero, which seems least likely to cause
2774 -- cascaded errors.
2775
2776 if E = Error then
2777 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2778 Set_Error_Posted (E);
2779 end if;
2780
2781 Analyze (E);
2782
2783 -- Verify that the expression is static and numeric. If
2784 -- the expression is overloaded, we apply the preference
2785 -- rule that favors root numeric types.
2786
2787 if not Is_Overloaded (E) then
2788 T := Etype (E);
2789
2790 else
2791 T := Any_Type;
2792
2793 Get_First_Interp (E, Index, It);
2794 while Present (It.Typ) loop
2795 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2796 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2797 then
2798 if T = Any_Type then
2799 T := It.Typ;
2800
2801 elsif It.Typ = Universal_Real
2802 or else It.Typ = Universal_Integer
2803 then
2804 -- Choose universal interpretation over any other
2805
2806 T := It.Typ;
2807 exit;
2808 end if;
2809 end if;
2810
2811 Get_Next_Interp (Index, It);
2812 end loop;
2813 end if;
2814
2815 if Is_Integer_Type (T) then
2816 Resolve (E, T);
2817 Set_Etype (Id, Universal_Integer);
2818 Set_Ekind (Id, E_Named_Integer);
2819
2820 elsif Is_Real_Type (T) then
2821
2822 -- Because the real value is converted to universal_real, this is a
2823 -- legal context for a universal fixed expression.
2824
2825 if T = Universal_Fixed then
2826 declare
2827 Loc : constant Source_Ptr := Sloc (N);
2828 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2829 Subtype_Mark =>
2830 New_Occurrence_Of (Universal_Real, Loc),
2831 Expression => Relocate_Node (E));
2832
2833 begin
2834 Rewrite (E, Conv);
2835 Analyze (E);
2836 end;
2837
2838 elsif T = Any_Fixed then
2839 Error_Msg_N ("illegal context for mixed mode operation", E);
2840
2841 -- Expression is of the form : universal_fixed * integer. Try to
2842 -- resolve as universal_real.
2843
2844 T := Universal_Real;
2845 Set_Etype (E, T);
2846 end if;
2847
2848 Resolve (E, T);
2849 Set_Etype (Id, Universal_Real);
2850 Set_Ekind (Id, E_Named_Real);
2851
2852 else
2853 Wrong_Type (E, Any_Numeric);
2854 Resolve (E, T);
2855
2856 Set_Etype (Id, T);
2857 Set_Ekind (Id, E_Constant);
2858 Set_Never_Set_In_Source (Id, True);
2859 Set_Is_True_Constant (Id, True);
2860 return;
2861 end if;
2862
2863 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2864 Set_Etype (E, Etype (Id));
2865 end if;
2866
2867 if not Is_OK_Static_Expression (E) then
2868 Flag_Non_Static_Expr
2869 ("non-static expression used in number declaration!", E);
2870 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2871 Set_Etype (E, Any_Type);
2872 end if;
2873 end Analyze_Number_Declaration;
2874
2875 --------------------------------
2876 -- Analyze_Object_Declaration --
2877 --------------------------------
2878
2879 procedure Analyze_Object_Declaration (N : Node_Id) is
2880 Loc : constant Source_Ptr := Sloc (N);
2881 Id : constant Entity_Id := Defining_Identifier (N);
2882 T : Entity_Id;
2883 Act_T : Entity_Id;
2884
2885 E : Node_Id := Expression (N);
2886 -- E is set to Expression (N) throughout this routine. When
2887 -- Expression (N) is modified, E is changed accordingly.
2888
2889 Prev_Entity : Entity_Id := Empty;
2890
2891 function Count_Tasks (T : Entity_Id) return Uint;
2892 -- This function is called when a non-generic library level object of a
2893 -- task type is declared. Its function is to count the static number of
2894 -- tasks declared within the type (it is only called if Has_Tasks is set
2895 -- for T). As a side effect, if an array of tasks with non-static bounds
2896 -- or a variant record type is encountered, Check_Restrictions is called
2897 -- indicating the count is unknown.
2898
2899 -----------------
2900 -- Count_Tasks --
2901 -----------------
2902
2903 function Count_Tasks (T : Entity_Id) return Uint is
2904 C : Entity_Id;
2905 X : Node_Id;
2906 V : Uint;
2907
2908 begin
2909 if Is_Task_Type (T) then
2910 return Uint_1;
2911
2912 elsif Is_Record_Type (T) then
2913 if Has_Discriminants (T) then
2914 Check_Restriction (Max_Tasks, N);
2915 return Uint_0;
2916
2917 else
2918 V := Uint_0;
2919 C := First_Component (T);
2920 while Present (C) loop
2921 V := V + Count_Tasks (Etype (C));
2922 Next_Component (C);
2923 end loop;
2924
2925 return V;
2926 end if;
2927
2928 elsif Is_Array_Type (T) then
2929 X := First_Index (T);
2930 V := Count_Tasks (Component_Type (T));
2931 while Present (X) loop
2932 C := Etype (X);
2933
2934 if not Is_Static_Subtype (C) then
2935 Check_Restriction (Max_Tasks, N);
2936 return Uint_0;
2937 else
2938 V := V * (UI_Max (Uint_0,
2939 Expr_Value (Type_High_Bound (C)) -
2940 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2941 end if;
2942
2943 Next_Index (X);
2944 end loop;
2945
2946 return V;
2947
2948 else
2949 return Uint_0;
2950 end if;
2951 end Count_Tasks;
2952
2953 -- Start of processing for Analyze_Object_Declaration
2954
2955 begin
2956 -- There are three kinds of implicit types generated by an
2957 -- object declaration:
2958
2959 -- 1. Those generated by the original Object Definition
2960
2961 -- 2. Those generated by the Expression
2962
2963 -- 3. Those used to constrain the Object Definition with the
2964 -- expression constraints when the definition is unconstrained.
2965
2966 -- They must be generated in this order to avoid order of elaboration
2967 -- issues. Thus the first step (after entering the name) is to analyze
2968 -- the object definition.
2969
2970 if Constant_Present (N) then
2971 Prev_Entity := Current_Entity_In_Scope (Id);
2972
2973 if Present (Prev_Entity)
2974 and then
2975
2976 -- If the homograph is an implicit subprogram, it is overridden
2977 -- by the current declaration.
2978
2979 ((Is_Overloadable (Prev_Entity)
2980 and then Is_Inherited_Operation (Prev_Entity))
2981
2982 -- The current object is a discriminal generated for an entry
2983 -- family index. Even though the index is a constant, in this
2984 -- particular context there is no true constant redeclaration.
2985 -- Enter_Name will handle the visibility.
2986
2987 or else
2988 (Is_Discriminal (Id)
2989 and then Ekind (Discriminal_Link (Id)) =
2990 E_Entry_Index_Parameter)
2991
2992 -- The current object is the renaming for a generic declared
2993 -- within the instance.
2994
2995 or else
2996 (Ekind (Prev_Entity) = E_Package
2997 and then Nkind (Parent (Prev_Entity)) =
2998 N_Package_Renaming_Declaration
2999 and then not Comes_From_Source (Prev_Entity)
3000 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3001 then
3002 Prev_Entity := Empty;
3003 end if;
3004 end if;
3005
3006 if Present (Prev_Entity) then
3007 Constant_Redeclaration (Id, N, T);
3008
3009 Generate_Reference (Prev_Entity, Id, 'c');
3010 Set_Completion_Referenced (Id);
3011
3012 if Error_Posted (N) then
3013
3014 -- Type mismatch or illegal redeclaration, Do not analyze
3015 -- expression to avoid cascaded errors.
3016
3017 T := Find_Type_Of_Object (Object_Definition (N), N);
3018 Set_Etype (Id, T);
3019 Set_Ekind (Id, E_Variable);
3020 goto Leave;
3021 end if;
3022
3023 -- In the normal case, enter identifier at the start to catch premature
3024 -- usage in the initialization expression.
3025
3026 else
3027 Generate_Definition (Id);
3028 Enter_Name (Id);
3029
3030 Mark_Coextensions (N, Object_Definition (N));
3031
3032 T := Find_Type_Of_Object (Object_Definition (N), N);
3033
3034 if Nkind (Object_Definition (N)) = N_Access_Definition
3035 and then Present
3036 (Access_To_Subprogram_Definition (Object_Definition (N)))
3037 and then Protected_Present
3038 (Access_To_Subprogram_Definition (Object_Definition (N)))
3039 then
3040 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3041 end if;
3042
3043 if Error_Posted (Id) then
3044 Set_Etype (Id, T);
3045 Set_Ekind (Id, E_Variable);
3046 goto Leave;
3047 end if;
3048 end if;
3049
3050 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3051 -- out some static checks
3052
3053 if Ada_Version >= Ada_2005
3054 and then Can_Never_Be_Null (T)
3055 then
3056 -- In case of aggregates we must also take care of the correct
3057 -- initialization of nested aggregates bug this is done at the
3058 -- point of the analysis of the aggregate (see sem_aggr.adb)
3059
3060 if Present (Expression (N))
3061 and then Nkind (Expression (N)) = N_Aggregate
3062 then
3063 null;
3064
3065 else
3066 declare
3067 Save_Typ : constant Entity_Id := Etype (Id);
3068 begin
3069 Set_Etype (Id, T); -- Temp. decoration for static checks
3070 Null_Exclusion_Static_Checks (N);
3071 Set_Etype (Id, Save_Typ);
3072 end;
3073 end if;
3074 end if;
3075
3076 -- Object is marked pure if it is in a pure scope
3077
3078 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3079
3080 -- If deferred constant, make sure context is appropriate. We detect
3081 -- a deferred constant as a constant declaration with no expression.
3082 -- A deferred constant can appear in a package body if its completion
3083 -- is by means of an interface pragma.
3084
3085 if Constant_Present (N) and then No (E) then
3086
3087 -- A deferred constant may appear in the declarative part of the
3088 -- following constructs:
3089
3090 -- blocks
3091 -- entry bodies
3092 -- extended return statements
3093 -- package specs
3094 -- package bodies
3095 -- subprogram bodies
3096 -- task bodies
3097
3098 -- When declared inside a package spec, a deferred constant must be
3099 -- completed by a full constant declaration or pragma Import. In all
3100 -- other cases, the only proper completion is pragma Import. Extended
3101 -- return statements are flagged as invalid contexts because they do
3102 -- not have a declarative part and so cannot accommodate the pragma.
3103
3104 if Ekind (Current_Scope) = E_Return_Statement then
3105 Error_Msg_N
3106 ("invalid context for deferred constant declaration (RM 7.4)",
3107 N);
3108 Error_Msg_N
3109 ("\declaration requires an initialization expression",
3110 N);
3111 Set_Constant_Present (N, False);
3112
3113 -- In Ada 83, deferred constant must be of private type
3114
3115 elsif not Is_Private_Type (T) then
3116 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3117 Error_Msg_N
3118 ("(Ada 83) deferred constant must be private type", N);
3119 end if;
3120 end if;
3121
3122 -- If not a deferred constant, then object declaration freezes its type
3123
3124 else
3125 Check_Fully_Declared (T, N);
3126 Freeze_Before (N, T);
3127 end if;
3128
3129 -- If the object was created by a constrained array definition, then
3130 -- set the link in both the anonymous base type and anonymous subtype
3131 -- that are built to represent the array type to point to the object.
3132
3133 if Nkind (Object_Definition (Declaration_Node (Id))) =
3134 N_Constrained_Array_Definition
3135 then
3136 Set_Related_Array_Object (T, Id);
3137 Set_Related_Array_Object (Base_Type (T), Id);
3138 end if;
3139
3140 -- Special checks for protected objects not at library level
3141
3142 if Is_Protected_Type (T)
3143 and then not Is_Library_Level_Entity (Id)
3144 then
3145 Check_Restriction (No_Local_Protected_Objects, Id);
3146
3147 -- Protected objects with interrupt handlers must be at library level
3148
3149 -- Ada 2005: this test is not needed (and the corresponding clause
3150 -- in the RM is removed) because accessibility checks are sufficient
3151 -- to make handlers not at the library level illegal.
3152
3153 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3154 -- applies to the '95 version of the language as well.
3155
3156 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3157 Error_Msg_N
3158 ("interrupt object can only be declared at library level", Id);
3159 end if;
3160 end if;
3161
3162 -- The actual subtype of the object is the nominal subtype, unless
3163 -- the nominal one is unconstrained and obtained from the expression.
3164
3165 Act_T := T;
3166
3167 -- These checks should be performed before the initialization expression
3168 -- is considered, so that the Object_Definition node is still the same
3169 -- as in source code.
3170
3171 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3172 -- shall not be unconstrained. (The only exception to this is the
3173 -- admission of declarations of constants of type String.)
3174
3175 if not
3176 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3177 then
3178 Check_SPARK_Restriction
3179 ("subtype mark required", Object_Definition (N));
3180
3181 elsif Is_Array_Type (T)
3182 and then not Is_Constrained (T)
3183 and then T /= Standard_String
3184 then
3185 Check_SPARK_Restriction
3186 ("subtype mark of constrained type expected",
3187 Object_Definition (N));
3188 end if;
3189
3190 -- There are no aliased objects in SPARK
3191
3192 if Aliased_Present (N) then
3193 Check_SPARK_Restriction ("aliased object is not allowed", N);
3194 end if;
3195
3196 -- Process initialization expression if present and not in error
3197
3198 if Present (E) and then E /= Error then
3199
3200 -- Generate an error in case of CPP class-wide object initialization.
3201 -- Required because otherwise the expansion of the class-wide
3202 -- assignment would try to use 'size to initialize the object
3203 -- (primitive that is not available in CPP tagged types).
3204
3205 if Is_Class_Wide_Type (Act_T)
3206 and then
3207 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3208 or else
3209 (Present (Full_View (Root_Type (Etype (Act_T))))
3210 and then
3211 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3212 then
3213 Error_Msg_N
3214 ("predefined assignment not available for 'C'P'P tagged types",
3215 E);
3216 end if;
3217
3218 Mark_Coextensions (N, E);
3219 Analyze (E);
3220
3221 -- In case of errors detected in the analysis of the expression,
3222 -- decorate it with the expected type to avoid cascaded errors
3223
3224 if No (Etype (E)) then
3225 Set_Etype (E, T);
3226 end if;
3227
3228 -- If an initialization expression is present, then we set the
3229 -- Is_True_Constant flag. It will be reset if this is a variable
3230 -- and it is indeed modified.
3231
3232 Set_Is_True_Constant (Id, True);
3233
3234 -- If we are analyzing a constant declaration, set its completion
3235 -- flag after analyzing and resolving the expression.
3236
3237 if Constant_Present (N) then
3238 Set_Has_Completion (Id);
3239 end if;
3240
3241 -- Set type and resolve (type may be overridden later on). Note:
3242 -- Ekind (Id) must still be E_Void at this point so that incorrect
3243 -- early usage within E is properly diagnosed.
3244
3245 Set_Etype (Id, T);
3246 Resolve (E, T);
3247
3248 -- No further action needed if E is a call to an inlined function
3249 -- which returns an unconstrained type and it has been expanded into
3250 -- a procedure call. In that case N has been replaced by an object
3251 -- declaration without initializing expression and it has been
3252 -- analyzed (see Expand_Inlined_Call).
3253
3254 if Debug_Flag_Dot_K
3255 and then Expander_Active
3256 and then Nkind (E) = N_Function_Call
3257 and then Nkind (Name (E)) in N_Has_Entity
3258 and then Is_Inlined (Entity (Name (E)))
3259 and then not Is_Constrained (Etype (E))
3260 and then Analyzed (N)
3261 and then No (Expression (N))
3262 then
3263 return;
3264 end if;
3265
3266 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3267 -- node (which was marked already-analyzed), we need to set the type
3268 -- to something other than Any_Access in order to keep gigi happy.
3269
3270 if Etype (E) = Any_Access then
3271 Set_Etype (E, T);
3272 end if;
3273
3274 -- If the object is an access to variable, the initialization
3275 -- expression cannot be an access to constant.
3276
3277 if Is_Access_Type (T)
3278 and then not Is_Access_Constant (T)
3279 and then Is_Access_Type (Etype (E))
3280 and then Is_Access_Constant (Etype (E))
3281 then
3282 Error_Msg_N
3283 ("access to variable cannot be initialized "
3284 & "with an access-to-constant expression", E);
3285 end if;
3286
3287 if not Assignment_OK (N) then
3288 Check_Initialization (T, E);
3289 end if;
3290
3291 Check_Unset_Reference (E);
3292
3293 -- If this is a variable, then set current value. If this is a
3294 -- declared constant of a scalar type with a static expression,
3295 -- indicate that it is always valid.
3296
3297 if not Constant_Present (N) then
3298 if Compile_Time_Known_Value (E) then
3299 Set_Current_Value (Id, E);
3300 end if;
3301
3302 elsif Is_Scalar_Type (T)
3303 and then Is_OK_Static_Expression (E)
3304 then
3305 Set_Is_Known_Valid (Id);
3306 end if;
3307
3308 -- Deal with setting of null flags
3309
3310 if Is_Access_Type (T) then
3311 if Known_Non_Null (E) then
3312 Set_Is_Known_Non_Null (Id, True);
3313 elsif Known_Null (E)
3314 and then not Can_Never_Be_Null (Id)
3315 then
3316 Set_Is_Known_Null (Id, True);
3317 end if;
3318 end if;
3319
3320 -- Check incorrect use of dynamically tagged expressions
3321
3322 if Is_Tagged_Type (T) then
3323 Check_Dynamically_Tagged_Expression
3324 (Expr => E,
3325 Typ => T,
3326 Related_Nod => N);
3327 end if;
3328
3329 Apply_Scalar_Range_Check (E, T);
3330 Apply_Static_Length_Check (E, T);
3331
3332 if Nkind (Original_Node (N)) = N_Object_Declaration
3333 and then Comes_From_Source (Original_Node (N))
3334
3335 -- Only call test if needed
3336
3337 and then Restriction_Check_Required (SPARK_05)
3338 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3339 then
3340 Check_SPARK_Restriction
3341 ("initialization expression is not appropriate", E);
3342 end if;
3343 end if;
3344
3345 -- If the No_Streams restriction is set, check that the type of the
3346 -- object is not, and does not contain, any subtype derived from
3347 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3348 -- Has_Stream just for efficiency reasons. There is no point in
3349 -- spending time on a Has_Stream check if the restriction is not set.
3350
3351 if Restriction_Check_Required (No_Streams) then
3352 if Has_Stream (T) then
3353 Check_Restriction (No_Streams, N);
3354 end if;
3355 end if;
3356
3357 -- Deal with predicate check before we start to do major rewriting. It
3358 -- is OK to initialize and then check the initialized value, since the
3359 -- object goes out of scope if we get a predicate failure. Note that we
3360 -- do this in the analyzer and not the expander because the analyzer
3361 -- does some substantial rewriting in some cases.
3362
3363 -- We need a predicate check if the type has predicates, and if either
3364 -- there is an initializing expression, or for default initialization
3365 -- when we have at least one case of an explicit default initial value.
3366
3367 if not Suppress_Assignment_Checks (N)
3368 and then Present (Predicate_Function (T))
3369 and then
3370 (Present (E)
3371 or else
3372 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3373 then
3374 -- If the type has a static predicate and the expression is known at
3375 -- compile time, see if the expression satisfies the predicate.
3376
3377 if Present (E) then
3378 Check_Expression_Against_Static_Predicate (E, T);
3379 end if;
3380
3381 Insert_After (N,
3382 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3383 end if;
3384
3385 -- Case of unconstrained type
3386
3387 if Is_Indefinite_Subtype (T) then
3388
3389 -- In SPARK, a declaration of unconstrained type is allowed
3390 -- only for constants of type string.
3391
3392 if Is_String_Type (T) and then not Constant_Present (N) then
3393 Check_SPARK_Restriction
3394 ("declaration of object of unconstrained type not allowed", N);
3395 end if;
3396
3397 -- Nothing to do in deferred constant case
3398
3399 if Constant_Present (N) and then No (E) then
3400 null;
3401
3402 -- Case of no initialization present
3403
3404 elsif No (E) then
3405 if No_Initialization (N) then
3406 null;
3407
3408 elsif Is_Class_Wide_Type (T) then
3409 Error_Msg_N
3410 ("initialization required in class-wide declaration ", N);
3411
3412 else
3413 Error_Msg_N
3414 ("unconstrained subtype not allowed (need initialization)",
3415 Object_Definition (N));
3416
3417 if Is_Record_Type (T) and then Has_Discriminants (T) then
3418 Error_Msg_N
3419 ("\provide initial value or explicit discriminant values",
3420 Object_Definition (N));
3421
3422 Error_Msg_NE
3423 ("\or give default discriminant values for type&",
3424 Object_Definition (N), T);
3425
3426 elsif Is_Array_Type (T) then
3427 Error_Msg_N
3428 ("\provide initial value or explicit array bounds",
3429 Object_Definition (N));
3430 end if;
3431 end if;
3432
3433 -- Case of initialization present but in error. Set initial
3434 -- expression as absent (but do not make above complaints)
3435
3436 elsif E = Error then
3437 Set_Expression (N, Empty);
3438 E := Empty;
3439
3440 -- Case of initialization present
3441
3442 else
3443 -- Check restrictions in Ada 83
3444
3445 if not Constant_Present (N) then
3446
3447 -- Unconstrained variables not allowed in Ada 83 mode
3448
3449 if Ada_Version = Ada_83
3450 and then Comes_From_Source (Object_Definition (N))
3451 then
3452 Error_Msg_N
3453 ("(Ada 83) unconstrained variable not allowed",
3454 Object_Definition (N));
3455 end if;
3456 end if;
3457
3458 -- Now we constrain the variable from the initializing expression
3459
3460 -- If the expression is an aggregate, it has been expanded into
3461 -- individual assignments. Retrieve the actual type from the
3462 -- expanded construct.
3463
3464 if Is_Array_Type (T)
3465 and then No_Initialization (N)
3466 and then Nkind (Original_Node (E)) = N_Aggregate
3467 then
3468 Act_T := Etype (E);
3469
3470 -- In case of class-wide interface object declarations we delay
3471 -- the generation of the equivalent record type declarations until
3472 -- its expansion because there are cases in they are not required.
3473
3474 elsif Is_Interface (T) then
3475 null;
3476
3477 else
3478 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3479 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3480 end if;
3481
3482 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3483
3484 if Aliased_Present (N) then
3485 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3486 end if;
3487
3488 Freeze_Before (N, Act_T);
3489 Freeze_Before (N, T);
3490 end if;
3491
3492 elsif Is_Array_Type (T)
3493 and then No_Initialization (N)
3494 and then Nkind (Original_Node (E)) = N_Aggregate
3495 then
3496 if not Is_Entity_Name (Object_Definition (N)) then
3497 Act_T := Etype (E);
3498 Check_Compile_Time_Size (Act_T);
3499
3500 if Aliased_Present (N) then
3501 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3502 end if;
3503 end if;
3504
3505 -- When the given object definition and the aggregate are specified
3506 -- independently, and their lengths might differ do a length check.
3507 -- This cannot happen if the aggregate is of the form (others =>...)
3508
3509 if not Is_Constrained (T) then
3510 null;
3511
3512 elsif Nkind (E) = N_Raise_Constraint_Error then
3513
3514 -- Aggregate is statically illegal. Place back in declaration
3515
3516 Set_Expression (N, E);
3517 Set_No_Initialization (N, False);
3518
3519 elsif T = Etype (E) then
3520 null;
3521
3522 elsif Nkind (E) = N_Aggregate
3523 and then Present (Component_Associations (E))
3524 and then Present (Choices (First (Component_Associations (E))))
3525 and then Nkind (First
3526 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3527 then
3528 null;
3529
3530 else
3531 Apply_Length_Check (E, T);
3532 end if;
3533
3534 -- If the type is limited unconstrained with defaulted discriminants and
3535 -- there is no expression, then the object is constrained by the
3536 -- defaults, so it is worthwhile building the corresponding subtype.
3537
3538 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3539 and then not Is_Constrained (T)
3540 and then Has_Discriminants (T)
3541 then
3542 if No (E) then
3543 Act_T := Build_Default_Subtype (T, N);
3544 else
3545 -- Ada 2005: a limited object may be initialized by means of an
3546 -- aggregate. If the type has default discriminants it has an
3547 -- unconstrained nominal type, Its actual subtype will be obtained
3548 -- from the aggregate, and not from the default discriminants.
3549
3550 Act_T := Etype (E);
3551 end if;
3552
3553 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3554
3555 elsif Present (Underlying_Type (T))
3556 and then not Is_Constrained (Underlying_Type (T))
3557 and then Has_Discriminants (Underlying_Type (T))
3558 and then Nkind (E) = N_Function_Call
3559 and then Constant_Present (N)
3560 then
3561 -- The back-end has problems with constants of a discriminated type
3562 -- with defaults, if the initial value is a function call. We
3563 -- generate an intermediate temporary for the result of the call.
3564 -- It is unclear why this should make it acceptable to gcc. ???
3565
3566 Remove_Side_Effects (E);
3567
3568 -- If this is a constant declaration of an unconstrained type and
3569 -- the initialization is an aggregate, we can use the subtype of the
3570 -- aggregate for the declared entity because it is immutable.
3571
3572 elsif not Is_Constrained (T)
3573 and then Has_Discriminants (T)
3574 and then Constant_Present (N)
3575 and then not Has_Unchecked_Union (T)
3576 and then Nkind (E) = N_Aggregate
3577 then
3578 Act_T := Etype (E);
3579 end if;
3580
3581 -- Check No_Wide_Characters restriction
3582
3583 Check_Wide_Character_Restriction (T, Object_Definition (N));
3584
3585 -- Indicate this is not set in source. Certainly true for constants, and
3586 -- true for variables so far (will be reset for a variable if and when
3587 -- we encounter a modification in the source).
3588
3589 Set_Never_Set_In_Source (Id, True);
3590
3591 -- Now establish the proper kind and type of the object
3592
3593 if Constant_Present (N) then
3594 Set_Ekind (Id, E_Constant);
3595 Set_Is_True_Constant (Id);
3596
3597 else
3598 Set_Ekind (Id, E_Variable);
3599
3600 -- A variable is set as shared passive if it appears in a shared
3601 -- passive package, and is at the outer level. This is not done for
3602 -- entities generated during expansion, because those are always
3603 -- manipulated locally.
3604
3605 if Is_Shared_Passive (Current_Scope)
3606 and then Is_Library_Level_Entity (Id)
3607 and then Comes_From_Source (Id)
3608 then
3609 Set_Is_Shared_Passive (Id);
3610 Check_Shared_Var (Id, T, N);
3611 end if;
3612
3613 -- Set Has_Initial_Value if initializing expression present. Note
3614 -- that if there is no initializing expression, we leave the state
3615 -- of this flag unchanged (usually it will be False, but notably in
3616 -- the case of exception choice variables, it will already be true).
3617
3618 if Present (E) then
3619 Set_Has_Initial_Value (Id, True);
3620 end if;
3621 end if;
3622
3623 -- Initialize alignment and size and capture alignment setting
3624
3625 Init_Alignment (Id);
3626 Init_Esize (Id);
3627 Set_Optimize_Alignment_Flags (Id);
3628
3629 -- Deal with aliased case
3630
3631 if Aliased_Present (N) then
3632 Set_Is_Aliased (Id);
3633
3634 -- If the object is aliased and the type is unconstrained with
3635 -- defaulted discriminants and there is no expression, then the
3636 -- object is constrained by the defaults, so it is worthwhile
3637 -- building the corresponding subtype.
3638
3639 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3640 -- unconstrained, then only establish an actual subtype if the
3641 -- nominal subtype is indefinite. In definite cases the object is
3642 -- unconstrained in Ada 2005.
3643
3644 if No (E)
3645 and then Is_Record_Type (T)
3646 and then not Is_Constrained (T)
3647 and then Has_Discriminants (T)
3648 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3649 then
3650 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3651 end if;
3652 end if;
3653
3654 -- Now we can set the type of the object
3655
3656 Set_Etype (Id, Act_T);
3657
3658 -- Object is marked to be treated as volatile if type is volatile and
3659 -- we clear the Current_Value setting that may have been set above.
3660
3661 if Treat_As_Volatile (Etype (Id)) then
3662 Set_Treat_As_Volatile (Id);
3663 Set_Current_Value (Id, Empty);
3664 end if;
3665
3666 -- Deal with controlled types
3667
3668 if Has_Controlled_Component (Etype (Id))
3669 or else Is_Controlled (Etype (Id))
3670 then
3671 if not Is_Library_Level_Entity (Id) then
3672 Check_Restriction (No_Nested_Finalization, N);
3673 else
3674 Validate_Controlled_Object (Id);
3675 end if;
3676 end if;
3677
3678 if Has_Task (Etype (Id)) then
3679 Check_Restriction (No_Tasking, N);
3680
3681 -- Deal with counting max tasks
3682
3683 -- Nothing to do if inside a generic
3684
3685 if Inside_A_Generic then
3686 null;
3687
3688 -- If library level entity, then count tasks
3689
3690 elsif Is_Library_Level_Entity (Id) then
3691 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3692
3693 -- If not library level entity, then indicate we don't know max
3694 -- tasks and also check task hierarchy restriction and blocking
3695 -- operation (since starting a task is definitely blocking!)
3696
3697 else
3698 Check_Restriction (Max_Tasks, N);
3699 Check_Restriction (No_Task_Hierarchy, N);
3700 Check_Potentially_Blocking_Operation (N);
3701 end if;
3702
3703 -- A rather specialized test. If we see two tasks being declared
3704 -- of the same type in the same object declaration, and the task
3705 -- has an entry with an address clause, we know that program error
3706 -- will be raised at run time since we can't have two tasks with
3707 -- entries at the same address.
3708
3709 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3710 declare
3711 E : Entity_Id;
3712
3713 begin
3714 E := First_Entity (Etype (Id));
3715 while Present (E) loop
3716 if Ekind (E) = E_Entry
3717 and then Present (Get_Attribute_Definition_Clause
3718 (E, Attribute_Address))
3719 then
3720 Error_Msg_N
3721 ("??more than one task with same entry address", N);
3722 Error_Msg_N
3723 ("\??Program_Error will be raised at run time", N);
3724 Insert_Action (N,
3725 Make_Raise_Program_Error (Loc,
3726 Reason => PE_Duplicated_Entry_Address));
3727 exit;
3728 end if;
3729
3730 Next_Entity (E);
3731 end loop;
3732 end;
3733 end if;
3734 end if;
3735
3736 -- Some simple constant-propagation: if the expression is a constant
3737 -- string initialized with a literal, share the literal. This avoids
3738 -- a run-time copy.
3739
3740 if Present (E)
3741 and then Is_Entity_Name (E)
3742 and then Ekind (Entity (E)) = E_Constant
3743 and then Base_Type (Etype (E)) = Standard_String
3744 then
3745 declare
3746 Val : constant Node_Id := Constant_Value (Entity (E));
3747 begin
3748 if Present (Val)
3749 and then Nkind (Val) = N_String_Literal
3750 then
3751 Rewrite (E, New_Copy (Val));
3752 end if;
3753 end;
3754 end if;
3755
3756 -- Another optimization: if the nominal subtype is unconstrained and
3757 -- the expression is a function call that returns an unconstrained
3758 -- type, rewrite the declaration as a renaming of the result of the
3759 -- call. The exceptions below are cases where the copy is expected,
3760 -- either by the back end (Aliased case) or by the semantics, as for
3761 -- initializing controlled types or copying tags for classwide types.
3762
3763 if Present (E)
3764 and then Nkind (E) = N_Explicit_Dereference
3765 and then Nkind (Original_Node (E)) = N_Function_Call
3766 and then not Is_Library_Level_Entity (Id)
3767 and then not Is_Constrained (Underlying_Type (T))
3768 and then not Is_Aliased (Id)
3769 and then not Is_Class_Wide_Type (T)
3770 and then not Is_Controlled (T)
3771 and then not Has_Controlled_Component (Base_Type (T))
3772 and then Expander_Active
3773 then
3774 Rewrite (N,
3775 Make_Object_Renaming_Declaration (Loc,
3776 Defining_Identifier => Id,
3777 Access_Definition => Empty,
3778 Subtype_Mark => New_Occurrence_Of
3779 (Base_Type (Etype (Id)), Loc),
3780 Name => E));
3781
3782 Set_Renamed_Object (Id, E);
3783
3784 -- Force generation of debugging information for the constant and for
3785 -- the renamed function call.
3786
3787 Set_Debug_Info_Needed (Id);
3788 Set_Debug_Info_Needed (Entity (Prefix (E)));
3789 end if;
3790
3791 if Present (Prev_Entity)
3792 and then Is_Frozen (Prev_Entity)
3793 and then not Error_Posted (Id)
3794 then
3795 Error_Msg_N ("full constant declaration appears too late", N);
3796 end if;
3797
3798 Check_Eliminated (Id);
3799
3800 -- Deal with setting In_Private_Part flag if in private part
3801
3802 if Ekind (Scope (Id)) = E_Package
3803 and then In_Private_Part (Scope (Id))
3804 then
3805 Set_In_Private_Part (Id);
3806 end if;
3807
3808 -- Check for violation of No_Local_Timing_Events
3809
3810 if Restriction_Check_Required (No_Local_Timing_Events)
3811 and then not Is_Library_Level_Entity (Id)
3812 and then Is_RTE (Etype (Id), RE_Timing_Event)
3813 then
3814 Check_Restriction (No_Local_Timing_Events, N);
3815 end if;
3816
3817 <<Leave>>
3818 -- Initialize the refined state of a variable here because this is a
3819 -- common destination for legal and illegal object declarations.
3820
3821 if Ekind (Id) = E_Variable then
3822 Set_Refined_State (Id, Empty);
3823 end if;
3824
3825 if Has_Aspects (N) then
3826 Analyze_Aspect_Specifications (N, Id);
3827 end if;
3828
3829 Analyze_Dimension (N);
3830
3831 -- Verify whether the object declaration introduces an illegal hidden
3832 -- state within a package subject to a null abstract state.
3833
3834 if Formal_Extensions and then Ekind (Id) = E_Variable then
3835 Check_No_Hidden_State (Id);
3836 end if;
3837 end Analyze_Object_Declaration;
3838
3839 ---------------------------
3840 -- Analyze_Others_Choice --
3841 ---------------------------
3842
3843 -- Nothing to do for the others choice node itself, the semantic analysis
3844 -- of the others choice will occur as part of the processing of the parent
3845
3846 procedure Analyze_Others_Choice (N : Node_Id) is
3847 pragma Warnings (Off, N);
3848 begin
3849 null;
3850 end Analyze_Others_Choice;
3851
3852 -------------------------------------------
3853 -- Analyze_Private_Extension_Declaration --
3854 -------------------------------------------
3855
3856 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3857 T : constant Entity_Id := Defining_Identifier (N);
3858 Indic : constant Node_Id := Subtype_Indication (N);
3859 Parent_Type : Entity_Id;
3860 Parent_Base : Entity_Id;
3861
3862 begin
3863 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3864
3865 if Is_Non_Empty_List (Interface_List (N)) then
3866 declare
3867 Intf : Node_Id;
3868 T : Entity_Id;
3869
3870 begin
3871 Intf := First (Interface_List (N));
3872 while Present (Intf) loop
3873 T := Find_Type_Of_Subtype_Indic (Intf);
3874
3875 Diagnose_Interface (Intf, T);
3876 Next (Intf);
3877 end loop;
3878 end;
3879 end if;
3880
3881 Generate_Definition (T);
3882
3883 -- For other than Ada 2012, just enter the name in the current scope
3884
3885 if Ada_Version < Ada_2012 then
3886 Enter_Name (T);
3887
3888 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3889 -- case of private type that completes an incomplete type.
3890
3891 else
3892 declare
3893 Prev : Entity_Id;
3894
3895 begin
3896 Prev := Find_Type_Name (N);
3897
3898 pragma Assert (Prev = T
3899 or else (Ekind (Prev) = E_Incomplete_Type
3900 and then Present (Full_View (Prev))
3901 and then Full_View (Prev) = T));
3902 end;
3903 end if;
3904
3905 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3906 Parent_Base := Base_Type (Parent_Type);
3907
3908 if Parent_Type = Any_Type
3909 or else Etype (Parent_Type) = Any_Type
3910 then
3911 Set_Ekind (T, Ekind (Parent_Type));
3912 Set_Etype (T, Any_Type);
3913 goto Leave;
3914
3915 elsif not Is_Tagged_Type (Parent_Type) then
3916 Error_Msg_N
3917 ("parent of type extension must be a tagged type ", Indic);
3918 goto Leave;
3919
3920 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
3921 Error_Msg_N ("premature derivation of incomplete type", Indic);
3922 goto Leave;
3923
3924 elsif Is_Concurrent_Type (Parent_Type) then
3925 Error_Msg_N
3926 ("parent type of a private extension cannot be "
3927 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
3928
3929 Set_Etype (T, Any_Type);
3930 Set_Ekind (T, E_Limited_Private_Type);
3931 Set_Private_Dependents (T, New_Elmt_List);
3932 Set_Error_Posted (T);
3933 goto Leave;
3934 end if;
3935
3936 -- Perhaps the parent type should be changed to the class-wide type's
3937 -- specific type in this case to prevent cascading errors ???
3938
3939 if Is_Class_Wide_Type (Parent_Type) then
3940 Error_Msg_N
3941 ("parent of type extension must not be a class-wide type", Indic);
3942 goto Leave;
3943 end if;
3944
3945 if (not Is_Package_Or_Generic_Package (Current_Scope)
3946 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
3947 or else In_Private_Part (Current_Scope)
3948
3949 then
3950 Error_Msg_N ("invalid context for private extension", N);
3951 end if;
3952
3953 -- Set common attributes
3954
3955 Set_Is_Pure (T, Is_Pure (Current_Scope));
3956 Set_Scope (T, Current_Scope);
3957 Set_Ekind (T, E_Record_Type_With_Private);
3958 Init_Size_Align (T);
3959
3960 Set_Etype (T, Parent_Base);
3961 Set_Has_Task (T, Has_Task (Parent_Base));
3962
3963 Set_Convention (T, Convention (Parent_Type));
3964 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3965 Set_Is_First_Subtype (T);
3966 Make_Class_Wide_Type (T);
3967
3968 if Unknown_Discriminants_Present (N) then
3969 Set_Discriminant_Constraint (T, No_Elist);
3970 end if;
3971
3972 Build_Derived_Record_Type (N, Parent_Type, T);
3973
3974 -- Propagate inherited invariant information. The new type has
3975 -- invariants, if the parent type has inheritable invariants,
3976 -- and these invariants can in turn be inherited.
3977
3978 if Has_Inheritable_Invariants (Parent_Type) then
3979 Set_Has_Inheritable_Invariants (T);
3980 Set_Has_Invariants (T);
3981 end if;
3982
3983 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3984 -- synchronized formal derived type.
3985
3986 if Ada_Version >= Ada_2005
3987 and then Synchronized_Present (N)
3988 then
3989 Set_Is_Limited_Record (T);
3990
3991 -- Formal derived type case
3992
3993 if Is_Generic_Type (T) then
3994
3995 -- The parent must be a tagged limited type or a synchronized
3996 -- interface.
3997
3998 if (not Is_Tagged_Type (Parent_Type)
3999 or else not Is_Limited_Type (Parent_Type))
4000 and then
4001 (not Is_Interface (Parent_Type)
4002 or else not Is_Synchronized_Interface (Parent_Type))
4003 then
4004 Error_Msg_NE ("parent type of & must be tagged limited " &
4005 "or synchronized", N, T);
4006 end if;
4007
4008 -- The progenitors (if any) must be limited or synchronized
4009 -- interfaces.
4010
4011 if Present (Interfaces (T)) then
4012 declare
4013 Iface : Entity_Id;
4014 Iface_Elmt : Elmt_Id;
4015
4016 begin
4017 Iface_Elmt := First_Elmt (Interfaces (T));
4018 while Present (Iface_Elmt) loop
4019 Iface := Node (Iface_Elmt);
4020
4021 if not Is_Limited_Interface (Iface)
4022 and then not Is_Synchronized_Interface (Iface)
4023 then
4024 Error_Msg_NE ("progenitor & must be limited " &
4025 "or synchronized", N, Iface);
4026 end if;
4027
4028 Next_Elmt (Iface_Elmt);
4029 end loop;
4030 end;
4031 end if;
4032
4033 -- Regular derived extension, the parent must be a limited or
4034 -- synchronized interface.
4035
4036 else
4037 if not Is_Interface (Parent_Type)
4038 or else (not Is_Limited_Interface (Parent_Type)
4039 and then
4040 not Is_Synchronized_Interface (Parent_Type))
4041 then
4042 Error_Msg_NE
4043 ("parent type of & must be limited interface", N, T);
4044 end if;
4045 end if;
4046
4047 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4048 -- extension with a synchronized parent must be explicitly declared
4049 -- synchronized, because the full view will be a synchronized type.
4050 -- This must be checked before the check for limited types below,
4051 -- to ensure that types declared limited are not allowed to extend
4052 -- synchronized interfaces.
4053
4054 elsif Is_Interface (Parent_Type)
4055 and then Is_Synchronized_Interface (Parent_Type)
4056 and then not Synchronized_Present (N)
4057 then
4058 Error_Msg_NE
4059 ("private extension of& must be explicitly synchronized",
4060 N, Parent_Type);
4061
4062 elsif Limited_Present (N) then
4063 Set_Is_Limited_Record (T);
4064
4065 if not Is_Limited_Type (Parent_Type)
4066 and then
4067 (not Is_Interface (Parent_Type)
4068 or else not Is_Limited_Interface (Parent_Type))
4069 then
4070 Error_Msg_NE ("parent type& of limited extension must be limited",
4071 N, Parent_Type);
4072 end if;
4073 end if;
4074
4075 <<Leave>>
4076 if Has_Aspects (N) then
4077 Analyze_Aspect_Specifications (N, T);
4078 end if;
4079 end Analyze_Private_Extension_Declaration;
4080
4081 ---------------------------------
4082 -- Analyze_Subtype_Declaration --
4083 ---------------------------------
4084
4085 procedure Analyze_Subtype_Declaration
4086 (N : Node_Id;
4087 Skip : Boolean := False)
4088 is
4089 Id : constant Entity_Id := Defining_Identifier (N);
4090 T : Entity_Id;
4091 R_Checks : Check_Result;
4092
4093 begin
4094 Generate_Definition (Id);
4095 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4096 Init_Size_Align (Id);
4097
4098 -- The following guard condition on Enter_Name is to handle cases where
4099 -- the defining identifier has already been entered into the scope but
4100 -- the declaration as a whole needs to be analyzed.
4101
4102 -- This case in particular happens for derived enumeration types. The
4103 -- derived enumeration type is processed as an inserted enumeration type
4104 -- declaration followed by a rewritten subtype declaration. The defining
4105 -- identifier, however, is entered into the name scope very early in the
4106 -- processing of the original type declaration and therefore needs to be
4107 -- avoided here, when the created subtype declaration is analyzed. (See
4108 -- Build_Derived_Types)
4109
4110 -- This also happens when the full view of a private type is derived
4111 -- type with constraints. In this case the entity has been introduced
4112 -- in the private declaration.
4113
4114 -- Finally this happens in some complex cases when validity checks are
4115 -- enabled, where the same subtype declaration may be analyzed twice.
4116 -- This can happen if the subtype is created by the pre-analysis of
4117 -- an attribute tht gives the range of a loop statement, and the loop
4118 -- itself appears within an if_statement that will be rewritten during
4119 -- expansion.
4120
4121 if Skip
4122 or else (Present (Etype (Id))
4123 and then (Is_Private_Type (Etype (Id))
4124 or else Is_Task_Type (Etype (Id))
4125 or else Is_Rewrite_Substitution (N)))
4126 then
4127 null;
4128
4129 elsif Current_Entity (Id) = Id then
4130 null;
4131
4132 else
4133 Enter_Name (Id);
4134 end if;
4135
4136 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4137
4138 -- Class-wide equivalent types of records with unknown discriminants
4139 -- involve the generation of an itype which serves as the private view
4140 -- of a constrained record subtype. In such cases the base type of the
4141 -- current subtype we are processing is the private itype. Use the full
4142 -- of the private itype when decorating various attributes.
4143
4144 if Is_Itype (T)
4145 and then Is_Private_Type (T)
4146 and then Present (Full_View (T))
4147 then
4148 T := Full_View (T);
4149 end if;
4150
4151 -- Inherit common attributes
4152
4153 Set_Is_Volatile (Id, Is_Volatile (T));
4154 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4155 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4156 Set_Convention (Id, Convention (T));
4157
4158 -- If ancestor has predicates then so does the subtype, and in addition
4159 -- we must delay the freeze to properly arrange predicate inheritance.
4160
4161 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4162 -- which T = ID, so the above tests and assignments do nothing???
4163
4164 if Has_Predicates (T)
4165 or else (Present (Ancestor_Subtype (T))
4166 and then Has_Predicates (Ancestor_Subtype (T)))
4167 then
4168 Set_Has_Predicates (Id);
4169 Set_Has_Delayed_Freeze (Id);
4170 end if;
4171
4172 -- Subtype of Boolean cannot have a constraint in SPARK
4173
4174 if Is_Boolean_Type (T)
4175 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4176 then
4177 Check_SPARK_Restriction
4178 ("subtype of Boolean cannot have constraint", N);
4179 end if;
4180
4181 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4182 declare
4183 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4184 One_Cstr : Node_Id;
4185 Low : Node_Id;
4186 High : Node_Id;
4187
4188 begin
4189 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4190 One_Cstr := First (Constraints (Cstr));
4191 while Present (One_Cstr) loop
4192
4193 -- Index or discriminant constraint in SPARK must be a
4194 -- subtype mark.
4195
4196 if not
4197 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4198 then
4199 Check_SPARK_Restriction
4200 ("subtype mark required", One_Cstr);
4201
4202 -- String subtype must have a lower bound of 1 in SPARK.
4203 -- Note that we do not need to test for the non-static case
4204 -- here, since that was already taken care of in
4205 -- Process_Range_Expr_In_Decl.
4206
4207 elsif Base_Type (T) = Standard_String then
4208 Get_Index_Bounds (One_Cstr, Low, High);
4209
4210 if Is_OK_Static_Expression (Low)
4211 and then Expr_Value (Low) /= 1
4212 then
4213 Check_SPARK_Restriction
4214 ("String subtype must have lower bound of 1", N);
4215 end if;
4216 end if;
4217
4218 Next (One_Cstr);
4219 end loop;
4220 end if;
4221 end;
4222 end if;
4223
4224 -- In the case where there is no constraint given in the subtype
4225 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4226 -- semantic attributes must be established here.
4227
4228 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4229 Set_Etype (Id, Base_Type (T));
4230
4231 -- Subtype of unconstrained array without constraint is not allowed
4232 -- in SPARK.
4233
4234 if Is_Array_Type (T)
4235 and then not Is_Constrained (T)
4236 then
4237 Check_SPARK_Restriction
4238 ("subtype of unconstrained array must have constraint", N);
4239 end if;
4240
4241 case Ekind (T) is
4242 when Array_Kind =>
4243 Set_Ekind (Id, E_Array_Subtype);
4244 Copy_Array_Subtype_Attributes (Id, T);
4245
4246 when Decimal_Fixed_Point_Kind =>
4247 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4248 Set_Digits_Value (Id, Digits_Value (T));
4249 Set_Delta_Value (Id, Delta_Value (T));
4250 Set_Scale_Value (Id, Scale_Value (T));
4251 Set_Small_Value (Id, Small_Value (T));
4252 Set_Scalar_Range (Id, Scalar_Range (T));
4253 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4254 Set_Is_Constrained (Id, Is_Constrained (T));
4255 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4256 Set_RM_Size (Id, RM_Size (T));
4257
4258 when Enumeration_Kind =>
4259 Set_Ekind (Id, E_Enumeration_Subtype);
4260 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4261 Set_Scalar_Range (Id, Scalar_Range (T));
4262 Set_Is_Character_Type (Id, Is_Character_Type (T));
4263 Set_Is_Constrained (Id, Is_Constrained (T));
4264 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4265 Set_RM_Size (Id, RM_Size (T));
4266
4267 when Ordinary_Fixed_Point_Kind =>
4268 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4269 Set_Scalar_Range (Id, Scalar_Range (T));
4270 Set_Small_Value (Id, Small_Value (T));
4271 Set_Delta_Value (Id, Delta_Value (T));
4272 Set_Is_Constrained (Id, Is_Constrained (T));
4273 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4274 Set_RM_Size (Id, RM_Size (T));
4275
4276 when Float_Kind =>
4277 Set_Ekind (Id, E_Floating_Point_Subtype);
4278 Set_Scalar_Range (Id, Scalar_Range (T));
4279 Set_Digits_Value (Id, Digits_Value (T));
4280 Set_Is_Constrained (Id, Is_Constrained (T));
4281
4282 when Signed_Integer_Kind =>
4283 Set_Ekind (Id, E_Signed_Integer_Subtype);
4284 Set_Scalar_Range (Id, Scalar_Range (T));
4285 Set_Is_Constrained (Id, Is_Constrained (T));
4286 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4287 Set_RM_Size (Id, RM_Size (T));
4288
4289 when Modular_Integer_Kind =>
4290 Set_Ekind (Id, E_Modular_Integer_Subtype);
4291 Set_Scalar_Range (Id, Scalar_Range (T));
4292 Set_Is_Constrained (Id, Is_Constrained (T));
4293 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4294 Set_RM_Size (Id, RM_Size (T));
4295
4296 when Class_Wide_Kind =>
4297 Set_Ekind (Id, E_Class_Wide_Subtype);
4298 Set_First_Entity (Id, First_Entity (T));
4299 Set_Last_Entity (Id, Last_Entity (T));
4300 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4301 Set_Cloned_Subtype (Id, T);
4302 Set_Is_Tagged_Type (Id, True);
4303 Set_Has_Unknown_Discriminants
4304 (Id, True);
4305
4306 if Ekind (T) = E_Class_Wide_Subtype then
4307 Set_Equivalent_Type (Id, Equivalent_Type (T));
4308 end if;
4309
4310 when E_Record_Type | E_Record_Subtype =>
4311 Set_Ekind (Id, E_Record_Subtype);
4312
4313 if Ekind (T) = E_Record_Subtype
4314 and then Present (Cloned_Subtype (T))
4315 then
4316 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4317 else
4318 Set_Cloned_Subtype (Id, T);
4319 end if;
4320
4321 Set_First_Entity (Id, First_Entity (T));
4322 Set_Last_Entity (Id, Last_Entity (T));
4323 Set_Has_Discriminants (Id, Has_Discriminants (T));
4324 Set_Is_Constrained (Id, Is_Constrained (T));
4325 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4326 Set_Has_Implicit_Dereference
4327 (Id, Has_Implicit_Dereference (T));
4328 Set_Has_Unknown_Discriminants
4329 (Id, Has_Unknown_Discriminants (T));
4330
4331 if Has_Discriminants (T) then
4332 Set_Discriminant_Constraint
4333 (Id, Discriminant_Constraint (T));
4334 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4335
4336 elsif Has_Unknown_Discriminants (Id) then
4337 Set_Discriminant_Constraint (Id, No_Elist);
4338 end if;
4339
4340 if Is_Tagged_Type (T) then
4341 Set_Is_Tagged_Type (Id);
4342 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4343 Set_Direct_Primitive_Operations
4344 (Id, Direct_Primitive_Operations (T));
4345 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4346
4347 if Is_Interface (T) then
4348 Set_Is_Interface (Id);
4349 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4350 end if;
4351 end if;
4352
4353 when Private_Kind =>
4354 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4355 Set_Has_Discriminants (Id, Has_Discriminants (T));
4356 Set_Is_Constrained (Id, Is_Constrained (T));
4357 Set_First_Entity (Id, First_Entity (T));
4358 Set_Last_Entity (Id, Last_Entity (T));
4359 Set_Private_Dependents (Id, New_Elmt_List);
4360 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4361 Set_Has_Implicit_Dereference
4362 (Id, Has_Implicit_Dereference (T));
4363 Set_Has_Unknown_Discriminants
4364 (Id, Has_Unknown_Discriminants (T));
4365 Set_Known_To_Have_Preelab_Init
4366 (Id, Known_To_Have_Preelab_Init (T));
4367
4368 if Is_Tagged_Type (T) then
4369 Set_Is_Tagged_Type (Id);
4370 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4371 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4372 Set_Direct_Primitive_Operations (Id,
4373 Direct_Primitive_Operations (T));
4374 end if;
4375
4376 -- In general the attributes of the subtype of a private type
4377 -- are the attributes of the partial view of parent. However,
4378 -- the full view may be a discriminated type, and the subtype
4379 -- must share the discriminant constraint to generate correct
4380 -- calls to initialization procedures.
4381
4382 if Has_Discriminants (T) then
4383 Set_Discriminant_Constraint
4384 (Id, Discriminant_Constraint (T));
4385 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4386
4387 elsif Present (Full_View (T))
4388 and then Has_Discriminants (Full_View (T))
4389 then
4390 Set_Discriminant_Constraint
4391 (Id, Discriminant_Constraint (Full_View (T)));
4392 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4393
4394 -- This would seem semantically correct, but apparently
4395 -- generates spurious errors about missing components ???
4396
4397 -- Set_Has_Discriminants (Id);
4398 end if;
4399
4400 Prepare_Private_Subtype_Completion (Id, N);
4401
4402 -- If this is the subtype of a constrained private type with
4403 -- discriminants that has got a full view and we also have
4404 -- built a completion just above, show that the completion
4405 -- is a clone of the full view to the back-end.
4406
4407 if Has_Discriminants (T)
4408 and then not Has_Unknown_Discriminants (T)
4409 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4410 and then Present (Full_View (T))
4411 and then Present (Full_View (Id))
4412 then
4413 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4414 end if;
4415
4416 when Access_Kind =>
4417 Set_Ekind (Id, E_Access_Subtype);
4418 Set_Is_Constrained (Id, Is_Constrained (T));
4419 Set_Is_Access_Constant
4420 (Id, Is_Access_Constant (T));
4421 Set_Directly_Designated_Type
4422 (Id, Designated_Type (T));
4423 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4424
4425 -- A Pure library_item must not contain the declaration of a
4426 -- named access type, except within a subprogram, generic
4427 -- subprogram, task unit, or protected unit, or if it has
4428 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4429
4430 if Comes_From_Source (Id)
4431 and then In_Pure_Unit
4432 and then not In_Subprogram_Task_Protected_Unit
4433 and then not No_Pool_Assigned (Id)
4434 then
4435 Error_Msg_N
4436 ("named access types not allowed in pure unit", N);
4437 end if;
4438
4439 when Concurrent_Kind =>
4440 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4441 Set_Corresponding_Record_Type (Id,
4442 Corresponding_Record_Type (T));
4443 Set_First_Entity (Id, First_Entity (T));
4444 Set_First_Private_Entity (Id, First_Private_Entity (T));
4445 Set_Has_Discriminants (Id, Has_Discriminants (T));
4446 Set_Is_Constrained (Id, Is_Constrained (T));
4447 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4448 Set_Last_Entity (Id, Last_Entity (T));
4449
4450 if Has_Discriminants (T) then
4451 Set_Discriminant_Constraint (Id,
4452 Discriminant_Constraint (T));
4453 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4454 end if;
4455
4456 when E_Incomplete_Type =>
4457 if Ada_Version >= Ada_2005 then
4458
4459 -- In Ada 2005 an incomplete type can be explicitly tagged:
4460 -- propagate indication.
4461
4462 Set_Ekind (Id, E_Incomplete_Subtype);
4463 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4464 Set_Private_Dependents (Id, New_Elmt_List);
4465
4466 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4467 -- incomplete type visible through a limited with clause.
4468
4469 if From_With_Type (T)
4470 and then Present (Non_Limited_View (T))
4471 then
4472 Set_From_With_Type (Id);
4473 Set_Non_Limited_View (Id, Non_Limited_View (T));
4474
4475 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4476 -- to the private dependents of the original incomplete
4477 -- type for future transformation.
4478
4479 else
4480 Append_Elmt (Id, Private_Dependents (T));
4481 end if;
4482
4483 -- If the subtype name denotes an incomplete type an error
4484 -- was already reported by Process_Subtype.
4485
4486 else
4487 Set_Etype (Id, Any_Type);
4488 end if;
4489
4490 when others =>
4491 raise Program_Error;
4492 end case;
4493 end if;
4494
4495 if Etype (Id) = Any_Type then
4496 goto Leave;
4497 end if;
4498
4499 -- Some common processing on all types
4500
4501 Set_Size_Info (Id, T);
4502 Set_First_Rep_Item (Id, First_Rep_Item (T));
4503
4504 -- If the parent type is a generic actual, so is the subtype. This may
4505 -- happen in a nested instance. Why Comes_From_Source test???
4506
4507 if not Comes_From_Source (N) then
4508 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4509 end if;
4510
4511 T := Etype (Id);
4512
4513 Set_Is_Immediately_Visible (Id, True);
4514 Set_Depends_On_Private (Id, Has_Private_Component (T));
4515 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4516
4517 if Is_Interface (T) then
4518 Set_Is_Interface (Id);
4519 end if;
4520
4521 if Present (Generic_Parent_Type (N))
4522 and then
4523 (Nkind
4524 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
4525 or else Nkind
4526 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
4527 /= N_Formal_Private_Type_Definition)
4528 then
4529 if Is_Tagged_Type (Id) then
4530
4531 -- If this is a generic actual subtype for a synchronized type,
4532 -- the primitive operations are those of the corresponding record
4533 -- for which there is a separate subtype declaration.
4534
4535 if Is_Concurrent_Type (Id) then
4536 null;
4537 elsif Is_Class_Wide_Type (Id) then
4538 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4539 else
4540 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4541 end if;
4542
4543 elsif Scope (Etype (Id)) /= Standard_Standard then
4544 Derive_Subprograms (Generic_Parent_Type (N), Id);
4545 end if;
4546 end if;
4547
4548 if Is_Private_Type (T)
4549 and then Present (Full_View (T))
4550 then
4551 Conditional_Delay (Id, Full_View (T));
4552
4553 -- The subtypes of components or subcomponents of protected types
4554 -- do not need freeze nodes, which would otherwise appear in the
4555 -- wrong scope (before the freeze node for the protected type). The
4556 -- proper subtypes are those of the subcomponents of the corresponding
4557 -- record.
4558
4559 elsif Ekind (Scope (Id)) /= E_Protected_Type
4560 and then Present (Scope (Scope (Id))) -- error defense!
4561 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4562 then
4563 Conditional_Delay (Id, T);
4564 end if;
4565
4566 -- Check that Constraint_Error is raised for a scalar subtype indication
4567 -- when the lower or upper bound of a non-null range lies outside the
4568 -- range of the type mark.
4569
4570 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4571 if Is_Scalar_Type (Etype (Id))
4572 and then Scalar_Range (Id) /=
4573 Scalar_Range (Etype (Subtype_Mark
4574 (Subtype_Indication (N))))
4575 then
4576 Apply_Range_Check
4577 (Scalar_Range (Id),
4578 Etype (Subtype_Mark (Subtype_Indication (N))));
4579
4580 -- In the array case, check compatibility for each index
4581
4582 elsif Is_Array_Type (Etype (Id))
4583 and then Present (First_Index (Id))
4584 then
4585 -- This really should be a subprogram that finds the indications
4586 -- to check???
4587
4588 declare
4589 Subt_Index : Node_Id := First_Index (Id);
4590 Target_Index : Node_Id :=
4591 First_Index (Etype
4592 (Subtype_Mark (Subtype_Indication (N))));
4593 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4594
4595 begin
4596 while Present (Subt_Index) loop
4597 if ((Nkind (Subt_Index) = N_Identifier
4598 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4599 or else Nkind (Subt_Index) = N_Subtype_Indication)
4600 and then
4601 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4602 then
4603 declare
4604 Target_Typ : constant Entity_Id :=
4605 Etype (Target_Index);
4606 begin
4607 R_Checks :=
4608 Get_Range_Checks
4609 (Scalar_Range (Etype (Subt_Index)),
4610 Target_Typ,
4611 Etype (Subt_Index),
4612 Defining_Identifier (N));
4613
4614 -- Reset Has_Dynamic_Range_Check on the subtype to
4615 -- prevent elision of the index check due to a dynamic
4616 -- check generated for a preceding index (needed since
4617 -- Insert_Range_Checks tries to avoid generating
4618 -- redundant checks on a given declaration).
4619
4620 Set_Has_Dynamic_Range_Check (N, False);
4621
4622 Insert_Range_Checks
4623 (R_Checks,
4624 N,
4625 Target_Typ,
4626 Sloc (Defining_Identifier (N)));
4627
4628 -- Record whether this index involved a dynamic check
4629
4630 Has_Dyn_Chk :=
4631 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4632 end;
4633 end if;
4634
4635 Next_Index (Subt_Index);
4636 Next_Index (Target_Index);
4637 end loop;
4638
4639 -- Finally, mark whether the subtype involves dynamic checks
4640
4641 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4642 end;
4643 end if;
4644 end if;
4645
4646 -- Make sure that generic actual types are properly frozen. The subtype
4647 -- is marked as a generic actual type when the enclosing instance is
4648 -- analyzed, so here we identify the subtype from the tree structure.
4649
4650 if Expander_Active
4651 and then Is_Generic_Actual_Type (Id)
4652 and then In_Instance
4653 and then not Comes_From_Source (N)
4654 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4655 and then Is_Frozen (T)
4656 then
4657 Freeze_Before (N, Id);
4658 end if;
4659
4660 Set_Optimize_Alignment_Flags (Id);
4661 Check_Eliminated (Id);
4662
4663 <<Leave>>
4664 if Has_Aspects (N) then
4665 Analyze_Aspect_Specifications (N, Id);
4666 end if;
4667
4668 Analyze_Dimension (N);
4669 end Analyze_Subtype_Declaration;
4670
4671 --------------------------------
4672 -- Analyze_Subtype_Indication --
4673 --------------------------------
4674
4675 procedure Analyze_Subtype_Indication (N : Node_Id) is
4676 T : constant Entity_Id := Subtype_Mark (N);
4677 R : constant Node_Id := Range_Expression (Constraint (N));
4678
4679 begin
4680 Analyze (T);
4681
4682 if R /= Error then
4683 Analyze (R);
4684 Set_Etype (N, Etype (R));
4685 Resolve (R, Entity (T));
4686 else
4687 Set_Error_Posted (R);
4688 Set_Error_Posted (T);
4689 end if;
4690 end Analyze_Subtype_Indication;
4691
4692 --------------------------
4693 -- Analyze_Variant_Part --
4694 --------------------------
4695
4696 procedure Analyze_Variant_Part (N : Node_Id) is
4697 Discr_Name : Node_Id;
4698 Discr_Type : Entity_Id;
4699
4700 procedure Process_Variant (A : Node_Id);
4701 -- Analyze declarations for a single variant
4702
4703 package Analyze_Variant_Choices is
4704 new Generic_Analyze_Choices (Process_Variant);
4705 use Analyze_Variant_Choices;
4706
4707 ---------------------
4708 -- Process_Variant --
4709 ---------------------
4710
4711 procedure Process_Variant (A : Node_Id) is
4712 CL : constant Node_Id := Component_List (A);
4713 begin
4714 if not Null_Present (CL) then
4715 Analyze_Declarations (Component_Items (CL));
4716
4717 if Present (Variant_Part (CL)) then
4718 Analyze (Variant_Part (CL));
4719 end if;
4720 end if;
4721 end Process_Variant;
4722
4723 -- Start of processing for Analyze_Variant_Part
4724
4725 begin
4726 Discr_Name := Name (N);
4727 Analyze (Discr_Name);
4728
4729 -- If Discr_Name bad, get out (prevent cascaded errors)
4730
4731 if Etype (Discr_Name) = Any_Type then
4732 return;
4733 end if;
4734
4735 -- Check invalid discriminant in variant part
4736
4737 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4738 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4739 end if;
4740
4741 Discr_Type := Etype (Entity (Discr_Name));
4742
4743 if not Is_Discrete_Type (Discr_Type) then
4744 Error_Msg_N
4745 ("discriminant in a variant part must be of a discrete type",
4746 Name (N));
4747 return;
4748 end if;
4749
4750 -- Now analyze the choices, which also analyzes the declarations that
4751 -- are associated with each choice.
4752
4753 Analyze_Choices (Variants (N), Discr_Type);
4754
4755 -- Note: we used to instantiate and call Check_Choices here to check
4756 -- that the choices covered the discriminant, but it's too early to do
4757 -- that because of statically predicated subtypes, whose analysis may
4758 -- be deferred to their freeze point which may be as late as the freeze
4759 -- point of the containing record. So this call is now to be found in
4760 -- Freeze_Record_Declaration.
4761
4762 end Analyze_Variant_Part;
4763
4764 ----------------------------
4765 -- Array_Type_Declaration --
4766 ----------------------------
4767
4768 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4769 Component_Def : constant Node_Id := Component_Definition (Def);
4770 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4771 Element_Type : Entity_Id;
4772 Implicit_Base : Entity_Id;
4773 Index : Node_Id;
4774 Related_Id : Entity_Id := Empty;
4775 Nb_Index : Nat;
4776 P : constant Node_Id := Parent (Def);
4777 Priv : Entity_Id;
4778
4779 begin
4780 if Nkind (Def) = N_Constrained_Array_Definition then
4781 Index := First (Discrete_Subtype_Definitions (Def));
4782 else
4783 Index := First (Subtype_Marks (Def));
4784 end if;
4785
4786 -- Find proper names for the implicit types which may be public. In case
4787 -- of anonymous arrays we use the name of the first object of that type
4788 -- as prefix.
4789
4790 if No (T) then
4791 Related_Id := Defining_Identifier (P);
4792 else
4793 Related_Id := T;
4794 end if;
4795
4796 Nb_Index := 1;
4797 while Present (Index) loop
4798 Analyze (Index);
4799
4800 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
4801 Check_SPARK_Restriction ("subtype mark required", Index);
4802 end if;
4803
4804 -- Add a subtype declaration for each index of private array type
4805 -- declaration whose etype is also private. For example:
4806
4807 -- package Pkg is
4808 -- type Index is private;
4809 -- private
4810 -- type Table is array (Index) of ...
4811 -- end;
4812
4813 -- This is currently required by the expander for the internally
4814 -- generated equality subprogram of records with variant parts in
4815 -- which the etype of some component is such private type.
4816
4817 if Ekind (Current_Scope) = E_Package
4818 and then In_Private_Part (Current_Scope)
4819 and then Has_Private_Declaration (Etype (Index))
4820 then
4821 declare
4822 Loc : constant Source_Ptr := Sloc (Def);
4823 New_E : Entity_Id;
4824 Decl : Entity_Id;
4825
4826 begin
4827 New_E := Make_Temporary (Loc, 'T');
4828 Set_Is_Internal (New_E);
4829
4830 Decl :=
4831 Make_Subtype_Declaration (Loc,
4832 Defining_Identifier => New_E,
4833 Subtype_Indication =>
4834 New_Occurrence_Of (Etype (Index), Loc));
4835
4836 Insert_Before (Parent (Def), Decl);
4837 Analyze (Decl);
4838 Set_Etype (Index, New_E);
4839
4840 -- If the index is a range the Entity attribute is not
4841 -- available. Example:
4842
4843 -- package Pkg is
4844 -- type T is private;
4845 -- private
4846 -- type T is new Natural;
4847 -- Table : array (T(1) .. T(10)) of Boolean;
4848 -- end Pkg;
4849
4850 if Nkind (Index) /= N_Range then
4851 Set_Entity (Index, New_E);
4852 end if;
4853 end;
4854 end if;
4855
4856 Make_Index (Index, P, Related_Id, Nb_Index);
4857
4858 -- Check error of subtype with predicate for index type
4859
4860 Bad_Predicated_Subtype_Use
4861 ("subtype& has predicate, not allowed as index subtype",
4862 Index, Etype (Index));
4863
4864 -- Move to next index
4865
4866 Next_Index (Index);
4867 Nb_Index := Nb_Index + 1;
4868 end loop;
4869
4870 -- Process subtype indication if one is present
4871
4872 if Present (Component_Typ) then
4873 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
4874
4875 Set_Etype (Component_Typ, Element_Type);
4876
4877 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
4878 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
4879 end if;
4880
4881 -- Ada 2005 (AI-230): Access Definition case
4882
4883 else pragma Assert (Present (Access_Definition (Component_Def)));
4884
4885 -- Indicate that the anonymous access type is created by the
4886 -- array type declaration.
4887
4888 Element_Type := Access_Definition
4889 (Related_Nod => P,
4890 N => Access_Definition (Component_Def));
4891 Set_Is_Local_Anonymous_Access (Element_Type);
4892
4893 -- Propagate the parent. This field is needed if we have to generate
4894 -- the master_id associated with an anonymous access to task type
4895 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4896
4897 Set_Parent (Element_Type, Parent (T));
4898
4899 -- Ada 2005 (AI-230): In case of components that are anonymous access
4900 -- types the level of accessibility depends on the enclosing type
4901 -- declaration
4902
4903 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4904
4905 -- Ada 2005 (AI-254)
4906
4907 declare
4908 CD : constant Node_Id :=
4909 Access_To_Subprogram_Definition
4910 (Access_Definition (Component_Def));
4911 begin
4912 if Present (CD) and then Protected_Present (CD) then
4913 Element_Type :=
4914 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4915 end if;
4916 end;
4917 end if;
4918
4919 -- Constrained array case
4920
4921 if No (T) then
4922 T := Create_Itype (E_Void, P, Related_Id, 'T');
4923 end if;
4924
4925 if Nkind (Def) = N_Constrained_Array_Definition then
4926
4927 -- Establish Implicit_Base as unconstrained base type
4928
4929 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4930
4931 Set_Etype (Implicit_Base, Implicit_Base);
4932 Set_Scope (Implicit_Base, Current_Scope);
4933 Set_Has_Delayed_Freeze (Implicit_Base);
4934
4935 -- The constrained array type is a subtype of the unconstrained one
4936
4937 Set_Ekind (T, E_Array_Subtype);
4938 Init_Size_Align (T);
4939 Set_Etype (T, Implicit_Base);
4940 Set_Scope (T, Current_Scope);
4941 Set_Is_Constrained (T, True);
4942 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4943 Set_Has_Delayed_Freeze (T);
4944
4945 -- Complete setup of implicit base type
4946
4947 Set_First_Index (Implicit_Base, First_Index (T));
4948 Set_Component_Type (Implicit_Base, Element_Type);
4949 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4950 Set_Component_Size (Implicit_Base, Uint_0);
4951 Set_Packed_Array_Type (Implicit_Base, Empty);
4952 Set_Has_Controlled_Component
4953 (Implicit_Base, Has_Controlled_Component
4954 (Element_Type)
4955 or else Is_Controlled
4956 (Element_Type));
4957 Set_Finalize_Storage_Only
4958 (Implicit_Base, Finalize_Storage_Only
4959 (Element_Type));
4960
4961 -- Unconstrained array case
4962
4963 else
4964 Set_Ekind (T, E_Array_Type);
4965 Init_Size_Align (T);
4966 Set_Etype (T, T);
4967 Set_Scope (T, Current_Scope);
4968 Set_Component_Size (T, Uint_0);
4969 Set_Is_Constrained (T, False);
4970 Set_First_Index (T, First (Subtype_Marks (Def)));
4971 Set_Has_Delayed_Freeze (T, True);
4972 Set_Has_Task (T, Has_Task (Element_Type));
4973 Set_Has_Controlled_Component (T, Has_Controlled_Component
4974 (Element_Type)
4975 or else
4976 Is_Controlled (Element_Type));
4977 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4978 (Element_Type));
4979 end if;
4980
4981 -- Common attributes for both cases
4982
4983 Set_Component_Type (Base_Type (T), Element_Type);
4984 Set_Packed_Array_Type (T, Empty);
4985
4986 if Aliased_Present (Component_Definition (Def)) then
4987 Check_SPARK_Restriction
4988 ("aliased is not allowed", Component_Definition (Def));
4989 Set_Has_Aliased_Components (Etype (T));
4990 end if;
4991
4992 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4993 -- array type to ensure that objects of this type are initialized.
4994
4995 if Ada_Version >= Ada_2005
4996 and then Can_Never_Be_Null (Element_Type)
4997 then
4998 Set_Can_Never_Be_Null (T);
4999
5000 if Null_Exclusion_Present (Component_Definition (Def))
5001
5002 -- No need to check itypes because in their case this check was
5003 -- done at their point of creation
5004
5005 and then not Is_Itype (Element_Type)
5006 then
5007 Error_Msg_N
5008 ("`NOT NULL` not allowed (null already excluded)",
5009 Subtype_Indication (Component_Definition (Def)));
5010 end if;
5011 end if;
5012
5013 Priv := Private_Component (Element_Type);
5014
5015 if Present (Priv) then
5016
5017 -- Check for circular definitions
5018
5019 if Priv = Any_Type then
5020 Set_Component_Type (Etype (T), Any_Type);
5021
5022 -- There is a gap in the visibility of operations on the composite
5023 -- type only if the component type is defined in a different scope.
5024
5025 elsif Scope (Priv) = Current_Scope then
5026 null;
5027
5028 elsif Is_Limited_Type (Priv) then
5029 Set_Is_Limited_Composite (Etype (T));
5030 Set_Is_Limited_Composite (T);
5031 else
5032 Set_Is_Private_Composite (Etype (T));
5033 Set_Is_Private_Composite (T);
5034 end if;
5035 end if;
5036
5037 -- A syntax error in the declaration itself may lead to an empty index
5038 -- list, in which case do a minimal patch.
5039
5040 if No (First_Index (T)) then
5041 Error_Msg_N ("missing index definition in array type declaration", T);
5042
5043 declare
5044 Indexes : constant List_Id :=
5045 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5046 begin
5047 Set_Discrete_Subtype_Definitions (Def, Indexes);
5048 Set_First_Index (T, First (Indexes));
5049 return;
5050 end;
5051 end if;
5052
5053 -- Create a concatenation operator for the new type. Internal array
5054 -- types created for packed entities do not need such, they are
5055 -- compatible with the user-defined type.
5056
5057 if Number_Dimensions (T) = 1
5058 and then not Is_Packed_Array_Type (T)
5059 then
5060 New_Concatenation_Op (T);
5061 end if;
5062
5063 -- In the case of an unconstrained array the parser has already verified
5064 -- that all the indexes are unconstrained but we still need to make sure
5065 -- that the element type is constrained.
5066
5067 if Is_Indefinite_Subtype (Element_Type) then
5068 Error_Msg_N
5069 ("unconstrained element type in array declaration",
5070 Subtype_Indication (Component_Def));
5071
5072 elsif Is_Abstract_Type (Element_Type) then
5073 Error_Msg_N
5074 ("the type of a component cannot be abstract",
5075 Subtype_Indication (Component_Def));
5076 end if;
5077
5078 -- There may be an invariant declared for the component type, but
5079 -- the construction of the component invariant checking procedure
5080 -- takes place during expansion.
5081 end Array_Type_Declaration;
5082
5083 ------------------------------------------------------
5084 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5085 ------------------------------------------------------
5086
5087 function Replace_Anonymous_Access_To_Protected_Subprogram
5088 (N : Node_Id) return Entity_Id
5089 is
5090 Loc : constant Source_Ptr := Sloc (N);
5091
5092 Curr_Scope : constant Scope_Stack_Entry :=
5093 Scope_Stack.Table (Scope_Stack.Last);
5094
5095 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5096
5097 Acc : Node_Id;
5098 -- Access definition in declaration
5099
5100 Comp : Node_Id;
5101 -- Object definition or formal definition with an access definition
5102
5103 Decl : Node_Id;
5104 -- Declaration of anonymous access to subprogram type
5105
5106 Spec : Node_Id;
5107 -- Original specification in access to subprogram
5108
5109 P : Node_Id;
5110
5111 begin
5112 Set_Is_Internal (Anon);
5113
5114 case Nkind (N) is
5115 when N_Component_Declaration |
5116 N_Unconstrained_Array_Definition |
5117 N_Constrained_Array_Definition =>
5118 Comp := Component_Definition (N);
5119 Acc := Access_Definition (Comp);
5120
5121 when N_Discriminant_Specification =>
5122 Comp := Discriminant_Type (N);
5123 Acc := Comp;
5124
5125 when N_Parameter_Specification =>
5126 Comp := Parameter_Type (N);
5127 Acc := Comp;
5128
5129 when N_Access_Function_Definition =>
5130 Comp := Result_Definition (N);
5131 Acc := Comp;
5132
5133 when N_Object_Declaration =>
5134 Comp := Object_Definition (N);
5135 Acc := Comp;
5136
5137 when N_Function_Specification =>
5138 Comp := Result_Definition (N);
5139 Acc := Comp;
5140
5141 when others =>
5142 raise Program_Error;
5143 end case;
5144
5145 Spec := Access_To_Subprogram_Definition (Acc);
5146
5147 Decl :=
5148 Make_Full_Type_Declaration (Loc,
5149 Defining_Identifier => Anon,
5150 Type_Definition => Copy_Separate_Tree (Spec));
5151
5152 Mark_Rewrite_Insertion (Decl);
5153
5154 -- In ASIS mode, analyze the profile on the original node, because
5155 -- the separate copy does not provide enough links to recover the
5156 -- original tree. Analysis is limited to type annotations, within
5157 -- a temporary scope that serves as an anonymous subprogram to collect
5158 -- otherwise useless temporaries and itypes.
5159
5160 if ASIS_Mode then
5161 declare
5162 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5163
5164 begin
5165 if Nkind (Spec) = N_Access_Function_Definition then
5166 Set_Ekind (Typ, E_Function);
5167 else
5168 Set_Ekind (Typ, E_Procedure);
5169 end if;
5170
5171 Set_Parent (Typ, N);
5172 Set_Scope (Typ, Current_Scope);
5173 Push_Scope (Typ);
5174
5175 Process_Formals (Parameter_Specifications (Spec), Spec);
5176
5177 if Nkind (Spec) = N_Access_Function_Definition then
5178 declare
5179 Def : constant Node_Id := Result_Definition (Spec);
5180
5181 begin
5182 -- The result might itself be an anonymous access type, so
5183 -- have to recurse.
5184
5185 if Nkind (Def) = N_Access_Definition then
5186 if Present (Access_To_Subprogram_Definition (Def)) then
5187 Set_Etype
5188 (Def,
5189 Replace_Anonymous_Access_To_Protected_Subprogram
5190 (Spec));
5191 else
5192 Find_Type (Subtype_Mark (Def));
5193 end if;
5194
5195 else
5196 Find_Type (Def);
5197 end if;
5198 end;
5199 end if;
5200
5201 End_Scope;
5202 end;
5203 end if;
5204
5205 -- Insert the new declaration in the nearest enclosing scope. If the
5206 -- node is a body and N is its return type, the declaration belongs in
5207 -- the enclosing scope.
5208
5209 P := Parent (N);
5210
5211 if Nkind (P) = N_Subprogram_Body
5212 and then Nkind (N) = N_Function_Specification
5213 then
5214 P := Parent (P);
5215 end if;
5216
5217 while Present (P) and then not Has_Declarations (P) loop
5218 P := Parent (P);
5219 end loop;
5220
5221 pragma Assert (Present (P));
5222
5223 if Nkind (P) = N_Package_Specification then
5224 Prepend (Decl, Visible_Declarations (P));
5225 else
5226 Prepend (Decl, Declarations (P));
5227 end if;
5228
5229 -- Replace the anonymous type with an occurrence of the new declaration.
5230 -- In all cases the rewritten node does not have the null-exclusion
5231 -- attribute because (if present) it was already inherited by the
5232 -- anonymous entity (Anon). Thus, in case of components we do not
5233 -- inherit this attribute.
5234
5235 if Nkind (N) = N_Parameter_Specification then
5236 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5237 Set_Etype (Defining_Identifier (N), Anon);
5238 Set_Null_Exclusion_Present (N, False);
5239
5240 elsif Nkind (N) = N_Object_Declaration then
5241 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5242 Set_Etype (Defining_Identifier (N), Anon);
5243
5244 elsif Nkind (N) = N_Access_Function_Definition then
5245 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5246
5247 elsif Nkind (N) = N_Function_Specification then
5248 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5249 Set_Etype (Defining_Unit_Name (N), Anon);
5250
5251 else
5252 Rewrite (Comp,
5253 Make_Component_Definition (Loc,
5254 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5255 end if;
5256
5257 Mark_Rewrite_Insertion (Comp);
5258
5259 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5260 Analyze (Decl);
5261
5262 else
5263 -- Temporarily remove the current scope (record or subprogram) from
5264 -- the stack to add the new declarations to the enclosing scope.
5265
5266 Scope_Stack.Decrement_Last;
5267 Analyze (Decl);
5268 Set_Is_Itype (Anon);
5269 Scope_Stack.Append (Curr_Scope);
5270 end if;
5271
5272 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5273 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5274 return Anon;
5275 end Replace_Anonymous_Access_To_Protected_Subprogram;
5276
5277 -------------------------------
5278 -- Build_Derived_Access_Type --
5279 -------------------------------
5280
5281 procedure Build_Derived_Access_Type
5282 (N : Node_Id;
5283 Parent_Type : Entity_Id;
5284 Derived_Type : Entity_Id)
5285 is
5286 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5287
5288 Desig_Type : Entity_Id;
5289 Discr : Entity_Id;
5290 Discr_Con_Elist : Elist_Id;
5291 Discr_Con_El : Elmt_Id;
5292 Subt : Entity_Id;
5293
5294 begin
5295 -- Set the designated type so it is available in case this is an access
5296 -- to a self-referential type, e.g. a standard list type with a next
5297 -- pointer. Will be reset after subtype is built.
5298
5299 Set_Directly_Designated_Type
5300 (Derived_Type, Designated_Type (Parent_Type));
5301
5302 Subt := Process_Subtype (S, N);
5303
5304 if Nkind (S) /= N_Subtype_Indication
5305 and then Subt /= Base_Type (Subt)
5306 then
5307 Set_Ekind (Derived_Type, E_Access_Subtype);
5308 end if;
5309
5310 if Ekind (Derived_Type) = E_Access_Subtype then
5311 declare
5312 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5313 Ibase : constant Entity_Id :=
5314 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5315 Svg_Chars : constant Name_Id := Chars (Ibase);
5316 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5317
5318 begin
5319 Copy_Node (Pbase, Ibase);
5320
5321 Set_Chars (Ibase, Svg_Chars);
5322 Set_Next_Entity (Ibase, Svg_Next_E);
5323 Set_Sloc (Ibase, Sloc (Derived_Type));
5324 Set_Scope (Ibase, Scope (Derived_Type));
5325 Set_Freeze_Node (Ibase, Empty);
5326 Set_Is_Frozen (Ibase, False);
5327 Set_Comes_From_Source (Ibase, False);
5328 Set_Is_First_Subtype (Ibase, False);
5329
5330 Set_Etype (Ibase, Pbase);
5331 Set_Etype (Derived_Type, Ibase);
5332 end;
5333 end if;
5334
5335 Set_Directly_Designated_Type
5336 (Derived_Type, Designated_Type (Subt));
5337
5338 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5339 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5340 Set_Size_Info (Derived_Type, Parent_Type);
5341 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5342 Set_Depends_On_Private (Derived_Type,
5343 Has_Private_Component (Derived_Type));
5344 Conditional_Delay (Derived_Type, Subt);
5345
5346 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5347 -- that it is not redundant.
5348
5349 if Null_Exclusion_Present (Type_Definition (N)) then
5350 Set_Can_Never_Be_Null (Derived_Type);
5351
5352 if Can_Never_Be_Null (Parent_Type)
5353 and then False
5354 then
5355 Error_Msg_NE
5356 ("`NOT NULL` not allowed (& already excludes null)",
5357 N, Parent_Type);
5358 end if;
5359
5360 elsif Can_Never_Be_Null (Parent_Type) then
5361 Set_Can_Never_Be_Null (Derived_Type);
5362 end if;
5363
5364 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5365 -- the root type for this information.
5366
5367 -- Apply range checks to discriminants for derived record case
5368 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5369
5370 Desig_Type := Designated_Type (Derived_Type);
5371 if Is_Composite_Type (Desig_Type)
5372 and then (not Is_Array_Type (Desig_Type))
5373 and then Has_Discriminants (Desig_Type)
5374 and then Base_Type (Desig_Type) /= Desig_Type
5375 then
5376 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5377 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5378
5379 Discr := First_Discriminant (Base_Type (Desig_Type));
5380 while Present (Discr_Con_El) loop
5381 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5382 Next_Elmt (Discr_Con_El);
5383 Next_Discriminant (Discr);
5384 end loop;
5385 end if;
5386 end Build_Derived_Access_Type;
5387
5388 ------------------------------
5389 -- Build_Derived_Array_Type --
5390 ------------------------------
5391
5392 procedure Build_Derived_Array_Type
5393 (N : Node_Id;
5394 Parent_Type : Entity_Id;
5395 Derived_Type : Entity_Id)
5396 is
5397 Loc : constant Source_Ptr := Sloc (N);
5398 Tdef : constant Node_Id := Type_Definition (N);
5399 Indic : constant Node_Id := Subtype_Indication (Tdef);
5400 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5401 Implicit_Base : Entity_Id;
5402 New_Indic : Node_Id;
5403
5404 procedure Make_Implicit_Base;
5405 -- If the parent subtype is constrained, the derived type is a subtype
5406 -- of an implicit base type derived from the parent base.
5407
5408 ------------------------
5409 -- Make_Implicit_Base --
5410 ------------------------
5411
5412 procedure Make_Implicit_Base is
5413 begin
5414 Implicit_Base :=
5415 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5416
5417 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5418 Set_Etype (Implicit_Base, Parent_Base);
5419
5420 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5421 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5422
5423 Set_Has_Delayed_Freeze (Implicit_Base, True);
5424 end Make_Implicit_Base;
5425
5426 -- Start of processing for Build_Derived_Array_Type
5427
5428 begin
5429 if not Is_Constrained (Parent_Type) then
5430 if Nkind (Indic) /= N_Subtype_Indication then
5431 Set_Ekind (Derived_Type, E_Array_Type);
5432
5433 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5434 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5435
5436 Set_Has_Delayed_Freeze (Derived_Type, True);
5437
5438 else
5439 Make_Implicit_Base;
5440 Set_Etype (Derived_Type, Implicit_Base);
5441
5442 New_Indic :=
5443 Make_Subtype_Declaration (Loc,
5444 Defining_Identifier => Derived_Type,
5445 Subtype_Indication =>
5446 Make_Subtype_Indication (Loc,
5447 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
5448 Constraint => Constraint (Indic)));
5449
5450 Rewrite (N, New_Indic);
5451 Analyze (N);
5452 end if;
5453
5454 else
5455 if Nkind (Indic) /= N_Subtype_Indication then
5456 Make_Implicit_Base;
5457
5458 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5459 Set_Etype (Derived_Type, Implicit_Base);
5460 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5461
5462 else
5463 Error_Msg_N ("illegal constraint on constrained type", Indic);
5464 end if;
5465 end if;
5466
5467 -- If parent type is not a derived type itself, and is declared in
5468 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5469 -- the new type's concatenation operator since Derive_Subprograms
5470 -- will not inherit the parent's operator. If the parent type is
5471 -- unconstrained, the operator is of the unconstrained base type.
5472
5473 if Number_Dimensions (Parent_Type) = 1
5474 and then not Is_Limited_Type (Parent_Type)
5475 and then not Is_Derived_Type (Parent_Type)
5476 and then not Is_Package_Or_Generic_Package
5477 (Scope (Base_Type (Parent_Type)))
5478 then
5479 if not Is_Constrained (Parent_Type)
5480 and then Is_Constrained (Derived_Type)
5481 then
5482 New_Concatenation_Op (Implicit_Base);
5483 else
5484 New_Concatenation_Op (Derived_Type);
5485 end if;
5486 end if;
5487 end Build_Derived_Array_Type;
5488
5489 -----------------------------------
5490 -- Build_Derived_Concurrent_Type --
5491 -----------------------------------
5492
5493 procedure Build_Derived_Concurrent_Type
5494 (N : Node_Id;
5495 Parent_Type : Entity_Id;
5496 Derived_Type : Entity_Id)
5497 is
5498 Loc : constant Source_Ptr := Sloc (N);
5499
5500 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5501 Corr_Decl : Node_Id;
5502 Corr_Decl_Needed : Boolean;
5503 -- If the derived type has fewer discriminants than its parent, the
5504 -- corresponding record is also a derived type, in order to account for
5505 -- the bound discriminants. We create a full type declaration for it in
5506 -- this case.
5507
5508 Constraint_Present : constant Boolean :=
5509 Nkind (Subtype_Indication (Type_Definition (N))) =
5510 N_Subtype_Indication;
5511
5512 D_Constraint : Node_Id;
5513 New_Constraint : Elist_Id;
5514 Old_Disc : Entity_Id;
5515 New_Disc : Entity_Id;
5516 New_N : Node_Id;
5517
5518 begin
5519 Set_Stored_Constraint (Derived_Type, No_Elist);
5520 Corr_Decl_Needed := False;
5521 Old_Disc := Empty;
5522
5523 if Present (Discriminant_Specifications (N))
5524 and then Constraint_Present
5525 then
5526 Old_Disc := First_Discriminant (Parent_Type);
5527 New_Disc := First (Discriminant_Specifications (N));
5528 while Present (New_Disc) and then Present (Old_Disc) loop
5529 Next_Discriminant (Old_Disc);
5530 Next (New_Disc);
5531 end loop;
5532 end if;
5533
5534 if Present (Old_Disc) and then Expander_Active then
5535
5536 -- The new type has fewer discriminants, so we need to create a new
5537 -- corresponding record, which is derived from the corresponding
5538 -- record of the parent, and has a stored constraint that captures
5539 -- the values of the discriminant constraints. The corresponding
5540 -- record is needed only if expander is active and code generation is
5541 -- enabled.
5542
5543 -- The type declaration for the derived corresponding record has the
5544 -- same discriminant part and constraints as the current declaration.
5545 -- Copy the unanalyzed tree to build declaration.
5546
5547 Corr_Decl_Needed := True;
5548 New_N := Copy_Separate_Tree (N);
5549
5550 Corr_Decl :=
5551 Make_Full_Type_Declaration (Loc,
5552 Defining_Identifier => Corr_Record,
5553 Discriminant_Specifications =>
5554 Discriminant_Specifications (New_N),
5555 Type_Definition =>
5556 Make_Derived_Type_Definition (Loc,
5557 Subtype_Indication =>
5558 Make_Subtype_Indication (Loc,
5559 Subtype_Mark =>
5560 New_Occurrence_Of
5561 (Corresponding_Record_Type (Parent_Type), Loc),
5562 Constraint =>
5563 Constraint
5564 (Subtype_Indication (Type_Definition (New_N))))));
5565 end if;
5566
5567 -- Copy Storage_Size and Relative_Deadline variables if task case
5568
5569 if Is_Task_Type (Parent_Type) then
5570 Set_Storage_Size_Variable (Derived_Type,
5571 Storage_Size_Variable (Parent_Type));
5572 Set_Relative_Deadline_Variable (Derived_Type,
5573 Relative_Deadline_Variable (Parent_Type));
5574 end if;
5575
5576 if Present (Discriminant_Specifications (N)) then
5577 Push_Scope (Derived_Type);
5578 Check_Or_Process_Discriminants (N, Derived_Type);
5579
5580 if Constraint_Present then
5581 New_Constraint :=
5582 Expand_To_Stored_Constraint
5583 (Parent_Type,
5584 Build_Discriminant_Constraints
5585 (Parent_Type,
5586 Subtype_Indication (Type_Definition (N)), True));
5587 end if;
5588
5589 End_Scope;
5590
5591 elsif Constraint_Present then
5592
5593 -- Build constrained subtype, copying the constraint, and derive
5594 -- from it to create a derived constrained type.
5595
5596 declare
5597 Loc : constant Source_Ptr := Sloc (N);
5598 Anon : constant Entity_Id :=
5599 Make_Defining_Identifier (Loc,
5600 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5601 Decl : Node_Id;
5602
5603 begin
5604 Decl :=
5605 Make_Subtype_Declaration (Loc,
5606 Defining_Identifier => Anon,
5607 Subtype_Indication =>
5608 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5609 Insert_Before (N, Decl);
5610 Analyze (Decl);
5611
5612 Rewrite (Subtype_Indication (Type_Definition (N)),
5613 New_Occurrence_Of (Anon, Loc));
5614 Set_Analyzed (Derived_Type, False);
5615 Analyze (N);
5616 return;
5617 end;
5618 end if;
5619
5620 -- By default, operations and private data are inherited from parent.
5621 -- However, in the presence of bound discriminants, a new corresponding
5622 -- record will be created, see below.
5623
5624 Set_Has_Discriminants
5625 (Derived_Type, Has_Discriminants (Parent_Type));
5626 Set_Corresponding_Record_Type
5627 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5628
5629 -- Is_Constrained is set according the parent subtype, but is set to
5630 -- False if the derived type is declared with new discriminants.
5631
5632 Set_Is_Constrained
5633 (Derived_Type,
5634 (Is_Constrained (Parent_Type) or else Constraint_Present)
5635 and then not Present (Discriminant_Specifications (N)));
5636
5637 if Constraint_Present then
5638 if not Has_Discriminants (Parent_Type) then
5639 Error_Msg_N ("untagged parent must have discriminants", N);
5640
5641 elsif Present (Discriminant_Specifications (N)) then
5642
5643 -- Verify that new discriminants are used to constrain old ones
5644
5645 D_Constraint :=
5646 First
5647 (Constraints
5648 (Constraint (Subtype_Indication (Type_Definition (N)))));
5649
5650 Old_Disc := First_Discriminant (Parent_Type);
5651
5652 while Present (D_Constraint) loop
5653 if Nkind (D_Constraint) /= N_Discriminant_Association then
5654
5655 -- Positional constraint. If it is a reference to a new
5656 -- discriminant, it constrains the corresponding old one.
5657
5658 if Nkind (D_Constraint) = N_Identifier then
5659 New_Disc := First_Discriminant (Derived_Type);
5660 while Present (New_Disc) loop
5661 exit when Chars (New_Disc) = Chars (D_Constraint);
5662 Next_Discriminant (New_Disc);
5663 end loop;
5664
5665 if Present (New_Disc) then
5666 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5667 end if;
5668 end if;
5669
5670 Next_Discriminant (Old_Disc);
5671
5672 -- if this is a named constraint, search by name for the old
5673 -- discriminants constrained by the new one.
5674
5675 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5676
5677 -- Find new discriminant with that name
5678
5679 New_Disc := First_Discriminant (Derived_Type);
5680 while Present (New_Disc) loop
5681 exit when
5682 Chars (New_Disc) = Chars (Expression (D_Constraint));
5683 Next_Discriminant (New_Disc);
5684 end loop;
5685
5686 if Present (New_Disc) then
5687
5688 -- Verify that new discriminant renames some discriminant
5689 -- of the parent type, and associate the new discriminant
5690 -- with one or more old ones that it renames.
5691
5692 declare
5693 Selector : Node_Id;
5694
5695 begin
5696 Selector := First (Selector_Names (D_Constraint));
5697 while Present (Selector) loop
5698 Old_Disc := First_Discriminant (Parent_Type);
5699 while Present (Old_Disc) loop
5700 exit when Chars (Old_Disc) = Chars (Selector);
5701 Next_Discriminant (Old_Disc);
5702 end loop;
5703
5704 if Present (Old_Disc) then
5705 Set_Corresponding_Discriminant
5706 (New_Disc, Old_Disc);
5707 end if;
5708
5709 Next (Selector);
5710 end loop;
5711 end;
5712 end if;
5713 end if;
5714
5715 Next (D_Constraint);
5716 end loop;
5717
5718 New_Disc := First_Discriminant (Derived_Type);
5719 while Present (New_Disc) loop
5720 if No (Corresponding_Discriminant (New_Disc)) then
5721 Error_Msg_NE
5722 ("new discriminant& must constrain old one", N, New_Disc);
5723
5724 elsif not
5725 Subtypes_Statically_Compatible
5726 (Etype (New_Disc),
5727 Etype (Corresponding_Discriminant (New_Disc)))
5728 then
5729 Error_Msg_NE
5730 ("& not statically compatible with parent discriminant",
5731 N, New_Disc);
5732 end if;
5733
5734 Next_Discriminant (New_Disc);
5735 end loop;
5736 end if;
5737
5738 elsif Present (Discriminant_Specifications (N)) then
5739 Error_Msg_N
5740 ("missing discriminant constraint in untagged derivation", N);
5741 end if;
5742
5743 -- The entity chain of the derived type includes the new discriminants
5744 -- but shares operations with the parent.
5745
5746 if Present (Discriminant_Specifications (N)) then
5747 Old_Disc := First_Discriminant (Parent_Type);
5748 while Present (Old_Disc) loop
5749 if No (Next_Entity (Old_Disc))
5750 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5751 then
5752 Set_Next_Entity
5753 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5754 exit;
5755 end if;
5756
5757 Next_Discriminant (Old_Disc);
5758 end loop;
5759
5760 else
5761 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5762 if Has_Discriminants (Parent_Type) then
5763 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5764 Set_Discriminant_Constraint (
5765 Derived_Type, Discriminant_Constraint (Parent_Type));
5766 end if;
5767 end if;
5768
5769 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5770
5771 Set_Has_Completion (Derived_Type);
5772
5773 if Corr_Decl_Needed then
5774 Set_Stored_Constraint (Derived_Type, New_Constraint);
5775 Insert_After (N, Corr_Decl);
5776 Analyze (Corr_Decl);
5777 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5778 end if;
5779 end Build_Derived_Concurrent_Type;
5780
5781 ------------------------------------
5782 -- Build_Derived_Enumeration_Type --
5783 ------------------------------------
5784
5785 procedure Build_Derived_Enumeration_Type
5786 (N : Node_Id;
5787 Parent_Type : Entity_Id;
5788 Derived_Type : Entity_Id)
5789 is
5790 Loc : constant Source_Ptr := Sloc (N);
5791 Def : constant Node_Id := Type_Definition (N);
5792 Indic : constant Node_Id := Subtype_Indication (Def);
5793 Implicit_Base : Entity_Id;
5794 Literal : Entity_Id;
5795 New_Lit : Entity_Id;
5796 Literals_List : List_Id;
5797 Type_Decl : Node_Id;
5798 Hi, Lo : Node_Id;
5799 Rang_Expr : Node_Id;
5800
5801 begin
5802 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5803 -- not have explicit literals lists we need to process types derived
5804 -- from them specially. This is handled by Derived_Standard_Character.
5805 -- If the parent type is a generic type, there are no literals either,
5806 -- and we construct the same skeletal representation as for the generic
5807 -- parent type.
5808
5809 if Is_Standard_Character_Type (Parent_Type) then
5810 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5811
5812 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5813 declare
5814 Lo : Node_Id;
5815 Hi : Node_Id;
5816
5817 begin
5818 if Nkind (Indic) /= N_Subtype_Indication then
5819 Lo :=
5820 Make_Attribute_Reference (Loc,
5821 Attribute_Name => Name_First,
5822 Prefix => New_Reference_To (Derived_Type, Loc));
5823 Set_Etype (Lo, Derived_Type);
5824
5825 Hi :=
5826 Make_Attribute_Reference (Loc,
5827 Attribute_Name => Name_Last,
5828 Prefix => New_Reference_To (Derived_Type, Loc));
5829 Set_Etype (Hi, Derived_Type);
5830
5831 Set_Scalar_Range (Derived_Type,
5832 Make_Range (Loc,
5833 Low_Bound => Lo,
5834 High_Bound => Hi));
5835 else
5836
5837 -- Analyze subtype indication and verify compatibility
5838 -- with parent type.
5839
5840 if Base_Type (Process_Subtype (Indic, N)) /=
5841 Base_Type (Parent_Type)
5842 then
5843 Error_Msg_N
5844 ("illegal constraint for formal discrete type", N);
5845 end if;
5846 end if;
5847 end;
5848
5849 else
5850 -- If a constraint is present, analyze the bounds to catch
5851 -- premature usage of the derived literals.
5852
5853 if Nkind (Indic) = N_Subtype_Indication
5854 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5855 then
5856 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5857 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5858 end if;
5859
5860 -- Introduce an implicit base type for the derived type even if there
5861 -- is no constraint attached to it, since this seems closer to the
5862 -- Ada semantics. Build a full type declaration tree for the derived
5863 -- type using the implicit base type as the defining identifier. The
5864 -- build a subtype declaration tree which applies the constraint (if
5865 -- any) have it replace the derived type declaration.
5866
5867 Literal := First_Literal (Parent_Type);
5868 Literals_List := New_List;
5869 while Present (Literal)
5870 and then Ekind (Literal) = E_Enumeration_Literal
5871 loop
5872 -- Literals of the derived type have the same representation as
5873 -- those of the parent type, but this representation can be
5874 -- overridden by an explicit representation clause. Indicate
5875 -- that there is no explicit representation given yet. These
5876 -- derived literals are implicit operations of the new type,
5877 -- and can be overridden by explicit ones.
5878
5879 if Nkind (Literal) = N_Defining_Character_Literal then
5880 New_Lit :=
5881 Make_Defining_Character_Literal (Loc, Chars (Literal));
5882 else
5883 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5884 end if;
5885
5886 Set_Ekind (New_Lit, E_Enumeration_Literal);
5887 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5888 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5889 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5890 Set_Alias (New_Lit, Literal);
5891 Set_Is_Known_Valid (New_Lit, True);
5892
5893 Append (New_Lit, Literals_List);
5894 Next_Literal (Literal);
5895 end loop;
5896
5897 Implicit_Base :=
5898 Make_Defining_Identifier (Sloc (Derived_Type),
5899 Chars => New_External_Name (Chars (Derived_Type), 'B'));
5900
5901 -- Indicate the proper nature of the derived type. This must be done
5902 -- before analysis of the literals, to recognize cases when a literal
5903 -- may be hidden by a previous explicit function definition (cf.
5904 -- c83031a).
5905
5906 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5907 Set_Etype (Derived_Type, Implicit_Base);
5908
5909 Type_Decl :=
5910 Make_Full_Type_Declaration (Loc,
5911 Defining_Identifier => Implicit_Base,
5912 Discriminant_Specifications => No_List,
5913 Type_Definition =>
5914 Make_Enumeration_Type_Definition (Loc, Literals_List));
5915
5916 Mark_Rewrite_Insertion (Type_Decl);
5917 Insert_Before (N, Type_Decl);
5918 Analyze (Type_Decl);
5919
5920 -- After the implicit base is analyzed its Etype needs to be changed
5921 -- to reflect the fact that it is derived from the parent type which
5922 -- was ignored during analysis. We also set the size at this point.
5923
5924 Set_Etype (Implicit_Base, Parent_Type);
5925
5926 Set_Size_Info (Implicit_Base, Parent_Type);
5927 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
5928 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
5929
5930 -- Copy other flags from parent type
5931
5932 Set_Has_Non_Standard_Rep
5933 (Implicit_Base, Has_Non_Standard_Rep
5934 (Parent_Type));
5935 Set_Has_Pragma_Ordered
5936 (Implicit_Base, Has_Pragma_Ordered
5937 (Parent_Type));
5938 Set_Has_Delayed_Freeze (Implicit_Base);
5939
5940 -- Process the subtype indication including a validation check on the
5941 -- constraint, if any. If a constraint is given, its bounds must be
5942 -- implicitly converted to the new type.
5943
5944 if Nkind (Indic) = N_Subtype_Indication then
5945 declare
5946 R : constant Node_Id :=
5947 Range_Expression (Constraint (Indic));
5948
5949 begin
5950 if Nkind (R) = N_Range then
5951 Hi := Build_Scalar_Bound
5952 (High_Bound (R), Parent_Type, Implicit_Base);
5953 Lo := Build_Scalar_Bound
5954 (Low_Bound (R), Parent_Type, Implicit_Base);
5955
5956 else
5957 -- Constraint is a Range attribute. Replace with explicit
5958 -- mention of the bounds of the prefix, which must be a
5959 -- subtype.
5960
5961 Analyze (Prefix (R));
5962 Hi :=
5963 Convert_To (Implicit_Base,
5964 Make_Attribute_Reference (Loc,
5965 Attribute_Name => Name_Last,
5966 Prefix =>
5967 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5968
5969 Lo :=
5970 Convert_To (Implicit_Base,
5971 Make_Attribute_Reference (Loc,
5972 Attribute_Name => Name_First,
5973 Prefix =>
5974 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5975 end if;
5976 end;
5977
5978 else
5979 Hi :=
5980 Build_Scalar_Bound
5981 (Type_High_Bound (Parent_Type),
5982 Parent_Type, Implicit_Base);
5983 Lo :=
5984 Build_Scalar_Bound
5985 (Type_Low_Bound (Parent_Type),
5986 Parent_Type, Implicit_Base);
5987 end if;
5988
5989 Rang_Expr :=
5990 Make_Range (Loc,
5991 Low_Bound => Lo,
5992 High_Bound => Hi);
5993
5994 -- If we constructed a default range for the case where no range
5995 -- was given, then the expressions in the range must not freeze
5996 -- since they do not correspond to expressions in the source.
5997
5998 if Nkind (Indic) /= N_Subtype_Indication then
5999 Set_Must_Not_Freeze (Lo);
6000 Set_Must_Not_Freeze (Hi);
6001 Set_Must_Not_Freeze (Rang_Expr);
6002 end if;
6003
6004 Rewrite (N,
6005 Make_Subtype_Declaration (Loc,
6006 Defining_Identifier => Derived_Type,
6007 Subtype_Indication =>
6008 Make_Subtype_Indication (Loc,
6009 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6010 Constraint =>
6011 Make_Range_Constraint (Loc,
6012 Range_Expression => Rang_Expr))));
6013
6014 Analyze (N);
6015
6016 -- Apply a range check. Since this range expression doesn't have an
6017 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6018 -- this right???
6019
6020 if Nkind (Indic) = N_Subtype_Indication then
6021 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6022 Parent_Type,
6023 Source_Typ => Entity (Subtype_Mark (Indic)));
6024 end if;
6025 end if;
6026 end Build_Derived_Enumeration_Type;
6027
6028 --------------------------------
6029 -- Build_Derived_Numeric_Type --
6030 --------------------------------
6031
6032 procedure Build_Derived_Numeric_Type
6033 (N : Node_Id;
6034 Parent_Type : Entity_Id;
6035 Derived_Type : Entity_Id)
6036 is
6037 Loc : constant Source_Ptr := Sloc (N);
6038 Tdef : constant Node_Id := Type_Definition (N);
6039 Indic : constant Node_Id := Subtype_Indication (Tdef);
6040 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6041 No_Constraint : constant Boolean := Nkind (Indic) /=
6042 N_Subtype_Indication;
6043 Implicit_Base : Entity_Id;
6044
6045 Lo : Node_Id;
6046 Hi : Node_Id;
6047
6048 begin
6049 -- Process the subtype indication including a validation check on
6050 -- the constraint if any.
6051
6052 Discard_Node (Process_Subtype (Indic, N));
6053
6054 -- Introduce an implicit base type for the derived type even if there
6055 -- is no constraint attached to it, since this seems closer to the Ada
6056 -- semantics.
6057
6058 Implicit_Base :=
6059 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6060
6061 Set_Etype (Implicit_Base, Parent_Base);
6062 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6063 Set_Size_Info (Implicit_Base, Parent_Base);
6064 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6065 Set_Parent (Implicit_Base, Parent (Derived_Type));
6066 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6067
6068 -- Set RM Size for discrete type or decimal fixed-point type
6069 -- Ordinary fixed-point is excluded, why???
6070
6071 if Is_Discrete_Type (Parent_Base)
6072 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6073 then
6074 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6075 end if;
6076
6077 Set_Has_Delayed_Freeze (Implicit_Base);
6078
6079 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6080 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6081
6082 Set_Scalar_Range (Implicit_Base,
6083 Make_Range (Loc,
6084 Low_Bound => Lo,
6085 High_Bound => Hi));
6086
6087 if Has_Infinities (Parent_Base) then
6088 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6089 end if;
6090
6091 -- The Derived_Type, which is the entity of the declaration, is a
6092 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6093 -- absence of an explicit constraint.
6094
6095 Set_Etype (Derived_Type, Implicit_Base);
6096
6097 -- If we did not have a constraint, then the Ekind is set from the
6098 -- parent type (otherwise Process_Subtype has set the bounds)
6099
6100 if No_Constraint then
6101 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6102 end if;
6103
6104 -- If we did not have a range constraint, then set the range from the
6105 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6106
6107 if No_Constraint
6108 or else not Has_Range_Constraint (Indic)
6109 then
6110 Set_Scalar_Range (Derived_Type,
6111 Make_Range (Loc,
6112 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6113 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6114 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6115
6116 if Has_Infinities (Parent_Type) then
6117 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6118 end if;
6119
6120 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6121 end if;
6122
6123 Set_Is_Descendent_Of_Address (Derived_Type,
6124 Is_Descendent_Of_Address (Parent_Type));
6125 Set_Is_Descendent_Of_Address (Implicit_Base,
6126 Is_Descendent_Of_Address (Parent_Type));
6127
6128 -- Set remaining type-specific fields, depending on numeric type
6129
6130 if Is_Modular_Integer_Type (Parent_Type) then
6131 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6132
6133 Set_Non_Binary_Modulus
6134 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6135
6136 Set_Is_Known_Valid
6137 (Implicit_Base, Is_Known_Valid (Parent_Base));
6138
6139 elsif Is_Floating_Point_Type (Parent_Type) then
6140
6141 -- Digits of base type is always copied from the digits value of
6142 -- the parent base type, but the digits of the derived type will
6143 -- already have been set if there was a constraint present.
6144
6145 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6146 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6147
6148 if No_Constraint then
6149 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6150 end if;
6151
6152 elsif Is_Fixed_Point_Type (Parent_Type) then
6153
6154 -- Small of base type and derived type are always copied from the
6155 -- parent base type, since smalls never change. The delta of the
6156 -- base type is also copied from the parent base type. However the
6157 -- delta of the derived type will have been set already if a
6158 -- constraint was present.
6159
6160 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6161 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6162 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6163
6164 if No_Constraint then
6165 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6166 end if;
6167
6168 -- The scale and machine radix in the decimal case are always
6169 -- copied from the parent base type.
6170
6171 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6172 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6173 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6174
6175 Set_Machine_Radix_10
6176 (Derived_Type, Machine_Radix_10 (Parent_Base));
6177 Set_Machine_Radix_10
6178 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6179
6180 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6181
6182 if No_Constraint then
6183 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6184
6185 else
6186 -- the analysis of the subtype_indication sets the
6187 -- digits value of the derived type.
6188
6189 null;
6190 end if;
6191 end if;
6192 end if;
6193
6194 -- The type of the bounds is that of the parent type, and they
6195 -- must be converted to the derived type.
6196
6197 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6198
6199 -- The implicit_base should be frozen when the derived type is frozen,
6200 -- but note that it is used in the conversions of the bounds. For fixed
6201 -- types we delay the determination of the bounds until the proper
6202 -- freezing point. For other numeric types this is rejected by GCC, for
6203 -- reasons that are currently unclear (???), so we choose to freeze the
6204 -- implicit base now. In the case of integers and floating point types
6205 -- this is harmless because subsequent representation clauses cannot
6206 -- affect anything, but it is still baffling that we cannot use the
6207 -- same mechanism for all derived numeric types.
6208
6209 -- There is a further complication: actually some representation
6210 -- clauses can affect the implicit base type. For example, attribute
6211 -- definition clauses for stream-oriented attributes need to set the
6212 -- corresponding TSS entries on the base type, and this normally
6213 -- cannot be done after the base type is frozen, so the circuitry in
6214 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6215 -- and not use Set_TSS in this case.
6216
6217 -- There are also consequences for the case of delayed representation
6218 -- aspects for some cases. For example, a Size aspect is delayed and
6219 -- should not be evaluated to the freeze point. This early freezing
6220 -- means that the size attribute evaluation happens too early???
6221
6222 if Is_Fixed_Point_Type (Parent_Type) then
6223 Conditional_Delay (Implicit_Base, Parent_Type);
6224 else
6225 Freeze_Before (N, Implicit_Base);
6226 end if;
6227 end Build_Derived_Numeric_Type;
6228
6229 --------------------------------
6230 -- Build_Derived_Private_Type --
6231 --------------------------------
6232
6233 procedure Build_Derived_Private_Type
6234 (N : Node_Id;
6235 Parent_Type : Entity_Id;
6236 Derived_Type : Entity_Id;
6237 Is_Completion : Boolean;
6238 Derive_Subps : Boolean := True)
6239 is
6240 Loc : constant Source_Ptr := Sloc (N);
6241 Der_Base : Entity_Id;
6242 Discr : Entity_Id;
6243 Full_Decl : Node_Id := Empty;
6244 Full_Der : Entity_Id;
6245 Full_P : Entity_Id;
6246 Last_Discr : Entity_Id;
6247 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6248 Swapped : Boolean := False;
6249
6250 procedure Copy_And_Build;
6251 -- Copy derived type declaration, replace parent with its full view,
6252 -- and analyze new declaration.
6253
6254 --------------------
6255 -- Copy_And_Build --
6256 --------------------
6257
6258 procedure Copy_And_Build is
6259 Full_N : Node_Id;
6260
6261 begin
6262 if Ekind (Parent_Type) in Record_Kind
6263 or else
6264 (Ekind (Parent_Type) in Enumeration_Kind
6265 and then not Is_Standard_Character_Type (Parent_Type)
6266 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6267 then
6268 Full_N := New_Copy_Tree (N);
6269 Insert_After (N, Full_N);
6270 Build_Derived_Type (
6271 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6272
6273 else
6274 Build_Derived_Type (
6275 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6276 end if;
6277 end Copy_And_Build;
6278
6279 -- Start of processing for Build_Derived_Private_Type
6280
6281 begin
6282 if Is_Tagged_Type (Parent_Type) then
6283 Full_P := Full_View (Parent_Type);
6284
6285 -- A type extension of a type with unknown discriminants is an
6286 -- indefinite type that the back-end cannot handle directly.
6287 -- We treat it as a private type, and build a completion that is
6288 -- derived from the full view of the parent, and hopefully has
6289 -- known discriminants.
6290
6291 -- If the full view of the parent type has an underlying record view,
6292 -- use it to generate the underlying record view of this derived type
6293 -- (required for chains of derivations with unknown discriminants).
6294
6295 -- Minor optimization: we avoid the generation of useless underlying
6296 -- record view entities if the private type declaration has unknown
6297 -- discriminants but its corresponding full view has no
6298 -- discriminants.
6299
6300 if Has_Unknown_Discriminants (Parent_Type)
6301 and then Present (Full_P)
6302 and then (Has_Discriminants (Full_P)
6303 or else Present (Underlying_Record_View (Full_P)))
6304 and then not In_Open_Scopes (Par_Scope)
6305 and then Expander_Active
6306 then
6307 declare
6308 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6309 New_Ext : constant Node_Id :=
6310 Copy_Separate_Tree
6311 (Record_Extension_Part (Type_Definition (N)));
6312 Decl : Node_Id;
6313
6314 begin
6315 Build_Derived_Record_Type
6316 (N, Parent_Type, Derived_Type, Derive_Subps);
6317
6318 -- Build anonymous completion, as a derivation from the full
6319 -- view of the parent. This is not a completion in the usual
6320 -- sense, because the current type is not private.
6321
6322 Decl :=
6323 Make_Full_Type_Declaration (Loc,
6324 Defining_Identifier => Full_Der,
6325 Type_Definition =>
6326 Make_Derived_Type_Definition (Loc,
6327 Subtype_Indication =>
6328 New_Copy_Tree
6329 (Subtype_Indication (Type_Definition (N))),
6330 Record_Extension_Part => New_Ext));
6331
6332 -- If the parent type has an underlying record view, use it
6333 -- here to build the new underlying record view.
6334
6335 if Present (Underlying_Record_View (Full_P)) then
6336 pragma Assert
6337 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6338 = N_Identifier);
6339 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6340 Underlying_Record_View (Full_P));
6341 end if;
6342
6343 Install_Private_Declarations (Par_Scope);
6344 Install_Visible_Declarations (Par_Scope);
6345 Insert_Before (N, Decl);
6346
6347 -- Mark entity as an underlying record view before analysis,
6348 -- to avoid generating the list of its primitive operations
6349 -- (which is not really required for this entity) and thus
6350 -- prevent spurious errors associated with missing overriding
6351 -- of abstract primitives (overridden only for Derived_Type).
6352
6353 Set_Ekind (Full_Der, E_Record_Type);
6354 Set_Is_Underlying_Record_View (Full_Der);
6355
6356 Analyze (Decl);
6357
6358 pragma Assert (Has_Discriminants (Full_Der)
6359 and then not Has_Unknown_Discriminants (Full_Der));
6360
6361 Uninstall_Declarations (Par_Scope);
6362
6363 -- Freeze the underlying record view, to prevent generation of
6364 -- useless dispatching information, which is simply shared with
6365 -- the real derived type.
6366
6367 Set_Is_Frozen (Full_Der);
6368
6369 -- Set up links between real entity and underlying record view
6370
6371 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6372 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6373 end;
6374
6375 -- If discriminants are known, build derived record
6376
6377 else
6378 Build_Derived_Record_Type
6379 (N, Parent_Type, Derived_Type, Derive_Subps);
6380 end if;
6381
6382 return;
6383
6384 elsif Has_Discriminants (Parent_Type) then
6385 if Present (Full_View (Parent_Type)) then
6386 if not Is_Completion then
6387
6388 -- Copy declaration for subsequent analysis, to provide a
6389 -- completion for what is a private declaration. Indicate that
6390 -- the full type is internally generated.
6391
6392 Full_Decl := New_Copy_Tree (N);
6393 Full_Der := New_Copy (Derived_Type);
6394 Set_Comes_From_Source (Full_Decl, False);
6395 Set_Comes_From_Source (Full_Der, False);
6396 Set_Parent (Full_Der, Full_Decl);
6397
6398 Insert_After (N, Full_Decl);
6399
6400 else
6401 -- If this is a completion, the full view being built is itself
6402 -- private. We build a subtype of the parent with the same
6403 -- constraints as this full view, to convey to the back end the
6404 -- constrained components and the size of this subtype. If the
6405 -- parent is constrained, its full view can serve as the
6406 -- underlying full view of the derived type.
6407
6408 if No (Discriminant_Specifications (N)) then
6409 if Nkind (Subtype_Indication (Type_Definition (N))) =
6410 N_Subtype_Indication
6411 then
6412 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6413
6414 elsif Is_Constrained (Full_View (Parent_Type)) then
6415 Set_Underlying_Full_View
6416 (Derived_Type, Full_View (Parent_Type));
6417 end if;
6418
6419 else
6420 -- If there are new discriminants, the parent subtype is
6421 -- constrained by them, but it is not clear how to build
6422 -- the Underlying_Full_View in this case???
6423
6424 null;
6425 end if;
6426 end if;
6427 end if;
6428
6429 -- Build partial view of derived type from partial view of parent
6430
6431 Build_Derived_Record_Type
6432 (N, Parent_Type, Derived_Type, Derive_Subps);
6433
6434 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6435 if not In_Open_Scopes (Par_Scope)
6436 or else not In_Same_Source_Unit (N, Parent_Type)
6437 then
6438 -- Swap partial and full views temporarily
6439
6440 Install_Private_Declarations (Par_Scope);
6441 Install_Visible_Declarations (Par_Scope);
6442 Swapped := True;
6443 end if;
6444
6445 -- Build full view of derived type from full view of parent which
6446 -- is now installed. Subprograms have been derived on the partial
6447 -- view, the completion does not derive them anew.
6448
6449 if not Is_Tagged_Type (Parent_Type) then
6450
6451 -- If the parent is itself derived from another private type,
6452 -- installing the private declarations has not affected its
6453 -- privacy status, so use its own full view explicitly.
6454
6455 if Is_Private_Type (Parent_Type) then
6456 Build_Derived_Record_Type
6457 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6458 else
6459 Build_Derived_Record_Type
6460 (Full_Decl, Parent_Type, Full_Der, False);
6461 end if;
6462
6463 else
6464 -- If full view of parent is tagged, the completion inherits
6465 -- the proper primitive operations.
6466
6467 Set_Defining_Identifier (Full_Decl, Full_Der);
6468 Build_Derived_Record_Type
6469 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6470 end if;
6471
6472 -- The full declaration has been introduced into the tree and
6473 -- processed in the step above. It should not be analyzed again
6474 -- (when encountered later in the current list of declarations)
6475 -- to prevent spurious name conflicts. The full entity remains
6476 -- invisible.
6477
6478 Set_Analyzed (Full_Decl);
6479
6480 if Swapped then
6481 Uninstall_Declarations (Par_Scope);
6482
6483 if In_Open_Scopes (Par_Scope) then
6484 Install_Visible_Declarations (Par_Scope);
6485 end if;
6486 end if;
6487
6488 Der_Base := Base_Type (Derived_Type);
6489 Set_Full_View (Derived_Type, Full_Der);
6490 Set_Full_View (Der_Base, Base_Type (Full_Der));
6491
6492 -- Copy the discriminant list from full view to the partial views
6493 -- (base type and its subtype). Gigi requires that the partial and
6494 -- full views have the same discriminants.
6495
6496 -- Note that since the partial view is pointing to discriminants
6497 -- in the full view, their scope will be that of the full view.
6498 -- This might cause some front end problems and need adjustment???
6499
6500 Discr := First_Discriminant (Base_Type (Full_Der));
6501 Set_First_Entity (Der_Base, Discr);
6502
6503 loop
6504 Last_Discr := Discr;
6505 Next_Discriminant (Discr);
6506 exit when No (Discr);
6507 end loop;
6508
6509 Set_Last_Entity (Der_Base, Last_Discr);
6510
6511 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6512 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6513 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6514
6515 else
6516 -- If this is a completion, the derived type stays private and
6517 -- there is no need to create a further full view, except in the
6518 -- unusual case when the derivation is nested within a child unit,
6519 -- see below.
6520
6521 null;
6522 end if;
6523
6524 elsif Present (Full_View (Parent_Type))
6525 and then Has_Discriminants (Full_View (Parent_Type))
6526 then
6527 if Has_Unknown_Discriminants (Parent_Type)
6528 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6529 N_Subtype_Indication
6530 then
6531 Error_Msg_N
6532 ("cannot constrain type with unknown discriminants",
6533 Subtype_Indication (Type_Definition (N)));
6534 return;
6535 end if;
6536
6537 -- If full view of parent is a record type, build full view as a
6538 -- derivation from the parent's full view. Partial view remains
6539 -- private. For code generation and linking, the full view must have
6540 -- the same public status as the partial one. This full view is only
6541 -- needed if the parent type is in an enclosing scope, so that the
6542 -- full view may actually become visible, e.g. in a child unit. This
6543 -- is both more efficient, and avoids order of freezing problems with
6544 -- the added entities.
6545
6546 if not Is_Private_Type (Full_View (Parent_Type))
6547 and then (In_Open_Scopes (Scope (Parent_Type)))
6548 then
6549 Full_Der :=
6550 Make_Defining_Identifier (Sloc (Derived_Type),
6551 Chars => Chars (Derived_Type));
6552
6553 Set_Is_Itype (Full_Der);
6554 Set_Has_Private_Declaration (Full_Der);
6555 Set_Has_Private_Declaration (Derived_Type);
6556 Set_Associated_Node_For_Itype (Full_Der, N);
6557 Set_Parent (Full_Der, Parent (Derived_Type));
6558 Set_Full_View (Derived_Type, Full_Der);
6559 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6560 Full_P := Full_View (Parent_Type);
6561 Exchange_Declarations (Parent_Type);
6562 Copy_And_Build;
6563 Exchange_Declarations (Full_P);
6564
6565 else
6566 Build_Derived_Record_Type
6567 (N, Full_View (Parent_Type), Derived_Type,
6568 Derive_Subps => False);
6569
6570 -- Except in the context of the full view of the parent, there
6571 -- are no non-extension aggregates for the derived type.
6572
6573 Set_Has_Private_Ancestor (Derived_Type);
6574 end if;
6575
6576 -- In any case, the primitive operations are inherited from the
6577 -- parent type, not from the internal full view.
6578
6579 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6580
6581 if Derive_Subps then
6582 Derive_Subprograms (Parent_Type, Derived_Type);
6583 end if;
6584
6585 else
6586 -- Untagged type, No discriminants on either view
6587
6588 if Nkind (Subtype_Indication (Type_Definition (N))) =
6589 N_Subtype_Indication
6590 then
6591 Error_Msg_N
6592 ("illegal constraint on type without discriminants", N);
6593 end if;
6594
6595 if Present (Discriminant_Specifications (N))
6596 and then Present (Full_View (Parent_Type))
6597 and then not Is_Tagged_Type (Full_View (Parent_Type))
6598 then
6599 Error_Msg_N ("cannot add discriminants to untagged type", N);
6600 end if;
6601
6602 Set_Stored_Constraint (Derived_Type, No_Elist);
6603 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6604 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6605 Set_Has_Controlled_Component
6606 (Derived_Type, Has_Controlled_Component
6607 (Parent_Type));
6608
6609 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6610
6611 if not Is_Controlled (Parent_Type) then
6612 Set_Finalize_Storage_Only
6613 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6614 end if;
6615
6616 -- Construct the implicit full view by deriving from full view of the
6617 -- parent type. In order to get proper visibility, we install the
6618 -- parent scope and its declarations.
6619
6620 -- ??? If the parent is untagged private and its completion is
6621 -- tagged, this mechanism will not work because we cannot derive from
6622 -- the tagged full view unless we have an extension.
6623
6624 if Present (Full_View (Parent_Type))
6625 and then not Is_Tagged_Type (Full_View (Parent_Type))
6626 and then not Is_Completion
6627 then
6628 Full_Der :=
6629 Make_Defining_Identifier
6630 (Sloc (Derived_Type), Chars (Derived_Type));
6631 Set_Is_Itype (Full_Der);
6632 Set_Has_Private_Declaration (Full_Der);
6633 Set_Has_Private_Declaration (Derived_Type);
6634 Set_Associated_Node_For_Itype (Full_Der, N);
6635 Set_Parent (Full_Der, Parent (Derived_Type));
6636 Set_Full_View (Derived_Type, Full_Der);
6637
6638 if not In_Open_Scopes (Par_Scope) then
6639 Install_Private_Declarations (Par_Scope);
6640 Install_Visible_Declarations (Par_Scope);
6641 Copy_And_Build;
6642 Uninstall_Declarations (Par_Scope);
6643
6644 -- If parent scope is open and in another unit, and parent has a
6645 -- completion, then the derivation is taking place in the visible
6646 -- part of a child unit. In that case retrieve the full view of
6647 -- the parent momentarily.
6648
6649 elsif not In_Same_Source_Unit (N, Parent_Type) then
6650 Full_P := Full_View (Parent_Type);
6651 Exchange_Declarations (Parent_Type);
6652 Copy_And_Build;
6653 Exchange_Declarations (Full_P);
6654
6655 -- Otherwise it is a local derivation
6656
6657 else
6658 Copy_And_Build;
6659 end if;
6660
6661 Set_Scope (Full_Der, Current_Scope);
6662 Set_Is_First_Subtype (Full_Der,
6663 Is_First_Subtype (Derived_Type));
6664 Set_Has_Size_Clause (Full_Der, False);
6665 Set_Has_Alignment_Clause (Full_Der, False);
6666 Set_Next_Entity (Full_Der, Empty);
6667 Set_Has_Delayed_Freeze (Full_Der);
6668 Set_Is_Frozen (Full_Der, False);
6669 Set_Freeze_Node (Full_Der, Empty);
6670 Set_Depends_On_Private (Full_Der,
6671 Has_Private_Component (Full_Der));
6672 Set_Public_Status (Full_Der);
6673 end if;
6674 end if;
6675
6676 Set_Has_Unknown_Discriminants (Derived_Type,
6677 Has_Unknown_Discriminants (Parent_Type));
6678
6679 if Is_Private_Type (Derived_Type) then
6680 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6681 end if;
6682
6683 if Is_Private_Type (Parent_Type)
6684 and then Base_Type (Parent_Type) = Parent_Type
6685 and then In_Open_Scopes (Scope (Parent_Type))
6686 then
6687 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6688
6689 -- Check for unusual case where a type completed by a private
6690 -- derivation occurs within a package nested in a child unit, and
6691 -- the parent is declared in an ancestor.
6692
6693 if Is_Child_Unit (Scope (Current_Scope))
6694 and then Is_Completion
6695 and then In_Private_Part (Current_Scope)
6696 and then Scope (Parent_Type) /= Current_Scope
6697
6698 -- Note that if the parent has a completion in the private part,
6699 -- (which is itself a derivation from some other private type)
6700 -- it is that completion that is visible, there is no full view
6701 -- available, and no special processing is needed.
6702
6703 and then Present (Full_View (Parent_Type))
6704 then
6705 -- In this case, the full view of the parent type will become
6706 -- visible in the body of the enclosing child, and only then will
6707 -- the current type be possibly non-private. We build an
6708 -- underlying full view that will be installed when the enclosing
6709 -- child body is compiled.
6710
6711 Full_Der :=
6712 Make_Defining_Identifier
6713 (Sloc (Derived_Type), Chars (Derived_Type));
6714 Set_Is_Itype (Full_Der);
6715 Build_Itype_Reference (Full_Der, N);
6716
6717 -- The full view will be used to swap entities on entry/exit to
6718 -- the body, and must appear in the entity list for the package.
6719
6720 Append_Entity (Full_Der, Scope (Derived_Type));
6721 Set_Has_Private_Declaration (Full_Der);
6722 Set_Has_Private_Declaration (Derived_Type);
6723 Set_Associated_Node_For_Itype (Full_Der, N);
6724 Set_Parent (Full_Der, Parent (Derived_Type));
6725 Full_P := Full_View (Parent_Type);
6726 Exchange_Declarations (Parent_Type);
6727 Copy_And_Build;
6728 Exchange_Declarations (Full_P);
6729 Set_Underlying_Full_View (Derived_Type, Full_Der);
6730 end if;
6731 end if;
6732 end Build_Derived_Private_Type;
6733
6734 -------------------------------
6735 -- Build_Derived_Record_Type --
6736 -------------------------------
6737
6738 -- 1. INTRODUCTION
6739
6740 -- Ideally we would like to use the same model of type derivation for
6741 -- tagged and untagged record types. Unfortunately this is not quite
6742 -- possible because the semantics of representation clauses is different
6743 -- for tagged and untagged records under inheritance. Consider the
6744 -- following:
6745
6746 -- type R (...) is [tagged] record ... end record;
6747 -- type T (...) is new R (...) [with ...];
6748
6749 -- The representation clauses for T can specify a completely different
6750 -- record layout from R's. Hence the same component can be placed in two
6751 -- very different positions in objects of type T and R. If R and T are
6752 -- tagged types, representation clauses for T can only specify the layout
6753 -- of non inherited components, thus components that are common in R and T
6754 -- have the same position in objects of type R and T.
6755
6756 -- This has two implications. The first is that the entire tree for R's
6757 -- declaration needs to be copied for T in the untagged case, so that T
6758 -- can be viewed as a record type of its own with its own representation
6759 -- clauses. The second implication is the way we handle discriminants.
6760 -- Specifically, in the untagged case we need a way to communicate to Gigi
6761 -- what are the real discriminants in the record, while for the semantics
6762 -- we need to consider those introduced by the user to rename the
6763 -- discriminants in the parent type. This is handled by introducing the
6764 -- notion of stored discriminants. See below for more.
6765
6766 -- Fortunately the way regular components are inherited can be handled in
6767 -- the same way in tagged and untagged types.
6768
6769 -- To complicate things a bit more the private view of a private extension
6770 -- cannot be handled in the same way as the full view (for one thing the
6771 -- semantic rules are somewhat different). We will explain what differs
6772 -- below.
6773
6774 -- 2. DISCRIMINANTS UNDER INHERITANCE
6775
6776 -- The semantic rules governing the discriminants of derived types are
6777 -- quite subtle.
6778
6779 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6780 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6781
6782 -- If parent type has discriminants, then the discriminants that are
6783 -- declared in the derived type are [3.4 (11)]:
6784
6785 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6786 -- there is one;
6787
6788 -- o Otherwise, each discriminant of the parent type (implicitly declared
6789 -- in the same order with the same specifications). In this case, the
6790 -- discriminants are said to be "inherited", or if unknown in the parent
6791 -- are also unknown in the derived type.
6792
6793 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6794
6795 -- o The parent subtype shall be constrained;
6796
6797 -- o If the parent type is not a tagged type, then each discriminant of
6798 -- the derived type shall be used in the constraint defining a parent
6799 -- subtype. [Implementation note: This ensures that the new discriminant
6800 -- can share storage with an existing discriminant.]
6801
6802 -- For the derived type each discriminant of the parent type is either
6803 -- inherited, constrained to equal some new discriminant of the derived
6804 -- type, or constrained to the value of an expression.
6805
6806 -- When inherited or constrained to equal some new discriminant, the
6807 -- parent discriminant and the discriminant of the derived type are said
6808 -- to "correspond".
6809
6810 -- If a discriminant of the parent type is constrained to a specific value
6811 -- in the derived type definition, then the discriminant is said to be
6812 -- "specified" by that derived type definition.
6813
6814 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6815
6816 -- We have spoken about stored discriminants in point 1 (introduction)
6817 -- above. There are two sort of stored discriminants: implicit and
6818 -- explicit. As long as the derived type inherits the same discriminants as
6819 -- the root record type, stored discriminants are the same as regular
6820 -- discriminants, and are said to be implicit. However, if any discriminant
6821 -- in the root type was renamed in the derived type, then the derived
6822 -- type will contain explicit stored discriminants. Explicit stored
6823 -- discriminants are discriminants in addition to the semantically visible
6824 -- discriminants defined for the derived type. Stored discriminants are
6825 -- used by Gigi to figure out what are the physical discriminants in
6826 -- objects of the derived type (see precise definition in einfo.ads).
6827 -- As an example, consider the following:
6828
6829 -- type R (D1, D2, D3 : Int) is record ... end record;
6830 -- type T1 is new R;
6831 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6832 -- type T3 is new T2;
6833 -- type T4 (Y : Int) is new T3 (Y, 99);
6834
6835 -- The following table summarizes the discriminants and stored
6836 -- discriminants in R and T1 through T4.
6837
6838 -- Type Discrim Stored Discrim Comment
6839 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6840 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6841 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6842 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6843 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6844
6845 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6846 -- find the corresponding discriminant in the parent type, while
6847 -- Original_Record_Component (abbreviated ORC below), the actual physical
6848 -- component that is renamed. Finally the field Is_Completely_Hidden
6849 -- (abbreviated ICH below) is set for all explicit stored discriminants
6850 -- (see einfo.ads for more info). For the above example this gives:
6851
6852 -- Discrim CD ORC ICH
6853 -- ^^^^^^^ ^^ ^^^ ^^^
6854 -- D1 in R empty itself no
6855 -- D2 in R empty itself no
6856 -- D3 in R empty itself no
6857
6858 -- D1 in T1 D1 in R itself no
6859 -- D2 in T1 D2 in R itself no
6860 -- D3 in T1 D3 in R itself no
6861
6862 -- X1 in T2 D3 in T1 D3 in T2 no
6863 -- X2 in T2 D1 in T1 D1 in T2 no
6864 -- D1 in T2 empty itself yes
6865 -- D2 in T2 empty itself yes
6866 -- D3 in T2 empty itself yes
6867
6868 -- X1 in T3 X1 in T2 D3 in T3 no
6869 -- X2 in T3 X2 in T2 D1 in T3 no
6870 -- D1 in T3 empty itself yes
6871 -- D2 in T3 empty itself yes
6872 -- D3 in T3 empty itself yes
6873
6874 -- Y in T4 X1 in T3 D3 in T3 no
6875 -- D1 in T3 empty itself yes
6876 -- D2 in T3 empty itself yes
6877 -- D3 in T3 empty itself yes
6878
6879 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6880
6881 -- Type derivation for tagged types is fairly straightforward. If no
6882 -- discriminants are specified by the derived type, these are inherited
6883 -- from the parent. No explicit stored discriminants are ever necessary.
6884 -- The only manipulation that is done to the tree is that of adding a
6885 -- _parent field with parent type and constrained to the same constraint
6886 -- specified for the parent in the derived type definition. For instance:
6887
6888 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6889 -- type T1 is new R with null record;
6890 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6891
6892 -- are changed into:
6893
6894 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6895 -- _parent : R (D1, D2, D3);
6896 -- end record;
6897
6898 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6899 -- _parent : T1 (X2, 88, X1);
6900 -- end record;
6901
6902 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6903 -- ORC and ICH fields are:
6904
6905 -- Discrim CD ORC ICH
6906 -- ^^^^^^^ ^^ ^^^ ^^^
6907 -- D1 in R empty itself no
6908 -- D2 in R empty itself no
6909 -- D3 in R empty itself no
6910
6911 -- D1 in T1 D1 in R D1 in R no
6912 -- D2 in T1 D2 in R D2 in R no
6913 -- D3 in T1 D3 in R D3 in R no
6914
6915 -- X1 in T2 D3 in T1 D3 in R no
6916 -- X2 in T2 D1 in T1 D1 in R no
6917
6918 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6919 --
6920 -- Regardless of whether we dealing with a tagged or untagged type
6921 -- we will transform all derived type declarations of the form
6922 --
6923 -- type T is new R (...) [with ...];
6924 -- or
6925 -- subtype S is R (...);
6926 -- type T is new S [with ...];
6927 -- into
6928 -- type BT is new R [with ...];
6929 -- subtype T is BT (...);
6930 --
6931 -- That is, the base derived type is constrained only if it has no
6932 -- discriminants. The reason for doing this is that GNAT's semantic model
6933 -- assumes that a base type with discriminants is unconstrained.
6934 --
6935 -- Note that, strictly speaking, the above transformation is not always
6936 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6937 --
6938 -- procedure B34011A is
6939 -- type REC (D : integer := 0) is record
6940 -- I : Integer;
6941 -- end record;
6942
6943 -- package P is
6944 -- type T6 is new Rec;
6945 -- function F return T6;
6946 -- end P;
6947
6948 -- use P;
6949 -- package Q6 is
6950 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6951 -- end Q6;
6952 --
6953 -- The definition of Q6.U is illegal. However transforming Q6.U into
6954
6955 -- type BaseU is new T6;
6956 -- subtype U is BaseU (Q6.F.I)
6957
6958 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6959 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6960 -- the transformation described above.
6961
6962 -- There is another instance where the above transformation is incorrect.
6963 -- Consider:
6964
6965 -- package Pack is
6966 -- type Base (D : Integer) is tagged null record;
6967 -- procedure P (X : Base);
6968
6969 -- type Der is new Base (2) with null record;
6970 -- procedure P (X : Der);
6971 -- end Pack;
6972
6973 -- Then the above transformation turns this into
6974
6975 -- type Der_Base is new Base with null record;
6976 -- -- procedure P (X : Base) is implicitly inherited here
6977 -- -- as procedure P (X : Der_Base).
6978
6979 -- subtype Der is Der_Base (2);
6980 -- procedure P (X : Der);
6981 -- -- The overriding of P (X : Der_Base) is illegal since we
6982 -- -- have a parameter conformance problem.
6983
6984 -- To get around this problem, after having semantically processed Der_Base
6985 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6986 -- Discriminant_Constraint from Der so that when parameter conformance is
6987 -- checked when P is overridden, no semantic errors are flagged.
6988
6989 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6990
6991 -- Regardless of whether we are dealing with a tagged or untagged type
6992 -- we will transform all derived type declarations of the form
6993
6994 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6995 -- type T is new R [with ...];
6996 -- into
6997 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6998
6999 -- The reason for such transformation is that it allows us to implement a
7000 -- very clean form of component inheritance as explained below.
7001
7002 -- Note that this transformation is not achieved by direct tree rewriting
7003 -- and manipulation, but rather by redoing the semantic actions that the
7004 -- above transformation will entail. This is done directly in routine
7005 -- Inherit_Components.
7006
7007 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7008
7009 -- In both tagged and untagged derived types, regular non discriminant
7010 -- components are inherited in the derived type from the parent type. In
7011 -- the absence of discriminants component, inheritance is straightforward
7012 -- as components can simply be copied from the parent.
7013
7014 -- If the parent has discriminants, inheriting components constrained with
7015 -- these discriminants requires caution. Consider the following example:
7016
7017 -- type R (D1, D2 : Positive) is [tagged] record
7018 -- S : String (D1 .. D2);
7019 -- end record;
7020
7021 -- type T1 is new R [with null record];
7022 -- type T2 (X : positive) is new R (1, X) [with null record];
7023
7024 -- As explained in 6. above, T1 is rewritten as
7025 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7026 -- which makes the treatment for T1 and T2 identical.
7027
7028 -- What we want when inheriting S, is that references to D1 and D2 in R are
7029 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7030 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7031 -- with either discriminant references in the derived type or expressions.
7032 -- This replacement is achieved as follows: before inheriting R's
7033 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7034 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7035 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7036 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7037 -- by String (1 .. X).
7038
7039 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7040
7041 -- We explain here the rules governing private type extensions relevant to
7042 -- type derivation. These rules are explained on the following example:
7043
7044 -- type D [(...)] is new A [(...)] with private; <-- partial view
7045 -- type D [(...)] is new P [(...)] with null record; <-- full view
7046
7047 -- Type A is called the ancestor subtype of the private extension.
7048 -- Type P is the parent type of the full view of the private extension. It
7049 -- must be A or a type derived from A.
7050
7051 -- The rules concerning the discriminants of private type extensions are
7052 -- [7.3(10-13)]:
7053
7054 -- o If a private extension inherits known discriminants from the ancestor
7055 -- subtype, then the full view shall also inherit its discriminants from
7056 -- the ancestor subtype and the parent subtype of the full view shall be
7057 -- constrained if and only if the ancestor subtype is constrained.
7058
7059 -- o If a partial view has unknown discriminants, then the full view may
7060 -- define a definite or an indefinite subtype, with or without
7061 -- discriminants.
7062
7063 -- o If a partial view has neither known nor unknown discriminants, then
7064 -- the full view shall define a definite subtype.
7065
7066 -- o If the ancestor subtype of a private extension has constrained
7067 -- discriminants, then the parent subtype of the full view shall impose a
7068 -- statically matching constraint on those discriminants.
7069
7070 -- This means that only the following forms of private extensions are
7071 -- allowed:
7072
7073 -- type D is new A with private; <-- partial view
7074 -- type D is new P with null record; <-- full view
7075
7076 -- If A has no discriminants than P has no discriminants, otherwise P must
7077 -- inherit A's discriminants.
7078
7079 -- type D is new A (...) with private; <-- partial view
7080 -- type D is new P (:::) with null record; <-- full view
7081
7082 -- P must inherit A's discriminants and (...) and (:::) must statically
7083 -- match.
7084
7085 -- subtype A is R (...);
7086 -- type D is new A with private; <-- partial view
7087 -- type D is new P with null record; <-- full view
7088
7089 -- P must have inherited R's discriminants and must be derived from A or
7090 -- any of its subtypes.
7091
7092 -- type D (..) is new A with private; <-- partial view
7093 -- type D (..) is new P [(:::)] with null record; <-- full view
7094
7095 -- No specific constraints on P's discriminants or constraint (:::).
7096 -- Note that A can be unconstrained, but the parent subtype P must either
7097 -- be constrained or (:::) must be present.
7098
7099 -- type D (..) is new A [(...)] with private; <-- partial view
7100 -- type D (..) is new P [(:::)] with null record; <-- full view
7101
7102 -- P's constraints on A's discriminants must statically match those
7103 -- imposed by (...).
7104
7105 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7106
7107 -- The full view of a private extension is handled exactly as described
7108 -- above. The model chose for the private view of a private extension is
7109 -- the same for what concerns discriminants (i.e. they receive the same
7110 -- treatment as in the tagged case). However, the private view of the
7111 -- private extension always inherits the components of the parent base,
7112 -- without replacing any discriminant reference. Strictly speaking this is
7113 -- incorrect. However, Gigi never uses this view to generate code so this
7114 -- is a purely semantic issue. In theory, a set of transformations similar
7115 -- to those given in 5. and 6. above could be applied to private views of
7116 -- private extensions to have the same model of component inheritance as
7117 -- for non private extensions. However, this is not done because it would
7118 -- further complicate private type processing. Semantically speaking, this
7119 -- leaves us in an uncomfortable situation. As an example consider:
7120
7121 -- package Pack is
7122 -- type R (D : integer) is tagged record
7123 -- S : String (1 .. D);
7124 -- end record;
7125 -- procedure P (X : R);
7126 -- type T is new R (1) with private;
7127 -- private
7128 -- type T is new R (1) with null record;
7129 -- end;
7130
7131 -- This is transformed into:
7132
7133 -- package Pack is
7134 -- type R (D : integer) is tagged record
7135 -- S : String (1 .. D);
7136 -- end record;
7137 -- procedure P (X : R);
7138 -- type T is new R (1) with private;
7139 -- private
7140 -- type BaseT is new R with null record;
7141 -- subtype T is BaseT (1);
7142 -- end;
7143
7144 -- (strictly speaking the above is incorrect Ada)
7145
7146 -- From the semantic standpoint the private view of private extension T
7147 -- should be flagged as constrained since one can clearly have
7148 --
7149 -- Obj : T;
7150 --
7151 -- in a unit withing Pack. However, when deriving subprograms for the
7152 -- private view of private extension T, T must be seen as unconstrained
7153 -- since T has discriminants (this is a constraint of the current
7154 -- subprogram derivation model). Thus, when processing the private view of
7155 -- a private extension such as T, we first mark T as unconstrained, we
7156 -- process it, we perform program derivation and just before returning from
7157 -- Build_Derived_Record_Type we mark T as constrained.
7158
7159 -- ??? Are there are other uncomfortable cases that we will have to
7160 -- deal with.
7161
7162 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7163
7164 -- Types that are derived from a visible record type and have a private
7165 -- extension present other peculiarities. They behave mostly like private
7166 -- types, but if they have primitive operations defined, these will not
7167 -- have the proper signatures for further inheritance, because other
7168 -- primitive operations will use the implicit base that we define for
7169 -- private derivations below. This affect subprogram inheritance (see
7170 -- Derive_Subprograms for details). We also derive the implicit base from
7171 -- the base type of the full view, so that the implicit base is a record
7172 -- type and not another private type, This avoids infinite loops.
7173
7174 procedure Build_Derived_Record_Type
7175 (N : Node_Id;
7176 Parent_Type : Entity_Id;
7177 Derived_Type : Entity_Id;
7178 Derive_Subps : Boolean := True)
7179 is
7180 Discriminant_Specs : constant Boolean :=
7181 Present (Discriminant_Specifications (N));
7182 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7183 Loc : constant Source_Ptr := Sloc (N);
7184 Private_Extension : constant Boolean :=
7185 Nkind (N) = N_Private_Extension_Declaration;
7186 Assoc_List : Elist_Id;
7187 Constraint_Present : Boolean;
7188 Constrs : Elist_Id;
7189 Discrim : Entity_Id;
7190 Indic : Node_Id;
7191 Inherit_Discrims : Boolean := False;
7192 Last_Discrim : Entity_Id;
7193 New_Base : Entity_Id;
7194 New_Decl : Node_Id;
7195 New_Discrs : Elist_Id;
7196 New_Indic : Node_Id;
7197 Parent_Base : Entity_Id;
7198 Save_Etype : Entity_Id;
7199 Save_Discr_Constr : Elist_Id;
7200 Save_Next_Entity : Entity_Id;
7201 Type_Def : Node_Id;
7202
7203 Discs : Elist_Id := New_Elmt_List;
7204 -- An empty Discs list means that there were no constraints in the
7205 -- subtype indication or that there was an error processing it.
7206
7207 begin
7208 if Ekind (Parent_Type) = E_Record_Type_With_Private
7209 and then Present (Full_View (Parent_Type))
7210 and then Has_Discriminants (Parent_Type)
7211 then
7212 Parent_Base := Base_Type (Full_View (Parent_Type));
7213 else
7214 Parent_Base := Base_Type (Parent_Type);
7215 end if;
7216
7217 -- AI05-0115 : if this is a derivation from a private type in some
7218 -- other scope that may lead to invisible components for the derived
7219 -- type, mark it accordingly.
7220
7221 if Is_Private_Type (Parent_Type) then
7222 if Scope (Parent_Type) = Scope (Derived_Type) then
7223 null;
7224
7225 elsif In_Open_Scopes (Scope (Parent_Type))
7226 and then In_Private_Part (Scope (Parent_Type))
7227 then
7228 null;
7229
7230 else
7231 Set_Has_Private_Ancestor (Derived_Type);
7232 end if;
7233
7234 else
7235 Set_Has_Private_Ancestor
7236 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7237 end if;
7238
7239 -- Before we start the previously documented transformations, here is
7240 -- little fix for size and alignment of tagged types. Normally when we
7241 -- derive type D from type P, we copy the size and alignment of P as the
7242 -- default for D, and in the absence of explicit representation clauses
7243 -- for D, the size and alignment are indeed the same as the parent.
7244
7245 -- But this is wrong for tagged types, since fields may be added, and
7246 -- the default size may need to be larger, and the default alignment may
7247 -- need to be larger.
7248
7249 -- We therefore reset the size and alignment fields in the tagged case.
7250 -- Note that the size and alignment will in any case be at least as
7251 -- large as the parent type (since the derived type has a copy of the
7252 -- parent type in the _parent field)
7253
7254 -- The type is also marked as being tagged here, which is needed when
7255 -- processing components with a self-referential anonymous access type
7256 -- in the call to Check_Anonymous_Access_Components below. Note that
7257 -- this flag is also set later on for completeness.
7258
7259 if Is_Tagged then
7260 Set_Is_Tagged_Type (Derived_Type);
7261 Init_Size_Align (Derived_Type);
7262 end if;
7263
7264 -- STEP 0a: figure out what kind of derived type declaration we have
7265
7266 if Private_Extension then
7267 Type_Def := N;
7268 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7269
7270 else
7271 Type_Def := Type_Definition (N);
7272
7273 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7274 -- Parent_Base can be a private type or private extension. However,
7275 -- for tagged types with an extension the newly added fields are
7276 -- visible and hence the Derived_Type is always an E_Record_Type.
7277 -- (except that the parent may have its own private fields).
7278 -- For untagged types we preserve the Ekind of the Parent_Base.
7279
7280 if Present (Record_Extension_Part (Type_Def)) then
7281 Set_Ekind (Derived_Type, E_Record_Type);
7282
7283 -- Create internal access types for components with anonymous
7284 -- access types.
7285
7286 if Ada_Version >= Ada_2005 then
7287 Check_Anonymous_Access_Components
7288 (N, Derived_Type, Derived_Type,
7289 Component_List (Record_Extension_Part (Type_Def)));
7290 end if;
7291
7292 else
7293 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7294 end if;
7295 end if;
7296
7297 -- Indic can either be an N_Identifier if the subtype indication
7298 -- contains no constraint or an N_Subtype_Indication if the subtype
7299 -- indication has a constraint.
7300
7301 Indic := Subtype_Indication (Type_Def);
7302 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7303
7304 -- Check that the type has visible discriminants. The type may be
7305 -- a private type with unknown discriminants whose full view has
7306 -- discriminants which are invisible.
7307
7308 if Constraint_Present then
7309 if not Has_Discriminants (Parent_Base)
7310 or else
7311 (Has_Unknown_Discriminants (Parent_Base)
7312 and then Is_Private_Type (Parent_Base))
7313 then
7314 Error_Msg_N
7315 ("invalid constraint: type has no discriminant",
7316 Constraint (Indic));
7317
7318 Constraint_Present := False;
7319 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7320
7321 elsif Is_Constrained (Parent_Type) then
7322 Error_Msg_N
7323 ("invalid constraint: parent type is already constrained",
7324 Constraint (Indic));
7325
7326 Constraint_Present := False;
7327 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7328 end if;
7329 end if;
7330
7331 -- STEP 0b: If needed, apply transformation given in point 5. above
7332
7333 if not Private_Extension
7334 and then Has_Discriminants (Parent_Type)
7335 and then not Discriminant_Specs
7336 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7337 then
7338 -- First, we must analyze the constraint (see comment in point 5.)
7339 -- The constraint may come from the subtype indication of the full
7340 -- declaration.
7341
7342 if Constraint_Present then
7343 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7344
7345 -- If there is no explicit constraint, there might be one that is
7346 -- inherited from a constrained parent type. In that case verify that
7347 -- it conforms to the constraint in the partial view. In perverse
7348 -- cases the parent subtypes of the partial and full view can have
7349 -- different constraints.
7350
7351 elsif Present (Stored_Constraint (Parent_Type)) then
7352 New_Discrs := Stored_Constraint (Parent_Type);
7353
7354 else
7355 New_Discrs := No_Elist;
7356 end if;
7357
7358 if Has_Discriminants (Derived_Type)
7359 and then Has_Private_Declaration (Derived_Type)
7360 and then Present (Discriminant_Constraint (Derived_Type))
7361 and then Present (New_Discrs)
7362 then
7363 -- Verify that constraints of the full view statically match
7364 -- those given in the partial view.
7365
7366 declare
7367 C1, C2 : Elmt_Id;
7368
7369 begin
7370 C1 := First_Elmt (New_Discrs);
7371 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7372 while Present (C1) and then Present (C2) loop
7373 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7374 or else
7375 (Is_OK_Static_Expression (Node (C1))
7376 and then Is_OK_Static_Expression (Node (C2))
7377 and then
7378 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7379 then
7380 null;
7381
7382 else
7383 if Constraint_Present then
7384 Error_Msg_N
7385 ("constraint not conformant to previous declaration",
7386 Node (C1));
7387 else
7388 Error_Msg_N
7389 ("constraint of full view is incompatible "
7390 & "with partial view", N);
7391 end if;
7392 end if;
7393
7394 Next_Elmt (C1);
7395 Next_Elmt (C2);
7396 end loop;
7397 end;
7398 end if;
7399
7400 -- Insert and analyze the declaration for the unconstrained base type
7401
7402 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7403
7404 New_Decl :=
7405 Make_Full_Type_Declaration (Loc,
7406 Defining_Identifier => New_Base,
7407 Type_Definition =>
7408 Make_Derived_Type_Definition (Loc,
7409 Abstract_Present => Abstract_Present (Type_Def),
7410 Limited_Present => Limited_Present (Type_Def),
7411 Subtype_Indication =>
7412 New_Occurrence_Of (Parent_Base, Loc),
7413 Record_Extension_Part =>
7414 Relocate_Node (Record_Extension_Part (Type_Def)),
7415 Interface_List => Interface_List (Type_Def)));
7416
7417 Set_Parent (New_Decl, Parent (N));
7418 Mark_Rewrite_Insertion (New_Decl);
7419 Insert_Before (N, New_Decl);
7420
7421 -- In the extension case, make sure ancestor is frozen appropriately
7422 -- (see also non-discriminated case below).
7423
7424 if Present (Record_Extension_Part (Type_Def))
7425 or else Is_Interface (Parent_Base)
7426 then
7427 Freeze_Before (New_Decl, Parent_Type);
7428 end if;
7429
7430 -- Note that this call passes False for the Derive_Subps parameter
7431 -- because subprogram derivation is deferred until after creating
7432 -- the subtype (see below).
7433
7434 Build_Derived_Type
7435 (New_Decl, Parent_Base, New_Base,
7436 Is_Completion => True, Derive_Subps => False);
7437
7438 -- ??? This needs re-examination to determine whether the
7439 -- above call can simply be replaced by a call to Analyze.
7440
7441 Set_Analyzed (New_Decl);
7442
7443 -- Insert and analyze the declaration for the constrained subtype
7444
7445 if Constraint_Present then
7446 New_Indic :=
7447 Make_Subtype_Indication (Loc,
7448 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7449 Constraint => Relocate_Node (Constraint (Indic)));
7450
7451 else
7452 declare
7453 Constr_List : constant List_Id := New_List;
7454 C : Elmt_Id;
7455 Expr : Node_Id;
7456
7457 begin
7458 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7459 while Present (C) loop
7460 Expr := Node (C);
7461
7462 -- It is safe here to call New_Copy_Tree since
7463 -- Force_Evaluation was called on each constraint in
7464 -- Build_Discriminant_Constraints.
7465
7466 Append (New_Copy_Tree (Expr), To => Constr_List);
7467
7468 Next_Elmt (C);
7469 end loop;
7470
7471 New_Indic :=
7472 Make_Subtype_Indication (Loc,
7473 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7474 Constraint =>
7475 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7476 end;
7477 end if;
7478
7479 Rewrite (N,
7480 Make_Subtype_Declaration (Loc,
7481 Defining_Identifier => Derived_Type,
7482 Subtype_Indication => New_Indic));
7483
7484 Analyze (N);
7485
7486 -- Derivation of subprograms must be delayed until the full subtype
7487 -- has been established, to ensure proper overriding of subprograms
7488 -- inherited by full types. If the derivations occurred as part of
7489 -- the call to Build_Derived_Type above, then the check for type
7490 -- conformance would fail because earlier primitive subprograms
7491 -- could still refer to the full type prior the change to the new
7492 -- subtype and hence would not match the new base type created here.
7493 -- Subprograms are not derived, however, when Derive_Subps is False
7494 -- (since otherwise there could be redundant derivations).
7495
7496 if Derive_Subps then
7497 Derive_Subprograms (Parent_Type, Derived_Type);
7498 end if;
7499
7500 -- For tagged types the Discriminant_Constraint of the new base itype
7501 -- is inherited from the first subtype so that no subtype conformance
7502 -- problem arise when the first subtype overrides primitive
7503 -- operations inherited by the implicit base type.
7504
7505 if Is_Tagged then
7506 Set_Discriminant_Constraint
7507 (New_Base, Discriminant_Constraint (Derived_Type));
7508 end if;
7509
7510 return;
7511 end if;
7512
7513 -- If we get here Derived_Type will have no discriminants or it will be
7514 -- a discriminated unconstrained base type.
7515
7516 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7517
7518 if Is_Tagged then
7519
7520 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7521 -- The declaration of a specific descendant of an interface type
7522 -- freezes the interface type (RM 13.14).
7523
7524 if not Private_Extension or else Is_Interface (Parent_Base) then
7525 Freeze_Before (N, Parent_Type);
7526 end if;
7527
7528 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7529 -- cannot be declared at a deeper level than its parent type is
7530 -- removed. The check on derivation within a generic body is also
7531 -- relaxed, but there's a restriction that a derived tagged type
7532 -- cannot be declared in a generic body if it's derived directly
7533 -- or indirectly from a formal type of that generic.
7534
7535 if Ada_Version >= Ada_2005 then
7536 if Present (Enclosing_Generic_Body (Derived_Type)) then
7537 declare
7538 Ancestor_Type : Entity_Id;
7539
7540 begin
7541 -- Check to see if any ancestor of the derived type is a
7542 -- formal type.
7543
7544 Ancestor_Type := Parent_Type;
7545 while not Is_Generic_Type (Ancestor_Type)
7546 and then Etype (Ancestor_Type) /= Ancestor_Type
7547 loop
7548 Ancestor_Type := Etype (Ancestor_Type);
7549 end loop;
7550
7551 -- If the derived type does have a formal type as an
7552 -- ancestor, then it's an error if the derived type is
7553 -- declared within the body of the generic unit that
7554 -- declares the formal type in its generic formal part. It's
7555 -- sufficient to check whether the ancestor type is declared
7556 -- inside the same generic body as the derived type (such as
7557 -- within a nested generic spec), in which case the
7558 -- derivation is legal. If the formal type is declared
7559 -- outside of that generic body, then it's guaranteed that
7560 -- the derived type is declared within the generic body of
7561 -- the generic unit declaring the formal type.
7562
7563 if Is_Generic_Type (Ancestor_Type)
7564 and then Enclosing_Generic_Body (Ancestor_Type) /=
7565 Enclosing_Generic_Body (Derived_Type)
7566 then
7567 Error_Msg_NE
7568 ("parent type of& must not be descendant of formal type"
7569 & " of an enclosing generic body",
7570 Indic, Derived_Type);
7571 end if;
7572 end;
7573 end if;
7574
7575 elsif Type_Access_Level (Derived_Type) /=
7576 Type_Access_Level (Parent_Type)
7577 and then not Is_Generic_Type (Derived_Type)
7578 then
7579 if Is_Controlled (Parent_Type) then
7580 Error_Msg_N
7581 ("controlled type must be declared at the library level",
7582 Indic);
7583 else
7584 Error_Msg_N
7585 ("type extension at deeper accessibility level than parent",
7586 Indic);
7587 end if;
7588
7589 else
7590 declare
7591 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7592
7593 begin
7594 if Present (GB)
7595 and then GB /= Enclosing_Generic_Body (Parent_Base)
7596 then
7597 Error_Msg_NE
7598 ("parent type of& must not be outside generic body"
7599 & " (RM 3.9.1(4))",
7600 Indic, Derived_Type);
7601 end if;
7602 end;
7603 end if;
7604 end if;
7605
7606 -- Ada 2005 (AI-251)
7607
7608 if Ada_Version >= Ada_2005 and then Is_Tagged then
7609
7610 -- "The declaration of a specific descendant of an interface type
7611 -- freezes the interface type" (RM 13.14).
7612
7613 declare
7614 Iface : Node_Id;
7615 begin
7616 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7617 Iface := First (Interface_List (Type_Def));
7618 while Present (Iface) loop
7619 Freeze_Before (N, Etype (Iface));
7620 Next (Iface);
7621 end loop;
7622 end if;
7623 end;
7624 end if;
7625
7626 -- STEP 1b : preliminary cleanup of the full view of private types
7627
7628 -- If the type is already marked as having discriminants, then it's the
7629 -- completion of a private type or private extension and we need to
7630 -- retain the discriminants from the partial view if the current
7631 -- declaration has Discriminant_Specifications so that we can verify
7632 -- conformance. However, we must remove any existing components that
7633 -- were inherited from the parent (and attached in Copy_And_Swap)
7634 -- because the full type inherits all appropriate components anyway, and
7635 -- we do not want the partial view's components interfering.
7636
7637 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7638 Discrim := First_Discriminant (Derived_Type);
7639 loop
7640 Last_Discrim := Discrim;
7641 Next_Discriminant (Discrim);
7642 exit when No (Discrim);
7643 end loop;
7644
7645 Set_Last_Entity (Derived_Type, Last_Discrim);
7646
7647 -- In all other cases wipe out the list of inherited components (even
7648 -- inherited discriminants), it will be properly rebuilt here.
7649
7650 else
7651 Set_First_Entity (Derived_Type, Empty);
7652 Set_Last_Entity (Derived_Type, Empty);
7653 end if;
7654
7655 -- STEP 1c: Initialize some flags for the Derived_Type
7656
7657 -- The following flags must be initialized here so that
7658 -- Process_Discriminants can check that discriminants of tagged types do
7659 -- not have a default initial value and that access discriminants are
7660 -- only specified for limited records. For completeness, these flags are
7661 -- also initialized along with all the other flags below.
7662
7663 -- AI-419: Limitedness is not inherited from an interface parent, so to
7664 -- be limited in that case the type must be explicitly declared as
7665 -- limited. However, task and protected interfaces are always limited.
7666
7667 if Limited_Present (Type_Def) then
7668 Set_Is_Limited_Record (Derived_Type);
7669
7670 elsif Is_Limited_Record (Parent_Type)
7671 or else (Present (Full_View (Parent_Type))
7672 and then Is_Limited_Record (Full_View (Parent_Type)))
7673 then
7674 if not Is_Interface (Parent_Type)
7675 or else Is_Synchronized_Interface (Parent_Type)
7676 or else Is_Protected_Interface (Parent_Type)
7677 or else Is_Task_Interface (Parent_Type)
7678 then
7679 Set_Is_Limited_Record (Derived_Type);
7680 end if;
7681 end if;
7682
7683 -- STEP 2a: process discriminants of derived type if any
7684
7685 Push_Scope (Derived_Type);
7686
7687 if Discriminant_Specs then
7688 Set_Has_Unknown_Discriminants (Derived_Type, False);
7689
7690 -- The following call initializes fields Has_Discriminants and
7691 -- Discriminant_Constraint, unless we are processing the completion
7692 -- of a private type declaration.
7693
7694 Check_Or_Process_Discriminants (N, Derived_Type);
7695
7696 -- For untagged types, the constraint on the Parent_Type must be
7697 -- present and is used to rename the discriminants.
7698
7699 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7700 Error_Msg_N ("untagged parent must have discriminants", Indic);
7701
7702 elsif not Is_Tagged and then not Constraint_Present then
7703 Error_Msg_N
7704 ("discriminant constraint needed for derived untagged records",
7705 Indic);
7706
7707 -- Otherwise the parent subtype must be constrained unless we have a
7708 -- private extension.
7709
7710 elsif not Constraint_Present
7711 and then not Private_Extension
7712 and then not Is_Constrained (Parent_Type)
7713 then
7714 Error_Msg_N
7715 ("unconstrained type not allowed in this context", Indic);
7716
7717 elsif Constraint_Present then
7718 -- The following call sets the field Corresponding_Discriminant
7719 -- for the discriminants in the Derived_Type.
7720
7721 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7722
7723 -- For untagged types all new discriminants must rename
7724 -- discriminants in the parent. For private extensions new
7725 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7726
7727 Discrim := First_Discriminant (Derived_Type);
7728 while Present (Discrim) loop
7729 if not Is_Tagged
7730 and then No (Corresponding_Discriminant (Discrim))
7731 then
7732 Error_Msg_N
7733 ("new discriminants must constrain old ones", Discrim);
7734
7735 elsif Private_Extension
7736 and then Present (Corresponding_Discriminant (Discrim))
7737 then
7738 Error_Msg_N
7739 ("only static constraints allowed for parent"
7740 & " discriminants in the partial view", Indic);
7741 exit;
7742 end if;
7743
7744 -- If a new discriminant is used in the constraint, then its
7745 -- subtype must be statically compatible with the parent
7746 -- discriminant's subtype (3.7(15)).
7747
7748 -- However, if the record contains an array constrained by
7749 -- the discriminant but with some different bound, the compiler
7750 -- attemps to create a smaller range for the discriminant type.
7751 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7752 -- the discriminant type is a scalar type, the check must use
7753 -- the original discriminant type in the parent declaration.
7754
7755 declare
7756 Corr_Disc : constant Entity_Id :=
7757 Corresponding_Discriminant (Discrim);
7758 Disc_Type : constant Entity_Id := Etype (Discrim);
7759 Corr_Type : Entity_Id;
7760
7761 begin
7762 if Present (Corr_Disc) then
7763 if Is_Scalar_Type (Disc_Type) then
7764 Corr_Type :=
7765 Entity (Discriminant_Type (Parent (Corr_Disc)));
7766 else
7767 Corr_Type := Etype (Corr_Disc);
7768 end if;
7769
7770 if not
7771 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7772 then
7773 Error_Msg_N
7774 ("subtype must be compatible "
7775 & "with parent discriminant",
7776 Discrim);
7777 end if;
7778 end if;
7779 end;
7780
7781 Next_Discriminant (Discrim);
7782 end loop;
7783
7784 -- Check whether the constraints of the full view statically
7785 -- match those imposed by the parent subtype [7.3(13)].
7786
7787 if Present (Stored_Constraint (Derived_Type)) then
7788 declare
7789 C1, C2 : Elmt_Id;
7790
7791 begin
7792 C1 := First_Elmt (Discs);
7793 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7794 while Present (C1) and then Present (C2) loop
7795 if not
7796 Fully_Conformant_Expressions (Node (C1), Node (C2))
7797 then
7798 Error_Msg_N
7799 ("not conformant with previous declaration",
7800 Node (C1));
7801 end if;
7802
7803 Next_Elmt (C1);
7804 Next_Elmt (C2);
7805 end loop;
7806 end;
7807 end if;
7808 end if;
7809
7810 -- STEP 2b: No new discriminants, inherit discriminants if any
7811
7812 else
7813 if Private_Extension then
7814 Set_Has_Unknown_Discriminants
7815 (Derived_Type,
7816 Has_Unknown_Discriminants (Parent_Type)
7817 or else Unknown_Discriminants_Present (N));
7818
7819 -- The partial view of the parent may have unknown discriminants,
7820 -- but if the full view has discriminants and the parent type is
7821 -- in scope they must be inherited.
7822
7823 elsif Has_Unknown_Discriminants (Parent_Type)
7824 and then
7825 (not Has_Discriminants (Parent_Type)
7826 or else not In_Open_Scopes (Scope (Parent_Type)))
7827 then
7828 Set_Has_Unknown_Discriminants (Derived_Type);
7829 end if;
7830
7831 if not Has_Unknown_Discriminants (Derived_Type)
7832 and then not Has_Unknown_Discriminants (Parent_Base)
7833 and then Has_Discriminants (Parent_Type)
7834 then
7835 Inherit_Discrims := True;
7836 Set_Has_Discriminants
7837 (Derived_Type, True);
7838 Set_Discriminant_Constraint
7839 (Derived_Type, Discriminant_Constraint (Parent_Base));
7840 end if;
7841
7842 -- The following test is true for private types (remember
7843 -- transformation 5. is not applied to those) and in an error
7844 -- situation.
7845
7846 if Constraint_Present then
7847 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7848 end if;
7849
7850 -- For now mark a new derived type as constrained only if it has no
7851 -- discriminants. At the end of Build_Derived_Record_Type we properly
7852 -- set this flag in the case of private extensions. See comments in
7853 -- point 9. just before body of Build_Derived_Record_Type.
7854
7855 Set_Is_Constrained
7856 (Derived_Type,
7857 not (Inherit_Discrims
7858 or else Has_Unknown_Discriminants (Derived_Type)));
7859 end if;
7860
7861 -- STEP 3: initialize fields of derived type
7862
7863 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7864 Set_Stored_Constraint (Derived_Type, No_Elist);
7865
7866 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7867 -- but cannot be interfaces
7868
7869 if not Private_Extension
7870 and then Ekind (Derived_Type) /= E_Private_Type
7871 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7872 then
7873 if Interface_Present (Type_Def) then
7874 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7875 end if;
7876
7877 Set_Interfaces (Derived_Type, No_Elist);
7878 end if;
7879
7880 -- Fields inherited from the Parent_Type
7881
7882 Set_Has_Specified_Layout
7883 (Derived_Type, Has_Specified_Layout (Parent_Type));
7884 Set_Is_Limited_Composite
7885 (Derived_Type, Is_Limited_Composite (Parent_Type));
7886 Set_Is_Private_Composite
7887 (Derived_Type, Is_Private_Composite (Parent_Type));
7888
7889 -- Fields inherited from the Parent_Base
7890
7891 Set_Has_Controlled_Component
7892 (Derived_Type, Has_Controlled_Component (Parent_Base));
7893 Set_Has_Non_Standard_Rep
7894 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7895 Set_Has_Primitive_Operations
7896 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7897
7898 -- Fields inherited from the Parent_Base in the non-private case
7899
7900 if Ekind (Derived_Type) = E_Record_Type then
7901 Set_Has_Complex_Representation
7902 (Derived_Type, Has_Complex_Representation (Parent_Base));
7903 end if;
7904
7905 -- Fields inherited from the Parent_Base for record types
7906
7907 if Is_Record_Type (Derived_Type) then
7908
7909 declare
7910 Parent_Full : Entity_Id;
7911
7912 begin
7913 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7914 -- Parent_Base can be a private type or private extension. Go
7915 -- to the full view here to get the E_Record_Type specific flags.
7916
7917 if Present (Full_View (Parent_Base)) then
7918 Parent_Full := Full_View (Parent_Base);
7919 else
7920 Parent_Full := Parent_Base;
7921 end if;
7922
7923 Set_OK_To_Reorder_Components
7924 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
7925 end;
7926 end if;
7927
7928 -- Set fields for private derived types
7929
7930 if Is_Private_Type (Derived_Type) then
7931 Set_Depends_On_Private (Derived_Type, True);
7932 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7933
7934 -- Inherit fields from non private record types. If this is the
7935 -- completion of a derivation from a private type, the parent itself
7936 -- is private, and the attributes come from its full view, which must
7937 -- be present.
7938
7939 else
7940 if Is_Private_Type (Parent_Base)
7941 and then not Is_Record_Type (Parent_Base)
7942 then
7943 Set_Component_Alignment
7944 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
7945 Set_C_Pass_By_Copy
7946 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
7947 else
7948 Set_Component_Alignment
7949 (Derived_Type, Component_Alignment (Parent_Base));
7950 Set_C_Pass_By_Copy
7951 (Derived_Type, C_Pass_By_Copy (Parent_Base));
7952 end if;
7953 end if;
7954
7955 -- Set fields for tagged types
7956
7957 if Is_Tagged then
7958 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
7959
7960 -- All tagged types defined in Ada.Finalization are controlled
7961
7962 if Chars (Scope (Derived_Type)) = Name_Finalization
7963 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
7964 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
7965 then
7966 Set_Is_Controlled (Derived_Type);
7967 else
7968 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
7969 end if;
7970
7971 -- Minor optimization: there is no need to generate the class-wide
7972 -- entity associated with an underlying record view.
7973
7974 if not Is_Underlying_Record_View (Derived_Type) then
7975 Make_Class_Wide_Type (Derived_Type);
7976 end if;
7977
7978 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
7979
7980 if Has_Discriminants (Derived_Type)
7981 and then Constraint_Present
7982 then
7983 Set_Stored_Constraint
7984 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
7985 end if;
7986
7987 if Ada_Version >= Ada_2005 then
7988 declare
7989 Ifaces_List : Elist_Id;
7990
7991 begin
7992 -- Checks rules 3.9.4 (13/2 and 14/2)
7993
7994 if Comes_From_Source (Derived_Type)
7995 and then not Is_Private_Type (Derived_Type)
7996 and then Is_Interface (Parent_Type)
7997 and then not Is_Interface (Derived_Type)
7998 then
7999 if Is_Task_Interface (Parent_Type) then
8000 Error_Msg_N
8001 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8002 Derived_Type);
8003
8004 elsif Is_Protected_Interface (Parent_Type) then
8005 Error_Msg_N
8006 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8007 Derived_Type);
8008 end if;
8009 end if;
8010
8011 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8012
8013 Check_Interfaces (N, Type_Def);
8014
8015 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8016 -- not already in the parents.
8017
8018 Collect_Interfaces
8019 (T => Derived_Type,
8020 Ifaces_List => Ifaces_List,
8021 Exclude_Parents => True);
8022
8023 Set_Interfaces (Derived_Type, Ifaces_List);
8024
8025 -- If the derived type is the anonymous type created for
8026 -- a declaration whose parent has a constraint, propagate
8027 -- the interface list to the source type. This must be done
8028 -- prior to the completion of the analysis of the source type
8029 -- because the components in the extension may contain current
8030 -- instances whose legality depends on some ancestor.
8031
8032 if Is_Itype (Derived_Type) then
8033 declare
8034 Def : constant Node_Id :=
8035 Associated_Node_For_Itype (Derived_Type);
8036 begin
8037 if Present (Def)
8038 and then Nkind (Def) = N_Full_Type_Declaration
8039 then
8040 Set_Interfaces
8041 (Defining_Identifier (Def), Ifaces_List);
8042 end if;
8043 end;
8044 end if;
8045 end;
8046 end if;
8047
8048 else
8049 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8050 Set_Has_Non_Standard_Rep
8051 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8052 end if;
8053
8054 -- STEP 4: Inherit components from the parent base and constrain them.
8055 -- Apply the second transformation described in point 6. above.
8056
8057 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8058 or else not Has_Discriminants (Parent_Type)
8059 or else not Is_Constrained (Parent_Type)
8060 then
8061 Constrs := Discs;
8062 else
8063 Constrs := Discriminant_Constraint (Parent_Type);
8064 end if;
8065
8066 Assoc_List :=
8067 Inherit_Components
8068 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8069
8070 -- STEP 5a: Copy the parent record declaration for untagged types
8071
8072 if not Is_Tagged then
8073
8074 -- Discriminant_Constraint (Derived_Type) has been properly
8075 -- constructed. Save it and temporarily set it to Empty because we
8076 -- do not want the call to New_Copy_Tree below to mess this list.
8077
8078 if Has_Discriminants (Derived_Type) then
8079 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8080 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8081 else
8082 Save_Discr_Constr := No_Elist;
8083 end if;
8084
8085 -- Save the Etype field of Derived_Type. It is correctly set now,
8086 -- but the call to New_Copy tree may remap it to point to itself,
8087 -- which is not what we want. Ditto for the Next_Entity field.
8088
8089 Save_Etype := Etype (Derived_Type);
8090 Save_Next_Entity := Next_Entity (Derived_Type);
8091
8092 -- Assoc_List maps all stored discriminants in the Parent_Base to
8093 -- stored discriminants in the Derived_Type. It is fundamental that
8094 -- no types or itypes with discriminants other than the stored
8095 -- discriminants appear in the entities declared inside
8096 -- Derived_Type, since the back end cannot deal with it.
8097
8098 New_Decl :=
8099 New_Copy_Tree
8100 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8101
8102 -- Restore the fields saved prior to the New_Copy_Tree call
8103 -- and compute the stored constraint.
8104
8105 Set_Etype (Derived_Type, Save_Etype);
8106 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8107
8108 if Has_Discriminants (Derived_Type) then
8109 Set_Discriminant_Constraint
8110 (Derived_Type, Save_Discr_Constr);
8111 Set_Stored_Constraint
8112 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8113 Replace_Components (Derived_Type, New_Decl);
8114 Set_Has_Implicit_Dereference
8115 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8116 end if;
8117
8118 -- Insert the new derived type declaration
8119
8120 Rewrite (N, New_Decl);
8121
8122 -- STEP 5b: Complete the processing for record extensions in generics
8123
8124 -- There is no completion for record extensions declared in the
8125 -- parameter part of a generic, so we need to complete processing for
8126 -- these generic record extensions here. The Record_Type_Definition call
8127 -- will change the Ekind of the components from E_Void to E_Component.
8128
8129 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8130 Record_Type_Definition (Empty, Derived_Type);
8131
8132 -- STEP 5c: Process the record extension for non private tagged types
8133
8134 elsif not Private_Extension then
8135
8136 -- Add the _parent field in the derived type
8137
8138 Expand_Record_Extension (Derived_Type, Type_Def);
8139
8140 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8141 -- implemented interfaces if we are in expansion mode
8142
8143 if Expander_Active
8144 and then Has_Interfaces (Derived_Type)
8145 then
8146 Add_Interface_Tag_Components (N, Derived_Type);
8147 end if;
8148
8149 -- Analyze the record extension
8150
8151 Record_Type_Definition
8152 (Record_Extension_Part (Type_Def), Derived_Type);
8153 end if;
8154
8155 End_Scope;
8156
8157 -- Nothing else to do if there is an error in the derivation.
8158 -- An unusual case: the full view may be derived from a type in an
8159 -- instance, when the partial view was used illegally as an actual
8160 -- in that instance, leading to a circular definition.
8161
8162 if Etype (Derived_Type) = Any_Type
8163 or else Etype (Parent_Type) = Derived_Type
8164 then
8165 return;
8166 end if;
8167
8168 -- Set delayed freeze and then derive subprograms, we need to do
8169 -- this in this order so that derived subprograms inherit the
8170 -- derived freeze if necessary.
8171
8172 Set_Has_Delayed_Freeze (Derived_Type);
8173
8174 if Derive_Subps then
8175 Derive_Subprograms (Parent_Type, Derived_Type);
8176 end if;
8177
8178 -- If we have a private extension which defines a constrained derived
8179 -- type mark as constrained here after we have derived subprograms. See
8180 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8181
8182 if Private_Extension and then Inherit_Discrims then
8183 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8184 Set_Is_Constrained (Derived_Type, True);
8185 Set_Discriminant_Constraint (Derived_Type, Discs);
8186
8187 elsif Is_Constrained (Parent_Type) then
8188 Set_Is_Constrained
8189 (Derived_Type, True);
8190 Set_Discriminant_Constraint
8191 (Derived_Type, Discriminant_Constraint (Parent_Type));
8192 end if;
8193 end if;
8194
8195 -- Update the class-wide type, which shares the now-completed entity
8196 -- list with its specific type. In case of underlying record views,
8197 -- we do not generate the corresponding class wide entity.
8198
8199 if Is_Tagged
8200 and then not Is_Underlying_Record_View (Derived_Type)
8201 then
8202 Set_First_Entity
8203 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8204 Set_Last_Entity
8205 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8206 end if;
8207
8208 Check_Function_Writable_Actuals (N);
8209 end Build_Derived_Record_Type;
8210
8211 ------------------------
8212 -- Build_Derived_Type --
8213 ------------------------
8214
8215 procedure Build_Derived_Type
8216 (N : Node_Id;
8217 Parent_Type : Entity_Id;
8218 Derived_Type : Entity_Id;
8219 Is_Completion : Boolean;
8220 Derive_Subps : Boolean := True)
8221 is
8222 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8223
8224 begin
8225 -- Set common attributes
8226
8227 Set_Scope (Derived_Type, Current_Scope);
8228
8229 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8230 Set_Etype (Derived_Type, Parent_Base);
8231 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8232
8233 Set_Size_Info (Derived_Type, Parent_Type);
8234 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8235 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8236 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8237
8238 -- If the parent type is a private subtype, the convention on the base
8239 -- type may be set in the private part, and not propagated to the
8240 -- subtype until later, so we obtain the convention from the base type.
8241
8242 Set_Convention (Derived_Type, Convention (Parent_Base));
8243
8244 -- Propagate invariant information. The new type has invariants if
8245 -- they are inherited from the parent type, and these invariants can
8246 -- be further inherited, so both flags are set.
8247
8248 -- We similarly inherit predicates
8249
8250 if Has_Predicates (Parent_Type) then
8251 Set_Has_Predicates (Derived_Type);
8252 end if;
8253
8254 -- The derived type inherits the representation clauses of the parent.
8255 -- However, for a private type that is completed by a derivation, there
8256 -- may be operation attributes that have been specified already (stream
8257 -- attributes and External_Tag) and those must be provided. Finally,
8258 -- if the partial view is a private extension, the representation items
8259 -- of the parent have been inherited already, and should not be chained
8260 -- twice to the derived type.
8261
8262 if Is_Tagged_Type (Parent_Type)
8263 and then Present (First_Rep_Item (Derived_Type))
8264 then
8265 -- The existing items are either operational items or items inherited
8266 -- from a private extension declaration.
8267
8268 declare
8269 Rep : Node_Id;
8270 -- Used to iterate over representation items of the derived type
8271
8272 Last_Rep : Node_Id;
8273 -- Last representation item of the (non-empty) representation
8274 -- item list of the derived type.
8275
8276 Found : Boolean := False;
8277
8278 begin
8279 Rep := First_Rep_Item (Derived_Type);
8280 Last_Rep := Rep;
8281 while Present (Rep) loop
8282 if Rep = First_Rep_Item (Parent_Type) then
8283 Found := True;
8284 exit;
8285
8286 else
8287 Rep := Next_Rep_Item (Rep);
8288
8289 if Present (Rep) then
8290 Last_Rep := Rep;
8291 end if;
8292 end if;
8293 end loop;
8294
8295 -- Here if we either encountered the parent type's first rep
8296 -- item on the derived type's rep item list (in which case
8297 -- Found is True, and we have nothing else to do), or if we
8298 -- reached the last rep item of the derived type, which is
8299 -- Last_Rep, in which case we further chain the parent type's
8300 -- rep items to those of the derived type.
8301
8302 if not Found then
8303 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8304 end if;
8305 end;
8306
8307 else
8308 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8309 end if;
8310
8311 -- If the parent type has delayed rep aspects, then mark the derived
8312 -- type as possibly inheriting a delayed rep aspect.
8313
8314 if Has_Delayed_Rep_Aspects (Parent_Type) then
8315 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8316 end if;
8317
8318 -- Type dependent processing
8319
8320 case Ekind (Parent_Type) is
8321 when Numeric_Kind =>
8322 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8323
8324 when Array_Kind =>
8325 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8326
8327 when E_Record_Type
8328 | E_Record_Subtype
8329 | Class_Wide_Kind =>
8330 Build_Derived_Record_Type
8331 (N, Parent_Type, Derived_Type, Derive_Subps);
8332 return;
8333
8334 when Enumeration_Kind =>
8335 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8336
8337 when Access_Kind =>
8338 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8339
8340 when Incomplete_Or_Private_Kind =>
8341 Build_Derived_Private_Type
8342 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8343
8344 -- For discriminated types, the derivation includes deriving
8345 -- primitive operations. For others it is done below.
8346
8347 if Is_Tagged_Type (Parent_Type)
8348 or else Has_Discriminants (Parent_Type)
8349 or else (Present (Full_View (Parent_Type))
8350 and then Has_Discriminants (Full_View (Parent_Type)))
8351 then
8352 return;
8353 end if;
8354
8355 when Concurrent_Kind =>
8356 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8357
8358 when others =>
8359 raise Program_Error;
8360 end case;
8361
8362 -- Nothing more to do if some error occurred
8363
8364 if Etype (Derived_Type) = Any_Type then
8365 return;
8366 end if;
8367
8368 -- Set delayed freeze and then derive subprograms, we need to do this
8369 -- in this order so that derived subprograms inherit the derived freeze
8370 -- if necessary.
8371
8372 Set_Has_Delayed_Freeze (Derived_Type);
8373
8374 if Derive_Subps then
8375 Derive_Subprograms (Parent_Type, Derived_Type);
8376 end if;
8377
8378 Set_Has_Primitive_Operations
8379 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8380 end Build_Derived_Type;
8381
8382 -----------------------
8383 -- Build_Discriminal --
8384 -----------------------
8385
8386 procedure Build_Discriminal (Discrim : Entity_Id) is
8387 D_Minal : Entity_Id;
8388 CR_Disc : Entity_Id;
8389
8390 begin
8391 -- A discriminal has the same name as the discriminant
8392
8393 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8394
8395 Set_Ekind (D_Minal, E_In_Parameter);
8396 Set_Mechanism (D_Minal, Default_Mechanism);
8397 Set_Etype (D_Minal, Etype (Discrim));
8398 Set_Scope (D_Minal, Current_Scope);
8399
8400 Set_Discriminal (Discrim, D_Minal);
8401 Set_Discriminal_Link (D_Minal, Discrim);
8402
8403 -- For task types, build at once the discriminants of the corresponding
8404 -- record, which are needed if discriminants are used in entry defaults
8405 -- and in family bounds.
8406
8407 if Is_Concurrent_Type (Current_Scope)
8408 or else Is_Limited_Type (Current_Scope)
8409 then
8410 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8411
8412 Set_Ekind (CR_Disc, E_In_Parameter);
8413 Set_Mechanism (CR_Disc, Default_Mechanism);
8414 Set_Etype (CR_Disc, Etype (Discrim));
8415 Set_Scope (CR_Disc, Current_Scope);
8416 Set_Discriminal_Link (CR_Disc, Discrim);
8417 Set_CR_Discriminant (Discrim, CR_Disc);
8418 end if;
8419 end Build_Discriminal;
8420
8421 ------------------------------------
8422 -- Build_Discriminant_Constraints --
8423 ------------------------------------
8424
8425 function Build_Discriminant_Constraints
8426 (T : Entity_Id;
8427 Def : Node_Id;
8428 Derived_Def : Boolean := False) return Elist_Id
8429 is
8430 C : constant Node_Id := Constraint (Def);
8431 Nb_Discr : constant Nat := Number_Discriminants (T);
8432
8433 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8434 -- Saves the expression corresponding to a given discriminant in T
8435
8436 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8437 -- Return the Position number within array Discr_Expr of a discriminant
8438 -- D within the discriminant list of the discriminated type T.
8439
8440 procedure Process_Discriminant_Expression
8441 (Expr : Node_Id;
8442 D : Entity_Id);
8443 -- If this is a discriminant constraint on a partial view, do not
8444 -- generate an overflow check on the discriminant expression. The check
8445 -- will be generated when constraining the full view. Otherwise the
8446 -- backend creates duplicate symbols for the temporaries corresponding
8447 -- to the expressions to be checked, causing spurious assembler errors.
8448
8449 ------------------
8450 -- Pos_Of_Discr --
8451 ------------------
8452
8453 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8454 Disc : Entity_Id;
8455
8456 begin
8457 Disc := First_Discriminant (T);
8458 for J in Discr_Expr'Range loop
8459 if Disc = D then
8460 return J;
8461 end if;
8462
8463 Next_Discriminant (Disc);
8464 end loop;
8465
8466 -- Note: Since this function is called on discriminants that are
8467 -- known to belong to the discriminated type, falling through the
8468 -- loop with no match signals an internal compiler error.
8469
8470 raise Program_Error;
8471 end Pos_Of_Discr;
8472
8473 -------------------------------------
8474 -- Process_Discriminant_Expression --
8475 -------------------------------------
8476
8477 procedure Process_Discriminant_Expression
8478 (Expr : Node_Id;
8479 D : Entity_Id)
8480 is
8481 BDT : constant Entity_Id := Base_Type (Etype (D));
8482
8483 begin
8484 -- If this is a discriminant constraint on a partial view, do
8485 -- not generate an overflow on the discriminant expression. The
8486 -- check will be generated when constraining the full view.
8487
8488 if Is_Private_Type (T)
8489 and then Present (Full_View (T))
8490 then
8491 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8492 else
8493 Analyze_And_Resolve (Expr, BDT);
8494 end if;
8495 end Process_Discriminant_Expression;
8496
8497 -- Declarations local to Build_Discriminant_Constraints
8498
8499 Discr : Entity_Id;
8500 E : Entity_Id;
8501 Elist : constant Elist_Id := New_Elmt_List;
8502
8503 Constr : Node_Id;
8504 Expr : Node_Id;
8505 Id : Node_Id;
8506 Position : Nat;
8507 Found : Boolean;
8508
8509 Discrim_Present : Boolean := False;
8510
8511 -- Start of processing for Build_Discriminant_Constraints
8512
8513 begin
8514 -- The following loop will process positional associations only.
8515 -- For a positional association, the (single) discriminant is
8516 -- implicitly specified by position, in textual order (RM 3.7.2).
8517
8518 Discr := First_Discriminant (T);
8519 Constr := First (Constraints (C));
8520 for D in Discr_Expr'Range loop
8521 exit when Nkind (Constr) = N_Discriminant_Association;
8522
8523 if No (Constr) then
8524 Error_Msg_N ("too few discriminants given in constraint", C);
8525 return New_Elmt_List;
8526
8527 elsif Nkind (Constr) = N_Range
8528 or else (Nkind (Constr) = N_Attribute_Reference
8529 and then
8530 Attribute_Name (Constr) = Name_Range)
8531 then
8532 Error_Msg_N
8533 ("a range is not a valid discriminant constraint", Constr);
8534 Discr_Expr (D) := Error;
8535
8536 else
8537 Process_Discriminant_Expression (Constr, Discr);
8538 Discr_Expr (D) := Constr;
8539 end if;
8540
8541 Next_Discriminant (Discr);
8542 Next (Constr);
8543 end loop;
8544
8545 if No (Discr) and then Present (Constr) then
8546 Error_Msg_N ("too many discriminants given in constraint", Constr);
8547 return New_Elmt_List;
8548 end if;
8549
8550 -- Named associations can be given in any order, but if both positional
8551 -- and named associations are used in the same discriminant constraint,
8552 -- then positional associations must occur first, at their normal
8553 -- position. Hence once a named association is used, the rest of the
8554 -- discriminant constraint must use only named associations.
8555
8556 while Present (Constr) loop
8557
8558 -- Positional association forbidden after a named association
8559
8560 if Nkind (Constr) /= N_Discriminant_Association then
8561 Error_Msg_N ("positional association follows named one", Constr);
8562 return New_Elmt_List;
8563
8564 -- Otherwise it is a named association
8565
8566 else
8567 -- E records the type of the discriminants in the named
8568 -- association. All the discriminants specified in the same name
8569 -- association must have the same type.
8570
8571 E := Empty;
8572
8573 -- Search the list of discriminants in T to see if the simple name
8574 -- given in the constraint matches any of them.
8575
8576 Id := First (Selector_Names (Constr));
8577 while Present (Id) loop
8578 Found := False;
8579
8580 -- If Original_Discriminant is present, we are processing a
8581 -- generic instantiation and this is an instance node. We need
8582 -- to find the name of the corresponding discriminant in the
8583 -- actual record type T and not the name of the discriminant in
8584 -- the generic formal. Example:
8585
8586 -- generic
8587 -- type G (D : int) is private;
8588 -- package P is
8589 -- subtype W is G (D => 1);
8590 -- end package;
8591 -- type Rec (X : int) is record ... end record;
8592 -- package Q is new P (G => Rec);
8593
8594 -- At the point of the instantiation, formal type G is Rec
8595 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8596 -- which really looks like "subtype W is Rec (D => 1);" at
8597 -- the point of instantiation, we want to find the discriminant
8598 -- that corresponds to D in Rec, i.e. X.
8599
8600 if Present (Original_Discriminant (Id))
8601 and then In_Instance
8602 then
8603 Discr := Find_Corresponding_Discriminant (Id, T);
8604 Found := True;
8605
8606 else
8607 Discr := First_Discriminant (T);
8608 while Present (Discr) loop
8609 if Chars (Discr) = Chars (Id) then
8610 Found := True;
8611 exit;
8612 end if;
8613
8614 Next_Discriminant (Discr);
8615 end loop;
8616
8617 if not Found then
8618 Error_Msg_N ("& does not match any discriminant", Id);
8619 return New_Elmt_List;
8620
8621 -- If the parent type is a generic formal, preserve the
8622 -- name of the discriminant for subsequent instances.
8623 -- see comment at the beginning of this if statement.
8624
8625 elsif Is_Generic_Type (Root_Type (T)) then
8626 Set_Original_Discriminant (Id, Discr);
8627 end if;
8628 end if;
8629
8630 Position := Pos_Of_Discr (T, Discr);
8631
8632 if Present (Discr_Expr (Position)) then
8633 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8634
8635 else
8636 -- Each discriminant specified in the same named association
8637 -- must be associated with a separate copy of the
8638 -- corresponding expression.
8639
8640 if Present (Next (Id)) then
8641 Expr := New_Copy_Tree (Expression (Constr));
8642 Set_Parent (Expr, Parent (Expression (Constr)));
8643 else
8644 Expr := Expression (Constr);
8645 end if;
8646
8647 Discr_Expr (Position) := Expr;
8648 Process_Discriminant_Expression (Expr, Discr);
8649 end if;
8650
8651 -- A discriminant association with more than one discriminant
8652 -- name is only allowed if the named discriminants are all of
8653 -- the same type (RM 3.7.1(8)).
8654
8655 if E = Empty then
8656 E := Base_Type (Etype (Discr));
8657
8658 elsif Base_Type (Etype (Discr)) /= E then
8659 Error_Msg_N
8660 ("all discriminants in an association " &
8661 "must have the same type", Id);
8662 end if;
8663
8664 Next (Id);
8665 end loop;
8666 end if;
8667
8668 Next (Constr);
8669 end loop;
8670
8671 -- A discriminant constraint must provide exactly one value for each
8672 -- discriminant of the type (RM 3.7.1(8)).
8673
8674 for J in Discr_Expr'Range loop
8675 if No (Discr_Expr (J)) then
8676 Error_Msg_N ("too few discriminants given in constraint", C);
8677 return New_Elmt_List;
8678 end if;
8679 end loop;
8680
8681 -- Determine if there are discriminant expressions in the constraint
8682
8683 for J in Discr_Expr'Range loop
8684 if Denotes_Discriminant
8685 (Discr_Expr (J), Check_Concurrent => True)
8686 then
8687 Discrim_Present := True;
8688 end if;
8689 end loop;
8690
8691 -- Build an element list consisting of the expressions given in the
8692 -- discriminant constraint and apply the appropriate checks. The list
8693 -- is constructed after resolving any named discriminant associations
8694 -- and therefore the expressions appear in the textual order of the
8695 -- discriminants.
8696
8697 Discr := First_Discriminant (T);
8698 for J in Discr_Expr'Range loop
8699 if Discr_Expr (J) /= Error then
8700 Append_Elmt (Discr_Expr (J), Elist);
8701
8702 -- If any of the discriminant constraints is given by a
8703 -- discriminant and we are in a derived type declaration we
8704 -- have a discriminant renaming. Establish link between new
8705 -- and old discriminant.
8706
8707 if Denotes_Discriminant (Discr_Expr (J)) then
8708 if Derived_Def then
8709 Set_Corresponding_Discriminant
8710 (Entity (Discr_Expr (J)), Discr);
8711 end if;
8712
8713 -- Force the evaluation of non-discriminant expressions.
8714 -- If we have found a discriminant in the constraint 3.4(26)
8715 -- and 3.8(18) demand that no range checks are performed are
8716 -- after evaluation. If the constraint is for a component
8717 -- definition that has a per-object constraint, expressions are
8718 -- evaluated but not checked either. In all other cases perform
8719 -- a range check.
8720
8721 else
8722 if Discrim_Present then
8723 null;
8724
8725 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8726 and then
8727 Has_Per_Object_Constraint
8728 (Defining_Identifier (Parent (Parent (Def))))
8729 then
8730 null;
8731
8732 elsif Is_Access_Type (Etype (Discr)) then
8733 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8734
8735 else
8736 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8737 end if;
8738
8739 Force_Evaluation (Discr_Expr (J));
8740 end if;
8741
8742 -- Check that the designated type of an access discriminant's
8743 -- expression is not a class-wide type unless the discriminant's
8744 -- designated type is also class-wide.
8745
8746 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8747 and then not Is_Class_Wide_Type
8748 (Designated_Type (Etype (Discr)))
8749 and then Etype (Discr_Expr (J)) /= Any_Type
8750 and then Is_Class_Wide_Type
8751 (Designated_Type (Etype (Discr_Expr (J))))
8752 then
8753 Wrong_Type (Discr_Expr (J), Etype (Discr));
8754
8755 elsif Is_Access_Type (Etype (Discr))
8756 and then not Is_Access_Constant (Etype (Discr))
8757 and then Is_Access_Type (Etype (Discr_Expr (J)))
8758 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8759 then
8760 Error_Msg_NE
8761 ("constraint for discriminant& must be access to variable",
8762 Def, Discr);
8763 end if;
8764 end if;
8765
8766 Next_Discriminant (Discr);
8767 end loop;
8768
8769 return Elist;
8770 end Build_Discriminant_Constraints;
8771
8772 ---------------------------------
8773 -- Build_Discriminated_Subtype --
8774 ---------------------------------
8775
8776 procedure Build_Discriminated_Subtype
8777 (T : Entity_Id;
8778 Def_Id : Entity_Id;
8779 Elist : Elist_Id;
8780 Related_Nod : Node_Id;
8781 For_Access : Boolean := False)
8782 is
8783 Has_Discrs : constant Boolean := Has_Discriminants (T);
8784 Constrained : constant Boolean :=
8785 (Has_Discrs
8786 and then not Is_Empty_Elmt_List (Elist)
8787 and then not Is_Class_Wide_Type (T))
8788 or else Is_Constrained (T);
8789
8790 begin
8791 if Ekind (T) = E_Record_Type then
8792 if For_Access then
8793 Set_Ekind (Def_Id, E_Private_Subtype);
8794 Set_Is_For_Access_Subtype (Def_Id, True);
8795 else
8796 Set_Ekind (Def_Id, E_Record_Subtype);
8797 end if;
8798
8799 -- Inherit preelaboration flag from base, for types for which it
8800 -- may have been set: records, private types, protected types.
8801
8802 Set_Known_To_Have_Preelab_Init
8803 (Def_Id, Known_To_Have_Preelab_Init (T));
8804
8805 elsif Ekind (T) = E_Task_Type then
8806 Set_Ekind (Def_Id, E_Task_Subtype);
8807
8808 elsif Ekind (T) = E_Protected_Type then
8809 Set_Ekind (Def_Id, E_Protected_Subtype);
8810 Set_Known_To_Have_Preelab_Init
8811 (Def_Id, Known_To_Have_Preelab_Init (T));
8812
8813 elsif Is_Private_Type (T) then
8814 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8815 Set_Known_To_Have_Preelab_Init
8816 (Def_Id, Known_To_Have_Preelab_Init (T));
8817
8818 -- Private subtypes may have private dependents
8819
8820 Set_Private_Dependents (Def_Id, New_Elmt_List);
8821
8822 elsif Is_Class_Wide_Type (T) then
8823 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8824
8825 else
8826 -- Incomplete type. Attach subtype to list of dependents, to be
8827 -- completed with full view of parent type, unless is it the
8828 -- designated subtype of a record component within an init_proc.
8829 -- This last case arises for a component of an access type whose
8830 -- designated type is incomplete (e.g. a Taft Amendment type).
8831 -- The designated subtype is within an inner scope, and needs no
8832 -- elaboration, because only the access type is needed in the
8833 -- initialization procedure.
8834
8835 Set_Ekind (Def_Id, Ekind (T));
8836
8837 if For_Access and then Within_Init_Proc then
8838 null;
8839 else
8840 Append_Elmt (Def_Id, Private_Dependents (T));
8841 end if;
8842 end if;
8843
8844 Set_Etype (Def_Id, T);
8845 Init_Size_Align (Def_Id);
8846 Set_Has_Discriminants (Def_Id, Has_Discrs);
8847 Set_Is_Constrained (Def_Id, Constrained);
8848
8849 Set_First_Entity (Def_Id, First_Entity (T));
8850 Set_Last_Entity (Def_Id, Last_Entity (T));
8851 Set_Has_Implicit_Dereference
8852 (Def_Id, Has_Implicit_Dereference (T));
8853
8854 -- If the subtype is the completion of a private declaration, there may
8855 -- have been representation clauses for the partial view, and they must
8856 -- be preserved. Build_Derived_Type chains the inherited clauses with
8857 -- the ones appearing on the extension. If this comes from a subtype
8858 -- declaration, all clauses are inherited.
8859
8860 if No (First_Rep_Item (Def_Id)) then
8861 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8862 end if;
8863
8864 if Is_Tagged_Type (T) then
8865 Set_Is_Tagged_Type (Def_Id);
8866 Make_Class_Wide_Type (Def_Id);
8867 end if;
8868
8869 Set_Stored_Constraint (Def_Id, No_Elist);
8870
8871 if Has_Discrs then
8872 Set_Discriminant_Constraint (Def_Id, Elist);
8873 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8874 end if;
8875
8876 if Is_Tagged_Type (T) then
8877
8878 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8879 -- concurrent record type (which has the list of primitive
8880 -- operations).
8881
8882 if Ada_Version >= Ada_2005
8883 and then Is_Concurrent_Type (T)
8884 then
8885 Set_Corresponding_Record_Type (Def_Id,
8886 Corresponding_Record_Type (T));
8887 else
8888 Set_Direct_Primitive_Operations (Def_Id,
8889 Direct_Primitive_Operations (T));
8890 end if;
8891
8892 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8893 end if;
8894
8895 -- Subtypes introduced by component declarations do not need to be
8896 -- marked as delayed, and do not get freeze nodes, because the semantics
8897 -- verifies that the parents of the subtypes are frozen before the
8898 -- enclosing record is frozen.
8899
8900 if not Is_Type (Scope (Def_Id)) then
8901 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8902
8903 if Is_Private_Type (T)
8904 and then Present (Full_View (T))
8905 then
8906 Conditional_Delay (Def_Id, Full_View (T));
8907 else
8908 Conditional_Delay (Def_Id, T);
8909 end if;
8910 end if;
8911
8912 if Is_Record_Type (T) then
8913 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8914
8915 if Has_Discrs
8916 and then not Is_Empty_Elmt_List (Elist)
8917 and then not For_Access
8918 then
8919 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
8920 elsif not For_Access then
8921 Set_Cloned_Subtype (Def_Id, T);
8922 end if;
8923 end if;
8924 end Build_Discriminated_Subtype;
8925
8926 ---------------------------
8927 -- Build_Itype_Reference --
8928 ---------------------------
8929
8930 procedure Build_Itype_Reference
8931 (Ityp : Entity_Id;
8932 Nod : Node_Id)
8933 is
8934 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
8935 begin
8936
8937 -- Itype references are only created for use by the back-end
8938
8939 if Inside_A_Generic then
8940 return;
8941 else
8942 Set_Itype (IR, Ityp);
8943 Insert_After (Nod, IR);
8944 end if;
8945 end Build_Itype_Reference;
8946
8947 ------------------------
8948 -- Build_Scalar_Bound --
8949 ------------------------
8950
8951 function Build_Scalar_Bound
8952 (Bound : Node_Id;
8953 Par_T : Entity_Id;
8954 Der_T : Entity_Id) return Node_Id
8955 is
8956 New_Bound : Entity_Id;
8957
8958 begin
8959 -- Note: not clear why this is needed, how can the original bound
8960 -- be unanalyzed at this point? and if it is, what business do we
8961 -- have messing around with it? and why is the base type of the
8962 -- parent type the right type for the resolution. It probably is
8963 -- not! It is OK for the new bound we are creating, but not for
8964 -- the old one??? Still if it never happens, no problem!
8965
8966 Analyze_And_Resolve (Bound, Base_Type (Par_T));
8967
8968 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
8969 New_Bound := New_Copy (Bound);
8970 Set_Etype (New_Bound, Der_T);
8971 Set_Analyzed (New_Bound);
8972
8973 elsif Is_Entity_Name (Bound) then
8974 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
8975
8976 -- The following is almost certainly wrong. What business do we have
8977 -- relocating a node (Bound) that is presumably still attached to
8978 -- the tree elsewhere???
8979
8980 else
8981 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
8982 end if;
8983
8984 Set_Etype (New_Bound, Der_T);
8985 return New_Bound;
8986 end Build_Scalar_Bound;
8987
8988 --------------------------------
8989 -- Build_Underlying_Full_View --
8990 --------------------------------
8991
8992 procedure Build_Underlying_Full_View
8993 (N : Node_Id;
8994 Typ : Entity_Id;
8995 Par : Entity_Id)
8996 is
8997 Loc : constant Source_Ptr := Sloc (N);
8998 Subt : constant Entity_Id :=
8999 Make_Defining_Identifier
9000 (Loc, New_External_Name (Chars (Typ), 'S'));
9001
9002 Constr : Node_Id;
9003 Indic : Node_Id;
9004 C : Node_Id;
9005 Id : Node_Id;
9006
9007 procedure Set_Discriminant_Name (Id : Node_Id);
9008 -- If the derived type has discriminants, they may rename discriminants
9009 -- of the parent. When building the full view of the parent, we need to
9010 -- recover the names of the original discriminants if the constraint is
9011 -- given by named associations.
9012
9013 ---------------------------
9014 -- Set_Discriminant_Name --
9015 ---------------------------
9016
9017 procedure Set_Discriminant_Name (Id : Node_Id) is
9018 Disc : Entity_Id;
9019
9020 begin
9021 Set_Original_Discriminant (Id, Empty);
9022
9023 if Has_Discriminants (Typ) then
9024 Disc := First_Discriminant (Typ);
9025 while Present (Disc) loop
9026 if Chars (Disc) = Chars (Id)
9027 and then Present (Corresponding_Discriminant (Disc))
9028 then
9029 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9030 end if;
9031 Next_Discriminant (Disc);
9032 end loop;
9033 end if;
9034 end Set_Discriminant_Name;
9035
9036 -- Start of processing for Build_Underlying_Full_View
9037
9038 begin
9039 if Nkind (N) = N_Full_Type_Declaration then
9040 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9041
9042 elsif Nkind (N) = N_Subtype_Declaration then
9043 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9044
9045 elsif Nkind (N) = N_Component_Declaration then
9046 Constr :=
9047 New_Copy_Tree
9048 (Constraint (Subtype_Indication (Component_Definition (N))));
9049
9050 else
9051 raise Program_Error;
9052 end if;
9053
9054 C := First (Constraints (Constr));
9055 while Present (C) loop
9056 if Nkind (C) = N_Discriminant_Association then
9057 Id := First (Selector_Names (C));
9058 while Present (Id) loop
9059 Set_Discriminant_Name (Id);
9060 Next (Id);
9061 end loop;
9062 end if;
9063
9064 Next (C);
9065 end loop;
9066
9067 Indic :=
9068 Make_Subtype_Declaration (Loc,
9069 Defining_Identifier => Subt,
9070 Subtype_Indication =>
9071 Make_Subtype_Indication (Loc,
9072 Subtype_Mark => New_Reference_To (Par, Loc),
9073 Constraint => New_Copy_Tree (Constr)));
9074
9075 -- If this is a component subtype for an outer itype, it is not
9076 -- a list member, so simply set the parent link for analysis: if
9077 -- the enclosing type does not need to be in a declarative list,
9078 -- neither do the components.
9079
9080 if Is_List_Member (N)
9081 and then Nkind (N) /= N_Component_Declaration
9082 then
9083 Insert_Before (N, Indic);
9084 else
9085 Set_Parent (Indic, Parent (N));
9086 end if;
9087
9088 Analyze (Indic);
9089 Set_Underlying_Full_View (Typ, Full_View (Subt));
9090 end Build_Underlying_Full_View;
9091
9092 -------------------------------
9093 -- Check_Abstract_Overriding --
9094 -------------------------------
9095
9096 procedure Check_Abstract_Overriding (T : Entity_Id) is
9097 Alias_Subp : Entity_Id;
9098 Elmt : Elmt_Id;
9099 Op_List : Elist_Id;
9100 Subp : Entity_Id;
9101 Type_Def : Node_Id;
9102
9103 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9104 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9105 -- which has pragma Implemented already set. Check whether Subp's entity
9106 -- kind conforms to the implementation kind of the overridden routine.
9107
9108 procedure Check_Pragma_Implemented
9109 (Subp : Entity_Id;
9110 Iface_Subp : Entity_Id);
9111 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9112 -- Iface_Subp and both entities have pragma Implemented already set on
9113 -- them. Check whether the two implementation kinds are conforming.
9114
9115 procedure Inherit_Pragma_Implemented
9116 (Subp : Entity_Id;
9117 Iface_Subp : Entity_Id);
9118 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9119 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9120 -- Propagate the implementation kind of Iface_Subp to Subp.
9121
9122 ------------------------------
9123 -- Check_Pragma_Implemented --
9124 ------------------------------
9125
9126 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9127 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9128 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9129 Subp_Alias : constant Entity_Id := Alias (Subp);
9130 Contr_Typ : Entity_Id;
9131 Impl_Subp : Entity_Id;
9132
9133 begin
9134 -- Subp must have an alias since it is a hidden entity used to link
9135 -- an interface subprogram to its overriding counterpart.
9136
9137 pragma Assert (Present (Subp_Alias));
9138
9139 -- Handle aliases to synchronized wrappers
9140
9141 Impl_Subp := Subp_Alias;
9142
9143 if Is_Primitive_Wrapper (Impl_Subp) then
9144 Impl_Subp := Wrapped_Entity (Impl_Subp);
9145 end if;
9146
9147 -- Extract the type of the controlling formal
9148
9149 Contr_Typ := Etype (First_Formal (Subp_Alias));
9150
9151 if Is_Concurrent_Record_Type (Contr_Typ) then
9152 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9153 end if;
9154
9155 -- An interface subprogram whose implementation kind is By_Entry must
9156 -- be implemented by an entry.
9157
9158 if Impl_Kind = Name_By_Entry
9159 and then Ekind (Impl_Subp) /= E_Entry
9160 then
9161 Error_Msg_Node_2 := Iface_Alias;
9162 Error_Msg_NE
9163 ("type & must implement abstract subprogram & with an entry",
9164 Subp_Alias, Contr_Typ);
9165
9166 elsif Impl_Kind = Name_By_Protected_Procedure then
9167
9168 -- An interface subprogram whose implementation kind is By_
9169 -- Protected_Procedure cannot be implemented by a primitive
9170 -- procedure of a task type.
9171
9172 if Ekind (Contr_Typ) /= E_Protected_Type then
9173 Error_Msg_Node_2 := Contr_Typ;
9174 Error_Msg_NE
9175 ("interface subprogram & cannot be implemented by a " &
9176 "primitive procedure of task type &", Subp_Alias,
9177 Iface_Alias);
9178
9179 -- An interface subprogram whose implementation kind is By_
9180 -- Protected_Procedure must be implemented by a procedure.
9181
9182 elsif Ekind (Impl_Subp) /= E_Procedure then
9183 Error_Msg_Node_2 := Iface_Alias;
9184 Error_Msg_NE
9185 ("type & must implement abstract subprogram & with a " &
9186 "procedure", Subp_Alias, Contr_Typ);
9187 end if;
9188 end if;
9189 end Check_Pragma_Implemented;
9190
9191 ------------------------------
9192 -- Check_Pragma_Implemented --
9193 ------------------------------
9194
9195 procedure Check_Pragma_Implemented
9196 (Subp : Entity_Id;
9197 Iface_Subp : Entity_Id)
9198 is
9199 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9200 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9201
9202 begin
9203 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9204 -- and overriding subprogram are different. In general this is an
9205 -- error except when the implementation kind of the overridden
9206 -- subprograms is By_Any or Optional.
9207
9208 if Iface_Kind /= Subp_Kind
9209 and then Iface_Kind /= Name_By_Any
9210 and then Iface_Kind /= Name_Optional
9211 then
9212 if Iface_Kind = Name_By_Entry then
9213 Error_Msg_N
9214 ("incompatible implementation kind, overridden subprogram " &
9215 "is marked By_Entry", Subp);
9216 else
9217 Error_Msg_N
9218 ("incompatible implementation kind, overridden subprogram " &
9219 "is marked By_Protected_Procedure", Subp);
9220 end if;
9221 end if;
9222 end Check_Pragma_Implemented;
9223
9224 --------------------------------
9225 -- Inherit_Pragma_Implemented --
9226 --------------------------------
9227
9228 procedure Inherit_Pragma_Implemented
9229 (Subp : Entity_Id;
9230 Iface_Subp : Entity_Id)
9231 is
9232 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9233 Loc : constant Source_Ptr := Sloc (Subp);
9234 Impl_Prag : Node_Id;
9235
9236 begin
9237 -- Since the implementation kind is stored as a representation item
9238 -- rather than a flag, create a pragma node.
9239
9240 Impl_Prag :=
9241 Make_Pragma (Loc,
9242 Chars => Name_Implemented,
9243 Pragma_Argument_Associations => New_List (
9244 Make_Pragma_Argument_Association (Loc,
9245 Expression => New_Reference_To (Subp, Loc)),
9246
9247 Make_Pragma_Argument_Association (Loc,
9248 Expression => Make_Identifier (Loc, Iface_Kind))));
9249
9250 -- The pragma doesn't need to be analyzed because it is internally
9251 -- built. It is safe to directly register it as a rep item since we
9252 -- are only interested in the characters of the implementation kind.
9253
9254 Record_Rep_Item (Subp, Impl_Prag);
9255 end Inherit_Pragma_Implemented;
9256
9257 -- Start of processing for Check_Abstract_Overriding
9258
9259 begin
9260 Op_List := Primitive_Operations (T);
9261
9262 -- Loop to check primitive operations
9263
9264 Elmt := First_Elmt (Op_List);
9265 while Present (Elmt) loop
9266 Subp := Node (Elmt);
9267 Alias_Subp := Alias (Subp);
9268
9269 -- Inherited subprograms are identified by the fact that they do not
9270 -- come from source, and the associated source location is the
9271 -- location of the first subtype of the derived type.
9272
9273 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9274 -- subprograms that "require overriding".
9275
9276 -- Special exception, do not complain about failure to override the
9277 -- stream routines _Input and _Output, as well as the primitive
9278 -- operations used in dispatching selects since we always provide
9279 -- automatic overridings for these subprograms.
9280
9281 -- Also ignore this rule for convention CIL since .NET libraries
9282 -- do bizarre things with interfaces???
9283
9284 -- The partial view of T may have been a private extension, for
9285 -- which inherited functions dispatching on result are abstract.
9286 -- If the full view is a null extension, there is no need for
9287 -- overriding in Ada 2005, but wrappers need to be built for them
9288 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9289
9290 if Is_Null_Extension (T)
9291 and then Has_Controlling_Result (Subp)
9292 and then Ada_Version >= Ada_2005
9293 and then Present (Alias_Subp)
9294 and then not Comes_From_Source (Subp)
9295 and then not Is_Abstract_Subprogram (Alias_Subp)
9296 and then not Is_Access_Type (Etype (Subp))
9297 then
9298 null;
9299
9300 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9301 -- processing because this check is done with the aliased
9302 -- entity
9303
9304 elsif Present (Interface_Alias (Subp)) then
9305 null;
9306
9307 elsif (Is_Abstract_Subprogram (Subp)
9308 or else Requires_Overriding (Subp)
9309 or else
9310 (Has_Controlling_Result (Subp)
9311 and then Present (Alias_Subp)
9312 and then not Comes_From_Source (Subp)
9313 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9314 and then not Is_TSS (Subp, TSS_Stream_Input)
9315 and then not Is_TSS (Subp, TSS_Stream_Output)
9316 and then not Is_Abstract_Type (T)
9317 and then Convention (T) /= Convention_CIL
9318 and then not Is_Predefined_Interface_Primitive (Subp)
9319
9320 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9321 -- with abstract interface types because the check will be done
9322 -- with the aliased entity (otherwise we generate a duplicated
9323 -- error message).
9324
9325 and then not Present (Interface_Alias (Subp))
9326 then
9327 if Present (Alias_Subp) then
9328
9329 -- Only perform the check for a derived subprogram when the
9330 -- type has an explicit record extension. This avoids incorrect
9331 -- flagging of abstract subprograms for the case of a type
9332 -- without an extension that is derived from a formal type
9333 -- with a tagged actual (can occur within a private part).
9334
9335 -- Ada 2005 (AI-391): In the case of an inherited function with
9336 -- a controlling result of the type, the rule does not apply if
9337 -- the type is a null extension (unless the parent function
9338 -- itself is abstract, in which case the function must still be
9339 -- be overridden). The expander will generate an overriding
9340 -- wrapper function calling the parent subprogram (see
9341 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9342
9343 Type_Def := Type_Definition (Parent (T));
9344
9345 if Nkind (Type_Def) = N_Derived_Type_Definition
9346 and then Present (Record_Extension_Part (Type_Def))
9347 and then
9348 (Ada_Version < Ada_2005
9349 or else not Is_Null_Extension (T)
9350 or else Ekind (Subp) = E_Procedure
9351 or else not Has_Controlling_Result (Subp)
9352 or else Is_Abstract_Subprogram (Alias_Subp)
9353 or else Requires_Overriding (Subp)
9354 or else Is_Access_Type (Etype (Subp)))
9355 then
9356 -- Avoid reporting error in case of abstract predefined
9357 -- primitive inherited from interface type because the
9358 -- body of internally generated predefined primitives
9359 -- of tagged types are generated later by Freeze_Type
9360
9361 if Is_Interface (Root_Type (T))
9362 and then Is_Abstract_Subprogram (Subp)
9363 and then Is_Predefined_Dispatching_Operation (Subp)
9364 and then not Comes_From_Source (Ultimate_Alias (Subp))
9365 then
9366 null;
9367
9368 else
9369 Error_Msg_NE
9370 ("type must be declared abstract or & overridden",
9371 T, Subp);
9372
9373 -- Traverse the whole chain of aliased subprograms to
9374 -- complete the error notification. This is especially
9375 -- useful for traceability of the chain of entities when
9376 -- the subprogram corresponds with an interface
9377 -- subprogram (which may be defined in another package).
9378
9379 if Present (Alias_Subp) then
9380 declare
9381 E : Entity_Id;
9382
9383 begin
9384 E := Subp;
9385 while Present (Alias (E)) loop
9386
9387 -- Avoid reporting redundant errors on entities
9388 -- inherited from interfaces
9389
9390 if Sloc (E) /= Sloc (T) then
9391 Error_Msg_Sloc := Sloc (E);
9392 Error_Msg_NE
9393 ("\& has been inherited #", T, Subp);
9394 end if;
9395
9396 E := Alias (E);
9397 end loop;
9398
9399 Error_Msg_Sloc := Sloc (E);
9400
9401 -- AI05-0068: report if there is an overriding
9402 -- non-abstract subprogram that is invisible.
9403
9404 if Is_Hidden (E)
9405 and then not Is_Abstract_Subprogram (E)
9406 then
9407 Error_Msg_NE
9408 ("\& subprogram# is not visible",
9409 T, Subp);
9410
9411 else
9412 Error_Msg_NE
9413 ("\& has been inherited from subprogram #",
9414 T, Subp);
9415 end if;
9416 end;
9417 end if;
9418 end if;
9419
9420 -- Ada 2005 (AI-345): Protected or task type implementing
9421 -- abstract interfaces.
9422
9423 elsif Is_Concurrent_Record_Type (T)
9424 and then Present (Interfaces (T))
9425 then
9426 -- The controlling formal of Subp must be of mode "out",
9427 -- "in out" or an access-to-variable to be overridden.
9428
9429 if Ekind (First_Formal (Subp)) = E_In_Parameter
9430 and then Ekind (Subp) /= E_Function
9431 then
9432 if not Is_Predefined_Dispatching_Operation (Subp)
9433 and then Is_Protected_Type
9434 (Corresponding_Concurrent_Type (T))
9435 then
9436 Error_Msg_PT (T, Subp);
9437 end if;
9438
9439 -- Some other kind of overriding failure
9440
9441 else
9442 Error_Msg_NE
9443 ("interface subprogram & must be overridden",
9444 T, Subp);
9445
9446 -- Examine primitive operations of synchronized type,
9447 -- to find homonyms that have the wrong profile.
9448
9449 declare
9450 Prim : Entity_Id;
9451
9452 begin
9453 Prim :=
9454 First_Entity (Corresponding_Concurrent_Type (T));
9455 while Present (Prim) loop
9456 if Chars (Prim) = Chars (Subp) then
9457 Error_Msg_NE
9458 ("profile is not type conformant with "
9459 & "prefixed view profile of "
9460 & "inherited operation&", Prim, Subp);
9461 end if;
9462
9463 Next_Entity (Prim);
9464 end loop;
9465 end;
9466 end if;
9467 end if;
9468
9469 else
9470 Error_Msg_Node_2 := T;
9471 Error_Msg_N
9472 ("abstract subprogram& not allowed for type&", Subp);
9473
9474 -- Also post unconditional warning on the type (unconditional
9475 -- so that if there are more than one of these cases, we get
9476 -- them all, and not just the first one).
9477
9478 Error_Msg_Node_2 := Subp;
9479 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9480 end if;
9481 end if;
9482
9483 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9484 -- Implemented
9485
9486 -- Subp is an expander-generated procedure which maps an interface
9487 -- alias to a protected wrapper. The interface alias is flagged by
9488 -- pragma Implemented. Ensure that Subp is a procedure when the
9489 -- implementation kind is By_Protected_Procedure or an entry when
9490 -- By_Entry.
9491
9492 if Ada_Version >= Ada_2012
9493 and then Is_Hidden (Subp)
9494 and then Present (Interface_Alias (Subp))
9495 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9496 then
9497 Check_Pragma_Implemented (Subp);
9498 end if;
9499
9500 -- Subp is an interface primitive which overrides another interface
9501 -- primitive marked with pragma Implemented.
9502
9503 if Ada_Version >= Ada_2012
9504 and then Present (Overridden_Operation (Subp))
9505 and then Has_Rep_Pragma
9506 (Overridden_Operation (Subp), Name_Implemented)
9507 then
9508 -- If the overriding routine is also marked by Implemented, check
9509 -- that the two implementation kinds are conforming.
9510
9511 if Has_Rep_Pragma (Subp, Name_Implemented) then
9512 Check_Pragma_Implemented
9513 (Subp => Subp,
9514 Iface_Subp => Overridden_Operation (Subp));
9515
9516 -- Otherwise the overriding routine inherits the implementation
9517 -- kind from the overridden subprogram.
9518
9519 else
9520 Inherit_Pragma_Implemented
9521 (Subp => Subp,
9522 Iface_Subp => Overridden_Operation (Subp));
9523 end if;
9524 end if;
9525
9526 -- If the operation is a wrapper for a synchronized primitive, it
9527 -- may be called indirectly through a dispatching select. We assume
9528 -- that it will be referenced elsewhere indirectly, and suppress
9529 -- warnings about an unused entity.
9530
9531 if Is_Primitive_Wrapper (Subp)
9532 and then Present (Wrapped_Entity (Subp))
9533 then
9534 Set_Referenced (Wrapped_Entity (Subp));
9535 end if;
9536
9537 Next_Elmt (Elmt);
9538 end loop;
9539 end Check_Abstract_Overriding;
9540
9541 ------------------------------------------------
9542 -- Check_Access_Discriminant_Requires_Limited --
9543 ------------------------------------------------
9544
9545 procedure Check_Access_Discriminant_Requires_Limited
9546 (D : Node_Id;
9547 Loc : Node_Id)
9548 is
9549 begin
9550 -- A discriminant_specification for an access discriminant shall appear
9551 -- only in the declaration for a task or protected type, or for a type
9552 -- with the reserved word 'limited' in its definition or in one of its
9553 -- ancestors (RM 3.7(10)).
9554
9555 -- AI-0063: The proper condition is that type must be immutably limited,
9556 -- or else be a partial view.
9557
9558 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9559 if Is_Immutably_Limited_Type (Current_Scope)
9560 or else
9561 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9562 and then Limited_Present (Parent (Current_Scope)))
9563 then
9564 null;
9565
9566 else
9567 Error_Msg_N
9568 ("access discriminants allowed only for limited types", Loc);
9569 end if;
9570 end if;
9571 end Check_Access_Discriminant_Requires_Limited;
9572
9573 -----------------------------------
9574 -- Check_Aliased_Component_Types --
9575 -----------------------------------
9576
9577 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9578 C : Entity_Id;
9579
9580 begin
9581 -- ??? Also need to check components of record extensions, but not
9582 -- components of protected types (which are always limited).
9583
9584 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9585 -- types to be unconstrained. This is safe because it is illegal to
9586 -- create access subtypes to such types with explicit discriminant
9587 -- constraints.
9588
9589 if not Is_Limited_Type (T) then
9590 if Ekind (T) = E_Record_Type then
9591 C := First_Component (T);
9592 while Present (C) loop
9593 if Is_Aliased (C)
9594 and then Has_Discriminants (Etype (C))
9595 and then not Is_Constrained (Etype (C))
9596 and then not In_Instance_Body
9597 and then Ada_Version < Ada_2005
9598 then
9599 Error_Msg_N
9600 ("aliased component must be constrained (RM 3.6(11))",
9601 C);
9602 end if;
9603
9604 Next_Component (C);
9605 end loop;
9606
9607 elsif Ekind (T) = E_Array_Type then
9608 if Has_Aliased_Components (T)
9609 and then Has_Discriminants (Component_Type (T))
9610 and then not Is_Constrained (Component_Type (T))
9611 and then not In_Instance_Body
9612 and then Ada_Version < Ada_2005
9613 then
9614 Error_Msg_N
9615 ("aliased component type must be constrained (RM 3.6(11))",
9616 T);
9617 end if;
9618 end if;
9619 end if;
9620 end Check_Aliased_Component_Types;
9621
9622 ----------------------
9623 -- Check_Completion --
9624 ----------------------
9625
9626 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9627 E : Entity_Id;
9628
9629 procedure Post_Error;
9630 -- Post error message for lack of completion for entity E
9631
9632 ----------------
9633 -- Post_Error --
9634 ----------------
9635
9636 procedure Post_Error is
9637
9638 procedure Missing_Body;
9639 -- Output missing body message
9640
9641 ------------------
9642 -- Missing_Body --
9643 ------------------
9644
9645 procedure Missing_Body is
9646 begin
9647 -- Spec is in same unit, so we can post on spec
9648
9649 if In_Same_Source_Unit (Body_Id, E) then
9650 Error_Msg_N ("missing body for &", E);
9651
9652 -- Spec is in a separate unit, so we have to post on the body
9653
9654 else
9655 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9656 end if;
9657 end Missing_Body;
9658
9659 -- Start of processing for Post_Error
9660
9661 begin
9662 if not Comes_From_Source (E) then
9663
9664 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9665 -- It may be an anonymous protected type created for a
9666 -- single variable. Post error on variable, if present.
9667
9668 declare
9669 Var : Entity_Id;
9670
9671 begin
9672 Var := First_Entity (Current_Scope);
9673 while Present (Var) loop
9674 exit when Etype (Var) = E
9675 and then Comes_From_Source (Var);
9676
9677 Next_Entity (Var);
9678 end loop;
9679
9680 if Present (Var) then
9681 E := Var;
9682 end if;
9683 end;
9684 end if;
9685 end if;
9686
9687 -- If a generated entity has no completion, then either previous
9688 -- semantic errors have disabled the expansion phase, or else we had
9689 -- missing subunits, or else we are compiling without expansion,
9690 -- or else something is very wrong.
9691
9692 if not Comes_From_Source (E) then
9693 pragma Assert
9694 (Serious_Errors_Detected > 0
9695 or else Configurable_Run_Time_Violations > 0
9696 or else Subunits_Missing
9697 or else not Expander_Active);
9698 return;
9699
9700 -- Here for source entity
9701
9702 else
9703 -- Here if no body to post the error message, so we post the error
9704 -- on the declaration that has no completion. This is not really
9705 -- the right place to post it, think about this later ???
9706
9707 if No (Body_Id) then
9708 if Is_Type (E) then
9709 Error_Msg_NE
9710 ("missing full declaration for }", Parent (E), E);
9711 else
9712 Error_Msg_NE ("missing body for &", Parent (E), E);
9713 end if;
9714
9715 -- Package body has no completion for a declaration that appears
9716 -- in the corresponding spec. Post error on the body, with a
9717 -- reference to the non-completed declaration.
9718
9719 else
9720 Error_Msg_Sloc := Sloc (E);
9721
9722 if Is_Type (E) then
9723 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9724
9725 elsif Is_Overloadable (E)
9726 and then Current_Entity_In_Scope (E) /= E
9727 then
9728 -- It may be that the completion is mistyped and appears as
9729 -- a distinct overloading of the entity.
9730
9731 declare
9732 Candidate : constant Entity_Id :=
9733 Current_Entity_In_Scope (E);
9734 Decl : constant Node_Id :=
9735 Unit_Declaration_Node (Candidate);
9736
9737 begin
9738 if Is_Overloadable (Candidate)
9739 and then Ekind (Candidate) = Ekind (E)
9740 and then Nkind (Decl) = N_Subprogram_Body
9741 and then Acts_As_Spec (Decl)
9742 then
9743 Check_Type_Conformant (Candidate, E);
9744
9745 else
9746 Missing_Body;
9747 end if;
9748 end;
9749
9750 else
9751 Missing_Body;
9752 end if;
9753 end if;
9754 end if;
9755 end Post_Error;
9756
9757 -- Start of processing for Check_Completion
9758
9759 begin
9760 E := First_Entity (Current_Scope);
9761 while Present (E) loop
9762 if Is_Intrinsic_Subprogram (E) then
9763 null;
9764
9765 -- The following situation requires special handling: a child unit
9766 -- that appears in the context clause of the body of its parent:
9767
9768 -- procedure Parent.Child (...);
9769
9770 -- with Parent.Child;
9771 -- package body Parent is
9772
9773 -- Here Parent.Child appears as a local entity, but should not be
9774 -- flagged as requiring completion, because it is a compilation
9775 -- unit.
9776
9777 -- Ignore missing completion for a subprogram that does not come from
9778 -- source (including the _Call primitive operation of RAS types,
9779 -- which has to have the flag Comes_From_Source for other purposes):
9780 -- we assume that the expander will provide the missing completion.
9781 -- In case of previous errors, other expansion actions that provide
9782 -- bodies for null procedures with not be invoked, so inhibit message
9783 -- in those cases.
9784
9785 -- Note that E_Operator is not in the list that follows, because
9786 -- this kind is reserved for predefined operators, that are
9787 -- intrinsic and do not need completion.
9788
9789 elsif Ekind (E) = E_Function
9790 or else Ekind (E) = E_Procedure
9791 or else Ekind (E) = E_Generic_Function
9792 or else Ekind (E) = E_Generic_Procedure
9793 then
9794 if Has_Completion (E) then
9795 null;
9796
9797 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
9798 null;
9799
9800 elsif Is_Subprogram (E)
9801 and then (not Comes_From_Source (E)
9802 or else Chars (E) = Name_uCall)
9803 then
9804 null;
9805
9806 elsif
9807 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
9808 then
9809 null;
9810
9811 elsif Nkind (Parent (E)) = N_Procedure_Specification
9812 and then Null_Present (Parent (E))
9813 and then Serious_Errors_Detected > 0
9814 then
9815 null;
9816
9817 else
9818 Post_Error;
9819 end if;
9820
9821 elsif Is_Entry (E) then
9822 if not Has_Completion (E) and then
9823 (Ekind (Scope (E)) = E_Protected_Object
9824 or else Ekind (Scope (E)) = E_Protected_Type)
9825 then
9826 Post_Error;
9827 end if;
9828
9829 elsif Is_Package_Or_Generic_Package (E) then
9830 if Unit_Requires_Body (E) then
9831 if not Has_Completion (E)
9832 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
9833 N_Compilation_Unit
9834 then
9835 Post_Error;
9836 end if;
9837
9838 elsif not Is_Child_Unit (E) then
9839 May_Need_Implicit_Body (E);
9840 end if;
9841
9842 -- A formal incomplete type (Ada 2012) does not require a completion;
9843 -- other incomplete type declarations do.
9844
9845 elsif Ekind (E) = E_Incomplete_Type
9846 and then No (Underlying_Type (E))
9847 and then not Is_Generic_Type (E)
9848 then
9849 Post_Error;
9850
9851 elsif (Ekind (E) = E_Task_Type or else
9852 Ekind (E) = E_Protected_Type)
9853 and then not Has_Completion (E)
9854 then
9855 Post_Error;
9856
9857 -- A single task declared in the current scope is a constant, verify
9858 -- that the body of its anonymous type is in the same scope. If the
9859 -- task is defined elsewhere, this may be a renaming declaration for
9860 -- which no completion is needed.
9861
9862 elsif Ekind (E) = E_Constant
9863 and then Ekind (Etype (E)) = E_Task_Type
9864 and then not Has_Completion (Etype (E))
9865 and then Scope (Etype (E)) = Current_Scope
9866 then
9867 Post_Error;
9868
9869 elsif Ekind (E) = E_Protected_Object
9870 and then not Has_Completion (Etype (E))
9871 then
9872 Post_Error;
9873
9874 elsif Ekind (E) = E_Record_Type then
9875 if Is_Tagged_Type (E) then
9876 Check_Abstract_Overriding (E);
9877 Check_Conventions (E);
9878 end if;
9879
9880 Check_Aliased_Component_Types (E);
9881
9882 elsif Ekind (E) = E_Array_Type then
9883 Check_Aliased_Component_Types (E);
9884
9885 end if;
9886
9887 Next_Entity (E);
9888 end loop;
9889 end Check_Completion;
9890
9891 ------------------------------------
9892 -- Check_CPP_Type_Has_No_Defaults --
9893 ------------------------------------
9894
9895 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
9896 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
9897 Clist : Node_Id;
9898 Comp : Node_Id;
9899
9900 begin
9901 -- Obtain the component list
9902
9903 if Nkind (Tdef) = N_Record_Definition then
9904 Clist := Component_List (Tdef);
9905 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
9906 Clist := Component_List (Record_Extension_Part (Tdef));
9907 end if;
9908
9909 -- Check all components to ensure no default expressions
9910
9911 if Present (Clist) then
9912 Comp := First (Component_Items (Clist));
9913 while Present (Comp) loop
9914 if Present (Expression (Comp)) then
9915 Error_Msg_N
9916 ("component of imported 'C'P'P type cannot have "
9917 & "default expression", Expression (Comp));
9918 end if;
9919
9920 Next (Comp);
9921 end loop;
9922 end if;
9923 end Check_CPP_Type_Has_No_Defaults;
9924
9925 ----------------------------
9926 -- Check_Delta_Expression --
9927 ----------------------------
9928
9929 procedure Check_Delta_Expression (E : Node_Id) is
9930 begin
9931 if not (Is_Real_Type (Etype (E))) then
9932 Wrong_Type (E, Any_Real);
9933
9934 elsif not Is_OK_Static_Expression (E) then
9935 Flag_Non_Static_Expr
9936 ("non-static expression used for delta value!", E);
9937
9938 elsif not UR_Is_Positive (Expr_Value_R (E)) then
9939 Error_Msg_N ("delta expression must be positive", E);
9940
9941 else
9942 return;
9943 end if;
9944
9945 -- If any of above errors occurred, then replace the incorrect
9946 -- expression by the real 0.1, which should prevent further errors.
9947
9948 Rewrite (E,
9949 Make_Real_Literal (Sloc (E), Ureal_Tenth));
9950 Analyze_And_Resolve (E, Standard_Float);
9951 end Check_Delta_Expression;
9952
9953 -----------------------------
9954 -- Check_Digits_Expression --
9955 -----------------------------
9956
9957 procedure Check_Digits_Expression (E : Node_Id) is
9958 begin
9959 if not (Is_Integer_Type (Etype (E))) then
9960 Wrong_Type (E, Any_Integer);
9961
9962 elsif not Is_OK_Static_Expression (E) then
9963 Flag_Non_Static_Expr
9964 ("non-static expression used for digits value!", E);
9965
9966 elsif Expr_Value (E) <= 0 then
9967 Error_Msg_N ("digits value must be greater than zero", E);
9968
9969 else
9970 return;
9971 end if;
9972
9973 -- If any of above errors occurred, then replace the incorrect
9974 -- expression by the integer 1, which should prevent further errors.
9975
9976 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
9977 Analyze_And_Resolve (E, Standard_Integer);
9978
9979 end Check_Digits_Expression;
9980
9981 --------------------------
9982 -- Check_Initialization --
9983 --------------------------
9984
9985 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
9986 begin
9987 if Is_Limited_Type (T)
9988 and then not In_Instance
9989 and then not In_Inlined_Body
9990 then
9991 if not OK_For_Limited_Init (T, Exp) then
9992
9993 -- In GNAT mode, this is just a warning, to allow it to be evilly
9994 -- turned off. Otherwise it is a real error.
9995
9996 if GNAT_Mode then
9997 Error_Msg_N
9998 ("?cannot initialize entities of limited type!", Exp);
9999
10000 elsif Ada_Version < Ada_2005 then
10001
10002 -- The side effect removal machinery may generate illegal Ada
10003 -- code to avoid the usage of access types and 'reference in
10004 -- SPARK mode. Since this is legal code with respect to theorem
10005 -- proving, do not emit the error.
10006
10007 if SPARK_Mode
10008 and then Nkind (Exp) = N_Function_Call
10009 and then Nkind (Parent (Exp)) = N_Object_Declaration
10010 and then not Comes_From_Source
10011 (Defining_Identifier (Parent (Exp)))
10012 then
10013 null;
10014
10015 else
10016 Error_Msg_N
10017 ("cannot initialize entities of limited type", Exp);
10018 Explain_Limited_Type (T, Exp);
10019 end if;
10020
10021 else
10022 -- Specialize error message according to kind of illegal
10023 -- initial expression.
10024
10025 if Nkind (Exp) = N_Type_Conversion
10026 and then Nkind (Expression (Exp)) = N_Function_Call
10027 then
10028 Error_Msg_N
10029 ("illegal context for call"
10030 & " to function with limited result", Exp);
10031
10032 else
10033 Error_Msg_N
10034 ("initialization of limited object requires aggregate "
10035 & "or function call", Exp);
10036 end if;
10037 end if;
10038 end if;
10039 end if;
10040 end Check_Initialization;
10041
10042 ----------------------
10043 -- Check_Interfaces --
10044 ----------------------
10045
10046 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10047 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10048
10049 Iface : Node_Id;
10050 Iface_Def : Node_Id;
10051 Iface_Typ : Entity_Id;
10052 Parent_Node : Node_Id;
10053
10054 Is_Task : Boolean := False;
10055 -- Set True if parent type or any progenitor is a task interface
10056
10057 Is_Protected : Boolean := False;
10058 -- Set True if parent type or any progenitor is a protected interface
10059
10060 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10061 -- Check that a progenitor is compatible with declaration.
10062 -- Error is posted on Error_Node.
10063
10064 ------------------
10065 -- Check_Ifaces --
10066 ------------------
10067
10068 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10069 Iface_Id : constant Entity_Id :=
10070 Defining_Identifier (Parent (Iface_Def));
10071 Type_Def : Node_Id;
10072
10073 begin
10074 if Nkind (N) = N_Private_Extension_Declaration then
10075 Type_Def := N;
10076 else
10077 Type_Def := Type_Definition (N);
10078 end if;
10079
10080 if Is_Task_Interface (Iface_Id) then
10081 Is_Task := True;
10082
10083 elsif Is_Protected_Interface (Iface_Id) then
10084 Is_Protected := True;
10085 end if;
10086
10087 if Is_Synchronized_Interface (Iface_Id) then
10088
10089 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10090 -- extension derived from a synchronized interface must explicitly
10091 -- be declared synchronized, because the full view will be a
10092 -- synchronized type.
10093
10094 if Nkind (N) = N_Private_Extension_Declaration then
10095 if not Synchronized_Present (N) then
10096 Error_Msg_NE
10097 ("private extension of& must be explicitly synchronized",
10098 N, Iface_Id);
10099 end if;
10100
10101 -- However, by 3.9.4(16/2), a full type that is a record extension
10102 -- is never allowed to derive from a synchronized interface (note
10103 -- that interfaces must be excluded from this check, because those
10104 -- are represented by derived type definitions in some cases).
10105
10106 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10107 and then not Interface_Present (Type_Definition (N))
10108 then
10109 Error_Msg_N ("record extension cannot derive from synchronized"
10110 & " interface", Error_Node);
10111 end if;
10112 end if;
10113
10114 -- Check that the characteristics of the progenitor are compatible
10115 -- with the explicit qualifier in the declaration.
10116 -- The check only applies to qualifiers that come from source.
10117 -- Limited_Present also appears in the declaration of corresponding
10118 -- records, and the check does not apply to them.
10119
10120 if Limited_Present (Type_Def)
10121 and then not
10122 Is_Concurrent_Record_Type (Defining_Identifier (N))
10123 then
10124 if Is_Limited_Interface (Parent_Type)
10125 and then not Is_Limited_Interface (Iface_Id)
10126 then
10127 Error_Msg_NE
10128 ("progenitor& must be limited interface",
10129 Error_Node, Iface_Id);
10130
10131 elsif
10132 (Task_Present (Iface_Def)
10133 or else Protected_Present (Iface_Def)
10134 or else Synchronized_Present (Iface_Def))
10135 and then Nkind (N) /= N_Private_Extension_Declaration
10136 and then not Error_Posted (N)
10137 then
10138 Error_Msg_NE
10139 ("progenitor& must be limited interface",
10140 Error_Node, Iface_Id);
10141 end if;
10142
10143 -- Protected interfaces can only inherit from limited, synchronized
10144 -- or protected interfaces.
10145
10146 elsif Nkind (N) = N_Full_Type_Declaration
10147 and then Protected_Present (Type_Def)
10148 then
10149 if Limited_Present (Iface_Def)
10150 or else Synchronized_Present (Iface_Def)
10151 or else Protected_Present (Iface_Def)
10152 then
10153 null;
10154
10155 elsif Task_Present (Iface_Def) then
10156 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10157 & " from task interface", Error_Node);
10158
10159 else
10160 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10161 & " from non-limited interface", Error_Node);
10162 end if;
10163
10164 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10165 -- limited and synchronized.
10166
10167 elsif Synchronized_Present (Type_Def) then
10168 if Limited_Present (Iface_Def)
10169 or else Synchronized_Present (Iface_Def)
10170 then
10171 null;
10172
10173 elsif Protected_Present (Iface_Def)
10174 and then Nkind (N) /= N_Private_Extension_Declaration
10175 then
10176 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10177 & " from protected interface", Error_Node);
10178
10179 elsif Task_Present (Iface_Def)
10180 and then Nkind (N) /= N_Private_Extension_Declaration
10181 then
10182 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10183 & " from task interface", Error_Node);
10184
10185 elsif not Is_Limited_Interface (Iface_Id) then
10186 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10187 & " from non-limited interface", Error_Node);
10188 end if;
10189
10190 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10191 -- synchronized or task interfaces.
10192
10193 elsif Nkind (N) = N_Full_Type_Declaration
10194 and then Task_Present (Type_Def)
10195 then
10196 if Limited_Present (Iface_Def)
10197 or else Synchronized_Present (Iface_Def)
10198 or else Task_Present (Iface_Def)
10199 then
10200 null;
10201
10202 elsif Protected_Present (Iface_Def) then
10203 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10204 & " protected interface", Error_Node);
10205
10206 else
10207 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10208 & " non-limited interface", Error_Node);
10209 end if;
10210 end if;
10211 end Check_Ifaces;
10212
10213 -- Start of processing for Check_Interfaces
10214
10215 begin
10216 if Is_Interface (Parent_Type) then
10217 if Is_Task_Interface (Parent_Type) then
10218 Is_Task := True;
10219
10220 elsif Is_Protected_Interface (Parent_Type) then
10221 Is_Protected := True;
10222 end if;
10223 end if;
10224
10225 if Nkind (N) = N_Private_Extension_Declaration then
10226
10227 -- Check that progenitors are compatible with declaration
10228
10229 Iface := First (Interface_List (Def));
10230 while Present (Iface) loop
10231 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10232
10233 Parent_Node := Parent (Base_Type (Iface_Typ));
10234 Iface_Def := Type_Definition (Parent_Node);
10235
10236 if not Is_Interface (Iface_Typ) then
10237 Diagnose_Interface (Iface, Iface_Typ);
10238
10239 else
10240 Check_Ifaces (Iface_Def, Iface);
10241 end if;
10242
10243 Next (Iface);
10244 end loop;
10245
10246 if Is_Task and Is_Protected then
10247 Error_Msg_N
10248 ("type cannot derive from task and protected interface", N);
10249 end if;
10250
10251 return;
10252 end if;
10253
10254 -- Full type declaration of derived type.
10255 -- Check compatibility with parent if it is interface type
10256
10257 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10258 and then Is_Interface (Parent_Type)
10259 then
10260 Parent_Node := Parent (Parent_Type);
10261
10262 -- More detailed checks for interface varieties
10263
10264 Check_Ifaces
10265 (Iface_Def => Type_Definition (Parent_Node),
10266 Error_Node => Subtype_Indication (Type_Definition (N)));
10267 end if;
10268
10269 Iface := First (Interface_List (Def));
10270 while Present (Iface) loop
10271 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10272
10273 Parent_Node := Parent (Base_Type (Iface_Typ));
10274 Iface_Def := Type_Definition (Parent_Node);
10275
10276 if not Is_Interface (Iface_Typ) then
10277 Diagnose_Interface (Iface, Iface_Typ);
10278
10279 else
10280 -- "The declaration of a specific descendant of an interface
10281 -- type freezes the interface type" RM 13.14
10282
10283 Freeze_Before (N, Iface_Typ);
10284 Check_Ifaces (Iface_Def, Error_Node => Iface);
10285 end if;
10286
10287 Next (Iface);
10288 end loop;
10289
10290 if Is_Task and Is_Protected then
10291 Error_Msg_N
10292 ("type cannot derive from task and protected interface", N);
10293 end if;
10294 end Check_Interfaces;
10295
10296 ------------------------------------
10297 -- Check_Or_Process_Discriminants --
10298 ------------------------------------
10299
10300 -- If an incomplete or private type declaration was already given for the
10301 -- type, the discriminants may have already been processed if they were
10302 -- present on the incomplete declaration. In this case a full conformance
10303 -- check has been performed in Find_Type_Name, and we then recheck here
10304 -- some properties that can't be checked on the partial view alone.
10305 -- Otherwise we call Process_Discriminants.
10306
10307 procedure Check_Or_Process_Discriminants
10308 (N : Node_Id;
10309 T : Entity_Id;
10310 Prev : Entity_Id := Empty)
10311 is
10312 begin
10313 if Has_Discriminants (T) then
10314
10315 -- Discriminants are already set on T if they were already present
10316 -- on the partial view. Make them visible to component declarations.
10317
10318 declare
10319 D : Entity_Id;
10320 -- Discriminant on T (full view) referencing expr on partial view
10321
10322 Prev_D : Entity_Id;
10323 -- Entity of corresponding discriminant on partial view
10324
10325 New_D : Node_Id;
10326 -- Discriminant specification for full view, expression is the
10327 -- syntactic copy on full view (which has been checked for
10328 -- conformance with partial view), only used here to post error
10329 -- message.
10330
10331 begin
10332 D := First_Discriminant (T);
10333 New_D := First (Discriminant_Specifications (N));
10334 while Present (D) loop
10335 Prev_D := Current_Entity (D);
10336 Set_Current_Entity (D);
10337 Set_Is_Immediately_Visible (D);
10338 Set_Homonym (D, Prev_D);
10339
10340 -- Handle the case where there is an untagged partial view and
10341 -- the full view is tagged: must disallow discriminants with
10342 -- defaults, unless compiling for Ada 2012, which allows a
10343 -- limited tagged type to have defaulted discriminants (see
10344 -- AI05-0214). However, suppress the error here if it was
10345 -- already reported on the default expression of the partial
10346 -- view.
10347
10348 if Is_Tagged_Type (T)
10349 and then Present (Expression (Parent (D)))
10350 and then (not Is_Limited_Type (Current_Scope)
10351 or else Ada_Version < Ada_2012)
10352 and then not Error_Posted (Expression (Parent (D)))
10353 then
10354 if Ada_Version >= Ada_2012 then
10355 Error_Msg_N
10356 ("discriminants of nonlimited tagged type cannot have"
10357 & " defaults",
10358 Expression (New_D));
10359 else
10360 Error_Msg_N
10361 ("discriminants of tagged type cannot have defaults",
10362 Expression (New_D));
10363 end if;
10364 end if;
10365
10366 -- Ada 2005 (AI-230): Access discriminant allowed in
10367 -- non-limited record types.
10368
10369 if Ada_Version < Ada_2005 then
10370
10371 -- This restriction gets applied to the full type here. It
10372 -- has already been applied earlier to the partial view.
10373
10374 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10375 end if;
10376
10377 Next_Discriminant (D);
10378 Next (New_D);
10379 end loop;
10380 end;
10381
10382 elsif Present (Discriminant_Specifications (N)) then
10383 Process_Discriminants (N, Prev);
10384 end if;
10385 end Check_Or_Process_Discriminants;
10386
10387 ----------------------
10388 -- Check_Real_Bound --
10389 ----------------------
10390
10391 procedure Check_Real_Bound (Bound : Node_Id) is
10392 begin
10393 if not Is_Real_Type (Etype (Bound)) then
10394 Error_Msg_N
10395 ("bound in real type definition must be of real type", Bound);
10396
10397 elsif not Is_OK_Static_Expression (Bound) then
10398 Flag_Non_Static_Expr
10399 ("non-static expression used for real type bound!", Bound);
10400
10401 else
10402 return;
10403 end if;
10404
10405 Rewrite
10406 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10407 Analyze (Bound);
10408 Resolve (Bound, Standard_Float);
10409 end Check_Real_Bound;
10410
10411 ------------------------------
10412 -- Complete_Private_Subtype --
10413 ------------------------------
10414
10415 procedure Complete_Private_Subtype
10416 (Priv : Entity_Id;
10417 Full : Entity_Id;
10418 Full_Base : Entity_Id;
10419 Related_Nod : Node_Id)
10420 is
10421 Save_Next_Entity : Entity_Id;
10422 Save_Homonym : Entity_Id;
10423
10424 begin
10425 -- Set semantic attributes for (implicit) private subtype completion.
10426 -- If the full type has no discriminants, then it is a copy of the full
10427 -- view of the base. Otherwise, it is a subtype of the base with a
10428 -- possible discriminant constraint. Save and restore the original
10429 -- Next_Entity field of full to ensure that the calls to Copy_Node
10430 -- do not corrupt the entity chain.
10431
10432 -- Note that the type of the full view is the same entity as the type of
10433 -- the partial view. In this fashion, the subtype has access to the
10434 -- correct view of the parent.
10435
10436 Save_Next_Entity := Next_Entity (Full);
10437 Save_Homonym := Homonym (Priv);
10438
10439 case Ekind (Full_Base) is
10440 when E_Record_Type |
10441 E_Record_Subtype |
10442 Class_Wide_Kind |
10443 Private_Kind |
10444 Task_Kind |
10445 Protected_Kind =>
10446 Copy_Node (Priv, Full);
10447
10448 Set_Has_Discriminants
10449 (Full, Has_Discriminants (Full_Base));
10450 Set_Has_Unknown_Discriminants
10451 (Full, Has_Unknown_Discriminants (Full_Base));
10452 Set_First_Entity (Full, First_Entity (Full_Base));
10453 Set_Last_Entity (Full, Last_Entity (Full_Base));
10454
10455 -- If the underlying base type is constrained, we know that the
10456 -- full view of the subtype is constrained as well (the converse
10457 -- is not necessarily true).
10458
10459 if Is_Constrained (Full_Base) then
10460 Set_Is_Constrained (Full);
10461 end if;
10462
10463 when others =>
10464 Copy_Node (Full_Base, Full);
10465
10466 Set_Chars (Full, Chars (Priv));
10467 Conditional_Delay (Full, Priv);
10468 Set_Sloc (Full, Sloc (Priv));
10469 end case;
10470
10471 Set_Next_Entity (Full, Save_Next_Entity);
10472 Set_Homonym (Full, Save_Homonym);
10473 Set_Associated_Node_For_Itype (Full, Related_Nod);
10474
10475 -- Set common attributes for all subtypes: kind, convention, etc.
10476
10477 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10478 Set_Convention (Full, Convention (Full_Base));
10479
10480 -- The Etype of the full view is inconsistent. Gigi needs to see the
10481 -- structural full view, which is what the current scheme gives:
10482 -- the Etype of the full view is the etype of the full base. However,
10483 -- if the full base is a derived type, the full view then looks like
10484 -- a subtype of the parent, not a subtype of the full base. If instead
10485 -- we write:
10486
10487 -- Set_Etype (Full, Full_Base);
10488
10489 -- then we get inconsistencies in the front-end (confusion between
10490 -- views). Several outstanding bugs are related to this ???
10491
10492 Set_Is_First_Subtype (Full, False);
10493 Set_Scope (Full, Scope (Priv));
10494 Set_Size_Info (Full, Full_Base);
10495 Set_RM_Size (Full, RM_Size (Full_Base));
10496 Set_Is_Itype (Full);
10497
10498 -- A subtype of a private-type-without-discriminants, whose full-view
10499 -- has discriminants with default expressions, is not constrained!
10500
10501 if not Has_Discriminants (Priv) then
10502 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10503
10504 if Has_Discriminants (Full_Base) then
10505 Set_Discriminant_Constraint
10506 (Full, Discriminant_Constraint (Full_Base));
10507
10508 -- The partial view may have been indefinite, the full view
10509 -- might not be.
10510
10511 Set_Has_Unknown_Discriminants
10512 (Full, Has_Unknown_Discriminants (Full_Base));
10513 end if;
10514 end if;
10515
10516 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10517 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10518
10519 -- Freeze the private subtype entity if its parent is delayed, and not
10520 -- already frozen. We skip this processing if the type is an anonymous
10521 -- subtype of a record component, or is the corresponding record of a
10522 -- protected type, since ???
10523
10524 if not Is_Type (Scope (Full)) then
10525 Set_Has_Delayed_Freeze (Full,
10526 Has_Delayed_Freeze (Full_Base)
10527 and then (not Is_Frozen (Full_Base)));
10528 end if;
10529
10530 Set_Freeze_Node (Full, Empty);
10531 Set_Is_Frozen (Full, False);
10532 Set_Full_View (Priv, Full);
10533
10534 if Has_Discriminants (Full) then
10535 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10536 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10537
10538 if Has_Unknown_Discriminants (Full) then
10539 Set_Discriminant_Constraint (Full, No_Elist);
10540 end if;
10541 end if;
10542
10543 if Ekind (Full_Base) = E_Record_Type
10544 and then Has_Discriminants (Full_Base)
10545 and then Has_Discriminants (Priv) -- might not, if errors
10546 and then not Has_Unknown_Discriminants (Priv)
10547 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10548 then
10549 Create_Constrained_Components
10550 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10551
10552 -- If the full base is itself derived from private, build a congruent
10553 -- subtype of its underlying type, for use by the back end. For a
10554 -- constrained record component, the declaration cannot be placed on
10555 -- the component list, but it must nevertheless be built an analyzed, to
10556 -- supply enough information for Gigi to compute the size of component.
10557
10558 elsif Ekind (Full_Base) in Private_Kind
10559 and then Is_Derived_Type (Full_Base)
10560 and then Has_Discriminants (Full_Base)
10561 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10562 then
10563 if not Is_Itype (Priv)
10564 and then
10565 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10566 then
10567 Build_Underlying_Full_View
10568 (Parent (Priv), Full, Etype (Full_Base));
10569
10570 elsif Nkind (Related_Nod) = N_Component_Declaration then
10571 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10572 end if;
10573
10574 elsif Is_Record_Type (Full_Base) then
10575
10576 -- Show Full is simply a renaming of Full_Base
10577
10578 Set_Cloned_Subtype (Full, Full_Base);
10579 end if;
10580
10581 -- It is unsafe to share the bounds of a scalar type, because the Itype
10582 -- is elaborated on demand, and if a bound is non-static then different
10583 -- orders of elaboration in different units will lead to different
10584 -- external symbols.
10585
10586 if Is_Scalar_Type (Full_Base) then
10587 Set_Scalar_Range (Full,
10588 Make_Range (Sloc (Related_Nod),
10589 Low_Bound =>
10590 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10591 High_Bound =>
10592 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10593
10594 -- This completion inherits the bounds of the full parent, but if
10595 -- the parent is an unconstrained floating point type, so is the
10596 -- completion.
10597
10598 if Is_Floating_Point_Type (Full_Base) then
10599 Set_Includes_Infinities
10600 (Scalar_Range (Full), Has_Infinities (Full_Base));
10601 end if;
10602 end if;
10603
10604 -- ??? It seems that a lot of fields are missing that should be copied
10605 -- from Full_Base to Full. Here are some that are introduced in a
10606 -- non-disruptive way but a cleanup is necessary.
10607
10608 if Is_Tagged_Type (Full_Base) then
10609 Set_Is_Tagged_Type (Full);
10610 Set_Direct_Primitive_Operations (Full,
10611 Direct_Primitive_Operations (Full_Base));
10612
10613 -- Inherit class_wide type of full_base in case the partial view was
10614 -- not tagged. Otherwise it has already been created when the private
10615 -- subtype was analyzed.
10616
10617 if No (Class_Wide_Type (Full)) then
10618 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10619 end if;
10620
10621 -- If this is a subtype of a protected or task type, constrain its
10622 -- corresponding record, unless this is a subtype without constraints,
10623 -- i.e. a simple renaming as with an actual subtype in an instance.
10624
10625 elsif Is_Concurrent_Type (Full_Base) then
10626 if Has_Discriminants (Full)
10627 and then Present (Corresponding_Record_Type (Full_Base))
10628 and then
10629 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10630 then
10631 Set_Corresponding_Record_Type (Full,
10632 Constrain_Corresponding_Record
10633 (Full, Corresponding_Record_Type (Full_Base),
10634 Related_Nod, Full_Base));
10635
10636 else
10637 Set_Corresponding_Record_Type (Full,
10638 Corresponding_Record_Type (Full_Base));
10639 end if;
10640 end if;
10641
10642 -- Link rep item chain, and also setting of Has_Predicates from private
10643 -- subtype to full subtype, since we will need these on the full subtype
10644 -- to create the predicate function. Note that the full subtype may
10645 -- already have rep items, inherited from the full view of the base
10646 -- type, so we must be sure not to overwrite these entries.
10647
10648 declare
10649 Append : Boolean;
10650 Item : Node_Id;
10651 Next_Item : Node_Id;
10652
10653 begin
10654 Item := First_Rep_Item (Full);
10655
10656 -- If no existing rep items on full type, we can just link directly
10657 -- to the list of items on the private type.
10658
10659 if No (Item) then
10660 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10661
10662 -- Otherwise, search to the end of items currently linked to the full
10663 -- subtype and append the private items to the end. However, if Priv
10664 -- and Full already have the same list of rep items, then the append
10665 -- is not done, as that would create a circularity.
10666
10667 elsif Item /= First_Rep_Item (Priv) then
10668 Append := True;
10669
10670 loop
10671 Next_Item := Next_Rep_Item (Item);
10672 exit when No (Next_Item);
10673 Item := Next_Item;
10674
10675 -- If the private view has aspect specifications, the full view
10676 -- inherits them. Since these aspects may already have been
10677 -- attached to the full view during derivation, do not append
10678 -- them if already present.
10679
10680 if Item = First_Rep_Item (Priv) then
10681 Append := False;
10682 exit;
10683 end if;
10684 end loop;
10685
10686 -- And link the private type items at the end of the chain
10687
10688 if Append then
10689 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10690 end if;
10691 end if;
10692 end;
10693
10694 -- Make sure Has_Predicates is set on full type if it is set on the
10695 -- private type. Note that it may already be set on the full type and
10696 -- if so, we don't want to unset it.
10697
10698 if Has_Predicates (Priv) then
10699 Set_Has_Predicates (Full);
10700 end if;
10701 end Complete_Private_Subtype;
10702
10703 ----------------------------
10704 -- Constant_Redeclaration --
10705 ----------------------------
10706
10707 procedure Constant_Redeclaration
10708 (Id : Entity_Id;
10709 N : Node_Id;
10710 T : out Entity_Id)
10711 is
10712 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10713 Obj_Def : constant Node_Id := Object_Definition (N);
10714 New_T : Entity_Id;
10715
10716 procedure Check_Possible_Deferred_Completion
10717 (Prev_Id : Entity_Id;
10718 Prev_Obj_Def : Node_Id;
10719 Curr_Obj_Def : Node_Id);
10720 -- Determine whether the two object definitions describe the partial
10721 -- and the full view of a constrained deferred constant. Generate
10722 -- a subtype for the full view and verify that it statically matches
10723 -- the subtype of the partial view.
10724
10725 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10726 -- If deferred constant is an access type initialized with an allocator,
10727 -- check whether there is an illegal recursion in the definition,
10728 -- through a default value of some record subcomponent. This is normally
10729 -- detected when generating init procs, but requires this additional
10730 -- mechanism when expansion is disabled.
10731
10732 ----------------------------------------
10733 -- Check_Possible_Deferred_Completion --
10734 ----------------------------------------
10735
10736 procedure Check_Possible_Deferred_Completion
10737 (Prev_Id : Entity_Id;
10738 Prev_Obj_Def : Node_Id;
10739 Curr_Obj_Def : Node_Id)
10740 is
10741 begin
10742 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10743 and then Present (Constraint (Prev_Obj_Def))
10744 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10745 and then Present (Constraint (Curr_Obj_Def))
10746 then
10747 declare
10748 Loc : constant Source_Ptr := Sloc (N);
10749 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10750 Decl : constant Node_Id :=
10751 Make_Subtype_Declaration (Loc,
10752 Defining_Identifier => Def_Id,
10753 Subtype_Indication =>
10754 Relocate_Node (Curr_Obj_Def));
10755
10756 begin
10757 Insert_Before_And_Analyze (N, Decl);
10758 Set_Etype (Id, Def_Id);
10759
10760 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10761 Error_Msg_Sloc := Sloc (Prev_Id);
10762 Error_Msg_N ("subtype does not statically match deferred " &
10763 "declaration#", N);
10764 end if;
10765 end;
10766 end if;
10767 end Check_Possible_Deferred_Completion;
10768
10769 ---------------------------------
10770 -- Check_Recursive_Declaration --
10771 ---------------------------------
10772
10773 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
10774 Comp : Entity_Id;
10775
10776 begin
10777 if Is_Record_Type (Typ) then
10778 Comp := First_Component (Typ);
10779 while Present (Comp) loop
10780 if Comes_From_Source (Comp) then
10781 if Present (Expression (Parent (Comp)))
10782 and then Is_Entity_Name (Expression (Parent (Comp)))
10783 and then Entity (Expression (Parent (Comp))) = Prev
10784 then
10785 Error_Msg_Sloc := Sloc (Parent (Comp));
10786 Error_Msg_NE
10787 ("illegal circularity with declaration for&#",
10788 N, Comp);
10789 return;
10790
10791 elsif Is_Record_Type (Etype (Comp)) then
10792 Check_Recursive_Declaration (Etype (Comp));
10793 end if;
10794 end if;
10795
10796 Next_Component (Comp);
10797 end loop;
10798 end if;
10799 end Check_Recursive_Declaration;
10800
10801 -- Start of processing for Constant_Redeclaration
10802
10803 begin
10804 if Nkind (Parent (Prev)) = N_Object_Declaration then
10805 if Nkind (Object_Definition
10806 (Parent (Prev))) = N_Subtype_Indication
10807 then
10808 -- Find type of new declaration. The constraints of the two
10809 -- views must match statically, but there is no point in
10810 -- creating an itype for the full view.
10811
10812 if Nkind (Obj_Def) = N_Subtype_Indication then
10813 Find_Type (Subtype_Mark (Obj_Def));
10814 New_T := Entity (Subtype_Mark (Obj_Def));
10815
10816 else
10817 Find_Type (Obj_Def);
10818 New_T := Entity (Obj_Def);
10819 end if;
10820
10821 T := Etype (Prev);
10822
10823 else
10824 -- The full view may impose a constraint, even if the partial
10825 -- view does not, so construct the subtype.
10826
10827 New_T := Find_Type_Of_Object (Obj_Def, N);
10828 T := New_T;
10829 end if;
10830
10831 else
10832 -- Current declaration is illegal, diagnosed below in Enter_Name
10833
10834 T := Empty;
10835 New_T := Any_Type;
10836 end if;
10837
10838 -- If previous full declaration or a renaming declaration exists, or if
10839 -- a homograph is present, let Enter_Name handle it, either with an
10840 -- error or with the removal of an overridden implicit subprogram.
10841
10842 if Ekind (Prev) /= E_Constant
10843 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
10844 or else Present (Expression (Parent (Prev)))
10845 or else Present (Full_View (Prev))
10846 then
10847 Enter_Name (Id);
10848
10849 -- Verify that types of both declarations match, or else that both types
10850 -- are anonymous access types whose designated subtypes statically match
10851 -- (as allowed in Ada 2005 by AI-385).
10852
10853 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
10854 and then
10855 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
10856 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
10857 or else Is_Access_Constant (Etype (New_T)) /=
10858 Is_Access_Constant (Etype (Prev))
10859 or else Can_Never_Be_Null (Etype (New_T)) /=
10860 Can_Never_Be_Null (Etype (Prev))
10861 or else Null_Exclusion_Present (Parent (Prev)) /=
10862 Null_Exclusion_Present (Parent (Id))
10863 or else not Subtypes_Statically_Match
10864 (Designated_Type (Etype (Prev)),
10865 Designated_Type (Etype (New_T))))
10866 then
10867 Error_Msg_Sloc := Sloc (Prev);
10868 Error_Msg_N ("type does not match declaration#", N);
10869 Set_Full_View (Prev, Id);
10870 Set_Etype (Id, Any_Type);
10871
10872 elsif
10873 Null_Exclusion_Present (Parent (Prev))
10874 and then not Null_Exclusion_Present (N)
10875 then
10876 Error_Msg_Sloc := Sloc (Prev);
10877 Error_Msg_N ("null-exclusion does not match declaration#", N);
10878 Set_Full_View (Prev, Id);
10879 Set_Etype (Id, Any_Type);
10880
10881 -- If so, process the full constant declaration
10882
10883 else
10884 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10885 -- the deferred declaration is constrained, then the subtype defined
10886 -- by the subtype_indication in the full declaration shall match it
10887 -- statically.
10888
10889 Check_Possible_Deferred_Completion
10890 (Prev_Id => Prev,
10891 Prev_Obj_Def => Object_Definition (Parent (Prev)),
10892 Curr_Obj_Def => Obj_Def);
10893
10894 Set_Full_View (Prev, Id);
10895 Set_Is_Public (Id, Is_Public (Prev));
10896 Set_Is_Internal (Id);
10897 Append_Entity (Id, Current_Scope);
10898
10899 -- Check ALIASED present if present before (RM 7.4(7))
10900
10901 if Is_Aliased (Prev)
10902 and then not Aliased_Present (N)
10903 then
10904 Error_Msg_Sloc := Sloc (Prev);
10905 Error_Msg_N ("ALIASED required (see declaration#)", N);
10906 end if;
10907
10908 -- Check that placement is in private part and that the incomplete
10909 -- declaration appeared in the visible part.
10910
10911 if Ekind (Current_Scope) = E_Package
10912 and then not In_Private_Part (Current_Scope)
10913 then
10914 Error_Msg_Sloc := Sloc (Prev);
10915 Error_Msg_N
10916 ("full constant for declaration#"
10917 & " must be in private part", N);
10918
10919 elsif Ekind (Current_Scope) = E_Package
10920 and then
10921 List_Containing (Parent (Prev)) /=
10922 Visible_Declarations (Package_Specification (Current_Scope))
10923 then
10924 Error_Msg_N
10925 ("deferred constant must be declared in visible part",
10926 Parent (Prev));
10927 end if;
10928
10929 if Is_Access_Type (T)
10930 and then Nkind (Expression (N)) = N_Allocator
10931 then
10932 Check_Recursive_Declaration (Designated_Type (T));
10933 end if;
10934
10935 -- A deferred constant is a visible entity. If type has invariants,
10936 -- verify that the initial value satisfies them.
10937
10938 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
10939 Insert_After (N,
10940 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
10941 end if;
10942 end if;
10943 end Constant_Redeclaration;
10944
10945 ----------------------
10946 -- Constrain_Access --
10947 ----------------------
10948
10949 procedure Constrain_Access
10950 (Def_Id : in out Entity_Id;
10951 S : Node_Id;
10952 Related_Nod : Node_Id)
10953 is
10954 T : constant Entity_Id := Entity (Subtype_Mark (S));
10955 Desig_Type : constant Entity_Id := Designated_Type (T);
10956 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
10957 Constraint_OK : Boolean := True;
10958
10959 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
10960 -- Simple predicate to test for defaulted discriminants
10961 -- Shouldn't this be in sem_util???
10962
10963 ---------------------------------
10964 -- Has_Defaulted_Discriminants --
10965 ---------------------------------
10966
10967 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
10968 begin
10969 return Has_Discriminants (Typ)
10970 and then Present (First_Discriminant (Typ))
10971 and then Present
10972 (Discriminant_Default_Value (First_Discriminant (Typ)));
10973 end Has_Defaulted_Discriminants;
10974
10975 -- Start of processing for Constrain_Access
10976
10977 begin
10978 if Is_Array_Type (Desig_Type) then
10979 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
10980
10981 elsif (Is_Record_Type (Desig_Type)
10982 or else Is_Incomplete_Or_Private_Type (Desig_Type))
10983 and then not Is_Constrained (Desig_Type)
10984 then
10985 -- ??? The following code is a temporary kludge to ignore a
10986 -- discriminant constraint on access type if it is constraining
10987 -- the current record. Avoid creating the implicit subtype of the
10988 -- record we are currently compiling since right now, we cannot
10989 -- handle these. For now, just return the access type itself.
10990
10991 if Desig_Type = Current_Scope
10992 and then No (Def_Id)
10993 then
10994 Set_Ekind (Desig_Subtype, E_Record_Subtype);
10995 Def_Id := Entity (Subtype_Mark (S));
10996
10997 -- This call added to ensure that the constraint is analyzed
10998 -- (needed for a B test). Note that we still return early from
10999 -- this procedure to avoid recursive processing. ???
11000
11001 Constrain_Discriminated_Type
11002 (Desig_Subtype, S, Related_Nod, For_Access => True);
11003 return;
11004 end if;
11005
11006 -- Enforce rule that the constraint is illegal if there is an
11007 -- unconstrained view of the designated type. This means that the
11008 -- partial view (either a private type declaration or a derivation
11009 -- from a private type) has no discriminants. (Defect Report
11010 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11011
11012 -- Rule updated for Ada 2005: the private type is said to have
11013 -- a constrained partial view, given that objects of the type
11014 -- can be declared. Furthermore, the rule applies to all access
11015 -- types, unlike the rule concerning default discriminants (see
11016 -- RM 3.7.1(7/3))
11017
11018 if (Ekind (T) = E_General_Access_Type
11019 or else Ada_Version >= Ada_2005)
11020 and then Has_Private_Declaration (Desig_Type)
11021 and then In_Open_Scopes (Scope (Desig_Type))
11022 and then Has_Discriminants (Desig_Type)
11023 then
11024 declare
11025 Pack : constant Node_Id :=
11026 Unit_Declaration_Node (Scope (Desig_Type));
11027 Decls : List_Id;
11028 Decl : Node_Id;
11029
11030 begin
11031 if Nkind (Pack) = N_Package_Declaration then
11032 Decls := Visible_Declarations (Specification (Pack));
11033 Decl := First (Decls);
11034 while Present (Decl) loop
11035 if (Nkind (Decl) = N_Private_Type_Declaration
11036 and then
11037 Chars (Defining_Identifier (Decl)) =
11038 Chars (Desig_Type))
11039
11040 or else
11041 (Nkind (Decl) = N_Full_Type_Declaration
11042 and then
11043 Chars (Defining_Identifier (Decl)) =
11044 Chars (Desig_Type)
11045 and then Is_Derived_Type (Desig_Type)
11046 and then
11047 Has_Private_Declaration (Etype (Desig_Type)))
11048 then
11049 if No (Discriminant_Specifications (Decl)) then
11050 Error_Msg_N
11051 ("cannot constrain access type if designated " &
11052 "type has constrained partial view", S);
11053 end if;
11054
11055 exit;
11056 end if;
11057
11058 Next (Decl);
11059 end loop;
11060 end if;
11061 end;
11062 end if;
11063
11064 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11065 For_Access => True);
11066
11067 elsif (Is_Task_Type (Desig_Type)
11068 or else Is_Protected_Type (Desig_Type))
11069 and then not Is_Constrained (Desig_Type)
11070 then
11071 Constrain_Concurrent
11072 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11073
11074 else
11075 Error_Msg_N ("invalid constraint on access type", S);
11076 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11077 Constraint_OK := False;
11078 end if;
11079
11080 if No (Def_Id) then
11081 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11082 else
11083 Set_Ekind (Def_Id, E_Access_Subtype);
11084 end if;
11085
11086 if Constraint_OK then
11087 Set_Etype (Def_Id, Base_Type (T));
11088
11089 if Is_Private_Type (Desig_Type) then
11090 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11091 end if;
11092 else
11093 Set_Etype (Def_Id, Any_Type);
11094 end if;
11095
11096 Set_Size_Info (Def_Id, T);
11097 Set_Is_Constrained (Def_Id, Constraint_OK);
11098 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11099 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11100 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11101
11102 Conditional_Delay (Def_Id, T);
11103
11104 -- AI-363 : Subtypes of general access types whose designated types have
11105 -- default discriminants are disallowed. In instances, the rule has to
11106 -- be checked against the actual, of which T is the subtype. In a
11107 -- generic body, the rule is checked assuming that the actual type has
11108 -- defaulted discriminants.
11109
11110 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11111 if Ekind (Base_Type (T)) = E_General_Access_Type
11112 and then Has_Defaulted_Discriminants (Desig_Type)
11113 then
11114 if Ada_Version < Ada_2005 then
11115 Error_Msg_N
11116 ("access subtype of general access type would not " &
11117 "be allowed in Ada 2005?y?", S);
11118 else
11119 Error_Msg_N
11120 ("access subtype of general access type not allowed", S);
11121 end if;
11122
11123 Error_Msg_N ("\discriminants have defaults", S);
11124
11125 elsif Is_Access_Type (T)
11126 and then Is_Generic_Type (Desig_Type)
11127 and then Has_Discriminants (Desig_Type)
11128 and then In_Package_Body (Current_Scope)
11129 then
11130 if Ada_Version < Ada_2005 then
11131 Error_Msg_N
11132 ("access subtype would not be allowed in generic body " &
11133 "in Ada 2005?y?", S);
11134 else
11135 Error_Msg_N
11136 ("access subtype not allowed in generic body", S);
11137 end if;
11138
11139 Error_Msg_N
11140 ("\designated type is a discriminated formal", S);
11141 end if;
11142 end if;
11143 end Constrain_Access;
11144
11145 ---------------------
11146 -- Constrain_Array --
11147 ---------------------
11148
11149 procedure Constrain_Array
11150 (Def_Id : in out Entity_Id;
11151 SI : Node_Id;
11152 Related_Nod : Node_Id;
11153 Related_Id : Entity_Id;
11154 Suffix : Character)
11155 is
11156 C : constant Node_Id := Constraint (SI);
11157 Number_Of_Constraints : Nat := 0;
11158 Index : Node_Id;
11159 S, T : Entity_Id;
11160 Constraint_OK : Boolean := True;
11161
11162 begin
11163 T := Entity (Subtype_Mark (SI));
11164
11165 if Ekind (T) in Access_Kind then
11166 T := Designated_Type (T);
11167 end if;
11168
11169 -- If an index constraint follows a subtype mark in a subtype indication
11170 -- then the type or subtype denoted by the subtype mark must not already
11171 -- impose an index constraint. The subtype mark must denote either an
11172 -- unconstrained array type or an access type whose designated type
11173 -- is such an array type... (RM 3.6.1)
11174
11175 if Is_Constrained (T) then
11176 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11177 Constraint_OK := False;
11178
11179 else
11180 S := First (Constraints (C));
11181 while Present (S) loop
11182 Number_Of_Constraints := Number_Of_Constraints + 1;
11183 Next (S);
11184 end loop;
11185
11186 -- In either case, the index constraint must provide a discrete
11187 -- range for each index of the array type and the type of each
11188 -- discrete range must be the same as that of the corresponding
11189 -- index. (RM 3.6.1)
11190
11191 if Number_Of_Constraints /= Number_Dimensions (T) then
11192 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11193 Constraint_OK := False;
11194
11195 else
11196 S := First (Constraints (C));
11197 Index := First_Index (T);
11198 Analyze (Index);
11199
11200 -- Apply constraints to each index type
11201
11202 for J in 1 .. Number_Of_Constraints loop
11203 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11204 Next (Index);
11205 Next (S);
11206 end loop;
11207
11208 end if;
11209 end if;
11210
11211 if No (Def_Id) then
11212 Def_Id :=
11213 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11214 Set_Parent (Def_Id, Related_Nod);
11215
11216 else
11217 Set_Ekind (Def_Id, E_Array_Subtype);
11218 end if;
11219
11220 Set_Size_Info (Def_Id, (T));
11221 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11222 Set_Etype (Def_Id, Base_Type (T));
11223
11224 if Constraint_OK then
11225 Set_First_Index (Def_Id, First (Constraints (C)));
11226 else
11227 Set_First_Index (Def_Id, First_Index (T));
11228 end if;
11229
11230 Set_Is_Constrained (Def_Id, True);
11231 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11232 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11233
11234 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11235 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11236
11237 -- A subtype does not inherit the packed_array_type of is parent. We
11238 -- need to initialize the attribute because if Def_Id is previously
11239 -- analyzed through a limited_with clause, it will have the attributes
11240 -- of an incomplete type, one of which is an Elist that overlaps the
11241 -- Packed_Array_Type field.
11242
11243 Set_Packed_Array_Type (Def_Id, Empty);
11244
11245 -- Build a freeze node if parent still needs one. Also make sure that
11246 -- the Depends_On_Private status is set because the subtype will need
11247 -- reprocessing at the time the base type does, and also we must set a
11248 -- conditional delay.
11249
11250 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11251 Conditional_Delay (Def_Id, T);
11252 end Constrain_Array;
11253
11254 ------------------------------
11255 -- Constrain_Component_Type --
11256 ------------------------------
11257
11258 function Constrain_Component_Type
11259 (Comp : Entity_Id;
11260 Constrained_Typ : Entity_Id;
11261 Related_Node : Node_Id;
11262 Typ : Entity_Id;
11263 Constraints : Elist_Id) return Entity_Id
11264 is
11265 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11266 Compon_Type : constant Entity_Id := Etype (Comp);
11267 Array_Comp : Node_Id;
11268
11269 function Build_Constrained_Array_Type
11270 (Old_Type : Entity_Id) return Entity_Id;
11271 -- If Old_Type is an array type, one of whose indexes is constrained
11272 -- by a discriminant, build an Itype whose constraint replaces the
11273 -- discriminant with its value in the constraint.
11274
11275 function Build_Constrained_Discriminated_Type
11276 (Old_Type : Entity_Id) return Entity_Id;
11277 -- Ditto for record components
11278
11279 function Build_Constrained_Access_Type
11280 (Old_Type : Entity_Id) return Entity_Id;
11281 -- Ditto for access types. Makes use of previous two functions, to
11282 -- constrain designated type.
11283
11284 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11285 -- T is an array or discriminated type, C is a list of constraints
11286 -- that apply to T. This routine builds the constrained subtype.
11287
11288 function Is_Discriminant (Expr : Node_Id) return Boolean;
11289 -- Returns True if Expr is a discriminant
11290
11291 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11292 -- Find the value of discriminant Discrim in Constraint
11293
11294 -----------------------------------
11295 -- Build_Constrained_Access_Type --
11296 -----------------------------------
11297
11298 function Build_Constrained_Access_Type
11299 (Old_Type : Entity_Id) return Entity_Id
11300 is
11301 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11302 Itype : Entity_Id;
11303 Desig_Subtype : Entity_Id;
11304 Scop : Entity_Id;
11305
11306 begin
11307 -- if the original access type was not embedded in the enclosing
11308 -- type definition, there is no need to produce a new access
11309 -- subtype. In fact every access type with an explicit constraint
11310 -- generates an itype whose scope is the enclosing record.
11311
11312 if not Is_Type (Scope (Old_Type)) then
11313 return Old_Type;
11314
11315 elsif Is_Array_Type (Desig_Type) then
11316 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11317
11318 elsif Has_Discriminants (Desig_Type) then
11319
11320 -- This may be an access type to an enclosing record type for
11321 -- which we are constructing the constrained components. Return
11322 -- the enclosing record subtype. This is not always correct,
11323 -- but avoids infinite recursion. ???
11324
11325 Desig_Subtype := Any_Type;
11326
11327 for J in reverse 0 .. Scope_Stack.Last loop
11328 Scop := Scope_Stack.Table (J).Entity;
11329
11330 if Is_Type (Scop)
11331 and then Base_Type (Scop) = Base_Type (Desig_Type)
11332 then
11333 Desig_Subtype := Scop;
11334 end if;
11335
11336 exit when not Is_Type (Scop);
11337 end loop;
11338
11339 if Desig_Subtype = Any_Type then
11340 Desig_Subtype :=
11341 Build_Constrained_Discriminated_Type (Desig_Type);
11342 end if;
11343
11344 else
11345 return Old_Type;
11346 end if;
11347
11348 if Desig_Subtype /= Desig_Type then
11349
11350 -- The Related_Node better be here or else we won't be able
11351 -- to attach new itypes to a node in the tree.
11352
11353 pragma Assert (Present (Related_Node));
11354
11355 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11356
11357 Set_Etype (Itype, Base_Type (Old_Type));
11358 Set_Size_Info (Itype, (Old_Type));
11359 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11360 Set_Depends_On_Private (Itype, Has_Private_Component
11361 (Old_Type));
11362 Set_Is_Access_Constant (Itype, Is_Access_Constant
11363 (Old_Type));
11364
11365 -- The new itype needs freezing when it depends on a not frozen
11366 -- type and the enclosing subtype needs freezing.
11367
11368 if Has_Delayed_Freeze (Constrained_Typ)
11369 and then not Is_Frozen (Constrained_Typ)
11370 then
11371 Conditional_Delay (Itype, Base_Type (Old_Type));
11372 end if;
11373
11374 return Itype;
11375
11376 else
11377 return Old_Type;
11378 end if;
11379 end Build_Constrained_Access_Type;
11380
11381 ----------------------------------
11382 -- Build_Constrained_Array_Type --
11383 ----------------------------------
11384
11385 function Build_Constrained_Array_Type
11386 (Old_Type : Entity_Id) return Entity_Id
11387 is
11388 Lo_Expr : Node_Id;
11389 Hi_Expr : Node_Id;
11390 Old_Index : Node_Id;
11391 Range_Node : Node_Id;
11392 Constr_List : List_Id;
11393
11394 Need_To_Create_Itype : Boolean := False;
11395
11396 begin
11397 Old_Index := First_Index (Old_Type);
11398 while Present (Old_Index) loop
11399 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11400
11401 if Is_Discriminant (Lo_Expr)
11402 or else Is_Discriminant (Hi_Expr)
11403 then
11404 Need_To_Create_Itype := True;
11405 end if;
11406
11407 Next_Index (Old_Index);
11408 end loop;
11409
11410 if Need_To_Create_Itype then
11411 Constr_List := New_List;
11412
11413 Old_Index := First_Index (Old_Type);
11414 while Present (Old_Index) loop
11415 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11416
11417 if Is_Discriminant (Lo_Expr) then
11418 Lo_Expr := Get_Discr_Value (Lo_Expr);
11419 end if;
11420
11421 if Is_Discriminant (Hi_Expr) then
11422 Hi_Expr := Get_Discr_Value (Hi_Expr);
11423 end if;
11424
11425 Range_Node :=
11426 Make_Range
11427 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11428
11429 Append (Range_Node, To => Constr_List);
11430
11431 Next_Index (Old_Index);
11432 end loop;
11433
11434 return Build_Subtype (Old_Type, Constr_List);
11435
11436 else
11437 return Old_Type;
11438 end if;
11439 end Build_Constrained_Array_Type;
11440
11441 ------------------------------------------
11442 -- Build_Constrained_Discriminated_Type --
11443 ------------------------------------------
11444
11445 function Build_Constrained_Discriminated_Type
11446 (Old_Type : Entity_Id) return Entity_Id
11447 is
11448 Expr : Node_Id;
11449 Constr_List : List_Id;
11450 Old_Constraint : Elmt_Id;
11451
11452 Need_To_Create_Itype : Boolean := False;
11453
11454 begin
11455 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11456 while Present (Old_Constraint) loop
11457 Expr := Node (Old_Constraint);
11458
11459 if Is_Discriminant (Expr) then
11460 Need_To_Create_Itype := True;
11461 end if;
11462
11463 Next_Elmt (Old_Constraint);
11464 end loop;
11465
11466 if Need_To_Create_Itype then
11467 Constr_List := New_List;
11468
11469 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11470 while Present (Old_Constraint) loop
11471 Expr := Node (Old_Constraint);
11472
11473 if Is_Discriminant (Expr) then
11474 Expr := Get_Discr_Value (Expr);
11475 end if;
11476
11477 Append (New_Copy_Tree (Expr), To => Constr_List);
11478
11479 Next_Elmt (Old_Constraint);
11480 end loop;
11481
11482 return Build_Subtype (Old_Type, Constr_List);
11483
11484 else
11485 return Old_Type;
11486 end if;
11487 end Build_Constrained_Discriminated_Type;
11488
11489 -------------------
11490 -- Build_Subtype --
11491 -------------------
11492
11493 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11494 Indic : Node_Id;
11495 Subtyp_Decl : Node_Id;
11496 Def_Id : Entity_Id;
11497 Btyp : Entity_Id := Base_Type (T);
11498
11499 begin
11500 -- The Related_Node better be here or else we won't be able to
11501 -- attach new itypes to a node in the tree.
11502
11503 pragma Assert (Present (Related_Node));
11504
11505 -- If the view of the component's type is incomplete or private
11506 -- with unknown discriminants, then the constraint must be applied
11507 -- to the full type.
11508
11509 if Has_Unknown_Discriminants (Btyp)
11510 and then Present (Underlying_Type (Btyp))
11511 then
11512 Btyp := Underlying_Type (Btyp);
11513 end if;
11514
11515 Indic :=
11516 Make_Subtype_Indication (Loc,
11517 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11518 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11519
11520 Def_Id := Create_Itype (Ekind (T), Related_Node);
11521
11522 Subtyp_Decl :=
11523 Make_Subtype_Declaration (Loc,
11524 Defining_Identifier => Def_Id,
11525 Subtype_Indication => Indic);
11526
11527 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11528
11529 -- Itypes must be analyzed with checks off (see package Itypes)
11530
11531 Analyze (Subtyp_Decl, Suppress => All_Checks);
11532
11533 return Def_Id;
11534 end Build_Subtype;
11535
11536 ---------------------
11537 -- Get_Discr_Value --
11538 ---------------------
11539
11540 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11541 D : Entity_Id;
11542 E : Elmt_Id;
11543
11544 begin
11545 -- The discriminant may be declared for the type, in which case we
11546 -- find it by iterating over the list of discriminants. If the
11547 -- discriminant is inherited from a parent type, it appears as the
11548 -- corresponding discriminant of the current type. This will be the
11549 -- case when constraining an inherited component whose constraint is
11550 -- given by a discriminant of the parent.
11551
11552 D := First_Discriminant (Typ);
11553 E := First_Elmt (Constraints);
11554
11555 while Present (D) loop
11556 if D = Entity (Discrim)
11557 or else D = CR_Discriminant (Entity (Discrim))
11558 or else Corresponding_Discriminant (D) = Entity (Discrim)
11559 then
11560 return Node (E);
11561 end if;
11562
11563 Next_Discriminant (D);
11564 Next_Elmt (E);
11565 end loop;
11566
11567 -- The Corresponding_Discriminant mechanism is incomplete, because
11568 -- the correspondence between new and old discriminants is not one
11569 -- to one: one new discriminant can constrain several old ones. In
11570 -- that case, scan sequentially the stored_constraint, the list of
11571 -- discriminants of the parents, and the constraints.
11572
11573 -- Previous code checked for the present of the Stored_Constraint
11574 -- list for the derived type, but did not use it at all. Should it
11575 -- be present when the component is a discriminated task type?
11576
11577 if Is_Derived_Type (Typ)
11578 and then Scope (Entity (Discrim)) = Etype (Typ)
11579 then
11580 D := First_Discriminant (Etype (Typ));
11581 E := First_Elmt (Constraints);
11582 while Present (D) loop
11583 if D = Entity (Discrim) then
11584 return Node (E);
11585 end if;
11586
11587 Next_Discriminant (D);
11588 Next_Elmt (E);
11589 end loop;
11590 end if;
11591
11592 -- Something is wrong if we did not find the value
11593
11594 raise Program_Error;
11595 end Get_Discr_Value;
11596
11597 ---------------------
11598 -- Is_Discriminant --
11599 ---------------------
11600
11601 function Is_Discriminant (Expr : Node_Id) return Boolean is
11602 Discrim_Scope : Entity_Id;
11603
11604 begin
11605 if Denotes_Discriminant (Expr) then
11606 Discrim_Scope := Scope (Entity (Expr));
11607
11608 -- Either we have a reference to one of Typ's discriminants,
11609
11610 pragma Assert (Discrim_Scope = Typ
11611
11612 -- or to the discriminants of the parent type, in the case
11613 -- of a derivation of a tagged type with variants.
11614
11615 or else Discrim_Scope = Etype (Typ)
11616 or else Full_View (Discrim_Scope) = Etype (Typ)
11617
11618 -- or same as above for the case where the discriminants
11619 -- were declared in Typ's private view.
11620
11621 or else (Is_Private_Type (Discrim_Scope)
11622 and then Chars (Discrim_Scope) = Chars (Typ))
11623
11624 -- or else we are deriving from the full view and the
11625 -- discriminant is declared in the private entity.
11626
11627 or else (Is_Private_Type (Typ)
11628 and then Chars (Discrim_Scope) = Chars (Typ))
11629
11630 -- Or we are constrained the corresponding record of a
11631 -- synchronized type that completes a private declaration.
11632
11633 or else (Is_Concurrent_Record_Type (Typ)
11634 and then
11635 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11636
11637 -- or we have a class-wide type, in which case make sure the
11638 -- discriminant found belongs to the root type.
11639
11640 or else (Is_Class_Wide_Type (Typ)
11641 and then Etype (Typ) = Discrim_Scope));
11642
11643 return True;
11644 end if;
11645
11646 -- In all other cases we have something wrong
11647
11648 return False;
11649 end Is_Discriminant;
11650
11651 -- Start of processing for Constrain_Component_Type
11652
11653 begin
11654 if Nkind (Parent (Comp)) = N_Component_Declaration
11655 and then Comes_From_Source (Parent (Comp))
11656 and then Comes_From_Source
11657 (Subtype_Indication (Component_Definition (Parent (Comp))))
11658 and then
11659 Is_Entity_Name
11660 (Subtype_Indication (Component_Definition (Parent (Comp))))
11661 then
11662 return Compon_Type;
11663
11664 elsif Is_Array_Type (Compon_Type) then
11665 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11666
11667 -- If the component of the parent is packed, and the record type is
11668 -- already frozen, as is the case for an itype, the component type
11669 -- itself will not be frozen, and the packed array type for it must
11670 -- be constructed explicitly. Since the creation of packed types is
11671 -- an expansion activity, we only do this if expansion is active.
11672
11673 if Expander_Active
11674 and then Is_Packed (Compon_Type)
11675 and then Is_Frozen (Current_Scope)
11676 then
11677 Create_Packed_Array_Type (Array_Comp);
11678 end if;
11679
11680 return Array_Comp;
11681
11682 elsif Has_Discriminants (Compon_Type) then
11683 return Build_Constrained_Discriminated_Type (Compon_Type);
11684
11685 elsif Is_Access_Type (Compon_Type) then
11686 return Build_Constrained_Access_Type (Compon_Type);
11687
11688 else
11689 return Compon_Type;
11690 end if;
11691 end Constrain_Component_Type;
11692
11693 --------------------------
11694 -- Constrain_Concurrent --
11695 --------------------------
11696
11697 -- For concurrent types, the associated record value type carries the same
11698 -- discriminants, so when we constrain a concurrent type, we must constrain
11699 -- the corresponding record type as well.
11700
11701 procedure Constrain_Concurrent
11702 (Def_Id : in out Entity_Id;
11703 SI : Node_Id;
11704 Related_Nod : Node_Id;
11705 Related_Id : Entity_Id;
11706 Suffix : Character)
11707 is
11708 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11709 -- case of a private subtype (needed when only doing semantic analysis).
11710
11711 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11712 T_Val : Entity_Id;
11713
11714 begin
11715 if Ekind (T_Ent) in Access_Kind then
11716 T_Ent := Designated_Type (T_Ent);
11717 end if;
11718
11719 T_Val := Corresponding_Record_Type (T_Ent);
11720
11721 if Present (T_Val) then
11722
11723 if No (Def_Id) then
11724 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11725 end if;
11726
11727 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11728
11729 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11730 Set_Corresponding_Record_Type (Def_Id,
11731 Constrain_Corresponding_Record
11732 (Def_Id, T_Val, Related_Nod, Related_Id));
11733
11734 else
11735 -- If there is no associated record, expansion is disabled and this
11736 -- is a generic context. Create a subtype in any case, so that
11737 -- semantic analysis can proceed.
11738
11739 if No (Def_Id) then
11740 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11741 end if;
11742
11743 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11744 end if;
11745 end Constrain_Concurrent;
11746
11747 ------------------------------------
11748 -- Constrain_Corresponding_Record --
11749 ------------------------------------
11750
11751 function Constrain_Corresponding_Record
11752 (Prot_Subt : Entity_Id;
11753 Corr_Rec : Entity_Id;
11754 Related_Nod : Node_Id;
11755 Related_Id : Entity_Id) return Entity_Id
11756 is
11757 T_Sub : constant Entity_Id :=
11758 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11759
11760 begin
11761 Set_Etype (T_Sub, Corr_Rec);
11762 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
11763 Set_Is_Constrained (T_Sub, True);
11764 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
11765 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
11766
11767 -- As elsewhere, we do not want to create a freeze node for this itype
11768 -- if it is created for a constrained component of an enclosing record
11769 -- because references to outer discriminants will appear out of scope.
11770
11771 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
11772 Conditional_Delay (T_Sub, Corr_Rec);
11773 else
11774 Set_Is_Frozen (T_Sub);
11775 end if;
11776
11777 if Has_Discriminants (Prot_Subt) then -- False only if errors.
11778 Set_Discriminant_Constraint
11779 (T_Sub, Discriminant_Constraint (Prot_Subt));
11780 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
11781 Create_Constrained_Components
11782 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
11783 end if;
11784
11785 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
11786
11787 return T_Sub;
11788 end Constrain_Corresponding_Record;
11789
11790 -----------------------
11791 -- Constrain_Decimal --
11792 -----------------------
11793
11794 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
11795 T : constant Entity_Id := Entity (Subtype_Mark (S));
11796 C : constant Node_Id := Constraint (S);
11797 Loc : constant Source_Ptr := Sloc (C);
11798 Range_Expr : Node_Id;
11799 Digits_Expr : Node_Id;
11800 Digits_Val : Uint;
11801 Bound_Val : Ureal;
11802
11803 begin
11804 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
11805
11806 if Nkind (C) = N_Range_Constraint then
11807 Range_Expr := Range_Expression (C);
11808 Digits_Val := Digits_Value (T);
11809
11810 else
11811 pragma Assert (Nkind (C) = N_Digits_Constraint);
11812
11813 Check_SPARK_Restriction ("digits constraint is not allowed", S);
11814
11815 Digits_Expr := Digits_Expression (C);
11816 Analyze_And_Resolve (Digits_Expr, Any_Integer);
11817
11818 Check_Digits_Expression (Digits_Expr);
11819 Digits_Val := Expr_Value (Digits_Expr);
11820
11821 if Digits_Val > Digits_Value (T) then
11822 Error_Msg_N
11823 ("digits expression is incompatible with subtype", C);
11824 Digits_Val := Digits_Value (T);
11825 end if;
11826
11827 if Present (Range_Constraint (C)) then
11828 Range_Expr := Range_Expression (Range_Constraint (C));
11829 else
11830 Range_Expr := Empty;
11831 end if;
11832 end if;
11833
11834 Set_Etype (Def_Id, Base_Type (T));
11835 Set_Size_Info (Def_Id, (T));
11836 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11837 Set_Delta_Value (Def_Id, Delta_Value (T));
11838 Set_Scale_Value (Def_Id, Scale_Value (T));
11839 Set_Small_Value (Def_Id, Small_Value (T));
11840 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
11841 Set_Digits_Value (Def_Id, Digits_Val);
11842
11843 -- Manufacture range from given digits value if no range present
11844
11845 if No (Range_Expr) then
11846 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
11847 Range_Expr :=
11848 Make_Range (Loc,
11849 Low_Bound =>
11850 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
11851 High_Bound =>
11852 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
11853 end if;
11854
11855 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
11856 Set_Discrete_RM_Size (Def_Id);
11857
11858 -- Unconditionally delay the freeze, since we cannot set size
11859 -- information in all cases correctly until the freeze point.
11860
11861 Set_Has_Delayed_Freeze (Def_Id);
11862 end Constrain_Decimal;
11863
11864 ----------------------------------
11865 -- Constrain_Discriminated_Type --
11866 ----------------------------------
11867
11868 procedure Constrain_Discriminated_Type
11869 (Def_Id : Entity_Id;
11870 S : Node_Id;
11871 Related_Nod : Node_Id;
11872 For_Access : Boolean := False)
11873 is
11874 E : constant Entity_Id := Entity (Subtype_Mark (S));
11875 T : Entity_Id;
11876 C : Node_Id;
11877 Elist : Elist_Id := New_Elmt_List;
11878
11879 procedure Fixup_Bad_Constraint;
11880 -- This is called after finding a bad constraint, and after having
11881 -- posted an appropriate error message. The mission is to leave the
11882 -- entity T in as reasonable state as possible!
11883
11884 --------------------------
11885 -- Fixup_Bad_Constraint --
11886 --------------------------
11887
11888 procedure Fixup_Bad_Constraint is
11889 begin
11890 -- Set a reasonable Ekind for the entity. For an incomplete type,
11891 -- we can't do much, but for other types, we can set the proper
11892 -- corresponding subtype kind.
11893
11894 if Ekind (T) = E_Incomplete_Type then
11895 Set_Ekind (Def_Id, Ekind (T));
11896 else
11897 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
11898 end if;
11899
11900 -- Set Etype to the known type, to reduce chances of cascaded errors
11901
11902 Set_Etype (Def_Id, E);
11903 Set_Error_Posted (Def_Id);
11904 end Fixup_Bad_Constraint;
11905
11906 -- Start of processing for Constrain_Discriminated_Type
11907
11908 begin
11909 C := Constraint (S);
11910
11911 -- A discriminant constraint is only allowed in a subtype indication,
11912 -- after a subtype mark. This subtype mark must denote either a type
11913 -- with discriminants, or an access type whose designated type is a
11914 -- type with discriminants. A discriminant constraint specifies the
11915 -- values of these discriminants (RM 3.7.2(5)).
11916
11917 T := Base_Type (Entity (Subtype_Mark (S)));
11918
11919 if Ekind (T) in Access_Kind then
11920 T := Designated_Type (T);
11921 end if;
11922
11923 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11924 -- Avoid generating an error for access-to-incomplete subtypes.
11925
11926 if Ada_Version >= Ada_2005
11927 and then Ekind (T) = E_Incomplete_Type
11928 and then Nkind (Parent (S)) = N_Subtype_Declaration
11929 and then not Is_Itype (Def_Id)
11930 then
11931 -- A little sanity check, emit an error message if the type
11932 -- has discriminants to begin with. Type T may be a regular
11933 -- incomplete type or imported via a limited with clause.
11934
11935 if Has_Discriminants (T)
11936 or else
11937 (From_With_Type (T)
11938 and then Present (Non_Limited_View (T))
11939 and then Nkind (Parent (Non_Limited_View (T))) =
11940 N_Full_Type_Declaration
11941 and then Present (Discriminant_Specifications
11942 (Parent (Non_Limited_View (T)))))
11943 then
11944 Error_Msg_N
11945 ("(Ada 2005) incomplete subtype may not be constrained", C);
11946 else
11947 Error_Msg_N ("invalid constraint: type has no discriminant", C);
11948 end if;
11949
11950 Fixup_Bad_Constraint;
11951 return;
11952
11953 -- Check that the type has visible discriminants. The type may be
11954 -- a private type with unknown discriminants whose full view has
11955 -- discriminants which are invisible.
11956
11957 elsif not Has_Discriminants (T)
11958 or else
11959 (Has_Unknown_Discriminants (T)
11960 and then Is_Private_Type (T))
11961 then
11962 Error_Msg_N ("invalid constraint: type has no discriminant", C);
11963 Fixup_Bad_Constraint;
11964 return;
11965
11966 elsif Is_Constrained (E)
11967 or else (Ekind (E) = E_Class_Wide_Subtype
11968 and then Present (Discriminant_Constraint (E)))
11969 then
11970 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
11971 Fixup_Bad_Constraint;
11972 return;
11973 end if;
11974
11975 -- T may be an unconstrained subtype (e.g. a generic actual).
11976 -- Constraint applies to the base type.
11977
11978 T := Base_Type (T);
11979
11980 Elist := Build_Discriminant_Constraints (T, S);
11981
11982 -- If the list returned was empty we had an error in building the
11983 -- discriminant constraint. We have also already signalled an error
11984 -- in the incomplete type case
11985
11986 if Is_Empty_Elmt_List (Elist) then
11987 Fixup_Bad_Constraint;
11988 return;
11989 end if;
11990
11991 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
11992 end Constrain_Discriminated_Type;
11993
11994 ---------------------------
11995 -- Constrain_Enumeration --
11996 ---------------------------
11997
11998 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
11999 T : constant Entity_Id := Entity (Subtype_Mark (S));
12000 C : constant Node_Id := Constraint (S);
12001
12002 begin
12003 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12004
12005 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12006
12007 Set_Etype (Def_Id, Base_Type (T));
12008 Set_Size_Info (Def_Id, (T));
12009 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12010 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12011
12012 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12013
12014 Set_Discrete_RM_Size (Def_Id);
12015 end Constrain_Enumeration;
12016
12017 ----------------------
12018 -- Constrain_Float --
12019 ----------------------
12020
12021 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12022 T : constant Entity_Id := Entity (Subtype_Mark (S));
12023 C : Node_Id;
12024 D : Node_Id;
12025 Rais : Node_Id;
12026
12027 begin
12028 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12029
12030 Set_Etype (Def_Id, Base_Type (T));
12031 Set_Size_Info (Def_Id, (T));
12032 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12033
12034 -- Process the constraint
12035
12036 C := Constraint (S);
12037
12038 -- Digits constraint present
12039
12040 if Nkind (C) = N_Digits_Constraint then
12041
12042 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12043 Check_Restriction (No_Obsolescent_Features, C);
12044
12045 if Warn_On_Obsolescent_Feature then
12046 Error_Msg_N
12047 ("subtype digits constraint is an " &
12048 "obsolescent feature (RM J.3(8))?j?", C);
12049 end if;
12050
12051 D := Digits_Expression (C);
12052 Analyze_And_Resolve (D, Any_Integer);
12053 Check_Digits_Expression (D);
12054 Set_Digits_Value (Def_Id, Expr_Value (D));
12055
12056 -- Check that digits value is in range. Obviously we can do this
12057 -- at compile time, but it is strictly a runtime check, and of
12058 -- course there is an ACVC test that checks this!
12059
12060 if Digits_Value (Def_Id) > Digits_Value (T) then
12061 Error_Msg_Uint_1 := Digits_Value (T);
12062 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12063 Rais :=
12064 Make_Raise_Constraint_Error (Sloc (D),
12065 Reason => CE_Range_Check_Failed);
12066 Insert_Action (Declaration_Node (Def_Id), Rais);
12067 end if;
12068
12069 C := Range_Constraint (C);
12070
12071 -- No digits constraint present
12072
12073 else
12074 Set_Digits_Value (Def_Id, Digits_Value (T));
12075 end if;
12076
12077 -- Range constraint present
12078
12079 if Nkind (C) = N_Range_Constraint then
12080 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12081
12082 -- No range constraint present
12083
12084 else
12085 pragma Assert (No (C));
12086 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12087 end if;
12088
12089 Set_Is_Constrained (Def_Id);
12090 end Constrain_Float;
12091
12092 ---------------------
12093 -- Constrain_Index --
12094 ---------------------
12095
12096 procedure Constrain_Index
12097 (Index : Node_Id;
12098 S : Node_Id;
12099 Related_Nod : Node_Id;
12100 Related_Id : Entity_Id;
12101 Suffix : Character;
12102 Suffix_Index : Nat)
12103 is
12104 Def_Id : Entity_Id;
12105 R : Node_Id := Empty;
12106 T : constant Entity_Id := Etype (Index);
12107
12108 begin
12109 if Nkind (S) = N_Range
12110 or else
12111 (Nkind (S) = N_Attribute_Reference
12112 and then Attribute_Name (S) = Name_Range)
12113 then
12114 -- A Range attribute will be transformed into N_Range by Resolve
12115
12116 Analyze (S);
12117 Set_Etype (S, T);
12118 R := S;
12119
12120 Process_Range_Expr_In_Decl (R, T, Empty_List);
12121
12122 if not Error_Posted (S)
12123 and then
12124 (Nkind (S) /= N_Range
12125 or else not Covers (T, (Etype (Low_Bound (S))))
12126 or else not Covers (T, (Etype (High_Bound (S)))))
12127 then
12128 if Base_Type (T) /= Any_Type
12129 and then Etype (Low_Bound (S)) /= Any_Type
12130 and then Etype (High_Bound (S)) /= Any_Type
12131 then
12132 Error_Msg_N ("range expected", S);
12133 end if;
12134 end if;
12135
12136 elsif Nkind (S) = N_Subtype_Indication then
12137
12138 -- The parser has verified that this is a discrete indication
12139
12140 Resolve_Discrete_Subtype_Indication (S, T);
12141 R := Range_Expression (Constraint (S));
12142
12143 -- Capture values of bounds and generate temporaries for them if
12144 -- needed, since checks may cause duplication of the expressions
12145 -- which must not be reevaluated.
12146
12147 -- The forced evaluation removes side effects from expressions,
12148 -- which should occur also in SPARK mode. Otherwise, we end up with
12149 -- unexpected insertions of actions at places where this is not
12150 -- supposed to occur, e.g. on default parameters of a call.
12151
12152 if Expander_Active then
12153 Force_Evaluation (Low_Bound (R));
12154 Force_Evaluation (High_Bound (R));
12155 end if;
12156
12157 elsif Nkind (S) = N_Discriminant_Association then
12158
12159 -- Syntactically valid in subtype indication
12160
12161 Error_Msg_N ("invalid index constraint", S);
12162 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12163 return;
12164
12165 -- Subtype_Mark case, no anonymous subtypes to construct
12166
12167 else
12168 Analyze (S);
12169
12170 if Is_Entity_Name (S) then
12171 if not Is_Type (Entity (S)) then
12172 Error_Msg_N ("expect subtype mark for index constraint", S);
12173
12174 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12175 Wrong_Type (S, Base_Type (T));
12176
12177 -- Check error of subtype with predicate in index constraint
12178
12179 else
12180 Bad_Predicated_Subtype_Use
12181 ("subtype& has predicate, not allowed in index constraint",
12182 S, Entity (S));
12183 end if;
12184
12185 return;
12186
12187 else
12188 Error_Msg_N ("invalid index constraint", S);
12189 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12190 return;
12191 end if;
12192 end if;
12193
12194 Def_Id :=
12195 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12196
12197 Set_Etype (Def_Id, Base_Type (T));
12198
12199 if Is_Modular_Integer_Type (T) then
12200 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12201
12202 elsif Is_Integer_Type (T) then
12203 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12204
12205 else
12206 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12207 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12208 Set_First_Literal (Def_Id, First_Literal (T));
12209 end if;
12210
12211 Set_Size_Info (Def_Id, (T));
12212 Set_RM_Size (Def_Id, RM_Size (T));
12213 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12214
12215 Set_Scalar_Range (Def_Id, R);
12216
12217 Set_Etype (S, Def_Id);
12218 Set_Discrete_RM_Size (Def_Id);
12219 end Constrain_Index;
12220
12221 -----------------------
12222 -- Constrain_Integer --
12223 -----------------------
12224
12225 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12226 T : constant Entity_Id := Entity (Subtype_Mark (S));
12227 C : constant Node_Id := Constraint (S);
12228
12229 begin
12230 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12231
12232 if Is_Modular_Integer_Type (T) then
12233 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12234 else
12235 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12236 end if;
12237
12238 Set_Etype (Def_Id, Base_Type (T));
12239 Set_Size_Info (Def_Id, (T));
12240 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12241 Set_Discrete_RM_Size (Def_Id);
12242 end Constrain_Integer;
12243
12244 ------------------------------
12245 -- Constrain_Ordinary_Fixed --
12246 ------------------------------
12247
12248 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12249 T : constant Entity_Id := Entity (Subtype_Mark (S));
12250 C : Node_Id;
12251 D : Node_Id;
12252 Rais : Node_Id;
12253
12254 begin
12255 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12256 Set_Etype (Def_Id, Base_Type (T));
12257 Set_Size_Info (Def_Id, (T));
12258 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12259 Set_Small_Value (Def_Id, Small_Value (T));
12260
12261 -- Process the constraint
12262
12263 C := Constraint (S);
12264
12265 -- Delta constraint present
12266
12267 if Nkind (C) = N_Delta_Constraint then
12268
12269 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12270 Check_Restriction (No_Obsolescent_Features, C);
12271
12272 if Warn_On_Obsolescent_Feature then
12273 Error_Msg_S
12274 ("subtype delta constraint is an " &
12275 "obsolescent feature (RM J.3(7))?j?");
12276 end if;
12277
12278 D := Delta_Expression (C);
12279 Analyze_And_Resolve (D, Any_Real);
12280 Check_Delta_Expression (D);
12281 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12282
12283 -- Check that delta value is in range. Obviously we can do this
12284 -- at compile time, but it is strictly a runtime check, and of
12285 -- course there is an ACVC test that checks this!
12286
12287 if Delta_Value (Def_Id) < Delta_Value (T) then
12288 Error_Msg_N ("??delta value is too small", D);
12289 Rais :=
12290 Make_Raise_Constraint_Error (Sloc (D),
12291 Reason => CE_Range_Check_Failed);
12292 Insert_Action (Declaration_Node (Def_Id), Rais);
12293 end if;
12294
12295 C := Range_Constraint (C);
12296
12297 -- No delta constraint present
12298
12299 else
12300 Set_Delta_Value (Def_Id, Delta_Value (T));
12301 end if;
12302
12303 -- Range constraint present
12304
12305 if Nkind (C) = N_Range_Constraint then
12306 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12307
12308 -- No range constraint present
12309
12310 else
12311 pragma Assert (No (C));
12312 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12313
12314 end if;
12315
12316 Set_Discrete_RM_Size (Def_Id);
12317
12318 -- Unconditionally delay the freeze, since we cannot set size
12319 -- information in all cases correctly until the freeze point.
12320
12321 Set_Has_Delayed_Freeze (Def_Id);
12322 end Constrain_Ordinary_Fixed;
12323
12324 -----------------------
12325 -- Contain_Interface --
12326 -----------------------
12327
12328 function Contain_Interface
12329 (Iface : Entity_Id;
12330 Ifaces : Elist_Id) return Boolean
12331 is
12332 Iface_Elmt : Elmt_Id;
12333
12334 begin
12335 if Present (Ifaces) then
12336 Iface_Elmt := First_Elmt (Ifaces);
12337 while Present (Iface_Elmt) loop
12338 if Node (Iface_Elmt) = Iface then
12339 return True;
12340 end if;
12341
12342 Next_Elmt (Iface_Elmt);
12343 end loop;
12344 end if;
12345
12346 return False;
12347 end Contain_Interface;
12348
12349 ---------------------------
12350 -- Convert_Scalar_Bounds --
12351 ---------------------------
12352
12353 procedure Convert_Scalar_Bounds
12354 (N : Node_Id;
12355 Parent_Type : Entity_Id;
12356 Derived_Type : Entity_Id;
12357 Loc : Source_Ptr)
12358 is
12359 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12360
12361 Lo : Node_Id;
12362 Hi : Node_Id;
12363 Rng : Node_Id;
12364
12365 begin
12366 -- Defend against previous errors
12367
12368 if No (Scalar_Range (Derived_Type)) then
12369 Check_Error_Detected;
12370 return;
12371 end if;
12372
12373 Lo := Build_Scalar_Bound
12374 (Type_Low_Bound (Derived_Type),
12375 Parent_Type, Implicit_Base);
12376
12377 Hi := Build_Scalar_Bound
12378 (Type_High_Bound (Derived_Type),
12379 Parent_Type, Implicit_Base);
12380
12381 Rng :=
12382 Make_Range (Loc,
12383 Low_Bound => Lo,
12384 High_Bound => Hi);
12385
12386 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12387
12388 Set_Parent (Rng, N);
12389 Set_Scalar_Range (Derived_Type, Rng);
12390
12391 -- Analyze the bounds
12392
12393 Analyze_And_Resolve (Lo, Implicit_Base);
12394 Analyze_And_Resolve (Hi, Implicit_Base);
12395
12396 -- Analyze the range itself, except that we do not analyze it if
12397 -- the bounds are real literals, and we have a fixed-point type.
12398 -- The reason for this is that we delay setting the bounds in this
12399 -- case till we know the final Small and Size values (see circuit
12400 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12401
12402 if Is_Fixed_Point_Type (Parent_Type)
12403 and then Nkind (Lo) = N_Real_Literal
12404 and then Nkind (Hi) = N_Real_Literal
12405 then
12406 return;
12407
12408 -- Here we do the analysis of the range
12409
12410 -- Note: we do this manually, since if we do a normal Analyze and
12411 -- Resolve call, there are problems with the conversions used for
12412 -- the derived type range.
12413
12414 else
12415 Set_Etype (Rng, Implicit_Base);
12416 Set_Analyzed (Rng, True);
12417 end if;
12418 end Convert_Scalar_Bounds;
12419
12420 -------------------
12421 -- Copy_And_Swap --
12422 -------------------
12423
12424 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12425 begin
12426 -- Initialize new full declaration entity by copying the pertinent
12427 -- fields of the corresponding private declaration entity.
12428
12429 -- We temporarily set Ekind to a value appropriate for a type to
12430 -- avoid assert failures in Einfo from checking for setting type
12431 -- attributes on something that is not a type. Ekind (Priv) is an
12432 -- appropriate choice, since it allowed the attributes to be set
12433 -- in the first place. This Ekind value will be modified later.
12434
12435 Set_Ekind (Full, Ekind (Priv));
12436
12437 -- Also set Etype temporarily to Any_Type, again, in the absence
12438 -- of errors, it will be properly reset, and if there are errors,
12439 -- then we want a value of Any_Type to remain.
12440
12441 Set_Etype (Full, Any_Type);
12442
12443 -- Now start copying attributes
12444
12445 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12446
12447 if Has_Discriminants (Full) then
12448 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12449 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12450 end if;
12451
12452 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12453 Set_Homonym (Full, Homonym (Priv));
12454 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12455 Set_Is_Public (Full, Is_Public (Priv));
12456 Set_Is_Pure (Full, Is_Pure (Priv));
12457 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12458 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12459 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12460 Set_Has_Pragma_Unreferenced_Objects
12461 (Full, Has_Pragma_Unreferenced_Objects
12462 (Priv));
12463
12464 Conditional_Delay (Full, Priv);
12465
12466 if Is_Tagged_Type (Full) then
12467 Set_Direct_Primitive_Operations (Full,
12468 Direct_Primitive_Operations (Priv));
12469
12470 if Is_Base_Type (Priv) then
12471 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12472 end if;
12473 end if;
12474
12475 Set_Is_Volatile (Full, Is_Volatile (Priv));
12476 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12477 Set_Scope (Full, Scope (Priv));
12478 Set_Next_Entity (Full, Next_Entity (Priv));
12479 Set_First_Entity (Full, First_Entity (Priv));
12480 Set_Last_Entity (Full, Last_Entity (Priv));
12481
12482 -- If access types have been recorded for later handling, keep them in
12483 -- the full view so that they get handled when the full view freeze
12484 -- node is expanded.
12485
12486 if Present (Freeze_Node (Priv))
12487 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12488 then
12489 Ensure_Freeze_Node (Full);
12490 Set_Access_Types_To_Process
12491 (Freeze_Node (Full),
12492 Access_Types_To_Process (Freeze_Node (Priv)));
12493 end if;
12494
12495 -- Swap the two entities. Now Private is the full type entity and Full
12496 -- is the private one. They will be swapped back at the end of the
12497 -- private part. This swapping ensures that the entity that is visible
12498 -- in the private part is the full declaration.
12499
12500 Exchange_Entities (Priv, Full);
12501 Append_Entity (Full, Scope (Full));
12502 end Copy_And_Swap;
12503
12504 -------------------------------------
12505 -- Copy_Array_Base_Type_Attributes --
12506 -------------------------------------
12507
12508 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12509 begin
12510 Set_Component_Alignment (T1, Component_Alignment (T2));
12511 Set_Component_Type (T1, Component_Type (T2));
12512 Set_Component_Size (T1, Component_Size (T2));
12513 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12514 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12515 Set_Has_Task (T1, Has_Task (T2));
12516 Set_Is_Packed (T1, Is_Packed (T2));
12517 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12518 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12519 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12520 end Copy_Array_Base_Type_Attributes;
12521
12522 -----------------------------------
12523 -- Copy_Array_Subtype_Attributes --
12524 -----------------------------------
12525
12526 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12527 begin
12528 Set_Size_Info (T1, T2);
12529
12530 Set_First_Index (T1, First_Index (T2));
12531 Set_Is_Aliased (T1, Is_Aliased (T2));
12532 Set_Is_Volatile (T1, Is_Volatile (T2));
12533 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12534 Set_Is_Constrained (T1, Is_Constrained (T2));
12535 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12536 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12537 Set_Convention (T1, Convention (T2));
12538 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12539 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12540 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12541 end Copy_Array_Subtype_Attributes;
12542
12543 -----------------------------------
12544 -- Create_Constrained_Components --
12545 -----------------------------------
12546
12547 procedure Create_Constrained_Components
12548 (Subt : Entity_Id;
12549 Decl_Node : Node_Id;
12550 Typ : Entity_Id;
12551 Constraints : Elist_Id)
12552 is
12553 Loc : constant Source_Ptr := Sloc (Subt);
12554 Comp_List : constant Elist_Id := New_Elmt_List;
12555 Parent_Type : constant Entity_Id := Etype (Typ);
12556 Assoc_List : constant List_Id := New_List;
12557 Discr_Val : Elmt_Id;
12558 Errors : Boolean;
12559 New_C : Entity_Id;
12560 Old_C : Entity_Id;
12561 Is_Static : Boolean := True;
12562
12563 procedure Collect_Fixed_Components (Typ : Entity_Id);
12564 -- Collect parent type components that do not appear in a variant part
12565
12566 procedure Create_All_Components;
12567 -- Iterate over Comp_List to create the components of the subtype
12568
12569 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12570 -- Creates a new component from Old_Compon, copying all the fields from
12571 -- it, including its Etype, inserts the new component in the Subt entity
12572 -- chain and returns the new component.
12573
12574 function Is_Variant_Record (T : Entity_Id) return Boolean;
12575 -- If true, and discriminants are static, collect only components from
12576 -- variants selected by discriminant values.
12577
12578 ------------------------------
12579 -- Collect_Fixed_Components --
12580 ------------------------------
12581
12582 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12583 begin
12584 -- Build association list for discriminants, and find components of the
12585 -- variant part selected by the values of the discriminants.
12586
12587 Old_C := First_Discriminant (Typ);
12588 Discr_Val := First_Elmt (Constraints);
12589 while Present (Old_C) loop
12590 Append_To (Assoc_List,
12591 Make_Component_Association (Loc,
12592 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12593 Expression => New_Copy (Node (Discr_Val))));
12594
12595 Next_Elmt (Discr_Val);
12596 Next_Discriminant (Old_C);
12597 end loop;
12598
12599 -- The tag and the possible parent component are unconditionally in
12600 -- the subtype.
12601
12602 if Is_Tagged_Type (Typ)
12603 or else Has_Controlled_Component (Typ)
12604 then
12605 Old_C := First_Component (Typ);
12606 while Present (Old_C) loop
12607 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12608 Append_Elmt (Old_C, Comp_List);
12609 end if;
12610
12611 Next_Component (Old_C);
12612 end loop;
12613 end if;
12614 end Collect_Fixed_Components;
12615
12616 ---------------------------
12617 -- Create_All_Components --
12618 ---------------------------
12619
12620 procedure Create_All_Components is
12621 Comp : Elmt_Id;
12622
12623 begin
12624 Comp := First_Elmt (Comp_List);
12625 while Present (Comp) loop
12626 Old_C := Node (Comp);
12627 New_C := Create_Component (Old_C);
12628
12629 Set_Etype
12630 (New_C,
12631 Constrain_Component_Type
12632 (Old_C, Subt, Decl_Node, Typ, Constraints));
12633 Set_Is_Public (New_C, Is_Public (Subt));
12634
12635 Next_Elmt (Comp);
12636 end loop;
12637 end Create_All_Components;
12638
12639 ----------------------
12640 -- Create_Component --
12641 ----------------------
12642
12643 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12644 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12645
12646 begin
12647 if Ekind (Old_Compon) = E_Discriminant
12648 and then Is_Completely_Hidden (Old_Compon)
12649 then
12650 -- This is a shadow discriminant created for a discriminant of
12651 -- the parent type, which needs to be present in the subtype.
12652 -- Give the shadow discriminant an internal name that cannot
12653 -- conflict with that of visible components.
12654
12655 Set_Chars (New_Compon, New_Internal_Name ('C'));
12656 end if;
12657
12658 -- Set the parent so we have a proper link for freezing etc. This is
12659 -- not a real parent pointer, since of course our parent does not own
12660 -- up to us and reference us, we are an illegitimate child of the
12661 -- original parent!
12662
12663 Set_Parent (New_Compon, Parent (Old_Compon));
12664
12665 -- If the old component's Esize was already determined and is a
12666 -- static value, then the new component simply inherits it. Otherwise
12667 -- the old component's size may require run-time determination, but
12668 -- the new component's size still might be statically determinable
12669 -- (if, for example it has a static constraint). In that case we want
12670 -- Layout_Type to recompute the component's size, so we reset its
12671 -- size and positional fields.
12672
12673 if Frontend_Layout_On_Target
12674 and then not Known_Static_Esize (Old_Compon)
12675 then
12676 Set_Esize (New_Compon, Uint_0);
12677 Init_Normalized_First_Bit (New_Compon);
12678 Init_Normalized_Position (New_Compon);
12679 Init_Normalized_Position_Max (New_Compon);
12680 end if;
12681
12682 -- We do not want this node marked as Comes_From_Source, since
12683 -- otherwise it would get first class status and a separate cross-
12684 -- reference line would be generated. Illegitimate children do not
12685 -- rate such recognition.
12686
12687 Set_Comes_From_Source (New_Compon, False);
12688
12689 -- But it is a real entity, and a birth certificate must be properly
12690 -- registered by entering it into the entity list.
12691
12692 Enter_Name (New_Compon);
12693
12694 return New_Compon;
12695 end Create_Component;
12696
12697 -----------------------
12698 -- Is_Variant_Record --
12699 -----------------------
12700
12701 function Is_Variant_Record (T : Entity_Id) return Boolean is
12702 begin
12703 return Nkind (Parent (T)) = N_Full_Type_Declaration
12704 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12705 and then Present (Component_List (Type_Definition (Parent (T))))
12706 and then
12707 Present
12708 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12709 end Is_Variant_Record;
12710
12711 -- Start of processing for Create_Constrained_Components
12712
12713 begin
12714 pragma Assert (Subt /= Base_Type (Subt));
12715 pragma Assert (Typ = Base_Type (Typ));
12716
12717 Set_First_Entity (Subt, Empty);
12718 Set_Last_Entity (Subt, Empty);
12719
12720 -- Check whether constraint is fully static, in which case we can
12721 -- optimize the list of components.
12722
12723 Discr_Val := First_Elmt (Constraints);
12724 while Present (Discr_Val) loop
12725 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12726 Is_Static := False;
12727 exit;
12728 end if;
12729
12730 Next_Elmt (Discr_Val);
12731 end loop;
12732
12733 Set_Has_Static_Discriminants (Subt, Is_Static);
12734
12735 Push_Scope (Subt);
12736
12737 -- Inherit the discriminants of the parent type
12738
12739 Add_Discriminants : declare
12740 Num_Disc : Int;
12741 Num_Gird : Int;
12742
12743 begin
12744 Num_Disc := 0;
12745 Old_C := First_Discriminant (Typ);
12746
12747 while Present (Old_C) loop
12748 Num_Disc := Num_Disc + 1;
12749 New_C := Create_Component (Old_C);
12750 Set_Is_Public (New_C, Is_Public (Subt));
12751 Next_Discriminant (Old_C);
12752 end loop;
12753
12754 -- For an untagged derived subtype, the number of discriminants may
12755 -- be smaller than the number of inherited discriminants, because
12756 -- several of them may be renamed by a single new discriminant or
12757 -- constrained. In this case, add the hidden discriminants back into
12758 -- the subtype, because they need to be present if the optimizer of
12759 -- the GCC 4.x back-end decides to break apart assignments between
12760 -- objects using the parent view into member-wise assignments.
12761
12762 Num_Gird := 0;
12763
12764 if Is_Derived_Type (Typ)
12765 and then not Is_Tagged_Type (Typ)
12766 then
12767 Old_C := First_Stored_Discriminant (Typ);
12768
12769 while Present (Old_C) loop
12770 Num_Gird := Num_Gird + 1;
12771 Next_Stored_Discriminant (Old_C);
12772 end loop;
12773 end if;
12774
12775 if Num_Gird > Num_Disc then
12776
12777 -- Find out multiple uses of new discriminants, and add hidden
12778 -- components for the extra renamed discriminants. We recognize
12779 -- multiple uses through the Corresponding_Discriminant of a
12780 -- new discriminant: if it constrains several old discriminants,
12781 -- this field points to the last one in the parent type. The
12782 -- stored discriminants of the derived type have the same name
12783 -- as those of the parent.
12784
12785 declare
12786 Constr : Elmt_Id;
12787 New_Discr : Entity_Id;
12788 Old_Discr : Entity_Id;
12789
12790 begin
12791 Constr := First_Elmt (Stored_Constraint (Typ));
12792 Old_Discr := First_Stored_Discriminant (Typ);
12793 while Present (Constr) loop
12794 if Is_Entity_Name (Node (Constr))
12795 and then Ekind (Entity (Node (Constr))) = E_Discriminant
12796 then
12797 New_Discr := Entity (Node (Constr));
12798
12799 if Chars (Corresponding_Discriminant (New_Discr)) /=
12800 Chars (Old_Discr)
12801 then
12802 -- The new discriminant has been used to rename a
12803 -- subsequent old discriminant. Introduce a shadow
12804 -- component for the current old discriminant.
12805
12806 New_C := Create_Component (Old_Discr);
12807 Set_Original_Record_Component (New_C, Old_Discr);
12808 end if;
12809
12810 else
12811 -- The constraint has eliminated the old discriminant.
12812 -- Introduce a shadow component.
12813
12814 New_C := Create_Component (Old_Discr);
12815 Set_Original_Record_Component (New_C, Old_Discr);
12816 end if;
12817
12818 Next_Elmt (Constr);
12819 Next_Stored_Discriminant (Old_Discr);
12820 end loop;
12821 end;
12822 end if;
12823 end Add_Discriminants;
12824
12825 if Is_Static
12826 and then Is_Variant_Record (Typ)
12827 then
12828 Collect_Fixed_Components (Typ);
12829
12830 Gather_Components (
12831 Typ,
12832 Component_List (Type_Definition (Parent (Typ))),
12833 Governed_By => Assoc_List,
12834 Into => Comp_List,
12835 Report_Errors => Errors);
12836 pragma Assert (not Errors);
12837
12838 Create_All_Components;
12839
12840 -- If the subtype declaration is created for a tagged type derivation
12841 -- with constraints, we retrieve the record definition of the parent
12842 -- type to select the components of the proper variant.
12843
12844 elsif Is_Static
12845 and then Is_Tagged_Type (Typ)
12846 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
12847 and then
12848 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
12849 and then Is_Variant_Record (Parent_Type)
12850 then
12851 Collect_Fixed_Components (Typ);
12852
12853 Gather_Components (
12854 Typ,
12855 Component_List (Type_Definition (Parent (Parent_Type))),
12856 Governed_By => Assoc_List,
12857 Into => Comp_List,
12858 Report_Errors => Errors);
12859 pragma Assert (not Errors);
12860
12861 -- If the tagged derivation has a type extension, collect all the
12862 -- new components therein.
12863
12864 if Present
12865 (Record_Extension_Part (Type_Definition (Parent (Typ))))
12866 then
12867 Old_C := First_Component (Typ);
12868 while Present (Old_C) loop
12869 if Original_Record_Component (Old_C) = Old_C
12870 and then Chars (Old_C) /= Name_uTag
12871 and then Chars (Old_C) /= Name_uParent
12872 then
12873 Append_Elmt (Old_C, Comp_List);
12874 end if;
12875
12876 Next_Component (Old_C);
12877 end loop;
12878 end if;
12879
12880 Create_All_Components;
12881
12882 else
12883 -- If discriminants are not static, or if this is a multi-level type
12884 -- extension, we have to include all components of the parent type.
12885
12886 Old_C := First_Component (Typ);
12887 while Present (Old_C) loop
12888 New_C := Create_Component (Old_C);
12889
12890 Set_Etype
12891 (New_C,
12892 Constrain_Component_Type
12893 (Old_C, Subt, Decl_Node, Typ, Constraints));
12894 Set_Is_Public (New_C, Is_Public (Subt));
12895
12896 Next_Component (Old_C);
12897 end loop;
12898 end if;
12899
12900 End_Scope;
12901 end Create_Constrained_Components;
12902
12903 ------------------------------------------
12904 -- Decimal_Fixed_Point_Type_Declaration --
12905 ------------------------------------------
12906
12907 procedure Decimal_Fixed_Point_Type_Declaration
12908 (T : Entity_Id;
12909 Def : Node_Id)
12910 is
12911 Loc : constant Source_Ptr := Sloc (Def);
12912 Digs_Expr : constant Node_Id := Digits_Expression (Def);
12913 Delta_Expr : constant Node_Id := Delta_Expression (Def);
12914 Implicit_Base : Entity_Id;
12915 Digs_Val : Uint;
12916 Delta_Val : Ureal;
12917 Scale_Val : Uint;
12918 Bound_Val : Ureal;
12919
12920 begin
12921 Check_SPARK_Restriction
12922 ("decimal fixed point type is not allowed", Def);
12923 Check_Restriction (No_Fixed_Point, Def);
12924
12925 -- Create implicit base type
12926
12927 Implicit_Base :=
12928 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
12929 Set_Etype (Implicit_Base, Implicit_Base);
12930
12931 -- Analyze and process delta expression
12932
12933 Analyze_And_Resolve (Delta_Expr, Universal_Real);
12934
12935 Check_Delta_Expression (Delta_Expr);
12936 Delta_Val := Expr_Value_R (Delta_Expr);
12937
12938 -- Check delta is power of 10, and determine scale value from it
12939
12940 declare
12941 Val : Ureal;
12942
12943 begin
12944 Scale_Val := Uint_0;
12945 Val := Delta_Val;
12946
12947 if Val < Ureal_1 then
12948 while Val < Ureal_1 loop
12949 Val := Val * Ureal_10;
12950 Scale_Val := Scale_Val + 1;
12951 end loop;
12952
12953 if Scale_Val > 18 then
12954 Error_Msg_N ("scale exceeds maximum value of 18", Def);
12955 Scale_Val := UI_From_Int (+18);
12956 end if;
12957
12958 else
12959 while Val > Ureal_1 loop
12960 Val := Val / Ureal_10;
12961 Scale_Val := Scale_Val - 1;
12962 end loop;
12963
12964 if Scale_Val < -18 then
12965 Error_Msg_N ("scale is less than minimum value of -18", Def);
12966 Scale_Val := UI_From_Int (-18);
12967 end if;
12968 end if;
12969
12970 if Val /= Ureal_1 then
12971 Error_Msg_N ("delta expression must be a power of 10", Def);
12972 Delta_Val := Ureal_10 ** (-Scale_Val);
12973 end if;
12974 end;
12975
12976 -- Set delta, scale and small (small = delta for decimal type)
12977
12978 Set_Delta_Value (Implicit_Base, Delta_Val);
12979 Set_Scale_Value (Implicit_Base, Scale_Val);
12980 Set_Small_Value (Implicit_Base, Delta_Val);
12981
12982 -- Analyze and process digits expression
12983
12984 Analyze_And_Resolve (Digs_Expr, Any_Integer);
12985 Check_Digits_Expression (Digs_Expr);
12986 Digs_Val := Expr_Value (Digs_Expr);
12987
12988 if Digs_Val > 18 then
12989 Digs_Val := UI_From_Int (+18);
12990 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
12991 end if;
12992
12993 Set_Digits_Value (Implicit_Base, Digs_Val);
12994 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
12995
12996 -- Set range of base type from digits value for now. This will be
12997 -- expanded to represent the true underlying base range by Freeze.
12998
12999 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13000
13001 -- Note: We leave size as zero for now, size will be set at freeze
13002 -- time. We have to do this for ordinary fixed-point, because the size
13003 -- depends on the specified small, and we might as well do the same for
13004 -- decimal fixed-point.
13005
13006 pragma Assert (Esize (Implicit_Base) = Uint_0);
13007
13008 -- If there are bounds given in the declaration use them as the
13009 -- bounds of the first named subtype.
13010
13011 if Present (Real_Range_Specification (Def)) then
13012 declare
13013 RRS : constant Node_Id := Real_Range_Specification (Def);
13014 Low : constant Node_Id := Low_Bound (RRS);
13015 High : constant Node_Id := High_Bound (RRS);
13016 Low_Val : Ureal;
13017 High_Val : Ureal;
13018
13019 begin
13020 Analyze_And_Resolve (Low, Any_Real);
13021 Analyze_And_Resolve (High, Any_Real);
13022 Check_Real_Bound (Low);
13023 Check_Real_Bound (High);
13024 Low_Val := Expr_Value_R (Low);
13025 High_Val := Expr_Value_R (High);
13026
13027 if Low_Val < (-Bound_Val) then
13028 Error_Msg_N
13029 ("range low bound too small for digits value", Low);
13030 Low_Val := -Bound_Val;
13031 end if;
13032
13033 if High_Val > Bound_Val then
13034 Error_Msg_N
13035 ("range high bound too large for digits value", High);
13036 High_Val := Bound_Val;
13037 end if;
13038
13039 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13040 end;
13041
13042 -- If no explicit range, use range that corresponds to given
13043 -- digits value. This will end up as the final range for the
13044 -- first subtype.
13045
13046 else
13047 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13048 end if;
13049
13050 -- Complete entity for first subtype
13051
13052 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13053 Set_Etype (T, Implicit_Base);
13054 Set_Size_Info (T, Implicit_Base);
13055 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13056 Set_Digits_Value (T, Digs_Val);
13057 Set_Delta_Value (T, Delta_Val);
13058 Set_Small_Value (T, Delta_Val);
13059 Set_Scale_Value (T, Scale_Val);
13060 Set_Is_Constrained (T);
13061 end Decimal_Fixed_Point_Type_Declaration;
13062
13063 -----------------------------------
13064 -- Derive_Progenitor_Subprograms --
13065 -----------------------------------
13066
13067 procedure Derive_Progenitor_Subprograms
13068 (Parent_Type : Entity_Id;
13069 Tagged_Type : Entity_Id)
13070 is
13071 E : Entity_Id;
13072 Elmt : Elmt_Id;
13073 Iface : Entity_Id;
13074 Iface_Elmt : Elmt_Id;
13075 Iface_Subp : Entity_Id;
13076 New_Subp : Entity_Id := Empty;
13077 Prim_Elmt : Elmt_Id;
13078 Subp : Entity_Id;
13079 Typ : Entity_Id;
13080
13081 begin
13082 pragma Assert (Ada_Version >= Ada_2005
13083 and then Is_Record_Type (Tagged_Type)
13084 and then Is_Tagged_Type (Tagged_Type)
13085 and then Has_Interfaces (Tagged_Type));
13086
13087 -- Step 1: Transfer to the full-view primitives associated with the
13088 -- partial-view that cover interface primitives. Conceptually this
13089 -- work should be done later by Process_Full_View; done here to
13090 -- simplify its implementation at later stages. It can be safely
13091 -- done here because interfaces must be visible in the partial and
13092 -- private view (RM 7.3(7.3/2)).
13093
13094 -- Small optimization: This work is only required if the parent may
13095 -- have entities whose Alias attribute reference an interface primitive.
13096 -- Such a situation may occur if the parent is an abstract type and the
13097 -- primitive has not been yet overridden or if the parent is a generic
13098 -- formal type covering interfaces.
13099
13100 -- If the tagged type is not abstract, it cannot have abstract
13101 -- primitives (the only entities in the list of primitives of
13102 -- non-abstract tagged types that can reference abstract primitives
13103 -- through its Alias attribute are the internal entities that have
13104 -- attribute Interface_Alias, and these entities are generated later
13105 -- by Add_Internal_Interface_Entities).
13106
13107 if In_Private_Part (Current_Scope)
13108 and then (Is_Abstract_Type (Parent_Type)
13109 or else
13110 Is_Generic_Type (Parent_Type))
13111 then
13112 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13113 while Present (Elmt) loop
13114 Subp := Node (Elmt);
13115
13116 -- At this stage it is not possible to have entities in the list
13117 -- of primitives that have attribute Interface_Alias.
13118
13119 pragma Assert (No (Interface_Alias (Subp)));
13120
13121 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13122
13123 if Is_Interface (Typ) then
13124 E := Find_Primitive_Covering_Interface
13125 (Tagged_Type => Tagged_Type,
13126 Iface_Prim => Subp);
13127
13128 if Present (E)
13129 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13130 then
13131 Replace_Elmt (Elmt, E);
13132 Remove_Homonym (Subp);
13133 end if;
13134 end if;
13135
13136 Next_Elmt (Elmt);
13137 end loop;
13138 end if;
13139
13140 -- Step 2: Add primitives of progenitors that are not implemented by
13141 -- parents of Tagged_Type.
13142
13143 if Present (Interfaces (Base_Type (Tagged_Type))) then
13144 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13145 while Present (Iface_Elmt) loop
13146 Iface := Node (Iface_Elmt);
13147
13148 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13149 while Present (Prim_Elmt) loop
13150 Iface_Subp := Node (Prim_Elmt);
13151
13152 -- Exclude derivation of predefined primitives except those
13153 -- that come from source, or are inherited from one that comes
13154 -- from source. Required to catch declarations of equality
13155 -- operators of interfaces. For example:
13156
13157 -- type Iface is interface;
13158 -- function "=" (Left, Right : Iface) return Boolean;
13159
13160 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13161 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13162 then
13163 E := Find_Primitive_Covering_Interface
13164 (Tagged_Type => Tagged_Type,
13165 Iface_Prim => Iface_Subp);
13166
13167 -- If not found we derive a new primitive leaving its alias
13168 -- attribute referencing the interface primitive.
13169
13170 if No (E) then
13171 Derive_Subprogram
13172 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13173
13174 -- Ada 2012 (AI05-0197): If the covering primitive's name
13175 -- differs from the name of the interface primitive then it
13176 -- is a private primitive inherited from a parent type. In
13177 -- such case, given that Tagged_Type covers the interface,
13178 -- the inherited private primitive becomes visible. For such
13179 -- purpose we add a new entity that renames the inherited
13180 -- private primitive.
13181
13182 elsif Chars (E) /= Chars (Iface_Subp) then
13183 pragma Assert (Has_Suffix (E, 'P'));
13184 Derive_Subprogram
13185 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13186 Set_Alias (New_Subp, E);
13187 Set_Is_Abstract_Subprogram (New_Subp,
13188 Is_Abstract_Subprogram (E));
13189
13190 -- Propagate to the full view interface entities associated
13191 -- with the partial view.
13192
13193 elsif In_Private_Part (Current_Scope)
13194 and then Present (Alias (E))
13195 and then Alias (E) = Iface_Subp
13196 and then
13197 List_Containing (Parent (E)) /=
13198 Private_Declarations
13199 (Specification
13200 (Unit_Declaration_Node (Current_Scope)))
13201 then
13202 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13203 end if;
13204 end if;
13205
13206 Next_Elmt (Prim_Elmt);
13207 end loop;
13208
13209 Next_Elmt (Iface_Elmt);
13210 end loop;
13211 end if;
13212 end Derive_Progenitor_Subprograms;
13213
13214 -----------------------
13215 -- Derive_Subprogram --
13216 -----------------------
13217
13218 procedure Derive_Subprogram
13219 (New_Subp : in out Entity_Id;
13220 Parent_Subp : Entity_Id;
13221 Derived_Type : Entity_Id;
13222 Parent_Type : Entity_Id;
13223 Actual_Subp : Entity_Id := Empty)
13224 is
13225 Formal : Entity_Id;
13226 -- Formal parameter of parent primitive operation
13227
13228 Formal_Of_Actual : Entity_Id;
13229 -- Formal parameter of actual operation, when the derivation is to
13230 -- create a renaming for a primitive operation of an actual in an
13231 -- instantiation.
13232
13233 New_Formal : Entity_Id;
13234 -- Formal of inherited operation
13235
13236 Visible_Subp : Entity_Id := Parent_Subp;
13237
13238 function Is_Private_Overriding return Boolean;
13239 -- If Subp is a private overriding of a visible operation, the inherited
13240 -- operation derives from the overridden op (even though its body is the
13241 -- overriding one) and the inherited operation is visible now. See
13242 -- sem_disp to see the full details of the handling of the overridden
13243 -- subprogram, which is removed from the list of primitive operations of
13244 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13245 -- and used to diagnose abstract operations that need overriding in the
13246 -- derived type.
13247
13248 procedure Replace_Type (Id, New_Id : Entity_Id);
13249 -- When the type is an anonymous access type, create a new access type
13250 -- designating the derived type.
13251
13252 procedure Set_Derived_Name;
13253 -- This procedure sets the appropriate Chars name for New_Subp. This
13254 -- is normally just a copy of the parent name. An exception arises for
13255 -- type support subprograms, where the name is changed to reflect the
13256 -- name of the derived type, e.g. if type foo is derived from type bar,
13257 -- then a procedure barDA is derived with a name fooDA.
13258
13259 ---------------------------
13260 -- Is_Private_Overriding --
13261 ---------------------------
13262
13263 function Is_Private_Overriding return Boolean is
13264 Prev : Entity_Id;
13265
13266 begin
13267 -- If the parent is not a dispatching operation there is no
13268 -- need to investigate overridings
13269
13270 if not Is_Dispatching_Operation (Parent_Subp) then
13271 return False;
13272 end if;
13273
13274 -- The visible operation that is overridden is a homonym of the
13275 -- parent subprogram. We scan the homonym chain to find the one
13276 -- whose alias is the subprogram we are deriving.
13277
13278 Prev := Current_Entity (Parent_Subp);
13279 while Present (Prev) loop
13280 if Ekind (Prev) = Ekind (Parent_Subp)
13281 and then Alias (Prev) = Parent_Subp
13282 and then Scope (Parent_Subp) = Scope (Prev)
13283 and then not Is_Hidden (Prev)
13284 then
13285 Visible_Subp := Prev;
13286 return True;
13287 end if;
13288
13289 Prev := Homonym (Prev);
13290 end loop;
13291
13292 return False;
13293 end Is_Private_Overriding;
13294
13295 ------------------
13296 -- Replace_Type --
13297 ------------------
13298
13299 procedure Replace_Type (Id, New_Id : Entity_Id) is
13300 Acc_Type : Entity_Id;
13301 Par : constant Node_Id := Parent (Derived_Type);
13302
13303 begin
13304 -- When the type is an anonymous access type, create a new access
13305 -- type designating the derived type. This itype must be elaborated
13306 -- at the point of the derivation, not on subsequent calls that may
13307 -- be out of the proper scope for Gigi, so we insert a reference to
13308 -- it after the derivation.
13309
13310 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13311 declare
13312 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13313
13314 begin
13315 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13316 and then Present (Full_View (Desig_Typ))
13317 and then not Is_Private_Type (Parent_Type)
13318 then
13319 Desig_Typ := Full_View (Desig_Typ);
13320 end if;
13321
13322 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13323
13324 -- Ada 2005 (AI-251): Handle also derivations of abstract
13325 -- interface primitives.
13326
13327 or else (Is_Interface (Desig_Typ)
13328 and then not Is_Class_Wide_Type (Desig_Typ))
13329 then
13330 Acc_Type := New_Copy (Etype (Id));
13331 Set_Etype (Acc_Type, Acc_Type);
13332 Set_Scope (Acc_Type, New_Subp);
13333
13334 -- Compute size of anonymous access type
13335
13336 if Is_Array_Type (Desig_Typ)
13337 and then not Is_Constrained (Desig_Typ)
13338 then
13339 Init_Size (Acc_Type, 2 * System_Address_Size);
13340 else
13341 Init_Size (Acc_Type, System_Address_Size);
13342 end if;
13343
13344 Init_Alignment (Acc_Type);
13345 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13346
13347 Set_Etype (New_Id, Acc_Type);
13348 Set_Scope (New_Id, New_Subp);
13349
13350 -- Create a reference to it
13351 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13352
13353 else
13354 Set_Etype (New_Id, Etype (Id));
13355 end if;
13356 end;
13357
13358 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13359 or else
13360 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13361 and then Present (Full_View (Etype (Id)))
13362 and then
13363 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13364 then
13365 -- Constraint checks on formals are generated during expansion,
13366 -- based on the signature of the original subprogram. The bounds
13367 -- of the derived type are not relevant, and thus we can use
13368 -- the base type for the formals. However, the return type may be
13369 -- used in a context that requires that the proper static bounds
13370 -- be used (a case statement, for example) and for those cases
13371 -- we must use the derived type (first subtype), not its base.
13372
13373 -- If the derived_type_definition has no constraints, we know that
13374 -- the derived type has the same constraints as the first subtype
13375 -- of the parent, and we can also use it rather than its base,
13376 -- which can lead to more efficient code.
13377
13378 if Etype (Id) = Parent_Type then
13379 if Is_Scalar_Type (Parent_Type)
13380 and then
13381 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13382 then
13383 Set_Etype (New_Id, Derived_Type);
13384
13385 elsif Nkind (Par) = N_Full_Type_Declaration
13386 and then
13387 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13388 and then
13389 Is_Entity_Name
13390 (Subtype_Indication (Type_Definition (Par)))
13391 then
13392 Set_Etype (New_Id, Derived_Type);
13393
13394 else
13395 Set_Etype (New_Id, Base_Type (Derived_Type));
13396 end if;
13397
13398 else
13399 Set_Etype (New_Id, Base_Type (Derived_Type));
13400 end if;
13401
13402 else
13403 Set_Etype (New_Id, Etype (Id));
13404 end if;
13405 end Replace_Type;
13406
13407 ----------------------
13408 -- Set_Derived_Name --
13409 ----------------------
13410
13411 procedure Set_Derived_Name is
13412 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13413 begin
13414 if Nm = TSS_Null then
13415 Set_Chars (New_Subp, Chars (Parent_Subp));
13416 else
13417 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13418 end if;
13419 end Set_Derived_Name;
13420
13421 -- Start of processing for Derive_Subprogram
13422
13423 begin
13424 New_Subp :=
13425 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13426 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13427 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13428
13429 -- Check whether the inherited subprogram is a private operation that
13430 -- should be inherited but not yet made visible. Such subprograms can
13431 -- become visible at a later point (e.g., the private part of a public
13432 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13433 -- following predicate is true, then this is not such a private
13434 -- operation and the subprogram simply inherits the name of the parent
13435 -- subprogram. Note the special check for the names of controlled
13436 -- operations, which are currently exempted from being inherited with
13437 -- a hidden name because they must be findable for generation of
13438 -- implicit run-time calls.
13439
13440 if not Is_Hidden (Parent_Subp)
13441 or else Is_Internal (Parent_Subp)
13442 or else Is_Private_Overriding
13443 or else Is_Internal_Name (Chars (Parent_Subp))
13444 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13445 Name_Adjust,
13446 Name_Finalize)
13447 then
13448 Set_Derived_Name;
13449
13450 -- An inherited dispatching equality will be overridden by an internally
13451 -- generated one, or by an explicit one, so preserve its name and thus
13452 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13453 -- private operation it may become invisible if the full view has
13454 -- progenitors, and the dispatch table will be malformed.
13455 -- We check that the type is limited to handle the anomalous declaration
13456 -- of Limited_Controlled, which is derived from a non-limited type, and
13457 -- which is handled specially elsewhere as well.
13458
13459 elsif Chars (Parent_Subp) = Name_Op_Eq
13460 and then Is_Dispatching_Operation (Parent_Subp)
13461 and then Etype (Parent_Subp) = Standard_Boolean
13462 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13463 and then
13464 Etype (First_Formal (Parent_Subp)) =
13465 Etype (Next_Formal (First_Formal (Parent_Subp)))
13466 then
13467 Set_Derived_Name;
13468
13469 -- If parent is hidden, this can be a regular derivation if the
13470 -- parent is immediately visible in a non-instantiating context,
13471 -- or if we are in the private part of an instance. This test
13472 -- should still be refined ???
13473
13474 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13475 -- operation as a non-visible operation in cases where the parent
13476 -- subprogram might not be visible now, but was visible within the
13477 -- original generic, so it would be wrong to make the inherited
13478 -- subprogram non-visible now. (Not clear if this test is fully
13479 -- correct; are there any cases where we should declare the inherited
13480 -- operation as not visible to avoid it being overridden, e.g., when
13481 -- the parent type is a generic actual with private primitives ???)
13482
13483 -- (they should be treated the same as other private inherited
13484 -- subprograms, but it's not clear how to do this cleanly). ???
13485
13486 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13487 and then Is_Immediately_Visible (Parent_Subp)
13488 and then not In_Instance)
13489 or else In_Instance_Not_Visible
13490 then
13491 Set_Derived_Name;
13492
13493 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13494 -- overrides an interface primitive because interface primitives
13495 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13496
13497 elsif Ada_Version >= Ada_2005
13498 and then Is_Dispatching_Operation (Parent_Subp)
13499 and then Covers_Some_Interface (Parent_Subp)
13500 then
13501 Set_Derived_Name;
13502
13503 -- Otherwise, the type is inheriting a private operation, so enter
13504 -- it with a special name so it can't be overridden.
13505
13506 else
13507 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13508 end if;
13509
13510 Set_Parent (New_Subp, Parent (Derived_Type));
13511
13512 if Present (Actual_Subp) then
13513 Replace_Type (Actual_Subp, New_Subp);
13514 else
13515 Replace_Type (Parent_Subp, New_Subp);
13516 end if;
13517
13518 Conditional_Delay (New_Subp, Parent_Subp);
13519
13520 -- If we are creating a renaming for a primitive operation of an
13521 -- actual of a generic derived type, we must examine the signature
13522 -- of the actual primitive, not that of the generic formal, which for
13523 -- example may be an interface. However the name and initial value
13524 -- of the inherited operation are those of the formal primitive.
13525
13526 Formal := First_Formal (Parent_Subp);
13527
13528 if Present (Actual_Subp) then
13529 Formal_Of_Actual := First_Formal (Actual_Subp);
13530 else
13531 Formal_Of_Actual := Empty;
13532 end if;
13533
13534 while Present (Formal) loop
13535 New_Formal := New_Copy (Formal);
13536
13537 -- Normally we do not go copying parents, but in the case of
13538 -- formals, we need to link up to the declaration (which is the
13539 -- parameter specification), and it is fine to link up to the
13540 -- original formal's parameter specification in this case.
13541
13542 Set_Parent (New_Formal, Parent (Formal));
13543 Append_Entity (New_Formal, New_Subp);
13544
13545 if Present (Formal_Of_Actual) then
13546 Replace_Type (Formal_Of_Actual, New_Formal);
13547 Next_Formal (Formal_Of_Actual);
13548 else
13549 Replace_Type (Formal, New_Formal);
13550 end if;
13551
13552 Next_Formal (Formal);
13553 end loop;
13554
13555 -- If this derivation corresponds to a tagged generic actual, then
13556 -- primitive operations rename those of the actual. Otherwise the
13557 -- primitive operations rename those of the parent type, If the parent
13558 -- renames an intrinsic operator, so does the new subprogram. We except
13559 -- concatenation, which is always properly typed, and does not get
13560 -- expanded as other intrinsic operations.
13561
13562 if No (Actual_Subp) then
13563 if Is_Intrinsic_Subprogram (Parent_Subp) then
13564 Set_Is_Intrinsic_Subprogram (New_Subp);
13565
13566 if Present (Alias (Parent_Subp))
13567 and then Chars (Parent_Subp) /= Name_Op_Concat
13568 then
13569 Set_Alias (New_Subp, Alias (Parent_Subp));
13570 else
13571 Set_Alias (New_Subp, Parent_Subp);
13572 end if;
13573
13574 else
13575 Set_Alias (New_Subp, Parent_Subp);
13576 end if;
13577
13578 else
13579 Set_Alias (New_Subp, Actual_Subp);
13580 end if;
13581
13582 -- Derived subprograms of a tagged type must inherit the convention
13583 -- of the parent subprogram (a requirement of AI-117). Derived
13584 -- subprograms of untagged types simply get convention Ada by default.
13585
13586 -- If the derived type is a tagged generic formal type with unknown
13587 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13588
13589 -- However, if the type is derived from a generic formal, the further
13590 -- inherited subprogram has the convention of the non-generic ancestor.
13591 -- Otherwise there would be no way to override the operation.
13592 -- (This is subject to forthcoming ARG discussions).
13593
13594 if Is_Tagged_Type (Derived_Type) then
13595 if Is_Generic_Type (Derived_Type)
13596 and then Has_Unknown_Discriminants (Derived_Type)
13597 then
13598 Set_Convention (New_Subp, Convention_Intrinsic);
13599
13600 else
13601 if Is_Generic_Type (Parent_Type)
13602 and then Has_Unknown_Discriminants (Parent_Type)
13603 then
13604 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13605 else
13606 Set_Convention (New_Subp, Convention (Parent_Subp));
13607 end if;
13608 end if;
13609 end if;
13610
13611 -- Predefined controlled operations retain their name even if the parent
13612 -- is hidden (see above), but they are not primitive operations if the
13613 -- ancestor is not visible, for example if the parent is a private
13614 -- extension completed with a controlled extension. Note that a full
13615 -- type that is controlled can break privacy: the flag Is_Controlled is
13616 -- set on both views of the type.
13617
13618 if Is_Controlled (Parent_Type)
13619 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13620 Name_Adjust,
13621 Name_Finalize)
13622 and then Is_Hidden (Parent_Subp)
13623 and then not Is_Visibly_Controlled (Parent_Type)
13624 then
13625 Set_Is_Hidden (New_Subp);
13626 end if;
13627
13628 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13629 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13630
13631 if Ekind (Parent_Subp) = E_Procedure then
13632 Set_Is_Valued_Procedure
13633 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13634 else
13635 Set_Has_Controlling_Result
13636 (New_Subp, Has_Controlling_Result (Parent_Subp));
13637 end if;
13638
13639 -- No_Return must be inherited properly. If this is overridden in the
13640 -- case of a dispatching operation, then a check is made in Sem_Disp
13641 -- that the overriding operation is also No_Return (no such check is
13642 -- required for the case of non-dispatching operation.
13643
13644 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13645
13646 -- A derived function with a controlling result is abstract. If the
13647 -- Derived_Type is a nonabstract formal generic derived type, then
13648 -- inherited operations are not abstract: the required check is done at
13649 -- instantiation time. If the derivation is for a generic actual, the
13650 -- function is not abstract unless the actual is.
13651
13652 if Is_Generic_Type (Derived_Type)
13653 and then not Is_Abstract_Type (Derived_Type)
13654 then
13655 null;
13656
13657 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13658 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13659
13660 elsif Ada_Version >= Ada_2005
13661 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13662 or else (Is_Tagged_Type (Derived_Type)
13663 and then Etype (New_Subp) = Derived_Type
13664 and then not Is_Null_Extension (Derived_Type))
13665 or else (Is_Tagged_Type (Derived_Type)
13666 and then Ekind (Etype (New_Subp)) =
13667 E_Anonymous_Access_Type
13668 and then Designated_Type (Etype (New_Subp)) =
13669 Derived_Type
13670 and then not Is_Null_Extension (Derived_Type)))
13671 and then No (Actual_Subp)
13672 then
13673 if not Is_Tagged_Type (Derived_Type)
13674 or else Is_Abstract_Type (Derived_Type)
13675 or else Is_Abstract_Subprogram (Alias (New_Subp))
13676 then
13677 Set_Is_Abstract_Subprogram (New_Subp);
13678 else
13679 Set_Requires_Overriding (New_Subp);
13680 end if;
13681
13682 elsif Ada_Version < Ada_2005
13683 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13684 or else (Is_Tagged_Type (Derived_Type)
13685 and then Etype (New_Subp) = Derived_Type
13686 and then No (Actual_Subp)))
13687 then
13688 Set_Is_Abstract_Subprogram (New_Subp);
13689
13690 -- AI05-0097 : an inherited operation that dispatches on result is
13691 -- abstract if the derived type is abstract, even if the parent type
13692 -- is concrete and the derived type is a null extension.
13693
13694 elsif Has_Controlling_Result (Alias (New_Subp))
13695 and then Is_Abstract_Type (Etype (New_Subp))
13696 then
13697 Set_Is_Abstract_Subprogram (New_Subp);
13698
13699 -- Finally, if the parent type is abstract we must verify that all
13700 -- inherited operations are either non-abstract or overridden, or that
13701 -- the derived type itself is abstract (this check is performed at the
13702 -- end of a package declaration, in Check_Abstract_Overriding). A
13703 -- private overriding in the parent type will not be visible in the
13704 -- derivation if we are not in an inner package or in a child unit of
13705 -- the parent type, in which case the abstractness of the inherited
13706 -- operation is carried to the new subprogram.
13707
13708 elsif Is_Abstract_Type (Parent_Type)
13709 and then not In_Open_Scopes (Scope (Parent_Type))
13710 and then Is_Private_Overriding
13711 and then Is_Abstract_Subprogram (Visible_Subp)
13712 then
13713 if No (Actual_Subp) then
13714 Set_Alias (New_Subp, Visible_Subp);
13715 Set_Is_Abstract_Subprogram (New_Subp, True);
13716
13717 else
13718 -- If this is a derivation for an instance of a formal derived
13719 -- type, abstractness comes from the primitive operation of the
13720 -- actual, not from the operation inherited from the ancestor.
13721
13722 Set_Is_Abstract_Subprogram
13723 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13724 end if;
13725 end if;
13726
13727 New_Overloaded_Entity (New_Subp, Derived_Type);
13728
13729 -- Check for case of a derived subprogram for the instantiation of a
13730 -- formal derived tagged type, if so mark the subprogram as dispatching
13731 -- and inherit the dispatching attributes of the actual subprogram. The
13732 -- derived subprogram is effectively renaming of the actual subprogram,
13733 -- so it needs to have the same attributes as the actual.
13734
13735 if Present (Actual_Subp)
13736 and then Is_Dispatching_Operation (Actual_Subp)
13737 then
13738 Set_Is_Dispatching_Operation (New_Subp);
13739
13740 if Present (DTC_Entity (Actual_Subp)) then
13741 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13742 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13743 end if;
13744 end if;
13745
13746 -- Indicate that a derived subprogram does not require a body and that
13747 -- it does not require processing of default expressions.
13748
13749 Set_Has_Completion (New_Subp);
13750 Set_Default_Expressions_Processed (New_Subp);
13751
13752 if Ekind (New_Subp) = E_Function then
13753 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13754 end if;
13755 end Derive_Subprogram;
13756
13757 ------------------------
13758 -- Derive_Subprograms --
13759 ------------------------
13760
13761 procedure Derive_Subprograms
13762 (Parent_Type : Entity_Id;
13763 Derived_Type : Entity_Id;
13764 Generic_Actual : Entity_Id := Empty)
13765 is
13766 Op_List : constant Elist_Id :=
13767 Collect_Primitive_Operations (Parent_Type);
13768
13769 function Check_Derived_Type return Boolean;
13770 -- Check that all the entities derived from Parent_Type are found in
13771 -- the list of primitives of Derived_Type exactly in the same order.
13772
13773 procedure Derive_Interface_Subprogram
13774 (New_Subp : in out Entity_Id;
13775 Subp : Entity_Id;
13776 Actual_Subp : Entity_Id);
13777 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13778 -- (which is an interface primitive). If Generic_Actual is present then
13779 -- Actual_Subp is the actual subprogram corresponding with the generic
13780 -- subprogram Subp.
13781
13782 function Check_Derived_Type return Boolean is
13783 E : Entity_Id;
13784 Elmt : Elmt_Id;
13785 List : Elist_Id;
13786 New_Subp : Entity_Id;
13787 Op_Elmt : Elmt_Id;
13788 Subp : Entity_Id;
13789
13790 begin
13791 -- Traverse list of entities in the current scope searching for
13792 -- an incomplete type whose full-view is derived type
13793
13794 E := First_Entity (Scope (Derived_Type));
13795 while Present (E) and then E /= Derived_Type loop
13796 if Ekind (E) = E_Incomplete_Type
13797 and then Present (Full_View (E))
13798 and then Full_View (E) = Derived_Type
13799 then
13800 -- Disable this test if Derived_Type completes an incomplete
13801 -- type because in such case more primitives can be added
13802 -- later to the list of primitives of Derived_Type by routine
13803 -- Process_Incomplete_Dependents
13804
13805 return True;
13806 end if;
13807
13808 E := Next_Entity (E);
13809 end loop;
13810
13811 List := Collect_Primitive_Operations (Derived_Type);
13812 Elmt := First_Elmt (List);
13813
13814 Op_Elmt := First_Elmt (Op_List);
13815 while Present (Op_Elmt) loop
13816 Subp := Node (Op_Elmt);
13817 New_Subp := Node (Elmt);
13818
13819 -- At this early stage Derived_Type has no entities with attribute
13820 -- Interface_Alias. In addition, such primitives are always
13821 -- located at the end of the list of primitives of Parent_Type.
13822 -- Therefore, if found we can safely stop processing pending
13823 -- entities.
13824
13825 exit when Present (Interface_Alias (Subp));
13826
13827 -- Handle hidden entities
13828
13829 if not Is_Predefined_Dispatching_Operation (Subp)
13830 and then Is_Hidden (Subp)
13831 then
13832 if Present (New_Subp)
13833 and then Primitive_Names_Match (Subp, New_Subp)
13834 then
13835 Next_Elmt (Elmt);
13836 end if;
13837
13838 else
13839 if not Present (New_Subp)
13840 or else Ekind (Subp) /= Ekind (New_Subp)
13841 or else not Primitive_Names_Match (Subp, New_Subp)
13842 then
13843 return False;
13844 end if;
13845
13846 Next_Elmt (Elmt);
13847 end if;
13848
13849 Next_Elmt (Op_Elmt);
13850 end loop;
13851
13852 return True;
13853 end Check_Derived_Type;
13854
13855 ---------------------------------
13856 -- Derive_Interface_Subprogram --
13857 ---------------------------------
13858
13859 procedure Derive_Interface_Subprogram
13860 (New_Subp : in out Entity_Id;
13861 Subp : Entity_Id;
13862 Actual_Subp : Entity_Id)
13863 is
13864 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
13865 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
13866
13867 begin
13868 pragma Assert (Is_Interface (Iface_Type));
13869
13870 Derive_Subprogram
13871 (New_Subp => New_Subp,
13872 Parent_Subp => Iface_Subp,
13873 Derived_Type => Derived_Type,
13874 Parent_Type => Iface_Type,
13875 Actual_Subp => Actual_Subp);
13876
13877 -- Given that this new interface entity corresponds with a primitive
13878 -- of the parent that was not overridden we must leave it associated
13879 -- with its parent primitive to ensure that it will share the same
13880 -- dispatch table slot when overridden.
13881
13882 if No (Actual_Subp) then
13883 Set_Alias (New_Subp, Subp);
13884
13885 -- For instantiations this is not needed since the previous call to
13886 -- Derive_Subprogram leaves the entity well decorated.
13887
13888 else
13889 pragma Assert (Alias (New_Subp) = Actual_Subp);
13890 null;
13891 end if;
13892 end Derive_Interface_Subprogram;
13893
13894 -- Local variables
13895
13896 Alias_Subp : Entity_Id;
13897 Act_List : Elist_Id;
13898 Act_Elmt : Elmt_Id;
13899 Act_Subp : Entity_Id := Empty;
13900 Elmt : Elmt_Id;
13901 Need_Search : Boolean := False;
13902 New_Subp : Entity_Id := Empty;
13903 Parent_Base : Entity_Id;
13904 Subp : Entity_Id;
13905
13906 -- Start of processing for Derive_Subprograms
13907
13908 begin
13909 if Ekind (Parent_Type) = E_Record_Type_With_Private
13910 and then Has_Discriminants (Parent_Type)
13911 and then Present (Full_View (Parent_Type))
13912 then
13913 Parent_Base := Full_View (Parent_Type);
13914 else
13915 Parent_Base := Parent_Type;
13916 end if;
13917
13918 if Present (Generic_Actual) then
13919 Act_List := Collect_Primitive_Operations (Generic_Actual);
13920 Act_Elmt := First_Elmt (Act_List);
13921 else
13922 Act_List := No_Elist;
13923 Act_Elmt := No_Elmt;
13924 end if;
13925
13926 -- Derive primitives inherited from the parent. Note that if the generic
13927 -- actual is present, this is not really a type derivation, it is a
13928 -- completion within an instance.
13929
13930 -- Case 1: Derived_Type does not implement interfaces
13931
13932 if not Is_Tagged_Type (Derived_Type)
13933 or else (not Has_Interfaces (Derived_Type)
13934 and then not (Present (Generic_Actual)
13935 and then Has_Interfaces (Generic_Actual)))
13936 then
13937 Elmt := First_Elmt (Op_List);
13938 while Present (Elmt) loop
13939 Subp := Node (Elmt);
13940
13941 -- Literals are derived earlier in the process of building the
13942 -- derived type, and are skipped here.
13943
13944 if Ekind (Subp) = E_Enumeration_Literal then
13945 null;
13946
13947 -- The actual is a direct descendant and the common primitive
13948 -- operations appear in the same order.
13949
13950 -- If the generic parent type is present, the derived type is an
13951 -- instance of a formal derived type, and within the instance its
13952 -- operations are those of the actual. We derive from the formal
13953 -- type but make the inherited operations aliases of the
13954 -- corresponding operations of the actual.
13955
13956 else
13957 pragma Assert (No (Node (Act_Elmt))
13958 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
13959 and then
13960 Type_Conformant
13961 (Subp, Node (Act_Elmt),
13962 Skip_Controlling_Formals => True)));
13963
13964 Derive_Subprogram
13965 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
13966
13967 if Present (Act_Elmt) then
13968 Next_Elmt (Act_Elmt);
13969 end if;
13970 end if;
13971
13972 Next_Elmt (Elmt);
13973 end loop;
13974
13975 -- Case 2: Derived_Type implements interfaces
13976
13977 else
13978 -- If the parent type has no predefined primitives we remove
13979 -- predefined primitives from the list of primitives of generic
13980 -- actual to simplify the complexity of this algorithm.
13981
13982 if Present (Generic_Actual) then
13983 declare
13984 Has_Predefined_Primitives : Boolean := False;
13985
13986 begin
13987 -- Check if the parent type has predefined primitives
13988
13989 Elmt := First_Elmt (Op_List);
13990 while Present (Elmt) loop
13991 Subp := Node (Elmt);
13992
13993 if Is_Predefined_Dispatching_Operation (Subp)
13994 and then not Comes_From_Source (Ultimate_Alias (Subp))
13995 then
13996 Has_Predefined_Primitives := True;
13997 exit;
13998 end if;
13999
14000 Next_Elmt (Elmt);
14001 end loop;
14002
14003 -- Remove predefined primitives of Generic_Actual. We must use
14004 -- an auxiliary list because in case of tagged types the value
14005 -- returned by Collect_Primitive_Operations is the value stored
14006 -- in its Primitive_Operations attribute (and we don't want to
14007 -- modify its current contents).
14008
14009 if not Has_Predefined_Primitives then
14010 declare
14011 Aux_List : constant Elist_Id := New_Elmt_List;
14012
14013 begin
14014 Elmt := First_Elmt (Act_List);
14015 while Present (Elmt) loop
14016 Subp := Node (Elmt);
14017
14018 if not Is_Predefined_Dispatching_Operation (Subp)
14019 or else Comes_From_Source (Subp)
14020 then
14021 Append_Elmt (Subp, Aux_List);
14022 end if;
14023
14024 Next_Elmt (Elmt);
14025 end loop;
14026
14027 Act_List := Aux_List;
14028 end;
14029 end if;
14030
14031 Act_Elmt := First_Elmt (Act_List);
14032 Act_Subp := Node (Act_Elmt);
14033 end;
14034 end if;
14035
14036 -- Stage 1: If the generic actual is not present we derive the
14037 -- primitives inherited from the parent type. If the generic parent
14038 -- type is present, the derived type is an instance of a formal
14039 -- derived type, and within the instance its operations are those of
14040 -- the actual. We derive from the formal type but make the inherited
14041 -- operations aliases of the corresponding operations of the actual.
14042
14043 Elmt := First_Elmt (Op_List);
14044 while Present (Elmt) loop
14045 Subp := Node (Elmt);
14046 Alias_Subp := Ultimate_Alias (Subp);
14047
14048 -- Do not derive internal entities of the parent that link
14049 -- interface primitives with their covering primitive. These
14050 -- entities will be added to this type when frozen.
14051
14052 if Present (Interface_Alias (Subp)) then
14053 goto Continue;
14054 end if;
14055
14056 -- If the generic actual is present find the corresponding
14057 -- operation in the generic actual. If the parent type is a
14058 -- direct ancestor of the derived type then, even if it is an
14059 -- interface, the operations are inherited from the primary
14060 -- dispatch table and are in the proper order. If we detect here
14061 -- that primitives are not in the same order we traverse the list
14062 -- of primitive operations of the actual to find the one that
14063 -- implements the interface primitive.
14064
14065 if Need_Search
14066 or else
14067 (Present (Generic_Actual)
14068 and then Present (Act_Subp)
14069 and then not
14070 (Primitive_Names_Match (Subp, Act_Subp)
14071 and then
14072 Type_Conformant (Subp, Act_Subp,
14073 Skip_Controlling_Formals => True)))
14074 then
14075 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14076 Use_Full_View => True));
14077
14078 -- Remember that we need searching for all pending primitives
14079
14080 Need_Search := True;
14081
14082 -- Handle entities associated with interface primitives
14083
14084 if Present (Alias_Subp)
14085 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14086 and then not Is_Predefined_Dispatching_Operation (Subp)
14087 then
14088 -- Search for the primitive in the homonym chain
14089
14090 Act_Subp :=
14091 Find_Primitive_Covering_Interface
14092 (Tagged_Type => Generic_Actual,
14093 Iface_Prim => Alias_Subp);
14094
14095 -- Previous search may not locate primitives covering
14096 -- interfaces defined in generics units or instantiations.
14097 -- (it fails if the covering primitive has formals whose
14098 -- type is also defined in generics or instantiations).
14099 -- In such case we search in the list of primitives of the
14100 -- generic actual for the internal entity that links the
14101 -- interface primitive and the covering primitive.
14102
14103 if No (Act_Subp)
14104 and then Is_Generic_Type (Parent_Type)
14105 then
14106 -- This code has been designed to handle only generic
14107 -- formals that implement interfaces that are defined
14108 -- in a generic unit or instantiation. If this code is
14109 -- needed for other cases we must review it because
14110 -- (given that it relies on Original_Location to locate
14111 -- the primitive of Generic_Actual that covers the
14112 -- interface) it could leave linked through attribute
14113 -- Alias entities of unrelated instantiations).
14114
14115 pragma Assert
14116 (Is_Generic_Unit
14117 (Scope (Find_Dispatching_Type (Alias_Subp)))
14118 or else
14119 Instantiation_Depth
14120 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14121
14122 declare
14123 Iface_Prim_Loc : constant Source_Ptr :=
14124 Original_Location (Sloc (Alias_Subp));
14125
14126 Elmt : Elmt_Id;
14127 Prim : Entity_Id;
14128
14129 begin
14130 Elmt :=
14131 First_Elmt (Primitive_Operations (Generic_Actual));
14132
14133 Search : while Present (Elmt) loop
14134 Prim := Node (Elmt);
14135
14136 if Present (Interface_Alias (Prim))
14137 and then Original_Location
14138 (Sloc (Interface_Alias (Prim))) =
14139 Iface_Prim_Loc
14140 then
14141 Act_Subp := Alias (Prim);
14142 exit Search;
14143 end if;
14144
14145 Next_Elmt (Elmt);
14146 end loop Search;
14147 end;
14148 end if;
14149
14150 pragma Assert (Present (Act_Subp)
14151 or else Is_Abstract_Type (Generic_Actual)
14152 or else Serious_Errors_Detected > 0);
14153
14154 -- Handle predefined primitives plus the rest of user-defined
14155 -- primitives
14156
14157 else
14158 Act_Elmt := First_Elmt (Act_List);
14159 while Present (Act_Elmt) loop
14160 Act_Subp := Node (Act_Elmt);
14161
14162 exit when Primitive_Names_Match (Subp, Act_Subp)
14163 and then Type_Conformant
14164 (Subp, Act_Subp,
14165 Skip_Controlling_Formals => True)
14166 and then No (Interface_Alias (Act_Subp));
14167
14168 Next_Elmt (Act_Elmt);
14169 end loop;
14170
14171 if No (Act_Elmt) then
14172 Act_Subp := Empty;
14173 end if;
14174 end if;
14175 end if;
14176
14177 -- Case 1: If the parent is a limited interface then it has the
14178 -- predefined primitives of synchronized interfaces. However, the
14179 -- actual type may be a non-limited type and hence it does not
14180 -- have such primitives.
14181
14182 if Present (Generic_Actual)
14183 and then not Present (Act_Subp)
14184 and then Is_Limited_Interface (Parent_Base)
14185 and then Is_Predefined_Interface_Primitive (Subp)
14186 then
14187 null;
14188
14189 -- Case 2: Inherit entities associated with interfaces that were
14190 -- not covered by the parent type. We exclude here null interface
14191 -- primitives because they do not need special management.
14192
14193 -- We also exclude interface operations that are renamings. If the
14194 -- subprogram is an explicit renaming of an interface primitive,
14195 -- it is a regular primitive operation, and the presence of its
14196 -- alias is not relevant: it has to be derived like any other
14197 -- primitive.
14198
14199 elsif Present (Alias (Subp))
14200 and then Nkind (Unit_Declaration_Node (Subp)) /=
14201 N_Subprogram_Renaming_Declaration
14202 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14203 and then not
14204 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14205 and then Null_Present (Parent (Alias_Subp)))
14206 then
14207 -- If this is an abstract private type then we transfer the
14208 -- derivation of the interface primitive from the partial view
14209 -- to the full view. This is safe because all the interfaces
14210 -- must be visible in the partial view. Done to avoid adding
14211 -- a new interface derivation to the private part of the
14212 -- enclosing package; otherwise this new derivation would be
14213 -- decorated as hidden when the analysis of the enclosing
14214 -- package completes.
14215
14216 if Is_Abstract_Type (Derived_Type)
14217 and then In_Private_Part (Current_Scope)
14218 and then Has_Private_Declaration (Derived_Type)
14219 then
14220 declare
14221 Partial_View : Entity_Id;
14222 Elmt : Elmt_Id;
14223 Ent : Entity_Id;
14224
14225 begin
14226 Partial_View := First_Entity (Current_Scope);
14227 loop
14228 exit when No (Partial_View)
14229 or else (Has_Private_Declaration (Partial_View)
14230 and then
14231 Full_View (Partial_View) = Derived_Type);
14232
14233 Next_Entity (Partial_View);
14234 end loop;
14235
14236 -- If the partial view was not found then the source code
14237 -- has errors and the derivation is not needed.
14238
14239 if Present (Partial_View) then
14240 Elmt :=
14241 First_Elmt (Primitive_Operations (Partial_View));
14242 while Present (Elmt) loop
14243 Ent := Node (Elmt);
14244
14245 if Present (Alias (Ent))
14246 and then Ultimate_Alias (Ent) = Alias (Subp)
14247 then
14248 Append_Elmt
14249 (Ent, Primitive_Operations (Derived_Type));
14250 exit;
14251 end if;
14252
14253 Next_Elmt (Elmt);
14254 end loop;
14255
14256 -- If the interface primitive was not found in the
14257 -- partial view then this interface primitive was
14258 -- overridden. We add a derivation to activate in
14259 -- Derive_Progenitor_Subprograms the machinery to
14260 -- search for it.
14261
14262 if No (Elmt) then
14263 Derive_Interface_Subprogram
14264 (New_Subp => New_Subp,
14265 Subp => Subp,
14266 Actual_Subp => Act_Subp);
14267 end if;
14268 end if;
14269 end;
14270 else
14271 Derive_Interface_Subprogram
14272 (New_Subp => New_Subp,
14273 Subp => Subp,
14274 Actual_Subp => Act_Subp);
14275 end if;
14276
14277 -- Case 3: Common derivation
14278
14279 else
14280 Derive_Subprogram
14281 (New_Subp => New_Subp,
14282 Parent_Subp => Subp,
14283 Derived_Type => Derived_Type,
14284 Parent_Type => Parent_Base,
14285 Actual_Subp => Act_Subp);
14286 end if;
14287
14288 -- No need to update Act_Elm if we must search for the
14289 -- corresponding operation in the generic actual
14290
14291 if not Need_Search
14292 and then Present (Act_Elmt)
14293 then
14294 Next_Elmt (Act_Elmt);
14295 Act_Subp := Node (Act_Elmt);
14296 end if;
14297
14298 <<Continue>>
14299 Next_Elmt (Elmt);
14300 end loop;
14301
14302 -- Inherit additional operations from progenitors. If the derived
14303 -- type is a generic actual, there are not new primitive operations
14304 -- for the type because it has those of the actual, and therefore
14305 -- nothing needs to be done. The renamings generated above are not
14306 -- primitive operations, and their purpose is simply to make the
14307 -- proper operations visible within an instantiation.
14308
14309 if No (Generic_Actual) then
14310 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14311 end if;
14312 end if;
14313
14314 -- Final check: Direct descendants must have their primitives in the
14315 -- same order. We exclude from this test untagged types and instances
14316 -- of formal derived types. We skip this test if we have already
14317 -- reported serious errors in the sources.
14318
14319 pragma Assert (not Is_Tagged_Type (Derived_Type)
14320 or else Present (Generic_Actual)
14321 or else Serious_Errors_Detected > 0
14322 or else Check_Derived_Type);
14323 end Derive_Subprograms;
14324
14325 --------------------------------
14326 -- Derived_Standard_Character --
14327 --------------------------------
14328
14329 procedure Derived_Standard_Character
14330 (N : Node_Id;
14331 Parent_Type : Entity_Id;
14332 Derived_Type : Entity_Id)
14333 is
14334 Loc : constant Source_Ptr := Sloc (N);
14335 Def : constant Node_Id := Type_Definition (N);
14336 Indic : constant Node_Id := Subtype_Indication (Def);
14337 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14338 Implicit_Base : constant Entity_Id :=
14339 Create_Itype
14340 (E_Enumeration_Type, N, Derived_Type, 'B');
14341
14342 Lo : Node_Id;
14343 Hi : Node_Id;
14344
14345 begin
14346 Discard_Node (Process_Subtype (Indic, N));
14347
14348 Set_Etype (Implicit_Base, Parent_Base);
14349 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14350 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14351
14352 Set_Is_Character_Type (Implicit_Base, True);
14353 Set_Has_Delayed_Freeze (Implicit_Base);
14354
14355 -- The bounds of the implicit base are the bounds of the parent base.
14356 -- Note that their type is the parent base.
14357
14358 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14359 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14360
14361 Set_Scalar_Range (Implicit_Base,
14362 Make_Range (Loc,
14363 Low_Bound => Lo,
14364 High_Bound => Hi));
14365
14366 Conditional_Delay (Derived_Type, Parent_Type);
14367
14368 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14369 Set_Etype (Derived_Type, Implicit_Base);
14370 Set_Size_Info (Derived_Type, Parent_Type);
14371
14372 if Unknown_RM_Size (Derived_Type) then
14373 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14374 end if;
14375
14376 Set_Is_Character_Type (Derived_Type, True);
14377
14378 if Nkind (Indic) /= N_Subtype_Indication then
14379
14380 -- If no explicit constraint, the bounds are those
14381 -- of the parent type.
14382
14383 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14384 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14385 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14386 end if;
14387
14388 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14389
14390 -- Because the implicit base is used in the conversion of the bounds, we
14391 -- have to freeze it now. This is similar to what is done for numeric
14392 -- types, and it equally suspicious, but otherwise a non-static bound
14393 -- will have a reference to an unfrozen type, which is rejected by Gigi
14394 -- (???). This requires specific care for definition of stream
14395 -- attributes. For details, see comments at the end of
14396 -- Build_Derived_Numeric_Type.
14397
14398 Freeze_Before (N, Implicit_Base);
14399 end Derived_Standard_Character;
14400
14401 ------------------------------
14402 -- Derived_Type_Declaration --
14403 ------------------------------
14404
14405 procedure Derived_Type_Declaration
14406 (T : Entity_Id;
14407 N : Node_Id;
14408 Is_Completion : Boolean)
14409 is
14410 Parent_Type : Entity_Id;
14411
14412 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14413 -- Check whether the parent type is a generic formal, or derives
14414 -- directly or indirectly from one.
14415
14416 ------------------------
14417 -- Comes_From_Generic --
14418 ------------------------
14419
14420 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14421 begin
14422 if Is_Generic_Type (Typ) then
14423 return True;
14424
14425 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14426 return True;
14427
14428 elsif Is_Private_Type (Typ)
14429 and then Present (Full_View (Typ))
14430 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14431 then
14432 return True;
14433
14434 elsif Is_Generic_Actual_Type (Typ) then
14435 return True;
14436
14437 else
14438 return False;
14439 end if;
14440 end Comes_From_Generic;
14441
14442 -- Local variables
14443
14444 Def : constant Node_Id := Type_Definition (N);
14445 Iface_Def : Node_Id;
14446 Indic : constant Node_Id := Subtype_Indication (Def);
14447 Extension : constant Node_Id := Record_Extension_Part (Def);
14448 Parent_Node : Node_Id;
14449 Taggd : Boolean;
14450
14451 -- Start of processing for Derived_Type_Declaration
14452
14453 begin
14454 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14455
14456 -- Ada 2005 (AI-251): In case of interface derivation check that the
14457 -- parent is also an interface.
14458
14459 if Interface_Present (Def) then
14460 Check_SPARK_Restriction ("interface is not allowed", Def);
14461
14462 if not Is_Interface (Parent_Type) then
14463 Diagnose_Interface (Indic, Parent_Type);
14464
14465 else
14466 Parent_Node := Parent (Base_Type (Parent_Type));
14467 Iface_Def := Type_Definition (Parent_Node);
14468
14469 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14470 -- other limited interfaces.
14471
14472 if Limited_Present (Def) then
14473 if Limited_Present (Iface_Def) then
14474 null;
14475
14476 elsif Protected_Present (Iface_Def) then
14477 Error_Msg_NE
14478 ("descendant of& must be declared"
14479 & " as a protected interface",
14480 N, Parent_Type);
14481
14482 elsif Synchronized_Present (Iface_Def) then
14483 Error_Msg_NE
14484 ("descendant of& must be declared"
14485 & " as a synchronized interface",
14486 N, Parent_Type);
14487
14488 elsif Task_Present (Iface_Def) then
14489 Error_Msg_NE
14490 ("descendant of& must be declared as a task interface",
14491 N, Parent_Type);
14492
14493 else
14494 Error_Msg_N
14495 ("(Ada 2005) limited interface cannot "
14496 & "inherit from non-limited interface", Indic);
14497 end if;
14498
14499 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14500 -- from non-limited or limited interfaces.
14501
14502 elsif not Protected_Present (Def)
14503 and then not Synchronized_Present (Def)
14504 and then not Task_Present (Def)
14505 then
14506 if Limited_Present (Iface_Def) then
14507 null;
14508
14509 elsif Protected_Present (Iface_Def) then
14510 Error_Msg_NE
14511 ("descendant of& must be declared"
14512 & " as a protected interface",
14513 N, Parent_Type);
14514
14515 elsif Synchronized_Present (Iface_Def) then
14516 Error_Msg_NE
14517 ("descendant of& must be declared"
14518 & " as a synchronized interface",
14519 N, Parent_Type);
14520
14521 elsif Task_Present (Iface_Def) then
14522 Error_Msg_NE
14523 ("descendant of& must be declared as a task interface",
14524 N, Parent_Type);
14525 else
14526 null;
14527 end if;
14528 end if;
14529 end if;
14530 end if;
14531
14532 if Is_Tagged_Type (Parent_Type)
14533 and then Is_Concurrent_Type (Parent_Type)
14534 and then not Is_Interface (Parent_Type)
14535 then
14536 Error_Msg_N
14537 ("parent type of a record extension cannot be "
14538 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14539 Set_Etype (T, Any_Type);
14540 return;
14541 end if;
14542
14543 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14544 -- interfaces
14545
14546 if Is_Tagged_Type (Parent_Type)
14547 and then Is_Non_Empty_List (Interface_List (Def))
14548 then
14549 declare
14550 Intf : Node_Id;
14551 T : Entity_Id;
14552
14553 begin
14554 Intf := First (Interface_List (Def));
14555 while Present (Intf) loop
14556 T := Find_Type_Of_Subtype_Indic (Intf);
14557
14558 if not Is_Interface (T) then
14559 Diagnose_Interface (Intf, T);
14560
14561 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14562 -- a limited type from having a nonlimited progenitor.
14563
14564 elsif (Limited_Present (Def)
14565 or else (not Is_Interface (Parent_Type)
14566 and then Is_Limited_Type (Parent_Type)))
14567 and then not Is_Limited_Interface (T)
14568 then
14569 Error_Msg_NE
14570 ("progenitor interface& of limited type must be limited",
14571 N, T);
14572 end if;
14573
14574 Next (Intf);
14575 end loop;
14576 end;
14577 end if;
14578
14579 if Parent_Type = Any_Type
14580 or else Etype (Parent_Type) = Any_Type
14581 or else (Is_Class_Wide_Type (Parent_Type)
14582 and then Etype (Parent_Type) = T)
14583 then
14584 -- If Parent_Type is undefined or illegal, make new type into a
14585 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14586 -- errors. If this is a self-definition, emit error now.
14587
14588 if T = Parent_Type
14589 or else T = Etype (Parent_Type)
14590 then
14591 Error_Msg_N ("type cannot be used in its own definition", Indic);
14592 end if;
14593
14594 Set_Ekind (T, Ekind (Parent_Type));
14595 Set_Etype (T, Any_Type);
14596 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14597
14598 if Is_Tagged_Type (T)
14599 and then Is_Record_Type (T)
14600 then
14601 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14602 end if;
14603
14604 return;
14605 end if;
14606
14607 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14608 -- an interface is special because the list of interfaces in the full
14609 -- view can be given in any order. For example:
14610
14611 -- type A is interface;
14612 -- type B is interface and A;
14613 -- type D is new B with private;
14614 -- private
14615 -- type D is new A and B with null record; -- 1 --
14616
14617 -- In this case we perform the following transformation of -1-:
14618
14619 -- type D is new B and A with null record;
14620
14621 -- If the parent of the full-view covers the parent of the partial-view
14622 -- we have two possible cases:
14623
14624 -- 1) They have the same parent
14625 -- 2) The parent of the full-view implements some further interfaces
14626
14627 -- In both cases we do not need to perform the transformation. In the
14628 -- first case the source program is correct and the transformation is
14629 -- not needed; in the second case the source program does not fulfill
14630 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14631 -- later.
14632
14633 -- This transformation not only simplifies the rest of the analysis of
14634 -- this type declaration but also simplifies the correct generation of
14635 -- the object layout to the expander.
14636
14637 if In_Private_Part (Current_Scope)
14638 and then Is_Interface (Parent_Type)
14639 then
14640 declare
14641 Iface : Node_Id;
14642 Partial_View : Entity_Id;
14643 Partial_View_Parent : Entity_Id;
14644 New_Iface : Node_Id;
14645
14646 begin
14647 -- Look for the associated private type declaration
14648
14649 Partial_View := First_Entity (Current_Scope);
14650 loop
14651 exit when No (Partial_View)
14652 or else (Has_Private_Declaration (Partial_View)
14653 and then Full_View (Partial_View) = T);
14654
14655 Next_Entity (Partial_View);
14656 end loop;
14657
14658 -- If the partial view was not found then the source code has
14659 -- errors and the transformation is not needed.
14660
14661 if Present (Partial_View) then
14662 Partial_View_Parent := Etype (Partial_View);
14663
14664 -- If the parent of the full-view covers the parent of the
14665 -- partial-view we have nothing else to do.
14666
14667 if Interface_Present_In_Ancestor
14668 (Parent_Type, Partial_View_Parent)
14669 then
14670 null;
14671
14672 -- Traverse the list of interfaces of the full-view to look
14673 -- for the parent of the partial-view and perform the tree
14674 -- transformation.
14675
14676 else
14677 Iface := First (Interface_List (Def));
14678 while Present (Iface) loop
14679 if Etype (Iface) = Etype (Partial_View) then
14680 Rewrite (Subtype_Indication (Def),
14681 New_Copy (Subtype_Indication
14682 (Parent (Partial_View))));
14683
14684 New_Iface :=
14685 Make_Identifier (Sloc (N), Chars (Parent_Type));
14686 Append (New_Iface, Interface_List (Def));
14687
14688 -- Analyze the transformed code
14689
14690 Derived_Type_Declaration (T, N, Is_Completion);
14691 return;
14692 end if;
14693
14694 Next (Iface);
14695 end loop;
14696 end if;
14697 end if;
14698 end;
14699 end if;
14700
14701 -- Only composite types other than array types are allowed to have
14702 -- discriminants. In SPARK, no types are allowed to have discriminants.
14703
14704 if Present (Discriminant_Specifications (N)) then
14705 if (Is_Elementary_Type (Parent_Type)
14706 or else Is_Array_Type (Parent_Type))
14707 and then not Error_Posted (N)
14708 then
14709 Error_Msg_N
14710 ("elementary or array type cannot have discriminants",
14711 Defining_Identifier (First (Discriminant_Specifications (N))));
14712 Set_Has_Discriminants (T, False);
14713 else
14714 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14715 end if;
14716 end if;
14717
14718 -- In Ada 83, a derived type defined in a package specification cannot
14719 -- be used for further derivation until the end of its visible part.
14720 -- Note that derivation in the private part of the package is allowed.
14721
14722 if Ada_Version = Ada_83
14723 and then Is_Derived_Type (Parent_Type)
14724 and then In_Visible_Part (Scope (Parent_Type))
14725 then
14726 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14727 Error_Msg_N
14728 ("(Ada 83): premature use of type for derivation", Indic);
14729 end if;
14730 end if;
14731
14732 -- Check for early use of incomplete or private type
14733
14734 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14735 Error_Msg_N ("premature derivation of incomplete type", Indic);
14736 return;
14737
14738 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14739 and then not Comes_From_Generic (Parent_Type))
14740 or else Has_Private_Component (Parent_Type)
14741 then
14742 -- The ancestor type of a formal type can be incomplete, in which
14743 -- case only the operations of the partial view are available in the
14744 -- generic. Subsequent checks may be required when the full view is
14745 -- analyzed to verify that a derivation from a tagged type has an
14746 -- extension.
14747
14748 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14749 null;
14750
14751 elsif No (Underlying_Type (Parent_Type))
14752 or else Has_Private_Component (Parent_Type)
14753 then
14754 Error_Msg_N
14755 ("premature derivation of derived or private type", Indic);
14756
14757 -- Flag the type itself as being in error, this prevents some
14758 -- nasty problems with subsequent uses of the malformed type.
14759
14760 Set_Error_Posted (T);
14761
14762 -- Check that within the immediate scope of an untagged partial
14763 -- view it's illegal to derive from the partial view if the
14764 -- full view is tagged. (7.3(7))
14765
14766 -- We verify that the Parent_Type is a partial view by checking
14767 -- that it is not a Full_Type_Declaration (i.e. a private type or
14768 -- private extension declaration), to distinguish a partial view
14769 -- from a derivation from a private type which also appears as
14770 -- E_Private_Type. If the parent base type is not declared in an
14771 -- enclosing scope there is no need to check.
14772
14773 elsif Present (Full_View (Parent_Type))
14774 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
14775 and then not Is_Tagged_Type (Parent_Type)
14776 and then Is_Tagged_Type (Full_View (Parent_Type))
14777 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14778 then
14779 Error_Msg_N
14780 ("premature derivation from type with tagged full view",
14781 Indic);
14782 end if;
14783 end if;
14784
14785 -- Check that form of derivation is appropriate
14786
14787 Taggd := Is_Tagged_Type (Parent_Type);
14788
14789 -- Perhaps the parent type should be changed to the class-wide type's
14790 -- specific type in this case to prevent cascading errors ???
14791
14792 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
14793 Error_Msg_N ("parent type must not be a class-wide type", Indic);
14794 return;
14795 end if;
14796
14797 if Present (Extension) and then not Taggd then
14798 Error_Msg_N
14799 ("type derived from untagged type cannot have extension", Indic);
14800
14801 elsif No (Extension) and then Taggd then
14802
14803 -- If this declaration is within a private part (or body) of a
14804 -- generic instantiation then the derivation is allowed (the parent
14805 -- type can only appear tagged in this case if it's a generic actual
14806 -- type, since it would otherwise have been rejected in the analysis
14807 -- of the generic template).
14808
14809 if not Is_Generic_Actual_Type (Parent_Type)
14810 or else In_Visible_Part (Scope (Parent_Type))
14811 then
14812 if Is_Class_Wide_Type (Parent_Type) then
14813 Error_Msg_N
14814 ("parent type must not be a class-wide type", Indic);
14815
14816 -- Use specific type to prevent cascaded errors.
14817
14818 Parent_Type := Etype (Parent_Type);
14819
14820 else
14821 Error_Msg_N
14822 ("type derived from tagged type must have extension", Indic);
14823 end if;
14824 end if;
14825 end if;
14826
14827 -- AI-443: Synchronized formal derived types require a private
14828 -- extension. There is no point in checking the ancestor type or
14829 -- the progenitors since the construct is wrong to begin with.
14830
14831 if Ada_Version >= Ada_2005
14832 and then Is_Generic_Type (T)
14833 and then Present (Original_Node (N))
14834 then
14835 declare
14836 Decl : constant Node_Id := Original_Node (N);
14837
14838 begin
14839 if Nkind (Decl) = N_Formal_Type_Declaration
14840 and then Nkind (Formal_Type_Definition (Decl)) =
14841 N_Formal_Derived_Type_Definition
14842 and then Synchronized_Present (Formal_Type_Definition (Decl))
14843 and then No (Extension)
14844
14845 -- Avoid emitting a duplicate error message
14846
14847 and then not Error_Posted (Indic)
14848 then
14849 Error_Msg_N
14850 ("synchronized derived type must have extension", N);
14851 end if;
14852 end;
14853 end if;
14854
14855 if Null_Exclusion_Present (Def)
14856 and then not Is_Access_Type (Parent_Type)
14857 then
14858 Error_Msg_N ("null exclusion can only apply to an access type", N);
14859 end if;
14860
14861 -- Avoid deriving parent primitives of underlying record views
14862
14863 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
14864 Derive_Subps => not Is_Underlying_Record_View (T));
14865
14866 -- AI-419: The parent type of an explicitly limited derived type must
14867 -- be a limited type or a limited interface.
14868
14869 if Limited_Present (Def) then
14870 Set_Is_Limited_Record (T);
14871
14872 if Is_Interface (T) then
14873 Set_Is_Limited_Interface (T);
14874 end if;
14875
14876 if not Is_Limited_Type (Parent_Type)
14877 and then
14878 (not Is_Interface (Parent_Type)
14879 or else not Is_Limited_Interface (Parent_Type))
14880 then
14881 -- AI05-0096: a derivation in the private part of an instance is
14882 -- legal if the generic formal is untagged limited, and the actual
14883 -- is non-limited.
14884
14885 if Is_Generic_Actual_Type (Parent_Type)
14886 and then In_Private_Part (Current_Scope)
14887 and then
14888 not Is_Tagged_Type
14889 (Generic_Parent_Type (Parent (Parent_Type)))
14890 then
14891 null;
14892
14893 else
14894 Error_Msg_NE
14895 ("parent type& of limited type must be limited",
14896 N, Parent_Type);
14897 end if;
14898 end if;
14899 end if;
14900
14901 -- In SPARK, there are no derived type definitions other than type
14902 -- extensions of tagged record types.
14903
14904 if No (Extension) then
14905 Check_SPARK_Restriction
14906 ("derived type is not allowed", Original_Node (N));
14907 end if;
14908 end Derived_Type_Declaration;
14909
14910 ------------------------
14911 -- Diagnose_Interface --
14912 ------------------------
14913
14914 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
14915 begin
14916 if not Is_Interface (E)
14917 and then E /= Any_Type
14918 then
14919 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
14920 end if;
14921 end Diagnose_Interface;
14922
14923 ----------------------------------
14924 -- Enumeration_Type_Declaration --
14925 ----------------------------------
14926
14927 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14928 Ev : Uint;
14929 L : Node_Id;
14930 R_Node : Node_Id;
14931 B_Node : Node_Id;
14932
14933 begin
14934 -- Create identifier node representing lower bound
14935
14936 B_Node := New_Node (N_Identifier, Sloc (Def));
14937 L := First (Literals (Def));
14938 Set_Chars (B_Node, Chars (L));
14939 Set_Entity (B_Node, L);
14940 Set_Etype (B_Node, T);
14941 Set_Is_Static_Expression (B_Node, True);
14942
14943 R_Node := New_Node (N_Range, Sloc (Def));
14944 Set_Low_Bound (R_Node, B_Node);
14945
14946 Set_Ekind (T, E_Enumeration_Type);
14947 Set_First_Literal (T, L);
14948 Set_Etype (T, T);
14949 Set_Is_Constrained (T);
14950
14951 Ev := Uint_0;
14952
14953 -- Loop through literals of enumeration type setting pos and rep values
14954 -- except that if the Ekind is already set, then it means the literal
14955 -- was already constructed (case of a derived type declaration and we
14956 -- should not disturb the Pos and Rep values.
14957
14958 while Present (L) loop
14959 if Ekind (L) /= E_Enumeration_Literal then
14960 Set_Ekind (L, E_Enumeration_Literal);
14961 Set_Enumeration_Pos (L, Ev);
14962 Set_Enumeration_Rep (L, Ev);
14963 Set_Is_Known_Valid (L, True);
14964 end if;
14965
14966 Set_Etype (L, T);
14967 New_Overloaded_Entity (L);
14968 Generate_Definition (L);
14969 Set_Convention (L, Convention_Intrinsic);
14970
14971 -- Case of character literal
14972
14973 if Nkind (L) = N_Defining_Character_Literal then
14974 Set_Is_Character_Type (T, True);
14975
14976 -- Check violation of No_Wide_Characters
14977
14978 if Restriction_Check_Required (No_Wide_Characters) then
14979 Get_Name_String (Chars (L));
14980
14981 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
14982 Check_Restriction (No_Wide_Characters, L);
14983 end if;
14984 end if;
14985 end if;
14986
14987 Ev := Ev + 1;
14988 Next (L);
14989 end loop;
14990
14991 -- Now create a node representing upper bound
14992
14993 B_Node := New_Node (N_Identifier, Sloc (Def));
14994 Set_Chars (B_Node, Chars (Last (Literals (Def))));
14995 Set_Entity (B_Node, Last (Literals (Def)));
14996 Set_Etype (B_Node, T);
14997 Set_Is_Static_Expression (B_Node, True);
14998
14999 Set_High_Bound (R_Node, B_Node);
15000
15001 -- Initialize various fields of the type. Some of this information
15002 -- may be overwritten later through rep.clauses.
15003
15004 Set_Scalar_Range (T, R_Node);
15005 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15006 Set_Enum_Esize (T);
15007 Set_Enum_Pos_To_Rep (T, Empty);
15008
15009 -- Set Discard_Names if configuration pragma set, or if there is
15010 -- a parameterless pragma in the current declarative region
15011
15012 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15013 Set_Discard_Names (T);
15014 end if;
15015
15016 -- Process end label if there is one
15017
15018 if Present (Def) then
15019 Process_End_Label (Def, 'e', T);
15020 end if;
15021 end Enumeration_Type_Declaration;
15022
15023 ---------------------------------
15024 -- Expand_To_Stored_Constraint --
15025 ---------------------------------
15026
15027 function Expand_To_Stored_Constraint
15028 (Typ : Entity_Id;
15029 Constraint : Elist_Id) return Elist_Id
15030 is
15031 Explicitly_Discriminated_Type : Entity_Id;
15032 Expansion : Elist_Id;
15033 Discriminant : Entity_Id;
15034
15035 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15036 -- Find the nearest type that actually specifies discriminants
15037
15038 ---------------------------------
15039 -- Type_With_Explicit_Discrims --
15040 ---------------------------------
15041
15042 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15043 Typ : constant E := Base_Type (Id);
15044
15045 begin
15046 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15047 if Present (Full_View (Typ)) then
15048 return Type_With_Explicit_Discrims (Full_View (Typ));
15049 end if;
15050
15051 else
15052 if Has_Discriminants (Typ) then
15053 return Typ;
15054 end if;
15055 end if;
15056
15057 if Etype (Typ) = Typ then
15058 return Empty;
15059 elsif Has_Discriminants (Typ) then
15060 return Typ;
15061 else
15062 return Type_With_Explicit_Discrims (Etype (Typ));
15063 end if;
15064
15065 end Type_With_Explicit_Discrims;
15066
15067 -- Start of processing for Expand_To_Stored_Constraint
15068
15069 begin
15070 if No (Constraint)
15071 or else Is_Empty_Elmt_List (Constraint)
15072 then
15073 return No_Elist;
15074 end if;
15075
15076 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15077
15078 if No (Explicitly_Discriminated_Type) then
15079 return No_Elist;
15080 end if;
15081
15082 Expansion := New_Elmt_List;
15083
15084 Discriminant :=
15085 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15086 while Present (Discriminant) loop
15087 Append_Elmt (
15088 Get_Discriminant_Value (
15089 Discriminant, Explicitly_Discriminated_Type, Constraint),
15090 Expansion);
15091 Next_Stored_Discriminant (Discriminant);
15092 end loop;
15093
15094 return Expansion;
15095 end Expand_To_Stored_Constraint;
15096
15097 ---------------------------
15098 -- Find_Hidden_Interface --
15099 ---------------------------
15100
15101 function Find_Hidden_Interface
15102 (Src : Elist_Id;
15103 Dest : Elist_Id) return Entity_Id
15104 is
15105 Iface : Entity_Id;
15106 Iface_Elmt : Elmt_Id;
15107
15108 begin
15109 if Present (Src) and then Present (Dest) then
15110 Iface_Elmt := First_Elmt (Src);
15111 while Present (Iface_Elmt) loop
15112 Iface := Node (Iface_Elmt);
15113
15114 if Is_Interface (Iface)
15115 and then not Contain_Interface (Iface, Dest)
15116 then
15117 return Iface;
15118 end if;
15119
15120 Next_Elmt (Iface_Elmt);
15121 end loop;
15122 end if;
15123
15124 return Empty;
15125 end Find_Hidden_Interface;
15126
15127 --------------------
15128 -- Find_Type_Name --
15129 --------------------
15130
15131 function Find_Type_Name (N : Node_Id) return Entity_Id is
15132 Id : constant Entity_Id := Defining_Identifier (N);
15133 Prev : Entity_Id;
15134 New_Id : Entity_Id;
15135 Prev_Par : Node_Id;
15136
15137 procedure Check_Duplicate_Aspects;
15138 -- Check that aspects specified in a completion have not been specified
15139 -- already in the partial view. Type_Invariant and others can be
15140 -- specified on either view but never on both.
15141
15142 procedure Tag_Mismatch;
15143 -- Diagnose a tagged partial view whose full view is untagged.
15144 -- We post the message on the full view, with a reference to
15145 -- the previous partial view. The partial view can be private
15146 -- or incomplete, and these are handled in a different manner,
15147 -- so we determine the position of the error message from the
15148 -- respective slocs of both.
15149
15150 -----------------------------
15151 -- Check_Duplicate_Aspects --
15152 -----------------------------
15153 procedure Check_Duplicate_Aspects is
15154 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15155 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15156 F_Spec, P_Spec : Node_Id;
15157
15158 begin
15159 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15160 F_Spec := First (Full_Aspects);
15161 while Present (F_Spec) loop
15162 P_Spec := First (Prev_Aspects);
15163 while Present (P_Spec) loop
15164 if
15165 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15166 then
15167 Error_Msg_N
15168 ("aspect already specified in private declaration",
15169 F_Spec);
15170 Remove (F_Spec);
15171 return;
15172 end if;
15173
15174 Next (P_Spec);
15175 end loop;
15176
15177 Next (F_Spec);
15178 end loop;
15179 end if;
15180 end Check_Duplicate_Aspects;
15181
15182 ------------------
15183 -- Tag_Mismatch --
15184 ------------------
15185
15186 procedure Tag_Mismatch is
15187 begin
15188 if Sloc (Prev) < Sloc (Id) then
15189 if Ada_Version >= Ada_2012
15190 and then Nkind (N) = N_Private_Type_Declaration
15191 then
15192 Error_Msg_NE
15193 ("declaration of private } must be a tagged type ", Id, Prev);
15194 else
15195 Error_Msg_NE
15196 ("full declaration of } must be a tagged type ", Id, Prev);
15197 end if;
15198 else
15199 if Ada_Version >= Ada_2012
15200 and then Nkind (N) = N_Private_Type_Declaration
15201 then
15202 Error_Msg_NE
15203 ("declaration of private } must be a tagged type ", Prev, Id);
15204 else
15205 Error_Msg_NE
15206 ("full declaration of } must be a tagged type ", Prev, Id);
15207 end if;
15208 end if;
15209 end Tag_Mismatch;
15210
15211 -- Start of processing for Find_Type_Name
15212
15213 begin
15214 -- Find incomplete declaration, if one was given
15215
15216 Prev := Current_Entity_In_Scope (Id);
15217
15218 -- New type declaration
15219
15220 if No (Prev) then
15221 Enter_Name (Id);
15222 return Id;
15223
15224 -- Previous declaration exists
15225
15226 else
15227 Prev_Par := Parent (Prev);
15228
15229 -- Error if not incomplete/private case except if previous
15230 -- declaration is implicit, etc. Enter_Name will emit error if
15231 -- appropriate.
15232
15233 if not Is_Incomplete_Or_Private_Type (Prev) then
15234 Enter_Name (Id);
15235 New_Id := Id;
15236
15237 -- Check invalid completion of private or incomplete type
15238
15239 elsif not Nkind_In (N, N_Full_Type_Declaration,
15240 N_Task_Type_Declaration,
15241 N_Protected_Type_Declaration)
15242 and then
15243 (Ada_Version < Ada_2012
15244 or else not Is_Incomplete_Type (Prev)
15245 or else not Nkind_In (N, N_Private_Type_Declaration,
15246 N_Private_Extension_Declaration))
15247 then
15248 -- Completion must be a full type declarations (RM 7.3(4))
15249
15250 Error_Msg_Sloc := Sloc (Prev);
15251 Error_Msg_NE ("invalid completion of }", Id, Prev);
15252
15253 -- Set scope of Id to avoid cascaded errors. Entity is never
15254 -- examined again, except when saving globals in generics.
15255
15256 Set_Scope (Id, Current_Scope);
15257 New_Id := Id;
15258
15259 -- If this is a repeated incomplete declaration, no further
15260 -- checks are possible.
15261
15262 if Nkind (N) = N_Incomplete_Type_Declaration then
15263 return Prev;
15264 end if;
15265
15266 -- Case of full declaration of incomplete type
15267
15268 elsif Ekind (Prev) = E_Incomplete_Type
15269 and then (Ada_Version < Ada_2012
15270 or else No (Full_View (Prev))
15271 or else not Is_Private_Type (Full_View (Prev)))
15272 then
15273
15274 -- Indicate that the incomplete declaration has a matching full
15275 -- declaration. The defining occurrence of the incomplete
15276 -- declaration remains the visible one, and the procedure
15277 -- Get_Full_View dereferences it whenever the type is used.
15278
15279 if Present (Full_View (Prev)) then
15280 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15281 end if;
15282
15283 Set_Full_View (Prev, Id);
15284 Append_Entity (Id, Current_Scope);
15285 Set_Is_Public (Id, Is_Public (Prev));
15286 Set_Is_Internal (Id);
15287 New_Id := Prev;
15288
15289 -- If the incomplete view is tagged, a class_wide type has been
15290 -- created already. Use it for the private type as well, in order
15291 -- to prevent multiple incompatible class-wide types that may be
15292 -- created for self-referential anonymous access components.
15293
15294 if Is_Tagged_Type (Prev)
15295 and then Present (Class_Wide_Type (Prev))
15296 then
15297 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15298 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15299
15300 -- If the incomplete type is completed by a private declaration
15301 -- the class-wide type remains associated with the incomplete
15302 -- type, to prevent order-of-elaboration issues in gigi, else
15303 -- we associate the class-wide type with the known full view.
15304
15305 if Nkind (N) /= N_Private_Type_Declaration then
15306 Set_Etype (Class_Wide_Type (Id), Id);
15307 end if;
15308 end if;
15309
15310 -- Case of full declaration of private type
15311
15312 else
15313 -- If the private type was a completion of an incomplete type then
15314 -- update Prev to reference the private type
15315
15316 if Ada_Version >= Ada_2012
15317 and then Ekind (Prev) = E_Incomplete_Type
15318 and then Present (Full_View (Prev))
15319 and then Is_Private_Type (Full_View (Prev))
15320 then
15321 Prev := Full_View (Prev);
15322 Prev_Par := Parent (Prev);
15323 end if;
15324
15325 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15326 if Etype (Prev) /= Prev then
15327
15328 -- Prev is a private subtype or a derived type, and needs
15329 -- no completion.
15330
15331 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15332 New_Id := Id;
15333
15334 elsif Ekind (Prev) = E_Private_Type
15335 and then Nkind_In (N, N_Task_Type_Declaration,
15336 N_Protected_Type_Declaration)
15337 then
15338 Error_Msg_N
15339 ("completion of nonlimited type cannot be limited", N);
15340
15341 elsif Ekind (Prev) = E_Record_Type_With_Private
15342 and then Nkind_In (N, N_Task_Type_Declaration,
15343 N_Protected_Type_Declaration)
15344 then
15345 if not Is_Limited_Record (Prev) then
15346 Error_Msg_N
15347 ("completion of nonlimited type cannot be limited", N);
15348
15349 elsif No (Interface_List (N)) then
15350 Error_Msg_N
15351 ("completion of tagged private type must be tagged",
15352 N);
15353 end if;
15354
15355 elsif Nkind (N) = N_Full_Type_Declaration
15356 and then
15357 Nkind (Type_Definition (N)) = N_Record_Definition
15358 and then Interface_Present (Type_Definition (N))
15359 then
15360 Error_Msg_N
15361 ("completion of private type cannot be an interface", N);
15362 end if;
15363
15364 -- Ada 2005 (AI-251): Private extension declaration of a task
15365 -- type or a protected type. This case arises when covering
15366 -- interface types.
15367
15368 elsif Nkind_In (N, N_Task_Type_Declaration,
15369 N_Protected_Type_Declaration)
15370 then
15371 null;
15372
15373 elsif Nkind (N) /= N_Full_Type_Declaration
15374 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15375 then
15376 Error_Msg_N
15377 ("full view of private extension must be an extension", N);
15378
15379 elsif not (Abstract_Present (Parent (Prev)))
15380 and then Abstract_Present (Type_Definition (N))
15381 then
15382 Error_Msg_N
15383 ("full view of non-abstract extension cannot be abstract", N);
15384 end if;
15385
15386 if not In_Private_Part (Current_Scope) then
15387 Error_Msg_N
15388 ("declaration of full view must appear in private part", N);
15389 end if;
15390
15391 if Ada_Version >= Ada_2012 then
15392 Check_Duplicate_Aspects;
15393 end if;
15394
15395 Copy_And_Swap (Prev, Id);
15396 Set_Has_Private_Declaration (Prev);
15397 Set_Has_Private_Declaration (Id);
15398
15399 -- Preserve aspect and iterator flags that may have been set on
15400 -- the partial view.
15401
15402 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15403 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15404
15405 -- If no error, propagate freeze_node from private to full view.
15406 -- It may have been generated for an early operational item.
15407
15408 if Present (Freeze_Node (Id))
15409 and then Serious_Errors_Detected = 0
15410 and then No (Full_View (Id))
15411 then
15412 Set_Freeze_Node (Prev, Freeze_Node (Id));
15413 Set_Freeze_Node (Id, Empty);
15414 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15415 end if;
15416
15417 Set_Full_View (Id, Prev);
15418 New_Id := Prev;
15419 end if;
15420
15421 -- Verify that full declaration conforms to partial one
15422
15423 if Is_Incomplete_Or_Private_Type (Prev)
15424 and then Present (Discriminant_Specifications (Prev_Par))
15425 then
15426 if Present (Discriminant_Specifications (N)) then
15427 if Ekind (Prev) = E_Incomplete_Type then
15428 Check_Discriminant_Conformance (N, Prev, Prev);
15429 else
15430 Check_Discriminant_Conformance (N, Prev, Id);
15431 end if;
15432
15433 else
15434 Error_Msg_N
15435 ("missing discriminants in full type declaration", N);
15436
15437 -- To avoid cascaded errors on subsequent use, share the
15438 -- discriminants of the partial view.
15439
15440 Set_Discriminant_Specifications (N,
15441 Discriminant_Specifications (Prev_Par));
15442 end if;
15443 end if;
15444
15445 -- A prior untagged partial view can have an associated class-wide
15446 -- type due to use of the class attribute, and in this case the full
15447 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15448 -- of incomplete tagged declarations, but we check for it.
15449
15450 if Is_Type (Prev)
15451 and then (Is_Tagged_Type (Prev)
15452 or else Present (Class_Wide_Type (Prev)))
15453 then
15454 -- Ada 2012 (AI05-0162): A private type may be the completion of
15455 -- an incomplete type
15456
15457 if Ada_Version >= Ada_2012
15458 and then Is_Incomplete_Type (Prev)
15459 and then Nkind_In (N, N_Private_Type_Declaration,
15460 N_Private_Extension_Declaration)
15461 then
15462 -- No need to check private extensions since they are tagged
15463
15464 if Nkind (N) = N_Private_Type_Declaration
15465 and then not Tagged_Present (N)
15466 then
15467 Tag_Mismatch;
15468 end if;
15469
15470 -- The full declaration is either a tagged type (including
15471 -- a synchronized type that implements interfaces) or a
15472 -- type extension, otherwise this is an error.
15473
15474 elsif Nkind_In (N, N_Task_Type_Declaration,
15475 N_Protected_Type_Declaration)
15476 then
15477 if No (Interface_List (N))
15478 and then not Error_Posted (N)
15479 then
15480 Tag_Mismatch;
15481 end if;
15482
15483 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15484
15485 -- Indicate that the previous declaration (tagged incomplete
15486 -- or private declaration) requires the same on the full one.
15487
15488 if not Tagged_Present (Type_Definition (N)) then
15489 Tag_Mismatch;
15490 Set_Is_Tagged_Type (Id);
15491 end if;
15492
15493 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15494 if No (Record_Extension_Part (Type_Definition (N))) then
15495 Error_Msg_NE
15496 ("full declaration of } must be a record extension",
15497 Prev, Id);
15498
15499 -- Set some attributes to produce a usable full view
15500
15501 Set_Is_Tagged_Type (Id);
15502 end if;
15503
15504 else
15505 Tag_Mismatch;
15506 end if;
15507 end if;
15508
15509 if Present (Prev)
15510 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15511 and then Present (Premature_Use (Parent (Prev)))
15512 then
15513 Error_Msg_Sloc := Sloc (N);
15514 Error_Msg_N
15515 ("\full declaration #", Premature_Use (Parent (Prev)));
15516 end if;
15517
15518 return New_Id;
15519 end if;
15520 end Find_Type_Name;
15521
15522 -------------------------
15523 -- Find_Type_Of_Object --
15524 -------------------------
15525
15526 function Find_Type_Of_Object
15527 (Obj_Def : Node_Id;
15528 Related_Nod : Node_Id) return Entity_Id
15529 is
15530 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15531 P : Node_Id := Parent (Obj_Def);
15532 T : Entity_Id;
15533 Nam : Name_Id;
15534
15535 begin
15536 -- If the parent is a component_definition node we climb to the
15537 -- component_declaration node
15538
15539 if Nkind (P) = N_Component_Definition then
15540 P := Parent (P);
15541 end if;
15542
15543 -- Case of an anonymous array subtype
15544
15545 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15546 N_Unconstrained_Array_Definition)
15547 then
15548 T := Empty;
15549 Array_Type_Declaration (T, Obj_Def);
15550
15551 -- Create an explicit subtype whenever possible
15552
15553 elsif Nkind (P) /= N_Component_Declaration
15554 and then Def_Kind = N_Subtype_Indication
15555 then
15556 -- Base name of subtype on object name, which will be unique in
15557 -- the current scope.
15558
15559 -- If this is a duplicate declaration, return base type, to avoid
15560 -- generating duplicate anonymous types.
15561
15562 if Error_Posted (P) then
15563 Analyze (Subtype_Mark (Obj_Def));
15564 return Entity (Subtype_Mark (Obj_Def));
15565 end if;
15566
15567 Nam :=
15568 New_External_Name
15569 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15570
15571 T := Make_Defining_Identifier (Sloc (P), Nam);
15572
15573 Insert_Action (Obj_Def,
15574 Make_Subtype_Declaration (Sloc (P),
15575 Defining_Identifier => T,
15576 Subtype_Indication => Relocate_Node (Obj_Def)));
15577
15578 -- This subtype may need freezing, and this will not be done
15579 -- automatically if the object declaration is not in declarative
15580 -- part. Since this is an object declaration, the type cannot always
15581 -- be frozen here. Deferred constants do not freeze their type
15582 -- (which often enough will be private).
15583
15584 if Nkind (P) = N_Object_Declaration
15585 and then Constant_Present (P)
15586 and then No (Expression (P))
15587 then
15588 null;
15589 else
15590 Insert_Actions (Obj_Def, Freeze_Entity (T, P));
15591 end if;
15592
15593 -- Ada 2005 AI-406: the object definition in an object declaration
15594 -- can be an access definition.
15595
15596 elsif Def_Kind = N_Access_Definition then
15597 T := Access_Definition (Related_Nod, Obj_Def);
15598
15599 Set_Is_Local_Anonymous_Access
15600 (T,
15601 V => (Ada_Version < Ada_2012)
15602 or else (Nkind (P) /= N_Object_Declaration)
15603 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15604
15605 -- Otherwise, the object definition is just a subtype_mark
15606
15607 else
15608 T := Process_Subtype (Obj_Def, Related_Nod);
15609
15610 -- If expansion is disabled an object definition that is an aggregate
15611 -- will not get expanded and may lead to scoping problems in the back
15612 -- end, if the object is referenced in an inner scope. In that case
15613 -- create an itype reference for the object definition now. This
15614 -- may be redundant in some cases, but harmless.
15615
15616 if Is_Itype (T)
15617 and then Nkind (Related_Nod) = N_Object_Declaration
15618 and then ASIS_Mode
15619 then
15620 Build_Itype_Reference (T, Related_Nod);
15621 end if;
15622 end if;
15623
15624 return T;
15625 end Find_Type_Of_Object;
15626
15627 --------------------------------
15628 -- Find_Type_Of_Subtype_Indic --
15629 --------------------------------
15630
15631 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15632 Typ : Entity_Id;
15633
15634 begin
15635 -- Case of subtype mark with a constraint
15636
15637 if Nkind (S) = N_Subtype_Indication then
15638 Find_Type (Subtype_Mark (S));
15639 Typ := Entity (Subtype_Mark (S));
15640
15641 if not
15642 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15643 then
15644 Error_Msg_N
15645 ("incorrect constraint for this kind of type", Constraint (S));
15646 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15647 end if;
15648
15649 -- Otherwise we have a subtype mark without a constraint
15650
15651 elsif Error_Posted (S) then
15652 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15653 return Any_Type;
15654
15655 else
15656 Find_Type (S);
15657 Typ := Entity (S);
15658 end if;
15659
15660 -- Check No_Wide_Characters restriction
15661
15662 Check_Wide_Character_Restriction (Typ, S);
15663
15664 return Typ;
15665 end Find_Type_Of_Subtype_Indic;
15666
15667 -------------------------------------
15668 -- Floating_Point_Type_Declaration --
15669 -------------------------------------
15670
15671 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15672 Digs : constant Node_Id := Digits_Expression (Def);
15673 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15674 Digs_Val : Uint;
15675 Base_Typ : Entity_Id;
15676 Implicit_Base : Entity_Id;
15677 Bound : Node_Id;
15678
15679 function Can_Derive_From (E : Entity_Id) return Boolean;
15680 -- Find if given digits value, and possibly a specified range, allows
15681 -- derivation from specified type
15682
15683 function Find_Base_Type return Entity_Id;
15684 -- Find a predefined base type that Def can derive from, or generate
15685 -- an error and substitute Long_Long_Float if none exists.
15686
15687 ---------------------
15688 -- Can_Derive_From --
15689 ---------------------
15690
15691 function Can_Derive_From (E : Entity_Id) return Boolean is
15692 Spec : constant Entity_Id := Real_Range_Specification (Def);
15693
15694 begin
15695 -- Check specified "digits" constraint
15696
15697 if Digs_Val > Digits_Value (E) then
15698 return False;
15699 end if;
15700
15701 -- Avoid types not matching pragma Float_Representation, if present
15702
15703 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15704 or else
15705 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15706 then
15707 return False;
15708 end if;
15709
15710 -- Check for matching range, if specified
15711
15712 if Present (Spec) then
15713 if Expr_Value_R (Type_Low_Bound (E)) >
15714 Expr_Value_R (Low_Bound (Spec))
15715 then
15716 return False;
15717 end if;
15718
15719 if Expr_Value_R (Type_High_Bound (E)) <
15720 Expr_Value_R (High_Bound (Spec))
15721 then
15722 return False;
15723 end if;
15724 end if;
15725
15726 return True;
15727 end Can_Derive_From;
15728
15729 --------------------
15730 -- Find_Base_Type --
15731 --------------------
15732
15733 function Find_Base_Type return Entity_Id is
15734 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15735
15736 begin
15737 -- Iterate over the predefined types in order, returning the first
15738 -- one that Def can derive from.
15739
15740 while Present (Choice) loop
15741 if Can_Derive_From (Node (Choice)) then
15742 return Node (Choice);
15743 end if;
15744
15745 Next_Elmt (Choice);
15746 end loop;
15747
15748 -- If we can't derive from any existing type, use Long_Long_Float
15749 -- and give appropriate message explaining the problem.
15750
15751 if Digs_Val > Max_Digs_Val then
15752 -- It might be the case that there is a type with the requested
15753 -- range, just not the combination of digits and range.
15754
15755 Error_Msg_N
15756 ("no predefined type has requested range and precision",
15757 Real_Range_Specification (Def));
15758
15759 else
15760 Error_Msg_N
15761 ("range too large for any predefined type",
15762 Real_Range_Specification (Def));
15763 end if;
15764
15765 return Standard_Long_Long_Float;
15766 end Find_Base_Type;
15767
15768 -- Start of processing for Floating_Point_Type_Declaration
15769
15770 begin
15771 Check_Restriction (No_Floating_Point, Def);
15772
15773 -- Create an implicit base type
15774
15775 Implicit_Base :=
15776 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
15777
15778 -- Analyze and verify digits value
15779
15780 Analyze_And_Resolve (Digs, Any_Integer);
15781 Check_Digits_Expression (Digs);
15782 Digs_Val := Expr_Value (Digs);
15783
15784 -- Process possible range spec and find correct type to derive from
15785
15786 Process_Real_Range_Specification (Def);
15787
15788 -- Check that requested number of digits is not too high.
15789
15790 if Digs_Val > Max_Digs_Val then
15791 -- The check for Max_Base_Digits may be somewhat expensive, as it
15792 -- requires reading System, so only do it when necessary.
15793
15794 declare
15795 Max_Base_Digits : constant Uint :=
15796 Expr_Value
15797 (Expression
15798 (Parent (RTE (RE_Max_Base_Digits))));
15799
15800 begin
15801 if Digs_Val > Max_Base_Digits then
15802 Error_Msg_Uint_1 := Max_Base_Digits;
15803 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
15804
15805 elsif No (Real_Range_Specification (Def)) then
15806 Error_Msg_Uint_1 := Max_Digs_Val;
15807 Error_Msg_N ("types with more than ^ digits need range spec "
15808 & "(RM 3.5.7(6))", Digs);
15809 end if;
15810 end;
15811 end if;
15812
15813 -- Find a suitable type to derive from or complain and use a substitute
15814
15815 Base_Typ := Find_Base_Type;
15816
15817 -- If there are bounds given in the declaration use them as the bounds
15818 -- of the type, otherwise use the bounds of the predefined base type
15819 -- that was chosen based on the Digits value.
15820
15821 if Present (Real_Range_Specification (Def)) then
15822 Set_Scalar_Range (T, Real_Range_Specification (Def));
15823 Set_Is_Constrained (T);
15824
15825 -- The bounds of this range must be converted to machine numbers
15826 -- in accordance with RM 4.9(38).
15827
15828 Bound := Type_Low_Bound (T);
15829
15830 if Nkind (Bound) = N_Real_Literal then
15831 Set_Realval
15832 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15833 Set_Is_Machine_Number (Bound);
15834 end if;
15835
15836 Bound := Type_High_Bound (T);
15837
15838 if Nkind (Bound) = N_Real_Literal then
15839 Set_Realval
15840 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15841 Set_Is_Machine_Number (Bound);
15842 end if;
15843
15844 else
15845 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
15846 end if;
15847
15848 -- Complete definition of implicit base and declared first subtype
15849
15850 Set_Etype (Implicit_Base, Base_Typ);
15851
15852 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
15853 Set_Size_Info (Implicit_Base, (Base_Typ));
15854 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
15855 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
15856 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
15857 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
15858
15859 Set_Ekind (T, E_Floating_Point_Subtype);
15860 Set_Etype (T, Implicit_Base);
15861
15862 Set_Size_Info (T, (Implicit_Base));
15863 Set_RM_Size (T, RM_Size (Implicit_Base));
15864 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15865 Set_Digits_Value (T, Digs_Val);
15866 end Floating_Point_Type_Declaration;
15867
15868 ----------------------------
15869 -- Get_Discriminant_Value --
15870 ----------------------------
15871
15872 -- This is the situation:
15873
15874 -- There is a non-derived type
15875
15876 -- type T0 (Dx, Dy, Dz...)
15877
15878 -- There are zero or more levels of derivation, with each derivation
15879 -- either purely inheriting the discriminants, or defining its own.
15880
15881 -- type Ti is new Ti-1
15882 -- or
15883 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15884 -- or
15885 -- subtype Ti is ...
15886
15887 -- The subtype issue is avoided by the use of Original_Record_Component,
15888 -- and the fact that derived subtypes also derive the constraints.
15889
15890 -- This chain leads back from
15891
15892 -- Typ_For_Constraint
15893
15894 -- Typ_For_Constraint has discriminants, and the value for each
15895 -- discriminant is given by its corresponding Elmt of Constraints.
15896
15897 -- Discriminant is some discriminant in this hierarchy
15898
15899 -- We need to return its value
15900
15901 -- We do this by recursively searching each level, and looking for
15902 -- Discriminant. Once we get to the bottom, we start backing up
15903 -- returning the value for it which may in turn be a discriminant
15904 -- further up, so on the backup we continue the substitution.
15905
15906 function Get_Discriminant_Value
15907 (Discriminant : Entity_Id;
15908 Typ_For_Constraint : Entity_Id;
15909 Constraint : Elist_Id) return Node_Id
15910 is
15911 function Root_Corresponding_Discriminant
15912 (Discr : Entity_Id) return Entity_Id;
15913 -- Given a discriminant, traverse the chain of inherited discriminants
15914 -- and return the topmost discriminant.
15915
15916 function Search_Derivation_Levels
15917 (Ti : Entity_Id;
15918 Discrim_Values : Elist_Id;
15919 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
15920 -- This is the routine that performs the recursive search of levels
15921 -- as described above.
15922
15923 -------------------------------------
15924 -- Root_Corresponding_Discriminant --
15925 -------------------------------------
15926
15927 function Root_Corresponding_Discriminant
15928 (Discr : Entity_Id) return Entity_Id
15929 is
15930 D : Entity_Id;
15931
15932 begin
15933 D := Discr;
15934 while Present (Corresponding_Discriminant (D)) loop
15935 D := Corresponding_Discriminant (D);
15936 end loop;
15937
15938 return D;
15939 end Root_Corresponding_Discriminant;
15940
15941 ------------------------------
15942 -- Search_Derivation_Levels --
15943 ------------------------------
15944
15945 function Search_Derivation_Levels
15946 (Ti : Entity_Id;
15947 Discrim_Values : Elist_Id;
15948 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
15949 is
15950 Assoc : Elmt_Id;
15951 Disc : Entity_Id;
15952 Result : Node_Or_Entity_Id;
15953 Result_Entity : Node_Id;
15954
15955 begin
15956 -- If inappropriate type, return Error, this happens only in
15957 -- cascaded error situations, and we want to avoid a blow up.
15958
15959 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
15960 return Error;
15961 end if;
15962
15963 -- Look deeper if possible. Use Stored_Constraints only for
15964 -- untagged types. For tagged types use the given constraint.
15965 -- This asymmetry needs explanation???
15966
15967 if not Stored_Discrim_Values
15968 and then Present (Stored_Constraint (Ti))
15969 and then not Is_Tagged_Type (Ti)
15970 then
15971 Result :=
15972 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
15973 else
15974 declare
15975 Td : constant Entity_Id := Etype (Ti);
15976
15977 begin
15978 if Td = Ti then
15979 Result := Discriminant;
15980
15981 else
15982 if Present (Stored_Constraint (Ti)) then
15983 Result :=
15984 Search_Derivation_Levels
15985 (Td, Stored_Constraint (Ti), True);
15986 else
15987 Result :=
15988 Search_Derivation_Levels
15989 (Td, Discrim_Values, Stored_Discrim_Values);
15990 end if;
15991 end if;
15992 end;
15993 end if;
15994
15995 -- Extra underlying places to search, if not found above. For
15996 -- concurrent types, the relevant discriminant appears in the
15997 -- corresponding record. For a type derived from a private type
15998 -- without discriminant, the full view inherits the discriminants
15999 -- of the full view of the parent.
16000
16001 if Result = Discriminant then
16002 if Is_Concurrent_Type (Ti)
16003 and then Present (Corresponding_Record_Type (Ti))
16004 then
16005 Result :=
16006 Search_Derivation_Levels (
16007 Corresponding_Record_Type (Ti),
16008 Discrim_Values,
16009 Stored_Discrim_Values);
16010
16011 elsif Is_Private_Type (Ti)
16012 and then not Has_Discriminants (Ti)
16013 and then Present (Full_View (Ti))
16014 and then Etype (Full_View (Ti)) /= Ti
16015 then
16016 Result :=
16017 Search_Derivation_Levels (
16018 Full_View (Ti),
16019 Discrim_Values,
16020 Stored_Discrim_Values);
16021 end if;
16022 end if;
16023
16024 -- If Result is not a (reference to a) discriminant, return it,
16025 -- otherwise set Result_Entity to the discriminant.
16026
16027 if Nkind (Result) = N_Defining_Identifier then
16028 pragma Assert (Result = Discriminant);
16029 Result_Entity := Result;
16030
16031 else
16032 if not Denotes_Discriminant (Result) then
16033 return Result;
16034 end if;
16035
16036 Result_Entity := Entity (Result);
16037 end if;
16038
16039 -- See if this level of derivation actually has discriminants
16040 -- because tagged derivations can add them, hence the lower
16041 -- levels need not have any.
16042
16043 if not Has_Discriminants (Ti) then
16044 return Result;
16045 end if;
16046
16047 -- Scan Ti's discriminants for Result_Entity,
16048 -- and return its corresponding value, if any.
16049
16050 Result_Entity := Original_Record_Component (Result_Entity);
16051
16052 Assoc := First_Elmt (Discrim_Values);
16053
16054 if Stored_Discrim_Values then
16055 Disc := First_Stored_Discriminant (Ti);
16056 else
16057 Disc := First_Discriminant (Ti);
16058 end if;
16059
16060 while Present (Disc) loop
16061 pragma Assert (Present (Assoc));
16062
16063 if Original_Record_Component (Disc) = Result_Entity then
16064 return Node (Assoc);
16065 end if;
16066
16067 Next_Elmt (Assoc);
16068
16069 if Stored_Discrim_Values then
16070 Next_Stored_Discriminant (Disc);
16071 else
16072 Next_Discriminant (Disc);
16073 end if;
16074 end loop;
16075
16076 -- Could not find it
16077 --
16078 return Result;
16079 end Search_Derivation_Levels;
16080
16081 -- Local Variables
16082
16083 Result : Node_Or_Entity_Id;
16084
16085 -- Start of processing for Get_Discriminant_Value
16086
16087 begin
16088 -- ??? This routine is a gigantic mess and will be deleted. For the
16089 -- time being just test for the trivial case before calling recurse.
16090
16091 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16092 declare
16093 D : Entity_Id;
16094 E : Elmt_Id;
16095
16096 begin
16097 D := First_Discriminant (Typ_For_Constraint);
16098 E := First_Elmt (Constraint);
16099 while Present (D) loop
16100 if Chars (D) = Chars (Discriminant) then
16101 return Node (E);
16102 end if;
16103
16104 Next_Discriminant (D);
16105 Next_Elmt (E);
16106 end loop;
16107 end;
16108 end if;
16109
16110 Result := Search_Derivation_Levels
16111 (Typ_For_Constraint, Constraint, False);
16112
16113 -- ??? hack to disappear when this routine is gone
16114
16115 if Nkind (Result) = N_Defining_Identifier then
16116 declare
16117 D : Entity_Id;
16118 E : Elmt_Id;
16119
16120 begin
16121 D := First_Discriminant (Typ_For_Constraint);
16122 E := First_Elmt (Constraint);
16123 while Present (D) loop
16124 if Root_Corresponding_Discriminant (D) = Discriminant then
16125 return Node (E);
16126 end if;
16127
16128 Next_Discriminant (D);
16129 Next_Elmt (E);
16130 end loop;
16131 end;
16132 end if;
16133
16134 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16135 return Result;
16136 end Get_Discriminant_Value;
16137
16138 --------------------------
16139 -- Has_Range_Constraint --
16140 --------------------------
16141
16142 function Has_Range_Constraint (N : Node_Id) return Boolean is
16143 C : constant Node_Id := Constraint (N);
16144
16145 begin
16146 if Nkind (C) = N_Range_Constraint then
16147 return True;
16148
16149 elsif Nkind (C) = N_Digits_Constraint then
16150 return
16151 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16152 or else
16153 Present (Range_Constraint (C));
16154
16155 elsif Nkind (C) = N_Delta_Constraint then
16156 return Present (Range_Constraint (C));
16157
16158 else
16159 return False;
16160 end if;
16161 end Has_Range_Constraint;
16162
16163 ------------------------
16164 -- Inherit_Components --
16165 ------------------------
16166
16167 function Inherit_Components
16168 (N : Node_Id;
16169 Parent_Base : Entity_Id;
16170 Derived_Base : Entity_Id;
16171 Is_Tagged : Boolean;
16172 Inherit_Discr : Boolean;
16173 Discs : Elist_Id) return Elist_Id
16174 is
16175 Assoc_List : constant Elist_Id := New_Elmt_List;
16176
16177 procedure Inherit_Component
16178 (Old_C : Entity_Id;
16179 Plain_Discrim : Boolean := False;
16180 Stored_Discrim : Boolean := False);
16181 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16182 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16183 -- True, Old_C is a stored discriminant. If they are both false then
16184 -- Old_C is a regular component.
16185
16186 -----------------------
16187 -- Inherit_Component --
16188 -----------------------
16189
16190 procedure Inherit_Component
16191 (Old_C : Entity_Id;
16192 Plain_Discrim : Boolean := False;
16193 Stored_Discrim : Boolean := False)
16194 is
16195 procedure Set_Anonymous_Type (Id : Entity_Id);
16196 -- Id denotes the entity of an access discriminant or anonymous
16197 -- access component. Set the type of Id to either the same type of
16198 -- Old_C or create a new one depending on whether the parent and
16199 -- the child types are in the same scope.
16200
16201 ------------------------
16202 -- Set_Anonymous_Type --
16203 ------------------------
16204
16205 procedure Set_Anonymous_Type (Id : Entity_Id) is
16206 Old_Typ : constant Entity_Id := Etype (Old_C);
16207
16208 begin
16209 if Scope (Parent_Base) = Scope (Derived_Base) then
16210 Set_Etype (Id, Old_Typ);
16211
16212 -- The parent and the derived type are in two different scopes.
16213 -- Reuse the type of the original discriminant / component by
16214 -- copying it in order to preserve all attributes.
16215
16216 else
16217 declare
16218 Typ : constant Entity_Id := New_Copy (Old_Typ);
16219
16220 begin
16221 Set_Etype (Id, Typ);
16222
16223 -- Since we do not generate component declarations for
16224 -- inherited components, associate the itype with the
16225 -- derived type.
16226
16227 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16228 Set_Scope (Typ, Derived_Base);
16229 end;
16230 end if;
16231 end Set_Anonymous_Type;
16232
16233 -- Local variables and constants
16234
16235 New_C : constant Entity_Id := New_Copy (Old_C);
16236
16237 Corr_Discrim : Entity_Id;
16238 Discrim : Entity_Id;
16239
16240 -- Start of processing for Inherit_Component
16241
16242 begin
16243 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16244
16245 Set_Parent (New_C, Parent (Old_C));
16246
16247 -- Regular discriminants and components must be inserted in the scope
16248 -- of the Derived_Base. Do it here.
16249
16250 if not Stored_Discrim then
16251 Enter_Name (New_C);
16252 end if;
16253
16254 -- For tagged types the Original_Record_Component must point to
16255 -- whatever this field was pointing to in the parent type. This has
16256 -- already been achieved by the call to New_Copy above.
16257
16258 if not Is_Tagged then
16259 Set_Original_Record_Component (New_C, New_C);
16260 end if;
16261
16262 -- Set the proper type of an access discriminant
16263
16264 if Ekind (New_C) = E_Discriminant
16265 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16266 then
16267 Set_Anonymous_Type (New_C);
16268 end if;
16269
16270 -- If we have inherited a component then see if its Etype contains
16271 -- references to Parent_Base discriminants. In this case, replace
16272 -- these references with the constraints given in Discs. We do not
16273 -- do this for the partial view of private types because this is
16274 -- not needed (only the components of the full view will be used
16275 -- for code generation) and cause problem. We also avoid this
16276 -- transformation in some error situations.
16277
16278 if Ekind (New_C) = E_Component then
16279
16280 -- Set the proper type of an anonymous access component
16281
16282 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16283 Set_Anonymous_Type (New_C);
16284
16285 elsif (Is_Private_Type (Derived_Base)
16286 and then not Is_Generic_Type (Derived_Base))
16287 or else (Is_Empty_Elmt_List (Discs)
16288 and then not Expander_Active)
16289 then
16290 Set_Etype (New_C, Etype (Old_C));
16291
16292 else
16293 -- The current component introduces a circularity of the
16294 -- following kind:
16295
16296 -- limited with Pack_2;
16297 -- package Pack_1 is
16298 -- type T_1 is tagged record
16299 -- Comp : access Pack_2.T_2;
16300 -- ...
16301 -- end record;
16302 -- end Pack_1;
16303
16304 -- with Pack_1;
16305 -- package Pack_2 is
16306 -- type T_2 is new Pack_1.T_1 with ...;
16307 -- end Pack_2;
16308
16309 Set_Etype
16310 (New_C,
16311 Constrain_Component_Type
16312 (Old_C, Derived_Base, N, Parent_Base, Discs));
16313 end if;
16314 end if;
16315
16316 -- In derived tagged types it is illegal to reference a non
16317 -- discriminant component in the parent type. To catch this, mark
16318 -- these components with an Ekind of E_Void. This will be reset in
16319 -- Record_Type_Definition after processing the record extension of
16320 -- the derived type.
16321
16322 -- If the declaration is a private extension, there is no further
16323 -- record extension to process, and the components retain their
16324 -- current kind, because they are visible at this point.
16325
16326 if Is_Tagged and then Ekind (New_C) = E_Component
16327 and then Nkind (N) /= N_Private_Extension_Declaration
16328 then
16329 Set_Ekind (New_C, E_Void);
16330 end if;
16331
16332 if Plain_Discrim then
16333 Set_Corresponding_Discriminant (New_C, Old_C);
16334 Build_Discriminal (New_C);
16335
16336 -- If we are explicitly inheriting a stored discriminant it will be
16337 -- completely hidden.
16338
16339 elsif Stored_Discrim then
16340 Set_Corresponding_Discriminant (New_C, Empty);
16341 Set_Discriminal (New_C, Empty);
16342 Set_Is_Completely_Hidden (New_C);
16343
16344 -- Set the Original_Record_Component of each discriminant in the
16345 -- derived base to point to the corresponding stored that we just
16346 -- created.
16347
16348 Discrim := First_Discriminant (Derived_Base);
16349 while Present (Discrim) loop
16350 Corr_Discrim := Corresponding_Discriminant (Discrim);
16351
16352 -- Corr_Discrim could be missing in an error situation
16353
16354 if Present (Corr_Discrim)
16355 and then Original_Record_Component (Corr_Discrim) = Old_C
16356 then
16357 Set_Original_Record_Component (Discrim, New_C);
16358 end if;
16359
16360 Next_Discriminant (Discrim);
16361 end loop;
16362
16363 Append_Entity (New_C, Derived_Base);
16364 end if;
16365
16366 if not Is_Tagged then
16367 Append_Elmt (Old_C, Assoc_List);
16368 Append_Elmt (New_C, Assoc_List);
16369 end if;
16370 end Inherit_Component;
16371
16372 -- Variables local to Inherit_Component
16373
16374 Loc : constant Source_Ptr := Sloc (N);
16375
16376 Parent_Discrim : Entity_Id;
16377 Stored_Discrim : Entity_Id;
16378 D : Entity_Id;
16379 Component : Entity_Id;
16380
16381 -- Start of processing for Inherit_Components
16382
16383 begin
16384 if not Is_Tagged then
16385 Append_Elmt (Parent_Base, Assoc_List);
16386 Append_Elmt (Derived_Base, Assoc_List);
16387 end if;
16388
16389 -- Inherit parent discriminants if needed
16390
16391 if Inherit_Discr then
16392 Parent_Discrim := First_Discriminant (Parent_Base);
16393 while Present (Parent_Discrim) loop
16394 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16395 Next_Discriminant (Parent_Discrim);
16396 end loop;
16397 end if;
16398
16399 -- Create explicit stored discrims for untagged types when necessary
16400
16401 if not Has_Unknown_Discriminants (Derived_Base)
16402 and then Has_Discriminants (Parent_Base)
16403 and then not Is_Tagged
16404 and then
16405 (not Inherit_Discr
16406 or else First_Discriminant (Parent_Base) /=
16407 First_Stored_Discriminant (Parent_Base))
16408 then
16409 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16410 while Present (Stored_Discrim) loop
16411 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16412 Next_Stored_Discriminant (Stored_Discrim);
16413 end loop;
16414 end if;
16415
16416 -- See if we can apply the second transformation for derived types, as
16417 -- explained in point 6. in the comments above Build_Derived_Record_Type
16418 -- This is achieved by appending Derived_Base discriminants into Discs,
16419 -- which has the side effect of returning a non empty Discs list to the
16420 -- caller of Inherit_Components, which is what we want. This must be
16421 -- done for private derived types if there are explicit stored
16422 -- discriminants, to ensure that we can retrieve the values of the
16423 -- constraints provided in the ancestors.
16424
16425 if Inherit_Discr
16426 and then Is_Empty_Elmt_List (Discs)
16427 and then Present (First_Discriminant (Derived_Base))
16428 and then
16429 (not Is_Private_Type (Derived_Base)
16430 or else Is_Completely_Hidden
16431 (First_Stored_Discriminant (Derived_Base))
16432 or else Is_Generic_Type (Derived_Base))
16433 then
16434 D := First_Discriminant (Derived_Base);
16435 while Present (D) loop
16436 Append_Elmt (New_Reference_To (D, Loc), Discs);
16437 Next_Discriminant (D);
16438 end loop;
16439 end if;
16440
16441 -- Finally, inherit non-discriminant components unless they are not
16442 -- visible because defined or inherited from the full view of the
16443 -- parent. Don't inherit the _parent field of the parent type.
16444
16445 Component := First_Entity (Parent_Base);
16446 while Present (Component) loop
16447
16448 -- Ada 2005 (AI-251): Do not inherit components associated with
16449 -- secondary tags of the parent.
16450
16451 if Ekind (Component) = E_Component
16452 and then Present (Related_Type (Component))
16453 then
16454 null;
16455
16456 elsif Ekind (Component) /= E_Component
16457 or else Chars (Component) = Name_uParent
16458 then
16459 null;
16460
16461 -- If the derived type is within the parent type's declarative
16462 -- region, then the components can still be inherited even though
16463 -- they aren't visible at this point. This can occur for cases
16464 -- such as within public child units where the components must
16465 -- become visible upon entering the child unit's private part.
16466
16467 elsif not Is_Visible_Component (Component)
16468 and then not In_Open_Scopes (Scope (Parent_Base))
16469 then
16470 null;
16471
16472 elsif Ekind_In (Derived_Base, E_Private_Type,
16473 E_Limited_Private_Type)
16474 then
16475 null;
16476
16477 else
16478 Inherit_Component (Component);
16479 end if;
16480
16481 Next_Entity (Component);
16482 end loop;
16483
16484 -- For tagged derived types, inherited discriminants cannot be used in
16485 -- component declarations of the record extension part. To achieve this
16486 -- we mark the inherited discriminants as not visible.
16487
16488 if Is_Tagged and then Inherit_Discr then
16489 D := First_Discriminant (Derived_Base);
16490 while Present (D) loop
16491 Set_Is_Immediately_Visible (D, False);
16492 Next_Discriminant (D);
16493 end loop;
16494 end if;
16495
16496 return Assoc_List;
16497 end Inherit_Components;
16498
16499 -----------------------
16500 -- Is_Null_Extension --
16501 -----------------------
16502
16503 function Is_Null_Extension (T : Entity_Id) return Boolean is
16504 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16505 Comp_List : Node_Id;
16506 Comp : Node_Id;
16507
16508 begin
16509 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16510 or else not Is_Tagged_Type (T)
16511 or else Nkind (Type_Definition (Type_Decl)) /=
16512 N_Derived_Type_Definition
16513 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16514 then
16515 return False;
16516 end if;
16517
16518 Comp_List :=
16519 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16520
16521 if Present (Discriminant_Specifications (Type_Decl)) then
16522 return False;
16523
16524 elsif Present (Comp_List)
16525 and then Is_Non_Empty_List (Component_Items (Comp_List))
16526 then
16527 Comp := First (Component_Items (Comp_List));
16528
16529 -- Only user-defined components are relevant. The component list
16530 -- may also contain a parent component and internal components
16531 -- corresponding to secondary tags, but these do not determine
16532 -- whether this is a null extension.
16533
16534 while Present (Comp) loop
16535 if Comes_From_Source (Comp) then
16536 return False;
16537 end if;
16538
16539 Next (Comp);
16540 end loop;
16541
16542 return True;
16543 else
16544 return True;
16545 end if;
16546 end Is_Null_Extension;
16547
16548 ------------------------------
16549 -- Is_Valid_Constraint_Kind --
16550 ------------------------------
16551
16552 function Is_Valid_Constraint_Kind
16553 (T_Kind : Type_Kind;
16554 Constraint_Kind : Node_Kind) return Boolean
16555 is
16556 begin
16557 case T_Kind is
16558 when Enumeration_Kind |
16559 Integer_Kind =>
16560 return Constraint_Kind = N_Range_Constraint;
16561
16562 when Decimal_Fixed_Point_Kind =>
16563 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16564 N_Range_Constraint);
16565
16566 when Ordinary_Fixed_Point_Kind =>
16567 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16568 N_Range_Constraint);
16569
16570 when Float_Kind =>
16571 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16572 N_Range_Constraint);
16573
16574 when Access_Kind |
16575 Array_Kind |
16576 E_Record_Type |
16577 E_Record_Subtype |
16578 Class_Wide_Kind |
16579 E_Incomplete_Type |
16580 Private_Kind |
16581 Concurrent_Kind =>
16582 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16583
16584 when others =>
16585 return True; -- Error will be detected later
16586 end case;
16587 end Is_Valid_Constraint_Kind;
16588
16589 --------------------------
16590 -- Is_Visible_Component --
16591 --------------------------
16592
16593 function Is_Visible_Component
16594 (C : Entity_Id;
16595 N : Node_Id := Empty) return Boolean
16596 is
16597 Original_Comp : Entity_Id := Empty;
16598 Original_Scope : Entity_Id;
16599 Type_Scope : Entity_Id;
16600
16601 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16602 -- Check whether parent type of inherited component is declared locally,
16603 -- possibly within a nested package or instance. The current scope is
16604 -- the derived record itself.
16605
16606 -------------------
16607 -- Is_Local_Type --
16608 -------------------
16609
16610 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16611 Scop : Entity_Id;
16612
16613 begin
16614 Scop := Scope (Typ);
16615 while Present (Scop)
16616 and then Scop /= Standard_Standard
16617 loop
16618 if Scop = Scope (Current_Scope) then
16619 return True;
16620 end if;
16621
16622 Scop := Scope (Scop);
16623 end loop;
16624
16625 return False;
16626 end Is_Local_Type;
16627
16628 -- Start of processing for Is_Visible_Component
16629
16630 begin
16631 if Ekind_In (C, E_Component, E_Discriminant) then
16632 Original_Comp := Original_Record_Component (C);
16633 end if;
16634
16635 if No (Original_Comp) then
16636
16637 -- Premature usage, or previous error
16638
16639 return False;
16640
16641 else
16642 Original_Scope := Scope (Original_Comp);
16643 Type_Scope := Scope (Base_Type (Scope (C)));
16644 end if;
16645
16646 -- For an untagged type derived from a private type, the only visible
16647 -- components are new discriminants. In an instance all components are
16648 -- visible (see Analyze_Selected_Component).
16649
16650 if not Is_Tagged_Type (Original_Scope) then
16651 return not Has_Private_Ancestor (Original_Scope)
16652 or else In_Open_Scopes (Scope (Original_Scope))
16653 or else In_Instance
16654 or else (Ekind (Original_Comp) = E_Discriminant
16655 and then Original_Scope = Type_Scope);
16656
16657 -- If it is _Parent or _Tag, there is no visibility issue
16658
16659 elsif not Comes_From_Source (Original_Comp) then
16660 return True;
16661
16662 -- Discriminants are visible unless the (private) type has unknown
16663 -- discriminants. If the discriminant reference is inserted for a
16664 -- discriminant check on a full view it is also visible.
16665
16666 elsif Ekind (Original_Comp) = E_Discriminant
16667 and then
16668 (not Has_Unknown_Discriminants (Original_Scope)
16669 or else (Present (N)
16670 and then Nkind (N) = N_Selected_Component
16671 and then Nkind (Prefix (N)) = N_Type_Conversion
16672 and then not Comes_From_Source (Prefix (N))))
16673 then
16674 return True;
16675
16676 -- In the body of an instantiation, no need to check for the visibility
16677 -- of a component.
16678
16679 elsif In_Instance_Body then
16680 return True;
16681
16682 -- If the component has been declared in an ancestor which is currently
16683 -- a private type, then it is not visible. The same applies if the
16684 -- component's containing type is not in an open scope and the original
16685 -- component's enclosing type is a visible full view of a private type
16686 -- (which can occur in cases where an attempt is being made to reference
16687 -- a component in a sibling package that is inherited from a visible
16688 -- component of a type in an ancestor package; the component in the
16689 -- sibling package should not be visible even though the component it
16690 -- inherited from is visible). This does not apply however in the case
16691 -- where the scope of the type is a private child unit, or when the
16692 -- parent comes from a local package in which the ancestor is currently
16693 -- visible. The latter suppression of visibility is needed for cases
16694 -- that are tested in B730006.
16695
16696 elsif Is_Private_Type (Original_Scope)
16697 or else
16698 (not Is_Private_Descendant (Type_Scope)
16699 and then not In_Open_Scopes (Type_Scope)
16700 and then Has_Private_Declaration (Original_Scope))
16701 then
16702 -- If the type derives from an entity in a formal package, there
16703 -- are no additional visible components.
16704
16705 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16706 N_Formal_Package_Declaration
16707 then
16708 return False;
16709
16710 -- if we are not in the private part of the current package, there
16711 -- are no additional visible components.
16712
16713 elsif Ekind (Scope (Current_Scope)) = E_Package
16714 and then not In_Private_Part (Scope (Current_Scope))
16715 then
16716 return False;
16717 else
16718 return
16719 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16720 and then In_Open_Scopes (Scope (Original_Scope))
16721 and then Is_Local_Type (Type_Scope);
16722 end if;
16723
16724 -- There is another weird way in which a component may be invisible when
16725 -- the private and the full view are not derived from the same ancestor.
16726 -- Here is an example :
16727
16728 -- type A1 is tagged record F1 : integer; end record;
16729 -- type A2 is new A1 with record F2 : integer; end record;
16730 -- type T is new A1 with private;
16731 -- private
16732 -- type T is new A2 with null record;
16733
16734 -- In this case, the full view of T inherits F1 and F2 but the private
16735 -- view inherits only F1
16736
16737 else
16738 declare
16739 Ancestor : Entity_Id := Scope (C);
16740
16741 begin
16742 loop
16743 if Ancestor = Original_Scope then
16744 return True;
16745 elsif Ancestor = Etype (Ancestor) then
16746 return False;
16747 end if;
16748
16749 Ancestor := Etype (Ancestor);
16750 end loop;
16751 end;
16752 end if;
16753 end Is_Visible_Component;
16754
16755 --------------------------
16756 -- Make_Class_Wide_Type --
16757 --------------------------
16758
16759 procedure Make_Class_Wide_Type (T : Entity_Id) is
16760 CW_Type : Entity_Id;
16761 CW_Name : Name_Id;
16762 Next_E : Entity_Id;
16763
16764 begin
16765 if Present (Class_Wide_Type (T)) then
16766
16767 -- The class-wide type is a partially decorated entity created for a
16768 -- unanalyzed tagged type referenced through a limited with clause.
16769 -- When the tagged type is analyzed, its class-wide type needs to be
16770 -- redecorated. Note that we reuse the entity created by Decorate_
16771 -- Tagged_Type in order to preserve all links.
16772
16773 if Materialize_Entity (Class_Wide_Type (T)) then
16774 CW_Type := Class_Wide_Type (T);
16775 Set_Materialize_Entity (CW_Type, False);
16776
16777 -- The class wide type can have been defined by the partial view, in
16778 -- which case everything is already done.
16779
16780 else
16781 return;
16782 end if;
16783
16784 -- Default case, we need to create a new class-wide type
16785
16786 else
16787 CW_Type :=
16788 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
16789 end if;
16790
16791 -- Inherit root type characteristics
16792
16793 CW_Name := Chars (CW_Type);
16794 Next_E := Next_Entity (CW_Type);
16795 Copy_Node (T, CW_Type);
16796 Set_Comes_From_Source (CW_Type, False);
16797 Set_Chars (CW_Type, CW_Name);
16798 Set_Parent (CW_Type, Parent (T));
16799 Set_Next_Entity (CW_Type, Next_E);
16800
16801 -- Ensure we have a new freeze node for the class-wide type. The partial
16802 -- view may have freeze action of its own, requiring a proper freeze
16803 -- node, and the same freeze node cannot be shared between the two
16804 -- types.
16805
16806 Set_Has_Delayed_Freeze (CW_Type);
16807 Set_Freeze_Node (CW_Type, Empty);
16808
16809 -- Customize the class-wide type: It has no prim. op., it cannot be
16810 -- abstract and its Etype points back to the specific root type.
16811
16812 Set_Ekind (CW_Type, E_Class_Wide_Type);
16813 Set_Is_Tagged_Type (CW_Type, True);
16814 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
16815 Set_Is_Abstract_Type (CW_Type, False);
16816 Set_Is_Constrained (CW_Type, False);
16817 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
16818
16819 if Ekind (T) = E_Class_Wide_Subtype then
16820 Set_Etype (CW_Type, Etype (Base_Type (T)));
16821 else
16822 Set_Etype (CW_Type, T);
16823 end if;
16824
16825 -- If this is the class_wide type of a constrained subtype, it does
16826 -- not have discriminants.
16827
16828 Set_Has_Discriminants (CW_Type,
16829 Has_Discriminants (T) and then not Is_Constrained (T));
16830
16831 Set_Has_Unknown_Discriminants (CW_Type, True);
16832 Set_Class_Wide_Type (T, CW_Type);
16833 Set_Equivalent_Type (CW_Type, Empty);
16834
16835 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16836
16837 Set_Class_Wide_Type (CW_Type, CW_Type);
16838 end Make_Class_Wide_Type;
16839
16840 ----------------
16841 -- Make_Index --
16842 ----------------
16843
16844 procedure Make_Index
16845 (I : Node_Id;
16846 Related_Nod : Node_Id;
16847 Related_Id : Entity_Id := Empty;
16848 Suffix_Index : Nat := 1;
16849 In_Iter_Schm : Boolean := False)
16850 is
16851 R : Node_Id;
16852 T : Entity_Id;
16853 Def_Id : Entity_Id := Empty;
16854 Found : Boolean := False;
16855
16856 begin
16857 -- For a discrete range used in a constrained array definition and
16858 -- defined by a range, an implicit conversion to the predefined type
16859 -- INTEGER is assumed if each bound is either a numeric literal, a named
16860 -- number, or an attribute, and the type of both bounds (prior to the
16861 -- implicit conversion) is the type universal_integer. Otherwise, both
16862 -- bounds must be of the same discrete type, other than universal
16863 -- integer; this type must be determinable independently of the
16864 -- context, but using the fact that the type must be discrete and that
16865 -- both bounds must have the same type.
16866
16867 -- Character literals also have a universal type in the absence of
16868 -- of additional context, and are resolved to Standard_Character.
16869
16870 if Nkind (I) = N_Range then
16871
16872 -- The index is given by a range constraint. The bounds are known
16873 -- to be of a consistent type.
16874
16875 if not Is_Overloaded (I) then
16876 T := Etype (I);
16877
16878 -- For universal bounds, choose the specific predefined type
16879
16880 if T = Universal_Integer then
16881 T := Standard_Integer;
16882
16883 elsif T = Any_Character then
16884 Ambiguous_Character (Low_Bound (I));
16885
16886 T := Standard_Character;
16887 end if;
16888
16889 -- The node may be overloaded because some user-defined operators
16890 -- are available, but if a universal interpretation exists it is
16891 -- also the selected one.
16892
16893 elsif Universal_Interpretation (I) = Universal_Integer then
16894 T := Standard_Integer;
16895
16896 else
16897 T := Any_Type;
16898
16899 declare
16900 Ind : Interp_Index;
16901 It : Interp;
16902
16903 begin
16904 Get_First_Interp (I, Ind, It);
16905 while Present (It.Typ) loop
16906 if Is_Discrete_Type (It.Typ) then
16907
16908 if Found
16909 and then not Covers (It.Typ, T)
16910 and then not Covers (T, It.Typ)
16911 then
16912 Error_Msg_N ("ambiguous bounds in discrete range", I);
16913 exit;
16914 else
16915 T := It.Typ;
16916 Found := True;
16917 end if;
16918 end if;
16919
16920 Get_Next_Interp (Ind, It);
16921 end loop;
16922
16923 if T = Any_Type then
16924 Error_Msg_N ("discrete type required for range", I);
16925 Set_Etype (I, Any_Type);
16926 return;
16927
16928 elsif T = Universal_Integer then
16929 T := Standard_Integer;
16930 end if;
16931 end;
16932 end if;
16933
16934 if not Is_Discrete_Type (T) then
16935 Error_Msg_N ("discrete type required for range", I);
16936 Set_Etype (I, Any_Type);
16937 return;
16938 end if;
16939
16940 if Nkind (Low_Bound (I)) = N_Attribute_Reference
16941 and then Attribute_Name (Low_Bound (I)) = Name_First
16942 and then Is_Entity_Name (Prefix (Low_Bound (I)))
16943 and then Is_Type (Entity (Prefix (Low_Bound (I))))
16944 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
16945 then
16946 -- The type of the index will be the type of the prefix, as long
16947 -- as the upper bound is 'Last of the same type.
16948
16949 Def_Id := Entity (Prefix (Low_Bound (I)));
16950
16951 if Nkind (High_Bound (I)) /= N_Attribute_Reference
16952 or else Attribute_Name (High_Bound (I)) /= Name_Last
16953 or else not Is_Entity_Name (Prefix (High_Bound (I)))
16954 or else Entity (Prefix (High_Bound (I))) /= Def_Id
16955 then
16956 Def_Id := Empty;
16957 end if;
16958 end if;
16959
16960 R := I;
16961 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
16962
16963 elsif Nkind (I) = N_Subtype_Indication then
16964
16965 -- The index is given by a subtype with a range constraint
16966
16967 T := Base_Type (Entity (Subtype_Mark (I)));
16968
16969 if not Is_Discrete_Type (T) then
16970 Error_Msg_N ("discrete type required for range", I);
16971 Set_Etype (I, Any_Type);
16972 return;
16973 end if;
16974
16975 R := Range_Expression (Constraint (I));
16976
16977 Resolve (R, T);
16978 Process_Range_Expr_In_Decl
16979 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
16980
16981 elsif Nkind (I) = N_Attribute_Reference then
16982
16983 -- The parser guarantees that the attribute is a RANGE attribute
16984
16985 -- If the node denotes the range of a type mark, that is also the
16986 -- resulting type, and we do no need to create an Itype for it.
16987
16988 if Is_Entity_Name (Prefix (I))
16989 and then Comes_From_Source (I)
16990 and then Is_Type (Entity (Prefix (I)))
16991 and then Is_Discrete_Type (Entity (Prefix (I)))
16992 then
16993 Def_Id := Entity (Prefix (I));
16994 end if;
16995
16996 Analyze_And_Resolve (I);
16997 T := Etype (I);
16998 R := I;
16999
17000 -- If none of the above, must be a subtype. We convert this to a
17001 -- range attribute reference because in the case of declared first
17002 -- named subtypes, the types in the range reference can be different
17003 -- from the type of the entity. A range attribute normalizes the
17004 -- reference and obtains the correct types for the bounds.
17005
17006 -- This transformation is in the nature of an expansion, is only
17007 -- done if expansion is active. In particular, it is not done on
17008 -- formal generic types, because we need to retain the name of the
17009 -- original index for instantiation purposes.
17010
17011 else
17012 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17013 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17014 Set_Etype (I, Any_Integer);
17015 return;
17016
17017 else
17018 -- The type mark may be that of an incomplete type. It is only
17019 -- now that we can get the full view, previous analysis does
17020 -- not look specifically for a type mark.
17021
17022 Set_Entity (I, Get_Full_View (Entity (I)));
17023 Set_Etype (I, Entity (I));
17024 Def_Id := Entity (I);
17025
17026 if not Is_Discrete_Type (Def_Id) then
17027 Error_Msg_N ("discrete type required for index", I);
17028 Set_Etype (I, Any_Type);
17029 return;
17030 end if;
17031 end if;
17032
17033 if Expander_Active then
17034 Rewrite (I,
17035 Make_Attribute_Reference (Sloc (I),
17036 Attribute_Name => Name_Range,
17037 Prefix => Relocate_Node (I)));
17038
17039 -- The original was a subtype mark that does not freeze. This
17040 -- means that the rewritten version must not freeze either.
17041
17042 Set_Must_Not_Freeze (I);
17043 Set_Must_Not_Freeze (Prefix (I));
17044 Analyze_And_Resolve (I);
17045 T := Etype (I);
17046 R := I;
17047
17048 -- If expander is inactive, type is legal, nothing else to construct
17049
17050 else
17051 return;
17052 end if;
17053 end if;
17054
17055 if not Is_Discrete_Type (T) then
17056 Error_Msg_N ("discrete type required for range", I);
17057 Set_Etype (I, Any_Type);
17058 return;
17059
17060 elsif T = Any_Type then
17061 Set_Etype (I, Any_Type);
17062 return;
17063 end if;
17064
17065 -- We will now create the appropriate Itype to describe the range, but
17066 -- first a check. If we originally had a subtype, then we just label
17067 -- the range with this subtype. Not only is there no need to construct
17068 -- a new subtype, but it is wrong to do so for two reasons:
17069
17070 -- 1. A legality concern, if we have a subtype, it must not freeze,
17071 -- and the Itype would cause freezing incorrectly
17072
17073 -- 2. An efficiency concern, if we created an Itype, it would not be
17074 -- recognized as the same type for the purposes of eliminating
17075 -- checks in some circumstances.
17076
17077 -- We signal this case by setting the subtype entity in Def_Id
17078
17079 if No (Def_Id) then
17080 Def_Id :=
17081 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17082 Set_Etype (Def_Id, Base_Type (T));
17083
17084 if Is_Signed_Integer_Type (T) then
17085 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17086
17087 elsif Is_Modular_Integer_Type (T) then
17088 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17089
17090 else
17091 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17092 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17093 Set_First_Literal (Def_Id, First_Literal (T));
17094 end if;
17095
17096 Set_Size_Info (Def_Id, (T));
17097 Set_RM_Size (Def_Id, RM_Size (T));
17098 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17099
17100 Set_Scalar_Range (Def_Id, R);
17101 Conditional_Delay (Def_Id, T);
17102
17103 -- In the subtype indication case, if the immediate parent of the
17104 -- new subtype is non-static, then the subtype we create is non-
17105 -- static, even if its bounds are static.
17106
17107 if Nkind (I) = N_Subtype_Indication
17108 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17109 then
17110 Set_Is_Non_Static_Subtype (Def_Id);
17111 end if;
17112 end if;
17113
17114 -- Final step is to label the index with this constructed type
17115
17116 Set_Etype (I, Def_Id);
17117 end Make_Index;
17118
17119 ------------------------------
17120 -- Modular_Type_Declaration --
17121 ------------------------------
17122
17123 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17124 Mod_Expr : constant Node_Id := Expression (Def);
17125 M_Val : Uint;
17126
17127 procedure Set_Modular_Size (Bits : Int);
17128 -- Sets RM_Size to Bits, and Esize to normal word size above this
17129
17130 ----------------------
17131 -- Set_Modular_Size --
17132 ----------------------
17133
17134 procedure Set_Modular_Size (Bits : Int) is
17135 begin
17136 Set_RM_Size (T, UI_From_Int (Bits));
17137
17138 if Bits <= 8 then
17139 Init_Esize (T, 8);
17140
17141 elsif Bits <= 16 then
17142 Init_Esize (T, 16);
17143
17144 elsif Bits <= 32 then
17145 Init_Esize (T, 32);
17146
17147 else
17148 Init_Esize (T, System_Max_Binary_Modulus_Power);
17149 end if;
17150
17151 if not Non_Binary_Modulus (T)
17152 and then Esize (T) = RM_Size (T)
17153 then
17154 Set_Is_Known_Valid (T);
17155 end if;
17156 end Set_Modular_Size;
17157
17158 -- Start of processing for Modular_Type_Declaration
17159
17160 begin
17161 -- If the mod expression is (exactly) 2 * literal, where literal is
17162 -- 64 or less,then almost certainly the * was meant to be **. Warn!
17163
17164 if Warn_On_Suspicious_Modulus_Value
17165 and then Nkind (Mod_Expr) = N_Op_Multiply
17166 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17167 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17168 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17169 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17170 then
17171 Error_Msg_N
17172 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17173 end if;
17174
17175 -- Proceed with analysis of mod expression
17176
17177 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17178 Set_Etype (T, T);
17179 Set_Ekind (T, E_Modular_Integer_Type);
17180 Init_Alignment (T);
17181 Set_Is_Constrained (T);
17182
17183 if not Is_OK_Static_Expression (Mod_Expr) then
17184 Flag_Non_Static_Expr
17185 ("non-static expression used for modular type bound!", Mod_Expr);
17186 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17187 else
17188 M_Val := Expr_Value (Mod_Expr);
17189 end if;
17190
17191 if M_Val < 1 then
17192 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17193 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17194 end if;
17195
17196 Set_Modulus (T, M_Val);
17197
17198 -- Create bounds for the modular type based on the modulus given in
17199 -- the type declaration and then analyze and resolve those bounds.
17200
17201 Set_Scalar_Range (T,
17202 Make_Range (Sloc (Mod_Expr),
17203 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17204 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17205
17206 -- Properly analyze the literals for the range. We do this manually
17207 -- because we can't go calling Resolve, since we are resolving these
17208 -- bounds with the type, and this type is certainly not complete yet!
17209
17210 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17211 Set_Etype (High_Bound (Scalar_Range (T)), T);
17212 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17213 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17214
17215 -- Loop through powers of two to find number of bits required
17216
17217 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17218
17219 -- Binary case
17220
17221 if M_Val = 2 ** Bits then
17222 Set_Modular_Size (Bits);
17223 return;
17224
17225 -- Non-binary case
17226
17227 elsif M_Val < 2 ** Bits then
17228 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17229 Set_Non_Binary_Modulus (T);
17230
17231 if Bits > System_Max_Nonbinary_Modulus_Power then
17232 Error_Msg_Uint_1 :=
17233 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17234 Error_Msg_F
17235 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17236 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17237 return;
17238
17239 else
17240 -- In the non-binary case, set size as per RM 13.3(55)
17241
17242 Set_Modular_Size (Bits);
17243 return;
17244 end if;
17245 end if;
17246
17247 end loop;
17248
17249 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17250 -- so we just signal an error and set the maximum size.
17251
17252 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17253 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17254
17255 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17256 Init_Alignment (T);
17257
17258 end Modular_Type_Declaration;
17259
17260 --------------------------
17261 -- New_Concatenation_Op --
17262 --------------------------
17263
17264 procedure New_Concatenation_Op (Typ : Entity_Id) is
17265 Loc : constant Source_Ptr := Sloc (Typ);
17266 Op : Entity_Id;
17267
17268 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17269 -- Create abbreviated declaration for the formal of a predefined
17270 -- Operator 'Op' of type 'Typ'
17271
17272 --------------------
17273 -- Make_Op_Formal --
17274 --------------------
17275
17276 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17277 Formal : Entity_Id;
17278 begin
17279 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17280 Set_Etype (Formal, Typ);
17281 Set_Mechanism (Formal, Default_Mechanism);
17282 return Formal;
17283 end Make_Op_Formal;
17284
17285 -- Start of processing for New_Concatenation_Op
17286
17287 begin
17288 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17289
17290 Set_Ekind (Op, E_Operator);
17291 Set_Scope (Op, Current_Scope);
17292 Set_Etype (Op, Typ);
17293 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17294 Set_Is_Immediately_Visible (Op);
17295 Set_Is_Intrinsic_Subprogram (Op);
17296 Set_Has_Completion (Op);
17297 Append_Entity (Op, Current_Scope);
17298
17299 Set_Name_Entity_Id (Name_Op_Concat, Op);
17300
17301 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17302 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17303 end New_Concatenation_Op;
17304
17305 -------------------------
17306 -- OK_For_Limited_Init --
17307 -------------------------
17308
17309 -- ???Check all calls of this, and compare the conditions under which it's
17310 -- called.
17311
17312 function OK_For_Limited_Init
17313 (Typ : Entity_Id;
17314 Exp : Node_Id) return Boolean
17315 is
17316 begin
17317 return Is_CPP_Constructor_Call (Exp)
17318 or else (Ada_Version >= Ada_2005
17319 and then not Debug_Flag_Dot_L
17320 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17321 end OK_For_Limited_Init;
17322
17323 -------------------------------
17324 -- OK_For_Limited_Init_In_05 --
17325 -------------------------------
17326
17327 function OK_For_Limited_Init_In_05
17328 (Typ : Entity_Id;
17329 Exp : Node_Id) return Boolean
17330 is
17331 begin
17332 -- An object of a limited interface type can be initialized with any
17333 -- expression of a nonlimited descendant type.
17334
17335 if Is_Class_Wide_Type (Typ)
17336 and then Is_Limited_Interface (Typ)
17337 and then not Is_Limited_Type (Etype (Exp))
17338 then
17339 return True;
17340 end if;
17341
17342 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17343 -- case of limited aggregates (including extension aggregates), and
17344 -- function calls. The function call may have been given in prefixed
17345 -- notation, in which case the original node is an indexed component.
17346 -- If the function is parameterless, the original node was an explicit
17347 -- dereference. The function may also be parameterless, in which case
17348 -- the source node is just an identifier.
17349
17350 case Nkind (Original_Node (Exp)) is
17351 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17352 return True;
17353
17354 when N_Identifier =>
17355 return Present (Entity (Original_Node (Exp)))
17356 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17357
17358 when N_Qualified_Expression =>
17359 return
17360 OK_For_Limited_Init_In_05
17361 (Typ, Expression (Original_Node (Exp)));
17362
17363 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17364 -- with a function call, the expander has rewritten the call into an
17365 -- N_Type_Conversion node to force displacement of the pointer to
17366 -- reference the component containing the secondary dispatch table.
17367 -- Otherwise a type conversion is not a legal context.
17368 -- A return statement for a build-in-place function returning a
17369 -- synchronized type also introduces an unchecked conversion.
17370
17371 when N_Type_Conversion |
17372 N_Unchecked_Type_Conversion =>
17373 return not Comes_From_Source (Exp)
17374 and then
17375 OK_For_Limited_Init_In_05
17376 (Typ, Expression (Original_Node (Exp)));
17377
17378 when N_Indexed_Component |
17379 N_Selected_Component |
17380 N_Explicit_Dereference =>
17381 return Nkind (Exp) = N_Function_Call;
17382
17383 -- A use of 'Input is a function call, hence allowed. Normally the
17384 -- attribute will be changed to a call, but the attribute by itself
17385 -- can occur with -gnatc.
17386
17387 when N_Attribute_Reference =>
17388 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17389
17390 -- For a case expression, all dependent expressions must be legal
17391
17392 when N_Case_Expression =>
17393 declare
17394 Alt : Node_Id;
17395
17396 begin
17397 Alt := First (Alternatives (Original_Node (Exp)));
17398 while Present (Alt) loop
17399 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17400 return False;
17401 end if;
17402
17403 Next (Alt);
17404 end loop;
17405
17406 return True;
17407 end;
17408
17409 -- For an if expression, all dependent expressions must be legal
17410
17411 when N_If_Expression =>
17412 declare
17413 Then_Expr : constant Node_Id :=
17414 Next (First (Expressions (Original_Node (Exp))));
17415 Else_Expr : constant Node_Id := Next (Then_Expr);
17416 begin
17417 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17418 and then
17419 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17420 end;
17421
17422 when others =>
17423 return False;
17424 end case;
17425 end OK_For_Limited_Init_In_05;
17426
17427 -------------------------------------------
17428 -- Ordinary_Fixed_Point_Type_Declaration --
17429 -------------------------------------------
17430
17431 procedure Ordinary_Fixed_Point_Type_Declaration
17432 (T : Entity_Id;
17433 Def : Node_Id)
17434 is
17435 Loc : constant Source_Ptr := Sloc (Def);
17436 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17437 RRS : constant Node_Id := Real_Range_Specification (Def);
17438 Implicit_Base : Entity_Id;
17439 Delta_Val : Ureal;
17440 Small_Val : Ureal;
17441 Low_Val : Ureal;
17442 High_Val : Ureal;
17443
17444 begin
17445 Check_Restriction (No_Fixed_Point, Def);
17446
17447 -- Create implicit base type
17448
17449 Implicit_Base :=
17450 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17451 Set_Etype (Implicit_Base, Implicit_Base);
17452
17453 -- Analyze and process delta expression
17454
17455 Analyze_And_Resolve (Delta_Expr, Any_Real);
17456
17457 Check_Delta_Expression (Delta_Expr);
17458 Delta_Val := Expr_Value_R (Delta_Expr);
17459
17460 Set_Delta_Value (Implicit_Base, Delta_Val);
17461
17462 -- Compute default small from given delta, which is the largest power
17463 -- of two that does not exceed the given delta value.
17464
17465 declare
17466 Tmp : Ureal;
17467 Scale : Int;
17468
17469 begin
17470 Tmp := Ureal_1;
17471 Scale := 0;
17472
17473 if Delta_Val < Ureal_1 then
17474 while Delta_Val < Tmp loop
17475 Tmp := Tmp / Ureal_2;
17476 Scale := Scale + 1;
17477 end loop;
17478
17479 else
17480 loop
17481 Tmp := Tmp * Ureal_2;
17482 exit when Tmp > Delta_Val;
17483 Scale := Scale - 1;
17484 end loop;
17485 end if;
17486
17487 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17488 end;
17489
17490 Set_Small_Value (Implicit_Base, Small_Val);
17491
17492 -- If no range was given, set a dummy range
17493
17494 if RRS <= Empty_Or_Error then
17495 Low_Val := -Small_Val;
17496 High_Val := Small_Val;
17497
17498 -- Otherwise analyze and process given range
17499
17500 else
17501 declare
17502 Low : constant Node_Id := Low_Bound (RRS);
17503 High : constant Node_Id := High_Bound (RRS);
17504
17505 begin
17506 Analyze_And_Resolve (Low, Any_Real);
17507 Analyze_And_Resolve (High, Any_Real);
17508 Check_Real_Bound (Low);
17509 Check_Real_Bound (High);
17510
17511 -- Obtain and set the range
17512
17513 Low_Val := Expr_Value_R (Low);
17514 High_Val := Expr_Value_R (High);
17515
17516 if Low_Val > High_Val then
17517 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17518 end if;
17519 end;
17520 end if;
17521
17522 -- The range for both the implicit base and the declared first subtype
17523 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17524 -- set a temporary range in place. Note that the bounds of the base
17525 -- type will be widened to be symmetrical and to fill the available
17526 -- bits when the type is frozen.
17527
17528 -- We could do this with all discrete types, and probably should, but
17529 -- we absolutely have to do it for fixed-point, since the end-points
17530 -- of the range and the size are determined by the small value, which
17531 -- could be reset before the freeze point.
17532
17533 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17534 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17535
17536 -- Complete definition of first subtype
17537
17538 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17539 Set_Etype (T, Implicit_Base);
17540 Init_Size_Align (T);
17541 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17542 Set_Small_Value (T, Small_Val);
17543 Set_Delta_Value (T, Delta_Val);
17544 Set_Is_Constrained (T);
17545
17546 end Ordinary_Fixed_Point_Type_Declaration;
17547
17548 ----------------------------------------
17549 -- Prepare_Private_Subtype_Completion --
17550 ----------------------------------------
17551
17552 procedure Prepare_Private_Subtype_Completion
17553 (Id : Entity_Id;
17554 Related_Nod : Node_Id)
17555 is
17556 Id_B : constant Entity_Id := Base_Type (Id);
17557 Full_B : constant Entity_Id := Full_View (Id_B);
17558 Full : Entity_Id;
17559
17560 begin
17561 if Present (Full_B) then
17562
17563 -- The Base_Type is already completed, we can complete the subtype
17564 -- now. We have to create a new entity with the same name, Thus we
17565 -- can't use Create_Itype.
17566
17567 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17568 Set_Is_Itype (Full);
17569 Set_Associated_Node_For_Itype (Full, Related_Nod);
17570 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17571 end if;
17572
17573 -- The parent subtype may be private, but the base might not, in some
17574 -- nested instances. In that case, the subtype does not need to be
17575 -- exchanged. It would still be nice to make private subtypes and their
17576 -- bases consistent at all times ???
17577
17578 if Is_Private_Type (Id_B) then
17579 Append_Elmt (Id, Private_Dependents (Id_B));
17580 end if;
17581 end Prepare_Private_Subtype_Completion;
17582
17583 ---------------------------
17584 -- Process_Discriminants --
17585 ---------------------------
17586
17587 procedure Process_Discriminants
17588 (N : Node_Id;
17589 Prev : Entity_Id := Empty)
17590 is
17591 Elist : constant Elist_Id := New_Elmt_List;
17592 Id : Node_Id;
17593 Discr : Node_Id;
17594 Discr_Number : Uint;
17595 Discr_Type : Entity_Id;
17596 Default_Present : Boolean := False;
17597 Default_Not_Present : Boolean := False;
17598
17599 begin
17600 -- A composite type other than an array type can have discriminants.
17601 -- On entry, the current scope is the composite type.
17602
17603 -- The discriminants are initially entered into the scope of the type
17604 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17605 -- use, as explained at the end of this procedure.
17606
17607 Discr := First (Discriminant_Specifications (N));
17608 while Present (Discr) loop
17609 Enter_Name (Defining_Identifier (Discr));
17610
17611 -- For navigation purposes we add a reference to the discriminant
17612 -- in the entity for the type. If the current declaration is a
17613 -- completion, place references on the partial view. Otherwise the
17614 -- type is the current scope.
17615
17616 if Present (Prev) then
17617
17618 -- The references go on the partial view, if present. If the
17619 -- partial view has discriminants, the references have been
17620 -- generated already.
17621
17622 if not Has_Discriminants (Prev) then
17623 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17624 end if;
17625 else
17626 Generate_Reference
17627 (Current_Scope, Defining_Identifier (Discr), 'd');
17628 end if;
17629
17630 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17631 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17632
17633 -- Ada 2005 (AI-254)
17634
17635 if Present (Access_To_Subprogram_Definition
17636 (Discriminant_Type (Discr)))
17637 and then Protected_Present (Access_To_Subprogram_Definition
17638 (Discriminant_Type (Discr)))
17639 then
17640 Discr_Type :=
17641 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17642 end if;
17643
17644 else
17645 Find_Type (Discriminant_Type (Discr));
17646 Discr_Type := Etype (Discriminant_Type (Discr));
17647
17648 if Error_Posted (Discriminant_Type (Discr)) then
17649 Discr_Type := Any_Type;
17650 end if;
17651 end if;
17652
17653 if Is_Access_Type (Discr_Type) then
17654
17655 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17656 -- record types
17657
17658 if Ada_Version < Ada_2005 then
17659 Check_Access_Discriminant_Requires_Limited
17660 (Discr, Discriminant_Type (Discr));
17661 end if;
17662
17663 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17664 Error_Msg_N
17665 ("(Ada 83) access discriminant not allowed", Discr);
17666 end if;
17667
17668 elsif not Is_Discrete_Type (Discr_Type) then
17669 Error_Msg_N ("discriminants must have a discrete or access type",
17670 Discriminant_Type (Discr));
17671 end if;
17672
17673 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17674
17675 -- If a discriminant specification includes the assignment compound
17676 -- delimiter followed by an expression, the expression is the default
17677 -- expression of the discriminant; the default expression must be of
17678 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17679 -- a default expression, we do the special preanalysis, since this
17680 -- expression does not freeze (see "Handling of Default and Per-
17681 -- Object Expressions" in spec of package Sem).
17682
17683 if Present (Expression (Discr)) then
17684 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17685
17686 if Nkind (N) = N_Formal_Type_Declaration then
17687 Error_Msg_N
17688 ("discriminant defaults not allowed for formal type",
17689 Expression (Discr));
17690
17691 -- Flag an error for a tagged type with defaulted discriminants,
17692 -- excluding limited tagged types when compiling for Ada 2012
17693 -- (see AI05-0214).
17694
17695 elsif Is_Tagged_Type (Current_Scope)
17696 and then (not Is_Limited_Type (Current_Scope)
17697 or else Ada_Version < Ada_2012)
17698 and then Comes_From_Source (N)
17699 then
17700 -- Note: see similar test in Check_Or_Process_Discriminants, to
17701 -- handle the (illegal) case of the completion of an untagged
17702 -- view with discriminants with defaults by a tagged full view.
17703 -- We skip the check if Discr does not come from source, to
17704 -- account for the case of an untagged derived type providing
17705 -- defaults for a renamed discriminant from a private untagged
17706 -- ancestor with a tagged full view (ACATS B460006).
17707
17708 if Ada_Version >= Ada_2012 then
17709 Error_Msg_N
17710 ("discriminants of nonlimited tagged type cannot have"
17711 & " defaults",
17712 Expression (Discr));
17713 else
17714 Error_Msg_N
17715 ("discriminants of tagged type cannot have defaults",
17716 Expression (Discr));
17717 end if;
17718
17719 else
17720 Default_Present := True;
17721 Append_Elmt (Expression (Discr), Elist);
17722
17723 -- Tag the defining identifiers for the discriminants with
17724 -- their corresponding default expressions from the tree.
17725
17726 Set_Discriminant_Default_Value
17727 (Defining_Identifier (Discr), Expression (Discr));
17728 end if;
17729
17730 else
17731 Default_Not_Present := True;
17732 end if;
17733
17734 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17735 -- Discr_Type but with the null-exclusion attribute
17736
17737 if Ada_Version >= Ada_2005 then
17738
17739 -- Ada 2005 (AI-231): Static checks
17740
17741 if Can_Never_Be_Null (Discr_Type) then
17742 Null_Exclusion_Static_Checks (Discr);
17743
17744 elsif Is_Access_Type (Discr_Type)
17745 and then Null_Exclusion_Present (Discr)
17746
17747 -- No need to check itypes because in their case this check
17748 -- was done at their point of creation
17749
17750 and then not Is_Itype (Discr_Type)
17751 then
17752 if Can_Never_Be_Null (Discr_Type) then
17753 Error_Msg_NE
17754 ("`NOT NULL` not allowed (& already excludes null)",
17755 Discr,
17756 Discr_Type);
17757 end if;
17758
17759 Set_Etype (Defining_Identifier (Discr),
17760 Create_Null_Excluding_Itype
17761 (T => Discr_Type,
17762 Related_Nod => Discr));
17763
17764 -- Check for improper null exclusion if the type is otherwise
17765 -- legal for a discriminant.
17766
17767 elsif Null_Exclusion_Present (Discr)
17768 and then Is_Discrete_Type (Discr_Type)
17769 then
17770 Error_Msg_N
17771 ("null exclusion can only apply to an access type", Discr);
17772 end if;
17773
17774 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17775 -- can't have defaults. Synchronized types, or types that are
17776 -- explicitly limited are fine, but special tests apply to derived
17777 -- types in generics: in a generic body we have to assume the
17778 -- worst, and therefore defaults are not allowed if the parent is
17779 -- a generic formal private type (see ACATS B370001).
17780
17781 if Is_Access_Type (Discr_Type) and then Default_Present then
17782 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
17783 or else Is_Limited_Record (Current_Scope)
17784 or else Is_Concurrent_Type (Current_Scope)
17785 or else Is_Concurrent_Record_Type (Current_Scope)
17786 or else Ekind (Current_Scope) = E_Limited_Private_Type
17787 then
17788 if not Is_Derived_Type (Current_Scope)
17789 or else not Is_Generic_Type (Etype (Current_Scope))
17790 or else not In_Package_Body (Scope (Etype (Current_Scope)))
17791 or else Limited_Present
17792 (Type_Definition (Parent (Current_Scope)))
17793 then
17794 null;
17795
17796 else
17797 Error_Msg_N ("access discriminants of nonlimited types",
17798 Expression (Discr));
17799 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17800 end if;
17801
17802 elsif Present (Expression (Discr)) then
17803 Error_Msg_N
17804 ("(Ada 2005) access discriminants of nonlimited types",
17805 Expression (Discr));
17806 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17807 end if;
17808 end if;
17809 end if;
17810
17811 Next (Discr);
17812 end loop;
17813
17814 -- An element list consisting of the default expressions of the
17815 -- discriminants is constructed in the above loop and used to set
17816 -- the Discriminant_Constraint attribute for the type. If an object
17817 -- is declared of this (record or task) type without any explicit
17818 -- discriminant constraint given, this element list will form the
17819 -- actual parameters for the corresponding initialization procedure
17820 -- for the type.
17821
17822 Set_Discriminant_Constraint (Current_Scope, Elist);
17823 Set_Stored_Constraint (Current_Scope, No_Elist);
17824
17825 -- Default expressions must be provided either for all or for none
17826 -- of the discriminants of a discriminant part. (RM 3.7.1)
17827
17828 if Default_Present and then Default_Not_Present then
17829 Error_Msg_N
17830 ("incomplete specification of defaults for discriminants", N);
17831 end if;
17832
17833 -- The use of the name of a discriminant is not allowed in default
17834 -- expressions of a discriminant part if the specification of the
17835 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17836
17837 -- To detect this, the discriminant names are entered initially with an
17838 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17839 -- attempt to use a void entity (for example in an expression that is
17840 -- type-checked) produces the error message: premature usage. Now after
17841 -- completing the semantic analysis of the discriminant part, we can set
17842 -- the Ekind of all the discriminants appropriately.
17843
17844 Discr := First (Discriminant_Specifications (N));
17845 Discr_Number := Uint_1;
17846 while Present (Discr) loop
17847 Id := Defining_Identifier (Discr);
17848 Set_Ekind (Id, E_Discriminant);
17849 Init_Component_Location (Id);
17850 Init_Esize (Id);
17851 Set_Discriminant_Number (Id, Discr_Number);
17852
17853 -- Make sure this is always set, even in illegal programs
17854
17855 Set_Corresponding_Discriminant (Id, Empty);
17856
17857 -- Initialize the Original_Record_Component to the entity itself.
17858 -- Inherit_Components will propagate the right value to
17859 -- discriminants in derived record types.
17860
17861 Set_Original_Record_Component (Id, Id);
17862
17863 -- Create the discriminal for the discriminant
17864
17865 Build_Discriminal (Id);
17866
17867 Next (Discr);
17868 Discr_Number := Discr_Number + 1;
17869 end loop;
17870
17871 Set_Has_Discriminants (Current_Scope);
17872 end Process_Discriminants;
17873
17874 -----------------------
17875 -- Process_Full_View --
17876 -----------------------
17877
17878 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
17879 Priv_Parent : Entity_Id;
17880 Full_Parent : Entity_Id;
17881 Full_Indic : Node_Id;
17882
17883 procedure Collect_Implemented_Interfaces
17884 (Typ : Entity_Id;
17885 Ifaces : Elist_Id);
17886 -- Ada 2005: Gather all the interfaces that Typ directly or
17887 -- inherently implements. Duplicate entries are not added to
17888 -- the list Ifaces.
17889
17890 ------------------------------------
17891 -- Collect_Implemented_Interfaces --
17892 ------------------------------------
17893
17894 procedure Collect_Implemented_Interfaces
17895 (Typ : Entity_Id;
17896 Ifaces : Elist_Id)
17897 is
17898 Iface : Entity_Id;
17899 Iface_Elmt : Elmt_Id;
17900
17901 begin
17902 -- Abstract interfaces are only associated with tagged record types
17903
17904 if not Is_Tagged_Type (Typ)
17905 or else not Is_Record_Type (Typ)
17906 then
17907 return;
17908 end if;
17909
17910 -- Recursively climb to the ancestors
17911
17912 if Etype (Typ) /= Typ
17913
17914 -- Protect the frontend against wrong cyclic declarations like:
17915
17916 -- type B is new A with private;
17917 -- type C is new A with private;
17918 -- private
17919 -- type B is new C with null record;
17920 -- type C is new B with null record;
17921
17922 and then Etype (Typ) /= Priv_T
17923 and then Etype (Typ) /= Full_T
17924 then
17925 -- Keep separate the management of private type declarations
17926
17927 if Ekind (Typ) = E_Record_Type_With_Private then
17928
17929 -- Handle the following erroneous case:
17930 -- type Private_Type is tagged private;
17931 -- private
17932 -- type Private_Type is new Type_Implementing_Iface;
17933
17934 if Present (Full_View (Typ))
17935 and then Etype (Typ) /= Full_View (Typ)
17936 then
17937 if Is_Interface (Etype (Typ)) then
17938 Append_Unique_Elmt (Etype (Typ), Ifaces);
17939 end if;
17940
17941 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
17942 end if;
17943
17944 -- Non-private types
17945
17946 else
17947 if Is_Interface (Etype (Typ)) then
17948 Append_Unique_Elmt (Etype (Typ), Ifaces);
17949 end if;
17950
17951 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
17952 end if;
17953 end if;
17954
17955 -- Handle entities in the list of abstract interfaces
17956
17957 if Present (Interfaces (Typ)) then
17958 Iface_Elmt := First_Elmt (Interfaces (Typ));
17959 while Present (Iface_Elmt) loop
17960 Iface := Node (Iface_Elmt);
17961
17962 pragma Assert (Is_Interface (Iface));
17963
17964 if not Contain_Interface (Iface, Ifaces) then
17965 Append_Elmt (Iface, Ifaces);
17966 Collect_Implemented_Interfaces (Iface, Ifaces);
17967 end if;
17968
17969 Next_Elmt (Iface_Elmt);
17970 end loop;
17971 end if;
17972 end Collect_Implemented_Interfaces;
17973
17974 -- Start of processing for Process_Full_View
17975
17976 begin
17977 -- First some sanity checks that must be done after semantic
17978 -- decoration of the full view and thus cannot be placed with other
17979 -- similar checks in Find_Type_Name
17980
17981 if not Is_Limited_Type (Priv_T)
17982 and then (Is_Limited_Type (Full_T)
17983 or else Is_Limited_Composite (Full_T))
17984 then
17985 if In_Instance then
17986 null;
17987 else
17988 Error_Msg_N
17989 ("completion of nonlimited type cannot be limited", Full_T);
17990 Explain_Limited_Type (Full_T, Full_T);
17991 end if;
17992
17993 elsif Is_Abstract_Type (Full_T)
17994 and then not Is_Abstract_Type (Priv_T)
17995 then
17996 Error_Msg_N
17997 ("completion of nonabstract type cannot be abstract", Full_T);
17998
17999 elsif Is_Tagged_Type (Priv_T)
18000 and then Is_Limited_Type (Priv_T)
18001 and then not Is_Limited_Type (Full_T)
18002 then
18003 -- If pragma CPP_Class was applied to the private declaration
18004 -- propagate the limitedness to the full-view
18005
18006 if Is_CPP_Class (Priv_T) then
18007 Set_Is_Limited_Record (Full_T);
18008
18009 -- GNAT allow its own definition of Limited_Controlled to disobey
18010 -- this rule in order in ease the implementation. This test is safe
18011 -- because Root_Controlled is defined in a child of System that
18012 -- normal programs are not supposed to use.
18013
18014 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18015 Set_Is_Limited_Composite (Full_T);
18016 else
18017 Error_Msg_N
18018 ("completion of limited tagged type must be limited", Full_T);
18019 end if;
18020
18021 elsif Is_Generic_Type (Priv_T) then
18022 Error_Msg_N ("generic type cannot have a completion", Full_T);
18023 end if;
18024
18025 -- Check that ancestor interfaces of private and full views are
18026 -- consistent. We omit this check for synchronized types because
18027 -- they are performed on the corresponding record type when frozen.
18028
18029 if Ada_Version >= Ada_2005
18030 and then Is_Tagged_Type (Priv_T)
18031 and then Is_Tagged_Type (Full_T)
18032 and then not Is_Concurrent_Type (Full_T)
18033 then
18034 declare
18035 Iface : Entity_Id;
18036 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18037 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18038
18039 begin
18040 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18041 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18042
18043 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18044 -- an interface type if and only if the full type is descendant
18045 -- of the interface type (AARM 7.3 (7.3/2)).
18046
18047 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18048
18049 if Present (Iface) then
18050 Error_Msg_NE
18051 ("interface & not implemented by full type " &
18052 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
18053 end if;
18054
18055 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18056
18057 if Present (Iface) then
18058 Error_Msg_NE
18059 ("interface & not implemented by partial view " &
18060 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18061 end if;
18062 end;
18063 end if;
18064
18065 if Is_Tagged_Type (Priv_T)
18066 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18067 and then Is_Derived_Type (Full_T)
18068 then
18069 Priv_Parent := Etype (Priv_T);
18070
18071 -- The full view of a private extension may have been transformed
18072 -- into an unconstrained derived type declaration and a subtype
18073 -- declaration (see build_derived_record_type for details).
18074
18075 if Nkind (N) = N_Subtype_Declaration then
18076 Full_Indic := Subtype_Indication (N);
18077 Full_Parent := Etype (Base_Type (Full_T));
18078 else
18079 Full_Indic := Subtype_Indication (Type_Definition (N));
18080 Full_Parent := Etype (Full_T);
18081 end if;
18082
18083 -- Check that the parent type of the full type is a descendant of
18084 -- the ancestor subtype given in the private extension. If either
18085 -- entity has an Etype equal to Any_Type then we had some previous
18086 -- error situation [7.3(8)].
18087
18088 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18089 return;
18090
18091 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
18092 -- any order. Therefore we don't have to check that its parent must
18093 -- be a descendant of the parent of the private type declaration.
18094
18095 elsif Is_Interface (Priv_Parent)
18096 and then Is_Interface (Full_Parent)
18097 then
18098 null;
18099
18100 -- Ada 2005 (AI-251): If the parent of the private type declaration
18101 -- is an interface there is no need to check that it is an ancestor
18102 -- of the associated full type declaration. The required tests for
18103 -- this case are performed by Build_Derived_Record_Type.
18104
18105 elsif not Is_Interface (Base_Type (Priv_Parent))
18106 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18107 then
18108 Error_Msg_N
18109 ("parent of full type must descend from parent"
18110 & " of private extension", Full_Indic);
18111
18112 -- First check a formal restriction, and then proceed with checking
18113 -- Ada rules. Since the formal restriction is not a serious error, we
18114 -- don't prevent further error detection for this check, hence the
18115 -- ELSE.
18116
18117 else
18118
18119 -- In formal mode, when completing a private extension the type
18120 -- named in the private part must be exactly the same as that
18121 -- named in the visible part.
18122
18123 if Priv_Parent /= Full_Parent then
18124 Error_Msg_Name_1 := Chars (Priv_Parent);
18125 Check_SPARK_Restriction ("% expected", Full_Indic);
18126 end if;
18127
18128 -- Check the rules of 7.3(10): if the private extension inherits
18129 -- known discriminants, then the full type must also inherit those
18130 -- discriminants from the same (ancestor) type, and the parent
18131 -- subtype of the full type must be constrained if and only if
18132 -- the ancestor subtype of the private extension is constrained.
18133
18134 if No (Discriminant_Specifications (Parent (Priv_T)))
18135 and then not Has_Unknown_Discriminants (Priv_T)
18136 and then Has_Discriminants (Base_Type (Priv_Parent))
18137 then
18138 declare
18139 Priv_Indic : constant Node_Id :=
18140 Subtype_Indication (Parent (Priv_T));
18141
18142 Priv_Constr : constant Boolean :=
18143 Is_Constrained (Priv_Parent)
18144 or else
18145 Nkind (Priv_Indic) = N_Subtype_Indication
18146 or else
18147 Is_Constrained (Entity (Priv_Indic));
18148
18149 Full_Constr : constant Boolean :=
18150 Is_Constrained (Full_Parent)
18151 or else
18152 Nkind (Full_Indic) = N_Subtype_Indication
18153 or else
18154 Is_Constrained (Entity (Full_Indic));
18155
18156 Priv_Discr : Entity_Id;
18157 Full_Discr : Entity_Id;
18158
18159 begin
18160 Priv_Discr := First_Discriminant (Priv_Parent);
18161 Full_Discr := First_Discriminant (Full_Parent);
18162 while Present (Priv_Discr) and then Present (Full_Discr) loop
18163 if Original_Record_Component (Priv_Discr) =
18164 Original_Record_Component (Full_Discr)
18165 or else
18166 Corresponding_Discriminant (Priv_Discr) =
18167 Corresponding_Discriminant (Full_Discr)
18168 then
18169 null;
18170 else
18171 exit;
18172 end if;
18173
18174 Next_Discriminant (Priv_Discr);
18175 Next_Discriminant (Full_Discr);
18176 end loop;
18177
18178 if Present (Priv_Discr) or else Present (Full_Discr) then
18179 Error_Msg_N
18180 ("full view must inherit discriminants of the parent"
18181 & " type used in the private extension", Full_Indic);
18182
18183 elsif Priv_Constr and then not Full_Constr then
18184 Error_Msg_N
18185 ("parent subtype of full type must be constrained",
18186 Full_Indic);
18187
18188 elsif Full_Constr and then not Priv_Constr then
18189 Error_Msg_N
18190 ("parent subtype of full type must be unconstrained",
18191 Full_Indic);
18192 end if;
18193 end;
18194
18195 -- Check the rules of 7.3(12): if a partial view has neither
18196 -- known or unknown discriminants, then the full type
18197 -- declaration shall define a definite subtype.
18198
18199 elsif not Has_Unknown_Discriminants (Priv_T)
18200 and then not Has_Discriminants (Priv_T)
18201 and then not Is_Constrained (Full_T)
18202 then
18203 Error_Msg_N
18204 ("full view must define a constrained type if partial view"
18205 & " has no discriminants", Full_T);
18206 end if;
18207
18208 -- ??????? Do we implement the following properly ?????
18209 -- If the ancestor subtype of a private extension has constrained
18210 -- discriminants, then the parent subtype of the full view shall
18211 -- impose a statically matching constraint on those discriminants
18212 -- [7.3(13)].
18213 end if;
18214
18215 else
18216 -- For untagged types, verify that a type without discriminants
18217 -- is not completed with an unconstrained type.
18218
18219 if not Is_Indefinite_Subtype (Priv_T)
18220 and then Is_Indefinite_Subtype (Full_T)
18221 then
18222 Error_Msg_N ("full view of type must be definite subtype", Full_T);
18223 end if;
18224 end if;
18225
18226 -- AI-419: verify that the use of "limited" is consistent
18227
18228 declare
18229 Orig_Decl : constant Node_Id := Original_Node (N);
18230
18231 begin
18232 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18233 and then not Limited_Present (Parent (Priv_T))
18234 and then not Synchronized_Present (Parent (Priv_T))
18235 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18236 and then Nkind
18237 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18238 and then Limited_Present (Type_Definition (Orig_Decl))
18239 then
18240 Error_Msg_N
18241 ("full view of non-limited extension cannot be limited", N);
18242 end if;
18243 end;
18244
18245 -- Ada 2005 (AI-443): A synchronized private extension must be
18246 -- completed by a task or protected type.
18247
18248 if Ada_Version >= Ada_2005
18249 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18250 and then Synchronized_Present (Parent (Priv_T))
18251 and then not Is_Concurrent_Type (Full_T)
18252 then
18253 Error_Msg_N ("full view of synchronized extension must " &
18254 "be synchronized type", N);
18255 end if;
18256
18257 -- Ada 2005 AI-363: if the full view has discriminants with
18258 -- defaults, it is illegal to declare constrained access subtypes
18259 -- whose designated type is the current type. This allows objects
18260 -- of the type that are declared in the heap to be unconstrained.
18261
18262 if not Has_Unknown_Discriminants (Priv_T)
18263 and then not Has_Discriminants (Priv_T)
18264 and then Has_Discriminants (Full_T)
18265 and then
18266 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18267 then
18268 Set_Has_Constrained_Partial_View (Full_T);
18269 Set_Has_Constrained_Partial_View (Priv_T);
18270 end if;
18271
18272 -- Create a full declaration for all its subtypes recorded in
18273 -- Private_Dependents and swap them similarly to the base type. These
18274 -- are subtypes that have been define before the full declaration of
18275 -- the private type. We also swap the entry in Private_Dependents list
18276 -- so we can properly restore the private view on exit from the scope.
18277
18278 declare
18279 Priv_Elmt : Elmt_Id;
18280 Priv : Entity_Id;
18281 Full : Entity_Id;
18282
18283 begin
18284 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18285 while Present (Priv_Elmt) loop
18286 Priv := Node (Priv_Elmt);
18287
18288 if Ekind_In (Priv, E_Private_Subtype,
18289 E_Limited_Private_Subtype,
18290 E_Record_Subtype_With_Private)
18291 then
18292 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18293 Set_Is_Itype (Full);
18294 Set_Parent (Full, Parent (Priv));
18295 Set_Associated_Node_For_Itype (Full, N);
18296
18297 -- Now we need to complete the private subtype, but since the
18298 -- base type has already been swapped, we must also swap the
18299 -- subtypes (and thus, reverse the arguments in the call to
18300 -- Complete_Private_Subtype).
18301
18302 Copy_And_Swap (Priv, Full);
18303 Complete_Private_Subtype (Full, Priv, Full_T, N);
18304 Replace_Elmt (Priv_Elmt, Full);
18305 end if;
18306
18307 Next_Elmt (Priv_Elmt);
18308 end loop;
18309 end;
18310
18311 -- If the private view was tagged, copy the new primitive operations
18312 -- from the private view to the full view.
18313
18314 if Is_Tagged_Type (Full_T) then
18315 declare
18316 Disp_Typ : Entity_Id;
18317 Full_List : Elist_Id;
18318 Prim : Entity_Id;
18319 Prim_Elmt : Elmt_Id;
18320 Priv_List : Elist_Id;
18321
18322 function Contains
18323 (E : Entity_Id;
18324 L : Elist_Id) return Boolean;
18325 -- Determine whether list L contains element E
18326
18327 --------------
18328 -- Contains --
18329 --------------
18330
18331 function Contains
18332 (E : Entity_Id;
18333 L : Elist_Id) return Boolean
18334 is
18335 List_Elmt : Elmt_Id;
18336
18337 begin
18338 List_Elmt := First_Elmt (L);
18339 while Present (List_Elmt) loop
18340 if Node (List_Elmt) = E then
18341 return True;
18342 end if;
18343
18344 Next_Elmt (List_Elmt);
18345 end loop;
18346
18347 return False;
18348 end Contains;
18349
18350 -- Start of processing
18351
18352 begin
18353 if Is_Tagged_Type (Priv_T) then
18354 Priv_List := Primitive_Operations (Priv_T);
18355 Prim_Elmt := First_Elmt (Priv_List);
18356
18357 -- In the case of a concurrent type completing a private tagged
18358 -- type, primitives may have been declared in between the two
18359 -- views. These subprograms need to be wrapped the same way
18360 -- entries and protected procedures are handled because they
18361 -- cannot be directly shared by the two views.
18362
18363 if Is_Concurrent_Type (Full_T) then
18364 declare
18365 Conc_Typ : constant Entity_Id :=
18366 Corresponding_Record_Type (Full_T);
18367 Curr_Nod : Node_Id := Parent (Conc_Typ);
18368 Wrap_Spec : Node_Id;
18369
18370 begin
18371 while Present (Prim_Elmt) loop
18372 Prim := Node (Prim_Elmt);
18373
18374 if Comes_From_Source (Prim)
18375 and then not Is_Abstract_Subprogram (Prim)
18376 then
18377 Wrap_Spec :=
18378 Make_Subprogram_Declaration (Sloc (Prim),
18379 Specification =>
18380 Build_Wrapper_Spec
18381 (Subp_Id => Prim,
18382 Obj_Typ => Conc_Typ,
18383 Formals =>
18384 Parameter_Specifications (
18385 Parent (Prim))));
18386
18387 Insert_After (Curr_Nod, Wrap_Spec);
18388 Curr_Nod := Wrap_Spec;
18389
18390 Analyze (Wrap_Spec);
18391 end if;
18392
18393 Next_Elmt (Prim_Elmt);
18394 end loop;
18395
18396 return;
18397 end;
18398
18399 -- For non-concurrent types, transfer explicit primitives, but
18400 -- omit those inherited from the parent of the private view
18401 -- since they will be re-inherited later on.
18402
18403 else
18404 Full_List := Primitive_Operations (Full_T);
18405
18406 while Present (Prim_Elmt) loop
18407 Prim := Node (Prim_Elmt);
18408
18409 if Comes_From_Source (Prim)
18410 and then not Contains (Prim, Full_List)
18411 then
18412 Append_Elmt (Prim, Full_List);
18413 end if;
18414
18415 Next_Elmt (Prim_Elmt);
18416 end loop;
18417 end if;
18418
18419 -- Untagged private view
18420
18421 else
18422 Full_List := Primitive_Operations (Full_T);
18423
18424 -- In this case the partial view is untagged, so here we locate
18425 -- all of the earlier primitives that need to be treated as
18426 -- dispatching (those that appear between the two views). Note
18427 -- that these additional operations must all be new operations
18428 -- (any earlier operations that override inherited operations
18429 -- of the full view will already have been inserted in the
18430 -- primitives list, marked by Check_Operation_From_Private_View
18431 -- as dispatching. Note that implicit "/=" operators are
18432 -- excluded from being added to the primitives list since they
18433 -- shouldn't be treated as dispatching (tagged "/=" is handled
18434 -- specially).
18435
18436 Prim := Next_Entity (Full_T);
18437 while Present (Prim) and then Prim /= Priv_T loop
18438 if Ekind_In (Prim, E_Procedure, E_Function) then
18439 Disp_Typ := Find_Dispatching_Type (Prim);
18440
18441 if Disp_Typ = Full_T
18442 and then (Chars (Prim) /= Name_Op_Ne
18443 or else Comes_From_Source (Prim))
18444 then
18445 Check_Controlling_Formals (Full_T, Prim);
18446
18447 if not Is_Dispatching_Operation (Prim) then
18448 Append_Elmt (Prim, Full_List);
18449 Set_Is_Dispatching_Operation (Prim, True);
18450 Set_DT_Position (Prim, No_Uint);
18451 end if;
18452
18453 elsif Is_Dispatching_Operation (Prim)
18454 and then Disp_Typ /= Full_T
18455 then
18456
18457 -- Verify that it is not otherwise controlled by a
18458 -- formal or a return value of type T.
18459
18460 Check_Controlling_Formals (Disp_Typ, Prim);
18461 end if;
18462 end if;
18463
18464 Next_Entity (Prim);
18465 end loop;
18466 end if;
18467
18468 -- For the tagged case, the two views can share the same primitive
18469 -- operations list and the same class-wide type. Update attributes
18470 -- of the class-wide type which depend on the full declaration.
18471
18472 if Is_Tagged_Type (Priv_T) then
18473 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18474 Set_Class_Wide_Type
18475 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18476
18477 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18478 end if;
18479 end;
18480 end if;
18481
18482 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18483
18484 if Known_To_Have_Preelab_Init (Priv_T) then
18485
18486 -- Case where there is a pragma Preelaborable_Initialization. We
18487 -- always allow this in predefined units, which is a bit of a kludge,
18488 -- but it means we don't have to struggle to meet the requirements in
18489 -- the RM for having Preelaborable Initialization. Otherwise we
18490 -- require that the type meets the RM rules. But we can't check that
18491 -- yet, because of the rule about overriding Initialize, so we simply
18492 -- set a flag that will be checked at freeze time.
18493
18494 if not In_Predefined_Unit (Full_T) then
18495 Set_Must_Have_Preelab_Init (Full_T);
18496 end if;
18497 end if;
18498
18499 -- If pragma CPP_Class was applied to the private type declaration,
18500 -- propagate it now to the full type declaration.
18501
18502 if Is_CPP_Class (Priv_T) then
18503 Set_Is_CPP_Class (Full_T);
18504 Set_Convention (Full_T, Convention_CPP);
18505
18506 -- Check that components of imported CPP types do not have default
18507 -- expressions.
18508
18509 Check_CPP_Type_Has_No_Defaults (Full_T);
18510 end if;
18511
18512 -- If the private view has user specified stream attributes, then so has
18513 -- the full view.
18514
18515 -- Why the test, how could these flags be already set in Full_T ???
18516
18517 if Has_Specified_Stream_Read (Priv_T) then
18518 Set_Has_Specified_Stream_Read (Full_T);
18519 end if;
18520
18521 if Has_Specified_Stream_Write (Priv_T) then
18522 Set_Has_Specified_Stream_Write (Full_T);
18523 end if;
18524
18525 if Has_Specified_Stream_Input (Priv_T) then
18526 Set_Has_Specified_Stream_Input (Full_T);
18527 end if;
18528
18529 if Has_Specified_Stream_Output (Priv_T) then
18530 Set_Has_Specified_Stream_Output (Full_T);
18531 end if;
18532
18533 -- Propagate invariants to full type
18534
18535 if Has_Invariants (Priv_T) then
18536 Set_Has_Invariants (Full_T);
18537 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18538 end if;
18539
18540 if Has_Inheritable_Invariants (Priv_T) then
18541 Set_Has_Inheritable_Invariants (Full_T);
18542 end if;
18543
18544 -- Propagate predicates to full type
18545
18546 if Has_Predicates (Priv_T) then
18547 Set_Predicate_Function (Priv_T, Predicate_Function (Full_T));
18548 Set_Has_Predicates (Full_T);
18549 end if;
18550 end Process_Full_View;
18551
18552 -----------------------------------
18553 -- Process_Incomplete_Dependents --
18554 -----------------------------------
18555
18556 procedure Process_Incomplete_Dependents
18557 (N : Node_Id;
18558 Full_T : Entity_Id;
18559 Inc_T : Entity_Id)
18560 is
18561 Inc_Elmt : Elmt_Id;
18562 Priv_Dep : Entity_Id;
18563 New_Subt : Entity_Id;
18564
18565 Disc_Constraint : Elist_Id;
18566
18567 begin
18568 if No (Private_Dependents (Inc_T)) then
18569 return;
18570 end if;
18571
18572 -- Itypes that may be generated by the completion of an incomplete
18573 -- subtype are not used by the back-end and not attached to the tree.
18574 -- They are created only for constraint-checking purposes.
18575
18576 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18577 while Present (Inc_Elmt) loop
18578 Priv_Dep := Node (Inc_Elmt);
18579
18580 if Ekind (Priv_Dep) = E_Subprogram_Type then
18581
18582 -- An Access_To_Subprogram type may have a return type or a
18583 -- parameter type that is incomplete. Replace with the full view.
18584
18585 if Etype (Priv_Dep) = Inc_T then
18586 Set_Etype (Priv_Dep, Full_T);
18587 end if;
18588
18589 declare
18590 Formal : Entity_Id;
18591
18592 begin
18593 Formal := First_Formal (Priv_Dep);
18594 while Present (Formal) loop
18595 if Etype (Formal) = Inc_T then
18596 Set_Etype (Formal, Full_T);
18597 end if;
18598
18599 Next_Formal (Formal);
18600 end loop;
18601 end;
18602
18603 elsif Is_Overloadable (Priv_Dep) then
18604
18605 -- If a subprogram in the incomplete dependents list is primitive
18606 -- for a tagged full type then mark it as a dispatching operation,
18607 -- check whether it overrides an inherited subprogram, and check
18608 -- restrictions on its controlling formals. Note that a protected
18609 -- operation is never dispatching: only its wrapper operation
18610 -- (which has convention Ada) is.
18611
18612 if Is_Tagged_Type (Full_T)
18613 and then Is_Primitive (Priv_Dep)
18614 and then Convention (Priv_Dep) /= Convention_Protected
18615 then
18616 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18617 Set_Is_Dispatching_Operation (Priv_Dep);
18618 Check_Controlling_Formals (Full_T, Priv_Dep);
18619 end if;
18620
18621 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18622
18623 -- Can happen during processing of a body before the completion
18624 -- of a TA type. Ignore, because spec is also on dependent list.
18625
18626 return;
18627
18628 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18629 -- corresponding subtype of the full view.
18630
18631 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18632 Set_Subtype_Indication
18633 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
18634 Set_Etype (Priv_Dep, Full_T);
18635 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18636 Set_Analyzed (Parent (Priv_Dep), False);
18637
18638 -- Reanalyze the declaration, suppressing the call to
18639 -- Enter_Name to avoid duplicate names.
18640
18641 Analyze_Subtype_Declaration
18642 (N => Parent (Priv_Dep),
18643 Skip => True);
18644
18645 -- Dependent is a subtype
18646
18647 else
18648 -- We build a new subtype indication using the full view of the
18649 -- incomplete parent. The discriminant constraints have been
18650 -- elaborated already at the point of the subtype declaration.
18651
18652 New_Subt := Create_Itype (E_Void, N);
18653
18654 if Has_Discriminants (Full_T) then
18655 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18656 else
18657 Disc_Constraint := No_Elist;
18658 end if;
18659
18660 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18661 Set_Full_View (Priv_Dep, New_Subt);
18662 end if;
18663
18664 Next_Elmt (Inc_Elmt);
18665 end loop;
18666 end Process_Incomplete_Dependents;
18667
18668 --------------------------------
18669 -- Process_Range_Expr_In_Decl --
18670 --------------------------------
18671
18672 procedure Process_Range_Expr_In_Decl
18673 (R : Node_Id;
18674 T : Entity_Id;
18675 Check_List : List_Id := Empty_List;
18676 R_Check_Off : Boolean := False;
18677 In_Iter_Schm : Boolean := False)
18678 is
18679 Lo, Hi : Node_Id;
18680 R_Checks : Check_Result;
18681 Insert_Node : Node_Id;
18682 Def_Id : Entity_Id;
18683
18684 begin
18685 Analyze_And_Resolve (R, Base_Type (T));
18686
18687 if Nkind (R) = N_Range then
18688
18689 -- In SPARK, all ranges should be static, with the exception of the
18690 -- discrete type definition of a loop parameter specification.
18691
18692 if not In_Iter_Schm
18693 and then not Is_Static_Range (R)
18694 then
18695 Check_SPARK_Restriction ("range should be static", R);
18696 end if;
18697
18698 Lo := Low_Bound (R);
18699 Hi := High_Bound (R);
18700
18701 -- We need to ensure validity of the bounds here, because if we
18702 -- go ahead and do the expansion, then the expanded code will get
18703 -- analyzed with range checks suppressed and we miss the check.
18704
18705 Validity_Check_Range (R);
18706
18707 -- If there were errors in the declaration, try and patch up some
18708 -- common mistakes in the bounds. The cases handled are literals
18709 -- which are Integer where the expected type is Real and vice versa.
18710 -- These corrections allow the compilation process to proceed further
18711 -- along since some basic assumptions of the format of the bounds
18712 -- are guaranteed.
18713
18714 if Etype (R) = Any_Type then
18715
18716 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18717 Rewrite (Lo,
18718 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
18719
18720 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
18721 Rewrite (Hi,
18722 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
18723
18724 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
18725 Rewrite (Lo,
18726 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
18727
18728 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
18729 Rewrite (Hi,
18730 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
18731 end if;
18732
18733 Set_Etype (Lo, T);
18734 Set_Etype (Hi, T);
18735 end if;
18736
18737 -- If the bounds of the range have been mistakenly given as string
18738 -- literals (perhaps in place of character literals), then an error
18739 -- has already been reported, but we rewrite the string literal as a
18740 -- bound of the range's type to avoid blowups in later processing
18741 -- that looks at static values.
18742
18743 if Nkind (Lo) = N_String_Literal then
18744 Rewrite (Lo,
18745 Make_Attribute_Reference (Sloc (Lo),
18746 Attribute_Name => Name_First,
18747 Prefix => New_Reference_To (T, Sloc (Lo))));
18748 Analyze_And_Resolve (Lo);
18749 end if;
18750
18751 if Nkind (Hi) = N_String_Literal then
18752 Rewrite (Hi,
18753 Make_Attribute_Reference (Sloc (Hi),
18754 Attribute_Name => Name_First,
18755 Prefix => New_Reference_To (T, Sloc (Hi))));
18756 Analyze_And_Resolve (Hi);
18757 end if;
18758
18759 -- If bounds aren't scalar at this point then exit, avoiding
18760 -- problems with further processing of the range in this procedure.
18761
18762 if not Is_Scalar_Type (Etype (Lo)) then
18763 return;
18764 end if;
18765
18766 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18767 -- then range of the base type. Here we check whether the bounds
18768 -- are in the range of the subtype itself. Note that if the bounds
18769 -- represent the null range the Constraint_Error exception should
18770 -- not be raised.
18771
18772 -- ??? The following code should be cleaned up as follows
18773
18774 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18775 -- is done in the call to Range_Check (R, T); below
18776
18777 -- 2. The use of R_Check_Off should be investigated and possibly
18778 -- removed, this would clean up things a bit.
18779
18780 if Is_Null_Range (Lo, Hi) then
18781 null;
18782
18783 else
18784 -- Capture values of bounds and generate temporaries for them
18785 -- if needed, before applying checks, since checks may cause
18786 -- duplication of the expression without forcing evaluation.
18787
18788 -- The forced evaluation removes side effects from expressions,
18789 -- which should occur also in SPARK mode. Otherwise, we end up
18790 -- with unexpected insertions of actions at places where this is
18791 -- not supposed to occur, e.g. on default parameters of a call.
18792
18793 if Expander_Active then
18794 Force_Evaluation (Lo);
18795 Force_Evaluation (Hi);
18796 end if;
18797
18798 -- We use a flag here instead of suppressing checks on the
18799 -- type because the type we check against isn't necessarily
18800 -- the place where we put the check.
18801
18802 if not R_Check_Off then
18803 R_Checks := Get_Range_Checks (R, T);
18804
18805 -- Look up tree to find an appropriate insertion point. We
18806 -- can't just use insert_actions because later processing
18807 -- depends on the insertion node. Prior to Ada 2012 the
18808 -- insertion point could only be a declaration or a loop, but
18809 -- quantified expressions can appear within any context in an
18810 -- expression, and the insertion point can be any statement,
18811 -- pragma, or declaration.
18812
18813 Insert_Node := Parent (R);
18814 while Present (Insert_Node) loop
18815 exit when
18816 Nkind (Insert_Node) in N_Declaration
18817 and then
18818 not Nkind_In
18819 (Insert_Node, N_Component_Declaration,
18820 N_Loop_Parameter_Specification,
18821 N_Function_Specification,
18822 N_Procedure_Specification);
18823
18824 exit when Nkind (Insert_Node) in N_Later_Decl_Item
18825 or else Nkind (Insert_Node) in
18826 N_Statement_Other_Than_Procedure_Call
18827 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
18828 N_Pragma);
18829
18830 Insert_Node := Parent (Insert_Node);
18831 end loop;
18832
18833 -- Why would Type_Decl not be present??? Without this test,
18834 -- short regression tests fail.
18835
18836 if Present (Insert_Node) then
18837
18838 -- Case of loop statement. Verify that the range is part
18839 -- of the subtype indication of the iteration scheme.
18840
18841 if Nkind (Insert_Node) = N_Loop_Statement then
18842 declare
18843 Indic : Node_Id;
18844
18845 begin
18846 Indic := Parent (R);
18847 while Present (Indic)
18848 and then Nkind (Indic) /= N_Subtype_Indication
18849 loop
18850 Indic := Parent (Indic);
18851 end loop;
18852
18853 if Present (Indic) then
18854 Def_Id := Etype (Subtype_Mark (Indic));
18855
18856 Insert_Range_Checks
18857 (R_Checks,
18858 Insert_Node,
18859 Def_Id,
18860 Sloc (Insert_Node),
18861 R,
18862 Do_Before => True);
18863 end if;
18864 end;
18865
18866 -- Insertion before a declaration. If the declaration
18867 -- includes discriminants, the list of applicable checks
18868 -- is given by the caller.
18869
18870 elsif Nkind (Insert_Node) in N_Declaration then
18871 Def_Id := Defining_Identifier (Insert_Node);
18872
18873 if (Ekind (Def_Id) = E_Record_Type
18874 and then Depends_On_Discriminant (R))
18875 or else
18876 (Ekind (Def_Id) = E_Protected_Type
18877 and then Has_Discriminants (Def_Id))
18878 then
18879 Append_Range_Checks
18880 (R_Checks,
18881 Check_List, Def_Id, Sloc (Insert_Node), R);
18882
18883 else
18884 Insert_Range_Checks
18885 (R_Checks,
18886 Insert_Node, Def_Id, Sloc (Insert_Node), R);
18887
18888 end if;
18889
18890 -- Insertion before a statement. Range appears in the
18891 -- context of a quantified expression. Insertion will
18892 -- take place when expression is expanded.
18893
18894 else
18895 null;
18896 end if;
18897 end if;
18898 end if;
18899 end if;
18900
18901 -- Case of other than an explicit N_Range node
18902
18903 -- The forced evaluation removes side effects from expressions, which
18904 -- should occur also in SPARK mode. Otherwise, we end up with unexpected
18905 -- insertions of actions at places where this is not supposed to occur,
18906 -- e.g. on default parameters of a call.
18907
18908 elsif Expander_Active then
18909 Get_Index_Bounds (R, Lo, Hi);
18910 Force_Evaluation (Lo);
18911 Force_Evaluation (Hi);
18912 end if;
18913 end Process_Range_Expr_In_Decl;
18914
18915 --------------------------------------
18916 -- Process_Real_Range_Specification --
18917 --------------------------------------
18918
18919 procedure Process_Real_Range_Specification (Def : Node_Id) is
18920 Spec : constant Node_Id := Real_Range_Specification (Def);
18921 Lo : Node_Id;
18922 Hi : Node_Id;
18923 Err : Boolean := False;
18924
18925 procedure Analyze_Bound (N : Node_Id);
18926 -- Analyze and check one bound
18927
18928 -------------------
18929 -- Analyze_Bound --
18930 -------------------
18931
18932 procedure Analyze_Bound (N : Node_Id) is
18933 begin
18934 Analyze_And_Resolve (N, Any_Real);
18935
18936 if not Is_OK_Static_Expression (N) then
18937 Flag_Non_Static_Expr
18938 ("bound in real type definition is not static!", N);
18939 Err := True;
18940 end if;
18941 end Analyze_Bound;
18942
18943 -- Start of processing for Process_Real_Range_Specification
18944
18945 begin
18946 if Present (Spec) then
18947 Lo := Low_Bound (Spec);
18948 Hi := High_Bound (Spec);
18949 Analyze_Bound (Lo);
18950 Analyze_Bound (Hi);
18951
18952 -- If error, clear away junk range specification
18953
18954 if Err then
18955 Set_Real_Range_Specification (Def, Empty);
18956 end if;
18957 end if;
18958 end Process_Real_Range_Specification;
18959
18960 ---------------------
18961 -- Process_Subtype --
18962 ---------------------
18963
18964 function Process_Subtype
18965 (S : Node_Id;
18966 Related_Nod : Node_Id;
18967 Related_Id : Entity_Id := Empty;
18968 Suffix : Character := ' ') return Entity_Id
18969 is
18970 P : Node_Id;
18971 Def_Id : Entity_Id;
18972 Error_Node : Node_Id;
18973 Full_View_Id : Entity_Id;
18974 Subtype_Mark_Id : Entity_Id;
18975
18976 May_Have_Null_Exclusion : Boolean;
18977
18978 procedure Check_Incomplete (T : Entity_Id);
18979 -- Called to verify that an incomplete type is not used prematurely
18980
18981 ----------------------
18982 -- Check_Incomplete --
18983 ----------------------
18984
18985 procedure Check_Incomplete (T : Entity_Id) is
18986 begin
18987 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18988
18989 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
18990 and then
18991 not (Ada_Version >= Ada_2005
18992 and then
18993 (Nkind (Parent (T)) = N_Subtype_Declaration
18994 or else
18995 (Nkind (Parent (T)) = N_Subtype_Indication
18996 and then Nkind (Parent (Parent (T))) =
18997 N_Subtype_Declaration)))
18998 then
18999 Error_Msg_N ("invalid use of type before its full declaration", T);
19000 end if;
19001 end Check_Incomplete;
19002
19003 -- Start of processing for Process_Subtype
19004
19005 begin
19006 -- Case of no constraints present
19007
19008 if Nkind (S) /= N_Subtype_Indication then
19009 Find_Type (S);
19010 Check_Incomplete (S);
19011 P := Parent (S);
19012
19013 -- Ada 2005 (AI-231): Static check
19014
19015 if Ada_Version >= Ada_2005
19016 and then Present (P)
19017 and then Null_Exclusion_Present (P)
19018 and then Nkind (P) /= N_Access_To_Object_Definition
19019 and then not Is_Access_Type (Entity (S))
19020 then
19021 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19022 end if;
19023
19024 -- The following is ugly, can't we have a range or even a flag???
19025
19026 May_Have_Null_Exclusion :=
19027 Nkind_In (P, N_Access_Definition,
19028 N_Access_Function_Definition,
19029 N_Access_Procedure_Definition,
19030 N_Access_To_Object_Definition,
19031 N_Allocator,
19032 N_Component_Definition)
19033 or else
19034 Nkind_In (P, N_Derived_Type_Definition,
19035 N_Discriminant_Specification,
19036 N_Formal_Object_Declaration,
19037 N_Object_Declaration,
19038 N_Object_Renaming_Declaration,
19039 N_Parameter_Specification,
19040 N_Subtype_Declaration);
19041
19042 -- Create an Itype that is a duplicate of Entity (S) but with the
19043 -- null-exclusion attribute.
19044
19045 if May_Have_Null_Exclusion
19046 and then Is_Access_Type (Entity (S))
19047 and then Null_Exclusion_Present (P)
19048
19049 -- No need to check the case of an access to object definition.
19050 -- It is correct to define double not-null pointers.
19051
19052 -- Example:
19053 -- type Not_Null_Int_Ptr is not null access Integer;
19054 -- type Acc is not null access Not_Null_Int_Ptr;
19055
19056 and then Nkind (P) /= N_Access_To_Object_Definition
19057 then
19058 if Can_Never_Be_Null (Entity (S)) then
19059 case Nkind (Related_Nod) is
19060 when N_Full_Type_Declaration =>
19061 if Nkind (Type_Definition (Related_Nod))
19062 in N_Array_Type_Definition
19063 then
19064 Error_Node :=
19065 Subtype_Indication
19066 (Component_Definition
19067 (Type_Definition (Related_Nod)));
19068 else
19069 Error_Node :=
19070 Subtype_Indication (Type_Definition (Related_Nod));
19071 end if;
19072
19073 when N_Subtype_Declaration =>
19074 Error_Node := Subtype_Indication (Related_Nod);
19075
19076 when N_Object_Declaration =>
19077 Error_Node := Object_Definition (Related_Nod);
19078
19079 when N_Component_Declaration =>
19080 Error_Node :=
19081 Subtype_Indication (Component_Definition (Related_Nod));
19082
19083 when N_Allocator =>
19084 Error_Node := Expression (Related_Nod);
19085
19086 when others =>
19087 pragma Assert (False);
19088 Error_Node := Related_Nod;
19089 end case;
19090
19091 Error_Msg_NE
19092 ("`NOT NULL` not allowed (& already excludes null)",
19093 Error_Node,
19094 Entity (S));
19095 end if;
19096
19097 Set_Etype (S,
19098 Create_Null_Excluding_Itype
19099 (T => Entity (S),
19100 Related_Nod => P));
19101 Set_Entity (S, Etype (S));
19102 end if;
19103
19104 return Entity (S);
19105
19106 -- Case of constraint present, so that we have an N_Subtype_Indication
19107 -- node (this node is created only if constraints are present).
19108
19109 else
19110 Find_Type (Subtype_Mark (S));
19111
19112 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19113 and then not
19114 (Nkind (Parent (S)) = N_Subtype_Declaration
19115 and then Is_Itype (Defining_Identifier (Parent (S))))
19116 then
19117 Check_Incomplete (Subtype_Mark (S));
19118 end if;
19119
19120 P := Parent (S);
19121 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19122
19123 -- Explicit subtype declaration case
19124
19125 if Nkind (P) = N_Subtype_Declaration then
19126 Def_Id := Defining_Identifier (P);
19127
19128 -- Explicit derived type definition case
19129
19130 elsif Nkind (P) = N_Derived_Type_Definition then
19131 Def_Id := Defining_Identifier (Parent (P));
19132
19133 -- Implicit case, the Def_Id must be created as an implicit type.
19134 -- The one exception arises in the case of concurrent types, array
19135 -- and access types, where other subsidiary implicit types may be
19136 -- created and must appear before the main implicit type. In these
19137 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19138 -- has not yet been called to create Def_Id.
19139
19140 else
19141 if Is_Array_Type (Subtype_Mark_Id)
19142 or else Is_Concurrent_Type (Subtype_Mark_Id)
19143 or else Is_Access_Type (Subtype_Mark_Id)
19144 then
19145 Def_Id := Empty;
19146
19147 -- For the other cases, we create a new unattached Itype,
19148 -- and set the indication to ensure it gets attached later.
19149
19150 else
19151 Def_Id :=
19152 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19153 end if;
19154 end if;
19155
19156 -- If the kind of constraint is invalid for this kind of type,
19157 -- then give an error, and then pretend no constraint was given.
19158
19159 if not Is_Valid_Constraint_Kind
19160 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19161 then
19162 Error_Msg_N
19163 ("incorrect constraint for this kind of type", Constraint (S));
19164
19165 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19166
19167 -- Set Ekind of orphan itype, to prevent cascaded errors
19168
19169 if Present (Def_Id) then
19170 Set_Ekind (Def_Id, Ekind (Any_Type));
19171 end if;
19172
19173 -- Make recursive call, having got rid of the bogus constraint
19174
19175 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19176 end if;
19177
19178 -- Remaining processing depends on type. Select on Base_Type kind to
19179 -- ensure getting to the concrete type kind in the case of a private
19180 -- subtype (needed when only doing semantic analysis).
19181
19182 case Ekind (Base_Type (Subtype_Mark_Id)) is
19183 when Access_Kind =>
19184
19185 -- If this is a constraint on a class-wide type, discard it.
19186 -- There is currently no way to express a partial discriminant
19187 -- constraint on a type with unknown discriminants. This is
19188 -- a pathology that the ACATS wisely decides not to test.
19189
19190 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19191 if Comes_From_Source (S) then
19192 Error_Msg_N
19193 ("constraint on class-wide type ignored?",
19194 Constraint (S));
19195 end if;
19196
19197 if Nkind (P) = N_Subtype_Declaration then
19198 Set_Subtype_Indication (P,
19199 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19200 end if;
19201
19202 return Subtype_Mark_Id;
19203 end if;
19204
19205 Constrain_Access (Def_Id, S, Related_Nod);
19206
19207 if Expander_Active
19208 and then Is_Itype (Designated_Type (Def_Id))
19209 and then Nkind (Related_Nod) = N_Subtype_Declaration
19210 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19211 then
19212 Build_Itype_Reference
19213 (Designated_Type (Def_Id), Related_Nod);
19214 end if;
19215
19216 when Array_Kind =>
19217 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19218
19219 when Decimal_Fixed_Point_Kind =>
19220 Constrain_Decimal (Def_Id, S);
19221
19222 when Enumeration_Kind =>
19223 Constrain_Enumeration (Def_Id, S);
19224
19225 when Ordinary_Fixed_Point_Kind =>
19226 Constrain_Ordinary_Fixed (Def_Id, S);
19227
19228 when Float_Kind =>
19229 Constrain_Float (Def_Id, S);
19230
19231 when Integer_Kind =>
19232 Constrain_Integer (Def_Id, S);
19233
19234 when E_Record_Type |
19235 E_Record_Subtype |
19236 Class_Wide_Kind |
19237 E_Incomplete_Type =>
19238 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19239
19240 if Ekind (Def_Id) = E_Incomplete_Type then
19241 Set_Private_Dependents (Def_Id, New_Elmt_List);
19242 end if;
19243
19244 when Private_Kind =>
19245 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19246 Set_Private_Dependents (Def_Id, New_Elmt_List);
19247
19248 -- In case of an invalid constraint prevent further processing
19249 -- since the type constructed is missing expected fields.
19250
19251 if Etype (Def_Id) = Any_Type then
19252 return Def_Id;
19253 end if;
19254
19255 -- If the full view is that of a task with discriminants,
19256 -- we must constrain both the concurrent type and its
19257 -- corresponding record type. Otherwise we will just propagate
19258 -- the constraint to the full view, if available.
19259
19260 if Present (Full_View (Subtype_Mark_Id))
19261 and then Has_Discriminants (Subtype_Mark_Id)
19262 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19263 then
19264 Full_View_Id :=
19265 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19266
19267 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19268 Constrain_Concurrent (Full_View_Id, S,
19269 Related_Nod, Related_Id, Suffix);
19270 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19271 Set_Full_View (Def_Id, Full_View_Id);
19272
19273 -- Introduce an explicit reference to the private subtype,
19274 -- to prevent scope anomalies in gigi if first use appears
19275 -- in a nested context, e.g. a later function body.
19276 -- Should this be generated in other contexts than a full
19277 -- type declaration?
19278
19279 if Is_Itype (Def_Id)
19280 and then
19281 Nkind (Parent (P)) = N_Full_Type_Declaration
19282 then
19283 Build_Itype_Reference (Def_Id, Parent (P));
19284 end if;
19285
19286 else
19287 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19288 end if;
19289
19290 when Concurrent_Kind =>
19291 Constrain_Concurrent (Def_Id, S,
19292 Related_Nod, Related_Id, Suffix);
19293
19294 when others =>
19295 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19296 end case;
19297
19298 -- Size and Convention are always inherited from the base type
19299
19300 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19301 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19302
19303 return Def_Id;
19304 end if;
19305 end Process_Subtype;
19306
19307 ---------------------------------------
19308 -- Check_Anonymous_Access_Components --
19309 ---------------------------------------
19310
19311 procedure Check_Anonymous_Access_Components
19312 (Typ_Decl : Node_Id;
19313 Typ : Entity_Id;
19314 Prev : Entity_Id;
19315 Comp_List : Node_Id)
19316 is
19317 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19318 Anon_Access : Entity_Id;
19319 Acc_Def : Node_Id;
19320 Comp : Node_Id;
19321 Comp_Def : Node_Id;
19322 Decl : Node_Id;
19323 Type_Def : Node_Id;
19324
19325 procedure Build_Incomplete_Type_Declaration;
19326 -- If the record type contains components that include an access to the
19327 -- current record, then create an incomplete type declaration for the
19328 -- record, to be used as the designated type of the anonymous access.
19329 -- This is done only once, and only if there is no previous partial
19330 -- view of the type.
19331
19332 function Designates_T (Subt : Node_Id) return Boolean;
19333 -- Check whether a node designates the enclosing record type, or 'Class
19334 -- of that type
19335
19336 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19337 -- Check whether an access definition includes a reference to
19338 -- the enclosing record type. The reference can be a subtype mark
19339 -- in the access definition itself, a 'Class attribute reference, or
19340 -- recursively a reference appearing in a parameter specification
19341 -- or result definition of an access_to_subprogram definition.
19342
19343 --------------------------------------
19344 -- Build_Incomplete_Type_Declaration --
19345 --------------------------------------
19346
19347 procedure Build_Incomplete_Type_Declaration is
19348 Decl : Node_Id;
19349 Inc_T : Entity_Id;
19350 H : Entity_Id;
19351
19352 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19353 -- it's "is new ... with record" or else "is tagged record ...".
19354
19355 Is_Tagged : constant Boolean :=
19356 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19357 and then
19358 Present
19359 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19360 or else
19361 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19362 and then Tagged_Present (Type_Definition (Typ_Decl)));
19363
19364 begin
19365 -- If there is a previous partial view, no need to create a new one
19366 -- If the partial view, given by Prev, is incomplete, If Prev is
19367 -- a private declaration, full declaration is flagged accordingly.
19368
19369 if Prev /= Typ then
19370 if Is_Tagged then
19371 Make_Class_Wide_Type (Prev);
19372 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19373 Set_Etype (Class_Wide_Type (Typ), Typ);
19374 end if;
19375
19376 return;
19377
19378 elsif Has_Private_Declaration (Typ) then
19379
19380 -- If we refer to T'Class inside T, and T is the completion of a
19381 -- private type, then we need to make sure the class-wide type
19382 -- exists.
19383
19384 if Is_Tagged then
19385 Make_Class_Wide_Type (Typ);
19386 end if;
19387
19388 return;
19389
19390 -- If there was a previous anonymous access type, the incomplete
19391 -- type declaration will have been created already.
19392
19393 elsif Present (Current_Entity (Typ))
19394 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19395 and then Full_View (Current_Entity (Typ)) = Typ
19396 then
19397 if Is_Tagged
19398 and then Comes_From_Source (Current_Entity (Typ))
19399 and then not Is_Tagged_Type (Current_Entity (Typ))
19400 then
19401 Make_Class_Wide_Type (Typ);
19402 Error_Msg_N
19403 ("incomplete view of tagged type should be declared tagged??",
19404 Parent (Current_Entity (Typ)));
19405 end if;
19406 return;
19407
19408 else
19409 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19410 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19411
19412 -- Type has already been inserted into the current scope. Remove
19413 -- it, and add incomplete declaration for type, so that subsequent
19414 -- anonymous access types can use it. The entity is unchained from
19415 -- the homonym list and from immediate visibility. After analysis,
19416 -- the entity in the incomplete declaration becomes immediately
19417 -- visible in the record declaration that follows.
19418
19419 H := Current_Entity (Typ);
19420
19421 if H = Typ then
19422 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19423 else
19424 while Present (H)
19425 and then Homonym (H) /= Typ
19426 loop
19427 H := Homonym (Typ);
19428 end loop;
19429
19430 Set_Homonym (H, Homonym (Typ));
19431 end if;
19432
19433 Insert_Before (Typ_Decl, Decl);
19434 Analyze (Decl);
19435 Set_Full_View (Inc_T, Typ);
19436
19437 if Is_Tagged then
19438
19439 -- Create a common class-wide type for both views, and set the
19440 -- Etype of the class-wide type to the full view.
19441
19442 Make_Class_Wide_Type (Inc_T);
19443 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19444 Set_Etype (Class_Wide_Type (Typ), Typ);
19445 end if;
19446 end if;
19447 end Build_Incomplete_Type_Declaration;
19448
19449 ------------------
19450 -- Designates_T --
19451 ------------------
19452
19453 function Designates_T (Subt : Node_Id) return Boolean is
19454 Type_Id : constant Name_Id := Chars (Typ);
19455
19456 function Names_T (Nam : Node_Id) return Boolean;
19457 -- The record type has not been introduced in the current scope
19458 -- yet, so we must examine the name of the type itself, either
19459 -- an identifier T, or an expanded name of the form P.T, where
19460 -- P denotes the current scope.
19461
19462 -------------
19463 -- Names_T --
19464 -------------
19465
19466 function Names_T (Nam : Node_Id) return Boolean is
19467 begin
19468 if Nkind (Nam) = N_Identifier then
19469 return Chars (Nam) = Type_Id;
19470
19471 elsif Nkind (Nam) = N_Selected_Component then
19472 if Chars (Selector_Name (Nam)) = Type_Id then
19473 if Nkind (Prefix (Nam)) = N_Identifier then
19474 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19475
19476 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19477 return Chars (Selector_Name (Prefix (Nam))) =
19478 Chars (Current_Scope);
19479 else
19480 return False;
19481 end if;
19482
19483 else
19484 return False;
19485 end if;
19486
19487 else
19488 return False;
19489 end if;
19490 end Names_T;
19491
19492 -- Start of processing for Designates_T
19493
19494 begin
19495 if Nkind (Subt) = N_Identifier then
19496 return Chars (Subt) = Type_Id;
19497
19498 -- Reference can be through an expanded name which has not been
19499 -- analyzed yet, and which designates enclosing scopes.
19500
19501 elsif Nkind (Subt) = N_Selected_Component then
19502 if Names_T (Subt) then
19503 return True;
19504
19505 -- Otherwise it must denote an entity that is already visible.
19506 -- The access definition may name a subtype of the enclosing
19507 -- type, if there is a previous incomplete declaration for it.
19508
19509 else
19510 Find_Selected_Component (Subt);
19511 return
19512 Is_Entity_Name (Subt)
19513 and then Scope (Entity (Subt)) = Current_Scope
19514 and then
19515 (Chars (Base_Type (Entity (Subt))) = Type_Id
19516 or else
19517 (Is_Class_Wide_Type (Entity (Subt))
19518 and then
19519 Chars (Etype (Base_Type (Entity (Subt)))) =
19520 Type_Id));
19521 end if;
19522
19523 -- A reference to the current type may appear as the prefix of
19524 -- a 'Class attribute.
19525
19526 elsif Nkind (Subt) = N_Attribute_Reference
19527 and then Attribute_Name (Subt) = Name_Class
19528 then
19529 return Names_T (Prefix (Subt));
19530
19531 else
19532 return False;
19533 end if;
19534 end Designates_T;
19535
19536 ----------------
19537 -- Mentions_T --
19538 ----------------
19539
19540 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19541 Param_Spec : Node_Id;
19542
19543 Acc_Subprg : constant Node_Id :=
19544 Access_To_Subprogram_Definition (Acc_Def);
19545
19546 begin
19547 if No (Acc_Subprg) then
19548 return Designates_T (Subtype_Mark (Acc_Def));
19549 end if;
19550
19551 -- Component is an access_to_subprogram: examine its formals,
19552 -- and result definition in the case of an access_to_function.
19553
19554 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19555 while Present (Param_Spec) loop
19556 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19557 and then Mentions_T (Parameter_Type (Param_Spec))
19558 then
19559 return True;
19560
19561 elsif Designates_T (Parameter_Type (Param_Spec)) then
19562 return True;
19563 end if;
19564
19565 Next (Param_Spec);
19566 end loop;
19567
19568 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19569 if Nkind (Result_Definition (Acc_Subprg)) =
19570 N_Access_Definition
19571 then
19572 return Mentions_T (Result_Definition (Acc_Subprg));
19573 else
19574 return Designates_T (Result_Definition (Acc_Subprg));
19575 end if;
19576 end if;
19577
19578 return False;
19579 end Mentions_T;
19580
19581 -- Start of processing for Check_Anonymous_Access_Components
19582
19583 begin
19584 if No (Comp_List) then
19585 return;
19586 end if;
19587
19588 Comp := First (Component_Items (Comp_List));
19589 while Present (Comp) loop
19590 if Nkind (Comp) = N_Component_Declaration
19591 and then Present
19592 (Access_Definition (Component_Definition (Comp)))
19593 and then
19594 Mentions_T (Access_Definition (Component_Definition (Comp)))
19595 then
19596 Comp_Def := Component_Definition (Comp);
19597 Acc_Def :=
19598 Access_To_Subprogram_Definition
19599 (Access_Definition (Comp_Def));
19600
19601 Build_Incomplete_Type_Declaration;
19602 Anon_Access := Make_Temporary (Loc, 'S');
19603
19604 -- Create a declaration for the anonymous access type: either
19605 -- an access_to_object or an access_to_subprogram.
19606
19607 if Present (Acc_Def) then
19608 if Nkind (Acc_Def) = N_Access_Function_Definition then
19609 Type_Def :=
19610 Make_Access_Function_Definition (Loc,
19611 Parameter_Specifications =>
19612 Parameter_Specifications (Acc_Def),
19613 Result_Definition => Result_Definition (Acc_Def));
19614 else
19615 Type_Def :=
19616 Make_Access_Procedure_Definition (Loc,
19617 Parameter_Specifications =>
19618 Parameter_Specifications (Acc_Def));
19619 end if;
19620
19621 else
19622 Type_Def :=
19623 Make_Access_To_Object_Definition (Loc,
19624 Subtype_Indication =>
19625 Relocate_Node
19626 (Subtype_Mark
19627 (Access_Definition (Comp_Def))));
19628
19629 Set_Constant_Present
19630 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19631 Set_All_Present
19632 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19633 end if;
19634
19635 Set_Null_Exclusion_Present
19636 (Type_Def,
19637 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19638
19639 Decl :=
19640 Make_Full_Type_Declaration (Loc,
19641 Defining_Identifier => Anon_Access,
19642 Type_Definition => Type_Def);
19643
19644 Insert_Before (Typ_Decl, Decl);
19645 Analyze (Decl);
19646
19647 -- If an access to subprogram, create the extra formals
19648
19649 if Present (Acc_Def) then
19650 Create_Extra_Formals (Designated_Type (Anon_Access));
19651
19652 -- If an access to object, preserve entity of designated type,
19653 -- for ASIS use, before rewriting the component definition.
19654
19655 else
19656 declare
19657 Desig : Entity_Id;
19658
19659 begin
19660 Desig := Entity (Subtype_Indication (Type_Def));
19661
19662 -- If the access definition is to the current record,
19663 -- the visible entity at this point is an incomplete
19664 -- type. Retrieve the full view to simplify ASIS queries
19665
19666 if Ekind (Desig) = E_Incomplete_Type then
19667 Desig := Full_View (Desig);
19668 end if;
19669
19670 Set_Entity
19671 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19672 end;
19673 end if;
19674
19675 Rewrite (Comp_Def,
19676 Make_Component_Definition (Loc,
19677 Subtype_Indication =>
19678 New_Occurrence_Of (Anon_Access, Loc)));
19679
19680 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19681 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19682 else
19683 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19684 end if;
19685
19686 Set_Is_Local_Anonymous_Access (Anon_Access);
19687 end if;
19688
19689 Next (Comp);
19690 end loop;
19691
19692 if Present (Variant_Part (Comp_List)) then
19693 declare
19694 V : Node_Id;
19695 begin
19696 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19697 while Present (V) loop
19698 Check_Anonymous_Access_Components
19699 (Typ_Decl, Typ, Prev, Component_List (V));
19700 Next_Non_Pragma (V);
19701 end loop;
19702 end;
19703 end if;
19704 end Check_Anonymous_Access_Components;
19705
19706 ----------------------------------
19707 -- Preanalyze_Assert_Expression --
19708 ----------------------------------
19709
19710 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19711 begin
19712 In_Assertion_Expr := In_Assertion_Expr + 1;
19713 Preanalyze_Spec_Expression (N, T);
19714 In_Assertion_Expr := In_Assertion_Expr - 1;
19715 end Preanalyze_Assert_Expression;
19716
19717 --------------------------------
19718 -- Preanalyze_Spec_Expression --
19719 --------------------------------
19720
19721 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19722 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19723 begin
19724 In_Spec_Expression := True;
19725 Preanalyze_And_Resolve (N, T);
19726 In_Spec_Expression := Save_In_Spec_Expression;
19727 end Preanalyze_Spec_Expression;
19728
19729 -----------------------------
19730 -- Record_Type_Declaration --
19731 -----------------------------
19732
19733 procedure Record_Type_Declaration
19734 (T : Entity_Id;
19735 N : Node_Id;
19736 Prev : Entity_Id)
19737 is
19738 Def : constant Node_Id := Type_Definition (N);
19739 Is_Tagged : Boolean;
19740 Tag_Comp : Entity_Id;
19741
19742 begin
19743 -- These flags must be initialized before calling Process_Discriminants
19744 -- because this routine makes use of them.
19745
19746 Set_Ekind (T, E_Record_Type);
19747 Set_Etype (T, T);
19748 Init_Size_Align (T);
19749 Set_Interfaces (T, No_Elist);
19750 Set_Stored_Constraint (T, No_Elist);
19751
19752 -- Normal case
19753
19754 if Ada_Version < Ada_2005
19755 or else not Interface_Present (Def)
19756 then
19757 if Limited_Present (Def) then
19758 Check_SPARK_Restriction ("limited is not allowed", N);
19759 end if;
19760
19761 if Abstract_Present (Def) then
19762 Check_SPARK_Restriction ("abstract is not allowed", N);
19763 end if;
19764
19765 -- The flag Is_Tagged_Type might have already been set by
19766 -- Find_Type_Name if it detected an error for declaration T. This
19767 -- arises in the case of private tagged types where the full view
19768 -- omits the word tagged.
19769
19770 Is_Tagged :=
19771 Tagged_Present (Def)
19772 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
19773
19774 Set_Is_Tagged_Type (T, Is_Tagged);
19775 Set_Is_Limited_Record (T, Limited_Present (Def));
19776
19777 -- Type is abstract if full declaration carries keyword, or if
19778 -- previous partial view did.
19779
19780 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
19781 or else Abstract_Present (Def));
19782
19783 else
19784 Check_SPARK_Restriction ("interface is not allowed", N);
19785
19786 Is_Tagged := True;
19787 Analyze_Interface_Declaration (T, Def);
19788
19789 if Present (Discriminant_Specifications (N)) then
19790 Error_Msg_N
19791 ("interface types cannot have discriminants",
19792 Defining_Identifier
19793 (First (Discriminant_Specifications (N))));
19794 end if;
19795 end if;
19796
19797 -- First pass: if there are self-referential access components,
19798 -- create the required anonymous access type declarations, and if
19799 -- need be an incomplete type declaration for T itself.
19800
19801 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
19802
19803 if Ada_Version >= Ada_2005
19804 and then Present (Interface_List (Def))
19805 then
19806 Check_Interfaces (N, Def);
19807
19808 declare
19809 Ifaces_List : Elist_Id;
19810
19811 begin
19812 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19813 -- already in the parents.
19814
19815 Collect_Interfaces
19816 (T => T,
19817 Ifaces_List => Ifaces_List,
19818 Exclude_Parents => True);
19819
19820 Set_Interfaces (T, Ifaces_List);
19821 end;
19822 end if;
19823
19824 -- Records constitute a scope for the component declarations within.
19825 -- The scope is created prior to the processing of these declarations.
19826 -- Discriminants are processed first, so that they are visible when
19827 -- processing the other components. The Ekind of the record type itself
19828 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19829
19830 -- Enter record scope
19831
19832 Push_Scope (T);
19833
19834 -- If an incomplete or private type declaration was already given for
19835 -- the type, then this scope already exists, and the discriminants have
19836 -- been declared within. We must verify that the full declaration
19837 -- matches the incomplete one.
19838
19839 Check_Or_Process_Discriminants (N, T, Prev);
19840
19841 Set_Is_Constrained (T, not Has_Discriminants (T));
19842 Set_Has_Delayed_Freeze (T, True);
19843
19844 -- For tagged types add a manually analyzed component corresponding
19845 -- to the component _tag, the corresponding piece of tree will be
19846 -- expanded as part of the freezing actions if it is not a CPP_Class.
19847
19848 if Is_Tagged then
19849
19850 -- Do not add the tag unless we are in expansion mode
19851
19852 if Expander_Active then
19853 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
19854 Enter_Name (Tag_Comp);
19855
19856 Set_Ekind (Tag_Comp, E_Component);
19857 Set_Is_Tag (Tag_Comp);
19858 Set_Is_Aliased (Tag_Comp);
19859 Set_Etype (Tag_Comp, RTE (RE_Tag));
19860 Set_DT_Entry_Count (Tag_Comp, No_Uint);
19861 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
19862 Init_Component_Location (Tag_Comp);
19863
19864 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19865 -- implemented interfaces.
19866
19867 if Has_Interfaces (T) then
19868 Add_Interface_Tag_Components (N, T);
19869 end if;
19870 end if;
19871
19872 Make_Class_Wide_Type (T);
19873 Set_Direct_Primitive_Operations (T, New_Elmt_List);
19874 end if;
19875
19876 -- We must suppress range checks when processing record components in
19877 -- the presence of discriminants, since we don't want spurious checks to
19878 -- be generated during their analysis, but Suppress_Range_Checks flags
19879 -- must be reset the after processing the record definition.
19880
19881 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19882 -- couldn't we just use the normal range check suppression method here.
19883 -- That would seem cleaner ???
19884
19885 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
19886 Set_Kill_Range_Checks (T, True);
19887 Record_Type_Definition (Def, Prev);
19888 Set_Kill_Range_Checks (T, False);
19889 else
19890 Record_Type_Definition (Def, Prev);
19891 end if;
19892
19893 -- Exit from record scope
19894
19895 End_Scope;
19896
19897 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19898 -- the implemented interfaces and associate them an aliased entity.
19899
19900 if Is_Tagged
19901 and then not Is_Empty_List (Interface_List (Def))
19902 then
19903 Derive_Progenitor_Subprograms (T, T);
19904 end if;
19905
19906 Check_Function_Writable_Actuals (N);
19907 end Record_Type_Declaration;
19908
19909 ----------------------------
19910 -- Record_Type_Definition --
19911 ----------------------------
19912
19913 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
19914 Component : Entity_Id;
19915 Ctrl_Components : Boolean := False;
19916 Final_Storage_Only : Boolean;
19917 T : Entity_Id;
19918
19919 begin
19920 if Ekind (Prev_T) = E_Incomplete_Type then
19921 T := Full_View (Prev_T);
19922 else
19923 T := Prev_T;
19924 end if;
19925
19926 -- In SPARK, tagged types and type extensions may only be declared in
19927 -- the specification of library unit packages.
19928
19929 if Present (Def) and then Is_Tagged_Type (T) then
19930 declare
19931 Typ : Node_Id;
19932 Ctxt : Node_Id;
19933
19934 begin
19935 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
19936 Typ := Parent (Def);
19937 else
19938 pragma Assert
19939 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
19940 Typ := Parent (Parent (Def));
19941 end if;
19942
19943 Ctxt := Parent (Typ);
19944
19945 if Nkind (Ctxt) = N_Package_Body
19946 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
19947 then
19948 Check_SPARK_Restriction
19949 ("type should be defined in package specification", Typ);
19950
19951 elsif Nkind (Ctxt) /= N_Package_Specification
19952 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
19953 then
19954 Check_SPARK_Restriction
19955 ("type should be defined in library unit package", Typ);
19956 end if;
19957 end;
19958 end if;
19959
19960 Final_Storage_Only := not Is_Controlled (T);
19961
19962 -- Ada 2005: check whether an explicit Limited is present in a derived
19963 -- type declaration.
19964
19965 if Nkind (Parent (Def)) = N_Derived_Type_Definition
19966 and then Limited_Present (Parent (Def))
19967 then
19968 Set_Is_Limited_Record (T);
19969 end if;
19970
19971 -- If the component list of a record type is defined by the reserved
19972 -- word null and there is no discriminant part, then the record type has
19973 -- no components and all records of the type are null records (RM 3.7)
19974 -- This procedure is also called to process the extension part of a
19975 -- record extension, in which case the current scope may have inherited
19976 -- components.
19977
19978 if No (Def)
19979 or else No (Component_List (Def))
19980 or else Null_Present (Component_List (Def))
19981 then
19982 if not Is_Tagged_Type (T) then
19983 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
19984 end if;
19985
19986 else
19987 Analyze_Declarations (Component_Items (Component_List (Def)));
19988
19989 if Present (Variant_Part (Component_List (Def))) then
19990 Check_SPARK_Restriction ("variant part is not allowed", Def);
19991 Analyze (Variant_Part (Component_List (Def)));
19992 end if;
19993 end if;
19994
19995 -- After completing the semantic analysis of the record definition,
19996 -- record components, both new and inherited, are accessible. Set their
19997 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19998 -- whose Ekind may be void.
19999
20000 Component := First_Entity (Current_Scope);
20001 while Present (Component) loop
20002 if Ekind (Component) = E_Void
20003 and then not Is_Itype (Component)
20004 then
20005 Set_Ekind (Component, E_Component);
20006 Init_Component_Location (Component);
20007 end if;
20008
20009 if Has_Task (Etype (Component)) then
20010 Set_Has_Task (T);
20011 end if;
20012
20013 if Ekind (Component) /= E_Component then
20014 null;
20015
20016 -- Do not set Has_Controlled_Component on a class-wide equivalent
20017 -- type. See Make_CW_Equivalent_Type.
20018
20019 elsif not Is_Class_Wide_Equivalent_Type (T)
20020 and then (Has_Controlled_Component (Etype (Component))
20021 or else (Chars (Component) /= Name_uParent
20022 and then Is_Controlled (Etype (Component))))
20023 then
20024 Set_Has_Controlled_Component (T, True);
20025 Final_Storage_Only :=
20026 Final_Storage_Only
20027 and then Finalize_Storage_Only (Etype (Component));
20028 Ctrl_Components := True;
20029 end if;
20030
20031 Next_Entity (Component);
20032 end loop;
20033
20034 -- A Type is Finalize_Storage_Only only if all its controlled components
20035 -- are also.
20036
20037 if Ctrl_Components then
20038 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20039 end if;
20040
20041 -- Place reference to end record on the proper entity, which may
20042 -- be a partial view.
20043
20044 if Present (Def) then
20045 Process_End_Label (Def, 'e', Prev_T);
20046 end if;
20047 end Record_Type_Definition;
20048
20049 ------------------------
20050 -- Replace_Components --
20051 ------------------------
20052
20053 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20054 function Process (N : Node_Id) return Traverse_Result;
20055
20056 -------------
20057 -- Process --
20058 -------------
20059
20060 function Process (N : Node_Id) return Traverse_Result is
20061 Comp : Entity_Id;
20062
20063 begin
20064 if Nkind (N) = N_Discriminant_Specification then
20065 Comp := First_Discriminant (Typ);
20066 while Present (Comp) loop
20067 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20068 Set_Defining_Identifier (N, Comp);
20069 exit;
20070 end if;
20071
20072 Next_Discriminant (Comp);
20073 end loop;
20074
20075 elsif Nkind (N) = N_Component_Declaration then
20076 Comp := First_Component (Typ);
20077 while Present (Comp) loop
20078 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20079 Set_Defining_Identifier (N, Comp);
20080 exit;
20081 end if;
20082
20083 Next_Component (Comp);
20084 end loop;
20085 end if;
20086
20087 return OK;
20088 end Process;
20089
20090 procedure Replace is new Traverse_Proc (Process);
20091
20092 -- Start of processing for Replace_Components
20093
20094 begin
20095 Replace (Decl);
20096 end Replace_Components;
20097
20098 -------------------------------
20099 -- Set_Completion_Referenced --
20100 -------------------------------
20101
20102 procedure Set_Completion_Referenced (E : Entity_Id) is
20103 begin
20104 -- If in main unit, mark entity that is a completion as referenced,
20105 -- warnings go on the partial view when needed.
20106
20107 if In_Extended_Main_Source_Unit (E) then
20108 Set_Referenced (E);
20109 end if;
20110 end Set_Completion_Referenced;
20111
20112 ---------------------
20113 -- Set_Fixed_Range --
20114 ---------------------
20115
20116 -- The range for fixed-point types is complicated by the fact that we
20117 -- do not know the exact end points at the time of the declaration. This
20118 -- is true for three reasons:
20119
20120 -- A size clause may affect the fudging of the end-points.
20121 -- A small clause may affect the values of the end-points.
20122 -- We try to include the end-points if it does not affect the size.
20123
20124 -- This means that the actual end-points must be established at the
20125 -- point when the type is frozen. Meanwhile, we first narrow the range
20126 -- as permitted (so that it will fit if necessary in a small specified
20127 -- size), and then build a range subtree with these narrowed bounds.
20128 -- Set_Fixed_Range constructs the range from real literal values, and
20129 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20130
20131 -- The parent of this range is set to point to the entity so that it is
20132 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20133 -- other scalar types, which are just pointers to the range in the
20134 -- original tree, this would otherwise be an orphan).
20135
20136 -- The tree is left unanalyzed. When the type is frozen, the processing
20137 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20138 -- analyzed, and uses this as an indication that it should complete
20139 -- work on the range (it will know the final small and size values).
20140
20141 procedure Set_Fixed_Range
20142 (E : Entity_Id;
20143 Loc : Source_Ptr;
20144 Lo : Ureal;
20145 Hi : Ureal)
20146 is
20147 S : constant Node_Id :=
20148 Make_Range (Loc,
20149 Low_Bound => Make_Real_Literal (Loc, Lo),
20150 High_Bound => Make_Real_Literal (Loc, Hi));
20151 begin
20152 Set_Scalar_Range (E, S);
20153 Set_Parent (S, E);
20154
20155 -- Before the freeze point, the bounds of a fixed point are universal
20156 -- and carry the corresponding type.
20157
20158 Set_Etype (Low_Bound (S), Universal_Real);
20159 Set_Etype (High_Bound (S), Universal_Real);
20160 end Set_Fixed_Range;
20161
20162 ----------------------------------
20163 -- Set_Scalar_Range_For_Subtype --
20164 ----------------------------------
20165
20166 procedure Set_Scalar_Range_For_Subtype
20167 (Def_Id : Entity_Id;
20168 R : Node_Id;
20169 Subt : Entity_Id)
20170 is
20171 Kind : constant Entity_Kind := Ekind (Def_Id);
20172
20173 begin
20174 -- Defend against previous error
20175
20176 if Nkind (R) = N_Error then
20177 return;
20178 end if;
20179
20180 Set_Scalar_Range (Def_Id, R);
20181
20182 -- We need to link the range into the tree before resolving it so
20183 -- that types that are referenced, including importantly the subtype
20184 -- itself, are properly frozen (Freeze_Expression requires that the
20185 -- expression be properly linked into the tree). Of course if it is
20186 -- already linked in, then we do not disturb the current link.
20187
20188 if No (Parent (R)) then
20189 Set_Parent (R, Def_Id);
20190 end if;
20191
20192 -- Reset the kind of the subtype during analysis of the range, to
20193 -- catch possible premature use in the bounds themselves.
20194
20195 Set_Ekind (Def_Id, E_Void);
20196 Process_Range_Expr_In_Decl (R, Subt);
20197 Set_Ekind (Def_Id, Kind);
20198 end Set_Scalar_Range_For_Subtype;
20199
20200 --------------------------------------------------------
20201 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20202 --------------------------------------------------------
20203
20204 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20205 (E : Entity_Id)
20206 is
20207 begin
20208 -- Make sure set if encountered during Expand_To_Stored_Constraint
20209
20210 Set_Stored_Constraint (E, No_Elist);
20211
20212 -- Give it the right value
20213
20214 if Is_Constrained (E) and then Has_Discriminants (E) then
20215 Set_Stored_Constraint (E,
20216 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20217 end if;
20218 end Set_Stored_Constraint_From_Discriminant_Constraint;
20219
20220 -------------------------------------
20221 -- Signed_Integer_Type_Declaration --
20222 -------------------------------------
20223
20224 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20225 Implicit_Base : Entity_Id;
20226 Base_Typ : Entity_Id;
20227 Lo_Val : Uint;
20228 Hi_Val : Uint;
20229 Errs : Boolean := False;
20230 Lo : Node_Id;
20231 Hi : Node_Id;
20232
20233 function Can_Derive_From (E : Entity_Id) return Boolean;
20234 -- Determine whether given bounds allow derivation from specified type
20235
20236 procedure Check_Bound (Expr : Node_Id);
20237 -- Check bound to make sure it is integral and static. If not, post
20238 -- appropriate error message and set Errs flag
20239
20240 ---------------------
20241 -- Can_Derive_From --
20242 ---------------------
20243
20244 -- Note we check both bounds against both end values, to deal with
20245 -- strange types like ones with a range of 0 .. -12341234.
20246
20247 function Can_Derive_From (E : Entity_Id) return Boolean is
20248 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20249 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20250 begin
20251 return Lo <= Lo_Val and then Lo_Val <= Hi
20252 and then
20253 Lo <= Hi_Val and then Hi_Val <= Hi;
20254 end Can_Derive_From;
20255
20256 -----------------
20257 -- Check_Bound --
20258 -----------------
20259
20260 procedure Check_Bound (Expr : Node_Id) is
20261 begin
20262 -- If a range constraint is used as an integer type definition, each
20263 -- bound of the range must be defined by a static expression of some
20264 -- integer type, but the two bounds need not have the same integer
20265 -- type (Negative bounds are allowed.) (RM 3.5.4)
20266
20267 if not Is_Integer_Type (Etype (Expr)) then
20268 Error_Msg_N
20269 ("integer type definition bounds must be of integer type", Expr);
20270 Errs := True;
20271
20272 elsif not Is_OK_Static_Expression (Expr) then
20273 Flag_Non_Static_Expr
20274 ("non-static expression used for integer type bound!", Expr);
20275 Errs := True;
20276
20277 -- The bounds are folded into literals, and we set their type to be
20278 -- universal, to avoid typing difficulties: we cannot set the type
20279 -- of the literal to the new type, because this would be a forward
20280 -- reference for the back end, and if the original type is user-
20281 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20282
20283 else
20284 if Is_Entity_Name (Expr) then
20285 Fold_Uint (Expr, Expr_Value (Expr), True);
20286 end if;
20287
20288 Set_Etype (Expr, Universal_Integer);
20289 end if;
20290 end Check_Bound;
20291
20292 -- Start of processing for Signed_Integer_Type_Declaration
20293
20294 begin
20295 -- Create an anonymous base type
20296
20297 Implicit_Base :=
20298 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20299
20300 -- Analyze and check the bounds, they can be of any integer type
20301
20302 Lo := Low_Bound (Def);
20303 Hi := High_Bound (Def);
20304
20305 -- Arbitrarily use Integer as the type if either bound had an error
20306
20307 if Hi = Error or else Lo = Error then
20308 Base_Typ := Any_Integer;
20309 Set_Error_Posted (T, True);
20310
20311 -- Here both bounds are OK expressions
20312
20313 else
20314 Analyze_And_Resolve (Lo, Any_Integer);
20315 Analyze_And_Resolve (Hi, Any_Integer);
20316
20317 Check_Bound (Lo);
20318 Check_Bound (Hi);
20319
20320 if Errs then
20321 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20322 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20323 end if;
20324
20325 -- Find type to derive from
20326
20327 Lo_Val := Expr_Value (Lo);
20328 Hi_Val := Expr_Value (Hi);
20329
20330 if Can_Derive_From (Standard_Short_Short_Integer) then
20331 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20332
20333 elsif Can_Derive_From (Standard_Short_Integer) then
20334 Base_Typ := Base_Type (Standard_Short_Integer);
20335
20336 elsif Can_Derive_From (Standard_Integer) then
20337 Base_Typ := Base_Type (Standard_Integer);
20338
20339 elsif Can_Derive_From (Standard_Long_Integer) then
20340 Base_Typ := Base_Type (Standard_Long_Integer);
20341
20342 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20343 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20344
20345 else
20346 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20347 Error_Msg_N ("integer type definition bounds out of range", Def);
20348 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20349 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20350 end if;
20351 end if;
20352
20353 -- Complete both implicit base and declared first subtype entities
20354
20355 Set_Etype (Implicit_Base, Base_Typ);
20356 Set_Size_Info (Implicit_Base, (Base_Typ));
20357 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20358 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20359
20360 Set_Ekind (T, E_Signed_Integer_Subtype);
20361 Set_Etype (T, Implicit_Base);
20362
20363 -- In formal verification mode, restrict the base type's range to the
20364 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
20365 -- around zero with a possible extra negative value that contains the
20366 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
20367 -- should not be relied upon in formal verification.
20368
20369 if SPARK_Strict_Mode then
20370 declare
20371 Sym_Hi_Val : Uint;
20372 Sym_Lo_Val : Uint;
20373 Dloc : constant Source_Ptr := Sloc (Def);
20374 Lbound : Node_Id;
20375 Ubound : Node_Id;
20376 Bounds : Node_Id;
20377
20378 begin
20379 -- If the subtype range is empty, the smallest base type range
20380 -- is the symmetric range around zero containing Lo_Val and
20381 -- Hi_Val.
20382
20383 if UI_Gt (Lo_Val, Hi_Val) then
20384 Sym_Hi_Val := UI_Max (UI_Abs (Lo_Val), UI_Abs (Hi_Val));
20385 Sym_Lo_Val := UI_Negate (Sym_Hi_Val);
20386
20387 -- Otherwise, if the subtype range is not empty and Hi_Val has
20388 -- the largest absolute value, Hi_Val is non negative and the
20389 -- smallest base type range is the symmetric range around zero
20390 -- containing Hi_Val.
20391
20392 elsif UI_Le (UI_Abs (Lo_Val), UI_Abs (Hi_Val)) then
20393 Sym_Hi_Val := Hi_Val;
20394 Sym_Lo_Val := UI_Negate (Hi_Val);
20395
20396 -- Otherwise, the subtype range is not empty, Lo_Val has the
20397 -- strictly largest absolute value, Lo_Val is negative and the
20398 -- smallest base type range is the symmetric range around zero
20399 -- with an extra negative value Lo_Val.
20400
20401 else
20402 Sym_Lo_Val := Lo_Val;
20403 Sym_Hi_Val := UI_Sub (UI_Negate (Lo_Val), Uint_1);
20404 end if;
20405
20406 Lbound := Make_Integer_Literal (Dloc, Sym_Lo_Val);
20407 Ubound := Make_Integer_Literal (Dloc, Sym_Hi_Val);
20408 Set_Is_Static_Expression (Lbound);
20409 Set_Is_Static_Expression (Ubound);
20410 Analyze_And_Resolve (Lbound, Any_Integer);
20411 Analyze_And_Resolve (Ubound, Any_Integer);
20412
20413 Bounds := Make_Range (Dloc, Lbound, Ubound);
20414 Set_Etype (Bounds, Base_Typ);
20415
20416 Set_Scalar_Range (Implicit_Base, Bounds);
20417 end;
20418
20419 else
20420 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20421 end if;
20422
20423 Set_Size_Info (T, (Implicit_Base));
20424 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20425 Set_Scalar_Range (T, Def);
20426 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20427 Set_Is_Constrained (T);
20428 end Signed_Integer_Type_Declaration;
20429
20430 end Sem_Ch3;