[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
81
82 package body Sem_Ch3 is
83
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
87
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
92
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
114 --
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
117
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
125
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
133
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
141
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
149
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
156
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
166
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
181
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
189
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
203
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
212 --
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
215 --
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 --
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
226
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
235
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
247
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
254
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
268
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
272
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
276
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
280
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
293
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
297
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
305
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
323
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
327
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
331
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
345
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
359
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
367
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
384
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
393 --
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
396 --
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
402 --
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
405 --
406 -- The last two arguments are used to create its external name if needed.
407
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
414
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
418
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
430
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
434
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
438
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
451
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
454
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
458
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
463
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
469
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
478
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
489
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
496
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
506
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
513
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
520
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
526
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
529
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
535
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
547 --
548 -- N is the original derived type declaration
549 --
550 -- Is_Tagged is set if we are dealing with tagged types
551 --
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
554 --
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
558 --
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
561 --
562 -- which gets treated as
563 --
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
565 --
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
569 --
570 -- (Old_Component => New_Component),
571 --
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
577
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
581
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
587
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
593
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
596
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
600
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
606
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
614
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
623
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
626 --
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
628 --
629 -- Full_T is N's defining identifier.
630 --
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
637 --
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
641
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
647
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
658
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
668
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
677
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
686
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
695
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
700
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
704
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
709
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
713
714 -----------------------
715 -- Access_Definition --
716 -----------------------
717
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
721 is
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
726
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
729
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
736
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
739
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
743
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
748
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
752
753 declare
754 Par : Node_Id;
755
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
763
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
768
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
776
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
784
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
789
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
792
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
798
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
801
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
805
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
808
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
811
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
814
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
818
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
822
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
828
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
831
832 if Present (Access_To_Subprogram_Definition (N)) then
833
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
837
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
839
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
843
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
850
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
853
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
857
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
862
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
868
869 return Anon_Type;
870 end if;
871
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
874
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
877
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
881
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
885
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
889
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
895
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
899
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
901
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
903
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
905
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
913
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
921
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
927
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
933
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
936
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
943
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
949
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
952
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
961
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
964
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
971
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
977
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
982
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
986
987 return Anon_Type;
988 end Access_Definition;
989
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
993
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
997 is
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1002
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1006
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1009
1010 begin
1011 -- Check for a subtype mark
1012
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1018
1019 -- If this is not a subtype, then this is an access_definition
1020
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1028
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1031
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1040
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1046
1047 -- Local variables
1048
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1054
1055 -- Start of processing for Access_Subprogram_Declaration
1056
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1059
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1063
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1068
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1076
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1088
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1090
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1095
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1103
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1108
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1118
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1125
1126 else
1127 Analyze (Result_Definition (T_Def));
1128
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1131
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1136
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1145
1146 else
1147 if From_Limited_With (Typ) then
1148
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1151
1152 if Ada_Version >= Ada_2012 then
1153 null;
1154
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1160
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1166
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1174
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1179
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1185
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1189
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1192
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1196
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1199
1200 declare
1201 F : Node_Id;
1202
1203 begin
1204 F := First (Formals);
1205
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1211
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1221
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1226
1227 Next (F);
1228 end loop;
1229 end;
1230
1231 Process_Formals (Formals, Parent (T_Def));
1232
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1236
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1241
1242 -- Check for premature usage of the type being defined
1243
1244 Check_For_Premature_Usage (T_Def);
1245
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1251
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1253
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1263
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1270
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1274
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1277
1278 May_Need_Actuals (Desig_Type);
1279
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1283
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1291
1292 Check_Delayed_Subprogram (Desig_Type);
1293
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1300
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1302
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1306
1307 Generate_Reference_To_Formals (T_Name);
1308
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1310
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1312
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1315
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1319
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1323
1324 Full_Desig : Entity_Id;
1325
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1328
1329 -- Check for permissible use of incomplete type
1330
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1333
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1338
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1344
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1352
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1356
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1360
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1364
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1370
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1384
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1389
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1395
1396 Full_Desig := Designated_Type (T);
1397
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1400
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1404
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1409
1410 -- Clean up indication of tagged status to prevent cascaded errors
1411
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1414
1415 Set_Etype (T, T);
1416
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1419
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1423
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1428
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1433
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1438
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1443
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1447
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1450
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1454
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1458
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1463
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1466
1467 -------------
1468 -- Add_Tag --
1469 -------------
1470
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1476
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1479
1480 -- This is a reasonable place to propagate predicates
1481
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1485
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1491
1492 Tag := Make_Temporary (Loc, 'V');
1493
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1498
1499 Analyze_Component_Declaration (Decl);
1500
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1507
1508 pragma Assert (Is_Frozen (Iface));
1509
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1512
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1518
1519 Last_Tag := Decl;
1520
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1525
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1531
1532 Offset := Make_Temporary (Loc, 'V');
1533
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1538
1539 Analyze_Component_Declaration (Decl);
1540
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1550
1551 -- Local variables
1552
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1556
1557 -- Start of processing for Add_Interface_Tag_Components
1558
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1566
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1576
1577 -- Find the current last tag
1578
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1585
1586 Last_Tag := Empty;
1587
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1606
1607 -- Find the last tag component
1608
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1616
1617 Next (Comp);
1618 end loop;
1619 end if;
1620
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1625
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1634
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1638
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1648
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1655
1656 -- Ensure that the internal entities are added to the scope of the type
1657
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1662
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1664
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1668
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1676
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1680
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1686
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1690
1691 pragma Assert (Present (Prim));
1692
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1700
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1712
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1718
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1729
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1733
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1746
1747 -- The inherited operation must be overridden
1748
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1757
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1764
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1771
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1776
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1780
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1786
1787 Remove_Homonym (New_Subp);
1788
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1797
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1802
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1806
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1809
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1814
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1818
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1827
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1831
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1836
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1840
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1844
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1848
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1853
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1856
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1859
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1863
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1867
1868 -- One per-object constraint is sufficient
1869
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1873
1874 Next (IDC);
1875 end loop;
1876
1877 return False;
1878 end;
1879
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1884
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1887
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1892
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1896
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1900
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1904
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1907
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1912
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1915
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1918
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1923
1924 -- Start of processing for Analyze_Component_Declaration
1925
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1929
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1933
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1937
1938 -- Ada 2005 (AI-230): Access Definition case
1939
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1943
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1948
1949 -- Ada 2005 (AI-254)
1950
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1960
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1967
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1980
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1986
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1991
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2001
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2012
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2015
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2023
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2027
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2035 E);
2036 end if;
2037 end if;
2038 end if;
2039
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2042
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2054
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2057
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2061
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2064
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2067
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2081
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2084
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2088
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2091
2092 P := Private_Component (T);
2093
2094 if Present (P) then
2095
2096 -- Check for circular definitions
2097
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2100
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2103
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2106
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2109
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2114
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2125 N);
2126
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2132
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2136
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2148
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2154
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2162
2163 begin
2164 Set_Etype (Id, Act_T);
2165
2166 -- Rewrite component definition to use the constrained subtype
2167
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2173
2174 Set_Original_Record_Component (Id, Id);
2175
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2179
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2182
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2186
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2189
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2195
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2200 --
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2204 --
2205 -- Context denotes the owner of the declarative list.
2206
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2213
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2219
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2226
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2231
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2235
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2239
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2243
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2252
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2256
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2261 --
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2265
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2269
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2274
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2278
2279 if Nkind (Context) = N_Package_Specification then
2280
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2287
2288 if Is_Interface (Typ) then
2289
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2294
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2300
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2305
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2315
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2319
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2329
2330 -- Local variables
2331
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2334
2335 -- Start of processing for Build_Assertion_Bodies
2336
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2342
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2347
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2351
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2355
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2360
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2364
2365 -- This only concerns entries with pre/postconditions
2366
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2374
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2378
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2386
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2389
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2392
2393 End_Scope;
2394 end if;
2395
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2399
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2403
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2413
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2417
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2424
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2427
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2431
2432 Typ := Parameter_Type (First (Params));
2433
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2437
2438 Find_Type (Typ);
2439
2440 -- The type of the formal must be derived from [Limited_]Controlled
2441
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2445
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2452
2453 Spec_Id := Current_Entity (Body_Id);
2454
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2465
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2468
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2473
2474 Spec := Copy_Separate_Tree (Body_Spec);
2475
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2478
2479 Set_Null_Present (Spec, False);
2480
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2483
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2485
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2488
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2492
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2503
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2506
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2511
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2515
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2527
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2531
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2534
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2542
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2546
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2549
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2553
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2560
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2568
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2573
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2576
2577 -- Local variables
2578
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2582
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2585
2586 -- Start of processing for Analyze_Declarations
2587
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2592
2593 Decl := First (L);
2594 while Present (Decl) loop
2595
2596 -- Package spec cannot contain a package declaration in SPARK
2597
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2605
2606 -- Complete analysis of declaration
2607
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2610
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2614
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2624
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2630
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2634
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2639
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2644
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2650
2651 Adjust_Decl;
2652 Freeze_All (First_Entity (Current_Scope), Decl);
2653 Freeze_From := Last_Entity (Current_Scope);
2654
2655 -- Current scope is a package specification
2656
2657 elsif Scope (Current_Scope) /= Standard_Standard
2658 and then not Is_Child_Unit (Current_Scope)
2659 and then No (Generic_Parent (Parent (L)))
2660 then
2661 -- This is needed in all cases to catch visibility errors in
2662 -- aspect expressions, but several large user tests are now
2663 -- rejected. Pending notification we restrict this call to
2664 -- ASIS mode.
2665
2666 if ASIS_Mode then
2667 Resolve_Aspects;
2668 end if;
2669
2670 elsif L /= Visible_Declarations (Parent (L))
2671 or else No (Private_Declarations (Parent (L)))
2672 or else Is_Empty_List (Private_Declarations (Parent (L)))
2673 then
2674 Adjust_Decl;
2675
2676 -- End of a package declaration
2677
2678 -- In compilation mode the expansion of freeze node takes care
2679 -- of resolving expressions of all aspects in the list. In ASIS
2680 -- mode this must be done explicitly.
2681
2682 if ASIS_Mode
2683 and then Scope (Current_Scope) = Standard_Standard
2684 then
2685 Resolve_Aspects;
2686 end if;
2687
2688 -- This is a freeze point because it is the end of a
2689 -- compilation unit.
2690
2691 Freeze_All (First_Entity (Current_Scope), Decl);
2692 Freeze_From := Last_Entity (Current_Scope);
2693
2694 -- At the end of the visible declarations the expressions in
2695 -- aspects of all entities declared so far must be resolved.
2696 -- The entities themselves might be frozen later, and the
2697 -- generated pragmas and attribute definition clauses analyzed
2698 -- in full at that point, but name resolution must take place
2699 -- now.
2700 -- In addition to being the proper semantics, this is mandatory
2701 -- within generic units, because global name capture requires
2702 -- those expressions to be analyzed, given that the generated
2703 -- pragmas do not appear in the original generic tree.
2704
2705 elsif Serious_Errors_Detected = 0 then
2706 Resolve_Aspects;
2707 end if;
2708
2709 -- If next node is a body then freeze all types before the body.
2710 -- An exception occurs for some expander-generated bodies. If these
2711 -- are generated at places where in general language rules would not
2712 -- allow a freeze point, then we assume that the expander has
2713 -- explicitly checked that all required types are properly frozen,
2714 -- and we do not cause general freezing here. This special circuit
2715 -- is used when the encountered body is marked as having already
2716 -- been analyzed.
2717
2718 -- In all other cases (bodies that come from source, and expander
2719 -- generated bodies that have not been analyzed yet), freeze all
2720 -- types now. Note that in the latter case, the expander must take
2721 -- care to attach the bodies at a proper place in the tree so as to
2722 -- not cause unwanted freezing at that point.
2723
2724 -- It is also necessary to check for a case where both an expression
2725 -- function is used and the current scope depends on an unseen
2726 -- private type from a library unit, otherwise premature freezing of
2727 -- the private type will occur.
2728
2729 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2730 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2731 or else not Was_Expression_Function (Next_Decl))
2732 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2733 then
2734 -- When a controlled type is frozen, the expander generates stream
2735 -- and controlled-type support routines. If the freeze is caused
2736 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2737 -- expander will end up using the wrong version of these routines,
2738 -- as the body has not been processed yet. To remedy this, detect
2739 -- a late controlled primitive and create a proper spec for it.
2740 -- This ensures that the primitive will override its inherited
2741 -- counterpart before the freeze takes place.
2742
2743 -- If the declaration we just processed is a body, do not attempt
2744 -- to examine Next_Decl as the late primitive idiom can only apply
2745 -- to the first encountered body.
2746
2747 -- The spec of the late primitive is not generated in ASIS mode to
2748 -- ensure a consistent list of primitives that indicates the true
2749 -- semantic structure of the program (which is not relevant when
2750 -- generating executable code).
2751
2752 -- ??? A cleaner approach may be possible and/or this solution
2753 -- could be extended to general-purpose late primitives, TBD.
2754
2755 if not ASIS_Mode
2756 and then not Body_Seen
2757 and then not Is_Body (Decl)
2758 then
2759 Body_Seen := True;
2760
2761 if Nkind (Next_Decl) = N_Subprogram_Body then
2762 Handle_Late_Controlled_Primitive (Next_Decl);
2763 end if;
2764 end if;
2765
2766 Adjust_Decl;
2767
2768 -- The generated body of an expression function does not freeze,
2769 -- unless it is a completion, in which case only the expression
2770 -- itself freezes. This is handled when the body itself is
2771 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2772
2773 Freeze_All (Freeze_From, Decl);
2774 Freeze_From := Last_Entity (Current_Scope);
2775 end if;
2776
2777 Decl := Next_Decl;
2778 end loop;
2779
2780 -- Post-freezing actions
2781
2782 if Present (L) then
2783 Context := Parent (L);
2784
2785 -- Analyze the contracts of packages and their bodies
2786
2787 if Nkind (Context) = N_Package_Specification then
2788
2789 -- When a package has private declarations, its contract must be
2790 -- analyzed at the end of the said declarations. This way both the
2791 -- analysis and freeze actions are properly synchronized in case
2792 -- of private type use within the contract.
2793
2794 if L = Private_Declarations (Context) then
2795 Analyze_Package_Contract (Defining_Entity (Context));
2796
2797 -- Otherwise the contract is analyzed at the end of the visible
2798 -- declarations.
2799
2800 elsif L = Visible_Declarations (Context)
2801 and then No (Private_Declarations (Context))
2802 then
2803 Analyze_Package_Contract (Defining_Entity (Context));
2804 end if;
2805
2806 elsif Nkind (Context) = N_Package_Body then
2807 Analyze_Package_Body_Contract (Defining_Entity (Context));
2808 end if;
2809
2810 -- Analyze the contracts of various constructs now due to the delayed
2811 -- visibility needs of their aspects and pragmas.
2812
2813 Analyze_Contracts (L);
2814
2815 if Nkind (Context) = N_Package_Body then
2816
2817 -- Ensure that all abstract states and objects declared in the
2818 -- state space of a package body are utilized as constituents.
2819
2820 Check_Unused_Body_States (Defining_Entity (Context));
2821
2822 -- State refinements are visible up to the end of the package body
2823 -- declarations. Hide the state refinements from visibility to
2824 -- restore the original state conditions.
2825
2826 Remove_Visible_Refinements (Corresponding_Spec (Context));
2827 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2828
2829 elsif Nkind (Context) = N_Package_Declaration then
2830
2831 -- Partial state refinements are visible up to the end of the
2832 -- package spec declarations. Hide the partial state refinements
2833 -- from visibility to restore the original state conditions.
2834
2835 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2836 end if;
2837
2838 -- Verify that all abstract states found in any package declared in
2839 -- the input declarative list have proper refinements. The check is
2840 -- performed only when the context denotes a block, entry, package,
2841 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2842
2843 Check_State_Refinements (Context);
2844
2845 -- Create the subprogram bodies which verify the run-time semantics
2846 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2847 -- types within the current declarative list. This ensures that all
2848 -- assertion expressions are preanalyzed and resolved at the end of
2849 -- the declarative part. Note that the resolution happens even when
2850 -- freezing does not take place.
2851
2852 Build_Assertion_Bodies (L, Context);
2853 end if;
2854 end Analyze_Declarations;
2855
2856 -----------------------------------
2857 -- Analyze_Full_Type_Declaration --
2858 -----------------------------------
2859
2860 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2861 Def : constant Node_Id := Type_Definition (N);
2862 Def_Id : constant Entity_Id := Defining_Identifier (N);
2863 T : Entity_Id;
2864 Prev : Entity_Id;
2865
2866 Is_Remote : constant Boolean :=
2867 (Is_Remote_Types (Current_Scope)
2868 or else Is_Remote_Call_Interface (Current_Scope))
2869 and then not (In_Private_Part (Current_Scope)
2870 or else In_Package_Body (Current_Scope));
2871
2872 procedure Check_Nonoverridable_Aspects;
2873 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2874 -- be overridden, and can only be confirmed on derivation.
2875
2876 procedure Check_Ops_From_Incomplete_Type;
2877 -- If there is a tagged incomplete partial view of the type, traverse
2878 -- the primitives of the incomplete view and change the type of any
2879 -- controlling formals and result to indicate the full view. The
2880 -- primitives will be added to the full type's primitive operations
2881 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2882 -- is called from Process_Incomplete_Dependents).
2883
2884 ----------------------------------
2885 -- Check_Nonoverridable_Aspects --
2886 ----------------------------------
2887
2888 procedure Check_Nonoverridable_Aspects is
2889 function Get_Aspect_Spec
2890 (Specs : List_Id;
2891 Aspect_Name : Name_Id) return Node_Id;
2892 -- Check whether a list of aspect specifications includes an entry
2893 -- for a specific aspect. The list is either that of a partial or
2894 -- a full view.
2895
2896 ---------------------
2897 -- Get_Aspect_Spec --
2898 ---------------------
2899
2900 function Get_Aspect_Spec
2901 (Specs : List_Id;
2902 Aspect_Name : Name_Id) return Node_Id
2903 is
2904 Spec : Node_Id;
2905
2906 begin
2907 Spec := First (Specs);
2908 while Present (Spec) loop
2909 if Chars (Identifier (Spec)) = Aspect_Name then
2910 return Spec;
2911 end if;
2912 Next (Spec);
2913 end loop;
2914
2915 return Empty;
2916 end Get_Aspect_Spec;
2917
2918 -- Local variables
2919
2920 Prev_Aspects : constant List_Id :=
2921 Aspect_Specifications (Parent (Def_Id));
2922 Par_Type : Entity_Id;
2923 Prev_Aspect : Node_Id;
2924
2925 -- Start of processing for Check_Nonoverridable_Aspects
2926
2927 begin
2928 -- Get parent type of derived type. Note that Prev is the entity in
2929 -- the partial declaration, but its contents are now those of full
2930 -- view, while Def_Id reflects the partial view.
2931
2932 if Is_Private_Type (Def_Id) then
2933 Par_Type := Etype (Full_View (Def_Id));
2934 else
2935 Par_Type := Etype (Def_Id);
2936 end if;
2937
2938 -- If there is an inherited Implicit_Dereference, verify that it is
2939 -- made explicit in the partial view.
2940
2941 if Has_Discriminants (Base_Type (Par_Type))
2942 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2943 and then Present (Discriminant_Specifications (Parent (Prev)))
2944 and then Present (Get_Reference_Discriminant (Par_Type))
2945 then
2946 Prev_Aspect :=
2947 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2948
2949 if No (Prev_Aspect)
2950 and then Present
2951 (Discriminant_Specifications
2952 (Original_Node (Parent (Prev))))
2953 then
2954 Error_Msg_N
2955 ("type does not inherit implicit dereference", Prev);
2956
2957 else
2958 -- If one of the views has the aspect specified, verify that it
2959 -- is consistent with that of the parent.
2960
2961 declare
2962 Par_Discr : constant Entity_Id :=
2963 Get_Reference_Discriminant (Par_Type);
2964 Cur_Discr : constant Entity_Id :=
2965 Get_Reference_Discriminant (Prev);
2966
2967 begin
2968 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2969 Error_Msg_N ("aspect incosistent with that of parent", N);
2970 end if;
2971
2972 -- Check that specification in partial view matches the
2973 -- inherited aspect. Compare names directly because aspect
2974 -- expression may not be analyzed.
2975
2976 if Present (Prev_Aspect)
2977 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
2978 and then Chars (Expression (Prev_Aspect)) /=
2979 Chars (Cur_Discr)
2980 then
2981 Error_Msg_N
2982 ("aspect incosistent with that of parent", N);
2983 end if;
2984 end;
2985 end if;
2986 end if;
2987
2988 -- TBD : other nonoverridable aspects.
2989 end Check_Nonoverridable_Aspects;
2990
2991 ------------------------------------
2992 -- Check_Ops_From_Incomplete_Type --
2993 ------------------------------------
2994
2995 procedure Check_Ops_From_Incomplete_Type is
2996 Elmt : Elmt_Id;
2997 Formal : Entity_Id;
2998 Op : Entity_Id;
2999
3000 begin
3001 if Prev /= T
3002 and then Ekind (Prev) = E_Incomplete_Type
3003 and then Is_Tagged_Type (Prev)
3004 and then Is_Tagged_Type (T)
3005 then
3006 Elmt := First_Elmt (Primitive_Operations (Prev));
3007 while Present (Elmt) loop
3008 Op := Node (Elmt);
3009
3010 Formal := First_Formal (Op);
3011 while Present (Formal) loop
3012 if Etype (Formal) = Prev then
3013 Set_Etype (Formal, T);
3014 end if;
3015
3016 Next_Formal (Formal);
3017 end loop;
3018
3019 if Etype (Op) = Prev then
3020 Set_Etype (Op, T);
3021 end if;
3022
3023 Next_Elmt (Elmt);
3024 end loop;
3025 end if;
3026 end Check_Ops_From_Incomplete_Type;
3027
3028 -- Start of processing for Analyze_Full_Type_Declaration
3029
3030 begin
3031 Prev := Find_Type_Name (N);
3032
3033 -- The full view, if present, now points to the current type. If there
3034 -- is an incomplete partial view, set a link to it, to simplify the
3035 -- retrieval of primitive operations of the type.
3036
3037 -- Ada 2005 (AI-50217): If the type was previously decorated when
3038 -- imported through a LIMITED WITH clause, it appears as incomplete
3039 -- but has no full view.
3040
3041 if Ekind (Prev) = E_Incomplete_Type
3042 and then Present (Full_View (Prev))
3043 then
3044 T := Full_View (Prev);
3045 Set_Incomplete_View (N, Parent (Prev));
3046 else
3047 T := Prev;
3048 end if;
3049
3050 Set_Is_Pure (T, Is_Pure (Current_Scope));
3051
3052 -- We set the flag Is_First_Subtype here. It is needed to set the
3053 -- corresponding flag for the Implicit class-wide-type created
3054 -- during tagged types processing.
3055
3056 Set_Is_First_Subtype (T, True);
3057
3058 -- Only composite types other than array types are allowed to have
3059 -- discriminants.
3060
3061 case Nkind (Def) is
3062
3063 -- For derived types, the rule will be checked once we've figured
3064 -- out the parent type.
3065
3066 when N_Derived_Type_Definition =>
3067 null;
3068
3069 -- For record types, discriminants are allowed, unless we are in
3070 -- SPARK.
3071
3072 when N_Record_Definition =>
3073 if Present (Discriminant_Specifications (N)) then
3074 Check_SPARK_05_Restriction
3075 ("discriminant type is not allowed",
3076 Defining_Identifier
3077 (First (Discriminant_Specifications (N))));
3078 end if;
3079
3080 when others =>
3081 if Present (Discriminant_Specifications (N)) then
3082 Error_Msg_N
3083 ("elementary or array type cannot have discriminants",
3084 Defining_Identifier
3085 (First (Discriminant_Specifications (N))));
3086 end if;
3087 end case;
3088
3089 -- Elaborate the type definition according to kind, and generate
3090 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3091 -- already done (this happens during the reanalysis that follows a call
3092 -- to the high level optimizer).
3093
3094 if not Analyzed (T) then
3095 Set_Analyzed (T);
3096
3097 case Nkind (Def) is
3098 when N_Access_To_Subprogram_Definition =>
3099 Access_Subprogram_Declaration (T, Def);
3100
3101 -- If this is a remote access to subprogram, we must create the
3102 -- equivalent fat pointer type, and related subprograms.
3103
3104 if Is_Remote then
3105 Process_Remote_AST_Declaration (N);
3106 end if;
3107
3108 -- Validate categorization rule against access type declaration
3109 -- usually a violation in Pure unit, Shared_Passive unit.
3110
3111 Validate_Access_Type_Declaration (T, N);
3112
3113 when N_Access_To_Object_Definition =>
3114 Access_Type_Declaration (T, Def);
3115
3116 -- Validate categorization rule against access type declaration
3117 -- usually a violation in Pure unit, Shared_Passive unit.
3118
3119 Validate_Access_Type_Declaration (T, N);
3120
3121 -- If we are in a Remote_Call_Interface package and define a
3122 -- RACW, then calling stubs and specific stream attributes
3123 -- must be added.
3124
3125 if Is_Remote
3126 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3127 then
3128 Add_RACW_Features (Def_Id);
3129 end if;
3130
3131 when N_Array_Type_Definition =>
3132 Array_Type_Declaration (T, Def);
3133
3134 when N_Derived_Type_Definition =>
3135 Derived_Type_Declaration (T, N, T /= Def_Id);
3136
3137 -- Inherit predicates from parent, and protect against illegal
3138 -- derivations.
3139
3140 if Is_Type (T) and then Has_Predicates (T) then
3141 Set_Has_Predicates (Def_Id);
3142 end if;
3143
3144 when N_Enumeration_Type_Definition =>
3145 Enumeration_Type_Declaration (T, Def);
3146
3147 when N_Floating_Point_Definition =>
3148 Floating_Point_Type_Declaration (T, Def);
3149
3150 when N_Decimal_Fixed_Point_Definition =>
3151 Decimal_Fixed_Point_Type_Declaration (T, Def);
3152
3153 when N_Ordinary_Fixed_Point_Definition =>
3154 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3155
3156 when N_Signed_Integer_Type_Definition =>
3157 Signed_Integer_Type_Declaration (T, Def);
3158
3159 when N_Modular_Type_Definition =>
3160 Modular_Type_Declaration (T, Def);
3161
3162 when N_Record_Definition =>
3163 Record_Type_Declaration (T, N, Prev);
3164
3165 -- If declaration has a parse error, nothing to elaborate.
3166
3167 when N_Error =>
3168 null;
3169
3170 when others =>
3171 raise Program_Error;
3172 end case;
3173 end if;
3174
3175 if Etype (T) = Any_Type then
3176 return;
3177 end if;
3178
3179 -- Controlled type is not allowed in SPARK
3180
3181 if Is_Visibly_Controlled (T) then
3182 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3183 end if;
3184
3185 -- Some common processing for all types
3186
3187 Set_Depends_On_Private (T, Has_Private_Component (T));
3188 Check_Ops_From_Incomplete_Type;
3189
3190 -- Both the declared entity, and its anonymous base type if one was
3191 -- created, need freeze nodes allocated.
3192
3193 declare
3194 B : constant Entity_Id := Base_Type (T);
3195
3196 begin
3197 -- In the case where the base type differs from the first subtype, we
3198 -- pre-allocate a freeze node, and set the proper link to the first
3199 -- subtype. Freeze_Entity will use this preallocated freeze node when
3200 -- it freezes the entity.
3201
3202 -- This does not apply if the base type is a generic type, whose
3203 -- declaration is independent of the current derived definition.
3204
3205 if B /= T and then not Is_Generic_Type (B) then
3206 Ensure_Freeze_Node (B);
3207 Set_First_Subtype_Link (Freeze_Node (B), T);
3208 end if;
3209
3210 -- A type that is imported through a limited_with clause cannot
3211 -- generate any code, and thus need not be frozen. However, an access
3212 -- type with an imported designated type needs a finalization list,
3213 -- which may be referenced in some other package that has non-limited
3214 -- visibility on the designated type. Thus we must create the
3215 -- finalization list at the point the access type is frozen, to
3216 -- prevent unsatisfied references at link time.
3217
3218 if not From_Limited_With (T) or else Is_Access_Type (T) then
3219 Set_Has_Delayed_Freeze (T);
3220 end if;
3221 end;
3222
3223 -- Case where T is the full declaration of some private type which has
3224 -- been swapped in Defining_Identifier (N).
3225
3226 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3227 Process_Full_View (N, T, Def_Id);
3228
3229 -- Record the reference. The form of this is a little strange, since
3230 -- the full declaration has been swapped in. So the first parameter
3231 -- here represents the entity to which a reference is made which is
3232 -- the "real" entity, i.e. the one swapped in, and the second
3233 -- parameter provides the reference location.
3234
3235 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3236 -- since we don't want a complaint about the full type being an
3237 -- unwanted reference to the private type
3238
3239 declare
3240 B : constant Boolean := Has_Pragma_Unreferenced (T);
3241 begin
3242 Set_Has_Pragma_Unreferenced (T, False);
3243 Generate_Reference (T, T, 'c');
3244 Set_Has_Pragma_Unreferenced (T, B);
3245 end;
3246
3247 Set_Completion_Referenced (Def_Id);
3248
3249 -- For completion of incomplete type, process incomplete dependents
3250 -- and always mark the full type as referenced (it is the incomplete
3251 -- type that we get for any real reference).
3252
3253 elsif Ekind (Prev) = E_Incomplete_Type then
3254 Process_Incomplete_Dependents (N, T, Prev);
3255 Generate_Reference (Prev, Def_Id, 'c');
3256 Set_Completion_Referenced (Def_Id);
3257
3258 -- If not private type or incomplete type completion, this is a real
3259 -- definition of a new entity, so record it.
3260
3261 else
3262 Generate_Definition (Def_Id);
3263 end if;
3264
3265 -- Propagate any pending access types whose finalization masters need to
3266 -- be fully initialized from the partial to the full view. Guard against
3267 -- an illegal full view that remains unanalyzed.
3268
3269 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3270 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3271 end if;
3272
3273 if Chars (Scope (Def_Id)) = Name_System
3274 and then Chars (Def_Id) = Name_Address
3275 and then In_Predefined_Unit (N)
3276 then
3277 Set_Is_Descendant_Of_Address (Def_Id);
3278 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3279 Set_Is_Descendant_Of_Address (Prev);
3280 end if;
3281
3282 Set_Optimize_Alignment_Flags (Def_Id);
3283 Check_Eliminated (Def_Id);
3284
3285 -- If the declaration is a completion and aspects are present, apply
3286 -- them to the entity for the type which is currently the partial
3287 -- view, but which is the one that will be frozen.
3288
3289 if Has_Aspects (N) then
3290
3291 -- In most cases the partial view is a private type, and both views
3292 -- appear in different declarative parts. In the unusual case where
3293 -- the partial view is incomplete, perform the analysis on the
3294 -- full view, to prevent freezing anomalies with the corresponding
3295 -- class-wide type, which otherwise might be frozen before the
3296 -- dispatch table is built.
3297
3298 if Prev /= Def_Id
3299 and then Ekind (Prev) /= E_Incomplete_Type
3300 then
3301 Analyze_Aspect_Specifications (N, Prev);
3302
3303 -- Normal case
3304
3305 else
3306 Analyze_Aspect_Specifications (N, Def_Id);
3307 end if;
3308 end if;
3309
3310 if Is_Derived_Type (Prev)
3311 and then Def_Id /= Prev
3312 then
3313 Check_Nonoverridable_Aspects;
3314 end if;
3315 end Analyze_Full_Type_Declaration;
3316
3317 ----------------------------------
3318 -- Analyze_Incomplete_Type_Decl --
3319 ----------------------------------
3320
3321 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3322 F : constant Boolean := Is_Pure (Current_Scope);
3323 T : Entity_Id;
3324
3325 begin
3326 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3327
3328 Generate_Definition (Defining_Identifier (N));
3329
3330 -- Process an incomplete declaration. The identifier must not have been
3331 -- declared already in the scope. However, an incomplete declaration may
3332 -- appear in the private part of a package, for a private type that has
3333 -- already been declared.
3334
3335 -- In this case, the discriminants (if any) must match
3336
3337 T := Find_Type_Name (N);
3338
3339 Set_Ekind (T, E_Incomplete_Type);
3340 Init_Size_Align (T);
3341 Set_Is_First_Subtype (T, True);
3342 Set_Etype (T, T);
3343
3344 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3345 -- incomplete types.
3346
3347 if Tagged_Present (N) then
3348 Set_Is_Tagged_Type (T, True);
3349 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3350 Make_Class_Wide_Type (T);
3351 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3352 end if;
3353
3354 Set_Stored_Constraint (T, No_Elist);
3355
3356 if Present (Discriminant_Specifications (N)) then
3357 Push_Scope (T);
3358 Process_Discriminants (N);
3359 End_Scope;
3360 end if;
3361
3362 -- If the type has discriminants, nontrivial subtypes may be declared
3363 -- before the full view of the type. The full views of those subtypes
3364 -- will be built after the full view of the type.
3365
3366 Set_Private_Dependents (T, New_Elmt_List);
3367 Set_Is_Pure (T, F);
3368 end Analyze_Incomplete_Type_Decl;
3369
3370 -----------------------------------
3371 -- Analyze_Interface_Declaration --
3372 -----------------------------------
3373
3374 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3375 CW : constant Entity_Id := Class_Wide_Type (T);
3376
3377 begin
3378 Set_Is_Tagged_Type (T);
3379 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3380
3381 Set_Is_Limited_Record (T, Limited_Present (Def)
3382 or else Task_Present (Def)
3383 or else Protected_Present (Def)
3384 or else Synchronized_Present (Def));
3385
3386 -- Type is abstract if full declaration carries keyword, or if previous
3387 -- partial view did.
3388
3389 Set_Is_Abstract_Type (T);
3390 Set_Is_Interface (T);
3391
3392 -- Type is a limited interface if it includes the keyword limited, task,
3393 -- protected, or synchronized.
3394
3395 Set_Is_Limited_Interface
3396 (T, Limited_Present (Def)
3397 or else Protected_Present (Def)
3398 or else Synchronized_Present (Def)
3399 or else Task_Present (Def));
3400
3401 Set_Interfaces (T, New_Elmt_List);
3402 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3403
3404 -- Complete the decoration of the class-wide entity if it was already
3405 -- built (i.e. during the creation of the limited view)
3406
3407 if Present (CW) then
3408 Set_Is_Interface (CW);
3409 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3410 end if;
3411
3412 -- Check runtime support for synchronized interfaces
3413
3414 if (Is_Task_Interface (T)
3415 or else Is_Protected_Interface (T)
3416 or else Is_Synchronized_Interface (T))
3417 and then not RTE_Available (RE_Select_Specific_Data)
3418 then
3419 Error_Msg_CRT ("synchronized interfaces", T);
3420 end if;
3421 end Analyze_Interface_Declaration;
3422
3423 -----------------------------
3424 -- Analyze_Itype_Reference --
3425 -----------------------------
3426
3427 -- Nothing to do. This node is placed in the tree only for the benefit of
3428 -- back end processing, and has no effect on the semantic processing.
3429
3430 procedure Analyze_Itype_Reference (N : Node_Id) is
3431 begin
3432 pragma Assert (Is_Itype (Itype (N)));
3433 null;
3434 end Analyze_Itype_Reference;
3435
3436 --------------------------------
3437 -- Analyze_Number_Declaration --
3438 --------------------------------
3439
3440 procedure Analyze_Number_Declaration (N : Node_Id) is
3441 E : constant Node_Id := Expression (N);
3442 Id : constant Entity_Id := Defining_Identifier (N);
3443 Index : Interp_Index;
3444 It : Interp;
3445 T : Entity_Id;
3446
3447 begin
3448 Generate_Definition (Id);
3449 Enter_Name (Id);
3450
3451 -- This is an optimization of a common case of an integer literal
3452
3453 if Nkind (E) = N_Integer_Literal then
3454 Set_Is_Static_Expression (E, True);
3455 Set_Etype (E, Universal_Integer);
3456
3457 Set_Etype (Id, Universal_Integer);
3458 Set_Ekind (Id, E_Named_Integer);
3459 Set_Is_Frozen (Id, True);
3460 return;
3461 end if;
3462
3463 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3464
3465 -- Process expression, replacing error by integer zero, to avoid
3466 -- cascaded errors or aborts further along in the processing
3467
3468 -- Replace Error by integer zero, which seems least likely to cause
3469 -- cascaded errors.
3470
3471 if E = Error then
3472 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3473 Set_Error_Posted (E);
3474 end if;
3475
3476 Analyze (E);
3477
3478 -- Verify that the expression is static and numeric. If
3479 -- the expression is overloaded, we apply the preference
3480 -- rule that favors root numeric types.
3481
3482 if not Is_Overloaded (E) then
3483 T := Etype (E);
3484 if Has_Dynamic_Predicate_Aspect (T) then
3485 Error_Msg_N
3486 ("subtype has dynamic predicate, "
3487 & "not allowed in number declaration", N);
3488 end if;
3489
3490 else
3491 T := Any_Type;
3492
3493 Get_First_Interp (E, Index, It);
3494 while Present (It.Typ) loop
3495 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3496 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3497 then
3498 if T = Any_Type then
3499 T := It.Typ;
3500
3501 elsif It.Typ = Universal_Real
3502 or else
3503 It.Typ = Universal_Integer
3504 then
3505 -- Choose universal interpretation over any other
3506
3507 T := It.Typ;
3508 exit;
3509 end if;
3510 end if;
3511
3512 Get_Next_Interp (Index, It);
3513 end loop;
3514 end if;
3515
3516 if Is_Integer_Type (T) then
3517 Resolve (E, T);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520
3521 elsif Is_Real_Type (T) then
3522
3523 -- Because the real value is converted to universal_real, this is a
3524 -- legal context for a universal fixed expression.
3525
3526 if T = Universal_Fixed then
3527 declare
3528 Loc : constant Source_Ptr := Sloc (N);
3529 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3530 Subtype_Mark =>
3531 New_Occurrence_Of (Universal_Real, Loc),
3532 Expression => Relocate_Node (E));
3533
3534 begin
3535 Rewrite (E, Conv);
3536 Analyze (E);
3537 end;
3538
3539 elsif T = Any_Fixed then
3540 Error_Msg_N ("illegal context for mixed mode operation", E);
3541
3542 -- Expression is of the form : universal_fixed * integer. Try to
3543 -- resolve as universal_real.
3544
3545 T := Universal_Real;
3546 Set_Etype (E, T);
3547 end if;
3548
3549 Resolve (E, T);
3550 Set_Etype (Id, Universal_Real);
3551 Set_Ekind (Id, E_Named_Real);
3552
3553 else
3554 Wrong_Type (E, Any_Numeric);
3555 Resolve (E, T);
3556
3557 Set_Etype (Id, T);
3558 Set_Ekind (Id, E_Constant);
3559 Set_Never_Set_In_Source (Id, True);
3560 Set_Is_True_Constant (Id, True);
3561 return;
3562 end if;
3563
3564 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3565 Set_Etype (E, Etype (Id));
3566 end if;
3567
3568 if not Is_OK_Static_Expression (E) then
3569 Flag_Non_Static_Expr
3570 ("non-static expression used in number declaration!", E);
3571 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3572 Set_Etype (E, Any_Type);
3573 end if;
3574
3575 Analyze_Dimension (N);
3576 end Analyze_Number_Declaration;
3577
3578 --------------------------------
3579 -- Analyze_Object_Declaration --
3580 --------------------------------
3581
3582 -- WARNING: This routine manages Ghost regions. Return statements must be
3583 -- replaced by gotos which jump to the end of the routine and restore the
3584 -- Ghost mode.
3585
3586 procedure Analyze_Object_Declaration (N : Node_Id) is
3587 Loc : constant Source_Ptr := Sloc (N);
3588 Id : constant Entity_Id := Defining_Identifier (N);
3589 Act_T : Entity_Id;
3590 T : Entity_Id;
3591
3592 E : Node_Id := Expression (N);
3593 -- E is set to Expression (N) throughout this routine. When Expression
3594 -- (N) is modified, E is changed accordingly.
3595
3596 Prev_Entity : Entity_Id := Empty;
3597
3598 procedure Check_Dynamic_Object (Typ : Entity_Id);
3599 -- A library-level object with non-static discriminant constraints may
3600 -- require dynamic allocation. The declaration is illegal if the
3601 -- profile includes the restriction No_Implicit_Heap_Allocations.
3602
3603 procedure Check_For_Null_Excluding_Components
3604 (Obj_Typ : Entity_Id;
3605 Obj_Decl : Node_Id);
3606 -- Verify that each null-excluding component of object declaration
3607 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3608 -- a compile-time warning if this is not the case.
3609
3610 function Count_Tasks (T : Entity_Id) return Uint;
3611 -- This function is called when a non-generic library level object of a
3612 -- task type is declared. Its function is to count the static number of
3613 -- tasks declared within the type (it is only called if Has_Task is set
3614 -- for T). As a side effect, if an array of tasks with non-static bounds
3615 -- or a variant record type is encountered, Check_Restriction is called
3616 -- indicating the count is unknown.
3617
3618 function Delayed_Aspect_Present return Boolean;
3619 -- If the declaration has an expression that is an aggregate, and it
3620 -- has aspects that require delayed analysis, the resolution of the
3621 -- aggregate must be deferred to the freeze point of the objet. This
3622 -- special processing was created for address clauses, but it must
3623 -- also apply to Alignment. This must be done before the aspect
3624 -- specifications are analyzed because we must handle the aggregate
3625 -- before the analysis of the object declaration is complete.
3626
3627 -- Any other relevant delayed aspects on object declarations ???
3628
3629 --------------------------
3630 -- Check_Dynamic_Object --
3631 --------------------------
3632
3633 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3634 Comp : Entity_Id;
3635 Obj_Type : Entity_Id;
3636
3637 begin
3638 Obj_Type := Typ;
3639
3640 if Is_Private_Type (Obj_Type)
3641 and then Present (Full_View (Obj_Type))
3642 then
3643 Obj_Type := Full_View (Obj_Type);
3644 end if;
3645
3646 if Known_Static_Esize (Obj_Type) then
3647 return;
3648 end if;
3649
3650 if Restriction_Active (No_Implicit_Heap_Allocations)
3651 and then Expander_Active
3652 and then Has_Discriminants (Obj_Type)
3653 then
3654 Comp := First_Component (Obj_Type);
3655 while Present (Comp) loop
3656 if Known_Static_Esize (Etype (Comp))
3657 or else Size_Known_At_Compile_Time (Etype (Comp))
3658 then
3659 null;
3660
3661 elsif not Discriminated_Size (Comp)
3662 and then Comes_From_Source (Comp)
3663 then
3664 Error_Msg_NE
3665 ("component& of non-static size will violate restriction "
3666 & "No_Implicit_Heap_Allocation?", N, Comp);
3667
3668 elsif Is_Record_Type (Etype (Comp)) then
3669 Check_Dynamic_Object (Etype (Comp));
3670 end if;
3671
3672 Next_Component (Comp);
3673 end loop;
3674 end if;
3675 end Check_Dynamic_Object;
3676
3677 -----------------------------------------
3678 -- Check_For_Null_Excluding_Components --
3679 -----------------------------------------
3680
3681 procedure Check_For_Null_Excluding_Components
3682 (Obj_Typ : Entity_Id;
3683 Obj_Decl : Node_Id)
3684 is
3685 procedure Check_Component
3686 (Comp_Typ : Entity_Id;
3687 Comp_Decl : Node_Id := Empty;
3688 Array_Comp : Boolean := False);
3689 -- Apply a compile-time null-exclusion check on a component denoted
3690 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3691 -- subcomponents (if any).
3692
3693 ---------------------
3694 -- Check_Component --
3695 ---------------------
3696
3697 procedure Check_Component
3698 (Comp_Typ : Entity_Id;
3699 Comp_Decl : Node_Id := Empty;
3700 Array_Comp : Boolean := False)
3701 is
3702 Comp : Entity_Id;
3703 T : Entity_Id;
3704
3705 begin
3706 -- Do not consider internally-generated components or those that
3707 -- are already initialized.
3708
3709 if Present (Comp_Decl)
3710 and then (not Comes_From_Source (Comp_Decl)
3711 or else Present (Expression (Comp_Decl)))
3712 then
3713 return;
3714 end if;
3715
3716 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3717 and then Present (Full_View (Comp_Typ))
3718 then
3719 T := Full_View (Comp_Typ);
3720 else
3721 T := Comp_Typ;
3722 end if;
3723
3724 -- Verify a component of a null-excluding access type
3725
3726 if Is_Access_Type (T)
3727 and then Can_Never_Be_Null (T)
3728 then
3729 if Comp_Decl = Obj_Decl then
3730 Null_Exclusion_Static_Checks
3731 (N => Obj_Decl,
3732 Comp => Empty,
3733 Array_Comp => Array_Comp);
3734
3735 else
3736 Null_Exclusion_Static_Checks
3737 (N => Obj_Decl,
3738 Comp => Comp_Decl,
3739 Array_Comp => Array_Comp);
3740 end if;
3741
3742 -- Check array components
3743
3744 elsif Is_Array_Type (T) then
3745
3746 -- There is no suitable component when the object is of an
3747 -- array type. However, a namable component may appear at some
3748 -- point during the recursive inspection, but not at the top
3749 -- level. At the top level just indicate array component case.
3750
3751 if Comp_Decl = Obj_Decl then
3752 Check_Component (Component_Type (T), Array_Comp => True);
3753 else
3754 Check_Component (Component_Type (T), Comp_Decl);
3755 end if;
3756
3757 -- Verify all components of type T
3758
3759 -- Note: No checks are performed on types with discriminants due
3760 -- to complexities involving variants. ???
3761
3762 elsif (Is_Concurrent_Type (T)
3763 or else Is_Incomplete_Or_Private_Type (T)
3764 or else Is_Record_Type (T))
3765 and then not Has_Discriminants (T)
3766 then
3767 Comp := First_Component (T);
3768 while Present (Comp) loop
3769 Check_Component (Etype (Comp), Parent (Comp));
3770
3771 Comp := Next_Component (Comp);
3772 end loop;
3773 end if;
3774 end Check_Component;
3775
3776 -- Start processing for Check_For_Null_Excluding_Components
3777
3778 begin
3779 Check_Component (Obj_Typ, Obj_Decl);
3780 end Check_For_Null_Excluding_Components;
3781
3782 -----------------
3783 -- Count_Tasks --
3784 -----------------
3785
3786 function Count_Tasks (T : Entity_Id) return Uint is
3787 C : Entity_Id;
3788 X : Node_Id;
3789 V : Uint;
3790
3791 begin
3792 if Is_Task_Type (T) then
3793 return Uint_1;
3794
3795 elsif Is_Record_Type (T) then
3796 if Has_Discriminants (T) then
3797 Check_Restriction (Max_Tasks, N);
3798 return Uint_0;
3799
3800 else
3801 V := Uint_0;
3802 C := First_Component (T);
3803 while Present (C) loop
3804 V := V + Count_Tasks (Etype (C));
3805 Next_Component (C);
3806 end loop;
3807
3808 return V;
3809 end if;
3810
3811 elsif Is_Array_Type (T) then
3812 X := First_Index (T);
3813 V := Count_Tasks (Component_Type (T));
3814 while Present (X) loop
3815 C := Etype (X);
3816
3817 if not Is_OK_Static_Subtype (C) then
3818 Check_Restriction (Max_Tasks, N);
3819 return Uint_0;
3820 else
3821 V := V * (UI_Max (Uint_0,
3822 Expr_Value (Type_High_Bound (C)) -
3823 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3824 end if;
3825
3826 Next_Index (X);
3827 end loop;
3828
3829 return V;
3830
3831 else
3832 return Uint_0;
3833 end if;
3834 end Count_Tasks;
3835
3836 ----------------------------
3837 -- Delayed_Aspect_Present --
3838 ----------------------------
3839
3840 function Delayed_Aspect_Present return Boolean is
3841 A : Node_Id;
3842 A_Id : Aspect_Id;
3843
3844 begin
3845 if Present (Aspect_Specifications (N)) then
3846 A := First (Aspect_Specifications (N));
3847 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3848 while Present (A) loop
3849 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3850 return True;
3851 end if;
3852
3853 Next (A);
3854 end loop;
3855 end if;
3856
3857 return False;
3858 end Delayed_Aspect_Present;
3859
3860 -- Local variables
3861
3862 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3863 -- Save the Ghost mode to restore on exit
3864
3865 Related_Id : Entity_Id;
3866
3867 -- Start of processing for Analyze_Object_Declaration
3868
3869 begin
3870 -- There are three kinds of implicit types generated by an
3871 -- object declaration:
3872
3873 -- 1. Those generated by the original Object Definition
3874
3875 -- 2. Those generated by the Expression
3876
3877 -- 3. Those used to constrain the Object Definition with the
3878 -- expression constraints when the definition is unconstrained.
3879
3880 -- They must be generated in this order to avoid order of elaboration
3881 -- issues. Thus the first step (after entering the name) is to analyze
3882 -- the object definition.
3883
3884 if Constant_Present (N) then
3885 Prev_Entity := Current_Entity_In_Scope (Id);
3886
3887 if Present (Prev_Entity)
3888 and then
3889 -- If the homograph is an implicit subprogram, it is overridden
3890 -- by the current declaration.
3891
3892 ((Is_Overloadable (Prev_Entity)
3893 and then Is_Inherited_Operation (Prev_Entity))
3894
3895 -- The current object is a discriminal generated for an entry
3896 -- family index. Even though the index is a constant, in this
3897 -- particular context there is no true constant redeclaration.
3898 -- Enter_Name will handle the visibility.
3899
3900 or else
3901 (Is_Discriminal (Id)
3902 and then Ekind (Discriminal_Link (Id)) =
3903 E_Entry_Index_Parameter)
3904
3905 -- The current object is the renaming for a generic declared
3906 -- within the instance.
3907
3908 or else
3909 (Ekind (Prev_Entity) = E_Package
3910 and then Nkind (Parent (Prev_Entity)) =
3911 N_Package_Renaming_Declaration
3912 and then not Comes_From_Source (Prev_Entity)
3913 and then
3914 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3915
3916 -- The entity may be a homonym of a private component of the
3917 -- enclosing protected object, for which we create a local
3918 -- renaming declaration. The declaration is legal, even if
3919 -- useless when it just captures that component.
3920
3921 or else
3922 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3923 and then Nkind (Parent (Prev_Entity)) =
3924 N_Object_Renaming_Declaration))
3925 then
3926 Prev_Entity := Empty;
3927 end if;
3928 end if;
3929
3930 if Present (Prev_Entity) then
3931
3932 -- The object declaration is Ghost when it completes a deferred Ghost
3933 -- constant.
3934
3935 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3936
3937 Constant_Redeclaration (Id, N, T);
3938
3939 Generate_Reference (Prev_Entity, Id, 'c');
3940 Set_Completion_Referenced (Id);
3941
3942 if Error_Posted (N) then
3943
3944 -- Type mismatch or illegal redeclaration; do not analyze
3945 -- expression to avoid cascaded errors.
3946
3947 T := Find_Type_Of_Object (Object_Definition (N), N);
3948 Set_Etype (Id, T);
3949 Set_Ekind (Id, E_Variable);
3950 goto Leave;
3951 end if;
3952
3953 -- In the normal case, enter identifier at the start to catch premature
3954 -- usage in the initialization expression.
3955
3956 else
3957 Generate_Definition (Id);
3958 Enter_Name (Id);
3959
3960 Mark_Coextensions (N, Object_Definition (N));
3961
3962 T := Find_Type_Of_Object (Object_Definition (N), N);
3963
3964 if Nkind (Object_Definition (N)) = N_Access_Definition
3965 and then Present
3966 (Access_To_Subprogram_Definition (Object_Definition (N)))
3967 and then Protected_Present
3968 (Access_To_Subprogram_Definition (Object_Definition (N)))
3969 then
3970 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3971 end if;
3972
3973 if Error_Posted (Id) then
3974 Set_Etype (Id, T);
3975 Set_Ekind (Id, E_Variable);
3976 goto Leave;
3977 end if;
3978 end if;
3979
3980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3981 -- out some static checks.
3982
3983 if Ada_Version >= Ada_2005 then
3984
3985 -- In case of aggregates we must also take care of the correct
3986 -- initialization of nested aggregates bug this is done at the
3987 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3988
3989 if Can_Never_Be_Null (T) then
3990 if Present (Expression (N))
3991 and then Nkind (Expression (N)) = N_Aggregate
3992 then
3993 null;
3994
3995 else
3996 declare
3997 Save_Typ : constant Entity_Id := Etype (Id);
3998 begin
3999 Set_Etype (Id, T); -- Temp. decoration for static checks
4000 Null_Exclusion_Static_Checks (N);
4001 Set_Etype (Id, Save_Typ);
4002 end;
4003 end if;
4004
4005 -- We might be dealing with an object of a composite type containing
4006 -- null-excluding components without an aggregate, so we must verify
4007 -- that such components have default initialization.
4008
4009 else
4010 Check_For_Null_Excluding_Components (T, N);
4011 end if;
4012 end if;
4013
4014 -- Object is marked pure if it is in a pure scope
4015
4016 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4017
4018 -- If deferred constant, make sure context is appropriate. We detect
4019 -- a deferred constant as a constant declaration with no expression.
4020 -- A deferred constant can appear in a package body if its completion
4021 -- is by means of an interface pragma.
4022
4023 if Constant_Present (N) and then No (E) then
4024
4025 -- A deferred constant may appear in the declarative part of the
4026 -- following constructs:
4027
4028 -- blocks
4029 -- entry bodies
4030 -- extended return statements
4031 -- package specs
4032 -- package bodies
4033 -- subprogram bodies
4034 -- task bodies
4035
4036 -- When declared inside a package spec, a deferred constant must be
4037 -- completed by a full constant declaration or pragma Import. In all
4038 -- other cases, the only proper completion is pragma Import. Extended
4039 -- return statements are flagged as invalid contexts because they do
4040 -- not have a declarative part and so cannot accommodate the pragma.
4041
4042 if Ekind (Current_Scope) = E_Return_Statement then
4043 Error_Msg_N
4044 ("invalid context for deferred constant declaration (RM 7.4)",
4045 N);
4046 Error_Msg_N
4047 ("\declaration requires an initialization expression",
4048 N);
4049 Set_Constant_Present (N, False);
4050
4051 -- In Ada 83, deferred constant must be of private type
4052
4053 elsif not Is_Private_Type (T) then
4054 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4055 Error_Msg_N
4056 ("(Ada 83) deferred constant must be private type", N);
4057 end if;
4058 end if;
4059
4060 -- If not a deferred constant, then the object declaration freezes
4061 -- its type, unless the object is of an anonymous type and has delayed
4062 -- aspects. In that case the type is frozen when the object itself is.
4063
4064 else
4065 Check_Fully_Declared (T, N);
4066
4067 if Has_Delayed_Aspects (Id)
4068 and then Is_Array_Type (T)
4069 and then Is_Itype (T)
4070 then
4071 Set_Has_Delayed_Freeze (T);
4072 else
4073 Freeze_Before (N, T);
4074 end if;
4075 end if;
4076
4077 -- If the object was created by a constrained array definition, then
4078 -- set the link in both the anonymous base type and anonymous subtype
4079 -- that are built to represent the array type to point to the object.
4080
4081 if Nkind (Object_Definition (Declaration_Node (Id))) =
4082 N_Constrained_Array_Definition
4083 then
4084 Set_Related_Array_Object (T, Id);
4085 Set_Related_Array_Object (Base_Type (T), Id);
4086 end if;
4087
4088 -- Special checks for protected objects not at library level
4089
4090 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4091 Check_Restriction (No_Local_Protected_Objects, Id);
4092
4093 -- Protected objects with interrupt handlers must be at library level
4094
4095 -- Ada 2005: This test is not needed (and the corresponding clause
4096 -- in the RM is removed) because accessibility checks are sufficient
4097 -- to make handlers not at the library level illegal.
4098
4099 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4100 -- applies to the '95 version of the language as well.
4101
4102 if Is_Protected_Type (T)
4103 and then Has_Interrupt_Handler (T)
4104 and then Ada_Version < Ada_95
4105 then
4106 Error_Msg_N
4107 ("interrupt object can only be declared at library level", Id);
4108 end if;
4109 end if;
4110
4111 -- Check for violation of No_Local_Timing_Events
4112
4113 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4114 Check_Restriction (No_Local_Timing_Events, Id);
4115 end if;
4116
4117 -- The actual subtype of the object is the nominal subtype, unless
4118 -- the nominal one is unconstrained and obtained from the expression.
4119
4120 Act_T := T;
4121
4122 -- These checks should be performed before the initialization expression
4123 -- is considered, so that the Object_Definition node is still the same
4124 -- as in source code.
4125
4126 -- In SPARK, the nominal subtype is always given by a subtype mark
4127 -- and must not be unconstrained. (The only exception to this is the
4128 -- acceptance of declarations of constants of type String.)
4129
4130 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("subtype mark required", Object_Definition (N));
4134
4135 elsif Is_Array_Type (T)
4136 and then not Is_Constrained (T)
4137 and then T /= Standard_String
4138 then
4139 Check_SPARK_05_Restriction
4140 ("subtype mark of constrained type expected",
4141 Object_Definition (N));
4142 end if;
4143
4144 if Is_Library_Level_Entity (Id) then
4145 Check_Dynamic_Object (T);
4146 end if;
4147
4148 -- There are no aliased objects in SPARK
4149
4150 if Aliased_Present (N) then
4151 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4152 end if;
4153
4154 -- Process initialization expression if present and not in error
4155
4156 if Present (E) and then E /= Error then
4157
4158 -- Generate an error in case of CPP class-wide object initialization.
4159 -- Required because otherwise the expansion of the class-wide
4160 -- assignment would try to use 'size to initialize the object
4161 -- (primitive that is not available in CPP tagged types).
4162
4163 if Is_Class_Wide_Type (Act_T)
4164 and then
4165 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4166 or else
4167 (Present (Full_View (Root_Type (Etype (Act_T))))
4168 and then
4169 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4170 then
4171 Error_Msg_N
4172 ("predefined assignment not available for 'C'P'P tagged types",
4173 E);
4174 end if;
4175
4176 Mark_Coextensions (N, E);
4177 Analyze (E);
4178
4179 -- In case of errors detected in the analysis of the expression,
4180 -- decorate it with the expected type to avoid cascaded errors
4181
4182 if No (Etype (E)) then
4183 Set_Etype (E, T);
4184 end if;
4185
4186 -- If an initialization expression is present, then we set the
4187 -- Is_True_Constant flag. It will be reset if this is a variable
4188 -- and it is indeed modified.
4189
4190 Set_Is_True_Constant (Id, True);
4191
4192 -- If we are analyzing a constant declaration, set its completion
4193 -- flag after analyzing and resolving the expression.
4194
4195 if Constant_Present (N) then
4196 Set_Has_Completion (Id);
4197 end if;
4198
4199 -- Set type and resolve (type may be overridden later on). Note:
4200 -- Ekind (Id) must still be E_Void at this point so that incorrect
4201 -- early usage within E is properly diagnosed.
4202
4203 Set_Etype (Id, T);
4204
4205 -- If the expression is an aggregate we must look ahead to detect
4206 -- the possible presence of an address clause, and defer resolution
4207 -- and expansion of the aggregate to the freeze point of the entity.
4208
4209 -- This is not always legal because the aggregate may contain other
4210 -- references that need freezing, e.g. references to other entities
4211 -- with address clauses. In any case, when compiling with -gnatI the
4212 -- presence of the address clause must be ignored.
4213
4214 if Comes_From_Source (N)
4215 and then Expander_Active
4216 and then Nkind (E) = N_Aggregate
4217 and then
4218 ((Present (Following_Address_Clause (N))
4219 and then not Ignore_Rep_Clauses)
4220 or else Delayed_Aspect_Present)
4221 then
4222 Set_Etype (E, T);
4223
4224 else
4225 Resolve (E, T);
4226 end if;
4227
4228 -- No further action needed if E is a call to an inlined function
4229 -- which returns an unconstrained type and it has been expanded into
4230 -- a procedure call. In that case N has been replaced by an object
4231 -- declaration without initializing expression and it has been
4232 -- analyzed (see Expand_Inlined_Call).
4233
4234 if Back_End_Inlining
4235 and then Expander_Active
4236 and then Nkind (E) = N_Function_Call
4237 and then Nkind (Name (E)) in N_Has_Entity
4238 and then Is_Inlined (Entity (Name (E)))
4239 and then not Is_Constrained (Etype (E))
4240 and then Analyzed (N)
4241 and then No (Expression (N))
4242 then
4243 goto Leave;
4244 end if;
4245
4246 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4247 -- node (which was marked already-analyzed), we need to set the type
4248 -- to something other than Any_Access in order to keep gigi happy.
4249
4250 if Etype (E) = Any_Access then
4251 Set_Etype (E, T);
4252 end if;
4253
4254 -- If the object is an access to variable, the initialization
4255 -- expression cannot be an access to constant.
4256
4257 if Is_Access_Type (T)
4258 and then not Is_Access_Constant (T)
4259 and then Is_Access_Type (Etype (E))
4260 and then Is_Access_Constant (Etype (E))
4261 then
4262 Error_Msg_N
4263 ("access to variable cannot be initialized with an "
4264 & "access-to-constant expression", E);
4265 end if;
4266
4267 if not Assignment_OK (N) then
4268 Check_Initialization (T, E);
4269 end if;
4270
4271 Check_Unset_Reference (E);
4272
4273 -- If this is a variable, then set current value. If this is a
4274 -- declared constant of a scalar type with a static expression,
4275 -- indicate that it is always valid.
4276
4277 if not Constant_Present (N) then
4278 if Compile_Time_Known_Value (E) then
4279 Set_Current_Value (Id, E);
4280 end if;
4281
4282 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4283 Set_Is_Known_Valid (Id);
4284 end if;
4285
4286 -- Deal with setting of null flags
4287
4288 if Is_Access_Type (T) then
4289 if Known_Non_Null (E) then
4290 Set_Is_Known_Non_Null (Id, True);
4291 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4292 Set_Is_Known_Null (Id, True);
4293 end if;
4294 end if;
4295
4296 -- Check incorrect use of dynamically tagged expressions
4297
4298 if Is_Tagged_Type (T) then
4299 Check_Dynamically_Tagged_Expression
4300 (Expr => E,
4301 Typ => T,
4302 Related_Nod => N);
4303 end if;
4304
4305 Apply_Scalar_Range_Check (E, T);
4306 Apply_Static_Length_Check (E, T);
4307
4308 if Nkind (Original_Node (N)) = N_Object_Declaration
4309 and then Comes_From_Source (Original_Node (N))
4310
4311 -- Only call test if needed
4312
4313 and then Restriction_Check_Required (SPARK_05)
4314 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4315 then
4316 Check_SPARK_05_Restriction
4317 ("initialization expression is not appropriate", E);
4318 end if;
4319
4320 -- A formal parameter of a specific tagged type whose related
4321 -- subprogram is subject to pragma Extensions_Visible with value
4322 -- "False" cannot be implicitly converted to a class-wide type by
4323 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4324 -- not consider internally generated expressions.
4325
4326 if Is_Class_Wide_Type (T)
4327 and then Comes_From_Source (E)
4328 and then Is_EVF_Expression (E)
4329 then
4330 Error_Msg_N
4331 ("formal parameter cannot be implicitly converted to "
4332 & "class-wide type when Extensions_Visible is False", E);
4333 end if;
4334 end if;
4335
4336 -- If the No_Streams restriction is set, check that the type of the
4337 -- object is not, and does not contain, any subtype derived from
4338 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4339 -- Has_Stream just for efficiency reasons. There is no point in
4340 -- spending time on a Has_Stream check if the restriction is not set.
4341
4342 if Restriction_Check_Required (No_Streams) then
4343 if Has_Stream (T) then
4344 Check_Restriction (No_Streams, N);
4345 end if;
4346 end if;
4347
4348 -- Deal with predicate check before we start to do major rewriting. It
4349 -- is OK to initialize and then check the initialized value, since the
4350 -- object goes out of scope if we get a predicate failure. Note that we
4351 -- do this in the analyzer and not the expander because the analyzer
4352 -- does some substantial rewriting in some cases.
4353
4354 -- We need a predicate check if the type has predicates that are not
4355 -- ignored, and if either there is an initializing expression, or for
4356 -- default initialization when we have at least one case of an explicit
4357 -- default initial value and then this is not an internal declaration
4358 -- whose initialization comes later (as for an aggregate expansion).
4359
4360 if not Suppress_Assignment_Checks (N)
4361 and then Present (Predicate_Function (T))
4362 and then not Predicates_Ignored (T)
4363 and then not No_Initialization (N)
4364 and then
4365 (Present (E)
4366 or else
4367 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4368 then
4369 -- If the type has a static predicate and the expression is known at
4370 -- compile time, see if the expression satisfies the predicate.
4371
4372 if Present (E) then
4373 Check_Expression_Against_Static_Predicate (E, T);
4374 end if;
4375
4376 -- If the type is a null record and there is no explicit initial
4377 -- expression, no predicate check applies.
4378
4379 if No (E) and then Is_Null_Record_Type (T) then
4380 null;
4381
4382 -- Do not generate a predicate check if the initialization expression
4383 -- is a type conversion because the conversion has been subjected to
4384 -- the same check. This is a small optimization which avoid redundant
4385 -- checks.
4386
4387 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4388 null;
4389
4390 else
4391 Insert_After (N,
4392 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4393 end if;
4394 end if;
4395
4396 -- Case of unconstrained type
4397
4398 if not Is_Definite_Subtype (T) then
4399
4400 -- In SPARK, a declaration of unconstrained type is allowed
4401 -- only for constants of type string.
4402
4403 if Is_String_Type (T) and then not Constant_Present (N) then
4404 Check_SPARK_05_Restriction
4405 ("declaration of object of unconstrained type not allowed", N);
4406 end if;
4407
4408 -- Nothing to do in deferred constant case
4409
4410 if Constant_Present (N) and then No (E) then
4411 null;
4412
4413 -- Case of no initialization present
4414
4415 elsif No (E) then
4416 if No_Initialization (N) then
4417 null;
4418
4419 elsif Is_Class_Wide_Type (T) then
4420 Error_Msg_N
4421 ("initialization required in class-wide declaration ", N);
4422
4423 else
4424 Error_Msg_N
4425 ("unconstrained subtype not allowed (need initialization)",
4426 Object_Definition (N));
4427
4428 if Is_Record_Type (T) and then Has_Discriminants (T) then
4429 Error_Msg_N
4430 ("\provide initial value or explicit discriminant values",
4431 Object_Definition (N));
4432
4433 Error_Msg_NE
4434 ("\or give default discriminant values for type&",
4435 Object_Definition (N), T);
4436
4437 elsif Is_Array_Type (T) then
4438 Error_Msg_N
4439 ("\provide initial value or explicit array bounds",
4440 Object_Definition (N));
4441 end if;
4442 end if;
4443
4444 -- Case of initialization present but in error. Set initial
4445 -- expression as absent (but do not make above complaints)
4446
4447 elsif E = Error then
4448 Set_Expression (N, Empty);
4449 E := Empty;
4450
4451 -- Case of initialization present
4452
4453 else
4454 -- Check restrictions in Ada 83
4455
4456 if not Constant_Present (N) then
4457
4458 -- Unconstrained variables not allowed in Ada 83 mode
4459
4460 if Ada_Version = Ada_83
4461 and then Comes_From_Source (Object_Definition (N))
4462 then
4463 Error_Msg_N
4464 ("(Ada 83) unconstrained variable not allowed",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4468
4469 -- Now we constrain the variable from the initializing expression
4470
4471 -- If the expression is an aggregate, it has been expanded into
4472 -- individual assignments. Retrieve the actual type from the
4473 -- expanded construct.
4474
4475 if Is_Array_Type (T)
4476 and then No_Initialization (N)
4477 and then Nkind (Original_Node (E)) = N_Aggregate
4478 then
4479 Act_T := Etype (E);
4480
4481 -- In case of class-wide interface object declarations we delay
4482 -- the generation of the equivalent record type declarations until
4483 -- its expansion because there are cases in they are not required.
4484
4485 elsif Is_Interface (T) then
4486 null;
4487
4488 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4489 -- we should prevent the generation of another Itype with the
4490 -- same name as the one already generated, or we end up with
4491 -- two identical types in GNATprove.
4492
4493 elsif GNATprove_Mode then
4494 null;
4495
4496 -- If the type is an unchecked union, no subtype can be built from
4497 -- the expression. Rewrite declaration as a renaming, which the
4498 -- back-end can handle properly. This is a rather unusual case,
4499 -- because most unchecked_union declarations have default values
4500 -- for discriminants and are thus not indefinite.
4501
4502 elsif Is_Unchecked_Union (T) then
4503 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4504 Set_Ekind (Id, E_Constant);
4505 else
4506 Set_Ekind (Id, E_Variable);
4507 end if;
4508
4509 Rewrite (N,
4510 Make_Object_Renaming_Declaration (Loc,
4511 Defining_Identifier => Id,
4512 Subtype_Mark => New_Occurrence_Of (T, Loc),
4513 Name => E));
4514
4515 Set_Renamed_Object (Id, E);
4516 Freeze_Before (N, T);
4517 Set_Is_Frozen (Id);
4518 goto Leave;
4519
4520 else
4521 -- Ensure that the generated subtype has a unique external name
4522 -- when the related object is public. This guarantees that the
4523 -- subtype and its bounds will not be affected by switches or
4524 -- pragmas that may offset the internal counter due to extra
4525 -- generated code.
4526
4527 if Is_Public (Id) then
4528 Related_Id := Id;
4529 else
4530 Related_Id := Empty;
4531 end if;
4532
4533 Expand_Subtype_From_Expr
4534 (N => N,
4535 Unc_Type => T,
4536 Subtype_Indic => Object_Definition (N),
4537 Exp => E,
4538 Related_Id => Related_Id);
4539
4540 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4541 end if;
4542
4543 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4544
4545 if Aliased_Present (N) then
4546 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4547 end if;
4548
4549 Freeze_Before (N, Act_T);
4550 Freeze_Before (N, T);
4551 end if;
4552
4553 elsif Is_Array_Type (T)
4554 and then No_Initialization (N)
4555 and then (Nkind (Original_Node (E)) = N_Aggregate
4556 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4557 and then Nkind (Original_Node (Expression
4558 (Original_Node (E)))) = N_Aggregate))
4559 then
4560 if not Is_Entity_Name (Object_Definition (N)) then
4561 Act_T := Etype (E);
4562 Check_Compile_Time_Size (Act_T);
4563
4564 if Aliased_Present (N) then
4565 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4566 end if;
4567 end if;
4568
4569 -- When the given object definition and the aggregate are specified
4570 -- independently, and their lengths might differ do a length check.
4571 -- This cannot happen if the aggregate is of the form (others =>...)
4572
4573 if not Is_Constrained (T) then
4574 null;
4575
4576 elsif Nkind (E) = N_Raise_Constraint_Error then
4577
4578 -- Aggregate is statically illegal. Place back in declaration
4579
4580 Set_Expression (N, E);
4581 Set_No_Initialization (N, False);
4582
4583 elsif T = Etype (E) then
4584 null;
4585
4586 elsif Nkind (E) = N_Aggregate
4587 and then Present (Component_Associations (E))
4588 and then Present (Choice_List (First (Component_Associations (E))))
4589 and then
4590 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4591 N_Others_Choice
4592 then
4593 null;
4594
4595 else
4596 Apply_Length_Check (E, T);
4597 end if;
4598
4599 -- If the type is limited unconstrained with defaulted discriminants and
4600 -- there is no expression, then the object is constrained by the
4601 -- defaults, so it is worthwhile building the corresponding subtype.
4602
4603 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4604 and then not Is_Constrained (T)
4605 and then Has_Discriminants (T)
4606 then
4607 if No (E) then
4608 Act_T := Build_Default_Subtype (T, N);
4609 else
4610 -- Ada 2005: A limited object may be initialized by means of an
4611 -- aggregate. If the type has default discriminants it has an
4612 -- unconstrained nominal type, Its actual subtype will be obtained
4613 -- from the aggregate, and not from the default discriminants.
4614
4615 Act_T := Etype (E);
4616 end if;
4617
4618 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4619
4620 elsif Nkind (E) = N_Function_Call
4621 and then Constant_Present (N)
4622 and then Has_Unconstrained_Elements (Etype (E))
4623 then
4624 -- The back-end has problems with constants of a discriminated type
4625 -- with defaults, if the initial value is a function call. We
4626 -- generate an intermediate temporary that will receive a reference
4627 -- to the result of the call. The initialization expression then
4628 -- becomes a dereference of that temporary.
4629
4630 Remove_Side_Effects (E);
4631
4632 -- If this is a constant declaration of an unconstrained type and
4633 -- the initialization is an aggregate, we can use the subtype of the
4634 -- aggregate for the declared entity because it is immutable.
4635
4636 elsif not Is_Constrained (T)
4637 and then Has_Discriminants (T)
4638 and then Constant_Present (N)
4639 and then not Has_Unchecked_Union (T)
4640 and then Nkind (E) = N_Aggregate
4641 then
4642 Act_T := Etype (E);
4643 end if;
4644
4645 -- Check No_Wide_Characters restriction
4646
4647 Check_Wide_Character_Restriction (T, Object_Definition (N));
4648
4649 -- Indicate this is not set in source. Certainly true for constants, and
4650 -- true for variables so far (will be reset for a variable if and when
4651 -- we encounter a modification in the source).
4652
4653 Set_Never_Set_In_Source (Id);
4654
4655 -- Now establish the proper kind and type of the object
4656
4657 if Constant_Present (N) then
4658 Set_Ekind (Id, E_Constant);
4659 Set_Is_True_Constant (Id);
4660
4661 else
4662 Set_Ekind (Id, E_Variable);
4663
4664 -- A variable is set as shared passive if it appears in a shared
4665 -- passive package, and is at the outer level. This is not done for
4666 -- entities generated during expansion, because those are always
4667 -- manipulated locally.
4668
4669 if Is_Shared_Passive (Current_Scope)
4670 and then Is_Library_Level_Entity (Id)
4671 and then Comes_From_Source (Id)
4672 then
4673 Set_Is_Shared_Passive (Id);
4674 Check_Shared_Var (Id, T, N);
4675 end if;
4676
4677 -- Set Has_Initial_Value if initializing expression present. Note
4678 -- that if there is no initializing expression, we leave the state
4679 -- of this flag unchanged (usually it will be False, but notably in
4680 -- the case of exception choice variables, it will already be true).
4681
4682 if Present (E) then
4683 Set_Has_Initial_Value (Id);
4684 end if;
4685 end if;
4686
4687 -- Initialize alignment and size and capture alignment setting
4688
4689 Init_Alignment (Id);
4690 Init_Esize (Id);
4691 Set_Optimize_Alignment_Flags (Id);
4692
4693 -- Deal with aliased case
4694
4695 if Aliased_Present (N) then
4696 Set_Is_Aliased (Id);
4697
4698 -- If the object is aliased and the type is unconstrained with
4699 -- defaulted discriminants and there is no expression, then the
4700 -- object is constrained by the defaults, so it is worthwhile
4701 -- building the corresponding subtype.
4702
4703 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4704 -- unconstrained, then only establish an actual subtype if the
4705 -- nominal subtype is indefinite. In definite cases the object is
4706 -- unconstrained in Ada 2005.
4707
4708 if No (E)
4709 and then Is_Record_Type (T)
4710 and then not Is_Constrained (T)
4711 and then Has_Discriminants (T)
4712 and then (Ada_Version < Ada_2005
4713 or else not Is_Definite_Subtype (T))
4714 then
4715 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4716 end if;
4717 end if;
4718
4719 -- Now we can set the type of the object
4720
4721 Set_Etype (Id, Act_T);
4722
4723 -- Non-constant object is marked to be treated as volatile if type is
4724 -- volatile and we clear the Current_Value setting that may have been
4725 -- set above. Doing so for constants isn't required and might interfere
4726 -- with possible uses of the object as a static expression in contexts
4727 -- incompatible with volatility (e.g. as a case-statement alternative).
4728
4729 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4730 Set_Treat_As_Volatile (Id);
4731 Set_Current_Value (Id, Empty);
4732 end if;
4733
4734 -- Deal with controlled types
4735
4736 if Has_Controlled_Component (Etype (Id))
4737 or else Is_Controlled (Etype (Id))
4738 then
4739 if not Is_Library_Level_Entity (Id) then
4740 Check_Restriction (No_Nested_Finalization, N);
4741 else
4742 Validate_Controlled_Object (Id);
4743 end if;
4744 end if;
4745
4746 if Has_Task (Etype (Id)) then
4747 Check_Restriction (No_Tasking, N);
4748
4749 -- Deal with counting max tasks
4750
4751 -- Nothing to do if inside a generic
4752
4753 if Inside_A_Generic then
4754 null;
4755
4756 -- If library level entity, then count tasks
4757
4758 elsif Is_Library_Level_Entity (Id) then
4759 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4760
4761 -- If not library level entity, then indicate we don't know max
4762 -- tasks and also check task hierarchy restriction and blocking
4763 -- operation (since starting a task is definitely blocking).
4764
4765 else
4766 Check_Restriction (Max_Tasks, N);
4767 Check_Restriction (No_Task_Hierarchy, N);
4768 Check_Potentially_Blocking_Operation (N);
4769 end if;
4770
4771 -- A rather specialized test. If we see two tasks being declared
4772 -- of the same type in the same object declaration, and the task
4773 -- has an entry with an address clause, we know that program error
4774 -- will be raised at run time since we can't have two tasks with
4775 -- entries at the same address.
4776
4777 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4778 declare
4779 E : Entity_Id;
4780
4781 begin
4782 E := First_Entity (Etype (Id));
4783 while Present (E) loop
4784 if Ekind (E) = E_Entry
4785 and then Present (Get_Attribute_Definition_Clause
4786 (E, Attribute_Address))
4787 then
4788 Error_Msg_Warn := SPARK_Mode /= On;
4789 Error_Msg_N
4790 ("more than one task with same entry address<<", N);
4791 Error_Msg_N ("\Program_Error [<<", N);
4792 Insert_Action (N,
4793 Make_Raise_Program_Error (Loc,
4794 Reason => PE_Duplicated_Entry_Address));
4795 exit;
4796 end if;
4797
4798 Next_Entity (E);
4799 end loop;
4800 end;
4801 end if;
4802 end if;
4803
4804 -- Some simple constant-propagation: if the expression is a constant
4805 -- string initialized with a literal, share the literal. This avoids
4806 -- a run-time copy.
4807
4808 if Present (E)
4809 and then Is_Entity_Name (E)
4810 and then Ekind (Entity (E)) = E_Constant
4811 and then Base_Type (Etype (E)) = Standard_String
4812 then
4813 declare
4814 Val : constant Node_Id := Constant_Value (Entity (E));
4815 begin
4816 if Present (Val) and then Nkind (Val) = N_String_Literal then
4817 Rewrite (E, New_Copy (Val));
4818 end if;
4819 end;
4820 end if;
4821
4822 -- Another optimization: if the nominal subtype is unconstrained and
4823 -- the expression is a function call that returns an unconstrained
4824 -- type, rewrite the declaration as a renaming of the result of the
4825 -- call. The exceptions below are cases where the copy is expected,
4826 -- either by the back end (Aliased case) or by the semantics, as for
4827 -- initializing controlled types or copying tags for class-wide types.
4828
4829 if Present (E)
4830 and then Nkind (E) = N_Explicit_Dereference
4831 and then Nkind (Original_Node (E)) = N_Function_Call
4832 and then not Is_Library_Level_Entity (Id)
4833 and then not Is_Constrained (Underlying_Type (T))
4834 and then not Is_Aliased (Id)
4835 and then not Is_Class_Wide_Type (T)
4836 and then not Is_Controlled_Active (T)
4837 and then not Has_Controlled_Component (Base_Type (T))
4838 and then Expander_Active
4839 then
4840 Rewrite (N,
4841 Make_Object_Renaming_Declaration (Loc,
4842 Defining_Identifier => Id,
4843 Access_Definition => Empty,
4844 Subtype_Mark => New_Occurrence_Of
4845 (Base_Type (Etype (Id)), Loc),
4846 Name => E));
4847
4848 Set_Renamed_Object (Id, E);
4849
4850 -- Force generation of debugging information for the constant and for
4851 -- the renamed function call.
4852
4853 Set_Debug_Info_Needed (Id);
4854 Set_Debug_Info_Needed (Entity (Prefix (E)));
4855 end if;
4856
4857 if Present (Prev_Entity)
4858 and then Is_Frozen (Prev_Entity)
4859 and then not Error_Posted (Id)
4860 then
4861 Error_Msg_N ("full constant declaration appears too late", N);
4862 end if;
4863
4864 Check_Eliminated (Id);
4865
4866 -- Deal with setting In_Private_Part flag if in private part
4867
4868 if Ekind (Scope (Id)) = E_Package
4869 and then In_Private_Part (Scope (Id))
4870 then
4871 Set_In_Private_Part (Id);
4872 end if;
4873
4874 <<Leave>>
4875 -- Initialize the refined state of a variable here because this is a
4876 -- common destination for legal and illegal object declarations.
4877
4878 if Ekind (Id) = E_Variable then
4879 Set_Encapsulating_State (Id, Empty);
4880 end if;
4881
4882 if Has_Aspects (N) then
4883 Analyze_Aspect_Specifications (N, Id);
4884 end if;
4885
4886 Analyze_Dimension (N);
4887
4888 -- Verify whether the object declaration introduces an illegal hidden
4889 -- state within a package subject to a null abstract state.
4890
4891 if Ekind (Id) = E_Variable then
4892 Check_No_Hidden_State (Id);
4893 end if;
4894
4895 Restore_Ghost_Mode (Saved_GM);
4896 end Analyze_Object_Declaration;
4897
4898 ---------------------------
4899 -- Analyze_Others_Choice --
4900 ---------------------------
4901
4902 -- Nothing to do for the others choice node itself, the semantic analysis
4903 -- of the others choice will occur as part of the processing of the parent
4904
4905 procedure Analyze_Others_Choice (N : Node_Id) is
4906 pragma Warnings (Off, N);
4907 begin
4908 null;
4909 end Analyze_Others_Choice;
4910
4911 -------------------------------------------
4912 -- Analyze_Private_Extension_Declaration --
4913 -------------------------------------------
4914
4915 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4916 Indic : constant Node_Id := Subtype_Indication (N);
4917 T : constant Entity_Id := Defining_Identifier (N);
4918 Iface : Entity_Id;
4919 Iface_Elmt : Elmt_Id;
4920 Parent_Base : Entity_Id;
4921 Parent_Type : Entity_Id;
4922
4923 begin
4924 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4925
4926 if Is_Non_Empty_List (Interface_List (N)) then
4927 declare
4928 Intf : Node_Id;
4929 T : Entity_Id;
4930
4931 begin
4932 Intf := First (Interface_List (N));
4933 while Present (Intf) loop
4934 T := Find_Type_Of_Subtype_Indic (Intf);
4935
4936 Diagnose_Interface (Intf, T);
4937 Next (Intf);
4938 end loop;
4939 end;
4940 end if;
4941
4942 Generate_Definition (T);
4943
4944 -- For other than Ada 2012, just enter the name in the current scope
4945
4946 if Ada_Version < Ada_2012 then
4947 Enter_Name (T);
4948
4949 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4950 -- case of private type that completes an incomplete type.
4951
4952 else
4953 declare
4954 Prev : Entity_Id;
4955
4956 begin
4957 Prev := Find_Type_Name (N);
4958
4959 pragma Assert (Prev = T
4960 or else (Ekind (Prev) = E_Incomplete_Type
4961 and then Present (Full_View (Prev))
4962 and then Full_View (Prev) = T));
4963 end;
4964 end if;
4965
4966 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4967 Parent_Base := Base_Type (Parent_Type);
4968
4969 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4970 Set_Ekind (T, Ekind (Parent_Type));
4971 Set_Etype (T, Any_Type);
4972 goto Leave;
4973
4974 elsif not Is_Tagged_Type (Parent_Type) then
4975 Error_Msg_N
4976 ("parent of type extension must be a tagged type ", Indic);
4977 goto Leave;
4978
4979 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4980 Error_Msg_N ("premature derivation of incomplete type", Indic);
4981 goto Leave;
4982
4983 elsif Is_Concurrent_Type (Parent_Type) then
4984 Error_Msg_N
4985 ("parent type of a private extension cannot be a synchronized "
4986 & "tagged type (RM 3.9.1 (3/1))", N);
4987
4988 Set_Etype (T, Any_Type);
4989 Set_Ekind (T, E_Limited_Private_Type);
4990 Set_Private_Dependents (T, New_Elmt_List);
4991 Set_Error_Posted (T);
4992 goto Leave;
4993 end if;
4994
4995 -- Perhaps the parent type should be changed to the class-wide type's
4996 -- specific type in this case to prevent cascading errors ???
4997
4998 if Is_Class_Wide_Type (Parent_Type) then
4999 Error_Msg_N
5000 ("parent of type extension must not be a class-wide type", Indic);
5001 goto Leave;
5002 end if;
5003
5004 if (not Is_Package_Or_Generic_Package (Current_Scope)
5005 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5006 or else In_Private_Part (Current_Scope)
5007 then
5008 Error_Msg_N ("invalid context for private extension", N);
5009 end if;
5010
5011 -- Set common attributes
5012
5013 Set_Is_Pure (T, Is_Pure (Current_Scope));
5014 Set_Scope (T, Current_Scope);
5015 Set_Ekind (T, E_Record_Type_With_Private);
5016 Init_Size_Align (T);
5017 Set_Default_SSO (T);
5018 Set_No_Reordering (T, No_Component_Reordering);
5019
5020 Set_Etype (T, Parent_Base);
5021 Propagate_Concurrent_Flags (T, Parent_Base);
5022
5023 Set_Convention (T, Convention (Parent_Type));
5024 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5025 Set_Is_First_Subtype (T);
5026 Make_Class_Wide_Type (T);
5027
5028 if Unknown_Discriminants_Present (N) then
5029 Set_Discriminant_Constraint (T, No_Elist);
5030 end if;
5031
5032 Build_Derived_Record_Type (N, Parent_Type, T);
5033
5034 -- A private extension inherits the Default_Initial_Condition pragma
5035 -- coming from any parent type within the derivation chain.
5036
5037 if Has_DIC (Parent_Type) then
5038 Set_Has_Inherited_DIC (T);
5039 end if;
5040
5041 -- A private extension inherits any class-wide invariants coming from a
5042 -- parent type or an interface. Note that the invariant procedure of the
5043 -- parent type should not be inherited because the private extension may
5044 -- define invariants of its own.
5045
5046 if Has_Inherited_Invariants (Parent_Type)
5047 or else Has_Inheritable_Invariants (Parent_Type)
5048 then
5049 Set_Has_Inherited_Invariants (T);
5050
5051 elsif Present (Interfaces (T)) then
5052 Iface_Elmt := First_Elmt (Interfaces (T));
5053 while Present (Iface_Elmt) loop
5054 Iface := Node (Iface_Elmt);
5055
5056 if Has_Inheritable_Invariants (Iface) then
5057 Set_Has_Inherited_Invariants (T);
5058 exit;
5059 end if;
5060
5061 Next_Elmt (Iface_Elmt);
5062 end loop;
5063 end if;
5064
5065 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5066 -- synchronized formal derived type.
5067
5068 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5069 Set_Is_Limited_Record (T);
5070
5071 -- Formal derived type case
5072
5073 if Is_Generic_Type (T) then
5074
5075 -- The parent must be a tagged limited type or a synchronized
5076 -- interface.
5077
5078 if (not Is_Tagged_Type (Parent_Type)
5079 or else not Is_Limited_Type (Parent_Type))
5080 and then
5081 (not Is_Interface (Parent_Type)
5082 or else not Is_Synchronized_Interface (Parent_Type))
5083 then
5084 Error_Msg_NE
5085 ("parent type of & must be tagged limited or synchronized",
5086 N, T);
5087 end if;
5088
5089 -- The progenitors (if any) must be limited or synchronized
5090 -- interfaces.
5091
5092 if Present (Interfaces (T)) then
5093 Iface_Elmt := First_Elmt (Interfaces (T));
5094 while Present (Iface_Elmt) loop
5095 Iface := Node (Iface_Elmt);
5096
5097 if not Is_Limited_Interface (Iface)
5098 and then not Is_Synchronized_Interface (Iface)
5099 then
5100 Error_Msg_NE
5101 ("progenitor & must be limited or synchronized",
5102 N, Iface);
5103 end if;
5104
5105 Next_Elmt (Iface_Elmt);
5106 end loop;
5107 end if;
5108
5109 -- Regular derived extension, the parent must be a limited or
5110 -- synchronized interface.
5111
5112 else
5113 if not Is_Interface (Parent_Type)
5114 or else (not Is_Limited_Interface (Parent_Type)
5115 and then not Is_Synchronized_Interface (Parent_Type))
5116 then
5117 Error_Msg_NE
5118 ("parent type of & must be limited interface", N, T);
5119 end if;
5120 end if;
5121
5122 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5123 -- extension with a synchronized parent must be explicitly declared
5124 -- synchronized, because the full view will be a synchronized type.
5125 -- This must be checked before the check for limited types below,
5126 -- to ensure that types declared limited are not allowed to extend
5127 -- synchronized interfaces.
5128
5129 elsif Is_Interface (Parent_Type)
5130 and then Is_Synchronized_Interface (Parent_Type)
5131 and then not Synchronized_Present (N)
5132 then
5133 Error_Msg_NE
5134 ("private extension of& must be explicitly synchronized",
5135 N, Parent_Type);
5136
5137 elsif Limited_Present (N) then
5138 Set_Is_Limited_Record (T);
5139
5140 if not Is_Limited_Type (Parent_Type)
5141 and then
5142 (not Is_Interface (Parent_Type)
5143 or else not Is_Limited_Interface (Parent_Type))
5144 then
5145 Error_Msg_NE ("parent type& of limited extension must be limited",
5146 N, Parent_Type);
5147 end if;
5148 end if;
5149
5150 -- Remember that its parent type has a private extension. Used to warn
5151 -- on public primitives of the parent type defined after its private
5152 -- extensions (see Check_Dispatching_Operation).
5153
5154 Set_Has_Private_Extension (Parent_Type);
5155
5156 <<Leave>>
5157 if Has_Aspects (N) then
5158 Analyze_Aspect_Specifications (N, T);
5159 end if;
5160 end Analyze_Private_Extension_Declaration;
5161
5162 ---------------------------------
5163 -- Analyze_Subtype_Declaration --
5164 ---------------------------------
5165
5166 procedure Analyze_Subtype_Declaration
5167 (N : Node_Id;
5168 Skip : Boolean := False)
5169 is
5170 Id : constant Entity_Id := Defining_Identifier (N);
5171 R_Checks : Check_Result;
5172 T : Entity_Id;
5173
5174 begin
5175 Generate_Definition (Id);
5176 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5177 Init_Size_Align (Id);
5178
5179 -- The following guard condition on Enter_Name is to handle cases where
5180 -- the defining identifier has already been entered into the scope but
5181 -- the declaration as a whole needs to be analyzed.
5182
5183 -- This case in particular happens for derived enumeration types. The
5184 -- derived enumeration type is processed as an inserted enumeration type
5185 -- declaration followed by a rewritten subtype declaration. The defining
5186 -- identifier, however, is entered into the name scope very early in the
5187 -- processing of the original type declaration and therefore needs to be
5188 -- avoided here, when the created subtype declaration is analyzed. (See
5189 -- Build_Derived_Types)
5190
5191 -- This also happens when the full view of a private type is derived
5192 -- type with constraints. In this case the entity has been introduced
5193 -- in the private declaration.
5194
5195 -- Finally this happens in some complex cases when validity checks are
5196 -- enabled, where the same subtype declaration may be analyzed twice.
5197 -- This can happen if the subtype is created by the pre-analysis of
5198 -- an attribute tht gives the range of a loop statement, and the loop
5199 -- itself appears within an if_statement that will be rewritten during
5200 -- expansion.
5201
5202 if Skip
5203 or else (Present (Etype (Id))
5204 and then (Is_Private_Type (Etype (Id))
5205 or else Is_Task_Type (Etype (Id))
5206 or else Is_Rewrite_Substitution (N)))
5207 then
5208 null;
5209
5210 elsif Current_Entity (Id) = Id then
5211 null;
5212
5213 else
5214 Enter_Name (Id);
5215 end if;
5216
5217 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5218
5219 -- Class-wide equivalent types of records with unknown discriminants
5220 -- involve the generation of an itype which serves as the private view
5221 -- of a constrained record subtype. In such cases the base type of the
5222 -- current subtype we are processing is the private itype. Use the full
5223 -- of the private itype when decorating various attributes.
5224
5225 if Is_Itype (T)
5226 and then Is_Private_Type (T)
5227 and then Present (Full_View (T))
5228 then
5229 T := Full_View (T);
5230 end if;
5231
5232 -- Inherit common attributes
5233
5234 Set_Is_Volatile (Id, Is_Volatile (T));
5235 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5236 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5237 Set_Convention (Id, Convention (T));
5238
5239 -- If ancestor has predicates then so does the subtype, and in addition
5240 -- we must delay the freeze to properly arrange predicate inheritance.
5241
5242 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5243 -- in which T = ID, so the above tests and assignments do nothing???
5244
5245 if Has_Predicates (T)
5246 or else (Present (Ancestor_Subtype (T))
5247 and then Has_Predicates (Ancestor_Subtype (T)))
5248 then
5249 Set_Has_Predicates (Id);
5250 Set_Has_Delayed_Freeze (Id);
5251
5252 -- Generated subtypes inherit the predicate function from the parent
5253 -- (no aspects to examine on the generated declaration).
5254
5255 if not Comes_From_Source (N) then
5256 Set_Ekind (Id, Ekind (T));
5257
5258 if Present (Predicate_Function (T)) then
5259 Set_Predicate_Function (Id, Predicate_Function (T));
5260
5261 elsif Present (Ancestor_Subtype (T))
5262 and then Has_Predicates (Ancestor_Subtype (T))
5263 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5264 then
5265 Set_Predicate_Function (Id,
5266 Predicate_Function (Ancestor_Subtype (T)));
5267 end if;
5268 end if;
5269 end if;
5270
5271 -- Subtype of Boolean cannot have a constraint in SPARK
5272
5273 if Is_Boolean_Type (T)
5274 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5275 then
5276 Check_SPARK_05_Restriction
5277 ("subtype of Boolean cannot have constraint", N);
5278 end if;
5279
5280 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5281 declare
5282 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5283 One_Cstr : Node_Id;
5284 Low : Node_Id;
5285 High : Node_Id;
5286
5287 begin
5288 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5289 One_Cstr := First (Constraints (Cstr));
5290 while Present (One_Cstr) loop
5291
5292 -- Index or discriminant constraint in SPARK must be a
5293 -- subtype mark.
5294
5295 if not
5296 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5297 then
5298 Check_SPARK_05_Restriction
5299 ("subtype mark required", One_Cstr);
5300
5301 -- String subtype must have a lower bound of 1 in SPARK.
5302 -- Note that we do not need to test for the non-static case
5303 -- here, since that was already taken care of in
5304 -- Process_Range_Expr_In_Decl.
5305
5306 elsif Base_Type (T) = Standard_String then
5307 Get_Index_Bounds (One_Cstr, Low, High);
5308
5309 if Is_OK_Static_Expression (Low)
5310 and then Expr_Value (Low) /= 1
5311 then
5312 Check_SPARK_05_Restriction
5313 ("String subtype must have lower bound of 1", N);
5314 end if;
5315 end if;
5316
5317 Next (One_Cstr);
5318 end loop;
5319 end if;
5320 end;
5321 end if;
5322
5323 -- In the case where there is no constraint given in the subtype
5324 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5325 -- semantic attributes must be established here.
5326
5327 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5328 Set_Etype (Id, Base_Type (T));
5329
5330 -- Subtype of unconstrained array without constraint is not allowed
5331 -- in SPARK.
5332
5333 if Is_Array_Type (T) and then not Is_Constrained (T) then
5334 Check_SPARK_05_Restriction
5335 ("subtype of unconstrained array must have constraint", N);
5336 end if;
5337
5338 case Ekind (T) is
5339 when Array_Kind =>
5340 Set_Ekind (Id, E_Array_Subtype);
5341 Copy_Array_Subtype_Attributes (Id, T);
5342
5343 when Decimal_Fixed_Point_Kind =>
5344 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5345 Set_Digits_Value (Id, Digits_Value (T));
5346 Set_Delta_Value (Id, Delta_Value (T));
5347 Set_Scale_Value (Id, Scale_Value (T));
5348 Set_Small_Value (Id, Small_Value (T));
5349 Set_Scalar_Range (Id, Scalar_Range (T));
5350 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5351 Set_Is_Constrained (Id, Is_Constrained (T));
5352 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5353 Set_RM_Size (Id, RM_Size (T));
5354
5355 when Enumeration_Kind =>
5356 Set_Ekind (Id, E_Enumeration_Subtype);
5357 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5358 Set_Scalar_Range (Id, Scalar_Range (T));
5359 Set_Is_Character_Type (Id, Is_Character_Type (T));
5360 Set_Is_Constrained (Id, Is_Constrained (T));
5361 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5362 Set_RM_Size (Id, RM_Size (T));
5363 Inherit_Predicate_Flags (Id, T);
5364
5365 when Ordinary_Fixed_Point_Kind =>
5366 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5367 Set_Scalar_Range (Id, Scalar_Range (T));
5368 Set_Small_Value (Id, Small_Value (T));
5369 Set_Delta_Value (Id, Delta_Value (T));
5370 Set_Is_Constrained (Id, Is_Constrained (T));
5371 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5372 Set_RM_Size (Id, RM_Size (T));
5373
5374 when Float_Kind =>
5375 Set_Ekind (Id, E_Floating_Point_Subtype);
5376 Set_Scalar_Range (Id, Scalar_Range (T));
5377 Set_Digits_Value (Id, Digits_Value (T));
5378 Set_Is_Constrained (Id, Is_Constrained (T));
5379
5380 -- If the floating point type has dimensions, these will be
5381 -- inherited subsequently when Analyze_Dimensions is called.
5382
5383 when Signed_Integer_Kind =>
5384 Set_Ekind (Id, E_Signed_Integer_Subtype);
5385 Set_Scalar_Range (Id, Scalar_Range (T));
5386 Set_Is_Constrained (Id, Is_Constrained (T));
5387 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5388 Set_RM_Size (Id, RM_Size (T));
5389 Inherit_Predicate_Flags (Id, T);
5390
5391 when Modular_Integer_Kind =>
5392 Set_Ekind (Id, E_Modular_Integer_Subtype);
5393 Set_Scalar_Range (Id, Scalar_Range (T));
5394 Set_Is_Constrained (Id, Is_Constrained (T));
5395 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5396 Set_RM_Size (Id, RM_Size (T));
5397 Inherit_Predicate_Flags (Id, T);
5398
5399 when Class_Wide_Kind =>
5400 Set_Ekind (Id, E_Class_Wide_Subtype);
5401 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5402 Set_Cloned_Subtype (Id, T);
5403 Set_Is_Tagged_Type (Id, True);
5404 Set_Has_Unknown_Discriminants
5405 (Id, True);
5406 Set_No_Tagged_Streams_Pragma
5407 (Id, No_Tagged_Streams_Pragma (T));
5408
5409 if Ekind (T) = E_Class_Wide_Subtype then
5410 Set_Equivalent_Type (Id, Equivalent_Type (T));
5411 end if;
5412
5413 when E_Record_Subtype
5414 | E_Record_Type
5415 =>
5416 Set_Ekind (Id, E_Record_Subtype);
5417
5418 if Ekind (T) = E_Record_Subtype
5419 and then Present (Cloned_Subtype (T))
5420 then
5421 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5422 else
5423 Set_Cloned_Subtype (Id, T);
5424 end if;
5425
5426 Set_First_Entity (Id, First_Entity (T));
5427 Set_Last_Entity (Id, Last_Entity (T));
5428 Set_Has_Discriminants (Id, Has_Discriminants (T));
5429 Set_Is_Constrained (Id, Is_Constrained (T));
5430 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5431 Set_Has_Implicit_Dereference
5432 (Id, Has_Implicit_Dereference (T));
5433 Set_Has_Unknown_Discriminants
5434 (Id, Has_Unknown_Discriminants (T));
5435
5436 if Has_Discriminants (T) then
5437 Set_Discriminant_Constraint
5438 (Id, Discriminant_Constraint (T));
5439 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5440
5441 elsif Has_Unknown_Discriminants (Id) then
5442 Set_Discriminant_Constraint (Id, No_Elist);
5443 end if;
5444
5445 if Is_Tagged_Type (T) then
5446 Set_Is_Tagged_Type (Id, True);
5447 Set_No_Tagged_Streams_Pragma
5448 (Id, No_Tagged_Streams_Pragma (T));
5449 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5450 Set_Direct_Primitive_Operations
5451 (Id, Direct_Primitive_Operations (T));
5452 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5453
5454 if Is_Interface (T) then
5455 Set_Is_Interface (Id);
5456 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5457 end if;
5458 end if;
5459
5460 when Private_Kind =>
5461 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5462 Set_Has_Discriminants (Id, Has_Discriminants (T));
5463 Set_Is_Constrained (Id, Is_Constrained (T));
5464 Set_First_Entity (Id, First_Entity (T));
5465 Set_Last_Entity (Id, Last_Entity (T));
5466 Set_Private_Dependents (Id, New_Elmt_List);
5467 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5468 Set_Has_Implicit_Dereference
5469 (Id, Has_Implicit_Dereference (T));
5470 Set_Has_Unknown_Discriminants
5471 (Id, Has_Unknown_Discriminants (T));
5472 Set_Known_To_Have_Preelab_Init
5473 (Id, Known_To_Have_Preelab_Init (T));
5474
5475 if Is_Tagged_Type (T) then
5476 Set_Is_Tagged_Type (Id);
5477 Set_No_Tagged_Streams_Pragma (Id,
5478 No_Tagged_Streams_Pragma (T));
5479 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5480 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5481 Set_Direct_Primitive_Operations (Id,
5482 Direct_Primitive_Operations (T));
5483 end if;
5484
5485 -- In general the attributes of the subtype of a private type
5486 -- are the attributes of the partial view of parent. However,
5487 -- the full view may be a discriminated type, and the subtype
5488 -- must share the discriminant constraint to generate correct
5489 -- calls to initialization procedures.
5490
5491 if Has_Discriminants (T) then
5492 Set_Discriminant_Constraint
5493 (Id, Discriminant_Constraint (T));
5494 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5495
5496 elsif Present (Full_View (T))
5497 and then Has_Discriminants (Full_View (T))
5498 then
5499 Set_Discriminant_Constraint
5500 (Id, Discriminant_Constraint (Full_View (T)));
5501 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5502
5503 -- This would seem semantically correct, but apparently
5504 -- generates spurious errors about missing components ???
5505
5506 -- Set_Has_Discriminants (Id);
5507 end if;
5508
5509 Prepare_Private_Subtype_Completion (Id, N);
5510
5511 -- If this is the subtype of a constrained private type with
5512 -- discriminants that has got a full view and we also have
5513 -- built a completion just above, show that the completion
5514 -- is a clone of the full view to the back-end.
5515
5516 if Has_Discriminants (T)
5517 and then not Has_Unknown_Discriminants (T)
5518 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5519 and then Present (Full_View (T))
5520 and then Present (Full_View (Id))
5521 then
5522 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5523 end if;
5524
5525 when Access_Kind =>
5526 Set_Ekind (Id, E_Access_Subtype);
5527 Set_Is_Constrained (Id, Is_Constrained (T));
5528 Set_Is_Access_Constant
5529 (Id, Is_Access_Constant (T));
5530 Set_Directly_Designated_Type
5531 (Id, Designated_Type (T));
5532 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5533
5534 -- A Pure library_item must not contain the declaration of a
5535 -- named access type, except within a subprogram, generic
5536 -- subprogram, task unit, or protected unit, or if it has
5537 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5538
5539 if Comes_From_Source (Id)
5540 and then In_Pure_Unit
5541 and then not In_Subprogram_Task_Protected_Unit
5542 and then not No_Pool_Assigned (Id)
5543 then
5544 Error_Msg_N
5545 ("named access types not allowed in pure unit", N);
5546 end if;
5547
5548 when Concurrent_Kind =>
5549 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5550 Set_Corresponding_Record_Type (Id,
5551 Corresponding_Record_Type (T));
5552 Set_First_Entity (Id, First_Entity (T));
5553 Set_First_Private_Entity (Id, First_Private_Entity (T));
5554 Set_Has_Discriminants (Id, Has_Discriminants (T));
5555 Set_Is_Constrained (Id, Is_Constrained (T));
5556 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5557 Set_Last_Entity (Id, Last_Entity (T));
5558
5559 if Is_Tagged_Type (T) then
5560 Set_No_Tagged_Streams_Pragma
5561 (Id, No_Tagged_Streams_Pragma (T));
5562 end if;
5563
5564 if Has_Discriminants (T) then
5565 Set_Discriminant_Constraint
5566 (Id, Discriminant_Constraint (T));
5567 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5568 end if;
5569
5570 when Incomplete_Kind =>
5571 if Ada_Version >= Ada_2005 then
5572
5573 -- In Ada 2005 an incomplete type can be explicitly tagged:
5574 -- propagate indication. Note that we also have to include
5575 -- subtypes for Ada 2012 extended use of incomplete types.
5576
5577 Set_Ekind (Id, E_Incomplete_Subtype);
5578 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5579 Set_Private_Dependents (Id, New_Elmt_List);
5580
5581 if Is_Tagged_Type (Id) then
5582 Set_No_Tagged_Streams_Pragma
5583 (Id, No_Tagged_Streams_Pragma (T));
5584 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5585 end if;
5586
5587 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5588 -- incomplete type visible through a limited with clause.
5589
5590 if From_Limited_With (T)
5591 and then Present (Non_Limited_View (T))
5592 then
5593 Set_From_Limited_With (Id);
5594 Set_Non_Limited_View (Id, Non_Limited_View (T));
5595
5596 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5597 -- to the private dependents of the original incomplete
5598 -- type for future transformation.
5599
5600 else
5601 Append_Elmt (Id, Private_Dependents (T));
5602 end if;
5603
5604 -- If the subtype name denotes an incomplete type an error
5605 -- was already reported by Process_Subtype.
5606
5607 else
5608 Set_Etype (Id, Any_Type);
5609 end if;
5610
5611 when others =>
5612 raise Program_Error;
5613 end case;
5614 end if;
5615
5616 if Etype (Id) = Any_Type then
5617 goto Leave;
5618 end if;
5619
5620 -- Some common processing on all types
5621
5622 Set_Size_Info (Id, T);
5623 Set_First_Rep_Item (Id, First_Rep_Item (T));
5624
5625 -- If the parent type is a generic actual, so is the subtype. This may
5626 -- happen in a nested instance. Why Comes_From_Source test???
5627
5628 if not Comes_From_Source (N) then
5629 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5630 end if;
5631
5632 -- If this is a subtype declaration for an actual in an instance,
5633 -- inherit static and dynamic predicates if any.
5634
5635 -- If declaration has no aspect specifications, inherit predicate
5636 -- info as well. Unclear how to handle the case of both specified
5637 -- and inherited predicates ??? Other inherited aspects, such as
5638 -- invariants, should be OK, but the combination with later pragmas
5639 -- may also require special merging.
5640
5641 if Has_Predicates (T)
5642 and then Present (Predicate_Function (T))
5643 and then
5644 ((In_Instance and then not Comes_From_Source (N))
5645 or else No (Aspect_Specifications (N)))
5646 then
5647 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5648
5649 if Has_Static_Predicate (T) then
5650 Set_Has_Static_Predicate (Id);
5651 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5652 end if;
5653 end if;
5654
5655 -- Remaining processing depends on characteristics of base type
5656
5657 T := Etype (Id);
5658
5659 Set_Is_Immediately_Visible (Id, True);
5660 Set_Depends_On_Private (Id, Has_Private_Component (T));
5661 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5662
5663 if Is_Interface (T) then
5664 Set_Is_Interface (Id);
5665 end if;
5666
5667 if Present (Generic_Parent_Type (N))
5668 and then
5669 (Nkind (Parent (Generic_Parent_Type (N))) /=
5670 N_Formal_Type_Declaration
5671 or else Nkind (Formal_Type_Definition
5672 (Parent (Generic_Parent_Type (N)))) /=
5673 N_Formal_Private_Type_Definition)
5674 then
5675 if Is_Tagged_Type (Id) then
5676
5677 -- If this is a generic actual subtype for a synchronized type,
5678 -- the primitive operations are those of the corresponding record
5679 -- for which there is a separate subtype declaration.
5680
5681 if Is_Concurrent_Type (Id) then
5682 null;
5683 elsif Is_Class_Wide_Type (Id) then
5684 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5685 else
5686 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5687 end if;
5688
5689 elsif Scope (Etype (Id)) /= Standard_Standard then
5690 Derive_Subprograms (Generic_Parent_Type (N), Id);
5691 end if;
5692 end if;
5693
5694 if Is_Private_Type (T) and then Present (Full_View (T)) then
5695 Conditional_Delay (Id, Full_View (T));
5696
5697 -- The subtypes of components or subcomponents of protected types
5698 -- do not need freeze nodes, which would otherwise appear in the
5699 -- wrong scope (before the freeze node for the protected type). The
5700 -- proper subtypes are those of the subcomponents of the corresponding
5701 -- record.
5702
5703 elsif Ekind (Scope (Id)) /= E_Protected_Type
5704 and then Present (Scope (Scope (Id))) -- error defense
5705 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5706 then
5707 Conditional_Delay (Id, T);
5708 end if;
5709
5710 -- If we have a subtype of an incomplete type whose full type is a
5711 -- derived numeric type, we need to have a freeze node for the subtype.
5712 -- Otherwise gigi will complain while computing the (static) bounds of
5713 -- the subtype.
5714
5715 if Is_Itype (T)
5716 and then Is_Elementary_Type (Id)
5717 and then Etype (Id) /= Id
5718 then
5719 declare
5720 Partial : constant Entity_Id :=
5721 Incomplete_Or_Partial_View (First_Subtype (Id));
5722 begin
5723 if Present (Partial)
5724 and then Ekind (Partial) = E_Incomplete_Type
5725 then
5726 Set_Has_Delayed_Freeze (Id);
5727 end if;
5728 end;
5729 end if;
5730
5731 -- Check that Constraint_Error is raised for a scalar subtype indication
5732 -- when the lower or upper bound of a non-null range lies outside the
5733 -- range of the type mark.
5734
5735 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5736 if Is_Scalar_Type (Etype (Id))
5737 and then Scalar_Range (Id) /=
5738 Scalar_Range
5739 (Etype (Subtype_Mark (Subtype_Indication (N))))
5740 then
5741 Apply_Range_Check
5742 (Scalar_Range (Id),
5743 Etype (Subtype_Mark (Subtype_Indication (N))));
5744
5745 -- In the array case, check compatibility for each index
5746
5747 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5748 then
5749 -- This really should be a subprogram that finds the indications
5750 -- to check???
5751
5752 declare
5753 Subt_Index : Node_Id := First_Index (Id);
5754 Target_Index : Node_Id :=
5755 First_Index (Etype
5756 (Subtype_Mark (Subtype_Indication (N))));
5757 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5758
5759 begin
5760 while Present (Subt_Index) loop
5761 if ((Nkind (Subt_Index) = N_Identifier
5762 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5763 or else Nkind (Subt_Index) = N_Subtype_Indication)
5764 and then
5765 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5766 then
5767 declare
5768 Target_Typ : constant Entity_Id :=
5769 Etype (Target_Index);
5770 begin
5771 R_Checks :=
5772 Get_Range_Checks
5773 (Scalar_Range (Etype (Subt_Index)),
5774 Target_Typ,
5775 Etype (Subt_Index),
5776 Defining_Identifier (N));
5777
5778 -- Reset Has_Dynamic_Range_Check on the subtype to
5779 -- prevent elision of the index check due to a dynamic
5780 -- check generated for a preceding index (needed since
5781 -- Insert_Range_Checks tries to avoid generating
5782 -- redundant checks on a given declaration).
5783
5784 Set_Has_Dynamic_Range_Check (N, False);
5785
5786 Insert_Range_Checks
5787 (R_Checks,
5788 N,
5789 Target_Typ,
5790 Sloc (Defining_Identifier (N)));
5791
5792 -- Record whether this index involved a dynamic check
5793
5794 Has_Dyn_Chk :=
5795 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5796 end;
5797 end if;
5798
5799 Next_Index (Subt_Index);
5800 Next_Index (Target_Index);
5801 end loop;
5802
5803 -- Finally, mark whether the subtype involves dynamic checks
5804
5805 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5806 end;
5807 end if;
5808 end if;
5809
5810 Set_Optimize_Alignment_Flags (Id);
5811 Check_Eliminated (Id);
5812
5813 <<Leave>>
5814 if Has_Aspects (N) then
5815 Analyze_Aspect_Specifications (N, Id);
5816 end if;
5817
5818 Analyze_Dimension (N);
5819
5820 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5821 -- indications on composite types where the constraints are dynamic.
5822 -- Note that object declarations and aggregates generate implicit
5823 -- subtype declarations, which this covers. One special case is that the
5824 -- implicitly generated "=" for discriminated types includes an
5825 -- offending subtype declaration, which is harmless, so we ignore it
5826 -- here.
5827
5828 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5829 declare
5830 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5831 begin
5832 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5833 and then not (Is_Internal (Id)
5834 and then Is_TSS (Scope (Id),
5835 TSS_Composite_Equality))
5836 and then not Within_Init_Proc
5837 and then not All_Composite_Constraints_Static (Cstr)
5838 then
5839 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5840 end if;
5841 end;
5842 end if;
5843 end Analyze_Subtype_Declaration;
5844
5845 --------------------------------
5846 -- Analyze_Subtype_Indication --
5847 --------------------------------
5848
5849 procedure Analyze_Subtype_Indication (N : Node_Id) is
5850 T : constant Entity_Id := Subtype_Mark (N);
5851 R : constant Node_Id := Range_Expression (Constraint (N));
5852
5853 begin
5854 Analyze (T);
5855
5856 if R /= Error then
5857 Analyze (R);
5858 Set_Etype (N, Etype (R));
5859 Resolve (R, Entity (T));
5860 else
5861 Set_Error_Posted (R);
5862 Set_Error_Posted (T);
5863 end if;
5864 end Analyze_Subtype_Indication;
5865
5866 --------------------------
5867 -- Analyze_Variant_Part --
5868 --------------------------
5869
5870 procedure Analyze_Variant_Part (N : Node_Id) is
5871 Discr_Name : Node_Id;
5872 Discr_Type : Entity_Id;
5873
5874 procedure Process_Variant (A : Node_Id);
5875 -- Analyze declarations for a single variant
5876
5877 package Analyze_Variant_Choices is
5878 new Generic_Analyze_Choices (Process_Variant);
5879 use Analyze_Variant_Choices;
5880
5881 ---------------------
5882 -- Process_Variant --
5883 ---------------------
5884
5885 procedure Process_Variant (A : Node_Id) is
5886 CL : constant Node_Id := Component_List (A);
5887 begin
5888 if not Null_Present (CL) then
5889 Analyze_Declarations (Component_Items (CL));
5890
5891 if Present (Variant_Part (CL)) then
5892 Analyze (Variant_Part (CL));
5893 end if;
5894 end if;
5895 end Process_Variant;
5896
5897 -- Start of processing for Analyze_Variant_Part
5898
5899 begin
5900 Discr_Name := Name (N);
5901 Analyze (Discr_Name);
5902
5903 -- If Discr_Name bad, get out (prevent cascaded errors)
5904
5905 if Etype (Discr_Name) = Any_Type then
5906 return;
5907 end if;
5908
5909 -- Check invalid discriminant in variant part
5910
5911 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5912 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5913 end if;
5914
5915 Discr_Type := Etype (Entity (Discr_Name));
5916
5917 if not Is_Discrete_Type (Discr_Type) then
5918 Error_Msg_N
5919 ("discriminant in a variant part must be of a discrete type",
5920 Name (N));
5921 return;
5922 end if;
5923
5924 -- Now analyze the choices, which also analyzes the declarations that
5925 -- are associated with each choice.
5926
5927 Analyze_Choices (Variants (N), Discr_Type);
5928
5929 -- Note: we used to instantiate and call Check_Choices here to check
5930 -- that the choices covered the discriminant, but it's too early to do
5931 -- that because of statically predicated subtypes, whose analysis may
5932 -- be deferred to their freeze point which may be as late as the freeze
5933 -- point of the containing record. So this call is now to be found in
5934 -- Freeze_Record_Declaration.
5935
5936 end Analyze_Variant_Part;
5937
5938 ----------------------------
5939 -- Array_Type_Declaration --
5940 ----------------------------
5941
5942 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5943 Component_Def : constant Node_Id := Component_Definition (Def);
5944 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5945 P : constant Node_Id := Parent (Def);
5946 Element_Type : Entity_Id;
5947 Implicit_Base : Entity_Id;
5948 Index : Node_Id;
5949 Nb_Index : Nat;
5950 Priv : Entity_Id;
5951 Related_Id : Entity_Id := Empty;
5952
5953 begin
5954 if Nkind (Def) = N_Constrained_Array_Definition then
5955 Index := First (Discrete_Subtype_Definitions (Def));
5956 else
5957 Index := First (Subtype_Marks (Def));
5958 end if;
5959
5960 -- Find proper names for the implicit types which may be public. In case
5961 -- of anonymous arrays we use the name of the first object of that type
5962 -- as prefix.
5963
5964 if No (T) then
5965 Related_Id := Defining_Identifier (P);
5966 else
5967 Related_Id := T;
5968 end if;
5969
5970 Nb_Index := 1;
5971 while Present (Index) loop
5972 Analyze (Index);
5973
5974 -- Test for odd case of trying to index a type by the type itself
5975
5976 if Is_Entity_Name (Index) and then Entity (Index) = T then
5977 Error_Msg_N ("type& cannot be indexed by itself", Index);
5978 Set_Entity (Index, Standard_Boolean);
5979 Set_Etype (Index, Standard_Boolean);
5980 end if;
5981
5982 -- Check SPARK restriction requiring a subtype mark
5983
5984 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5985 Check_SPARK_05_Restriction ("subtype mark required", Index);
5986 end if;
5987
5988 -- Add a subtype declaration for each index of private array type
5989 -- declaration whose etype is also private. For example:
5990
5991 -- package Pkg is
5992 -- type Index is private;
5993 -- private
5994 -- type Table is array (Index) of ...
5995 -- end;
5996
5997 -- This is currently required by the expander for the internally
5998 -- generated equality subprogram of records with variant parts in
5999 -- which the etype of some component is such private type.
6000
6001 if Ekind (Current_Scope) = E_Package
6002 and then In_Private_Part (Current_Scope)
6003 and then Has_Private_Declaration (Etype (Index))
6004 then
6005 declare
6006 Loc : constant Source_Ptr := Sloc (Def);
6007 Decl : Entity_Id;
6008 New_E : Entity_Id;
6009
6010 begin
6011 New_E := Make_Temporary (Loc, 'T');
6012 Set_Is_Internal (New_E);
6013
6014 Decl :=
6015 Make_Subtype_Declaration (Loc,
6016 Defining_Identifier => New_E,
6017 Subtype_Indication =>
6018 New_Occurrence_Of (Etype (Index), Loc));
6019
6020 Insert_Before (Parent (Def), Decl);
6021 Analyze (Decl);
6022 Set_Etype (Index, New_E);
6023
6024 -- If the index is a range or a subtype indication it carries
6025 -- no entity. Example:
6026
6027 -- package Pkg is
6028 -- type T is private;
6029 -- private
6030 -- type T is new Natural;
6031 -- Table : array (T(1) .. T(10)) of Boolean;
6032 -- end Pkg;
6033
6034 -- Otherwise the type of the reference is its entity.
6035
6036 if Is_Entity_Name (Index) then
6037 Set_Entity (Index, New_E);
6038 end if;
6039 end;
6040 end if;
6041
6042 Make_Index (Index, P, Related_Id, Nb_Index);
6043
6044 -- Check error of subtype with predicate for index type
6045
6046 Bad_Predicated_Subtype_Use
6047 ("subtype& has predicate, not allowed as index subtype",
6048 Index, Etype (Index));
6049
6050 -- Move to next index
6051
6052 Next_Index (Index);
6053 Nb_Index := Nb_Index + 1;
6054 end loop;
6055
6056 -- Process subtype indication if one is present
6057
6058 if Present (Component_Typ) then
6059 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6060
6061 Set_Etype (Component_Typ, Element_Type);
6062
6063 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6064 Check_SPARK_05_Restriction
6065 ("subtype mark required", Component_Typ);
6066 end if;
6067
6068 -- Ada 2005 (AI-230): Access Definition case
6069
6070 else pragma Assert (Present (Access_Definition (Component_Def)));
6071
6072 -- Indicate that the anonymous access type is created by the
6073 -- array type declaration.
6074
6075 Element_Type := Access_Definition
6076 (Related_Nod => P,
6077 N => Access_Definition (Component_Def));
6078 Set_Is_Local_Anonymous_Access (Element_Type);
6079
6080 -- Propagate the parent. This field is needed if we have to generate
6081 -- the master_id associated with an anonymous access to task type
6082 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6083
6084 Set_Parent (Element_Type, Parent (T));
6085
6086 -- Ada 2005 (AI-230): In case of components that are anonymous access
6087 -- types the level of accessibility depends on the enclosing type
6088 -- declaration
6089
6090 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6091
6092 -- Ada 2005 (AI-254)
6093
6094 declare
6095 CD : constant Node_Id :=
6096 Access_To_Subprogram_Definition
6097 (Access_Definition (Component_Def));
6098 begin
6099 if Present (CD) and then Protected_Present (CD) then
6100 Element_Type :=
6101 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6102 end if;
6103 end;
6104 end if;
6105
6106 -- Constrained array case
6107
6108 if No (T) then
6109 T := Create_Itype (E_Void, P, Related_Id, 'T');
6110 end if;
6111
6112 if Nkind (Def) = N_Constrained_Array_Definition then
6113
6114 -- Establish Implicit_Base as unconstrained base type
6115
6116 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6117
6118 Set_Etype (Implicit_Base, Implicit_Base);
6119 Set_Scope (Implicit_Base, Current_Scope);
6120 Set_Has_Delayed_Freeze (Implicit_Base);
6121 Set_Default_SSO (Implicit_Base);
6122
6123 -- The constrained array type is a subtype of the unconstrained one
6124
6125 Set_Ekind (T, E_Array_Subtype);
6126 Init_Size_Align (T);
6127 Set_Etype (T, Implicit_Base);
6128 Set_Scope (T, Current_Scope);
6129 Set_Is_Constrained (T);
6130 Set_First_Index (T,
6131 First (Discrete_Subtype_Definitions (Def)));
6132 Set_Has_Delayed_Freeze (T);
6133
6134 -- Complete setup of implicit base type
6135
6136 Set_Component_Size (Implicit_Base, Uint_0);
6137 Set_Component_Type (Implicit_Base, Element_Type);
6138 Set_Finalize_Storage_Only
6139 (Implicit_Base,
6140 Finalize_Storage_Only (Element_Type));
6141 Set_First_Index (Implicit_Base, First_Index (T));
6142 Set_Has_Controlled_Component
6143 (Implicit_Base,
6144 Has_Controlled_Component (Element_Type)
6145 or else Is_Controlled_Active (Element_Type));
6146 Set_Packed_Array_Impl_Type
6147 (Implicit_Base, Empty);
6148
6149 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6150
6151 -- Unconstrained array case
6152
6153 else
6154 Set_Ekind (T, E_Array_Type);
6155 Init_Size_Align (T);
6156 Set_Etype (T, T);
6157 Set_Scope (T, Current_Scope);
6158 Set_Component_Size (T, Uint_0);
6159 Set_Is_Constrained (T, False);
6160 Set_First_Index (T, First (Subtype_Marks (Def)));
6161 Set_Has_Delayed_Freeze (T, True);
6162 Propagate_Concurrent_Flags (T, Element_Type);
6163 Set_Has_Controlled_Component (T, Has_Controlled_Component
6164 (Element_Type)
6165 or else
6166 Is_Controlled_Active (Element_Type));
6167 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6168 (Element_Type));
6169 Set_Default_SSO (T);
6170 end if;
6171
6172 -- Common attributes for both cases
6173
6174 Set_Component_Type (Base_Type (T), Element_Type);
6175 Set_Packed_Array_Impl_Type (T, Empty);
6176
6177 if Aliased_Present (Component_Definition (Def)) then
6178 Check_SPARK_05_Restriction
6179 ("aliased is not allowed", Component_Definition (Def));
6180 Set_Has_Aliased_Components (Etype (T));
6181 end if;
6182
6183 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6184 -- array type to ensure that objects of this type are initialized.
6185
6186 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6187 Set_Can_Never_Be_Null (T);
6188
6189 if Null_Exclusion_Present (Component_Definition (Def))
6190
6191 -- No need to check itypes because in their case this check was
6192 -- done at their point of creation
6193
6194 and then not Is_Itype (Element_Type)
6195 then
6196 Error_Msg_N
6197 ("`NOT NULL` not allowed (null already excluded)",
6198 Subtype_Indication (Component_Definition (Def)));
6199 end if;
6200 end if;
6201
6202 Priv := Private_Component (Element_Type);
6203
6204 if Present (Priv) then
6205
6206 -- Check for circular definitions
6207
6208 if Priv = Any_Type then
6209 Set_Component_Type (Etype (T), Any_Type);
6210
6211 -- There is a gap in the visibility of operations on the composite
6212 -- type only if the component type is defined in a different scope.
6213
6214 elsif Scope (Priv) = Current_Scope then
6215 null;
6216
6217 elsif Is_Limited_Type (Priv) then
6218 Set_Is_Limited_Composite (Etype (T));
6219 Set_Is_Limited_Composite (T);
6220 else
6221 Set_Is_Private_Composite (Etype (T));
6222 Set_Is_Private_Composite (T);
6223 end if;
6224 end if;
6225
6226 -- A syntax error in the declaration itself may lead to an empty index
6227 -- list, in which case do a minimal patch.
6228
6229 if No (First_Index (T)) then
6230 Error_Msg_N ("missing index definition in array type declaration", T);
6231
6232 declare
6233 Indexes : constant List_Id :=
6234 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6235 begin
6236 Set_Discrete_Subtype_Definitions (Def, Indexes);
6237 Set_First_Index (T, First (Indexes));
6238 return;
6239 end;
6240 end if;
6241
6242 -- Create a concatenation operator for the new type. Internal array
6243 -- types created for packed entities do not need such, they are
6244 -- compatible with the user-defined type.
6245
6246 if Number_Dimensions (T) = 1
6247 and then not Is_Packed_Array_Impl_Type (T)
6248 then
6249 New_Concatenation_Op (T);
6250 end if;
6251
6252 -- In the case of an unconstrained array the parser has already verified
6253 -- that all the indexes are unconstrained but we still need to make sure
6254 -- that the element type is constrained.
6255
6256 if not Is_Definite_Subtype (Element_Type) then
6257 Error_Msg_N
6258 ("unconstrained element type in array declaration",
6259 Subtype_Indication (Component_Def));
6260
6261 elsif Is_Abstract_Type (Element_Type) then
6262 Error_Msg_N
6263 ("the type of a component cannot be abstract",
6264 Subtype_Indication (Component_Def));
6265 end if;
6266
6267 -- There may be an invariant declared for the component type, but
6268 -- the construction of the component invariant checking procedure
6269 -- takes place during expansion.
6270 end Array_Type_Declaration;
6271
6272 ------------------------------------------------------
6273 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6274 ------------------------------------------------------
6275
6276 function Replace_Anonymous_Access_To_Protected_Subprogram
6277 (N : Node_Id) return Entity_Id
6278 is
6279 Loc : constant Source_Ptr := Sloc (N);
6280
6281 Curr_Scope : constant Scope_Stack_Entry :=
6282 Scope_Stack.Table (Scope_Stack.Last);
6283
6284 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6285
6286 Acc : Node_Id;
6287 -- Access definition in declaration
6288
6289 Comp : Node_Id;
6290 -- Object definition or formal definition with an access definition
6291
6292 Decl : Node_Id;
6293 -- Declaration of anonymous access to subprogram type
6294
6295 Spec : Node_Id;
6296 -- Original specification in access to subprogram
6297
6298 P : Node_Id;
6299
6300 begin
6301 Set_Is_Internal (Anon);
6302
6303 case Nkind (N) is
6304 when N_Constrained_Array_Definition
6305 | N_Component_Declaration
6306 | N_Unconstrained_Array_Definition
6307 =>
6308 Comp := Component_Definition (N);
6309 Acc := Access_Definition (Comp);
6310
6311 when N_Discriminant_Specification =>
6312 Comp := Discriminant_Type (N);
6313 Acc := Comp;
6314
6315 when N_Parameter_Specification =>
6316 Comp := Parameter_Type (N);
6317 Acc := Comp;
6318
6319 when N_Access_Function_Definition =>
6320 Comp := Result_Definition (N);
6321 Acc := Comp;
6322
6323 when N_Object_Declaration =>
6324 Comp := Object_Definition (N);
6325 Acc := Comp;
6326
6327 when N_Function_Specification =>
6328 Comp := Result_Definition (N);
6329 Acc := Comp;
6330
6331 when others =>
6332 raise Program_Error;
6333 end case;
6334
6335 Spec := Access_To_Subprogram_Definition (Acc);
6336
6337 Decl :=
6338 Make_Full_Type_Declaration (Loc,
6339 Defining_Identifier => Anon,
6340 Type_Definition => Copy_Separate_Tree (Spec));
6341
6342 Mark_Rewrite_Insertion (Decl);
6343
6344 -- In ASIS mode, analyze the profile on the original node, because
6345 -- the separate copy does not provide enough links to recover the
6346 -- original tree. Analysis is limited to type annotations, within
6347 -- a temporary scope that serves as an anonymous subprogram to collect
6348 -- otherwise useless temporaries and itypes.
6349
6350 if ASIS_Mode then
6351 declare
6352 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6353
6354 begin
6355 if Nkind (Spec) = N_Access_Function_Definition then
6356 Set_Ekind (Typ, E_Function);
6357 else
6358 Set_Ekind (Typ, E_Procedure);
6359 end if;
6360
6361 Set_Parent (Typ, N);
6362 Set_Scope (Typ, Current_Scope);
6363 Push_Scope (Typ);
6364
6365 -- Nothing to do if procedure is parameterless
6366
6367 if Present (Parameter_Specifications (Spec)) then
6368 Process_Formals (Parameter_Specifications (Spec), Spec);
6369 end if;
6370
6371 if Nkind (Spec) = N_Access_Function_Definition then
6372 declare
6373 Def : constant Node_Id := Result_Definition (Spec);
6374
6375 begin
6376 -- The result might itself be an anonymous access type, so
6377 -- have to recurse.
6378
6379 if Nkind (Def) = N_Access_Definition then
6380 if Present (Access_To_Subprogram_Definition (Def)) then
6381 Set_Etype
6382 (Def,
6383 Replace_Anonymous_Access_To_Protected_Subprogram
6384 (Spec));
6385 else
6386 Find_Type (Subtype_Mark (Def));
6387 end if;
6388
6389 else
6390 Find_Type (Def);
6391 end if;
6392 end;
6393 end if;
6394
6395 End_Scope;
6396 end;
6397 end if;
6398
6399 -- Insert the new declaration in the nearest enclosing scope. If the
6400 -- parent is a body and N is its return type, the declaration belongs
6401 -- in the enclosing scope. Likewise if N is the type of a parameter.
6402
6403 P := Parent (N);
6404
6405 if Nkind (N) = N_Function_Specification
6406 and then Nkind (P) = N_Subprogram_Body
6407 then
6408 P := Parent (P);
6409 elsif Nkind (N) = N_Parameter_Specification
6410 and then Nkind (P) in N_Subprogram_Specification
6411 and then Nkind (Parent (P)) = N_Subprogram_Body
6412 then
6413 P := Parent (Parent (P));
6414 end if;
6415
6416 while Present (P) and then not Has_Declarations (P) loop
6417 P := Parent (P);
6418 end loop;
6419
6420 pragma Assert (Present (P));
6421
6422 if Nkind (P) = N_Package_Specification then
6423 Prepend (Decl, Visible_Declarations (P));
6424 else
6425 Prepend (Decl, Declarations (P));
6426 end if;
6427
6428 -- Replace the anonymous type with an occurrence of the new declaration.
6429 -- In all cases the rewritten node does not have the null-exclusion
6430 -- attribute because (if present) it was already inherited by the
6431 -- anonymous entity (Anon). Thus, in case of components we do not
6432 -- inherit this attribute.
6433
6434 if Nkind (N) = N_Parameter_Specification then
6435 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6436 Set_Etype (Defining_Identifier (N), Anon);
6437 Set_Null_Exclusion_Present (N, False);
6438
6439 elsif Nkind (N) = N_Object_Declaration then
6440 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6441 Set_Etype (Defining_Identifier (N), Anon);
6442
6443 elsif Nkind (N) = N_Access_Function_Definition then
6444 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6445
6446 elsif Nkind (N) = N_Function_Specification then
6447 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6448 Set_Etype (Defining_Unit_Name (N), Anon);
6449
6450 else
6451 Rewrite (Comp,
6452 Make_Component_Definition (Loc,
6453 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6454 end if;
6455
6456 Mark_Rewrite_Insertion (Comp);
6457
6458 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6459 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6460 and then not Is_Type (Current_Scope))
6461 then
6462
6463 -- Declaration can be analyzed in the current scope.
6464
6465 Analyze (Decl);
6466
6467 else
6468 -- Temporarily remove the current scope (record or subprogram) from
6469 -- the stack to add the new declarations to the enclosing scope.
6470 -- The anonymous entity is an Itype with the proper attributes.
6471
6472 Scope_Stack.Decrement_Last;
6473 Analyze (Decl);
6474 Set_Is_Itype (Anon);
6475 Set_Associated_Node_For_Itype (Anon, N);
6476 Scope_Stack.Append (Curr_Scope);
6477 end if;
6478
6479 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6480 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6481 return Anon;
6482 end Replace_Anonymous_Access_To_Protected_Subprogram;
6483
6484 -------------------------------
6485 -- Build_Derived_Access_Type --
6486 -------------------------------
6487
6488 procedure Build_Derived_Access_Type
6489 (N : Node_Id;
6490 Parent_Type : Entity_Id;
6491 Derived_Type : Entity_Id)
6492 is
6493 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6494
6495 Desig_Type : Entity_Id;
6496 Discr : Entity_Id;
6497 Discr_Con_Elist : Elist_Id;
6498 Discr_Con_El : Elmt_Id;
6499 Subt : Entity_Id;
6500
6501 begin
6502 -- Set the designated type so it is available in case this is an access
6503 -- to a self-referential type, e.g. a standard list type with a next
6504 -- pointer. Will be reset after subtype is built.
6505
6506 Set_Directly_Designated_Type
6507 (Derived_Type, Designated_Type (Parent_Type));
6508
6509 Subt := Process_Subtype (S, N);
6510
6511 if Nkind (S) /= N_Subtype_Indication
6512 and then Subt /= Base_Type (Subt)
6513 then
6514 Set_Ekind (Derived_Type, E_Access_Subtype);
6515 end if;
6516
6517 if Ekind (Derived_Type) = E_Access_Subtype then
6518 declare
6519 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6520 Ibase : constant Entity_Id :=
6521 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6522 Svg_Chars : constant Name_Id := Chars (Ibase);
6523 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6524
6525 begin
6526 Copy_Node (Pbase, Ibase);
6527
6528 -- Restore Itype status after Copy_Node
6529
6530 Set_Is_Itype (Ibase);
6531 Set_Associated_Node_For_Itype (Ibase, N);
6532
6533 Set_Chars (Ibase, Svg_Chars);
6534 Set_Next_Entity (Ibase, Svg_Next_E);
6535 Set_Sloc (Ibase, Sloc (Derived_Type));
6536 Set_Scope (Ibase, Scope (Derived_Type));
6537 Set_Freeze_Node (Ibase, Empty);
6538 Set_Is_Frozen (Ibase, False);
6539 Set_Comes_From_Source (Ibase, False);
6540 Set_Is_First_Subtype (Ibase, False);
6541
6542 Set_Etype (Ibase, Pbase);
6543 Set_Etype (Derived_Type, Ibase);
6544 end;
6545 end if;
6546
6547 Set_Directly_Designated_Type
6548 (Derived_Type, Designated_Type (Subt));
6549
6550 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6551 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6552 Set_Size_Info (Derived_Type, Parent_Type);
6553 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6554 Set_Depends_On_Private (Derived_Type,
6555 Has_Private_Component (Derived_Type));
6556 Conditional_Delay (Derived_Type, Subt);
6557
6558 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6559 -- that it is not redundant.
6560
6561 if Null_Exclusion_Present (Type_Definition (N)) then
6562 Set_Can_Never_Be_Null (Derived_Type);
6563
6564 elsif Can_Never_Be_Null (Parent_Type) then
6565 Set_Can_Never_Be_Null (Derived_Type);
6566 end if;
6567
6568 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6569 -- the root type for this information.
6570
6571 -- Apply range checks to discriminants for derived record case
6572 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6573
6574 Desig_Type := Designated_Type (Derived_Type);
6575
6576 if Is_Composite_Type (Desig_Type)
6577 and then (not Is_Array_Type (Desig_Type))
6578 and then Has_Discriminants (Desig_Type)
6579 and then Base_Type (Desig_Type) /= Desig_Type
6580 then
6581 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6582 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6583
6584 Discr := First_Discriminant (Base_Type (Desig_Type));
6585 while Present (Discr_Con_El) loop
6586 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6587 Next_Elmt (Discr_Con_El);
6588 Next_Discriminant (Discr);
6589 end loop;
6590 end if;
6591 end Build_Derived_Access_Type;
6592
6593 ------------------------------
6594 -- Build_Derived_Array_Type --
6595 ------------------------------
6596
6597 procedure Build_Derived_Array_Type
6598 (N : Node_Id;
6599 Parent_Type : Entity_Id;
6600 Derived_Type : Entity_Id)
6601 is
6602 Loc : constant Source_Ptr := Sloc (N);
6603 Tdef : constant Node_Id := Type_Definition (N);
6604 Indic : constant Node_Id := Subtype_Indication (Tdef);
6605 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6606 Implicit_Base : Entity_Id;
6607 New_Indic : Node_Id;
6608
6609 procedure Make_Implicit_Base;
6610 -- If the parent subtype is constrained, the derived type is a subtype
6611 -- of an implicit base type derived from the parent base.
6612
6613 ------------------------
6614 -- Make_Implicit_Base --
6615 ------------------------
6616
6617 procedure Make_Implicit_Base is
6618 begin
6619 Implicit_Base :=
6620 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6621
6622 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6623 Set_Etype (Implicit_Base, Parent_Base);
6624
6625 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6626 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6627
6628 Set_Has_Delayed_Freeze (Implicit_Base, True);
6629 end Make_Implicit_Base;
6630
6631 -- Start of processing for Build_Derived_Array_Type
6632
6633 begin
6634 if not Is_Constrained (Parent_Type) then
6635 if Nkind (Indic) /= N_Subtype_Indication then
6636 Set_Ekind (Derived_Type, E_Array_Type);
6637
6638 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6639 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6640
6641 Set_Has_Delayed_Freeze (Derived_Type, True);
6642
6643 else
6644 Make_Implicit_Base;
6645 Set_Etype (Derived_Type, Implicit_Base);
6646
6647 New_Indic :=
6648 Make_Subtype_Declaration (Loc,
6649 Defining_Identifier => Derived_Type,
6650 Subtype_Indication =>
6651 Make_Subtype_Indication (Loc,
6652 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6653 Constraint => Constraint (Indic)));
6654
6655 Rewrite (N, New_Indic);
6656 Analyze (N);
6657 end if;
6658
6659 else
6660 if Nkind (Indic) /= N_Subtype_Indication then
6661 Make_Implicit_Base;
6662
6663 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6664 Set_Etype (Derived_Type, Implicit_Base);
6665 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6666
6667 else
6668 Error_Msg_N ("illegal constraint on constrained type", Indic);
6669 end if;
6670 end if;
6671
6672 -- If parent type is not a derived type itself, and is declared in
6673 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6674 -- the new type's concatenation operator since Derive_Subprograms
6675 -- will not inherit the parent's operator. If the parent type is
6676 -- unconstrained, the operator is of the unconstrained base type.
6677
6678 if Number_Dimensions (Parent_Type) = 1
6679 and then not Is_Limited_Type (Parent_Type)
6680 and then not Is_Derived_Type (Parent_Type)
6681 and then not Is_Package_Or_Generic_Package
6682 (Scope (Base_Type (Parent_Type)))
6683 then
6684 if not Is_Constrained (Parent_Type)
6685 and then Is_Constrained (Derived_Type)
6686 then
6687 New_Concatenation_Op (Implicit_Base);
6688 else
6689 New_Concatenation_Op (Derived_Type);
6690 end if;
6691 end if;
6692 end Build_Derived_Array_Type;
6693
6694 -----------------------------------
6695 -- Build_Derived_Concurrent_Type --
6696 -----------------------------------
6697
6698 procedure Build_Derived_Concurrent_Type
6699 (N : Node_Id;
6700 Parent_Type : Entity_Id;
6701 Derived_Type : Entity_Id)
6702 is
6703 Loc : constant Source_Ptr := Sloc (N);
6704
6705 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6706 Corr_Decl : Node_Id;
6707 Corr_Decl_Needed : Boolean;
6708 -- If the derived type has fewer discriminants than its parent, the
6709 -- corresponding record is also a derived type, in order to account for
6710 -- the bound discriminants. We create a full type declaration for it in
6711 -- this case.
6712
6713 Constraint_Present : constant Boolean :=
6714 Nkind (Subtype_Indication (Type_Definition (N))) =
6715 N_Subtype_Indication;
6716
6717 D_Constraint : Node_Id;
6718 New_Constraint : Elist_Id;
6719 Old_Disc : Entity_Id;
6720 New_Disc : Entity_Id;
6721 New_N : Node_Id;
6722
6723 begin
6724 Set_Stored_Constraint (Derived_Type, No_Elist);
6725 Corr_Decl_Needed := False;
6726 Old_Disc := Empty;
6727
6728 if Present (Discriminant_Specifications (N))
6729 and then Constraint_Present
6730 then
6731 Old_Disc := First_Discriminant (Parent_Type);
6732 New_Disc := First (Discriminant_Specifications (N));
6733 while Present (New_Disc) and then Present (Old_Disc) loop
6734 Next_Discriminant (Old_Disc);
6735 Next (New_Disc);
6736 end loop;
6737 end if;
6738
6739 if Present (Old_Disc) and then Expander_Active then
6740
6741 -- The new type has fewer discriminants, so we need to create a new
6742 -- corresponding record, which is derived from the corresponding
6743 -- record of the parent, and has a stored constraint that captures
6744 -- the values of the discriminant constraints. The corresponding
6745 -- record is needed only if expander is active and code generation is
6746 -- enabled.
6747
6748 -- The type declaration for the derived corresponding record has the
6749 -- same discriminant part and constraints as the current declaration.
6750 -- Copy the unanalyzed tree to build declaration.
6751
6752 Corr_Decl_Needed := True;
6753 New_N := Copy_Separate_Tree (N);
6754
6755 Corr_Decl :=
6756 Make_Full_Type_Declaration (Loc,
6757 Defining_Identifier => Corr_Record,
6758 Discriminant_Specifications =>
6759 Discriminant_Specifications (New_N),
6760 Type_Definition =>
6761 Make_Derived_Type_Definition (Loc,
6762 Subtype_Indication =>
6763 Make_Subtype_Indication (Loc,
6764 Subtype_Mark =>
6765 New_Occurrence_Of
6766 (Corresponding_Record_Type (Parent_Type), Loc),
6767 Constraint =>
6768 Constraint
6769 (Subtype_Indication (Type_Definition (New_N))))));
6770 end if;
6771
6772 -- Copy Storage_Size and Relative_Deadline variables if task case
6773
6774 if Is_Task_Type (Parent_Type) then
6775 Set_Storage_Size_Variable (Derived_Type,
6776 Storage_Size_Variable (Parent_Type));
6777 Set_Relative_Deadline_Variable (Derived_Type,
6778 Relative_Deadline_Variable (Parent_Type));
6779 end if;
6780
6781 if Present (Discriminant_Specifications (N)) then
6782 Push_Scope (Derived_Type);
6783 Check_Or_Process_Discriminants (N, Derived_Type);
6784
6785 if Constraint_Present then
6786 New_Constraint :=
6787 Expand_To_Stored_Constraint
6788 (Parent_Type,
6789 Build_Discriminant_Constraints
6790 (Parent_Type,
6791 Subtype_Indication (Type_Definition (N)), True));
6792 end if;
6793
6794 End_Scope;
6795
6796 elsif Constraint_Present then
6797
6798 -- Build constrained subtype, copying the constraint, and derive
6799 -- from it to create a derived constrained type.
6800
6801 declare
6802 Loc : constant Source_Ptr := Sloc (N);
6803 Anon : constant Entity_Id :=
6804 Make_Defining_Identifier (Loc,
6805 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6806 Decl : Node_Id;
6807
6808 begin
6809 Decl :=
6810 Make_Subtype_Declaration (Loc,
6811 Defining_Identifier => Anon,
6812 Subtype_Indication =>
6813 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6814 Insert_Before (N, Decl);
6815 Analyze (Decl);
6816
6817 Rewrite (Subtype_Indication (Type_Definition (N)),
6818 New_Occurrence_Of (Anon, Loc));
6819 Set_Analyzed (Derived_Type, False);
6820 Analyze (N);
6821 return;
6822 end;
6823 end if;
6824
6825 -- By default, operations and private data are inherited from parent.
6826 -- However, in the presence of bound discriminants, a new corresponding
6827 -- record will be created, see below.
6828
6829 Set_Has_Discriminants
6830 (Derived_Type, Has_Discriminants (Parent_Type));
6831 Set_Corresponding_Record_Type
6832 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6833
6834 -- Is_Constrained is set according the parent subtype, but is set to
6835 -- False if the derived type is declared with new discriminants.
6836
6837 Set_Is_Constrained
6838 (Derived_Type,
6839 (Is_Constrained (Parent_Type) or else Constraint_Present)
6840 and then not Present (Discriminant_Specifications (N)));
6841
6842 if Constraint_Present then
6843 if not Has_Discriminants (Parent_Type) then
6844 Error_Msg_N ("untagged parent must have discriminants", N);
6845
6846 elsif Present (Discriminant_Specifications (N)) then
6847
6848 -- Verify that new discriminants are used to constrain old ones
6849
6850 D_Constraint :=
6851 First
6852 (Constraints
6853 (Constraint (Subtype_Indication (Type_Definition (N)))));
6854
6855 Old_Disc := First_Discriminant (Parent_Type);
6856
6857 while Present (D_Constraint) loop
6858 if Nkind (D_Constraint) /= N_Discriminant_Association then
6859
6860 -- Positional constraint. If it is a reference to a new
6861 -- discriminant, it constrains the corresponding old one.
6862
6863 if Nkind (D_Constraint) = N_Identifier then
6864 New_Disc := First_Discriminant (Derived_Type);
6865 while Present (New_Disc) loop
6866 exit when Chars (New_Disc) = Chars (D_Constraint);
6867 Next_Discriminant (New_Disc);
6868 end loop;
6869
6870 if Present (New_Disc) then
6871 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6872 end if;
6873 end if;
6874
6875 Next_Discriminant (Old_Disc);
6876
6877 -- if this is a named constraint, search by name for the old
6878 -- discriminants constrained by the new one.
6879
6880 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6881
6882 -- Find new discriminant with that name
6883
6884 New_Disc := First_Discriminant (Derived_Type);
6885 while Present (New_Disc) loop
6886 exit when
6887 Chars (New_Disc) = Chars (Expression (D_Constraint));
6888 Next_Discriminant (New_Disc);
6889 end loop;
6890
6891 if Present (New_Disc) then
6892
6893 -- Verify that new discriminant renames some discriminant
6894 -- of the parent type, and associate the new discriminant
6895 -- with one or more old ones that it renames.
6896
6897 declare
6898 Selector : Node_Id;
6899
6900 begin
6901 Selector := First (Selector_Names (D_Constraint));
6902 while Present (Selector) loop
6903 Old_Disc := First_Discriminant (Parent_Type);
6904 while Present (Old_Disc) loop
6905 exit when Chars (Old_Disc) = Chars (Selector);
6906 Next_Discriminant (Old_Disc);
6907 end loop;
6908
6909 if Present (Old_Disc) then
6910 Set_Corresponding_Discriminant
6911 (New_Disc, Old_Disc);
6912 end if;
6913
6914 Next (Selector);
6915 end loop;
6916 end;
6917 end if;
6918 end if;
6919
6920 Next (D_Constraint);
6921 end loop;
6922
6923 New_Disc := First_Discriminant (Derived_Type);
6924 while Present (New_Disc) loop
6925 if No (Corresponding_Discriminant (New_Disc)) then
6926 Error_Msg_NE
6927 ("new discriminant& must constrain old one", N, New_Disc);
6928
6929 elsif not
6930 Subtypes_Statically_Compatible
6931 (Etype (New_Disc),
6932 Etype (Corresponding_Discriminant (New_Disc)))
6933 then
6934 Error_Msg_NE
6935 ("& not statically compatible with parent discriminant",
6936 N, New_Disc);
6937 end if;
6938
6939 Next_Discriminant (New_Disc);
6940 end loop;
6941 end if;
6942
6943 elsif Present (Discriminant_Specifications (N)) then
6944 Error_Msg_N
6945 ("missing discriminant constraint in untagged derivation", N);
6946 end if;
6947
6948 -- The entity chain of the derived type includes the new discriminants
6949 -- but shares operations with the parent.
6950
6951 if Present (Discriminant_Specifications (N)) then
6952 Old_Disc := First_Discriminant (Parent_Type);
6953 while Present (Old_Disc) loop
6954 if No (Next_Entity (Old_Disc))
6955 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6956 then
6957 Set_Next_Entity
6958 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6959 exit;
6960 end if;
6961
6962 Next_Discriminant (Old_Disc);
6963 end loop;
6964
6965 else
6966 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6967 if Has_Discriminants (Parent_Type) then
6968 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6969 Set_Discriminant_Constraint (
6970 Derived_Type, Discriminant_Constraint (Parent_Type));
6971 end if;
6972 end if;
6973
6974 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6975
6976 Set_Has_Completion (Derived_Type);
6977
6978 if Corr_Decl_Needed then
6979 Set_Stored_Constraint (Derived_Type, New_Constraint);
6980 Insert_After (N, Corr_Decl);
6981 Analyze (Corr_Decl);
6982 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6983 end if;
6984 end Build_Derived_Concurrent_Type;
6985
6986 ------------------------------------
6987 -- Build_Derived_Enumeration_Type --
6988 ------------------------------------
6989
6990 procedure Build_Derived_Enumeration_Type
6991 (N : Node_Id;
6992 Parent_Type : Entity_Id;
6993 Derived_Type : Entity_Id)
6994 is
6995 Loc : constant Source_Ptr := Sloc (N);
6996 Def : constant Node_Id := Type_Definition (N);
6997 Indic : constant Node_Id := Subtype_Indication (Def);
6998 Implicit_Base : Entity_Id;
6999 Literal : Entity_Id;
7000 New_Lit : Entity_Id;
7001 Literals_List : List_Id;
7002 Type_Decl : Node_Id;
7003 Hi, Lo : Node_Id;
7004 Rang_Expr : Node_Id;
7005
7006 begin
7007 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7008 -- not have explicit literals lists we need to process types derived
7009 -- from them specially. This is handled by Derived_Standard_Character.
7010 -- If the parent type is a generic type, there are no literals either,
7011 -- and we construct the same skeletal representation as for the generic
7012 -- parent type.
7013
7014 if Is_Standard_Character_Type (Parent_Type) then
7015 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7016
7017 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7018 declare
7019 Lo : Node_Id;
7020 Hi : Node_Id;
7021
7022 begin
7023 if Nkind (Indic) /= N_Subtype_Indication then
7024 Lo :=
7025 Make_Attribute_Reference (Loc,
7026 Attribute_Name => Name_First,
7027 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7028 Set_Etype (Lo, Derived_Type);
7029
7030 Hi :=
7031 Make_Attribute_Reference (Loc,
7032 Attribute_Name => Name_Last,
7033 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7034 Set_Etype (Hi, Derived_Type);
7035
7036 Set_Scalar_Range (Derived_Type,
7037 Make_Range (Loc,
7038 Low_Bound => Lo,
7039 High_Bound => Hi));
7040 else
7041
7042 -- Analyze subtype indication and verify compatibility
7043 -- with parent type.
7044
7045 if Base_Type (Process_Subtype (Indic, N)) /=
7046 Base_Type (Parent_Type)
7047 then
7048 Error_Msg_N
7049 ("illegal constraint for formal discrete type", N);
7050 end if;
7051 end if;
7052 end;
7053
7054 else
7055 -- If a constraint is present, analyze the bounds to catch
7056 -- premature usage of the derived literals.
7057
7058 if Nkind (Indic) = N_Subtype_Indication
7059 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7060 then
7061 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7062 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7063 end if;
7064
7065 -- Introduce an implicit base type for the derived type even if there
7066 -- is no constraint attached to it, since this seems closer to the
7067 -- Ada semantics. Build a full type declaration tree for the derived
7068 -- type using the implicit base type as the defining identifier. The
7069 -- build a subtype declaration tree which applies the constraint (if
7070 -- any) have it replace the derived type declaration.
7071
7072 Literal := First_Literal (Parent_Type);
7073 Literals_List := New_List;
7074 while Present (Literal)
7075 and then Ekind (Literal) = E_Enumeration_Literal
7076 loop
7077 -- Literals of the derived type have the same representation as
7078 -- those of the parent type, but this representation can be
7079 -- overridden by an explicit representation clause. Indicate
7080 -- that there is no explicit representation given yet. These
7081 -- derived literals are implicit operations of the new type,
7082 -- and can be overridden by explicit ones.
7083
7084 if Nkind (Literal) = N_Defining_Character_Literal then
7085 New_Lit :=
7086 Make_Defining_Character_Literal (Loc, Chars (Literal));
7087 else
7088 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7089 end if;
7090
7091 Set_Ekind (New_Lit, E_Enumeration_Literal);
7092 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7093 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7094 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7095 Set_Alias (New_Lit, Literal);
7096 Set_Is_Known_Valid (New_Lit, True);
7097
7098 Append (New_Lit, Literals_List);
7099 Next_Literal (Literal);
7100 end loop;
7101
7102 Implicit_Base :=
7103 Make_Defining_Identifier (Sloc (Derived_Type),
7104 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7105
7106 -- Indicate the proper nature of the derived type. This must be done
7107 -- before analysis of the literals, to recognize cases when a literal
7108 -- may be hidden by a previous explicit function definition (cf.
7109 -- c83031a).
7110
7111 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7112 Set_Etype (Derived_Type, Implicit_Base);
7113
7114 Type_Decl :=
7115 Make_Full_Type_Declaration (Loc,
7116 Defining_Identifier => Implicit_Base,
7117 Discriminant_Specifications => No_List,
7118 Type_Definition =>
7119 Make_Enumeration_Type_Definition (Loc, Literals_List));
7120
7121 Mark_Rewrite_Insertion (Type_Decl);
7122 Insert_Before (N, Type_Decl);
7123 Analyze (Type_Decl);
7124
7125 -- The anonymous base now has a full declaration, but this base
7126 -- is not a first subtype.
7127
7128 Set_Is_First_Subtype (Implicit_Base, False);
7129
7130 -- After the implicit base is analyzed its Etype needs to be changed
7131 -- to reflect the fact that it is derived from the parent type which
7132 -- was ignored during analysis. We also set the size at this point.
7133
7134 Set_Etype (Implicit_Base, Parent_Type);
7135
7136 Set_Size_Info (Implicit_Base, Parent_Type);
7137 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7138 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7139
7140 -- Copy other flags from parent type
7141
7142 Set_Has_Non_Standard_Rep
7143 (Implicit_Base, Has_Non_Standard_Rep
7144 (Parent_Type));
7145 Set_Has_Pragma_Ordered
7146 (Implicit_Base, Has_Pragma_Ordered
7147 (Parent_Type));
7148 Set_Has_Delayed_Freeze (Implicit_Base);
7149
7150 -- Process the subtype indication including a validation check on the
7151 -- constraint, if any. If a constraint is given, its bounds must be
7152 -- implicitly converted to the new type.
7153
7154 if Nkind (Indic) = N_Subtype_Indication then
7155 declare
7156 R : constant Node_Id :=
7157 Range_Expression (Constraint (Indic));
7158
7159 begin
7160 if Nkind (R) = N_Range then
7161 Hi := Build_Scalar_Bound
7162 (High_Bound (R), Parent_Type, Implicit_Base);
7163 Lo := Build_Scalar_Bound
7164 (Low_Bound (R), Parent_Type, Implicit_Base);
7165
7166 else
7167 -- Constraint is a Range attribute. Replace with explicit
7168 -- mention of the bounds of the prefix, which must be a
7169 -- subtype.
7170
7171 Analyze (Prefix (R));
7172 Hi :=
7173 Convert_To (Implicit_Base,
7174 Make_Attribute_Reference (Loc,
7175 Attribute_Name => Name_Last,
7176 Prefix =>
7177 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7178
7179 Lo :=
7180 Convert_To (Implicit_Base,
7181 Make_Attribute_Reference (Loc,
7182 Attribute_Name => Name_First,
7183 Prefix =>
7184 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7185 end if;
7186 end;
7187
7188 else
7189 Hi :=
7190 Build_Scalar_Bound
7191 (Type_High_Bound (Parent_Type),
7192 Parent_Type, Implicit_Base);
7193 Lo :=
7194 Build_Scalar_Bound
7195 (Type_Low_Bound (Parent_Type),
7196 Parent_Type, Implicit_Base);
7197 end if;
7198
7199 Rang_Expr :=
7200 Make_Range (Loc,
7201 Low_Bound => Lo,
7202 High_Bound => Hi);
7203
7204 -- If we constructed a default range for the case where no range
7205 -- was given, then the expressions in the range must not freeze
7206 -- since they do not correspond to expressions in the source.
7207 -- However, if the type inherits predicates the expressions will
7208 -- be elaborated earlier and must freeze.
7209
7210 if Nkind (Indic) /= N_Subtype_Indication
7211 and then not Has_Predicates (Derived_Type)
7212 then
7213 Set_Must_Not_Freeze (Lo);
7214 Set_Must_Not_Freeze (Hi);
7215 Set_Must_Not_Freeze (Rang_Expr);
7216 end if;
7217
7218 Rewrite (N,
7219 Make_Subtype_Declaration (Loc,
7220 Defining_Identifier => Derived_Type,
7221 Subtype_Indication =>
7222 Make_Subtype_Indication (Loc,
7223 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7224 Constraint =>
7225 Make_Range_Constraint (Loc,
7226 Range_Expression => Rang_Expr))));
7227
7228 Analyze (N);
7229
7230 -- Propagate the aspects from the original type declaration to the
7231 -- declaration of the implicit base.
7232
7233 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7234
7235 -- Apply a range check. Since this range expression doesn't have an
7236 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7237 -- this right???
7238
7239 if Nkind (Indic) = N_Subtype_Indication then
7240 Apply_Range_Check
7241 (Range_Expression (Constraint (Indic)), Parent_Type,
7242 Source_Typ => Entity (Subtype_Mark (Indic)));
7243 end if;
7244 end if;
7245 end Build_Derived_Enumeration_Type;
7246
7247 --------------------------------
7248 -- Build_Derived_Numeric_Type --
7249 --------------------------------
7250
7251 procedure Build_Derived_Numeric_Type
7252 (N : Node_Id;
7253 Parent_Type : Entity_Id;
7254 Derived_Type : Entity_Id)
7255 is
7256 Loc : constant Source_Ptr := Sloc (N);
7257 Tdef : constant Node_Id := Type_Definition (N);
7258 Indic : constant Node_Id := Subtype_Indication (Tdef);
7259 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7260 No_Constraint : constant Boolean := Nkind (Indic) /=
7261 N_Subtype_Indication;
7262 Implicit_Base : Entity_Id;
7263
7264 Lo : Node_Id;
7265 Hi : Node_Id;
7266
7267 begin
7268 -- Process the subtype indication including a validation check on
7269 -- the constraint if any.
7270
7271 Discard_Node (Process_Subtype (Indic, N));
7272
7273 -- Introduce an implicit base type for the derived type even if there
7274 -- is no constraint attached to it, since this seems closer to the Ada
7275 -- semantics.
7276
7277 Implicit_Base :=
7278 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7279
7280 Set_Etype (Implicit_Base, Parent_Base);
7281 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7282 Set_Size_Info (Implicit_Base, Parent_Base);
7283 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7284 Set_Parent (Implicit_Base, Parent (Derived_Type));
7285 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7286
7287 -- Set RM Size for discrete type or decimal fixed-point type
7288 -- Ordinary fixed-point is excluded, why???
7289
7290 if Is_Discrete_Type (Parent_Base)
7291 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7292 then
7293 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7294 end if;
7295
7296 Set_Has_Delayed_Freeze (Implicit_Base);
7297
7298 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7299 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7300
7301 Set_Scalar_Range (Implicit_Base,
7302 Make_Range (Loc,
7303 Low_Bound => Lo,
7304 High_Bound => Hi));
7305
7306 if Has_Infinities (Parent_Base) then
7307 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7308 end if;
7309
7310 -- The Derived_Type, which is the entity of the declaration, is a
7311 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7312 -- absence of an explicit constraint.
7313
7314 Set_Etype (Derived_Type, Implicit_Base);
7315
7316 -- If we did not have a constraint, then the Ekind is set from the
7317 -- parent type (otherwise Process_Subtype has set the bounds)
7318
7319 if No_Constraint then
7320 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7321 end if;
7322
7323 -- If we did not have a range constraint, then set the range from the
7324 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7325
7326 if No_Constraint or else not Has_Range_Constraint (Indic) then
7327 Set_Scalar_Range (Derived_Type,
7328 Make_Range (Loc,
7329 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7330 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7331 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7332
7333 if Has_Infinities (Parent_Type) then
7334 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7335 end if;
7336
7337 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7338 end if;
7339
7340 Set_Is_Descendant_Of_Address (Derived_Type,
7341 Is_Descendant_Of_Address (Parent_Type));
7342 Set_Is_Descendant_Of_Address (Implicit_Base,
7343 Is_Descendant_Of_Address (Parent_Type));
7344
7345 -- Set remaining type-specific fields, depending on numeric type
7346
7347 if Is_Modular_Integer_Type (Parent_Type) then
7348 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7349
7350 Set_Non_Binary_Modulus
7351 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7352
7353 Set_Is_Known_Valid
7354 (Implicit_Base, Is_Known_Valid (Parent_Base));
7355
7356 elsif Is_Floating_Point_Type (Parent_Type) then
7357
7358 -- Digits of base type is always copied from the digits value of
7359 -- the parent base type, but the digits of the derived type will
7360 -- already have been set if there was a constraint present.
7361
7362 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7363 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7364
7365 if No_Constraint then
7366 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7367 end if;
7368
7369 elsif Is_Fixed_Point_Type (Parent_Type) then
7370
7371 -- Small of base type and derived type are always copied from the
7372 -- parent base type, since smalls never change. The delta of the
7373 -- base type is also copied from the parent base type. However the
7374 -- delta of the derived type will have been set already if a
7375 -- constraint was present.
7376
7377 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7378 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7379 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7380
7381 if No_Constraint then
7382 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7383 end if;
7384
7385 -- The scale and machine radix in the decimal case are always
7386 -- copied from the parent base type.
7387
7388 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7389 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7390 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7391
7392 Set_Machine_Radix_10
7393 (Derived_Type, Machine_Radix_10 (Parent_Base));
7394 Set_Machine_Radix_10
7395 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7396
7397 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7398
7399 if No_Constraint then
7400 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7401
7402 else
7403 -- the analysis of the subtype_indication sets the
7404 -- digits value of the derived type.
7405
7406 null;
7407 end if;
7408 end if;
7409 end if;
7410
7411 if Is_Integer_Type (Parent_Type) then
7412 Set_Has_Shift_Operator
7413 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7414 end if;
7415
7416 -- The type of the bounds is that of the parent type, and they
7417 -- must be converted to the derived type.
7418
7419 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7420
7421 -- The implicit_base should be frozen when the derived type is frozen,
7422 -- but note that it is used in the conversions of the bounds. For fixed
7423 -- types we delay the determination of the bounds until the proper
7424 -- freezing point. For other numeric types this is rejected by GCC, for
7425 -- reasons that are currently unclear (???), so we choose to freeze the
7426 -- implicit base now. In the case of integers and floating point types
7427 -- this is harmless because subsequent representation clauses cannot
7428 -- affect anything, but it is still baffling that we cannot use the
7429 -- same mechanism for all derived numeric types.
7430
7431 -- There is a further complication: actually some representation
7432 -- clauses can affect the implicit base type. For example, attribute
7433 -- definition clauses for stream-oriented attributes need to set the
7434 -- corresponding TSS entries on the base type, and this normally
7435 -- cannot be done after the base type is frozen, so the circuitry in
7436 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7437 -- and not use Set_TSS in this case.
7438
7439 -- There are also consequences for the case of delayed representation
7440 -- aspects for some cases. For example, a Size aspect is delayed and
7441 -- should not be evaluated to the freeze point. This early freezing
7442 -- means that the size attribute evaluation happens too early???
7443
7444 if Is_Fixed_Point_Type (Parent_Type) then
7445 Conditional_Delay (Implicit_Base, Parent_Type);
7446 else
7447 Freeze_Before (N, Implicit_Base);
7448 end if;
7449 end Build_Derived_Numeric_Type;
7450
7451 --------------------------------
7452 -- Build_Derived_Private_Type --
7453 --------------------------------
7454
7455 procedure Build_Derived_Private_Type
7456 (N : Node_Id;
7457 Parent_Type : Entity_Id;
7458 Derived_Type : Entity_Id;
7459 Is_Completion : Boolean;
7460 Derive_Subps : Boolean := True)
7461 is
7462 Loc : constant Source_Ptr := Sloc (N);
7463 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7464 Par_Scope : constant Entity_Id := Scope (Par_Base);
7465 Full_N : constant Node_Id := New_Copy_Tree (N);
7466 Full_Der : Entity_Id := New_Copy (Derived_Type);
7467 Full_P : Entity_Id;
7468
7469 procedure Build_Full_Derivation;
7470 -- Build full derivation, i.e. derive from the full view
7471
7472 procedure Copy_And_Build;
7473 -- Copy derived type declaration, replace parent with its full view,
7474 -- and build derivation
7475
7476 ---------------------------
7477 -- Build_Full_Derivation --
7478 ---------------------------
7479
7480 procedure Build_Full_Derivation is
7481 begin
7482 -- If parent scope is not open, install the declarations
7483
7484 if not In_Open_Scopes (Par_Scope) then
7485 Install_Private_Declarations (Par_Scope);
7486 Install_Visible_Declarations (Par_Scope);
7487 Copy_And_Build;
7488 Uninstall_Declarations (Par_Scope);
7489
7490 -- If parent scope is open and in another unit, and parent has a
7491 -- completion, then the derivation is taking place in the visible
7492 -- part of a child unit. In that case retrieve the full view of
7493 -- the parent momentarily.
7494
7495 elsif not In_Same_Source_Unit (N, Parent_Type) then
7496 Full_P := Full_View (Parent_Type);
7497 Exchange_Declarations (Parent_Type);
7498 Copy_And_Build;
7499 Exchange_Declarations (Full_P);
7500
7501 -- Otherwise it is a local derivation
7502
7503 else
7504 Copy_And_Build;
7505 end if;
7506 end Build_Full_Derivation;
7507
7508 --------------------
7509 -- Copy_And_Build --
7510 --------------------
7511
7512 procedure Copy_And_Build is
7513 Full_Parent : Entity_Id := Parent_Type;
7514
7515 begin
7516 -- If the parent is itself derived from another private type,
7517 -- installing the private declarations has not affected its
7518 -- privacy status, so use its own full view explicitly.
7519
7520 if Is_Private_Type (Full_Parent)
7521 and then Present (Full_View (Full_Parent))
7522 then
7523 Full_Parent := Full_View (Full_Parent);
7524 end if;
7525
7526 -- And its underlying full view if necessary
7527
7528 if Is_Private_Type (Full_Parent)
7529 and then Present (Underlying_Full_View (Full_Parent))
7530 then
7531 Full_Parent := Underlying_Full_View (Full_Parent);
7532 end if;
7533
7534 -- For record, access and most enumeration types, derivation from
7535 -- the full view requires a fully-fledged declaration. In the other
7536 -- cases, just use an itype.
7537
7538 if Ekind (Full_Parent) in Record_Kind
7539 or else Ekind (Full_Parent) in Access_Kind
7540 or else
7541 (Ekind (Full_Parent) in Enumeration_Kind
7542 and then not Is_Standard_Character_Type (Full_Parent)
7543 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7544 then
7545 -- Copy and adjust declaration to provide a completion for what
7546 -- is originally a private declaration. Indicate that full view
7547 -- is internally generated.
7548
7549 Set_Comes_From_Source (Full_N, False);
7550 Set_Comes_From_Source (Full_Der, False);
7551 Set_Parent (Full_Der, Full_N);
7552 Set_Defining_Identifier (Full_N, Full_Der);
7553
7554 -- If there are no constraints, adjust the subtype mark
7555
7556 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7557 N_Subtype_Indication
7558 then
7559 Set_Subtype_Indication
7560 (Type_Definition (Full_N),
7561 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7562 end if;
7563
7564 Insert_After (N, Full_N);
7565
7566 -- Build full view of derived type from full view of parent which
7567 -- is now installed. Subprograms have been derived on the partial
7568 -- view, the completion does not derive them anew.
7569
7570 if Ekind (Full_Parent) in Record_Kind then
7571
7572 -- If parent type is tagged, the completion inherits the proper
7573 -- primitive operations.
7574
7575 if Is_Tagged_Type (Parent_Type) then
7576 Build_Derived_Record_Type
7577 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7578 else
7579 Build_Derived_Record_Type
7580 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7581 end if;
7582
7583 else
7584 Build_Derived_Type
7585 (Full_N, Full_Parent, Full_Der,
7586 Is_Completion => False, Derive_Subps => False);
7587 end if;
7588
7589 -- The full declaration has been introduced into the tree and
7590 -- processed in the step above. It should not be analyzed again
7591 -- (when encountered later in the current list of declarations)
7592 -- to prevent spurious name conflicts. The full entity remains
7593 -- invisible.
7594
7595 Set_Analyzed (Full_N);
7596
7597 else
7598 Full_Der :=
7599 Make_Defining_Identifier (Sloc (Derived_Type),
7600 Chars => Chars (Derived_Type));
7601 Set_Is_Itype (Full_Der);
7602 Set_Associated_Node_For_Itype (Full_Der, N);
7603 Set_Parent (Full_Der, N);
7604 Build_Derived_Type
7605 (N, Full_Parent, Full_Der,
7606 Is_Completion => False, Derive_Subps => False);
7607 end if;
7608
7609 Set_Has_Private_Declaration (Full_Der);
7610 Set_Has_Private_Declaration (Derived_Type);
7611
7612 Set_Scope (Full_Der, Scope (Derived_Type));
7613 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7614 Set_Has_Size_Clause (Full_Der, False);
7615 Set_Has_Alignment_Clause (Full_Der, False);
7616 Set_Has_Delayed_Freeze (Full_Der);
7617 Set_Is_Frozen (Full_Der, False);
7618 Set_Freeze_Node (Full_Der, Empty);
7619 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7620 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7621
7622 -- The convention on the base type may be set in the private part
7623 -- and not propagated to the subtype until later, so we obtain the
7624 -- convention from the base type of the parent.
7625
7626 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7627 end Copy_And_Build;
7628
7629 -- Start of processing for Build_Derived_Private_Type
7630
7631 begin
7632 if Is_Tagged_Type (Parent_Type) then
7633 Full_P := Full_View (Parent_Type);
7634
7635 -- A type extension of a type with unknown discriminants is an
7636 -- indefinite type that the back-end cannot handle directly.
7637 -- We treat it as a private type, and build a completion that is
7638 -- derived from the full view of the parent, and hopefully has
7639 -- known discriminants.
7640
7641 -- If the full view of the parent type has an underlying record view,
7642 -- use it to generate the underlying record view of this derived type
7643 -- (required for chains of derivations with unknown discriminants).
7644
7645 -- Minor optimization: we avoid the generation of useless underlying
7646 -- record view entities if the private type declaration has unknown
7647 -- discriminants but its corresponding full view has no
7648 -- discriminants.
7649
7650 if Has_Unknown_Discriminants (Parent_Type)
7651 and then Present (Full_P)
7652 and then (Has_Discriminants (Full_P)
7653 or else Present (Underlying_Record_View (Full_P)))
7654 and then not In_Open_Scopes (Par_Scope)
7655 and then Expander_Active
7656 then
7657 declare
7658 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7659 New_Ext : constant Node_Id :=
7660 Copy_Separate_Tree
7661 (Record_Extension_Part (Type_Definition (N)));
7662 Decl : Node_Id;
7663
7664 begin
7665 Build_Derived_Record_Type
7666 (N, Parent_Type, Derived_Type, Derive_Subps);
7667
7668 -- Build anonymous completion, as a derivation from the full
7669 -- view of the parent. This is not a completion in the usual
7670 -- sense, because the current type is not private.
7671
7672 Decl :=
7673 Make_Full_Type_Declaration (Loc,
7674 Defining_Identifier => Full_Der,
7675 Type_Definition =>
7676 Make_Derived_Type_Definition (Loc,
7677 Subtype_Indication =>
7678 New_Copy_Tree
7679 (Subtype_Indication (Type_Definition (N))),
7680 Record_Extension_Part => New_Ext));
7681
7682 -- If the parent type has an underlying record view, use it
7683 -- here to build the new underlying record view.
7684
7685 if Present (Underlying_Record_View (Full_P)) then
7686 pragma Assert
7687 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7688 = N_Identifier);
7689 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7690 Underlying_Record_View (Full_P));
7691 end if;
7692
7693 Install_Private_Declarations (Par_Scope);
7694 Install_Visible_Declarations (Par_Scope);
7695 Insert_Before (N, Decl);
7696
7697 -- Mark entity as an underlying record view before analysis,
7698 -- to avoid generating the list of its primitive operations
7699 -- (which is not really required for this entity) and thus
7700 -- prevent spurious errors associated with missing overriding
7701 -- of abstract primitives (overridden only for Derived_Type).
7702
7703 Set_Ekind (Full_Der, E_Record_Type);
7704 Set_Is_Underlying_Record_View (Full_Der);
7705 Set_Default_SSO (Full_Der);
7706 Set_No_Reordering (Full_Der, No_Component_Reordering);
7707
7708 Analyze (Decl);
7709
7710 pragma Assert (Has_Discriminants (Full_Der)
7711 and then not Has_Unknown_Discriminants (Full_Der));
7712
7713 Uninstall_Declarations (Par_Scope);
7714
7715 -- Freeze the underlying record view, to prevent generation of
7716 -- useless dispatching information, which is simply shared with
7717 -- the real derived type.
7718
7719 Set_Is_Frozen (Full_Der);
7720
7721 -- If the derived type has access discriminants, create
7722 -- references to their anonymous types now, to prevent
7723 -- back-end problems when their first use is in generated
7724 -- bodies of primitives.
7725
7726 declare
7727 E : Entity_Id;
7728
7729 begin
7730 E := First_Entity (Full_Der);
7731
7732 while Present (E) loop
7733 if Ekind (E) = E_Discriminant
7734 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7735 then
7736 Build_Itype_Reference (Etype (E), Decl);
7737 end if;
7738
7739 Next_Entity (E);
7740 end loop;
7741 end;
7742
7743 -- Set up links between real entity and underlying record view
7744
7745 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7746 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7747 end;
7748
7749 -- If discriminants are known, build derived record
7750
7751 else
7752 Build_Derived_Record_Type
7753 (N, Parent_Type, Derived_Type, Derive_Subps);
7754 end if;
7755
7756 return;
7757
7758 elsif Has_Discriminants (Parent_Type) then
7759
7760 -- Build partial view of derived type from partial view of parent.
7761 -- This must be done before building the full derivation because the
7762 -- second derivation will modify the discriminants of the first and
7763 -- the discriminants are chained with the rest of the components in
7764 -- the full derivation.
7765
7766 Build_Derived_Record_Type
7767 (N, Parent_Type, Derived_Type, Derive_Subps);
7768
7769 -- Build the full derivation if this is not the anonymous derived
7770 -- base type created by Build_Derived_Record_Type in the constrained
7771 -- case (see point 5. of its head comment) since we build it for the
7772 -- derived subtype. And skip it for protected types altogether, as
7773 -- gigi does not use these types directly.
7774
7775 if Present (Full_View (Parent_Type))
7776 and then not Is_Itype (Derived_Type)
7777 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7778 then
7779 declare
7780 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7781 Discr : Entity_Id;
7782 Last_Discr : Entity_Id;
7783
7784 begin
7785 -- If this is not a completion, construct the implicit full
7786 -- view by deriving from the full view of the parent type.
7787 -- But if this is a completion, the derived private type
7788 -- being built is a full view and the full derivation can
7789 -- only be its underlying full view.
7790
7791 Build_Full_Derivation;
7792
7793 if not Is_Completion then
7794 Set_Full_View (Derived_Type, Full_Der);
7795 else
7796 Set_Underlying_Full_View (Derived_Type, Full_Der);
7797 Set_Is_Underlying_Full_View (Full_Der);
7798 end if;
7799
7800 if not Is_Base_Type (Derived_Type) then
7801 Set_Full_View (Der_Base, Base_Type (Full_Der));
7802 end if;
7803
7804 -- Copy the discriminant list from full view to the partial
7805 -- view (base type and its subtype). Gigi requires that the
7806 -- partial and full views have the same discriminants.
7807
7808 -- Note that since the partial view points to discriminants
7809 -- in the full view, their scope will be that of the full
7810 -- view. This might cause some front end problems and need
7811 -- adjustment???
7812
7813 Discr := First_Discriminant (Base_Type (Full_Der));
7814 Set_First_Entity (Der_Base, Discr);
7815
7816 loop
7817 Last_Discr := Discr;
7818 Next_Discriminant (Discr);
7819 exit when No (Discr);
7820 end loop;
7821
7822 Set_Last_Entity (Der_Base, Last_Discr);
7823 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7824 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7825 end;
7826 end if;
7827
7828 elsif Present (Full_View (Parent_Type))
7829 and then Has_Discriminants (Full_View (Parent_Type))
7830 then
7831 if Has_Unknown_Discriminants (Parent_Type)
7832 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7833 N_Subtype_Indication
7834 then
7835 Error_Msg_N
7836 ("cannot constrain type with unknown discriminants",
7837 Subtype_Indication (Type_Definition (N)));
7838 return;
7839 end if;
7840
7841 -- If this is not a completion, construct the implicit full view by
7842 -- deriving from the full view of the parent type. But if this is a
7843 -- completion, the derived private type being built is a full view
7844 -- and the full derivation can only be its underlying full view.
7845
7846 Build_Full_Derivation;
7847
7848 if not Is_Completion then
7849 Set_Full_View (Derived_Type, Full_Der);
7850 else
7851 Set_Underlying_Full_View (Derived_Type, Full_Der);
7852 Set_Is_Underlying_Full_View (Full_Der);
7853 end if;
7854
7855 -- In any case, the primitive operations are inherited from the
7856 -- parent type, not from the internal full view.
7857
7858 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7859
7860 if Derive_Subps then
7861 Derive_Subprograms (Parent_Type, Derived_Type);
7862 end if;
7863
7864 Set_Stored_Constraint (Derived_Type, No_Elist);
7865 Set_Is_Constrained
7866 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7867
7868 else
7869 -- Untagged type, No discriminants on either view
7870
7871 if Nkind (Subtype_Indication (Type_Definition (N))) =
7872 N_Subtype_Indication
7873 then
7874 Error_Msg_N
7875 ("illegal constraint on type without discriminants", N);
7876 end if;
7877
7878 if Present (Discriminant_Specifications (N))
7879 and then Present (Full_View (Parent_Type))
7880 and then not Is_Tagged_Type (Full_View (Parent_Type))
7881 then
7882 Error_Msg_N ("cannot add discriminants to untagged type", N);
7883 end if;
7884
7885 Set_Stored_Constraint (Derived_Type, No_Elist);
7886 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7887 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7888 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7889 (Parent_Type));
7890 Set_Has_Controlled_Component
7891 (Derived_Type, Has_Controlled_Component
7892 (Parent_Type));
7893
7894 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7895
7896 if not Is_Controlled_Active (Parent_Type) then
7897 Set_Finalize_Storage_Only
7898 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7899 end if;
7900
7901 -- If this is not a completion, construct the implicit full view by
7902 -- deriving from the full view of the parent type.
7903
7904 -- ??? If the parent is untagged private and its completion is
7905 -- tagged, this mechanism will not work because we cannot derive from
7906 -- the tagged full view unless we have an extension.
7907
7908 if Present (Full_View (Parent_Type))
7909 and then not Is_Tagged_Type (Full_View (Parent_Type))
7910 and then not Is_Completion
7911 then
7912 Build_Full_Derivation;
7913 Set_Full_View (Derived_Type, Full_Der);
7914 end if;
7915 end if;
7916
7917 Set_Has_Unknown_Discriminants (Derived_Type,
7918 Has_Unknown_Discriminants (Parent_Type));
7919
7920 if Is_Private_Type (Derived_Type) then
7921 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7922 end if;
7923
7924 -- If the parent base type is in scope, add the derived type to its
7925 -- list of private dependents, because its full view may become
7926 -- visible subsequently (in a nested private part, a body, or in a
7927 -- further child unit).
7928
7929 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7930 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7931
7932 -- Check for unusual case where a type completed by a private
7933 -- derivation occurs within a package nested in a child unit, and
7934 -- the parent is declared in an ancestor.
7935
7936 if Is_Child_Unit (Scope (Current_Scope))
7937 and then Is_Completion
7938 and then In_Private_Part (Current_Scope)
7939 and then Scope (Parent_Type) /= Current_Scope
7940
7941 -- Note that if the parent has a completion in the private part,
7942 -- (which is itself a derivation from some other private type)
7943 -- it is that completion that is visible, there is no full view
7944 -- available, and no special processing is needed.
7945
7946 and then Present (Full_View (Parent_Type))
7947 then
7948 -- In this case, the full view of the parent type will become
7949 -- visible in the body of the enclosing child, and only then will
7950 -- the current type be possibly non-private. Build an underlying
7951 -- full view that will be installed when the enclosing child body
7952 -- is compiled.
7953
7954 if Present (Underlying_Full_View (Derived_Type)) then
7955 Full_Der := Underlying_Full_View (Derived_Type);
7956 else
7957 Build_Full_Derivation;
7958 Set_Underlying_Full_View (Derived_Type, Full_Der);
7959 Set_Is_Underlying_Full_View (Full_Der);
7960 end if;
7961
7962 -- The full view will be used to swap entities on entry/exit to
7963 -- the body, and must appear in the entity list for the package.
7964
7965 Append_Entity (Full_Der, Scope (Derived_Type));
7966 end if;
7967 end if;
7968 end Build_Derived_Private_Type;
7969
7970 -------------------------------
7971 -- Build_Derived_Record_Type --
7972 -------------------------------
7973
7974 -- 1. INTRODUCTION
7975
7976 -- Ideally we would like to use the same model of type derivation for
7977 -- tagged and untagged record types. Unfortunately this is not quite
7978 -- possible because the semantics of representation clauses is different
7979 -- for tagged and untagged records under inheritance. Consider the
7980 -- following:
7981
7982 -- type R (...) is [tagged] record ... end record;
7983 -- type T (...) is new R (...) [with ...];
7984
7985 -- The representation clauses for T can specify a completely different
7986 -- record layout from R's. Hence the same component can be placed in two
7987 -- very different positions in objects of type T and R. If R and T are
7988 -- tagged types, representation clauses for T can only specify the layout
7989 -- of non inherited components, thus components that are common in R and T
7990 -- have the same position in objects of type R and T.
7991
7992 -- This has two implications. The first is that the entire tree for R's
7993 -- declaration needs to be copied for T in the untagged case, so that T
7994 -- can be viewed as a record type of its own with its own representation
7995 -- clauses. The second implication is the way we handle discriminants.
7996 -- Specifically, in the untagged case we need a way to communicate to Gigi
7997 -- what are the real discriminants in the record, while for the semantics
7998 -- we need to consider those introduced by the user to rename the
7999 -- discriminants in the parent type. This is handled by introducing the
8000 -- notion of stored discriminants. See below for more.
8001
8002 -- Fortunately the way regular components are inherited can be handled in
8003 -- the same way in tagged and untagged types.
8004
8005 -- To complicate things a bit more the private view of a private extension
8006 -- cannot be handled in the same way as the full view (for one thing the
8007 -- semantic rules are somewhat different). We will explain what differs
8008 -- below.
8009
8010 -- 2. DISCRIMINANTS UNDER INHERITANCE
8011
8012 -- The semantic rules governing the discriminants of derived types are
8013 -- quite subtle.
8014
8015 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8016 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8017
8018 -- If parent type has discriminants, then the discriminants that are
8019 -- declared in the derived type are [3.4 (11)]:
8020
8021 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8022 -- there is one;
8023
8024 -- o Otherwise, each discriminant of the parent type (implicitly declared
8025 -- in the same order with the same specifications). In this case, the
8026 -- discriminants are said to be "inherited", or if unknown in the parent
8027 -- are also unknown in the derived type.
8028
8029 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8030
8031 -- o The parent subtype must be constrained;
8032
8033 -- o If the parent type is not a tagged type, then each discriminant of
8034 -- the derived type must be used in the constraint defining a parent
8035 -- subtype. [Implementation note: This ensures that the new discriminant
8036 -- can share storage with an existing discriminant.]
8037
8038 -- For the derived type each discriminant of the parent type is either
8039 -- inherited, constrained to equal some new discriminant of the derived
8040 -- type, or constrained to the value of an expression.
8041
8042 -- When inherited or constrained to equal some new discriminant, the
8043 -- parent discriminant and the discriminant of the derived type are said
8044 -- to "correspond".
8045
8046 -- If a discriminant of the parent type is constrained to a specific value
8047 -- in the derived type definition, then the discriminant is said to be
8048 -- "specified" by that derived type definition.
8049
8050 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8051
8052 -- We have spoken about stored discriminants in point 1 (introduction)
8053 -- above. There are two sorts of stored discriminants: implicit and
8054 -- explicit. As long as the derived type inherits the same discriminants as
8055 -- the root record type, stored discriminants are the same as regular
8056 -- discriminants, and are said to be implicit. However, if any discriminant
8057 -- in the root type was renamed in the derived type, then the derived
8058 -- type will contain explicit stored discriminants. Explicit stored
8059 -- discriminants are discriminants in addition to the semantically visible
8060 -- discriminants defined for the derived type. Stored discriminants are
8061 -- used by Gigi to figure out what are the physical discriminants in
8062 -- objects of the derived type (see precise definition in einfo.ads).
8063 -- As an example, consider the following:
8064
8065 -- type R (D1, D2, D3 : Int) is record ... end record;
8066 -- type T1 is new R;
8067 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8068 -- type T3 is new T2;
8069 -- type T4 (Y : Int) is new T3 (Y, 99);
8070
8071 -- The following table summarizes the discriminants and stored
8072 -- discriminants in R and T1 through T4:
8073
8074 -- Type Discrim Stored Discrim Comment
8075 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8076 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8077 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8078 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8079 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8080
8081 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8082 -- find the corresponding discriminant in the parent type, while
8083 -- Original_Record_Component (abbreviated ORC below) the actual physical
8084 -- component that is renamed. Finally the field Is_Completely_Hidden
8085 -- (abbreviated ICH below) is set for all explicit stored discriminants
8086 -- (see einfo.ads for more info). For the above example this gives:
8087
8088 -- Discrim CD ORC ICH
8089 -- ^^^^^^^ ^^ ^^^ ^^^
8090 -- D1 in R empty itself no
8091 -- D2 in R empty itself no
8092 -- D3 in R empty itself no
8093
8094 -- D1 in T1 D1 in R itself no
8095 -- D2 in T1 D2 in R itself no
8096 -- D3 in T1 D3 in R itself no
8097
8098 -- X1 in T2 D3 in T1 D3 in T2 no
8099 -- X2 in T2 D1 in T1 D1 in T2 no
8100 -- D1 in T2 empty itself yes
8101 -- D2 in T2 empty itself yes
8102 -- D3 in T2 empty itself yes
8103
8104 -- X1 in T3 X1 in T2 D3 in T3 no
8105 -- X2 in T3 X2 in T2 D1 in T3 no
8106 -- D1 in T3 empty itself yes
8107 -- D2 in T3 empty itself yes
8108 -- D3 in T3 empty itself yes
8109
8110 -- Y in T4 X1 in T3 D3 in T4 no
8111 -- D1 in T4 empty itself yes
8112 -- D2 in T4 empty itself yes
8113 -- D3 in T4 empty itself yes
8114
8115 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8116
8117 -- Type derivation for tagged types is fairly straightforward. If no
8118 -- discriminants are specified by the derived type, these are inherited
8119 -- from the parent. No explicit stored discriminants are ever necessary.
8120 -- The only manipulation that is done to the tree is that of adding a
8121 -- _parent field with parent type and constrained to the same constraint
8122 -- specified for the parent in the derived type definition. For instance:
8123
8124 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8125 -- type T1 is new R with null record;
8126 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8127
8128 -- are changed into:
8129
8130 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8131 -- _parent : R (D1, D2, D3);
8132 -- end record;
8133
8134 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8135 -- _parent : T1 (X2, 88, X1);
8136 -- end record;
8137
8138 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8139 -- ORC and ICH fields are:
8140
8141 -- Discrim CD ORC ICH
8142 -- ^^^^^^^ ^^ ^^^ ^^^
8143 -- D1 in R empty itself no
8144 -- D2 in R empty itself no
8145 -- D3 in R empty itself no
8146
8147 -- D1 in T1 D1 in R D1 in R no
8148 -- D2 in T1 D2 in R D2 in R no
8149 -- D3 in T1 D3 in R D3 in R no
8150
8151 -- X1 in T2 D3 in T1 D3 in R no
8152 -- X2 in T2 D1 in T1 D1 in R no
8153
8154 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8155 --
8156 -- Regardless of whether we dealing with a tagged or untagged type
8157 -- we will transform all derived type declarations of the form
8158 --
8159 -- type T is new R (...) [with ...];
8160 -- or
8161 -- subtype S is R (...);
8162 -- type T is new S [with ...];
8163 -- into
8164 -- type BT is new R [with ...];
8165 -- subtype T is BT (...);
8166 --
8167 -- That is, the base derived type is constrained only if it has no
8168 -- discriminants. The reason for doing this is that GNAT's semantic model
8169 -- assumes that a base type with discriminants is unconstrained.
8170 --
8171 -- Note that, strictly speaking, the above transformation is not always
8172 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8173 --
8174 -- procedure B34011A is
8175 -- type REC (D : integer := 0) is record
8176 -- I : Integer;
8177 -- end record;
8178
8179 -- package P is
8180 -- type T6 is new Rec;
8181 -- function F return T6;
8182 -- end P;
8183
8184 -- use P;
8185 -- package Q6 is
8186 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8187 -- end Q6;
8188 --
8189 -- The definition of Q6.U is illegal. However transforming Q6.U into
8190
8191 -- type BaseU is new T6;
8192 -- subtype U is BaseU (Q6.F.I)
8193
8194 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8195 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8196 -- the transformation described above.
8197
8198 -- There is another instance where the above transformation is incorrect.
8199 -- Consider:
8200
8201 -- package Pack is
8202 -- type Base (D : Integer) is tagged null record;
8203 -- procedure P (X : Base);
8204
8205 -- type Der is new Base (2) with null record;
8206 -- procedure P (X : Der);
8207 -- end Pack;
8208
8209 -- Then the above transformation turns this into
8210
8211 -- type Der_Base is new Base with null record;
8212 -- -- procedure P (X : Base) is implicitly inherited here
8213 -- -- as procedure P (X : Der_Base).
8214
8215 -- subtype Der is Der_Base (2);
8216 -- procedure P (X : Der);
8217 -- -- The overriding of P (X : Der_Base) is illegal since we
8218 -- -- have a parameter conformance problem.
8219
8220 -- To get around this problem, after having semantically processed Der_Base
8221 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8222 -- Discriminant_Constraint from Der so that when parameter conformance is
8223 -- checked when P is overridden, no semantic errors are flagged.
8224
8225 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8226
8227 -- Regardless of whether we are dealing with a tagged or untagged type
8228 -- we will transform all derived type declarations of the form
8229
8230 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8231 -- type T is new R [with ...];
8232 -- into
8233 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8234
8235 -- The reason for such transformation is that it allows us to implement a
8236 -- very clean form of component inheritance as explained below.
8237
8238 -- Note that this transformation is not achieved by direct tree rewriting
8239 -- and manipulation, but rather by redoing the semantic actions that the
8240 -- above transformation will entail. This is done directly in routine
8241 -- Inherit_Components.
8242
8243 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8244
8245 -- In both tagged and untagged derived types, regular non discriminant
8246 -- components are inherited in the derived type from the parent type. In
8247 -- the absence of discriminants component, inheritance is straightforward
8248 -- as components can simply be copied from the parent.
8249
8250 -- If the parent has discriminants, inheriting components constrained with
8251 -- these discriminants requires caution. Consider the following example:
8252
8253 -- type R (D1, D2 : Positive) is [tagged] record
8254 -- S : String (D1 .. D2);
8255 -- end record;
8256
8257 -- type T1 is new R [with null record];
8258 -- type T2 (X : positive) is new R (1, X) [with null record];
8259
8260 -- As explained in 6. above, T1 is rewritten as
8261 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8262 -- which makes the treatment for T1 and T2 identical.
8263
8264 -- What we want when inheriting S, is that references to D1 and D2 in R are
8265 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8266 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8267 -- with either discriminant references in the derived type or expressions.
8268 -- This replacement is achieved as follows: before inheriting R's
8269 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8270 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8271 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8272 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8273 -- by String (1 .. X).
8274
8275 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8276
8277 -- We explain here the rules governing private type extensions relevant to
8278 -- type derivation. These rules are explained on the following example:
8279
8280 -- type D [(...)] is new A [(...)] with private; <-- partial view
8281 -- type D [(...)] is new P [(...)] with null record; <-- full view
8282
8283 -- Type A is called the ancestor subtype of the private extension.
8284 -- Type P is the parent type of the full view of the private extension. It
8285 -- must be A or a type derived from A.
8286
8287 -- The rules concerning the discriminants of private type extensions are
8288 -- [7.3(10-13)]:
8289
8290 -- o If a private extension inherits known discriminants from the ancestor
8291 -- subtype, then the full view must also inherit its discriminants from
8292 -- the ancestor subtype and the parent subtype of the full view must be
8293 -- constrained if and only if the ancestor subtype is constrained.
8294
8295 -- o If a partial view has unknown discriminants, then the full view may
8296 -- define a definite or an indefinite subtype, with or without
8297 -- discriminants.
8298
8299 -- o If a partial view has neither known nor unknown discriminants, then
8300 -- the full view must define a definite subtype.
8301
8302 -- o If the ancestor subtype of a private extension has constrained
8303 -- discriminants, then the parent subtype of the full view must impose a
8304 -- statically matching constraint on those discriminants.
8305
8306 -- This means that only the following forms of private extensions are
8307 -- allowed:
8308
8309 -- type D is new A with private; <-- partial view
8310 -- type D is new P with null record; <-- full view
8311
8312 -- If A has no discriminants than P has no discriminants, otherwise P must
8313 -- inherit A's discriminants.
8314
8315 -- type D is new A (...) with private; <-- partial view
8316 -- type D is new P (:::) with null record; <-- full view
8317
8318 -- P must inherit A's discriminants and (...) and (:::) must statically
8319 -- match.
8320
8321 -- subtype A is R (...);
8322 -- type D is new A with private; <-- partial view
8323 -- type D is new P with null record; <-- full view
8324
8325 -- P must have inherited R's discriminants and must be derived from A or
8326 -- any of its subtypes.
8327
8328 -- type D (..) is new A with private; <-- partial view
8329 -- type D (..) is new P [(:::)] with null record; <-- full view
8330
8331 -- No specific constraints on P's discriminants or constraint (:::).
8332 -- Note that A can be unconstrained, but the parent subtype P must either
8333 -- be constrained or (:::) must be present.
8334
8335 -- type D (..) is new A [(...)] with private; <-- partial view
8336 -- type D (..) is new P [(:::)] with null record; <-- full view
8337
8338 -- P's constraints on A's discriminants must statically match those
8339 -- imposed by (...).
8340
8341 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8342
8343 -- The full view of a private extension is handled exactly as described
8344 -- above. The model chose for the private view of a private extension is
8345 -- the same for what concerns discriminants (i.e. they receive the same
8346 -- treatment as in the tagged case). However, the private view of the
8347 -- private extension always inherits the components of the parent base,
8348 -- without replacing any discriminant reference. Strictly speaking this is
8349 -- incorrect. However, Gigi never uses this view to generate code so this
8350 -- is a purely semantic issue. In theory, a set of transformations similar
8351 -- to those given in 5. and 6. above could be applied to private views of
8352 -- private extensions to have the same model of component inheritance as
8353 -- for non private extensions. However, this is not done because it would
8354 -- further complicate private type processing. Semantically speaking, this
8355 -- leaves us in an uncomfortable situation. As an example consider:
8356
8357 -- package Pack is
8358 -- type R (D : integer) is tagged record
8359 -- S : String (1 .. D);
8360 -- end record;
8361 -- procedure P (X : R);
8362 -- type T is new R (1) with private;
8363 -- private
8364 -- type T is new R (1) with null record;
8365 -- end;
8366
8367 -- This is transformed into:
8368
8369 -- package Pack is
8370 -- type R (D : integer) is tagged record
8371 -- S : String (1 .. D);
8372 -- end record;
8373 -- procedure P (X : R);
8374 -- type T is new R (1) with private;
8375 -- private
8376 -- type BaseT is new R with null record;
8377 -- subtype T is BaseT (1);
8378 -- end;
8379
8380 -- (strictly speaking the above is incorrect Ada)
8381
8382 -- From the semantic standpoint the private view of private extension T
8383 -- should be flagged as constrained since one can clearly have
8384 --
8385 -- Obj : T;
8386 --
8387 -- in a unit withing Pack. However, when deriving subprograms for the
8388 -- private view of private extension T, T must be seen as unconstrained
8389 -- since T has discriminants (this is a constraint of the current
8390 -- subprogram derivation model). Thus, when processing the private view of
8391 -- a private extension such as T, we first mark T as unconstrained, we
8392 -- process it, we perform program derivation and just before returning from
8393 -- Build_Derived_Record_Type we mark T as constrained.
8394
8395 -- ??? Are there are other uncomfortable cases that we will have to
8396 -- deal with.
8397
8398 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8399
8400 -- Types that are derived from a visible record type and have a private
8401 -- extension present other peculiarities. They behave mostly like private
8402 -- types, but if they have primitive operations defined, these will not
8403 -- have the proper signatures for further inheritance, because other
8404 -- primitive operations will use the implicit base that we define for
8405 -- private derivations below. This affect subprogram inheritance (see
8406 -- Derive_Subprograms for details). We also derive the implicit base from
8407 -- the base type of the full view, so that the implicit base is a record
8408 -- type and not another private type, This avoids infinite loops.
8409
8410 procedure Build_Derived_Record_Type
8411 (N : Node_Id;
8412 Parent_Type : Entity_Id;
8413 Derived_Type : Entity_Id;
8414 Derive_Subps : Boolean := True)
8415 is
8416 Discriminant_Specs : constant Boolean :=
8417 Present (Discriminant_Specifications (N));
8418 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8419 Loc : constant Source_Ptr := Sloc (N);
8420 Private_Extension : constant Boolean :=
8421 Nkind (N) = N_Private_Extension_Declaration;
8422 Assoc_List : Elist_Id;
8423 Constraint_Present : Boolean;
8424 Constrs : Elist_Id;
8425 Discrim : Entity_Id;
8426 Indic : Node_Id;
8427 Inherit_Discrims : Boolean := False;
8428 Last_Discrim : Entity_Id;
8429 New_Base : Entity_Id;
8430 New_Decl : Node_Id;
8431 New_Discrs : Elist_Id;
8432 New_Indic : Node_Id;
8433 Parent_Base : Entity_Id;
8434 Save_Etype : Entity_Id;
8435 Save_Discr_Constr : Elist_Id;
8436 Save_Next_Entity : Entity_Id;
8437 Type_Def : Node_Id;
8438
8439 Discs : Elist_Id := New_Elmt_List;
8440 -- An empty Discs list means that there were no constraints in the
8441 -- subtype indication or that there was an error processing it.
8442
8443 begin
8444 if Ekind (Parent_Type) = E_Record_Type_With_Private
8445 and then Present (Full_View (Parent_Type))
8446 and then Has_Discriminants (Parent_Type)
8447 then
8448 Parent_Base := Base_Type (Full_View (Parent_Type));
8449 else
8450 Parent_Base := Base_Type (Parent_Type);
8451 end if;
8452
8453 -- AI05-0115 : if this is a derivation from a private type in some
8454 -- other scope that may lead to invisible components for the derived
8455 -- type, mark it accordingly.
8456
8457 if Is_Private_Type (Parent_Type) then
8458 if Scope (Parent_Type) = Scope (Derived_Type) then
8459 null;
8460
8461 elsif In_Open_Scopes (Scope (Parent_Type))
8462 and then In_Private_Part (Scope (Parent_Type))
8463 then
8464 null;
8465
8466 else
8467 Set_Has_Private_Ancestor (Derived_Type);
8468 end if;
8469
8470 else
8471 Set_Has_Private_Ancestor
8472 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8473 end if;
8474
8475 -- Before we start the previously documented transformations, here is
8476 -- little fix for size and alignment of tagged types. Normally when we
8477 -- derive type D from type P, we copy the size and alignment of P as the
8478 -- default for D, and in the absence of explicit representation clauses
8479 -- for D, the size and alignment are indeed the same as the parent.
8480
8481 -- But this is wrong for tagged types, since fields may be added, and
8482 -- the default size may need to be larger, and the default alignment may
8483 -- need to be larger.
8484
8485 -- We therefore reset the size and alignment fields in the tagged case.
8486 -- Note that the size and alignment will in any case be at least as
8487 -- large as the parent type (since the derived type has a copy of the
8488 -- parent type in the _parent field)
8489
8490 -- The type is also marked as being tagged here, which is needed when
8491 -- processing components with a self-referential anonymous access type
8492 -- in the call to Check_Anonymous_Access_Components below. Note that
8493 -- this flag is also set later on for completeness.
8494
8495 if Is_Tagged then
8496 Set_Is_Tagged_Type (Derived_Type);
8497 Init_Size_Align (Derived_Type);
8498 end if;
8499
8500 -- STEP 0a: figure out what kind of derived type declaration we have
8501
8502 if Private_Extension then
8503 Type_Def := N;
8504 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8505 Set_Default_SSO (Derived_Type);
8506 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8507
8508 else
8509 Type_Def := Type_Definition (N);
8510
8511 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8512 -- Parent_Base can be a private type or private extension. However,
8513 -- for tagged types with an extension the newly added fields are
8514 -- visible and hence the Derived_Type is always an E_Record_Type.
8515 -- (except that the parent may have its own private fields).
8516 -- For untagged types we preserve the Ekind of the Parent_Base.
8517
8518 if Present (Record_Extension_Part (Type_Def)) then
8519 Set_Ekind (Derived_Type, E_Record_Type);
8520 Set_Default_SSO (Derived_Type);
8521 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8522
8523 -- Create internal access types for components with anonymous
8524 -- access types.
8525
8526 if Ada_Version >= Ada_2005 then
8527 Check_Anonymous_Access_Components
8528 (N, Derived_Type, Derived_Type,
8529 Component_List (Record_Extension_Part (Type_Def)));
8530 end if;
8531
8532 else
8533 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8534 end if;
8535 end if;
8536
8537 -- Indic can either be an N_Identifier if the subtype indication
8538 -- contains no constraint or an N_Subtype_Indication if the subtype
8539 -- indication has a constraint.
8540
8541 Indic := Subtype_Indication (Type_Def);
8542 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8543
8544 -- Check that the type has visible discriminants. The type may be
8545 -- a private type with unknown discriminants whose full view has
8546 -- discriminants which are invisible.
8547
8548 if Constraint_Present then
8549 if not Has_Discriminants (Parent_Base)
8550 or else
8551 (Has_Unknown_Discriminants (Parent_Base)
8552 and then Is_Private_Type (Parent_Base))
8553 then
8554 Error_Msg_N
8555 ("invalid constraint: type has no discriminant",
8556 Constraint (Indic));
8557
8558 Constraint_Present := False;
8559 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8560
8561 elsif Is_Constrained (Parent_Type) then
8562 Error_Msg_N
8563 ("invalid constraint: parent type is already constrained",
8564 Constraint (Indic));
8565
8566 Constraint_Present := False;
8567 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8568 end if;
8569 end if;
8570
8571 -- STEP 0b: If needed, apply transformation given in point 5. above
8572
8573 if not Private_Extension
8574 and then Has_Discriminants (Parent_Type)
8575 and then not Discriminant_Specs
8576 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8577 then
8578 -- First, we must analyze the constraint (see comment in point 5.)
8579 -- The constraint may come from the subtype indication of the full
8580 -- declaration.
8581
8582 if Constraint_Present then
8583 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8584
8585 -- If there is no explicit constraint, there might be one that is
8586 -- inherited from a constrained parent type. In that case verify that
8587 -- it conforms to the constraint in the partial view. In perverse
8588 -- cases the parent subtypes of the partial and full view can have
8589 -- different constraints.
8590
8591 elsif Present (Stored_Constraint (Parent_Type)) then
8592 New_Discrs := Stored_Constraint (Parent_Type);
8593
8594 else
8595 New_Discrs := No_Elist;
8596 end if;
8597
8598 if Has_Discriminants (Derived_Type)
8599 and then Has_Private_Declaration (Derived_Type)
8600 and then Present (Discriminant_Constraint (Derived_Type))
8601 and then Present (New_Discrs)
8602 then
8603 -- Verify that constraints of the full view statically match
8604 -- those given in the partial view.
8605
8606 declare
8607 C1, C2 : Elmt_Id;
8608
8609 begin
8610 C1 := First_Elmt (New_Discrs);
8611 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8612 while Present (C1) and then Present (C2) loop
8613 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8614 or else
8615 (Is_OK_Static_Expression (Node (C1))
8616 and then Is_OK_Static_Expression (Node (C2))
8617 and then
8618 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8619 then
8620 null;
8621
8622 else
8623 if Constraint_Present then
8624 Error_Msg_N
8625 ("constraint not conformant to previous declaration",
8626 Node (C1));
8627 else
8628 Error_Msg_N
8629 ("constraint of full view is incompatible "
8630 & "with partial view", N);
8631 end if;
8632 end if;
8633
8634 Next_Elmt (C1);
8635 Next_Elmt (C2);
8636 end loop;
8637 end;
8638 end if;
8639
8640 -- Insert and analyze the declaration for the unconstrained base type
8641
8642 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8643
8644 New_Decl :=
8645 Make_Full_Type_Declaration (Loc,
8646 Defining_Identifier => New_Base,
8647 Type_Definition =>
8648 Make_Derived_Type_Definition (Loc,
8649 Abstract_Present => Abstract_Present (Type_Def),
8650 Limited_Present => Limited_Present (Type_Def),
8651 Subtype_Indication =>
8652 New_Occurrence_Of (Parent_Base, Loc),
8653 Record_Extension_Part =>
8654 Relocate_Node (Record_Extension_Part (Type_Def)),
8655 Interface_List => Interface_List (Type_Def)));
8656
8657 Set_Parent (New_Decl, Parent (N));
8658 Mark_Rewrite_Insertion (New_Decl);
8659 Insert_Before (N, New_Decl);
8660
8661 -- In the extension case, make sure ancestor is frozen appropriately
8662 -- (see also non-discriminated case below).
8663
8664 if Present (Record_Extension_Part (Type_Def))
8665 or else Is_Interface (Parent_Base)
8666 then
8667 Freeze_Before (New_Decl, Parent_Type);
8668 end if;
8669
8670 -- Note that this call passes False for the Derive_Subps parameter
8671 -- because subprogram derivation is deferred until after creating
8672 -- the subtype (see below).
8673
8674 Build_Derived_Type
8675 (New_Decl, Parent_Base, New_Base,
8676 Is_Completion => False, Derive_Subps => False);
8677
8678 -- ??? This needs re-examination to determine whether the
8679 -- above call can simply be replaced by a call to Analyze.
8680
8681 Set_Analyzed (New_Decl);
8682
8683 -- Insert and analyze the declaration for the constrained subtype
8684
8685 if Constraint_Present then
8686 New_Indic :=
8687 Make_Subtype_Indication (Loc,
8688 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8689 Constraint => Relocate_Node (Constraint (Indic)));
8690
8691 else
8692 declare
8693 Constr_List : constant List_Id := New_List;
8694 C : Elmt_Id;
8695 Expr : Node_Id;
8696
8697 begin
8698 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8699 while Present (C) loop
8700 Expr := Node (C);
8701
8702 -- It is safe here to call New_Copy_Tree since we called
8703 -- Force_Evaluation on each constraint previously
8704 -- in Build_Discriminant_Constraints.
8705
8706 Append (New_Copy_Tree (Expr), To => Constr_List);
8707
8708 Next_Elmt (C);
8709 end loop;
8710
8711 New_Indic :=
8712 Make_Subtype_Indication (Loc,
8713 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8714 Constraint =>
8715 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8716 end;
8717 end if;
8718
8719 Rewrite (N,
8720 Make_Subtype_Declaration (Loc,
8721 Defining_Identifier => Derived_Type,
8722 Subtype_Indication => New_Indic));
8723
8724 Analyze (N);
8725
8726 -- Derivation of subprograms must be delayed until the full subtype
8727 -- has been established, to ensure proper overriding of subprograms
8728 -- inherited by full types. If the derivations occurred as part of
8729 -- the call to Build_Derived_Type above, then the check for type
8730 -- conformance would fail because earlier primitive subprograms
8731 -- could still refer to the full type prior the change to the new
8732 -- subtype and hence would not match the new base type created here.
8733 -- Subprograms are not derived, however, when Derive_Subps is False
8734 -- (since otherwise there could be redundant derivations).
8735
8736 if Derive_Subps then
8737 Derive_Subprograms (Parent_Type, Derived_Type);
8738 end if;
8739
8740 -- For tagged types the Discriminant_Constraint of the new base itype
8741 -- is inherited from the first subtype so that no subtype conformance
8742 -- problem arise when the first subtype overrides primitive
8743 -- operations inherited by the implicit base type.
8744
8745 if Is_Tagged then
8746 Set_Discriminant_Constraint
8747 (New_Base, Discriminant_Constraint (Derived_Type));
8748 end if;
8749
8750 return;
8751 end if;
8752
8753 -- If we get here Derived_Type will have no discriminants or it will be
8754 -- a discriminated unconstrained base type.
8755
8756 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8757
8758 if Is_Tagged then
8759
8760 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8761 -- The declaration of a specific descendant of an interface type
8762 -- freezes the interface type (RM 13.14).
8763
8764 if not Private_Extension or else Is_Interface (Parent_Base) then
8765 Freeze_Before (N, Parent_Type);
8766 end if;
8767
8768 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8769 -- cannot be declared at a deeper level than its parent type is
8770 -- removed. The check on derivation within a generic body is also
8771 -- relaxed, but there's a restriction that a derived tagged type
8772 -- cannot be declared in a generic body if it's derived directly
8773 -- or indirectly from a formal type of that generic.
8774
8775 if Ada_Version >= Ada_2005 then
8776 if Present (Enclosing_Generic_Body (Derived_Type)) then
8777 declare
8778 Ancestor_Type : Entity_Id;
8779
8780 begin
8781 -- Check to see if any ancestor of the derived type is a
8782 -- formal type.
8783
8784 Ancestor_Type := Parent_Type;
8785 while not Is_Generic_Type (Ancestor_Type)
8786 and then Etype (Ancestor_Type) /= Ancestor_Type
8787 loop
8788 Ancestor_Type := Etype (Ancestor_Type);
8789 end loop;
8790
8791 -- If the derived type does have a formal type as an
8792 -- ancestor, then it's an error if the derived type is
8793 -- declared within the body of the generic unit that
8794 -- declares the formal type in its generic formal part. It's
8795 -- sufficient to check whether the ancestor type is declared
8796 -- inside the same generic body as the derived type (such as
8797 -- within a nested generic spec), in which case the
8798 -- derivation is legal. If the formal type is declared
8799 -- outside of that generic body, then it's guaranteed that
8800 -- the derived type is declared within the generic body of
8801 -- the generic unit declaring the formal type.
8802
8803 if Is_Generic_Type (Ancestor_Type)
8804 and then Enclosing_Generic_Body (Ancestor_Type) /=
8805 Enclosing_Generic_Body (Derived_Type)
8806 then
8807 Error_Msg_NE
8808 ("parent type of& must not be descendant of formal type"
8809 & " of an enclosing generic body",
8810 Indic, Derived_Type);
8811 end if;
8812 end;
8813 end if;
8814
8815 elsif Type_Access_Level (Derived_Type) /=
8816 Type_Access_Level (Parent_Type)
8817 and then not Is_Generic_Type (Derived_Type)
8818 then
8819 if Is_Controlled (Parent_Type) then
8820 Error_Msg_N
8821 ("controlled type must be declared at the library level",
8822 Indic);
8823 else
8824 Error_Msg_N
8825 ("type extension at deeper accessibility level than parent",
8826 Indic);
8827 end if;
8828
8829 else
8830 declare
8831 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8832 begin
8833 if Present (GB)
8834 and then GB /= Enclosing_Generic_Body (Parent_Base)
8835 then
8836 Error_Msg_NE
8837 ("parent type of& must not be outside generic body"
8838 & " (RM 3.9.1(4))",
8839 Indic, Derived_Type);
8840 end if;
8841 end;
8842 end if;
8843 end if;
8844
8845 -- Ada 2005 (AI-251)
8846
8847 if Ada_Version >= Ada_2005 and then Is_Tagged then
8848
8849 -- "The declaration of a specific descendant of an interface type
8850 -- freezes the interface type" (RM 13.14).
8851
8852 declare
8853 Iface : Node_Id;
8854 begin
8855 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8856 Iface := First (Interface_List (Type_Def));
8857 while Present (Iface) loop
8858 Freeze_Before (N, Etype (Iface));
8859 Next (Iface);
8860 end loop;
8861 end if;
8862 end;
8863 end if;
8864
8865 -- STEP 1b : preliminary cleanup of the full view of private types
8866
8867 -- If the type is already marked as having discriminants, then it's the
8868 -- completion of a private type or private extension and we need to
8869 -- retain the discriminants from the partial view if the current
8870 -- declaration has Discriminant_Specifications so that we can verify
8871 -- conformance. However, we must remove any existing components that
8872 -- were inherited from the parent (and attached in Copy_And_Swap)
8873 -- because the full type inherits all appropriate components anyway, and
8874 -- we do not want the partial view's components interfering.
8875
8876 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8877 Discrim := First_Discriminant (Derived_Type);
8878 loop
8879 Last_Discrim := Discrim;
8880 Next_Discriminant (Discrim);
8881 exit when No (Discrim);
8882 end loop;
8883
8884 Set_Last_Entity (Derived_Type, Last_Discrim);
8885
8886 -- In all other cases wipe out the list of inherited components (even
8887 -- inherited discriminants), it will be properly rebuilt here.
8888
8889 else
8890 Set_First_Entity (Derived_Type, Empty);
8891 Set_Last_Entity (Derived_Type, Empty);
8892 end if;
8893
8894 -- STEP 1c: Initialize some flags for the Derived_Type
8895
8896 -- The following flags must be initialized here so that
8897 -- Process_Discriminants can check that discriminants of tagged types do
8898 -- not have a default initial value and that access discriminants are
8899 -- only specified for limited records. For completeness, these flags are
8900 -- also initialized along with all the other flags below.
8901
8902 -- AI-419: Limitedness is not inherited from an interface parent, so to
8903 -- be limited in that case the type must be explicitly declared as
8904 -- limited. However, task and protected interfaces are always limited.
8905
8906 if Limited_Present (Type_Def) then
8907 Set_Is_Limited_Record (Derived_Type);
8908
8909 elsif Is_Limited_Record (Parent_Type)
8910 or else (Present (Full_View (Parent_Type))
8911 and then Is_Limited_Record (Full_View (Parent_Type)))
8912 then
8913 if not Is_Interface (Parent_Type)
8914 or else Is_Synchronized_Interface (Parent_Type)
8915 or else Is_Protected_Interface (Parent_Type)
8916 or else Is_Task_Interface (Parent_Type)
8917 then
8918 Set_Is_Limited_Record (Derived_Type);
8919 end if;
8920 end if;
8921
8922 -- STEP 2a: process discriminants of derived type if any
8923
8924 Push_Scope (Derived_Type);
8925
8926 if Discriminant_Specs then
8927 Set_Has_Unknown_Discriminants (Derived_Type, False);
8928
8929 -- The following call initializes fields Has_Discriminants and
8930 -- Discriminant_Constraint, unless we are processing the completion
8931 -- of a private type declaration.
8932
8933 Check_Or_Process_Discriminants (N, Derived_Type);
8934
8935 -- For untagged types, the constraint on the Parent_Type must be
8936 -- present and is used to rename the discriminants.
8937
8938 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8939 Error_Msg_N ("untagged parent must have discriminants", Indic);
8940
8941 elsif not Is_Tagged and then not Constraint_Present then
8942 Error_Msg_N
8943 ("discriminant constraint needed for derived untagged records",
8944 Indic);
8945
8946 -- Otherwise the parent subtype must be constrained unless we have a
8947 -- private extension.
8948
8949 elsif not Constraint_Present
8950 and then not Private_Extension
8951 and then not Is_Constrained (Parent_Type)
8952 then
8953 Error_Msg_N
8954 ("unconstrained type not allowed in this context", Indic);
8955
8956 elsif Constraint_Present then
8957 -- The following call sets the field Corresponding_Discriminant
8958 -- for the discriminants in the Derived_Type.
8959
8960 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8961
8962 -- For untagged types all new discriminants must rename
8963 -- discriminants in the parent. For private extensions new
8964 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8965
8966 Discrim := First_Discriminant (Derived_Type);
8967 while Present (Discrim) loop
8968 if not Is_Tagged
8969 and then No (Corresponding_Discriminant (Discrim))
8970 then
8971 Error_Msg_N
8972 ("new discriminants must constrain old ones", Discrim);
8973
8974 elsif Private_Extension
8975 and then Present (Corresponding_Discriminant (Discrim))
8976 then
8977 Error_Msg_N
8978 ("only static constraints allowed for parent"
8979 & " discriminants in the partial view", Indic);
8980 exit;
8981 end if;
8982
8983 -- If a new discriminant is used in the constraint, then its
8984 -- subtype must be statically compatible with the parent
8985 -- discriminant's subtype (3.7(15)).
8986
8987 -- However, if the record contains an array constrained by
8988 -- the discriminant but with some different bound, the compiler
8989 -- tries to create a smaller range for the discriminant type.
8990 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8991 -- the discriminant type is a scalar type, the check must use
8992 -- the original discriminant type in the parent declaration.
8993
8994 declare
8995 Corr_Disc : constant Entity_Id :=
8996 Corresponding_Discriminant (Discrim);
8997 Disc_Type : constant Entity_Id := Etype (Discrim);
8998 Corr_Type : Entity_Id;
8999
9000 begin
9001 if Present (Corr_Disc) then
9002 if Is_Scalar_Type (Disc_Type) then
9003 Corr_Type :=
9004 Entity (Discriminant_Type (Parent (Corr_Disc)));
9005 else
9006 Corr_Type := Etype (Corr_Disc);
9007 end if;
9008
9009 if not
9010 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9011 then
9012 Error_Msg_N
9013 ("subtype must be compatible "
9014 & "with parent discriminant",
9015 Discrim);
9016 end if;
9017 end if;
9018 end;
9019
9020 Next_Discriminant (Discrim);
9021 end loop;
9022
9023 -- Check whether the constraints of the full view statically
9024 -- match those imposed by the parent subtype [7.3(13)].
9025
9026 if Present (Stored_Constraint (Derived_Type)) then
9027 declare
9028 C1, C2 : Elmt_Id;
9029
9030 begin
9031 C1 := First_Elmt (Discs);
9032 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9033 while Present (C1) and then Present (C2) loop
9034 if not
9035 Fully_Conformant_Expressions (Node (C1), Node (C2))
9036 then
9037 Error_Msg_N
9038 ("not conformant with previous declaration",
9039 Node (C1));
9040 end if;
9041
9042 Next_Elmt (C1);
9043 Next_Elmt (C2);
9044 end loop;
9045 end;
9046 end if;
9047 end if;
9048
9049 -- STEP 2b: No new discriminants, inherit discriminants if any
9050
9051 else
9052 if Private_Extension then
9053 Set_Has_Unknown_Discriminants
9054 (Derived_Type,
9055 Has_Unknown_Discriminants (Parent_Type)
9056 or else Unknown_Discriminants_Present (N));
9057
9058 -- The partial view of the parent may have unknown discriminants,
9059 -- but if the full view has discriminants and the parent type is
9060 -- in scope they must be inherited.
9061
9062 elsif Has_Unknown_Discriminants (Parent_Type)
9063 and then
9064 (not Has_Discriminants (Parent_Type)
9065 or else not In_Open_Scopes (Scope (Parent_Type)))
9066 then
9067 Set_Has_Unknown_Discriminants (Derived_Type);
9068 end if;
9069
9070 if not Has_Unknown_Discriminants (Derived_Type)
9071 and then not Has_Unknown_Discriminants (Parent_Base)
9072 and then Has_Discriminants (Parent_Type)
9073 then
9074 Inherit_Discrims := True;
9075 Set_Has_Discriminants
9076 (Derived_Type, True);
9077 Set_Discriminant_Constraint
9078 (Derived_Type, Discriminant_Constraint (Parent_Base));
9079 end if;
9080
9081 -- The following test is true for private types (remember
9082 -- transformation 5. is not applied to those) and in an error
9083 -- situation.
9084
9085 if Constraint_Present then
9086 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9087 end if;
9088
9089 -- For now mark a new derived type as constrained only if it has no
9090 -- discriminants. At the end of Build_Derived_Record_Type we properly
9091 -- set this flag in the case of private extensions. See comments in
9092 -- point 9. just before body of Build_Derived_Record_Type.
9093
9094 Set_Is_Constrained
9095 (Derived_Type,
9096 not (Inherit_Discrims
9097 or else Has_Unknown_Discriminants (Derived_Type)));
9098 end if;
9099
9100 -- STEP 3: initialize fields of derived type
9101
9102 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9103 Set_Stored_Constraint (Derived_Type, No_Elist);
9104
9105 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9106 -- but cannot be interfaces
9107
9108 if not Private_Extension
9109 and then Ekind (Derived_Type) /= E_Private_Type
9110 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9111 then
9112 if Interface_Present (Type_Def) then
9113 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9114 end if;
9115
9116 Set_Interfaces (Derived_Type, No_Elist);
9117 end if;
9118
9119 -- Fields inherited from the Parent_Type
9120
9121 Set_Has_Specified_Layout
9122 (Derived_Type, Has_Specified_Layout (Parent_Type));
9123 Set_Is_Limited_Composite
9124 (Derived_Type, Is_Limited_Composite (Parent_Type));
9125 Set_Is_Private_Composite
9126 (Derived_Type, Is_Private_Composite (Parent_Type));
9127
9128 if Is_Tagged_Type (Parent_Type) then
9129 Set_No_Tagged_Streams_Pragma
9130 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9131 end if;
9132
9133 -- Fields inherited from the Parent_Base
9134
9135 Set_Has_Controlled_Component
9136 (Derived_Type, Has_Controlled_Component (Parent_Base));
9137 Set_Has_Non_Standard_Rep
9138 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9139 Set_Has_Primitive_Operations
9140 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9141
9142 -- Set fields for private derived types
9143
9144 if Is_Private_Type (Derived_Type) then
9145 Set_Depends_On_Private (Derived_Type, True);
9146 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9147 end if;
9148
9149 -- Inherit fields for non-private types. If this is the completion of a
9150 -- derivation from a private type, the parent itself is private and the
9151 -- attributes come from its full view, which must be present.
9152
9153 if Is_Record_Type (Derived_Type) then
9154 declare
9155 Parent_Full : Entity_Id;
9156
9157 begin
9158 if Is_Private_Type (Parent_Base)
9159 and then not Is_Record_Type (Parent_Base)
9160 then
9161 Parent_Full := Full_View (Parent_Base);
9162 else
9163 Parent_Full := Parent_Base;
9164 end if;
9165
9166 Set_Component_Alignment
9167 (Derived_Type, Component_Alignment (Parent_Full));
9168 Set_C_Pass_By_Copy
9169 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9170 Set_Has_Complex_Representation
9171 (Derived_Type, Has_Complex_Representation (Parent_Full));
9172
9173 -- For untagged types, inherit the layout by default to avoid
9174 -- costly changes of representation for type conversions.
9175
9176 if not Is_Tagged then
9177 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9178 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9179 end if;
9180 end;
9181 end if;
9182
9183 -- Set fields for tagged types
9184
9185 if Is_Tagged then
9186 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9187
9188 -- All tagged types defined in Ada.Finalization are controlled
9189
9190 if Chars (Scope (Derived_Type)) = Name_Finalization
9191 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9192 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9193 then
9194 Set_Is_Controlled (Derived_Type);
9195 else
9196 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
9197 end if;
9198
9199 -- Minor optimization: there is no need to generate the class-wide
9200 -- entity associated with an underlying record view.
9201
9202 if not Is_Underlying_Record_View (Derived_Type) then
9203 Make_Class_Wide_Type (Derived_Type);
9204 end if;
9205
9206 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9207
9208 if Has_Discriminants (Derived_Type)
9209 and then Constraint_Present
9210 then
9211 Set_Stored_Constraint
9212 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9213 end if;
9214
9215 if Ada_Version >= Ada_2005 then
9216 declare
9217 Ifaces_List : Elist_Id;
9218
9219 begin
9220 -- Checks rules 3.9.4 (13/2 and 14/2)
9221
9222 if Comes_From_Source (Derived_Type)
9223 and then not Is_Private_Type (Derived_Type)
9224 and then Is_Interface (Parent_Type)
9225 and then not Is_Interface (Derived_Type)
9226 then
9227 if Is_Task_Interface (Parent_Type) then
9228 Error_Msg_N
9229 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9230 Derived_Type);
9231
9232 elsif Is_Protected_Interface (Parent_Type) then
9233 Error_Msg_N
9234 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9235 Derived_Type);
9236 end if;
9237 end if;
9238
9239 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9240
9241 Check_Interfaces (N, Type_Def);
9242
9243 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9244 -- not already in the parents.
9245
9246 Collect_Interfaces
9247 (T => Derived_Type,
9248 Ifaces_List => Ifaces_List,
9249 Exclude_Parents => True);
9250
9251 Set_Interfaces (Derived_Type, Ifaces_List);
9252
9253 -- If the derived type is the anonymous type created for
9254 -- a declaration whose parent has a constraint, propagate
9255 -- the interface list to the source type. This must be done
9256 -- prior to the completion of the analysis of the source type
9257 -- because the components in the extension may contain current
9258 -- instances whose legality depends on some ancestor.
9259
9260 if Is_Itype (Derived_Type) then
9261 declare
9262 Def : constant Node_Id :=
9263 Associated_Node_For_Itype (Derived_Type);
9264 begin
9265 if Present (Def)
9266 and then Nkind (Def) = N_Full_Type_Declaration
9267 then
9268 Set_Interfaces
9269 (Defining_Identifier (Def), Ifaces_List);
9270 end if;
9271 end;
9272 end if;
9273
9274 -- A type extension is automatically Ghost when one of its
9275 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9276 -- also inherited when the parent type is Ghost, but this is
9277 -- done in Build_Derived_Type as the mechanism also handles
9278 -- untagged derivations.
9279
9280 if Implements_Ghost_Interface (Derived_Type) then
9281 Set_Is_Ghost_Entity (Derived_Type);
9282 end if;
9283 end;
9284 end if;
9285 end if;
9286
9287 -- STEP 4: Inherit components from the parent base and constrain them.
9288 -- Apply the second transformation described in point 6. above.
9289
9290 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9291 or else not Has_Discriminants (Parent_Type)
9292 or else not Is_Constrained (Parent_Type)
9293 then
9294 Constrs := Discs;
9295 else
9296 Constrs := Discriminant_Constraint (Parent_Type);
9297 end if;
9298
9299 Assoc_List :=
9300 Inherit_Components
9301 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9302
9303 -- STEP 5a: Copy the parent record declaration for untagged types
9304
9305 Set_Has_Implicit_Dereference
9306 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9307
9308 if not Is_Tagged then
9309
9310 -- Discriminant_Constraint (Derived_Type) has been properly
9311 -- constructed. Save it and temporarily set it to Empty because we
9312 -- do not want the call to New_Copy_Tree below to mess this list.
9313
9314 if Has_Discriminants (Derived_Type) then
9315 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9316 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9317 else
9318 Save_Discr_Constr := No_Elist;
9319 end if;
9320
9321 -- Save the Etype field of Derived_Type. It is correctly set now,
9322 -- but the call to New_Copy tree may remap it to point to itself,
9323 -- which is not what we want. Ditto for the Next_Entity field.
9324
9325 Save_Etype := Etype (Derived_Type);
9326 Save_Next_Entity := Next_Entity (Derived_Type);
9327
9328 -- Assoc_List maps all stored discriminants in the Parent_Base to
9329 -- stored discriminants in the Derived_Type. It is fundamental that
9330 -- no types or itypes with discriminants other than the stored
9331 -- discriminants appear in the entities declared inside
9332 -- Derived_Type, since the back end cannot deal with it.
9333
9334 New_Decl :=
9335 New_Copy_Tree
9336 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9337
9338 -- Restore the fields saved prior to the New_Copy_Tree call
9339 -- and compute the stored constraint.
9340
9341 Set_Etype (Derived_Type, Save_Etype);
9342 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9343
9344 if Has_Discriminants (Derived_Type) then
9345 Set_Discriminant_Constraint
9346 (Derived_Type, Save_Discr_Constr);
9347 Set_Stored_Constraint
9348 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9349 Replace_Components (Derived_Type, New_Decl);
9350 end if;
9351
9352 -- Insert the new derived type declaration
9353
9354 Rewrite (N, New_Decl);
9355
9356 -- STEP 5b: Complete the processing for record extensions in generics
9357
9358 -- There is no completion for record extensions declared in the
9359 -- parameter part of a generic, so we need to complete processing for
9360 -- these generic record extensions here. The Record_Type_Definition call
9361 -- will change the Ekind of the components from E_Void to E_Component.
9362
9363 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9364 Record_Type_Definition (Empty, Derived_Type);
9365
9366 -- STEP 5c: Process the record extension for non private tagged types
9367
9368 elsif not Private_Extension then
9369 Expand_Record_Extension (Derived_Type, Type_Def);
9370
9371 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9372 -- derived type to propagate some semantic information. This led
9373 -- to other ASIS failures and has been removed.
9374
9375 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9376 -- implemented interfaces if we are in expansion mode
9377
9378 if Expander_Active
9379 and then Has_Interfaces (Derived_Type)
9380 then
9381 Add_Interface_Tag_Components (N, Derived_Type);
9382 end if;
9383
9384 -- Analyze the record extension
9385
9386 Record_Type_Definition
9387 (Record_Extension_Part (Type_Def), Derived_Type);
9388 end if;
9389
9390 End_Scope;
9391
9392 -- Nothing else to do if there is an error in the derivation.
9393 -- An unusual case: the full view may be derived from a type in an
9394 -- instance, when the partial view was used illegally as an actual
9395 -- in that instance, leading to a circular definition.
9396
9397 if Etype (Derived_Type) = Any_Type
9398 or else Etype (Parent_Type) = Derived_Type
9399 then
9400 return;
9401 end if;
9402
9403 -- Set delayed freeze and then derive subprograms, we need to do
9404 -- this in this order so that derived subprograms inherit the
9405 -- derived freeze if necessary.
9406
9407 Set_Has_Delayed_Freeze (Derived_Type);
9408
9409 if Derive_Subps then
9410 Derive_Subprograms (Parent_Type, Derived_Type);
9411 end if;
9412
9413 -- If we have a private extension which defines a constrained derived
9414 -- type mark as constrained here after we have derived subprograms. See
9415 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9416
9417 if Private_Extension and then Inherit_Discrims then
9418 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9419 Set_Is_Constrained (Derived_Type, True);
9420 Set_Discriminant_Constraint (Derived_Type, Discs);
9421
9422 elsif Is_Constrained (Parent_Type) then
9423 Set_Is_Constrained
9424 (Derived_Type, True);
9425 Set_Discriminant_Constraint
9426 (Derived_Type, Discriminant_Constraint (Parent_Type));
9427 end if;
9428 end if;
9429
9430 -- Update the class-wide type, which shares the now-completed entity
9431 -- list with its specific type. In case of underlying record views,
9432 -- we do not generate the corresponding class wide entity.
9433
9434 if Is_Tagged
9435 and then not Is_Underlying_Record_View (Derived_Type)
9436 then
9437 Set_First_Entity
9438 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9439 Set_Last_Entity
9440 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9441 end if;
9442
9443 Check_Function_Writable_Actuals (N);
9444 end Build_Derived_Record_Type;
9445
9446 ------------------------
9447 -- Build_Derived_Type --
9448 ------------------------
9449
9450 procedure Build_Derived_Type
9451 (N : Node_Id;
9452 Parent_Type : Entity_Id;
9453 Derived_Type : Entity_Id;
9454 Is_Completion : Boolean;
9455 Derive_Subps : Boolean := True)
9456 is
9457 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9458
9459 begin
9460 -- Set common attributes
9461
9462 Set_Scope (Derived_Type, Current_Scope);
9463
9464 Set_Etype (Derived_Type, Parent_Base);
9465 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9466 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9467
9468 Set_Size_Info (Derived_Type, Parent_Type);
9469 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9470 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
9471 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9472
9473 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9474 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9475
9476 if Is_Tagged_Type (Derived_Type) then
9477 Set_No_Tagged_Streams_Pragma
9478 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9479 end if;
9480
9481 -- If the parent has primitive routines, set the derived type link
9482
9483 if Has_Primitive_Operations (Parent_Type) then
9484 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9485 end if;
9486
9487 -- If the parent type is a private subtype, the convention on the base
9488 -- type may be set in the private part, and not propagated to the
9489 -- subtype until later, so we obtain the convention from the base type.
9490
9491 Set_Convention (Derived_Type, Convention (Parent_Base));
9492
9493 -- Set SSO default for record or array type
9494
9495 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9496 and then Is_Base_Type (Derived_Type)
9497 then
9498 Set_Default_SSO (Derived_Type);
9499 end if;
9500
9501 -- A derived type inherits the Default_Initial_Condition pragma coming
9502 -- from any parent type within the derivation chain.
9503
9504 if Has_DIC (Parent_Type) then
9505 Set_Has_Inherited_DIC (Derived_Type);
9506 end if;
9507
9508 -- A derived type inherits any class-wide invariants coming from a
9509 -- parent type or an interface. Note that the invariant procedure of
9510 -- the parent type should not be inherited because the derived type may
9511 -- define invariants of its own.
9512
9513 if not Is_Interface (Derived_Type) then
9514 if Has_Inherited_Invariants (Parent_Type)
9515 or else Has_Inheritable_Invariants (Parent_Type)
9516 then
9517 Set_Has_Inherited_Invariants (Derived_Type);
9518
9519 elsif Is_Concurrent_Type (Derived_Type)
9520 or else Is_Tagged_Type (Derived_Type)
9521 then
9522 declare
9523 Iface : Entity_Id;
9524 Ifaces : Elist_Id;
9525 Iface_Elmt : Elmt_Id;
9526
9527 begin
9528 Collect_Interfaces
9529 (T => Derived_Type,
9530 Ifaces_List => Ifaces,
9531 Exclude_Parents => True);
9532
9533 if Present (Ifaces) then
9534 Iface_Elmt := First_Elmt (Ifaces);
9535 while Present (Iface_Elmt) loop
9536 Iface := Node (Iface_Elmt);
9537
9538 if Has_Inheritable_Invariants (Iface) then
9539 Set_Has_Inherited_Invariants (Derived_Type);
9540 exit;
9541 end if;
9542
9543 Next_Elmt (Iface_Elmt);
9544 end loop;
9545 end if;
9546 end;
9547 end if;
9548 end if;
9549
9550 -- We similarly inherit predicates. Note that for scalar derived types
9551 -- the predicate is inherited from the first subtype, and not from its
9552 -- (anonymous) base type.
9553
9554 if Has_Predicates (Parent_Type)
9555 or else Has_Predicates (First_Subtype (Parent_Type))
9556 then
9557 Set_Has_Predicates (Derived_Type);
9558 end if;
9559
9560 -- The derived type inherits the representation clauses of the parent
9561
9562 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9563
9564 -- If the parent type has delayed rep aspects, then mark the derived
9565 -- type as possibly inheriting a delayed rep aspect.
9566
9567 if Has_Delayed_Rep_Aspects (Parent_Type) then
9568 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9569 end if;
9570
9571 -- A derived type becomes Ghost when its parent type is also Ghost
9572 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9573 -- directly inherited because the Ghost policy in effect may differ.
9574
9575 if Is_Ghost_Entity (Parent_Type) then
9576 Set_Is_Ghost_Entity (Derived_Type);
9577 end if;
9578
9579 -- Type dependent processing
9580
9581 case Ekind (Parent_Type) is
9582 when Numeric_Kind =>
9583 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9584
9585 when Array_Kind =>
9586 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9587
9588 when Class_Wide_Kind
9589 | E_Record_Subtype
9590 | E_Record_Type
9591 =>
9592 Build_Derived_Record_Type
9593 (N, Parent_Type, Derived_Type, Derive_Subps);
9594 return;
9595
9596 when Enumeration_Kind =>
9597 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9598
9599 when Access_Kind =>
9600 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9601
9602 when Incomplete_Or_Private_Kind =>
9603 Build_Derived_Private_Type
9604 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9605
9606 -- For discriminated types, the derivation includes deriving
9607 -- primitive operations. For others it is done below.
9608
9609 if Is_Tagged_Type (Parent_Type)
9610 or else Has_Discriminants (Parent_Type)
9611 or else (Present (Full_View (Parent_Type))
9612 and then Has_Discriminants (Full_View (Parent_Type)))
9613 then
9614 return;
9615 end if;
9616
9617 when Concurrent_Kind =>
9618 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9619
9620 when others =>
9621 raise Program_Error;
9622 end case;
9623
9624 -- Nothing more to do if some error occurred
9625
9626 if Etype (Derived_Type) = Any_Type then
9627 return;
9628 end if;
9629
9630 -- Set delayed freeze and then derive subprograms, we need to do this
9631 -- in this order so that derived subprograms inherit the derived freeze
9632 -- if necessary.
9633
9634 Set_Has_Delayed_Freeze (Derived_Type);
9635
9636 if Derive_Subps then
9637 Derive_Subprograms (Parent_Type, Derived_Type);
9638 end if;
9639
9640 Set_Has_Primitive_Operations
9641 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9642 end Build_Derived_Type;
9643
9644 -----------------------
9645 -- Build_Discriminal --
9646 -----------------------
9647
9648 procedure Build_Discriminal (Discrim : Entity_Id) is
9649 D_Minal : Entity_Id;
9650 CR_Disc : Entity_Id;
9651
9652 begin
9653 -- A discriminal has the same name as the discriminant
9654
9655 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9656
9657 Set_Ekind (D_Minal, E_In_Parameter);
9658 Set_Mechanism (D_Minal, Default_Mechanism);
9659 Set_Etype (D_Minal, Etype (Discrim));
9660 Set_Scope (D_Minal, Current_Scope);
9661 Set_Parent (D_Minal, Parent (Discrim));
9662
9663 Set_Discriminal (Discrim, D_Minal);
9664 Set_Discriminal_Link (D_Minal, Discrim);
9665
9666 -- For task types, build at once the discriminants of the corresponding
9667 -- record, which are needed if discriminants are used in entry defaults
9668 -- and in family bounds.
9669
9670 if Is_Concurrent_Type (Current_Scope)
9671 or else
9672 Is_Limited_Type (Current_Scope)
9673 then
9674 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9675
9676 Set_Ekind (CR_Disc, E_In_Parameter);
9677 Set_Mechanism (CR_Disc, Default_Mechanism);
9678 Set_Etype (CR_Disc, Etype (Discrim));
9679 Set_Scope (CR_Disc, Current_Scope);
9680 Set_Discriminal_Link (CR_Disc, Discrim);
9681 Set_CR_Discriminant (Discrim, CR_Disc);
9682 end if;
9683 end Build_Discriminal;
9684
9685 ------------------------------------
9686 -- Build_Discriminant_Constraints --
9687 ------------------------------------
9688
9689 function Build_Discriminant_Constraints
9690 (T : Entity_Id;
9691 Def : Node_Id;
9692 Derived_Def : Boolean := False) return Elist_Id
9693 is
9694 C : constant Node_Id := Constraint (Def);
9695 Nb_Discr : constant Nat := Number_Discriminants (T);
9696
9697 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9698 -- Saves the expression corresponding to a given discriminant in T
9699
9700 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9701 -- Return the Position number within array Discr_Expr of a discriminant
9702 -- D within the discriminant list of the discriminated type T.
9703
9704 procedure Process_Discriminant_Expression
9705 (Expr : Node_Id;
9706 D : Entity_Id);
9707 -- If this is a discriminant constraint on a partial view, do not
9708 -- generate an overflow check on the discriminant expression. The check
9709 -- will be generated when constraining the full view. Otherwise the
9710 -- backend creates duplicate symbols for the temporaries corresponding
9711 -- to the expressions to be checked, causing spurious assembler errors.
9712
9713 ------------------
9714 -- Pos_Of_Discr --
9715 ------------------
9716
9717 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9718 Disc : Entity_Id;
9719
9720 begin
9721 Disc := First_Discriminant (T);
9722 for J in Discr_Expr'Range loop
9723 if Disc = D then
9724 return J;
9725 end if;
9726
9727 Next_Discriminant (Disc);
9728 end loop;
9729
9730 -- Note: Since this function is called on discriminants that are
9731 -- known to belong to the discriminated type, falling through the
9732 -- loop with no match signals an internal compiler error.
9733
9734 raise Program_Error;
9735 end Pos_Of_Discr;
9736
9737 -------------------------------------
9738 -- Process_Discriminant_Expression --
9739 -------------------------------------
9740
9741 procedure Process_Discriminant_Expression
9742 (Expr : Node_Id;
9743 D : Entity_Id)
9744 is
9745 BDT : constant Entity_Id := Base_Type (Etype (D));
9746
9747 begin
9748 -- If this is a discriminant constraint on a partial view, do
9749 -- not generate an overflow on the discriminant expression. The
9750 -- check will be generated when constraining the full view.
9751
9752 if Is_Private_Type (T)
9753 and then Present (Full_View (T))
9754 then
9755 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9756 else
9757 Analyze_And_Resolve (Expr, BDT);
9758 end if;
9759 end Process_Discriminant_Expression;
9760
9761 -- Declarations local to Build_Discriminant_Constraints
9762
9763 Discr : Entity_Id;
9764 E : Entity_Id;
9765 Elist : constant Elist_Id := New_Elmt_List;
9766
9767 Constr : Node_Id;
9768 Expr : Node_Id;
9769 Id : Node_Id;
9770 Position : Nat;
9771 Found : Boolean;
9772
9773 Discrim_Present : Boolean := False;
9774
9775 -- Start of processing for Build_Discriminant_Constraints
9776
9777 begin
9778 -- The following loop will process positional associations only.
9779 -- For a positional association, the (single) discriminant is
9780 -- implicitly specified by position, in textual order (RM 3.7.2).
9781
9782 Discr := First_Discriminant (T);
9783 Constr := First (Constraints (C));
9784 for D in Discr_Expr'Range loop
9785 exit when Nkind (Constr) = N_Discriminant_Association;
9786
9787 if No (Constr) then
9788 Error_Msg_N ("too few discriminants given in constraint", C);
9789 return New_Elmt_List;
9790
9791 elsif Nkind (Constr) = N_Range
9792 or else (Nkind (Constr) = N_Attribute_Reference
9793 and then Attribute_Name (Constr) = Name_Range)
9794 then
9795 Error_Msg_N
9796 ("a range is not a valid discriminant constraint", Constr);
9797 Discr_Expr (D) := Error;
9798
9799 else
9800 Process_Discriminant_Expression (Constr, Discr);
9801 Discr_Expr (D) := Constr;
9802 end if;
9803
9804 Next_Discriminant (Discr);
9805 Next (Constr);
9806 end loop;
9807
9808 if No (Discr) and then Present (Constr) then
9809 Error_Msg_N ("too many discriminants given in constraint", Constr);
9810 return New_Elmt_List;
9811 end if;
9812
9813 -- Named associations can be given in any order, but if both positional
9814 -- and named associations are used in the same discriminant constraint,
9815 -- then positional associations must occur first, at their normal
9816 -- position. Hence once a named association is used, the rest of the
9817 -- discriminant constraint must use only named associations.
9818
9819 while Present (Constr) loop
9820
9821 -- Positional association forbidden after a named association
9822
9823 if Nkind (Constr) /= N_Discriminant_Association then
9824 Error_Msg_N ("positional association follows named one", Constr);
9825 return New_Elmt_List;
9826
9827 -- Otherwise it is a named association
9828
9829 else
9830 -- E records the type of the discriminants in the named
9831 -- association. All the discriminants specified in the same name
9832 -- association must have the same type.
9833
9834 E := Empty;
9835
9836 -- Search the list of discriminants in T to see if the simple name
9837 -- given in the constraint matches any of them.
9838
9839 Id := First (Selector_Names (Constr));
9840 while Present (Id) loop
9841 Found := False;
9842
9843 -- If Original_Discriminant is present, we are processing a
9844 -- generic instantiation and this is an instance node. We need
9845 -- to find the name of the corresponding discriminant in the
9846 -- actual record type T and not the name of the discriminant in
9847 -- the generic formal. Example:
9848
9849 -- generic
9850 -- type G (D : int) is private;
9851 -- package P is
9852 -- subtype W is G (D => 1);
9853 -- end package;
9854 -- type Rec (X : int) is record ... end record;
9855 -- package Q is new P (G => Rec);
9856
9857 -- At the point of the instantiation, formal type G is Rec
9858 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9859 -- which really looks like "subtype W is Rec (D => 1);" at
9860 -- the point of instantiation, we want to find the discriminant
9861 -- that corresponds to D in Rec, i.e. X.
9862
9863 if Present (Original_Discriminant (Id))
9864 and then In_Instance
9865 then
9866 Discr := Find_Corresponding_Discriminant (Id, T);
9867 Found := True;
9868
9869 else
9870 Discr := First_Discriminant (T);
9871 while Present (Discr) loop
9872 if Chars (Discr) = Chars (Id) then
9873 Found := True;
9874 exit;
9875 end if;
9876
9877 Next_Discriminant (Discr);
9878 end loop;
9879
9880 if not Found then
9881 Error_Msg_N ("& does not match any discriminant", Id);
9882 return New_Elmt_List;
9883
9884 -- If the parent type is a generic formal, preserve the
9885 -- name of the discriminant for subsequent instances.
9886 -- see comment at the beginning of this if statement.
9887
9888 elsif Is_Generic_Type (Root_Type (T)) then
9889 Set_Original_Discriminant (Id, Discr);
9890 end if;
9891 end if;
9892
9893 Position := Pos_Of_Discr (T, Discr);
9894
9895 if Present (Discr_Expr (Position)) then
9896 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9897
9898 else
9899 -- Each discriminant specified in the same named association
9900 -- must be associated with a separate copy of the
9901 -- corresponding expression.
9902
9903 if Present (Next (Id)) then
9904 Expr := New_Copy_Tree (Expression (Constr));
9905 Set_Parent (Expr, Parent (Expression (Constr)));
9906 else
9907 Expr := Expression (Constr);
9908 end if;
9909
9910 Discr_Expr (Position) := Expr;
9911 Process_Discriminant_Expression (Expr, Discr);
9912 end if;
9913
9914 -- A discriminant association with more than one discriminant
9915 -- name is only allowed if the named discriminants are all of
9916 -- the same type (RM 3.7.1(8)).
9917
9918 if E = Empty then
9919 E := Base_Type (Etype (Discr));
9920
9921 elsif Base_Type (Etype (Discr)) /= E then
9922 Error_Msg_N
9923 ("all discriminants in an association " &
9924 "must have the same type", Id);
9925 end if;
9926
9927 Next (Id);
9928 end loop;
9929 end if;
9930
9931 Next (Constr);
9932 end loop;
9933
9934 -- A discriminant constraint must provide exactly one value for each
9935 -- discriminant of the type (RM 3.7.1(8)).
9936
9937 for J in Discr_Expr'Range loop
9938 if No (Discr_Expr (J)) then
9939 Error_Msg_N ("too few discriminants given in constraint", C);
9940 return New_Elmt_List;
9941 end if;
9942 end loop;
9943
9944 -- Determine if there are discriminant expressions in the constraint
9945
9946 for J in Discr_Expr'Range loop
9947 if Denotes_Discriminant
9948 (Discr_Expr (J), Check_Concurrent => True)
9949 then
9950 Discrim_Present := True;
9951 end if;
9952 end loop;
9953
9954 -- Build an element list consisting of the expressions given in the
9955 -- discriminant constraint and apply the appropriate checks. The list
9956 -- is constructed after resolving any named discriminant associations
9957 -- and therefore the expressions appear in the textual order of the
9958 -- discriminants.
9959
9960 Discr := First_Discriminant (T);
9961 for J in Discr_Expr'Range loop
9962 if Discr_Expr (J) /= Error then
9963 Append_Elmt (Discr_Expr (J), Elist);
9964
9965 -- If any of the discriminant constraints is given by a
9966 -- discriminant and we are in a derived type declaration we
9967 -- have a discriminant renaming. Establish link between new
9968 -- and old discriminant. The new discriminant has an implicit
9969 -- dereference if the old one does.
9970
9971 if Denotes_Discriminant (Discr_Expr (J)) then
9972 if Derived_Def then
9973 declare
9974 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
9975
9976 begin
9977 Set_Corresponding_Discriminant (New_Discr, Discr);
9978 Set_Has_Implicit_Dereference (New_Discr,
9979 Has_Implicit_Dereference (Discr));
9980 end;
9981 end if;
9982
9983 -- Force the evaluation of non-discriminant expressions.
9984 -- If we have found a discriminant in the constraint 3.4(26)
9985 -- and 3.8(18) demand that no range checks are performed are
9986 -- after evaluation. If the constraint is for a component
9987 -- definition that has a per-object constraint, expressions are
9988 -- evaluated but not checked either. In all other cases perform
9989 -- a range check.
9990
9991 else
9992 if Discrim_Present then
9993 null;
9994
9995 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9996 and then Has_Per_Object_Constraint
9997 (Defining_Identifier (Parent (Parent (Def))))
9998 then
9999 null;
10000
10001 elsif Is_Access_Type (Etype (Discr)) then
10002 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10003
10004 else
10005 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10006 end if;
10007
10008 Force_Evaluation (Discr_Expr (J));
10009 end if;
10010
10011 -- Check that the designated type of an access discriminant's
10012 -- expression is not a class-wide type unless the discriminant's
10013 -- designated type is also class-wide.
10014
10015 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10016 and then not Is_Class_Wide_Type
10017 (Designated_Type (Etype (Discr)))
10018 and then Etype (Discr_Expr (J)) /= Any_Type
10019 and then Is_Class_Wide_Type
10020 (Designated_Type (Etype (Discr_Expr (J))))
10021 then
10022 Wrong_Type (Discr_Expr (J), Etype (Discr));
10023
10024 elsif Is_Access_Type (Etype (Discr))
10025 and then not Is_Access_Constant (Etype (Discr))
10026 and then Is_Access_Type (Etype (Discr_Expr (J)))
10027 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10028 then
10029 Error_Msg_NE
10030 ("constraint for discriminant& must be access to variable",
10031 Def, Discr);
10032 end if;
10033 end if;
10034
10035 Next_Discriminant (Discr);
10036 end loop;
10037
10038 return Elist;
10039 end Build_Discriminant_Constraints;
10040
10041 ---------------------------------
10042 -- Build_Discriminated_Subtype --
10043 ---------------------------------
10044
10045 procedure Build_Discriminated_Subtype
10046 (T : Entity_Id;
10047 Def_Id : Entity_Id;
10048 Elist : Elist_Id;
10049 Related_Nod : Node_Id;
10050 For_Access : Boolean := False)
10051 is
10052 Has_Discrs : constant Boolean := Has_Discriminants (T);
10053 Constrained : constant Boolean :=
10054 (Has_Discrs
10055 and then not Is_Empty_Elmt_List (Elist)
10056 and then not Is_Class_Wide_Type (T))
10057 or else Is_Constrained (T);
10058
10059 begin
10060 if Ekind (T) = E_Record_Type then
10061 if For_Access then
10062 Set_Ekind (Def_Id, E_Private_Subtype);
10063 Set_Is_For_Access_Subtype (Def_Id, True);
10064 else
10065 Set_Ekind (Def_Id, E_Record_Subtype);
10066 end if;
10067
10068 -- Inherit preelaboration flag from base, for types for which it
10069 -- may have been set: records, private types, protected types.
10070
10071 Set_Known_To_Have_Preelab_Init
10072 (Def_Id, Known_To_Have_Preelab_Init (T));
10073
10074 elsif Ekind (T) = E_Task_Type then
10075 Set_Ekind (Def_Id, E_Task_Subtype);
10076
10077 elsif Ekind (T) = E_Protected_Type then
10078 Set_Ekind (Def_Id, E_Protected_Subtype);
10079 Set_Known_To_Have_Preelab_Init
10080 (Def_Id, Known_To_Have_Preelab_Init (T));
10081
10082 elsif Is_Private_Type (T) then
10083 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10084 Set_Known_To_Have_Preelab_Init
10085 (Def_Id, Known_To_Have_Preelab_Init (T));
10086
10087 -- Private subtypes may have private dependents
10088
10089 Set_Private_Dependents (Def_Id, New_Elmt_List);
10090
10091 elsif Is_Class_Wide_Type (T) then
10092 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10093
10094 else
10095 -- Incomplete type. Attach subtype to list of dependents, to be
10096 -- completed with full view of parent type, unless is it the
10097 -- designated subtype of a record component within an init_proc.
10098 -- This last case arises for a component of an access type whose
10099 -- designated type is incomplete (e.g. a Taft Amendment type).
10100 -- The designated subtype is within an inner scope, and needs no
10101 -- elaboration, because only the access type is needed in the
10102 -- initialization procedure.
10103
10104 if Ekind (T) = E_Incomplete_Type then
10105 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10106 else
10107 Set_Ekind (Def_Id, Ekind (T));
10108 end if;
10109
10110 if For_Access and then Within_Init_Proc then
10111 null;
10112 else
10113 Append_Elmt (Def_Id, Private_Dependents (T));
10114 end if;
10115 end if;
10116
10117 Set_Etype (Def_Id, T);
10118 Init_Size_Align (Def_Id);
10119 Set_Has_Discriminants (Def_Id, Has_Discrs);
10120 Set_Is_Constrained (Def_Id, Constrained);
10121
10122 Set_First_Entity (Def_Id, First_Entity (T));
10123 Set_Last_Entity (Def_Id, Last_Entity (T));
10124 Set_Has_Implicit_Dereference
10125 (Def_Id, Has_Implicit_Dereference (T));
10126 Set_Has_Pragma_Unreferenced_Objects
10127 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10128
10129 -- If the subtype is the completion of a private declaration, there may
10130 -- have been representation clauses for the partial view, and they must
10131 -- be preserved. Build_Derived_Type chains the inherited clauses with
10132 -- the ones appearing on the extension. If this comes from a subtype
10133 -- declaration, all clauses are inherited.
10134
10135 if No (First_Rep_Item (Def_Id)) then
10136 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10137 end if;
10138
10139 if Is_Tagged_Type (T) then
10140 Set_Is_Tagged_Type (Def_Id);
10141 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10142 Make_Class_Wide_Type (Def_Id);
10143 end if;
10144
10145 Set_Stored_Constraint (Def_Id, No_Elist);
10146
10147 if Has_Discrs then
10148 Set_Discriminant_Constraint (Def_Id, Elist);
10149 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10150 end if;
10151
10152 if Is_Tagged_Type (T) then
10153
10154 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10155 -- concurrent record type (which has the list of primitive
10156 -- operations).
10157
10158 if Ada_Version >= Ada_2005
10159 and then Is_Concurrent_Type (T)
10160 then
10161 Set_Corresponding_Record_Type (Def_Id,
10162 Corresponding_Record_Type (T));
10163 else
10164 Set_Direct_Primitive_Operations (Def_Id,
10165 Direct_Primitive_Operations (T));
10166 end if;
10167
10168 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10169 end if;
10170
10171 -- Subtypes introduced by component declarations do not need to be
10172 -- marked as delayed, and do not get freeze nodes, because the semantics
10173 -- verifies that the parents of the subtypes are frozen before the
10174 -- enclosing record is frozen.
10175
10176 if not Is_Type (Scope (Def_Id)) then
10177 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10178
10179 if Is_Private_Type (T)
10180 and then Present (Full_View (T))
10181 then
10182 Conditional_Delay (Def_Id, Full_View (T));
10183 else
10184 Conditional_Delay (Def_Id, T);
10185 end if;
10186 end if;
10187
10188 if Is_Record_Type (T) then
10189 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10190
10191 if Has_Discrs
10192 and then not Is_Empty_Elmt_List (Elist)
10193 and then not For_Access
10194 then
10195 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10196 elsif not For_Access then
10197 Set_Cloned_Subtype (Def_Id, T);
10198 end if;
10199 end if;
10200 end Build_Discriminated_Subtype;
10201
10202 ---------------------------
10203 -- Build_Itype_Reference --
10204 ---------------------------
10205
10206 procedure Build_Itype_Reference
10207 (Ityp : Entity_Id;
10208 Nod : Node_Id)
10209 is
10210 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10211 begin
10212
10213 -- Itype references are only created for use by the back-end
10214
10215 if Inside_A_Generic then
10216 return;
10217 else
10218 Set_Itype (IR, Ityp);
10219 Insert_After (Nod, IR);
10220 end if;
10221 end Build_Itype_Reference;
10222
10223 ------------------------
10224 -- Build_Scalar_Bound --
10225 ------------------------
10226
10227 function Build_Scalar_Bound
10228 (Bound : Node_Id;
10229 Par_T : Entity_Id;
10230 Der_T : Entity_Id) return Node_Id
10231 is
10232 New_Bound : Entity_Id;
10233
10234 begin
10235 -- Note: not clear why this is needed, how can the original bound
10236 -- be unanalyzed at this point? and if it is, what business do we
10237 -- have messing around with it? and why is the base type of the
10238 -- parent type the right type for the resolution. It probably is
10239 -- not. It is OK for the new bound we are creating, but not for
10240 -- the old one??? Still if it never happens, no problem.
10241
10242 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10243
10244 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10245 New_Bound := New_Copy (Bound);
10246 Set_Etype (New_Bound, Der_T);
10247 Set_Analyzed (New_Bound);
10248
10249 elsif Is_Entity_Name (Bound) then
10250 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10251
10252 -- The following is almost certainly wrong. What business do we have
10253 -- relocating a node (Bound) that is presumably still attached to
10254 -- the tree elsewhere???
10255
10256 else
10257 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10258 end if;
10259
10260 Set_Etype (New_Bound, Der_T);
10261 return New_Bound;
10262 end Build_Scalar_Bound;
10263
10264 --------------------------------
10265 -- Build_Underlying_Full_View --
10266 --------------------------------
10267
10268 procedure Build_Underlying_Full_View
10269 (N : Node_Id;
10270 Typ : Entity_Id;
10271 Par : Entity_Id)
10272 is
10273 Loc : constant Source_Ptr := Sloc (N);
10274 Subt : constant Entity_Id :=
10275 Make_Defining_Identifier
10276 (Loc, New_External_Name (Chars (Typ), 'S'));
10277
10278 Constr : Node_Id;
10279 Indic : Node_Id;
10280 C : Node_Id;
10281 Id : Node_Id;
10282
10283 procedure Set_Discriminant_Name (Id : Node_Id);
10284 -- If the derived type has discriminants, they may rename discriminants
10285 -- of the parent. When building the full view of the parent, we need to
10286 -- recover the names of the original discriminants if the constraint is
10287 -- given by named associations.
10288
10289 ---------------------------
10290 -- Set_Discriminant_Name --
10291 ---------------------------
10292
10293 procedure Set_Discriminant_Name (Id : Node_Id) is
10294 Disc : Entity_Id;
10295
10296 begin
10297 Set_Original_Discriminant (Id, Empty);
10298
10299 if Has_Discriminants (Typ) then
10300 Disc := First_Discriminant (Typ);
10301 while Present (Disc) loop
10302 if Chars (Disc) = Chars (Id)
10303 and then Present (Corresponding_Discriminant (Disc))
10304 then
10305 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10306 end if;
10307 Next_Discriminant (Disc);
10308 end loop;
10309 end if;
10310 end Set_Discriminant_Name;
10311
10312 -- Start of processing for Build_Underlying_Full_View
10313
10314 begin
10315 if Nkind (N) = N_Full_Type_Declaration then
10316 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10317
10318 elsif Nkind (N) = N_Subtype_Declaration then
10319 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10320
10321 elsif Nkind (N) = N_Component_Declaration then
10322 Constr :=
10323 New_Copy_Tree
10324 (Constraint (Subtype_Indication (Component_Definition (N))));
10325
10326 else
10327 raise Program_Error;
10328 end if;
10329
10330 C := First (Constraints (Constr));
10331 while Present (C) loop
10332 if Nkind (C) = N_Discriminant_Association then
10333 Id := First (Selector_Names (C));
10334 while Present (Id) loop
10335 Set_Discriminant_Name (Id);
10336 Next (Id);
10337 end loop;
10338 end if;
10339
10340 Next (C);
10341 end loop;
10342
10343 Indic :=
10344 Make_Subtype_Declaration (Loc,
10345 Defining_Identifier => Subt,
10346 Subtype_Indication =>
10347 Make_Subtype_Indication (Loc,
10348 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10349 Constraint => New_Copy_Tree (Constr)));
10350
10351 -- If this is a component subtype for an outer itype, it is not
10352 -- a list member, so simply set the parent link for analysis: if
10353 -- the enclosing type does not need to be in a declarative list,
10354 -- neither do the components.
10355
10356 if Is_List_Member (N)
10357 and then Nkind (N) /= N_Component_Declaration
10358 then
10359 Insert_Before (N, Indic);
10360 else
10361 Set_Parent (Indic, Parent (N));
10362 end if;
10363
10364 Analyze (Indic);
10365 Set_Underlying_Full_View (Typ, Full_View (Subt));
10366 Set_Is_Underlying_Full_View (Full_View (Subt));
10367 end Build_Underlying_Full_View;
10368
10369 -------------------------------
10370 -- Check_Abstract_Overriding --
10371 -------------------------------
10372
10373 procedure Check_Abstract_Overriding (T : Entity_Id) is
10374 Alias_Subp : Entity_Id;
10375 Elmt : Elmt_Id;
10376 Op_List : Elist_Id;
10377 Subp : Entity_Id;
10378 Type_Def : Node_Id;
10379
10380 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10381 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10382 -- which has pragma Implemented already set. Check whether Subp's entity
10383 -- kind conforms to the implementation kind of the overridden routine.
10384
10385 procedure Check_Pragma_Implemented
10386 (Subp : Entity_Id;
10387 Iface_Subp : Entity_Id);
10388 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10389 -- Iface_Subp and both entities have pragma Implemented already set on
10390 -- them. Check whether the two implementation kinds are conforming.
10391
10392 procedure Inherit_Pragma_Implemented
10393 (Subp : Entity_Id;
10394 Iface_Subp : Entity_Id);
10395 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10396 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10397 -- Propagate the implementation kind of Iface_Subp to Subp.
10398
10399 ------------------------------
10400 -- Check_Pragma_Implemented --
10401 ------------------------------
10402
10403 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10404 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10405 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10406 Subp_Alias : constant Entity_Id := Alias (Subp);
10407 Contr_Typ : Entity_Id;
10408 Impl_Subp : Entity_Id;
10409
10410 begin
10411 -- Subp must have an alias since it is a hidden entity used to link
10412 -- an interface subprogram to its overriding counterpart.
10413
10414 pragma Assert (Present (Subp_Alias));
10415
10416 -- Handle aliases to synchronized wrappers
10417
10418 Impl_Subp := Subp_Alias;
10419
10420 if Is_Primitive_Wrapper (Impl_Subp) then
10421 Impl_Subp := Wrapped_Entity (Impl_Subp);
10422 end if;
10423
10424 -- Extract the type of the controlling formal
10425
10426 Contr_Typ := Etype (First_Formal (Subp_Alias));
10427
10428 if Is_Concurrent_Record_Type (Contr_Typ) then
10429 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10430 end if;
10431
10432 -- An interface subprogram whose implementation kind is By_Entry must
10433 -- be implemented by an entry.
10434
10435 if Impl_Kind = Name_By_Entry
10436 and then Ekind (Impl_Subp) /= E_Entry
10437 then
10438 Error_Msg_Node_2 := Iface_Alias;
10439 Error_Msg_NE
10440 ("type & must implement abstract subprogram & with an entry",
10441 Subp_Alias, Contr_Typ);
10442
10443 elsif Impl_Kind = Name_By_Protected_Procedure then
10444
10445 -- An interface subprogram whose implementation kind is By_
10446 -- Protected_Procedure cannot be implemented by a primitive
10447 -- procedure of a task type.
10448
10449 if Ekind (Contr_Typ) /= E_Protected_Type then
10450 Error_Msg_Node_2 := Contr_Typ;
10451 Error_Msg_NE
10452 ("interface subprogram & cannot be implemented by a " &
10453 "primitive procedure of task type &", Subp_Alias,
10454 Iface_Alias);
10455
10456 -- An interface subprogram whose implementation kind is By_
10457 -- Protected_Procedure must be implemented by a procedure.
10458
10459 elsif Ekind (Impl_Subp) /= E_Procedure then
10460 Error_Msg_Node_2 := Iface_Alias;
10461 Error_Msg_NE
10462 ("type & must implement abstract subprogram & with a " &
10463 "procedure", Subp_Alias, Contr_Typ);
10464
10465 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10466 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10467 then
10468 Error_Msg_Name_1 := Impl_Kind;
10469 Error_Msg_N
10470 ("overriding operation& must have synchronization%",
10471 Subp_Alias);
10472 end if;
10473
10474 -- If primitive has Optional synchronization, overriding operation
10475 -- must match if it has an explicit synchronization..
10476
10477 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10478 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10479 then
10480 Error_Msg_Name_1 := Impl_Kind;
10481 Error_Msg_N
10482 ("overriding operation& must have syncrhonization%",
10483 Subp_Alias);
10484 end if;
10485 end Check_Pragma_Implemented;
10486
10487 ------------------------------
10488 -- Check_Pragma_Implemented --
10489 ------------------------------
10490
10491 procedure Check_Pragma_Implemented
10492 (Subp : Entity_Id;
10493 Iface_Subp : Entity_Id)
10494 is
10495 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10496 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10497
10498 begin
10499 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10500 -- and overriding subprogram are different. In general this is an
10501 -- error except when the implementation kind of the overridden
10502 -- subprograms is By_Any or Optional.
10503
10504 if Iface_Kind /= Subp_Kind
10505 and then Iface_Kind /= Name_By_Any
10506 and then Iface_Kind /= Name_Optional
10507 then
10508 if Iface_Kind = Name_By_Entry then
10509 Error_Msg_N
10510 ("incompatible implementation kind, overridden subprogram " &
10511 "is marked By_Entry", Subp);
10512 else
10513 Error_Msg_N
10514 ("incompatible implementation kind, overridden subprogram " &
10515 "is marked By_Protected_Procedure", Subp);
10516 end if;
10517 end if;
10518 end Check_Pragma_Implemented;
10519
10520 --------------------------------
10521 -- Inherit_Pragma_Implemented --
10522 --------------------------------
10523
10524 procedure Inherit_Pragma_Implemented
10525 (Subp : Entity_Id;
10526 Iface_Subp : Entity_Id)
10527 is
10528 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10529 Loc : constant Source_Ptr := Sloc (Subp);
10530 Impl_Prag : Node_Id;
10531
10532 begin
10533 -- Since the implementation kind is stored as a representation item
10534 -- rather than a flag, create a pragma node.
10535
10536 Impl_Prag :=
10537 Make_Pragma (Loc,
10538 Chars => Name_Implemented,
10539 Pragma_Argument_Associations => New_List (
10540 Make_Pragma_Argument_Association (Loc,
10541 Expression => New_Occurrence_Of (Subp, Loc)),
10542
10543 Make_Pragma_Argument_Association (Loc,
10544 Expression => Make_Identifier (Loc, Iface_Kind))));
10545
10546 -- The pragma doesn't need to be analyzed because it is internally
10547 -- built. It is safe to directly register it as a rep item since we
10548 -- are only interested in the characters of the implementation kind.
10549
10550 Record_Rep_Item (Subp, Impl_Prag);
10551 end Inherit_Pragma_Implemented;
10552
10553 -- Start of processing for Check_Abstract_Overriding
10554
10555 begin
10556 Op_List := Primitive_Operations (T);
10557
10558 -- Loop to check primitive operations
10559
10560 Elmt := First_Elmt (Op_List);
10561 while Present (Elmt) loop
10562 Subp := Node (Elmt);
10563 Alias_Subp := Alias (Subp);
10564
10565 -- Inherited subprograms are identified by the fact that they do not
10566 -- come from source, and the associated source location is the
10567 -- location of the first subtype of the derived type.
10568
10569 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10570 -- subprograms that "require overriding".
10571
10572 -- Special exception, do not complain about failure to override the
10573 -- stream routines _Input and _Output, as well as the primitive
10574 -- operations used in dispatching selects since we always provide
10575 -- automatic overridings for these subprograms.
10576
10577 -- The partial view of T may have been a private extension, for
10578 -- which inherited functions dispatching on result are abstract.
10579 -- If the full view is a null extension, there is no need for
10580 -- overriding in Ada 2005, but wrappers need to be built for them
10581 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10582
10583 if Is_Null_Extension (T)
10584 and then Has_Controlling_Result (Subp)
10585 and then Ada_Version >= Ada_2005
10586 and then Present (Alias_Subp)
10587 and then not Comes_From_Source (Subp)
10588 and then not Is_Abstract_Subprogram (Alias_Subp)
10589 and then not Is_Access_Type (Etype (Subp))
10590 then
10591 null;
10592
10593 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10594 -- processing because this check is done with the aliased
10595 -- entity
10596
10597 elsif Present (Interface_Alias (Subp)) then
10598 null;
10599
10600 elsif (Is_Abstract_Subprogram (Subp)
10601 or else Requires_Overriding (Subp)
10602 or else
10603 (Has_Controlling_Result (Subp)
10604 and then Present (Alias_Subp)
10605 and then not Comes_From_Source (Subp)
10606 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10607 and then not Is_TSS (Subp, TSS_Stream_Input)
10608 and then not Is_TSS (Subp, TSS_Stream_Output)
10609 and then not Is_Abstract_Type (T)
10610 and then not Is_Predefined_Interface_Primitive (Subp)
10611
10612 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10613 -- with abstract interface types because the check will be done
10614 -- with the aliased entity (otherwise we generate a duplicated
10615 -- error message).
10616
10617 and then not Present (Interface_Alias (Subp))
10618 then
10619 if Present (Alias_Subp) then
10620
10621 -- Only perform the check for a derived subprogram when the
10622 -- type has an explicit record extension. This avoids incorrect
10623 -- flagging of abstract subprograms for the case of a type
10624 -- without an extension that is derived from a formal type
10625 -- with a tagged actual (can occur within a private part).
10626
10627 -- Ada 2005 (AI-391): In the case of an inherited function with
10628 -- a controlling result of the type, the rule does not apply if
10629 -- the type is a null extension (unless the parent function
10630 -- itself is abstract, in which case the function must still be
10631 -- be overridden). The expander will generate an overriding
10632 -- wrapper function calling the parent subprogram (see
10633 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10634
10635 Type_Def := Type_Definition (Parent (T));
10636
10637 if Nkind (Type_Def) = N_Derived_Type_Definition
10638 and then Present (Record_Extension_Part (Type_Def))
10639 and then
10640 (Ada_Version < Ada_2005
10641 or else not Is_Null_Extension (T)
10642 or else Ekind (Subp) = E_Procedure
10643 or else not Has_Controlling_Result (Subp)
10644 or else Is_Abstract_Subprogram (Alias_Subp)
10645 or else Requires_Overriding (Subp)
10646 or else Is_Access_Type (Etype (Subp)))
10647 then
10648 -- Avoid reporting error in case of abstract predefined
10649 -- primitive inherited from interface type because the
10650 -- body of internally generated predefined primitives
10651 -- of tagged types are generated later by Freeze_Type
10652
10653 if Is_Interface (Root_Type (T))
10654 and then Is_Abstract_Subprogram (Subp)
10655 and then Is_Predefined_Dispatching_Operation (Subp)
10656 and then not Comes_From_Source (Ultimate_Alias (Subp))
10657 then
10658 null;
10659
10660 -- A null extension is not obliged to override an inherited
10661 -- procedure subject to pragma Extensions_Visible with value
10662 -- False and at least one controlling OUT parameter
10663 -- (SPARK RM 6.1.7(6)).
10664
10665 elsif Is_Null_Extension (T)
10666 and then Is_EVF_Procedure (Subp)
10667 then
10668 null;
10669
10670 else
10671 Error_Msg_NE
10672 ("type must be declared abstract or & overridden",
10673 T, Subp);
10674
10675 -- Traverse the whole chain of aliased subprograms to
10676 -- complete the error notification. This is especially
10677 -- useful for traceability of the chain of entities when
10678 -- the subprogram corresponds with an interface
10679 -- subprogram (which may be defined in another package).
10680
10681 if Present (Alias_Subp) then
10682 declare
10683 E : Entity_Id;
10684
10685 begin
10686 E := Subp;
10687 while Present (Alias (E)) loop
10688
10689 -- Avoid reporting redundant errors on entities
10690 -- inherited from interfaces
10691
10692 if Sloc (E) /= Sloc (T) then
10693 Error_Msg_Sloc := Sloc (E);
10694 Error_Msg_NE
10695 ("\& has been inherited #", T, Subp);
10696 end if;
10697
10698 E := Alias (E);
10699 end loop;
10700
10701 Error_Msg_Sloc := Sloc (E);
10702
10703 -- AI05-0068: report if there is an overriding
10704 -- non-abstract subprogram that is invisible.
10705
10706 if Is_Hidden (E)
10707 and then not Is_Abstract_Subprogram (E)
10708 then
10709 Error_Msg_NE
10710 ("\& subprogram# is not visible",
10711 T, Subp);
10712
10713 -- Clarify the case where a non-null extension must
10714 -- override inherited procedure subject to pragma
10715 -- Extensions_Visible with value False and at least
10716 -- one controlling OUT param.
10717
10718 elsif Is_EVF_Procedure (E) then
10719 Error_Msg_NE
10720 ("\& # is subject to Extensions_Visible False",
10721 T, Subp);
10722
10723 else
10724 Error_Msg_NE
10725 ("\& has been inherited from subprogram #",
10726 T, Subp);
10727 end if;
10728 end;
10729 end if;
10730 end if;
10731
10732 -- Ada 2005 (AI-345): Protected or task type implementing
10733 -- abstract interfaces.
10734
10735 elsif Is_Concurrent_Record_Type (T)
10736 and then Present (Interfaces (T))
10737 then
10738 -- There is no need to check here RM 9.4(11.9/3) since we
10739 -- are processing the corresponding record type and the
10740 -- mode of the overriding subprograms was verified by
10741 -- Check_Conformance when the corresponding concurrent
10742 -- type declaration was analyzed.
10743
10744 Error_Msg_NE
10745 ("interface subprogram & must be overridden", T, Subp);
10746
10747 -- Examine primitive operations of synchronized type to find
10748 -- homonyms that have the wrong profile.
10749
10750 declare
10751 Prim : Entity_Id;
10752
10753 begin
10754 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10755 while Present (Prim) loop
10756 if Chars (Prim) = Chars (Subp) then
10757 Error_Msg_NE
10758 ("profile is not type conformant with prefixed "
10759 & "view profile of inherited operation&",
10760 Prim, Subp);
10761 end if;
10762
10763 Next_Entity (Prim);
10764 end loop;
10765 end;
10766 end if;
10767
10768 else
10769 Error_Msg_Node_2 := T;
10770 Error_Msg_N
10771 ("abstract subprogram& not allowed for type&", Subp);
10772
10773 -- Also post unconditional warning on the type (unconditional
10774 -- so that if there are more than one of these cases, we get
10775 -- them all, and not just the first one).
10776
10777 Error_Msg_Node_2 := Subp;
10778 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10779 end if;
10780
10781 -- A subprogram subject to pragma Extensions_Visible with value
10782 -- "True" cannot override a subprogram subject to the same pragma
10783 -- with value "False" (SPARK RM 6.1.7(5)).
10784
10785 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10786 and then Present (Overridden_Operation (Subp))
10787 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10788 Extensions_Visible_False
10789 then
10790 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10791 Error_Msg_N
10792 ("subprogram & with Extensions_Visible True cannot override "
10793 & "subprogram # with Extensions_Visible False", Subp);
10794 end if;
10795
10796 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10797
10798 -- Subp is an expander-generated procedure which maps an interface
10799 -- alias to a protected wrapper. The interface alias is flagged by
10800 -- pragma Implemented. Ensure that Subp is a procedure when the
10801 -- implementation kind is By_Protected_Procedure or an entry when
10802 -- By_Entry.
10803
10804 if Ada_Version >= Ada_2012
10805 and then Is_Hidden (Subp)
10806 and then Present (Interface_Alias (Subp))
10807 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10808 then
10809 Check_Pragma_Implemented (Subp);
10810 end if;
10811
10812 -- Subp is an interface primitive which overrides another interface
10813 -- primitive marked with pragma Implemented.
10814
10815 if Ada_Version >= Ada_2012
10816 and then Present (Overridden_Operation (Subp))
10817 and then Has_Rep_Pragma
10818 (Overridden_Operation (Subp), Name_Implemented)
10819 then
10820 -- If the overriding routine is also marked by Implemented, check
10821 -- that the two implementation kinds are conforming.
10822
10823 if Has_Rep_Pragma (Subp, Name_Implemented) then
10824 Check_Pragma_Implemented
10825 (Subp => Subp,
10826 Iface_Subp => Overridden_Operation (Subp));
10827
10828 -- Otherwise the overriding routine inherits the implementation
10829 -- kind from the overridden subprogram.
10830
10831 else
10832 Inherit_Pragma_Implemented
10833 (Subp => Subp,
10834 Iface_Subp => Overridden_Operation (Subp));
10835 end if;
10836 end if;
10837
10838 -- If the operation is a wrapper for a synchronized primitive, it
10839 -- may be called indirectly through a dispatching select. We assume
10840 -- that it will be referenced elsewhere indirectly, and suppress
10841 -- warnings about an unused entity.
10842
10843 if Is_Primitive_Wrapper (Subp)
10844 and then Present (Wrapped_Entity (Subp))
10845 then
10846 Set_Referenced (Wrapped_Entity (Subp));
10847 end if;
10848
10849 Next_Elmt (Elmt);
10850 end loop;
10851 end Check_Abstract_Overriding;
10852
10853 ------------------------------------------------
10854 -- Check_Access_Discriminant_Requires_Limited --
10855 ------------------------------------------------
10856
10857 procedure Check_Access_Discriminant_Requires_Limited
10858 (D : Node_Id;
10859 Loc : Node_Id)
10860 is
10861 begin
10862 -- A discriminant_specification for an access discriminant shall appear
10863 -- only in the declaration for a task or protected type, or for a type
10864 -- with the reserved word 'limited' in its definition or in one of its
10865 -- ancestors (RM 3.7(10)).
10866
10867 -- AI-0063: The proper condition is that type must be immutably limited,
10868 -- or else be a partial view.
10869
10870 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10871 if Is_Limited_View (Current_Scope)
10872 or else
10873 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10874 and then Limited_Present (Parent (Current_Scope)))
10875 then
10876 null;
10877
10878 else
10879 Error_Msg_N
10880 ("access discriminants allowed only for limited types", Loc);
10881 end if;
10882 end if;
10883 end Check_Access_Discriminant_Requires_Limited;
10884
10885 -----------------------------------
10886 -- Check_Aliased_Component_Types --
10887 -----------------------------------
10888
10889 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10890 C : Entity_Id;
10891
10892 begin
10893 -- ??? Also need to check components of record extensions, but not
10894 -- components of protected types (which are always limited).
10895
10896 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10897 -- types to be unconstrained. This is safe because it is illegal to
10898 -- create access subtypes to such types with explicit discriminant
10899 -- constraints.
10900
10901 if not Is_Limited_Type (T) then
10902 if Ekind (T) = E_Record_Type then
10903 C := First_Component (T);
10904 while Present (C) loop
10905 if Is_Aliased (C)
10906 and then Has_Discriminants (Etype (C))
10907 and then not Is_Constrained (Etype (C))
10908 and then not In_Instance_Body
10909 and then Ada_Version < Ada_2005
10910 then
10911 Error_Msg_N
10912 ("aliased component must be constrained (RM 3.6(11))",
10913 C);
10914 end if;
10915
10916 Next_Component (C);
10917 end loop;
10918
10919 elsif Ekind (T) = E_Array_Type then
10920 if Has_Aliased_Components (T)
10921 and then Has_Discriminants (Component_Type (T))
10922 and then not Is_Constrained (Component_Type (T))
10923 and then not In_Instance_Body
10924 and then Ada_Version < Ada_2005
10925 then
10926 Error_Msg_N
10927 ("aliased component type must be constrained (RM 3.6(11))",
10928 T);
10929 end if;
10930 end if;
10931 end if;
10932 end Check_Aliased_Component_Types;
10933
10934 ---------------------------------------
10935 -- Check_Anonymous_Access_Components --
10936 ---------------------------------------
10937
10938 procedure Check_Anonymous_Access_Components
10939 (Typ_Decl : Node_Id;
10940 Typ : Entity_Id;
10941 Prev : Entity_Id;
10942 Comp_List : Node_Id)
10943 is
10944 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10945 Anon_Access : Entity_Id;
10946 Acc_Def : Node_Id;
10947 Comp : Node_Id;
10948 Comp_Def : Node_Id;
10949 Decl : Node_Id;
10950 Type_Def : Node_Id;
10951
10952 procedure Build_Incomplete_Type_Declaration;
10953 -- If the record type contains components that include an access to the
10954 -- current record, then create an incomplete type declaration for the
10955 -- record, to be used as the designated type of the anonymous access.
10956 -- This is done only once, and only if there is no previous partial
10957 -- view of the type.
10958
10959 function Designates_T (Subt : Node_Id) return Boolean;
10960 -- Check whether a node designates the enclosing record type, or 'Class
10961 -- of that type
10962
10963 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10964 -- Check whether an access definition includes a reference to
10965 -- the enclosing record type. The reference can be a subtype mark
10966 -- in the access definition itself, a 'Class attribute reference, or
10967 -- recursively a reference appearing in a parameter specification
10968 -- or result definition of an access_to_subprogram definition.
10969
10970 --------------------------------------
10971 -- Build_Incomplete_Type_Declaration --
10972 --------------------------------------
10973
10974 procedure Build_Incomplete_Type_Declaration is
10975 Decl : Node_Id;
10976 Inc_T : Entity_Id;
10977 H : Entity_Id;
10978
10979 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10980 -- it's "is new ... with record" or else "is tagged record ...".
10981
10982 Is_Tagged : constant Boolean :=
10983 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10984 and then
10985 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10986 or else
10987 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10988 and then Tagged_Present (Type_Definition (Typ_Decl)));
10989
10990 begin
10991 -- If there is a previous partial view, no need to create a new one
10992 -- If the partial view, given by Prev, is incomplete, If Prev is
10993 -- a private declaration, full declaration is flagged accordingly.
10994
10995 if Prev /= Typ then
10996 if Is_Tagged then
10997 Make_Class_Wide_Type (Prev);
10998 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10999 Set_Etype (Class_Wide_Type (Typ), Typ);
11000 end if;
11001
11002 return;
11003
11004 elsif Has_Private_Declaration (Typ) then
11005
11006 -- If we refer to T'Class inside T, and T is the completion of a
11007 -- private type, then make sure the class-wide type exists.
11008
11009 if Is_Tagged then
11010 Make_Class_Wide_Type (Typ);
11011 end if;
11012
11013 return;
11014
11015 -- If there was a previous anonymous access type, the incomplete
11016 -- type declaration will have been created already.
11017
11018 elsif Present (Current_Entity (Typ))
11019 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11020 and then Full_View (Current_Entity (Typ)) = Typ
11021 then
11022 if Is_Tagged
11023 and then Comes_From_Source (Current_Entity (Typ))
11024 and then not Is_Tagged_Type (Current_Entity (Typ))
11025 then
11026 Make_Class_Wide_Type (Typ);
11027 Error_Msg_N
11028 ("incomplete view of tagged type should be declared tagged??",
11029 Parent (Current_Entity (Typ)));
11030 end if;
11031 return;
11032
11033 else
11034 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11035 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11036
11037 -- Type has already been inserted into the current scope. Remove
11038 -- it, and add incomplete declaration for type, so that subsequent
11039 -- anonymous access types can use it. The entity is unchained from
11040 -- the homonym list and from immediate visibility. After analysis,
11041 -- the entity in the incomplete declaration becomes immediately
11042 -- visible in the record declaration that follows.
11043
11044 H := Current_Entity (Typ);
11045
11046 if H = Typ then
11047 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11048 else
11049 while Present (H)
11050 and then Homonym (H) /= Typ
11051 loop
11052 H := Homonym (Typ);
11053 end loop;
11054
11055 Set_Homonym (H, Homonym (Typ));
11056 end if;
11057
11058 Insert_Before (Typ_Decl, Decl);
11059 Analyze (Decl);
11060 Set_Full_View (Inc_T, Typ);
11061
11062 if Is_Tagged then
11063
11064 -- Create a common class-wide type for both views, and set the
11065 -- Etype of the class-wide type to the full view.
11066
11067 Make_Class_Wide_Type (Inc_T);
11068 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11069 Set_Etype (Class_Wide_Type (Typ), Typ);
11070 end if;
11071 end if;
11072 end Build_Incomplete_Type_Declaration;
11073
11074 ------------------
11075 -- Designates_T --
11076 ------------------
11077
11078 function Designates_T (Subt : Node_Id) return Boolean is
11079 Type_Id : constant Name_Id := Chars (Typ);
11080
11081 function Names_T (Nam : Node_Id) return Boolean;
11082 -- The record type has not been introduced in the current scope
11083 -- yet, so we must examine the name of the type itself, either
11084 -- an identifier T, or an expanded name of the form P.T, where
11085 -- P denotes the current scope.
11086
11087 -------------
11088 -- Names_T --
11089 -------------
11090
11091 function Names_T (Nam : Node_Id) return Boolean is
11092 begin
11093 if Nkind (Nam) = N_Identifier then
11094 return Chars (Nam) = Type_Id;
11095
11096 elsif Nkind (Nam) = N_Selected_Component then
11097 if Chars (Selector_Name (Nam)) = Type_Id then
11098 if Nkind (Prefix (Nam)) = N_Identifier then
11099 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11100
11101 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11102 return Chars (Selector_Name (Prefix (Nam))) =
11103 Chars (Current_Scope);
11104 else
11105 return False;
11106 end if;
11107
11108 else
11109 return False;
11110 end if;
11111
11112 else
11113 return False;
11114 end if;
11115 end Names_T;
11116
11117 -- Start of processing for Designates_T
11118
11119 begin
11120 if Nkind (Subt) = N_Identifier then
11121 return Chars (Subt) = Type_Id;
11122
11123 -- Reference can be through an expanded name which has not been
11124 -- analyzed yet, and which designates enclosing scopes.
11125
11126 elsif Nkind (Subt) = N_Selected_Component then
11127 if Names_T (Subt) then
11128 return True;
11129
11130 -- Otherwise it must denote an entity that is already visible.
11131 -- The access definition may name a subtype of the enclosing
11132 -- type, if there is a previous incomplete declaration for it.
11133
11134 else
11135 Find_Selected_Component (Subt);
11136 return
11137 Is_Entity_Name (Subt)
11138 and then Scope (Entity (Subt)) = Current_Scope
11139 and then
11140 (Chars (Base_Type (Entity (Subt))) = Type_Id
11141 or else
11142 (Is_Class_Wide_Type (Entity (Subt))
11143 and then
11144 Chars (Etype (Base_Type (Entity (Subt)))) =
11145 Type_Id));
11146 end if;
11147
11148 -- A reference to the current type may appear as the prefix of
11149 -- a 'Class attribute.
11150
11151 elsif Nkind (Subt) = N_Attribute_Reference
11152 and then Attribute_Name (Subt) = Name_Class
11153 then
11154 return Names_T (Prefix (Subt));
11155
11156 else
11157 return False;
11158 end if;
11159 end Designates_T;
11160
11161 ----------------
11162 -- Mentions_T --
11163 ----------------
11164
11165 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11166 Param_Spec : Node_Id;
11167
11168 Acc_Subprg : constant Node_Id :=
11169 Access_To_Subprogram_Definition (Acc_Def);
11170
11171 begin
11172 if No (Acc_Subprg) then
11173 return Designates_T (Subtype_Mark (Acc_Def));
11174 end if;
11175
11176 -- Component is an access_to_subprogram: examine its formals,
11177 -- and result definition in the case of an access_to_function.
11178
11179 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11180 while Present (Param_Spec) loop
11181 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11182 and then Mentions_T (Parameter_Type (Param_Spec))
11183 then
11184 return True;
11185
11186 elsif Designates_T (Parameter_Type (Param_Spec)) then
11187 return True;
11188 end if;
11189
11190 Next (Param_Spec);
11191 end loop;
11192
11193 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11194 if Nkind (Result_Definition (Acc_Subprg)) =
11195 N_Access_Definition
11196 then
11197 return Mentions_T (Result_Definition (Acc_Subprg));
11198 else
11199 return Designates_T (Result_Definition (Acc_Subprg));
11200 end if;
11201 end if;
11202
11203 return False;
11204 end Mentions_T;
11205
11206 -- Start of processing for Check_Anonymous_Access_Components
11207
11208 begin
11209 if No (Comp_List) then
11210 return;
11211 end if;
11212
11213 Comp := First (Component_Items (Comp_List));
11214 while Present (Comp) loop
11215 if Nkind (Comp) = N_Component_Declaration
11216 and then Present
11217 (Access_Definition (Component_Definition (Comp)))
11218 and then
11219 Mentions_T (Access_Definition (Component_Definition (Comp)))
11220 then
11221 Comp_Def := Component_Definition (Comp);
11222 Acc_Def :=
11223 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11224
11225 Build_Incomplete_Type_Declaration;
11226 Anon_Access := Make_Temporary (Loc, 'S');
11227
11228 -- Create a declaration for the anonymous access type: either
11229 -- an access_to_object or an access_to_subprogram.
11230
11231 if Present (Acc_Def) then
11232 if Nkind (Acc_Def) = N_Access_Function_Definition then
11233 Type_Def :=
11234 Make_Access_Function_Definition (Loc,
11235 Parameter_Specifications =>
11236 Parameter_Specifications (Acc_Def),
11237 Result_Definition => Result_Definition (Acc_Def));
11238 else
11239 Type_Def :=
11240 Make_Access_Procedure_Definition (Loc,
11241 Parameter_Specifications =>
11242 Parameter_Specifications (Acc_Def));
11243 end if;
11244
11245 else
11246 Type_Def :=
11247 Make_Access_To_Object_Definition (Loc,
11248 Subtype_Indication =>
11249 Relocate_Node
11250 (Subtype_Mark (Access_Definition (Comp_Def))));
11251
11252 Set_Constant_Present
11253 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11254 Set_All_Present
11255 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11256 end if;
11257
11258 Set_Null_Exclusion_Present
11259 (Type_Def,
11260 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11261
11262 Decl :=
11263 Make_Full_Type_Declaration (Loc,
11264 Defining_Identifier => Anon_Access,
11265 Type_Definition => Type_Def);
11266
11267 Insert_Before (Typ_Decl, Decl);
11268 Analyze (Decl);
11269
11270 -- If an access to subprogram, create the extra formals
11271
11272 if Present (Acc_Def) then
11273 Create_Extra_Formals (Designated_Type (Anon_Access));
11274
11275 -- If an access to object, preserve entity of designated type,
11276 -- for ASIS use, before rewriting the component definition.
11277
11278 else
11279 declare
11280 Desig : Entity_Id;
11281
11282 begin
11283 Desig := Entity (Subtype_Indication (Type_Def));
11284
11285 -- If the access definition is to the current record,
11286 -- the visible entity at this point is an incomplete
11287 -- type. Retrieve the full view to simplify ASIS queries
11288
11289 if Ekind (Desig) = E_Incomplete_Type then
11290 Desig := Full_View (Desig);
11291 end if;
11292
11293 Set_Entity
11294 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11295 end;
11296 end if;
11297
11298 Rewrite (Comp_Def,
11299 Make_Component_Definition (Loc,
11300 Subtype_Indication =>
11301 New_Occurrence_Of (Anon_Access, Loc)));
11302
11303 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11304 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11305 else
11306 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11307 end if;
11308
11309 Set_Is_Local_Anonymous_Access (Anon_Access);
11310 end if;
11311
11312 Next (Comp);
11313 end loop;
11314
11315 if Present (Variant_Part (Comp_List)) then
11316 declare
11317 V : Node_Id;
11318 begin
11319 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11320 while Present (V) loop
11321 Check_Anonymous_Access_Components
11322 (Typ_Decl, Typ, Prev, Component_List (V));
11323 Next_Non_Pragma (V);
11324 end loop;
11325 end;
11326 end if;
11327 end Check_Anonymous_Access_Components;
11328
11329 ----------------------
11330 -- Check_Completion --
11331 ----------------------
11332
11333 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11334 E : Entity_Id;
11335
11336 procedure Post_Error;
11337 -- Post error message for lack of completion for entity E
11338
11339 ----------------
11340 -- Post_Error --
11341 ----------------
11342
11343 procedure Post_Error is
11344 procedure Missing_Body;
11345 -- Output missing body message
11346
11347 ------------------
11348 -- Missing_Body --
11349 ------------------
11350
11351 procedure Missing_Body is
11352 begin
11353 -- Spec is in same unit, so we can post on spec
11354
11355 if In_Same_Source_Unit (Body_Id, E) then
11356 Error_Msg_N ("missing body for &", E);
11357
11358 -- Spec is in a separate unit, so we have to post on the body
11359
11360 else
11361 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11362 end if;
11363 end Missing_Body;
11364
11365 -- Start of processing for Post_Error
11366
11367 begin
11368 if not Comes_From_Source (E) then
11369 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11370
11371 -- It may be an anonymous protected type created for a
11372 -- single variable. Post error on variable, if present.
11373
11374 declare
11375 Var : Entity_Id;
11376
11377 begin
11378 Var := First_Entity (Current_Scope);
11379 while Present (Var) loop
11380 exit when Etype (Var) = E
11381 and then Comes_From_Source (Var);
11382
11383 Next_Entity (Var);
11384 end loop;
11385
11386 if Present (Var) then
11387 E := Var;
11388 end if;
11389 end;
11390 end if;
11391 end if;
11392
11393 -- If a generated entity has no completion, then either previous
11394 -- semantic errors have disabled the expansion phase, or else we had
11395 -- missing subunits, or else we are compiling without expansion,
11396 -- or else something is very wrong.
11397
11398 if not Comes_From_Source (E) then
11399 pragma Assert
11400 (Serious_Errors_Detected > 0
11401 or else Configurable_Run_Time_Violations > 0
11402 or else Subunits_Missing
11403 or else not Expander_Active);
11404 return;
11405
11406 -- Here for source entity
11407
11408 else
11409 -- Here if no body to post the error message, so we post the error
11410 -- on the declaration that has no completion. This is not really
11411 -- the right place to post it, think about this later ???
11412
11413 if No (Body_Id) then
11414 if Is_Type (E) then
11415 Error_Msg_NE
11416 ("missing full declaration for }", Parent (E), E);
11417 else
11418 Error_Msg_NE ("missing body for &", Parent (E), E);
11419 end if;
11420
11421 -- Package body has no completion for a declaration that appears
11422 -- in the corresponding spec. Post error on the body, with a
11423 -- reference to the non-completed declaration.
11424
11425 else
11426 Error_Msg_Sloc := Sloc (E);
11427
11428 if Is_Type (E) then
11429 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11430
11431 elsif Is_Overloadable (E)
11432 and then Current_Entity_In_Scope (E) /= E
11433 then
11434 -- It may be that the completion is mistyped and appears as
11435 -- a distinct overloading of the entity.
11436
11437 declare
11438 Candidate : constant Entity_Id :=
11439 Current_Entity_In_Scope (E);
11440 Decl : constant Node_Id :=
11441 Unit_Declaration_Node (Candidate);
11442
11443 begin
11444 if Is_Overloadable (Candidate)
11445 and then Ekind (Candidate) = Ekind (E)
11446 and then Nkind (Decl) = N_Subprogram_Body
11447 and then Acts_As_Spec (Decl)
11448 then
11449 Check_Type_Conformant (Candidate, E);
11450
11451 else
11452 Missing_Body;
11453 end if;
11454 end;
11455
11456 else
11457 Missing_Body;
11458 end if;
11459 end if;
11460 end if;
11461 end Post_Error;
11462
11463 -- Local variables
11464
11465 Pack_Id : constant Entity_Id := Current_Scope;
11466
11467 -- Start of processing for Check_Completion
11468
11469 begin
11470 E := First_Entity (Pack_Id);
11471 while Present (E) loop
11472 if Is_Intrinsic_Subprogram (E) then
11473 null;
11474
11475 -- The following situation requires special handling: a child unit
11476 -- that appears in the context clause of the body of its parent:
11477
11478 -- procedure Parent.Child (...);
11479
11480 -- with Parent.Child;
11481 -- package body Parent is
11482
11483 -- Here Parent.Child appears as a local entity, but should not be
11484 -- flagged as requiring completion, because it is a compilation
11485 -- unit.
11486
11487 -- Ignore missing completion for a subprogram that does not come from
11488 -- source (including the _Call primitive operation of RAS types,
11489 -- which has to have the flag Comes_From_Source for other purposes):
11490 -- we assume that the expander will provide the missing completion.
11491 -- In case of previous errors, other expansion actions that provide
11492 -- bodies for null procedures with not be invoked, so inhibit message
11493 -- in those cases.
11494
11495 -- Note that E_Operator is not in the list that follows, because
11496 -- this kind is reserved for predefined operators, that are
11497 -- intrinsic and do not need completion.
11498
11499 elsif Ekind_In (E, E_Function,
11500 E_Procedure,
11501 E_Generic_Function,
11502 E_Generic_Procedure)
11503 then
11504 if Has_Completion (E) then
11505 null;
11506
11507 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11508 null;
11509
11510 elsif Is_Subprogram (E)
11511 and then (not Comes_From_Source (E)
11512 or else Chars (E) = Name_uCall)
11513 then
11514 null;
11515
11516 elsif
11517 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11518 then
11519 null;
11520
11521 elsif Nkind (Parent (E)) = N_Procedure_Specification
11522 and then Null_Present (Parent (E))
11523 and then Serious_Errors_Detected > 0
11524 then
11525 null;
11526
11527 else
11528 Post_Error;
11529 end if;
11530
11531 elsif Is_Entry (E) then
11532 if not Has_Completion (E) and then
11533 (Ekind (Scope (E)) = E_Protected_Object
11534 or else Ekind (Scope (E)) = E_Protected_Type)
11535 then
11536 Post_Error;
11537 end if;
11538
11539 elsif Is_Package_Or_Generic_Package (E) then
11540 if Unit_Requires_Body (E) then
11541 if not Has_Completion (E)
11542 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11543 N_Compilation_Unit
11544 then
11545 Post_Error;
11546 end if;
11547
11548 elsif not Is_Child_Unit (E) then
11549 May_Need_Implicit_Body (E);
11550 end if;
11551
11552 -- A formal incomplete type (Ada 2012) does not require a completion;
11553 -- other incomplete type declarations do.
11554
11555 elsif Ekind (E) = E_Incomplete_Type
11556 and then No (Underlying_Type (E))
11557 and then not Is_Generic_Type (E)
11558 then
11559 Post_Error;
11560
11561 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11562 and then not Has_Completion (E)
11563 then
11564 Post_Error;
11565
11566 -- A single task declared in the current scope is a constant, verify
11567 -- that the body of its anonymous type is in the same scope. If the
11568 -- task is defined elsewhere, this may be a renaming declaration for
11569 -- which no completion is needed.
11570
11571 elsif Ekind (E) = E_Constant
11572 and then Ekind (Etype (E)) = E_Task_Type
11573 and then not Has_Completion (Etype (E))
11574 and then Scope (Etype (E)) = Current_Scope
11575 then
11576 Post_Error;
11577
11578 elsif Ekind (E) = E_Protected_Object
11579 and then not Has_Completion (Etype (E))
11580 then
11581 Post_Error;
11582
11583 elsif Ekind (E) = E_Record_Type then
11584 if Is_Tagged_Type (E) then
11585 Check_Abstract_Overriding (E);
11586 Check_Conventions (E);
11587 end if;
11588
11589 Check_Aliased_Component_Types (E);
11590
11591 elsif Ekind (E) = E_Array_Type then
11592 Check_Aliased_Component_Types (E);
11593
11594 end if;
11595
11596 Next_Entity (E);
11597 end loop;
11598 end Check_Completion;
11599
11600 ------------------------------------
11601 -- Check_CPP_Type_Has_No_Defaults --
11602 ------------------------------------
11603
11604 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11605 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11606 Clist : Node_Id;
11607 Comp : Node_Id;
11608
11609 begin
11610 -- Obtain the component list
11611
11612 if Nkind (Tdef) = N_Record_Definition then
11613 Clist := Component_List (Tdef);
11614 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11615 Clist := Component_List (Record_Extension_Part (Tdef));
11616 end if;
11617
11618 -- Check all components to ensure no default expressions
11619
11620 if Present (Clist) then
11621 Comp := First (Component_Items (Clist));
11622 while Present (Comp) loop
11623 if Present (Expression (Comp)) then
11624 Error_Msg_N
11625 ("component of imported 'C'P'P type cannot have "
11626 & "default expression", Expression (Comp));
11627 end if;
11628
11629 Next (Comp);
11630 end loop;
11631 end if;
11632 end Check_CPP_Type_Has_No_Defaults;
11633
11634 ----------------------------
11635 -- Check_Delta_Expression --
11636 ----------------------------
11637
11638 procedure Check_Delta_Expression (E : Node_Id) is
11639 begin
11640 if not (Is_Real_Type (Etype (E))) then
11641 Wrong_Type (E, Any_Real);
11642
11643 elsif not Is_OK_Static_Expression (E) then
11644 Flag_Non_Static_Expr
11645 ("non-static expression used for delta value!", E);
11646
11647 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11648 Error_Msg_N ("delta expression must be positive", E);
11649
11650 else
11651 return;
11652 end if;
11653
11654 -- If any of above errors occurred, then replace the incorrect
11655 -- expression by the real 0.1, which should prevent further errors.
11656
11657 Rewrite (E,
11658 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11659 Analyze_And_Resolve (E, Standard_Float);
11660 end Check_Delta_Expression;
11661
11662 -----------------------------
11663 -- Check_Digits_Expression --
11664 -----------------------------
11665
11666 procedure Check_Digits_Expression (E : Node_Id) is
11667 begin
11668 if not (Is_Integer_Type (Etype (E))) then
11669 Wrong_Type (E, Any_Integer);
11670
11671 elsif not Is_OK_Static_Expression (E) then
11672 Flag_Non_Static_Expr
11673 ("non-static expression used for digits value!", E);
11674
11675 elsif Expr_Value (E) <= 0 then
11676 Error_Msg_N ("digits value must be greater than zero", E);
11677
11678 else
11679 return;
11680 end if;
11681
11682 -- If any of above errors occurred, then replace the incorrect
11683 -- expression by the integer 1, which should prevent further errors.
11684
11685 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11686 Analyze_And_Resolve (E, Standard_Integer);
11687
11688 end Check_Digits_Expression;
11689
11690 --------------------------
11691 -- Check_Initialization --
11692 --------------------------
11693
11694 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11695 begin
11696 -- Special processing for limited types
11697
11698 if Is_Limited_Type (T)
11699 and then not In_Instance
11700 and then not In_Inlined_Body
11701 then
11702 if not OK_For_Limited_Init (T, Exp) then
11703
11704 -- In GNAT mode, this is just a warning, to allow it to be evilly
11705 -- turned off. Otherwise it is a real error.
11706
11707 if GNAT_Mode then
11708 Error_Msg_N
11709 ("??cannot initialize entities of limited type!", Exp);
11710
11711 elsif Ada_Version < Ada_2005 then
11712
11713 -- The side effect removal machinery may generate illegal Ada
11714 -- code to avoid the usage of access types and 'reference in
11715 -- SPARK mode. Since this is legal code with respect to theorem
11716 -- proving, do not emit the error.
11717
11718 if GNATprove_Mode
11719 and then Nkind (Exp) = N_Function_Call
11720 and then Nkind (Parent (Exp)) = N_Object_Declaration
11721 and then not Comes_From_Source
11722 (Defining_Identifier (Parent (Exp)))
11723 then
11724 null;
11725
11726 else
11727 Error_Msg_N
11728 ("cannot initialize entities of limited type", Exp);
11729 Explain_Limited_Type (T, Exp);
11730 end if;
11731
11732 else
11733 -- Specialize error message according to kind of illegal
11734 -- initial expression.
11735
11736 if Nkind (Exp) = N_Type_Conversion
11737 and then Nkind (Expression (Exp)) = N_Function_Call
11738 then
11739 Error_Msg_N
11740 ("illegal context for call"
11741 & " to function with limited result", Exp);
11742
11743 else
11744 Error_Msg_N
11745 ("initialization of limited object requires aggregate "
11746 & "or function call", Exp);
11747 end if;
11748 end if;
11749 end if;
11750 end if;
11751
11752 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11753 -- set unless we can be sure that no range check is required.
11754
11755 if (GNATprove_Mode or not Expander_Active)
11756 and then Is_Scalar_Type (T)
11757 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11758 then
11759 Set_Do_Range_Check (Exp);
11760 end if;
11761 end Check_Initialization;
11762
11763 ----------------------
11764 -- Check_Interfaces --
11765 ----------------------
11766
11767 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11768 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11769
11770 Iface : Node_Id;
11771 Iface_Def : Node_Id;
11772 Iface_Typ : Entity_Id;
11773 Parent_Node : Node_Id;
11774
11775 Is_Task : Boolean := False;
11776 -- Set True if parent type or any progenitor is a task interface
11777
11778 Is_Protected : Boolean := False;
11779 -- Set True if parent type or any progenitor is a protected interface
11780
11781 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11782 -- Check that a progenitor is compatible with declaration. If an error
11783 -- message is output, it is posted on Error_Node.
11784
11785 ------------------
11786 -- Check_Ifaces --
11787 ------------------
11788
11789 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11790 Iface_Id : constant Entity_Id :=
11791 Defining_Identifier (Parent (Iface_Def));
11792 Type_Def : Node_Id;
11793
11794 begin
11795 if Nkind (N) = N_Private_Extension_Declaration then
11796 Type_Def := N;
11797 else
11798 Type_Def := Type_Definition (N);
11799 end if;
11800
11801 if Is_Task_Interface (Iface_Id) then
11802 Is_Task := True;
11803
11804 elsif Is_Protected_Interface (Iface_Id) then
11805 Is_Protected := True;
11806 end if;
11807
11808 if Is_Synchronized_Interface (Iface_Id) then
11809
11810 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11811 -- extension derived from a synchronized interface must explicitly
11812 -- be declared synchronized, because the full view will be a
11813 -- synchronized type.
11814
11815 if Nkind (N) = N_Private_Extension_Declaration then
11816 if not Synchronized_Present (N) then
11817 Error_Msg_NE
11818 ("private extension of& must be explicitly synchronized",
11819 N, Iface_Id);
11820 end if;
11821
11822 -- However, by 3.9.4(16/2), a full type that is a record extension
11823 -- is never allowed to derive from a synchronized interface (note
11824 -- that interfaces must be excluded from this check, because those
11825 -- are represented by derived type definitions in some cases).
11826
11827 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11828 and then not Interface_Present (Type_Definition (N))
11829 then
11830 Error_Msg_N ("record extension cannot derive from synchronized "
11831 & "interface", Error_Node);
11832 end if;
11833 end if;
11834
11835 -- Check that the characteristics of the progenitor are compatible
11836 -- with the explicit qualifier in the declaration.
11837 -- The check only applies to qualifiers that come from source.
11838 -- Limited_Present also appears in the declaration of corresponding
11839 -- records, and the check does not apply to them.
11840
11841 if Limited_Present (Type_Def)
11842 and then not
11843 Is_Concurrent_Record_Type (Defining_Identifier (N))
11844 then
11845 if Is_Limited_Interface (Parent_Type)
11846 and then not Is_Limited_Interface (Iface_Id)
11847 then
11848 Error_Msg_NE
11849 ("progenitor & must be limited interface",
11850 Error_Node, Iface_Id);
11851
11852 elsif
11853 (Task_Present (Iface_Def)
11854 or else Protected_Present (Iface_Def)
11855 or else Synchronized_Present (Iface_Def))
11856 and then Nkind (N) /= N_Private_Extension_Declaration
11857 and then not Error_Posted (N)
11858 then
11859 Error_Msg_NE
11860 ("progenitor & must be limited interface",
11861 Error_Node, Iface_Id);
11862 end if;
11863
11864 -- Protected interfaces can only inherit from limited, synchronized
11865 -- or protected interfaces.
11866
11867 elsif Nkind (N) = N_Full_Type_Declaration
11868 and then Protected_Present (Type_Def)
11869 then
11870 if Limited_Present (Iface_Def)
11871 or else Synchronized_Present (Iface_Def)
11872 or else Protected_Present (Iface_Def)
11873 then
11874 null;
11875
11876 elsif Task_Present (Iface_Def) then
11877 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11878 & "from task interface", Error_Node);
11879
11880 else
11881 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11882 & "from non-limited interface", Error_Node);
11883 end if;
11884
11885 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11886 -- limited and synchronized.
11887
11888 elsif Synchronized_Present (Type_Def) then
11889 if Limited_Present (Iface_Def)
11890 or else Synchronized_Present (Iface_Def)
11891 then
11892 null;
11893
11894 elsif Protected_Present (Iface_Def)
11895 and then Nkind (N) /= N_Private_Extension_Declaration
11896 then
11897 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11898 & "from protected interface", Error_Node);
11899
11900 elsif Task_Present (Iface_Def)
11901 and then Nkind (N) /= N_Private_Extension_Declaration
11902 then
11903 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11904 & "from task interface", Error_Node);
11905
11906 elsif not Is_Limited_Interface (Iface_Id) then
11907 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11908 & "from non-limited interface", Error_Node);
11909 end if;
11910
11911 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11912 -- synchronized or task interfaces.
11913
11914 elsif Nkind (N) = N_Full_Type_Declaration
11915 and then Task_Present (Type_Def)
11916 then
11917 if Limited_Present (Iface_Def)
11918 or else Synchronized_Present (Iface_Def)
11919 or else Task_Present (Iface_Def)
11920 then
11921 null;
11922
11923 elsif Protected_Present (Iface_Def) then
11924 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11925 & "protected interface", Error_Node);
11926
11927 else
11928 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11929 & "non-limited interface", Error_Node);
11930 end if;
11931 end if;
11932 end Check_Ifaces;
11933
11934 -- Start of processing for Check_Interfaces
11935
11936 begin
11937 if Is_Interface (Parent_Type) then
11938 if Is_Task_Interface (Parent_Type) then
11939 Is_Task := True;
11940
11941 elsif Is_Protected_Interface (Parent_Type) then
11942 Is_Protected := True;
11943 end if;
11944 end if;
11945
11946 if Nkind (N) = N_Private_Extension_Declaration then
11947
11948 -- Check that progenitors are compatible with declaration
11949
11950 Iface := First (Interface_List (Def));
11951 while Present (Iface) loop
11952 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11953
11954 Parent_Node := Parent (Base_Type (Iface_Typ));
11955 Iface_Def := Type_Definition (Parent_Node);
11956
11957 if not Is_Interface (Iface_Typ) then
11958 Diagnose_Interface (Iface, Iface_Typ);
11959 else
11960 Check_Ifaces (Iface_Def, Iface);
11961 end if;
11962
11963 Next (Iface);
11964 end loop;
11965
11966 if Is_Task and Is_Protected then
11967 Error_Msg_N
11968 ("type cannot derive from task and protected interface", N);
11969 end if;
11970
11971 return;
11972 end if;
11973
11974 -- Full type declaration of derived type.
11975 -- Check compatibility with parent if it is interface type
11976
11977 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11978 and then Is_Interface (Parent_Type)
11979 then
11980 Parent_Node := Parent (Parent_Type);
11981
11982 -- More detailed checks for interface varieties
11983
11984 Check_Ifaces
11985 (Iface_Def => Type_Definition (Parent_Node),
11986 Error_Node => Subtype_Indication (Type_Definition (N)));
11987 end if;
11988
11989 Iface := First (Interface_List (Def));
11990 while Present (Iface) loop
11991 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11992
11993 Parent_Node := Parent (Base_Type (Iface_Typ));
11994 Iface_Def := Type_Definition (Parent_Node);
11995
11996 if not Is_Interface (Iface_Typ) then
11997 Diagnose_Interface (Iface, Iface_Typ);
11998
11999 else
12000 -- "The declaration of a specific descendant of an interface
12001 -- type freezes the interface type" RM 13.14
12002
12003 Freeze_Before (N, Iface_Typ);
12004 Check_Ifaces (Iface_Def, Error_Node => Iface);
12005 end if;
12006
12007 Next (Iface);
12008 end loop;
12009
12010 if Is_Task and Is_Protected then
12011 Error_Msg_N
12012 ("type cannot derive from task and protected interface", N);
12013 end if;
12014 end Check_Interfaces;
12015
12016 ------------------------------------
12017 -- Check_Or_Process_Discriminants --
12018 ------------------------------------
12019
12020 -- If an incomplete or private type declaration was already given for the
12021 -- type, the discriminants may have already been processed if they were
12022 -- present on the incomplete declaration. In this case a full conformance
12023 -- check has been performed in Find_Type_Name, and we then recheck here
12024 -- some properties that can't be checked on the partial view alone.
12025 -- Otherwise we call Process_Discriminants.
12026
12027 procedure Check_Or_Process_Discriminants
12028 (N : Node_Id;
12029 T : Entity_Id;
12030 Prev : Entity_Id := Empty)
12031 is
12032 begin
12033 if Has_Discriminants (T) then
12034
12035 -- Discriminants are already set on T if they were already present
12036 -- on the partial view. Make them visible to component declarations.
12037
12038 declare
12039 D : Entity_Id;
12040 -- Discriminant on T (full view) referencing expr on partial view
12041
12042 Prev_D : Entity_Id;
12043 -- Entity of corresponding discriminant on partial view
12044
12045 New_D : Node_Id;
12046 -- Discriminant specification for full view, expression is
12047 -- the syntactic copy on full view (which has been checked for
12048 -- conformance with partial view), only used here to post error
12049 -- message.
12050
12051 begin
12052 D := First_Discriminant (T);
12053 New_D := First (Discriminant_Specifications (N));
12054 while Present (D) loop
12055 Prev_D := Current_Entity (D);
12056 Set_Current_Entity (D);
12057 Set_Is_Immediately_Visible (D);
12058 Set_Homonym (D, Prev_D);
12059
12060 -- Handle the case where there is an untagged partial view and
12061 -- the full view is tagged: must disallow discriminants with
12062 -- defaults, unless compiling for Ada 2012, which allows a
12063 -- limited tagged type to have defaulted discriminants (see
12064 -- AI05-0214). However, suppress error here if it was already
12065 -- reported on the default expression of the partial view.
12066
12067 if Is_Tagged_Type (T)
12068 and then Present (Expression (Parent (D)))
12069 and then (not Is_Limited_Type (Current_Scope)
12070 or else Ada_Version < Ada_2012)
12071 and then not Error_Posted (Expression (Parent (D)))
12072 then
12073 if Ada_Version >= Ada_2012 then
12074 Error_Msg_N
12075 ("discriminants of nonlimited tagged type cannot have "
12076 & "defaults",
12077 Expression (New_D));
12078 else
12079 Error_Msg_N
12080 ("discriminants of tagged type cannot have defaults",
12081 Expression (New_D));
12082 end if;
12083 end if;
12084
12085 -- Ada 2005 (AI-230): Access discriminant allowed in
12086 -- non-limited record types.
12087
12088 if Ada_Version < Ada_2005 then
12089
12090 -- This restriction gets applied to the full type here. It
12091 -- has already been applied earlier to the partial view.
12092
12093 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12094 end if;
12095
12096 Next_Discriminant (D);
12097 Next (New_D);
12098 end loop;
12099 end;
12100
12101 elsif Present (Discriminant_Specifications (N)) then
12102 Process_Discriminants (N, Prev);
12103 end if;
12104 end Check_Or_Process_Discriminants;
12105
12106 ----------------------
12107 -- Check_Real_Bound --
12108 ----------------------
12109
12110 procedure Check_Real_Bound (Bound : Node_Id) is
12111 begin
12112 if not Is_Real_Type (Etype (Bound)) then
12113 Error_Msg_N
12114 ("bound in real type definition must be of real type", Bound);
12115
12116 elsif not Is_OK_Static_Expression (Bound) then
12117 Flag_Non_Static_Expr
12118 ("non-static expression used for real type bound!", Bound);
12119
12120 else
12121 return;
12122 end if;
12123
12124 Rewrite
12125 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12126 Analyze (Bound);
12127 Resolve (Bound, Standard_Float);
12128 end Check_Real_Bound;
12129
12130 ------------------------------
12131 -- Complete_Private_Subtype --
12132 ------------------------------
12133
12134 procedure Complete_Private_Subtype
12135 (Priv : Entity_Id;
12136 Full : Entity_Id;
12137 Full_Base : Entity_Id;
12138 Related_Nod : Node_Id)
12139 is
12140 Save_Next_Entity : Entity_Id;
12141 Save_Homonym : Entity_Id;
12142
12143 begin
12144 -- Set semantic attributes for (implicit) private subtype completion.
12145 -- If the full type has no discriminants, then it is a copy of the
12146 -- full view of the base. Otherwise, it is a subtype of the base with
12147 -- a possible discriminant constraint. Save and restore the original
12148 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12149 -- not corrupt the entity chain.
12150
12151 -- Note that the type of the full view is the same entity as the type
12152 -- of the partial view. In this fashion, the subtype has access to the
12153 -- correct view of the parent.
12154
12155 Save_Next_Entity := Next_Entity (Full);
12156 Save_Homonym := Homonym (Priv);
12157
12158 case Ekind (Full_Base) is
12159 when Class_Wide_Kind
12160 | Private_Kind
12161 | Protected_Kind
12162 | Task_Kind
12163 | E_Record_Subtype
12164 | E_Record_Type
12165 =>
12166 Copy_Node (Priv, Full);
12167
12168 Set_Has_Discriminants
12169 (Full, Has_Discriminants (Full_Base));
12170 Set_Has_Unknown_Discriminants
12171 (Full, Has_Unknown_Discriminants (Full_Base));
12172 Set_First_Entity (Full, First_Entity (Full_Base));
12173 Set_Last_Entity (Full, Last_Entity (Full_Base));
12174
12175 -- If the underlying base type is constrained, we know that the
12176 -- full view of the subtype is constrained as well (the converse
12177 -- is not necessarily true).
12178
12179 if Is_Constrained (Full_Base) then
12180 Set_Is_Constrained (Full);
12181 end if;
12182
12183 when others =>
12184 Copy_Node (Full_Base, Full);
12185
12186 Set_Chars (Full, Chars (Priv));
12187 Conditional_Delay (Full, Priv);
12188 Set_Sloc (Full, Sloc (Priv));
12189 end case;
12190
12191 Set_Next_Entity (Full, Save_Next_Entity);
12192 Set_Homonym (Full, Save_Homonym);
12193 Set_Associated_Node_For_Itype (Full, Related_Nod);
12194
12195 -- Set common attributes for all subtypes: kind, convention, etc.
12196
12197 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12198 Set_Convention (Full, Convention (Full_Base));
12199
12200 -- The Etype of the full view is inconsistent. Gigi needs to see the
12201 -- structural full view, which is what the current scheme gives: the
12202 -- Etype of the full view is the etype of the full base. However, if the
12203 -- full base is a derived type, the full view then looks like a subtype
12204 -- of the parent, not a subtype of the full base. If instead we write:
12205
12206 -- Set_Etype (Full, Full_Base);
12207
12208 -- then we get inconsistencies in the front-end (confusion between
12209 -- views). Several outstanding bugs are related to this ???
12210
12211 Set_Is_First_Subtype (Full, False);
12212 Set_Scope (Full, Scope (Priv));
12213 Set_Size_Info (Full, Full_Base);
12214 Set_RM_Size (Full, RM_Size (Full_Base));
12215 Set_Is_Itype (Full);
12216
12217 -- A subtype of a private-type-without-discriminants, whose full-view
12218 -- has discriminants with default expressions, is not constrained.
12219
12220 if not Has_Discriminants (Priv) then
12221 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12222
12223 if Has_Discriminants (Full_Base) then
12224 Set_Discriminant_Constraint
12225 (Full, Discriminant_Constraint (Full_Base));
12226
12227 -- The partial view may have been indefinite, the full view
12228 -- might not be.
12229
12230 Set_Has_Unknown_Discriminants
12231 (Full, Has_Unknown_Discriminants (Full_Base));
12232 end if;
12233 end if;
12234
12235 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12236 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12237
12238 -- Freeze the private subtype entity if its parent is delayed, and not
12239 -- already frozen. We skip this processing if the type is an anonymous
12240 -- subtype of a record component, or is the corresponding record of a
12241 -- protected type, since these are processed when the enclosing type
12242 -- is frozen. If the parent type is declared in a nested package then
12243 -- the freezing of the private and full views also happens later.
12244
12245 if not Is_Type (Scope (Full)) then
12246 if Is_Itype (Priv)
12247 and then In_Same_Source_Unit (Full, Full_Base)
12248 and then Scope (Full_Base) /= Scope (Full)
12249 then
12250 Set_Has_Delayed_Freeze (Full);
12251 Set_Has_Delayed_Freeze (Priv);
12252
12253 else
12254 Set_Has_Delayed_Freeze (Full,
12255 Has_Delayed_Freeze (Full_Base)
12256 and then not Is_Frozen (Full_Base));
12257 end if;
12258 end if;
12259
12260 Set_Freeze_Node (Full, Empty);
12261 Set_Is_Frozen (Full, False);
12262 Set_Full_View (Priv, Full);
12263
12264 if Has_Discriminants (Full) then
12265 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12266 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12267
12268 if Has_Unknown_Discriminants (Full) then
12269 Set_Discriminant_Constraint (Full, No_Elist);
12270 end if;
12271 end if;
12272
12273 if Ekind (Full_Base) = E_Record_Type
12274 and then Has_Discriminants (Full_Base)
12275 and then Has_Discriminants (Priv) -- might not, if errors
12276 and then not Has_Unknown_Discriminants (Priv)
12277 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12278 then
12279 Create_Constrained_Components
12280 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12281
12282 -- If the full base is itself derived from private, build a congruent
12283 -- subtype of its underlying type, for use by the back end. For a
12284 -- constrained record component, the declaration cannot be placed on
12285 -- the component list, but it must nevertheless be built an analyzed, to
12286 -- supply enough information for Gigi to compute the size of component.
12287
12288 elsif Ekind (Full_Base) in Private_Kind
12289 and then Is_Derived_Type (Full_Base)
12290 and then Has_Discriminants (Full_Base)
12291 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12292 then
12293 if not Is_Itype (Priv)
12294 and then
12295 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12296 then
12297 Build_Underlying_Full_View
12298 (Parent (Priv), Full, Etype (Full_Base));
12299
12300 elsif Nkind (Related_Nod) = N_Component_Declaration then
12301 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12302 end if;
12303
12304 elsif Is_Record_Type (Full_Base) then
12305
12306 -- Show Full is simply a renaming of Full_Base
12307
12308 Set_Cloned_Subtype (Full, Full_Base);
12309 end if;
12310
12311 -- It is unsafe to share the bounds of a scalar type, because the Itype
12312 -- is elaborated on demand, and if a bound is non-static then different
12313 -- orders of elaboration in different units will lead to different
12314 -- external symbols.
12315
12316 if Is_Scalar_Type (Full_Base) then
12317 Set_Scalar_Range (Full,
12318 Make_Range (Sloc (Related_Nod),
12319 Low_Bound =>
12320 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12321 High_Bound =>
12322 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12323
12324 -- This completion inherits the bounds of the full parent, but if
12325 -- the parent is an unconstrained floating point type, so is the
12326 -- completion.
12327
12328 if Is_Floating_Point_Type (Full_Base) then
12329 Set_Includes_Infinities
12330 (Scalar_Range (Full), Has_Infinities (Full_Base));
12331 end if;
12332 end if;
12333
12334 -- ??? It seems that a lot of fields are missing that should be copied
12335 -- from Full_Base to Full. Here are some that are introduced in a
12336 -- non-disruptive way but a cleanup is necessary.
12337
12338 if Is_Tagged_Type (Full_Base) then
12339 Set_Is_Tagged_Type (Full);
12340 Set_Direct_Primitive_Operations
12341 (Full, Direct_Primitive_Operations (Full_Base));
12342 Set_No_Tagged_Streams_Pragma
12343 (Full, No_Tagged_Streams_Pragma (Full_Base));
12344
12345 -- Inherit class_wide type of full_base in case the partial view was
12346 -- not tagged. Otherwise it has already been created when the private
12347 -- subtype was analyzed.
12348
12349 if No (Class_Wide_Type (Full)) then
12350 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12351 end if;
12352
12353 -- If this is a subtype of a protected or task type, constrain its
12354 -- corresponding record, unless this is a subtype without constraints,
12355 -- i.e. a simple renaming as with an actual subtype in an instance.
12356
12357 elsif Is_Concurrent_Type (Full_Base) then
12358 if Has_Discriminants (Full)
12359 and then Present (Corresponding_Record_Type (Full_Base))
12360 and then
12361 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12362 then
12363 Set_Corresponding_Record_Type (Full,
12364 Constrain_Corresponding_Record
12365 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12366
12367 else
12368 Set_Corresponding_Record_Type (Full,
12369 Corresponding_Record_Type (Full_Base));
12370 end if;
12371 end if;
12372
12373 -- Link rep item chain, and also setting of Has_Predicates from private
12374 -- subtype to full subtype, since we will need these on the full subtype
12375 -- to create the predicate function. Note that the full subtype may
12376 -- already have rep items, inherited from the full view of the base
12377 -- type, so we must be sure not to overwrite these entries.
12378
12379 declare
12380 Append : Boolean;
12381 Item : Node_Id;
12382 Next_Item : Node_Id;
12383 Priv_Item : Node_Id;
12384
12385 begin
12386 Item := First_Rep_Item (Full);
12387 Priv_Item := First_Rep_Item (Priv);
12388
12389 -- If no existing rep items on full type, we can just link directly
12390 -- to the list of items on the private type, if any exist.. Same if
12391 -- the rep items are only those inherited from the base
12392
12393 if (No (Item)
12394 or else Nkind (Item) /= N_Aspect_Specification
12395 or else Entity (Item) = Full_Base)
12396 and then Present (First_Rep_Item (Priv))
12397 then
12398 Set_First_Rep_Item (Full, Priv_Item);
12399
12400 -- Otherwise, search to the end of items currently linked to the full
12401 -- subtype and append the private items to the end. However, if Priv
12402 -- and Full already have the same list of rep items, then the append
12403 -- is not done, as that would create a circularity.
12404 --
12405 -- The partial view may have a predicate and the rep item lists of
12406 -- both views agree when inherited from the same ancestor. In that
12407 -- case, simply propagate the list from one view to the other.
12408 -- A more complex analysis needed here ???
12409
12410 elsif Present (Priv_Item)
12411 and then Item = Next_Rep_Item (Priv_Item)
12412 then
12413 Set_First_Rep_Item (Full, Priv_Item);
12414
12415 elsif Item /= Priv_Item then
12416 Append := True;
12417 loop
12418 Next_Item := Next_Rep_Item (Item);
12419 exit when No (Next_Item);
12420 Item := Next_Item;
12421
12422 -- If the private view has aspect specifications, the full view
12423 -- inherits them. Since these aspects may already have been
12424 -- attached to the full view during derivation, do not append
12425 -- them if already present.
12426
12427 if Item = First_Rep_Item (Priv) then
12428 Append := False;
12429 exit;
12430 end if;
12431 end loop;
12432
12433 -- And link the private type items at the end of the chain
12434
12435 if Append then
12436 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12437 end if;
12438 end if;
12439 end;
12440
12441 -- Make sure Has_Predicates is set on full type if it is set on the
12442 -- private type. Note that it may already be set on the full type and
12443 -- if so, we don't want to unset it. Similarly, propagate information
12444 -- about delayed aspects, because the corresponding pragmas must be
12445 -- analyzed when one of the views is frozen. This last step is needed
12446 -- in particular when the full type is a scalar type for which an
12447 -- anonymous base type is constructed.
12448
12449 -- The predicate functions are generated either at the freeze point
12450 -- of the type or at the end of the visible part, and we must avoid
12451 -- generating them twice.
12452
12453 if Has_Predicates (Priv) then
12454 Set_Has_Predicates (Full);
12455
12456 if Present (Predicate_Function (Priv))
12457 and then No (Predicate_Function (Full))
12458 then
12459 Set_Predicate_Function (Full, Predicate_Function (Priv));
12460 end if;
12461 end if;
12462
12463 if Has_Delayed_Aspects (Priv) then
12464 Set_Has_Delayed_Aspects (Full);
12465 end if;
12466 end Complete_Private_Subtype;
12467
12468 ----------------------------
12469 -- Constant_Redeclaration --
12470 ----------------------------
12471
12472 procedure Constant_Redeclaration
12473 (Id : Entity_Id;
12474 N : Node_Id;
12475 T : out Entity_Id)
12476 is
12477 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12478 Obj_Def : constant Node_Id := Object_Definition (N);
12479 New_T : Entity_Id;
12480
12481 procedure Check_Possible_Deferred_Completion
12482 (Prev_Id : Entity_Id;
12483 Prev_Obj_Def : Node_Id;
12484 Curr_Obj_Def : Node_Id);
12485 -- Determine whether the two object definitions describe the partial
12486 -- and the full view of a constrained deferred constant. Generate
12487 -- a subtype for the full view and verify that it statically matches
12488 -- the subtype of the partial view.
12489
12490 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12491 -- If deferred constant is an access type initialized with an allocator,
12492 -- check whether there is an illegal recursion in the definition,
12493 -- through a default value of some record subcomponent. This is normally
12494 -- detected when generating init procs, but requires this additional
12495 -- mechanism when expansion is disabled.
12496
12497 ----------------------------------------
12498 -- Check_Possible_Deferred_Completion --
12499 ----------------------------------------
12500
12501 procedure Check_Possible_Deferred_Completion
12502 (Prev_Id : Entity_Id;
12503 Prev_Obj_Def : Node_Id;
12504 Curr_Obj_Def : Node_Id)
12505 is
12506 begin
12507 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12508 and then Present (Constraint (Prev_Obj_Def))
12509 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12510 and then Present (Constraint (Curr_Obj_Def))
12511 then
12512 declare
12513 Loc : constant Source_Ptr := Sloc (N);
12514 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12515 Decl : constant Node_Id :=
12516 Make_Subtype_Declaration (Loc,
12517 Defining_Identifier => Def_Id,
12518 Subtype_Indication =>
12519 Relocate_Node (Curr_Obj_Def));
12520
12521 begin
12522 Insert_Before_And_Analyze (N, Decl);
12523 Set_Etype (Id, Def_Id);
12524
12525 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12526 Error_Msg_Sloc := Sloc (Prev_Id);
12527 Error_Msg_N ("subtype does not statically match deferred "
12528 & "declaration #", N);
12529 end if;
12530 end;
12531 end if;
12532 end Check_Possible_Deferred_Completion;
12533
12534 ---------------------------------
12535 -- Check_Recursive_Declaration --
12536 ---------------------------------
12537
12538 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12539 Comp : Entity_Id;
12540
12541 begin
12542 if Is_Record_Type (Typ) then
12543 Comp := First_Component (Typ);
12544 while Present (Comp) loop
12545 if Comes_From_Source (Comp) then
12546 if Present (Expression (Parent (Comp)))
12547 and then Is_Entity_Name (Expression (Parent (Comp)))
12548 and then Entity (Expression (Parent (Comp))) = Prev
12549 then
12550 Error_Msg_Sloc := Sloc (Parent (Comp));
12551 Error_Msg_NE
12552 ("illegal circularity with declaration for & #",
12553 N, Comp);
12554 return;
12555
12556 elsif Is_Record_Type (Etype (Comp)) then
12557 Check_Recursive_Declaration (Etype (Comp));
12558 end if;
12559 end if;
12560
12561 Next_Component (Comp);
12562 end loop;
12563 end if;
12564 end Check_Recursive_Declaration;
12565
12566 -- Start of processing for Constant_Redeclaration
12567
12568 begin
12569 if Nkind (Parent (Prev)) = N_Object_Declaration then
12570 if Nkind (Object_Definition
12571 (Parent (Prev))) = N_Subtype_Indication
12572 then
12573 -- Find type of new declaration. The constraints of the two
12574 -- views must match statically, but there is no point in
12575 -- creating an itype for the full view.
12576
12577 if Nkind (Obj_Def) = N_Subtype_Indication then
12578 Find_Type (Subtype_Mark (Obj_Def));
12579 New_T := Entity (Subtype_Mark (Obj_Def));
12580
12581 else
12582 Find_Type (Obj_Def);
12583 New_T := Entity (Obj_Def);
12584 end if;
12585
12586 T := Etype (Prev);
12587
12588 else
12589 -- The full view may impose a constraint, even if the partial
12590 -- view does not, so construct the subtype.
12591
12592 New_T := Find_Type_Of_Object (Obj_Def, N);
12593 T := New_T;
12594 end if;
12595
12596 else
12597 -- Current declaration is illegal, diagnosed below in Enter_Name
12598
12599 T := Empty;
12600 New_T := Any_Type;
12601 end if;
12602
12603 -- If previous full declaration or a renaming declaration exists, or if
12604 -- a homograph is present, let Enter_Name handle it, either with an
12605 -- error or with the removal of an overridden implicit subprogram.
12606 -- The previous one is a full declaration if it has an expression
12607 -- (which in the case of an aggregate is indicated by the Init flag).
12608
12609 if Ekind (Prev) /= E_Constant
12610 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12611 or else Present (Expression (Parent (Prev)))
12612 or else Has_Init_Expression (Parent (Prev))
12613 or else Present (Full_View (Prev))
12614 then
12615 Enter_Name (Id);
12616
12617 -- Verify that types of both declarations match, or else that both types
12618 -- are anonymous access types whose designated subtypes statically match
12619 -- (as allowed in Ada 2005 by AI-385).
12620
12621 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12622 and then
12623 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12624 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12625 or else Is_Access_Constant (Etype (New_T)) /=
12626 Is_Access_Constant (Etype (Prev))
12627 or else Can_Never_Be_Null (Etype (New_T)) /=
12628 Can_Never_Be_Null (Etype (Prev))
12629 or else Null_Exclusion_Present (Parent (Prev)) /=
12630 Null_Exclusion_Present (Parent (Id))
12631 or else not Subtypes_Statically_Match
12632 (Designated_Type (Etype (Prev)),
12633 Designated_Type (Etype (New_T))))
12634 then
12635 Error_Msg_Sloc := Sloc (Prev);
12636 Error_Msg_N ("type does not match declaration#", N);
12637 Set_Full_View (Prev, Id);
12638 Set_Etype (Id, Any_Type);
12639
12640 -- A deferred constant whose type is an anonymous array is always
12641 -- illegal (unless imported). A detailed error message might be
12642 -- helpful for Ada beginners.
12643
12644 if Nkind (Object_Definition (Parent (Prev)))
12645 = N_Constrained_Array_Definition
12646 and then Nkind (Object_Definition (N))
12647 = N_Constrained_Array_Definition
12648 then
12649 Error_Msg_N ("\each anonymous array is a distinct type", N);
12650 Error_Msg_N ("a deferred constant must have a named type",
12651 Object_Definition (Parent (Prev)));
12652 end if;
12653
12654 elsif
12655 Null_Exclusion_Present (Parent (Prev))
12656 and then not Null_Exclusion_Present (N)
12657 then
12658 Error_Msg_Sloc := Sloc (Prev);
12659 Error_Msg_N ("null-exclusion does not match declaration#", N);
12660 Set_Full_View (Prev, Id);
12661 Set_Etype (Id, Any_Type);
12662
12663 -- If so, process the full constant declaration
12664
12665 else
12666 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12667 -- the deferred declaration is constrained, then the subtype defined
12668 -- by the subtype_indication in the full declaration shall match it
12669 -- statically.
12670
12671 Check_Possible_Deferred_Completion
12672 (Prev_Id => Prev,
12673 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12674 Curr_Obj_Def => Obj_Def);
12675
12676 Set_Full_View (Prev, Id);
12677 Set_Is_Public (Id, Is_Public (Prev));
12678 Set_Is_Internal (Id);
12679 Append_Entity (Id, Current_Scope);
12680
12681 -- Check ALIASED present if present before (RM 7.4(7))
12682
12683 if Is_Aliased (Prev)
12684 and then not Aliased_Present (N)
12685 then
12686 Error_Msg_Sloc := Sloc (Prev);
12687 Error_Msg_N ("ALIASED required (see declaration #)", N);
12688 end if;
12689
12690 -- Check that placement is in private part and that the incomplete
12691 -- declaration appeared in the visible part.
12692
12693 if Ekind (Current_Scope) = E_Package
12694 and then not In_Private_Part (Current_Scope)
12695 then
12696 Error_Msg_Sloc := Sloc (Prev);
12697 Error_Msg_N
12698 ("full constant for declaration # must be in private part", N);
12699
12700 elsif Ekind (Current_Scope) = E_Package
12701 and then
12702 List_Containing (Parent (Prev)) /=
12703 Visible_Declarations (Package_Specification (Current_Scope))
12704 then
12705 Error_Msg_N
12706 ("deferred constant must be declared in visible part",
12707 Parent (Prev));
12708 end if;
12709
12710 if Is_Access_Type (T)
12711 and then Nkind (Expression (N)) = N_Allocator
12712 then
12713 Check_Recursive_Declaration (Designated_Type (T));
12714 end if;
12715
12716 -- A deferred constant is a visible entity. If type has invariants,
12717 -- verify that the initial value satisfies them.
12718
12719 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12720 Insert_After (N,
12721 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12722 end if;
12723 end if;
12724 end Constant_Redeclaration;
12725
12726 ----------------------
12727 -- Constrain_Access --
12728 ----------------------
12729
12730 procedure Constrain_Access
12731 (Def_Id : in out Entity_Id;
12732 S : Node_Id;
12733 Related_Nod : Node_Id)
12734 is
12735 T : constant Entity_Id := Entity (Subtype_Mark (S));
12736 Desig_Type : constant Entity_Id := Designated_Type (T);
12737 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12738 Constraint_OK : Boolean := True;
12739
12740 begin
12741 if Is_Array_Type (Desig_Type) then
12742 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12743
12744 elsif (Is_Record_Type (Desig_Type)
12745 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12746 and then not Is_Constrained (Desig_Type)
12747 then
12748 -- ??? The following code is a temporary bypass to ignore a
12749 -- discriminant constraint on access type if it is constraining
12750 -- the current record. Avoid creating the implicit subtype of the
12751 -- record we are currently compiling since right now, we cannot
12752 -- handle these. For now, just return the access type itself.
12753
12754 if Desig_Type = Current_Scope
12755 and then No (Def_Id)
12756 then
12757 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12758 Def_Id := Entity (Subtype_Mark (S));
12759
12760 -- This call added to ensure that the constraint is analyzed
12761 -- (needed for a B test). Note that we still return early from
12762 -- this procedure to avoid recursive processing. ???
12763
12764 Constrain_Discriminated_Type
12765 (Desig_Subtype, S, Related_Nod, For_Access => True);
12766 return;
12767 end if;
12768
12769 -- Enforce rule that the constraint is illegal if there is an
12770 -- unconstrained view of the designated type. This means that the
12771 -- partial view (either a private type declaration or a derivation
12772 -- from a private type) has no discriminants. (Defect Report
12773 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12774
12775 -- Rule updated for Ada 2005: The private type is said to have
12776 -- a constrained partial view, given that objects of the type
12777 -- can be declared. Furthermore, the rule applies to all access
12778 -- types, unlike the rule concerning default discriminants (see
12779 -- RM 3.7.1(7/3))
12780
12781 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12782 and then Has_Private_Declaration (Desig_Type)
12783 and then In_Open_Scopes (Scope (Desig_Type))
12784 and then Has_Discriminants (Desig_Type)
12785 then
12786 declare
12787 Pack : constant Node_Id :=
12788 Unit_Declaration_Node (Scope (Desig_Type));
12789 Decls : List_Id;
12790 Decl : Node_Id;
12791
12792 begin
12793 if Nkind (Pack) = N_Package_Declaration then
12794 Decls := Visible_Declarations (Specification (Pack));
12795 Decl := First (Decls);
12796 while Present (Decl) loop
12797 if (Nkind (Decl) = N_Private_Type_Declaration
12798 and then Chars (Defining_Identifier (Decl)) =
12799 Chars (Desig_Type))
12800
12801 or else
12802 (Nkind (Decl) = N_Full_Type_Declaration
12803 and then
12804 Chars (Defining_Identifier (Decl)) =
12805 Chars (Desig_Type)
12806 and then Is_Derived_Type (Desig_Type)
12807 and then
12808 Has_Private_Declaration (Etype (Desig_Type)))
12809 then
12810 if No (Discriminant_Specifications (Decl)) then
12811 Error_Msg_N
12812 ("cannot constrain access type if designated "
12813 & "type has constrained partial view", S);
12814 end if;
12815
12816 exit;
12817 end if;
12818
12819 Next (Decl);
12820 end loop;
12821 end if;
12822 end;
12823 end if;
12824
12825 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12826 For_Access => True);
12827
12828 elsif Is_Concurrent_Type (Desig_Type)
12829 and then not Is_Constrained (Desig_Type)
12830 then
12831 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12832
12833 else
12834 Error_Msg_N ("invalid constraint on access type", S);
12835
12836 -- We simply ignore an invalid constraint
12837
12838 Desig_Subtype := Desig_Type;
12839 Constraint_OK := False;
12840 end if;
12841
12842 if No (Def_Id) then
12843 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12844 else
12845 Set_Ekind (Def_Id, E_Access_Subtype);
12846 end if;
12847
12848 if Constraint_OK then
12849 Set_Etype (Def_Id, Base_Type (T));
12850
12851 if Is_Private_Type (Desig_Type) then
12852 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12853 end if;
12854 else
12855 Set_Etype (Def_Id, Any_Type);
12856 end if;
12857
12858 Set_Size_Info (Def_Id, T);
12859 Set_Is_Constrained (Def_Id, Constraint_OK);
12860 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12861 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12862 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12863
12864 Conditional_Delay (Def_Id, T);
12865
12866 -- AI-363 : Subtypes of general access types whose designated types have
12867 -- default discriminants are disallowed. In instances, the rule has to
12868 -- be checked against the actual, of which T is the subtype. In a
12869 -- generic body, the rule is checked assuming that the actual type has
12870 -- defaulted discriminants.
12871
12872 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12873 if Ekind (Base_Type (T)) = E_General_Access_Type
12874 and then Has_Defaulted_Discriminants (Desig_Type)
12875 then
12876 if Ada_Version < Ada_2005 then
12877 Error_Msg_N
12878 ("access subtype of general access type would not " &
12879 "be allowed in Ada 2005?y?", S);
12880 else
12881 Error_Msg_N
12882 ("access subtype of general access type not allowed", S);
12883 end if;
12884
12885 Error_Msg_N ("\discriminants have defaults", S);
12886
12887 elsif Is_Access_Type (T)
12888 and then Is_Generic_Type (Desig_Type)
12889 and then Has_Discriminants (Desig_Type)
12890 and then In_Package_Body (Current_Scope)
12891 then
12892 if Ada_Version < Ada_2005 then
12893 Error_Msg_N
12894 ("access subtype would not be allowed in generic body "
12895 & "in Ada 2005?y?", S);
12896 else
12897 Error_Msg_N
12898 ("access subtype not allowed in generic body", S);
12899 end if;
12900
12901 Error_Msg_N
12902 ("\designated type is a discriminated formal", S);
12903 end if;
12904 end if;
12905 end Constrain_Access;
12906
12907 ---------------------
12908 -- Constrain_Array --
12909 ---------------------
12910
12911 procedure Constrain_Array
12912 (Def_Id : in out Entity_Id;
12913 SI : Node_Id;
12914 Related_Nod : Node_Id;
12915 Related_Id : Entity_Id;
12916 Suffix : Character)
12917 is
12918 C : constant Node_Id := Constraint (SI);
12919 Number_Of_Constraints : Nat := 0;
12920 Index : Node_Id;
12921 S, T : Entity_Id;
12922 Constraint_OK : Boolean := True;
12923
12924 begin
12925 T := Entity (Subtype_Mark (SI));
12926
12927 if Is_Access_Type (T) then
12928 T := Designated_Type (T);
12929 end if;
12930
12931 -- If an index constraint follows a subtype mark in a subtype indication
12932 -- then the type or subtype denoted by the subtype mark must not already
12933 -- impose an index constraint. The subtype mark must denote either an
12934 -- unconstrained array type or an access type whose designated type
12935 -- is such an array type... (RM 3.6.1)
12936
12937 if Is_Constrained (T) then
12938 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12939 Constraint_OK := False;
12940
12941 else
12942 S := First (Constraints (C));
12943 while Present (S) loop
12944 Number_Of_Constraints := Number_Of_Constraints + 1;
12945 Next (S);
12946 end loop;
12947
12948 -- In either case, the index constraint must provide a discrete
12949 -- range for each index of the array type and the type of each
12950 -- discrete range must be the same as that of the corresponding
12951 -- index. (RM 3.6.1)
12952
12953 if Number_Of_Constraints /= Number_Dimensions (T) then
12954 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12955 Constraint_OK := False;
12956
12957 else
12958 S := First (Constraints (C));
12959 Index := First_Index (T);
12960 Analyze (Index);
12961
12962 -- Apply constraints to each index type
12963
12964 for J in 1 .. Number_Of_Constraints loop
12965 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12966 Next (Index);
12967 Next (S);
12968 end loop;
12969
12970 end if;
12971 end if;
12972
12973 if No (Def_Id) then
12974 Def_Id :=
12975 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12976 Set_Parent (Def_Id, Related_Nod);
12977
12978 else
12979 Set_Ekind (Def_Id, E_Array_Subtype);
12980 end if;
12981
12982 Set_Size_Info (Def_Id, (T));
12983 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12984 Set_Etype (Def_Id, Base_Type (T));
12985
12986 if Constraint_OK then
12987 Set_First_Index (Def_Id, First (Constraints (C)));
12988 else
12989 Set_First_Index (Def_Id, First_Index (T));
12990 end if;
12991
12992 Set_Is_Constrained (Def_Id, True);
12993 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12994 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12995
12996 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12997 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12998
12999 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13000 -- We need to initialize the attribute because if Def_Id is previously
13001 -- analyzed through a limited_with clause, it will have the attributes
13002 -- of an incomplete type, one of which is an Elist that overlaps the
13003 -- Packed_Array_Impl_Type field.
13004
13005 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13006
13007 -- Build a freeze node if parent still needs one. Also make sure that
13008 -- the Depends_On_Private status is set because the subtype will need
13009 -- reprocessing at the time the base type does, and also we must set a
13010 -- conditional delay.
13011
13012 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13013 Conditional_Delay (Def_Id, T);
13014 end Constrain_Array;
13015
13016 ------------------------------
13017 -- Constrain_Component_Type --
13018 ------------------------------
13019
13020 function Constrain_Component_Type
13021 (Comp : Entity_Id;
13022 Constrained_Typ : Entity_Id;
13023 Related_Node : Node_Id;
13024 Typ : Entity_Id;
13025 Constraints : Elist_Id) return Entity_Id
13026 is
13027 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13028 Compon_Type : constant Entity_Id := Etype (Comp);
13029
13030 function Build_Constrained_Array_Type
13031 (Old_Type : Entity_Id) return Entity_Id;
13032 -- If Old_Type is an array type, one of whose indexes is constrained
13033 -- by a discriminant, build an Itype whose constraint replaces the
13034 -- discriminant with its value in the constraint.
13035
13036 function Build_Constrained_Discriminated_Type
13037 (Old_Type : Entity_Id) return Entity_Id;
13038 -- Ditto for record components
13039
13040 function Build_Constrained_Access_Type
13041 (Old_Type : Entity_Id) return Entity_Id;
13042 -- Ditto for access types. Makes use of previous two functions, to
13043 -- constrain designated type.
13044
13045 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13046 -- T is an array or discriminated type, C is a list of constraints
13047 -- that apply to T. This routine builds the constrained subtype.
13048
13049 function Is_Discriminant (Expr : Node_Id) return Boolean;
13050 -- Returns True if Expr is a discriminant
13051
13052 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13053 -- Find the value of discriminant Discrim in Constraint
13054
13055 -----------------------------------
13056 -- Build_Constrained_Access_Type --
13057 -----------------------------------
13058
13059 function Build_Constrained_Access_Type
13060 (Old_Type : Entity_Id) return Entity_Id
13061 is
13062 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13063 Itype : Entity_Id;
13064 Desig_Subtype : Entity_Id;
13065 Scop : Entity_Id;
13066
13067 begin
13068 -- if the original access type was not embedded in the enclosing
13069 -- type definition, there is no need to produce a new access
13070 -- subtype. In fact every access type with an explicit constraint
13071 -- generates an itype whose scope is the enclosing record.
13072
13073 if not Is_Type (Scope (Old_Type)) then
13074 return Old_Type;
13075
13076 elsif Is_Array_Type (Desig_Type) then
13077 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13078
13079 elsif Has_Discriminants (Desig_Type) then
13080
13081 -- This may be an access type to an enclosing record type for
13082 -- which we are constructing the constrained components. Return
13083 -- the enclosing record subtype. This is not always correct,
13084 -- but avoids infinite recursion. ???
13085
13086 Desig_Subtype := Any_Type;
13087
13088 for J in reverse 0 .. Scope_Stack.Last loop
13089 Scop := Scope_Stack.Table (J).Entity;
13090
13091 if Is_Type (Scop)
13092 and then Base_Type (Scop) = Base_Type (Desig_Type)
13093 then
13094 Desig_Subtype := Scop;
13095 end if;
13096
13097 exit when not Is_Type (Scop);
13098 end loop;
13099
13100 if Desig_Subtype = Any_Type then
13101 Desig_Subtype :=
13102 Build_Constrained_Discriminated_Type (Desig_Type);
13103 end if;
13104
13105 else
13106 return Old_Type;
13107 end if;
13108
13109 if Desig_Subtype /= Desig_Type then
13110
13111 -- The Related_Node better be here or else we won't be able
13112 -- to attach new itypes to a node in the tree.
13113
13114 pragma Assert (Present (Related_Node));
13115
13116 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13117
13118 Set_Etype (Itype, Base_Type (Old_Type));
13119 Set_Size_Info (Itype, (Old_Type));
13120 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13121 Set_Depends_On_Private (Itype, Has_Private_Component
13122 (Old_Type));
13123 Set_Is_Access_Constant (Itype, Is_Access_Constant
13124 (Old_Type));
13125
13126 -- The new itype needs freezing when it depends on a not frozen
13127 -- type and the enclosing subtype needs freezing.
13128
13129 if Has_Delayed_Freeze (Constrained_Typ)
13130 and then not Is_Frozen (Constrained_Typ)
13131 then
13132 Conditional_Delay (Itype, Base_Type (Old_Type));
13133 end if;
13134
13135 return Itype;
13136
13137 else
13138 return Old_Type;
13139 end if;
13140 end Build_Constrained_Access_Type;
13141
13142 ----------------------------------
13143 -- Build_Constrained_Array_Type --
13144 ----------------------------------
13145
13146 function Build_Constrained_Array_Type
13147 (Old_Type : Entity_Id) return Entity_Id
13148 is
13149 Lo_Expr : Node_Id;
13150 Hi_Expr : Node_Id;
13151 Old_Index : Node_Id;
13152 Range_Node : Node_Id;
13153 Constr_List : List_Id;
13154
13155 Need_To_Create_Itype : Boolean := False;
13156
13157 begin
13158 Old_Index := First_Index (Old_Type);
13159 while Present (Old_Index) loop
13160 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13161
13162 if Is_Discriminant (Lo_Expr)
13163 or else
13164 Is_Discriminant (Hi_Expr)
13165 then
13166 Need_To_Create_Itype := True;
13167 end if;
13168
13169 Next_Index (Old_Index);
13170 end loop;
13171
13172 if Need_To_Create_Itype then
13173 Constr_List := New_List;
13174
13175 Old_Index := First_Index (Old_Type);
13176 while Present (Old_Index) loop
13177 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13178
13179 if Is_Discriminant (Lo_Expr) then
13180 Lo_Expr := Get_Discr_Value (Lo_Expr);
13181 end if;
13182
13183 if Is_Discriminant (Hi_Expr) then
13184 Hi_Expr := Get_Discr_Value (Hi_Expr);
13185 end if;
13186
13187 Range_Node :=
13188 Make_Range
13189 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13190
13191 Append (Range_Node, To => Constr_List);
13192
13193 Next_Index (Old_Index);
13194 end loop;
13195
13196 return Build_Subtype (Old_Type, Constr_List);
13197
13198 else
13199 return Old_Type;
13200 end if;
13201 end Build_Constrained_Array_Type;
13202
13203 ------------------------------------------
13204 -- Build_Constrained_Discriminated_Type --
13205 ------------------------------------------
13206
13207 function Build_Constrained_Discriminated_Type
13208 (Old_Type : Entity_Id) return Entity_Id
13209 is
13210 Expr : Node_Id;
13211 Constr_List : List_Id;
13212 Old_Constraint : Elmt_Id;
13213
13214 Need_To_Create_Itype : Boolean := False;
13215
13216 begin
13217 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13218 while Present (Old_Constraint) loop
13219 Expr := Node (Old_Constraint);
13220
13221 if Is_Discriminant (Expr) then
13222 Need_To_Create_Itype := True;
13223 end if;
13224
13225 Next_Elmt (Old_Constraint);
13226 end loop;
13227
13228 if Need_To_Create_Itype then
13229 Constr_List := New_List;
13230
13231 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13232 while Present (Old_Constraint) loop
13233 Expr := Node (Old_Constraint);
13234
13235 if Is_Discriminant (Expr) then
13236 Expr := Get_Discr_Value (Expr);
13237 end if;
13238
13239 Append (New_Copy_Tree (Expr), To => Constr_List);
13240
13241 Next_Elmt (Old_Constraint);
13242 end loop;
13243
13244 return Build_Subtype (Old_Type, Constr_List);
13245
13246 else
13247 return Old_Type;
13248 end if;
13249 end Build_Constrained_Discriminated_Type;
13250
13251 -------------------
13252 -- Build_Subtype --
13253 -------------------
13254
13255 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13256 Indic : Node_Id;
13257 Subtyp_Decl : Node_Id;
13258 Def_Id : Entity_Id;
13259 Btyp : Entity_Id := Base_Type (T);
13260
13261 begin
13262 -- The Related_Node better be here or else we won't be able to
13263 -- attach new itypes to a node in the tree.
13264
13265 pragma Assert (Present (Related_Node));
13266
13267 -- If the view of the component's type is incomplete or private
13268 -- with unknown discriminants, then the constraint must be applied
13269 -- to the full type.
13270
13271 if Has_Unknown_Discriminants (Btyp)
13272 and then Present (Underlying_Type (Btyp))
13273 then
13274 Btyp := Underlying_Type (Btyp);
13275 end if;
13276
13277 Indic :=
13278 Make_Subtype_Indication (Loc,
13279 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13280 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13281
13282 Def_Id := Create_Itype (Ekind (T), Related_Node);
13283
13284 Subtyp_Decl :=
13285 Make_Subtype_Declaration (Loc,
13286 Defining_Identifier => Def_Id,
13287 Subtype_Indication => Indic);
13288
13289 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13290
13291 -- Itypes must be analyzed with checks off (see package Itypes)
13292
13293 Analyze (Subtyp_Decl, Suppress => All_Checks);
13294
13295 return Def_Id;
13296 end Build_Subtype;
13297
13298 ---------------------
13299 -- Get_Discr_Value --
13300 ---------------------
13301
13302 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13303 D : Entity_Id;
13304 E : Elmt_Id;
13305
13306 begin
13307 -- The discriminant may be declared for the type, in which case we
13308 -- find it by iterating over the list of discriminants. If the
13309 -- discriminant is inherited from a parent type, it appears as the
13310 -- corresponding discriminant of the current type. This will be the
13311 -- case when constraining an inherited component whose constraint is
13312 -- given by a discriminant of the parent.
13313
13314 D := First_Discriminant (Typ);
13315 E := First_Elmt (Constraints);
13316
13317 while Present (D) loop
13318 if D = Entity (Discrim)
13319 or else D = CR_Discriminant (Entity (Discrim))
13320 or else Corresponding_Discriminant (D) = Entity (Discrim)
13321 then
13322 return Node (E);
13323 end if;
13324
13325 Next_Discriminant (D);
13326 Next_Elmt (E);
13327 end loop;
13328
13329 -- The Corresponding_Discriminant mechanism is incomplete, because
13330 -- the correspondence between new and old discriminants is not one
13331 -- to one: one new discriminant can constrain several old ones. In
13332 -- that case, scan sequentially the stored_constraint, the list of
13333 -- discriminants of the parents, and the constraints.
13334
13335 -- Previous code checked for the present of the Stored_Constraint
13336 -- list for the derived type, but did not use it at all. Should it
13337 -- be present when the component is a discriminated task type?
13338
13339 if Is_Derived_Type (Typ)
13340 and then Scope (Entity (Discrim)) = Etype (Typ)
13341 then
13342 D := First_Discriminant (Etype (Typ));
13343 E := First_Elmt (Constraints);
13344 while Present (D) loop
13345 if D = Entity (Discrim) then
13346 return Node (E);
13347 end if;
13348
13349 Next_Discriminant (D);
13350 Next_Elmt (E);
13351 end loop;
13352 end if;
13353
13354 -- Something is wrong if we did not find the value
13355
13356 raise Program_Error;
13357 end Get_Discr_Value;
13358
13359 ---------------------
13360 -- Is_Discriminant --
13361 ---------------------
13362
13363 function Is_Discriminant (Expr : Node_Id) return Boolean is
13364 Discrim_Scope : Entity_Id;
13365
13366 begin
13367 if Denotes_Discriminant (Expr) then
13368 Discrim_Scope := Scope (Entity (Expr));
13369
13370 -- Either we have a reference to one of Typ's discriminants,
13371
13372 pragma Assert (Discrim_Scope = Typ
13373
13374 -- or to the discriminants of the parent type, in the case
13375 -- of a derivation of a tagged type with variants.
13376
13377 or else Discrim_Scope = Etype (Typ)
13378 or else Full_View (Discrim_Scope) = Etype (Typ)
13379
13380 -- or same as above for the case where the discriminants
13381 -- were declared in Typ's private view.
13382
13383 or else (Is_Private_Type (Discrim_Scope)
13384 and then Chars (Discrim_Scope) = Chars (Typ))
13385
13386 -- or else we are deriving from the full view and the
13387 -- discriminant is declared in the private entity.
13388
13389 or else (Is_Private_Type (Typ)
13390 and then Chars (Discrim_Scope) = Chars (Typ))
13391
13392 -- Or we are constrained the corresponding record of a
13393 -- synchronized type that completes a private declaration.
13394
13395 or else (Is_Concurrent_Record_Type (Typ)
13396 and then
13397 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13398
13399 -- or we have a class-wide type, in which case make sure the
13400 -- discriminant found belongs to the root type.
13401
13402 or else (Is_Class_Wide_Type (Typ)
13403 and then Etype (Typ) = Discrim_Scope));
13404
13405 return True;
13406 end if;
13407
13408 -- In all other cases we have something wrong
13409
13410 return False;
13411 end Is_Discriminant;
13412
13413 -- Start of processing for Constrain_Component_Type
13414
13415 begin
13416 if Nkind (Parent (Comp)) = N_Component_Declaration
13417 and then Comes_From_Source (Parent (Comp))
13418 and then Comes_From_Source
13419 (Subtype_Indication (Component_Definition (Parent (Comp))))
13420 and then
13421 Is_Entity_Name
13422 (Subtype_Indication (Component_Definition (Parent (Comp))))
13423 then
13424 return Compon_Type;
13425
13426 elsif Is_Array_Type (Compon_Type) then
13427 return Build_Constrained_Array_Type (Compon_Type);
13428
13429 elsif Has_Discriminants (Compon_Type) then
13430 return Build_Constrained_Discriminated_Type (Compon_Type);
13431
13432 elsif Is_Access_Type (Compon_Type) then
13433 return Build_Constrained_Access_Type (Compon_Type);
13434
13435 else
13436 return Compon_Type;
13437 end if;
13438 end Constrain_Component_Type;
13439
13440 --------------------------
13441 -- Constrain_Concurrent --
13442 --------------------------
13443
13444 -- For concurrent types, the associated record value type carries the same
13445 -- discriminants, so when we constrain a concurrent type, we must constrain
13446 -- the corresponding record type as well.
13447
13448 procedure Constrain_Concurrent
13449 (Def_Id : in out Entity_Id;
13450 SI : Node_Id;
13451 Related_Nod : Node_Id;
13452 Related_Id : Entity_Id;
13453 Suffix : Character)
13454 is
13455 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13456 -- case of a private subtype (needed when only doing semantic analysis).
13457
13458 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13459 T_Val : Entity_Id;
13460
13461 begin
13462 if Is_Access_Type (T_Ent) then
13463 T_Ent := Designated_Type (T_Ent);
13464 end if;
13465
13466 T_Val := Corresponding_Record_Type (T_Ent);
13467
13468 if Present (T_Val) then
13469
13470 if No (Def_Id) then
13471 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13472
13473 -- Elaborate itype now, as it may be used in a subsequent
13474 -- synchronized operation in another scope.
13475
13476 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13477 Build_Itype_Reference (Def_Id, Related_Nod);
13478 end if;
13479 end if;
13480
13481 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13482
13483 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13484 Set_Corresponding_Record_Type (Def_Id,
13485 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13486
13487 else
13488 -- If there is no associated record, expansion is disabled and this
13489 -- is a generic context. Create a subtype in any case, so that
13490 -- semantic analysis can proceed.
13491
13492 if No (Def_Id) then
13493 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13494 end if;
13495
13496 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13497 end if;
13498 end Constrain_Concurrent;
13499
13500 ------------------------------------
13501 -- Constrain_Corresponding_Record --
13502 ------------------------------------
13503
13504 function Constrain_Corresponding_Record
13505 (Prot_Subt : Entity_Id;
13506 Corr_Rec : Entity_Id;
13507 Related_Nod : Node_Id) return Entity_Id
13508 is
13509 T_Sub : constant Entity_Id :=
13510 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13511
13512 begin
13513 Set_Etype (T_Sub, Corr_Rec);
13514 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13515 Set_Is_Constrained (T_Sub, True);
13516 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13517 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13518
13519 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13520 Set_Discriminant_Constraint
13521 (T_Sub, Discriminant_Constraint (Prot_Subt));
13522 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13523 Create_Constrained_Components
13524 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13525 end if;
13526
13527 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13528
13529 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13530 Conditional_Delay (T_Sub, Corr_Rec);
13531
13532 else
13533 -- This is a component subtype: it will be frozen in the context of
13534 -- the enclosing record's init_proc, so that discriminant references
13535 -- are resolved to discriminals. (Note: we used to skip freezing
13536 -- altogether in that case, which caused errors downstream for
13537 -- components of a bit packed array type).
13538
13539 Set_Has_Delayed_Freeze (T_Sub);
13540 end if;
13541
13542 return T_Sub;
13543 end Constrain_Corresponding_Record;
13544
13545 -----------------------
13546 -- Constrain_Decimal --
13547 -----------------------
13548
13549 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13550 T : constant Entity_Id := Entity (Subtype_Mark (S));
13551 C : constant Node_Id := Constraint (S);
13552 Loc : constant Source_Ptr := Sloc (C);
13553 Range_Expr : Node_Id;
13554 Digits_Expr : Node_Id;
13555 Digits_Val : Uint;
13556 Bound_Val : Ureal;
13557
13558 begin
13559 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13560
13561 if Nkind (C) = N_Range_Constraint then
13562 Range_Expr := Range_Expression (C);
13563 Digits_Val := Digits_Value (T);
13564
13565 else
13566 pragma Assert (Nkind (C) = N_Digits_Constraint);
13567
13568 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13569
13570 Digits_Expr := Digits_Expression (C);
13571 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13572
13573 Check_Digits_Expression (Digits_Expr);
13574 Digits_Val := Expr_Value (Digits_Expr);
13575
13576 if Digits_Val > Digits_Value (T) then
13577 Error_Msg_N
13578 ("digits expression is incompatible with subtype", C);
13579 Digits_Val := Digits_Value (T);
13580 end if;
13581
13582 if Present (Range_Constraint (C)) then
13583 Range_Expr := Range_Expression (Range_Constraint (C));
13584 else
13585 Range_Expr := Empty;
13586 end if;
13587 end if;
13588
13589 Set_Etype (Def_Id, Base_Type (T));
13590 Set_Size_Info (Def_Id, (T));
13591 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13592 Set_Delta_Value (Def_Id, Delta_Value (T));
13593 Set_Scale_Value (Def_Id, Scale_Value (T));
13594 Set_Small_Value (Def_Id, Small_Value (T));
13595 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13596 Set_Digits_Value (Def_Id, Digits_Val);
13597
13598 -- Manufacture range from given digits value if no range present
13599
13600 if No (Range_Expr) then
13601 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13602 Range_Expr :=
13603 Make_Range (Loc,
13604 Low_Bound =>
13605 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13606 High_Bound =>
13607 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13608 end if;
13609
13610 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13611 Set_Discrete_RM_Size (Def_Id);
13612
13613 -- Unconditionally delay the freeze, since we cannot set size
13614 -- information in all cases correctly until the freeze point.
13615
13616 Set_Has_Delayed_Freeze (Def_Id);
13617 end Constrain_Decimal;
13618
13619 ----------------------------------
13620 -- Constrain_Discriminated_Type --
13621 ----------------------------------
13622
13623 procedure Constrain_Discriminated_Type
13624 (Def_Id : Entity_Id;
13625 S : Node_Id;
13626 Related_Nod : Node_Id;
13627 For_Access : Boolean := False)
13628 is
13629 E : Entity_Id := Entity (Subtype_Mark (S));
13630 T : Entity_Id;
13631
13632 procedure Fixup_Bad_Constraint;
13633 -- Called after finding a bad constraint, and after having posted an
13634 -- appropriate error message. The goal is to leave type Def_Id in as
13635 -- reasonable state as possible.
13636
13637 --------------------------
13638 -- Fixup_Bad_Constraint --
13639 --------------------------
13640
13641 procedure Fixup_Bad_Constraint is
13642 begin
13643 -- Set a reasonable Ekind for the entity, including incomplete types.
13644
13645 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13646
13647 -- Set Etype to the known type, to reduce chances of cascaded errors
13648
13649 Set_Etype (Def_Id, E);
13650 Set_Error_Posted (Def_Id);
13651 end Fixup_Bad_Constraint;
13652
13653 -- Local variables
13654
13655 C : Node_Id;
13656 Constr : Elist_Id := New_Elmt_List;
13657
13658 -- Start of processing for Constrain_Discriminated_Type
13659
13660 begin
13661 C := Constraint (S);
13662
13663 -- A discriminant constraint is only allowed in a subtype indication,
13664 -- after a subtype mark. This subtype mark must denote either a type
13665 -- with discriminants, or an access type whose designated type is a
13666 -- type with discriminants. A discriminant constraint specifies the
13667 -- values of these discriminants (RM 3.7.2(5)).
13668
13669 T := Base_Type (Entity (Subtype_Mark (S)));
13670
13671 if Is_Access_Type (T) then
13672 T := Designated_Type (T);
13673 end if;
13674
13675 -- In an instance it may be necessary to retrieve the full view of a
13676 -- type with unknown discriminants, or a full view with defaulted
13677 -- discriminants. In other contexts the constraint is illegal.
13678
13679 if In_Instance
13680 and then Is_Private_Type (T)
13681 and then Present (Full_View (T))
13682 and then
13683 (Has_Unknown_Discriminants (T)
13684 or else
13685 (not Has_Discriminants (T)
13686 and then Has_Discriminants (Full_View (T))
13687 and then Present (Discriminant_Default_Value
13688 (First_Discriminant (Full_View (T))))))
13689 then
13690 T := Full_View (T);
13691 E := Full_View (E);
13692 end if;
13693
13694 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13695 -- generating an error for access-to-incomplete subtypes.
13696
13697 if Ada_Version >= Ada_2005
13698 and then Ekind (T) = E_Incomplete_Type
13699 and then Nkind (Parent (S)) = N_Subtype_Declaration
13700 and then not Is_Itype (Def_Id)
13701 then
13702 -- A little sanity check: emit an error message if the type has
13703 -- discriminants to begin with. Type T may be a regular incomplete
13704 -- type or imported via a limited with clause.
13705
13706 if Has_Discriminants (T)
13707 or else (From_Limited_With (T)
13708 and then Present (Non_Limited_View (T))
13709 and then Nkind (Parent (Non_Limited_View (T))) =
13710 N_Full_Type_Declaration
13711 and then Present (Discriminant_Specifications
13712 (Parent (Non_Limited_View (T)))))
13713 then
13714 Error_Msg_N
13715 ("(Ada 2005) incomplete subtype may not be constrained", C);
13716 else
13717 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13718 end if;
13719
13720 Fixup_Bad_Constraint;
13721 return;
13722
13723 -- Check that the type has visible discriminants. The type may be
13724 -- a private type with unknown discriminants whose full view has
13725 -- discriminants which are invisible.
13726
13727 elsif not Has_Discriminants (T)
13728 or else
13729 (Has_Unknown_Discriminants (T)
13730 and then Is_Private_Type (T))
13731 then
13732 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13733 Fixup_Bad_Constraint;
13734 return;
13735
13736 elsif Is_Constrained (E)
13737 or else (Ekind (E) = E_Class_Wide_Subtype
13738 and then Present (Discriminant_Constraint (E)))
13739 then
13740 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13741 Fixup_Bad_Constraint;
13742 return;
13743 end if;
13744
13745 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13746 -- applies to the base type.
13747
13748 T := Base_Type (T);
13749
13750 Constr := Build_Discriminant_Constraints (T, S);
13751
13752 -- If the list returned was empty we had an error in building the
13753 -- discriminant constraint. We have also already signalled an error
13754 -- in the incomplete type case
13755
13756 if Is_Empty_Elmt_List (Constr) then
13757 Fixup_Bad_Constraint;
13758 return;
13759 end if;
13760
13761 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13762 end Constrain_Discriminated_Type;
13763
13764 ---------------------------
13765 -- Constrain_Enumeration --
13766 ---------------------------
13767
13768 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13769 T : constant Entity_Id := Entity (Subtype_Mark (S));
13770 C : constant Node_Id := Constraint (S);
13771
13772 begin
13773 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13774
13775 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13776
13777 Set_Etype (Def_Id, Base_Type (T));
13778 Set_Size_Info (Def_Id, (T));
13779 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13780 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13781
13782 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13783
13784 Set_Discrete_RM_Size (Def_Id);
13785 end Constrain_Enumeration;
13786
13787 ----------------------
13788 -- Constrain_Float --
13789 ----------------------
13790
13791 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13792 T : constant Entity_Id := Entity (Subtype_Mark (S));
13793 C : Node_Id;
13794 D : Node_Id;
13795 Rais : Node_Id;
13796
13797 begin
13798 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13799
13800 Set_Etype (Def_Id, Base_Type (T));
13801 Set_Size_Info (Def_Id, (T));
13802 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13803
13804 -- Process the constraint
13805
13806 C := Constraint (S);
13807
13808 -- Digits constraint present
13809
13810 if Nkind (C) = N_Digits_Constraint then
13811
13812 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13813 Check_Restriction (No_Obsolescent_Features, C);
13814
13815 if Warn_On_Obsolescent_Feature then
13816 Error_Msg_N
13817 ("subtype digits constraint is an " &
13818 "obsolescent feature (RM J.3(8))?j?", C);
13819 end if;
13820
13821 D := Digits_Expression (C);
13822 Analyze_And_Resolve (D, Any_Integer);
13823 Check_Digits_Expression (D);
13824 Set_Digits_Value (Def_Id, Expr_Value (D));
13825
13826 -- Check that digits value is in range. Obviously we can do this
13827 -- at compile time, but it is strictly a runtime check, and of
13828 -- course there is an ACVC test that checks this.
13829
13830 if Digits_Value (Def_Id) > Digits_Value (T) then
13831 Error_Msg_Uint_1 := Digits_Value (T);
13832 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13833 Rais :=
13834 Make_Raise_Constraint_Error (Sloc (D),
13835 Reason => CE_Range_Check_Failed);
13836 Insert_Action (Declaration_Node (Def_Id), Rais);
13837 end if;
13838
13839 C := Range_Constraint (C);
13840
13841 -- No digits constraint present
13842
13843 else
13844 Set_Digits_Value (Def_Id, Digits_Value (T));
13845 end if;
13846
13847 -- Range constraint present
13848
13849 if Nkind (C) = N_Range_Constraint then
13850 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13851
13852 -- No range constraint present
13853
13854 else
13855 pragma Assert (No (C));
13856 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13857 end if;
13858
13859 Set_Is_Constrained (Def_Id);
13860 end Constrain_Float;
13861
13862 ---------------------
13863 -- Constrain_Index --
13864 ---------------------
13865
13866 procedure Constrain_Index
13867 (Index : Node_Id;
13868 S : Node_Id;
13869 Related_Nod : Node_Id;
13870 Related_Id : Entity_Id;
13871 Suffix : Character;
13872 Suffix_Index : Nat)
13873 is
13874 Def_Id : Entity_Id;
13875 R : Node_Id := Empty;
13876 T : constant Entity_Id := Etype (Index);
13877
13878 begin
13879 Def_Id :=
13880 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13881 Set_Etype (Def_Id, Base_Type (T));
13882
13883 if Nkind (S) = N_Range
13884 or else
13885 (Nkind (S) = N_Attribute_Reference
13886 and then Attribute_Name (S) = Name_Range)
13887 then
13888 -- A Range attribute will be transformed into N_Range by Resolve
13889
13890 Analyze (S);
13891 Set_Etype (S, T);
13892 R := S;
13893
13894 Process_Range_Expr_In_Decl (R, T);
13895
13896 if not Error_Posted (S)
13897 and then
13898 (Nkind (S) /= N_Range
13899 or else not Covers (T, (Etype (Low_Bound (S))))
13900 or else not Covers (T, (Etype (High_Bound (S)))))
13901 then
13902 if Base_Type (T) /= Any_Type
13903 and then Etype (Low_Bound (S)) /= Any_Type
13904 and then Etype (High_Bound (S)) /= Any_Type
13905 then
13906 Error_Msg_N ("range expected", S);
13907 end if;
13908 end if;
13909
13910 elsif Nkind (S) = N_Subtype_Indication then
13911
13912 -- The parser has verified that this is a discrete indication
13913
13914 Resolve_Discrete_Subtype_Indication (S, T);
13915 Bad_Predicated_Subtype_Use
13916 ("subtype& has predicate, not allowed in index constraint",
13917 S, Entity (Subtype_Mark (S)));
13918
13919 R := Range_Expression (Constraint (S));
13920
13921 -- Capture values of bounds and generate temporaries for them if
13922 -- needed, since checks may cause duplication of the expressions
13923 -- which must not be reevaluated.
13924
13925 -- The forced evaluation removes side effects from expressions, which
13926 -- should occur also in GNATprove mode. Otherwise, we end up with
13927 -- unexpected insertions of actions at places where this is not
13928 -- supposed to occur, e.g. on default parameters of a call.
13929
13930 if Expander_Active or GNATprove_Mode then
13931 Force_Evaluation
13932 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13933 Force_Evaluation
13934 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13935 end if;
13936
13937 elsif Nkind (S) = N_Discriminant_Association then
13938
13939 -- Syntactically valid in subtype indication
13940
13941 Error_Msg_N ("invalid index constraint", S);
13942 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13943 return;
13944
13945 -- Subtype_Mark case, no anonymous subtypes to construct
13946
13947 else
13948 Analyze (S);
13949
13950 if Is_Entity_Name (S) then
13951 if not Is_Type (Entity (S)) then
13952 Error_Msg_N ("expect subtype mark for index constraint", S);
13953
13954 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13955 Wrong_Type (S, Base_Type (T));
13956
13957 -- Check error of subtype with predicate in index constraint
13958
13959 else
13960 Bad_Predicated_Subtype_Use
13961 ("subtype& has predicate, not allowed in index constraint",
13962 S, Entity (S));
13963 end if;
13964
13965 return;
13966
13967 else
13968 Error_Msg_N ("invalid index constraint", S);
13969 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13970 return;
13971 end if;
13972 end if;
13973
13974 -- Complete construction of the Itype
13975
13976 if Is_Modular_Integer_Type (T) then
13977 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13978
13979 elsif Is_Integer_Type (T) then
13980 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13981
13982 else
13983 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13984 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13985 Set_First_Literal (Def_Id, First_Literal (T));
13986 end if;
13987
13988 Set_Size_Info (Def_Id, (T));
13989 Set_RM_Size (Def_Id, RM_Size (T));
13990 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13991
13992 Set_Scalar_Range (Def_Id, R);
13993
13994 Set_Etype (S, Def_Id);
13995 Set_Discrete_RM_Size (Def_Id);
13996 end Constrain_Index;
13997
13998 -----------------------
13999 -- Constrain_Integer --
14000 -----------------------
14001
14002 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14003 T : constant Entity_Id := Entity (Subtype_Mark (S));
14004 C : constant Node_Id := Constraint (S);
14005
14006 begin
14007 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14008
14009 if Is_Modular_Integer_Type (T) then
14010 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14011 else
14012 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14013 end if;
14014
14015 Set_Etype (Def_Id, Base_Type (T));
14016 Set_Size_Info (Def_Id, (T));
14017 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14018 Set_Discrete_RM_Size (Def_Id);
14019 end Constrain_Integer;
14020
14021 ------------------------------
14022 -- Constrain_Ordinary_Fixed --
14023 ------------------------------
14024
14025 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14026 T : constant Entity_Id := Entity (Subtype_Mark (S));
14027 C : Node_Id;
14028 D : Node_Id;
14029 Rais : Node_Id;
14030
14031 begin
14032 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14033 Set_Etype (Def_Id, Base_Type (T));
14034 Set_Size_Info (Def_Id, (T));
14035 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14036 Set_Small_Value (Def_Id, Small_Value (T));
14037
14038 -- Process the constraint
14039
14040 C := Constraint (S);
14041
14042 -- Delta constraint present
14043
14044 if Nkind (C) = N_Delta_Constraint then
14045
14046 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14047 Check_Restriction (No_Obsolescent_Features, C);
14048
14049 if Warn_On_Obsolescent_Feature then
14050 Error_Msg_S
14051 ("subtype delta constraint is an " &
14052 "obsolescent feature (RM J.3(7))?j?");
14053 end if;
14054
14055 D := Delta_Expression (C);
14056 Analyze_And_Resolve (D, Any_Real);
14057 Check_Delta_Expression (D);
14058 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14059
14060 -- Check that delta value is in range. Obviously we can do this
14061 -- at compile time, but it is strictly a runtime check, and of
14062 -- course there is an ACVC test that checks this.
14063
14064 if Delta_Value (Def_Id) < Delta_Value (T) then
14065 Error_Msg_N ("??delta value is too small", D);
14066 Rais :=
14067 Make_Raise_Constraint_Error (Sloc (D),
14068 Reason => CE_Range_Check_Failed);
14069 Insert_Action (Declaration_Node (Def_Id), Rais);
14070 end if;
14071
14072 C := Range_Constraint (C);
14073
14074 -- No delta constraint present
14075
14076 else
14077 Set_Delta_Value (Def_Id, Delta_Value (T));
14078 end if;
14079
14080 -- Range constraint present
14081
14082 if Nkind (C) = N_Range_Constraint then
14083 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14084
14085 -- No range constraint present
14086
14087 else
14088 pragma Assert (No (C));
14089 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14090 end if;
14091
14092 Set_Discrete_RM_Size (Def_Id);
14093
14094 -- Unconditionally delay the freeze, since we cannot set size
14095 -- information in all cases correctly until the freeze point.
14096
14097 Set_Has_Delayed_Freeze (Def_Id);
14098 end Constrain_Ordinary_Fixed;
14099
14100 -----------------------
14101 -- Contain_Interface --
14102 -----------------------
14103
14104 function Contain_Interface
14105 (Iface : Entity_Id;
14106 Ifaces : Elist_Id) return Boolean
14107 is
14108 Iface_Elmt : Elmt_Id;
14109
14110 begin
14111 if Present (Ifaces) then
14112 Iface_Elmt := First_Elmt (Ifaces);
14113 while Present (Iface_Elmt) loop
14114 if Node (Iface_Elmt) = Iface then
14115 return True;
14116 end if;
14117
14118 Next_Elmt (Iface_Elmt);
14119 end loop;
14120 end if;
14121
14122 return False;
14123 end Contain_Interface;
14124
14125 ---------------------------
14126 -- Convert_Scalar_Bounds --
14127 ---------------------------
14128
14129 procedure Convert_Scalar_Bounds
14130 (N : Node_Id;
14131 Parent_Type : Entity_Id;
14132 Derived_Type : Entity_Id;
14133 Loc : Source_Ptr)
14134 is
14135 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14136
14137 Lo : Node_Id;
14138 Hi : Node_Id;
14139 Rng : Node_Id;
14140
14141 begin
14142 -- Defend against previous errors
14143
14144 if No (Scalar_Range (Derived_Type)) then
14145 Check_Error_Detected;
14146 return;
14147 end if;
14148
14149 Lo := Build_Scalar_Bound
14150 (Type_Low_Bound (Derived_Type),
14151 Parent_Type, Implicit_Base);
14152
14153 Hi := Build_Scalar_Bound
14154 (Type_High_Bound (Derived_Type),
14155 Parent_Type, Implicit_Base);
14156
14157 Rng :=
14158 Make_Range (Loc,
14159 Low_Bound => Lo,
14160 High_Bound => Hi);
14161
14162 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14163
14164 Set_Parent (Rng, N);
14165 Set_Scalar_Range (Derived_Type, Rng);
14166
14167 -- Analyze the bounds
14168
14169 Analyze_And_Resolve (Lo, Implicit_Base);
14170 Analyze_And_Resolve (Hi, Implicit_Base);
14171
14172 -- Analyze the range itself, except that we do not analyze it if
14173 -- the bounds are real literals, and we have a fixed-point type.
14174 -- The reason for this is that we delay setting the bounds in this
14175 -- case till we know the final Small and Size values (see circuit
14176 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14177
14178 if Is_Fixed_Point_Type (Parent_Type)
14179 and then Nkind (Lo) = N_Real_Literal
14180 and then Nkind (Hi) = N_Real_Literal
14181 then
14182 return;
14183
14184 -- Here we do the analysis of the range
14185
14186 -- Note: we do this manually, since if we do a normal Analyze and
14187 -- Resolve call, there are problems with the conversions used for
14188 -- the derived type range.
14189
14190 else
14191 Set_Etype (Rng, Implicit_Base);
14192 Set_Analyzed (Rng, True);
14193 end if;
14194 end Convert_Scalar_Bounds;
14195
14196 -------------------
14197 -- Copy_And_Swap --
14198 -------------------
14199
14200 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14201 begin
14202 -- Initialize new full declaration entity by copying the pertinent
14203 -- fields of the corresponding private declaration entity.
14204
14205 -- We temporarily set Ekind to a value appropriate for a type to
14206 -- avoid assert failures in Einfo from checking for setting type
14207 -- attributes on something that is not a type. Ekind (Priv) is an
14208 -- appropriate choice, since it allowed the attributes to be set
14209 -- in the first place. This Ekind value will be modified later.
14210
14211 Set_Ekind (Full, Ekind (Priv));
14212
14213 -- Also set Etype temporarily to Any_Type, again, in the absence
14214 -- of errors, it will be properly reset, and if there are errors,
14215 -- then we want a value of Any_Type to remain.
14216
14217 Set_Etype (Full, Any_Type);
14218
14219 -- Now start copying attributes
14220
14221 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14222
14223 if Has_Discriminants (Full) then
14224 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14225 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14226 end if;
14227
14228 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14229 Set_Homonym (Full, Homonym (Priv));
14230 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14231 Set_Is_Public (Full, Is_Public (Priv));
14232 Set_Is_Pure (Full, Is_Pure (Priv));
14233 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14234 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14235 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14236 Set_Has_Pragma_Unreferenced_Objects
14237 (Full, Has_Pragma_Unreferenced_Objects
14238 (Priv));
14239
14240 Conditional_Delay (Full, Priv);
14241
14242 if Is_Tagged_Type (Full) then
14243 Set_Direct_Primitive_Operations
14244 (Full, Direct_Primitive_Operations (Priv));
14245 Set_No_Tagged_Streams_Pragma
14246 (Full, No_Tagged_Streams_Pragma (Priv));
14247
14248 if Is_Base_Type (Priv) then
14249 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14250 end if;
14251 end if;
14252
14253 Set_Is_Volatile (Full, Is_Volatile (Priv));
14254 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14255 Set_Scope (Full, Scope (Priv));
14256 Set_Next_Entity (Full, Next_Entity (Priv));
14257 Set_First_Entity (Full, First_Entity (Priv));
14258 Set_Last_Entity (Full, Last_Entity (Priv));
14259
14260 -- If access types have been recorded for later handling, keep them in
14261 -- the full view so that they get handled when the full view freeze
14262 -- node is expanded.
14263
14264 if Present (Freeze_Node (Priv))
14265 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14266 then
14267 Ensure_Freeze_Node (Full);
14268 Set_Access_Types_To_Process
14269 (Freeze_Node (Full),
14270 Access_Types_To_Process (Freeze_Node (Priv)));
14271 end if;
14272
14273 -- Swap the two entities. Now Private is the full type entity and Full
14274 -- is the private one. They will be swapped back at the end of the
14275 -- private part. This swapping ensures that the entity that is visible
14276 -- in the private part is the full declaration.
14277
14278 Exchange_Entities (Priv, Full);
14279 Append_Entity (Full, Scope (Full));
14280 end Copy_And_Swap;
14281
14282 -------------------------------------
14283 -- Copy_Array_Base_Type_Attributes --
14284 -------------------------------------
14285
14286 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14287 begin
14288 Set_Component_Alignment (T1, Component_Alignment (T2));
14289 Set_Component_Type (T1, Component_Type (T2));
14290 Set_Component_Size (T1, Component_Size (T2));
14291 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14292 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14293 Propagate_Concurrent_Flags (T1, T2);
14294 Set_Is_Packed (T1, Is_Packed (T2));
14295 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14296 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14297 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14298 end Copy_Array_Base_Type_Attributes;
14299
14300 -----------------------------------
14301 -- Copy_Array_Subtype_Attributes --
14302 -----------------------------------
14303
14304 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14305 begin
14306 Set_Size_Info (T1, T2);
14307
14308 Set_First_Index (T1, First_Index (T2));
14309 Set_Is_Aliased (T1, Is_Aliased (T2));
14310 Set_Is_Volatile (T1, Is_Volatile (T2));
14311 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14312 Set_Is_Constrained (T1, Is_Constrained (T2));
14313 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14314 Inherit_Rep_Item_Chain (T1, T2);
14315 Set_Convention (T1, Convention (T2));
14316 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14317 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14318 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14319 end Copy_Array_Subtype_Attributes;
14320
14321 -----------------------------------
14322 -- Create_Constrained_Components --
14323 -----------------------------------
14324
14325 procedure Create_Constrained_Components
14326 (Subt : Entity_Id;
14327 Decl_Node : Node_Id;
14328 Typ : Entity_Id;
14329 Constraints : Elist_Id)
14330 is
14331 Loc : constant Source_Ptr := Sloc (Subt);
14332 Comp_List : constant Elist_Id := New_Elmt_List;
14333 Parent_Type : constant Entity_Id := Etype (Typ);
14334 Assoc_List : constant List_Id := New_List;
14335 Discr_Val : Elmt_Id;
14336 Errors : Boolean;
14337 New_C : Entity_Id;
14338 Old_C : Entity_Id;
14339 Is_Static : Boolean := True;
14340
14341 procedure Collect_Fixed_Components (Typ : Entity_Id);
14342 -- Collect parent type components that do not appear in a variant part
14343
14344 procedure Create_All_Components;
14345 -- Iterate over Comp_List to create the components of the subtype
14346
14347 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14348 -- Creates a new component from Old_Compon, copying all the fields from
14349 -- it, including its Etype, inserts the new component in the Subt entity
14350 -- chain and returns the new component.
14351
14352 function Is_Variant_Record (T : Entity_Id) return Boolean;
14353 -- If true, and discriminants are static, collect only components from
14354 -- variants selected by discriminant values.
14355
14356 ------------------------------
14357 -- Collect_Fixed_Components --
14358 ------------------------------
14359
14360 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14361 begin
14362 -- Build association list for discriminants, and find components of the
14363 -- variant part selected by the values of the discriminants.
14364
14365 Old_C := First_Discriminant (Typ);
14366 Discr_Val := First_Elmt (Constraints);
14367 while Present (Old_C) loop
14368 Append_To (Assoc_List,
14369 Make_Component_Association (Loc,
14370 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14371 Expression => New_Copy (Node (Discr_Val))));
14372
14373 Next_Elmt (Discr_Val);
14374 Next_Discriminant (Old_C);
14375 end loop;
14376
14377 -- The tag and the possible parent component are unconditionally in
14378 -- the subtype.
14379
14380 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14381 Old_C := First_Component (Typ);
14382 while Present (Old_C) loop
14383 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14384 Append_Elmt (Old_C, Comp_List);
14385 end if;
14386
14387 Next_Component (Old_C);
14388 end loop;
14389 end if;
14390 end Collect_Fixed_Components;
14391
14392 ---------------------------
14393 -- Create_All_Components --
14394 ---------------------------
14395
14396 procedure Create_All_Components is
14397 Comp : Elmt_Id;
14398
14399 begin
14400 Comp := First_Elmt (Comp_List);
14401 while Present (Comp) loop
14402 Old_C := Node (Comp);
14403 New_C := Create_Component (Old_C);
14404
14405 Set_Etype
14406 (New_C,
14407 Constrain_Component_Type
14408 (Old_C, Subt, Decl_Node, Typ, Constraints));
14409 Set_Is_Public (New_C, Is_Public (Subt));
14410
14411 Next_Elmt (Comp);
14412 end loop;
14413 end Create_All_Components;
14414
14415 ----------------------
14416 -- Create_Component --
14417 ----------------------
14418
14419 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14420 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14421
14422 begin
14423 if Ekind (Old_Compon) = E_Discriminant
14424 and then Is_Completely_Hidden (Old_Compon)
14425 then
14426 -- This is a shadow discriminant created for a discriminant of
14427 -- the parent type, which needs to be present in the subtype.
14428 -- Give the shadow discriminant an internal name that cannot
14429 -- conflict with that of visible components.
14430
14431 Set_Chars (New_Compon, New_Internal_Name ('C'));
14432 end if;
14433
14434 -- Set the parent so we have a proper link for freezing etc. This is
14435 -- not a real parent pointer, since of course our parent does not own
14436 -- up to us and reference us, we are an illegitimate child of the
14437 -- original parent.
14438
14439 Set_Parent (New_Compon, Parent (Old_Compon));
14440
14441 -- If the old component's Esize was already determined and is a
14442 -- static value, then the new component simply inherits it. Otherwise
14443 -- the old component's size may require run-time determination, but
14444 -- the new component's size still might be statically determinable
14445 -- (if, for example it has a static constraint). In that case we want
14446 -- Layout_Type to recompute the component's size, so we reset its
14447 -- size and positional fields.
14448
14449 if Frontend_Layout_On_Target
14450 and then not Known_Static_Esize (Old_Compon)
14451 then
14452 Set_Esize (New_Compon, Uint_0);
14453 Init_Normalized_First_Bit (New_Compon);
14454 Init_Normalized_Position (New_Compon);
14455 Init_Normalized_Position_Max (New_Compon);
14456 end if;
14457
14458 -- We do not want this node marked as Comes_From_Source, since
14459 -- otherwise it would get first class status and a separate cross-
14460 -- reference line would be generated. Illegitimate children do not
14461 -- rate such recognition.
14462
14463 Set_Comes_From_Source (New_Compon, False);
14464
14465 -- But it is a real entity, and a birth certificate must be properly
14466 -- registered by entering it into the entity list.
14467
14468 Enter_Name (New_Compon);
14469
14470 return New_Compon;
14471 end Create_Component;
14472
14473 -----------------------
14474 -- Is_Variant_Record --
14475 -----------------------
14476
14477 function Is_Variant_Record (T : Entity_Id) return Boolean is
14478 begin
14479 return Nkind (Parent (T)) = N_Full_Type_Declaration
14480 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14481 and then Present (Component_List (Type_Definition (Parent (T))))
14482 and then
14483 Present
14484 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14485 end Is_Variant_Record;
14486
14487 -- Start of processing for Create_Constrained_Components
14488
14489 begin
14490 pragma Assert (Subt /= Base_Type (Subt));
14491 pragma Assert (Typ = Base_Type (Typ));
14492
14493 Set_First_Entity (Subt, Empty);
14494 Set_Last_Entity (Subt, Empty);
14495
14496 -- Check whether constraint is fully static, in which case we can
14497 -- optimize the list of components.
14498
14499 Discr_Val := First_Elmt (Constraints);
14500 while Present (Discr_Val) loop
14501 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14502 Is_Static := False;
14503 exit;
14504 end if;
14505
14506 Next_Elmt (Discr_Val);
14507 end loop;
14508
14509 Set_Has_Static_Discriminants (Subt, Is_Static);
14510
14511 Push_Scope (Subt);
14512
14513 -- Inherit the discriminants of the parent type
14514
14515 Add_Discriminants : declare
14516 Num_Disc : Nat;
14517 Num_Gird : Nat;
14518
14519 begin
14520 Num_Disc := 0;
14521 Old_C := First_Discriminant (Typ);
14522
14523 while Present (Old_C) loop
14524 Num_Disc := Num_Disc + 1;
14525 New_C := Create_Component (Old_C);
14526 Set_Is_Public (New_C, Is_Public (Subt));
14527 Next_Discriminant (Old_C);
14528 end loop;
14529
14530 -- For an untagged derived subtype, the number of discriminants may
14531 -- be smaller than the number of inherited discriminants, because
14532 -- several of them may be renamed by a single new discriminant or
14533 -- constrained. In this case, add the hidden discriminants back into
14534 -- the subtype, because they need to be present if the optimizer of
14535 -- the GCC 4.x back-end decides to break apart assignments between
14536 -- objects using the parent view into member-wise assignments.
14537
14538 Num_Gird := 0;
14539
14540 if Is_Derived_Type (Typ)
14541 and then not Is_Tagged_Type (Typ)
14542 then
14543 Old_C := First_Stored_Discriminant (Typ);
14544
14545 while Present (Old_C) loop
14546 Num_Gird := Num_Gird + 1;
14547 Next_Stored_Discriminant (Old_C);
14548 end loop;
14549 end if;
14550
14551 if Num_Gird > Num_Disc then
14552
14553 -- Find out multiple uses of new discriminants, and add hidden
14554 -- components for the extra renamed discriminants. We recognize
14555 -- multiple uses through the Corresponding_Discriminant of a
14556 -- new discriminant: if it constrains several old discriminants,
14557 -- this field points to the last one in the parent type. The
14558 -- stored discriminants of the derived type have the same name
14559 -- as those of the parent.
14560
14561 declare
14562 Constr : Elmt_Id;
14563 New_Discr : Entity_Id;
14564 Old_Discr : Entity_Id;
14565
14566 begin
14567 Constr := First_Elmt (Stored_Constraint (Typ));
14568 Old_Discr := First_Stored_Discriminant (Typ);
14569 while Present (Constr) loop
14570 if Is_Entity_Name (Node (Constr))
14571 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14572 then
14573 New_Discr := Entity (Node (Constr));
14574
14575 if Chars (Corresponding_Discriminant (New_Discr)) /=
14576 Chars (Old_Discr)
14577 then
14578 -- The new discriminant has been used to rename a
14579 -- subsequent old discriminant. Introduce a shadow
14580 -- component for the current old discriminant.
14581
14582 New_C := Create_Component (Old_Discr);
14583 Set_Original_Record_Component (New_C, Old_Discr);
14584 end if;
14585
14586 else
14587 -- The constraint has eliminated the old discriminant.
14588 -- Introduce a shadow component.
14589
14590 New_C := Create_Component (Old_Discr);
14591 Set_Original_Record_Component (New_C, Old_Discr);
14592 end if;
14593
14594 Next_Elmt (Constr);
14595 Next_Stored_Discriminant (Old_Discr);
14596 end loop;
14597 end;
14598 end if;
14599 end Add_Discriminants;
14600
14601 if Is_Static
14602 and then Is_Variant_Record (Typ)
14603 then
14604 Collect_Fixed_Components (Typ);
14605
14606 Gather_Components (
14607 Typ,
14608 Component_List (Type_Definition (Parent (Typ))),
14609 Governed_By => Assoc_List,
14610 Into => Comp_List,
14611 Report_Errors => Errors);
14612 pragma Assert (not Errors
14613 or else Serious_Errors_Detected > 0);
14614
14615 Create_All_Components;
14616
14617 -- If the subtype declaration is created for a tagged type derivation
14618 -- with constraints, we retrieve the record definition of the parent
14619 -- type to select the components of the proper variant.
14620
14621 elsif Is_Static
14622 and then Is_Tagged_Type (Typ)
14623 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14624 and then
14625 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14626 and then Is_Variant_Record (Parent_Type)
14627 then
14628 Collect_Fixed_Components (Typ);
14629
14630 Gather_Components
14631 (Typ,
14632 Component_List (Type_Definition (Parent (Parent_Type))),
14633 Governed_By => Assoc_List,
14634 Into => Comp_List,
14635 Report_Errors => Errors);
14636
14637 -- Note: previously there was a check at this point that no errors
14638 -- were detected. As a consequence of AI05-220 there may be an error
14639 -- if an inherited discriminant that controls a variant has a non-
14640 -- static constraint.
14641
14642 -- If the tagged derivation has a type extension, collect all the
14643 -- new components therein.
14644
14645 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14646 then
14647 Old_C := First_Component (Typ);
14648 while Present (Old_C) loop
14649 if Original_Record_Component (Old_C) = Old_C
14650 and then Chars (Old_C) /= Name_uTag
14651 and then Chars (Old_C) /= Name_uParent
14652 then
14653 Append_Elmt (Old_C, Comp_List);
14654 end if;
14655
14656 Next_Component (Old_C);
14657 end loop;
14658 end if;
14659
14660 Create_All_Components;
14661
14662 else
14663 -- If discriminants are not static, or if this is a multi-level type
14664 -- extension, we have to include all components of the parent type.
14665
14666 Old_C := First_Component (Typ);
14667 while Present (Old_C) loop
14668 New_C := Create_Component (Old_C);
14669
14670 Set_Etype
14671 (New_C,
14672 Constrain_Component_Type
14673 (Old_C, Subt, Decl_Node, Typ, Constraints));
14674 Set_Is_Public (New_C, Is_Public (Subt));
14675
14676 Next_Component (Old_C);
14677 end loop;
14678 end if;
14679
14680 End_Scope;
14681 end Create_Constrained_Components;
14682
14683 ------------------------------------------
14684 -- Decimal_Fixed_Point_Type_Declaration --
14685 ------------------------------------------
14686
14687 procedure Decimal_Fixed_Point_Type_Declaration
14688 (T : Entity_Id;
14689 Def : Node_Id)
14690 is
14691 Loc : constant Source_Ptr := Sloc (Def);
14692 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14693 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14694 Implicit_Base : Entity_Id;
14695 Digs_Val : Uint;
14696 Delta_Val : Ureal;
14697 Scale_Val : Uint;
14698 Bound_Val : Ureal;
14699
14700 begin
14701 Check_SPARK_05_Restriction
14702 ("decimal fixed point type is not allowed", Def);
14703 Check_Restriction (No_Fixed_Point, Def);
14704
14705 -- Create implicit base type
14706
14707 Implicit_Base :=
14708 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14709 Set_Etype (Implicit_Base, Implicit_Base);
14710
14711 -- Analyze and process delta expression
14712
14713 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14714
14715 Check_Delta_Expression (Delta_Expr);
14716 Delta_Val := Expr_Value_R (Delta_Expr);
14717
14718 -- Check delta is power of 10, and determine scale value from it
14719
14720 declare
14721 Val : Ureal;
14722
14723 begin
14724 Scale_Val := Uint_0;
14725 Val := Delta_Val;
14726
14727 if Val < Ureal_1 then
14728 while Val < Ureal_1 loop
14729 Val := Val * Ureal_10;
14730 Scale_Val := Scale_Val + 1;
14731 end loop;
14732
14733 if Scale_Val > 18 then
14734 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14735 Scale_Val := UI_From_Int (+18);
14736 end if;
14737
14738 else
14739 while Val > Ureal_1 loop
14740 Val := Val / Ureal_10;
14741 Scale_Val := Scale_Val - 1;
14742 end loop;
14743
14744 if Scale_Val < -18 then
14745 Error_Msg_N ("scale is less than minimum value of -18", Def);
14746 Scale_Val := UI_From_Int (-18);
14747 end if;
14748 end if;
14749
14750 if Val /= Ureal_1 then
14751 Error_Msg_N ("delta expression must be a power of 10", Def);
14752 Delta_Val := Ureal_10 ** (-Scale_Val);
14753 end if;
14754 end;
14755
14756 -- Set delta, scale and small (small = delta for decimal type)
14757
14758 Set_Delta_Value (Implicit_Base, Delta_Val);
14759 Set_Scale_Value (Implicit_Base, Scale_Val);
14760 Set_Small_Value (Implicit_Base, Delta_Val);
14761
14762 -- Analyze and process digits expression
14763
14764 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14765 Check_Digits_Expression (Digs_Expr);
14766 Digs_Val := Expr_Value (Digs_Expr);
14767
14768 if Digs_Val > 18 then
14769 Digs_Val := UI_From_Int (+18);
14770 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14771 end if;
14772
14773 Set_Digits_Value (Implicit_Base, Digs_Val);
14774 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14775
14776 -- Set range of base type from digits value for now. This will be
14777 -- expanded to represent the true underlying base range by Freeze.
14778
14779 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14780
14781 -- Note: We leave size as zero for now, size will be set at freeze
14782 -- time. We have to do this for ordinary fixed-point, because the size
14783 -- depends on the specified small, and we might as well do the same for
14784 -- decimal fixed-point.
14785
14786 pragma Assert (Esize (Implicit_Base) = Uint_0);
14787
14788 -- If there are bounds given in the declaration use them as the
14789 -- bounds of the first named subtype.
14790
14791 if Present (Real_Range_Specification (Def)) then
14792 declare
14793 RRS : constant Node_Id := Real_Range_Specification (Def);
14794 Low : constant Node_Id := Low_Bound (RRS);
14795 High : constant Node_Id := High_Bound (RRS);
14796 Low_Val : Ureal;
14797 High_Val : Ureal;
14798
14799 begin
14800 Analyze_And_Resolve (Low, Any_Real);
14801 Analyze_And_Resolve (High, Any_Real);
14802 Check_Real_Bound (Low);
14803 Check_Real_Bound (High);
14804 Low_Val := Expr_Value_R (Low);
14805 High_Val := Expr_Value_R (High);
14806
14807 if Low_Val < (-Bound_Val) then
14808 Error_Msg_N
14809 ("range low bound too small for digits value", Low);
14810 Low_Val := -Bound_Val;
14811 end if;
14812
14813 if High_Val > Bound_Val then
14814 Error_Msg_N
14815 ("range high bound too large for digits value", High);
14816 High_Val := Bound_Val;
14817 end if;
14818
14819 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14820 end;
14821
14822 -- If no explicit range, use range that corresponds to given
14823 -- digits value. This will end up as the final range for the
14824 -- first subtype.
14825
14826 else
14827 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14828 end if;
14829
14830 -- Complete entity for first subtype. The inheritance of the rep item
14831 -- chain ensures that SPARK-related pragmas are not clobbered when the
14832 -- decimal fixed point type acts as a full view of a private type.
14833
14834 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14835 Set_Etype (T, Implicit_Base);
14836 Set_Size_Info (T, Implicit_Base);
14837 Inherit_Rep_Item_Chain (T, Implicit_Base);
14838 Set_Digits_Value (T, Digs_Val);
14839 Set_Delta_Value (T, Delta_Val);
14840 Set_Small_Value (T, Delta_Val);
14841 Set_Scale_Value (T, Scale_Val);
14842 Set_Is_Constrained (T);
14843 end Decimal_Fixed_Point_Type_Declaration;
14844
14845 -----------------------------------
14846 -- Derive_Progenitor_Subprograms --
14847 -----------------------------------
14848
14849 procedure Derive_Progenitor_Subprograms
14850 (Parent_Type : Entity_Id;
14851 Tagged_Type : Entity_Id)
14852 is
14853 E : Entity_Id;
14854 Elmt : Elmt_Id;
14855 Iface : Entity_Id;
14856 Iface_Elmt : Elmt_Id;
14857 Iface_Subp : Entity_Id;
14858 New_Subp : Entity_Id := Empty;
14859 Prim_Elmt : Elmt_Id;
14860 Subp : Entity_Id;
14861 Typ : Entity_Id;
14862
14863 begin
14864 pragma Assert (Ada_Version >= Ada_2005
14865 and then Is_Record_Type (Tagged_Type)
14866 and then Is_Tagged_Type (Tagged_Type)
14867 and then Has_Interfaces (Tagged_Type));
14868
14869 -- Step 1: Transfer to the full-view primitives associated with the
14870 -- partial-view that cover interface primitives. Conceptually this
14871 -- work should be done later by Process_Full_View; done here to
14872 -- simplify its implementation at later stages. It can be safely
14873 -- done here because interfaces must be visible in the partial and
14874 -- private view (RM 7.3(7.3/2)).
14875
14876 -- Small optimization: This work is only required if the parent may
14877 -- have entities whose Alias attribute reference an interface primitive.
14878 -- Such a situation may occur if the parent is an abstract type and the
14879 -- primitive has not been yet overridden or if the parent is a generic
14880 -- formal type covering interfaces.
14881
14882 -- If the tagged type is not abstract, it cannot have abstract
14883 -- primitives (the only entities in the list of primitives of
14884 -- non-abstract tagged types that can reference abstract primitives
14885 -- through its Alias attribute are the internal entities that have
14886 -- attribute Interface_Alias, and these entities are generated later
14887 -- by Add_Internal_Interface_Entities).
14888
14889 if In_Private_Part (Current_Scope)
14890 and then (Is_Abstract_Type (Parent_Type)
14891 or else
14892 Is_Generic_Type (Parent_Type))
14893 then
14894 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14895 while Present (Elmt) loop
14896 Subp := Node (Elmt);
14897
14898 -- At this stage it is not possible to have entities in the list
14899 -- of primitives that have attribute Interface_Alias.
14900
14901 pragma Assert (No (Interface_Alias (Subp)));
14902
14903 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14904
14905 if Is_Interface (Typ) then
14906 E := Find_Primitive_Covering_Interface
14907 (Tagged_Type => Tagged_Type,
14908 Iface_Prim => Subp);
14909
14910 if Present (E)
14911 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14912 then
14913 Replace_Elmt (Elmt, E);
14914 Remove_Homonym (Subp);
14915 end if;
14916 end if;
14917
14918 Next_Elmt (Elmt);
14919 end loop;
14920 end if;
14921
14922 -- Step 2: Add primitives of progenitors that are not implemented by
14923 -- parents of Tagged_Type.
14924
14925 if Present (Interfaces (Base_Type (Tagged_Type))) then
14926 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14927 while Present (Iface_Elmt) loop
14928 Iface := Node (Iface_Elmt);
14929
14930 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14931 while Present (Prim_Elmt) loop
14932 Iface_Subp := Node (Prim_Elmt);
14933
14934 -- Exclude derivation of predefined primitives except those
14935 -- that come from source, or are inherited from one that comes
14936 -- from source. Required to catch declarations of equality
14937 -- operators of interfaces. For example:
14938
14939 -- type Iface is interface;
14940 -- function "=" (Left, Right : Iface) return Boolean;
14941
14942 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14943 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14944 then
14945 E := Find_Primitive_Covering_Interface
14946 (Tagged_Type => Tagged_Type,
14947 Iface_Prim => Iface_Subp);
14948
14949 -- If not found we derive a new primitive leaving its alias
14950 -- attribute referencing the interface primitive.
14951
14952 if No (E) then
14953 Derive_Subprogram
14954 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14955
14956 -- Ada 2012 (AI05-0197): If the covering primitive's name
14957 -- differs from the name of the interface primitive then it
14958 -- is a private primitive inherited from a parent type. In
14959 -- such case, given that Tagged_Type covers the interface,
14960 -- the inherited private primitive becomes visible. For such
14961 -- purpose we add a new entity that renames the inherited
14962 -- private primitive.
14963
14964 elsif Chars (E) /= Chars (Iface_Subp) then
14965 pragma Assert (Has_Suffix (E, 'P'));
14966 Derive_Subprogram
14967 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14968 Set_Alias (New_Subp, E);
14969 Set_Is_Abstract_Subprogram (New_Subp,
14970 Is_Abstract_Subprogram (E));
14971
14972 -- Propagate to the full view interface entities associated
14973 -- with the partial view.
14974
14975 elsif In_Private_Part (Current_Scope)
14976 and then Present (Alias (E))
14977 and then Alias (E) = Iface_Subp
14978 and then
14979 List_Containing (Parent (E)) /=
14980 Private_Declarations
14981 (Specification
14982 (Unit_Declaration_Node (Current_Scope)))
14983 then
14984 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14985 end if;
14986 end if;
14987
14988 Next_Elmt (Prim_Elmt);
14989 end loop;
14990
14991 Next_Elmt (Iface_Elmt);
14992 end loop;
14993 end if;
14994 end Derive_Progenitor_Subprograms;
14995
14996 -----------------------
14997 -- Derive_Subprogram --
14998 -----------------------
14999
15000 procedure Derive_Subprogram
15001 (New_Subp : out Entity_Id;
15002 Parent_Subp : Entity_Id;
15003 Derived_Type : Entity_Id;
15004 Parent_Type : Entity_Id;
15005 Actual_Subp : Entity_Id := Empty)
15006 is
15007 Formal : Entity_Id;
15008 -- Formal parameter of parent primitive operation
15009
15010 Formal_Of_Actual : Entity_Id;
15011 -- Formal parameter of actual operation, when the derivation is to
15012 -- create a renaming for a primitive operation of an actual in an
15013 -- instantiation.
15014
15015 New_Formal : Entity_Id;
15016 -- Formal of inherited operation
15017
15018 Visible_Subp : Entity_Id := Parent_Subp;
15019
15020 function Is_Private_Overriding return Boolean;
15021 -- If Subp is a private overriding of a visible operation, the inherited
15022 -- operation derives from the overridden op (even though its body is the
15023 -- overriding one) and the inherited operation is visible now. See
15024 -- sem_disp to see the full details of the handling of the overridden
15025 -- subprogram, which is removed from the list of primitive operations of
15026 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15027 -- and used to diagnose abstract operations that need overriding in the
15028 -- derived type.
15029
15030 procedure Replace_Type (Id, New_Id : Entity_Id);
15031 -- When the type is an anonymous access type, create a new access type
15032 -- designating the derived type.
15033
15034 procedure Set_Derived_Name;
15035 -- This procedure sets the appropriate Chars name for New_Subp. This
15036 -- is normally just a copy of the parent name. An exception arises for
15037 -- type support subprograms, where the name is changed to reflect the
15038 -- name of the derived type, e.g. if type foo is derived from type bar,
15039 -- then a procedure barDA is derived with a name fooDA.
15040
15041 ---------------------------
15042 -- Is_Private_Overriding --
15043 ---------------------------
15044
15045 function Is_Private_Overriding return Boolean is
15046 Prev : Entity_Id;
15047
15048 begin
15049 -- If the parent is not a dispatching operation there is no
15050 -- need to investigate overridings
15051
15052 if not Is_Dispatching_Operation (Parent_Subp) then
15053 return False;
15054 end if;
15055
15056 -- The visible operation that is overridden is a homonym of the
15057 -- parent subprogram. We scan the homonym chain to find the one
15058 -- whose alias is the subprogram we are deriving.
15059
15060 Prev := Current_Entity (Parent_Subp);
15061 while Present (Prev) loop
15062 if Ekind (Prev) = Ekind (Parent_Subp)
15063 and then Alias (Prev) = Parent_Subp
15064 and then Scope (Parent_Subp) = Scope (Prev)
15065 and then not Is_Hidden (Prev)
15066 then
15067 Visible_Subp := Prev;
15068 return True;
15069 end if;
15070
15071 Prev := Homonym (Prev);
15072 end loop;
15073
15074 return False;
15075 end Is_Private_Overriding;
15076
15077 ------------------
15078 -- Replace_Type --
15079 ------------------
15080
15081 procedure Replace_Type (Id, New_Id : Entity_Id) is
15082 Id_Type : constant Entity_Id := Etype (Id);
15083 Acc_Type : Entity_Id;
15084 Par : constant Node_Id := Parent (Derived_Type);
15085
15086 begin
15087 -- When the type is an anonymous access type, create a new access
15088 -- type designating the derived type. This itype must be elaborated
15089 -- at the point of the derivation, not on subsequent calls that may
15090 -- be out of the proper scope for Gigi, so we insert a reference to
15091 -- it after the derivation.
15092
15093 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15094 declare
15095 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15096
15097 begin
15098 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15099 and then Present (Full_View (Desig_Typ))
15100 and then not Is_Private_Type (Parent_Type)
15101 then
15102 Desig_Typ := Full_View (Desig_Typ);
15103 end if;
15104
15105 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15106
15107 -- Ada 2005 (AI-251): Handle also derivations of abstract
15108 -- interface primitives.
15109
15110 or else (Is_Interface (Desig_Typ)
15111 and then not Is_Class_Wide_Type (Desig_Typ))
15112 then
15113 Acc_Type := New_Copy (Id_Type);
15114 Set_Etype (Acc_Type, Acc_Type);
15115 Set_Scope (Acc_Type, New_Subp);
15116
15117 -- Set size of anonymous access type. If we have an access
15118 -- to an unconstrained array, this is a fat pointer, so it
15119 -- is sizes at twice addtress size.
15120
15121 if Is_Array_Type (Desig_Typ)
15122 and then not Is_Constrained (Desig_Typ)
15123 then
15124 Init_Size (Acc_Type, 2 * System_Address_Size);
15125
15126 -- Other cases use a thin pointer
15127
15128 else
15129 Init_Size (Acc_Type, System_Address_Size);
15130 end if;
15131
15132 -- Set remaining characterstics of anonymous access type
15133
15134 Init_Alignment (Acc_Type);
15135 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15136
15137 Set_Etype (New_Id, Acc_Type);
15138 Set_Scope (New_Id, New_Subp);
15139
15140 -- Create a reference to it
15141
15142 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15143
15144 else
15145 Set_Etype (New_Id, Id_Type);
15146 end if;
15147 end;
15148
15149 -- In Ada2012, a formal may have an incomplete type but the type
15150 -- derivation that inherits the primitive follows the full view.
15151
15152 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15153 or else
15154 (Ekind (Id_Type) = E_Record_Type_With_Private
15155 and then Present (Full_View (Id_Type))
15156 and then
15157 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15158 or else
15159 (Ada_Version >= Ada_2012
15160 and then Ekind (Id_Type) = E_Incomplete_Type
15161 and then Full_View (Id_Type) = Parent_Type)
15162 then
15163 -- Constraint checks on formals are generated during expansion,
15164 -- based on the signature of the original subprogram. The bounds
15165 -- of the derived type are not relevant, and thus we can use
15166 -- the base type for the formals. However, the return type may be
15167 -- used in a context that requires that the proper static bounds
15168 -- be used (a case statement, for example) and for those cases
15169 -- we must use the derived type (first subtype), not its base.
15170
15171 -- If the derived_type_definition has no constraints, we know that
15172 -- the derived type has the same constraints as the first subtype
15173 -- of the parent, and we can also use it rather than its base,
15174 -- which can lead to more efficient code.
15175
15176 if Etype (Id) = Parent_Type then
15177 if Is_Scalar_Type (Parent_Type)
15178 and then
15179 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15180 then
15181 Set_Etype (New_Id, Derived_Type);
15182
15183 elsif Nkind (Par) = N_Full_Type_Declaration
15184 and then
15185 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15186 and then
15187 Is_Entity_Name
15188 (Subtype_Indication (Type_Definition (Par)))
15189 then
15190 Set_Etype (New_Id, Derived_Type);
15191
15192 else
15193 Set_Etype (New_Id, Base_Type (Derived_Type));
15194 end if;
15195
15196 else
15197 Set_Etype (New_Id, Base_Type (Derived_Type));
15198 end if;
15199
15200 else
15201 Set_Etype (New_Id, Etype (Id));
15202 end if;
15203 end Replace_Type;
15204
15205 ----------------------
15206 -- Set_Derived_Name --
15207 ----------------------
15208
15209 procedure Set_Derived_Name is
15210 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15211 begin
15212 if Nm = TSS_Null then
15213 Set_Chars (New_Subp, Chars (Parent_Subp));
15214 else
15215 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15216 end if;
15217 end Set_Derived_Name;
15218
15219 -- Start of processing for Derive_Subprogram
15220
15221 begin
15222 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15223 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15224
15225 -- Check whether the inherited subprogram is a private operation that
15226 -- should be inherited but not yet made visible. Such subprograms can
15227 -- become visible at a later point (e.g., the private part of a public
15228 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15229 -- following predicate is true, then this is not such a private
15230 -- operation and the subprogram simply inherits the name of the parent
15231 -- subprogram. Note the special check for the names of controlled
15232 -- operations, which are currently exempted from being inherited with
15233 -- a hidden name because they must be findable for generation of
15234 -- implicit run-time calls.
15235
15236 if not Is_Hidden (Parent_Subp)
15237 or else Is_Internal (Parent_Subp)
15238 or else Is_Private_Overriding
15239 or else Is_Internal_Name (Chars (Parent_Subp))
15240 or else (Is_Controlled (Parent_Type)
15241 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15242 Name_Finalize,
15243 Name_Initialize))
15244 then
15245 Set_Derived_Name;
15246
15247 -- An inherited dispatching equality will be overridden by an internally
15248 -- generated one, or by an explicit one, so preserve its name and thus
15249 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15250 -- private operation it may become invisible if the full view has
15251 -- progenitors, and the dispatch table will be malformed.
15252 -- We check that the type is limited to handle the anomalous declaration
15253 -- of Limited_Controlled, which is derived from a non-limited type, and
15254 -- which is handled specially elsewhere as well.
15255
15256 elsif Chars (Parent_Subp) = Name_Op_Eq
15257 and then Is_Dispatching_Operation (Parent_Subp)
15258 and then Etype (Parent_Subp) = Standard_Boolean
15259 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15260 and then
15261 Etype (First_Formal (Parent_Subp)) =
15262 Etype (Next_Formal (First_Formal (Parent_Subp)))
15263 then
15264 Set_Derived_Name;
15265
15266 -- If parent is hidden, this can be a regular derivation if the
15267 -- parent is immediately visible in a non-instantiating context,
15268 -- or if we are in the private part of an instance. This test
15269 -- should still be refined ???
15270
15271 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15272 -- operation as a non-visible operation in cases where the parent
15273 -- subprogram might not be visible now, but was visible within the
15274 -- original generic, so it would be wrong to make the inherited
15275 -- subprogram non-visible now. (Not clear if this test is fully
15276 -- correct; are there any cases where we should declare the inherited
15277 -- operation as not visible to avoid it being overridden, e.g., when
15278 -- the parent type is a generic actual with private primitives ???)
15279
15280 -- (they should be treated the same as other private inherited
15281 -- subprograms, but it's not clear how to do this cleanly). ???
15282
15283 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15284 and then Is_Immediately_Visible (Parent_Subp)
15285 and then not In_Instance)
15286 or else In_Instance_Not_Visible
15287 then
15288 Set_Derived_Name;
15289
15290 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15291 -- overrides an interface primitive because interface primitives
15292 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15293
15294 elsif Ada_Version >= Ada_2005
15295 and then Is_Dispatching_Operation (Parent_Subp)
15296 and then Present (Covered_Interface_Op (Parent_Subp))
15297 then
15298 Set_Derived_Name;
15299
15300 -- Otherwise, the type is inheriting a private operation, so enter it
15301 -- with a special name so it can't be overridden.
15302
15303 else
15304 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15305 end if;
15306
15307 Set_Parent (New_Subp, Parent (Derived_Type));
15308
15309 if Present (Actual_Subp) then
15310 Replace_Type (Actual_Subp, New_Subp);
15311 else
15312 Replace_Type (Parent_Subp, New_Subp);
15313 end if;
15314
15315 Conditional_Delay (New_Subp, Parent_Subp);
15316
15317 -- If we are creating a renaming for a primitive operation of an
15318 -- actual of a generic derived type, we must examine the signature
15319 -- of the actual primitive, not that of the generic formal, which for
15320 -- example may be an interface. However the name and initial value
15321 -- of the inherited operation are those of the formal primitive.
15322
15323 Formal := First_Formal (Parent_Subp);
15324
15325 if Present (Actual_Subp) then
15326 Formal_Of_Actual := First_Formal (Actual_Subp);
15327 else
15328 Formal_Of_Actual := Empty;
15329 end if;
15330
15331 while Present (Formal) loop
15332 New_Formal := New_Copy (Formal);
15333
15334 -- Normally we do not go copying parents, but in the case of
15335 -- formals, we need to link up to the declaration (which is the
15336 -- parameter specification), and it is fine to link up to the
15337 -- original formal's parameter specification in this case.
15338
15339 Set_Parent (New_Formal, Parent (Formal));
15340 Append_Entity (New_Formal, New_Subp);
15341
15342 if Present (Formal_Of_Actual) then
15343 Replace_Type (Formal_Of_Actual, New_Formal);
15344 Next_Formal (Formal_Of_Actual);
15345 else
15346 Replace_Type (Formal, New_Formal);
15347 end if;
15348
15349 Next_Formal (Formal);
15350 end loop;
15351
15352 -- If this derivation corresponds to a tagged generic actual, then
15353 -- primitive operations rename those of the actual. Otherwise the
15354 -- primitive operations rename those of the parent type, If the parent
15355 -- renames an intrinsic operator, so does the new subprogram. We except
15356 -- concatenation, which is always properly typed, and does not get
15357 -- expanded as other intrinsic operations.
15358
15359 if No (Actual_Subp) then
15360 if Is_Intrinsic_Subprogram (Parent_Subp) then
15361 Set_Is_Intrinsic_Subprogram (New_Subp);
15362
15363 if Present (Alias (Parent_Subp))
15364 and then Chars (Parent_Subp) /= Name_Op_Concat
15365 then
15366 Set_Alias (New_Subp, Alias (Parent_Subp));
15367 else
15368 Set_Alias (New_Subp, Parent_Subp);
15369 end if;
15370
15371 else
15372 Set_Alias (New_Subp, Parent_Subp);
15373 end if;
15374
15375 else
15376 Set_Alias (New_Subp, Actual_Subp);
15377 end if;
15378
15379 -- Derived subprograms of a tagged type must inherit the convention
15380 -- of the parent subprogram (a requirement of AI-117). Derived
15381 -- subprograms of untagged types simply get convention Ada by default.
15382
15383 -- If the derived type is a tagged generic formal type with unknown
15384 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15385
15386 -- However, if the type is derived from a generic formal, the further
15387 -- inherited subprogram has the convention of the non-generic ancestor.
15388 -- Otherwise there would be no way to override the operation.
15389 -- (This is subject to forthcoming ARG discussions).
15390
15391 if Is_Tagged_Type (Derived_Type) then
15392 if Is_Generic_Type (Derived_Type)
15393 and then Has_Unknown_Discriminants (Derived_Type)
15394 then
15395 Set_Convention (New_Subp, Convention_Intrinsic);
15396
15397 else
15398 if Is_Generic_Type (Parent_Type)
15399 and then Has_Unknown_Discriminants (Parent_Type)
15400 then
15401 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15402 else
15403 Set_Convention (New_Subp, Convention (Parent_Subp));
15404 end if;
15405 end if;
15406 end if;
15407
15408 -- Predefined controlled operations retain their name even if the parent
15409 -- is hidden (see above), but they are not primitive operations if the
15410 -- ancestor is not visible, for example if the parent is a private
15411 -- extension completed with a controlled extension. Note that a full
15412 -- type that is controlled can break privacy: the flag Is_Controlled is
15413 -- set on both views of the type.
15414
15415 if Is_Controlled (Parent_Type)
15416 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15417 Name_Adjust,
15418 Name_Finalize)
15419 and then Is_Hidden (Parent_Subp)
15420 and then not Is_Visibly_Controlled (Parent_Type)
15421 then
15422 Set_Is_Hidden (New_Subp);
15423 end if;
15424
15425 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15426 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15427
15428 if Ekind (Parent_Subp) = E_Procedure then
15429 Set_Is_Valued_Procedure
15430 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15431 else
15432 Set_Has_Controlling_Result
15433 (New_Subp, Has_Controlling_Result (Parent_Subp));
15434 end if;
15435
15436 -- No_Return must be inherited properly. If this is overridden in the
15437 -- case of a dispatching operation, then a check is made in Sem_Disp
15438 -- that the overriding operation is also No_Return (no such check is
15439 -- required for the case of non-dispatching operation.
15440
15441 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15442
15443 -- A derived function with a controlling result is abstract. If the
15444 -- Derived_Type is a nonabstract formal generic derived type, then
15445 -- inherited operations are not abstract: the required check is done at
15446 -- instantiation time. If the derivation is for a generic actual, the
15447 -- function is not abstract unless the actual is.
15448
15449 if Is_Generic_Type (Derived_Type)
15450 and then not Is_Abstract_Type (Derived_Type)
15451 then
15452 null;
15453
15454 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15455 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15456
15457 -- A subprogram subject to pragma Extensions_Visible with value False
15458 -- requires overriding if the subprogram has at least one controlling
15459 -- OUT parameter (SPARK RM 6.1.7(6)).
15460
15461 elsif Ada_Version >= Ada_2005
15462 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15463 or else (Is_Tagged_Type (Derived_Type)
15464 and then Etype (New_Subp) = Derived_Type
15465 and then not Is_Null_Extension (Derived_Type))
15466 or else (Is_Tagged_Type (Derived_Type)
15467 and then Ekind (Etype (New_Subp)) =
15468 E_Anonymous_Access_Type
15469 and then Designated_Type (Etype (New_Subp)) =
15470 Derived_Type
15471 and then not Is_Null_Extension (Derived_Type))
15472 or else (Comes_From_Source (Alias (New_Subp))
15473 and then Is_EVF_Procedure (Alias (New_Subp))))
15474 and then No (Actual_Subp)
15475 then
15476 if not Is_Tagged_Type (Derived_Type)
15477 or else Is_Abstract_Type (Derived_Type)
15478 or else Is_Abstract_Subprogram (Alias (New_Subp))
15479 then
15480 Set_Is_Abstract_Subprogram (New_Subp);
15481 else
15482 Set_Requires_Overriding (New_Subp);
15483 end if;
15484
15485 elsif Ada_Version < Ada_2005
15486 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15487 or else (Is_Tagged_Type (Derived_Type)
15488 and then Etype (New_Subp) = Derived_Type
15489 and then No (Actual_Subp)))
15490 then
15491 Set_Is_Abstract_Subprogram (New_Subp);
15492
15493 -- AI05-0097 : an inherited operation that dispatches on result is
15494 -- abstract if the derived type is abstract, even if the parent type
15495 -- is concrete and the derived type is a null extension.
15496
15497 elsif Has_Controlling_Result (Alias (New_Subp))
15498 and then Is_Abstract_Type (Etype (New_Subp))
15499 then
15500 Set_Is_Abstract_Subprogram (New_Subp);
15501
15502 -- Finally, if the parent type is abstract we must verify that all
15503 -- inherited operations are either non-abstract or overridden, or that
15504 -- the derived type itself is abstract (this check is performed at the
15505 -- end of a package declaration, in Check_Abstract_Overriding). A
15506 -- private overriding in the parent type will not be visible in the
15507 -- derivation if we are not in an inner package or in a child unit of
15508 -- the parent type, in which case the abstractness of the inherited
15509 -- operation is carried to the new subprogram.
15510
15511 elsif Is_Abstract_Type (Parent_Type)
15512 and then not In_Open_Scopes (Scope (Parent_Type))
15513 and then Is_Private_Overriding
15514 and then Is_Abstract_Subprogram (Visible_Subp)
15515 then
15516 if No (Actual_Subp) then
15517 Set_Alias (New_Subp, Visible_Subp);
15518 Set_Is_Abstract_Subprogram (New_Subp, True);
15519
15520 else
15521 -- If this is a derivation for an instance of a formal derived
15522 -- type, abstractness comes from the primitive operation of the
15523 -- actual, not from the operation inherited from the ancestor.
15524
15525 Set_Is_Abstract_Subprogram
15526 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15527 end if;
15528 end if;
15529
15530 New_Overloaded_Entity (New_Subp, Derived_Type);
15531
15532 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15533 -- preconditions and the derived type is abstract, the derived operation
15534 -- is abstract as well if parent subprogram is not abstract or null.
15535
15536 if Is_Abstract_Type (Derived_Type)
15537 and then Has_Non_Trivial_Precondition (Parent_Subp)
15538 and then Present (Interfaces (Derived_Type))
15539 then
15540
15541 -- Add useful attributes of subprogram before the freeze point,
15542 -- in case freezing is delayed or there are previous errors.
15543
15544 Set_Is_Dispatching_Operation (New_Subp);
15545
15546 declare
15547 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15548
15549 begin
15550 if Present (Iface_Prim)
15551 and then Has_Non_Trivial_Precondition (Iface_Prim)
15552 then
15553 Set_Is_Abstract_Subprogram (New_Subp);
15554 end if;
15555 end;
15556 end if;
15557
15558 -- Check for case of a derived subprogram for the instantiation of a
15559 -- formal derived tagged type, if so mark the subprogram as dispatching
15560 -- and inherit the dispatching attributes of the actual subprogram. The
15561 -- derived subprogram is effectively renaming of the actual subprogram,
15562 -- so it needs to have the same attributes as the actual.
15563
15564 if Present (Actual_Subp)
15565 and then Is_Dispatching_Operation (Actual_Subp)
15566 then
15567 Set_Is_Dispatching_Operation (New_Subp);
15568
15569 if Present (DTC_Entity (Actual_Subp)) then
15570 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15571 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15572 end if;
15573 end if;
15574
15575 -- Indicate that a derived subprogram does not require a body and that
15576 -- it does not require processing of default expressions.
15577
15578 Set_Has_Completion (New_Subp);
15579 Set_Default_Expressions_Processed (New_Subp);
15580
15581 if Ekind (New_Subp) = E_Function then
15582 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15583 end if;
15584 end Derive_Subprogram;
15585
15586 ------------------------
15587 -- Derive_Subprograms --
15588 ------------------------
15589
15590 procedure Derive_Subprograms
15591 (Parent_Type : Entity_Id;
15592 Derived_Type : Entity_Id;
15593 Generic_Actual : Entity_Id := Empty)
15594 is
15595 Op_List : constant Elist_Id :=
15596 Collect_Primitive_Operations (Parent_Type);
15597
15598 function Check_Derived_Type return Boolean;
15599 -- Check that all the entities derived from Parent_Type are found in
15600 -- the list of primitives of Derived_Type exactly in the same order.
15601
15602 procedure Derive_Interface_Subprogram
15603 (New_Subp : out Entity_Id;
15604 Subp : Entity_Id;
15605 Actual_Subp : Entity_Id);
15606 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15607 -- (which is an interface primitive). If Generic_Actual is present then
15608 -- Actual_Subp is the actual subprogram corresponding with the generic
15609 -- subprogram Subp.
15610
15611 ------------------------
15612 -- Check_Derived_Type --
15613 ------------------------
15614
15615 function Check_Derived_Type return Boolean is
15616 E : Entity_Id;
15617 Elmt : Elmt_Id;
15618 List : Elist_Id;
15619 New_Subp : Entity_Id;
15620 Op_Elmt : Elmt_Id;
15621 Subp : Entity_Id;
15622
15623 begin
15624 -- Traverse list of entities in the current scope searching for
15625 -- an incomplete type whose full-view is derived type.
15626
15627 E := First_Entity (Scope (Derived_Type));
15628 while Present (E) and then E /= Derived_Type loop
15629 if Ekind (E) = E_Incomplete_Type
15630 and then Present (Full_View (E))
15631 and then Full_View (E) = Derived_Type
15632 then
15633 -- Disable this test if Derived_Type completes an incomplete
15634 -- type because in such case more primitives can be added
15635 -- later to the list of primitives of Derived_Type by routine
15636 -- Process_Incomplete_Dependents
15637
15638 return True;
15639 end if;
15640
15641 E := Next_Entity (E);
15642 end loop;
15643
15644 List := Collect_Primitive_Operations (Derived_Type);
15645 Elmt := First_Elmt (List);
15646
15647 Op_Elmt := First_Elmt (Op_List);
15648 while Present (Op_Elmt) loop
15649 Subp := Node (Op_Elmt);
15650 New_Subp := Node (Elmt);
15651
15652 -- At this early stage Derived_Type has no entities with attribute
15653 -- Interface_Alias. In addition, such primitives are always
15654 -- located at the end of the list of primitives of Parent_Type.
15655 -- Therefore, if found we can safely stop processing pending
15656 -- entities.
15657
15658 exit when Present (Interface_Alias (Subp));
15659
15660 -- Handle hidden entities
15661
15662 if not Is_Predefined_Dispatching_Operation (Subp)
15663 and then Is_Hidden (Subp)
15664 then
15665 if Present (New_Subp)
15666 and then Primitive_Names_Match (Subp, New_Subp)
15667 then
15668 Next_Elmt (Elmt);
15669 end if;
15670
15671 else
15672 if not Present (New_Subp)
15673 or else Ekind (Subp) /= Ekind (New_Subp)
15674 or else not Primitive_Names_Match (Subp, New_Subp)
15675 then
15676 return False;
15677 end if;
15678
15679 Next_Elmt (Elmt);
15680 end if;
15681
15682 Next_Elmt (Op_Elmt);
15683 end loop;
15684
15685 return True;
15686 end Check_Derived_Type;
15687
15688 ---------------------------------
15689 -- Derive_Interface_Subprogram --
15690 ---------------------------------
15691
15692 procedure Derive_Interface_Subprogram
15693 (New_Subp : out Entity_Id;
15694 Subp : Entity_Id;
15695 Actual_Subp : Entity_Id)
15696 is
15697 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15698 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15699
15700 begin
15701 pragma Assert (Is_Interface (Iface_Type));
15702
15703 Derive_Subprogram
15704 (New_Subp => New_Subp,
15705 Parent_Subp => Iface_Subp,
15706 Derived_Type => Derived_Type,
15707 Parent_Type => Iface_Type,
15708 Actual_Subp => Actual_Subp);
15709
15710 -- Given that this new interface entity corresponds with a primitive
15711 -- of the parent that was not overridden we must leave it associated
15712 -- with its parent primitive to ensure that it will share the same
15713 -- dispatch table slot when overridden. We must set the Alias to Subp
15714 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15715 -- (in case we inherited Subp from Iface_Type via a nonabstract
15716 -- generic formal type).
15717
15718 if No (Actual_Subp) then
15719 Set_Alias (New_Subp, Subp);
15720
15721 declare
15722 T : Entity_Id := Find_Dispatching_Type (Subp);
15723 begin
15724 while Etype (T) /= T loop
15725 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15726 Set_Is_Abstract_Subprogram (New_Subp, False);
15727 exit;
15728 end if;
15729
15730 T := Etype (T);
15731 end loop;
15732 end;
15733
15734 -- For instantiations this is not needed since the previous call to
15735 -- Derive_Subprogram leaves the entity well decorated.
15736
15737 else
15738 pragma Assert (Alias (New_Subp) = Actual_Subp);
15739 null;
15740 end if;
15741 end Derive_Interface_Subprogram;
15742
15743 -- Local variables
15744
15745 Alias_Subp : Entity_Id;
15746 Act_List : Elist_Id;
15747 Act_Elmt : Elmt_Id;
15748 Act_Subp : Entity_Id := Empty;
15749 Elmt : Elmt_Id;
15750 Need_Search : Boolean := False;
15751 New_Subp : Entity_Id := Empty;
15752 Parent_Base : Entity_Id;
15753 Subp : Entity_Id;
15754
15755 -- Start of processing for Derive_Subprograms
15756
15757 begin
15758 if Ekind (Parent_Type) = E_Record_Type_With_Private
15759 and then Has_Discriminants (Parent_Type)
15760 and then Present (Full_View (Parent_Type))
15761 then
15762 Parent_Base := Full_View (Parent_Type);
15763 else
15764 Parent_Base := Parent_Type;
15765 end if;
15766
15767 if Present (Generic_Actual) then
15768 Act_List := Collect_Primitive_Operations (Generic_Actual);
15769 Act_Elmt := First_Elmt (Act_List);
15770 else
15771 Act_List := No_Elist;
15772 Act_Elmt := No_Elmt;
15773 end if;
15774
15775 -- Derive primitives inherited from the parent. Note that if the generic
15776 -- actual is present, this is not really a type derivation, it is a
15777 -- completion within an instance.
15778
15779 -- Case 1: Derived_Type does not implement interfaces
15780
15781 if not Is_Tagged_Type (Derived_Type)
15782 or else (not Has_Interfaces (Derived_Type)
15783 and then not (Present (Generic_Actual)
15784 and then Has_Interfaces (Generic_Actual)))
15785 then
15786 Elmt := First_Elmt (Op_List);
15787 while Present (Elmt) loop
15788 Subp := Node (Elmt);
15789
15790 -- Literals are derived earlier in the process of building the
15791 -- derived type, and are skipped here.
15792
15793 if Ekind (Subp) = E_Enumeration_Literal then
15794 null;
15795
15796 -- The actual is a direct descendant and the common primitive
15797 -- operations appear in the same order.
15798
15799 -- If the generic parent type is present, the derived type is an
15800 -- instance of a formal derived type, and within the instance its
15801 -- operations are those of the actual. We derive from the formal
15802 -- type but make the inherited operations aliases of the
15803 -- corresponding operations of the actual.
15804
15805 else
15806 pragma Assert (No (Node (Act_Elmt))
15807 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15808 and then
15809 Type_Conformant
15810 (Subp, Node (Act_Elmt),
15811 Skip_Controlling_Formals => True)));
15812
15813 Derive_Subprogram
15814 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15815
15816 if Present (Act_Elmt) then
15817 Next_Elmt (Act_Elmt);
15818 end if;
15819 end if;
15820
15821 Next_Elmt (Elmt);
15822 end loop;
15823
15824 -- Case 2: Derived_Type implements interfaces
15825
15826 else
15827 -- If the parent type has no predefined primitives we remove
15828 -- predefined primitives from the list of primitives of generic
15829 -- actual to simplify the complexity of this algorithm.
15830
15831 if Present (Generic_Actual) then
15832 declare
15833 Has_Predefined_Primitives : Boolean := False;
15834
15835 begin
15836 -- Check if the parent type has predefined primitives
15837
15838 Elmt := First_Elmt (Op_List);
15839 while Present (Elmt) loop
15840 Subp := Node (Elmt);
15841
15842 if Is_Predefined_Dispatching_Operation (Subp)
15843 and then not Comes_From_Source (Ultimate_Alias (Subp))
15844 then
15845 Has_Predefined_Primitives := True;
15846 exit;
15847 end if;
15848
15849 Next_Elmt (Elmt);
15850 end loop;
15851
15852 -- Remove predefined primitives of Generic_Actual. We must use
15853 -- an auxiliary list because in case of tagged types the value
15854 -- returned by Collect_Primitive_Operations is the value stored
15855 -- in its Primitive_Operations attribute (and we don't want to
15856 -- modify its current contents).
15857
15858 if not Has_Predefined_Primitives then
15859 declare
15860 Aux_List : constant Elist_Id := New_Elmt_List;
15861
15862 begin
15863 Elmt := First_Elmt (Act_List);
15864 while Present (Elmt) loop
15865 Subp := Node (Elmt);
15866
15867 if not Is_Predefined_Dispatching_Operation (Subp)
15868 or else Comes_From_Source (Subp)
15869 then
15870 Append_Elmt (Subp, Aux_List);
15871 end if;
15872
15873 Next_Elmt (Elmt);
15874 end loop;
15875
15876 Act_List := Aux_List;
15877 end;
15878 end if;
15879
15880 Act_Elmt := First_Elmt (Act_List);
15881 Act_Subp := Node (Act_Elmt);
15882 end;
15883 end if;
15884
15885 -- Stage 1: If the generic actual is not present we derive the
15886 -- primitives inherited from the parent type. If the generic parent
15887 -- type is present, the derived type is an instance of a formal
15888 -- derived type, and within the instance its operations are those of
15889 -- the actual. We derive from the formal type but make the inherited
15890 -- operations aliases of the corresponding operations of the actual.
15891
15892 Elmt := First_Elmt (Op_List);
15893 while Present (Elmt) loop
15894 Subp := Node (Elmt);
15895 Alias_Subp := Ultimate_Alias (Subp);
15896
15897 -- Do not derive internal entities of the parent that link
15898 -- interface primitives with their covering primitive. These
15899 -- entities will be added to this type when frozen.
15900
15901 if Present (Interface_Alias (Subp)) then
15902 goto Continue;
15903 end if;
15904
15905 -- If the generic actual is present find the corresponding
15906 -- operation in the generic actual. If the parent type is a
15907 -- direct ancestor of the derived type then, even if it is an
15908 -- interface, the operations are inherited from the primary
15909 -- dispatch table and are in the proper order. If we detect here
15910 -- that primitives are not in the same order we traverse the list
15911 -- of primitive operations of the actual to find the one that
15912 -- implements the interface primitive.
15913
15914 if Need_Search
15915 or else
15916 (Present (Generic_Actual)
15917 and then Present (Act_Subp)
15918 and then not
15919 (Primitive_Names_Match (Subp, Act_Subp)
15920 and then
15921 Type_Conformant (Subp, Act_Subp,
15922 Skip_Controlling_Formals => True)))
15923 then
15924 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15925 Use_Full_View => True));
15926
15927 -- Remember that we need searching for all pending primitives
15928
15929 Need_Search := True;
15930
15931 -- Handle entities associated with interface primitives
15932
15933 if Present (Alias_Subp)
15934 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15935 and then not Is_Predefined_Dispatching_Operation (Subp)
15936 then
15937 -- Search for the primitive in the homonym chain
15938
15939 Act_Subp :=
15940 Find_Primitive_Covering_Interface
15941 (Tagged_Type => Generic_Actual,
15942 Iface_Prim => Alias_Subp);
15943
15944 -- Previous search may not locate primitives covering
15945 -- interfaces defined in generics units or instantiations.
15946 -- (it fails if the covering primitive has formals whose
15947 -- type is also defined in generics or instantiations).
15948 -- In such case we search in the list of primitives of the
15949 -- generic actual for the internal entity that links the
15950 -- interface primitive and the covering primitive.
15951
15952 if No (Act_Subp)
15953 and then Is_Generic_Type (Parent_Type)
15954 then
15955 -- This code has been designed to handle only generic
15956 -- formals that implement interfaces that are defined
15957 -- in a generic unit or instantiation. If this code is
15958 -- needed for other cases we must review it because
15959 -- (given that it relies on Original_Location to locate
15960 -- the primitive of Generic_Actual that covers the
15961 -- interface) it could leave linked through attribute
15962 -- Alias entities of unrelated instantiations).
15963
15964 pragma Assert
15965 (Is_Generic_Unit
15966 (Scope (Find_Dispatching_Type (Alias_Subp)))
15967 or else
15968 Instantiation_Depth
15969 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15970
15971 declare
15972 Iface_Prim_Loc : constant Source_Ptr :=
15973 Original_Location (Sloc (Alias_Subp));
15974
15975 Elmt : Elmt_Id;
15976 Prim : Entity_Id;
15977
15978 begin
15979 Elmt :=
15980 First_Elmt (Primitive_Operations (Generic_Actual));
15981
15982 Search : while Present (Elmt) loop
15983 Prim := Node (Elmt);
15984
15985 if Present (Interface_Alias (Prim))
15986 and then Original_Location
15987 (Sloc (Interface_Alias (Prim))) =
15988 Iface_Prim_Loc
15989 then
15990 Act_Subp := Alias (Prim);
15991 exit Search;
15992 end if;
15993
15994 Next_Elmt (Elmt);
15995 end loop Search;
15996 end;
15997 end if;
15998
15999 pragma Assert (Present (Act_Subp)
16000 or else Is_Abstract_Type (Generic_Actual)
16001 or else Serious_Errors_Detected > 0);
16002
16003 -- Handle predefined primitives plus the rest of user-defined
16004 -- primitives
16005
16006 else
16007 Act_Elmt := First_Elmt (Act_List);
16008 while Present (Act_Elmt) loop
16009 Act_Subp := Node (Act_Elmt);
16010
16011 exit when Primitive_Names_Match (Subp, Act_Subp)
16012 and then Type_Conformant
16013 (Subp, Act_Subp,
16014 Skip_Controlling_Formals => True)
16015 and then No (Interface_Alias (Act_Subp));
16016
16017 Next_Elmt (Act_Elmt);
16018 end loop;
16019
16020 if No (Act_Elmt) then
16021 Act_Subp := Empty;
16022 end if;
16023 end if;
16024 end if;
16025
16026 -- Case 1: If the parent is a limited interface then it has the
16027 -- predefined primitives of synchronized interfaces. However, the
16028 -- actual type may be a non-limited type and hence it does not
16029 -- have such primitives.
16030
16031 if Present (Generic_Actual)
16032 and then not Present (Act_Subp)
16033 and then Is_Limited_Interface (Parent_Base)
16034 and then Is_Predefined_Interface_Primitive (Subp)
16035 then
16036 null;
16037
16038 -- Case 2: Inherit entities associated with interfaces that were
16039 -- not covered by the parent type. We exclude here null interface
16040 -- primitives because they do not need special management.
16041
16042 -- We also exclude interface operations that are renamings. If the
16043 -- subprogram is an explicit renaming of an interface primitive,
16044 -- it is a regular primitive operation, and the presence of its
16045 -- alias is not relevant: it has to be derived like any other
16046 -- primitive.
16047
16048 elsif Present (Alias (Subp))
16049 and then Nkind (Unit_Declaration_Node (Subp)) /=
16050 N_Subprogram_Renaming_Declaration
16051 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16052 and then not
16053 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16054 and then Null_Present (Parent (Alias_Subp)))
16055 then
16056 -- If this is an abstract private type then we transfer the
16057 -- derivation of the interface primitive from the partial view
16058 -- to the full view. This is safe because all the interfaces
16059 -- must be visible in the partial view. Done to avoid adding
16060 -- a new interface derivation to the private part of the
16061 -- enclosing package; otherwise this new derivation would be
16062 -- decorated as hidden when the analysis of the enclosing
16063 -- package completes.
16064
16065 if Is_Abstract_Type (Derived_Type)
16066 and then In_Private_Part (Current_Scope)
16067 and then Has_Private_Declaration (Derived_Type)
16068 then
16069 declare
16070 Partial_View : Entity_Id;
16071 Elmt : Elmt_Id;
16072 Ent : Entity_Id;
16073
16074 begin
16075 Partial_View := First_Entity (Current_Scope);
16076 loop
16077 exit when No (Partial_View)
16078 or else (Has_Private_Declaration (Partial_View)
16079 and then
16080 Full_View (Partial_View) = Derived_Type);
16081
16082 Next_Entity (Partial_View);
16083 end loop;
16084
16085 -- If the partial view was not found then the source code
16086 -- has errors and the derivation is not needed.
16087
16088 if Present (Partial_View) then
16089 Elmt :=
16090 First_Elmt (Primitive_Operations (Partial_View));
16091 while Present (Elmt) loop
16092 Ent := Node (Elmt);
16093
16094 if Present (Alias (Ent))
16095 and then Ultimate_Alias (Ent) = Alias (Subp)
16096 then
16097 Append_Elmt
16098 (Ent, Primitive_Operations (Derived_Type));
16099 exit;
16100 end if;
16101
16102 Next_Elmt (Elmt);
16103 end loop;
16104
16105 -- If the interface primitive was not found in the
16106 -- partial view then this interface primitive was
16107 -- overridden. We add a derivation to activate in
16108 -- Derive_Progenitor_Subprograms the machinery to
16109 -- search for it.
16110
16111 if No (Elmt) then
16112 Derive_Interface_Subprogram
16113 (New_Subp => New_Subp,
16114 Subp => Subp,
16115 Actual_Subp => Act_Subp);
16116 end if;
16117 end if;
16118 end;
16119 else
16120 Derive_Interface_Subprogram
16121 (New_Subp => New_Subp,
16122 Subp => Subp,
16123 Actual_Subp => Act_Subp);
16124 end if;
16125
16126 -- Case 3: Common derivation
16127
16128 else
16129 Derive_Subprogram
16130 (New_Subp => New_Subp,
16131 Parent_Subp => Subp,
16132 Derived_Type => Derived_Type,
16133 Parent_Type => Parent_Base,
16134 Actual_Subp => Act_Subp);
16135 end if;
16136
16137 -- No need to update Act_Elm if we must search for the
16138 -- corresponding operation in the generic actual
16139
16140 if not Need_Search
16141 and then Present (Act_Elmt)
16142 then
16143 Next_Elmt (Act_Elmt);
16144 Act_Subp := Node (Act_Elmt);
16145 end if;
16146
16147 <<Continue>>
16148 Next_Elmt (Elmt);
16149 end loop;
16150
16151 -- Inherit additional operations from progenitors. If the derived
16152 -- type is a generic actual, there are not new primitive operations
16153 -- for the type because it has those of the actual, and therefore
16154 -- nothing needs to be done. The renamings generated above are not
16155 -- primitive operations, and their purpose is simply to make the
16156 -- proper operations visible within an instantiation.
16157
16158 if No (Generic_Actual) then
16159 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16160 end if;
16161 end if;
16162
16163 -- Final check: Direct descendants must have their primitives in the
16164 -- same order. We exclude from this test untagged types and instances
16165 -- of formal derived types. We skip this test if we have already
16166 -- reported serious errors in the sources.
16167
16168 pragma Assert (not Is_Tagged_Type (Derived_Type)
16169 or else Present (Generic_Actual)
16170 or else Serious_Errors_Detected > 0
16171 or else Check_Derived_Type);
16172 end Derive_Subprograms;
16173
16174 --------------------------------
16175 -- Derived_Standard_Character --
16176 --------------------------------
16177
16178 procedure Derived_Standard_Character
16179 (N : Node_Id;
16180 Parent_Type : Entity_Id;
16181 Derived_Type : Entity_Id)
16182 is
16183 Loc : constant Source_Ptr := Sloc (N);
16184 Def : constant Node_Id := Type_Definition (N);
16185 Indic : constant Node_Id := Subtype_Indication (Def);
16186 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16187 Implicit_Base : constant Entity_Id :=
16188 Create_Itype
16189 (E_Enumeration_Type, N, Derived_Type, 'B');
16190
16191 Lo : Node_Id;
16192 Hi : Node_Id;
16193
16194 begin
16195 Discard_Node (Process_Subtype (Indic, N));
16196
16197 Set_Etype (Implicit_Base, Parent_Base);
16198 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16199 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16200
16201 Set_Is_Character_Type (Implicit_Base, True);
16202 Set_Has_Delayed_Freeze (Implicit_Base);
16203
16204 -- The bounds of the implicit base are the bounds of the parent base.
16205 -- Note that their type is the parent base.
16206
16207 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16208 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16209
16210 Set_Scalar_Range (Implicit_Base,
16211 Make_Range (Loc,
16212 Low_Bound => Lo,
16213 High_Bound => Hi));
16214
16215 Conditional_Delay (Derived_Type, Parent_Type);
16216
16217 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16218 Set_Etype (Derived_Type, Implicit_Base);
16219 Set_Size_Info (Derived_Type, Parent_Type);
16220
16221 if Unknown_RM_Size (Derived_Type) then
16222 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16223 end if;
16224
16225 Set_Is_Character_Type (Derived_Type, True);
16226
16227 if Nkind (Indic) /= N_Subtype_Indication then
16228
16229 -- If no explicit constraint, the bounds are those
16230 -- of the parent type.
16231
16232 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16233 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16234 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16235 end if;
16236
16237 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16238
16239 -- Because the implicit base is used in the conversion of the bounds, we
16240 -- have to freeze it now. This is similar to what is done for numeric
16241 -- types, and it equally suspicious, but otherwise a non-static bound
16242 -- will have a reference to an unfrozen type, which is rejected by Gigi
16243 -- (???). This requires specific care for definition of stream
16244 -- attributes. For details, see comments at the end of
16245 -- Build_Derived_Numeric_Type.
16246
16247 Freeze_Before (N, Implicit_Base);
16248 end Derived_Standard_Character;
16249
16250 ------------------------------
16251 -- Derived_Type_Declaration --
16252 ------------------------------
16253
16254 procedure Derived_Type_Declaration
16255 (T : Entity_Id;
16256 N : Node_Id;
16257 Is_Completion : Boolean)
16258 is
16259 Parent_Type : Entity_Id;
16260
16261 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16262 -- Check whether the parent type is a generic formal, or derives
16263 -- directly or indirectly from one.
16264
16265 ------------------------
16266 -- Comes_From_Generic --
16267 ------------------------
16268
16269 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16270 begin
16271 if Is_Generic_Type (Typ) then
16272 return True;
16273
16274 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16275 return True;
16276
16277 elsif Is_Private_Type (Typ)
16278 and then Present (Full_View (Typ))
16279 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16280 then
16281 return True;
16282
16283 elsif Is_Generic_Actual_Type (Typ) then
16284 return True;
16285
16286 else
16287 return False;
16288 end if;
16289 end Comes_From_Generic;
16290
16291 -- Local variables
16292
16293 Def : constant Node_Id := Type_Definition (N);
16294 Iface_Def : Node_Id;
16295 Indic : constant Node_Id := Subtype_Indication (Def);
16296 Extension : constant Node_Id := Record_Extension_Part (Def);
16297 Parent_Node : Node_Id;
16298 Taggd : Boolean;
16299
16300 -- Start of processing for Derived_Type_Declaration
16301
16302 begin
16303 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16304
16305 if SPARK_Mode = On
16306 and then Is_Tagged_Type (Parent_Type)
16307 then
16308 declare
16309 Partial_View : constant Entity_Id :=
16310 Incomplete_Or_Partial_View (Parent_Type);
16311
16312 begin
16313 -- If the partial view was not found then the parent type is not
16314 -- a private type. Otherwise check if the partial view is a tagged
16315 -- private type.
16316
16317 if Present (Partial_View)
16318 and then Is_Private_Type (Partial_View)
16319 and then not Is_Tagged_Type (Partial_View)
16320 then
16321 Error_Msg_NE
16322 ("cannot derive from & declared as untagged private "
16323 & "(SPARK RM 3.4(1))", N, Partial_View);
16324 end if;
16325 end;
16326 end if;
16327
16328 -- Ada 2005 (AI-251): In case of interface derivation check that the
16329 -- parent is also an interface.
16330
16331 if Interface_Present (Def) then
16332 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16333
16334 if not Is_Interface (Parent_Type) then
16335 Diagnose_Interface (Indic, Parent_Type);
16336
16337 else
16338 Parent_Node := Parent (Base_Type (Parent_Type));
16339 Iface_Def := Type_Definition (Parent_Node);
16340
16341 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16342 -- other limited interfaces.
16343
16344 if Limited_Present (Def) then
16345 if Limited_Present (Iface_Def) then
16346 null;
16347
16348 elsif Protected_Present (Iface_Def) then
16349 Error_Msg_NE
16350 ("descendant of & must be declared as a protected "
16351 & "interface", N, Parent_Type);
16352
16353 elsif Synchronized_Present (Iface_Def) then
16354 Error_Msg_NE
16355 ("descendant of & must be declared as a synchronized "
16356 & "interface", N, Parent_Type);
16357
16358 elsif Task_Present (Iface_Def) then
16359 Error_Msg_NE
16360 ("descendant of & must be declared as a task interface",
16361 N, Parent_Type);
16362
16363 else
16364 Error_Msg_N
16365 ("(Ada 2005) limited interface cannot inherit from "
16366 & "non-limited interface", Indic);
16367 end if;
16368
16369 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16370 -- from non-limited or limited interfaces.
16371
16372 elsif not Protected_Present (Def)
16373 and then not Synchronized_Present (Def)
16374 and then not Task_Present (Def)
16375 then
16376 if Limited_Present (Iface_Def) then
16377 null;
16378
16379 elsif Protected_Present (Iface_Def) then
16380 Error_Msg_NE
16381 ("descendant of & must be declared as a protected "
16382 & "interface", N, Parent_Type);
16383
16384 elsif Synchronized_Present (Iface_Def) then
16385 Error_Msg_NE
16386 ("descendant of & must be declared as a synchronized "
16387 & "interface", N, Parent_Type);
16388
16389 elsif Task_Present (Iface_Def) then
16390 Error_Msg_NE
16391 ("descendant of & must be declared as a task interface",
16392 N, Parent_Type);
16393 else
16394 null;
16395 end if;
16396 end if;
16397 end if;
16398 end if;
16399
16400 if Is_Tagged_Type (Parent_Type)
16401 and then Is_Concurrent_Type (Parent_Type)
16402 and then not Is_Interface (Parent_Type)
16403 then
16404 Error_Msg_N
16405 ("parent type of a record extension cannot be a synchronized "
16406 & "tagged type (RM 3.9.1 (3/1))", N);
16407 Set_Etype (T, Any_Type);
16408 return;
16409 end if;
16410
16411 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16412 -- interfaces
16413
16414 if Is_Tagged_Type (Parent_Type)
16415 and then Is_Non_Empty_List (Interface_List (Def))
16416 then
16417 declare
16418 Intf : Node_Id;
16419 T : Entity_Id;
16420
16421 begin
16422 Intf := First (Interface_List (Def));
16423 while Present (Intf) loop
16424 T := Find_Type_Of_Subtype_Indic (Intf);
16425
16426 if not Is_Interface (T) then
16427 Diagnose_Interface (Intf, T);
16428
16429 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16430 -- a limited type from having a nonlimited progenitor.
16431
16432 elsif (Limited_Present (Def)
16433 or else (not Is_Interface (Parent_Type)
16434 and then Is_Limited_Type (Parent_Type)))
16435 and then not Is_Limited_Interface (T)
16436 then
16437 Error_Msg_NE
16438 ("progenitor interface& of limited type must be limited",
16439 N, T);
16440 end if;
16441
16442 Next (Intf);
16443 end loop;
16444 end;
16445 end if;
16446
16447 if Parent_Type = Any_Type
16448 or else Etype (Parent_Type) = Any_Type
16449 or else (Is_Class_Wide_Type (Parent_Type)
16450 and then Etype (Parent_Type) = T)
16451 then
16452 -- If Parent_Type is undefined or illegal, make new type into a
16453 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16454 -- errors. If this is a self-definition, emit error now.
16455
16456 if T = Parent_Type or else T = Etype (Parent_Type) then
16457 Error_Msg_N ("type cannot be used in its own definition", Indic);
16458 end if;
16459
16460 Set_Ekind (T, Ekind (Parent_Type));
16461 Set_Etype (T, Any_Type);
16462 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16463
16464 if Is_Tagged_Type (T)
16465 and then Is_Record_Type (T)
16466 then
16467 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16468 end if;
16469
16470 return;
16471 end if;
16472
16473 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16474 -- an interface is special because the list of interfaces in the full
16475 -- view can be given in any order. For example:
16476
16477 -- type A is interface;
16478 -- type B is interface and A;
16479 -- type D is new B with private;
16480 -- private
16481 -- type D is new A and B with null record; -- 1 --
16482
16483 -- In this case we perform the following transformation of -1-:
16484
16485 -- type D is new B and A with null record;
16486
16487 -- If the parent of the full-view covers the parent of the partial-view
16488 -- we have two possible cases:
16489
16490 -- 1) They have the same parent
16491 -- 2) The parent of the full-view implements some further interfaces
16492
16493 -- In both cases we do not need to perform the transformation. In the
16494 -- first case the source program is correct and the transformation is
16495 -- not needed; in the second case the source program does not fulfill
16496 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16497 -- later.
16498
16499 -- This transformation not only simplifies the rest of the analysis of
16500 -- this type declaration but also simplifies the correct generation of
16501 -- the object layout to the expander.
16502
16503 if In_Private_Part (Current_Scope)
16504 and then Is_Interface (Parent_Type)
16505 then
16506 declare
16507 Iface : Node_Id;
16508 Partial_View : Entity_Id;
16509 Partial_View_Parent : Entity_Id;
16510 New_Iface : Node_Id;
16511
16512 begin
16513 -- Look for the associated private type declaration
16514
16515 Partial_View := Incomplete_Or_Partial_View (T);
16516
16517 -- If the partial view was not found then the source code has
16518 -- errors and the transformation is not needed.
16519
16520 if Present (Partial_View) then
16521 Partial_View_Parent := Etype (Partial_View);
16522
16523 -- If the parent of the full-view covers the parent of the
16524 -- partial-view we have nothing else to do.
16525
16526 if Interface_Present_In_Ancestor
16527 (Parent_Type, Partial_View_Parent)
16528 then
16529 null;
16530
16531 -- Traverse the list of interfaces of the full-view to look
16532 -- for the parent of the partial-view and perform the tree
16533 -- transformation.
16534
16535 else
16536 Iface := First (Interface_List (Def));
16537 while Present (Iface) loop
16538 if Etype (Iface) = Etype (Partial_View) then
16539 Rewrite (Subtype_Indication (Def),
16540 New_Copy (Subtype_Indication
16541 (Parent (Partial_View))));
16542
16543 New_Iface :=
16544 Make_Identifier (Sloc (N), Chars (Parent_Type));
16545 Append (New_Iface, Interface_List (Def));
16546
16547 -- Analyze the transformed code
16548
16549 Derived_Type_Declaration (T, N, Is_Completion);
16550 return;
16551 end if;
16552
16553 Next (Iface);
16554 end loop;
16555 end if;
16556 end if;
16557 end;
16558 end if;
16559
16560 -- Only composite types other than array types are allowed to have
16561 -- discriminants.
16562
16563 if Present (Discriminant_Specifications (N)) then
16564 if (Is_Elementary_Type (Parent_Type)
16565 or else
16566 Is_Array_Type (Parent_Type))
16567 and then not Error_Posted (N)
16568 then
16569 Error_Msg_N
16570 ("elementary or array type cannot have discriminants",
16571 Defining_Identifier (First (Discriminant_Specifications (N))));
16572 Set_Has_Discriminants (T, False);
16573
16574 -- The type is allowed to have discriminants
16575
16576 else
16577 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16578 end if;
16579 end if;
16580
16581 -- In Ada 83, a derived type defined in a package specification cannot
16582 -- be used for further derivation until the end of its visible part.
16583 -- Note that derivation in the private part of the package is allowed.
16584
16585 if Ada_Version = Ada_83
16586 and then Is_Derived_Type (Parent_Type)
16587 and then In_Visible_Part (Scope (Parent_Type))
16588 then
16589 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16590 Error_Msg_N
16591 ("(Ada 83): premature use of type for derivation", Indic);
16592 end if;
16593 end if;
16594
16595 -- Check for early use of incomplete or private type
16596
16597 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16598 Error_Msg_N ("premature derivation of incomplete type", Indic);
16599 return;
16600
16601 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16602 and then not Comes_From_Generic (Parent_Type))
16603 or else Has_Private_Component (Parent_Type)
16604 then
16605 -- The ancestor type of a formal type can be incomplete, in which
16606 -- case only the operations of the partial view are available in the
16607 -- generic. Subsequent checks may be required when the full view is
16608 -- analyzed to verify that a derivation from a tagged type has an
16609 -- extension.
16610
16611 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16612 null;
16613
16614 elsif No (Underlying_Type (Parent_Type))
16615 or else Has_Private_Component (Parent_Type)
16616 then
16617 Error_Msg_N
16618 ("premature derivation of derived or private type", Indic);
16619
16620 -- Flag the type itself as being in error, this prevents some
16621 -- nasty problems with subsequent uses of the malformed type.
16622
16623 Set_Error_Posted (T);
16624
16625 -- Check that within the immediate scope of an untagged partial
16626 -- view it's illegal to derive from the partial view if the
16627 -- full view is tagged. (7.3(7))
16628
16629 -- We verify that the Parent_Type is a partial view by checking
16630 -- that it is not a Full_Type_Declaration (i.e. a private type or
16631 -- private extension declaration), to distinguish a partial view
16632 -- from a derivation from a private type which also appears as
16633 -- E_Private_Type. If the parent base type is not declared in an
16634 -- enclosing scope there is no need to check.
16635
16636 elsif Present (Full_View (Parent_Type))
16637 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16638 and then not Is_Tagged_Type (Parent_Type)
16639 and then Is_Tagged_Type (Full_View (Parent_Type))
16640 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16641 then
16642 Error_Msg_N
16643 ("premature derivation from type with tagged full view",
16644 Indic);
16645 end if;
16646 end if;
16647
16648 -- Check that form of derivation is appropriate
16649
16650 Taggd := Is_Tagged_Type (Parent_Type);
16651
16652 -- Set the parent type to the class-wide type's specific type in this
16653 -- case to prevent cascading errors
16654
16655 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16656 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16657 Set_Etype (T, Etype (Parent_Type));
16658 return;
16659 end if;
16660
16661 if Present (Extension) and then not Taggd then
16662 Error_Msg_N
16663 ("type derived from untagged type cannot have extension", Indic);
16664
16665 elsif No (Extension) and then Taggd then
16666
16667 -- If this declaration is within a private part (or body) of a
16668 -- generic instantiation then the derivation is allowed (the parent
16669 -- type can only appear tagged in this case if it's a generic actual
16670 -- type, since it would otherwise have been rejected in the analysis
16671 -- of the generic template).
16672
16673 if not Is_Generic_Actual_Type (Parent_Type)
16674 or else In_Visible_Part (Scope (Parent_Type))
16675 then
16676 if Is_Class_Wide_Type (Parent_Type) then
16677 Error_Msg_N
16678 ("parent type must not be a class-wide type", Indic);
16679
16680 -- Use specific type to prevent cascaded errors.
16681
16682 Parent_Type := Etype (Parent_Type);
16683
16684 else
16685 Error_Msg_N
16686 ("type derived from tagged type must have extension", Indic);
16687 end if;
16688 end if;
16689 end if;
16690
16691 -- AI-443: Synchronized formal derived types require a private
16692 -- extension. There is no point in checking the ancestor type or
16693 -- the progenitors since the construct is wrong to begin with.
16694
16695 if Ada_Version >= Ada_2005
16696 and then Is_Generic_Type (T)
16697 and then Present (Original_Node (N))
16698 then
16699 declare
16700 Decl : constant Node_Id := Original_Node (N);
16701
16702 begin
16703 if Nkind (Decl) = N_Formal_Type_Declaration
16704 and then Nkind (Formal_Type_Definition (Decl)) =
16705 N_Formal_Derived_Type_Definition
16706 and then Synchronized_Present (Formal_Type_Definition (Decl))
16707 and then No (Extension)
16708
16709 -- Avoid emitting a duplicate error message
16710
16711 and then not Error_Posted (Indic)
16712 then
16713 Error_Msg_N
16714 ("synchronized derived type must have extension", N);
16715 end if;
16716 end;
16717 end if;
16718
16719 if Null_Exclusion_Present (Def)
16720 and then not Is_Access_Type (Parent_Type)
16721 then
16722 Error_Msg_N ("null exclusion can only apply to an access type", N);
16723 end if;
16724
16725 -- Avoid deriving parent primitives of underlying record views
16726
16727 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16728 Derive_Subps => not Is_Underlying_Record_View (T));
16729
16730 -- AI-419: The parent type of an explicitly limited derived type must
16731 -- be a limited type or a limited interface.
16732
16733 if Limited_Present (Def) then
16734 Set_Is_Limited_Record (T);
16735
16736 if Is_Interface (T) then
16737 Set_Is_Limited_Interface (T);
16738 end if;
16739
16740 if not Is_Limited_Type (Parent_Type)
16741 and then
16742 (not Is_Interface (Parent_Type)
16743 or else not Is_Limited_Interface (Parent_Type))
16744 then
16745 -- AI05-0096: a derivation in the private part of an instance is
16746 -- legal if the generic formal is untagged limited, and the actual
16747 -- is non-limited.
16748
16749 if Is_Generic_Actual_Type (Parent_Type)
16750 and then In_Private_Part (Current_Scope)
16751 and then
16752 not Is_Tagged_Type
16753 (Generic_Parent_Type (Parent (Parent_Type)))
16754 then
16755 null;
16756
16757 else
16758 Error_Msg_NE
16759 ("parent type& of limited type must be limited",
16760 N, Parent_Type);
16761 end if;
16762 end if;
16763 end if;
16764
16765 -- In SPARK, there are no derived type definitions other than type
16766 -- extensions of tagged record types.
16767
16768 if No (Extension) then
16769 Check_SPARK_05_Restriction
16770 ("derived type is not allowed", Original_Node (N));
16771 end if;
16772 end Derived_Type_Declaration;
16773
16774 ------------------------
16775 -- Diagnose_Interface --
16776 ------------------------
16777
16778 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16779 begin
16780 if not Is_Interface (E) and then E /= Any_Type then
16781 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16782 end if;
16783 end Diagnose_Interface;
16784
16785 ----------------------------------
16786 -- Enumeration_Type_Declaration --
16787 ----------------------------------
16788
16789 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16790 Ev : Uint;
16791 L : Node_Id;
16792 R_Node : Node_Id;
16793 B_Node : Node_Id;
16794
16795 begin
16796 -- Create identifier node representing lower bound
16797
16798 B_Node := New_Node (N_Identifier, Sloc (Def));
16799 L := First (Literals (Def));
16800 Set_Chars (B_Node, Chars (L));
16801 Set_Entity (B_Node, L);
16802 Set_Etype (B_Node, T);
16803 Set_Is_Static_Expression (B_Node, True);
16804
16805 R_Node := New_Node (N_Range, Sloc (Def));
16806 Set_Low_Bound (R_Node, B_Node);
16807
16808 Set_Ekind (T, E_Enumeration_Type);
16809 Set_First_Literal (T, L);
16810 Set_Etype (T, T);
16811 Set_Is_Constrained (T);
16812
16813 Ev := Uint_0;
16814
16815 -- Loop through literals of enumeration type setting pos and rep values
16816 -- except that if the Ekind is already set, then it means the literal
16817 -- was already constructed (case of a derived type declaration and we
16818 -- should not disturb the Pos and Rep values.
16819
16820 while Present (L) loop
16821 if Ekind (L) /= E_Enumeration_Literal then
16822 Set_Ekind (L, E_Enumeration_Literal);
16823 Set_Enumeration_Pos (L, Ev);
16824 Set_Enumeration_Rep (L, Ev);
16825 Set_Is_Known_Valid (L, True);
16826 end if;
16827
16828 Set_Etype (L, T);
16829 New_Overloaded_Entity (L);
16830 Generate_Definition (L);
16831 Set_Convention (L, Convention_Intrinsic);
16832
16833 -- Case of character literal
16834
16835 if Nkind (L) = N_Defining_Character_Literal then
16836 Set_Is_Character_Type (T, True);
16837
16838 -- Check violation of No_Wide_Characters
16839
16840 if Restriction_Check_Required (No_Wide_Characters) then
16841 Get_Name_String (Chars (L));
16842
16843 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16844 Check_Restriction (No_Wide_Characters, L);
16845 end if;
16846 end if;
16847 end if;
16848
16849 Ev := Ev + 1;
16850 Next (L);
16851 end loop;
16852
16853 -- Now create a node representing upper bound
16854
16855 B_Node := New_Node (N_Identifier, Sloc (Def));
16856 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16857 Set_Entity (B_Node, Last (Literals (Def)));
16858 Set_Etype (B_Node, T);
16859 Set_Is_Static_Expression (B_Node, True);
16860
16861 Set_High_Bound (R_Node, B_Node);
16862
16863 -- Initialize various fields of the type. Some of this information
16864 -- may be overwritten later through rep.clauses.
16865
16866 Set_Scalar_Range (T, R_Node);
16867 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16868 Set_Enum_Esize (T);
16869 Set_Enum_Pos_To_Rep (T, Empty);
16870
16871 -- Set Discard_Names if configuration pragma set, or if there is
16872 -- a parameterless pragma in the current declarative region
16873
16874 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16875 Set_Discard_Names (T);
16876 end if;
16877
16878 -- Process end label if there is one
16879
16880 if Present (Def) then
16881 Process_End_Label (Def, 'e', T);
16882 end if;
16883 end Enumeration_Type_Declaration;
16884
16885 ---------------------------------
16886 -- Expand_To_Stored_Constraint --
16887 ---------------------------------
16888
16889 function Expand_To_Stored_Constraint
16890 (Typ : Entity_Id;
16891 Constraint : Elist_Id) return Elist_Id
16892 is
16893 Explicitly_Discriminated_Type : Entity_Id;
16894 Expansion : Elist_Id;
16895 Discriminant : Entity_Id;
16896
16897 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16898 -- Find the nearest type that actually specifies discriminants
16899
16900 ---------------------------------
16901 -- Type_With_Explicit_Discrims --
16902 ---------------------------------
16903
16904 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16905 Typ : constant E := Base_Type (Id);
16906
16907 begin
16908 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16909 if Present (Full_View (Typ)) then
16910 return Type_With_Explicit_Discrims (Full_View (Typ));
16911 end if;
16912
16913 else
16914 if Has_Discriminants (Typ) then
16915 return Typ;
16916 end if;
16917 end if;
16918
16919 if Etype (Typ) = Typ then
16920 return Empty;
16921 elsif Has_Discriminants (Typ) then
16922 return Typ;
16923 else
16924 return Type_With_Explicit_Discrims (Etype (Typ));
16925 end if;
16926
16927 end Type_With_Explicit_Discrims;
16928
16929 -- Start of processing for Expand_To_Stored_Constraint
16930
16931 begin
16932 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16933 return No_Elist;
16934 end if;
16935
16936 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16937
16938 if No (Explicitly_Discriminated_Type) then
16939 return No_Elist;
16940 end if;
16941
16942 Expansion := New_Elmt_List;
16943
16944 Discriminant :=
16945 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16946 while Present (Discriminant) loop
16947 Append_Elmt
16948 (Get_Discriminant_Value
16949 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16950 To => Expansion);
16951 Next_Stored_Discriminant (Discriminant);
16952 end loop;
16953
16954 return Expansion;
16955 end Expand_To_Stored_Constraint;
16956
16957 ---------------------------
16958 -- Find_Hidden_Interface --
16959 ---------------------------
16960
16961 function Find_Hidden_Interface
16962 (Src : Elist_Id;
16963 Dest : Elist_Id) return Entity_Id
16964 is
16965 Iface : Entity_Id;
16966 Iface_Elmt : Elmt_Id;
16967
16968 begin
16969 if Present (Src) and then Present (Dest) then
16970 Iface_Elmt := First_Elmt (Src);
16971 while Present (Iface_Elmt) loop
16972 Iface := Node (Iface_Elmt);
16973
16974 if Is_Interface (Iface)
16975 and then not Contain_Interface (Iface, Dest)
16976 then
16977 return Iface;
16978 end if;
16979
16980 Next_Elmt (Iface_Elmt);
16981 end loop;
16982 end if;
16983
16984 return Empty;
16985 end Find_Hidden_Interface;
16986
16987 --------------------
16988 -- Find_Type_Name --
16989 --------------------
16990
16991 function Find_Type_Name (N : Node_Id) return Entity_Id is
16992 Id : constant Entity_Id := Defining_Identifier (N);
16993 New_Id : Entity_Id;
16994 Prev : Entity_Id;
16995 Prev_Par : Node_Id;
16996
16997 procedure Check_Duplicate_Aspects;
16998 -- Check that aspects specified in a completion have not been specified
16999 -- already in the partial view.
17000
17001 procedure Tag_Mismatch;
17002 -- Diagnose a tagged partial view whose full view is untagged. We post
17003 -- the message on the full view, with a reference to the previous
17004 -- partial view. The partial view can be private or incomplete, and
17005 -- these are handled in a different manner, so we determine the position
17006 -- of the error message from the respective slocs of both.
17007
17008 -----------------------------
17009 -- Check_Duplicate_Aspects --
17010 -----------------------------
17011
17012 procedure Check_Duplicate_Aspects is
17013 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17014 -- Return the corresponding aspect of the partial view which matches
17015 -- the aspect id of Asp. Return Empty is no such aspect exists.
17016
17017 -----------------------------
17018 -- Get_Partial_View_Aspect --
17019 -----------------------------
17020
17021 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17022 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17023 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17024 Prev_Asp : Node_Id;
17025
17026 begin
17027 if Present (Prev_Asps) then
17028 Prev_Asp := First (Prev_Asps);
17029 while Present (Prev_Asp) loop
17030 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17031 return Prev_Asp;
17032 end if;
17033
17034 Next (Prev_Asp);
17035 end loop;
17036 end if;
17037
17038 return Empty;
17039 end Get_Partial_View_Aspect;
17040
17041 -- Local variables
17042
17043 Full_Asps : constant List_Id := Aspect_Specifications (N);
17044 Full_Asp : Node_Id;
17045 Part_Asp : Node_Id;
17046
17047 -- Start of processing for Check_Duplicate_Aspects
17048
17049 begin
17050 if Present (Full_Asps) then
17051 Full_Asp := First (Full_Asps);
17052 while Present (Full_Asp) loop
17053 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17054
17055 -- An aspect and its class-wide counterpart are two distinct
17056 -- aspects and may apply to both views of an entity.
17057
17058 if Present (Part_Asp)
17059 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17060 then
17061 Error_Msg_N
17062 ("aspect already specified in private declaration",
17063 Full_Asp);
17064
17065 Remove (Full_Asp);
17066 return;
17067 end if;
17068
17069 if Has_Discriminants (Prev)
17070 and then not Has_Unknown_Discriminants (Prev)
17071 and then Get_Aspect_Id (Full_Asp) =
17072 Aspect_Implicit_Dereference
17073 then
17074 Error_Msg_N
17075 ("cannot specify aspect if partial view has known "
17076 & "discriminants", Full_Asp);
17077 end if;
17078
17079 Next (Full_Asp);
17080 end loop;
17081 end if;
17082 end Check_Duplicate_Aspects;
17083
17084 ------------------
17085 -- Tag_Mismatch --
17086 ------------------
17087
17088 procedure Tag_Mismatch is
17089 begin
17090 if Sloc (Prev) < Sloc (Id) then
17091 if Ada_Version >= Ada_2012
17092 and then Nkind (N) = N_Private_Type_Declaration
17093 then
17094 Error_Msg_NE
17095 ("declaration of private } must be a tagged type ", Id, Prev);
17096 else
17097 Error_Msg_NE
17098 ("full declaration of } must be a tagged type ", Id, Prev);
17099 end if;
17100
17101 else
17102 if Ada_Version >= Ada_2012
17103 and then Nkind (N) = N_Private_Type_Declaration
17104 then
17105 Error_Msg_NE
17106 ("declaration of private } must be a tagged type ", Prev, Id);
17107 else
17108 Error_Msg_NE
17109 ("full declaration of } must be a tagged type ", Prev, Id);
17110 end if;
17111 end if;
17112 end Tag_Mismatch;
17113
17114 -- Start of processing for Find_Type_Name
17115
17116 begin
17117 -- Find incomplete declaration, if one was given
17118
17119 Prev := Current_Entity_In_Scope (Id);
17120
17121 -- New type declaration
17122
17123 if No (Prev) then
17124 Enter_Name (Id);
17125 return Id;
17126
17127 -- Previous declaration exists
17128
17129 else
17130 Prev_Par := Parent (Prev);
17131
17132 -- Error if not incomplete/private case except if previous
17133 -- declaration is implicit, etc. Enter_Name will emit error if
17134 -- appropriate.
17135
17136 if not Is_Incomplete_Or_Private_Type (Prev) then
17137 Enter_Name (Id);
17138 New_Id := Id;
17139
17140 -- Check invalid completion of private or incomplete type
17141
17142 elsif not Nkind_In (N, N_Full_Type_Declaration,
17143 N_Task_Type_Declaration,
17144 N_Protected_Type_Declaration)
17145 and then
17146 (Ada_Version < Ada_2012
17147 or else not Is_Incomplete_Type (Prev)
17148 or else not Nkind_In (N, N_Private_Type_Declaration,
17149 N_Private_Extension_Declaration))
17150 then
17151 -- Completion must be a full type declarations (RM 7.3(4))
17152
17153 Error_Msg_Sloc := Sloc (Prev);
17154 Error_Msg_NE ("invalid completion of }", Id, Prev);
17155
17156 -- Set scope of Id to avoid cascaded errors. Entity is never
17157 -- examined again, except when saving globals in generics.
17158
17159 Set_Scope (Id, Current_Scope);
17160 New_Id := Id;
17161
17162 -- If this is a repeated incomplete declaration, no further
17163 -- checks are possible.
17164
17165 if Nkind (N) = N_Incomplete_Type_Declaration then
17166 return Prev;
17167 end if;
17168
17169 -- Case of full declaration of incomplete type
17170
17171 elsif Ekind (Prev) = E_Incomplete_Type
17172 and then (Ada_Version < Ada_2012
17173 or else No (Full_View (Prev))
17174 or else not Is_Private_Type (Full_View (Prev)))
17175 then
17176 -- Indicate that the incomplete declaration has a matching full
17177 -- declaration. The defining occurrence of the incomplete
17178 -- declaration remains the visible one, and the procedure
17179 -- Get_Full_View dereferences it whenever the type is used.
17180
17181 if Present (Full_View (Prev)) then
17182 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17183 end if;
17184
17185 Set_Full_View (Prev, Id);
17186 Append_Entity (Id, Current_Scope);
17187 Set_Is_Public (Id, Is_Public (Prev));
17188 Set_Is_Internal (Id);
17189 New_Id := Prev;
17190
17191 -- If the incomplete view is tagged, a class_wide type has been
17192 -- created already. Use it for the private type as well, in order
17193 -- to prevent multiple incompatible class-wide types that may be
17194 -- created for self-referential anonymous access components.
17195
17196 if Is_Tagged_Type (Prev)
17197 and then Present (Class_Wide_Type (Prev))
17198 then
17199 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17200 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17201
17202 -- Type of the class-wide type is the current Id. Previously
17203 -- this was not done for private declarations because of order-
17204 -- of-elaboration issues in the back end, but gigi now handles
17205 -- this properly.
17206
17207 Set_Etype (Class_Wide_Type (Id), Id);
17208 end if;
17209
17210 -- Case of full declaration of private type
17211
17212 else
17213 -- If the private type was a completion of an incomplete type then
17214 -- update Prev to reference the private type
17215
17216 if Ada_Version >= Ada_2012
17217 and then Ekind (Prev) = E_Incomplete_Type
17218 and then Present (Full_View (Prev))
17219 and then Is_Private_Type (Full_View (Prev))
17220 then
17221 Prev := Full_View (Prev);
17222 Prev_Par := Parent (Prev);
17223 end if;
17224
17225 if Nkind (N) = N_Full_Type_Declaration
17226 and then Nkind_In
17227 (Type_Definition (N), N_Record_Definition,
17228 N_Derived_Type_Definition)
17229 and then Interface_Present (Type_Definition (N))
17230 then
17231 Error_Msg_N
17232 ("completion of private type cannot be an interface", N);
17233 end if;
17234
17235 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17236 if Etype (Prev) /= Prev then
17237
17238 -- Prev is a private subtype or a derived type, and needs
17239 -- no completion.
17240
17241 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17242 New_Id := Id;
17243
17244 elsif Ekind (Prev) = E_Private_Type
17245 and then Nkind_In (N, N_Task_Type_Declaration,
17246 N_Protected_Type_Declaration)
17247 then
17248 Error_Msg_N
17249 ("completion of nonlimited type cannot be limited", N);
17250
17251 elsif Ekind (Prev) = E_Record_Type_With_Private
17252 and then Nkind_In (N, N_Task_Type_Declaration,
17253 N_Protected_Type_Declaration)
17254 then
17255 if not Is_Limited_Record (Prev) then
17256 Error_Msg_N
17257 ("completion of nonlimited type cannot be limited", N);
17258
17259 elsif No (Interface_List (N)) then
17260 Error_Msg_N
17261 ("completion of tagged private type must be tagged",
17262 N);
17263 end if;
17264 end if;
17265
17266 -- Ada 2005 (AI-251): Private extension declaration of a task
17267 -- type or a protected type. This case arises when covering
17268 -- interface types.
17269
17270 elsif Nkind_In (N, N_Task_Type_Declaration,
17271 N_Protected_Type_Declaration)
17272 then
17273 null;
17274
17275 elsif Nkind (N) /= N_Full_Type_Declaration
17276 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17277 then
17278 Error_Msg_N
17279 ("full view of private extension must be an extension", N);
17280
17281 elsif not (Abstract_Present (Parent (Prev)))
17282 and then Abstract_Present (Type_Definition (N))
17283 then
17284 Error_Msg_N
17285 ("full view of non-abstract extension cannot be abstract", N);
17286 end if;
17287
17288 if not In_Private_Part (Current_Scope) then
17289 Error_Msg_N
17290 ("declaration of full view must appear in private part", N);
17291 end if;
17292
17293 if Ada_Version >= Ada_2012 then
17294 Check_Duplicate_Aspects;
17295 end if;
17296
17297 Copy_And_Swap (Prev, Id);
17298 Set_Has_Private_Declaration (Prev);
17299 Set_Has_Private_Declaration (Id);
17300
17301 -- AI12-0133: Indicate whether we have a partial view with
17302 -- unknown discriminants, in which case initialization of objects
17303 -- of the type do not receive an invariant check.
17304
17305 Set_Partial_View_Has_Unknown_Discr
17306 (Prev, Has_Unknown_Discriminants (Id));
17307
17308 -- Preserve aspect and iterator flags that may have been set on
17309 -- the partial view.
17310
17311 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17312 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17313
17314 -- If no error, propagate freeze_node from private to full view.
17315 -- It may have been generated for an early operational item.
17316
17317 if Present (Freeze_Node (Id))
17318 and then Serious_Errors_Detected = 0
17319 and then No (Full_View (Id))
17320 then
17321 Set_Freeze_Node (Prev, Freeze_Node (Id));
17322 Set_Freeze_Node (Id, Empty);
17323 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17324 end if;
17325
17326 Set_Full_View (Id, Prev);
17327 New_Id := Prev;
17328 end if;
17329
17330 -- Verify that full declaration conforms to partial one
17331
17332 if Is_Incomplete_Or_Private_Type (Prev)
17333 and then Present (Discriminant_Specifications (Prev_Par))
17334 then
17335 if Present (Discriminant_Specifications (N)) then
17336 if Ekind (Prev) = E_Incomplete_Type then
17337 Check_Discriminant_Conformance (N, Prev, Prev);
17338 else
17339 Check_Discriminant_Conformance (N, Prev, Id);
17340 end if;
17341
17342 else
17343 Error_Msg_N
17344 ("missing discriminants in full type declaration", N);
17345
17346 -- To avoid cascaded errors on subsequent use, share the
17347 -- discriminants of the partial view.
17348
17349 Set_Discriminant_Specifications (N,
17350 Discriminant_Specifications (Prev_Par));
17351 end if;
17352 end if;
17353
17354 -- A prior untagged partial view can have an associated class-wide
17355 -- type due to use of the class attribute, and in this case the full
17356 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17357 -- of incomplete tagged declarations, but we check for it.
17358
17359 if Is_Type (Prev)
17360 and then (Is_Tagged_Type (Prev)
17361 or else Present (Class_Wide_Type (Prev)))
17362 then
17363 -- Ada 2012 (AI05-0162): A private type may be the completion of
17364 -- an incomplete type.
17365
17366 if Ada_Version >= Ada_2012
17367 and then Is_Incomplete_Type (Prev)
17368 and then Nkind_In (N, N_Private_Type_Declaration,
17369 N_Private_Extension_Declaration)
17370 then
17371 -- No need to check private extensions since they are tagged
17372
17373 if Nkind (N) = N_Private_Type_Declaration
17374 and then not Tagged_Present (N)
17375 then
17376 Tag_Mismatch;
17377 end if;
17378
17379 -- The full declaration is either a tagged type (including
17380 -- a synchronized type that implements interfaces) or a
17381 -- type extension, otherwise this is an error.
17382
17383 elsif Nkind_In (N, N_Task_Type_Declaration,
17384 N_Protected_Type_Declaration)
17385 then
17386 if No (Interface_List (N)) and then not Error_Posted (N) then
17387 Tag_Mismatch;
17388 end if;
17389
17390 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17391
17392 -- Indicate that the previous declaration (tagged incomplete
17393 -- or private declaration) requires the same on the full one.
17394
17395 if not Tagged_Present (Type_Definition (N)) then
17396 Tag_Mismatch;
17397 Set_Is_Tagged_Type (Id);
17398 end if;
17399
17400 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17401 if No (Record_Extension_Part (Type_Definition (N))) then
17402 Error_Msg_NE
17403 ("full declaration of } must be a record extension",
17404 Prev, Id);
17405
17406 -- Set some attributes to produce a usable full view
17407
17408 Set_Is_Tagged_Type (Id);
17409 end if;
17410
17411 else
17412 Tag_Mismatch;
17413 end if;
17414 end if;
17415
17416 if Present (Prev)
17417 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17418 and then Present (Premature_Use (Parent (Prev)))
17419 then
17420 Error_Msg_Sloc := Sloc (N);
17421 Error_Msg_N
17422 ("\full declaration #", Premature_Use (Parent (Prev)));
17423 end if;
17424
17425 return New_Id;
17426 end if;
17427 end Find_Type_Name;
17428
17429 -------------------------
17430 -- Find_Type_Of_Object --
17431 -------------------------
17432
17433 function Find_Type_Of_Object
17434 (Obj_Def : Node_Id;
17435 Related_Nod : Node_Id) return Entity_Id
17436 is
17437 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17438 P : Node_Id := Parent (Obj_Def);
17439 T : Entity_Id;
17440 Nam : Name_Id;
17441
17442 begin
17443 -- If the parent is a component_definition node we climb to the
17444 -- component_declaration node
17445
17446 if Nkind (P) = N_Component_Definition then
17447 P := Parent (P);
17448 end if;
17449
17450 -- Case of an anonymous array subtype
17451
17452 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17453 N_Unconstrained_Array_Definition)
17454 then
17455 T := Empty;
17456 Array_Type_Declaration (T, Obj_Def);
17457
17458 -- Create an explicit subtype whenever possible
17459
17460 elsif Nkind (P) /= N_Component_Declaration
17461 and then Def_Kind = N_Subtype_Indication
17462 then
17463 -- Base name of subtype on object name, which will be unique in
17464 -- the current scope.
17465
17466 -- If this is a duplicate declaration, return base type, to avoid
17467 -- generating duplicate anonymous types.
17468
17469 if Error_Posted (P) then
17470 Analyze (Subtype_Mark (Obj_Def));
17471 return Entity (Subtype_Mark (Obj_Def));
17472 end if;
17473
17474 Nam :=
17475 New_External_Name
17476 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17477
17478 T := Make_Defining_Identifier (Sloc (P), Nam);
17479
17480 Insert_Action (Obj_Def,
17481 Make_Subtype_Declaration (Sloc (P),
17482 Defining_Identifier => T,
17483 Subtype_Indication => Relocate_Node (Obj_Def)));
17484
17485 -- This subtype may need freezing, and this will not be done
17486 -- automatically if the object declaration is not in declarative
17487 -- part. Since this is an object declaration, the type cannot always
17488 -- be frozen here. Deferred constants do not freeze their type
17489 -- (which often enough will be private).
17490
17491 if Nkind (P) = N_Object_Declaration
17492 and then Constant_Present (P)
17493 and then No (Expression (P))
17494 then
17495 null;
17496
17497 -- Here we freeze the base type of object type to catch premature use
17498 -- of discriminated private type without a full view.
17499
17500 else
17501 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17502 end if;
17503
17504 -- Ada 2005 AI-406: the object definition in an object declaration
17505 -- can be an access definition.
17506
17507 elsif Def_Kind = N_Access_Definition then
17508 T := Access_Definition (Related_Nod, Obj_Def);
17509
17510 Set_Is_Local_Anonymous_Access
17511 (T,
17512 V => (Ada_Version < Ada_2012)
17513 or else (Nkind (P) /= N_Object_Declaration)
17514 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17515
17516 -- Otherwise, the object definition is just a subtype_mark
17517
17518 else
17519 T := Process_Subtype (Obj_Def, Related_Nod);
17520
17521 -- If expansion is disabled an object definition that is an aggregate
17522 -- will not get expanded and may lead to scoping problems in the back
17523 -- end, if the object is referenced in an inner scope. In that case
17524 -- create an itype reference for the object definition now. This
17525 -- may be redundant in some cases, but harmless.
17526
17527 if Is_Itype (T)
17528 and then Nkind (Related_Nod) = N_Object_Declaration
17529 and then ASIS_Mode
17530 then
17531 Build_Itype_Reference (T, Related_Nod);
17532 end if;
17533 end if;
17534
17535 return T;
17536 end Find_Type_Of_Object;
17537
17538 --------------------------------
17539 -- Find_Type_Of_Subtype_Indic --
17540 --------------------------------
17541
17542 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17543 Typ : Entity_Id;
17544
17545 begin
17546 -- Case of subtype mark with a constraint
17547
17548 if Nkind (S) = N_Subtype_Indication then
17549 Find_Type (Subtype_Mark (S));
17550 Typ := Entity (Subtype_Mark (S));
17551
17552 if not
17553 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17554 then
17555 Error_Msg_N
17556 ("incorrect constraint for this kind of type", Constraint (S));
17557 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17558 end if;
17559
17560 -- Otherwise we have a subtype mark without a constraint
17561
17562 elsif Error_Posted (S) then
17563 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17564 return Any_Type;
17565
17566 else
17567 Find_Type (S);
17568 Typ := Entity (S);
17569 end if;
17570
17571 -- Check No_Wide_Characters restriction
17572
17573 Check_Wide_Character_Restriction (Typ, S);
17574
17575 return Typ;
17576 end Find_Type_Of_Subtype_Indic;
17577
17578 -------------------------------------
17579 -- Floating_Point_Type_Declaration --
17580 -------------------------------------
17581
17582 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17583 Digs : constant Node_Id := Digits_Expression (Def);
17584 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17585 Digs_Val : Uint;
17586 Base_Typ : Entity_Id;
17587 Implicit_Base : Entity_Id;
17588 Bound : Node_Id;
17589
17590 function Can_Derive_From (E : Entity_Id) return Boolean;
17591 -- Find if given digits value, and possibly a specified range, allows
17592 -- derivation from specified type
17593
17594 function Find_Base_Type return Entity_Id;
17595 -- Find a predefined base type that Def can derive from, or generate
17596 -- an error and substitute Long_Long_Float if none exists.
17597
17598 ---------------------
17599 -- Can_Derive_From --
17600 ---------------------
17601
17602 function Can_Derive_From (E : Entity_Id) return Boolean is
17603 Spec : constant Entity_Id := Real_Range_Specification (Def);
17604
17605 begin
17606 -- Check specified "digits" constraint
17607
17608 if Digs_Val > Digits_Value (E) then
17609 return False;
17610 end if;
17611
17612 -- Check for matching range, if specified
17613
17614 if Present (Spec) then
17615 if Expr_Value_R (Type_Low_Bound (E)) >
17616 Expr_Value_R (Low_Bound (Spec))
17617 then
17618 return False;
17619 end if;
17620
17621 if Expr_Value_R (Type_High_Bound (E)) <
17622 Expr_Value_R (High_Bound (Spec))
17623 then
17624 return False;
17625 end if;
17626 end if;
17627
17628 return True;
17629 end Can_Derive_From;
17630
17631 --------------------
17632 -- Find_Base_Type --
17633 --------------------
17634
17635 function Find_Base_Type return Entity_Id is
17636 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17637
17638 begin
17639 -- Iterate over the predefined types in order, returning the first
17640 -- one that Def can derive from.
17641
17642 while Present (Choice) loop
17643 if Can_Derive_From (Node (Choice)) then
17644 return Node (Choice);
17645 end if;
17646
17647 Next_Elmt (Choice);
17648 end loop;
17649
17650 -- If we can't derive from any existing type, use Long_Long_Float
17651 -- and give appropriate message explaining the problem.
17652
17653 if Digs_Val > Max_Digs_Val then
17654 -- It might be the case that there is a type with the requested
17655 -- range, just not the combination of digits and range.
17656
17657 Error_Msg_N
17658 ("no predefined type has requested range and precision",
17659 Real_Range_Specification (Def));
17660
17661 else
17662 Error_Msg_N
17663 ("range too large for any predefined type",
17664 Real_Range_Specification (Def));
17665 end if;
17666
17667 return Standard_Long_Long_Float;
17668 end Find_Base_Type;
17669
17670 -- Start of processing for Floating_Point_Type_Declaration
17671
17672 begin
17673 Check_Restriction (No_Floating_Point, Def);
17674
17675 -- Create an implicit base type
17676
17677 Implicit_Base :=
17678 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17679
17680 -- Analyze and verify digits value
17681
17682 Analyze_And_Resolve (Digs, Any_Integer);
17683 Check_Digits_Expression (Digs);
17684 Digs_Val := Expr_Value (Digs);
17685
17686 -- Process possible range spec and find correct type to derive from
17687
17688 Process_Real_Range_Specification (Def);
17689
17690 -- Check that requested number of digits is not too high.
17691
17692 if Digs_Val > Max_Digs_Val then
17693
17694 -- The check for Max_Base_Digits may be somewhat expensive, as it
17695 -- requires reading System, so only do it when necessary.
17696
17697 declare
17698 Max_Base_Digits : constant Uint :=
17699 Expr_Value
17700 (Expression
17701 (Parent (RTE (RE_Max_Base_Digits))));
17702
17703 begin
17704 if Digs_Val > Max_Base_Digits then
17705 Error_Msg_Uint_1 := Max_Base_Digits;
17706 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17707
17708 elsif No (Real_Range_Specification (Def)) then
17709 Error_Msg_Uint_1 := Max_Digs_Val;
17710 Error_Msg_N ("types with more than ^ digits need range spec "
17711 & "(RM 3.5.7(6))", Digs);
17712 end if;
17713 end;
17714 end if;
17715
17716 -- Find a suitable type to derive from or complain and use a substitute
17717
17718 Base_Typ := Find_Base_Type;
17719
17720 -- If there are bounds given in the declaration use them as the bounds
17721 -- of the type, otherwise use the bounds of the predefined base type
17722 -- that was chosen based on the Digits value.
17723
17724 if Present (Real_Range_Specification (Def)) then
17725 Set_Scalar_Range (T, Real_Range_Specification (Def));
17726 Set_Is_Constrained (T);
17727
17728 -- The bounds of this range must be converted to machine numbers
17729 -- in accordance with RM 4.9(38).
17730
17731 Bound := Type_Low_Bound (T);
17732
17733 if Nkind (Bound) = N_Real_Literal then
17734 Set_Realval
17735 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17736 Set_Is_Machine_Number (Bound);
17737 end if;
17738
17739 Bound := Type_High_Bound (T);
17740
17741 if Nkind (Bound) = N_Real_Literal then
17742 Set_Realval
17743 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17744 Set_Is_Machine_Number (Bound);
17745 end if;
17746
17747 else
17748 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17749 end if;
17750
17751 -- Complete definition of implicit base and declared first subtype. The
17752 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17753 -- are not clobbered when the floating point type acts as a full view of
17754 -- a private type.
17755
17756 Set_Etype (Implicit_Base, Base_Typ);
17757 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17758 Set_Size_Info (Implicit_Base, Base_Typ);
17759 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17760 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17761 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17762 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17763
17764 Set_Ekind (T, E_Floating_Point_Subtype);
17765 Set_Etype (T, Implicit_Base);
17766 Set_Size_Info (T, Implicit_Base);
17767 Set_RM_Size (T, RM_Size (Implicit_Base));
17768 Inherit_Rep_Item_Chain (T, Implicit_Base);
17769 Set_Digits_Value (T, Digs_Val);
17770 end Floating_Point_Type_Declaration;
17771
17772 ----------------------------
17773 -- Get_Discriminant_Value --
17774 ----------------------------
17775
17776 -- This is the situation:
17777
17778 -- There is a non-derived type
17779
17780 -- type T0 (Dx, Dy, Dz...)
17781
17782 -- There are zero or more levels of derivation, with each derivation
17783 -- either purely inheriting the discriminants, or defining its own.
17784
17785 -- type Ti is new Ti-1
17786 -- or
17787 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17788 -- or
17789 -- subtype Ti is ...
17790
17791 -- The subtype issue is avoided by the use of Original_Record_Component,
17792 -- and the fact that derived subtypes also derive the constraints.
17793
17794 -- This chain leads back from
17795
17796 -- Typ_For_Constraint
17797
17798 -- Typ_For_Constraint has discriminants, and the value for each
17799 -- discriminant is given by its corresponding Elmt of Constraints.
17800
17801 -- Discriminant is some discriminant in this hierarchy
17802
17803 -- We need to return its value
17804
17805 -- We do this by recursively searching each level, and looking for
17806 -- Discriminant. Once we get to the bottom, we start backing up
17807 -- returning the value for it which may in turn be a discriminant
17808 -- further up, so on the backup we continue the substitution.
17809
17810 function Get_Discriminant_Value
17811 (Discriminant : Entity_Id;
17812 Typ_For_Constraint : Entity_Id;
17813 Constraint : Elist_Id) return Node_Id
17814 is
17815 function Root_Corresponding_Discriminant
17816 (Discr : Entity_Id) return Entity_Id;
17817 -- Given a discriminant, traverse the chain of inherited discriminants
17818 -- and return the topmost discriminant.
17819
17820 function Search_Derivation_Levels
17821 (Ti : Entity_Id;
17822 Discrim_Values : Elist_Id;
17823 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17824 -- This is the routine that performs the recursive search of levels
17825 -- as described above.
17826
17827 -------------------------------------
17828 -- Root_Corresponding_Discriminant --
17829 -------------------------------------
17830
17831 function Root_Corresponding_Discriminant
17832 (Discr : Entity_Id) return Entity_Id
17833 is
17834 D : Entity_Id;
17835
17836 begin
17837 D := Discr;
17838 while Present (Corresponding_Discriminant (D)) loop
17839 D := Corresponding_Discriminant (D);
17840 end loop;
17841
17842 return D;
17843 end Root_Corresponding_Discriminant;
17844
17845 ------------------------------
17846 -- Search_Derivation_Levels --
17847 ------------------------------
17848
17849 function Search_Derivation_Levels
17850 (Ti : Entity_Id;
17851 Discrim_Values : Elist_Id;
17852 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17853 is
17854 Assoc : Elmt_Id;
17855 Disc : Entity_Id;
17856 Result : Node_Or_Entity_Id;
17857 Result_Entity : Node_Id;
17858
17859 begin
17860 -- If inappropriate type, return Error, this happens only in
17861 -- cascaded error situations, and we want to avoid a blow up.
17862
17863 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17864 return Error;
17865 end if;
17866
17867 -- Look deeper if possible. Use Stored_Constraints only for
17868 -- untagged types. For tagged types use the given constraint.
17869 -- This asymmetry needs explanation???
17870
17871 if not Stored_Discrim_Values
17872 and then Present (Stored_Constraint (Ti))
17873 and then not Is_Tagged_Type (Ti)
17874 then
17875 Result :=
17876 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17877 else
17878 declare
17879 Td : constant Entity_Id := Etype (Ti);
17880
17881 begin
17882 if Td = Ti then
17883 Result := Discriminant;
17884
17885 else
17886 if Present (Stored_Constraint (Ti)) then
17887 Result :=
17888 Search_Derivation_Levels
17889 (Td, Stored_Constraint (Ti), True);
17890 else
17891 Result :=
17892 Search_Derivation_Levels
17893 (Td, Discrim_Values, Stored_Discrim_Values);
17894 end if;
17895 end if;
17896 end;
17897 end if;
17898
17899 -- Extra underlying places to search, if not found above. For
17900 -- concurrent types, the relevant discriminant appears in the
17901 -- corresponding record. For a type derived from a private type
17902 -- without discriminant, the full view inherits the discriminants
17903 -- of the full view of the parent.
17904
17905 if Result = Discriminant then
17906 if Is_Concurrent_Type (Ti)
17907 and then Present (Corresponding_Record_Type (Ti))
17908 then
17909 Result :=
17910 Search_Derivation_Levels (
17911 Corresponding_Record_Type (Ti),
17912 Discrim_Values,
17913 Stored_Discrim_Values);
17914
17915 elsif Is_Private_Type (Ti)
17916 and then not Has_Discriminants (Ti)
17917 and then Present (Full_View (Ti))
17918 and then Etype (Full_View (Ti)) /= Ti
17919 then
17920 Result :=
17921 Search_Derivation_Levels (
17922 Full_View (Ti),
17923 Discrim_Values,
17924 Stored_Discrim_Values);
17925 end if;
17926 end if;
17927
17928 -- If Result is not a (reference to a) discriminant, return it,
17929 -- otherwise set Result_Entity to the discriminant.
17930
17931 if Nkind (Result) = N_Defining_Identifier then
17932 pragma Assert (Result = Discriminant);
17933 Result_Entity := Result;
17934
17935 else
17936 if not Denotes_Discriminant (Result) then
17937 return Result;
17938 end if;
17939
17940 Result_Entity := Entity (Result);
17941 end if;
17942
17943 -- See if this level of derivation actually has discriminants because
17944 -- tagged derivations can add them, hence the lower levels need not
17945 -- have any.
17946
17947 if not Has_Discriminants (Ti) then
17948 return Result;
17949 end if;
17950
17951 -- Scan Ti's discriminants for Result_Entity, and return its
17952 -- corresponding value, if any.
17953
17954 Result_Entity := Original_Record_Component (Result_Entity);
17955
17956 Assoc := First_Elmt (Discrim_Values);
17957
17958 if Stored_Discrim_Values then
17959 Disc := First_Stored_Discriminant (Ti);
17960 else
17961 Disc := First_Discriminant (Ti);
17962 end if;
17963
17964 while Present (Disc) loop
17965
17966 -- If no further associations return the discriminant, value will
17967 -- be found on the second pass.
17968
17969 if No (Assoc) then
17970 return Result;
17971 end if;
17972
17973 if Original_Record_Component (Disc) = Result_Entity then
17974 return Node (Assoc);
17975 end if;
17976
17977 Next_Elmt (Assoc);
17978
17979 if Stored_Discrim_Values then
17980 Next_Stored_Discriminant (Disc);
17981 else
17982 Next_Discriminant (Disc);
17983 end if;
17984 end loop;
17985
17986 -- Could not find it
17987
17988 return Result;
17989 end Search_Derivation_Levels;
17990
17991 -- Local Variables
17992
17993 Result : Node_Or_Entity_Id;
17994
17995 -- Start of processing for Get_Discriminant_Value
17996
17997 begin
17998 -- ??? This routine is a gigantic mess and will be deleted. For the
17999 -- time being just test for the trivial case before calling recurse.
18000
18001 -- We are now celebrating the 20th anniversary of this comment!
18002
18003 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18004 declare
18005 D : Entity_Id;
18006 E : Elmt_Id;
18007
18008 begin
18009 D := First_Discriminant (Typ_For_Constraint);
18010 E := First_Elmt (Constraint);
18011 while Present (D) loop
18012 if Chars (D) = Chars (Discriminant) then
18013 return Node (E);
18014 end if;
18015
18016 Next_Discriminant (D);
18017 Next_Elmt (E);
18018 end loop;
18019 end;
18020 end if;
18021
18022 Result := Search_Derivation_Levels
18023 (Typ_For_Constraint, Constraint, False);
18024
18025 -- ??? hack to disappear when this routine is gone
18026
18027 if Nkind (Result) = N_Defining_Identifier then
18028 declare
18029 D : Entity_Id;
18030 E : Elmt_Id;
18031
18032 begin
18033 D := First_Discriminant (Typ_For_Constraint);
18034 E := First_Elmt (Constraint);
18035 while Present (D) loop
18036 if Root_Corresponding_Discriminant (D) = Discriminant then
18037 return Node (E);
18038 end if;
18039
18040 Next_Discriminant (D);
18041 Next_Elmt (E);
18042 end loop;
18043 end;
18044 end if;
18045
18046 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18047 return Result;
18048 end Get_Discriminant_Value;
18049
18050 --------------------------
18051 -- Has_Range_Constraint --
18052 --------------------------
18053
18054 function Has_Range_Constraint (N : Node_Id) return Boolean is
18055 C : constant Node_Id := Constraint (N);
18056
18057 begin
18058 if Nkind (C) = N_Range_Constraint then
18059 return True;
18060
18061 elsif Nkind (C) = N_Digits_Constraint then
18062 return
18063 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18064 or else Present (Range_Constraint (C));
18065
18066 elsif Nkind (C) = N_Delta_Constraint then
18067 return Present (Range_Constraint (C));
18068
18069 else
18070 return False;
18071 end if;
18072 end Has_Range_Constraint;
18073
18074 ------------------------
18075 -- Inherit_Components --
18076 ------------------------
18077
18078 function Inherit_Components
18079 (N : Node_Id;
18080 Parent_Base : Entity_Id;
18081 Derived_Base : Entity_Id;
18082 Is_Tagged : Boolean;
18083 Inherit_Discr : Boolean;
18084 Discs : Elist_Id) return Elist_Id
18085 is
18086 Assoc_List : constant Elist_Id := New_Elmt_List;
18087
18088 procedure Inherit_Component
18089 (Old_C : Entity_Id;
18090 Plain_Discrim : Boolean := False;
18091 Stored_Discrim : Boolean := False);
18092 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18093 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18094 -- True, Old_C is a stored discriminant. If they are both false then
18095 -- Old_C is a regular component.
18096
18097 -----------------------
18098 -- Inherit_Component --
18099 -----------------------
18100
18101 procedure Inherit_Component
18102 (Old_C : Entity_Id;
18103 Plain_Discrim : Boolean := False;
18104 Stored_Discrim : Boolean := False)
18105 is
18106 procedure Set_Anonymous_Type (Id : Entity_Id);
18107 -- Id denotes the entity of an access discriminant or anonymous
18108 -- access component. Set the type of Id to either the same type of
18109 -- Old_C or create a new one depending on whether the parent and
18110 -- the child types are in the same scope.
18111
18112 ------------------------
18113 -- Set_Anonymous_Type --
18114 ------------------------
18115
18116 procedure Set_Anonymous_Type (Id : Entity_Id) is
18117 Old_Typ : constant Entity_Id := Etype (Old_C);
18118
18119 begin
18120 if Scope (Parent_Base) = Scope (Derived_Base) then
18121 Set_Etype (Id, Old_Typ);
18122
18123 -- The parent and the derived type are in two different scopes.
18124 -- Reuse the type of the original discriminant / component by
18125 -- copying it in order to preserve all attributes.
18126
18127 else
18128 declare
18129 Typ : constant Entity_Id := New_Copy (Old_Typ);
18130
18131 begin
18132 Set_Etype (Id, Typ);
18133
18134 -- Since we do not generate component declarations for
18135 -- inherited components, associate the itype with the
18136 -- derived type.
18137
18138 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18139 Set_Scope (Typ, Derived_Base);
18140 end;
18141 end if;
18142 end Set_Anonymous_Type;
18143
18144 -- Local variables and constants
18145
18146 New_C : constant Entity_Id := New_Copy (Old_C);
18147
18148 Corr_Discrim : Entity_Id;
18149 Discrim : Entity_Id;
18150
18151 -- Start of processing for Inherit_Component
18152
18153 begin
18154 pragma Assert (not Is_Tagged or not Stored_Discrim);
18155
18156 Set_Parent (New_C, Parent (Old_C));
18157
18158 -- Regular discriminants and components must be inserted in the scope
18159 -- of the Derived_Base. Do it here.
18160
18161 if not Stored_Discrim then
18162 Enter_Name (New_C);
18163 end if;
18164
18165 -- For tagged types the Original_Record_Component must point to
18166 -- whatever this field was pointing to in the parent type. This has
18167 -- already been achieved by the call to New_Copy above.
18168
18169 if not Is_Tagged then
18170 Set_Original_Record_Component (New_C, New_C);
18171 Set_Corresponding_Record_Component (New_C, Old_C);
18172 end if;
18173
18174 -- Set the proper type of an access discriminant
18175
18176 if Ekind (New_C) = E_Discriminant
18177 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18178 then
18179 Set_Anonymous_Type (New_C);
18180 end if;
18181
18182 -- If we have inherited a component then see if its Etype contains
18183 -- references to Parent_Base discriminants. In this case, replace
18184 -- these references with the constraints given in Discs. We do not
18185 -- do this for the partial view of private types because this is
18186 -- not needed (only the components of the full view will be used
18187 -- for code generation) and cause problem. We also avoid this
18188 -- transformation in some error situations.
18189
18190 if Ekind (New_C) = E_Component then
18191
18192 -- Set the proper type of an anonymous access component
18193
18194 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18195 Set_Anonymous_Type (New_C);
18196
18197 elsif (Is_Private_Type (Derived_Base)
18198 and then not Is_Generic_Type (Derived_Base))
18199 or else (Is_Empty_Elmt_List (Discs)
18200 and then not Expander_Active)
18201 then
18202 Set_Etype (New_C, Etype (Old_C));
18203
18204 else
18205 -- The current component introduces a circularity of the
18206 -- following kind:
18207
18208 -- limited with Pack_2;
18209 -- package Pack_1 is
18210 -- type T_1 is tagged record
18211 -- Comp : access Pack_2.T_2;
18212 -- ...
18213 -- end record;
18214 -- end Pack_1;
18215
18216 -- with Pack_1;
18217 -- package Pack_2 is
18218 -- type T_2 is new Pack_1.T_1 with ...;
18219 -- end Pack_2;
18220
18221 Set_Etype
18222 (New_C,
18223 Constrain_Component_Type
18224 (Old_C, Derived_Base, N, Parent_Base, Discs));
18225 end if;
18226 end if;
18227
18228 -- In derived tagged types it is illegal to reference a non
18229 -- discriminant component in the parent type. To catch this, mark
18230 -- these components with an Ekind of E_Void. This will be reset in
18231 -- Record_Type_Definition after processing the record extension of
18232 -- the derived type.
18233
18234 -- If the declaration is a private extension, there is no further
18235 -- record extension to process, and the components retain their
18236 -- current kind, because they are visible at this point.
18237
18238 if Is_Tagged and then Ekind (New_C) = E_Component
18239 and then Nkind (N) /= N_Private_Extension_Declaration
18240 then
18241 Set_Ekind (New_C, E_Void);
18242 end if;
18243
18244 if Plain_Discrim then
18245 Set_Corresponding_Discriminant (New_C, Old_C);
18246 Build_Discriminal (New_C);
18247
18248 -- If we are explicitly inheriting a stored discriminant it will be
18249 -- completely hidden.
18250
18251 elsif Stored_Discrim then
18252 Set_Corresponding_Discriminant (New_C, Empty);
18253 Set_Discriminal (New_C, Empty);
18254 Set_Is_Completely_Hidden (New_C);
18255
18256 -- Set the Original_Record_Component of each discriminant in the
18257 -- derived base to point to the corresponding stored that we just
18258 -- created.
18259
18260 Discrim := First_Discriminant (Derived_Base);
18261 while Present (Discrim) loop
18262 Corr_Discrim := Corresponding_Discriminant (Discrim);
18263
18264 -- Corr_Discrim could be missing in an error situation
18265
18266 if Present (Corr_Discrim)
18267 and then Original_Record_Component (Corr_Discrim) = Old_C
18268 then
18269 Set_Original_Record_Component (Discrim, New_C);
18270 Set_Corresponding_Record_Component (Discrim, Empty);
18271 end if;
18272
18273 Next_Discriminant (Discrim);
18274 end loop;
18275
18276 Append_Entity (New_C, Derived_Base);
18277 end if;
18278
18279 if not Is_Tagged then
18280 Append_Elmt (Old_C, Assoc_List);
18281 Append_Elmt (New_C, Assoc_List);
18282 end if;
18283 end Inherit_Component;
18284
18285 -- Variables local to Inherit_Component
18286
18287 Loc : constant Source_Ptr := Sloc (N);
18288
18289 Parent_Discrim : Entity_Id;
18290 Stored_Discrim : Entity_Id;
18291 D : Entity_Id;
18292 Component : Entity_Id;
18293
18294 -- Start of processing for Inherit_Components
18295
18296 begin
18297 if not Is_Tagged then
18298 Append_Elmt (Parent_Base, Assoc_List);
18299 Append_Elmt (Derived_Base, Assoc_List);
18300 end if;
18301
18302 -- Inherit parent discriminants if needed
18303
18304 if Inherit_Discr then
18305 Parent_Discrim := First_Discriminant (Parent_Base);
18306 while Present (Parent_Discrim) loop
18307 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18308 Next_Discriminant (Parent_Discrim);
18309 end loop;
18310 end if;
18311
18312 -- Create explicit stored discrims for untagged types when necessary
18313
18314 if not Has_Unknown_Discriminants (Derived_Base)
18315 and then Has_Discriminants (Parent_Base)
18316 and then not Is_Tagged
18317 and then
18318 (not Inherit_Discr
18319 or else First_Discriminant (Parent_Base) /=
18320 First_Stored_Discriminant (Parent_Base))
18321 then
18322 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18323 while Present (Stored_Discrim) loop
18324 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18325 Next_Stored_Discriminant (Stored_Discrim);
18326 end loop;
18327 end if;
18328
18329 -- See if we can apply the second transformation for derived types, as
18330 -- explained in point 6. in the comments above Build_Derived_Record_Type
18331 -- This is achieved by appending Derived_Base discriminants into Discs,
18332 -- which has the side effect of returning a non empty Discs list to the
18333 -- caller of Inherit_Components, which is what we want. This must be
18334 -- done for private derived types if there are explicit stored
18335 -- discriminants, to ensure that we can retrieve the values of the
18336 -- constraints provided in the ancestors.
18337
18338 if Inherit_Discr
18339 and then Is_Empty_Elmt_List (Discs)
18340 and then Present (First_Discriminant (Derived_Base))
18341 and then
18342 (not Is_Private_Type (Derived_Base)
18343 or else Is_Completely_Hidden
18344 (First_Stored_Discriminant (Derived_Base))
18345 or else Is_Generic_Type (Derived_Base))
18346 then
18347 D := First_Discriminant (Derived_Base);
18348 while Present (D) loop
18349 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18350 Next_Discriminant (D);
18351 end loop;
18352 end if;
18353
18354 -- Finally, inherit non-discriminant components unless they are not
18355 -- visible because defined or inherited from the full view of the
18356 -- parent. Don't inherit the _parent field of the parent type.
18357
18358 Component := First_Entity (Parent_Base);
18359 while Present (Component) loop
18360
18361 -- Ada 2005 (AI-251): Do not inherit components associated with
18362 -- secondary tags of the parent.
18363
18364 if Ekind (Component) = E_Component
18365 and then Present (Related_Type (Component))
18366 then
18367 null;
18368
18369 elsif Ekind (Component) /= E_Component
18370 or else Chars (Component) = Name_uParent
18371 then
18372 null;
18373
18374 -- If the derived type is within the parent type's declarative
18375 -- region, then the components can still be inherited even though
18376 -- they aren't visible at this point. This can occur for cases
18377 -- such as within public child units where the components must
18378 -- become visible upon entering the child unit's private part.
18379
18380 elsif not Is_Visible_Component (Component)
18381 and then not In_Open_Scopes (Scope (Parent_Base))
18382 then
18383 null;
18384
18385 elsif Ekind_In (Derived_Base, E_Private_Type,
18386 E_Limited_Private_Type)
18387 then
18388 null;
18389
18390 else
18391 Inherit_Component (Component);
18392 end if;
18393
18394 Next_Entity (Component);
18395 end loop;
18396
18397 -- For tagged derived types, inherited discriminants cannot be used in
18398 -- component declarations of the record extension part. To achieve this
18399 -- we mark the inherited discriminants as not visible.
18400
18401 if Is_Tagged and then Inherit_Discr then
18402 D := First_Discriminant (Derived_Base);
18403 while Present (D) loop
18404 Set_Is_Immediately_Visible (D, False);
18405 Next_Discriminant (D);
18406 end loop;
18407 end if;
18408
18409 return Assoc_List;
18410 end Inherit_Components;
18411
18412 -----------------------------
18413 -- Inherit_Predicate_Flags --
18414 -----------------------------
18415
18416 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18417 begin
18418 Set_Has_Predicates (Subt, Has_Predicates (Par));
18419 Set_Has_Static_Predicate_Aspect
18420 (Subt, Has_Static_Predicate_Aspect (Par));
18421 Set_Has_Dynamic_Predicate_Aspect
18422 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18423 end Inherit_Predicate_Flags;
18424
18425 ----------------------
18426 -- Is_EVF_Procedure --
18427 ----------------------
18428
18429 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18430 Formal : Entity_Id;
18431
18432 begin
18433 -- Examine the formals of an Extensions_Visible False procedure looking
18434 -- for a controlling OUT parameter.
18435
18436 if Ekind (Subp) = E_Procedure
18437 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18438 then
18439 Formal := First_Formal (Subp);
18440 while Present (Formal) loop
18441 if Ekind (Formal) = E_Out_Parameter
18442 and then Is_Controlling_Formal (Formal)
18443 then
18444 return True;
18445 end if;
18446
18447 Next_Formal (Formal);
18448 end loop;
18449 end if;
18450
18451 return False;
18452 end Is_EVF_Procedure;
18453
18454 -----------------------
18455 -- Is_Null_Extension --
18456 -----------------------
18457
18458 function Is_Null_Extension (T : Entity_Id) return Boolean is
18459 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18460 Comp_List : Node_Id;
18461 Comp : Node_Id;
18462
18463 begin
18464 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18465 or else not Is_Tagged_Type (T)
18466 or else Nkind (Type_Definition (Type_Decl)) /=
18467 N_Derived_Type_Definition
18468 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18469 then
18470 return False;
18471 end if;
18472
18473 Comp_List :=
18474 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18475
18476 if Present (Discriminant_Specifications (Type_Decl)) then
18477 return False;
18478
18479 elsif Present (Comp_List)
18480 and then Is_Non_Empty_List (Component_Items (Comp_List))
18481 then
18482 Comp := First (Component_Items (Comp_List));
18483
18484 -- Only user-defined components are relevant. The component list
18485 -- may also contain a parent component and internal components
18486 -- corresponding to secondary tags, but these do not determine
18487 -- whether this is a null extension.
18488
18489 while Present (Comp) loop
18490 if Comes_From_Source (Comp) then
18491 return False;
18492 end if;
18493
18494 Next (Comp);
18495 end loop;
18496
18497 return True;
18498
18499 else
18500 return True;
18501 end if;
18502 end Is_Null_Extension;
18503
18504 ------------------------------
18505 -- Is_Valid_Constraint_Kind --
18506 ------------------------------
18507
18508 function Is_Valid_Constraint_Kind
18509 (T_Kind : Type_Kind;
18510 Constraint_Kind : Node_Kind) return Boolean
18511 is
18512 begin
18513 case T_Kind is
18514 when Enumeration_Kind
18515 | Integer_Kind
18516 =>
18517 return Constraint_Kind = N_Range_Constraint;
18518
18519 when Decimal_Fixed_Point_Kind =>
18520 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18521 N_Range_Constraint);
18522
18523 when Ordinary_Fixed_Point_Kind =>
18524 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18525 N_Range_Constraint);
18526
18527 when Float_Kind =>
18528 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18529 N_Range_Constraint);
18530
18531 when Access_Kind
18532 | Array_Kind
18533 | Class_Wide_Kind
18534 | Concurrent_Kind
18535 | Private_Kind
18536 | E_Incomplete_Type
18537 | E_Record_Subtype
18538 | E_Record_Type
18539 =>
18540 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18541
18542 when others =>
18543 return True; -- Error will be detected later
18544 end case;
18545 end Is_Valid_Constraint_Kind;
18546
18547 --------------------------
18548 -- Is_Visible_Component --
18549 --------------------------
18550
18551 function Is_Visible_Component
18552 (C : Entity_Id;
18553 N : Node_Id := Empty) return Boolean
18554 is
18555 Original_Comp : Entity_Id := Empty;
18556 Original_Type : Entity_Id;
18557 Type_Scope : Entity_Id;
18558
18559 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18560 -- Check whether parent type of inherited component is declared locally,
18561 -- possibly within a nested package or instance. The current scope is
18562 -- the derived record itself.
18563
18564 -------------------
18565 -- Is_Local_Type --
18566 -------------------
18567
18568 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18569 Scop : Entity_Id;
18570
18571 begin
18572 Scop := Scope (Typ);
18573 while Present (Scop)
18574 and then Scop /= Standard_Standard
18575 loop
18576 if Scop = Scope (Current_Scope) then
18577 return True;
18578 end if;
18579
18580 Scop := Scope (Scop);
18581 end loop;
18582
18583 return False;
18584 end Is_Local_Type;
18585
18586 -- Start of processing for Is_Visible_Component
18587
18588 begin
18589 if Ekind_In (C, E_Component, E_Discriminant) then
18590 Original_Comp := Original_Record_Component (C);
18591 end if;
18592
18593 if No (Original_Comp) then
18594
18595 -- Premature usage, or previous error
18596
18597 return False;
18598
18599 else
18600 Original_Type := Scope (Original_Comp);
18601 Type_Scope := Scope (Base_Type (Scope (C)));
18602 end if;
18603
18604 -- This test only concerns tagged types
18605
18606 if not Is_Tagged_Type (Original_Type) then
18607 return True;
18608
18609 -- If it is _Parent or _Tag, there is no visibility issue
18610
18611 elsif not Comes_From_Source (Original_Comp) then
18612 return True;
18613
18614 -- Discriminants are visible unless the (private) type has unknown
18615 -- discriminants. If the discriminant reference is inserted for a
18616 -- discriminant check on a full view it is also visible.
18617
18618 elsif Ekind (Original_Comp) = E_Discriminant
18619 and then
18620 (not Has_Unknown_Discriminants (Original_Type)
18621 or else (Present (N)
18622 and then Nkind (N) = N_Selected_Component
18623 and then Nkind (Prefix (N)) = N_Type_Conversion
18624 and then not Comes_From_Source (Prefix (N))))
18625 then
18626 return True;
18627
18628 -- In the body of an instantiation, check the visibility of a component
18629 -- in case it has a homograph that is a primitive operation of a private
18630 -- type which was not visible in the generic unit.
18631
18632 -- Should Is_Prefixed_Call be propagated from template to instance???
18633
18634 elsif In_Instance_Body then
18635 if not Is_Tagged_Type (Original_Type)
18636 or else not Is_Private_Type (Original_Type)
18637 then
18638 return True;
18639
18640 else
18641 declare
18642 Subp_Elmt : Elmt_Id;
18643
18644 begin
18645 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18646 while Present (Subp_Elmt) loop
18647
18648 -- The component is hidden by a primitive operation
18649
18650 if Chars (Node (Subp_Elmt)) = Chars (C) then
18651 return False;
18652 end if;
18653
18654 Next_Elmt (Subp_Elmt);
18655 end loop;
18656
18657 return True;
18658 end;
18659 end if;
18660
18661 -- If the component has been declared in an ancestor which is currently
18662 -- a private type, then it is not visible. The same applies if the
18663 -- component's containing type is not in an open scope and the original
18664 -- component's enclosing type is a visible full view of a private type
18665 -- (which can occur in cases where an attempt is being made to reference
18666 -- a component in a sibling package that is inherited from a visible
18667 -- component of a type in an ancestor package; the component in the
18668 -- sibling package should not be visible even though the component it
18669 -- inherited from is visible). This does not apply however in the case
18670 -- where the scope of the type is a private child unit, or when the
18671 -- parent comes from a local package in which the ancestor is currently
18672 -- visible. The latter suppression of visibility is needed for cases
18673 -- that are tested in B730006.
18674
18675 elsif Is_Private_Type (Original_Type)
18676 or else
18677 (not Is_Private_Descendant (Type_Scope)
18678 and then not In_Open_Scopes (Type_Scope)
18679 and then Has_Private_Declaration (Original_Type))
18680 then
18681 -- If the type derives from an entity in a formal package, there
18682 -- are no additional visible components.
18683
18684 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18685 N_Formal_Package_Declaration
18686 then
18687 return False;
18688
18689 -- if we are not in the private part of the current package, there
18690 -- are no additional visible components.
18691
18692 elsif Ekind (Scope (Current_Scope)) = E_Package
18693 and then not In_Private_Part (Scope (Current_Scope))
18694 then
18695 return False;
18696 else
18697 return
18698 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18699 and then In_Open_Scopes (Scope (Original_Type))
18700 and then Is_Local_Type (Type_Scope);
18701 end if;
18702
18703 -- There is another weird way in which a component may be invisible when
18704 -- the private and the full view are not derived from the same ancestor.
18705 -- Here is an example :
18706
18707 -- type A1 is tagged record F1 : integer; end record;
18708 -- type A2 is new A1 with record F2 : integer; end record;
18709 -- type T is new A1 with private;
18710 -- private
18711 -- type T is new A2 with null record;
18712
18713 -- In this case, the full view of T inherits F1 and F2 but the private
18714 -- view inherits only F1
18715
18716 else
18717 declare
18718 Ancestor : Entity_Id := Scope (C);
18719
18720 begin
18721 loop
18722 if Ancestor = Original_Type then
18723 return True;
18724
18725 -- The ancestor may have a partial view of the original type,
18726 -- but if the full view is in scope, as in a child body, the
18727 -- component is visible.
18728
18729 elsif In_Private_Part (Scope (Original_Type))
18730 and then Full_View (Ancestor) = Original_Type
18731 then
18732 return True;
18733
18734 elsif Ancestor = Etype (Ancestor) then
18735
18736 -- No further ancestors to examine
18737
18738 return False;
18739 end if;
18740
18741 Ancestor := Etype (Ancestor);
18742 end loop;
18743 end;
18744 end if;
18745 end Is_Visible_Component;
18746
18747 --------------------------
18748 -- Make_Class_Wide_Type --
18749 --------------------------
18750
18751 procedure Make_Class_Wide_Type (T : Entity_Id) is
18752 CW_Type : Entity_Id;
18753 CW_Name : Name_Id;
18754 Next_E : Entity_Id;
18755
18756 begin
18757 if Present (Class_Wide_Type (T)) then
18758
18759 -- The class-wide type is a partially decorated entity created for a
18760 -- unanalyzed tagged type referenced through a limited with clause.
18761 -- When the tagged type is analyzed, its class-wide type needs to be
18762 -- redecorated. Note that we reuse the entity created by Decorate_
18763 -- Tagged_Type in order to preserve all links.
18764
18765 if Materialize_Entity (Class_Wide_Type (T)) then
18766 CW_Type := Class_Wide_Type (T);
18767 Set_Materialize_Entity (CW_Type, False);
18768
18769 -- The class wide type can have been defined by the partial view, in
18770 -- which case everything is already done.
18771
18772 else
18773 return;
18774 end if;
18775
18776 -- Default case, we need to create a new class-wide type
18777
18778 else
18779 CW_Type :=
18780 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18781 end if;
18782
18783 -- Inherit root type characteristics
18784
18785 CW_Name := Chars (CW_Type);
18786 Next_E := Next_Entity (CW_Type);
18787 Copy_Node (T, CW_Type);
18788 Set_Comes_From_Source (CW_Type, False);
18789 Set_Chars (CW_Type, CW_Name);
18790 Set_Parent (CW_Type, Parent (T));
18791 Set_Next_Entity (CW_Type, Next_E);
18792
18793 -- Ensure we have a new freeze node for the class-wide type. The partial
18794 -- view may have freeze action of its own, requiring a proper freeze
18795 -- node, and the same freeze node cannot be shared between the two
18796 -- types.
18797
18798 Set_Has_Delayed_Freeze (CW_Type);
18799 Set_Freeze_Node (CW_Type, Empty);
18800
18801 -- Customize the class-wide type: It has no prim. op., it cannot be
18802 -- abstract, its Etype points back to the specific root type, and it
18803 -- cannot have any invariants.
18804
18805 Set_Ekind (CW_Type, E_Class_Wide_Type);
18806 Set_Is_Tagged_Type (CW_Type, True);
18807 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18808 Set_Is_Abstract_Type (CW_Type, False);
18809 Set_Is_Constrained (CW_Type, False);
18810 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18811 Set_Default_SSO (CW_Type);
18812 Set_Has_Inheritable_Invariants (CW_Type, False);
18813 Set_Has_Inherited_Invariants (CW_Type, False);
18814 Set_Has_Own_Invariants (CW_Type, False);
18815
18816 if Ekind (T) = E_Class_Wide_Subtype then
18817 Set_Etype (CW_Type, Etype (Base_Type (T)));
18818 else
18819 Set_Etype (CW_Type, T);
18820 end if;
18821
18822 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18823
18824 -- If this is the class_wide type of a constrained subtype, it does
18825 -- not have discriminants.
18826
18827 Set_Has_Discriminants (CW_Type,
18828 Has_Discriminants (T) and then not Is_Constrained (T));
18829
18830 Set_Has_Unknown_Discriminants (CW_Type, True);
18831 Set_Class_Wide_Type (T, CW_Type);
18832 Set_Equivalent_Type (CW_Type, Empty);
18833
18834 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18835
18836 Set_Class_Wide_Type (CW_Type, CW_Type);
18837 end Make_Class_Wide_Type;
18838
18839 ----------------
18840 -- Make_Index --
18841 ----------------
18842
18843 procedure Make_Index
18844 (N : Node_Id;
18845 Related_Nod : Node_Id;
18846 Related_Id : Entity_Id := Empty;
18847 Suffix_Index : Nat := 1;
18848 In_Iter_Schm : Boolean := False)
18849 is
18850 R : Node_Id;
18851 T : Entity_Id;
18852 Def_Id : Entity_Id := Empty;
18853 Found : Boolean := False;
18854
18855 begin
18856 -- For a discrete range used in a constrained array definition and
18857 -- defined by a range, an implicit conversion to the predefined type
18858 -- INTEGER is assumed if each bound is either a numeric literal, a named
18859 -- number, or an attribute, and the type of both bounds (prior to the
18860 -- implicit conversion) is the type universal_integer. Otherwise, both
18861 -- bounds must be of the same discrete type, other than universal
18862 -- integer; this type must be determinable independently of the
18863 -- context, but using the fact that the type must be discrete and that
18864 -- both bounds must have the same type.
18865
18866 -- Character literals also have a universal type in the absence of
18867 -- of additional context, and are resolved to Standard_Character.
18868
18869 if Nkind (N) = N_Range then
18870
18871 -- The index is given by a range constraint. The bounds are known
18872 -- to be of a consistent type.
18873
18874 if not Is_Overloaded (N) then
18875 T := Etype (N);
18876
18877 -- For universal bounds, choose the specific predefined type
18878
18879 if T = Universal_Integer then
18880 T := Standard_Integer;
18881
18882 elsif T = Any_Character then
18883 Ambiguous_Character (Low_Bound (N));
18884
18885 T := Standard_Character;
18886 end if;
18887
18888 -- The node may be overloaded because some user-defined operators
18889 -- are available, but if a universal interpretation exists it is
18890 -- also the selected one.
18891
18892 elsif Universal_Interpretation (N) = Universal_Integer then
18893 T := Standard_Integer;
18894
18895 else
18896 T := Any_Type;
18897
18898 declare
18899 Ind : Interp_Index;
18900 It : Interp;
18901
18902 begin
18903 Get_First_Interp (N, Ind, It);
18904 while Present (It.Typ) loop
18905 if Is_Discrete_Type (It.Typ) then
18906
18907 if Found
18908 and then not Covers (It.Typ, T)
18909 and then not Covers (T, It.Typ)
18910 then
18911 Error_Msg_N ("ambiguous bounds in discrete range", N);
18912 exit;
18913 else
18914 T := It.Typ;
18915 Found := True;
18916 end if;
18917 end if;
18918
18919 Get_Next_Interp (Ind, It);
18920 end loop;
18921
18922 if T = Any_Type then
18923 Error_Msg_N ("discrete type required for range", N);
18924 Set_Etype (N, Any_Type);
18925 return;
18926
18927 elsif T = Universal_Integer then
18928 T := Standard_Integer;
18929 end if;
18930 end;
18931 end if;
18932
18933 if not Is_Discrete_Type (T) then
18934 Error_Msg_N ("discrete type required for range", N);
18935 Set_Etype (N, Any_Type);
18936 return;
18937 end if;
18938
18939 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18940 and then Attribute_Name (Low_Bound (N)) = Name_First
18941 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18942 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18943 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18944 then
18945 -- The type of the index will be the type of the prefix, as long
18946 -- as the upper bound is 'Last of the same type.
18947
18948 Def_Id := Entity (Prefix (Low_Bound (N)));
18949
18950 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18951 or else Attribute_Name (High_Bound (N)) /= Name_Last
18952 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18953 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18954 then
18955 Def_Id := Empty;
18956 end if;
18957 end if;
18958
18959 R := N;
18960 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18961
18962 elsif Nkind (N) = N_Subtype_Indication then
18963
18964 -- The index is given by a subtype with a range constraint
18965
18966 T := Base_Type (Entity (Subtype_Mark (N)));
18967
18968 if not Is_Discrete_Type (T) then
18969 Error_Msg_N ("discrete type required for range", N);
18970 Set_Etype (N, Any_Type);
18971 return;
18972 end if;
18973
18974 R := Range_Expression (Constraint (N));
18975
18976 Resolve (R, T);
18977 Process_Range_Expr_In_Decl
18978 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18979
18980 elsif Nkind (N) = N_Attribute_Reference then
18981
18982 -- Catch beginner's error (use of attribute other than 'Range)
18983
18984 if Attribute_Name (N) /= Name_Range then
18985 Error_Msg_N ("expect attribute ''Range", N);
18986 Set_Etype (N, Any_Type);
18987 return;
18988 end if;
18989
18990 -- If the node denotes the range of a type mark, that is also the
18991 -- resulting type, and we do not need to create an Itype for it.
18992
18993 if Is_Entity_Name (Prefix (N))
18994 and then Comes_From_Source (N)
18995 and then Is_Type (Entity (Prefix (N)))
18996 and then Is_Discrete_Type (Entity (Prefix (N)))
18997 then
18998 Def_Id := Entity (Prefix (N));
18999 end if;
19000
19001 Analyze_And_Resolve (N);
19002 T := Etype (N);
19003 R := N;
19004
19005 -- If none of the above, must be a subtype. We convert this to a
19006 -- range attribute reference because in the case of declared first
19007 -- named subtypes, the types in the range reference can be different
19008 -- from the type of the entity. A range attribute normalizes the
19009 -- reference and obtains the correct types for the bounds.
19010
19011 -- This transformation is in the nature of an expansion, is only
19012 -- done if expansion is active. In particular, it is not done on
19013 -- formal generic types, because we need to retain the name of the
19014 -- original index for instantiation purposes.
19015
19016 else
19017 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19018 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19019 Set_Etype (N, Any_Integer);
19020 return;
19021
19022 else
19023 -- The type mark may be that of an incomplete type. It is only
19024 -- now that we can get the full view, previous analysis does
19025 -- not look specifically for a type mark.
19026
19027 Set_Entity (N, Get_Full_View (Entity (N)));
19028 Set_Etype (N, Entity (N));
19029 Def_Id := Entity (N);
19030
19031 if not Is_Discrete_Type (Def_Id) then
19032 Error_Msg_N ("discrete type required for index", N);
19033 Set_Etype (N, Any_Type);
19034 return;
19035 end if;
19036 end if;
19037
19038 if Expander_Active then
19039 Rewrite (N,
19040 Make_Attribute_Reference (Sloc (N),
19041 Attribute_Name => Name_Range,
19042 Prefix => Relocate_Node (N)));
19043
19044 -- The original was a subtype mark that does not freeze. This
19045 -- means that the rewritten version must not freeze either.
19046
19047 Set_Must_Not_Freeze (N);
19048 Set_Must_Not_Freeze (Prefix (N));
19049 Analyze_And_Resolve (N);
19050 T := Etype (N);
19051 R := N;
19052
19053 -- If expander is inactive, type is legal, nothing else to construct
19054
19055 else
19056 return;
19057 end if;
19058 end if;
19059
19060 if not Is_Discrete_Type (T) then
19061 Error_Msg_N ("discrete type required for range", N);
19062 Set_Etype (N, Any_Type);
19063 return;
19064
19065 elsif T = Any_Type then
19066 Set_Etype (N, Any_Type);
19067 return;
19068 end if;
19069
19070 -- We will now create the appropriate Itype to describe the range, but
19071 -- first a check. If we originally had a subtype, then we just label
19072 -- the range with this subtype. Not only is there no need to construct
19073 -- a new subtype, but it is wrong to do so for two reasons:
19074
19075 -- 1. A legality concern, if we have a subtype, it must not freeze,
19076 -- and the Itype would cause freezing incorrectly
19077
19078 -- 2. An efficiency concern, if we created an Itype, it would not be
19079 -- recognized as the same type for the purposes of eliminating
19080 -- checks in some circumstances.
19081
19082 -- We signal this case by setting the subtype entity in Def_Id
19083
19084 if No (Def_Id) then
19085 Def_Id :=
19086 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19087 Set_Etype (Def_Id, Base_Type (T));
19088
19089 if Is_Signed_Integer_Type (T) then
19090 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19091
19092 elsif Is_Modular_Integer_Type (T) then
19093 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19094
19095 else
19096 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19097 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19098 Set_First_Literal (Def_Id, First_Literal (T));
19099 end if;
19100
19101 Set_Size_Info (Def_Id, (T));
19102 Set_RM_Size (Def_Id, RM_Size (T));
19103 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19104
19105 Set_Scalar_Range (Def_Id, R);
19106 Conditional_Delay (Def_Id, T);
19107
19108 if Nkind (N) = N_Subtype_Indication then
19109 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19110 end if;
19111
19112 -- In the subtype indication case, if the immediate parent of the
19113 -- new subtype is non-static, then the subtype we create is non-
19114 -- static, even if its bounds are static.
19115
19116 if Nkind (N) = N_Subtype_Indication
19117 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19118 then
19119 Set_Is_Non_Static_Subtype (Def_Id);
19120 end if;
19121 end if;
19122
19123 -- Final step is to label the index with this constructed type
19124
19125 Set_Etype (N, Def_Id);
19126 end Make_Index;
19127
19128 ------------------------------
19129 -- Modular_Type_Declaration --
19130 ------------------------------
19131
19132 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19133 Mod_Expr : constant Node_Id := Expression (Def);
19134 M_Val : Uint;
19135
19136 procedure Set_Modular_Size (Bits : Int);
19137 -- Sets RM_Size to Bits, and Esize to normal word size above this
19138
19139 ----------------------
19140 -- Set_Modular_Size --
19141 ----------------------
19142
19143 procedure Set_Modular_Size (Bits : Int) is
19144 begin
19145 Set_RM_Size (T, UI_From_Int (Bits));
19146
19147 if Bits <= 8 then
19148 Init_Esize (T, 8);
19149
19150 elsif Bits <= 16 then
19151 Init_Esize (T, 16);
19152
19153 elsif Bits <= 32 then
19154 Init_Esize (T, 32);
19155
19156 else
19157 Init_Esize (T, System_Max_Binary_Modulus_Power);
19158 end if;
19159
19160 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19161 Set_Is_Known_Valid (T);
19162 end if;
19163 end Set_Modular_Size;
19164
19165 -- Start of processing for Modular_Type_Declaration
19166
19167 begin
19168 -- If the mod expression is (exactly) 2 * literal, where literal is
19169 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19170
19171 if Warn_On_Suspicious_Modulus_Value
19172 and then Nkind (Mod_Expr) = N_Op_Multiply
19173 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19174 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19175 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19176 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19177 then
19178 Error_Msg_N
19179 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19180 end if;
19181
19182 -- Proceed with analysis of mod expression
19183
19184 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19185 Set_Etype (T, T);
19186 Set_Ekind (T, E_Modular_Integer_Type);
19187 Init_Alignment (T);
19188 Set_Is_Constrained (T);
19189
19190 if not Is_OK_Static_Expression (Mod_Expr) then
19191 Flag_Non_Static_Expr
19192 ("non-static expression used for modular type bound!", Mod_Expr);
19193 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19194 else
19195 M_Val := Expr_Value (Mod_Expr);
19196 end if;
19197
19198 if M_Val < 1 then
19199 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19200 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19201 end if;
19202
19203 if M_Val > 2 ** Standard_Long_Integer_Size then
19204 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19205 end if;
19206
19207 Set_Modulus (T, M_Val);
19208
19209 -- Create bounds for the modular type based on the modulus given in
19210 -- the type declaration and then analyze and resolve those bounds.
19211
19212 Set_Scalar_Range (T,
19213 Make_Range (Sloc (Mod_Expr),
19214 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19215 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19216
19217 -- Properly analyze the literals for the range. We do this manually
19218 -- because we can't go calling Resolve, since we are resolving these
19219 -- bounds with the type, and this type is certainly not complete yet.
19220
19221 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19222 Set_Etype (High_Bound (Scalar_Range (T)), T);
19223 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19224 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19225
19226 -- Loop through powers of two to find number of bits required
19227
19228 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19229
19230 -- Binary case
19231
19232 if M_Val = 2 ** Bits then
19233 Set_Modular_Size (Bits);
19234 return;
19235
19236 -- Nonbinary case
19237
19238 elsif M_Val < 2 ** Bits then
19239 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19240 Set_Non_Binary_Modulus (T);
19241
19242 if Bits > System_Max_Nonbinary_Modulus_Power then
19243 Error_Msg_Uint_1 :=
19244 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19245 Error_Msg_F
19246 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19247 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19248 return;
19249
19250 else
19251 -- In the nonbinary case, set size as per RM 13.3(55)
19252
19253 Set_Modular_Size (Bits);
19254 return;
19255 end if;
19256 end if;
19257
19258 end loop;
19259
19260 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19261 -- so we just signal an error and set the maximum size.
19262
19263 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19264 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19265
19266 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19267 Init_Alignment (T);
19268
19269 end Modular_Type_Declaration;
19270
19271 --------------------------
19272 -- New_Concatenation_Op --
19273 --------------------------
19274
19275 procedure New_Concatenation_Op (Typ : Entity_Id) is
19276 Loc : constant Source_Ptr := Sloc (Typ);
19277 Op : Entity_Id;
19278
19279 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19280 -- Create abbreviated declaration for the formal of a predefined
19281 -- Operator 'Op' of type 'Typ'
19282
19283 --------------------
19284 -- Make_Op_Formal --
19285 --------------------
19286
19287 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19288 Formal : Entity_Id;
19289 begin
19290 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19291 Set_Etype (Formal, Typ);
19292 Set_Mechanism (Formal, Default_Mechanism);
19293 return Formal;
19294 end Make_Op_Formal;
19295
19296 -- Start of processing for New_Concatenation_Op
19297
19298 begin
19299 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19300
19301 Set_Ekind (Op, E_Operator);
19302 Set_Scope (Op, Current_Scope);
19303 Set_Etype (Op, Typ);
19304 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19305 Set_Is_Immediately_Visible (Op);
19306 Set_Is_Intrinsic_Subprogram (Op);
19307 Set_Has_Completion (Op);
19308 Append_Entity (Op, Current_Scope);
19309
19310 Set_Name_Entity_Id (Name_Op_Concat, Op);
19311
19312 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19313 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19314 end New_Concatenation_Op;
19315
19316 -------------------------
19317 -- OK_For_Limited_Init --
19318 -------------------------
19319
19320 -- ???Check all calls of this, and compare the conditions under which it's
19321 -- called.
19322
19323 function OK_For_Limited_Init
19324 (Typ : Entity_Id;
19325 Exp : Node_Id) return Boolean
19326 is
19327 begin
19328 return Is_CPP_Constructor_Call (Exp)
19329 or else (Ada_Version >= Ada_2005
19330 and then not Debug_Flag_Dot_L
19331 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19332 end OK_For_Limited_Init;
19333
19334 -------------------------------
19335 -- OK_For_Limited_Init_In_05 --
19336 -------------------------------
19337
19338 function OK_For_Limited_Init_In_05
19339 (Typ : Entity_Id;
19340 Exp : Node_Id) return Boolean
19341 is
19342 begin
19343 -- An object of a limited interface type can be initialized with any
19344 -- expression of a nonlimited descendant type. However this does not
19345 -- apply if this is a view conversion of some other expression. This
19346 -- is checked below.
19347
19348 if Is_Class_Wide_Type (Typ)
19349 and then Is_Limited_Interface (Typ)
19350 and then not Is_Limited_Type (Etype (Exp))
19351 and then Nkind (Exp) /= N_Type_Conversion
19352 then
19353 return True;
19354 end if;
19355
19356 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19357 -- case of limited aggregates (including extension aggregates), and
19358 -- function calls. The function call may have been given in prefixed
19359 -- notation, in which case the original node is an indexed component.
19360 -- If the function is parameterless, the original node was an explicit
19361 -- dereference. The function may also be parameterless, in which case
19362 -- the source node is just an identifier.
19363
19364 -- A branch of a conditional expression may have been removed if the
19365 -- condition is statically known. This happens during expansion, and
19366 -- thus will not happen if previous errors were encountered. The check
19367 -- will have been performed on the chosen branch, which replaces the
19368 -- original conditional expression.
19369
19370 if No (Exp) then
19371 return True;
19372 end if;
19373
19374 case Nkind (Original_Node (Exp)) is
19375 when N_Aggregate
19376 | N_Extension_Aggregate
19377 | N_Function_Call
19378 | N_Op
19379 =>
19380 return True;
19381
19382 when N_Identifier =>
19383 return Present (Entity (Original_Node (Exp)))
19384 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19385
19386 when N_Qualified_Expression =>
19387 return
19388 OK_For_Limited_Init_In_05
19389 (Typ, Expression (Original_Node (Exp)));
19390
19391 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19392 -- with a function call, the expander has rewritten the call into an
19393 -- N_Type_Conversion node to force displacement of the pointer to
19394 -- reference the component containing the secondary dispatch table.
19395 -- Otherwise a type conversion is not a legal context.
19396 -- A return statement for a build-in-place function returning a
19397 -- synchronized type also introduces an unchecked conversion.
19398
19399 when N_Type_Conversion
19400 | N_Unchecked_Type_Conversion
19401 =>
19402 return not Comes_From_Source (Exp)
19403 and then
19404 OK_For_Limited_Init_In_05
19405 (Typ, Expression (Original_Node (Exp)));
19406
19407 when N_Explicit_Dereference
19408 | N_Indexed_Component
19409 | N_Selected_Component
19410 =>
19411 return Nkind (Exp) = N_Function_Call;
19412
19413 -- A use of 'Input is a function call, hence allowed. Normally the
19414 -- attribute will be changed to a call, but the attribute by itself
19415 -- can occur with -gnatc.
19416
19417 when N_Attribute_Reference =>
19418 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19419
19420 -- "return raise ..." is OK
19421
19422 when N_Raise_Expression =>
19423 return True;
19424
19425 -- For a case expression, all dependent expressions must be legal
19426
19427 when N_Case_Expression =>
19428 declare
19429 Alt : Node_Id;
19430
19431 begin
19432 Alt := First (Alternatives (Original_Node (Exp)));
19433 while Present (Alt) loop
19434 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19435 return False;
19436 end if;
19437
19438 Next (Alt);
19439 end loop;
19440
19441 return True;
19442 end;
19443
19444 -- For an if expression, all dependent expressions must be legal
19445
19446 when N_If_Expression =>
19447 declare
19448 Then_Expr : constant Node_Id :=
19449 Next (First (Expressions (Original_Node (Exp))));
19450 Else_Expr : constant Node_Id := Next (Then_Expr);
19451 begin
19452 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19453 and then
19454 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19455 end;
19456
19457 when others =>
19458 return False;
19459 end case;
19460 end OK_For_Limited_Init_In_05;
19461
19462 -------------------------------------------
19463 -- Ordinary_Fixed_Point_Type_Declaration --
19464 -------------------------------------------
19465
19466 procedure Ordinary_Fixed_Point_Type_Declaration
19467 (T : Entity_Id;
19468 Def : Node_Id)
19469 is
19470 Loc : constant Source_Ptr := Sloc (Def);
19471 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19472 RRS : constant Node_Id := Real_Range_Specification (Def);
19473 Implicit_Base : Entity_Id;
19474 Delta_Val : Ureal;
19475 Small_Val : Ureal;
19476 Low_Val : Ureal;
19477 High_Val : Ureal;
19478
19479 begin
19480 Check_Restriction (No_Fixed_Point, Def);
19481
19482 -- Create implicit base type
19483
19484 Implicit_Base :=
19485 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19486 Set_Etype (Implicit_Base, Implicit_Base);
19487
19488 -- Analyze and process delta expression
19489
19490 Analyze_And_Resolve (Delta_Expr, Any_Real);
19491
19492 Check_Delta_Expression (Delta_Expr);
19493 Delta_Val := Expr_Value_R (Delta_Expr);
19494
19495 Set_Delta_Value (Implicit_Base, Delta_Val);
19496
19497 -- Compute default small from given delta, which is the largest power
19498 -- of two that does not exceed the given delta value.
19499
19500 declare
19501 Tmp : Ureal;
19502 Scale : Int;
19503
19504 begin
19505 Tmp := Ureal_1;
19506 Scale := 0;
19507
19508 if Delta_Val < Ureal_1 then
19509 while Delta_Val < Tmp loop
19510 Tmp := Tmp / Ureal_2;
19511 Scale := Scale + 1;
19512 end loop;
19513
19514 else
19515 loop
19516 Tmp := Tmp * Ureal_2;
19517 exit when Tmp > Delta_Val;
19518 Scale := Scale - 1;
19519 end loop;
19520 end if;
19521
19522 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19523 end;
19524
19525 Set_Small_Value (Implicit_Base, Small_Val);
19526
19527 -- If no range was given, set a dummy range
19528
19529 if RRS <= Empty_Or_Error then
19530 Low_Val := -Small_Val;
19531 High_Val := Small_Val;
19532
19533 -- Otherwise analyze and process given range
19534
19535 else
19536 declare
19537 Low : constant Node_Id := Low_Bound (RRS);
19538 High : constant Node_Id := High_Bound (RRS);
19539
19540 begin
19541 Analyze_And_Resolve (Low, Any_Real);
19542 Analyze_And_Resolve (High, Any_Real);
19543 Check_Real_Bound (Low);
19544 Check_Real_Bound (High);
19545
19546 -- Obtain and set the range
19547
19548 Low_Val := Expr_Value_R (Low);
19549 High_Val := Expr_Value_R (High);
19550
19551 if Low_Val > High_Val then
19552 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19553 end if;
19554 end;
19555 end if;
19556
19557 -- The range for both the implicit base and the declared first subtype
19558 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19559 -- set a temporary range in place. Note that the bounds of the base
19560 -- type will be widened to be symmetrical and to fill the available
19561 -- bits when the type is frozen.
19562
19563 -- We could do this with all discrete types, and probably should, but
19564 -- we absolutely have to do it for fixed-point, since the end-points
19565 -- of the range and the size are determined by the small value, which
19566 -- could be reset before the freeze point.
19567
19568 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19569 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19570
19571 -- Complete definition of first subtype. The inheritance of the rep item
19572 -- chain ensures that SPARK-related pragmas are not clobbered when the
19573 -- ordinary fixed point type acts as a full view of a private type.
19574
19575 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19576 Set_Etype (T, Implicit_Base);
19577 Init_Size_Align (T);
19578 Inherit_Rep_Item_Chain (T, Implicit_Base);
19579 Set_Small_Value (T, Small_Val);
19580 Set_Delta_Value (T, Delta_Val);
19581 Set_Is_Constrained (T);
19582 end Ordinary_Fixed_Point_Type_Declaration;
19583
19584 ----------------------------------
19585 -- Preanalyze_Assert_Expression --
19586 ----------------------------------
19587
19588 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19589 begin
19590 In_Assertion_Expr := In_Assertion_Expr + 1;
19591 Preanalyze_Spec_Expression (N, T);
19592 In_Assertion_Expr := In_Assertion_Expr - 1;
19593 end Preanalyze_Assert_Expression;
19594
19595 -----------------------------------
19596 -- Preanalyze_Default_Expression --
19597 -----------------------------------
19598
19599 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19600 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19601 begin
19602 In_Default_Expr := True;
19603 Preanalyze_Spec_Expression (N, T);
19604 In_Default_Expr := Save_In_Default_Expr;
19605 end Preanalyze_Default_Expression;
19606
19607 --------------------------------
19608 -- Preanalyze_Spec_Expression --
19609 --------------------------------
19610
19611 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19612 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19613 begin
19614 In_Spec_Expression := True;
19615 Preanalyze_And_Resolve (N, T);
19616 In_Spec_Expression := Save_In_Spec_Expression;
19617 end Preanalyze_Spec_Expression;
19618
19619 ----------------------------------------
19620 -- Prepare_Private_Subtype_Completion --
19621 ----------------------------------------
19622
19623 procedure Prepare_Private_Subtype_Completion
19624 (Id : Entity_Id;
19625 Related_Nod : Node_Id)
19626 is
19627 Id_B : constant Entity_Id := Base_Type (Id);
19628 Full_B : Entity_Id := Full_View (Id_B);
19629 Full : Entity_Id;
19630
19631 begin
19632 if Present (Full_B) then
19633
19634 -- Get to the underlying full view if necessary
19635
19636 if Is_Private_Type (Full_B)
19637 and then Present (Underlying_Full_View (Full_B))
19638 then
19639 Full_B := Underlying_Full_View (Full_B);
19640 end if;
19641
19642 -- The Base_Type is already completed, we can complete the subtype
19643 -- now. We have to create a new entity with the same name, Thus we
19644 -- can't use Create_Itype.
19645
19646 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19647 Set_Is_Itype (Full);
19648 Set_Associated_Node_For_Itype (Full, Related_Nod);
19649 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19650 end if;
19651
19652 -- The parent subtype may be private, but the base might not, in some
19653 -- nested instances. In that case, the subtype does not need to be
19654 -- exchanged. It would still be nice to make private subtypes and their
19655 -- bases consistent at all times ???
19656
19657 if Is_Private_Type (Id_B) then
19658 Append_Elmt (Id, Private_Dependents (Id_B));
19659 end if;
19660 end Prepare_Private_Subtype_Completion;
19661
19662 ---------------------------
19663 -- Process_Discriminants --
19664 ---------------------------
19665
19666 procedure Process_Discriminants
19667 (N : Node_Id;
19668 Prev : Entity_Id := Empty)
19669 is
19670 Elist : constant Elist_Id := New_Elmt_List;
19671 Id : Node_Id;
19672 Discr : Node_Id;
19673 Discr_Number : Uint;
19674 Discr_Type : Entity_Id;
19675 Default_Present : Boolean := False;
19676 Default_Not_Present : Boolean := False;
19677
19678 begin
19679 -- A composite type other than an array type can have discriminants.
19680 -- On entry, the current scope is the composite type.
19681
19682 -- The discriminants are initially entered into the scope of the type
19683 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19684 -- use, as explained at the end of this procedure.
19685
19686 Discr := First (Discriminant_Specifications (N));
19687 while Present (Discr) loop
19688 Enter_Name (Defining_Identifier (Discr));
19689
19690 -- For navigation purposes we add a reference to the discriminant
19691 -- in the entity for the type. If the current declaration is a
19692 -- completion, place references on the partial view. Otherwise the
19693 -- type is the current scope.
19694
19695 if Present (Prev) then
19696
19697 -- The references go on the partial view, if present. If the
19698 -- partial view has discriminants, the references have been
19699 -- generated already.
19700
19701 if not Has_Discriminants (Prev) then
19702 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19703 end if;
19704 else
19705 Generate_Reference
19706 (Current_Scope, Defining_Identifier (Discr), 'd');
19707 end if;
19708
19709 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19710 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19711
19712 -- Ada 2005 (AI-254)
19713
19714 if Present (Access_To_Subprogram_Definition
19715 (Discriminant_Type (Discr)))
19716 and then Protected_Present (Access_To_Subprogram_Definition
19717 (Discriminant_Type (Discr)))
19718 then
19719 Discr_Type :=
19720 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19721 end if;
19722
19723 else
19724 Find_Type (Discriminant_Type (Discr));
19725 Discr_Type := Etype (Discriminant_Type (Discr));
19726
19727 if Error_Posted (Discriminant_Type (Discr)) then
19728 Discr_Type := Any_Type;
19729 end if;
19730 end if;
19731
19732 -- Handling of discriminants that are access types
19733
19734 if Is_Access_Type (Discr_Type) then
19735
19736 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19737 -- limited record types
19738
19739 if Ada_Version < Ada_2005 then
19740 Check_Access_Discriminant_Requires_Limited
19741 (Discr, Discriminant_Type (Discr));
19742 end if;
19743
19744 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19745 Error_Msg_N
19746 ("(Ada 83) access discriminant not allowed", Discr);
19747 end if;
19748
19749 -- If not access type, must be a discrete type
19750
19751 elsif not Is_Discrete_Type (Discr_Type) then
19752 Error_Msg_N
19753 ("discriminants must have a discrete or access type",
19754 Discriminant_Type (Discr));
19755 end if;
19756
19757 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19758
19759 -- If a discriminant specification includes the assignment compound
19760 -- delimiter followed by an expression, the expression is the default
19761 -- expression of the discriminant; the default expression must be of
19762 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19763 -- a default expression, we do the special preanalysis, since this
19764 -- expression does not freeze (see section "Handling of Default and
19765 -- Per-Object Expressions" in spec of package Sem).
19766
19767 if Present (Expression (Discr)) then
19768 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19769
19770 -- Legaity checks
19771
19772 if Nkind (N) = N_Formal_Type_Declaration then
19773 Error_Msg_N
19774 ("discriminant defaults not allowed for formal type",
19775 Expression (Discr));
19776
19777 -- Flag an error for a tagged type with defaulted discriminants,
19778 -- excluding limited tagged types when compiling for Ada 2012
19779 -- (see AI05-0214).
19780
19781 elsif Is_Tagged_Type (Current_Scope)
19782 and then (not Is_Limited_Type (Current_Scope)
19783 or else Ada_Version < Ada_2012)
19784 and then Comes_From_Source (N)
19785 then
19786 -- Note: see similar test in Check_Or_Process_Discriminants, to
19787 -- handle the (illegal) case of the completion of an untagged
19788 -- view with discriminants with defaults by a tagged full view.
19789 -- We skip the check if Discr does not come from source, to
19790 -- account for the case of an untagged derived type providing
19791 -- defaults for a renamed discriminant from a private untagged
19792 -- ancestor with a tagged full view (ACATS B460006).
19793
19794 if Ada_Version >= Ada_2012 then
19795 Error_Msg_N
19796 ("discriminants of nonlimited tagged type cannot have"
19797 & " defaults",
19798 Expression (Discr));
19799 else
19800 Error_Msg_N
19801 ("discriminants of tagged type cannot have defaults",
19802 Expression (Discr));
19803 end if;
19804
19805 else
19806 Default_Present := True;
19807 Append_Elmt (Expression (Discr), Elist);
19808
19809 -- Tag the defining identifiers for the discriminants with
19810 -- their corresponding default expressions from the tree.
19811
19812 Set_Discriminant_Default_Value
19813 (Defining_Identifier (Discr), Expression (Discr));
19814 end if;
19815
19816 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19817 -- gets set unless we can be sure that no range check is required.
19818
19819 if (GNATprove_Mode or not Expander_Active)
19820 and then not
19821 Is_In_Range
19822 (Expression (Discr), Discr_Type, Assume_Valid => True)
19823 then
19824 Set_Do_Range_Check (Expression (Discr));
19825 end if;
19826
19827 -- No default discriminant value given
19828
19829 else
19830 Default_Not_Present := True;
19831 end if;
19832
19833 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19834 -- Discr_Type but with the null-exclusion attribute
19835
19836 if Ada_Version >= Ada_2005 then
19837
19838 -- Ada 2005 (AI-231): Static checks
19839
19840 if Can_Never_Be_Null (Discr_Type) then
19841 Null_Exclusion_Static_Checks (Discr);
19842
19843 elsif Is_Access_Type (Discr_Type)
19844 and then Null_Exclusion_Present (Discr)
19845
19846 -- No need to check itypes because in their case this check
19847 -- was done at their point of creation
19848
19849 and then not Is_Itype (Discr_Type)
19850 then
19851 if Can_Never_Be_Null (Discr_Type) then
19852 Error_Msg_NE
19853 ("`NOT NULL` not allowed (& already excludes null)",
19854 Discr,
19855 Discr_Type);
19856 end if;
19857
19858 Set_Etype (Defining_Identifier (Discr),
19859 Create_Null_Excluding_Itype
19860 (T => Discr_Type,
19861 Related_Nod => Discr));
19862
19863 -- Check for improper null exclusion if the type is otherwise
19864 -- legal for a discriminant.
19865
19866 elsif Null_Exclusion_Present (Discr)
19867 and then Is_Discrete_Type (Discr_Type)
19868 then
19869 Error_Msg_N
19870 ("null exclusion can only apply to an access type", Discr);
19871 end if;
19872
19873 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19874 -- can't have defaults. Synchronized types, or types that are
19875 -- explicitly limited are fine, but special tests apply to derived
19876 -- types in generics: in a generic body we have to assume the
19877 -- worst, and therefore defaults are not allowed if the parent is
19878 -- a generic formal private type (see ACATS B370001).
19879
19880 if Is_Access_Type (Discr_Type) and then Default_Present then
19881 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19882 or else Is_Limited_Record (Current_Scope)
19883 or else Is_Concurrent_Type (Current_Scope)
19884 or else Is_Concurrent_Record_Type (Current_Scope)
19885 or else Ekind (Current_Scope) = E_Limited_Private_Type
19886 then
19887 if not Is_Derived_Type (Current_Scope)
19888 or else not Is_Generic_Type (Etype (Current_Scope))
19889 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19890 or else Limited_Present
19891 (Type_Definition (Parent (Current_Scope)))
19892 then
19893 null;
19894
19895 else
19896 Error_Msg_N
19897 ("access discriminants of nonlimited types cannot "
19898 & "have defaults", Expression (Discr));
19899 end if;
19900
19901 elsif Present (Expression (Discr)) then
19902 Error_Msg_N
19903 ("(Ada 2005) access discriminants of nonlimited types "
19904 & "cannot have defaults", Expression (Discr));
19905 end if;
19906 end if;
19907 end if;
19908
19909 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19910 -- This check is relevant only when SPARK_Mode is on as it is not a
19911 -- standard Ada legality rule.
19912
19913 if SPARK_Mode = On
19914 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19915 then
19916 Error_Msg_N ("discriminant cannot be volatile", Discr);
19917 end if;
19918
19919 Next (Discr);
19920 end loop;
19921
19922 -- An element list consisting of the default expressions of the
19923 -- discriminants is constructed in the above loop and used to set
19924 -- the Discriminant_Constraint attribute for the type. If an object
19925 -- is declared of this (record or task) type without any explicit
19926 -- discriminant constraint given, this element list will form the
19927 -- actual parameters for the corresponding initialization procedure
19928 -- for the type.
19929
19930 Set_Discriminant_Constraint (Current_Scope, Elist);
19931 Set_Stored_Constraint (Current_Scope, No_Elist);
19932
19933 -- Default expressions must be provided either for all or for none
19934 -- of the discriminants of a discriminant part. (RM 3.7.1)
19935
19936 if Default_Present and then Default_Not_Present then
19937 Error_Msg_N
19938 ("incomplete specification of defaults for discriminants", N);
19939 end if;
19940
19941 -- The use of the name of a discriminant is not allowed in default
19942 -- expressions of a discriminant part if the specification of the
19943 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19944
19945 -- To detect this, the discriminant names are entered initially with an
19946 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19947 -- attempt to use a void entity (for example in an expression that is
19948 -- type-checked) produces the error message: premature usage. Now after
19949 -- completing the semantic analysis of the discriminant part, we can set
19950 -- the Ekind of all the discriminants appropriately.
19951
19952 Discr := First (Discriminant_Specifications (N));
19953 Discr_Number := Uint_1;
19954 while Present (Discr) loop
19955 Id := Defining_Identifier (Discr);
19956 Set_Ekind (Id, E_Discriminant);
19957 Init_Component_Location (Id);
19958 Init_Esize (Id);
19959 Set_Discriminant_Number (Id, Discr_Number);
19960
19961 -- Make sure this is always set, even in illegal programs
19962
19963 Set_Corresponding_Discriminant (Id, Empty);
19964
19965 -- Initialize the Original_Record_Component to the entity itself.
19966 -- Inherit_Components will propagate the right value to
19967 -- discriminants in derived record types.
19968
19969 Set_Original_Record_Component (Id, Id);
19970
19971 -- Create the discriminal for the discriminant
19972
19973 Build_Discriminal (Id);
19974
19975 Next (Discr);
19976 Discr_Number := Discr_Number + 1;
19977 end loop;
19978
19979 Set_Has_Discriminants (Current_Scope);
19980 end Process_Discriminants;
19981
19982 -----------------------
19983 -- Process_Full_View --
19984 -----------------------
19985
19986 -- WARNING: This routine manages Ghost regions. Return statements must be
19987 -- replaced by gotos which jump to the end of the routine and restore the
19988 -- Ghost mode.
19989
19990 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19991 procedure Collect_Implemented_Interfaces
19992 (Typ : Entity_Id;
19993 Ifaces : Elist_Id);
19994 -- Ada 2005: Gather all the interfaces that Typ directly or
19995 -- inherently implements. Duplicate entries are not added to
19996 -- the list Ifaces.
19997
19998 ------------------------------------
19999 -- Collect_Implemented_Interfaces --
20000 ------------------------------------
20001
20002 procedure Collect_Implemented_Interfaces
20003 (Typ : Entity_Id;
20004 Ifaces : Elist_Id)
20005 is
20006 Iface : Entity_Id;
20007 Iface_Elmt : Elmt_Id;
20008
20009 begin
20010 -- Abstract interfaces are only associated with tagged record types
20011
20012 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20013 return;
20014 end if;
20015
20016 -- Recursively climb to the ancestors
20017
20018 if Etype (Typ) /= Typ
20019
20020 -- Protect the frontend against wrong cyclic declarations like:
20021
20022 -- type B is new A with private;
20023 -- type C is new A with private;
20024 -- private
20025 -- type B is new C with null record;
20026 -- type C is new B with null record;
20027
20028 and then Etype (Typ) /= Priv_T
20029 and then Etype (Typ) /= Full_T
20030 then
20031 -- Keep separate the management of private type declarations
20032
20033 if Ekind (Typ) = E_Record_Type_With_Private then
20034
20035 -- Handle the following illegal usage:
20036 -- type Private_Type is tagged private;
20037 -- private
20038 -- type Private_Type is new Type_Implementing_Iface;
20039
20040 if Present (Full_View (Typ))
20041 and then Etype (Typ) /= Full_View (Typ)
20042 then
20043 if Is_Interface (Etype (Typ)) then
20044 Append_Unique_Elmt (Etype (Typ), Ifaces);
20045 end if;
20046
20047 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20048 end if;
20049
20050 -- Non-private types
20051
20052 else
20053 if Is_Interface (Etype (Typ)) then
20054 Append_Unique_Elmt (Etype (Typ), Ifaces);
20055 end if;
20056
20057 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20058 end if;
20059 end if;
20060
20061 -- Handle entities in the list of abstract interfaces
20062
20063 if Present (Interfaces (Typ)) then
20064 Iface_Elmt := First_Elmt (Interfaces (Typ));
20065 while Present (Iface_Elmt) loop
20066 Iface := Node (Iface_Elmt);
20067
20068 pragma Assert (Is_Interface (Iface));
20069
20070 if not Contain_Interface (Iface, Ifaces) then
20071 Append_Elmt (Iface, Ifaces);
20072 Collect_Implemented_Interfaces (Iface, Ifaces);
20073 end if;
20074
20075 Next_Elmt (Iface_Elmt);
20076 end loop;
20077 end if;
20078 end Collect_Implemented_Interfaces;
20079
20080 -- Local variables
20081
20082 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20083
20084 Full_Indic : Node_Id;
20085 Full_Parent : Entity_Id;
20086 Priv_Parent : Entity_Id;
20087
20088 -- Start of processing for Process_Full_View
20089
20090 begin
20091 Mark_And_Set_Ghost_Completion (N, Priv_T);
20092
20093 -- First some sanity checks that must be done after semantic
20094 -- decoration of the full view and thus cannot be placed with other
20095 -- similar checks in Find_Type_Name
20096
20097 if not Is_Limited_Type (Priv_T)
20098 and then (Is_Limited_Type (Full_T)
20099 or else Is_Limited_Composite (Full_T))
20100 then
20101 if In_Instance then
20102 null;
20103 else
20104 Error_Msg_N
20105 ("completion of nonlimited type cannot be limited", Full_T);
20106 Explain_Limited_Type (Full_T, Full_T);
20107 end if;
20108
20109 elsif Is_Abstract_Type (Full_T)
20110 and then not Is_Abstract_Type (Priv_T)
20111 then
20112 Error_Msg_N
20113 ("completion of nonabstract type cannot be abstract", Full_T);
20114
20115 elsif Is_Tagged_Type (Priv_T)
20116 and then Is_Limited_Type (Priv_T)
20117 and then not Is_Limited_Type (Full_T)
20118 then
20119 -- If pragma CPP_Class was applied to the private declaration
20120 -- propagate the limitedness to the full-view
20121
20122 if Is_CPP_Class (Priv_T) then
20123 Set_Is_Limited_Record (Full_T);
20124
20125 -- GNAT allow its own definition of Limited_Controlled to disobey
20126 -- this rule in order in ease the implementation. This test is safe
20127 -- because Root_Controlled is defined in a child of System that
20128 -- normal programs are not supposed to use.
20129
20130 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20131 Set_Is_Limited_Composite (Full_T);
20132 else
20133 Error_Msg_N
20134 ("completion of limited tagged type must be limited", Full_T);
20135 end if;
20136
20137 elsif Is_Generic_Type (Priv_T) then
20138 Error_Msg_N ("generic type cannot have a completion", Full_T);
20139 end if;
20140
20141 -- Check that ancestor interfaces of private and full views are
20142 -- consistent. We omit this check for synchronized types because
20143 -- they are performed on the corresponding record type when frozen.
20144
20145 if Ada_Version >= Ada_2005
20146 and then Is_Tagged_Type (Priv_T)
20147 and then Is_Tagged_Type (Full_T)
20148 and then not Is_Concurrent_Type (Full_T)
20149 then
20150 declare
20151 Iface : Entity_Id;
20152 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20153 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20154
20155 begin
20156 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20157 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20158
20159 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20160 -- an interface type if and only if the full type is descendant
20161 -- of the interface type (AARM 7.3 (7.3/2)).
20162
20163 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20164
20165 if Present (Iface) then
20166 Error_Msg_NE
20167 ("interface in partial view& not implemented by full type "
20168 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20169 end if;
20170
20171 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20172
20173 if Present (Iface) then
20174 Error_Msg_NE
20175 ("interface & not implemented by partial view "
20176 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20177 end if;
20178 end;
20179 end if;
20180
20181 if Is_Tagged_Type (Priv_T)
20182 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20183 and then Is_Derived_Type (Full_T)
20184 then
20185 Priv_Parent := Etype (Priv_T);
20186
20187 -- The full view of a private extension may have been transformed
20188 -- into an unconstrained derived type declaration and a subtype
20189 -- declaration (see build_derived_record_type for details).
20190
20191 if Nkind (N) = N_Subtype_Declaration then
20192 Full_Indic := Subtype_Indication (N);
20193 Full_Parent := Etype (Base_Type (Full_T));
20194 else
20195 Full_Indic := Subtype_Indication (Type_Definition (N));
20196 Full_Parent := Etype (Full_T);
20197 end if;
20198
20199 -- Check that the parent type of the full type is a descendant of
20200 -- the ancestor subtype given in the private extension. If either
20201 -- entity has an Etype equal to Any_Type then we had some previous
20202 -- error situation [7.3(8)].
20203
20204 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20205 goto Leave;
20206
20207 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20208 -- any order. Therefore we don't have to check that its parent must
20209 -- be a descendant of the parent of the private type declaration.
20210
20211 elsif Is_Interface (Priv_Parent)
20212 and then Is_Interface (Full_Parent)
20213 then
20214 null;
20215
20216 -- Ada 2005 (AI-251): If the parent of the private type declaration
20217 -- is an interface there is no need to check that it is an ancestor
20218 -- of the associated full type declaration. The required tests for
20219 -- this case are performed by Build_Derived_Record_Type.
20220
20221 elsif not Is_Interface (Base_Type (Priv_Parent))
20222 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20223 then
20224 Error_Msg_N
20225 ("parent of full type must descend from parent of private "
20226 & "extension", Full_Indic);
20227
20228 -- First check a formal restriction, and then proceed with checking
20229 -- Ada rules. Since the formal restriction is not a serious error, we
20230 -- don't prevent further error detection for this check, hence the
20231 -- ELSE.
20232
20233 else
20234 -- In formal mode, when completing a private extension the type
20235 -- named in the private part must be exactly the same as that
20236 -- named in the visible part.
20237
20238 if Priv_Parent /= Full_Parent then
20239 Error_Msg_Name_1 := Chars (Priv_Parent);
20240 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20241 end if;
20242
20243 -- Check the rules of 7.3(10): if the private extension inherits
20244 -- known discriminants, then the full type must also inherit those
20245 -- discriminants from the same (ancestor) type, and the parent
20246 -- subtype of the full type must be constrained if and only if
20247 -- the ancestor subtype of the private extension is constrained.
20248
20249 if No (Discriminant_Specifications (Parent (Priv_T)))
20250 and then not Has_Unknown_Discriminants (Priv_T)
20251 and then Has_Discriminants (Base_Type (Priv_Parent))
20252 then
20253 declare
20254 Priv_Indic : constant Node_Id :=
20255 Subtype_Indication (Parent (Priv_T));
20256
20257 Priv_Constr : constant Boolean :=
20258 Is_Constrained (Priv_Parent)
20259 or else
20260 Nkind (Priv_Indic) = N_Subtype_Indication
20261 or else
20262 Is_Constrained (Entity (Priv_Indic));
20263
20264 Full_Constr : constant Boolean :=
20265 Is_Constrained (Full_Parent)
20266 or else
20267 Nkind (Full_Indic) = N_Subtype_Indication
20268 or else
20269 Is_Constrained (Entity (Full_Indic));
20270
20271 Priv_Discr : Entity_Id;
20272 Full_Discr : Entity_Id;
20273
20274 begin
20275 Priv_Discr := First_Discriminant (Priv_Parent);
20276 Full_Discr := First_Discriminant (Full_Parent);
20277 while Present (Priv_Discr) and then Present (Full_Discr) loop
20278 if Original_Record_Component (Priv_Discr) =
20279 Original_Record_Component (Full_Discr)
20280 or else
20281 Corresponding_Discriminant (Priv_Discr) =
20282 Corresponding_Discriminant (Full_Discr)
20283 then
20284 null;
20285 else
20286 exit;
20287 end if;
20288
20289 Next_Discriminant (Priv_Discr);
20290 Next_Discriminant (Full_Discr);
20291 end loop;
20292
20293 if Present (Priv_Discr) or else Present (Full_Discr) then
20294 Error_Msg_N
20295 ("full view must inherit discriminants of the parent "
20296 & "type used in the private extension", Full_Indic);
20297
20298 elsif Priv_Constr and then not Full_Constr then
20299 Error_Msg_N
20300 ("parent subtype of full type must be constrained",
20301 Full_Indic);
20302
20303 elsif Full_Constr and then not Priv_Constr then
20304 Error_Msg_N
20305 ("parent subtype of full type must be unconstrained",
20306 Full_Indic);
20307 end if;
20308 end;
20309
20310 -- Check the rules of 7.3(12): if a partial view has neither
20311 -- known or unknown discriminants, then the full type
20312 -- declaration shall define a definite subtype.
20313
20314 elsif not Has_Unknown_Discriminants (Priv_T)
20315 and then not Has_Discriminants (Priv_T)
20316 and then not Is_Constrained (Full_T)
20317 then
20318 Error_Msg_N
20319 ("full view must define a constrained type if partial view "
20320 & "has no discriminants", Full_T);
20321 end if;
20322
20323 -- ??????? Do we implement the following properly ?????
20324 -- If the ancestor subtype of a private extension has constrained
20325 -- discriminants, then the parent subtype of the full view shall
20326 -- impose a statically matching constraint on those discriminants
20327 -- [7.3(13)].
20328 end if;
20329
20330 else
20331 -- For untagged types, verify that a type without discriminants is
20332 -- not completed with an unconstrained type. A separate error message
20333 -- is produced if the full type has defaulted discriminants.
20334
20335 if Is_Definite_Subtype (Priv_T)
20336 and then not Is_Definite_Subtype (Full_T)
20337 then
20338 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20339 Error_Msg_NE
20340 ("full view of& not compatible with declaration#",
20341 Full_T, Priv_T);
20342
20343 if not Is_Tagged_Type (Full_T) then
20344 Error_Msg_N
20345 ("\one is constrained, the other unconstrained", Full_T);
20346 end if;
20347 end if;
20348 end if;
20349
20350 -- AI-419: verify that the use of "limited" is consistent
20351
20352 declare
20353 Orig_Decl : constant Node_Id := Original_Node (N);
20354
20355 begin
20356 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20357 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20358 and then Nkind
20359 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20360 then
20361 if not Limited_Present (Parent (Priv_T))
20362 and then not Synchronized_Present (Parent (Priv_T))
20363 and then Limited_Present (Type_Definition (Orig_Decl))
20364 then
20365 Error_Msg_N
20366 ("full view of non-limited extension cannot be limited", N);
20367
20368 -- Conversely, if the partial view carries the limited keyword,
20369 -- the full view must as well, even if it may be redundant.
20370
20371 elsif Limited_Present (Parent (Priv_T))
20372 and then not Limited_Present (Type_Definition (Orig_Decl))
20373 then
20374 Error_Msg_N
20375 ("full view of limited extension must be explicitly limited",
20376 N);
20377 end if;
20378 end if;
20379 end;
20380
20381 -- Ada 2005 (AI-443): A synchronized private extension must be
20382 -- completed by a task or protected type.
20383
20384 if Ada_Version >= Ada_2005
20385 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20386 and then Synchronized_Present (Parent (Priv_T))
20387 and then not Is_Concurrent_Type (Full_T)
20388 then
20389 Error_Msg_N ("full view of synchronized extension must " &
20390 "be synchronized type", N);
20391 end if;
20392
20393 -- Ada 2005 AI-363: if the full view has discriminants with
20394 -- defaults, it is illegal to declare constrained access subtypes
20395 -- whose designated type is the current type. This allows objects
20396 -- of the type that are declared in the heap to be unconstrained.
20397
20398 if not Has_Unknown_Discriminants (Priv_T)
20399 and then not Has_Discriminants (Priv_T)
20400 and then Has_Discriminants (Full_T)
20401 and then
20402 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20403 then
20404 Set_Has_Constrained_Partial_View (Full_T);
20405 Set_Has_Constrained_Partial_View (Priv_T);
20406 end if;
20407
20408 -- Create a full declaration for all its subtypes recorded in
20409 -- Private_Dependents and swap them similarly to the base type. These
20410 -- are subtypes that have been define before the full declaration of
20411 -- the private type. We also swap the entry in Private_Dependents list
20412 -- so we can properly restore the private view on exit from the scope.
20413
20414 declare
20415 Priv_Elmt : Elmt_Id;
20416 Priv_Scop : Entity_Id;
20417 Priv : Entity_Id;
20418 Full : Entity_Id;
20419
20420 begin
20421 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20422 while Present (Priv_Elmt) loop
20423 Priv := Node (Priv_Elmt);
20424 Priv_Scop := Scope (Priv);
20425
20426 if Ekind_In (Priv, E_Private_Subtype,
20427 E_Limited_Private_Subtype,
20428 E_Record_Subtype_With_Private)
20429 then
20430 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20431 Set_Is_Itype (Full);
20432 Set_Parent (Full, Parent (Priv));
20433 Set_Associated_Node_For_Itype (Full, N);
20434
20435 -- Now we need to complete the private subtype, but since the
20436 -- base type has already been swapped, we must also swap the
20437 -- subtypes (and thus, reverse the arguments in the call to
20438 -- Complete_Private_Subtype). Also note that we may need to
20439 -- re-establish the scope of the private subtype.
20440
20441 Copy_And_Swap (Priv, Full);
20442
20443 if not In_Open_Scopes (Priv_Scop) then
20444 Push_Scope (Priv_Scop);
20445
20446 else
20447 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20448
20449 Priv_Scop := Empty;
20450 end if;
20451
20452 Complete_Private_Subtype (Full, Priv, Full_T, N);
20453
20454 if Present (Priv_Scop) then
20455 Pop_Scope;
20456 end if;
20457
20458 Replace_Elmt (Priv_Elmt, Full);
20459 end if;
20460
20461 Next_Elmt (Priv_Elmt);
20462 end loop;
20463 end;
20464
20465 -- If the private view was tagged, copy the new primitive operations
20466 -- from the private view to the full view.
20467
20468 if Is_Tagged_Type (Full_T) then
20469 declare
20470 Disp_Typ : Entity_Id;
20471 Full_List : Elist_Id;
20472 Prim : Entity_Id;
20473 Prim_Elmt : Elmt_Id;
20474 Priv_List : Elist_Id;
20475
20476 function Contains
20477 (E : Entity_Id;
20478 L : Elist_Id) return Boolean;
20479 -- Determine whether list L contains element E
20480
20481 --------------
20482 -- Contains --
20483 --------------
20484
20485 function Contains
20486 (E : Entity_Id;
20487 L : Elist_Id) return Boolean
20488 is
20489 List_Elmt : Elmt_Id;
20490
20491 begin
20492 List_Elmt := First_Elmt (L);
20493 while Present (List_Elmt) loop
20494 if Node (List_Elmt) = E then
20495 return True;
20496 end if;
20497
20498 Next_Elmt (List_Elmt);
20499 end loop;
20500
20501 return False;
20502 end Contains;
20503
20504 -- Start of processing
20505
20506 begin
20507 if Is_Tagged_Type (Priv_T) then
20508 Priv_List := Primitive_Operations (Priv_T);
20509 Prim_Elmt := First_Elmt (Priv_List);
20510
20511 -- In the case of a concurrent type completing a private tagged
20512 -- type, primitives may have been declared in between the two
20513 -- views. These subprograms need to be wrapped the same way
20514 -- entries and protected procedures are handled because they
20515 -- cannot be directly shared by the two views.
20516
20517 if Is_Concurrent_Type (Full_T) then
20518 declare
20519 Conc_Typ : constant Entity_Id :=
20520 Corresponding_Record_Type (Full_T);
20521 Curr_Nod : Node_Id := Parent (Conc_Typ);
20522 Wrap_Spec : Node_Id;
20523
20524 begin
20525 while Present (Prim_Elmt) loop
20526 Prim := Node (Prim_Elmt);
20527
20528 if Comes_From_Source (Prim)
20529 and then not Is_Abstract_Subprogram (Prim)
20530 then
20531 Wrap_Spec :=
20532 Make_Subprogram_Declaration (Sloc (Prim),
20533 Specification =>
20534 Build_Wrapper_Spec
20535 (Subp_Id => Prim,
20536 Obj_Typ => Conc_Typ,
20537 Formals =>
20538 Parameter_Specifications
20539 (Parent (Prim))));
20540
20541 Insert_After (Curr_Nod, Wrap_Spec);
20542 Curr_Nod := Wrap_Spec;
20543
20544 Analyze (Wrap_Spec);
20545
20546 -- Remove the wrapper from visibility to avoid
20547 -- spurious conflict with the wrapped entity.
20548
20549 Set_Is_Immediately_Visible
20550 (Defining_Entity (Specification (Wrap_Spec)),
20551 False);
20552 end if;
20553
20554 Next_Elmt (Prim_Elmt);
20555 end loop;
20556
20557 goto Leave;
20558 end;
20559
20560 -- For non-concurrent types, transfer explicit primitives, but
20561 -- omit those inherited from the parent of the private view
20562 -- since they will be re-inherited later on.
20563
20564 else
20565 Full_List := Primitive_Operations (Full_T);
20566
20567 while Present (Prim_Elmt) loop
20568 Prim := Node (Prim_Elmt);
20569
20570 if Comes_From_Source (Prim)
20571 and then not Contains (Prim, Full_List)
20572 then
20573 Append_Elmt (Prim, Full_List);
20574 end if;
20575
20576 Next_Elmt (Prim_Elmt);
20577 end loop;
20578 end if;
20579
20580 -- Untagged private view
20581
20582 else
20583 Full_List := Primitive_Operations (Full_T);
20584
20585 -- In this case the partial view is untagged, so here we locate
20586 -- all of the earlier primitives that need to be treated as
20587 -- dispatching (those that appear between the two views). Note
20588 -- that these additional operations must all be new operations
20589 -- (any earlier operations that override inherited operations
20590 -- of the full view will already have been inserted in the
20591 -- primitives list, marked by Check_Operation_From_Private_View
20592 -- as dispatching. Note that implicit "/=" operators are
20593 -- excluded from being added to the primitives list since they
20594 -- shouldn't be treated as dispatching (tagged "/=" is handled
20595 -- specially).
20596
20597 Prim := Next_Entity (Full_T);
20598 while Present (Prim) and then Prim /= Priv_T loop
20599 if Ekind_In (Prim, E_Procedure, E_Function) then
20600 Disp_Typ := Find_Dispatching_Type (Prim);
20601
20602 if Disp_Typ = Full_T
20603 and then (Chars (Prim) /= Name_Op_Ne
20604 or else Comes_From_Source (Prim))
20605 then
20606 Check_Controlling_Formals (Full_T, Prim);
20607
20608 if not Is_Dispatching_Operation (Prim) then
20609 Append_Elmt (Prim, Full_List);
20610 Set_Is_Dispatching_Operation (Prim, True);
20611 Set_DT_Position_Value (Prim, No_Uint);
20612 end if;
20613
20614 elsif Is_Dispatching_Operation (Prim)
20615 and then Disp_Typ /= Full_T
20616 then
20617
20618 -- Verify that it is not otherwise controlled by a
20619 -- formal or a return value of type T.
20620
20621 Check_Controlling_Formals (Disp_Typ, Prim);
20622 end if;
20623 end if;
20624
20625 Next_Entity (Prim);
20626 end loop;
20627 end if;
20628
20629 -- For the tagged case, the two views can share the same primitive
20630 -- operations list and the same class-wide type. Update attributes
20631 -- of the class-wide type which depend on the full declaration.
20632
20633 if Is_Tagged_Type (Priv_T) then
20634 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20635 Set_Class_Wide_Type
20636 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20637
20638 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20639 end if;
20640 end;
20641 end if;
20642
20643 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20644
20645 if Known_To_Have_Preelab_Init (Priv_T) then
20646
20647 -- Case where there is a pragma Preelaborable_Initialization. We
20648 -- always allow this in predefined units, which is cheating a bit,
20649 -- but it means we don't have to struggle to meet the requirements in
20650 -- the RM for having Preelaborable Initialization. Otherwise we
20651 -- require that the type meets the RM rules. But we can't check that
20652 -- yet, because of the rule about overriding Initialize, so we simply
20653 -- set a flag that will be checked at freeze time.
20654
20655 if not In_Predefined_Unit (Full_T) then
20656 Set_Must_Have_Preelab_Init (Full_T);
20657 end if;
20658 end if;
20659
20660 -- If pragma CPP_Class was applied to the private type declaration,
20661 -- propagate it now to the full type declaration.
20662
20663 if Is_CPP_Class (Priv_T) then
20664 Set_Is_CPP_Class (Full_T);
20665 Set_Convention (Full_T, Convention_CPP);
20666
20667 -- Check that components of imported CPP types do not have default
20668 -- expressions.
20669
20670 Check_CPP_Type_Has_No_Defaults (Full_T);
20671 end if;
20672
20673 -- If the private view has user specified stream attributes, then so has
20674 -- the full view.
20675
20676 -- Why the test, how could these flags be already set in Full_T ???
20677
20678 if Has_Specified_Stream_Read (Priv_T) then
20679 Set_Has_Specified_Stream_Read (Full_T);
20680 end if;
20681
20682 if Has_Specified_Stream_Write (Priv_T) then
20683 Set_Has_Specified_Stream_Write (Full_T);
20684 end if;
20685
20686 if Has_Specified_Stream_Input (Priv_T) then
20687 Set_Has_Specified_Stream_Input (Full_T);
20688 end if;
20689
20690 if Has_Specified_Stream_Output (Priv_T) then
20691 Set_Has_Specified_Stream_Output (Full_T);
20692 end if;
20693
20694 -- Propagate Default_Initial_Condition-related attributes from the
20695 -- partial view to the full view and its base type.
20696
20697 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20698 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20699
20700 -- Propagate invariant-related attributes from the partial view to the
20701 -- full view and its base type.
20702
20703 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20704 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20705
20706 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20707 -- in the full view without advertising the inheritance in the partial
20708 -- view. This can only occur when the partial view has no parent type
20709 -- and the full view has an interface as a parent. Any other scenarios
20710 -- are illegal because implemented interfaces must match between the
20711 -- two views.
20712
20713 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20714 declare
20715 Full_Par : constant Entity_Id := Etype (Full_T);
20716 Priv_Par : constant Entity_Id := Etype (Priv_T);
20717
20718 begin
20719 if not Is_Interface (Priv_Par)
20720 and then Is_Interface (Full_Par)
20721 and then Has_Inheritable_Invariants (Full_Par)
20722 then
20723 Error_Msg_N
20724 ("hidden inheritance of class-wide type invariants not "
20725 & "allowed", N);
20726 end if;
20727 end;
20728 end if;
20729
20730 -- Propagate predicates to full type, and predicate function if already
20731 -- defined. It is not clear that this can actually happen? the partial
20732 -- view cannot be frozen yet, and the predicate function has not been
20733 -- built. Still it is a cheap check and seems safer to make it.
20734
20735 if Has_Predicates (Priv_T) then
20736 Set_Has_Predicates (Full_T);
20737
20738 if Present (Predicate_Function (Priv_T)) then
20739 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20740 end if;
20741 end if;
20742
20743 <<Leave>>
20744 Restore_Ghost_Mode (Saved_GM);
20745 end Process_Full_View;
20746
20747 -----------------------------------
20748 -- Process_Incomplete_Dependents --
20749 -----------------------------------
20750
20751 procedure Process_Incomplete_Dependents
20752 (N : Node_Id;
20753 Full_T : Entity_Id;
20754 Inc_T : Entity_Id)
20755 is
20756 Inc_Elmt : Elmt_Id;
20757 Priv_Dep : Entity_Id;
20758 New_Subt : Entity_Id;
20759
20760 Disc_Constraint : Elist_Id;
20761
20762 begin
20763 if No (Private_Dependents (Inc_T)) then
20764 return;
20765 end if;
20766
20767 -- Itypes that may be generated by the completion of an incomplete
20768 -- subtype are not used by the back-end and not attached to the tree.
20769 -- They are created only for constraint-checking purposes.
20770
20771 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20772 while Present (Inc_Elmt) loop
20773 Priv_Dep := Node (Inc_Elmt);
20774
20775 if Ekind (Priv_Dep) = E_Subprogram_Type then
20776
20777 -- An Access_To_Subprogram type may have a return type or a
20778 -- parameter type that is incomplete. Replace with the full view.
20779
20780 if Etype (Priv_Dep) = Inc_T then
20781 Set_Etype (Priv_Dep, Full_T);
20782 end if;
20783
20784 declare
20785 Formal : Entity_Id;
20786
20787 begin
20788 Formal := First_Formal (Priv_Dep);
20789 while Present (Formal) loop
20790 if Etype (Formal) = Inc_T then
20791 Set_Etype (Formal, Full_T);
20792 end if;
20793
20794 Next_Formal (Formal);
20795 end loop;
20796 end;
20797
20798 elsif Is_Overloadable (Priv_Dep) then
20799
20800 -- If a subprogram in the incomplete dependents list is primitive
20801 -- for a tagged full type then mark it as a dispatching operation,
20802 -- check whether it overrides an inherited subprogram, and check
20803 -- restrictions on its controlling formals. Note that a protected
20804 -- operation is never dispatching: only its wrapper operation
20805 -- (which has convention Ada) is.
20806
20807 if Is_Tagged_Type (Full_T)
20808 and then Is_Primitive (Priv_Dep)
20809 and then Convention (Priv_Dep) /= Convention_Protected
20810 then
20811 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20812 Set_Is_Dispatching_Operation (Priv_Dep);
20813 Check_Controlling_Formals (Full_T, Priv_Dep);
20814 end if;
20815
20816 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20817
20818 -- Can happen during processing of a body before the completion
20819 -- of a TA type. Ignore, because spec is also on dependent list.
20820
20821 return;
20822
20823 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20824 -- corresponding subtype of the full view.
20825
20826 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20827 and then Comes_From_Source (Priv_Dep)
20828 then
20829 Set_Subtype_Indication
20830 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20831 Set_Etype (Priv_Dep, Full_T);
20832 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20833 Set_Analyzed (Parent (Priv_Dep), False);
20834
20835 -- Reanalyze the declaration, suppressing the call to Enter_Name
20836 -- to avoid duplicate names.
20837
20838 Analyze_Subtype_Declaration
20839 (N => Parent (Priv_Dep),
20840 Skip => True);
20841
20842 -- Dependent is a subtype
20843
20844 else
20845 -- We build a new subtype indication using the full view of the
20846 -- incomplete parent. The discriminant constraints have been
20847 -- elaborated already at the point of the subtype declaration.
20848
20849 New_Subt := Create_Itype (E_Void, N);
20850
20851 if Has_Discriminants (Full_T) then
20852 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20853 else
20854 Disc_Constraint := No_Elist;
20855 end if;
20856
20857 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20858 Set_Full_View (Priv_Dep, New_Subt);
20859 end if;
20860
20861 Next_Elmt (Inc_Elmt);
20862 end loop;
20863 end Process_Incomplete_Dependents;
20864
20865 --------------------------------
20866 -- Process_Range_Expr_In_Decl --
20867 --------------------------------
20868
20869 procedure Process_Range_Expr_In_Decl
20870 (R : Node_Id;
20871 T : Entity_Id;
20872 Subtyp : Entity_Id := Empty;
20873 Check_List : List_Id := Empty_List;
20874 R_Check_Off : Boolean := False;
20875 In_Iter_Schm : Boolean := False)
20876 is
20877 Lo, Hi : Node_Id;
20878 R_Checks : Check_Result;
20879 Insert_Node : Node_Id;
20880 Def_Id : Entity_Id;
20881
20882 begin
20883 Analyze_And_Resolve (R, Base_Type (T));
20884
20885 if Nkind (R) = N_Range then
20886
20887 -- In SPARK, all ranges should be static, with the exception of the
20888 -- discrete type definition of a loop parameter specification.
20889
20890 if not In_Iter_Schm
20891 and then not Is_OK_Static_Range (R)
20892 then
20893 Check_SPARK_05_Restriction ("range should be static", R);
20894 end if;
20895
20896 Lo := Low_Bound (R);
20897 Hi := High_Bound (R);
20898
20899 -- Validity checks on the range of a quantified expression are
20900 -- delayed until the construct is transformed into a loop.
20901
20902 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20903 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20904 then
20905 null;
20906
20907 -- We need to ensure validity of the bounds here, because if we
20908 -- go ahead and do the expansion, then the expanded code will get
20909 -- analyzed with range checks suppressed and we miss the check.
20910
20911 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20912 -- the temporaries generated by routine Remove_Side_Effects by means
20913 -- of validity checks must use the same names. When a range appears
20914 -- in the parent of a generic, the range is processed with checks
20915 -- disabled as part of the generic context and with checks enabled
20916 -- for code generation purposes. This leads to link issues as the
20917 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20918 -- template sees the temporaries generated by Remove_Side_Effects.
20919
20920 else
20921 Validity_Check_Range (R, Subtyp);
20922 end if;
20923
20924 -- If there were errors in the declaration, try and patch up some
20925 -- common mistakes in the bounds. The cases handled are literals
20926 -- which are Integer where the expected type is Real and vice versa.
20927 -- These corrections allow the compilation process to proceed further
20928 -- along since some basic assumptions of the format of the bounds
20929 -- are guaranteed.
20930
20931 if Etype (R) = Any_Type then
20932 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20933 Rewrite (Lo,
20934 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20935
20936 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20937 Rewrite (Hi,
20938 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20939
20940 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20941 Rewrite (Lo,
20942 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20943
20944 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20945 Rewrite (Hi,
20946 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20947 end if;
20948
20949 Set_Etype (Lo, T);
20950 Set_Etype (Hi, T);
20951 end if;
20952
20953 -- If the bounds of the range have been mistakenly given as string
20954 -- literals (perhaps in place of character literals), then an error
20955 -- has already been reported, but we rewrite the string literal as a
20956 -- bound of the range's type to avoid blowups in later processing
20957 -- that looks at static values.
20958
20959 if Nkind (Lo) = N_String_Literal then
20960 Rewrite (Lo,
20961 Make_Attribute_Reference (Sloc (Lo),
20962 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20963 Attribute_Name => Name_First));
20964 Analyze_And_Resolve (Lo);
20965 end if;
20966
20967 if Nkind (Hi) = N_String_Literal then
20968 Rewrite (Hi,
20969 Make_Attribute_Reference (Sloc (Hi),
20970 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20971 Attribute_Name => Name_First));
20972 Analyze_And_Resolve (Hi);
20973 end if;
20974
20975 -- If bounds aren't scalar at this point then exit, avoiding
20976 -- problems with further processing of the range in this procedure.
20977
20978 if not Is_Scalar_Type (Etype (Lo)) then
20979 return;
20980 end if;
20981
20982 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20983 -- then range of the base type. Here we check whether the bounds
20984 -- are in the range of the subtype itself. Note that if the bounds
20985 -- represent the null range the Constraint_Error exception should
20986 -- not be raised.
20987
20988 -- ??? The following code should be cleaned up as follows
20989
20990 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20991 -- is done in the call to Range_Check (R, T); below
20992
20993 -- 2. The use of R_Check_Off should be investigated and possibly
20994 -- removed, this would clean up things a bit.
20995
20996 if Is_Null_Range (Lo, Hi) then
20997 null;
20998
20999 else
21000 -- Capture values of bounds and generate temporaries for them
21001 -- if needed, before applying checks, since checks may cause
21002 -- duplication of the expression without forcing evaluation.
21003
21004 -- The forced evaluation removes side effects from expressions,
21005 -- which should occur also in GNATprove mode. Otherwise, we end up
21006 -- with unexpected insertions of actions at places where this is
21007 -- not supposed to occur, e.g. on default parameters of a call.
21008
21009 if Expander_Active or GNATprove_Mode then
21010
21011 -- Call Force_Evaluation to create declarations as needed to
21012 -- deal with side effects, and also create typ_FIRST/LAST
21013 -- entities for bounds if we have a subtype name.
21014
21015 -- Note: we do this transformation even if expansion is not
21016 -- active if we are in GNATprove_Mode since the transformation
21017 -- is in general required to ensure that the resulting tree has
21018 -- proper Ada semantics.
21019
21020 Force_Evaluation
21021 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21022 Force_Evaluation
21023 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21024 end if;
21025
21026 -- We use a flag here instead of suppressing checks on the type
21027 -- because the type we check against isn't necessarily the place
21028 -- where we put the check.
21029
21030 if not R_Check_Off then
21031 R_Checks := Get_Range_Checks (R, T);
21032
21033 -- Look up tree to find an appropriate insertion point. We
21034 -- can't just use insert_actions because later processing
21035 -- depends on the insertion node. Prior to Ada 2012 the
21036 -- insertion point could only be a declaration or a loop, but
21037 -- quantified expressions can appear within any context in an
21038 -- expression, and the insertion point can be any statement,
21039 -- pragma, or declaration.
21040
21041 Insert_Node := Parent (R);
21042 while Present (Insert_Node) loop
21043 exit when
21044 Nkind (Insert_Node) in N_Declaration
21045 and then
21046 not Nkind_In
21047 (Insert_Node, N_Component_Declaration,
21048 N_Loop_Parameter_Specification,
21049 N_Function_Specification,
21050 N_Procedure_Specification);
21051
21052 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21053 or else Nkind (Insert_Node) in
21054 N_Statement_Other_Than_Procedure_Call
21055 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21056 N_Pragma);
21057
21058 Insert_Node := Parent (Insert_Node);
21059 end loop;
21060
21061 -- Why would Type_Decl not be present??? Without this test,
21062 -- short regression tests fail.
21063
21064 if Present (Insert_Node) then
21065
21066 -- Case of loop statement. Verify that the range is part
21067 -- of the subtype indication of the iteration scheme.
21068
21069 if Nkind (Insert_Node) = N_Loop_Statement then
21070 declare
21071 Indic : Node_Id;
21072
21073 begin
21074 Indic := Parent (R);
21075 while Present (Indic)
21076 and then Nkind (Indic) /= N_Subtype_Indication
21077 loop
21078 Indic := Parent (Indic);
21079 end loop;
21080
21081 if Present (Indic) then
21082 Def_Id := Etype (Subtype_Mark (Indic));
21083
21084 Insert_Range_Checks
21085 (R_Checks,
21086 Insert_Node,
21087 Def_Id,
21088 Sloc (Insert_Node),
21089 R,
21090 Do_Before => True);
21091 end if;
21092 end;
21093
21094 -- Insertion before a declaration. If the declaration
21095 -- includes discriminants, the list of applicable checks
21096 -- is given by the caller.
21097
21098 elsif Nkind (Insert_Node) in N_Declaration then
21099 Def_Id := Defining_Identifier (Insert_Node);
21100
21101 if (Ekind (Def_Id) = E_Record_Type
21102 and then Depends_On_Discriminant (R))
21103 or else
21104 (Ekind (Def_Id) = E_Protected_Type
21105 and then Has_Discriminants (Def_Id))
21106 then
21107 Append_Range_Checks
21108 (R_Checks,
21109 Check_List, Def_Id, Sloc (Insert_Node), R);
21110
21111 else
21112 Insert_Range_Checks
21113 (R_Checks,
21114 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21115
21116 end if;
21117
21118 -- Insertion before a statement. Range appears in the
21119 -- context of a quantified expression. Insertion will
21120 -- take place when expression is expanded.
21121
21122 else
21123 null;
21124 end if;
21125 end if;
21126 end if;
21127 end if;
21128
21129 -- Case of other than an explicit N_Range node
21130
21131 -- The forced evaluation removes side effects from expressions, which
21132 -- should occur also in GNATprove mode. Otherwise, we end up with
21133 -- unexpected insertions of actions at places where this is not
21134 -- supposed to occur, e.g. on default parameters of a call.
21135
21136 elsif Expander_Active or GNATprove_Mode then
21137 Get_Index_Bounds (R, Lo, Hi);
21138 Force_Evaluation (Lo);
21139 Force_Evaluation (Hi);
21140 end if;
21141 end Process_Range_Expr_In_Decl;
21142
21143 --------------------------------------
21144 -- Process_Real_Range_Specification --
21145 --------------------------------------
21146
21147 procedure Process_Real_Range_Specification (Def : Node_Id) is
21148 Spec : constant Node_Id := Real_Range_Specification (Def);
21149 Lo : Node_Id;
21150 Hi : Node_Id;
21151 Err : Boolean := False;
21152
21153 procedure Analyze_Bound (N : Node_Id);
21154 -- Analyze and check one bound
21155
21156 -------------------
21157 -- Analyze_Bound --
21158 -------------------
21159
21160 procedure Analyze_Bound (N : Node_Id) is
21161 begin
21162 Analyze_And_Resolve (N, Any_Real);
21163
21164 if not Is_OK_Static_Expression (N) then
21165 Flag_Non_Static_Expr
21166 ("bound in real type definition is not static!", N);
21167 Err := True;
21168 end if;
21169 end Analyze_Bound;
21170
21171 -- Start of processing for Process_Real_Range_Specification
21172
21173 begin
21174 if Present (Spec) then
21175 Lo := Low_Bound (Spec);
21176 Hi := High_Bound (Spec);
21177 Analyze_Bound (Lo);
21178 Analyze_Bound (Hi);
21179
21180 -- If error, clear away junk range specification
21181
21182 if Err then
21183 Set_Real_Range_Specification (Def, Empty);
21184 end if;
21185 end if;
21186 end Process_Real_Range_Specification;
21187
21188 ---------------------
21189 -- Process_Subtype --
21190 ---------------------
21191
21192 function Process_Subtype
21193 (S : Node_Id;
21194 Related_Nod : Node_Id;
21195 Related_Id : Entity_Id := Empty;
21196 Suffix : Character := ' ') return Entity_Id
21197 is
21198 P : Node_Id;
21199 Def_Id : Entity_Id;
21200 Error_Node : Node_Id;
21201 Full_View_Id : Entity_Id;
21202 Subtype_Mark_Id : Entity_Id;
21203
21204 May_Have_Null_Exclusion : Boolean;
21205
21206 procedure Check_Incomplete (T : Node_Id);
21207 -- Called to verify that an incomplete type is not used prematurely
21208
21209 ----------------------
21210 -- Check_Incomplete --
21211 ----------------------
21212
21213 procedure Check_Incomplete (T : Node_Id) is
21214 begin
21215 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21216
21217 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21218 and then
21219 not (Ada_Version >= Ada_2005
21220 and then
21221 (Nkind (Parent (T)) = N_Subtype_Declaration
21222 or else (Nkind (Parent (T)) = N_Subtype_Indication
21223 and then Nkind (Parent (Parent (T))) =
21224 N_Subtype_Declaration)))
21225 then
21226 Error_Msg_N ("invalid use of type before its full declaration", T);
21227 end if;
21228 end Check_Incomplete;
21229
21230 -- Start of processing for Process_Subtype
21231
21232 begin
21233 -- Case of no constraints present
21234
21235 if Nkind (S) /= N_Subtype_Indication then
21236 Find_Type (S);
21237 Check_Incomplete (S);
21238 P := Parent (S);
21239
21240 -- Ada 2005 (AI-231): Static check
21241
21242 if Ada_Version >= Ada_2005
21243 and then Present (P)
21244 and then Null_Exclusion_Present (P)
21245 and then Nkind (P) /= N_Access_To_Object_Definition
21246 and then not Is_Access_Type (Entity (S))
21247 then
21248 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21249 end if;
21250
21251 -- The following is ugly, can't we have a range or even a flag???
21252
21253 May_Have_Null_Exclusion :=
21254 Nkind_In (P, N_Access_Definition,
21255 N_Access_Function_Definition,
21256 N_Access_Procedure_Definition,
21257 N_Access_To_Object_Definition,
21258 N_Allocator,
21259 N_Component_Definition)
21260 or else
21261 Nkind_In (P, N_Derived_Type_Definition,
21262 N_Discriminant_Specification,
21263 N_Formal_Object_Declaration,
21264 N_Object_Declaration,
21265 N_Object_Renaming_Declaration,
21266 N_Parameter_Specification,
21267 N_Subtype_Declaration);
21268
21269 -- Create an Itype that is a duplicate of Entity (S) but with the
21270 -- null-exclusion attribute.
21271
21272 if May_Have_Null_Exclusion
21273 and then Is_Access_Type (Entity (S))
21274 and then Null_Exclusion_Present (P)
21275
21276 -- No need to check the case of an access to object definition.
21277 -- It is correct to define double not-null pointers.
21278
21279 -- Example:
21280 -- type Not_Null_Int_Ptr is not null access Integer;
21281 -- type Acc is not null access Not_Null_Int_Ptr;
21282
21283 and then Nkind (P) /= N_Access_To_Object_Definition
21284 then
21285 if Can_Never_Be_Null (Entity (S)) then
21286 case Nkind (Related_Nod) is
21287 when N_Full_Type_Declaration =>
21288 if Nkind (Type_Definition (Related_Nod))
21289 in N_Array_Type_Definition
21290 then
21291 Error_Node :=
21292 Subtype_Indication
21293 (Component_Definition
21294 (Type_Definition (Related_Nod)));
21295 else
21296 Error_Node :=
21297 Subtype_Indication (Type_Definition (Related_Nod));
21298 end if;
21299
21300 when N_Subtype_Declaration =>
21301 Error_Node := Subtype_Indication (Related_Nod);
21302
21303 when N_Object_Declaration =>
21304 Error_Node := Object_Definition (Related_Nod);
21305
21306 when N_Component_Declaration =>
21307 Error_Node :=
21308 Subtype_Indication (Component_Definition (Related_Nod));
21309
21310 when N_Allocator =>
21311 Error_Node := Expression (Related_Nod);
21312
21313 when others =>
21314 pragma Assert (False);
21315 Error_Node := Related_Nod;
21316 end case;
21317
21318 Error_Msg_NE
21319 ("`NOT NULL` not allowed (& already excludes null)",
21320 Error_Node,
21321 Entity (S));
21322 end if;
21323
21324 Set_Etype (S,
21325 Create_Null_Excluding_Itype
21326 (T => Entity (S),
21327 Related_Nod => P));
21328 Set_Entity (S, Etype (S));
21329 end if;
21330
21331 return Entity (S);
21332
21333 -- Case of constraint present, so that we have an N_Subtype_Indication
21334 -- node (this node is created only if constraints are present).
21335
21336 else
21337 Find_Type (Subtype_Mark (S));
21338
21339 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21340 and then not
21341 (Nkind (Parent (S)) = N_Subtype_Declaration
21342 and then Is_Itype (Defining_Identifier (Parent (S))))
21343 then
21344 Check_Incomplete (Subtype_Mark (S));
21345 end if;
21346
21347 P := Parent (S);
21348 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21349
21350 -- Explicit subtype declaration case
21351
21352 if Nkind (P) = N_Subtype_Declaration then
21353 Def_Id := Defining_Identifier (P);
21354
21355 -- Explicit derived type definition case
21356
21357 elsif Nkind (P) = N_Derived_Type_Definition then
21358 Def_Id := Defining_Identifier (Parent (P));
21359
21360 -- Implicit case, the Def_Id must be created as an implicit type.
21361 -- The one exception arises in the case of concurrent types, array
21362 -- and access types, where other subsidiary implicit types may be
21363 -- created and must appear before the main implicit type. In these
21364 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21365 -- has not yet been called to create Def_Id.
21366
21367 else
21368 if Is_Array_Type (Subtype_Mark_Id)
21369 or else Is_Concurrent_Type (Subtype_Mark_Id)
21370 or else Is_Access_Type (Subtype_Mark_Id)
21371 then
21372 Def_Id := Empty;
21373
21374 -- For the other cases, we create a new unattached Itype,
21375 -- and set the indication to ensure it gets attached later.
21376
21377 else
21378 Def_Id :=
21379 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21380 end if;
21381 end if;
21382
21383 -- If the kind of constraint is invalid for this kind of type,
21384 -- then give an error, and then pretend no constraint was given.
21385
21386 if not Is_Valid_Constraint_Kind
21387 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21388 then
21389 Error_Msg_N
21390 ("incorrect constraint for this kind of type", Constraint (S));
21391
21392 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21393
21394 -- Set Ekind of orphan itype, to prevent cascaded errors
21395
21396 if Present (Def_Id) then
21397 Set_Ekind (Def_Id, Ekind (Any_Type));
21398 end if;
21399
21400 -- Make recursive call, having got rid of the bogus constraint
21401
21402 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21403 end if;
21404
21405 -- Remaining processing depends on type. Select on Base_Type kind to
21406 -- ensure getting to the concrete type kind in the case of a private
21407 -- subtype (needed when only doing semantic analysis).
21408
21409 case Ekind (Base_Type (Subtype_Mark_Id)) is
21410 when Access_Kind =>
21411
21412 -- If this is a constraint on a class-wide type, discard it.
21413 -- There is currently no way to express a partial discriminant
21414 -- constraint on a type with unknown discriminants. This is
21415 -- a pathology that the ACATS wisely decides not to test.
21416
21417 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21418 if Comes_From_Source (S) then
21419 Error_Msg_N
21420 ("constraint on class-wide type ignored??",
21421 Constraint (S));
21422 end if;
21423
21424 if Nkind (P) = N_Subtype_Declaration then
21425 Set_Subtype_Indication (P,
21426 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21427 end if;
21428
21429 return Subtype_Mark_Id;
21430 end if;
21431
21432 Constrain_Access (Def_Id, S, Related_Nod);
21433
21434 if Expander_Active
21435 and then Is_Itype (Designated_Type (Def_Id))
21436 and then Nkind (Related_Nod) = N_Subtype_Declaration
21437 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21438 then
21439 Build_Itype_Reference
21440 (Designated_Type (Def_Id), Related_Nod);
21441 end if;
21442
21443 when Array_Kind =>
21444 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21445
21446 when Decimal_Fixed_Point_Kind =>
21447 Constrain_Decimal (Def_Id, S);
21448
21449 when Enumeration_Kind =>
21450 Constrain_Enumeration (Def_Id, S);
21451 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21452
21453 when Ordinary_Fixed_Point_Kind =>
21454 Constrain_Ordinary_Fixed (Def_Id, S);
21455
21456 when Float_Kind =>
21457 Constrain_Float (Def_Id, S);
21458
21459 when Integer_Kind =>
21460 Constrain_Integer (Def_Id, S);
21461 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21462
21463 when Class_Wide_Kind
21464 | E_Incomplete_Type
21465 | E_Record_Subtype
21466 | E_Record_Type
21467 =>
21468 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21469
21470 if Ekind (Def_Id) = E_Incomplete_Type then
21471 Set_Private_Dependents (Def_Id, New_Elmt_List);
21472 end if;
21473
21474 when Private_Kind =>
21475 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21476
21477 -- The base type may be private but Def_Id may be a full view
21478 -- in an instance.
21479
21480 if Is_Private_Type (Def_Id) then
21481 Set_Private_Dependents (Def_Id, New_Elmt_List);
21482 end if;
21483
21484 -- In case of an invalid constraint prevent further processing
21485 -- since the type constructed is missing expected fields.
21486
21487 if Etype (Def_Id) = Any_Type then
21488 return Def_Id;
21489 end if;
21490
21491 -- If the full view is that of a task with discriminants,
21492 -- we must constrain both the concurrent type and its
21493 -- corresponding record type. Otherwise we will just propagate
21494 -- the constraint to the full view, if available.
21495
21496 if Present (Full_View (Subtype_Mark_Id))
21497 and then Has_Discriminants (Subtype_Mark_Id)
21498 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21499 then
21500 Full_View_Id :=
21501 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21502
21503 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21504 Constrain_Concurrent (Full_View_Id, S,
21505 Related_Nod, Related_Id, Suffix);
21506 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21507 Set_Full_View (Def_Id, Full_View_Id);
21508
21509 -- Introduce an explicit reference to the private subtype,
21510 -- to prevent scope anomalies in gigi if first use appears
21511 -- in a nested context, e.g. a later function body.
21512 -- Should this be generated in other contexts than a full
21513 -- type declaration?
21514
21515 if Is_Itype (Def_Id)
21516 and then
21517 Nkind (Parent (P)) = N_Full_Type_Declaration
21518 then
21519 Build_Itype_Reference (Def_Id, Parent (P));
21520 end if;
21521
21522 else
21523 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21524 end if;
21525
21526 when Concurrent_Kind =>
21527 Constrain_Concurrent (Def_Id, S,
21528 Related_Nod, Related_Id, Suffix);
21529
21530 when others =>
21531 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21532 end case;
21533
21534 -- Size and Convention are always inherited from the base type
21535
21536 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21537 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21538
21539 return Def_Id;
21540 end if;
21541 end Process_Subtype;
21542
21543 -----------------------------
21544 -- Record_Type_Declaration --
21545 -----------------------------
21546
21547 procedure Record_Type_Declaration
21548 (T : Entity_Id;
21549 N : Node_Id;
21550 Prev : Entity_Id)
21551 is
21552 Def : constant Node_Id := Type_Definition (N);
21553 Is_Tagged : Boolean;
21554 Tag_Comp : Entity_Id;
21555
21556 begin
21557 -- These flags must be initialized before calling Process_Discriminants
21558 -- because this routine makes use of them.
21559
21560 Set_Ekind (T, E_Record_Type);
21561 Set_Etype (T, T);
21562 Init_Size_Align (T);
21563 Set_Interfaces (T, No_Elist);
21564 Set_Stored_Constraint (T, No_Elist);
21565 Set_Default_SSO (T);
21566 Set_No_Reordering (T, No_Component_Reordering);
21567
21568 -- Normal case
21569
21570 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21571 if Limited_Present (Def) then
21572 Check_SPARK_05_Restriction ("limited is not allowed", N);
21573 end if;
21574
21575 if Abstract_Present (Def) then
21576 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21577 end if;
21578
21579 -- The flag Is_Tagged_Type might have already been set by
21580 -- Find_Type_Name if it detected an error for declaration T. This
21581 -- arises in the case of private tagged types where the full view
21582 -- omits the word tagged.
21583
21584 Is_Tagged :=
21585 Tagged_Present (Def)
21586 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21587
21588 Set_Is_Limited_Record (T, Limited_Present (Def));
21589
21590 if Is_Tagged then
21591 Set_Is_Tagged_Type (T, True);
21592 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21593 end if;
21594
21595 -- Type is abstract if full declaration carries keyword, or if
21596 -- previous partial view did.
21597
21598 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21599 or else Abstract_Present (Def));
21600
21601 else
21602 Check_SPARK_05_Restriction ("interface is not allowed", N);
21603
21604 Is_Tagged := True;
21605 Analyze_Interface_Declaration (T, Def);
21606
21607 if Present (Discriminant_Specifications (N)) then
21608 Error_Msg_N
21609 ("interface types cannot have discriminants",
21610 Defining_Identifier
21611 (First (Discriminant_Specifications (N))));
21612 end if;
21613 end if;
21614
21615 -- First pass: if there are self-referential access components,
21616 -- create the required anonymous access type declarations, and if
21617 -- need be an incomplete type declaration for T itself.
21618
21619 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21620
21621 if Ada_Version >= Ada_2005
21622 and then Present (Interface_List (Def))
21623 then
21624 Check_Interfaces (N, Def);
21625
21626 declare
21627 Ifaces_List : Elist_Id;
21628
21629 begin
21630 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21631 -- already in the parents.
21632
21633 Collect_Interfaces
21634 (T => T,
21635 Ifaces_List => Ifaces_List,
21636 Exclude_Parents => True);
21637
21638 Set_Interfaces (T, Ifaces_List);
21639 end;
21640 end if;
21641
21642 -- Records constitute a scope for the component declarations within.
21643 -- The scope is created prior to the processing of these declarations.
21644 -- Discriminants are processed first, so that they are visible when
21645 -- processing the other components. The Ekind of the record type itself
21646 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21647
21648 -- Enter record scope
21649
21650 Push_Scope (T);
21651
21652 -- If an incomplete or private type declaration was already given for
21653 -- the type, then this scope already exists, and the discriminants have
21654 -- been declared within. We must verify that the full declaration
21655 -- matches the incomplete one.
21656
21657 Check_Or_Process_Discriminants (N, T, Prev);
21658
21659 Set_Is_Constrained (T, not Has_Discriminants (T));
21660 Set_Has_Delayed_Freeze (T, True);
21661
21662 -- For tagged types add a manually analyzed component corresponding
21663 -- to the component _tag, the corresponding piece of tree will be
21664 -- expanded as part of the freezing actions if it is not a CPP_Class.
21665
21666 if Is_Tagged then
21667
21668 -- Do not add the tag unless we are in expansion mode
21669
21670 if Expander_Active then
21671 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21672 Enter_Name (Tag_Comp);
21673
21674 Set_Ekind (Tag_Comp, E_Component);
21675 Set_Is_Tag (Tag_Comp);
21676 Set_Is_Aliased (Tag_Comp);
21677 Set_Etype (Tag_Comp, RTE (RE_Tag));
21678 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21679 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21680 Init_Component_Location (Tag_Comp);
21681
21682 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21683 -- implemented interfaces.
21684
21685 if Has_Interfaces (T) then
21686 Add_Interface_Tag_Components (N, T);
21687 end if;
21688 end if;
21689
21690 Make_Class_Wide_Type (T);
21691 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21692 end if;
21693
21694 -- We must suppress range checks when processing record components in
21695 -- the presence of discriminants, since we don't want spurious checks to
21696 -- be generated during their analysis, but Suppress_Range_Checks flags
21697 -- must be reset the after processing the record definition.
21698
21699 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21700 -- couldn't we just use the normal range check suppression method here.
21701 -- That would seem cleaner ???
21702
21703 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21704 Set_Kill_Range_Checks (T, True);
21705 Record_Type_Definition (Def, Prev);
21706 Set_Kill_Range_Checks (T, False);
21707 else
21708 Record_Type_Definition (Def, Prev);
21709 end if;
21710
21711 -- Exit from record scope
21712
21713 End_Scope;
21714
21715 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21716 -- the implemented interfaces and associate them an aliased entity.
21717
21718 if Is_Tagged
21719 and then not Is_Empty_List (Interface_List (Def))
21720 then
21721 Derive_Progenitor_Subprograms (T, T);
21722 end if;
21723
21724 Check_Function_Writable_Actuals (N);
21725 end Record_Type_Declaration;
21726
21727 ----------------------------
21728 -- Record_Type_Definition --
21729 ----------------------------
21730
21731 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21732 Component : Entity_Id;
21733 Ctrl_Components : Boolean := False;
21734 Final_Storage_Only : Boolean;
21735 T : Entity_Id;
21736
21737 begin
21738 if Ekind (Prev_T) = E_Incomplete_Type then
21739 T := Full_View (Prev_T);
21740 else
21741 T := Prev_T;
21742 end if;
21743
21744 -- In SPARK, tagged types and type extensions may only be declared in
21745 -- the specification of library unit packages.
21746
21747 if Present (Def) and then Is_Tagged_Type (T) then
21748 declare
21749 Typ : Node_Id;
21750 Ctxt : Node_Id;
21751
21752 begin
21753 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21754 Typ := Parent (Def);
21755 else
21756 pragma Assert
21757 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21758 Typ := Parent (Parent (Def));
21759 end if;
21760
21761 Ctxt := Parent (Typ);
21762
21763 if Nkind (Ctxt) = N_Package_Body
21764 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21765 then
21766 Check_SPARK_05_Restriction
21767 ("type should be defined in package specification", Typ);
21768
21769 elsif Nkind (Ctxt) /= N_Package_Specification
21770 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21771 then
21772 Check_SPARK_05_Restriction
21773 ("type should be defined in library unit package", Typ);
21774 end if;
21775 end;
21776 end if;
21777
21778 Final_Storage_Only := not Is_Controlled_Active (T);
21779
21780 -- Ada 2005: Check whether an explicit Limited is present in a derived
21781 -- type declaration.
21782
21783 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21784 and then Limited_Present (Parent (Def))
21785 then
21786 Set_Is_Limited_Record (T);
21787 end if;
21788
21789 -- If the component list of a record type is defined by the reserved
21790 -- word null and there is no discriminant part, then the record type has
21791 -- no components and all records of the type are null records (RM 3.7)
21792 -- This procedure is also called to process the extension part of a
21793 -- record extension, in which case the current scope may have inherited
21794 -- components.
21795
21796 if No (Def)
21797 or else No (Component_List (Def))
21798 or else Null_Present (Component_List (Def))
21799 then
21800 if not Is_Tagged_Type (T) then
21801 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21802 end if;
21803
21804 else
21805 Analyze_Declarations (Component_Items (Component_List (Def)));
21806
21807 if Present (Variant_Part (Component_List (Def))) then
21808 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21809 Analyze (Variant_Part (Component_List (Def)));
21810 end if;
21811 end if;
21812
21813 -- After completing the semantic analysis of the record definition,
21814 -- record components, both new and inherited, are accessible. Set their
21815 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21816 -- whose Ekind may be void.
21817
21818 Component := First_Entity (Current_Scope);
21819 while Present (Component) loop
21820 if Ekind (Component) = E_Void
21821 and then not Is_Itype (Component)
21822 then
21823 Set_Ekind (Component, E_Component);
21824 Init_Component_Location (Component);
21825 end if;
21826
21827 Propagate_Concurrent_Flags (T, Etype (Component));
21828
21829 if Ekind (Component) /= E_Component then
21830 null;
21831
21832 -- Do not set Has_Controlled_Component on a class-wide equivalent
21833 -- type. See Make_CW_Equivalent_Type.
21834
21835 elsif not Is_Class_Wide_Equivalent_Type (T)
21836 and then (Has_Controlled_Component (Etype (Component))
21837 or else (Chars (Component) /= Name_uParent
21838 and then Is_Controlled_Active
21839 (Etype (Component))))
21840 then
21841 Set_Has_Controlled_Component (T, True);
21842 Final_Storage_Only :=
21843 Final_Storage_Only
21844 and then Finalize_Storage_Only (Etype (Component));
21845 Ctrl_Components := True;
21846 end if;
21847
21848 Next_Entity (Component);
21849 end loop;
21850
21851 -- A Type is Finalize_Storage_Only only if all its controlled components
21852 -- are also.
21853
21854 if Ctrl_Components then
21855 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21856 end if;
21857
21858 -- Place reference to end record on the proper entity, which may
21859 -- be a partial view.
21860
21861 if Present (Def) then
21862 Process_End_Label (Def, 'e', Prev_T);
21863 end if;
21864 end Record_Type_Definition;
21865
21866 ------------------------
21867 -- Replace_Components --
21868 ------------------------
21869
21870 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21871 function Process (N : Node_Id) return Traverse_Result;
21872
21873 -------------
21874 -- Process --
21875 -------------
21876
21877 function Process (N : Node_Id) return Traverse_Result is
21878 Comp : Entity_Id;
21879
21880 begin
21881 if Nkind (N) = N_Discriminant_Specification then
21882 Comp := First_Discriminant (Typ);
21883 while Present (Comp) loop
21884 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21885 Set_Defining_Identifier (N, Comp);
21886 exit;
21887 end if;
21888
21889 Next_Discriminant (Comp);
21890 end loop;
21891
21892 elsif Nkind (N) = N_Component_Declaration then
21893 Comp := First_Component (Typ);
21894 while Present (Comp) loop
21895 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21896 Set_Defining_Identifier (N, Comp);
21897 exit;
21898 end if;
21899
21900 Next_Component (Comp);
21901 end loop;
21902 end if;
21903
21904 return OK;
21905 end Process;
21906
21907 procedure Replace is new Traverse_Proc (Process);
21908
21909 -- Start of processing for Replace_Components
21910
21911 begin
21912 Replace (Decl);
21913 end Replace_Components;
21914
21915 -------------------------------
21916 -- Set_Completion_Referenced --
21917 -------------------------------
21918
21919 procedure Set_Completion_Referenced (E : Entity_Id) is
21920 begin
21921 -- If in main unit, mark entity that is a completion as referenced,
21922 -- warnings go on the partial view when needed.
21923
21924 if In_Extended_Main_Source_Unit (E) then
21925 Set_Referenced (E);
21926 end if;
21927 end Set_Completion_Referenced;
21928
21929 ---------------------
21930 -- Set_Default_SSO --
21931 ---------------------
21932
21933 procedure Set_Default_SSO (T : Entity_Id) is
21934 begin
21935 case Opt.Default_SSO is
21936 when ' ' =>
21937 null;
21938 when 'L' =>
21939 Set_SSO_Set_Low_By_Default (T, True);
21940 when 'H' =>
21941 Set_SSO_Set_High_By_Default (T, True);
21942 when others =>
21943 raise Program_Error;
21944 end case;
21945 end Set_Default_SSO;
21946
21947 ---------------------
21948 -- Set_Fixed_Range --
21949 ---------------------
21950
21951 -- The range for fixed-point types is complicated by the fact that we
21952 -- do not know the exact end points at the time of the declaration. This
21953 -- is true for three reasons:
21954
21955 -- A size clause may affect the fudging of the end-points.
21956 -- A small clause may affect the values of the end-points.
21957 -- We try to include the end-points if it does not affect the size.
21958
21959 -- This means that the actual end-points must be established at the
21960 -- point when the type is frozen. Meanwhile, we first narrow the range
21961 -- as permitted (so that it will fit if necessary in a small specified
21962 -- size), and then build a range subtree with these narrowed bounds.
21963 -- Set_Fixed_Range constructs the range from real literal values, and
21964 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21965
21966 -- The parent of this range is set to point to the entity so that it is
21967 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21968 -- other scalar types, which are just pointers to the range in the
21969 -- original tree, this would otherwise be an orphan).
21970
21971 -- The tree is left unanalyzed. When the type is frozen, the processing
21972 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21973 -- analyzed, and uses this as an indication that it should complete
21974 -- work on the range (it will know the final small and size values).
21975
21976 procedure Set_Fixed_Range
21977 (E : Entity_Id;
21978 Loc : Source_Ptr;
21979 Lo : Ureal;
21980 Hi : Ureal)
21981 is
21982 S : constant Node_Id :=
21983 Make_Range (Loc,
21984 Low_Bound => Make_Real_Literal (Loc, Lo),
21985 High_Bound => Make_Real_Literal (Loc, Hi));
21986 begin
21987 Set_Scalar_Range (E, S);
21988 Set_Parent (S, E);
21989
21990 -- Before the freeze point, the bounds of a fixed point are universal
21991 -- and carry the corresponding type.
21992
21993 Set_Etype (Low_Bound (S), Universal_Real);
21994 Set_Etype (High_Bound (S), Universal_Real);
21995 end Set_Fixed_Range;
21996
21997 ----------------------------------
21998 -- Set_Scalar_Range_For_Subtype --
21999 ----------------------------------
22000
22001 procedure Set_Scalar_Range_For_Subtype
22002 (Def_Id : Entity_Id;
22003 R : Node_Id;
22004 Subt : Entity_Id)
22005 is
22006 Kind : constant Entity_Kind := Ekind (Def_Id);
22007
22008 begin
22009 -- Defend against previous error
22010
22011 if Nkind (R) = N_Error then
22012 return;
22013 end if;
22014
22015 Set_Scalar_Range (Def_Id, R);
22016
22017 -- We need to link the range into the tree before resolving it so
22018 -- that types that are referenced, including importantly the subtype
22019 -- itself, are properly frozen (Freeze_Expression requires that the
22020 -- expression be properly linked into the tree). Of course if it is
22021 -- already linked in, then we do not disturb the current link.
22022
22023 if No (Parent (R)) then
22024 Set_Parent (R, Def_Id);
22025 end if;
22026
22027 -- Reset the kind of the subtype during analysis of the range, to
22028 -- catch possible premature use in the bounds themselves.
22029
22030 Set_Ekind (Def_Id, E_Void);
22031 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22032 Set_Ekind (Def_Id, Kind);
22033 end Set_Scalar_Range_For_Subtype;
22034
22035 --------------------------------------------------------
22036 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22037 --------------------------------------------------------
22038
22039 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22040 (E : Entity_Id)
22041 is
22042 begin
22043 -- Make sure set if encountered during Expand_To_Stored_Constraint
22044
22045 Set_Stored_Constraint (E, No_Elist);
22046
22047 -- Give it the right value
22048
22049 if Is_Constrained (E) and then Has_Discriminants (E) then
22050 Set_Stored_Constraint (E,
22051 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22052 end if;
22053 end Set_Stored_Constraint_From_Discriminant_Constraint;
22054
22055 -------------------------------------
22056 -- Signed_Integer_Type_Declaration --
22057 -------------------------------------
22058
22059 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22060 Implicit_Base : Entity_Id;
22061 Base_Typ : Entity_Id;
22062 Lo_Val : Uint;
22063 Hi_Val : Uint;
22064 Errs : Boolean := False;
22065 Lo : Node_Id;
22066 Hi : Node_Id;
22067
22068 function Can_Derive_From (E : Entity_Id) return Boolean;
22069 -- Determine whether given bounds allow derivation from specified type
22070
22071 procedure Check_Bound (Expr : Node_Id);
22072 -- Check bound to make sure it is integral and static. If not, post
22073 -- appropriate error message and set Errs flag
22074
22075 ---------------------
22076 -- Can_Derive_From --
22077 ---------------------
22078
22079 -- Note we check both bounds against both end values, to deal with
22080 -- strange types like ones with a range of 0 .. -12341234.
22081
22082 function Can_Derive_From (E : Entity_Id) return Boolean is
22083 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22084 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22085 begin
22086 return Lo <= Lo_Val and then Lo_Val <= Hi
22087 and then
22088 Lo <= Hi_Val and then Hi_Val <= Hi;
22089 end Can_Derive_From;
22090
22091 -----------------
22092 -- Check_Bound --
22093 -----------------
22094
22095 procedure Check_Bound (Expr : Node_Id) is
22096 begin
22097 -- If a range constraint is used as an integer type definition, each
22098 -- bound of the range must be defined by a static expression of some
22099 -- integer type, but the two bounds need not have the same integer
22100 -- type (Negative bounds are allowed.) (RM 3.5.4)
22101
22102 if not Is_Integer_Type (Etype (Expr)) then
22103 Error_Msg_N
22104 ("integer type definition bounds must be of integer type", Expr);
22105 Errs := True;
22106
22107 elsif not Is_OK_Static_Expression (Expr) then
22108 Flag_Non_Static_Expr
22109 ("non-static expression used for integer type bound!", Expr);
22110 Errs := True;
22111
22112 -- The bounds are folded into literals, and we set their type to be
22113 -- universal, to avoid typing difficulties: we cannot set the type
22114 -- of the literal to the new type, because this would be a forward
22115 -- reference for the back end, and if the original type is user-
22116 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22117
22118 else
22119 if Is_Entity_Name (Expr) then
22120 Fold_Uint (Expr, Expr_Value (Expr), True);
22121 end if;
22122
22123 Set_Etype (Expr, Universal_Integer);
22124 end if;
22125 end Check_Bound;
22126
22127 -- Start of processing for Signed_Integer_Type_Declaration
22128
22129 begin
22130 -- Create an anonymous base type
22131
22132 Implicit_Base :=
22133 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22134
22135 -- Analyze and check the bounds, they can be of any integer type
22136
22137 Lo := Low_Bound (Def);
22138 Hi := High_Bound (Def);
22139
22140 -- Arbitrarily use Integer as the type if either bound had an error
22141
22142 if Hi = Error or else Lo = Error then
22143 Base_Typ := Any_Integer;
22144 Set_Error_Posted (T, True);
22145
22146 -- Here both bounds are OK expressions
22147
22148 else
22149 Analyze_And_Resolve (Lo, Any_Integer);
22150 Analyze_And_Resolve (Hi, Any_Integer);
22151
22152 Check_Bound (Lo);
22153 Check_Bound (Hi);
22154
22155 if Errs then
22156 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22157 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22158 end if;
22159
22160 -- Find type to derive from
22161
22162 Lo_Val := Expr_Value (Lo);
22163 Hi_Val := Expr_Value (Hi);
22164
22165 if Can_Derive_From (Standard_Short_Short_Integer) then
22166 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22167
22168 elsif Can_Derive_From (Standard_Short_Integer) then
22169 Base_Typ := Base_Type (Standard_Short_Integer);
22170
22171 elsif Can_Derive_From (Standard_Integer) then
22172 Base_Typ := Base_Type (Standard_Integer);
22173
22174 elsif Can_Derive_From (Standard_Long_Integer) then
22175 Base_Typ := Base_Type (Standard_Long_Integer);
22176
22177 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22178 Check_Restriction (No_Long_Long_Integers, Def);
22179 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22180
22181 else
22182 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22183 Error_Msg_N ("integer type definition bounds out of range", Def);
22184 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22185 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22186 end if;
22187 end if;
22188
22189 -- Complete both implicit base and declared first subtype entities. The
22190 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22191 -- are not clobbered when the signed integer type acts as a full view of
22192 -- a private type.
22193
22194 Set_Etype (Implicit_Base, Base_Typ);
22195 Set_Size_Info (Implicit_Base, Base_Typ);
22196 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22197 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22198 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22199
22200 Set_Ekind (T, E_Signed_Integer_Subtype);
22201 Set_Etype (T, Implicit_Base);
22202 Set_Size_Info (T, Implicit_Base);
22203 Inherit_Rep_Item_Chain (T, Implicit_Base);
22204 Set_Scalar_Range (T, Def);
22205 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22206 Set_Is_Constrained (T);
22207 end Signed_Integer_Type_Declaration;
22208
22209 end Sem_Ch3;