[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
598
599 function Is_Valid_Constraint_Kind
600 (T_Kind : Type_Kind;
601 Constraint_Kind : Node_Kind) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
604
605 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
606 -- Create new modular type. Verify that modulus is in bounds
607
608 procedure New_Concatenation_Op (Typ : Entity_Id);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
611
612 procedure Ordinary_Fixed_Point_Type_Declaration
613 (T : Entity_Id;
614 Def : Node_Id);
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
617
618 procedure Prepare_Private_Subtype_Completion
619 (Id : Entity_Id;
620 Related_Nod : Node_Id);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
625
626 procedure Process_Incomplete_Dependents
627 (N : Node_Id;
628 Full_T : Entity_Id;
629 Inc_T : Entity_Id);
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
633 -- incomplete type.
634
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
637 --
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
639 --
640 -- Full_T is N's defining identifier.
641 --
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
647 -- full type.
648 --
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
652
653 procedure Process_Real_Range_Specification (Def : Node_Id);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
658
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ : Entity_Id;
661 To_Typ : Entity_Id;
662 Parent_To_Derivation : Boolean := False;
663 Private_To_Full_View : Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
669
670 procedure Record_Type_Declaration
671 (T : Entity_Id;
672 N : Node_Id;
673 Prev : Entity_Id);
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
680
681 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
689 -- the record type.
690
691 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
699
700 procedure Set_Fixed_Range
701 (E : Entity_Id;
702 Loc : Source_Ptr;
703 Lo : Ureal;
704 Hi : Ureal);
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
708
709 procedure Set_Scalar_Range_For_Subtype
710 (Def_Id : Entity_Id;
711 R : Node_Id;
712 Subt : Entity_Id);
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
717
718 procedure Set_Default_SSO (T : Entity_Id);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
722
723 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
726
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
728 (E : Entity_Id);
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
731
732 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
735
736 -----------------------
737 -- Access_Definition --
738 -----------------------
739
740 function Access_Definition
741 (Related_Nod : Node_Id;
742 N : Node_Id) return Entity_Id
743 is
744 Anon_Type : Entity_Id;
745 Anon_Scope : Entity_Id;
746 Desig_Type : Entity_Id;
747 Enclosing_Prot_Type : Entity_Id := Empty;
748
749 begin
750 Check_SPARK_05_Restriction ("access type is not allowed", N);
751
752 if Is_Entry (Current_Scope)
753 and then Is_Task_Type (Etype (Scope (Current_Scope)))
754 then
755 Error_Msg_N ("task entries cannot have access parameters", N);
756 return Empty;
757 end if;
758
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
761
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
765
766 if Nkind_In (Related_Nod, N_Object_Declaration,
767 N_Access_Function_Definition)
768 then
769 Anon_Scope := Current_Scope;
770
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
774
775 declare
776 Par : Node_Id;
777
778 begin
779 Par := Related_Nod;
780 while Nkind_In (Par, N_Access_Function_Definition,
781 N_Access_Definition)
782 loop
783 Par := Parent (Par);
784 end loop;
785
786 if Nkind (Par) = N_Function_Specification then
787 Anon_Scope := Scope (Defining_Entity (Par));
788 end if;
789 end;
790
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
798
799 elsif Nkind (Related_Nod) = N_Function_Specification
800 and then Nkind (Parent (N)) /= N_Parameter_Specification
801 then
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
806
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
811
812 if Ekind (Current_Scope) = E_Protected_Type then
813 Enclosing_Prot_Type := Current_Scope;
814
815 elsif Ekind (Current_Scope) = E_Function
816 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
817 then
818 Enclosing_Prot_Type := Scope (Current_Scope);
819 end if;
820
821 if Present (Enclosing_Prot_Type) then
822 Anon_Scope := Scope (Enclosing_Prot_Type);
823
824 else
825 Anon_Scope := Scope (Defining_Entity (Related_Nod));
826 end if;
827
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
830
831 elsif Is_Compilation_Unit (Current_Scope) then
832 Anon_Scope := Current_Scope;
833
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
836
837 else
838 Anon_Scope := Scope (Current_Scope);
839 end if;
840
841 Anon_Type :=
842 Create_Itype
843 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
844
845 if All_Present (N)
846 and then Ada_Version >= Ada_2005
847 then
848 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
849 end if;
850
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
853
854 if Present (Access_To_Subprogram_Definition (N)) then
855
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
859
860 Check_Compiler_Unit ("anonymous access to subprogram", N);
861
862 Access_Subprogram_Declaration
863 (T_Name => Anon_Type,
864 T_Def => Access_To_Subprogram_Definition (N));
865
866 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
867 Set_Ekind
868 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
869 else
870 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
871 end if;
872
873 Set_Can_Use_Internal_Rep
874 (Anon_Type, not Always_Compatible_Rep_On_Target);
875
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
879
880 if Ekind (Current_Scope) = E_Protected_Type then
881 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
882 end if;
883
884 return Anon_Type;
885 end if;
886
887 Find_Type (Subtype_Mark (N));
888 Desig_Type := Entity (Subtype_Mark (N));
889
890 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
891 Set_Etype (Anon_Type, Anon_Type);
892
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
896
897 if not Has_Private_Component (Desig_Type) then
898 Layout_Type (Anon_Type);
899 end if;
900
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
904
905 if Ada_Version >= Ada_2005 then
906 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
907 else
908 Set_Can_Never_Be_Null (Anon_Type, True);
909 end if;
910
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
914
915 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
916
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
918
919 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
920
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
928
929 if Ekind (Desig_Type) = E_Incomplete_Type
930 and then not From_Limited_With (Desig_Type)
931 and then Is_Overloadable (Current_Scope)
932 then
933 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
934 Set_Has_Delayed_Freeze (Current_Scope);
935 end if;
936
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
942
943 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
944 then
945 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
946 then
947 Build_Class_Wide_Master (Anon_Type);
948
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
951
952 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
953 then
954 Build_Master_Entity (Defining_Identifier (Related_Nod));
955 Build_Master_Renaming (Anon_Type);
956 end if;
957 end if;
958
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
964
965 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
966 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
967
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
976
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
979
980 elsif Nkind (Related_Nod) = N_Function_Specification
981 and then not From_Limited_With (Desig_Type)
982 and then not Is_Generic_Type (Desig_Type)
983 then
984 if Present (Enclosing_Prot_Type) then
985 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
986
987 elsif Is_List_Member (Parent (Related_Nod))
988 and then Nkind (Parent (N)) /= N_Parameter_Specification
989 then
990 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
991 end if;
992
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
996 -- back-end.
997
998 elsif Nkind (Related_Nod) = N_Object_Declaration then
999 Build_Itype_Reference (Anon_Type, Related_Nod);
1000 end if;
1001
1002 return Anon_Type;
1003 end Access_Definition;
1004
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1008
1009 procedure Access_Subprogram_Declaration
1010 (T_Name : Entity_Id;
1011 T_Def : Node_Id)
1012 is
1013 procedure Check_For_Premature_Usage (Def : Node_Id);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1017
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1021
1022 procedure Check_For_Premature_Usage (Def : Node_Id) is
1023 Param : Node_Id;
1024
1025 begin
1026 -- Check for a subtype mark
1027
1028 if Nkind (Def) in N_Has_Etype then
1029 if Etype (Def) = T_Name then
1030 Error_Msg_N
1031 ("type& cannot be used before end of its declaration", Def);
1032 end if;
1033
1034 -- If this is not a subtype, then this is an access_definition
1035
1036 elsif Nkind (Def) = N_Access_Definition then
1037 if Present (Access_To_Subprogram_Definition (Def)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition (Def));
1040 else
1041 Check_For_Premature_Usage (Subtype_Mark (Def));
1042 end if;
1043
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1046
1047 else
1048 if Present (Parameter_Specifications (Def)) then
1049 Param := First (Parameter_Specifications (Def));
1050 while Present (Param) loop
1051 Check_For_Premature_Usage (Parameter_Type (Param));
1052 Param := Next (Param);
1053 end loop;
1054 end if;
1055
1056 if Nkind (Def) = N_Access_Function_Definition then
1057 Check_For_Premature_Usage (Result_Definition (Def));
1058 end if;
1059 end if;
1060 end Check_For_Premature_Usage;
1061
1062 -- Local variables
1063
1064 Formals : constant List_Id := Parameter_Specifications (T_Def);
1065 Formal : Entity_Id;
1066 D_Ityp : Node_Id;
1067 Desig_Type : constant Entity_Id :=
1068 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1069
1070 -- Start of processing for Access_Subprogram_Declaration
1071
1072 begin
1073 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1074
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1078
1079 -- procedure P
1080 -- (X : access procedure
1081 -- (Y : access procedure
1082 -- (Z : access T)))
1083
1084 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1085 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1086 N_Private_Type_Declaration,
1087 N_Private_Extension_Declaration,
1088 N_Procedure_Specification,
1089 N_Function_Specification,
1090 N_Entry_Body)
1091
1092 or else
1093 Nkind_In (D_Ityp, N_Object_Declaration,
1094 N_Object_Renaming_Declaration,
1095 N_Formal_Object_Declaration,
1096 N_Formal_Type_Declaration,
1097 N_Task_Type_Declaration,
1098 N_Protected_Type_Declaration))
1099 loop
1100 D_Ityp := Parent (D_Ityp);
1101 pragma Assert (D_Ityp /= Empty);
1102 end loop;
1103
1104 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1105
1106 if Nkind_In (D_Ityp, N_Procedure_Specification,
1107 N_Function_Specification)
1108 then
1109 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1110
1111 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1112 N_Object_Declaration,
1113 N_Object_Renaming_Declaration,
1114 N_Formal_Type_Declaration)
1115 then
1116 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1117 end if;
1118
1119 if Nkind (T_Def) = N_Access_Function_Definition then
1120 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1121 declare
1122 Acc : constant Node_Id := Result_Definition (T_Def);
1123
1124 begin
1125 if Present (Access_To_Subprogram_Definition (Acc))
1126 and then
1127 Protected_Present (Access_To_Subprogram_Definition (Acc))
1128 then
1129 Set_Etype
1130 (Desig_Type,
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1132 (T_Def));
1133
1134 else
1135 Set_Etype
1136 (Desig_Type,
1137 Access_Definition (T_Def, Result_Definition (T_Def)));
1138 end if;
1139 end;
1140
1141 else
1142 Analyze (Result_Definition (T_Def));
1143
1144 declare
1145 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1146
1147 begin
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1151
1152 if Is_Access_Type (Typ)
1153 and then Null_Exclusion_In_Return_Present (T_Def)
1154 then
1155 Set_Etype (Desig_Type,
1156 Create_Null_Excluding_Itype
1157 (T => Typ,
1158 Related_Nod => T_Def,
1159 Scope_Id => Current_Scope));
1160
1161 else
1162 if From_Limited_With (Typ) then
1163
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1166
1167 if Ada_Version >= Ada_2012 then
1168 null;
1169
1170 else
1171 Error_Msg_NE
1172 ("illegal use of incomplete type&",
1173 Result_Definition (T_Def), Typ);
1174 end if;
1175
1176 elsif Ekind (Current_Scope) = E_Package
1177 and then In_Private_Part (Current_Scope)
1178 then
1179 if Ekind (Typ) = E_Incomplete_Type then
1180 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1181
1182 elsif Is_Class_Wide_Type (Typ)
1183 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1184 then
1185 Append_Elmt
1186 (Desig_Type, Private_Dependents (Etype (Typ)));
1187 end if;
1188 end if;
1189
1190 Set_Etype (Desig_Type, Typ);
1191 end if;
1192 end;
1193 end if;
1194
1195 if not (Is_Type (Etype (Desig_Type))) then
1196 Error_Msg_N
1197 ("expect type in function specification",
1198 Result_Definition (T_Def));
1199 end if;
1200
1201 else
1202 Set_Etype (Desig_Type, Standard_Void_Type);
1203 end if;
1204
1205 if Present (Formals) then
1206 Push_Scope (Desig_Type);
1207
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1210 -- declarations???
1211
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1214
1215 declare
1216 F : Node_Id;
1217
1218 begin
1219 F := First (Formals);
1220
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1226
1227 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1228 then
1229 Set_Etype (T_Name, T_Name);
1230 Init_Size_Align (T_Name);
1231 Set_Directly_Designated_Type (T_Name,
1232 Scope (Defining_Identifier (F)));
1233 End_Scope;
1234 return;
1235 end if;
1236
1237 while Present (F) loop
1238 if No (Parent (Defining_Identifier (F))) then
1239 Set_Parent (Defining_Identifier (F), F);
1240 end if;
1241
1242 Next (F);
1243 end loop;
1244 end;
1245
1246 Process_Formals (Formals, Parent (T_Def));
1247
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1251
1252 Set_Parent (Desig_Type, T_Name);
1253 End_Scope;
1254 Set_Parent (Desig_Type, Empty);
1255 end if;
1256
1257 -- Check for premature usage of the type being defined
1258
1259 Check_For_Premature_Usage (T_Def);
1260
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1266
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1268
1269 if Present (Formals) then
1270 Formal := First_Formal (Desig_Type);
1271 while Present (Formal) loop
1272 if Ekind (Formal) /= E_In_Parameter
1273 and then Nkind (T_Def) = N_Access_Function_Definition
1274 and then Ada_Version < Ada_2012
1275 then
1276 Error_Msg_N ("functions can only have IN parameters", Formal);
1277 end if;
1278
1279 if Ekind (Etype (Formal)) = E_Incomplete_Type
1280 and then In_Open_Scopes (Scope (Etype (Formal)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1285
1286 Next_Formal (Formal);
1287 end loop;
1288 end if;
1289
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1292
1293 May_Need_Actuals (Desig_Type);
1294
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1298
1299 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze (Desig_Type)
1301 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1302 then
1303 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1304 Set_Has_Delayed_Freeze (Desig_Type);
1305 end if;
1306
1307 Check_Delayed_Subprogram (Desig_Type);
1308
1309 if Protected_Present (T_Def) then
1310 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1311 Set_Convention (Desig_Type, Convention_Protected);
1312 else
1313 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1314 end if;
1315
1316 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1317
1318 Set_Etype (T_Name, T_Name);
1319 Init_Size_Align (T_Name);
1320 Set_Directly_Designated_Type (T_Name, Desig_Type);
1321
1322 Generate_Reference_To_Formals (T_Name);
1323
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1325
1326 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1327
1328 Check_Restriction (No_Access_Subprograms, T_Def);
1329 end Access_Subprogram_Declaration;
1330
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1334
1335 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1336 P : constant Node_Id := Parent (Def);
1337 S : constant Node_Id := Subtype_Indication (Def);
1338
1339 Full_Desig : Entity_Id;
1340
1341 begin
1342 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1343
1344 -- Check for permissible use of incomplete type
1345
1346 if Nkind (S) /= N_Subtype_Indication then
1347 Analyze (S);
1348
1349 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1350 Set_Directly_Designated_Type (T, Entity (S));
1351
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1357
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1365
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1369
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1373
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1377
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1383
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1397
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1402
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1408
1409 Full_Desig := Designated_Type (T);
1410
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1413
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1417
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own classwide type", S);
1422
1423 -- Clean up indication of tagged status to prevent cascaded errors
1424
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1427
1428 Set_Etype (T, T);
1429
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1432
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1436
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1441
1442 Set_Has_Task (T, False);
1443 Set_Has_Controlled_Component (T, False);
1444 Set_Has_Protected (T, False);
1445
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1450
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1455
1456 if No (Associated_Storage_Pool (T)) then
1457 Set_Finalization_Master (T, Empty);
1458 end if;
1459
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1461 -- attributes
1462
1463 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1464 Set_Is_Access_Constant (T, Constant_Present (Def));
1465 end Access_Type_Declaration;
1466
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1470
1471 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1472 Loc : constant Source_Ptr := Sloc (N);
1473 L : List_Id;
1474 Last_Tag : Node_Id;
1475
1476 procedure Add_Tag (Iface : Entity_Id);
1477 -- Add tag for one of the progenitor interfaces
1478
1479 -------------
1480 -- Add_Tag --
1481 -------------
1482
1483 procedure Add_Tag (Iface : Entity_Id) is
1484 Decl : Node_Id;
1485 Def : Node_Id;
1486 Tag : Entity_Id;
1487 Offset : Entity_Id;
1488
1489 begin
1490 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1491
1492 -- This is a reasonable place to propagate predicates
1493
1494 if Has_Predicates (Iface) then
1495 Set_Has_Predicates (Typ);
1496 end if;
1497
1498 Def :=
1499 Make_Component_Definition (Loc,
1500 Aliased_Present => True,
1501 Subtype_Indication =>
1502 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1503
1504 Tag := Make_Temporary (Loc, 'V');
1505
1506 Decl :=
1507 Make_Component_Declaration (Loc,
1508 Defining_Identifier => Tag,
1509 Component_Definition => Def);
1510
1511 Analyze_Component_Declaration (Decl);
1512
1513 Set_Analyzed (Decl);
1514 Set_Ekind (Tag, E_Component);
1515 Set_Is_Tag (Tag);
1516 Set_Is_Aliased (Tag);
1517 Set_Related_Type (Tag, Iface);
1518 Init_Component_Location (Tag);
1519
1520 pragma Assert (Is_Frozen (Iface));
1521
1522 Set_DT_Entry_Count (Tag,
1523 DT_Entry_Count (First_Entity (Iface)));
1524
1525 if No (Last_Tag) then
1526 Prepend (Decl, L);
1527 else
1528 Insert_After (Last_Tag, Decl);
1529 end if;
1530
1531 Last_Tag := Decl;
1532
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1537
1538 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1539 Def :=
1540 Make_Component_Definition (Loc,
1541 Subtype_Indication =>
1542 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1543
1544 Offset := Make_Temporary (Loc, 'V');
1545
1546 Decl :=
1547 Make_Component_Declaration (Loc,
1548 Defining_Identifier => Offset,
1549 Component_Definition => Def);
1550
1551 Analyze_Component_Declaration (Decl);
1552
1553 Set_Analyzed (Decl);
1554 Set_Ekind (Offset, E_Component);
1555 Set_Is_Aliased (Offset);
1556 Set_Related_Type (Offset, Iface);
1557 Init_Component_Location (Offset);
1558 Insert_After (Last_Tag, Decl);
1559 Last_Tag := Decl;
1560 end if;
1561 end Add_Tag;
1562
1563 -- Local variables
1564
1565 Elmt : Elmt_Id;
1566 Ext : Node_Id;
1567 Comp : Node_Id;
1568
1569 -- Start of processing for Add_Interface_Tag_Components
1570
1571 begin
1572 if not RTE_Available (RE_Interface_Tag) then
1573 Error_Msg
1574 ("(Ada 2005) interface types not supported by this run-time!",
1575 Sloc (N));
1576 return;
1577 end if;
1578
1579 if Ekind (Typ) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type (Typ)
1581 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1582 or else (not Is_Concurrent_Record_Type (Typ)
1583 and then No (Interfaces (Typ))
1584 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1585 then
1586 return;
1587 end if;
1588
1589 -- Find the current last tag
1590
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 Ext := Record_Extension_Part (Type_Definition (N));
1593 else
1594 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1595 Ext := Type_Definition (N);
1596 end if;
1597
1598 Last_Tag := Empty;
1599
1600 if not (Present (Component_List (Ext))) then
1601 Set_Null_Present (Ext, False);
1602 L := New_List;
1603 Set_Component_List (Ext,
1604 Make_Component_List (Loc,
1605 Component_Items => L,
1606 Null_Present => False));
1607 else
1608 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1609 L := Component_Items
1610 (Component_List
1611 (Record_Extension_Part
1612 (Type_Definition (N))));
1613 else
1614 L := Component_Items
1615 (Component_List
1616 (Type_Definition (N)));
1617 end if;
1618
1619 -- Find the last tag component
1620
1621 Comp := First (L);
1622 while Present (Comp) loop
1623 if Nkind (Comp) = N_Component_Declaration
1624 and then Is_Tag (Defining_Identifier (Comp))
1625 then
1626 Last_Tag := Comp;
1627 end if;
1628
1629 Next (Comp);
1630 end loop;
1631 end if;
1632
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1636 -- by the parent.
1637
1638 if Present (Interfaces (Typ)) then
1639 Elmt := First_Elmt (Interfaces (Typ));
1640 while Present (Elmt) loop
1641 Add_Tag (Node (Elmt));
1642 Next_Elmt (Elmt);
1643 end loop;
1644 end if;
1645 end Add_Interface_Tag_Components;
1646
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1650
1651 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1652 Elmt : Elmt_Id;
1653 Iface : Entity_Id;
1654 Iface_Elmt : Elmt_Id;
1655 Iface_Prim : Entity_Id;
1656 Ifaces_List : Elist_Id;
1657 New_Subp : Entity_Id := Empty;
1658 Prim : Entity_Id;
1659 Restore_Scope : Boolean := False;
1660
1661 begin
1662 pragma Assert (Ada_Version >= Ada_2005
1663 and then Is_Record_Type (Tagged_Type)
1664 and then Is_Tagged_Type (Tagged_Type)
1665 and then Has_Interfaces (Tagged_Type)
1666 and then not Is_Interface (Tagged_Type));
1667
1668 -- Ensure that the internal entities are added to the scope of the type
1669
1670 if Scope (Tagged_Type) /= Current_Scope then
1671 Push_Scope (Scope (Tagged_Type));
1672 Restore_Scope := True;
1673 end if;
1674
1675 Collect_Interfaces (Tagged_Type, Ifaces_List);
1676
1677 Iface_Elmt := First_Elmt (Ifaces_List);
1678 while Present (Iface_Elmt) loop
1679 Iface := Node (Iface_Elmt);
1680
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1688
1689 Elmt := First_Elmt (Primitive_Operations (Iface));
1690 while Present (Elmt) loop
1691 Iface_Prim := Node (Elmt);
1692
1693 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1694 Prim :=
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type => Tagged_Type,
1697 Iface_Prim => Iface_Prim);
1698
1699 if No (Prim) and then Serious_Errors_Detected > 0 then
1700 goto Continue;
1701 end if;
1702
1703 pragma Assert (Present (Prim));
1704
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1712
1713 if Chars (Prim) /= Chars (Iface_Prim) then
1714 pragma Assert (Has_Suffix (Prim, 'P'));
1715 Derive_Subprogram
1716 (New_Subp => New_Subp,
1717 Parent_Subp => Iface_Prim,
1718 Derived_Type => Tagged_Type,
1719 Parent_Type => Iface);
1720 Set_Alias (New_Subp, Prim);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp, Is_Abstract_Subprogram (Prim));
1723 end if;
1724
1725 Derive_Subprogram
1726 (New_Subp => New_Subp,
1727 Parent_Subp => Iface_Prim,
1728 Derived_Type => Tagged_Type,
1729 Parent_Type => Iface);
1730
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1737
1738 Set_Is_Hidden (New_Subp);
1739 Set_Is_Internal (New_Subp);
1740 Set_Alias (New_Subp, Prim);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp, Is_Abstract_Subprogram (Prim));
1743 Set_Interface_Alias (New_Subp, Iface_Prim);
1744
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1749
1750 if Is_Interface (Etype (Iface_Prim)) then
1751 Set_Etype (New_Subp, Etype (Iface_Prim));
1752 end if;
1753
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1759
1760 Remove_Homonym (New_Subp);
1761
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1768
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1771
1772 <<Continue>>
1773 Next_Elmt (Elmt);
1774 end loop;
1775
1776 Next_Elmt (Iface_Elmt);
1777 end loop;
1778
1779 if Restore_Scope then
1780 Pop_Scope;
1781 end if;
1782 end Add_Internal_Interface_Entities;
1783
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1787
1788 procedure Analyze_Component_Declaration (N : Node_Id) is
1789 Id : constant Entity_Id := Defining_Identifier (N);
1790 E : constant Node_Id := Expression (N);
1791 Typ : constant Node_Id :=
1792 Subtype_Indication (Component_Definition (N));
1793 T : Entity_Id;
1794 P : Entity_Id;
1795
1796 function Contains_POC (Constr : Node_Id) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1799
1800 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1804
1805 ------------------
1806 -- Contains_POC --
1807 ------------------
1808
1809 function Contains_POC (Constr : Node_Id) return Boolean is
1810 begin
1811 -- Prevent cascaded errors
1812
1813 if Error_Posted (Constr) then
1814 return False;
1815 end if;
1816
1817 case Nkind (Constr) is
1818 when N_Attribute_Reference =>
1819 return Attribute_Name (Constr) = Name_Access
1820 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1821
1822 when N_Discriminant_Association =>
1823 return Denotes_Discriminant (Expression (Constr));
1824
1825 when N_Identifier =>
1826 return Denotes_Discriminant (Constr);
1827
1828 when N_Index_Or_Discriminant_Constraint =>
1829 declare
1830 IDC : Node_Id;
1831
1832 begin
1833 IDC := First (Constraints (Constr));
1834 while Present (IDC) loop
1835
1836 -- One per-object constraint is sufficient
1837
1838 if Contains_POC (IDC) then
1839 return True;
1840 end if;
1841
1842 Next (IDC);
1843 end loop;
1844
1845 return False;
1846 end;
1847
1848 when N_Range =>
1849 return Denotes_Discriminant (Low_Bound (Constr))
1850 or else
1851 Denotes_Discriminant (High_Bound (Constr));
1852
1853 when N_Range_Constraint =>
1854 return Denotes_Discriminant (Range_Expression (Constr));
1855
1856 when others =>
1857 return False;
1858
1859 end case;
1860 end Contains_POC;
1861
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1865
1866 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1867 P : constant Entity_Id := Etype (Typ);
1868 R : constant Entity_Id := Root_Type (Typ);
1869
1870 begin
1871 if Is_Limited_Record (Typ) then
1872 return True;
1873
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1876
1877 elsif Is_Limited_Record (R)
1878 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1879 then
1880 return True;
1881
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1884
1885 elsif R /= P and then Is_Limited_Record (P) then
1886 return True;
1887
1888 else
1889 return False;
1890 end if;
1891 end Is_Known_Limited;
1892
1893 -- Start of processing for Analyze_Component_Declaration
1894
1895 begin
1896 Generate_Definition (Id);
1897 Enter_Name (Id);
1898
1899 if Present (Typ) then
1900 T := Find_Type_Of_Object
1901 (Subtype_Indication (Component_Definition (N)), N);
1902
1903 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1904 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1905 end if;
1906
1907 -- Ada 2005 (AI-230): Access Definition case
1908
1909 else
1910 pragma Assert (Present
1911 (Access_Definition (Component_Definition (N))));
1912
1913 T := Access_Definition
1914 (Related_Nod => N,
1915 N => Access_Definition (Component_Definition (N)));
1916 Set_Is_Local_Anonymous_Access (T);
1917
1918 -- Ada 2005 (AI-254)
1919
1920 if Present (Access_To_Subprogram_Definition
1921 (Access_Definition (Component_Definition (N))))
1922 and then Protected_Present (Access_To_Subprogram_Definition
1923 (Access_Definition
1924 (Component_Definition (N))))
1925 then
1926 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1927 end if;
1928 end if;
1929
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1936
1937 if Ekind (T) = E_Access_Subtype
1938 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1939 and then Comes_From_Source (T)
1940 and then Nkind (Parent (T)) = N_Subtype_Declaration
1941 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1942 then
1943 Rewrite
1944 (Subtype_Indication (Component_Definition (N)),
1945 New_Copy_Tree (Subtype_Indication (Parent (T))));
1946 T := Find_Type_Of_Object
1947 (Subtype_Indication (Component_Definition (N)), N);
1948 end if;
1949
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1954 -- package Sem).
1955
1956 if Present (E) then
1957 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1958 Preanalyze_Default_Expression (E, T);
1959 Check_Initialization (T, E);
1960
1961 if Ada_Version >= Ada_2005
1962 and then Ekind (T) = E_Anonymous_Access_Type
1963 and then Etype (E) /= Any_Type
1964 then
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1969 -- operation"
1970
1971 if Is_Tagged_Type (Directly_Designated_Type (T))
1972 and then
1973 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1974 and then
1975 Ekind (Directly_Designated_Type (Etype (E))) =
1976 E_Class_Wide_Type
1977 then
1978 Error_Msg_N
1979 ("access to specific tagged type required (RM 3.9.2(9))", E);
1980 end if;
1981
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1983 -- components
1984
1985 if Type_Access_Level (Etype (E)) >
1986 Deepest_Type_Access_Level (T)
1987 then
1988 Error_Msg_N
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E);
1991 end if;
1992
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1996
1997 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name (E)
1999 and then Ekind (Entity (E)) = E_In_Parameter
2000 and then Present (Discriminal_Link (Entity (E)))
2001 then
2002 Error_Msg_N
2003 ("discriminant has deeper accessibility level than target",
2004 E);
2005 end if;
2006 end if;
2007 end if;
2008
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2011
2012 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2013 if Is_Class_Wide_Type (T) then
2014 Error_Msg_N
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication (Component_Definition (N)));
2018 else
2019 Error_Msg_N
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication (Component_Definition (N)));
2022 end if;
2023
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2026
2027 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2028 Error_Msg_N ("type of a component cannot be abstract", N);
2029 end if;
2030
2031 Set_Etype (Id, T);
2032 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2033
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2036
2037 if Present (Subtype_Indication (Component_Definition (N))) then
2038 declare
2039 Sindic : constant Node_Id :=
2040 Subtype_Indication (Component_Definition (N));
2041 begin
2042 if Nkind (Sindic) = N_Subtype_Indication
2043 and then Present (Constraint (Sindic))
2044 and then Contains_POC (Constraint (Sindic))
2045 then
2046 Set_Has_Per_Object_Constraint (Id);
2047 end if;
2048 end;
2049 end if;
2050
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2053
2054 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2055 Null_Exclusion_Static_Checks (N);
2056 end if;
2057
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2060
2061 P := Private_Component (T);
2062
2063 if Present (P) then
2064
2065 -- Check for circular definitions
2066
2067 if P = Any_Type then
2068 Set_Etype (Id, Any_Type);
2069
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2072
2073 elsif Scope (P) = Scope (Current_Scope) then
2074 null;
2075
2076 elsif Is_Limited_Type (P) then
2077 Set_Is_Limited_Composite (Current_Scope);
2078
2079 else
2080 Set_Is_Private_Composite (Current_Scope);
2081 end if;
2082 end if;
2083
2084 if P /= Any_Type
2085 and then Is_Limited_Type (T)
2086 and then Chars (Id) /= Name_uParent
2087 and then Is_Tagged_Type (Current_Scope)
2088 then
2089 if Is_Derived_Type (Current_Scope)
2090 and then not Is_Known_Limited (Current_Scope)
2091 then
2092 Error_Msg_N
2093 ("extension of nonlimited type cannot have limited components",
2094 N);
2095
2096 if Is_Interface (Root_Type (Current_Scope)) then
2097 Error_Msg_N
2098 ("\limitedness is not inherited from limited interface", N);
2099 Error_Msg_N ("\add LIMITED to type indication", N);
2100 end if;
2101
2102 Explain_Limited_Type (T, N);
2103 Set_Etype (Id, Any_Type);
2104 Set_Is_Limited_Composite (Current_Scope, False);
2105
2106 elsif not Is_Derived_Type (Current_Scope)
2107 and then not Is_Limited_Record (Current_Scope)
2108 and then not Is_Concurrent_Type (Current_Scope)
2109 then
2110 Error_Msg_N
2111 ("nonlimited tagged type cannot have limited components", N);
2112 Explain_Limited_Type (T, N);
2113 Set_Etype (Id, Any_Type);
2114 Set_Is_Limited_Composite (Current_Scope, False);
2115 end if;
2116 end if;
2117
2118 Set_Original_Record_Component (Id, Id);
2119
2120 if Has_Aspects (N) then
2121 Analyze_Aspect_Specifications (N, Id);
2122 end if;
2123
2124 Analyze_Dimension (N);
2125 end Analyze_Component_Declaration;
2126
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2130
2131 procedure Analyze_Declarations (L : List_Id) is
2132 Decl : Node_Id;
2133
2134 procedure Adjust_Decl;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2139
2140 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2145
2146 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2150
2151 -----------------
2152 -- Adjust_Decl --
2153 -----------------
2154
2155 procedure Adjust_Decl is
2156 begin
2157 while Present (Prev (Decl))
2158 and then Nkind (Decl) = N_Implicit_Label_Declaration
2159 loop
2160 Prev (Decl);
2161 end loop;
2162 end Adjust_Decl;
2163
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2167
2168 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2169 Body_Spec : constant Node_Id := Specification (Body_Decl);
2170 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2171 Loc : constant Source_Ptr := Sloc (Body_Id);
2172 Params : constant List_Id :=
2173 Parameter_Specifications (Body_Spec);
2174 Spec : Node_Id;
2175 Spec_Id : Entity_Id;
2176 Typ : Node_Id;
2177
2178 begin
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2181
2182 if Nkind (Body_Spec) /= N_Procedure_Specification
2183 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2184 Name_Finalize,
2185 Name_Initialize)
2186 then
2187 return;
2188
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2191
2192 elsif List_Length (Params) /= 1 then
2193 return;
2194 end if;
2195
2196 Typ := Parameter_Type (First (Params));
2197
2198 if Nkind (Typ) = N_Access_Definition then
2199 return;
2200 end if;
2201
2202 Find_Type (Typ);
2203
2204 -- The type of the formal must be derived from [Limited_]Controlled
2205
2206 if not Is_Controlled (Entity (Typ)) then
2207 return;
2208 end if;
2209
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2216
2217 Spec_Id := Current_Entity (Body_Id);
2218
2219 while Present (Spec_Id) loop
2220 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2221 and then Scope (Spec_Id) = Current_Scope
2222 and then Present (First_Formal (Spec_Id))
2223 and then No (Next_Formal (First_Formal (Spec_Id)))
2224 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2225 and then Comes_From_Source (Spec_Id)
2226 then
2227 return;
2228 end if;
2229
2230 Spec_Id := Homonym (Spec_Id);
2231 end loop;
2232
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2237
2238 Spec := Copy_Separate_Tree (Body_Spec);
2239
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2242
2243 Set_Null_Present (Spec, False);
2244
2245 Insert_Before_And_Analyze (Body_Decl,
2246 Make_Subprogram_Declaration (Loc, Specification => Spec));
2247 end Handle_Late_Controlled_Primitive;
2248
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2252
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2254 State_Elmt : Elmt_Id;
2255 begin
2256 if Present (Abstract_States (Spec_Id)) then
2257 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2258 while Present (State_Elmt) loop
2259 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2260 Next_Elmt (State_Elmt);
2261 end loop;
2262 end if;
2263 end Remove_Visible_Refinements;
2264
2265 -- Local variables
2266
2267 Context : Node_Id;
2268 Freeze_From : Entity_Id := Empty;
2269 Next_Decl : Node_Id;
2270 Spec_Id : Entity_Id;
2271
2272 Body_Seen : Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2274
2275 In_Package_Body : Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2277
2278 -- Start of processing for Analyze_Declarations
2279
2280 begin
2281 if Restriction_Check_Required (SPARK_05) then
2282 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2283 end if;
2284
2285 Decl := First (L);
2286 while Present (Decl) loop
2287
2288 -- Package spec cannot contain a package declaration in SPARK
2289
2290 if Nkind (Decl) = N_Package_Declaration
2291 and then Nkind (Parent (L)) = N_Package_Specification
2292 then
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2295 Decl);
2296 end if;
2297
2298 -- Complete analysis of declaration
2299
2300 Analyze (Decl);
2301 Next_Decl := Next (Decl);
2302
2303 if No (Freeze_From) then
2304 Freeze_From := First_Entity (Current_Scope);
2305 end if;
2306
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2315 -- the instance.
2316
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2322
2323 if No (Next_Decl) then
2324 if Nkind_In (Parent (L), N_Component_List,
2325 N_Task_Definition,
2326 N_Protected_Definition)
2327 then
2328 null;
2329
2330 elsif Nkind (Parent (L)) /= N_Package_Specification then
2331 if Nkind (Parent (L)) = N_Package_Body then
2332 Freeze_From := First_Entity (Current_Scope);
2333 end if;
2334
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2340
2341 Adjust_Decl;
2342 Freeze_All (First_Entity (Current_Scope), Decl);
2343 Freeze_From := Last_Entity (Current_Scope);
2344
2345 elsif Scope (Current_Scope) /= Standard_Standard
2346 and then not Is_Child_Unit (Current_Scope)
2347 and then No (Generic_Parent (Parent (L)))
2348 then
2349 null;
2350
2351 elsif L /= Visible_Declarations (Parent (L))
2352 or else No (Private_Declarations (Parent (L)))
2353 or else Is_Empty_List (Private_Declarations (Parent (L)))
2354 then
2355 Adjust_Decl;
2356 Freeze_All (First_Entity (Current_Scope), Decl);
2357 Freeze_From := Last_Entity (Current_Scope);
2358 end if;
2359
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2367 -- been analyzed.
2368
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2374
2375 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2376
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2385
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2389
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2394
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2397
2398 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2399 then
2400 Body_Seen := True;
2401
2402 if Nkind (Next_Decl) = N_Subprogram_Body then
2403 Handle_Late_Controlled_Primitive (Next_Decl);
2404 end if;
2405 end if;
2406
2407 Adjust_Decl;
2408 Freeze_All (Freeze_From, Decl);
2409 Freeze_From := Last_Entity (Current_Scope);
2410 end if;
2411
2412 Decl := Next_Decl;
2413 end loop;
2414
2415 -- Analyze the contracts of packages and their bodies
2416
2417 if Present (L) then
2418 Context := Parent (L);
2419
2420 if Nkind (Context) = N_Package_Specification then
2421
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2426
2427 if L = Private_Declarations (Context) then
2428 Analyze_Package_Contract (Defining_Entity (Context));
2429
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2436
2437 Build_Default_Init_Cond_Procedure_Bodies (L);
2438
2439 -- Otherwise the contract is analyzed at the end of the visible
2440 -- declarations.
2441
2442 elsif L = Visible_Declarations (Context)
2443 and then No (Private_Declarations (Context))
2444 then
2445 Analyze_Package_Contract (Defining_Entity (Context));
2446 end if;
2447
2448 elsif Nkind (Context) = N_Package_Body then
2449 In_Package_Body := True;
2450 Spec_Id := Corresponding_Spec (Context);
2451
2452 Analyze_Package_Body_Contract (Defining_Entity (Context));
2453 end if;
2454 end if;
2455
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2458 -- aspects.
2459
2460 Decl := First (L);
2461 while Present (Decl) loop
2462 if Nkind (Decl) = N_Object_Declaration then
2463 Analyze_Object_Contract (Defining_Entity (Decl));
2464
2465 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2466 N_Subprogram_Declaration)
2467 then
2468 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2469
2470 elsif Nkind (Decl) = N_Subprogram_Body then
2471 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2472
2473 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2474 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2475 end if;
2476
2477 Next (Decl);
2478 end loop;
2479
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2483
2484 if In_Package_Body then
2485 Remove_Visible_Refinements (Spec_Id);
2486 end if;
2487 end Analyze_Declarations;
2488
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2492
2493 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2494 Def : constant Node_Id := Type_Definition (N);
2495 Def_Id : constant Entity_Id := Defining_Identifier (N);
2496 T : Entity_Id;
2497 Prev : Entity_Id;
2498
2499 Is_Remote : constant Boolean :=
2500 (Is_Remote_Types (Current_Scope)
2501 or else Is_Remote_Call_Interface (Current_Scope))
2502 and then not (In_Private_Part (Current_Scope)
2503 or else In_Package_Body (Current_Scope));
2504
2505 procedure Check_Ops_From_Incomplete_Type;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2512
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2516
2517 procedure Check_Ops_From_Incomplete_Type is
2518 Elmt : Elmt_Id;
2519 Formal : Entity_Id;
2520 Op : Entity_Id;
2521
2522 begin
2523 if Prev /= T
2524 and then Ekind (Prev) = E_Incomplete_Type
2525 and then Is_Tagged_Type (Prev)
2526 and then Is_Tagged_Type (T)
2527 then
2528 Elmt := First_Elmt (Primitive_Operations (Prev));
2529 while Present (Elmt) loop
2530 Op := Node (Elmt);
2531
2532 Formal := First_Formal (Op);
2533 while Present (Formal) loop
2534 if Etype (Formal) = Prev then
2535 Set_Etype (Formal, T);
2536 end if;
2537
2538 Next_Formal (Formal);
2539 end loop;
2540
2541 if Etype (Op) = Prev then
2542 Set_Etype (Op, T);
2543 end if;
2544
2545 Next_Elmt (Elmt);
2546 end loop;
2547 end if;
2548 end Check_Ops_From_Incomplete_Type;
2549
2550 -- Start of processing for Analyze_Full_Type_Declaration
2551
2552 begin
2553 Prev := Find_Type_Name (N);
2554
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2558
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2562
2563 if Ekind (Prev) = E_Incomplete_Type
2564 and then Present (Full_View (Prev))
2565 then
2566 T := Full_View (Prev);
2567 Set_Incomplete_View (N, Parent (Prev));
2568 else
2569 T := Prev;
2570 end if;
2571
2572 Set_Is_Pure (T, Is_Pure (Current_Scope));
2573
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2577
2578 Set_Is_First_Subtype (T, True);
2579
2580 -- Only composite types other than array types are allowed to have
2581 -- discriminants.
2582
2583 case Nkind (Def) is
2584
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2587
2588 when N_Derived_Type_Definition =>
2589 null;
2590
2591 -- For record types, discriminants are allowed, unless we are in
2592 -- SPARK.
2593
2594 when N_Record_Definition =>
2595 if Present (Discriminant_Specifications (N)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2598 Defining_Identifier
2599 (First (Discriminant_Specifications (N))));
2600 end if;
2601
2602 when others =>
2603 if Present (Discriminant_Specifications (N)) then
2604 Error_Msg_N
2605 ("elementary or array type cannot have discriminants",
2606 Defining_Identifier
2607 (First (Discriminant_Specifications (N))));
2608 end if;
2609 end case;
2610
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2615
2616 if not Analyzed (T) then
2617 Set_Analyzed (T);
2618
2619 case Nkind (Def) is
2620
2621 when N_Access_To_Subprogram_Definition =>
2622 Access_Subprogram_Declaration (T, Def);
2623
2624 -- If this is a remote access to subprogram, we must create the
2625 -- equivalent fat pointer type, and related subprograms.
2626
2627 if Is_Remote then
2628 Process_Remote_AST_Declaration (N);
2629 end if;
2630
2631 -- Validate categorization rule against access type declaration
2632 -- usually a violation in Pure unit, Shared_Passive unit.
2633
2634 Validate_Access_Type_Declaration (T, N);
2635
2636 when N_Access_To_Object_Definition =>
2637 Access_Type_Declaration (T, Def);
2638
2639 -- Validate categorization rule against access type declaration
2640 -- usually a violation in Pure unit, Shared_Passive unit.
2641
2642 Validate_Access_Type_Declaration (T, N);
2643
2644 -- If we are in a Remote_Call_Interface package and define a
2645 -- RACW, then calling stubs and specific stream attributes
2646 -- must be added.
2647
2648 if Is_Remote
2649 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2650 then
2651 Add_RACW_Features (Def_Id);
2652 end if;
2653
2654 -- Set no strict aliasing flag if config pragma seen
2655
2656 if Opt.No_Strict_Aliasing then
2657 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2658 end if;
2659
2660 when N_Array_Type_Definition =>
2661 Array_Type_Declaration (T, Def);
2662
2663 when N_Derived_Type_Definition =>
2664 Derived_Type_Declaration (T, N, T /= Def_Id);
2665
2666 when N_Enumeration_Type_Definition =>
2667 Enumeration_Type_Declaration (T, Def);
2668
2669 when N_Floating_Point_Definition =>
2670 Floating_Point_Type_Declaration (T, Def);
2671
2672 when N_Decimal_Fixed_Point_Definition =>
2673 Decimal_Fixed_Point_Type_Declaration (T, Def);
2674
2675 when N_Ordinary_Fixed_Point_Definition =>
2676 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2677
2678 when N_Signed_Integer_Type_Definition =>
2679 Signed_Integer_Type_Declaration (T, Def);
2680
2681 when N_Modular_Type_Definition =>
2682 Modular_Type_Declaration (T, Def);
2683
2684 when N_Record_Definition =>
2685 Record_Type_Declaration (T, N, Prev);
2686
2687 -- If declaration has a parse error, nothing to elaborate.
2688
2689 when N_Error =>
2690 null;
2691
2692 when others =>
2693 raise Program_Error;
2694
2695 end case;
2696 end if;
2697
2698 if Etype (T) = Any_Type then
2699 return;
2700 end if;
2701
2702 -- Controlled type is not allowed in SPARK
2703
2704 if Is_Visibly_Controlled (T) then
2705 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2706 end if;
2707
2708 -- Some common processing for all types
2709
2710 Set_Depends_On_Private (T, Has_Private_Component (T));
2711 Check_Ops_From_Incomplete_Type;
2712
2713 -- Both the declared entity, and its anonymous base type if one
2714 -- was created, need freeze nodes allocated.
2715
2716 declare
2717 B : constant Entity_Id := Base_Type (T);
2718
2719 begin
2720 -- In the case where the base type differs from the first subtype, we
2721 -- pre-allocate a freeze node, and set the proper link to the first
2722 -- subtype. Freeze_Entity will use this preallocated freeze node when
2723 -- it freezes the entity.
2724
2725 -- This does not apply if the base type is a generic type, whose
2726 -- declaration is independent of the current derived definition.
2727
2728 if B /= T and then not Is_Generic_Type (B) then
2729 Ensure_Freeze_Node (B);
2730 Set_First_Subtype_Link (Freeze_Node (B), T);
2731 end if;
2732
2733 -- A type that is imported through a limited_with clause cannot
2734 -- generate any code, and thus need not be frozen. However, an access
2735 -- type with an imported designated type needs a finalization list,
2736 -- which may be referenced in some other package that has non-limited
2737 -- visibility on the designated type. Thus we must create the
2738 -- finalization list at the point the access type is frozen, to
2739 -- prevent unsatisfied references at link time.
2740
2741 if not From_Limited_With (T) or else Is_Access_Type (T) then
2742 Set_Has_Delayed_Freeze (T);
2743 end if;
2744 end;
2745
2746 -- Case where T is the full declaration of some private type which has
2747 -- been swapped in Defining_Identifier (N).
2748
2749 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2750 Process_Full_View (N, T, Def_Id);
2751
2752 -- Record the reference. The form of this is a little strange, since
2753 -- the full declaration has been swapped in. So the first parameter
2754 -- here represents the entity to which a reference is made which is
2755 -- the "real" entity, i.e. the one swapped in, and the second
2756 -- parameter provides the reference location.
2757
2758 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2759 -- since we don't want a complaint about the full type being an
2760 -- unwanted reference to the private type
2761
2762 declare
2763 B : constant Boolean := Has_Pragma_Unreferenced (T);
2764 begin
2765 Set_Has_Pragma_Unreferenced (T, False);
2766 Generate_Reference (T, T, 'c');
2767 Set_Has_Pragma_Unreferenced (T, B);
2768 end;
2769
2770 Set_Completion_Referenced (Def_Id);
2771
2772 -- For completion of incomplete type, process incomplete dependents
2773 -- and always mark the full type as referenced (it is the incomplete
2774 -- type that we get for any real reference).
2775
2776 elsif Ekind (Prev) = E_Incomplete_Type then
2777 Process_Incomplete_Dependents (N, T, Prev);
2778 Generate_Reference (Prev, Def_Id, 'c');
2779 Set_Completion_Referenced (Def_Id);
2780
2781 -- If not private type or incomplete type completion, this is a real
2782 -- definition of a new entity, so record it.
2783
2784 else
2785 Generate_Definition (Def_Id);
2786 end if;
2787
2788 if Chars (Scope (Def_Id)) = Name_System
2789 and then Chars (Def_Id) = Name_Address
2790 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2791 then
2792 Set_Is_Descendent_Of_Address (Def_Id);
2793 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2794 Set_Is_Descendent_Of_Address (Prev);
2795 end if;
2796
2797 Set_Optimize_Alignment_Flags (Def_Id);
2798 Check_Eliminated (Def_Id);
2799
2800 -- If the declaration is a completion and aspects are present, apply
2801 -- them to the entity for the type which is currently the partial
2802 -- view, but which is the one that will be frozen.
2803
2804 if Has_Aspects (N) then
2805
2806 -- In most cases the partial view is a private type, and both views
2807 -- appear in different declarative parts. In the unusual case where
2808 -- the partial view is incomplete, perform the analysis on the
2809 -- full view, to prevent freezing anomalies with the corresponding
2810 -- class-wide type, which otherwise might be frozen before the
2811 -- dispatch table is built.
2812
2813 if Prev /= Def_Id
2814 and then Ekind (Prev) /= E_Incomplete_Type
2815 then
2816 Analyze_Aspect_Specifications (N, Prev);
2817
2818 -- Normal case
2819
2820 else
2821 Analyze_Aspect_Specifications (N, Def_Id);
2822 end if;
2823 end if;
2824 end Analyze_Full_Type_Declaration;
2825
2826 ----------------------------------
2827 -- Analyze_Incomplete_Type_Decl --
2828 ----------------------------------
2829
2830 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2831 F : constant Boolean := Is_Pure (Current_Scope);
2832 T : Entity_Id;
2833
2834 begin
2835 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2836
2837 Generate_Definition (Defining_Identifier (N));
2838
2839 -- Process an incomplete declaration. The identifier must not have been
2840 -- declared already in the scope. However, an incomplete declaration may
2841 -- appear in the private part of a package, for a private type that has
2842 -- already been declared.
2843
2844 -- In this case, the discriminants (if any) must match
2845
2846 T := Find_Type_Name (N);
2847
2848 Set_Ekind (T, E_Incomplete_Type);
2849 Init_Size_Align (T);
2850 Set_Is_First_Subtype (T, True);
2851 Set_Etype (T, T);
2852
2853 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2854 -- incomplete types.
2855
2856 if Tagged_Present (N) then
2857 Set_Is_Tagged_Type (T, True);
2858 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2859 Make_Class_Wide_Type (T);
2860 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2861 end if;
2862
2863 Push_Scope (T);
2864
2865 Set_Stored_Constraint (T, No_Elist);
2866
2867 if Present (Discriminant_Specifications (N)) then
2868 Process_Discriminants (N);
2869 end if;
2870
2871 End_Scope;
2872
2873 -- If the type has discriminants, non-trivial subtypes may be
2874 -- declared before the full view of the type. The full views of those
2875 -- subtypes will be built after the full view of the type.
2876
2877 Set_Private_Dependents (T, New_Elmt_List);
2878 Set_Is_Pure (T, F);
2879 end Analyze_Incomplete_Type_Decl;
2880
2881 -----------------------------------
2882 -- Analyze_Interface_Declaration --
2883 -----------------------------------
2884
2885 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2886 CW : constant Entity_Id := Class_Wide_Type (T);
2887
2888 begin
2889 Set_Is_Tagged_Type (T);
2890 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2891
2892 Set_Is_Limited_Record (T, Limited_Present (Def)
2893 or else Task_Present (Def)
2894 or else Protected_Present (Def)
2895 or else Synchronized_Present (Def));
2896
2897 -- Type is abstract if full declaration carries keyword, or if previous
2898 -- partial view did.
2899
2900 Set_Is_Abstract_Type (T);
2901 Set_Is_Interface (T);
2902
2903 -- Type is a limited interface if it includes the keyword limited, task,
2904 -- protected, or synchronized.
2905
2906 Set_Is_Limited_Interface
2907 (T, Limited_Present (Def)
2908 or else Protected_Present (Def)
2909 or else Synchronized_Present (Def)
2910 or else Task_Present (Def));
2911
2912 Set_Interfaces (T, New_Elmt_List);
2913 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2914
2915 -- Complete the decoration of the class-wide entity if it was already
2916 -- built (i.e. during the creation of the limited view)
2917
2918 if Present (CW) then
2919 Set_Is_Interface (CW);
2920 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2921 end if;
2922
2923 -- Check runtime support for synchronized interfaces
2924
2925 if VM_Target = No_VM
2926 and then (Is_Task_Interface (T)
2927 or else Is_Protected_Interface (T)
2928 or else Is_Synchronized_Interface (T))
2929 and then not RTE_Available (RE_Select_Specific_Data)
2930 then
2931 Error_Msg_CRT ("synchronized interfaces", T);
2932 end if;
2933 end Analyze_Interface_Declaration;
2934
2935 -----------------------------
2936 -- Analyze_Itype_Reference --
2937 -----------------------------
2938
2939 -- Nothing to do. This node is placed in the tree only for the benefit of
2940 -- back end processing, and has no effect on the semantic processing.
2941
2942 procedure Analyze_Itype_Reference (N : Node_Id) is
2943 begin
2944 pragma Assert (Is_Itype (Itype (N)));
2945 null;
2946 end Analyze_Itype_Reference;
2947
2948 --------------------------------
2949 -- Analyze_Number_Declaration --
2950 --------------------------------
2951
2952 procedure Analyze_Number_Declaration (N : Node_Id) is
2953 Id : constant Entity_Id := Defining_Identifier (N);
2954 E : constant Node_Id := Expression (N);
2955 T : Entity_Id;
2956 Index : Interp_Index;
2957 It : Interp;
2958
2959 begin
2960 Generate_Definition (Id);
2961 Enter_Name (Id);
2962
2963 -- This is an optimization of a common case of an integer literal
2964
2965 if Nkind (E) = N_Integer_Literal then
2966 Set_Is_Static_Expression (E, True);
2967 Set_Etype (E, Universal_Integer);
2968
2969 Set_Etype (Id, Universal_Integer);
2970 Set_Ekind (Id, E_Named_Integer);
2971 Set_Is_Frozen (Id, True);
2972 return;
2973 end if;
2974
2975 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2976
2977 -- Process expression, replacing error by integer zero, to avoid
2978 -- cascaded errors or aborts further along in the processing
2979
2980 -- Replace Error by integer zero, which seems least likely to cause
2981 -- cascaded errors.
2982
2983 if E = Error then
2984 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2985 Set_Error_Posted (E);
2986 end if;
2987
2988 Analyze (E);
2989
2990 -- Verify that the expression is static and numeric. If
2991 -- the expression is overloaded, we apply the preference
2992 -- rule that favors root numeric types.
2993
2994 if not Is_Overloaded (E) then
2995 T := Etype (E);
2996 if Has_Dynamic_Predicate_Aspect (T) then
2997 Error_Msg_N
2998 ("subtype has dynamic predicate, "
2999 & "not allowed in number declaration", N);
3000 end if;
3001
3002 else
3003 T := Any_Type;
3004
3005 Get_First_Interp (E, Index, It);
3006 while Present (It.Typ) loop
3007 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3008 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3009 then
3010 if T = Any_Type then
3011 T := It.Typ;
3012
3013 elsif It.Typ = Universal_Real
3014 or else
3015 It.Typ = Universal_Integer
3016 then
3017 -- Choose universal interpretation over any other
3018
3019 T := It.Typ;
3020 exit;
3021 end if;
3022 end if;
3023
3024 Get_Next_Interp (Index, It);
3025 end loop;
3026 end if;
3027
3028 if Is_Integer_Type (T) then
3029 Resolve (E, T);
3030 Set_Etype (Id, Universal_Integer);
3031 Set_Ekind (Id, E_Named_Integer);
3032
3033 elsif Is_Real_Type (T) then
3034
3035 -- Because the real value is converted to universal_real, this is a
3036 -- legal context for a universal fixed expression.
3037
3038 if T = Universal_Fixed then
3039 declare
3040 Loc : constant Source_Ptr := Sloc (N);
3041 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3042 Subtype_Mark =>
3043 New_Occurrence_Of (Universal_Real, Loc),
3044 Expression => Relocate_Node (E));
3045
3046 begin
3047 Rewrite (E, Conv);
3048 Analyze (E);
3049 end;
3050
3051 elsif T = Any_Fixed then
3052 Error_Msg_N ("illegal context for mixed mode operation", E);
3053
3054 -- Expression is of the form : universal_fixed * integer. Try to
3055 -- resolve as universal_real.
3056
3057 T := Universal_Real;
3058 Set_Etype (E, T);
3059 end if;
3060
3061 Resolve (E, T);
3062 Set_Etype (Id, Universal_Real);
3063 Set_Ekind (Id, E_Named_Real);
3064
3065 else
3066 Wrong_Type (E, Any_Numeric);
3067 Resolve (E, T);
3068
3069 Set_Etype (Id, T);
3070 Set_Ekind (Id, E_Constant);
3071 Set_Never_Set_In_Source (Id, True);
3072 Set_Is_True_Constant (Id, True);
3073 return;
3074 end if;
3075
3076 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3077 Set_Etype (E, Etype (Id));
3078 end if;
3079
3080 if not Is_OK_Static_Expression (E) then
3081 Flag_Non_Static_Expr
3082 ("non-static expression used in number declaration!", E);
3083 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3084 Set_Etype (E, Any_Type);
3085 end if;
3086 end Analyze_Number_Declaration;
3087
3088 -----------------------------
3089 -- Analyze_Object_Contract --
3090 -----------------------------
3091
3092 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3093 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3094 AR_Val : Boolean := False;
3095 AW_Val : Boolean := False;
3096 ER_Val : Boolean := False;
3097 EW_Val : Boolean := False;
3098 Prag : Node_Id;
3099 Seen : Boolean := False;
3100
3101 begin
3102 if Ekind (Obj_Id) = E_Constant then
3103
3104 -- A constant cannot be effectively volatile. This check is only
3105 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3106 -- rule. Do not flag internally-generated constants that map generic
3107 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3108
3109 if SPARK_Mode = On
3110 and then Is_Effectively_Volatile (Obj_Id)
3111 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3112 then
3113 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3114 end if;
3115
3116 -- The loop parameter in an element iterator over a formal container
3117 -- is declared with an object declaration but no contracts apply.
3118
3119 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3120 null;
3121
3122 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3123
3124 -- The following checks are only relevant when SPARK_Mode is on as
3125 -- they are not standard Ada legality rules. Internally generated
3126 -- temporaries are ignored.
3127
3128 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3129 if Is_Effectively_Volatile (Obj_Id) then
3130
3131 -- The declaration of an effectively volatile object must
3132 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3133
3134 if not Is_Library_Level_Entity (Obj_Id) then
3135 Error_Msg_N
3136 ("volatile variable & must be declared at library level",
3137 Obj_Id);
3138
3139 -- An object of a discriminated type cannot be effectively
3140 -- volatile (SPARK RM C.6(4)).
3141
3142 elsif Has_Discriminants (Obj_Typ) then
3143 Error_Msg_N
3144 ("discriminated object & cannot be volatile", Obj_Id);
3145
3146 -- An object of a tagged type cannot be effectively volatile
3147 -- (SPARK RM C.6(5)).
3148
3149 elsif Is_Tagged_Type (Obj_Typ) then
3150 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3151 end if;
3152
3153 -- The object is not effectively volatile
3154
3155 else
3156 -- A non-effectively volatile object cannot have effectively
3157 -- volatile components (SPARK RM 7.1.3(7)).
3158
3159 if not Is_Effectively_Volatile (Obj_Id)
3160 and then Has_Volatile_Component (Obj_Typ)
3161 then
3162 Error_Msg_N
3163 ("non-volatile object & cannot have volatile components",
3164 Obj_Id);
3165 end if;
3166 end if;
3167 end if;
3168
3169 -- Analyze all external properties
3170
3171 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3172
3173 if Present (Prag) then
3174 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3175 Seen := True;
3176 end if;
3177
3178 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3179
3180 if Present (Prag) then
3181 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3182 Seen := True;
3183 end if;
3184
3185 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3186
3187 if Present (Prag) then
3188 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3189 Seen := True;
3190 end if;
3191
3192 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3193
3194 if Present (Prag) then
3195 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3196 Seen := True;
3197 end if;
3198
3199 -- Verify the mutual interaction of the various external properties
3200
3201 if Seen then
3202 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3203 end if;
3204
3205 -- Check whether the lack of indicator Part_Of agrees with the
3206 -- placement of the variable with respect to the state space.
3207
3208 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3209
3210 if No (Prag) then
3211 Check_Missing_Part_Of (Obj_Id);
3212 end if;
3213 end if;
3214 end Analyze_Object_Contract;
3215
3216 --------------------------------
3217 -- Analyze_Object_Declaration --
3218 --------------------------------
3219
3220 procedure Analyze_Object_Declaration (N : Node_Id) is
3221 Loc : constant Source_Ptr := Sloc (N);
3222 Id : constant Entity_Id := Defining_Identifier (N);
3223 T : Entity_Id;
3224 Act_T : Entity_Id;
3225
3226 E : Node_Id := Expression (N);
3227 -- E is set to Expression (N) throughout this routine. When
3228 -- Expression (N) is modified, E is changed accordingly.
3229
3230 Prev_Entity : Entity_Id := Empty;
3231
3232 function Count_Tasks (T : Entity_Id) return Uint;
3233 -- This function is called when a non-generic library level object of a
3234 -- task type is declared. Its function is to count the static number of
3235 -- tasks declared within the type (it is only called if Has_Tasks is set
3236 -- for T). As a side effect, if an array of tasks with non-static bounds
3237 -- or a variant record type is encountered, Check_Restrictions is called
3238 -- indicating the count is unknown.
3239
3240 -----------------
3241 -- Count_Tasks --
3242 -----------------
3243
3244 function Count_Tasks (T : Entity_Id) return Uint is
3245 C : Entity_Id;
3246 X : Node_Id;
3247 V : Uint;
3248
3249 begin
3250 if Is_Task_Type (T) then
3251 return Uint_1;
3252
3253 elsif Is_Record_Type (T) then
3254 if Has_Discriminants (T) then
3255 Check_Restriction (Max_Tasks, N);
3256 return Uint_0;
3257
3258 else
3259 V := Uint_0;
3260 C := First_Component (T);
3261 while Present (C) loop
3262 V := V + Count_Tasks (Etype (C));
3263 Next_Component (C);
3264 end loop;
3265
3266 return V;
3267 end if;
3268
3269 elsif Is_Array_Type (T) then
3270 X := First_Index (T);
3271 V := Count_Tasks (Component_Type (T));
3272 while Present (X) loop
3273 C := Etype (X);
3274
3275 if not Is_OK_Static_Subtype (C) then
3276 Check_Restriction (Max_Tasks, N);
3277 return Uint_0;
3278 else
3279 V := V * (UI_Max (Uint_0,
3280 Expr_Value (Type_High_Bound (C)) -
3281 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3282 end if;
3283
3284 Next_Index (X);
3285 end loop;
3286
3287 return V;
3288
3289 else
3290 return Uint_0;
3291 end if;
3292 end Count_Tasks;
3293
3294 -- Start of processing for Analyze_Object_Declaration
3295
3296 begin
3297 -- There are three kinds of implicit types generated by an
3298 -- object declaration:
3299
3300 -- 1. Those generated by the original Object Definition
3301
3302 -- 2. Those generated by the Expression
3303
3304 -- 3. Those used to constrain the Object Definition with the
3305 -- expression constraints when the definition is unconstrained.
3306
3307 -- They must be generated in this order to avoid order of elaboration
3308 -- issues. Thus the first step (after entering the name) is to analyze
3309 -- the object definition.
3310
3311 if Constant_Present (N) then
3312 Prev_Entity := Current_Entity_In_Scope (Id);
3313
3314 if Present (Prev_Entity)
3315 and then
3316 -- If the homograph is an implicit subprogram, it is overridden
3317 -- by the current declaration.
3318
3319 ((Is_Overloadable (Prev_Entity)
3320 and then Is_Inherited_Operation (Prev_Entity))
3321
3322 -- The current object is a discriminal generated for an entry
3323 -- family index. Even though the index is a constant, in this
3324 -- particular context there is no true constant redeclaration.
3325 -- Enter_Name will handle the visibility.
3326
3327 or else
3328 (Is_Discriminal (Id)
3329 and then Ekind (Discriminal_Link (Id)) =
3330 E_Entry_Index_Parameter)
3331
3332 -- The current object is the renaming for a generic declared
3333 -- within the instance.
3334
3335 or else
3336 (Ekind (Prev_Entity) = E_Package
3337 and then Nkind (Parent (Prev_Entity)) =
3338 N_Package_Renaming_Declaration
3339 and then not Comes_From_Source (Prev_Entity)
3340 and then
3341 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3342 then
3343 Prev_Entity := Empty;
3344 end if;
3345 end if;
3346
3347 if Present (Prev_Entity) then
3348 Constant_Redeclaration (Id, N, T);
3349
3350 Generate_Reference (Prev_Entity, Id, 'c');
3351 Set_Completion_Referenced (Id);
3352
3353 if Error_Posted (N) then
3354
3355 -- Type mismatch or illegal redeclaration, Do not analyze
3356 -- expression to avoid cascaded errors.
3357
3358 T := Find_Type_Of_Object (Object_Definition (N), N);
3359 Set_Etype (Id, T);
3360 Set_Ekind (Id, E_Variable);
3361 goto Leave;
3362 end if;
3363
3364 -- In the normal case, enter identifier at the start to catch premature
3365 -- usage in the initialization expression.
3366
3367 else
3368 Generate_Definition (Id);
3369 Enter_Name (Id);
3370
3371 Mark_Coextensions (N, Object_Definition (N));
3372
3373 T := Find_Type_Of_Object (Object_Definition (N), N);
3374
3375 if Nkind (Object_Definition (N)) = N_Access_Definition
3376 and then Present
3377 (Access_To_Subprogram_Definition (Object_Definition (N)))
3378 and then Protected_Present
3379 (Access_To_Subprogram_Definition (Object_Definition (N)))
3380 then
3381 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3382 end if;
3383
3384 if Error_Posted (Id) then
3385 Set_Etype (Id, T);
3386 Set_Ekind (Id, E_Variable);
3387 goto Leave;
3388 end if;
3389 end if;
3390
3391 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3392 -- out some static checks
3393
3394 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3395
3396 -- In case of aggregates we must also take care of the correct
3397 -- initialization of nested aggregates bug this is done at the
3398 -- point of the analysis of the aggregate (see sem_aggr.adb).
3399
3400 if Present (Expression (N))
3401 and then Nkind (Expression (N)) = N_Aggregate
3402 then
3403 null;
3404
3405 else
3406 declare
3407 Save_Typ : constant Entity_Id := Etype (Id);
3408 begin
3409 Set_Etype (Id, T); -- Temp. decoration for static checks
3410 Null_Exclusion_Static_Checks (N);
3411 Set_Etype (Id, Save_Typ);
3412 end;
3413 end if;
3414 end if;
3415
3416 -- Object is marked pure if it is in a pure scope
3417
3418 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3419
3420 -- If deferred constant, make sure context is appropriate. We detect
3421 -- a deferred constant as a constant declaration with no expression.
3422 -- A deferred constant can appear in a package body if its completion
3423 -- is by means of an interface pragma.
3424
3425 if Constant_Present (N) and then No (E) then
3426
3427 -- A deferred constant may appear in the declarative part of the
3428 -- following constructs:
3429
3430 -- blocks
3431 -- entry bodies
3432 -- extended return statements
3433 -- package specs
3434 -- package bodies
3435 -- subprogram bodies
3436 -- task bodies
3437
3438 -- When declared inside a package spec, a deferred constant must be
3439 -- completed by a full constant declaration or pragma Import. In all
3440 -- other cases, the only proper completion is pragma Import. Extended
3441 -- return statements are flagged as invalid contexts because they do
3442 -- not have a declarative part and so cannot accommodate the pragma.
3443
3444 if Ekind (Current_Scope) = E_Return_Statement then
3445 Error_Msg_N
3446 ("invalid context for deferred constant declaration (RM 7.4)",
3447 N);
3448 Error_Msg_N
3449 ("\declaration requires an initialization expression",
3450 N);
3451 Set_Constant_Present (N, False);
3452
3453 -- In Ada 83, deferred constant must be of private type
3454
3455 elsif not Is_Private_Type (T) then
3456 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3457 Error_Msg_N
3458 ("(Ada 83) deferred constant must be private type", N);
3459 end if;
3460 end if;
3461
3462 -- If not a deferred constant, then the object declaration freezes
3463 -- its type, unless the object is of an anonymous type and has delayed
3464 -- aspects. In that case the type is frozen when the object itself is.
3465
3466 else
3467 Check_Fully_Declared (T, N);
3468
3469 if Has_Delayed_Aspects (Id)
3470 and then Is_Array_Type (T)
3471 and then Is_Itype (T)
3472 then
3473 Set_Has_Delayed_Freeze (T);
3474 else
3475 Freeze_Before (N, T);
3476 end if;
3477 end if;
3478
3479 -- If the object was created by a constrained array definition, then
3480 -- set the link in both the anonymous base type and anonymous subtype
3481 -- that are built to represent the array type to point to the object.
3482
3483 if Nkind (Object_Definition (Declaration_Node (Id))) =
3484 N_Constrained_Array_Definition
3485 then
3486 Set_Related_Array_Object (T, Id);
3487 Set_Related_Array_Object (Base_Type (T), Id);
3488 end if;
3489
3490 -- Special checks for protected objects not at library level
3491
3492 if Is_Protected_Type (T)
3493 and then not Is_Library_Level_Entity (Id)
3494 then
3495 Check_Restriction (No_Local_Protected_Objects, Id);
3496
3497 -- Protected objects with interrupt handlers must be at library level
3498
3499 -- Ada 2005: This test is not needed (and the corresponding clause
3500 -- in the RM is removed) because accessibility checks are sufficient
3501 -- to make handlers not at the library level illegal.
3502
3503 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3504 -- applies to the '95 version of the language as well.
3505
3506 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3507 Error_Msg_N
3508 ("interrupt object can only be declared at library level", Id);
3509 end if;
3510 end if;
3511
3512 -- The actual subtype of the object is the nominal subtype, unless
3513 -- the nominal one is unconstrained and obtained from the expression.
3514
3515 Act_T := T;
3516
3517 -- These checks should be performed before the initialization expression
3518 -- is considered, so that the Object_Definition node is still the same
3519 -- as in source code.
3520
3521 -- In SPARK, the nominal subtype is always given by a subtype mark
3522 -- and must not be unconstrained. (The only exception to this is the
3523 -- acceptance of declarations of constants of type String.)
3524
3525 if not
3526 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3527 then
3528 Check_SPARK_05_Restriction
3529 ("subtype mark required", Object_Definition (N));
3530
3531 elsif Is_Array_Type (T)
3532 and then not Is_Constrained (T)
3533 and then T /= Standard_String
3534 then
3535 Check_SPARK_05_Restriction
3536 ("subtype mark of constrained type expected",
3537 Object_Definition (N));
3538 end if;
3539
3540 -- There are no aliased objects in SPARK
3541
3542 if Aliased_Present (N) then
3543 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3544 end if;
3545
3546 -- Process initialization expression if present and not in error
3547
3548 if Present (E) and then E /= Error then
3549
3550 -- Generate an error in case of CPP class-wide object initialization.
3551 -- Required because otherwise the expansion of the class-wide
3552 -- assignment would try to use 'size to initialize the object
3553 -- (primitive that is not available in CPP tagged types).
3554
3555 if Is_Class_Wide_Type (Act_T)
3556 and then
3557 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3558 or else
3559 (Present (Full_View (Root_Type (Etype (Act_T))))
3560 and then
3561 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3562 then
3563 Error_Msg_N
3564 ("predefined assignment not available for 'C'P'P tagged types",
3565 E);
3566 end if;
3567
3568 Mark_Coextensions (N, E);
3569 Analyze (E);
3570
3571 -- In case of errors detected in the analysis of the expression,
3572 -- decorate it with the expected type to avoid cascaded errors
3573
3574 if No (Etype (E)) then
3575 Set_Etype (E, T);
3576 end if;
3577
3578 -- If an initialization expression is present, then we set the
3579 -- Is_True_Constant flag. It will be reset if this is a variable
3580 -- and it is indeed modified.
3581
3582 Set_Is_True_Constant (Id, True);
3583
3584 -- If we are analyzing a constant declaration, set its completion
3585 -- flag after analyzing and resolving the expression.
3586
3587 if Constant_Present (N) then
3588 Set_Has_Completion (Id);
3589 end if;
3590
3591 -- Set type and resolve (type may be overridden later on). Note:
3592 -- Ekind (Id) must still be E_Void at this point so that incorrect
3593 -- early usage within E is properly diagnosed.
3594
3595 Set_Etype (Id, T);
3596
3597 -- If the expression is an aggregate we must look ahead to detect
3598 -- the possible presence of an address clause, and defer resolution
3599 -- and expansion of the aggregate to the freeze point of the entity.
3600
3601 if Comes_From_Source (N)
3602 and then Expander_Active
3603 and then Has_Following_Address_Clause (N)
3604 and then Nkind (E) = N_Aggregate
3605 then
3606 Set_Etype (E, T);
3607
3608 else
3609 Resolve (E, T);
3610 end if;
3611
3612 -- No further action needed if E is a call to an inlined function
3613 -- which returns an unconstrained type and it has been expanded into
3614 -- a procedure call. In that case N has been replaced by an object
3615 -- declaration without initializing expression and it has been
3616 -- analyzed (see Expand_Inlined_Call).
3617
3618 if Back_End_Inlining
3619 and then Expander_Active
3620 and then Nkind (E) = N_Function_Call
3621 and then Nkind (Name (E)) in N_Has_Entity
3622 and then Is_Inlined (Entity (Name (E)))
3623 and then not Is_Constrained (Etype (E))
3624 and then Analyzed (N)
3625 and then No (Expression (N))
3626 then
3627 return;
3628 end if;
3629
3630 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3631 -- node (which was marked already-analyzed), we need to set the type
3632 -- to something other than Any_Access in order to keep gigi happy.
3633
3634 if Etype (E) = Any_Access then
3635 Set_Etype (E, T);
3636 end if;
3637
3638 -- If the object is an access to variable, the initialization
3639 -- expression cannot be an access to constant.
3640
3641 if Is_Access_Type (T)
3642 and then not Is_Access_Constant (T)
3643 and then Is_Access_Type (Etype (E))
3644 and then Is_Access_Constant (Etype (E))
3645 then
3646 Error_Msg_N
3647 ("access to variable cannot be initialized with an "
3648 & "access-to-constant expression", E);
3649 end if;
3650
3651 if not Assignment_OK (N) then
3652 Check_Initialization (T, E);
3653 end if;
3654
3655 Check_Unset_Reference (E);
3656
3657 -- If this is a variable, then set current value. If this is a
3658 -- declared constant of a scalar type with a static expression,
3659 -- indicate that it is always valid.
3660
3661 if not Constant_Present (N) then
3662 if Compile_Time_Known_Value (E) then
3663 Set_Current_Value (Id, E);
3664 end if;
3665
3666 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3667 Set_Is_Known_Valid (Id);
3668 end if;
3669
3670 -- Deal with setting of null flags
3671
3672 if Is_Access_Type (T) then
3673 if Known_Non_Null (E) then
3674 Set_Is_Known_Non_Null (Id, True);
3675 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3676 Set_Is_Known_Null (Id, True);
3677 end if;
3678 end if;
3679
3680 -- Check incorrect use of dynamically tagged expressions
3681
3682 if Is_Tagged_Type (T) then
3683 Check_Dynamically_Tagged_Expression
3684 (Expr => E,
3685 Typ => T,
3686 Related_Nod => N);
3687 end if;
3688
3689 Apply_Scalar_Range_Check (E, T);
3690 Apply_Static_Length_Check (E, T);
3691
3692 if Nkind (Original_Node (N)) = N_Object_Declaration
3693 and then Comes_From_Source (Original_Node (N))
3694
3695 -- Only call test if needed
3696
3697 and then Restriction_Check_Required (SPARK_05)
3698 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3699 then
3700 Check_SPARK_05_Restriction
3701 ("initialization expression is not appropriate", E);
3702 end if;
3703
3704 -- A formal parameter of a specific tagged type whose related
3705 -- subprogram is subject to pragma Extensions_Visible with value
3706 -- "False" cannot be implicitly converted to a class-wide type by
3707 -- means of an initialization expression.
3708
3709 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3710 Error_Msg_N
3711 ("formal parameter with Extensions_Visible False cannot be "
3712 & "implicitly converted to class-wide type", E);
3713 end if;
3714 end if;
3715
3716 -- If the No_Streams restriction is set, check that the type of the
3717 -- object is not, and does not contain, any subtype derived from
3718 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3719 -- Has_Stream just for efficiency reasons. There is no point in
3720 -- spending time on a Has_Stream check if the restriction is not set.
3721
3722 if Restriction_Check_Required (No_Streams) then
3723 if Has_Stream (T) then
3724 Check_Restriction (No_Streams, N);
3725 end if;
3726 end if;
3727
3728 -- Deal with predicate check before we start to do major rewriting. It
3729 -- is OK to initialize and then check the initialized value, since the
3730 -- object goes out of scope if we get a predicate failure. Note that we
3731 -- do this in the analyzer and not the expander because the analyzer
3732 -- does some substantial rewriting in some cases.
3733
3734 -- We need a predicate check if the type has predicates, and if either
3735 -- there is an initializing expression, or for default initialization
3736 -- when we have at least one case of an explicit default initial value
3737 -- and then this is not an internal declaration whose initialization
3738 -- comes later (as for an aggregate expansion).
3739
3740 if not Suppress_Assignment_Checks (N)
3741 and then Present (Predicate_Function (T))
3742 and then not No_Initialization (N)
3743 and then
3744 (Present (E)
3745 or else
3746 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3747 then
3748 -- If the type has a static predicate and the expression is known at
3749 -- compile time, see if the expression satisfies the predicate.
3750
3751 if Present (E) then
3752 Check_Expression_Against_Static_Predicate (E, T);
3753 end if;
3754
3755 Insert_After (N,
3756 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3757 end if;
3758
3759 -- Case of unconstrained type
3760
3761 if Is_Indefinite_Subtype (T) then
3762
3763 -- In SPARK, a declaration of unconstrained type is allowed
3764 -- only for constants of type string.
3765
3766 if Is_String_Type (T) and then not Constant_Present (N) then
3767 Check_SPARK_05_Restriction
3768 ("declaration of object of unconstrained type not allowed", N);
3769 end if;
3770
3771 -- Nothing to do in deferred constant case
3772
3773 if Constant_Present (N) and then No (E) then
3774 null;
3775
3776 -- Case of no initialization present
3777
3778 elsif No (E) then
3779 if No_Initialization (N) then
3780 null;
3781
3782 elsif Is_Class_Wide_Type (T) then
3783 Error_Msg_N
3784 ("initialization required in class-wide declaration ", N);
3785
3786 else
3787 Error_Msg_N
3788 ("unconstrained subtype not allowed (need initialization)",
3789 Object_Definition (N));
3790
3791 if Is_Record_Type (T) and then Has_Discriminants (T) then
3792 Error_Msg_N
3793 ("\provide initial value or explicit discriminant values",
3794 Object_Definition (N));
3795
3796 Error_Msg_NE
3797 ("\or give default discriminant values for type&",
3798 Object_Definition (N), T);
3799
3800 elsif Is_Array_Type (T) then
3801 Error_Msg_N
3802 ("\provide initial value or explicit array bounds",
3803 Object_Definition (N));
3804 end if;
3805 end if;
3806
3807 -- Case of initialization present but in error. Set initial
3808 -- expression as absent (but do not make above complaints)
3809
3810 elsif E = Error then
3811 Set_Expression (N, Empty);
3812 E := Empty;
3813
3814 -- Case of initialization present
3815
3816 else
3817 -- Check restrictions in Ada 83
3818
3819 if not Constant_Present (N) then
3820
3821 -- Unconstrained variables not allowed in Ada 83 mode
3822
3823 if Ada_Version = Ada_83
3824 and then Comes_From_Source (Object_Definition (N))
3825 then
3826 Error_Msg_N
3827 ("(Ada 83) unconstrained variable not allowed",
3828 Object_Definition (N));
3829 end if;
3830 end if;
3831
3832 -- Now we constrain the variable from the initializing expression
3833
3834 -- If the expression is an aggregate, it has been expanded into
3835 -- individual assignments. Retrieve the actual type from the
3836 -- expanded construct.
3837
3838 if Is_Array_Type (T)
3839 and then No_Initialization (N)
3840 and then Nkind (Original_Node (E)) = N_Aggregate
3841 then
3842 Act_T := Etype (E);
3843
3844 -- In case of class-wide interface object declarations we delay
3845 -- the generation of the equivalent record type declarations until
3846 -- its expansion because there are cases in they are not required.
3847
3848 elsif Is_Interface (T) then
3849 null;
3850
3851 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3852 -- we should prevent the generation of another Itype with the
3853 -- same name as the one already generated, or we end up with
3854 -- two identical types in GNATprove.
3855
3856 elsif GNATprove_Mode then
3857 null;
3858
3859 -- If the type is an unchecked union, no subtype can be built from
3860 -- the expression. Rewrite declaration as a renaming, which the
3861 -- back-end can handle properly. This is a rather unusual case,
3862 -- because most unchecked_union declarations have default values
3863 -- for discriminants and are thus not indefinite.
3864
3865 elsif Is_Unchecked_Union (T) then
3866 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3867 Set_Ekind (Id, E_Constant);
3868 else
3869 Set_Ekind (Id, E_Variable);
3870 end if;
3871
3872 Rewrite (N,
3873 Make_Object_Renaming_Declaration (Loc,
3874 Defining_Identifier => Id,
3875 Subtype_Mark => New_Occurrence_Of (T, Loc),
3876 Name => E));
3877
3878 Set_Renamed_Object (Id, E);
3879 Freeze_Before (N, T);
3880 Set_Is_Frozen (Id);
3881 return;
3882
3883 else
3884 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3885 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3886 end if;
3887
3888 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3889
3890 if Aliased_Present (N) then
3891 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3892 end if;
3893
3894 Freeze_Before (N, Act_T);
3895 Freeze_Before (N, T);
3896 end if;
3897
3898 elsif Is_Array_Type (T)
3899 and then No_Initialization (N)
3900 and then Nkind (Original_Node (E)) = N_Aggregate
3901 then
3902 if not Is_Entity_Name (Object_Definition (N)) then
3903 Act_T := Etype (E);
3904 Check_Compile_Time_Size (Act_T);
3905
3906 if Aliased_Present (N) then
3907 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3908 end if;
3909 end if;
3910
3911 -- When the given object definition and the aggregate are specified
3912 -- independently, and their lengths might differ do a length check.
3913 -- This cannot happen if the aggregate is of the form (others =>...)
3914
3915 if not Is_Constrained (T) then
3916 null;
3917
3918 elsif Nkind (E) = N_Raise_Constraint_Error then
3919
3920 -- Aggregate is statically illegal. Place back in declaration
3921
3922 Set_Expression (N, E);
3923 Set_No_Initialization (N, False);
3924
3925 elsif T = Etype (E) then
3926 null;
3927
3928 elsif Nkind (E) = N_Aggregate
3929 and then Present (Component_Associations (E))
3930 and then Present (Choices (First (Component_Associations (E))))
3931 and then Nkind (First
3932 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3933 then
3934 null;
3935
3936 else
3937 Apply_Length_Check (E, T);
3938 end if;
3939
3940 -- If the type is limited unconstrained with defaulted discriminants and
3941 -- there is no expression, then the object is constrained by the
3942 -- defaults, so it is worthwhile building the corresponding subtype.
3943
3944 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3945 and then not Is_Constrained (T)
3946 and then Has_Discriminants (T)
3947 then
3948 if No (E) then
3949 Act_T := Build_Default_Subtype (T, N);
3950 else
3951 -- Ada 2005: A limited object may be initialized by means of an
3952 -- aggregate. If the type has default discriminants it has an
3953 -- unconstrained nominal type, Its actual subtype will be obtained
3954 -- from the aggregate, and not from the default discriminants.
3955
3956 Act_T := Etype (E);
3957 end if;
3958
3959 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3960
3961 elsif Nkind (E) = N_Function_Call
3962 and then Constant_Present (N)
3963 and then Has_Unconstrained_Elements (Etype (E))
3964 then
3965 -- The back-end has problems with constants of a discriminated type
3966 -- with defaults, if the initial value is a function call. We
3967 -- generate an intermediate temporary that will receive a reference
3968 -- to the result of the call. The initialization expression then
3969 -- becomes a dereference of that temporary.
3970
3971 Remove_Side_Effects (E);
3972
3973 -- If this is a constant declaration of an unconstrained type and
3974 -- the initialization is an aggregate, we can use the subtype of the
3975 -- aggregate for the declared entity because it is immutable.
3976
3977 elsif not Is_Constrained (T)
3978 and then Has_Discriminants (T)
3979 and then Constant_Present (N)
3980 and then not Has_Unchecked_Union (T)
3981 and then Nkind (E) = N_Aggregate
3982 then
3983 Act_T := Etype (E);
3984 end if;
3985
3986 -- Check No_Wide_Characters restriction
3987
3988 Check_Wide_Character_Restriction (T, Object_Definition (N));
3989
3990 -- Indicate this is not set in source. Certainly true for constants, and
3991 -- true for variables so far (will be reset for a variable if and when
3992 -- we encounter a modification in the source).
3993
3994 Set_Never_Set_In_Source (Id, True);
3995
3996 -- Now establish the proper kind and type of the object
3997
3998 if Constant_Present (N) then
3999 Set_Ekind (Id, E_Constant);
4000 Set_Is_True_Constant (Id);
4001
4002 else
4003 Set_Ekind (Id, E_Variable);
4004
4005 -- A variable is set as shared passive if it appears in a shared
4006 -- passive package, and is at the outer level. This is not done for
4007 -- entities generated during expansion, because those are always
4008 -- manipulated locally.
4009
4010 if Is_Shared_Passive (Current_Scope)
4011 and then Is_Library_Level_Entity (Id)
4012 and then Comes_From_Source (Id)
4013 then
4014 Set_Is_Shared_Passive (Id);
4015 Check_Shared_Var (Id, T, N);
4016 end if;
4017
4018 -- Set Has_Initial_Value if initializing expression present. Note
4019 -- that if there is no initializing expression, we leave the state
4020 -- of this flag unchanged (usually it will be False, but notably in
4021 -- the case of exception choice variables, it will already be true).
4022
4023 if Present (E) then
4024 Set_Has_Initial_Value (Id, True);
4025 end if;
4026
4027 Set_Contract (Id, Make_Contract (Sloc (Id)));
4028 end if;
4029
4030 -- Initialize alignment and size and capture alignment setting
4031
4032 Init_Alignment (Id);
4033 Init_Esize (Id);
4034 Set_Optimize_Alignment_Flags (Id);
4035
4036 -- Deal with aliased case
4037
4038 if Aliased_Present (N) then
4039 Set_Is_Aliased (Id);
4040
4041 -- If the object is aliased and the type is unconstrained with
4042 -- defaulted discriminants and there is no expression, then the
4043 -- object is constrained by the defaults, so it is worthwhile
4044 -- building the corresponding subtype.
4045
4046 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4047 -- unconstrained, then only establish an actual subtype if the
4048 -- nominal subtype is indefinite. In definite cases the object is
4049 -- unconstrained in Ada 2005.
4050
4051 if No (E)
4052 and then Is_Record_Type (T)
4053 and then not Is_Constrained (T)
4054 and then Has_Discriminants (T)
4055 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4056 then
4057 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4058 end if;
4059 end if;
4060
4061 -- Now we can set the type of the object
4062
4063 Set_Etype (Id, Act_T);
4064
4065 -- Non-constant object is marked to be treated as volatile if type is
4066 -- volatile and we clear the Current_Value setting that may have been
4067 -- set above. Doing so for constants isn't required and might interfere
4068 -- with possible uses of the object as a static expression in contexts
4069 -- incompatible with volatility (e.g. as a case-statement alternative).
4070
4071 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4072 Set_Treat_As_Volatile (Id);
4073 Set_Current_Value (Id, Empty);
4074 end if;
4075
4076 -- Deal with controlled types
4077
4078 if Has_Controlled_Component (Etype (Id))
4079 or else Is_Controlled (Etype (Id))
4080 then
4081 if not Is_Library_Level_Entity (Id) then
4082 Check_Restriction (No_Nested_Finalization, N);
4083 else
4084 Validate_Controlled_Object (Id);
4085 end if;
4086 end if;
4087
4088 if Has_Task (Etype (Id)) then
4089 Check_Restriction (No_Tasking, N);
4090
4091 -- Deal with counting max tasks
4092
4093 -- Nothing to do if inside a generic
4094
4095 if Inside_A_Generic then
4096 null;
4097
4098 -- If library level entity, then count tasks
4099
4100 elsif Is_Library_Level_Entity (Id) then
4101 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4102
4103 -- If not library level entity, then indicate we don't know max
4104 -- tasks and also check task hierarchy restriction and blocking
4105 -- operation (since starting a task is definitely blocking).
4106
4107 else
4108 Check_Restriction (Max_Tasks, N);
4109 Check_Restriction (No_Task_Hierarchy, N);
4110 Check_Potentially_Blocking_Operation (N);
4111 end if;
4112
4113 -- A rather specialized test. If we see two tasks being declared
4114 -- of the same type in the same object declaration, and the task
4115 -- has an entry with an address clause, we know that program error
4116 -- will be raised at run time since we can't have two tasks with
4117 -- entries at the same address.
4118
4119 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4120 declare
4121 E : Entity_Id;
4122
4123 begin
4124 E := First_Entity (Etype (Id));
4125 while Present (E) loop
4126 if Ekind (E) = E_Entry
4127 and then Present (Get_Attribute_Definition_Clause
4128 (E, Attribute_Address))
4129 then
4130 Error_Msg_Warn := SPARK_Mode /= On;
4131 Error_Msg_N
4132 ("more than one task with same entry address<<", N);
4133 Error_Msg_N ("\Program_Error [<<", N);
4134 Insert_Action (N,
4135 Make_Raise_Program_Error (Loc,
4136 Reason => PE_Duplicated_Entry_Address));
4137 exit;
4138 end if;
4139
4140 Next_Entity (E);
4141 end loop;
4142 end;
4143 end if;
4144 end if;
4145
4146 -- Some simple constant-propagation: if the expression is a constant
4147 -- string initialized with a literal, share the literal. This avoids
4148 -- a run-time copy.
4149
4150 if Present (E)
4151 and then Is_Entity_Name (E)
4152 and then Ekind (Entity (E)) = E_Constant
4153 and then Base_Type (Etype (E)) = Standard_String
4154 then
4155 declare
4156 Val : constant Node_Id := Constant_Value (Entity (E));
4157 begin
4158 if Present (Val) and then Nkind (Val) = N_String_Literal then
4159 Rewrite (E, New_Copy (Val));
4160 end if;
4161 end;
4162 end if;
4163
4164 -- Another optimization: if the nominal subtype is unconstrained and
4165 -- the expression is a function call that returns an unconstrained
4166 -- type, rewrite the declaration as a renaming of the result of the
4167 -- call. The exceptions below are cases where the copy is expected,
4168 -- either by the back end (Aliased case) or by the semantics, as for
4169 -- initializing controlled types or copying tags for classwide types.
4170
4171 if Present (E)
4172 and then Nkind (E) = N_Explicit_Dereference
4173 and then Nkind (Original_Node (E)) = N_Function_Call
4174 and then not Is_Library_Level_Entity (Id)
4175 and then not Is_Constrained (Underlying_Type (T))
4176 and then not Is_Aliased (Id)
4177 and then not Is_Class_Wide_Type (T)
4178 and then not Is_Controlled (T)
4179 and then not Has_Controlled_Component (Base_Type (T))
4180 and then Expander_Active
4181 then
4182 Rewrite (N,
4183 Make_Object_Renaming_Declaration (Loc,
4184 Defining_Identifier => Id,
4185 Access_Definition => Empty,
4186 Subtype_Mark => New_Occurrence_Of
4187 (Base_Type (Etype (Id)), Loc),
4188 Name => E));
4189
4190 Set_Renamed_Object (Id, E);
4191
4192 -- Force generation of debugging information for the constant and for
4193 -- the renamed function call.
4194
4195 Set_Debug_Info_Needed (Id);
4196 Set_Debug_Info_Needed (Entity (Prefix (E)));
4197 end if;
4198
4199 if Present (Prev_Entity)
4200 and then Is_Frozen (Prev_Entity)
4201 and then not Error_Posted (Id)
4202 then
4203 Error_Msg_N ("full constant declaration appears too late", N);
4204 end if;
4205
4206 Check_Eliminated (Id);
4207
4208 -- Deal with setting In_Private_Part flag if in private part
4209
4210 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4211 then
4212 Set_In_Private_Part (Id);
4213 end if;
4214
4215 -- Check for violation of No_Local_Timing_Events
4216
4217 if Restriction_Check_Required (No_Local_Timing_Events)
4218 and then not Is_Library_Level_Entity (Id)
4219 and then Is_RTE (Etype (Id), RE_Timing_Event)
4220 then
4221 Check_Restriction (No_Local_Timing_Events, N);
4222 end if;
4223
4224 <<Leave>>
4225 -- Initialize the refined state of a variable here because this is a
4226 -- common destination for legal and illegal object declarations.
4227
4228 if Ekind (Id) = E_Variable then
4229 Set_Encapsulating_State (Id, Empty);
4230 end if;
4231
4232 if Has_Aspects (N) then
4233 Analyze_Aspect_Specifications (N, Id);
4234 end if;
4235
4236 Analyze_Dimension (N);
4237
4238 -- Verify whether the object declaration introduces an illegal hidden
4239 -- state within a package subject to a null abstract state.
4240
4241 if Ekind (Id) = E_Variable then
4242 Check_No_Hidden_State (Id);
4243 end if;
4244 end Analyze_Object_Declaration;
4245
4246 ---------------------------
4247 -- Analyze_Others_Choice --
4248 ---------------------------
4249
4250 -- Nothing to do for the others choice node itself, the semantic analysis
4251 -- of the others choice will occur as part of the processing of the parent
4252
4253 procedure Analyze_Others_Choice (N : Node_Id) is
4254 pragma Warnings (Off, N);
4255 begin
4256 null;
4257 end Analyze_Others_Choice;
4258
4259 -------------------------------------------
4260 -- Analyze_Private_Extension_Declaration --
4261 -------------------------------------------
4262
4263 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4264 T : constant Entity_Id := Defining_Identifier (N);
4265 Indic : constant Node_Id := Subtype_Indication (N);
4266 Parent_Type : Entity_Id;
4267 Parent_Base : Entity_Id;
4268
4269 begin
4270 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4271
4272 if Is_Non_Empty_List (Interface_List (N)) then
4273 declare
4274 Intf : Node_Id;
4275 T : Entity_Id;
4276
4277 begin
4278 Intf := First (Interface_List (N));
4279 while Present (Intf) loop
4280 T := Find_Type_Of_Subtype_Indic (Intf);
4281
4282 Diagnose_Interface (Intf, T);
4283 Next (Intf);
4284 end loop;
4285 end;
4286 end if;
4287
4288 Generate_Definition (T);
4289
4290 -- For other than Ada 2012, just enter the name in the current scope
4291
4292 if Ada_Version < Ada_2012 then
4293 Enter_Name (T);
4294
4295 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4296 -- case of private type that completes an incomplete type.
4297
4298 else
4299 declare
4300 Prev : Entity_Id;
4301
4302 begin
4303 Prev := Find_Type_Name (N);
4304
4305 pragma Assert (Prev = T
4306 or else (Ekind (Prev) = E_Incomplete_Type
4307 and then Present (Full_View (Prev))
4308 and then Full_View (Prev) = T));
4309 end;
4310 end if;
4311
4312 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4313 Parent_Base := Base_Type (Parent_Type);
4314
4315 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4316 Set_Ekind (T, Ekind (Parent_Type));
4317 Set_Etype (T, Any_Type);
4318 goto Leave;
4319
4320 elsif not Is_Tagged_Type (Parent_Type) then
4321 Error_Msg_N
4322 ("parent of type extension must be a tagged type ", Indic);
4323 goto Leave;
4324
4325 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4326 Error_Msg_N ("premature derivation of incomplete type", Indic);
4327 goto Leave;
4328
4329 elsif Is_Concurrent_Type (Parent_Type) then
4330 Error_Msg_N
4331 ("parent type of a private extension cannot be "
4332 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4333
4334 Set_Etype (T, Any_Type);
4335 Set_Ekind (T, E_Limited_Private_Type);
4336 Set_Private_Dependents (T, New_Elmt_List);
4337 Set_Error_Posted (T);
4338 goto Leave;
4339 end if;
4340
4341 -- Perhaps the parent type should be changed to the class-wide type's
4342 -- specific type in this case to prevent cascading errors ???
4343
4344 if Is_Class_Wide_Type (Parent_Type) then
4345 Error_Msg_N
4346 ("parent of type extension must not be a class-wide type", Indic);
4347 goto Leave;
4348 end if;
4349
4350 if (not Is_Package_Or_Generic_Package (Current_Scope)
4351 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4352 or else In_Private_Part (Current_Scope)
4353
4354 then
4355 Error_Msg_N ("invalid context for private extension", N);
4356 end if;
4357
4358 -- Set common attributes
4359
4360 Set_Is_Pure (T, Is_Pure (Current_Scope));
4361 Set_Scope (T, Current_Scope);
4362 Set_Ekind (T, E_Record_Type_With_Private);
4363 Init_Size_Align (T);
4364 Set_Default_SSO (T);
4365
4366 Set_Etype (T, Parent_Base);
4367 Set_Has_Task (T, Has_Task (Parent_Base));
4368 Set_Has_Protected (T, Has_Task (Parent_Base));
4369
4370 Set_Convention (T, Convention (Parent_Type));
4371 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4372 Set_Is_First_Subtype (T);
4373 Make_Class_Wide_Type (T);
4374
4375 if Unknown_Discriminants_Present (N) then
4376 Set_Discriminant_Constraint (T, No_Elist);
4377 end if;
4378
4379 Build_Derived_Record_Type (N, Parent_Type, T);
4380
4381 -- Propagate inherited invariant information. The new type has
4382 -- invariants, if the parent type has inheritable invariants,
4383 -- and these invariants can in turn be inherited.
4384
4385 if Has_Inheritable_Invariants (Parent_Type) then
4386 Set_Has_Inheritable_Invariants (T);
4387 Set_Has_Invariants (T);
4388 end if;
4389
4390 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4391 -- synchronized formal derived type.
4392
4393 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4394 Set_Is_Limited_Record (T);
4395
4396 -- Formal derived type case
4397
4398 if Is_Generic_Type (T) then
4399
4400 -- The parent must be a tagged limited type or a synchronized
4401 -- interface.
4402
4403 if (not Is_Tagged_Type (Parent_Type)
4404 or else not Is_Limited_Type (Parent_Type))
4405 and then
4406 (not Is_Interface (Parent_Type)
4407 or else not Is_Synchronized_Interface (Parent_Type))
4408 then
4409 Error_Msg_NE ("parent type of & must be tagged limited " &
4410 "or synchronized", N, T);
4411 end if;
4412
4413 -- The progenitors (if any) must be limited or synchronized
4414 -- interfaces.
4415
4416 if Present (Interfaces (T)) then
4417 declare
4418 Iface : Entity_Id;
4419 Iface_Elmt : Elmt_Id;
4420
4421 begin
4422 Iface_Elmt := First_Elmt (Interfaces (T));
4423 while Present (Iface_Elmt) loop
4424 Iface := Node (Iface_Elmt);
4425
4426 if not Is_Limited_Interface (Iface)
4427 and then not Is_Synchronized_Interface (Iface)
4428 then
4429 Error_Msg_NE ("progenitor & must be limited " &
4430 "or synchronized", N, Iface);
4431 end if;
4432
4433 Next_Elmt (Iface_Elmt);
4434 end loop;
4435 end;
4436 end if;
4437
4438 -- Regular derived extension, the parent must be a limited or
4439 -- synchronized interface.
4440
4441 else
4442 if not Is_Interface (Parent_Type)
4443 or else (not Is_Limited_Interface (Parent_Type)
4444 and then not Is_Synchronized_Interface (Parent_Type))
4445 then
4446 Error_Msg_NE
4447 ("parent type of & must be limited interface", N, T);
4448 end if;
4449 end if;
4450
4451 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4452 -- extension with a synchronized parent must be explicitly declared
4453 -- synchronized, because the full view will be a synchronized type.
4454 -- This must be checked before the check for limited types below,
4455 -- to ensure that types declared limited are not allowed to extend
4456 -- synchronized interfaces.
4457
4458 elsif Is_Interface (Parent_Type)
4459 and then Is_Synchronized_Interface (Parent_Type)
4460 and then not Synchronized_Present (N)
4461 then
4462 Error_Msg_NE
4463 ("private extension of& must be explicitly synchronized",
4464 N, Parent_Type);
4465
4466 elsif Limited_Present (N) then
4467 Set_Is_Limited_Record (T);
4468
4469 if not Is_Limited_Type (Parent_Type)
4470 and then
4471 (not Is_Interface (Parent_Type)
4472 or else not Is_Limited_Interface (Parent_Type))
4473 then
4474 Error_Msg_NE ("parent type& of limited extension must be limited",
4475 N, Parent_Type);
4476 end if;
4477 end if;
4478
4479 <<Leave>>
4480 if Has_Aspects (N) then
4481 Analyze_Aspect_Specifications (N, T);
4482 end if;
4483 end Analyze_Private_Extension_Declaration;
4484
4485 ---------------------------------
4486 -- Analyze_Subtype_Declaration --
4487 ---------------------------------
4488
4489 procedure Analyze_Subtype_Declaration
4490 (N : Node_Id;
4491 Skip : Boolean := False)
4492 is
4493 Id : constant Entity_Id := Defining_Identifier (N);
4494 T : Entity_Id;
4495 R_Checks : Check_Result;
4496
4497 begin
4498 Generate_Definition (Id);
4499 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4500 Init_Size_Align (Id);
4501
4502 -- The following guard condition on Enter_Name is to handle cases where
4503 -- the defining identifier has already been entered into the scope but
4504 -- the declaration as a whole needs to be analyzed.
4505
4506 -- This case in particular happens for derived enumeration types. The
4507 -- derived enumeration type is processed as an inserted enumeration type
4508 -- declaration followed by a rewritten subtype declaration. The defining
4509 -- identifier, however, is entered into the name scope very early in the
4510 -- processing of the original type declaration and therefore needs to be
4511 -- avoided here, when the created subtype declaration is analyzed. (See
4512 -- Build_Derived_Types)
4513
4514 -- This also happens when the full view of a private type is derived
4515 -- type with constraints. In this case the entity has been introduced
4516 -- in the private declaration.
4517
4518 -- Finally this happens in some complex cases when validity checks are
4519 -- enabled, where the same subtype declaration may be analyzed twice.
4520 -- This can happen if the subtype is created by the pre-analysis of
4521 -- an attribute tht gives the range of a loop statement, and the loop
4522 -- itself appears within an if_statement that will be rewritten during
4523 -- expansion.
4524
4525 if Skip
4526 or else (Present (Etype (Id))
4527 and then (Is_Private_Type (Etype (Id))
4528 or else Is_Task_Type (Etype (Id))
4529 or else Is_Rewrite_Substitution (N)))
4530 then
4531 null;
4532
4533 elsif Current_Entity (Id) = Id then
4534 null;
4535
4536 else
4537 Enter_Name (Id);
4538 end if;
4539
4540 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4541
4542 -- Class-wide equivalent types of records with unknown discriminants
4543 -- involve the generation of an itype which serves as the private view
4544 -- of a constrained record subtype. In such cases the base type of the
4545 -- current subtype we are processing is the private itype. Use the full
4546 -- of the private itype when decorating various attributes.
4547
4548 if Is_Itype (T)
4549 and then Is_Private_Type (T)
4550 and then Present (Full_View (T))
4551 then
4552 T := Full_View (T);
4553 end if;
4554
4555 -- Inherit common attributes
4556
4557 Set_Is_Volatile (Id, Is_Volatile (T));
4558 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4559 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4560 Set_Convention (Id, Convention (T));
4561
4562 -- If ancestor has predicates then so does the subtype, and in addition
4563 -- we must delay the freeze to properly arrange predicate inheritance.
4564
4565 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4566 -- in which T = ID, so the above tests and assignments do nothing???
4567
4568 if Has_Predicates (T)
4569 or else (Present (Ancestor_Subtype (T))
4570 and then Has_Predicates (Ancestor_Subtype (T)))
4571 then
4572 Set_Has_Predicates (Id);
4573 Set_Has_Delayed_Freeze (Id);
4574 end if;
4575
4576 -- Subtype of Boolean cannot have a constraint in SPARK
4577
4578 if Is_Boolean_Type (T)
4579 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4580 then
4581 Check_SPARK_05_Restriction
4582 ("subtype of Boolean cannot have constraint", N);
4583 end if;
4584
4585 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4586 declare
4587 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4588 One_Cstr : Node_Id;
4589 Low : Node_Id;
4590 High : Node_Id;
4591
4592 begin
4593 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4594 One_Cstr := First (Constraints (Cstr));
4595 while Present (One_Cstr) loop
4596
4597 -- Index or discriminant constraint in SPARK must be a
4598 -- subtype mark.
4599
4600 if not
4601 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4602 then
4603 Check_SPARK_05_Restriction
4604 ("subtype mark required", One_Cstr);
4605
4606 -- String subtype must have a lower bound of 1 in SPARK.
4607 -- Note that we do not need to test for the non-static case
4608 -- here, since that was already taken care of in
4609 -- Process_Range_Expr_In_Decl.
4610
4611 elsif Base_Type (T) = Standard_String then
4612 Get_Index_Bounds (One_Cstr, Low, High);
4613
4614 if Is_OK_Static_Expression (Low)
4615 and then Expr_Value (Low) /= 1
4616 then
4617 Check_SPARK_05_Restriction
4618 ("String subtype must have lower bound of 1", N);
4619 end if;
4620 end if;
4621
4622 Next (One_Cstr);
4623 end loop;
4624 end if;
4625 end;
4626 end if;
4627
4628 -- In the case where there is no constraint given in the subtype
4629 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4630 -- semantic attributes must be established here.
4631
4632 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4633 Set_Etype (Id, Base_Type (T));
4634
4635 -- Subtype of unconstrained array without constraint is not allowed
4636 -- in SPARK.
4637
4638 if Is_Array_Type (T) and then not Is_Constrained (T) then
4639 Check_SPARK_05_Restriction
4640 ("subtype of unconstrained array must have constraint", N);
4641 end if;
4642
4643 case Ekind (T) is
4644 when Array_Kind =>
4645 Set_Ekind (Id, E_Array_Subtype);
4646 Copy_Array_Subtype_Attributes (Id, T);
4647
4648 when Decimal_Fixed_Point_Kind =>
4649 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4650 Set_Digits_Value (Id, Digits_Value (T));
4651 Set_Delta_Value (Id, Delta_Value (T));
4652 Set_Scale_Value (Id, Scale_Value (T));
4653 Set_Small_Value (Id, Small_Value (T));
4654 Set_Scalar_Range (Id, Scalar_Range (T));
4655 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4656 Set_Is_Constrained (Id, Is_Constrained (T));
4657 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4658 Set_RM_Size (Id, RM_Size (T));
4659
4660 when Enumeration_Kind =>
4661 Set_Ekind (Id, E_Enumeration_Subtype);
4662 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4663 Set_Scalar_Range (Id, Scalar_Range (T));
4664 Set_Is_Character_Type (Id, Is_Character_Type (T));
4665 Set_Is_Constrained (Id, Is_Constrained (T));
4666 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4667 Set_RM_Size (Id, RM_Size (T));
4668 Inherit_Predicate_Flags (Id, T);
4669
4670 when Ordinary_Fixed_Point_Kind =>
4671 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4672 Set_Scalar_Range (Id, Scalar_Range (T));
4673 Set_Small_Value (Id, Small_Value (T));
4674 Set_Delta_Value (Id, Delta_Value (T));
4675 Set_Is_Constrained (Id, Is_Constrained (T));
4676 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4677 Set_RM_Size (Id, RM_Size (T));
4678
4679 when Float_Kind =>
4680 Set_Ekind (Id, E_Floating_Point_Subtype);
4681 Set_Scalar_Range (Id, Scalar_Range (T));
4682 Set_Digits_Value (Id, Digits_Value (T));
4683 Set_Is_Constrained (Id, Is_Constrained (T));
4684
4685 when Signed_Integer_Kind =>
4686 Set_Ekind (Id, E_Signed_Integer_Subtype);
4687 Set_Scalar_Range (Id, Scalar_Range (T));
4688 Set_Is_Constrained (Id, Is_Constrained (T));
4689 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4690 Set_RM_Size (Id, RM_Size (T));
4691 Inherit_Predicate_Flags (Id, T);
4692
4693 when Modular_Integer_Kind =>
4694 Set_Ekind (Id, E_Modular_Integer_Subtype);
4695 Set_Scalar_Range (Id, Scalar_Range (T));
4696 Set_Is_Constrained (Id, Is_Constrained (T));
4697 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4698 Set_RM_Size (Id, RM_Size (T));
4699 Inherit_Predicate_Flags (Id, T);
4700
4701 when Class_Wide_Kind =>
4702 Set_Ekind (Id, E_Class_Wide_Subtype);
4703 Set_First_Entity (Id, First_Entity (T));
4704 Set_Last_Entity (Id, Last_Entity (T));
4705 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4706 Set_Cloned_Subtype (Id, T);
4707 Set_Is_Tagged_Type (Id, True);
4708 Set_Has_Unknown_Discriminants
4709 (Id, True);
4710 Set_No_Tagged_Streams_Pragma
4711 (Id, No_Tagged_Streams_Pragma (T));
4712
4713 if Ekind (T) = E_Class_Wide_Subtype then
4714 Set_Equivalent_Type (Id, Equivalent_Type (T));
4715 end if;
4716
4717 when E_Record_Type | E_Record_Subtype =>
4718 Set_Ekind (Id, E_Record_Subtype);
4719
4720 if Ekind (T) = E_Record_Subtype
4721 and then Present (Cloned_Subtype (T))
4722 then
4723 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4724 else
4725 Set_Cloned_Subtype (Id, T);
4726 end if;
4727
4728 Set_First_Entity (Id, First_Entity (T));
4729 Set_Last_Entity (Id, Last_Entity (T));
4730 Set_Has_Discriminants (Id, Has_Discriminants (T));
4731 Set_Is_Constrained (Id, Is_Constrained (T));
4732 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4733 Set_Has_Implicit_Dereference
4734 (Id, Has_Implicit_Dereference (T));
4735 Set_Has_Unknown_Discriminants
4736 (Id, Has_Unknown_Discriminants (T));
4737
4738 if Has_Discriminants (T) then
4739 Set_Discriminant_Constraint
4740 (Id, Discriminant_Constraint (T));
4741 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4742
4743 elsif Has_Unknown_Discriminants (Id) then
4744 Set_Discriminant_Constraint (Id, No_Elist);
4745 end if;
4746
4747 if Is_Tagged_Type (T) then
4748 Set_Is_Tagged_Type (Id, True);
4749 Set_No_Tagged_Streams_Pragma
4750 (Id, No_Tagged_Streams_Pragma (T));
4751 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4752 Set_Direct_Primitive_Operations
4753 (Id, Direct_Primitive_Operations (T));
4754 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4755
4756 if Is_Interface (T) then
4757 Set_Is_Interface (Id);
4758 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4759 end if;
4760 end if;
4761
4762 when Private_Kind =>
4763 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4764 Set_Has_Discriminants (Id, Has_Discriminants (T));
4765 Set_Is_Constrained (Id, Is_Constrained (T));
4766 Set_First_Entity (Id, First_Entity (T));
4767 Set_Last_Entity (Id, Last_Entity (T));
4768 Set_Private_Dependents (Id, New_Elmt_List);
4769 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4770 Set_Has_Implicit_Dereference
4771 (Id, Has_Implicit_Dereference (T));
4772 Set_Has_Unknown_Discriminants
4773 (Id, Has_Unknown_Discriminants (T));
4774 Set_Known_To_Have_Preelab_Init
4775 (Id, Known_To_Have_Preelab_Init (T));
4776
4777 if Is_Tagged_Type (T) then
4778 Set_Is_Tagged_Type (Id);
4779 Set_No_Tagged_Streams_Pragma (Id,
4780 No_Tagged_Streams_Pragma (T));
4781 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4782 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4783 Set_Direct_Primitive_Operations (Id,
4784 Direct_Primitive_Operations (T));
4785 end if;
4786
4787 -- In general the attributes of the subtype of a private type
4788 -- are the attributes of the partial view of parent. However,
4789 -- the full view may be a discriminated type, and the subtype
4790 -- must share the discriminant constraint to generate correct
4791 -- calls to initialization procedures.
4792
4793 if Has_Discriminants (T) then
4794 Set_Discriminant_Constraint
4795 (Id, Discriminant_Constraint (T));
4796 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4797
4798 elsif Present (Full_View (T))
4799 and then Has_Discriminants (Full_View (T))
4800 then
4801 Set_Discriminant_Constraint
4802 (Id, Discriminant_Constraint (Full_View (T)));
4803 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4804
4805 -- This would seem semantically correct, but apparently
4806 -- generates spurious errors about missing components ???
4807
4808 -- Set_Has_Discriminants (Id);
4809 end if;
4810
4811 Prepare_Private_Subtype_Completion (Id, N);
4812
4813 -- If this is the subtype of a constrained private type with
4814 -- discriminants that has got a full view and we also have
4815 -- built a completion just above, show that the completion
4816 -- is a clone of the full view to the back-end.
4817
4818 if Has_Discriminants (T)
4819 and then not Has_Unknown_Discriminants (T)
4820 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4821 and then Present (Full_View (T))
4822 and then Present (Full_View (Id))
4823 then
4824 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4825 end if;
4826
4827 when Access_Kind =>
4828 Set_Ekind (Id, E_Access_Subtype);
4829 Set_Is_Constrained (Id, Is_Constrained (T));
4830 Set_Is_Access_Constant
4831 (Id, Is_Access_Constant (T));
4832 Set_Directly_Designated_Type
4833 (Id, Designated_Type (T));
4834 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4835
4836 -- A Pure library_item must not contain the declaration of a
4837 -- named access type, except within a subprogram, generic
4838 -- subprogram, task unit, or protected unit, or if it has
4839 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4840
4841 if Comes_From_Source (Id)
4842 and then In_Pure_Unit
4843 and then not In_Subprogram_Task_Protected_Unit
4844 and then not No_Pool_Assigned (Id)
4845 then
4846 Error_Msg_N
4847 ("named access types not allowed in pure unit", N);
4848 end if;
4849
4850 when Concurrent_Kind =>
4851 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4852 Set_Corresponding_Record_Type (Id,
4853 Corresponding_Record_Type (T));
4854 Set_First_Entity (Id, First_Entity (T));
4855 Set_First_Private_Entity (Id, First_Private_Entity (T));
4856 Set_Has_Discriminants (Id, Has_Discriminants (T));
4857 Set_Is_Constrained (Id, Is_Constrained (T));
4858 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4859 Set_Last_Entity (Id, Last_Entity (T));
4860
4861 if Is_Tagged_Type (T) then
4862 Set_No_Tagged_Streams_Pragma
4863 (Id, No_Tagged_Streams_Pragma (T));
4864 end if;
4865
4866 if Has_Discriminants (T) then
4867 Set_Discriminant_Constraint (Id,
4868 Discriminant_Constraint (T));
4869 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4870 end if;
4871
4872 when E_Incomplete_Type =>
4873 if Ada_Version >= Ada_2005 then
4874
4875 -- In Ada 2005 an incomplete type can be explicitly tagged:
4876 -- propagate indication.
4877
4878 Set_Ekind (Id, E_Incomplete_Subtype);
4879 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4880 Set_Private_Dependents (Id, New_Elmt_List);
4881
4882 if Is_Tagged_Type (Id) then
4883 Set_No_Tagged_Streams_Pragma
4884 (Id, No_Tagged_Streams_Pragma (T));
4885 end if;
4886
4887 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4888 -- incomplete type visible through a limited with clause.
4889
4890 if From_Limited_With (T)
4891 and then Present (Non_Limited_View (T))
4892 then
4893 Set_From_Limited_With (Id);
4894 Set_Non_Limited_View (Id, Non_Limited_View (T));
4895
4896 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4897 -- to the private dependents of the original incomplete
4898 -- type for future transformation.
4899
4900 else
4901 Append_Elmt (Id, Private_Dependents (T));
4902 end if;
4903
4904 -- If the subtype name denotes an incomplete type an error
4905 -- was already reported by Process_Subtype.
4906
4907 else
4908 Set_Etype (Id, Any_Type);
4909 end if;
4910
4911 when others =>
4912 raise Program_Error;
4913 end case;
4914 end if;
4915
4916 if Etype (Id) = Any_Type then
4917 goto Leave;
4918 end if;
4919
4920 -- Some common processing on all types
4921
4922 Set_Size_Info (Id, T);
4923 Set_First_Rep_Item (Id, First_Rep_Item (T));
4924
4925 -- If the parent type is a generic actual, so is the subtype. This may
4926 -- happen in a nested instance. Why Comes_From_Source test???
4927
4928 if not Comes_From_Source (N) then
4929 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4930 end if;
4931
4932 T := Etype (Id);
4933
4934 Set_Is_Immediately_Visible (Id, True);
4935 Set_Depends_On_Private (Id, Has_Private_Component (T));
4936 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4937
4938 if Is_Interface (T) then
4939 Set_Is_Interface (Id);
4940 end if;
4941
4942 if Present (Generic_Parent_Type (N))
4943 and then
4944 (Nkind (Parent (Generic_Parent_Type (N))) /=
4945 N_Formal_Type_Declaration
4946 or else Nkind (Formal_Type_Definition
4947 (Parent (Generic_Parent_Type (N)))) /=
4948 N_Formal_Private_Type_Definition)
4949 then
4950 if Is_Tagged_Type (Id) then
4951
4952 -- If this is a generic actual subtype for a synchronized type,
4953 -- the primitive operations are those of the corresponding record
4954 -- for which there is a separate subtype declaration.
4955
4956 if Is_Concurrent_Type (Id) then
4957 null;
4958 elsif Is_Class_Wide_Type (Id) then
4959 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4960 else
4961 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4962 end if;
4963
4964 elsif Scope (Etype (Id)) /= Standard_Standard then
4965 Derive_Subprograms (Generic_Parent_Type (N), Id);
4966 end if;
4967 end if;
4968
4969 if Is_Private_Type (T) and then Present (Full_View (T)) then
4970 Conditional_Delay (Id, Full_View (T));
4971
4972 -- The subtypes of components or subcomponents of protected types
4973 -- do not need freeze nodes, which would otherwise appear in the
4974 -- wrong scope (before the freeze node for the protected type). The
4975 -- proper subtypes are those of the subcomponents of the corresponding
4976 -- record.
4977
4978 elsif Ekind (Scope (Id)) /= E_Protected_Type
4979 and then Present (Scope (Scope (Id))) -- error defense
4980 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4981 then
4982 Conditional_Delay (Id, T);
4983 end if;
4984
4985 -- Check that Constraint_Error is raised for a scalar subtype indication
4986 -- when the lower or upper bound of a non-null range lies outside the
4987 -- range of the type mark.
4988
4989 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4990 if Is_Scalar_Type (Etype (Id))
4991 and then Scalar_Range (Id) /=
4992 Scalar_Range (Etype (Subtype_Mark
4993 (Subtype_Indication (N))))
4994 then
4995 Apply_Range_Check
4996 (Scalar_Range (Id),
4997 Etype (Subtype_Mark (Subtype_Indication (N))));
4998
4999 -- In the array case, check compatibility for each index
5000
5001 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5002 then
5003 -- This really should be a subprogram that finds the indications
5004 -- to check???
5005
5006 declare
5007 Subt_Index : Node_Id := First_Index (Id);
5008 Target_Index : Node_Id :=
5009 First_Index (Etype
5010 (Subtype_Mark (Subtype_Indication (N))));
5011 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5012
5013 begin
5014 while Present (Subt_Index) loop
5015 if ((Nkind (Subt_Index) = N_Identifier
5016 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5017 or else Nkind (Subt_Index) = N_Subtype_Indication)
5018 and then
5019 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5020 then
5021 declare
5022 Target_Typ : constant Entity_Id :=
5023 Etype (Target_Index);
5024 begin
5025 R_Checks :=
5026 Get_Range_Checks
5027 (Scalar_Range (Etype (Subt_Index)),
5028 Target_Typ,
5029 Etype (Subt_Index),
5030 Defining_Identifier (N));
5031
5032 -- Reset Has_Dynamic_Range_Check on the subtype to
5033 -- prevent elision of the index check due to a dynamic
5034 -- check generated for a preceding index (needed since
5035 -- Insert_Range_Checks tries to avoid generating
5036 -- redundant checks on a given declaration).
5037
5038 Set_Has_Dynamic_Range_Check (N, False);
5039
5040 Insert_Range_Checks
5041 (R_Checks,
5042 N,
5043 Target_Typ,
5044 Sloc (Defining_Identifier (N)));
5045
5046 -- Record whether this index involved a dynamic check
5047
5048 Has_Dyn_Chk :=
5049 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5050 end;
5051 end if;
5052
5053 Next_Index (Subt_Index);
5054 Next_Index (Target_Index);
5055 end loop;
5056
5057 -- Finally, mark whether the subtype involves dynamic checks
5058
5059 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5060 end;
5061 end if;
5062 end if;
5063
5064 -- A type invariant applies to any subtype in its scope, in particular
5065 -- to a generic actual.
5066
5067 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5068 Set_Has_Invariants (Id);
5069 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5070 end if;
5071
5072 -- Make sure that generic actual types are properly frozen. The subtype
5073 -- is marked as a generic actual type when the enclosing instance is
5074 -- analyzed, so here we identify the subtype from the tree structure.
5075
5076 if Expander_Active
5077 and then Is_Generic_Actual_Type (Id)
5078 and then In_Instance
5079 and then not Comes_From_Source (N)
5080 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5081 and then Is_Frozen (T)
5082 then
5083 Freeze_Before (N, Id);
5084 end if;
5085
5086 Set_Optimize_Alignment_Flags (Id);
5087 Check_Eliminated (Id);
5088
5089 <<Leave>>
5090 if Has_Aspects (N) then
5091 Analyze_Aspect_Specifications (N, Id);
5092 end if;
5093
5094 Analyze_Dimension (N);
5095 end Analyze_Subtype_Declaration;
5096
5097 --------------------------------
5098 -- Analyze_Subtype_Indication --
5099 --------------------------------
5100
5101 procedure Analyze_Subtype_Indication (N : Node_Id) is
5102 T : constant Entity_Id := Subtype_Mark (N);
5103 R : constant Node_Id := Range_Expression (Constraint (N));
5104
5105 begin
5106 Analyze (T);
5107
5108 if R /= Error then
5109 Analyze (R);
5110 Set_Etype (N, Etype (R));
5111 Resolve (R, Entity (T));
5112 else
5113 Set_Error_Posted (R);
5114 Set_Error_Posted (T);
5115 end if;
5116 end Analyze_Subtype_Indication;
5117
5118 --------------------------
5119 -- Analyze_Variant_Part --
5120 --------------------------
5121
5122 procedure Analyze_Variant_Part (N : Node_Id) is
5123 Discr_Name : Node_Id;
5124 Discr_Type : Entity_Id;
5125
5126 procedure Process_Variant (A : Node_Id);
5127 -- Analyze declarations for a single variant
5128
5129 package Analyze_Variant_Choices is
5130 new Generic_Analyze_Choices (Process_Variant);
5131 use Analyze_Variant_Choices;
5132
5133 ---------------------
5134 -- Process_Variant --
5135 ---------------------
5136
5137 procedure Process_Variant (A : Node_Id) is
5138 CL : constant Node_Id := Component_List (A);
5139 begin
5140 if not Null_Present (CL) then
5141 Analyze_Declarations (Component_Items (CL));
5142
5143 if Present (Variant_Part (CL)) then
5144 Analyze (Variant_Part (CL));
5145 end if;
5146 end if;
5147 end Process_Variant;
5148
5149 -- Start of processing for Analyze_Variant_Part
5150
5151 begin
5152 Discr_Name := Name (N);
5153 Analyze (Discr_Name);
5154
5155 -- If Discr_Name bad, get out (prevent cascaded errors)
5156
5157 if Etype (Discr_Name) = Any_Type then
5158 return;
5159 end if;
5160
5161 -- Check invalid discriminant in variant part
5162
5163 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5164 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5165 end if;
5166
5167 Discr_Type := Etype (Entity (Discr_Name));
5168
5169 if not Is_Discrete_Type (Discr_Type) then
5170 Error_Msg_N
5171 ("discriminant in a variant part must be of a discrete type",
5172 Name (N));
5173 return;
5174 end if;
5175
5176 -- Now analyze the choices, which also analyzes the declarations that
5177 -- are associated with each choice.
5178
5179 Analyze_Choices (Variants (N), Discr_Type);
5180
5181 -- Note: we used to instantiate and call Check_Choices here to check
5182 -- that the choices covered the discriminant, but it's too early to do
5183 -- that because of statically predicated subtypes, whose analysis may
5184 -- be deferred to their freeze point which may be as late as the freeze
5185 -- point of the containing record. So this call is now to be found in
5186 -- Freeze_Record_Declaration.
5187
5188 end Analyze_Variant_Part;
5189
5190 ----------------------------
5191 -- Array_Type_Declaration --
5192 ----------------------------
5193
5194 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5195 Component_Def : constant Node_Id := Component_Definition (Def);
5196 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5197 Element_Type : Entity_Id;
5198 Implicit_Base : Entity_Id;
5199 Index : Node_Id;
5200 Related_Id : Entity_Id := Empty;
5201 Nb_Index : Nat;
5202 P : constant Node_Id := Parent (Def);
5203 Priv : Entity_Id;
5204
5205 begin
5206 if Nkind (Def) = N_Constrained_Array_Definition then
5207 Index := First (Discrete_Subtype_Definitions (Def));
5208 else
5209 Index := First (Subtype_Marks (Def));
5210 end if;
5211
5212 -- Find proper names for the implicit types which may be public. In case
5213 -- of anonymous arrays we use the name of the first object of that type
5214 -- as prefix.
5215
5216 if No (T) then
5217 Related_Id := Defining_Identifier (P);
5218 else
5219 Related_Id := T;
5220 end if;
5221
5222 Nb_Index := 1;
5223 while Present (Index) loop
5224 Analyze (Index);
5225
5226 -- Test for odd case of trying to index a type by the type itself
5227
5228 if Is_Entity_Name (Index) and then Entity (Index) = T then
5229 Error_Msg_N ("type& cannot be indexed by itself", Index);
5230 Set_Entity (Index, Standard_Boolean);
5231 Set_Etype (Index, Standard_Boolean);
5232 end if;
5233
5234 -- Check SPARK restriction requiring a subtype mark
5235
5236 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5237 Check_SPARK_05_Restriction ("subtype mark required", Index);
5238 end if;
5239
5240 -- Add a subtype declaration for each index of private array type
5241 -- declaration whose etype is also private. For example:
5242
5243 -- package Pkg is
5244 -- type Index is private;
5245 -- private
5246 -- type Table is array (Index) of ...
5247 -- end;
5248
5249 -- This is currently required by the expander for the internally
5250 -- generated equality subprogram of records with variant parts in
5251 -- which the etype of some component is such private type.
5252
5253 if Ekind (Current_Scope) = E_Package
5254 and then In_Private_Part (Current_Scope)
5255 and then Has_Private_Declaration (Etype (Index))
5256 then
5257 declare
5258 Loc : constant Source_Ptr := Sloc (Def);
5259 New_E : Entity_Id;
5260 Decl : Entity_Id;
5261
5262 begin
5263 New_E := Make_Temporary (Loc, 'T');
5264 Set_Is_Internal (New_E);
5265
5266 Decl :=
5267 Make_Subtype_Declaration (Loc,
5268 Defining_Identifier => New_E,
5269 Subtype_Indication =>
5270 New_Occurrence_Of (Etype (Index), Loc));
5271
5272 Insert_Before (Parent (Def), Decl);
5273 Analyze (Decl);
5274 Set_Etype (Index, New_E);
5275
5276 -- If the index is a range the Entity attribute is not
5277 -- available. Example:
5278
5279 -- package Pkg is
5280 -- type T is private;
5281 -- private
5282 -- type T is new Natural;
5283 -- Table : array (T(1) .. T(10)) of Boolean;
5284 -- end Pkg;
5285
5286 if Nkind (Index) /= N_Range then
5287 Set_Entity (Index, New_E);
5288 end if;
5289 end;
5290 end if;
5291
5292 Make_Index (Index, P, Related_Id, Nb_Index);
5293
5294 -- Check error of subtype with predicate for index type
5295
5296 Bad_Predicated_Subtype_Use
5297 ("subtype& has predicate, not allowed as index subtype",
5298 Index, Etype (Index));
5299
5300 -- Move to next index
5301
5302 Next_Index (Index);
5303 Nb_Index := Nb_Index + 1;
5304 end loop;
5305
5306 -- Process subtype indication if one is present
5307
5308 if Present (Component_Typ) then
5309 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5310
5311 Set_Etype (Component_Typ, Element_Type);
5312
5313 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5314 Check_SPARK_05_Restriction
5315 ("subtype mark required", Component_Typ);
5316 end if;
5317
5318 -- Ada 2005 (AI-230): Access Definition case
5319
5320 else pragma Assert (Present (Access_Definition (Component_Def)));
5321
5322 -- Indicate that the anonymous access type is created by the
5323 -- array type declaration.
5324
5325 Element_Type := Access_Definition
5326 (Related_Nod => P,
5327 N => Access_Definition (Component_Def));
5328 Set_Is_Local_Anonymous_Access (Element_Type);
5329
5330 -- Propagate the parent. This field is needed if we have to generate
5331 -- the master_id associated with an anonymous access to task type
5332 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5333
5334 Set_Parent (Element_Type, Parent (T));
5335
5336 -- Ada 2005 (AI-230): In case of components that are anonymous access
5337 -- types the level of accessibility depends on the enclosing type
5338 -- declaration
5339
5340 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5341
5342 -- Ada 2005 (AI-254)
5343
5344 declare
5345 CD : constant Node_Id :=
5346 Access_To_Subprogram_Definition
5347 (Access_Definition (Component_Def));
5348 begin
5349 if Present (CD) and then Protected_Present (CD) then
5350 Element_Type :=
5351 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5352 end if;
5353 end;
5354 end if;
5355
5356 -- Constrained array case
5357
5358 if No (T) then
5359 T := Create_Itype (E_Void, P, Related_Id, 'T');
5360 end if;
5361
5362 if Nkind (Def) = N_Constrained_Array_Definition then
5363
5364 -- Establish Implicit_Base as unconstrained base type
5365
5366 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5367
5368 Set_Etype (Implicit_Base, Implicit_Base);
5369 Set_Scope (Implicit_Base, Current_Scope);
5370 Set_Has_Delayed_Freeze (Implicit_Base);
5371 Set_Default_SSO (Implicit_Base);
5372
5373 -- The constrained array type is a subtype of the unconstrained one
5374
5375 Set_Ekind (T, E_Array_Subtype);
5376 Init_Size_Align (T);
5377 Set_Etype (T, Implicit_Base);
5378 Set_Scope (T, Current_Scope);
5379 Set_Is_Constrained (T, True);
5380 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5381 Set_Has_Delayed_Freeze (T);
5382
5383 -- Complete setup of implicit base type
5384
5385 Set_First_Index (Implicit_Base, First_Index (T));
5386 Set_Component_Type (Implicit_Base, Element_Type);
5387 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5388 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5389 Set_Component_Size (Implicit_Base, Uint_0);
5390 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5391 Set_Has_Controlled_Component
5392 (Implicit_Base,
5393 Has_Controlled_Component (Element_Type)
5394 or else Is_Controlled (Element_Type));
5395 Set_Finalize_Storage_Only
5396 (Implicit_Base, Finalize_Storage_Only
5397 (Element_Type));
5398
5399 -- Unconstrained array case
5400
5401 else
5402 Set_Ekind (T, E_Array_Type);
5403 Init_Size_Align (T);
5404 Set_Etype (T, T);
5405 Set_Scope (T, Current_Scope);
5406 Set_Component_Size (T, Uint_0);
5407 Set_Is_Constrained (T, False);
5408 Set_First_Index (T, First (Subtype_Marks (Def)));
5409 Set_Has_Delayed_Freeze (T, True);
5410 Set_Has_Task (T, Has_Task (Element_Type));
5411 Set_Has_Protected (T, Has_Protected (Element_Type));
5412 Set_Has_Controlled_Component (T, Has_Controlled_Component
5413 (Element_Type)
5414 or else
5415 Is_Controlled (Element_Type));
5416 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5417 (Element_Type));
5418 Set_Default_SSO (T);
5419 end if;
5420
5421 -- Common attributes for both cases
5422
5423 Set_Component_Type (Base_Type (T), Element_Type);
5424 Set_Packed_Array_Impl_Type (T, Empty);
5425
5426 if Aliased_Present (Component_Definition (Def)) then
5427 Check_SPARK_05_Restriction
5428 ("aliased is not allowed", Component_Definition (Def));
5429 Set_Has_Aliased_Components (Etype (T));
5430 end if;
5431
5432 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5433 -- array type to ensure that objects of this type are initialized.
5434
5435 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5436 Set_Can_Never_Be_Null (T);
5437
5438 if Null_Exclusion_Present (Component_Definition (Def))
5439
5440 -- No need to check itypes because in their case this check was
5441 -- done at their point of creation
5442
5443 and then not Is_Itype (Element_Type)
5444 then
5445 Error_Msg_N
5446 ("`NOT NULL` not allowed (null already excluded)",
5447 Subtype_Indication (Component_Definition (Def)));
5448 end if;
5449 end if;
5450
5451 Priv := Private_Component (Element_Type);
5452
5453 if Present (Priv) then
5454
5455 -- Check for circular definitions
5456
5457 if Priv = Any_Type then
5458 Set_Component_Type (Etype (T), Any_Type);
5459
5460 -- There is a gap in the visibility of operations on the composite
5461 -- type only if the component type is defined in a different scope.
5462
5463 elsif Scope (Priv) = Current_Scope then
5464 null;
5465
5466 elsif Is_Limited_Type (Priv) then
5467 Set_Is_Limited_Composite (Etype (T));
5468 Set_Is_Limited_Composite (T);
5469 else
5470 Set_Is_Private_Composite (Etype (T));
5471 Set_Is_Private_Composite (T);
5472 end if;
5473 end if;
5474
5475 -- A syntax error in the declaration itself may lead to an empty index
5476 -- list, in which case do a minimal patch.
5477
5478 if No (First_Index (T)) then
5479 Error_Msg_N ("missing index definition in array type declaration", T);
5480
5481 declare
5482 Indexes : constant List_Id :=
5483 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5484 begin
5485 Set_Discrete_Subtype_Definitions (Def, Indexes);
5486 Set_First_Index (T, First (Indexes));
5487 return;
5488 end;
5489 end if;
5490
5491 -- Create a concatenation operator for the new type. Internal array
5492 -- types created for packed entities do not need such, they are
5493 -- compatible with the user-defined type.
5494
5495 if Number_Dimensions (T) = 1
5496 and then not Is_Packed_Array_Impl_Type (T)
5497 then
5498 New_Concatenation_Op (T);
5499 end if;
5500
5501 -- In the case of an unconstrained array the parser has already verified
5502 -- that all the indexes are unconstrained but we still need to make sure
5503 -- that the element type is constrained.
5504
5505 if Is_Indefinite_Subtype (Element_Type) then
5506 Error_Msg_N
5507 ("unconstrained element type in array declaration",
5508 Subtype_Indication (Component_Def));
5509
5510 elsif Is_Abstract_Type (Element_Type) then
5511 Error_Msg_N
5512 ("the type of a component cannot be abstract",
5513 Subtype_Indication (Component_Def));
5514 end if;
5515
5516 -- There may be an invariant declared for the component type, but
5517 -- the construction of the component invariant checking procedure
5518 -- takes place during expansion.
5519 end Array_Type_Declaration;
5520
5521 ------------------------------------------------------
5522 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5523 ------------------------------------------------------
5524
5525 function Replace_Anonymous_Access_To_Protected_Subprogram
5526 (N : Node_Id) return Entity_Id
5527 is
5528 Loc : constant Source_Ptr := Sloc (N);
5529
5530 Curr_Scope : constant Scope_Stack_Entry :=
5531 Scope_Stack.Table (Scope_Stack.Last);
5532
5533 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5534
5535 Acc : Node_Id;
5536 -- Access definition in declaration
5537
5538 Comp : Node_Id;
5539 -- Object definition or formal definition with an access definition
5540
5541 Decl : Node_Id;
5542 -- Declaration of anonymous access to subprogram type
5543
5544 Spec : Node_Id;
5545 -- Original specification in access to subprogram
5546
5547 P : Node_Id;
5548
5549 begin
5550 Set_Is_Internal (Anon);
5551
5552 case Nkind (N) is
5553 when N_Component_Declaration |
5554 N_Unconstrained_Array_Definition |
5555 N_Constrained_Array_Definition =>
5556 Comp := Component_Definition (N);
5557 Acc := Access_Definition (Comp);
5558
5559 when N_Discriminant_Specification =>
5560 Comp := Discriminant_Type (N);
5561 Acc := Comp;
5562
5563 when N_Parameter_Specification =>
5564 Comp := Parameter_Type (N);
5565 Acc := Comp;
5566
5567 when N_Access_Function_Definition =>
5568 Comp := Result_Definition (N);
5569 Acc := Comp;
5570
5571 when N_Object_Declaration =>
5572 Comp := Object_Definition (N);
5573 Acc := Comp;
5574
5575 when N_Function_Specification =>
5576 Comp := Result_Definition (N);
5577 Acc := Comp;
5578
5579 when others =>
5580 raise Program_Error;
5581 end case;
5582
5583 Spec := Access_To_Subprogram_Definition (Acc);
5584
5585 Decl :=
5586 Make_Full_Type_Declaration (Loc,
5587 Defining_Identifier => Anon,
5588 Type_Definition => Copy_Separate_Tree (Spec));
5589
5590 Mark_Rewrite_Insertion (Decl);
5591
5592 -- In ASIS mode, analyze the profile on the original node, because
5593 -- the separate copy does not provide enough links to recover the
5594 -- original tree. Analysis is limited to type annotations, within
5595 -- a temporary scope that serves as an anonymous subprogram to collect
5596 -- otherwise useless temporaries and itypes.
5597
5598 if ASIS_Mode then
5599 declare
5600 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5601
5602 begin
5603 if Nkind (Spec) = N_Access_Function_Definition then
5604 Set_Ekind (Typ, E_Function);
5605 else
5606 Set_Ekind (Typ, E_Procedure);
5607 end if;
5608
5609 Set_Parent (Typ, N);
5610 Set_Scope (Typ, Current_Scope);
5611 Push_Scope (Typ);
5612
5613 Process_Formals (Parameter_Specifications (Spec), Spec);
5614
5615 if Nkind (Spec) = N_Access_Function_Definition then
5616 declare
5617 Def : constant Node_Id := Result_Definition (Spec);
5618
5619 begin
5620 -- The result might itself be an anonymous access type, so
5621 -- have to recurse.
5622
5623 if Nkind (Def) = N_Access_Definition then
5624 if Present (Access_To_Subprogram_Definition (Def)) then
5625 Set_Etype
5626 (Def,
5627 Replace_Anonymous_Access_To_Protected_Subprogram
5628 (Spec));
5629 else
5630 Find_Type (Subtype_Mark (Def));
5631 end if;
5632
5633 else
5634 Find_Type (Def);
5635 end if;
5636 end;
5637 end if;
5638
5639 End_Scope;
5640 end;
5641 end if;
5642
5643 -- Insert the new declaration in the nearest enclosing scope. If the
5644 -- node is a body and N is its return type, the declaration belongs in
5645 -- the enclosing scope.
5646
5647 P := Parent (N);
5648
5649 if Nkind (P) = N_Subprogram_Body
5650 and then Nkind (N) = N_Function_Specification
5651 then
5652 P := Parent (P);
5653 end if;
5654
5655 while Present (P) and then not Has_Declarations (P) loop
5656 P := Parent (P);
5657 end loop;
5658
5659 pragma Assert (Present (P));
5660
5661 if Nkind (P) = N_Package_Specification then
5662 Prepend (Decl, Visible_Declarations (P));
5663 else
5664 Prepend (Decl, Declarations (P));
5665 end if;
5666
5667 -- Replace the anonymous type with an occurrence of the new declaration.
5668 -- In all cases the rewritten node does not have the null-exclusion
5669 -- attribute because (if present) it was already inherited by the
5670 -- anonymous entity (Anon). Thus, in case of components we do not
5671 -- inherit this attribute.
5672
5673 if Nkind (N) = N_Parameter_Specification then
5674 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5675 Set_Etype (Defining_Identifier (N), Anon);
5676 Set_Null_Exclusion_Present (N, False);
5677
5678 elsif Nkind (N) = N_Object_Declaration then
5679 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5680 Set_Etype (Defining_Identifier (N), Anon);
5681
5682 elsif Nkind (N) = N_Access_Function_Definition then
5683 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5684
5685 elsif Nkind (N) = N_Function_Specification then
5686 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5687 Set_Etype (Defining_Unit_Name (N), Anon);
5688
5689 else
5690 Rewrite (Comp,
5691 Make_Component_Definition (Loc,
5692 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5693 end if;
5694
5695 Mark_Rewrite_Insertion (Comp);
5696
5697 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5698 Analyze (Decl);
5699
5700 else
5701 -- Temporarily remove the current scope (record or subprogram) from
5702 -- the stack to add the new declarations to the enclosing scope.
5703
5704 Scope_Stack.Decrement_Last;
5705 Analyze (Decl);
5706 Set_Is_Itype (Anon);
5707 Scope_Stack.Append (Curr_Scope);
5708 end if;
5709
5710 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5711 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5712 return Anon;
5713 end Replace_Anonymous_Access_To_Protected_Subprogram;
5714
5715 -------------------------------
5716 -- Build_Derived_Access_Type --
5717 -------------------------------
5718
5719 procedure Build_Derived_Access_Type
5720 (N : Node_Id;
5721 Parent_Type : Entity_Id;
5722 Derived_Type : Entity_Id)
5723 is
5724 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5725
5726 Desig_Type : Entity_Id;
5727 Discr : Entity_Id;
5728 Discr_Con_Elist : Elist_Id;
5729 Discr_Con_El : Elmt_Id;
5730 Subt : Entity_Id;
5731
5732 begin
5733 -- Set the designated type so it is available in case this is an access
5734 -- to a self-referential type, e.g. a standard list type with a next
5735 -- pointer. Will be reset after subtype is built.
5736
5737 Set_Directly_Designated_Type
5738 (Derived_Type, Designated_Type (Parent_Type));
5739
5740 Subt := Process_Subtype (S, N);
5741
5742 if Nkind (S) /= N_Subtype_Indication
5743 and then Subt /= Base_Type (Subt)
5744 then
5745 Set_Ekind (Derived_Type, E_Access_Subtype);
5746 end if;
5747
5748 if Ekind (Derived_Type) = E_Access_Subtype then
5749 declare
5750 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5751 Ibase : constant Entity_Id :=
5752 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5753 Svg_Chars : constant Name_Id := Chars (Ibase);
5754 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5755
5756 begin
5757 Copy_Node (Pbase, Ibase);
5758
5759 Set_Chars (Ibase, Svg_Chars);
5760 Set_Next_Entity (Ibase, Svg_Next_E);
5761 Set_Sloc (Ibase, Sloc (Derived_Type));
5762 Set_Scope (Ibase, Scope (Derived_Type));
5763 Set_Freeze_Node (Ibase, Empty);
5764 Set_Is_Frozen (Ibase, False);
5765 Set_Comes_From_Source (Ibase, False);
5766 Set_Is_First_Subtype (Ibase, False);
5767
5768 Set_Etype (Ibase, Pbase);
5769 Set_Etype (Derived_Type, Ibase);
5770 end;
5771 end if;
5772
5773 Set_Directly_Designated_Type
5774 (Derived_Type, Designated_Type (Subt));
5775
5776 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5777 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5778 Set_Size_Info (Derived_Type, Parent_Type);
5779 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5780 Set_Depends_On_Private (Derived_Type,
5781 Has_Private_Component (Derived_Type));
5782 Conditional_Delay (Derived_Type, Subt);
5783
5784 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5785 -- that it is not redundant.
5786
5787 if Null_Exclusion_Present (Type_Definition (N)) then
5788 Set_Can_Never_Be_Null (Derived_Type);
5789
5790 -- What is with the "AND THEN FALSE" here ???
5791
5792 if Can_Never_Be_Null (Parent_Type)
5793 and then False
5794 then
5795 Error_Msg_NE
5796 ("`NOT NULL` not allowed (& already excludes null)",
5797 N, Parent_Type);
5798 end if;
5799
5800 elsif Can_Never_Be_Null (Parent_Type) then
5801 Set_Can_Never_Be_Null (Derived_Type);
5802 end if;
5803
5804 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5805 -- the root type for this information.
5806
5807 -- Apply range checks to discriminants for derived record case
5808 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5809
5810 Desig_Type := Designated_Type (Derived_Type);
5811 if Is_Composite_Type (Desig_Type)
5812 and then (not Is_Array_Type (Desig_Type))
5813 and then Has_Discriminants (Desig_Type)
5814 and then Base_Type (Desig_Type) /= Desig_Type
5815 then
5816 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5817 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5818
5819 Discr := First_Discriminant (Base_Type (Desig_Type));
5820 while Present (Discr_Con_El) loop
5821 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5822 Next_Elmt (Discr_Con_El);
5823 Next_Discriminant (Discr);
5824 end loop;
5825 end if;
5826 end Build_Derived_Access_Type;
5827
5828 ------------------------------
5829 -- Build_Derived_Array_Type --
5830 ------------------------------
5831
5832 procedure Build_Derived_Array_Type
5833 (N : Node_Id;
5834 Parent_Type : Entity_Id;
5835 Derived_Type : Entity_Id)
5836 is
5837 Loc : constant Source_Ptr := Sloc (N);
5838 Tdef : constant Node_Id := Type_Definition (N);
5839 Indic : constant Node_Id := Subtype_Indication (Tdef);
5840 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5841 Implicit_Base : Entity_Id;
5842 New_Indic : Node_Id;
5843
5844 procedure Make_Implicit_Base;
5845 -- If the parent subtype is constrained, the derived type is a subtype
5846 -- of an implicit base type derived from the parent base.
5847
5848 ------------------------
5849 -- Make_Implicit_Base --
5850 ------------------------
5851
5852 procedure Make_Implicit_Base is
5853 begin
5854 Implicit_Base :=
5855 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5856
5857 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5858 Set_Etype (Implicit_Base, Parent_Base);
5859
5860 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5861 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5862
5863 Set_Has_Delayed_Freeze (Implicit_Base, True);
5864 end Make_Implicit_Base;
5865
5866 -- Start of processing for Build_Derived_Array_Type
5867
5868 begin
5869 if not Is_Constrained (Parent_Type) then
5870 if Nkind (Indic) /= N_Subtype_Indication then
5871 Set_Ekind (Derived_Type, E_Array_Type);
5872
5873 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5874 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5875
5876 Set_Has_Delayed_Freeze (Derived_Type, True);
5877
5878 else
5879 Make_Implicit_Base;
5880 Set_Etype (Derived_Type, Implicit_Base);
5881
5882 New_Indic :=
5883 Make_Subtype_Declaration (Loc,
5884 Defining_Identifier => Derived_Type,
5885 Subtype_Indication =>
5886 Make_Subtype_Indication (Loc,
5887 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5888 Constraint => Constraint (Indic)));
5889
5890 Rewrite (N, New_Indic);
5891 Analyze (N);
5892 end if;
5893
5894 else
5895 if Nkind (Indic) /= N_Subtype_Indication then
5896 Make_Implicit_Base;
5897
5898 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5899 Set_Etype (Derived_Type, Implicit_Base);
5900 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5901
5902 else
5903 Error_Msg_N ("illegal constraint on constrained type", Indic);
5904 end if;
5905 end if;
5906
5907 -- If parent type is not a derived type itself, and is declared in
5908 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5909 -- the new type's concatenation operator since Derive_Subprograms
5910 -- will not inherit the parent's operator. If the parent type is
5911 -- unconstrained, the operator is of the unconstrained base type.
5912
5913 if Number_Dimensions (Parent_Type) = 1
5914 and then not Is_Limited_Type (Parent_Type)
5915 and then not Is_Derived_Type (Parent_Type)
5916 and then not Is_Package_Or_Generic_Package
5917 (Scope (Base_Type (Parent_Type)))
5918 then
5919 if not Is_Constrained (Parent_Type)
5920 and then Is_Constrained (Derived_Type)
5921 then
5922 New_Concatenation_Op (Implicit_Base);
5923 else
5924 New_Concatenation_Op (Derived_Type);
5925 end if;
5926 end if;
5927 end Build_Derived_Array_Type;
5928
5929 -----------------------------------
5930 -- Build_Derived_Concurrent_Type --
5931 -----------------------------------
5932
5933 procedure Build_Derived_Concurrent_Type
5934 (N : Node_Id;
5935 Parent_Type : Entity_Id;
5936 Derived_Type : Entity_Id)
5937 is
5938 Loc : constant Source_Ptr := Sloc (N);
5939
5940 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5941 Corr_Decl : Node_Id;
5942 Corr_Decl_Needed : Boolean;
5943 -- If the derived type has fewer discriminants than its parent, the
5944 -- corresponding record is also a derived type, in order to account for
5945 -- the bound discriminants. We create a full type declaration for it in
5946 -- this case.
5947
5948 Constraint_Present : constant Boolean :=
5949 Nkind (Subtype_Indication (Type_Definition (N))) =
5950 N_Subtype_Indication;
5951
5952 D_Constraint : Node_Id;
5953 New_Constraint : Elist_Id;
5954 Old_Disc : Entity_Id;
5955 New_Disc : Entity_Id;
5956 New_N : Node_Id;
5957
5958 begin
5959 Set_Stored_Constraint (Derived_Type, No_Elist);
5960 Corr_Decl_Needed := False;
5961 Old_Disc := Empty;
5962
5963 if Present (Discriminant_Specifications (N))
5964 and then Constraint_Present
5965 then
5966 Old_Disc := First_Discriminant (Parent_Type);
5967 New_Disc := First (Discriminant_Specifications (N));
5968 while Present (New_Disc) and then Present (Old_Disc) loop
5969 Next_Discriminant (Old_Disc);
5970 Next (New_Disc);
5971 end loop;
5972 end if;
5973
5974 if Present (Old_Disc) and then Expander_Active then
5975
5976 -- The new type has fewer discriminants, so we need to create a new
5977 -- corresponding record, which is derived from the corresponding
5978 -- record of the parent, and has a stored constraint that captures
5979 -- the values of the discriminant constraints. The corresponding
5980 -- record is needed only if expander is active and code generation is
5981 -- enabled.
5982
5983 -- The type declaration for the derived corresponding record has the
5984 -- same discriminant part and constraints as the current declaration.
5985 -- Copy the unanalyzed tree to build declaration.
5986
5987 Corr_Decl_Needed := True;
5988 New_N := Copy_Separate_Tree (N);
5989
5990 Corr_Decl :=
5991 Make_Full_Type_Declaration (Loc,
5992 Defining_Identifier => Corr_Record,
5993 Discriminant_Specifications =>
5994 Discriminant_Specifications (New_N),
5995 Type_Definition =>
5996 Make_Derived_Type_Definition (Loc,
5997 Subtype_Indication =>
5998 Make_Subtype_Indication (Loc,
5999 Subtype_Mark =>
6000 New_Occurrence_Of
6001 (Corresponding_Record_Type (Parent_Type), Loc),
6002 Constraint =>
6003 Constraint
6004 (Subtype_Indication (Type_Definition (New_N))))));
6005 end if;
6006
6007 -- Copy Storage_Size and Relative_Deadline variables if task case
6008
6009 if Is_Task_Type (Parent_Type) then
6010 Set_Storage_Size_Variable (Derived_Type,
6011 Storage_Size_Variable (Parent_Type));
6012 Set_Relative_Deadline_Variable (Derived_Type,
6013 Relative_Deadline_Variable (Parent_Type));
6014 end if;
6015
6016 if Present (Discriminant_Specifications (N)) then
6017 Push_Scope (Derived_Type);
6018 Check_Or_Process_Discriminants (N, Derived_Type);
6019
6020 if Constraint_Present then
6021 New_Constraint :=
6022 Expand_To_Stored_Constraint
6023 (Parent_Type,
6024 Build_Discriminant_Constraints
6025 (Parent_Type,
6026 Subtype_Indication (Type_Definition (N)), True));
6027 end if;
6028
6029 End_Scope;
6030
6031 elsif Constraint_Present then
6032
6033 -- Build constrained subtype, copying the constraint, and derive
6034 -- from it to create a derived constrained type.
6035
6036 declare
6037 Loc : constant Source_Ptr := Sloc (N);
6038 Anon : constant Entity_Id :=
6039 Make_Defining_Identifier (Loc,
6040 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6041 Decl : Node_Id;
6042
6043 begin
6044 Decl :=
6045 Make_Subtype_Declaration (Loc,
6046 Defining_Identifier => Anon,
6047 Subtype_Indication =>
6048 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6049 Insert_Before (N, Decl);
6050 Analyze (Decl);
6051
6052 Rewrite (Subtype_Indication (Type_Definition (N)),
6053 New_Occurrence_Of (Anon, Loc));
6054 Set_Analyzed (Derived_Type, False);
6055 Analyze (N);
6056 return;
6057 end;
6058 end if;
6059
6060 -- By default, operations and private data are inherited from parent.
6061 -- However, in the presence of bound discriminants, a new corresponding
6062 -- record will be created, see below.
6063
6064 Set_Has_Discriminants
6065 (Derived_Type, Has_Discriminants (Parent_Type));
6066 Set_Corresponding_Record_Type
6067 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6068
6069 -- Is_Constrained is set according the parent subtype, but is set to
6070 -- False if the derived type is declared with new discriminants.
6071
6072 Set_Is_Constrained
6073 (Derived_Type,
6074 (Is_Constrained (Parent_Type) or else Constraint_Present)
6075 and then not Present (Discriminant_Specifications (N)));
6076
6077 if Constraint_Present then
6078 if not Has_Discriminants (Parent_Type) then
6079 Error_Msg_N ("untagged parent must have discriminants", N);
6080
6081 elsif Present (Discriminant_Specifications (N)) then
6082
6083 -- Verify that new discriminants are used to constrain old ones
6084
6085 D_Constraint :=
6086 First
6087 (Constraints
6088 (Constraint (Subtype_Indication (Type_Definition (N)))));
6089
6090 Old_Disc := First_Discriminant (Parent_Type);
6091
6092 while Present (D_Constraint) loop
6093 if Nkind (D_Constraint) /= N_Discriminant_Association then
6094
6095 -- Positional constraint. If it is a reference to a new
6096 -- discriminant, it constrains the corresponding old one.
6097
6098 if Nkind (D_Constraint) = N_Identifier then
6099 New_Disc := First_Discriminant (Derived_Type);
6100 while Present (New_Disc) loop
6101 exit when Chars (New_Disc) = Chars (D_Constraint);
6102 Next_Discriminant (New_Disc);
6103 end loop;
6104
6105 if Present (New_Disc) then
6106 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6107 end if;
6108 end if;
6109
6110 Next_Discriminant (Old_Disc);
6111
6112 -- if this is a named constraint, search by name for the old
6113 -- discriminants constrained by the new one.
6114
6115 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6116
6117 -- Find new discriminant with that name
6118
6119 New_Disc := First_Discriminant (Derived_Type);
6120 while Present (New_Disc) loop
6121 exit when
6122 Chars (New_Disc) = Chars (Expression (D_Constraint));
6123 Next_Discriminant (New_Disc);
6124 end loop;
6125
6126 if Present (New_Disc) then
6127
6128 -- Verify that new discriminant renames some discriminant
6129 -- of the parent type, and associate the new discriminant
6130 -- with one or more old ones that it renames.
6131
6132 declare
6133 Selector : Node_Id;
6134
6135 begin
6136 Selector := First (Selector_Names (D_Constraint));
6137 while Present (Selector) loop
6138 Old_Disc := First_Discriminant (Parent_Type);
6139 while Present (Old_Disc) loop
6140 exit when Chars (Old_Disc) = Chars (Selector);
6141 Next_Discriminant (Old_Disc);
6142 end loop;
6143
6144 if Present (Old_Disc) then
6145 Set_Corresponding_Discriminant
6146 (New_Disc, Old_Disc);
6147 end if;
6148
6149 Next (Selector);
6150 end loop;
6151 end;
6152 end if;
6153 end if;
6154
6155 Next (D_Constraint);
6156 end loop;
6157
6158 New_Disc := First_Discriminant (Derived_Type);
6159 while Present (New_Disc) loop
6160 if No (Corresponding_Discriminant (New_Disc)) then
6161 Error_Msg_NE
6162 ("new discriminant& must constrain old one", N, New_Disc);
6163
6164 elsif not
6165 Subtypes_Statically_Compatible
6166 (Etype (New_Disc),
6167 Etype (Corresponding_Discriminant (New_Disc)))
6168 then
6169 Error_Msg_NE
6170 ("& not statically compatible with parent discriminant",
6171 N, New_Disc);
6172 end if;
6173
6174 Next_Discriminant (New_Disc);
6175 end loop;
6176 end if;
6177
6178 elsif Present (Discriminant_Specifications (N)) then
6179 Error_Msg_N
6180 ("missing discriminant constraint in untagged derivation", N);
6181 end if;
6182
6183 -- The entity chain of the derived type includes the new discriminants
6184 -- but shares operations with the parent.
6185
6186 if Present (Discriminant_Specifications (N)) then
6187 Old_Disc := First_Discriminant (Parent_Type);
6188 while Present (Old_Disc) loop
6189 if No (Next_Entity (Old_Disc))
6190 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6191 then
6192 Set_Next_Entity
6193 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6194 exit;
6195 end if;
6196
6197 Next_Discriminant (Old_Disc);
6198 end loop;
6199
6200 else
6201 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6202 if Has_Discriminants (Parent_Type) then
6203 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6204 Set_Discriminant_Constraint (
6205 Derived_Type, Discriminant_Constraint (Parent_Type));
6206 end if;
6207 end if;
6208
6209 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6210
6211 Set_Has_Completion (Derived_Type);
6212
6213 if Corr_Decl_Needed then
6214 Set_Stored_Constraint (Derived_Type, New_Constraint);
6215 Insert_After (N, Corr_Decl);
6216 Analyze (Corr_Decl);
6217 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6218 end if;
6219 end Build_Derived_Concurrent_Type;
6220
6221 ------------------------------------
6222 -- Build_Derived_Enumeration_Type --
6223 ------------------------------------
6224
6225 procedure Build_Derived_Enumeration_Type
6226 (N : Node_Id;
6227 Parent_Type : Entity_Id;
6228 Derived_Type : Entity_Id)
6229 is
6230 Loc : constant Source_Ptr := Sloc (N);
6231 Def : constant Node_Id := Type_Definition (N);
6232 Indic : constant Node_Id := Subtype_Indication (Def);
6233 Implicit_Base : Entity_Id;
6234 Literal : Entity_Id;
6235 New_Lit : Entity_Id;
6236 Literals_List : List_Id;
6237 Type_Decl : Node_Id;
6238 Hi, Lo : Node_Id;
6239 Rang_Expr : Node_Id;
6240
6241 begin
6242 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6243 -- not have explicit literals lists we need to process types derived
6244 -- from them specially. This is handled by Derived_Standard_Character.
6245 -- If the parent type is a generic type, there are no literals either,
6246 -- and we construct the same skeletal representation as for the generic
6247 -- parent type.
6248
6249 if Is_Standard_Character_Type (Parent_Type) then
6250 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6251
6252 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6253 declare
6254 Lo : Node_Id;
6255 Hi : Node_Id;
6256
6257 begin
6258 if Nkind (Indic) /= N_Subtype_Indication then
6259 Lo :=
6260 Make_Attribute_Reference (Loc,
6261 Attribute_Name => Name_First,
6262 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6263 Set_Etype (Lo, Derived_Type);
6264
6265 Hi :=
6266 Make_Attribute_Reference (Loc,
6267 Attribute_Name => Name_Last,
6268 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6269 Set_Etype (Hi, Derived_Type);
6270
6271 Set_Scalar_Range (Derived_Type,
6272 Make_Range (Loc,
6273 Low_Bound => Lo,
6274 High_Bound => Hi));
6275 else
6276
6277 -- Analyze subtype indication and verify compatibility
6278 -- with parent type.
6279
6280 if Base_Type (Process_Subtype (Indic, N)) /=
6281 Base_Type (Parent_Type)
6282 then
6283 Error_Msg_N
6284 ("illegal constraint for formal discrete type", N);
6285 end if;
6286 end if;
6287 end;
6288
6289 else
6290 -- If a constraint is present, analyze the bounds to catch
6291 -- premature usage of the derived literals.
6292
6293 if Nkind (Indic) = N_Subtype_Indication
6294 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6295 then
6296 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6297 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6298 end if;
6299
6300 -- Introduce an implicit base type for the derived type even if there
6301 -- is no constraint attached to it, since this seems closer to the
6302 -- Ada semantics. Build a full type declaration tree for the derived
6303 -- type using the implicit base type as the defining identifier. The
6304 -- build a subtype declaration tree which applies the constraint (if
6305 -- any) have it replace the derived type declaration.
6306
6307 Literal := First_Literal (Parent_Type);
6308 Literals_List := New_List;
6309 while Present (Literal)
6310 and then Ekind (Literal) = E_Enumeration_Literal
6311 loop
6312 -- Literals of the derived type have the same representation as
6313 -- those of the parent type, but this representation can be
6314 -- overridden by an explicit representation clause. Indicate
6315 -- that there is no explicit representation given yet. These
6316 -- derived literals are implicit operations of the new type,
6317 -- and can be overridden by explicit ones.
6318
6319 if Nkind (Literal) = N_Defining_Character_Literal then
6320 New_Lit :=
6321 Make_Defining_Character_Literal (Loc, Chars (Literal));
6322 else
6323 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6324 end if;
6325
6326 Set_Ekind (New_Lit, E_Enumeration_Literal);
6327 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6328 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6329 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6330 Set_Alias (New_Lit, Literal);
6331 Set_Is_Known_Valid (New_Lit, True);
6332
6333 Append (New_Lit, Literals_List);
6334 Next_Literal (Literal);
6335 end loop;
6336
6337 Implicit_Base :=
6338 Make_Defining_Identifier (Sloc (Derived_Type),
6339 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6340
6341 -- Indicate the proper nature of the derived type. This must be done
6342 -- before analysis of the literals, to recognize cases when a literal
6343 -- may be hidden by a previous explicit function definition (cf.
6344 -- c83031a).
6345
6346 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6347 Set_Etype (Derived_Type, Implicit_Base);
6348
6349 Type_Decl :=
6350 Make_Full_Type_Declaration (Loc,
6351 Defining_Identifier => Implicit_Base,
6352 Discriminant_Specifications => No_List,
6353 Type_Definition =>
6354 Make_Enumeration_Type_Definition (Loc, Literals_List));
6355
6356 Mark_Rewrite_Insertion (Type_Decl);
6357 Insert_Before (N, Type_Decl);
6358 Analyze (Type_Decl);
6359
6360 -- After the implicit base is analyzed its Etype needs to be changed
6361 -- to reflect the fact that it is derived from the parent type which
6362 -- was ignored during analysis. We also set the size at this point.
6363
6364 Set_Etype (Implicit_Base, Parent_Type);
6365
6366 Set_Size_Info (Implicit_Base, Parent_Type);
6367 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6368 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6369
6370 -- Copy other flags from parent type
6371
6372 Set_Has_Non_Standard_Rep
6373 (Implicit_Base, Has_Non_Standard_Rep
6374 (Parent_Type));
6375 Set_Has_Pragma_Ordered
6376 (Implicit_Base, Has_Pragma_Ordered
6377 (Parent_Type));
6378 Set_Has_Delayed_Freeze (Implicit_Base);
6379
6380 -- Process the subtype indication including a validation check on the
6381 -- constraint, if any. If a constraint is given, its bounds must be
6382 -- implicitly converted to the new type.
6383
6384 if Nkind (Indic) = N_Subtype_Indication then
6385 declare
6386 R : constant Node_Id :=
6387 Range_Expression (Constraint (Indic));
6388
6389 begin
6390 if Nkind (R) = N_Range then
6391 Hi := Build_Scalar_Bound
6392 (High_Bound (R), Parent_Type, Implicit_Base);
6393 Lo := Build_Scalar_Bound
6394 (Low_Bound (R), Parent_Type, Implicit_Base);
6395
6396 else
6397 -- Constraint is a Range attribute. Replace with explicit
6398 -- mention of the bounds of the prefix, which must be a
6399 -- subtype.
6400
6401 Analyze (Prefix (R));
6402 Hi :=
6403 Convert_To (Implicit_Base,
6404 Make_Attribute_Reference (Loc,
6405 Attribute_Name => Name_Last,
6406 Prefix =>
6407 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6408
6409 Lo :=
6410 Convert_To (Implicit_Base,
6411 Make_Attribute_Reference (Loc,
6412 Attribute_Name => Name_First,
6413 Prefix =>
6414 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6415 end if;
6416 end;
6417
6418 else
6419 Hi :=
6420 Build_Scalar_Bound
6421 (Type_High_Bound (Parent_Type),
6422 Parent_Type, Implicit_Base);
6423 Lo :=
6424 Build_Scalar_Bound
6425 (Type_Low_Bound (Parent_Type),
6426 Parent_Type, Implicit_Base);
6427 end if;
6428
6429 Rang_Expr :=
6430 Make_Range (Loc,
6431 Low_Bound => Lo,
6432 High_Bound => Hi);
6433
6434 -- If we constructed a default range for the case where no range
6435 -- was given, then the expressions in the range must not freeze
6436 -- since they do not correspond to expressions in the source.
6437
6438 if Nkind (Indic) /= N_Subtype_Indication then
6439 Set_Must_Not_Freeze (Lo);
6440 Set_Must_Not_Freeze (Hi);
6441 Set_Must_Not_Freeze (Rang_Expr);
6442 end if;
6443
6444 Rewrite (N,
6445 Make_Subtype_Declaration (Loc,
6446 Defining_Identifier => Derived_Type,
6447 Subtype_Indication =>
6448 Make_Subtype_Indication (Loc,
6449 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6450 Constraint =>
6451 Make_Range_Constraint (Loc,
6452 Range_Expression => Rang_Expr))));
6453
6454 Analyze (N);
6455
6456 -- Propagate the aspects from the original type declaration to the
6457 -- declaration of the implicit base.
6458
6459 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6460
6461 -- Apply a range check. Since this range expression doesn't have an
6462 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6463 -- this right???
6464
6465 if Nkind (Indic) = N_Subtype_Indication then
6466 Apply_Range_Check
6467 (Range_Expression (Constraint (Indic)), Parent_Type,
6468 Source_Typ => Entity (Subtype_Mark (Indic)));
6469 end if;
6470 end if;
6471 end Build_Derived_Enumeration_Type;
6472
6473 --------------------------------
6474 -- Build_Derived_Numeric_Type --
6475 --------------------------------
6476
6477 procedure Build_Derived_Numeric_Type
6478 (N : Node_Id;
6479 Parent_Type : Entity_Id;
6480 Derived_Type : Entity_Id)
6481 is
6482 Loc : constant Source_Ptr := Sloc (N);
6483 Tdef : constant Node_Id := Type_Definition (N);
6484 Indic : constant Node_Id := Subtype_Indication (Tdef);
6485 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6486 No_Constraint : constant Boolean := Nkind (Indic) /=
6487 N_Subtype_Indication;
6488 Implicit_Base : Entity_Id;
6489
6490 Lo : Node_Id;
6491 Hi : Node_Id;
6492
6493 begin
6494 -- Process the subtype indication including a validation check on
6495 -- the constraint if any.
6496
6497 Discard_Node (Process_Subtype (Indic, N));
6498
6499 -- Introduce an implicit base type for the derived type even if there
6500 -- is no constraint attached to it, since this seems closer to the Ada
6501 -- semantics.
6502
6503 Implicit_Base :=
6504 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6505
6506 Set_Etype (Implicit_Base, Parent_Base);
6507 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6508 Set_Size_Info (Implicit_Base, Parent_Base);
6509 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6510 Set_Parent (Implicit_Base, Parent (Derived_Type));
6511 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6512
6513 -- Set RM Size for discrete type or decimal fixed-point type
6514 -- Ordinary fixed-point is excluded, why???
6515
6516 if Is_Discrete_Type (Parent_Base)
6517 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6518 then
6519 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6520 end if;
6521
6522 Set_Has_Delayed_Freeze (Implicit_Base);
6523
6524 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6525 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6526
6527 Set_Scalar_Range (Implicit_Base,
6528 Make_Range (Loc,
6529 Low_Bound => Lo,
6530 High_Bound => Hi));
6531
6532 if Has_Infinities (Parent_Base) then
6533 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6534 end if;
6535
6536 -- The Derived_Type, which is the entity of the declaration, is a
6537 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6538 -- absence of an explicit constraint.
6539
6540 Set_Etype (Derived_Type, Implicit_Base);
6541
6542 -- If we did not have a constraint, then the Ekind is set from the
6543 -- parent type (otherwise Process_Subtype has set the bounds)
6544
6545 if No_Constraint then
6546 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6547 end if;
6548
6549 -- If we did not have a range constraint, then set the range from the
6550 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6551
6552 if No_Constraint or else not Has_Range_Constraint (Indic) then
6553 Set_Scalar_Range (Derived_Type,
6554 Make_Range (Loc,
6555 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6556 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6557 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6558
6559 if Has_Infinities (Parent_Type) then
6560 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6561 end if;
6562
6563 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6564 end if;
6565
6566 Set_Is_Descendent_Of_Address (Derived_Type,
6567 Is_Descendent_Of_Address (Parent_Type));
6568 Set_Is_Descendent_Of_Address (Implicit_Base,
6569 Is_Descendent_Of_Address (Parent_Type));
6570
6571 -- Set remaining type-specific fields, depending on numeric type
6572
6573 if Is_Modular_Integer_Type (Parent_Type) then
6574 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6575
6576 Set_Non_Binary_Modulus
6577 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6578
6579 Set_Is_Known_Valid
6580 (Implicit_Base, Is_Known_Valid (Parent_Base));
6581
6582 elsif Is_Floating_Point_Type (Parent_Type) then
6583
6584 -- Digits of base type is always copied from the digits value of
6585 -- the parent base type, but the digits of the derived type will
6586 -- already have been set if there was a constraint present.
6587
6588 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6589 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6590
6591 if No_Constraint then
6592 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6593 end if;
6594
6595 elsif Is_Fixed_Point_Type (Parent_Type) then
6596
6597 -- Small of base type and derived type are always copied from the
6598 -- parent base type, since smalls never change. The delta of the
6599 -- base type is also copied from the parent base type. However the
6600 -- delta of the derived type will have been set already if a
6601 -- constraint was present.
6602
6603 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6604 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6605 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6606
6607 if No_Constraint then
6608 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6609 end if;
6610
6611 -- The scale and machine radix in the decimal case are always
6612 -- copied from the parent base type.
6613
6614 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6615 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6616 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6617
6618 Set_Machine_Radix_10
6619 (Derived_Type, Machine_Radix_10 (Parent_Base));
6620 Set_Machine_Radix_10
6621 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6622
6623 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6624
6625 if No_Constraint then
6626 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6627
6628 else
6629 -- the analysis of the subtype_indication sets the
6630 -- digits value of the derived type.
6631
6632 null;
6633 end if;
6634 end if;
6635 end if;
6636
6637 if Is_Integer_Type (Parent_Type) then
6638 Set_Has_Shift_Operator
6639 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6640 end if;
6641
6642 -- The type of the bounds is that of the parent type, and they
6643 -- must be converted to the derived type.
6644
6645 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6646
6647 -- The implicit_base should be frozen when the derived type is frozen,
6648 -- but note that it is used in the conversions of the bounds. For fixed
6649 -- types we delay the determination of the bounds until the proper
6650 -- freezing point. For other numeric types this is rejected by GCC, for
6651 -- reasons that are currently unclear (???), so we choose to freeze the
6652 -- implicit base now. In the case of integers and floating point types
6653 -- this is harmless because subsequent representation clauses cannot
6654 -- affect anything, but it is still baffling that we cannot use the
6655 -- same mechanism for all derived numeric types.
6656
6657 -- There is a further complication: actually some representation
6658 -- clauses can affect the implicit base type. For example, attribute
6659 -- definition clauses for stream-oriented attributes need to set the
6660 -- corresponding TSS entries on the base type, and this normally
6661 -- cannot be done after the base type is frozen, so the circuitry in
6662 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6663 -- and not use Set_TSS in this case.
6664
6665 -- There are also consequences for the case of delayed representation
6666 -- aspects for some cases. For example, a Size aspect is delayed and
6667 -- should not be evaluated to the freeze point. This early freezing
6668 -- means that the size attribute evaluation happens too early???
6669
6670 if Is_Fixed_Point_Type (Parent_Type) then
6671 Conditional_Delay (Implicit_Base, Parent_Type);
6672 else
6673 Freeze_Before (N, Implicit_Base);
6674 end if;
6675 end Build_Derived_Numeric_Type;
6676
6677 --------------------------------
6678 -- Build_Derived_Private_Type --
6679 --------------------------------
6680
6681 procedure Build_Derived_Private_Type
6682 (N : Node_Id;
6683 Parent_Type : Entity_Id;
6684 Derived_Type : Entity_Id;
6685 Is_Completion : Boolean;
6686 Derive_Subps : Boolean := True)
6687 is
6688 Loc : constant Source_Ptr := Sloc (N);
6689 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6690 Par_Scope : constant Entity_Id := Scope (Par_Base);
6691 Full_N : constant Node_Id := New_Copy_Tree (N);
6692 Full_Der : Entity_Id := New_Copy (Derived_Type);
6693 Full_P : Entity_Id;
6694
6695 procedure Build_Full_Derivation;
6696 -- Build full derivation, i.e. derive from the full view
6697
6698 procedure Copy_And_Build;
6699 -- Copy derived type declaration, replace parent with its full view,
6700 -- and build derivation
6701
6702 ---------------------------
6703 -- Build_Full_Derivation --
6704 ---------------------------
6705
6706 procedure Build_Full_Derivation is
6707 begin
6708 -- If parent scope is not open, install the declarations
6709
6710 if not In_Open_Scopes (Par_Scope) then
6711 Install_Private_Declarations (Par_Scope);
6712 Install_Visible_Declarations (Par_Scope);
6713 Copy_And_Build;
6714 Uninstall_Declarations (Par_Scope);
6715
6716 -- If parent scope is open and in another unit, and parent has a
6717 -- completion, then the derivation is taking place in the visible
6718 -- part of a child unit. In that case retrieve the full view of
6719 -- the parent momentarily.
6720
6721 elsif not In_Same_Source_Unit (N, Parent_Type) then
6722 Full_P := Full_View (Parent_Type);
6723 Exchange_Declarations (Parent_Type);
6724 Copy_And_Build;
6725 Exchange_Declarations (Full_P);
6726
6727 -- Otherwise it is a local derivation
6728
6729 else
6730 Copy_And_Build;
6731 end if;
6732 end Build_Full_Derivation;
6733
6734 --------------------
6735 -- Copy_And_Build --
6736 --------------------
6737
6738 procedure Copy_And_Build is
6739 Full_Parent : Entity_Id := Parent_Type;
6740
6741 begin
6742 -- If the parent is itself derived from another private type,
6743 -- installing the private declarations has not affected its
6744 -- privacy status, so use its own full view explicitly.
6745
6746 if Is_Private_Type (Full_Parent)
6747 and then Present (Full_View (Full_Parent))
6748 then
6749 Full_Parent := Full_View (Full_Parent);
6750 end if;
6751
6752 -- And its underlying full view if necessary
6753
6754 if Is_Private_Type (Full_Parent)
6755 and then Present (Underlying_Full_View (Full_Parent))
6756 then
6757 Full_Parent := Underlying_Full_View (Full_Parent);
6758 end if;
6759
6760 -- For record, access and most enumeration types, derivation from
6761 -- the full view requires a fully-fledged declaration. In the other
6762 -- cases, just use an itype.
6763
6764 if Ekind (Full_Parent) in Record_Kind
6765 or else Ekind (Full_Parent) in Access_Kind
6766 or else
6767 (Ekind (Full_Parent) in Enumeration_Kind
6768 and then not Is_Standard_Character_Type (Full_Parent)
6769 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6770 then
6771 -- Copy and adjust declaration to provide a completion for what
6772 -- is originally a private declaration. Indicate that full view
6773 -- is internally generated.
6774
6775 Set_Comes_From_Source (Full_N, False);
6776 Set_Comes_From_Source (Full_Der, False);
6777 Set_Parent (Full_Der, Full_N);
6778 Set_Defining_Identifier (Full_N, Full_Der);
6779
6780 -- If there are no constraints, adjust the subtype mark
6781
6782 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6783 N_Subtype_Indication
6784 then
6785 Set_Subtype_Indication
6786 (Type_Definition (Full_N),
6787 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6788 end if;
6789
6790 Insert_After (N, Full_N);
6791
6792 -- Build full view of derived type from full view of parent which
6793 -- is now installed. Subprograms have been derived on the partial
6794 -- view, the completion does not derive them anew.
6795
6796 if Ekind (Full_Parent) in Record_Kind then
6797
6798 -- If parent type is tagged, the completion inherits the proper
6799 -- primitive operations.
6800
6801 if Is_Tagged_Type (Parent_Type) then
6802 Build_Derived_Record_Type
6803 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6804 else
6805 Build_Derived_Record_Type
6806 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6807 end if;
6808
6809 else
6810 Build_Derived_Type
6811 (Full_N, Full_Parent, Full_Der,
6812 Is_Completion => False, Derive_Subps => False);
6813 end if;
6814
6815 -- The full declaration has been introduced into the tree and
6816 -- processed in the step above. It should not be analyzed again
6817 -- (when encountered later in the current list of declarations)
6818 -- to prevent spurious name conflicts. The full entity remains
6819 -- invisible.
6820
6821 Set_Analyzed (Full_N);
6822
6823 else
6824 Full_Der :=
6825 Make_Defining_Identifier (Sloc (Derived_Type),
6826 Chars => Chars (Derived_Type));
6827 Set_Is_Itype (Full_Der);
6828 Set_Associated_Node_For_Itype (Full_Der, N);
6829 Set_Parent (Full_Der, N);
6830 Build_Derived_Type
6831 (N, Full_Parent, Full_Der,
6832 Is_Completion => False, Derive_Subps => False);
6833 end if;
6834
6835 Set_Has_Private_Declaration (Full_Der);
6836 Set_Has_Private_Declaration (Derived_Type);
6837
6838 Set_Scope (Full_Der, Scope (Derived_Type));
6839 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6840 Set_Has_Size_Clause (Full_Der, False);
6841 Set_Has_Alignment_Clause (Full_Der, False);
6842 Set_Has_Delayed_Freeze (Full_Der);
6843 Set_Is_Frozen (Full_Der, False);
6844 Set_Freeze_Node (Full_Der, Empty);
6845 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6846 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6847
6848 -- The convention on the base type may be set in the private part
6849 -- and not propagated to the subtype until later, so we obtain the
6850 -- convention from the base type of the parent.
6851
6852 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6853 end Copy_And_Build;
6854
6855 -- Start of processing for Build_Derived_Private_Type
6856
6857 begin
6858 if Is_Tagged_Type (Parent_Type) then
6859 Full_P := Full_View (Parent_Type);
6860
6861 -- A type extension of a type with unknown discriminants is an
6862 -- indefinite type that the back-end cannot handle directly.
6863 -- We treat it as a private type, and build a completion that is
6864 -- derived from the full view of the parent, and hopefully has
6865 -- known discriminants.
6866
6867 -- If the full view of the parent type has an underlying record view,
6868 -- use it to generate the underlying record view of this derived type
6869 -- (required for chains of derivations with unknown discriminants).
6870
6871 -- Minor optimization: we avoid the generation of useless underlying
6872 -- record view entities if the private type declaration has unknown
6873 -- discriminants but its corresponding full view has no
6874 -- discriminants.
6875
6876 if Has_Unknown_Discriminants (Parent_Type)
6877 and then Present (Full_P)
6878 and then (Has_Discriminants (Full_P)
6879 or else Present (Underlying_Record_View (Full_P)))
6880 and then not In_Open_Scopes (Par_Scope)
6881 and then Expander_Active
6882 then
6883 declare
6884 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6885 New_Ext : constant Node_Id :=
6886 Copy_Separate_Tree
6887 (Record_Extension_Part (Type_Definition (N)));
6888 Decl : Node_Id;
6889
6890 begin
6891 Build_Derived_Record_Type
6892 (N, Parent_Type, Derived_Type, Derive_Subps);
6893
6894 -- Build anonymous completion, as a derivation from the full
6895 -- view of the parent. This is not a completion in the usual
6896 -- sense, because the current type is not private.
6897
6898 Decl :=
6899 Make_Full_Type_Declaration (Loc,
6900 Defining_Identifier => Full_Der,
6901 Type_Definition =>
6902 Make_Derived_Type_Definition (Loc,
6903 Subtype_Indication =>
6904 New_Copy_Tree
6905 (Subtype_Indication (Type_Definition (N))),
6906 Record_Extension_Part => New_Ext));
6907
6908 -- If the parent type has an underlying record view, use it
6909 -- here to build the new underlying record view.
6910
6911 if Present (Underlying_Record_View (Full_P)) then
6912 pragma Assert
6913 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6914 = N_Identifier);
6915 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6916 Underlying_Record_View (Full_P));
6917 end if;
6918
6919 Install_Private_Declarations (Par_Scope);
6920 Install_Visible_Declarations (Par_Scope);
6921 Insert_Before (N, Decl);
6922
6923 -- Mark entity as an underlying record view before analysis,
6924 -- to avoid generating the list of its primitive operations
6925 -- (which is not really required for this entity) and thus
6926 -- prevent spurious errors associated with missing overriding
6927 -- of abstract primitives (overridden only for Derived_Type).
6928
6929 Set_Ekind (Full_Der, E_Record_Type);
6930 Set_Is_Underlying_Record_View (Full_Der);
6931 Set_Default_SSO (Full_Der);
6932
6933 Analyze (Decl);
6934
6935 pragma Assert (Has_Discriminants (Full_Der)
6936 and then not Has_Unknown_Discriminants (Full_Der));
6937
6938 Uninstall_Declarations (Par_Scope);
6939
6940 -- Freeze the underlying record view, to prevent generation of
6941 -- useless dispatching information, which is simply shared with
6942 -- the real derived type.
6943
6944 Set_Is_Frozen (Full_Der);
6945
6946 -- Set up links between real entity and underlying record view
6947
6948 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6949 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6950 end;
6951
6952 -- If discriminants are known, build derived record
6953
6954 else
6955 Build_Derived_Record_Type
6956 (N, Parent_Type, Derived_Type, Derive_Subps);
6957 end if;
6958
6959 return;
6960
6961 elsif Has_Discriminants (Parent_Type) then
6962
6963 -- Build partial view of derived type from partial view of parent.
6964 -- This must be done before building the full derivation because the
6965 -- second derivation will modify the discriminants of the first and
6966 -- the discriminants are chained with the rest of the components in
6967 -- the full derivation.
6968
6969 Build_Derived_Record_Type
6970 (N, Parent_Type, Derived_Type, Derive_Subps);
6971
6972 -- Build the full derivation if this is not the anonymous derived
6973 -- base type created by Build_Derived_Record_Type in the constrained
6974 -- case (see point 5. of its head comment) since we build it for the
6975 -- derived subtype. And skip it for protected types altogether, as
6976 -- gigi does not use these types directly.
6977
6978 if Present (Full_View (Parent_Type))
6979 and then not Is_Itype (Derived_Type)
6980 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
6981 then
6982 declare
6983 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
6984 Discr : Entity_Id;
6985 Last_Discr : Entity_Id;
6986
6987 begin
6988 -- If this is not a completion, construct the implicit full
6989 -- view by deriving from the full view of the parent type.
6990 -- But if this is a completion, the derived private type
6991 -- being built is a full view and the full derivation can
6992 -- only be its underlying full view.
6993
6994 Build_Full_Derivation;
6995
6996 if not Is_Completion then
6997 Set_Full_View (Derived_Type, Full_Der);
6998 else
6999 Set_Underlying_Full_View (Derived_Type, Full_Der);
7000 end if;
7001
7002 if not Is_Base_Type (Derived_Type) then
7003 Set_Full_View (Der_Base, Base_Type (Full_Der));
7004 end if;
7005
7006 -- Copy the discriminant list from full view to the partial
7007 -- view (base type and its subtype). Gigi requires that the
7008 -- partial and full views have the same discriminants.
7009
7010 -- Note that since the partial view points to discriminants
7011 -- in the full view, their scope will be that of the full
7012 -- view. This might cause some front end problems and need
7013 -- adjustment???
7014
7015 Discr := First_Discriminant (Base_Type (Full_Der));
7016 Set_First_Entity (Der_Base, Discr);
7017
7018 loop
7019 Last_Discr := Discr;
7020 Next_Discriminant (Discr);
7021 exit when No (Discr);
7022 end loop;
7023
7024 Set_Last_Entity (Der_Base, Last_Discr);
7025 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7026 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7027
7028 Set_Stored_Constraint
7029 (Full_Der, Stored_Constraint (Derived_Type));
7030 end;
7031 end if;
7032
7033 elsif Present (Full_View (Parent_Type))
7034 and then Has_Discriminants (Full_View (Parent_Type))
7035 then
7036 if Has_Unknown_Discriminants (Parent_Type)
7037 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7038 N_Subtype_Indication
7039 then
7040 Error_Msg_N
7041 ("cannot constrain type with unknown discriminants",
7042 Subtype_Indication (Type_Definition (N)));
7043 return;
7044 end if;
7045
7046 -- If this is not a completion, construct the implicit full view by
7047 -- deriving from the full view of the parent type. But if this is a
7048 -- completion, the derived private type being built is a full view
7049 -- and the full derivation can only be its underlying full view.
7050
7051 Build_Full_Derivation;
7052
7053 if not Is_Completion then
7054 Set_Full_View (Derived_Type, Full_Der);
7055 else
7056 Set_Underlying_Full_View (Derived_Type, Full_Der);
7057 end if;
7058
7059 -- In any case, the primitive operations are inherited from the
7060 -- parent type, not from the internal full view.
7061
7062 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7063
7064 if Derive_Subps then
7065 Derive_Subprograms (Parent_Type, Derived_Type);
7066 end if;
7067
7068 Set_Stored_Constraint (Derived_Type, No_Elist);
7069 Set_Is_Constrained
7070 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7071
7072 else
7073 -- Untagged type, No discriminants on either view
7074
7075 if Nkind (Subtype_Indication (Type_Definition (N))) =
7076 N_Subtype_Indication
7077 then
7078 Error_Msg_N
7079 ("illegal constraint on type without discriminants", N);
7080 end if;
7081
7082 if Present (Discriminant_Specifications (N))
7083 and then Present (Full_View (Parent_Type))
7084 and then not Is_Tagged_Type (Full_View (Parent_Type))
7085 then
7086 Error_Msg_N ("cannot add discriminants to untagged type", N);
7087 end if;
7088
7089 Set_Stored_Constraint (Derived_Type, No_Elist);
7090 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7091 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7092 Set_Has_Controlled_Component
7093 (Derived_Type, Has_Controlled_Component
7094 (Parent_Type));
7095
7096 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7097
7098 if not Is_Controlled (Parent_Type) then
7099 Set_Finalize_Storage_Only
7100 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7101 end if;
7102
7103 -- If this is not a completion, construct the implicit full view by
7104 -- deriving from the full view of the parent type.
7105
7106 -- ??? If the parent is untagged private and its completion is
7107 -- tagged, this mechanism will not work because we cannot derive from
7108 -- the tagged full view unless we have an extension.
7109
7110 if Present (Full_View (Parent_Type))
7111 and then not Is_Tagged_Type (Full_View (Parent_Type))
7112 and then not Is_Completion
7113 then
7114 Build_Full_Derivation;
7115 Set_Full_View (Derived_Type, Full_Der);
7116 end if;
7117 end if;
7118
7119 Set_Has_Unknown_Discriminants (Derived_Type,
7120 Has_Unknown_Discriminants (Parent_Type));
7121
7122 if Is_Private_Type (Derived_Type) then
7123 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7124 end if;
7125
7126 -- If the parent base type is in scope, add the derived type to its
7127 -- list of private dependents, because its full view may become
7128 -- visible subsequently (in a nested private part, a body, or in a
7129 -- further child unit).
7130
7131 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7132 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7133
7134 -- Check for unusual case where a type completed by a private
7135 -- derivation occurs within a package nested in a child unit, and
7136 -- the parent is declared in an ancestor.
7137
7138 if Is_Child_Unit (Scope (Current_Scope))
7139 and then Is_Completion
7140 and then In_Private_Part (Current_Scope)
7141 and then Scope (Parent_Type) /= Current_Scope
7142
7143 -- Note that if the parent has a completion in the private part,
7144 -- (which is itself a derivation from some other private type)
7145 -- it is that completion that is visible, there is no full view
7146 -- available, and no special processing is needed.
7147
7148 and then Present (Full_View (Parent_Type))
7149 then
7150 -- In this case, the full view of the parent type will become
7151 -- visible in the body of the enclosing child, and only then will
7152 -- the current type be possibly non-private. Build an underlying
7153 -- full view that will be installed when the enclosing child body
7154 -- is compiled.
7155
7156 if Present (Underlying_Full_View (Derived_Type)) then
7157 Full_Der := Underlying_Full_View (Derived_Type);
7158 else
7159 Build_Full_Derivation;
7160 Set_Underlying_Full_View (Derived_Type, Full_Der);
7161 end if;
7162
7163 -- The full view will be used to swap entities on entry/exit to
7164 -- the body, and must appear in the entity list for the package.
7165
7166 Append_Entity (Full_Der, Scope (Derived_Type));
7167 end if;
7168 end if;
7169 end Build_Derived_Private_Type;
7170
7171 -------------------------------
7172 -- Build_Derived_Record_Type --
7173 -------------------------------
7174
7175 -- 1. INTRODUCTION
7176
7177 -- Ideally we would like to use the same model of type derivation for
7178 -- tagged and untagged record types. Unfortunately this is not quite
7179 -- possible because the semantics of representation clauses is different
7180 -- for tagged and untagged records under inheritance. Consider the
7181 -- following:
7182
7183 -- type R (...) is [tagged] record ... end record;
7184 -- type T (...) is new R (...) [with ...];
7185
7186 -- The representation clauses for T can specify a completely different
7187 -- record layout from R's. Hence the same component can be placed in two
7188 -- very different positions in objects of type T and R. If R and T are
7189 -- tagged types, representation clauses for T can only specify the layout
7190 -- of non inherited components, thus components that are common in R and T
7191 -- have the same position in objects of type R and T.
7192
7193 -- This has two implications. The first is that the entire tree for R's
7194 -- declaration needs to be copied for T in the untagged case, so that T
7195 -- can be viewed as a record type of its own with its own representation
7196 -- clauses. The second implication is the way we handle discriminants.
7197 -- Specifically, in the untagged case we need a way to communicate to Gigi
7198 -- what are the real discriminants in the record, while for the semantics
7199 -- we need to consider those introduced by the user to rename the
7200 -- discriminants in the parent type. This is handled by introducing the
7201 -- notion of stored discriminants. See below for more.
7202
7203 -- Fortunately the way regular components are inherited can be handled in
7204 -- the same way in tagged and untagged types.
7205
7206 -- To complicate things a bit more the private view of a private extension
7207 -- cannot be handled in the same way as the full view (for one thing the
7208 -- semantic rules are somewhat different). We will explain what differs
7209 -- below.
7210
7211 -- 2. DISCRIMINANTS UNDER INHERITANCE
7212
7213 -- The semantic rules governing the discriminants of derived types are
7214 -- quite subtle.
7215
7216 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7217 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7218
7219 -- If parent type has discriminants, then the discriminants that are
7220 -- declared in the derived type are [3.4 (11)]:
7221
7222 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7223 -- there is one;
7224
7225 -- o Otherwise, each discriminant of the parent type (implicitly declared
7226 -- in the same order with the same specifications). In this case, the
7227 -- discriminants are said to be "inherited", or if unknown in the parent
7228 -- are also unknown in the derived type.
7229
7230 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7231
7232 -- o The parent subtype must be constrained;
7233
7234 -- o If the parent type is not a tagged type, then each discriminant of
7235 -- the derived type must be used in the constraint defining a parent
7236 -- subtype. [Implementation note: This ensures that the new discriminant
7237 -- can share storage with an existing discriminant.]
7238
7239 -- For the derived type each discriminant of the parent type is either
7240 -- inherited, constrained to equal some new discriminant of the derived
7241 -- type, or constrained to the value of an expression.
7242
7243 -- When inherited or constrained to equal some new discriminant, the
7244 -- parent discriminant and the discriminant of the derived type are said
7245 -- to "correspond".
7246
7247 -- If a discriminant of the parent type is constrained to a specific value
7248 -- in the derived type definition, then the discriminant is said to be
7249 -- "specified" by that derived type definition.
7250
7251 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7252
7253 -- We have spoken about stored discriminants in point 1 (introduction)
7254 -- above. There are two sort of stored discriminants: implicit and
7255 -- explicit. As long as the derived type inherits the same discriminants as
7256 -- the root record type, stored discriminants are the same as regular
7257 -- discriminants, and are said to be implicit. However, if any discriminant
7258 -- in the root type was renamed in the derived type, then the derived
7259 -- type will contain explicit stored discriminants. Explicit stored
7260 -- discriminants are discriminants in addition to the semantically visible
7261 -- discriminants defined for the derived type. Stored discriminants are
7262 -- used by Gigi to figure out what are the physical discriminants in
7263 -- objects of the derived type (see precise definition in einfo.ads).
7264 -- As an example, consider the following:
7265
7266 -- type R (D1, D2, D3 : Int) is record ... end record;
7267 -- type T1 is new R;
7268 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7269 -- type T3 is new T2;
7270 -- type T4 (Y : Int) is new T3 (Y, 99);
7271
7272 -- The following table summarizes the discriminants and stored
7273 -- discriminants in R and T1 through T4.
7274
7275 -- Type Discrim Stored Discrim Comment
7276 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7277 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7278 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7279 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7280 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7281
7282 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7283 -- find the corresponding discriminant in the parent type, while
7284 -- Original_Record_Component (abbreviated ORC below), the actual physical
7285 -- component that is renamed. Finally the field Is_Completely_Hidden
7286 -- (abbreviated ICH below) is set for all explicit stored discriminants
7287 -- (see einfo.ads for more info). For the above example this gives:
7288
7289 -- Discrim CD ORC ICH
7290 -- ^^^^^^^ ^^ ^^^ ^^^
7291 -- D1 in R empty itself no
7292 -- D2 in R empty itself no
7293 -- D3 in R empty itself no
7294
7295 -- D1 in T1 D1 in R itself no
7296 -- D2 in T1 D2 in R itself no
7297 -- D3 in T1 D3 in R itself no
7298
7299 -- X1 in T2 D3 in T1 D3 in T2 no
7300 -- X2 in T2 D1 in T1 D1 in T2 no
7301 -- D1 in T2 empty itself yes
7302 -- D2 in T2 empty itself yes
7303 -- D3 in T2 empty itself yes
7304
7305 -- X1 in T3 X1 in T2 D3 in T3 no
7306 -- X2 in T3 X2 in T2 D1 in T3 no
7307 -- D1 in T3 empty itself yes
7308 -- D2 in T3 empty itself yes
7309 -- D3 in T3 empty itself yes
7310
7311 -- Y in T4 X1 in T3 D3 in T3 no
7312 -- D1 in T3 empty itself yes
7313 -- D2 in T3 empty itself yes
7314 -- D3 in T3 empty itself yes
7315
7316 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7317
7318 -- Type derivation for tagged types is fairly straightforward. If no
7319 -- discriminants are specified by the derived type, these are inherited
7320 -- from the parent. No explicit stored discriminants are ever necessary.
7321 -- The only manipulation that is done to the tree is that of adding a
7322 -- _parent field with parent type and constrained to the same constraint
7323 -- specified for the parent in the derived type definition. For instance:
7324
7325 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7326 -- type T1 is new R with null record;
7327 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7328
7329 -- are changed into:
7330
7331 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7332 -- _parent : R (D1, D2, D3);
7333 -- end record;
7334
7335 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7336 -- _parent : T1 (X2, 88, X1);
7337 -- end record;
7338
7339 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7340 -- ORC and ICH fields are:
7341
7342 -- Discrim CD ORC ICH
7343 -- ^^^^^^^ ^^ ^^^ ^^^
7344 -- D1 in R empty itself no
7345 -- D2 in R empty itself no
7346 -- D3 in R empty itself no
7347
7348 -- D1 in T1 D1 in R D1 in R no
7349 -- D2 in T1 D2 in R D2 in R no
7350 -- D3 in T1 D3 in R D3 in R no
7351
7352 -- X1 in T2 D3 in T1 D3 in R no
7353 -- X2 in T2 D1 in T1 D1 in R no
7354
7355 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7356 --
7357 -- Regardless of whether we dealing with a tagged or untagged type
7358 -- we will transform all derived type declarations of the form
7359 --
7360 -- type T is new R (...) [with ...];
7361 -- or
7362 -- subtype S is R (...);
7363 -- type T is new S [with ...];
7364 -- into
7365 -- type BT is new R [with ...];
7366 -- subtype T is BT (...);
7367 --
7368 -- That is, the base derived type is constrained only if it has no
7369 -- discriminants. The reason for doing this is that GNAT's semantic model
7370 -- assumes that a base type with discriminants is unconstrained.
7371 --
7372 -- Note that, strictly speaking, the above transformation is not always
7373 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7374 --
7375 -- procedure B34011A is
7376 -- type REC (D : integer := 0) is record
7377 -- I : Integer;
7378 -- end record;
7379
7380 -- package P is
7381 -- type T6 is new Rec;
7382 -- function F return T6;
7383 -- end P;
7384
7385 -- use P;
7386 -- package Q6 is
7387 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7388 -- end Q6;
7389 --
7390 -- The definition of Q6.U is illegal. However transforming Q6.U into
7391
7392 -- type BaseU is new T6;
7393 -- subtype U is BaseU (Q6.F.I)
7394
7395 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7396 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7397 -- the transformation described above.
7398
7399 -- There is another instance where the above transformation is incorrect.
7400 -- Consider:
7401
7402 -- package Pack is
7403 -- type Base (D : Integer) is tagged null record;
7404 -- procedure P (X : Base);
7405
7406 -- type Der is new Base (2) with null record;
7407 -- procedure P (X : Der);
7408 -- end Pack;
7409
7410 -- Then the above transformation turns this into
7411
7412 -- type Der_Base is new Base with null record;
7413 -- -- procedure P (X : Base) is implicitly inherited here
7414 -- -- as procedure P (X : Der_Base).
7415
7416 -- subtype Der is Der_Base (2);
7417 -- procedure P (X : Der);
7418 -- -- The overriding of P (X : Der_Base) is illegal since we
7419 -- -- have a parameter conformance problem.
7420
7421 -- To get around this problem, after having semantically processed Der_Base
7422 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7423 -- Discriminant_Constraint from Der so that when parameter conformance is
7424 -- checked when P is overridden, no semantic errors are flagged.
7425
7426 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7427
7428 -- Regardless of whether we are dealing with a tagged or untagged type
7429 -- we will transform all derived type declarations of the form
7430
7431 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7432 -- type T is new R [with ...];
7433 -- into
7434 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7435
7436 -- The reason for such transformation is that it allows us to implement a
7437 -- very clean form of component inheritance as explained below.
7438
7439 -- Note that this transformation is not achieved by direct tree rewriting
7440 -- and manipulation, but rather by redoing the semantic actions that the
7441 -- above transformation will entail. This is done directly in routine
7442 -- Inherit_Components.
7443
7444 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7445
7446 -- In both tagged and untagged derived types, regular non discriminant
7447 -- components are inherited in the derived type from the parent type. In
7448 -- the absence of discriminants component, inheritance is straightforward
7449 -- as components can simply be copied from the parent.
7450
7451 -- If the parent has discriminants, inheriting components constrained with
7452 -- these discriminants requires caution. Consider the following example:
7453
7454 -- type R (D1, D2 : Positive) is [tagged] record
7455 -- S : String (D1 .. D2);
7456 -- end record;
7457
7458 -- type T1 is new R [with null record];
7459 -- type T2 (X : positive) is new R (1, X) [with null record];
7460
7461 -- As explained in 6. above, T1 is rewritten as
7462 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7463 -- which makes the treatment for T1 and T2 identical.
7464
7465 -- What we want when inheriting S, is that references to D1 and D2 in R are
7466 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7467 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7468 -- with either discriminant references in the derived type or expressions.
7469 -- This replacement is achieved as follows: before inheriting R's
7470 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7471 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7472 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7473 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7474 -- by String (1 .. X).
7475
7476 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7477
7478 -- We explain here the rules governing private type extensions relevant to
7479 -- type derivation. These rules are explained on the following example:
7480
7481 -- type D [(...)] is new A [(...)] with private; <-- partial view
7482 -- type D [(...)] is new P [(...)] with null record; <-- full view
7483
7484 -- Type A is called the ancestor subtype of the private extension.
7485 -- Type P is the parent type of the full view of the private extension. It
7486 -- must be A or a type derived from A.
7487
7488 -- The rules concerning the discriminants of private type extensions are
7489 -- [7.3(10-13)]:
7490
7491 -- o If a private extension inherits known discriminants from the ancestor
7492 -- subtype, then the full view must also inherit its discriminants from
7493 -- the ancestor subtype and the parent subtype of the full view must be
7494 -- constrained if and only if the ancestor subtype is constrained.
7495
7496 -- o If a partial view has unknown discriminants, then the full view may
7497 -- define a definite or an indefinite subtype, with or without
7498 -- discriminants.
7499
7500 -- o If a partial view has neither known nor unknown discriminants, then
7501 -- the full view must define a definite subtype.
7502
7503 -- o If the ancestor subtype of a private extension has constrained
7504 -- discriminants, then the parent subtype of the full view must impose a
7505 -- statically matching constraint on those discriminants.
7506
7507 -- This means that only the following forms of private extensions are
7508 -- allowed:
7509
7510 -- type D is new A with private; <-- partial view
7511 -- type D is new P with null record; <-- full view
7512
7513 -- If A has no discriminants than P has no discriminants, otherwise P must
7514 -- inherit A's discriminants.
7515
7516 -- type D is new A (...) with private; <-- partial view
7517 -- type D is new P (:::) with null record; <-- full view
7518
7519 -- P must inherit A's discriminants and (...) and (:::) must statically
7520 -- match.
7521
7522 -- subtype A is R (...);
7523 -- type D is new A with private; <-- partial view
7524 -- type D is new P with null record; <-- full view
7525
7526 -- P must have inherited R's discriminants and must be derived from A or
7527 -- any of its subtypes.
7528
7529 -- type D (..) is new A with private; <-- partial view
7530 -- type D (..) is new P [(:::)] with null record; <-- full view
7531
7532 -- No specific constraints on P's discriminants or constraint (:::).
7533 -- Note that A can be unconstrained, but the parent subtype P must either
7534 -- be constrained or (:::) must be present.
7535
7536 -- type D (..) is new A [(...)] with private; <-- partial view
7537 -- type D (..) is new P [(:::)] with null record; <-- full view
7538
7539 -- P's constraints on A's discriminants must statically match those
7540 -- imposed by (...).
7541
7542 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7543
7544 -- The full view of a private extension is handled exactly as described
7545 -- above. The model chose for the private view of a private extension is
7546 -- the same for what concerns discriminants (i.e. they receive the same
7547 -- treatment as in the tagged case). However, the private view of the
7548 -- private extension always inherits the components of the parent base,
7549 -- without replacing any discriminant reference. Strictly speaking this is
7550 -- incorrect. However, Gigi never uses this view to generate code so this
7551 -- is a purely semantic issue. In theory, a set of transformations similar
7552 -- to those given in 5. and 6. above could be applied to private views of
7553 -- private extensions to have the same model of component inheritance as
7554 -- for non private extensions. However, this is not done because it would
7555 -- further complicate private type processing. Semantically speaking, this
7556 -- leaves us in an uncomfortable situation. As an example consider:
7557
7558 -- package Pack is
7559 -- type R (D : integer) is tagged record
7560 -- S : String (1 .. D);
7561 -- end record;
7562 -- procedure P (X : R);
7563 -- type T is new R (1) with private;
7564 -- private
7565 -- type T is new R (1) with null record;
7566 -- end;
7567
7568 -- This is transformed into:
7569
7570 -- package Pack is
7571 -- type R (D : integer) is tagged record
7572 -- S : String (1 .. D);
7573 -- end record;
7574 -- procedure P (X : R);
7575 -- type T is new R (1) with private;
7576 -- private
7577 -- type BaseT is new R with null record;
7578 -- subtype T is BaseT (1);
7579 -- end;
7580
7581 -- (strictly speaking the above is incorrect Ada)
7582
7583 -- From the semantic standpoint the private view of private extension T
7584 -- should be flagged as constrained since one can clearly have
7585 --
7586 -- Obj : T;
7587 --
7588 -- in a unit withing Pack. However, when deriving subprograms for the
7589 -- private view of private extension T, T must be seen as unconstrained
7590 -- since T has discriminants (this is a constraint of the current
7591 -- subprogram derivation model). Thus, when processing the private view of
7592 -- a private extension such as T, we first mark T as unconstrained, we
7593 -- process it, we perform program derivation and just before returning from
7594 -- Build_Derived_Record_Type we mark T as constrained.
7595
7596 -- ??? Are there are other uncomfortable cases that we will have to
7597 -- deal with.
7598
7599 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7600
7601 -- Types that are derived from a visible record type and have a private
7602 -- extension present other peculiarities. They behave mostly like private
7603 -- types, but if they have primitive operations defined, these will not
7604 -- have the proper signatures for further inheritance, because other
7605 -- primitive operations will use the implicit base that we define for
7606 -- private derivations below. This affect subprogram inheritance (see
7607 -- Derive_Subprograms for details). We also derive the implicit base from
7608 -- the base type of the full view, so that the implicit base is a record
7609 -- type and not another private type, This avoids infinite loops.
7610
7611 procedure Build_Derived_Record_Type
7612 (N : Node_Id;
7613 Parent_Type : Entity_Id;
7614 Derived_Type : Entity_Id;
7615 Derive_Subps : Boolean := True)
7616 is
7617 Discriminant_Specs : constant Boolean :=
7618 Present (Discriminant_Specifications (N));
7619 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7620 Loc : constant Source_Ptr := Sloc (N);
7621 Private_Extension : constant Boolean :=
7622 Nkind (N) = N_Private_Extension_Declaration;
7623 Assoc_List : Elist_Id;
7624 Constraint_Present : Boolean;
7625 Constrs : Elist_Id;
7626 Discrim : Entity_Id;
7627 Indic : Node_Id;
7628 Inherit_Discrims : Boolean := False;
7629 Last_Discrim : Entity_Id;
7630 New_Base : Entity_Id;
7631 New_Decl : Node_Id;
7632 New_Discrs : Elist_Id;
7633 New_Indic : Node_Id;
7634 Parent_Base : Entity_Id;
7635 Save_Etype : Entity_Id;
7636 Save_Discr_Constr : Elist_Id;
7637 Save_Next_Entity : Entity_Id;
7638 Type_Def : Node_Id;
7639
7640 Discs : Elist_Id := New_Elmt_List;
7641 -- An empty Discs list means that there were no constraints in the
7642 -- subtype indication or that there was an error processing it.
7643
7644 begin
7645 if Ekind (Parent_Type) = E_Record_Type_With_Private
7646 and then Present (Full_View (Parent_Type))
7647 and then Has_Discriminants (Parent_Type)
7648 then
7649 Parent_Base := Base_Type (Full_View (Parent_Type));
7650 else
7651 Parent_Base := Base_Type (Parent_Type);
7652 end if;
7653
7654 -- AI05-0115 : if this is a derivation from a private type in some
7655 -- other scope that may lead to invisible components for the derived
7656 -- type, mark it accordingly.
7657
7658 if Is_Private_Type (Parent_Type) then
7659 if Scope (Parent_Type) = Scope (Derived_Type) then
7660 null;
7661
7662 elsif In_Open_Scopes (Scope (Parent_Type))
7663 and then In_Private_Part (Scope (Parent_Type))
7664 then
7665 null;
7666
7667 else
7668 Set_Has_Private_Ancestor (Derived_Type);
7669 end if;
7670
7671 else
7672 Set_Has_Private_Ancestor
7673 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7674 end if;
7675
7676 -- Before we start the previously documented transformations, here is
7677 -- little fix for size and alignment of tagged types. Normally when we
7678 -- derive type D from type P, we copy the size and alignment of P as the
7679 -- default for D, and in the absence of explicit representation clauses
7680 -- for D, the size and alignment are indeed the same as the parent.
7681
7682 -- But this is wrong for tagged types, since fields may be added, and
7683 -- the default size may need to be larger, and the default alignment may
7684 -- need to be larger.
7685
7686 -- We therefore reset the size and alignment fields in the tagged case.
7687 -- Note that the size and alignment will in any case be at least as
7688 -- large as the parent type (since the derived type has a copy of the
7689 -- parent type in the _parent field)
7690
7691 -- The type is also marked as being tagged here, which is needed when
7692 -- processing components with a self-referential anonymous access type
7693 -- in the call to Check_Anonymous_Access_Components below. Note that
7694 -- this flag is also set later on for completeness.
7695
7696 if Is_Tagged then
7697 Set_Is_Tagged_Type (Derived_Type);
7698 Init_Size_Align (Derived_Type);
7699 end if;
7700
7701 -- STEP 0a: figure out what kind of derived type declaration we have
7702
7703 if Private_Extension then
7704 Type_Def := N;
7705 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7706 Set_Default_SSO (Derived_Type);
7707
7708 else
7709 Type_Def := Type_Definition (N);
7710
7711 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7712 -- Parent_Base can be a private type or private extension. However,
7713 -- for tagged types with an extension the newly added fields are
7714 -- visible and hence the Derived_Type is always an E_Record_Type.
7715 -- (except that the parent may have its own private fields).
7716 -- For untagged types we preserve the Ekind of the Parent_Base.
7717
7718 if Present (Record_Extension_Part (Type_Def)) then
7719 Set_Ekind (Derived_Type, E_Record_Type);
7720 Set_Default_SSO (Derived_Type);
7721
7722 -- Create internal access types for components with anonymous
7723 -- access types.
7724
7725 if Ada_Version >= Ada_2005 then
7726 Check_Anonymous_Access_Components
7727 (N, Derived_Type, Derived_Type,
7728 Component_List (Record_Extension_Part (Type_Def)));
7729 end if;
7730
7731 else
7732 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7733 end if;
7734 end if;
7735
7736 -- Indic can either be an N_Identifier if the subtype indication
7737 -- contains no constraint or an N_Subtype_Indication if the subtype
7738 -- indication has a constraint.
7739
7740 Indic := Subtype_Indication (Type_Def);
7741 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7742
7743 -- Check that the type has visible discriminants. The type may be
7744 -- a private type with unknown discriminants whose full view has
7745 -- discriminants which are invisible.
7746
7747 if Constraint_Present then
7748 if not Has_Discriminants (Parent_Base)
7749 or else
7750 (Has_Unknown_Discriminants (Parent_Base)
7751 and then Is_Private_Type (Parent_Base))
7752 then
7753 Error_Msg_N
7754 ("invalid constraint: type has no discriminant",
7755 Constraint (Indic));
7756
7757 Constraint_Present := False;
7758 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7759
7760 elsif Is_Constrained (Parent_Type) then
7761 Error_Msg_N
7762 ("invalid constraint: parent type is already constrained",
7763 Constraint (Indic));
7764
7765 Constraint_Present := False;
7766 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7767 end if;
7768 end if;
7769
7770 -- STEP 0b: If needed, apply transformation given in point 5. above
7771
7772 if not Private_Extension
7773 and then Has_Discriminants (Parent_Type)
7774 and then not Discriminant_Specs
7775 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7776 then
7777 -- First, we must analyze the constraint (see comment in point 5.)
7778 -- The constraint may come from the subtype indication of the full
7779 -- declaration.
7780
7781 if Constraint_Present then
7782 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7783
7784 -- If there is no explicit constraint, there might be one that is
7785 -- inherited from a constrained parent type. In that case verify that
7786 -- it conforms to the constraint in the partial view. In perverse
7787 -- cases the parent subtypes of the partial and full view can have
7788 -- different constraints.
7789
7790 elsif Present (Stored_Constraint (Parent_Type)) then
7791 New_Discrs := Stored_Constraint (Parent_Type);
7792
7793 else
7794 New_Discrs := No_Elist;
7795 end if;
7796
7797 if Has_Discriminants (Derived_Type)
7798 and then Has_Private_Declaration (Derived_Type)
7799 and then Present (Discriminant_Constraint (Derived_Type))
7800 and then Present (New_Discrs)
7801 then
7802 -- Verify that constraints of the full view statically match
7803 -- those given in the partial view.
7804
7805 declare
7806 C1, C2 : Elmt_Id;
7807
7808 begin
7809 C1 := First_Elmt (New_Discrs);
7810 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7811 while Present (C1) and then Present (C2) loop
7812 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7813 or else
7814 (Is_OK_Static_Expression (Node (C1))
7815 and then Is_OK_Static_Expression (Node (C2))
7816 and then
7817 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7818 then
7819 null;
7820
7821 else
7822 if Constraint_Present then
7823 Error_Msg_N
7824 ("constraint not conformant to previous declaration",
7825 Node (C1));
7826 else
7827 Error_Msg_N
7828 ("constraint of full view is incompatible "
7829 & "with partial view", N);
7830 end if;
7831 end if;
7832
7833 Next_Elmt (C1);
7834 Next_Elmt (C2);
7835 end loop;
7836 end;
7837 end if;
7838
7839 -- Insert and analyze the declaration for the unconstrained base type
7840
7841 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7842
7843 New_Decl :=
7844 Make_Full_Type_Declaration (Loc,
7845 Defining_Identifier => New_Base,
7846 Type_Definition =>
7847 Make_Derived_Type_Definition (Loc,
7848 Abstract_Present => Abstract_Present (Type_Def),
7849 Limited_Present => Limited_Present (Type_Def),
7850 Subtype_Indication =>
7851 New_Occurrence_Of (Parent_Base, Loc),
7852 Record_Extension_Part =>
7853 Relocate_Node (Record_Extension_Part (Type_Def)),
7854 Interface_List => Interface_List (Type_Def)));
7855
7856 Set_Parent (New_Decl, Parent (N));
7857 Mark_Rewrite_Insertion (New_Decl);
7858 Insert_Before (N, New_Decl);
7859
7860 -- In the extension case, make sure ancestor is frozen appropriately
7861 -- (see also non-discriminated case below).
7862
7863 if Present (Record_Extension_Part (Type_Def))
7864 or else Is_Interface (Parent_Base)
7865 then
7866 Freeze_Before (New_Decl, Parent_Type);
7867 end if;
7868
7869 -- Note that this call passes False for the Derive_Subps parameter
7870 -- because subprogram derivation is deferred until after creating
7871 -- the subtype (see below).
7872
7873 Build_Derived_Type
7874 (New_Decl, Parent_Base, New_Base,
7875 Is_Completion => False, Derive_Subps => False);
7876
7877 -- ??? This needs re-examination to determine whether the
7878 -- above call can simply be replaced by a call to Analyze.
7879
7880 Set_Analyzed (New_Decl);
7881
7882 -- Insert and analyze the declaration for the constrained subtype
7883
7884 if Constraint_Present then
7885 New_Indic :=
7886 Make_Subtype_Indication (Loc,
7887 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7888 Constraint => Relocate_Node (Constraint (Indic)));
7889
7890 else
7891 declare
7892 Constr_List : constant List_Id := New_List;
7893 C : Elmt_Id;
7894 Expr : Node_Id;
7895
7896 begin
7897 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7898 while Present (C) loop
7899 Expr := Node (C);
7900
7901 -- It is safe here to call New_Copy_Tree since
7902 -- Force_Evaluation was called on each constraint in
7903 -- Build_Discriminant_Constraints.
7904
7905 Append (New_Copy_Tree (Expr), To => Constr_List);
7906
7907 Next_Elmt (C);
7908 end loop;
7909
7910 New_Indic :=
7911 Make_Subtype_Indication (Loc,
7912 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7913 Constraint =>
7914 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7915 end;
7916 end if;
7917
7918 Rewrite (N,
7919 Make_Subtype_Declaration (Loc,
7920 Defining_Identifier => Derived_Type,
7921 Subtype_Indication => New_Indic));
7922
7923 Analyze (N);
7924
7925 -- Derivation of subprograms must be delayed until the full subtype
7926 -- has been established, to ensure proper overriding of subprograms
7927 -- inherited by full types. If the derivations occurred as part of
7928 -- the call to Build_Derived_Type above, then the check for type
7929 -- conformance would fail because earlier primitive subprograms
7930 -- could still refer to the full type prior the change to the new
7931 -- subtype and hence would not match the new base type created here.
7932 -- Subprograms are not derived, however, when Derive_Subps is False
7933 -- (since otherwise there could be redundant derivations).
7934
7935 if Derive_Subps then
7936 Derive_Subprograms (Parent_Type, Derived_Type);
7937 end if;
7938
7939 -- For tagged types the Discriminant_Constraint of the new base itype
7940 -- is inherited from the first subtype so that no subtype conformance
7941 -- problem arise when the first subtype overrides primitive
7942 -- operations inherited by the implicit base type.
7943
7944 if Is_Tagged then
7945 Set_Discriminant_Constraint
7946 (New_Base, Discriminant_Constraint (Derived_Type));
7947 end if;
7948
7949 return;
7950 end if;
7951
7952 -- If we get here Derived_Type will have no discriminants or it will be
7953 -- a discriminated unconstrained base type.
7954
7955 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7956
7957 if Is_Tagged then
7958
7959 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7960 -- The declaration of a specific descendant of an interface type
7961 -- freezes the interface type (RM 13.14).
7962
7963 if not Private_Extension or else Is_Interface (Parent_Base) then
7964 Freeze_Before (N, Parent_Type);
7965 end if;
7966
7967 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7968 -- cannot be declared at a deeper level than its parent type is
7969 -- removed. The check on derivation within a generic body is also
7970 -- relaxed, but there's a restriction that a derived tagged type
7971 -- cannot be declared in a generic body if it's derived directly
7972 -- or indirectly from a formal type of that generic.
7973
7974 if Ada_Version >= Ada_2005 then
7975 if Present (Enclosing_Generic_Body (Derived_Type)) then
7976 declare
7977 Ancestor_Type : Entity_Id;
7978
7979 begin
7980 -- Check to see if any ancestor of the derived type is a
7981 -- formal type.
7982
7983 Ancestor_Type := Parent_Type;
7984 while not Is_Generic_Type (Ancestor_Type)
7985 and then Etype (Ancestor_Type) /= Ancestor_Type
7986 loop
7987 Ancestor_Type := Etype (Ancestor_Type);
7988 end loop;
7989
7990 -- If the derived type does have a formal type as an
7991 -- ancestor, then it's an error if the derived type is
7992 -- declared within the body of the generic unit that
7993 -- declares the formal type in its generic formal part. It's
7994 -- sufficient to check whether the ancestor type is declared
7995 -- inside the same generic body as the derived type (such as
7996 -- within a nested generic spec), in which case the
7997 -- derivation is legal. If the formal type is declared
7998 -- outside of that generic body, then it's guaranteed that
7999 -- the derived type is declared within the generic body of
8000 -- the generic unit declaring the formal type.
8001
8002 if Is_Generic_Type (Ancestor_Type)
8003 and then Enclosing_Generic_Body (Ancestor_Type) /=
8004 Enclosing_Generic_Body (Derived_Type)
8005 then
8006 Error_Msg_NE
8007 ("parent type of& must not be descendant of formal type"
8008 & " of an enclosing generic body",
8009 Indic, Derived_Type);
8010 end if;
8011 end;
8012 end if;
8013
8014 elsif Type_Access_Level (Derived_Type) /=
8015 Type_Access_Level (Parent_Type)
8016 and then not Is_Generic_Type (Derived_Type)
8017 then
8018 if Is_Controlled (Parent_Type) then
8019 Error_Msg_N
8020 ("controlled type must be declared at the library level",
8021 Indic);
8022 else
8023 Error_Msg_N
8024 ("type extension at deeper accessibility level than parent",
8025 Indic);
8026 end if;
8027
8028 else
8029 declare
8030 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8031 begin
8032 if Present (GB)
8033 and then GB /= Enclosing_Generic_Body (Parent_Base)
8034 then
8035 Error_Msg_NE
8036 ("parent type of& must not be outside generic body"
8037 & " (RM 3.9.1(4))",
8038 Indic, Derived_Type);
8039 end if;
8040 end;
8041 end if;
8042 end if;
8043
8044 -- Ada 2005 (AI-251)
8045
8046 if Ada_Version >= Ada_2005 and then Is_Tagged then
8047
8048 -- "The declaration of a specific descendant of an interface type
8049 -- freezes the interface type" (RM 13.14).
8050
8051 declare
8052 Iface : Node_Id;
8053 begin
8054 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8055 Iface := First (Interface_List (Type_Def));
8056 while Present (Iface) loop
8057 Freeze_Before (N, Etype (Iface));
8058 Next (Iface);
8059 end loop;
8060 end if;
8061 end;
8062 end if;
8063
8064 -- STEP 1b : preliminary cleanup of the full view of private types
8065
8066 -- If the type is already marked as having discriminants, then it's the
8067 -- completion of a private type or private extension and we need to
8068 -- retain the discriminants from the partial view if the current
8069 -- declaration has Discriminant_Specifications so that we can verify
8070 -- conformance. However, we must remove any existing components that
8071 -- were inherited from the parent (and attached in Copy_And_Swap)
8072 -- because the full type inherits all appropriate components anyway, and
8073 -- we do not want the partial view's components interfering.
8074
8075 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8076 Discrim := First_Discriminant (Derived_Type);
8077 loop
8078 Last_Discrim := Discrim;
8079 Next_Discriminant (Discrim);
8080 exit when No (Discrim);
8081 end loop;
8082
8083 Set_Last_Entity (Derived_Type, Last_Discrim);
8084
8085 -- In all other cases wipe out the list of inherited components (even
8086 -- inherited discriminants), it will be properly rebuilt here.
8087
8088 else
8089 Set_First_Entity (Derived_Type, Empty);
8090 Set_Last_Entity (Derived_Type, Empty);
8091 end if;
8092
8093 -- STEP 1c: Initialize some flags for the Derived_Type
8094
8095 -- The following flags must be initialized here so that
8096 -- Process_Discriminants can check that discriminants of tagged types do
8097 -- not have a default initial value and that access discriminants are
8098 -- only specified for limited records. For completeness, these flags are
8099 -- also initialized along with all the other flags below.
8100
8101 -- AI-419: Limitedness is not inherited from an interface parent, so to
8102 -- be limited in that case the type must be explicitly declared as
8103 -- limited. However, task and protected interfaces are always limited.
8104
8105 if Limited_Present (Type_Def) then
8106 Set_Is_Limited_Record (Derived_Type);
8107
8108 elsif Is_Limited_Record (Parent_Type)
8109 or else (Present (Full_View (Parent_Type))
8110 and then Is_Limited_Record (Full_View (Parent_Type)))
8111 then
8112 if not Is_Interface (Parent_Type)
8113 or else Is_Synchronized_Interface (Parent_Type)
8114 or else Is_Protected_Interface (Parent_Type)
8115 or else Is_Task_Interface (Parent_Type)
8116 then
8117 Set_Is_Limited_Record (Derived_Type);
8118 end if;
8119 end if;
8120
8121 -- STEP 2a: process discriminants of derived type if any
8122
8123 Push_Scope (Derived_Type);
8124
8125 if Discriminant_Specs then
8126 Set_Has_Unknown_Discriminants (Derived_Type, False);
8127
8128 -- The following call initializes fields Has_Discriminants and
8129 -- Discriminant_Constraint, unless we are processing the completion
8130 -- of a private type declaration.
8131
8132 Check_Or_Process_Discriminants (N, Derived_Type);
8133
8134 -- For untagged types, the constraint on the Parent_Type must be
8135 -- present and is used to rename the discriminants.
8136
8137 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8138 Error_Msg_N ("untagged parent must have discriminants", Indic);
8139
8140 elsif not Is_Tagged and then not Constraint_Present then
8141 Error_Msg_N
8142 ("discriminant constraint needed for derived untagged records",
8143 Indic);
8144
8145 -- Otherwise the parent subtype must be constrained unless we have a
8146 -- private extension.
8147
8148 elsif not Constraint_Present
8149 and then not Private_Extension
8150 and then not Is_Constrained (Parent_Type)
8151 then
8152 Error_Msg_N
8153 ("unconstrained type not allowed in this context", Indic);
8154
8155 elsif Constraint_Present then
8156 -- The following call sets the field Corresponding_Discriminant
8157 -- for the discriminants in the Derived_Type.
8158
8159 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8160
8161 -- For untagged types all new discriminants must rename
8162 -- discriminants in the parent. For private extensions new
8163 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8164
8165 Discrim := First_Discriminant (Derived_Type);
8166 while Present (Discrim) loop
8167 if not Is_Tagged
8168 and then No (Corresponding_Discriminant (Discrim))
8169 then
8170 Error_Msg_N
8171 ("new discriminants must constrain old ones", Discrim);
8172
8173 elsif Private_Extension
8174 and then Present (Corresponding_Discriminant (Discrim))
8175 then
8176 Error_Msg_N
8177 ("only static constraints allowed for parent"
8178 & " discriminants in the partial view", Indic);
8179 exit;
8180 end if;
8181
8182 -- If a new discriminant is used in the constraint, then its
8183 -- subtype must be statically compatible with the parent
8184 -- discriminant's subtype (3.7(15)).
8185
8186 -- However, if the record contains an array constrained by
8187 -- the discriminant but with some different bound, the compiler
8188 -- attemps to create a smaller range for the discriminant type.
8189 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8190 -- the discriminant type is a scalar type, the check must use
8191 -- the original discriminant type in the parent declaration.
8192
8193 declare
8194 Corr_Disc : constant Entity_Id :=
8195 Corresponding_Discriminant (Discrim);
8196 Disc_Type : constant Entity_Id := Etype (Discrim);
8197 Corr_Type : Entity_Id;
8198
8199 begin
8200 if Present (Corr_Disc) then
8201 if Is_Scalar_Type (Disc_Type) then
8202 Corr_Type :=
8203 Entity (Discriminant_Type (Parent (Corr_Disc)));
8204 else
8205 Corr_Type := Etype (Corr_Disc);
8206 end if;
8207
8208 if not
8209 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8210 then
8211 Error_Msg_N
8212 ("subtype must be compatible "
8213 & "with parent discriminant",
8214 Discrim);
8215 end if;
8216 end if;
8217 end;
8218
8219 Next_Discriminant (Discrim);
8220 end loop;
8221
8222 -- Check whether the constraints of the full view statically
8223 -- match those imposed by the parent subtype [7.3(13)].
8224
8225 if Present (Stored_Constraint (Derived_Type)) then
8226 declare
8227 C1, C2 : Elmt_Id;
8228
8229 begin
8230 C1 := First_Elmt (Discs);
8231 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8232 while Present (C1) and then Present (C2) loop
8233 if not
8234 Fully_Conformant_Expressions (Node (C1), Node (C2))
8235 then
8236 Error_Msg_N
8237 ("not conformant with previous declaration",
8238 Node (C1));
8239 end if;
8240
8241 Next_Elmt (C1);
8242 Next_Elmt (C2);
8243 end loop;
8244 end;
8245 end if;
8246 end if;
8247
8248 -- STEP 2b: No new discriminants, inherit discriminants if any
8249
8250 else
8251 if Private_Extension then
8252 Set_Has_Unknown_Discriminants
8253 (Derived_Type,
8254 Has_Unknown_Discriminants (Parent_Type)
8255 or else Unknown_Discriminants_Present (N));
8256
8257 -- The partial view of the parent may have unknown discriminants,
8258 -- but if the full view has discriminants and the parent type is
8259 -- in scope they must be inherited.
8260
8261 elsif Has_Unknown_Discriminants (Parent_Type)
8262 and then
8263 (not Has_Discriminants (Parent_Type)
8264 or else not In_Open_Scopes (Scope (Parent_Type)))
8265 then
8266 Set_Has_Unknown_Discriminants (Derived_Type);
8267 end if;
8268
8269 if not Has_Unknown_Discriminants (Derived_Type)
8270 and then not Has_Unknown_Discriminants (Parent_Base)
8271 and then Has_Discriminants (Parent_Type)
8272 then
8273 Inherit_Discrims := True;
8274 Set_Has_Discriminants
8275 (Derived_Type, True);
8276 Set_Discriminant_Constraint
8277 (Derived_Type, Discriminant_Constraint (Parent_Base));
8278 end if;
8279
8280 -- The following test is true for private types (remember
8281 -- transformation 5. is not applied to those) and in an error
8282 -- situation.
8283
8284 if Constraint_Present then
8285 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8286 end if;
8287
8288 -- For now mark a new derived type as constrained only if it has no
8289 -- discriminants. At the end of Build_Derived_Record_Type we properly
8290 -- set this flag in the case of private extensions. See comments in
8291 -- point 9. just before body of Build_Derived_Record_Type.
8292
8293 Set_Is_Constrained
8294 (Derived_Type,
8295 not (Inherit_Discrims
8296 or else Has_Unknown_Discriminants (Derived_Type)));
8297 end if;
8298
8299 -- STEP 3: initialize fields of derived type
8300
8301 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8302 Set_Stored_Constraint (Derived_Type, No_Elist);
8303
8304 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8305 -- but cannot be interfaces
8306
8307 if not Private_Extension
8308 and then Ekind (Derived_Type) /= E_Private_Type
8309 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8310 then
8311 if Interface_Present (Type_Def) then
8312 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8313 end if;
8314
8315 Set_Interfaces (Derived_Type, No_Elist);
8316 end if;
8317
8318 -- Fields inherited from the Parent_Type
8319
8320 Set_Has_Specified_Layout
8321 (Derived_Type, Has_Specified_Layout (Parent_Type));
8322 Set_Is_Limited_Composite
8323 (Derived_Type, Is_Limited_Composite (Parent_Type));
8324 Set_Is_Private_Composite
8325 (Derived_Type, Is_Private_Composite (Parent_Type));
8326
8327 if Is_Tagged_Type (Parent_Type) then
8328 Set_No_Tagged_Streams_Pragma
8329 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8330 end if;
8331
8332 -- Fields inherited from the Parent_Base
8333
8334 Set_Has_Controlled_Component
8335 (Derived_Type, Has_Controlled_Component (Parent_Base));
8336 Set_Has_Non_Standard_Rep
8337 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8338 Set_Has_Primitive_Operations
8339 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8340
8341 -- Fields inherited from the Parent_Base in the non-private case
8342
8343 if Ekind (Derived_Type) = E_Record_Type then
8344 Set_Has_Complex_Representation
8345 (Derived_Type, Has_Complex_Representation (Parent_Base));
8346 end if;
8347
8348 -- Fields inherited from the Parent_Base for record types
8349
8350 if Is_Record_Type (Derived_Type) then
8351 declare
8352 Parent_Full : Entity_Id;
8353
8354 begin
8355 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8356 -- Parent_Base can be a private type or private extension. Go
8357 -- to the full view here to get the E_Record_Type specific flags.
8358
8359 if Present (Full_View (Parent_Base)) then
8360 Parent_Full := Full_View (Parent_Base);
8361 else
8362 Parent_Full := Parent_Base;
8363 end if;
8364
8365 Set_OK_To_Reorder_Components
8366 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8367 end;
8368 end if;
8369
8370 -- Set fields for private derived types
8371
8372 if Is_Private_Type (Derived_Type) then
8373 Set_Depends_On_Private (Derived_Type, True);
8374 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8375
8376 -- Inherit fields from non private record types. If this is the
8377 -- completion of a derivation from a private type, the parent itself
8378 -- is private, and the attributes come from its full view, which must
8379 -- be present.
8380
8381 else
8382 if Is_Private_Type (Parent_Base)
8383 and then not Is_Record_Type (Parent_Base)
8384 then
8385 Set_Component_Alignment
8386 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8387 Set_C_Pass_By_Copy
8388 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8389 else
8390 Set_Component_Alignment
8391 (Derived_Type, Component_Alignment (Parent_Base));
8392 Set_C_Pass_By_Copy
8393 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8394 end if;
8395 end if;
8396
8397 -- Set fields for tagged types
8398
8399 if Is_Tagged then
8400 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8401
8402 -- All tagged types defined in Ada.Finalization are controlled
8403
8404 if Chars (Scope (Derived_Type)) = Name_Finalization
8405 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8406 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8407 then
8408 Set_Is_Controlled (Derived_Type);
8409 else
8410 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8411 end if;
8412
8413 -- Minor optimization: there is no need to generate the class-wide
8414 -- entity associated with an underlying record view.
8415
8416 if not Is_Underlying_Record_View (Derived_Type) then
8417 Make_Class_Wide_Type (Derived_Type);
8418 end if;
8419
8420 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8421
8422 if Has_Discriminants (Derived_Type)
8423 and then Constraint_Present
8424 then
8425 Set_Stored_Constraint
8426 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8427 end if;
8428
8429 if Ada_Version >= Ada_2005 then
8430 declare
8431 Ifaces_List : Elist_Id;
8432
8433 begin
8434 -- Checks rules 3.9.4 (13/2 and 14/2)
8435
8436 if Comes_From_Source (Derived_Type)
8437 and then not Is_Private_Type (Derived_Type)
8438 and then Is_Interface (Parent_Type)
8439 and then not Is_Interface (Derived_Type)
8440 then
8441 if Is_Task_Interface (Parent_Type) then
8442 Error_Msg_N
8443 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8444 Derived_Type);
8445
8446 elsif Is_Protected_Interface (Parent_Type) then
8447 Error_Msg_N
8448 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8449 Derived_Type);
8450 end if;
8451 end if;
8452
8453 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8454
8455 Check_Interfaces (N, Type_Def);
8456
8457 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8458 -- not already in the parents.
8459
8460 Collect_Interfaces
8461 (T => Derived_Type,
8462 Ifaces_List => Ifaces_List,
8463 Exclude_Parents => True);
8464
8465 Set_Interfaces (Derived_Type, Ifaces_List);
8466
8467 -- If the derived type is the anonymous type created for
8468 -- a declaration whose parent has a constraint, propagate
8469 -- the interface list to the source type. This must be done
8470 -- prior to the completion of the analysis of the source type
8471 -- because the components in the extension may contain current
8472 -- instances whose legality depends on some ancestor.
8473
8474 if Is_Itype (Derived_Type) then
8475 declare
8476 Def : constant Node_Id :=
8477 Associated_Node_For_Itype (Derived_Type);
8478 begin
8479 if Present (Def)
8480 and then Nkind (Def) = N_Full_Type_Declaration
8481 then
8482 Set_Interfaces
8483 (Defining_Identifier (Def), Ifaces_List);
8484 end if;
8485 end;
8486 end if;
8487 end;
8488 end if;
8489
8490 else
8491 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8492 Set_Has_Non_Standard_Rep
8493 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8494 end if;
8495
8496 -- STEP 4: Inherit components from the parent base and constrain them.
8497 -- Apply the second transformation described in point 6. above.
8498
8499 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8500 or else not Has_Discriminants (Parent_Type)
8501 or else not Is_Constrained (Parent_Type)
8502 then
8503 Constrs := Discs;
8504 else
8505 Constrs := Discriminant_Constraint (Parent_Type);
8506 end if;
8507
8508 Assoc_List :=
8509 Inherit_Components
8510 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8511
8512 -- STEP 5a: Copy the parent record declaration for untagged types
8513
8514 if not Is_Tagged then
8515
8516 -- Discriminant_Constraint (Derived_Type) has been properly
8517 -- constructed. Save it and temporarily set it to Empty because we
8518 -- do not want the call to New_Copy_Tree below to mess this list.
8519
8520 if Has_Discriminants (Derived_Type) then
8521 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8522 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8523 else
8524 Save_Discr_Constr := No_Elist;
8525 end if;
8526
8527 -- Save the Etype field of Derived_Type. It is correctly set now,
8528 -- but the call to New_Copy tree may remap it to point to itself,
8529 -- which is not what we want. Ditto for the Next_Entity field.
8530
8531 Save_Etype := Etype (Derived_Type);
8532 Save_Next_Entity := Next_Entity (Derived_Type);
8533
8534 -- Assoc_List maps all stored discriminants in the Parent_Base to
8535 -- stored discriminants in the Derived_Type. It is fundamental that
8536 -- no types or itypes with discriminants other than the stored
8537 -- discriminants appear in the entities declared inside
8538 -- Derived_Type, since the back end cannot deal with it.
8539
8540 New_Decl :=
8541 New_Copy_Tree
8542 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8543
8544 -- Restore the fields saved prior to the New_Copy_Tree call
8545 -- and compute the stored constraint.
8546
8547 Set_Etype (Derived_Type, Save_Etype);
8548 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8549
8550 if Has_Discriminants (Derived_Type) then
8551 Set_Discriminant_Constraint
8552 (Derived_Type, Save_Discr_Constr);
8553 Set_Stored_Constraint
8554 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8555 Replace_Components (Derived_Type, New_Decl);
8556 Set_Has_Implicit_Dereference
8557 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8558 end if;
8559
8560 -- Insert the new derived type declaration
8561
8562 Rewrite (N, New_Decl);
8563
8564 -- STEP 5b: Complete the processing for record extensions in generics
8565
8566 -- There is no completion for record extensions declared in the
8567 -- parameter part of a generic, so we need to complete processing for
8568 -- these generic record extensions here. The Record_Type_Definition call
8569 -- will change the Ekind of the components from E_Void to E_Component.
8570
8571 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8572 Record_Type_Definition (Empty, Derived_Type);
8573
8574 -- STEP 5c: Process the record extension for non private tagged types
8575
8576 elsif not Private_Extension then
8577 Expand_Record_Extension (Derived_Type, Type_Def);
8578
8579 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8580 -- derived type to propagate some semantic information. This led
8581 -- to other ASIS failures and has been removed.
8582
8583 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8584 -- implemented interfaces if we are in expansion mode
8585
8586 if Expander_Active
8587 and then Has_Interfaces (Derived_Type)
8588 then
8589 Add_Interface_Tag_Components (N, Derived_Type);
8590 end if;
8591
8592 -- Analyze the record extension
8593
8594 Record_Type_Definition
8595 (Record_Extension_Part (Type_Def), Derived_Type);
8596 end if;
8597
8598 End_Scope;
8599
8600 -- Nothing else to do if there is an error in the derivation.
8601 -- An unusual case: the full view may be derived from a type in an
8602 -- instance, when the partial view was used illegally as an actual
8603 -- in that instance, leading to a circular definition.
8604
8605 if Etype (Derived_Type) = Any_Type
8606 or else Etype (Parent_Type) = Derived_Type
8607 then
8608 return;
8609 end if;
8610
8611 -- Set delayed freeze and then derive subprograms, we need to do
8612 -- this in this order so that derived subprograms inherit the
8613 -- derived freeze if necessary.
8614
8615 Set_Has_Delayed_Freeze (Derived_Type);
8616
8617 if Derive_Subps then
8618 Derive_Subprograms (Parent_Type, Derived_Type);
8619 end if;
8620
8621 -- If we have a private extension which defines a constrained derived
8622 -- type mark as constrained here after we have derived subprograms. See
8623 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8624
8625 if Private_Extension and then Inherit_Discrims then
8626 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8627 Set_Is_Constrained (Derived_Type, True);
8628 Set_Discriminant_Constraint (Derived_Type, Discs);
8629
8630 elsif Is_Constrained (Parent_Type) then
8631 Set_Is_Constrained
8632 (Derived_Type, True);
8633 Set_Discriminant_Constraint
8634 (Derived_Type, Discriminant_Constraint (Parent_Type));
8635 end if;
8636 end if;
8637
8638 -- Update the class-wide type, which shares the now-completed entity
8639 -- list with its specific type. In case of underlying record views,
8640 -- we do not generate the corresponding class wide entity.
8641
8642 if Is_Tagged
8643 and then not Is_Underlying_Record_View (Derived_Type)
8644 then
8645 Set_First_Entity
8646 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8647 Set_Last_Entity
8648 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8649 end if;
8650
8651 Check_Function_Writable_Actuals (N);
8652 end Build_Derived_Record_Type;
8653
8654 ------------------------
8655 -- Build_Derived_Type --
8656 ------------------------
8657
8658 procedure Build_Derived_Type
8659 (N : Node_Id;
8660 Parent_Type : Entity_Id;
8661 Derived_Type : Entity_Id;
8662 Is_Completion : Boolean;
8663 Derive_Subps : Boolean := True)
8664 is
8665 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8666
8667 begin
8668 -- Set common attributes
8669
8670 Set_Scope (Derived_Type, Current_Scope);
8671
8672 Set_Etype (Derived_Type, Parent_Base);
8673 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8674 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8675 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8676
8677 Set_Size_Info (Derived_Type, Parent_Type);
8678 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8679 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8680 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8681
8682 if Is_Tagged_Type (Derived_Type) then
8683 Set_No_Tagged_Streams_Pragma
8684 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8685 end if;
8686
8687 -- If the parent has primitive routines, set the derived type link
8688
8689 if Has_Primitive_Operations (Parent_Type) then
8690 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8691 end if;
8692
8693 -- If the parent type is a private subtype, the convention on the base
8694 -- type may be set in the private part, and not propagated to the
8695 -- subtype until later, so we obtain the convention from the base type.
8696
8697 Set_Convention (Derived_Type, Convention (Parent_Base));
8698
8699 -- Set SSO default for record or array type
8700
8701 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8702 and then Is_Base_Type (Derived_Type)
8703 then
8704 Set_Default_SSO (Derived_Type);
8705 end if;
8706
8707 -- Propagate invariant information. The new type has invariants if
8708 -- they are inherited from the parent type, and these invariants can
8709 -- be further inherited, so both flags are set.
8710
8711 -- We similarly inherit predicates
8712
8713 if Has_Predicates (Parent_Type) then
8714 Set_Has_Predicates (Derived_Type);
8715 end if;
8716
8717 -- The derived type inherits the representation clauses of the parent
8718
8719 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8720
8721 -- Propagate the attributes related to pragma Default_Initial_Condition
8722 -- from the parent type to the private extension. A derived type always
8723 -- inherits the default initial condition flag from the parent type. If
8724 -- the derived type carries its own Default_Initial_Condition pragma,
8725 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8726 -- mutually exclusive.
8727
8728 Propagate_Default_Init_Cond_Attributes
8729 (From_Typ => Parent_Type,
8730 To_Typ => Derived_Type,
8731 Parent_To_Derivation => True);
8732
8733 -- If the parent type has delayed rep aspects, then mark the derived
8734 -- type as possibly inheriting a delayed rep aspect.
8735
8736 if Has_Delayed_Rep_Aspects (Parent_Type) then
8737 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8738 end if;
8739
8740 -- Type dependent processing
8741
8742 case Ekind (Parent_Type) is
8743 when Numeric_Kind =>
8744 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8745
8746 when Array_Kind =>
8747 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8748
8749 when E_Record_Type
8750 | E_Record_Subtype
8751 | Class_Wide_Kind =>
8752 Build_Derived_Record_Type
8753 (N, Parent_Type, Derived_Type, Derive_Subps);
8754 return;
8755
8756 when Enumeration_Kind =>
8757 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8758
8759 when Access_Kind =>
8760 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8761
8762 when Incomplete_Or_Private_Kind =>
8763 Build_Derived_Private_Type
8764 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8765
8766 -- For discriminated types, the derivation includes deriving
8767 -- primitive operations. For others it is done below.
8768
8769 if Is_Tagged_Type (Parent_Type)
8770 or else Has_Discriminants (Parent_Type)
8771 or else (Present (Full_View (Parent_Type))
8772 and then Has_Discriminants (Full_View (Parent_Type)))
8773 then
8774 return;
8775 end if;
8776
8777 when Concurrent_Kind =>
8778 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8779
8780 when others =>
8781 raise Program_Error;
8782 end case;
8783
8784 -- Nothing more to do if some error occurred
8785
8786 if Etype (Derived_Type) = Any_Type then
8787 return;
8788 end if;
8789
8790 -- Set delayed freeze and then derive subprograms, we need to do this
8791 -- in this order so that derived subprograms inherit the derived freeze
8792 -- if necessary.
8793
8794 Set_Has_Delayed_Freeze (Derived_Type);
8795
8796 if Derive_Subps then
8797 Derive_Subprograms (Parent_Type, Derived_Type);
8798 end if;
8799
8800 Set_Has_Primitive_Operations
8801 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8802 end Build_Derived_Type;
8803
8804 -----------------------
8805 -- Build_Discriminal --
8806 -----------------------
8807
8808 procedure Build_Discriminal (Discrim : Entity_Id) is
8809 D_Minal : Entity_Id;
8810 CR_Disc : Entity_Id;
8811
8812 begin
8813 -- A discriminal has the same name as the discriminant
8814
8815 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8816
8817 Set_Ekind (D_Minal, E_In_Parameter);
8818 Set_Mechanism (D_Minal, Default_Mechanism);
8819 Set_Etype (D_Minal, Etype (Discrim));
8820 Set_Scope (D_Minal, Current_Scope);
8821
8822 Set_Discriminal (Discrim, D_Minal);
8823 Set_Discriminal_Link (D_Minal, Discrim);
8824
8825 -- For task types, build at once the discriminants of the corresponding
8826 -- record, which are needed if discriminants are used in entry defaults
8827 -- and in family bounds.
8828
8829 if Is_Concurrent_Type (Current_Scope)
8830 or else
8831 Is_Limited_Type (Current_Scope)
8832 then
8833 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8834
8835 Set_Ekind (CR_Disc, E_In_Parameter);
8836 Set_Mechanism (CR_Disc, Default_Mechanism);
8837 Set_Etype (CR_Disc, Etype (Discrim));
8838 Set_Scope (CR_Disc, Current_Scope);
8839 Set_Discriminal_Link (CR_Disc, Discrim);
8840 Set_CR_Discriminant (Discrim, CR_Disc);
8841 end if;
8842 end Build_Discriminal;
8843
8844 ------------------------------------
8845 -- Build_Discriminant_Constraints --
8846 ------------------------------------
8847
8848 function Build_Discriminant_Constraints
8849 (T : Entity_Id;
8850 Def : Node_Id;
8851 Derived_Def : Boolean := False) return Elist_Id
8852 is
8853 C : constant Node_Id := Constraint (Def);
8854 Nb_Discr : constant Nat := Number_Discriminants (T);
8855
8856 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8857 -- Saves the expression corresponding to a given discriminant in T
8858
8859 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8860 -- Return the Position number within array Discr_Expr of a discriminant
8861 -- D within the discriminant list of the discriminated type T.
8862
8863 procedure Process_Discriminant_Expression
8864 (Expr : Node_Id;
8865 D : Entity_Id);
8866 -- If this is a discriminant constraint on a partial view, do not
8867 -- generate an overflow check on the discriminant expression. The check
8868 -- will be generated when constraining the full view. Otherwise the
8869 -- backend creates duplicate symbols for the temporaries corresponding
8870 -- to the expressions to be checked, causing spurious assembler errors.
8871
8872 ------------------
8873 -- Pos_Of_Discr --
8874 ------------------
8875
8876 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8877 Disc : Entity_Id;
8878
8879 begin
8880 Disc := First_Discriminant (T);
8881 for J in Discr_Expr'Range loop
8882 if Disc = D then
8883 return J;
8884 end if;
8885
8886 Next_Discriminant (Disc);
8887 end loop;
8888
8889 -- Note: Since this function is called on discriminants that are
8890 -- known to belong to the discriminated type, falling through the
8891 -- loop with no match signals an internal compiler error.
8892
8893 raise Program_Error;
8894 end Pos_Of_Discr;
8895
8896 -------------------------------------
8897 -- Process_Discriminant_Expression --
8898 -------------------------------------
8899
8900 procedure Process_Discriminant_Expression
8901 (Expr : Node_Id;
8902 D : Entity_Id)
8903 is
8904 BDT : constant Entity_Id := Base_Type (Etype (D));
8905
8906 begin
8907 -- If this is a discriminant constraint on a partial view, do
8908 -- not generate an overflow on the discriminant expression. The
8909 -- check will be generated when constraining the full view.
8910
8911 if Is_Private_Type (T)
8912 and then Present (Full_View (T))
8913 then
8914 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8915 else
8916 Analyze_And_Resolve (Expr, BDT);
8917 end if;
8918 end Process_Discriminant_Expression;
8919
8920 -- Declarations local to Build_Discriminant_Constraints
8921
8922 Discr : Entity_Id;
8923 E : Entity_Id;
8924 Elist : constant Elist_Id := New_Elmt_List;
8925
8926 Constr : Node_Id;
8927 Expr : Node_Id;
8928 Id : Node_Id;
8929 Position : Nat;
8930 Found : Boolean;
8931
8932 Discrim_Present : Boolean := False;
8933
8934 -- Start of processing for Build_Discriminant_Constraints
8935
8936 begin
8937 -- The following loop will process positional associations only.
8938 -- For a positional association, the (single) discriminant is
8939 -- implicitly specified by position, in textual order (RM 3.7.2).
8940
8941 Discr := First_Discriminant (T);
8942 Constr := First (Constraints (C));
8943 for D in Discr_Expr'Range loop
8944 exit when Nkind (Constr) = N_Discriminant_Association;
8945
8946 if No (Constr) then
8947 Error_Msg_N ("too few discriminants given in constraint", C);
8948 return New_Elmt_List;
8949
8950 elsif Nkind (Constr) = N_Range
8951 or else (Nkind (Constr) = N_Attribute_Reference
8952 and then Attribute_Name (Constr) = Name_Range)
8953 then
8954 Error_Msg_N
8955 ("a range is not a valid discriminant constraint", Constr);
8956 Discr_Expr (D) := Error;
8957
8958 else
8959 Process_Discriminant_Expression (Constr, Discr);
8960 Discr_Expr (D) := Constr;
8961 end if;
8962
8963 Next_Discriminant (Discr);
8964 Next (Constr);
8965 end loop;
8966
8967 if No (Discr) and then Present (Constr) then
8968 Error_Msg_N ("too many discriminants given in constraint", Constr);
8969 return New_Elmt_List;
8970 end if;
8971
8972 -- Named associations can be given in any order, but if both positional
8973 -- and named associations are used in the same discriminant constraint,
8974 -- then positional associations must occur first, at their normal
8975 -- position. Hence once a named association is used, the rest of the
8976 -- discriminant constraint must use only named associations.
8977
8978 while Present (Constr) loop
8979
8980 -- Positional association forbidden after a named association
8981
8982 if Nkind (Constr) /= N_Discriminant_Association then
8983 Error_Msg_N ("positional association follows named one", Constr);
8984 return New_Elmt_List;
8985
8986 -- Otherwise it is a named association
8987
8988 else
8989 -- E records the type of the discriminants in the named
8990 -- association. All the discriminants specified in the same name
8991 -- association must have the same type.
8992
8993 E := Empty;
8994
8995 -- Search the list of discriminants in T to see if the simple name
8996 -- given in the constraint matches any of them.
8997
8998 Id := First (Selector_Names (Constr));
8999 while Present (Id) loop
9000 Found := False;
9001
9002 -- If Original_Discriminant is present, we are processing a
9003 -- generic instantiation and this is an instance node. We need
9004 -- to find the name of the corresponding discriminant in the
9005 -- actual record type T and not the name of the discriminant in
9006 -- the generic formal. Example:
9007
9008 -- generic
9009 -- type G (D : int) is private;
9010 -- package P is
9011 -- subtype W is G (D => 1);
9012 -- end package;
9013 -- type Rec (X : int) is record ... end record;
9014 -- package Q is new P (G => Rec);
9015
9016 -- At the point of the instantiation, formal type G is Rec
9017 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9018 -- which really looks like "subtype W is Rec (D => 1);" at
9019 -- the point of instantiation, we want to find the discriminant
9020 -- that corresponds to D in Rec, i.e. X.
9021
9022 if Present (Original_Discriminant (Id))
9023 and then In_Instance
9024 then
9025 Discr := Find_Corresponding_Discriminant (Id, T);
9026 Found := True;
9027
9028 else
9029 Discr := First_Discriminant (T);
9030 while Present (Discr) loop
9031 if Chars (Discr) = Chars (Id) then
9032 Found := True;
9033 exit;
9034 end if;
9035
9036 Next_Discriminant (Discr);
9037 end loop;
9038
9039 if not Found then
9040 Error_Msg_N ("& does not match any discriminant", Id);
9041 return New_Elmt_List;
9042
9043 -- If the parent type is a generic formal, preserve the
9044 -- name of the discriminant for subsequent instances.
9045 -- see comment at the beginning of this if statement.
9046
9047 elsif Is_Generic_Type (Root_Type (T)) then
9048 Set_Original_Discriminant (Id, Discr);
9049 end if;
9050 end if;
9051
9052 Position := Pos_Of_Discr (T, Discr);
9053
9054 if Present (Discr_Expr (Position)) then
9055 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9056
9057 else
9058 -- Each discriminant specified in the same named association
9059 -- must be associated with a separate copy of the
9060 -- corresponding expression.
9061
9062 if Present (Next (Id)) then
9063 Expr := New_Copy_Tree (Expression (Constr));
9064 Set_Parent (Expr, Parent (Expression (Constr)));
9065 else
9066 Expr := Expression (Constr);
9067 end if;
9068
9069 Discr_Expr (Position) := Expr;
9070 Process_Discriminant_Expression (Expr, Discr);
9071 end if;
9072
9073 -- A discriminant association with more than one discriminant
9074 -- name is only allowed if the named discriminants are all of
9075 -- the same type (RM 3.7.1(8)).
9076
9077 if E = Empty then
9078 E := Base_Type (Etype (Discr));
9079
9080 elsif Base_Type (Etype (Discr)) /= E then
9081 Error_Msg_N
9082 ("all discriminants in an association " &
9083 "must have the same type", Id);
9084 end if;
9085
9086 Next (Id);
9087 end loop;
9088 end if;
9089
9090 Next (Constr);
9091 end loop;
9092
9093 -- A discriminant constraint must provide exactly one value for each
9094 -- discriminant of the type (RM 3.7.1(8)).
9095
9096 for J in Discr_Expr'Range loop
9097 if No (Discr_Expr (J)) then
9098 Error_Msg_N ("too few discriminants given in constraint", C);
9099 return New_Elmt_List;
9100 end if;
9101 end loop;
9102
9103 -- Determine if there are discriminant expressions in the constraint
9104
9105 for J in Discr_Expr'Range loop
9106 if Denotes_Discriminant
9107 (Discr_Expr (J), Check_Concurrent => True)
9108 then
9109 Discrim_Present := True;
9110 end if;
9111 end loop;
9112
9113 -- Build an element list consisting of the expressions given in the
9114 -- discriminant constraint and apply the appropriate checks. The list
9115 -- is constructed after resolving any named discriminant associations
9116 -- and therefore the expressions appear in the textual order of the
9117 -- discriminants.
9118
9119 Discr := First_Discriminant (T);
9120 for J in Discr_Expr'Range loop
9121 if Discr_Expr (J) /= Error then
9122 Append_Elmt (Discr_Expr (J), Elist);
9123
9124 -- If any of the discriminant constraints is given by a
9125 -- discriminant and we are in a derived type declaration we
9126 -- have a discriminant renaming. Establish link between new
9127 -- and old discriminant.
9128
9129 if Denotes_Discriminant (Discr_Expr (J)) then
9130 if Derived_Def then
9131 Set_Corresponding_Discriminant
9132 (Entity (Discr_Expr (J)), Discr);
9133 end if;
9134
9135 -- Force the evaluation of non-discriminant expressions.
9136 -- If we have found a discriminant in the constraint 3.4(26)
9137 -- and 3.8(18) demand that no range checks are performed are
9138 -- after evaluation. If the constraint is for a component
9139 -- definition that has a per-object constraint, expressions are
9140 -- evaluated but not checked either. In all other cases perform
9141 -- a range check.
9142
9143 else
9144 if Discrim_Present then
9145 null;
9146
9147 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9148 and then
9149 Has_Per_Object_Constraint
9150 (Defining_Identifier (Parent (Parent (Def))))
9151 then
9152 null;
9153
9154 elsif Is_Access_Type (Etype (Discr)) then
9155 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9156
9157 else
9158 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9159 end if;
9160
9161 Force_Evaluation (Discr_Expr (J));
9162 end if;
9163
9164 -- Check that the designated type of an access discriminant's
9165 -- expression is not a class-wide type unless the discriminant's
9166 -- designated type is also class-wide.
9167
9168 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9169 and then not Is_Class_Wide_Type
9170 (Designated_Type (Etype (Discr)))
9171 and then Etype (Discr_Expr (J)) /= Any_Type
9172 and then Is_Class_Wide_Type
9173 (Designated_Type (Etype (Discr_Expr (J))))
9174 then
9175 Wrong_Type (Discr_Expr (J), Etype (Discr));
9176
9177 elsif Is_Access_Type (Etype (Discr))
9178 and then not Is_Access_Constant (Etype (Discr))
9179 and then Is_Access_Type (Etype (Discr_Expr (J)))
9180 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9181 then
9182 Error_Msg_NE
9183 ("constraint for discriminant& must be access to variable",
9184 Def, Discr);
9185 end if;
9186 end if;
9187
9188 Next_Discriminant (Discr);
9189 end loop;
9190
9191 return Elist;
9192 end Build_Discriminant_Constraints;
9193
9194 ---------------------------------
9195 -- Build_Discriminated_Subtype --
9196 ---------------------------------
9197
9198 procedure Build_Discriminated_Subtype
9199 (T : Entity_Id;
9200 Def_Id : Entity_Id;
9201 Elist : Elist_Id;
9202 Related_Nod : Node_Id;
9203 For_Access : Boolean := False)
9204 is
9205 Has_Discrs : constant Boolean := Has_Discriminants (T);
9206 Constrained : constant Boolean :=
9207 (Has_Discrs
9208 and then not Is_Empty_Elmt_List (Elist)
9209 and then not Is_Class_Wide_Type (T))
9210 or else Is_Constrained (T);
9211
9212 begin
9213 if Ekind (T) = E_Record_Type then
9214 if For_Access then
9215 Set_Ekind (Def_Id, E_Private_Subtype);
9216 Set_Is_For_Access_Subtype (Def_Id, True);
9217 else
9218 Set_Ekind (Def_Id, E_Record_Subtype);
9219 end if;
9220
9221 -- Inherit preelaboration flag from base, for types for which it
9222 -- may have been set: records, private types, protected types.
9223
9224 Set_Known_To_Have_Preelab_Init
9225 (Def_Id, Known_To_Have_Preelab_Init (T));
9226
9227 elsif Ekind (T) = E_Task_Type then
9228 Set_Ekind (Def_Id, E_Task_Subtype);
9229
9230 elsif Ekind (T) = E_Protected_Type then
9231 Set_Ekind (Def_Id, E_Protected_Subtype);
9232 Set_Known_To_Have_Preelab_Init
9233 (Def_Id, Known_To_Have_Preelab_Init (T));
9234
9235 elsif Is_Private_Type (T) then
9236 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9237 Set_Known_To_Have_Preelab_Init
9238 (Def_Id, Known_To_Have_Preelab_Init (T));
9239
9240 -- Private subtypes may have private dependents
9241
9242 Set_Private_Dependents (Def_Id, New_Elmt_List);
9243
9244 elsif Is_Class_Wide_Type (T) then
9245 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9246
9247 else
9248 -- Incomplete type. Attach subtype to list of dependents, to be
9249 -- completed with full view of parent type, unless is it the
9250 -- designated subtype of a record component within an init_proc.
9251 -- This last case arises for a component of an access type whose
9252 -- designated type is incomplete (e.g. a Taft Amendment type).
9253 -- The designated subtype is within an inner scope, and needs no
9254 -- elaboration, because only the access type is needed in the
9255 -- initialization procedure.
9256
9257 Set_Ekind (Def_Id, Ekind (T));
9258
9259 if For_Access and then Within_Init_Proc then
9260 null;
9261 else
9262 Append_Elmt (Def_Id, Private_Dependents (T));
9263 end if;
9264 end if;
9265
9266 Set_Etype (Def_Id, T);
9267 Init_Size_Align (Def_Id);
9268 Set_Has_Discriminants (Def_Id, Has_Discrs);
9269 Set_Is_Constrained (Def_Id, Constrained);
9270
9271 Set_First_Entity (Def_Id, First_Entity (T));
9272 Set_Last_Entity (Def_Id, Last_Entity (T));
9273 Set_Has_Implicit_Dereference
9274 (Def_Id, Has_Implicit_Dereference (T));
9275
9276 -- If the subtype is the completion of a private declaration, there may
9277 -- have been representation clauses for the partial view, and they must
9278 -- be preserved. Build_Derived_Type chains the inherited clauses with
9279 -- the ones appearing on the extension. If this comes from a subtype
9280 -- declaration, all clauses are inherited.
9281
9282 if No (First_Rep_Item (Def_Id)) then
9283 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9284 end if;
9285
9286 if Is_Tagged_Type (T) then
9287 Set_Is_Tagged_Type (Def_Id);
9288 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9289 Make_Class_Wide_Type (Def_Id);
9290 end if;
9291
9292 Set_Stored_Constraint (Def_Id, No_Elist);
9293
9294 if Has_Discrs then
9295 Set_Discriminant_Constraint (Def_Id, Elist);
9296 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9297 end if;
9298
9299 if Is_Tagged_Type (T) then
9300
9301 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9302 -- concurrent record type (which has the list of primitive
9303 -- operations).
9304
9305 if Ada_Version >= Ada_2005
9306 and then Is_Concurrent_Type (T)
9307 then
9308 Set_Corresponding_Record_Type (Def_Id,
9309 Corresponding_Record_Type (T));
9310 else
9311 Set_Direct_Primitive_Operations (Def_Id,
9312 Direct_Primitive_Operations (T));
9313 end if;
9314
9315 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9316 end if;
9317
9318 -- Subtypes introduced by component declarations do not need to be
9319 -- marked as delayed, and do not get freeze nodes, because the semantics
9320 -- verifies that the parents of the subtypes are frozen before the
9321 -- enclosing record is frozen.
9322
9323 if not Is_Type (Scope (Def_Id)) then
9324 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9325
9326 if Is_Private_Type (T)
9327 and then Present (Full_View (T))
9328 then
9329 Conditional_Delay (Def_Id, Full_View (T));
9330 else
9331 Conditional_Delay (Def_Id, T);
9332 end if;
9333 end if;
9334
9335 if Is_Record_Type (T) then
9336 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9337
9338 if Has_Discrs
9339 and then not Is_Empty_Elmt_List (Elist)
9340 and then not For_Access
9341 then
9342 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9343 elsif not For_Access then
9344 Set_Cloned_Subtype (Def_Id, T);
9345 end if;
9346 end if;
9347 end Build_Discriminated_Subtype;
9348
9349 ---------------------------
9350 -- Build_Itype_Reference --
9351 ---------------------------
9352
9353 procedure Build_Itype_Reference
9354 (Ityp : Entity_Id;
9355 Nod : Node_Id)
9356 is
9357 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9358 begin
9359
9360 -- Itype references are only created for use by the back-end
9361
9362 if Inside_A_Generic then
9363 return;
9364 else
9365 Set_Itype (IR, Ityp);
9366 Insert_After (Nod, IR);
9367 end if;
9368 end Build_Itype_Reference;
9369
9370 ------------------------
9371 -- Build_Scalar_Bound --
9372 ------------------------
9373
9374 function Build_Scalar_Bound
9375 (Bound : Node_Id;
9376 Par_T : Entity_Id;
9377 Der_T : Entity_Id) return Node_Id
9378 is
9379 New_Bound : Entity_Id;
9380
9381 begin
9382 -- Note: not clear why this is needed, how can the original bound
9383 -- be unanalyzed at this point? and if it is, what business do we
9384 -- have messing around with it? and why is the base type of the
9385 -- parent type the right type for the resolution. It probably is
9386 -- not. It is OK for the new bound we are creating, but not for
9387 -- the old one??? Still if it never happens, no problem.
9388
9389 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9390
9391 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9392 New_Bound := New_Copy (Bound);
9393 Set_Etype (New_Bound, Der_T);
9394 Set_Analyzed (New_Bound);
9395
9396 elsif Is_Entity_Name (Bound) then
9397 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9398
9399 -- The following is almost certainly wrong. What business do we have
9400 -- relocating a node (Bound) that is presumably still attached to
9401 -- the tree elsewhere???
9402
9403 else
9404 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9405 end if;
9406
9407 Set_Etype (New_Bound, Der_T);
9408 return New_Bound;
9409 end Build_Scalar_Bound;
9410
9411 --------------------------------
9412 -- Build_Underlying_Full_View --
9413 --------------------------------
9414
9415 procedure Build_Underlying_Full_View
9416 (N : Node_Id;
9417 Typ : Entity_Id;
9418 Par : Entity_Id)
9419 is
9420 Loc : constant Source_Ptr := Sloc (N);
9421 Subt : constant Entity_Id :=
9422 Make_Defining_Identifier
9423 (Loc, New_External_Name (Chars (Typ), 'S'));
9424
9425 Constr : Node_Id;
9426 Indic : Node_Id;
9427 C : Node_Id;
9428 Id : Node_Id;
9429
9430 procedure Set_Discriminant_Name (Id : Node_Id);
9431 -- If the derived type has discriminants, they may rename discriminants
9432 -- of the parent. When building the full view of the parent, we need to
9433 -- recover the names of the original discriminants if the constraint is
9434 -- given by named associations.
9435
9436 ---------------------------
9437 -- Set_Discriminant_Name --
9438 ---------------------------
9439
9440 procedure Set_Discriminant_Name (Id : Node_Id) is
9441 Disc : Entity_Id;
9442
9443 begin
9444 Set_Original_Discriminant (Id, Empty);
9445
9446 if Has_Discriminants (Typ) then
9447 Disc := First_Discriminant (Typ);
9448 while Present (Disc) loop
9449 if Chars (Disc) = Chars (Id)
9450 and then Present (Corresponding_Discriminant (Disc))
9451 then
9452 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9453 end if;
9454 Next_Discriminant (Disc);
9455 end loop;
9456 end if;
9457 end Set_Discriminant_Name;
9458
9459 -- Start of processing for Build_Underlying_Full_View
9460
9461 begin
9462 if Nkind (N) = N_Full_Type_Declaration then
9463 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9464
9465 elsif Nkind (N) = N_Subtype_Declaration then
9466 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9467
9468 elsif Nkind (N) = N_Component_Declaration then
9469 Constr :=
9470 New_Copy_Tree
9471 (Constraint (Subtype_Indication (Component_Definition (N))));
9472
9473 else
9474 raise Program_Error;
9475 end if;
9476
9477 C := First (Constraints (Constr));
9478 while Present (C) loop
9479 if Nkind (C) = N_Discriminant_Association then
9480 Id := First (Selector_Names (C));
9481 while Present (Id) loop
9482 Set_Discriminant_Name (Id);
9483 Next (Id);
9484 end loop;
9485 end if;
9486
9487 Next (C);
9488 end loop;
9489
9490 Indic :=
9491 Make_Subtype_Declaration (Loc,
9492 Defining_Identifier => Subt,
9493 Subtype_Indication =>
9494 Make_Subtype_Indication (Loc,
9495 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9496 Constraint => New_Copy_Tree (Constr)));
9497
9498 -- If this is a component subtype for an outer itype, it is not
9499 -- a list member, so simply set the parent link for analysis: if
9500 -- the enclosing type does not need to be in a declarative list,
9501 -- neither do the components.
9502
9503 if Is_List_Member (N)
9504 and then Nkind (N) /= N_Component_Declaration
9505 then
9506 Insert_Before (N, Indic);
9507 else
9508 Set_Parent (Indic, Parent (N));
9509 end if;
9510
9511 Analyze (Indic);
9512 Set_Underlying_Full_View (Typ, Full_View (Subt));
9513 end Build_Underlying_Full_View;
9514
9515 -------------------------------
9516 -- Check_Abstract_Overriding --
9517 -------------------------------
9518
9519 procedure Check_Abstract_Overriding (T : Entity_Id) is
9520 Alias_Subp : Entity_Id;
9521 Elmt : Elmt_Id;
9522 Op_List : Elist_Id;
9523 Subp : Entity_Id;
9524 Type_Def : Node_Id;
9525
9526 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9527 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9528 -- which has pragma Implemented already set. Check whether Subp's entity
9529 -- kind conforms to the implementation kind of the overridden routine.
9530
9531 procedure Check_Pragma_Implemented
9532 (Subp : Entity_Id;
9533 Iface_Subp : Entity_Id);
9534 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9535 -- Iface_Subp and both entities have pragma Implemented already set on
9536 -- them. Check whether the two implementation kinds are conforming.
9537
9538 procedure Inherit_Pragma_Implemented
9539 (Subp : Entity_Id;
9540 Iface_Subp : Entity_Id);
9541 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9542 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9543 -- Propagate the implementation kind of Iface_Subp to Subp.
9544
9545 ------------------------------
9546 -- Check_Pragma_Implemented --
9547 ------------------------------
9548
9549 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9550 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9551 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9552 Subp_Alias : constant Entity_Id := Alias (Subp);
9553 Contr_Typ : Entity_Id;
9554 Impl_Subp : Entity_Id;
9555
9556 begin
9557 -- Subp must have an alias since it is a hidden entity used to link
9558 -- an interface subprogram to its overriding counterpart.
9559
9560 pragma Assert (Present (Subp_Alias));
9561
9562 -- Handle aliases to synchronized wrappers
9563
9564 Impl_Subp := Subp_Alias;
9565
9566 if Is_Primitive_Wrapper (Impl_Subp) then
9567 Impl_Subp := Wrapped_Entity (Impl_Subp);
9568 end if;
9569
9570 -- Extract the type of the controlling formal
9571
9572 Contr_Typ := Etype (First_Formal (Subp_Alias));
9573
9574 if Is_Concurrent_Record_Type (Contr_Typ) then
9575 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9576 end if;
9577
9578 -- An interface subprogram whose implementation kind is By_Entry must
9579 -- be implemented by an entry.
9580
9581 if Impl_Kind = Name_By_Entry
9582 and then Ekind (Impl_Subp) /= E_Entry
9583 then
9584 Error_Msg_Node_2 := Iface_Alias;
9585 Error_Msg_NE
9586 ("type & must implement abstract subprogram & with an entry",
9587 Subp_Alias, Contr_Typ);
9588
9589 elsif Impl_Kind = Name_By_Protected_Procedure then
9590
9591 -- An interface subprogram whose implementation kind is By_
9592 -- Protected_Procedure cannot be implemented by a primitive
9593 -- procedure of a task type.
9594
9595 if Ekind (Contr_Typ) /= E_Protected_Type then
9596 Error_Msg_Node_2 := Contr_Typ;
9597 Error_Msg_NE
9598 ("interface subprogram & cannot be implemented by a " &
9599 "primitive procedure of task type &", Subp_Alias,
9600 Iface_Alias);
9601
9602 -- An interface subprogram whose implementation kind is By_
9603 -- Protected_Procedure must be implemented by a procedure.
9604
9605 elsif Ekind (Impl_Subp) /= E_Procedure then
9606 Error_Msg_Node_2 := Iface_Alias;
9607 Error_Msg_NE
9608 ("type & must implement abstract subprogram & with a " &
9609 "procedure", Subp_Alias, Contr_Typ);
9610
9611 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9612 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9613 then
9614 Error_Msg_Name_1 := Impl_Kind;
9615 Error_Msg_N
9616 ("overriding operation& must have synchronization%",
9617 Subp_Alias);
9618 end if;
9619
9620 -- If primitive has Optional synchronization, overriding operation
9621 -- must match if it has an explicit synchronization..
9622
9623 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9624 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9625 then
9626 Error_Msg_Name_1 := Impl_Kind;
9627 Error_Msg_N
9628 ("overriding operation& must have syncrhonization%",
9629 Subp_Alias);
9630 end if;
9631 end Check_Pragma_Implemented;
9632
9633 ------------------------------
9634 -- Check_Pragma_Implemented --
9635 ------------------------------
9636
9637 procedure Check_Pragma_Implemented
9638 (Subp : Entity_Id;
9639 Iface_Subp : Entity_Id)
9640 is
9641 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9642 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9643
9644 begin
9645 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9646 -- and overriding subprogram are different. In general this is an
9647 -- error except when the implementation kind of the overridden
9648 -- subprograms is By_Any or Optional.
9649
9650 if Iface_Kind /= Subp_Kind
9651 and then Iface_Kind /= Name_By_Any
9652 and then Iface_Kind /= Name_Optional
9653 then
9654 if Iface_Kind = Name_By_Entry then
9655 Error_Msg_N
9656 ("incompatible implementation kind, overridden subprogram " &
9657 "is marked By_Entry", Subp);
9658 else
9659 Error_Msg_N
9660 ("incompatible implementation kind, overridden subprogram " &
9661 "is marked By_Protected_Procedure", Subp);
9662 end if;
9663 end if;
9664 end Check_Pragma_Implemented;
9665
9666 --------------------------------
9667 -- Inherit_Pragma_Implemented --
9668 --------------------------------
9669
9670 procedure Inherit_Pragma_Implemented
9671 (Subp : Entity_Id;
9672 Iface_Subp : Entity_Id)
9673 is
9674 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9675 Loc : constant Source_Ptr := Sloc (Subp);
9676 Impl_Prag : Node_Id;
9677
9678 begin
9679 -- Since the implementation kind is stored as a representation item
9680 -- rather than a flag, create a pragma node.
9681
9682 Impl_Prag :=
9683 Make_Pragma (Loc,
9684 Chars => Name_Implemented,
9685 Pragma_Argument_Associations => New_List (
9686 Make_Pragma_Argument_Association (Loc,
9687 Expression => New_Occurrence_Of (Subp, Loc)),
9688
9689 Make_Pragma_Argument_Association (Loc,
9690 Expression => Make_Identifier (Loc, Iface_Kind))));
9691
9692 -- The pragma doesn't need to be analyzed because it is internally
9693 -- built. It is safe to directly register it as a rep item since we
9694 -- are only interested in the characters of the implementation kind.
9695
9696 Record_Rep_Item (Subp, Impl_Prag);
9697 end Inherit_Pragma_Implemented;
9698
9699 -- Start of processing for Check_Abstract_Overriding
9700
9701 begin
9702 Op_List := Primitive_Operations (T);
9703
9704 -- Loop to check primitive operations
9705
9706 Elmt := First_Elmt (Op_List);
9707 while Present (Elmt) loop
9708 Subp := Node (Elmt);
9709 Alias_Subp := Alias (Subp);
9710
9711 -- Inherited subprograms are identified by the fact that they do not
9712 -- come from source, and the associated source location is the
9713 -- location of the first subtype of the derived type.
9714
9715 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9716 -- subprograms that "require overriding".
9717
9718 -- Special exception, do not complain about failure to override the
9719 -- stream routines _Input and _Output, as well as the primitive
9720 -- operations used in dispatching selects since we always provide
9721 -- automatic overridings for these subprograms.
9722
9723 -- Also ignore this rule for convention CIL since .NET libraries
9724 -- do bizarre things with interfaces???
9725
9726 -- The partial view of T may have been a private extension, for
9727 -- which inherited functions dispatching on result are abstract.
9728 -- If the full view is a null extension, there is no need for
9729 -- overriding in Ada 2005, but wrappers need to be built for them
9730 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9731
9732 if Is_Null_Extension (T)
9733 and then Has_Controlling_Result (Subp)
9734 and then Ada_Version >= Ada_2005
9735 and then Present (Alias_Subp)
9736 and then not Comes_From_Source (Subp)
9737 and then not Is_Abstract_Subprogram (Alias_Subp)
9738 and then not Is_Access_Type (Etype (Subp))
9739 then
9740 null;
9741
9742 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9743 -- processing because this check is done with the aliased
9744 -- entity
9745
9746 elsif Present (Interface_Alias (Subp)) then
9747 null;
9748
9749 elsif (Is_Abstract_Subprogram (Subp)
9750 or else Requires_Overriding (Subp)
9751 or else
9752 (Has_Controlling_Result (Subp)
9753 and then Present (Alias_Subp)
9754 and then not Comes_From_Source (Subp)
9755 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9756 and then not Is_TSS (Subp, TSS_Stream_Input)
9757 and then not Is_TSS (Subp, TSS_Stream_Output)
9758 and then not Is_Abstract_Type (T)
9759 and then Convention (T) /= Convention_CIL
9760 and then not Is_Predefined_Interface_Primitive (Subp)
9761
9762 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9763 -- with abstract interface types because the check will be done
9764 -- with the aliased entity (otherwise we generate a duplicated
9765 -- error message).
9766
9767 and then not Present (Interface_Alias (Subp))
9768 then
9769 if Present (Alias_Subp) then
9770
9771 -- Only perform the check for a derived subprogram when the
9772 -- type has an explicit record extension. This avoids incorrect
9773 -- flagging of abstract subprograms for the case of a type
9774 -- without an extension that is derived from a formal type
9775 -- with a tagged actual (can occur within a private part).
9776
9777 -- Ada 2005 (AI-391): In the case of an inherited function with
9778 -- a controlling result of the type, the rule does not apply if
9779 -- the type is a null extension (unless the parent function
9780 -- itself is abstract, in which case the function must still be
9781 -- be overridden). The expander will generate an overriding
9782 -- wrapper function calling the parent subprogram (see
9783 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9784
9785 Type_Def := Type_Definition (Parent (T));
9786
9787 if Nkind (Type_Def) = N_Derived_Type_Definition
9788 and then Present (Record_Extension_Part (Type_Def))
9789 and then
9790 (Ada_Version < Ada_2005
9791 or else not Is_Null_Extension (T)
9792 or else Ekind (Subp) = E_Procedure
9793 or else not Has_Controlling_Result (Subp)
9794 or else Is_Abstract_Subprogram (Alias_Subp)
9795 or else Requires_Overriding (Subp)
9796 or else Is_Access_Type (Etype (Subp)))
9797 then
9798 -- Avoid reporting error in case of abstract predefined
9799 -- primitive inherited from interface type because the
9800 -- body of internally generated predefined primitives
9801 -- of tagged types are generated later by Freeze_Type
9802
9803 if Is_Interface (Root_Type (T))
9804 and then Is_Abstract_Subprogram (Subp)
9805 and then Is_Predefined_Dispatching_Operation (Subp)
9806 and then not Comes_From_Source (Ultimate_Alias (Subp))
9807 then
9808 null;
9809
9810 -- A null extension is not obliged to override an inherited
9811 -- procedure subject to pragma Extensions_Visible with value
9812 -- False and at least one controlling OUT parameter.
9813
9814 elsif Is_Null_Extension (T)
9815 and then Is_EVF_Procedure (Subp)
9816 then
9817 null;
9818
9819 else
9820 Error_Msg_NE
9821 ("type must be declared abstract or & overridden",
9822 T, Subp);
9823
9824 -- Traverse the whole chain of aliased subprograms to
9825 -- complete the error notification. This is especially
9826 -- useful for traceability of the chain of entities when
9827 -- the subprogram corresponds with an interface
9828 -- subprogram (which may be defined in another package).
9829
9830 if Present (Alias_Subp) then
9831 declare
9832 E : Entity_Id;
9833
9834 begin
9835 E := Subp;
9836 while Present (Alias (E)) loop
9837
9838 -- Avoid reporting redundant errors on entities
9839 -- inherited from interfaces
9840
9841 if Sloc (E) /= Sloc (T) then
9842 Error_Msg_Sloc := Sloc (E);
9843 Error_Msg_NE
9844 ("\& has been inherited #", T, Subp);
9845 end if;
9846
9847 E := Alias (E);
9848 end loop;
9849
9850 Error_Msg_Sloc := Sloc (E);
9851
9852 -- AI05-0068: report if there is an overriding
9853 -- non-abstract subprogram that is invisible.
9854
9855 if Is_Hidden (E)
9856 and then not Is_Abstract_Subprogram (E)
9857 then
9858 Error_Msg_NE
9859 ("\& subprogram# is not visible",
9860 T, Subp);
9861
9862 -- Clarify the case where a non-null extension must
9863 -- override inherited procedure subject to pragma
9864 -- Extensions_Visible with value False and at least
9865 -- one controlling OUT param.
9866
9867 elsif Is_EVF_Procedure (E) then
9868 Error_Msg_NE
9869 ("\& # is subject to Extensions_Visible False",
9870 T, Subp);
9871
9872 else
9873 Error_Msg_NE
9874 ("\& has been inherited from subprogram #",
9875 T, Subp);
9876 end if;
9877 end;
9878 end if;
9879 end if;
9880
9881 -- Ada 2005 (AI-345): Protected or task type implementing
9882 -- abstract interfaces.
9883
9884 elsif Is_Concurrent_Record_Type (T)
9885 and then Present (Interfaces (T))
9886 then
9887 -- If an inherited subprogram is implemented by a protected
9888 -- procedure or an entry, then the first parameter of the
9889 -- inherited subprogram shall be of mode OUT or IN OUT, or
9890 -- an access-to-variable parameter (RM 9.4(11.9/3))
9891
9892 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9893 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9894 and then Ekind (Subp) /= E_Function
9895 and then not Is_Predefined_Dispatching_Operation (Subp)
9896 then
9897 Error_Msg_PT (T, Subp);
9898
9899 -- Some other kind of overriding failure
9900
9901 else
9902 Error_Msg_NE
9903 ("interface subprogram & must be overridden",
9904 T, Subp);
9905
9906 -- Examine primitive operations of synchronized type,
9907 -- to find homonyms that have the wrong profile.
9908
9909 declare
9910 Prim : Entity_Id;
9911
9912 begin
9913 Prim :=
9914 First_Entity (Corresponding_Concurrent_Type (T));
9915 while Present (Prim) loop
9916 if Chars (Prim) = Chars (Subp) then
9917 Error_Msg_NE
9918 ("profile is not type conformant with "
9919 & "prefixed view profile of "
9920 & "inherited operation&", Prim, Subp);
9921 end if;
9922
9923 Next_Entity (Prim);
9924 end loop;
9925 end;
9926 end if;
9927 end if;
9928
9929 else
9930 Error_Msg_Node_2 := T;
9931 Error_Msg_N
9932 ("abstract subprogram& not allowed for type&", Subp);
9933
9934 -- Also post unconditional warning on the type (unconditional
9935 -- so that if there are more than one of these cases, we get
9936 -- them all, and not just the first one).
9937
9938 Error_Msg_Node_2 := Subp;
9939 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9940 end if;
9941
9942 -- A subprogram subject to pragma Extensions_Visible with value
9943 -- "True" cannot override a subprogram subject to the same pragma
9944 -- with value "False".
9945
9946 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
9947 and then Present (Overridden_Operation (Subp))
9948 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
9949 Extensions_Visible_False
9950 then
9951 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
9952 Error_Msg_N
9953 ("subprogram & with Extensions_Visible True cannot override "
9954 & "subprogram # with Extensions_Visible False", Subp);
9955 end if;
9956
9957 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9958
9959 -- Subp is an expander-generated procedure which maps an interface
9960 -- alias to a protected wrapper. The interface alias is flagged by
9961 -- pragma Implemented. Ensure that Subp is a procedure when the
9962 -- implementation kind is By_Protected_Procedure or an entry when
9963 -- By_Entry.
9964
9965 if Ada_Version >= Ada_2012
9966 and then Is_Hidden (Subp)
9967 and then Present (Interface_Alias (Subp))
9968 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9969 then
9970 Check_Pragma_Implemented (Subp);
9971 end if;
9972
9973 -- Subp is an interface primitive which overrides another interface
9974 -- primitive marked with pragma Implemented.
9975
9976 if Ada_Version >= Ada_2012
9977 and then Present (Overridden_Operation (Subp))
9978 and then Has_Rep_Pragma
9979 (Overridden_Operation (Subp), Name_Implemented)
9980 then
9981 -- If the overriding routine is also marked by Implemented, check
9982 -- that the two implementation kinds are conforming.
9983
9984 if Has_Rep_Pragma (Subp, Name_Implemented) then
9985 Check_Pragma_Implemented
9986 (Subp => Subp,
9987 Iface_Subp => Overridden_Operation (Subp));
9988
9989 -- Otherwise the overriding routine inherits the implementation
9990 -- kind from the overridden subprogram.
9991
9992 else
9993 Inherit_Pragma_Implemented
9994 (Subp => Subp,
9995 Iface_Subp => Overridden_Operation (Subp));
9996 end if;
9997 end if;
9998
9999 -- If the operation is a wrapper for a synchronized primitive, it
10000 -- may be called indirectly through a dispatching select. We assume
10001 -- that it will be referenced elsewhere indirectly, and suppress
10002 -- warnings about an unused entity.
10003
10004 if Is_Primitive_Wrapper (Subp)
10005 and then Present (Wrapped_Entity (Subp))
10006 then
10007 Set_Referenced (Wrapped_Entity (Subp));
10008 end if;
10009
10010 Next_Elmt (Elmt);
10011 end loop;
10012 end Check_Abstract_Overriding;
10013
10014 ------------------------------------------------
10015 -- Check_Access_Discriminant_Requires_Limited --
10016 ------------------------------------------------
10017
10018 procedure Check_Access_Discriminant_Requires_Limited
10019 (D : Node_Id;
10020 Loc : Node_Id)
10021 is
10022 begin
10023 -- A discriminant_specification for an access discriminant shall appear
10024 -- only in the declaration for a task or protected type, or for a type
10025 -- with the reserved word 'limited' in its definition or in one of its
10026 -- ancestors (RM 3.7(10)).
10027
10028 -- AI-0063: The proper condition is that type must be immutably limited,
10029 -- or else be a partial view.
10030
10031 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10032 if Is_Limited_View (Current_Scope)
10033 or else
10034 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10035 and then Limited_Present (Parent (Current_Scope)))
10036 then
10037 null;
10038
10039 else
10040 Error_Msg_N
10041 ("access discriminants allowed only for limited types", Loc);
10042 end if;
10043 end if;
10044 end Check_Access_Discriminant_Requires_Limited;
10045
10046 -----------------------------------
10047 -- Check_Aliased_Component_Types --
10048 -----------------------------------
10049
10050 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10051 C : Entity_Id;
10052
10053 begin
10054 -- ??? Also need to check components of record extensions, but not
10055 -- components of protected types (which are always limited).
10056
10057 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10058 -- types to be unconstrained. This is safe because it is illegal to
10059 -- create access subtypes to such types with explicit discriminant
10060 -- constraints.
10061
10062 if not Is_Limited_Type (T) then
10063 if Ekind (T) = E_Record_Type then
10064 C := First_Component (T);
10065 while Present (C) loop
10066 if Is_Aliased (C)
10067 and then Has_Discriminants (Etype (C))
10068 and then not Is_Constrained (Etype (C))
10069 and then not In_Instance_Body
10070 and then Ada_Version < Ada_2005
10071 then
10072 Error_Msg_N
10073 ("aliased component must be constrained (RM 3.6(11))",
10074 C);
10075 end if;
10076
10077 Next_Component (C);
10078 end loop;
10079
10080 elsif Ekind (T) = E_Array_Type then
10081 if Has_Aliased_Components (T)
10082 and then Has_Discriminants (Component_Type (T))
10083 and then not Is_Constrained (Component_Type (T))
10084 and then not In_Instance_Body
10085 and then Ada_Version < Ada_2005
10086 then
10087 Error_Msg_N
10088 ("aliased component type must be constrained (RM 3.6(11))",
10089 T);
10090 end if;
10091 end if;
10092 end if;
10093 end Check_Aliased_Component_Types;
10094
10095 ---------------------------------------
10096 -- Check_Anonymous_Access_Components --
10097 ---------------------------------------
10098
10099 procedure Check_Anonymous_Access_Components
10100 (Typ_Decl : Node_Id;
10101 Typ : Entity_Id;
10102 Prev : Entity_Id;
10103 Comp_List : Node_Id)
10104 is
10105 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10106 Anon_Access : Entity_Id;
10107 Acc_Def : Node_Id;
10108 Comp : Node_Id;
10109 Comp_Def : Node_Id;
10110 Decl : Node_Id;
10111 Type_Def : Node_Id;
10112
10113 procedure Build_Incomplete_Type_Declaration;
10114 -- If the record type contains components that include an access to the
10115 -- current record, then create an incomplete type declaration for the
10116 -- record, to be used as the designated type of the anonymous access.
10117 -- This is done only once, and only if there is no previous partial
10118 -- view of the type.
10119
10120 function Designates_T (Subt : Node_Id) return Boolean;
10121 -- Check whether a node designates the enclosing record type, or 'Class
10122 -- of that type
10123
10124 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10125 -- Check whether an access definition includes a reference to
10126 -- the enclosing record type. The reference can be a subtype mark
10127 -- in the access definition itself, a 'Class attribute reference, or
10128 -- recursively a reference appearing in a parameter specification
10129 -- or result definition of an access_to_subprogram definition.
10130
10131 --------------------------------------
10132 -- Build_Incomplete_Type_Declaration --
10133 --------------------------------------
10134
10135 procedure Build_Incomplete_Type_Declaration is
10136 Decl : Node_Id;
10137 Inc_T : Entity_Id;
10138 H : Entity_Id;
10139
10140 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10141 -- it's "is new ... with record" or else "is tagged record ...".
10142
10143 Is_Tagged : constant Boolean :=
10144 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10145 and then
10146 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10147 or else
10148 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10149 and then Tagged_Present (Type_Definition (Typ_Decl)));
10150
10151 begin
10152 -- If there is a previous partial view, no need to create a new one
10153 -- If the partial view, given by Prev, is incomplete, If Prev is
10154 -- a private declaration, full declaration is flagged accordingly.
10155
10156 if Prev /= Typ then
10157 if Is_Tagged then
10158 Make_Class_Wide_Type (Prev);
10159 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10160 Set_Etype (Class_Wide_Type (Typ), Typ);
10161 end if;
10162
10163 return;
10164
10165 elsif Has_Private_Declaration (Typ) then
10166
10167 -- If we refer to T'Class inside T, and T is the completion of a
10168 -- private type, then make sure the class-wide type exists.
10169
10170 if Is_Tagged then
10171 Make_Class_Wide_Type (Typ);
10172 end if;
10173
10174 return;
10175
10176 -- If there was a previous anonymous access type, the incomplete
10177 -- type declaration will have been created already.
10178
10179 elsif Present (Current_Entity (Typ))
10180 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10181 and then Full_View (Current_Entity (Typ)) = Typ
10182 then
10183 if Is_Tagged
10184 and then Comes_From_Source (Current_Entity (Typ))
10185 and then not Is_Tagged_Type (Current_Entity (Typ))
10186 then
10187 Make_Class_Wide_Type (Typ);
10188 Error_Msg_N
10189 ("incomplete view of tagged type should be declared tagged??",
10190 Parent (Current_Entity (Typ)));
10191 end if;
10192 return;
10193
10194 else
10195 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10196 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10197
10198 -- Type has already been inserted into the current scope. Remove
10199 -- it, and add incomplete declaration for type, so that subsequent
10200 -- anonymous access types can use it. The entity is unchained from
10201 -- the homonym list and from immediate visibility. After analysis,
10202 -- the entity in the incomplete declaration becomes immediately
10203 -- visible in the record declaration that follows.
10204
10205 H := Current_Entity (Typ);
10206
10207 if H = Typ then
10208 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10209 else
10210 while Present (H)
10211 and then Homonym (H) /= Typ
10212 loop
10213 H := Homonym (Typ);
10214 end loop;
10215
10216 Set_Homonym (H, Homonym (Typ));
10217 end if;
10218
10219 Insert_Before (Typ_Decl, Decl);
10220 Analyze (Decl);
10221 Set_Full_View (Inc_T, Typ);
10222
10223 if Is_Tagged then
10224
10225 -- Create a common class-wide type for both views, and set the
10226 -- Etype of the class-wide type to the full view.
10227
10228 Make_Class_Wide_Type (Inc_T);
10229 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10230 Set_Etype (Class_Wide_Type (Typ), Typ);
10231 end if;
10232 end if;
10233 end Build_Incomplete_Type_Declaration;
10234
10235 ------------------
10236 -- Designates_T --
10237 ------------------
10238
10239 function Designates_T (Subt : Node_Id) return Boolean is
10240 Type_Id : constant Name_Id := Chars (Typ);
10241
10242 function Names_T (Nam : Node_Id) return Boolean;
10243 -- The record type has not been introduced in the current scope
10244 -- yet, so we must examine the name of the type itself, either
10245 -- an identifier T, or an expanded name of the form P.T, where
10246 -- P denotes the current scope.
10247
10248 -------------
10249 -- Names_T --
10250 -------------
10251
10252 function Names_T (Nam : Node_Id) return Boolean is
10253 begin
10254 if Nkind (Nam) = N_Identifier then
10255 return Chars (Nam) = Type_Id;
10256
10257 elsif Nkind (Nam) = N_Selected_Component then
10258 if Chars (Selector_Name (Nam)) = Type_Id then
10259 if Nkind (Prefix (Nam)) = N_Identifier then
10260 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10261
10262 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10263 return Chars (Selector_Name (Prefix (Nam))) =
10264 Chars (Current_Scope);
10265 else
10266 return False;
10267 end if;
10268
10269 else
10270 return False;
10271 end if;
10272
10273 else
10274 return False;
10275 end if;
10276 end Names_T;
10277
10278 -- Start of processing for Designates_T
10279
10280 begin
10281 if Nkind (Subt) = N_Identifier then
10282 return Chars (Subt) = Type_Id;
10283
10284 -- Reference can be through an expanded name which has not been
10285 -- analyzed yet, and which designates enclosing scopes.
10286
10287 elsif Nkind (Subt) = N_Selected_Component then
10288 if Names_T (Subt) then
10289 return True;
10290
10291 -- Otherwise it must denote an entity that is already visible.
10292 -- The access definition may name a subtype of the enclosing
10293 -- type, if there is a previous incomplete declaration for it.
10294
10295 else
10296 Find_Selected_Component (Subt);
10297 return
10298 Is_Entity_Name (Subt)
10299 and then Scope (Entity (Subt)) = Current_Scope
10300 and then
10301 (Chars (Base_Type (Entity (Subt))) = Type_Id
10302 or else
10303 (Is_Class_Wide_Type (Entity (Subt))
10304 and then
10305 Chars (Etype (Base_Type (Entity (Subt)))) =
10306 Type_Id));
10307 end if;
10308
10309 -- A reference to the current type may appear as the prefix of
10310 -- a 'Class attribute.
10311
10312 elsif Nkind (Subt) = N_Attribute_Reference
10313 and then Attribute_Name (Subt) = Name_Class
10314 then
10315 return Names_T (Prefix (Subt));
10316
10317 else
10318 return False;
10319 end if;
10320 end Designates_T;
10321
10322 ----------------
10323 -- Mentions_T --
10324 ----------------
10325
10326 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10327 Param_Spec : Node_Id;
10328
10329 Acc_Subprg : constant Node_Id :=
10330 Access_To_Subprogram_Definition (Acc_Def);
10331
10332 begin
10333 if No (Acc_Subprg) then
10334 return Designates_T (Subtype_Mark (Acc_Def));
10335 end if;
10336
10337 -- Component is an access_to_subprogram: examine its formals,
10338 -- and result definition in the case of an access_to_function.
10339
10340 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10341 while Present (Param_Spec) loop
10342 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10343 and then Mentions_T (Parameter_Type (Param_Spec))
10344 then
10345 return True;
10346
10347 elsif Designates_T (Parameter_Type (Param_Spec)) then
10348 return True;
10349 end if;
10350
10351 Next (Param_Spec);
10352 end loop;
10353
10354 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10355 if Nkind (Result_Definition (Acc_Subprg)) =
10356 N_Access_Definition
10357 then
10358 return Mentions_T (Result_Definition (Acc_Subprg));
10359 else
10360 return Designates_T (Result_Definition (Acc_Subprg));
10361 end if;
10362 end if;
10363
10364 return False;
10365 end Mentions_T;
10366
10367 -- Start of processing for Check_Anonymous_Access_Components
10368
10369 begin
10370 if No (Comp_List) then
10371 return;
10372 end if;
10373
10374 Comp := First (Component_Items (Comp_List));
10375 while Present (Comp) loop
10376 if Nkind (Comp) = N_Component_Declaration
10377 and then Present
10378 (Access_Definition (Component_Definition (Comp)))
10379 and then
10380 Mentions_T (Access_Definition (Component_Definition (Comp)))
10381 then
10382 Comp_Def := Component_Definition (Comp);
10383 Acc_Def :=
10384 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10385
10386 Build_Incomplete_Type_Declaration;
10387 Anon_Access := Make_Temporary (Loc, 'S');
10388
10389 -- Create a declaration for the anonymous access type: either
10390 -- an access_to_object or an access_to_subprogram.
10391
10392 if Present (Acc_Def) then
10393 if Nkind (Acc_Def) = N_Access_Function_Definition then
10394 Type_Def :=
10395 Make_Access_Function_Definition (Loc,
10396 Parameter_Specifications =>
10397 Parameter_Specifications (Acc_Def),
10398 Result_Definition => Result_Definition (Acc_Def));
10399 else
10400 Type_Def :=
10401 Make_Access_Procedure_Definition (Loc,
10402 Parameter_Specifications =>
10403 Parameter_Specifications (Acc_Def));
10404 end if;
10405
10406 else
10407 Type_Def :=
10408 Make_Access_To_Object_Definition (Loc,
10409 Subtype_Indication =>
10410 Relocate_Node
10411 (Subtype_Mark (Access_Definition (Comp_Def))));
10412
10413 Set_Constant_Present
10414 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10415 Set_All_Present
10416 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10417 end if;
10418
10419 Set_Null_Exclusion_Present
10420 (Type_Def,
10421 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10422
10423 Decl :=
10424 Make_Full_Type_Declaration (Loc,
10425 Defining_Identifier => Anon_Access,
10426 Type_Definition => Type_Def);
10427
10428 Insert_Before (Typ_Decl, Decl);
10429 Analyze (Decl);
10430
10431 -- If an access to subprogram, create the extra formals
10432
10433 if Present (Acc_Def) then
10434 Create_Extra_Formals (Designated_Type (Anon_Access));
10435
10436 -- If an access to object, preserve entity of designated type,
10437 -- for ASIS use, before rewriting the component definition.
10438
10439 else
10440 declare
10441 Desig : Entity_Id;
10442
10443 begin
10444 Desig := Entity (Subtype_Indication (Type_Def));
10445
10446 -- If the access definition is to the current record,
10447 -- the visible entity at this point is an incomplete
10448 -- type. Retrieve the full view to simplify ASIS queries
10449
10450 if Ekind (Desig) = E_Incomplete_Type then
10451 Desig := Full_View (Desig);
10452 end if;
10453
10454 Set_Entity
10455 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10456 end;
10457 end if;
10458
10459 Rewrite (Comp_Def,
10460 Make_Component_Definition (Loc,
10461 Subtype_Indication =>
10462 New_Occurrence_Of (Anon_Access, Loc)));
10463
10464 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10465 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10466 else
10467 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10468 end if;
10469
10470 Set_Is_Local_Anonymous_Access (Anon_Access);
10471 end if;
10472
10473 Next (Comp);
10474 end loop;
10475
10476 if Present (Variant_Part (Comp_List)) then
10477 declare
10478 V : Node_Id;
10479 begin
10480 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10481 while Present (V) loop
10482 Check_Anonymous_Access_Components
10483 (Typ_Decl, Typ, Prev, Component_List (V));
10484 Next_Non_Pragma (V);
10485 end loop;
10486 end;
10487 end if;
10488 end Check_Anonymous_Access_Components;
10489
10490 ----------------------
10491 -- Check_Completion --
10492 ----------------------
10493
10494 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10495 E : Entity_Id;
10496
10497 procedure Post_Error;
10498 -- Post error message for lack of completion for entity E
10499
10500 ----------------
10501 -- Post_Error --
10502 ----------------
10503
10504 procedure Post_Error is
10505
10506 procedure Missing_Body;
10507 -- Output missing body message
10508
10509 ------------------
10510 -- Missing_Body --
10511 ------------------
10512
10513 procedure Missing_Body is
10514 begin
10515 -- Spec is in same unit, so we can post on spec
10516
10517 if In_Same_Source_Unit (Body_Id, E) then
10518 Error_Msg_N ("missing body for &", E);
10519
10520 -- Spec is in a separate unit, so we have to post on the body
10521
10522 else
10523 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10524 end if;
10525 end Missing_Body;
10526
10527 -- Start of processing for Post_Error
10528
10529 begin
10530 if not Comes_From_Source (E) then
10531
10532 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10533
10534 -- It may be an anonymous protected type created for a
10535 -- single variable. Post error on variable, if present.
10536
10537 declare
10538 Var : Entity_Id;
10539
10540 begin
10541 Var := First_Entity (Current_Scope);
10542 while Present (Var) loop
10543 exit when Etype (Var) = E
10544 and then Comes_From_Source (Var);
10545
10546 Next_Entity (Var);
10547 end loop;
10548
10549 if Present (Var) then
10550 E := Var;
10551 end if;
10552 end;
10553 end if;
10554 end if;
10555
10556 -- If a generated entity has no completion, then either previous
10557 -- semantic errors have disabled the expansion phase, or else we had
10558 -- missing subunits, or else we are compiling without expansion,
10559 -- or else something is very wrong.
10560
10561 if not Comes_From_Source (E) then
10562 pragma Assert
10563 (Serious_Errors_Detected > 0
10564 or else Configurable_Run_Time_Violations > 0
10565 or else Subunits_Missing
10566 or else not Expander_Active);
10567 return;
10568
10569 -- Here for source entity
10570
10571 else
10572 -- Here if no body to post the error message, so we post the error
10573 -- on the declaration that has no completion. This is not really
10574 -- the right place to post it, think about this later ???
10575
10576 if No (Body_Id) then
10577 if Is_Type (E) then
10578 Error_Msg_NE
10579 ("missing full declaration for }", Parent (E), E);
10580 else
10581 Error_Msg_NE ("missing body for &", Parent (E), E);
10582 end if;
10583
10584 -- Package body has no completion for a declaration that appears
10585 -- in the corresponding spec. Post error on the body, with a
10586 -- reference to the non-completed declaration.
10587
10588 else
10589 Error_Msg_Sloc := Sloc (E);
10590
10591 if Is_Type (E) then
10592 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10593
10594 elsif Is_Overloadable (E)
10595 and then Current_Entity_In_Scope (E) /= E
10596 then
10597 -- It may be that the completion is mistyped and appears as
10598 -- a distinct overloading of the entity.
10599
10600 declare
10601 Candidate : constant Entity_Id :=
10602 Current_Entity_In_Scope (E);
10603 Decl : constant Node_Id :=
10604 Unit_Declaration_Node (Candidate);
10605
10606 begin
10607 if Is_Overloadable (Candidate)
10608 and then Ekind (Candidate) = Ekind (E)
10609 and then Nkind (Decl) = N_Subprogram_Body
10610 and then Acts_As_Spec (Decl)
10611 then
10612 Check_Type_Conformant (Candidate, E);
10613
10614 else
10615 Missing_Body;
10616 end if;
10617 end;
10618
10619 else
10620 Missing_Body;
10621 end if;
10622 end if;
10623 end if;
10624 end Post_Error;
10625
10626 -- Start of processing for Check_Completion
10627
10628 begin
10629 E := First_Entity (Current_Scope);
10630 while Present (E) loop
10631 if Is_Intrinsic_Subprogram (E) then
10632 null;
10633
10634 -- The following situation requires special handling: a child unit
10635 -- that appears in the context clause of the body of its parent:
10636
10637 -- procedure Parent.Child (...);
10638
10639 -- with Parent.Child;
10640 -- package body Parent is
10641
10642 -- Here Parent.Child appears as a local entity, but should not be
10643 -- flagged as requiring completion, because it is a compilation
10644 -- unit.
10645
10646 -- Ignore missing completion for a subprogram that does not come from
10647 -- source (including the _Call primitive operation of RAS types,
10648 -- which has to have the flag Comes_From_Source for other purposes):
10649 -- we assume that the expander will provide the missing completion.
10650 -- In case of previous errors, other expansion actions that provide
10651 -- bodies for null procedures with not be invoked, so inhibit message
10652 -- in those cases.
10653
10654 -- Note that E_Operator is not in the list that follows, because
10655 -- this kind is reserved for predefined operators, that are
10656 -- intrinsic and do not need completion.
10657
10658 elsif Ekind_In (E, E_Function,
10659 E_Procedure,
10660 E_Generic_Function,
10661 E_Generic_Procedure)
10662 then
10663 if Has_Completion (E) then
10664 null;
10665
10666 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10667 null;
10668
10669 elsif Is_Subprogram (E)
10670 and then (not Comes_From_Source (E)
10671 or else Chars (E) = Name_uCall)
10672 then
10673 null;
10674
10675 elsif
10676 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10677 then
10678 null;
10679
10680 elsif Nkind (Parent (E)) = N_Procedure_Specification
10681 and then Null_Present (Parent (E))
10682 and then Serious_Errors_Detected > 0
10683 then
10684 null;
10685
10686 else
10687 Post_Error;
10688 end if;
10689
10690 elsif Is_Entry (E) then
10691 if not Has_Completion (E) and then
10692 (Ekind (Scope (E)) = E_Protected_Object
10693 or else Ekind (Scope (E)) = E_Protected_Type)
10694 then
10695 Post_Error;
10696 end if;
10697
10698 elsif Is_Package_Or_Generic_Package (E) then
10699 if Unit_Requires_Body (E) then
10700 if not Has_Completion (E)
10701 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10702 N_Compilation_Unit
10703 then
10704 Post_Error;
10705 end if;
10706
10707 elsif not Is_Child_Unit (E) then
10708 May_Need_Implicit_Body (E);
10709 end if;
10710
10711 -- A formal incomplete type (Ada 2012) does not require a completion;
10712 -- other incomplete type declarations do.
10713
10714 elsif Ekind (E) = E_Incomplete_Type
10715 and then No (Underlying_Type (E))
10716 and then not Is_Generic_Type (E)
10717 then
10718 Post_Error;
10719
10720 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10721 and then not Has_Completion (E)
10722 then
10723 Post_Error;
10724
10725 -- A single task declared in the current scope is a constant, verify
10726 -- that the body of its anonymous type is in the same scope. If the
10727 -- task is defined elsewhere, this may be a renaming declaration for
10728 -- which no completion is needed.
10729
10730 elsif Ekind (E) = E_Constant
10731 and then Ekind (Etype (E)) = E_Task_Type
10732 and then not Has_Completion (Etype (E))
10733 and then Scope (Etype (E)) = Current_Scope
10734 then
10735 Post_Error;
10736
10737 elsif Ekind (E) = E_Protected_Object
10738 and then not Has_Completion (Etype (E))
10739 then
10740 Post_Error;
10741
10742 elsif Ekind (E) = E_Record_Type then
10743 if Is_Tagged_Type (E) then
10744 Check_Abstract_Overriding (E);
10745 Check_Conventions (E);
10746 end if;
10747
10748 Check_Aliased_Component_Types (E);
10749
10750 elsif Ekind (E) = E_Array_Type then
10751 Check_Aliased_Component_Types (E);
10752
10753 end if;
10754
10755 Next_Entity (E);
10756 end loop;
10757 end Check_Completion;
10758
10759 ------------------------------------
10760 -- Check_CPP_Type_Has_No_Defaults --
10761 ------------------------------------
10762
10763 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10764 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10765 Clist : Node_Id;
10766 Comp : Node_Id;
10767
10768 begin
10769 -- Obtain the component list
10770
10771 if Nkind (Tdef) = N_Record_Definition then
10772 Clist := Component_List (Tdef);
10773 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10774 Clist := Component_List (Record_Extension_Part (Tdef));
10775 end if;
10776
10777 -- Check all components to ensure no default expressions
10778
10779 if Present (Clist) then
10780 Comp := First (Component_Items (Clist));
10781 while Present (Comp) loop
10782 if Present (Expression (Comp)) then
10783 Error_Msg_N
10784 ("component of imported 'C'P'P type cannot have "
10785 & "default expression", Expression (Comp));
10786 end if;
10787
10788 Next (Comp);
10789 end loop;
10790 end if;
10791 end Check_CPP_Type_Has_No_Defaults;
10792
10793 ----------------------------
10794 -- Check_Delta_Expression --
10795 ----------------------------
10796
10797 procedure Check_Delta_Expression (E : Node_Id) is
10798 begin
10799 if not (Is_Real_Type (Etype (E))) then
10800 Wrong_Type (E, Any_Real);
10801
10802 elsif not Is_OK_Static_Expression (E) then
10803 Flag_Non_Static_Expr
10804 ("non-static expression used for delta value!", E);
10805
10806 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10807 Error_Msg_N ("delta expression must be positive", E);
10808
10809 else
10810 return;
10811 end if;
10812
10813 -- If any of above errors occurred, then replace the incorrect
10814 -- expression by the real 0.1, which should prevent further errors.
10815
10816 Rewrite (E,
10817 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10818 Analyze_And_Resolve (E, Standard_Float);
10819 end Check_Delta_Expression;
10820
10821 -----------------------------
10822 -- Check_Digits_Expression --
10823 -----------------------------
10824
10825 procedure Check_Digits_Expression (E : Node_Id) is
10826 begin
10827 if not (Is_Integer_Type (Etype (E))) then
10828 Wrong_Type (E, Any_Integer);
10829
10830 elsif not Is_OK_Static_Expression (E) then
10831 Flag_Non_Static_Expr
10832 ("non-static expression used for digits value!", E);
10833
10834 elsif Expr_Value (E) <= 0 then
10835 Error_Msg_N ("digits value must be greater than zero", E);
10836
10837 else
10838 return;
10839 end if;
10840
10841 -- If any of above errors occurred, then replace the incorrect
10842 -- expression by the integer 1, which should prevent further errors.
10843
10844 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10845 Analyze_And_Resolve (E, Standard_Integer);
10846
10847 end Check_Digits_Expression;
10848
10849 --------------------------
10850 -- Check_Initialization --
10851 --------------------------
10852
10853 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10854 begin
10855 -- Special processing for limited types
10856
10857 if Is_Limited_Type (T)
10858 and then not In_Instance
10859 and then not In_Inlined_Body
10860 then
10861 if not OK_For_Limited_Init (T, Exp) then
10862
10863 -- In GNAT mode, this is just a warning, to allow it to be evilly
10864 -- turned off. Otherwise it is a real error.
10865
10866 if GNAT_Mode then
10867 Error_Msg_N
10868 ("??cannot initialize entities of limited type!", Exp);
10869
10870 elsif Ada_Version < Ada_2005 then
10871
10872 -- The side effect removal machinery may generate illegal Ada
10873 -- code to avoid the usage of access types and 'reference in
10874 -- SPARK mode. Since this is legal code with respect to theorem
10875 -- proving, do not emit the error.
10876
10877 if GNATprove_Mode
10878 and then Nkind (Exp) = N_Function_Call
10879 and then Nkind (Parent (Exp)) = N_Object_Declaration
10880 and then not Comes_From_Source
10881 (Defining_Identifier (Parent (Exp)))
10882 then
10883 null;
10884
10885 else
10886 Error_Msg_N
10887 ("cannot initialize entities of limited type", Exp);
10888 Explain_Limited_Type (T, Exp);
10889 end if;
10890
10891 else
10892 -- Specialize error message according to kind of illegal
10893 -- initial expression.
10894
10895 if Nkind (Exp) = N_Type_Conversion
10896 and then Nkind (Expression (Exp)) = N_Function_Call
10897 then
10898 Error_Msg_N
10899 ("illegal context for call"
10900 & " to function with limited result", Exp);
10901
10902 else
10903 Error_Msg_N
10904 ("initialization of limited object requires aggregate "
10905 & "or function call", Exp);
10906 end if;
10907 end if;
10908 end if;
10909 end if;
10910
10911 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10912 -- set unless we can be sure that no range check is required.
10913
10914 if (GNATprove_Mode or not Expander_Active)
10915 and then Is_Scalar_Type (T)
10916 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10917 then
10918 Set_Do_Range_Check (Exp);
10919 end if;
10920 end Check_Initialization;
10921
10922 ----------------------
10923 -- Check_Interfaces --
10924 ----------------------
10925
10926 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10927 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10928
10929 Iface : Node_Id;
10930 Iface_Def : Node_Id;
10931 Iface_Typ : Entity_Id;
10932 Parent_Node : Node_Id;
10933
10934 Is_Task : Boolean := False;
10935 -- Set True if parent type or any progenitor is a task interface
10936
10937 Is_Protected : Boolean := False;
10938 -- Set True if parent type or any progenitor is a protected interface
10939
10940 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10941 -- Check that a progenitor is compatible with declaration. If an error
10942 -- message is output, it is posted on Error_Node.
10943
10944 ------------------
10945 -- Check_Ifaces --
10946 ------------------
10947
10948 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10949 Iface_Id : constant Entity_Id :=
10950 Defining_Identifier (Parent (Iface_Def));
10951 Type_Def : Node_Id;
10952
10953 begin
10954 if Nkind (N) = N_Private_Extension_Declaration then
10955 Type_Def := N;
10956 else
10957 Type_Def := Type_Definition (N);
10958 end if;
10959
10960 if Is_Task_Interface (Iface_Id) then
10961 Is_Task := True;
10962
10963 elsif Is_Protected_Interface (Iface_Id) then
10964 Is_Protected := True;
10965 end if;
10966
10967 if Is_Synchronized_Interface (Iface_Id) then
10968
10969 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10970 -- extension derived from a synchronized interface must explicitly
10971 -- be declared synchronized, because the full view will be a
10972 -- synchronized type.
10973
10974 if Nkind (N) = N_Private_Extension_Declaration then
10975 if not Synchronized_Present (N) then
10976 Error_Msg_NE
10977 ("private extension of& must be explicitly synchronized",
10978 N, Iface_Id);
10979 end if;
10980
10981 -- However, by 3.9.4(16/2), a full type that is a record extension
10982 -- is never allowed to derive from a synchronized interface (note
10983 -- that interfaces must be excluded from this check, because those
10984 -- are represented by derived type definitions in some cases).
10985
10986 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10987 and then not Interface_Present (Type_Definition (N))
10988 then
10989 Error_Msg_N ("record extension cannot derive from synchronized "
10990 & "interface", Error_Node);
10991 end if;
10992 end if;
10993
10994 -- Check that the characteristics of the progenitor are compatible
10995 -- with the explicit qualifier in the declaration.
10996 -- The check only applies to qualifiers that come from source.
10997 -- Limited_Present also appears in the declaration of corresponding
10998 -- records, and the check does not apply to them.
10999
11000 if Limited_Present (Type_Def)
11001 and then not
11002 Is_Concurrent_Record_Type (Defining_Identifier (N))
11003 then
11004 if Is_Limited_Interface (Parent_Type)
11005 and then not Is_Limited_Interface (Iface_Id)
11006 then
11007 Error_Msg_NE
11008 ("progenitor & must be limited interface",
11009 Error_Node, Iface_Id);
11010
11011 elsif
11012 (Task_Present (Iface_Def)
11013 or else Protected_Present (Iface_Def)
11014 or else Synchronized_Present (Iface_Def))
11015 and then Nkind (N) /= N_Private_Extension_Declaration
11016 and then not Error_Posted (N)
11017 then
11018 Error_Msg_NE
11019 ("progenitor & must be limited interface",
11020 Error_Node, Iface_Id);
11021 end if;
11022
11023 -- Protected interfaces can only inherit from limited, synchronized
11024 -- or protected interfaces.
11025
11026 elsif Nkind (N) = N_Full_Type_Declaration
11027 and then Protected_Present (Type_Def)
11028 then
11029 if Limited_Present (Iface_Def)
11030 or else Synchronized_Present (Iface_Def)
11031 or else Protected_Present (Iface_Def)
11032 then
11033 null;
11034
11035 elsif Task_Present (Iface_Def) then
11036 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11037 & "from task interface", Error_Node);
11038
11039 else
11040 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11041 & "from non-limited interface", Error_Node);
11042 end if;
11043
11044 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11045 -- limited and synchronized.
11046
11047 elsif Synchronized_Present (Type_Def) then
11048 if Limited_Present (Iface_Def)
11049 or else Synchronized_Present (Iface_Def)
11050 then
11051 null;
11052
11053 elsif Protected_Present (Iface_Def)
11054 and then Nkind (N) /= N_Private_Extension_Declaration
11055 then
11056 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11057 & "from protected interface", Error_Node);
11058
11059 elsif Task_Present (Iface_Def)
11060 and then Nkind (N) /= N_Private_Extension_Declaration
11061 then
11062 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11063 & "from task interface", Error_Node);
11064
11065 elsif not Is_Limited_Interface (Iface_Id) then
11066 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11067 & "from non-limited interface", Error_Node);
11068 end if;
11069
11070 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11071 -- synchronized or task interfaces.
11072
11073 elsif Nkind (N) = N_Full_Type_Declaration
11074 and then Task_Present (Type_Def)
11075 then
11076 if Limited_Present (Iface_Def)
11077 or else Synchronized_Present (Iface_Def)
11078 or else Task_Present (Iface_Def)
11079 then
11080 null;
11081
11082 elsif Protected_Present (Iface_Def) then
11083 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11084 & "protected interface", Error_Node);
11085
11086 else
11087 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11088 & "non-limited interface", Error_Node);
11089 end if;
11090 end if;
11091 end Check_Ifaces;
11092
11093 -- Start of processing for Check_Interfaces
11094
11095 begin
11096 if Is_Interface (Parent_Type) then
11097 if Is_Task_Interface (Parent_Type) then
11098 Is_Task := True;
11099
11100 elsif Is_Protected_Interface (Parent_Type) then
11101 Is_Protected := True;
11102 end if;
11103 end if;
11104
11105 if Nkind (N) = N_Private_Extension_Declaration then
11106
11107 -- Check that progenitors are compatible with declaration
11108
11109 Iface := First (Interface_List (Def));
11110 while Present (Iface) loop
11111 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11112
11113 Parent_Node := Parent (Base_Type (Iface_Typ));
11114 Iface_Def := Type_Definition (Parent_Node);
11115
11116 if not Is_Interface (Iface_Typ) then
11117 Diagnose_Interface (Iface, Iface_Typ);
11118 else
11119 Check_Ifaces (Iface_Def, Iface);
11120 end if;
11121
11122 Next (Iface);
11123 end loop;
11124
11125 if Is_Task and Is_Protected then
11126 Error_Msg_N
11127 ("type cannot derive from task and protected interface", N);
11128 end if;
11129
11130 return;
11131 end if;
11132
11133 -- Full type declaration of derived type.
11134 -- Check compatibility with parent if it is interface type
11135
11136 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11137 and then Is_Interface (Parent_Type)
11138 then
11139 Parent_Node := Parent (Parent_Type);
11140
11141 -- More detailed checks for interface varieties
11142
11143 Check_Ifaces
11144 (Iface_Def => Type_Definition (Parent_Node),
11145 Error_Node => Subtype_Indication (Type_Definition (N)));
11146 end if;
11147
11148 Iface := First (Interface_List (Def));
11149 while Present (Iface) loop
11150 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11151
11152 Parent_Node := Parent (Base_Type (Iface_Typ));
11153 Iface_Def := Type_Definition (Parent_Node);
11154
11155 if not Is_Interface (Iface_Typ) then
11156 Diagnose_Interface (Iface, Iface_Typ);
11157
11158 else
11159 -- "The declaration of a specific descendant of an interface
11160 -- type freezes the interface type" RM 13.14
11161
11162 Freeze_Before (N, Iface_Typ);
11163 Check_Ifaces (Iface_Def, Error_Node => Iface);
11164 end if;
11165
11166 Next (Iface);
11167 end loop;
11168
11169 if Is_Task and Is_Protected then
11170 Error_Msg_N
11171 ("type cannot derive from task and protected interface", N);
11172 end if;
11173 end Check_Interfaces;
11174
11175 ------------------------------------
11176 -- Check_Or_Process_Discriminants --
11177 ------------------------------------
11178
11179 -- If an incomplete or private type declaration was already given for the
11180 -- type, the discriminants may have already been processed if they were
11181 -- present on the incomplete declaration. In this case a full conformance
11182 -- check has been performed in Find_Type_Name, and we then recheck here
11183 -- some properties that can't be checked on the partial view alone.
11184 -- Otherwise we call Process_Discriminants.
11185
11186 procedure Check_Or_Process_Discriminants
11187 (N : Node_Id;
11188 T : Entity_Id;
11189 Prev : Entity_Id := Empty)
11190 is
11191 begin
11192 if Has_Discriminants (T) then
11193
11194 -- Discriminants are already set on T if they were already present
11195 -- on the partial view. Make them visible to component declarations.
11196
11197 declare
11198 D : Entity_Id;
11199 -- Discriminant on T (full view) referencing expr on partial view
11200
11201 Prev_D : Entity_Id;
11202 -- Entity of corresponding discriminant on partial view
11203
11204 New_D : Node_Id;
11205 -- Discriminant specification for full view, expression is
11206 -- the syntactic copy on full view (which has been checked for
11207 -- conformance with partial view), only used here to post error
11208 -- message.
11209
11210 begin
11211 D := First_Discriminant (T);
11212 New_D := First (Discriminant_Specifications (N));
11213 while Present (D) loop
11214 Prev_D := Current_Entity (D);
11215 Set_Current_Entity (D);
11216 Set_Is_Immediately_Visible (D);
11217 Set_Homonym (D, Prev_D);
11218
11219 -- Handle the case where there is an untagged partial view and
11220 -- the full view is tagged: must disallow discriminants with
11221 -- defaults, unless compiling for Ada 2012, which allows a
11222 -- limited tagged type to have defaulted discriminants (see
11223 -- AI05-0214). However, suppress error here if it was already
11224 -- reported on the default expression of the partial view.
11225
11226 if Is_Tagged_Type (T)
11227 and then Present (Expression (Parent (D)))
11228 and then (not Is_Limited_Type (Current_Scope)
11229 or else Ada_Version < Ada_2012)
11230 and then not Error_Posted (Expression (Parent (D)))
11231 then
11232 if Ada_Version >= Ada_2012 then
11233 Error_Msg_N
11234 ("discriminants of nonlimited tagged type cannot have "
11235 & "defaults",
11236 Expression (New_D));
11237 else
11238 Error_Msg_N
11239 ("discriminants of tagged type cannot have defaults",
11240 Expression (New_D));
11241 end if;
11242 end if;
11243
11244 -- Ada 2005 (AI-230): Access discriminant allowed in
11245 -- non-limited record types.
11246
11247 if Ada_Version < Ada_2005 then
11248
11249 -- This restriction gets applied to the full type here. It
11250 -- has already been applied earlier to the partial view.
11251
11252 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11253 end if;
11254
11255 Next_Discriminant (D);
11256 Next (New_D);
11257 end loop;
11258 end;
11259
11260 elsif Present (Discriminant_Specifications (N)) then
11261 Process_Discriminants (N, Prev);
11262 end if;
11263 end Check_Or_Process_Discriminants;
11264
11265 ----------------------
11266 -- Check_Real_Bound --
11267 ----------------------
11268
11269 procedure Check_Real_Bound (Bound : Node_Id) is
11270 begin
11271 if not Is_Real_Type (Etype (Bound)) then
11272 Error_Msg_N
11273 ("bound in real type definition must be of real type", Bound);
11274
11275 elsif not Is_OK_Static_Expression (Bound) then
11276 Flag_Non_Static_Expr
11277 ("non-static expression used for real type bound!", Bound);
11278
11279 else
11280 return;
11281 end if;
11282
11283 Rewrite
11284 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11285 Analyze (Bound);
11286 Resolve (Bound, Standard_Float);
11287 end Check_Real_Bound;
11288
11289 ------------------------------
11290 -- Complete_Private_Subtype --
11291 ------------------------------
11292
11293 procedure Complete_Private_Subtype
11294 (Priv : Entity_Id;
11295 Full : Entity_Id;
11296 Full_Base : Entity_Id;
11297 Related_Nod : Node_Id)
11298 is
11299 Save_Next_Entity : Entity_Id;
11300 Save_Homonym : Entity_Id;
11301
11302 begin
11303 -- Set semantic attributes for (implicit) private subtype completion.
11304 -- If the full type has no discriminants, then it is a copy of the
11305 -- full view of the base. Otherwise, it is a subtype of the base with
11306 -- a possible discriminant constraint. Save and restore the original
11307 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11308 -- not corrupt the entity chain.
11309
11310 -- Note that the type of the full view is the same entity as the type
11311 -- of the partial view. In this fashion, the subtype has access to the
11312 -- correct view of the parent.
11313
11314 Save_Next_Entity := Next_Entity (Full);
11315 Save_Homonym := Homonym (Priv);
11316
11317 case Ekind (Full_Base) is
11318 when E_Record_Type |
11319 E_Record_Subtype |
11320 Class_Wide_Kind |
11321 Private_Kind |
11322 Task_Kind |
11323 Protected_Kind =>
11324 Copy_Node (Priv, Full);
11325
11326 Set_Has_Discriminants
11327 (Full, Has_Discriminants (Full_Base));
11328 Set_Has_Unknown_Discriminants
11329 (Full, Has_Unknown_Discriminants (Full_Base));
11330 Set_First_Entity (Full, First_Entity (Full_Base));
11331 Set_Last_Entity (Full, Last_Entity (Full_Base));
11332
11333 -- If the underlying base type is constrained, we know that the
11334 -- full view of the subtype is constrained as well (the converse
11335 -- is not necessarily true).
11336
11337 if Is_Constrained (Full_Base) then
11338 Set_Is_Constrained (Full);
11339 end if;
11340
11341 when others =>
11342 Copy_Node (Full_Base, Full);
11343
11344 Set_Chars (Full, Chars (Priv));
11345 Conditional_Delay (Full, Priv);
11346 Set_Sloc (Full, Sloc (Priv));
11347 end case;
11348
11349 Set_Next_Entity (Full, Save_Next_Entity);
11350 Set_Homonym (Full, Save_Homonym);
11351 Set_Associated_Node_For_Itype (Full, Related_Nod);
11352
11353 -- Set common attributes for all subtypes: kind, convention, etc.
11354
11355 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11356 Set_Convention (Full, Convention (Full_Base));
11357
11358 -- The Etype of the full view is inconsistent. Gigi needs to see the
11359 -- structural full view, which is what the current scheme gives: the
11360 -- Etype of the full view is the etype of the full base. However, if the
11361 -- full base is a derived type, the full view then looks like a subtype
11362 -- of the parent, not a subtype of the full base. If instead we write:
11363
11364 -- Set_Etype (Full, Full_Base);
11365
11366 -- then we get inconsistencies in the front-end (confusion between
11367 -- views). Several outstanding bugs are related to this ???
11368
11369 Set_Is_First_Subtype (Full, False);
11370 Set_Scope (Full, Scope (Priv));
11371 Set_Size_Info (Full, Full_Base);
11372 Set_RM_Size (Full, RM_Size (Full_Base));
11373 Set_Is_Itype (Full);
11374
11375 -- A subtype of a private-type-without-discriminants, whose full-view
11376 -- has discriminants with default expressions, is not constrained.
11377
11378 if not Has_Discriminants (Priv) then
11379 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11380
11381 if Has_Discriminants (Full_Base) then
11382 Set_Discriminant_Constraint
11383 (Full, Discriminant_Constraint (Full_Base));
11384
11385 -- The partial view may have been indefinite, the full view
11386 -- might not be.
11387
11388 Set_Has_Unknown_Discriminants
11389 (Full, Has_Unknown_Discriminants (Full_Base));
11390 end if;
11391 end if;
11392
11393 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11394 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11395
11396 -- Freeze the private subtype entity if its parent is delayed, and not
11397 -- already frozen. We skip this processing if the type is an anonymous
11398 -- subtype of a record component, or is the corresponding record of a
11399 -- protected type, since ???
11400
11401 if not Is_Type (Scope (Full)) then
11402 Set_Has_Delayed_Freeze (Full,
11403 Has_Delayed_Freeze (Full_Base)
11404 and then (not Is_Frozen (Full_Base)));
11405 end if;
11406
11407 Set_Freeze_Node (Full, Empty);
11408 Set_Is_Frozen (Full, False);
11409 Set_Full_View (Priv, Full);
11410
11411 if Has_Discriminants (Full) then
11412 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11413 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11414
11415 if Has_Unknown_Discriminants (Full) then
11416 Set_Discriminant_Constraint (Full, No_Elist);
11417 end if;
11418 end if;
11419
11420 if Ekind (Full_Base) = E_Record_Type
11421 and then Has_Discriminants (Full_Base)
11422 and then Has_Discriminants (Priv) -- might not, if errors
11423 and then not Has_Unknown_Discriminants (Priv)
11424 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11425 then
11426 Create_Constrained_Components
11427 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11428
11429 -- If the full base is itself derived from private, build a congruent
11430 -- subtype of its underlying type, for use by the back end. For a
11431 -- constrained record component, the declaration cannot be placed on
11432 -- the component list, but it must nevertheless be built an analyzed, to
11433 -- supply enough information for Gigi to compute the size of component.
11434
11435 elsif Ekind (Full_Base) in Private_Kind
11436 and then Is_Derived_Type (Full_Base)
11437 and then Has_Discriminants (Full_Base)
11438 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11439 then
11440 if not Is_Itype (Priv)
11441 and then
11442 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11443 then
11444 Build_Underlying_Full_View
11445 (Parent (Priv), Full, Etype (Full_Base));
11446
11447 elsif Nkind (Related_Nod) = N_Component_Declaration then
11448 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11449 end if;
11450
11451 elsif Is_Record_Type (Full_Base) then
11452
11453 -- Show Full is simply a renaming of Full_Base
11454
11455 Set_Cloned_Subtype (Full, Full_Base);
11456 end if;
11457
11458 -- It is unsafe to share the bounds of a scalar type, because the Itype
11459 -- is elaborated on demand, and if a bound is non-static then different
11460 -- orders of elaboration in different units will lead to different
11461 -- external symbols.
11462
11463 if Is_Scalar_Type (Full_Base) then
11464 Set_Scalar_Range (Full,
11465 Make_Range (Sloc (Related_Nod),
11466 Low_Bound =>
11467 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11468 High_Bound =>
11469 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11470
11471 -- This completion inherits the bounds of the full parent, but if
11472 -- the parent is an unconstrained floating point type, so is the
11473 -- completion.
11474
11475 if Is_Floating_Point_Type (Full_Base) then
11476 Set_Includes_Infinities
11477 (Scalar_Range (Full), Has_Infinities (Full_Base));
11478 end if;
11479 end if;
11480
11481 -- ??? It seems that a lot of fields are missing that should be copied
11482 -- from Full_Base to Full. Here are some that are introduced in a
11483 -- non-disruptive way but a cleanup is necessary.
11484
11485 if Is_Tagged_Type (Full_Base) then
11486 Set_Is_Tagged_Type (Full);
11487 Set_Direct_Primitive_Operations
11488 (Full, Direct_Primitive_Operations (Full_Base));
11489 Set_No_Tagged_Streams_Pragma
11490 (Full, No_Tagged_Streams_Pragma (Full_Base));
11491
11492 -- Inherit class_wide type of full_base in case the partial view was
11493 -- not tagged. Otherwise it has already been created when the private
11494 -- subtype was analyzed.
11495
11496 if No (Class_Wide_Type (Full)) then
11497 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11498 end if;
11499
11500 -- If this is a subtype of a protected or task type, constrain its
11501 -- corresponding record, unless this is a subtype without constraints,
11502 -- i.e. a simple renaming as with an actual subtype in an instance.
11503
11504 elsif Is_Concurrent_Type (Full_Base) then
11505 if Has_Discriminants (Full)
11506 and then Present (Corresponding_Record_Type (Full_Base))
11507 and then
11508 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11509 then
11510 Set_Corresponding_Record_Type (Full,
11511 Constrain_Corresponding_Record
11512 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11513
11514 else
11515 Set_Corresponding_Record_Type (Full,
11516 Corresponding_Record_Type (Full_Base));
11517 end if;
11518 end if;
11519
11520 -- Link rep item chain, and also setting of Has_Predicates from private
11521 -- subtype to full subtype, since we will need these on the full subtype
11522 -- to create the predicate function. Note that the full subtype may
11523 -- already have rep items, inherited from the full view of the base
11524 -- type, so we must be sure not to overwrite these entries.
11525
11526 declare
11527 Append : Boolean;
11528 Item : Node_Id;
11529 Next_Item : Node_Id;
11530
11531 begin
11532 Item := First_Rep_Item (Full);
11533
11534 -- If no existing rep items on full type, we can just link directly
11535 -- to the list of items on the private type.
11536
11537 if No (Item) then
11538 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11539
11540 -- Otherwise, search to the end of items currently linked to the full
11541 -- subtype and append the private items to the end. However, if Priv
11542 -- and Full already have the same list of rep items, then the append
11543 -- is not done, as that would create a circularity.
11544
11545 elsif Item /= First_Rep_Item (Priv) then
11546 Append := True;
11547 loop
11548 Next_Item := Next_Rep_Item (Item);
11549 exit when No (Next_Item);
11550 Item := Next_Item;
11551
11552 -- If the private view has aspect specifications, the full view
11553 -- inherits them. Since these aspects may already have been
11554 -- attached to the full view during derivation, do not append
11555 -- them if already present.
11556
11557 if Item = First_Rep_Item (Priv) then
11558 Append := False;
11559 exit;
11560 end if;
11561 end loop;
11562
11563 -- And link the private type items at the end of the chain
11564
11565 if Append then
11566 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11567 end if;
11568 end if;
11569 end;
11570
11571 -- Make sure Has_Predicates is set on full type if it is set on the
11572 -- private type. Note that it may already be set on the full type and
11573 -- if so, we don't want to unset it.
11574
11575 if Has_Predicates (Priv) then
11576 Set_Has_Predicates (Full);
11577 end if;
11578 end Complete_Private_Subtype;
11579
11580 ----------------------------
11581 -- Constant_Redeclaration --
11582 ----------------------------
11583
11584 procedure Constant_Redeclaration
11585 (Id : Entity_Id;
11586 N : Node_Id;
11587 T : out Entity_Id)
11588 is
11589 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11590 Obj_Def : constant Node_Id := Object_Definition (N);
11591 New_T : Entity_Id;
11592
11593 procedure Check_Possible_Deferred_Completion
11594 (Prev_Id : Entity_Id;
11595 Prev_Obj_Def : Node_Id;
11596 Curr_Obj_Def : Node_Id);
11597 -- Determine whether the two object definitions describe the partial
11598 -- and the full view of a constrained deferred constant. Generate
11599 -- a subtype for the full view and verify that it statically matches
11600 -- the subtype of the partial view.
11601
11602 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11603 -- If deferred constant is an access type initialized with an allocator,
11604 -- check whether there is an illegal recursion in the definition,
11605 -- through a default value of some record subcomponent. This is normally
11606 -- detected when generating init procs, but requires this additional
11607 -- mechanism when expansion is disabled.
11608
11609 ----------------------------------------
11610 -- Check_Possible_Deferred_Completion --
11611 ----------------------------------------
11612
11613 procedure Check_Possible_Deferred_Completion
11614 (Prev_Id : Entity_Id;
11615 Prev_Obj_Def : Node_Id;
11616 Curr_Obj_Def : Node_Id)
11617 is
11618 begin
11619 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11620 and then Present (Constraint (Prev_Obj_Def))
11621 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11622 and then Present (Constraint (Curr_Obj_Def))
11623 then
11624 declare
11625 Loc : constant Source_Ptr := Sloc (N);
11626 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11627 Decl : constant Node_Id :=
11628 Make_Subtype_Declaration (Loc,
11629 Defining_Identifier => Def_Id,
11630 Subtype_Indication =>
11631 Relocate_Node (Curr_Obj_Def));
11632
11633 begin
11634 Insert_Before_And_Analyze (N, Decl);
11635 Set_Etype (Id, Def_Id);
11636
11637 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11638 Error_Msg_Sloc := Sloc (Prev_Id);
11639 Error_Msg_N ("subtype does not statically match deferred "
11640 & "declaration #", N);
11641 end if;
11642 end;
11643 end if;
11644 end Check_Possible_Deferred_Completion;
11645
11646 ---------------------------------
11647 -- Check_Recursive_Declaration --
11648 ---------------------------------
11649
11650 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11651 Comp : Entity_Id;
11652
11653 begin
11654 if Is_Record_Type (Typ) then
11655 Comp := First_Component (Typ);
11656 while Present (Comp) loop
11657 if Comes_From_Source (Comp) then
11658 if Present (Expression (Parent (Comp)))
11659 and then Is_Entity_Name (Expression (Parent (Comp)))
11660 and then Entity (Expression (Parent (Comp))) = Prev
11661 then
11662 Error_Msg_Sloc := Sloc (Parent (Comp));
11663 Error_Msg_NE
11664 ("illegal circularity with declaration for & #",
11665 N, Comp);
11666 return;
11667
11668 elsif Is_Record_Type (Etype (Comp)) then
11669 Check_Recursive_Declaration (Etype (Comp));
11670 end if;
11671 end if;
11672
11673 Next_Component (Comp);
11674 end loop;
11675 end if;
11676 end Check_Recursive_Declaration;
11677
11678 -- Start of processing for Constant_Redeclaration
11679
11680 begin
11681 if Nkind (Parent (Prev)) = N_Object_Declaration then
11682 if Nkind (Object_Definition
11683 (Parent (Prev))) = N_Subtype_Indication
11684 then
11685 -- Find type of new declaration. The constraints of the two
11686 -- views must match statically, but there is no point in
11687 -- creating an itype for the full view.
11688
11689 if Nkind (Obj_Def) = N_Subtype_Indication then
11690 Find_Type (Subtype_Mark (Obj_Def));
11691 New_T := Entity (Subtype_Mark (Obj_Def));
11692
11693 else
11694 Find_Type (Obj_Def);
11695 New_T := Entity (Obj_Def);
11696 end if;
11697
11698 T := Etype (Prev);
11699
11700 else
11701 -- The full view may impose a constraint, even if the partial
11702 -- view does not, so construct the subtype.
11703
11704 New_T := Find_Type_Of_Object (Obj_Def, N);
11705 T := New_T;
11706 end if;
11707
11708 else
11709 -- Current declaration is illegal, diagnosed below in Enter_Name
11710
11711 T := Empty;
11712 New_T := Any_Type;
11713 end if;
11714
11715 -- If previous full declaration or a renaming declaration exists, or if
11716 -- a homograph is present, let Enter_Name handle it, either with an
11717 -- error or with the removal of an overridden implicit subprogram.
11718 -- The previous one is a full declaration if it has an expression
11719 -- (which in the case of an aggregate is indicated by the Init flag).
11720
11721 if Ekind (Prev) /= E_Constant
11722 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11723 or else Present (Expression (Parent (Prev)))
11724 or else Has_Init_Expression (Parent (Prev))
11725 or else Present (Full_View (Prev))
11726 then
11727 Enter_Name (Id);
11728
11729 -- Verify that types of both declarations match, or else that both types
11730 -- are anonymous access types whose designated subtypes statically match
11731 -- (as allowed in Ada 2005 by AI-385).
11732
11733 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11734 and then
11735 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11736 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11737 or else Is_Access_Constant (Etype (New_T)) /=
11738 Is_Access_Constant (Etype (Prev))
11739 or else Can_Never_Be_Null (Etype (New_T)) /=
11740 Can_Never_Be_Null (Etype (Prev))
11741 or else Null_Exclusion_Present (Parent (Prev)) /=
11742 Null_Exclusion_Present (Parent (Id))
11743 or else not Subtypes_Statically_Match
11744 (Designated_Type (Etype (Prev)),
11745 Designated_Type (Etype (New_T))))
11746 then
11747 Error_Msg_Sloc := Sloc (Prev);
11748 Error_Msg_N ("type does not match declaration#", N);
11749 Set_Full_View (Prev, Id);
11750 Set_Etype (Id, Any_Type);
11751
11752 -- A deferred constant whose type is an anonymous array is always
11753 -- illegal (unless imported). A detailed error message might be
11754 -- helpful for Ada beginners.
11755
11756 if Nkind (Object_Definition (Parent (Prev)))
11757 = N_Constrained_Array_Definition
11758 and then Nkind (Object_Definition (N))
11759 = N_Constrained_Array_Definition
11760 then
11761 Error_Msg_N ("\each anonymous array is a distinct type", N);
11762 Error_Msg_N ("a deferred constant must have a named type",
11763 Object_Definition (Parent (Prev)));
11764 end if;
11765
11766 elsif
11767 Null_Exclusion_Present (Parent (Prev))
11768 and then not Null_Exclusion_Present (N)
11769 then
11770 Error_Msg_Sloc := Sloc (Prev);
11771 Error_Msg_N ("null-exclusion does not match declaration#", N);
11772 Set_Full_View (Prev, Id);
11773 Set_Etype (Id, Any_Type);
11774
11775 -- If so, process the full constant declaration
11776
11777 else
11778 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11779 -- the deferred declaration is constrained, then the subtype defined
11780 -- by the subtype_indication in the full declaration shall match it
11781 -- statically.
11782
11783 Check_Possible_Deferred_Completion
11784 (Prev_Id => Prev,
11785 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11786 Curr_Obj_Def => Obj_Def);
11787
11788 Set_Full_View (Prev, Id);
11789 Set_Is_Public (Id, Is_Public (Prev));
11790 Set_Is_Internal (Id);
11791 Append_Entity (Id, Current_Scope);
11792
11793 -- Check ALIASED present if present before (RM 7.4(7))
11794
11795 if Is_Aliased (Prev)
11796 and then not Aliased_Present (N)
11797 then
11798 Error_Msg_Sloc := Sloc (Prev);
11799 Error_Msg_N ("ALIASED required (see declaration #)", N);
11800 end if;
11801
11802 -- Check that placement is in private part and that the incomplete
11803 -- declaration appeared in the visible part.
11804
11805 if Ekind (Current_Scope) = E_Package
11806 and then not In_Private_Part (Current_Scope)
11807 then
11808 Error_Msg_Sloc := Sloc (Prev);
11809 Error_Msg_N
11810 ("full constant for declaration#"
11811 & " must be in private part", N);
11812
11813 elsif Ekind (Current_Scope) = E_Package
11814 and then
11815 List_Containing (Parent (Prev)) /=
11816 Visible_Declarations (Package_Specification (Current_Scope))
11817 then
11818 Error_Msg_N
11819 ("deferred constant must be declared in visible part",
11820 Parent (Prev));
11821 end if;
11822
11823 if Is_Access_Type (T)
11824 and then Nkind (Expression (N)) = N_Allocator
11825 then
11826 Check_Recursive_Declaration (Designated_Type (T));
11827 end if;
11828
11829 -- A deferred constant is a visible entity. If type has invariants,
11830 -- verify that the initial value satisfies them.
11831
11832 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11833 Insert_After (N,
11834 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11835 end if;
11836 end if;
11837 end Constant_Redeclaration;
11838
11839 ----------------------
11840 -- Constrain_Access --
11841 ----------------------
11842
11843 procedure Constrain_Access
11844 (Def_Id : in out Entity_Id;
11845 S : Node_Id;
11846 Related_Nod : Node_Id)
11847 is
11848 T : constant Entity_Id := Entity (Subtype_Mark (S));
11849 Desig_Type : constant Entity_Id := Designated_Type (T);
11850 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11851 Constraint_OK : Boolean := True;
11852
11853 begin
11854 if Is_Array_Type (Desig_Type) then
11855 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11856
11857 elsif (Is_Record_Type (Desig_Type)
11858 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11859 and then not Is_Constrained (Desig_Type)
11860 then
11861 -- ??? The following code is a temporary bypass to ignore a
11862 -- discriminant constraint on access type if it is constraining
11863 -- the current record. Avoid creating the implicit subtype of the
11864 -- record we are currently compiling since right now, we cannot
11865 -- handle these. For now, just return the access type itself.
11866
11867 if Desig_Type = Current_Scope
11868 and then No (Def_Id)
11869 then
11870 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11871 Def_Id := Entity (Subtype_Mark (S));
11872
11873 -- This call added to ensure that the constraint is analyzed
11874 -- (needed for a B test). Note that we still return early from
11875 -- this procedure to avoid recursive processing. ???
11876
11877 Constrain_Discriminated_Type
11878 (Desig_Subtype, S, Related_Nod, For_Access => True);
11879 return;
11880 end if;
11881
11882 -- Enforce rule that the constraint is illegal if there is an
11883 -- unconstrained view of the designated type. This means that the
11884 -- partial view (either a private type declaration or a derivation
11885 -- from a private type) has no discriminants. (Defect Report
11886 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11887
11888 -- Rule updated for Ada 2005: The private type is said to have
11889 -- a constrained partial view, given that objects of the type
11890 -- can be declared. Furthermore, the rule applies to all access
11891 -- types, unlike the rule concerning default discriminants (see
11892 -- RM 3.7.1(7/3))
11893
11894 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
11895 and then Has_Private_Declaration (Desig_Type)
11896 and then In_Open_Scopes (Scope (Desig_Type))
11897 and then Has_Discriminants (Desig_Type)
11898 then
11899 declare
11900 Pack : constant Node_Id :=
11901 Unit_Declaration_Node (Scope (Desig_Type));
11902 Decls : List_Id;
11903 Decl : Node_Id;
11904
11905 begin
11906 if Nkind (Pack) = N_Package_Declaration then
11907 Decls := Visible_Declarations (Specification (Pack));
11908 Decl := First (Decls);
11909 while Present (Decl) loop
11910 if (Nkind (Decl) = N_Private_Type_Declaration
11911 and then Chars (Defining_Identifier (Decl)) =
11912 Chars (Desig_Type))
11913
11914 or else
11915 (Nkind (Decl) = N_Full_Type_Declaration
11916 and then
11917 Chars (Defining_Identifier (Decl)) =
11918 Chars (Desig_Type)
11919 and then Is_Derived_Type (Desig_Type)
11920 and then
11921 Has_Private_Declaration (Etype (Desig_Type)))
11922 then
11923 if No (Discriminant_Specifications (Decl)) then
11924 Error_Msg_N
11925 ("cannot constrain access type if designated "
11926 & "type has constrained partial view", S);
11927 end if;
11928
11929 exit;
11930 end if;
11931
11932 Next (Decl);
11933 end loop;
11934 end if;
11935 end;
11936 end if;
11937
11938 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11939 For_Access => True);
11940
11941 elsif Is_Concurrent_Type (Desig_Type)
11942 and then not Is_Constrained (Desig_Type)
11943 then
11944 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11945
11946 else
11947 Error_Msg_N ("invalid constraint on access type", S);
11948
11949 -- We simply ignore an invalid constraint
11950
11951 Desig_Subtype := Desig_Type;
11952 Constraint_OK := False;
11953 end if;
11954
11955 if No (Def_Id) then
11956 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11957 else
11958 Set_Ekind (Def_Id, E_Access_Subtype);
11959 end if;
11960
11961 if Constraint_OK then
11962 Set_Etype (Def_Id, Base_Type (T));
11963
11964 if Is_Private_Type (Desig_Type) then
11965 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11966 end if;
11967 else
11968 Set_Etype (Def_Id, Any_Type);
11969 end if;
11970
11971 Set_Size_Info (Def_Id, T);
11972 Set_Is_Constrained (Def_Id, Constraint_OK);
11973 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11974 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11975 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11976
11977 Conditional_Delay (Def_Id, T);
11978
11979 -- AI-363 : Subtypes of general access types whose designated types have
11980 -- default discriminants are disallowed. In instances, the rule has to
11981 -- be checked against the actual, of which T is the subtype. In a
11982 -- generic body, the rule is checked assuming that the actual type has
11983 -- defaulted discriminants.
11984
11985 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11986 if Ekind (Base_Type (T)) = E_General_Access_Type
11987 and then Has_Defaulted_Discriminants (Desig_Type)
11988 then
11989 if Ada_Version < Ada_2005 then
11990 Error_Msg_N
11991 ("access subtype of general access type would not " &
11992 "be allowed in Ada 2005?y?", S);
11993 else
11994 Error_Msg_N
11995 ("access subtype of general access type not allowed", S);
11996 end if;
11997
11998 Error_Msg_N ("\discriminants have defaults", S);
11999
12000 elsif Is_Access_Type (T)
12001 and then Is_Generic_Type (Desig_Type)
12002 and then Has_Discriminants (Desig_Type)
12003 and then In_Package_Body (Current_Scope)
12004 then
12005 if Ada_Version < Ada_2005 then
12006 Error_Msg_N
12007 ("access subtype would not be allowed in generic body "
12008 & "in Ada 2005?y?", S);
12009 else
12010 Error_Msg_N
12011 ("access subtype not allowed in generic body", S);
12012 end if;
12013
12014 Error_Msg_N
12015 ("\designated type is a discriminated formal", S);
12016 end if;
12017 end if;
12018 end Constrain_Access;
12019
12020 ---------------------
12021 -- Constrain_Array --
12022 ---------------------
12023
12024 procedure Constrain_Array
12025 (Def_Id : in out Entity_Id;
12026 SI : Node_Id;
12027 Related_Nod : Node_Id;
12028 Related_Id : Entity_Id;
12029 Suffix : Character)
12030 is
12031 C : constant Node_Id := Constraint (SI);
12032 Number_Of_Constraints : Nat := 0;
12033 Index : Node_Id;
12034 S, T : Entity_Id;
12035 Constraint_OK : Boolean := True;
12036
12037 begin
12038 T := Entity (Subtype_Mark (SI));
12039
12040 if Is_Access_Type (T) then
12041 T := Designated_Type (T);
12042 end if;
12043
12044 -- If an index constraint follows a subtype mark in a subtype indication
12045 -- then the type or subtype denoted by the subtype mark must not already
12046 -- impose an index constraint. The subtype mark must denote either an
12047 -- unconstrained array type or an access type whose designated type
12048 -- is such an array type... (RM 3.6.1)
12049
12050 if Is_Constrained (T) then
12051 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12052 Constraint_OK := False;
12053
12054 else
12055 S := First (Constraints (C));
12056 while Present (S) loop
12057 Number_Of_Constraints := Number_Of_Constraints + 1;
12058 Next (S);
12059 end loop;
12060
12061 -- In either case, the index constraint must provide a discrete
12062 -- range for each index of the array type and the type of each
12063 -- discrete range must be the same as that of the corresponding
12064 -- index. (RM 3.6.1)
12065
12066 if Number_Of_Constraints /= Number_Dimensions (T) then
12067 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12068 Constraint_OK := False;
12069
12070 else
12071 S := First (Constraints (C));
12072 Index := First_Index (T);
12073 Analyze (Index);
12074
12075 -- Apply constraints to each index type
12076
12077 for J in 1 .. Number_Of_Constraints loop
12078 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12079 Next (Index);
12080 Next (S);
12081 end loop;
12082
12083 end if;
12084 end if;
12085
12086 if No (Def_Id) then
12087 Def_Id :=
12088 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12089 Set_Parent (Def_Id, Related_Nod);
12090
12091 else
12092 Set_Ekind (Def_Id, E_Array_Subtype);
12093 end if;
12094
12095 Set_Size_Info (Def_Id, (T));
12096 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12097 Set_Etype (Def_Id, Base_Type (T));
12098
12099 if Constraint_OK then
12100 Set_First_Index (Def_Id, First (Constraints (C)));
12101 else
12102 Set_First_Index (Def_Id, First_Index (T));
12103 end if;
12104
12105 Set_Is_Constrained (Def_Id, True);
12106 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12107 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12108
12109 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12110 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12111
12112 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12113 -- We need to initialize the attribute because if Def_Id is previously
12114 -- analyzed through a limited_with clause, it will have the attributes
12115 -- of an incomplete type, one of which is an Elist that overlaps the
12116 -- Packed_Array_Impl_Type field.
12117
12118 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12119
12120 -- Build a freeze node if parent still needs one. Also make sure that
12121 -- the Depends_On_Private status is set because the subtype will need
12122 -- reprocessing at the time the base type does, and also we must set a
12123 -- conditional delay.
12124
12125 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12126 Conditional_Delay (Def_Id, T);
12127 end Constrain_Array;
12128
12129 ------------------------------
12130 -- Constrain_Component_Type --
12131 ------------------------------
12132
12133 function Constrain_Component_Type
12134 (Comp : Entity_Id;
12135 Constrained_Typ : Entity_Id;
12136 Related_Node : Node_Id;
12137 Typ : Entity_Id;
12138 Constraints : Elist_Id) return Entity_Id
12139 is
12140 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12141 Compon_Type : constant Entity_Id := Etype (Comp);
12142
12143 function Build_Constrained_Array_Type
12144 (Old_Type : Entity_Id) return Entity_Id;
12145 -- If Old_Type is an array type, one of whose indexes is constrained
12146 -- by a discriminant, build an Itype whose constraint replaces the
12147 -- discriminant with its value in the constraint.
12148
12149 function Build_Constrained_Discriminated_Type
12150 (Old_Type : Entity_Id) return Entity_Id;
12151 -- Ditto for record components
12152
12153 function Build_Constrained_Access_Type
12154 (Old_Type : Entity_Id) return Entity_Id;
12155 -- Ditto for access types. Makes use of previous two functions, to
12156 -- constrain designated type.
12157
12158 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12159 -- T is an array or discriminated type, C is a list of constraints
12160 -- that apply to T. This routine builds the constrained subtype.
12161
12162 function Is_Discriminant (Expr : Node_Id) return Boolean;
12163 -- Returns True if Expr is a discriminant
12164
12165 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12166 -- Find the value of discriminant Discrim in Constraint
12167
12168 -----------------------------------
12169 -- Build_Constrained_Access_Type --
12170 -----------------------------------
12171
12172 function Build_Constrained_Access_Type
12173 (Old_Type : Entity_Id) return Entity_Id
12174 is
12175 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12176 Itype : Entity_Id;
12177 Desig_Subtype : Entity_Id;
12178 Scop : Entity_Id;
12179
12180 begin
12181 -- if the original access type was not embedded in the enclosing
12182 -- type definition, there is no need to produce a new access
12183 -- subtype. In fact every access type with an explicit constraint
12184 -- generates an itype whose scope is the enclosing record.
12185
12186 if not Is_Type (Scope (Old_Type)) then
12187 return Old_Type;
12188
12189 elsif Is_Array_Type (Desig_Type) then
12190 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12191
12192 elsif Has_Discriminants (Desig_Type) then
12193
12194 -- This may be an access type to an enclosing record type for
12195 -- which we are constructing the constrained components. Return
12196 -- the enclosing record subtype. This is not always correct,
12197 -- but avoids infinite recursion. ???
12198
12199 Desig_Subtype := Any_Type;
12200
12201 for J in reverse 0 .. Scope_Stack.Last loop
12202 Scop := Scope_Stack.Table (J).Entity;
12203
12204 if Is_Type (Scop)
12205 and then Base_Type (Scop) = Base_Type (Desig_Type)
12206 then
12207 Desig_Subtype := Scop;
12208 end if;
12209
12210 exit when not Is_Type (Scop);
12211 end loop;
12212
12213 if Desig_Subtype = Any_Type then
12214 Desig_Subtype :=
12215 Build_Constrained_Discriminated_Type (Desig_Type);
12216 end if;
12217
12218 else
12219 return Old_Type;
12220 end if;
12221
12222 if Desig_Subtype /= Desig_Type then
12223
12224 -- The Related_Node better be here or else we won't be able
12225 -- to attach new itypes to a node in the tree.
12226
12227 pragma Assert (Present (Related_Node));
12228
12229 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12230
12231 Set_Etype (Itype, Base_Type (Old_Type));
12232 Set_Size_Info (Itype, (Old_Type));
12233 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12234 Set_Depends_On_Private (Itype, Has_Private_Component
12235 (Old_Type));
12236 Set_Is_Access_Constant (Itype, Is_Access_Constant
12237 (Old_Type));
12238
12239 -- The new itype needs freezing when it depends on a not frozen
12240 -- type and the enclosing subtype needs freezing.
12241
12242 if Has_Delayed_Freeze (Constrained_Typ)
12243 and then not Is_Frozen (Constrained_Typ)
12244 then
12245 Conditional_Delay (Itype, Base_Type (Old_Type));
12246 end if;
12247
12248 return Itype;
12249
12250 else
12251 return Old_Type;
12252 end if;
12253 end Build_Constrained_Access_Type;
12254
12255 ----------------------------------
12256 -- Build_Constrained_Array_Type --
12257 ----------------------------------
12258
12259 function Build_Constrained_Array_Type
12260 (Old_Type : Entity_Id) return Entity_Id
12261 is
12262 Lo_Expr : Node_Id;
12263 Hi_Expr : Node_Id;
12264 Old_Index : Node_Id;
12265 Range_Node : Node_Id;
12266 Constr_List : List_Id;
12267
12268 Need_To_Create_Itype : Boolean := False;
12269
12270 begin
12271 Old_Index := First_Index (Old_Type);
12272 while Present (Old_Index) loop
12273 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12274
12275 if Is_Discriminant (Lo_Expr)
12276 or else
12277 Is_Discriminant (Hi_Expr)
12278 then
12279 Need_To_Create_Itype := True;
12280 end if;
12281
12282 Next_Index (Old_Index);
12283 end loop;
12284
12285 if Need_To_Create_Itype then
12286 Constr_List := New_List;
12287
12288 Old_Index := First_Index (Old_Type);
12289 while Present (Old_Index) loop
12290 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12291
12292 if Is_Discriminant (Lo_Expr) then
12293 Lo_Expr := Get_Discr_Value (Lo_Expr);
12294 end if;
12295
12296 if Is_Discriminant (Hi_Expr) then
12297 Hi_Expr := Get_Discr_Value (Hi_Expr);
12298 end if;
12299
12300 Range_Node :=
12301 Make_Range
12302 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12303
12304 Append (Range_Node, To => Constr_List);
12305
12306 Next_Index (Old_Index);
12307 end loop;
12308
12309 return Build_Subtype (Old_Type, Constr_List);
12310
12311 else
12312 return Old_Type;
12313 end if;
12314 end Build_Constrained_Array_Type;
12315
12316 ------------------------------------------
12317 -- Build_Constrained_Discriminated_Type --
12318 ------------------------------------------
12319
12320 function Build_Constrained_Discriminated_Type
12321 (Old_Type : Entity_Id) return Entity_Id
12322 is
12323 Expr : Node_Id;
12324 Constr_List : List_Id;
12325 Old_Constraint : Elmt_Id;
12326
12327 Need_To_Create_Itype : Boolean := False;
12328
12329 begin
12330 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12331 while Present (Old_Constraint) loop
12332 Expr := Node (Old_Constraint);
12333
12334 if Is_Discriminant (Expr) then
12335 Need_To_Create_Itype := True;
12336 end if;
12337
12338 Next_Elmt (Old_Constraint);
12339 end loop;
12340
12341 if Need_To_Create_Itype then
12342 Constr_List := New_List;
12343
12344 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12345 while Present (Old_Constraint) loop
12346 Expr := Node (Old_Constraint);
12347
12348 if Is_Discriminant (Expr) then
12349 Expr := Get_Discr_Value (Expr);
12350 end if;
12351
12352 Append (New_Copy_Tree (Expr), To => Constr_List);
12353
12354 Next_Elmt (Old_Constraint);
12355 end loop;
12356
12357 return Build_Subtype (Old_Type, Constr_List);
12358
12359 else
12360 return Old_Type;
12361 end if;
12362 end Build_Constrained_Discriminated_Type;
12363
12364 -------------------
12365 -- Build_Subtype --
12366 -------------------
12367
12368 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12369 Indic : Node_Id;
12370 Subtyp_Decl : Node_Id;
12371 Def_Id : Entity_Id;
12372 Btyp : Entity_Id := Base_Type (T);
12373
12374 begin
12375 -- The Related_Node better be here or else we won't be able to
12376 -- attach new itypes to a node in the tree.
12377
12378 pragma Assert (Present (Related_Node));
12379
12380 -- If the view of the component's type is incomplete or private
12381 -- with unknown discriminants, then the constraint must be applied
12382 -- to the full type.
12383
12384 if Has_Unknown_Discriminants (Btyp)
12385 and then Present (Underlying_Type (Btyp))
12386 then
12387 Btyp := Underlying_Type (Btyp);
12388 end if;
12389
12390 Indic :=
12391 Make_Subtype_Indication (Loc,
12392 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12393 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12394
12395 Def_Id := Create_Itype (Ekind (T), Related_Node);
12396
12397 Subtyp_Decl :=
12398 Make_Subtype_Declaration (Loc,
12399 Defining_Identifier => Def_Id,
12400 Subtype_Indication => Indic);
12401
12402 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12403
12404 -- Itypes must be analyzed with checks off (see package Itypes)
12405
12406 Analyze (Subtyp_Decl, Suppress => All_Checks);
12407
12408 return Def_Id;
12409 end Build_Subtype;
12410
12411 ---------------------
12412 -- Get_Discr_Value --
12413 ---------------------
12414
12415 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12416 D : Entity_Id;
12417 E : Elmt_Id;
12418
12419 begin
12420 -- The discriminant may be declared for the type, in which case we
12421 -- find it by iterating over the list of discriminants. If the
12422 -- discriminant is inherited from a parent type, it appears as the
12423 -- corresponding discriminant of the current type. This will be the
12424 -- case when constraining an inherited component whose constraint is
12425 -- given by a discriminant of the parent.
12426
12427 D := First_Discriminant (Typ);
12428 E := First_Elmt (Constraints);
12429
12430 while Present (D) loop
12431 if D = Entity (Discrim)
12432 or else D = CR_Discriminant (Entity (Discrim))
12433 or else Corresponding_Discriminant (D) = Entity (Discrim)
12434 then
12435 return Node (E);
12436 end if;
12437
12438 Next_Discriminant (D);
12439 Next_Elmt (E);
12440 end loop;
12441
12442 -- The Corresponding_Discriminant mechanism is incomplete, because
12443 -- the correspondence between new and old discriminants is not one
12444 -- to one: one new discriminant can constrain several old ones. In
12445 -- that case, scan sequentially the stored_constraint, the list of
12446 -- discriminants of the parents, and the constraints.
12447
12448 -- Previous code checked for the present of the Stored_Constraint
12449 -- list for the derived type, but did not use it at all. Should it
12450 -- be present when the component is a discriminated task type?
12451
12452 if Is_Derived_Type (Typ)
12453 and then Scope (Entity (Discrim)) = Etype (Typ)
12454 then
12455 D := First_Discriminant (Etype (Typ));
12456 E := First_Elmt (Constraints);
12457 while Present (D) loop
12458 if D = Entity (Discrim) then
12459 return Node (E);
12460 end if;
12461
12462 Next_Discriminant (D);
12463 Next_Elmt (E);
12464 end loop;
12465 end if;
12466
12467 -- Something is wrong if we did not find the value
12468
12469 raise Program_Error;
12470 end Get_Discr_Value;
12471
12472 ---------------------
12473 -- Is_Discriminant --
12474 ---------------------
12475
12476 function Is_Discriminant (Expr : Node_Id) return Boolean is
12477 Discrim_Scope : Entity_Id;
12478
12479 begin
12480 if Denotes_Discriminant (Expr) then
12481 Discrim_Scope := Scope (Entity (Expr));
12482
12483 -- Either we have a reference to one of Typ's discriminants,
12484
12485 pragma Assert (Discrim_Scope = Typ
12486
12487 -- or to the discriminants of the parent type, in the case
12488 -- of a derivation of a tagged type with variants.
12489
12490 or else Discrim_Scope = Etype (Typ)
12491 or else Full_View (Discrim_Scope) = Etype (Typ)
12492
12493 -- or same as above for the case where the discriminants
12494 -- were declared in Typ's private view.
12495
12496 or else (Is_Private_Type (Discrim_Scope)
12497 and then Chars (Discrim_Scope) = Chars (Typ))
12498
12499 -- or else we are deriving from the full view and the
12500 -- discriminant is declared in the private entity.
12501
12502 or else (Is_Private_Type (Typ)
12503 and then Chars (Discrim_Scope) = Chars (Typ))
12504
12505 -- Or we are constrained the corresponding record of a
12506 -- synchronized type that completes a private declaration.
12507
12508 or else (Is_Concurrent_Record_Type (Typ)
12509 and then
12510 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12511
12512 -- or we have a class-wide type, in which case make sure the
12513 -- discriminant found belongs to the root type.
12514
12515 or else (Is_Class_Wide_Type (Typ)
12516 and then Etype (Typ) = Discrim_Scope));
12517
12518 return True;
12519 end if;
12520
12521 -- In all other cases we have something wrong
12522
12523 return False;
12524 end Is_Discriminant;
12525
12526 -- Start of processing for Constrain_Component_Type
12527
12528 begin
12529 if Nkind (Parent (Comp)) = N_Component_Declaration
12530 and then Comes_From_Source (Parent (Comp))
12531 and then Comes_From_Source
12532 (Subtype_Indication (Component_Definition (Parent (Comp))))
12533 and then
12534 Is_Entity_Name
12535 (Subtype_Indication (Component_Definition (Parent (Comp))))
12536 then
12537 return Compon_Type;
12538
12539 elsif Is_Array_Type (Compon_Type) then
12540 return Build_Constrained_Array_Type (Compon_Type);
12541
12542 elsif Has_Discriminants (Compon_Type) then
12543 return Build_Constrained_Discriminated_Type (Compon_Type);
12544
12545 elsif Is_Access_Type (Compon_Type) then
12546 return Build_Constrained_Access_Type (Compon_Type);
12547
12548 else
12549 return Compon_Type;
12550 end if;
12551 end Constrain_Component_Type;
12552
12553 --------------------------
12554 -- Constrain_Concurrent --
12555 --------------------------
12556
12557 -- For concurrent types, the associated record value type carries the same
12558 -- discriminants, so when we constrain a concurrent type, we must constrain
12559 -- the corresponding record type as well.
12560
12561 procedure Constrain_Concurrent
12562 (Def_Id : in out Entity_Id;
12563 SI : Node_Id;
12564 Related_Nod : Node_Id;
12565 Related_Id : Entity_Id;
12566 Suffix : Character)
12567 is
12568 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12569 -- case of a private subtype (needed when only doing semantic analysis).
12570
12571 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12572 T_Val : Entity_Id;
12573
12574 begin
12575 if Is_Access_Type (T_Ent) then
12576 T_Ent := Designated_Type (T_Ent);
12577 end if;
12578
12579 T_Val := Corresponding_Record_Type (T_Ent);
12580
12581 if Present (T_Val) then
12582
12583 if No (Def_Id) then
12584 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12585 end if;
12586
12587 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12588
12589 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12590 Set_Corresponding_Record_Type (Def_Id,
12591 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12592
12593 else
12594 -- If there is no associated record, expansion is disabled and this
12595 -- is a generic context. Create a subtype in any case, so that
12596 -- semantic analysis can proceed.
12597
12598 if No (Def_Id) then
12599 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12600 end if;
12601
12602 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12603 end if;
12604 end Constrain_Concurrent;
12605
12606 ------------------------------------
12607 -- Constrain_Corresponding_Record --
12608 ------------------------------------
12609
12610 function Constrain_Corresponding_Record
12611 (Prot_Subt : Entity_Id;
12612 Corr_Rec : Entity_Id;
12613 Related_Nod : Node_Id) return Entity_Id
12614 is
12615 T_Sub : constant Entity_Id :=
12616 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12617
12618 begin
12619 Set_Etype (T_Sub, Corr_Rec);
12620 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12621 Set_Is_Constrained (T_Sub, True);
12622 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12623 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12624
12625 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12626 Set_Discriminant_Constraint
12627 (T_Sub, Discriminant_Constraint (Prot_Subt));
12628 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12629 Create_Constrained_Components
12630 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12631 end if;
12632
12633 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12634
12635 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12636 Conditional_Delay (T_Sub, Corr_Rec);
12637
12638 else
12639 -- This is a component subtype: it will be frozen in the context of
12640 -- the enclosing record's init_proc, so that discriminant references
12641 -- are resolved to discriminals. (Note: we used to skip freezing
12642 -- altogether in that case, which caused errors downstream for
12643 -- components of a bit packed array type).
12644
12645 Set_Has_Delayed_Freeze (T_Sub);
12646 end if;
12647
12648 return T_Sub;
12649 end Constrain_Corresponding_Record;
12650
12651 -----------------------
12652 -- Constrain_Decimal --
12653 -----------------------
12654
12655 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12656 T : constant Entity_Id := Entity (Subtype_Mark (S));
12657 C : constant Node_Id := Constraint (S);
12658 Loc : constant Source_Ptr := Sloc (C);
12659 Range_Expr : Node_Id;
12660 Digits_Expr : Node_Id;
12661 Digits_Val : Uint;
12662 Bound_Val : Ureal;
12663
12664 begin
12665 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12666
12667 if Nkind (C) = N_Range_Constraint then
12668 Range_Expr := Range_Expression (C);
12669 Digits_Val := Digits_Value (T);
12670
12671 else
12672 pragma Assert (Nkind (C) = N_Digits_Constraint);
12673
12674 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12675
12676 Digits_Expr := Digits_Expression (C);
12677 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12678
12679 Check_Digits_Expression (Digits_Expr);
12680 Digits_Val := Expr_Value (Digits_Expr);
12681
12682 if Digits_Val > Digits_Value (T) then
12683 Error_Msg_N
12684 ("digits expression is incompatible with subtype", C);
12685 Digits_Val := Digits_Value (T);
12686 end if;
12687
12688 if Present (Range_Constraint (C)) then
12689 Range_Expr := Range_Expression (Range_Constraint (C));
12690 else
12691 Range_Expr := Empty;
12692 end if;
12693 end if;
12694
12695 Set_Etype (Def_Id, Base_Type (T));
12696 Set_Size_Info (Def_Id, (T));
12697 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12698 Set_Delta_Value (Def_Id, Delta_Value (T));
12699 Set_Scale_Value (Def_Id, Scale_Value (T));
12700 Set_Small_Value (Def_Id, Small_Value (T));
12701 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12702 Set_Digits_Value (Def_Id, Digits_Val);
12703
12704 -- Manufacture range from given digits value if no range present
12705
12706 if No (Range_Expr) then
12707 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12708 Range_Expr :=
12709 Make_Range (Loc,
12710 Low_Bound =>
12711 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12712 High_Bound =>
12713 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12714 end if;
12715
12716 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12717 Set_Discrete_RM_Size (Def_Id);
12718
12719 -- Unconditionally delay the freeze, since we cannot set size
12720 -- information in all cases correctly until the freeze point.
12721
12722 Set_Has_Delayed_Freeze (Def_Id);
12723 end Constrain_Decimal;
12724
12725 ----------------------------------
12726 -- Constrain_Discriminated_Type --
12727 ----------------------------------
12728
12729 procedure Constrain_Discriminated_Type
12730 (Def_Id : Entity_Id;
12731 S : Node_Id;
12732 Related_Nod : Node_Id;
12733 For_Access : Boolean := False)
12734 is
12735 E : constant Entity_Id := Entity (Subtype_Mark (S));
12736 T : Entity_Id;
12737 C : Node_Id;
12738 Elist : Elist_Id := New_Elmt_List;
12739
12740 procedure Fixup_Bad_Constraint;
12741 -- This is called after finding a bad constraint, and after having
12742 -- posted an appropriate error message. The mission is to leave the
12743 -- entity T in as reasonable state as possible.
12744
12745 --------------------------
12746 -- Fixup_Bad_Constraint --
12747 --------------------------
12748
12749 procedure Fixup_Bad_Constraint is
12750 begin
12751 -- Set a reasonable Ekind for the entity. For an incomplete type,
12752 -- we can't do much, but for other types, we can set the proper
12753 -- corresponding subtype kind.
12754
12755 if Ekind (T) = E_Incomplete_Type then
12756 Set_Ekind (Def_Id, Ekind (T));
12757 else
12758 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12759 end if;
12760
12761 -- Set Etype to the known type, to reduce chances of cascaded errors
12762
12763 Set_Etype (Def_Id, E);
12764 Set_Error_Posted (Def_Id);
12765 end Fixup_Bad_Constraint;
12766
12767 -- Start of processing for Constrain_Discriminated_Type
12768
12769 begin
12770 C := Constraint (S);
12771
12772 -- A discriminant constraint is only allowed in a subtype indication,
12773 -- after a subtype mark. This subtype mark must denote either a type
12774 -- with discriminants, or an access type whose designated type is a
12775 -- type with discriminants. A discriminant constraint specifies the
12776 -- values of these discriminants (RM 3.7.2(5)).
12777
12778 T := Base_Type (Entity (Subtype_Mark (S)));
12779
12780 if Is_Access_Type (T) then
12781 T := Designated_Type (T);
12782 end if;
12783
12784 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12785 -- Avoid generating an error for access-to-incomplete subtypes.
12786
12787 if Ada_Version >= Ada_2005
12788 and then Ekind (T) = E_Incomplete_Type
12789 and then Nkind (Parent (S)) = N_Subtype_Declaration
12790 and then not Is_Itype (Def_Id)
12791 then
12792 -- A little sanity check, emit an error message if the type
12793 -- has discriminants to begin with. Type T may be a regular
12794 -- incomplete type or imported via a limited with clause.
12795
12796 if Has_Discriminants (T)
12797 or else (From_Limited_With (T)
12798 and then Present (Non_Limited_View (T))
12799 and then Nkind (Parent (Non_Limited_View (T))) =
12800 N_Full_Type_Declaration
12801 and then Present (Discriminant_Specifications
12802 (Parent (Non_Limited_View (T)))))
12803 then
12804 Error_Msg_N
12805 ("(Ada 2005) incomplete subtype may not be constrained", C);
12806 else
12807 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12808 end if;
12809
12810 Fixup_Bad_Constraint;
12811 return;
12812
12813 -- Check that the type has visible discriminants. The type may be
12814 -- a private type with unknown discriminants whose full view has
12815 -- discriminants which are invisible.
12816
12817 elsif not Has_Discriminants (T)
12818 or else
12819 (Has_Unknown_Discriminants (T)
12820 and then Is_Private_Type (T))
12821 then
12822 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12823 Fixup_Bad_Constraint;
12824 return;
12825
12826 elsif Is_Constrained (E)
12827 or else (Ekind (E) = E_Class_Wide_Subtype
12828 and then Present (Discriminant_Constraint (E)))
12829 then
12830 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12831 Fixup_Bad_Constraint;
12832 return;
12833 end if;
12834
12835 -- T may be an unconstrained subtype (e.g. a generic actual).
12836 -- Constraint applies to the base type.
12837
12838 T := Base_Type (T);
12839
12840 Elist := Build_Discriminant_Constraints (T, S);
12841
12842 -- If the list returned was empty we had an error in building the
12843 -- discriminant constraint. We have also already signalled an error
12844 -- in the incomplete type case
12845
12846 if Is_Empty_Elmt_List (Elist) then
12847 Fixup_Bad_Constraint;
12848 return;
12849 end if;
12850
12851 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12852 end Constrain_Discriminated_Type;
12853
12854 ---------------------------
12855 -- Constrain_Enumeration --
12856 ---------------------------
12857
12858 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12859 T : constant Entity_Id := Entity (Subtype_Mark (S));
12860 C : constant Node_Id := Constraint (S);
12861
12862 begin
12863 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12864
12865 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12866
12867 Set_Etype (Def_Id, Base_Type (T));
12868 Set_Size_Info (Def_Id, (T));
12869 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12870 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12871
12872 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12873
12874 Set_Discrete_RM_Size (Def_Id);
12875 end Constrain_Enumeration;
12876
12877 ----------------------
12878 -- Constrain_Float --
12879 ----------------------
12880
12881 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12882 T : constant Entity_Id := Entity (Subtype_Mark (S));
12883 C : Node_Id;
12884 D : Node_Id;
12885 Rais : Node_Id;
12886
12887 begin
12888 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12889
12890 Set_Etype (Def_Id, Base_Type (T));
12891 Set_Size_Info (Def_Id, (T));
12892 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12893
12894 -- Process the constraint
12895
12896 C := Constraint (S);
12897
12898 -- Digits constraint present
12899
12900 if Nkind (C) = N_Digits_Constraint then
12901
12902 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12903 Check_Restriction (No_Obsolescent_Features, C);
12904
12905 if Warn_On_Obsolescent_Feature then
12906 Error_Msg_N
12907 ("subtype digits constraint is an " &
12908 "obsolescent feature (RM J.3(8))?j?", C);
12909 end if;
12910
12911 D := Digits_Expression (C);
12912 Analyze_And_Resolve (D, Any_Integer);
12913 Check_Digits_Expression (D);
12914 Set_Digits_Value (Def_Id, Expr_Value (D));
12915
12916 -- Check that digits value is in range. Obviously we can do this
12917 -- at compile time, but it is strictly a runtime check, and of
12918 -- course there is an ACVC test that checks this.
12919
12920 if Digits_Value (Def_Id) > Digits_Value (T) then
12921 Error_Msg_Uint_1 := Digits_Value (T);
12922 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12923 Rais :=
12924 Make_Raise_Constraint_Error (Sloc (D),
12925 Reason => CE_Range_Check_Failed);
12926 Insert_Action (Declaration_Node (Def_Id), Rais);
12927 end if;
12928
12929 C := Range_Constraint (C);
12930
12931 -- No digits constraint present
12932
12933 else
12934 Set_Digits_Value (Def_Id, Digits_Value (T));
12935 end if;
12936
12937 -- Range constraint present
12938
12939 if Nkind (C) = N_Range_Constraint then
12940 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12941
12942 -- No range constraint present
12943
12944 else
12945 pragma Assert (No (C));
12946 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12947 end if;
12948
12949 Set_Is_Constrained (Def_Id);
12950 end Constrain_Float;
12951
12952 ---------------------
12953 -- Constrain_Index --
12954 ---------------------
12955
12956 procedure Constrain_Index
12957 (Index : Node_Id;
12958 S : Node_Id;
12959 Related_Nod : Node_Id;
12960 Related_Id : Entity_Id;
12961 Suffix : Character;
12962 Suffix_Index : Nat)
12963 is
12964 Def_Id : Entity_Id;
12965 R : Node_Id := Empty;
12966 T : constant Entity_Id := Etype (Index);
12967
12968 begin
12969 if Nkind (S) = N_Range
12970 or else
12971 (Nkind (S) = N_Attribute_Reference
12972 and then Attribute_Name (S) = Name_Range)
12973 then
12974 -- A Range attribute will be transformed into N_Range by Resolve
12975
12976 Analyze (S);
12977 Set_Etype (S, T);
12978 R := S;
12979
12980 Process_Range_Expr_In_Decl (R, T);
12981
12982 if not Error_Posted (S)
12983 and then
12984 (Nkind (S) /= N_Range
12985 or else not Covers (T, (Etype (Low_Bound (S))))
12986 or else not Covers (T, (Etype (High_Bound (S)))))
12987 then
12988 if Base_Type (T) /= Any_Type
12989 and then Etype (Low_Bound (S)) /= Any_Type
12990 and then Etype (High_Bound (S)) /= Any_Type
12991 then
12992 Error_Msg_N ("range expected", S);
12993 end if;
12994 end if;
12995
12996 elsif Nkind (S) = N_Subtype_Indication then
12997
12998 -- The parser has verified that this is a discrete indication
12999
13000 Resolve_Discrete_Subtype_Indication (S, T);
13001 Bad_Predicated_Subtype_Use
13002 ("subtype& has predicate, not allowed in index constraint",
13003 S, Entity (Subtype_Mark (S)));
13004
13005 R := Range_Expression (Constraint (S));
13006
13007 -- Capture values of bounds and generate temporaries for them if
13008 -- needed, since checks may cause duplication of the expressions
13009 -- which must not be reevaluated.
13010
13011 -- The forced evaluation removes side effects from expressions, which
13012 -- should occur also in GNATprove mode. Otherwise, we end up with
13013 -- unexpected insertions of actions at places where this is not
13014 -- supposed to occur, e.g. on default parameters of a call.
13015
13016 if Expander_Active or GNATprove_Mode then
13017 Force_Evaluation (Low_Bound (R));
13018 Force_Evaluation (High_Bound (R));
13019 end if;
13020
13021 elsif Nkind (S) = N_Discriminant_Association then
13022
13023 -- Syntactically valid in subtype indication
13024
13025 Error_Msg_N ("invalid index constraint", S);
13026 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13027 return;
13028
13029 -- Subtype_Mark case, no anonymous subtypes to construct
13030
13031 else
13032 Analyze (S);
13033
13034 if Is_Entity_Name (S) then
13035 if not Is_Type (Entity (S)) then
13036 Error_Msg_N ("expect subtype mark for index constraint", S);
13037
13038 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13039 Wrong_Type (S, Base_Type (T));
13040
13041 -- Check error of subtype with predicate in index constraint
13042
13043 else
13044 Bad_Predicated_Subtype_Use
13045 ("subtype& has predicate, not allowed in index constraint",
13046 S, Entity (S));
13047 end if;
13048
13049 return;
13050
13051 else
13052 Error_Msg_N ("invalid index constraint", S);
13053 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13054 return;
13055 end if;
13056 end if;
13057
13058 Def_Id :=
13059 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13060
13061 Set_Etype (Def_Id, Base_Type (T));
13062
13063 if Is_Modular_Integer_Type (T) then
13064 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13065
13066 elsif Is_Integer_Type (T) then
13067 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13068
13069 else
13070 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13071 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13072 Set_First_Literal (Def_Id, First_Literal (T));
13073 end if;
13074
13075 Set_Size_Info (Def_Id, (T));
13076 Set_RM_Size (Def_Id, RM_Size (T));
13077 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13078
13079 Set_Scalar_Range (Def_Id, R);
13080
13081 Set_Etype (S, Def_Id);
13082 Set_Discrete_RM_Size (Def_Id);
13083 end Constrain_Index;
13084
13085 -----------------------
13086 -- Constrain_Integer --
13087 -----------------------
13088
13089 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13090 T : constant Entity_Id := Entity (Subtype_Mark (S));
13091 C : constant Node_Id := Constraint (S);
13092
13093 begin
13094 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13095
13096 if Is_Modular_Integer_Type (T) then
13097 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13098 else
13099 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13100 end if;
13101
13102 Set_Etype (Def_Id, Base_Type (T));
13103 Set_Size_Info (Def_Id, (T));
13104 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13105 Set_Discrete_RM_Size (Def_Id);
13106 end Constrain_Integer;
13107
13108 ------------------------------
13109 -- Constrain_Ordinary_Fixed --
13110 ------------------------------
13111
13112 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13113 T : constant Entity_Id := Entity (Subtype_Mark (S));
13114 C : Node_Id;
13115 D : Node_Id;
13116 Rais : Node_Id;
13117
13118 begin
13119 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13120 Set_Etype (Def_Id, Base_Type (T));
13121 Set_Size_Info (Def_Id, (T));
13122 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13123 Set_Small_Value (Def_Id, Small_Value (T));
13124
13125 -- Process the constraint
13126
13127 C := Constraint (S);
13128
13129 -- Delta constraint present
13130
13131 if Nkind (C) = N_Delta_Constraint then
13132
13133 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13134 Check_Restriction (No_Obsolescent_Features, C);
13135
13136 if Warn_On_Obsolescent_Feature then
13137 Error_Msg_S
13138 ("subtype delta constraint is an " &
13139 "obsolescent feature (RM J.3(7))?j?");
13140 end if;
13141
13142 D := Delta_Expression (C);
13143 Analyze_And_Resolve (D, Any_Real);
13144 Check_Delta_Expression (D);
13145 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13146
13147 -- Check that delta value is in range. Obviously we can do this
13148 -- at compile time, but it is strictly a runtime check, and of
13149 -- course there is an ACVC test that checks this.
13150
13151 if Delta_Value (Def_Id) < Delta_Value (T) then
13152 Error_Msg_N ("??delta value is too small", D);
13153 Rais :=
13154 Make_Raise_Constraint_Error (Sloc (D),
13155 Reason => CE_Range_Check_Failed);
13156 Insert_Action (Declaration_Node (Def_Id), Rais);
13157 end if;
13158
13159 C := Range_Constraint (C);
13160
13161 -- No delta constraint present
13162
13163 else
13164 Set_Delta_Value (Def_Id, Delta_Value (T));
13165 end if;
13166
13167 -- Range constraint present
13168
13169 if Nkind (C) = N_Range_Constraint then
13170 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13171
13172 -- No range constraint present
13173
13174 else
13175 pragma Assert (No (C));
13176 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13177
13178 end if;
13179
13180 Set_Discrete_RM_Size (Def_Id);
13181
13182 -- Unconditionally delay the freeze, since we cannot set size
13183 -- information in all cases correctly until the freeze point.
13184
13185 Set_Has_Delayed_Freeze (Def_Id);
13186 end Constrain_Ordinary_Fixed;
13187
13188 -----------------------
13189 -- Contain_Interface --
13190 -----------------------
13191
13192 function Contain_Interface
13193 (Iface : Entity_Id;
13194 Ifaces : Elist_Id) return Boolean
13195 is
13196 Iface_Elmt : Elmt_Id;
13197
13198 begin
13199 if Present (Ifaces) then
13200 Iface_Elmt := First_Elmt (Ifaces);
13201 while Present (Iface_Elmt) loop
13202 if Node (Iface_Elmt) = Iface then
13203 return True;
13204 end if;
13205
13206 Next_Elmt (Iface_Elmt);
13207 end loop;
13208 end if;
13209
13210 return False;
13211 end Contain_Interface;
13212
13213 ---------------------------
13214 -- Convert_Scalar_Bounds --
13215 ---------------------------
13216
13217 procedure Convert_Scalar_Bounds
13218 (N : Node_Id;
13219 Parent_Type : Entity_Id;
13220 Derived_Type : Entity_Id;
13221 Loc : Source_Ptr)
13222 is
13223 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13224
13225 Lo : Node_Id;
13226 Hi : Node_Id;
13227 Rng : Node_Id;
13228
13229 begin
13230 -- Defend against previous errors
13231
13232 if No (Scalar_Range (Derived_Type)) then
13233 Check_Error_Detected;
13234 return;
13235 end if;
13236
13237 Lo := Build_Scalar_Bound
13238 (Type_Low_Bound (Derived_Type),
13239 Parent_Type, Implicit_Base);
13240
13241 Hi := Build_Scalar_Bound
13242 (Type_High_Bound (Derived_Type),
13243 Parent_Type, Implicit_Base);
13244
13245 Rng :=
13246 Make_Range (Loc,
13247 Low_Bound => Lo,
13248 High_Bound => Hi);
13249
13250 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13251
13252 Set_Parent (Rng, N);
13253 Set_Scalar_Range (Derived_Type, Rng);
13254
13255 -- Analyze the bounds
13256
13257 Analyze_And_Resolve (Lo, Implicit_Base);
13258 Analyze_And_Resolve (Hi, Implicit_Base);
13259
13260 -- Analyze the range itself, except that we do not analyze it if
13261 -- the bounds are real literals, and we have a fixed-point type.
13262 -- The reason for this is that we delay setting the bounds in this
13263 -- case till we know the final Small and Size values (see circuit
13264 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13265
13266 if Is_Fixed_Point_Type (Parent_Type)
13267 and then Nkind (Lo) = N_Real_Literal
13268 and then Nkind (Hi) = N_Real_Literal
13269 then
13270 return;
13271
13272 -- Here we do the analysis of the range
13273
13274 -- Note: we do this manually, since if we do a normal Analyze and
13275 -- Resolve call, there are problems with the conversions used for
13276 -- the derived type range.
13277
13278 else
13279 Set_Etype (Rng, Implicit_Base);
13280 Set_Analyzed (Rng, True);
13281 end if;
13282 end Convert_Scalar_Bounds;
13283
13284 -------------------
13285 -- Copy_And_Swap --
13286 -------------------
13287
13288 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13289 begin
13290 -- Initialize new full declaration entity by copying the pertinent
13291 -- fields of the corresponding private declaration entity.
13292
13293 -- We temporarily set Ekind to a value appropriate for a type to
13294 -- avoid assert failures in Einfo from checking for setting type
13295 -- attributes on something that is not a type. Ekind (Priv) is an
13296 -- appropriate choice, since it allowed the attributes to be set
13297 -- in the first place. This Ekind value will be modified later.
13298
13299 Set_Ekind (Full, Ekind (Priv));
13300
13301 -- Also set Etype temporarily to Any_Type, again, in the absence
13302 -- of errors, it will be properly reset, and if there are errors,
13303 -- then we want a value of Any_Type to remain.
13304
13305 Set_Etype (Full, Any_Type);
13306
13307 -- Now start copying attributes
13308
13309 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13310
13311 if Has_Discriminants (Full) then
13312 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13313 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13314 end if;
13315
13316 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13317 Set_Homonym (Full, Homonym (Priv));
13318 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13319 Set_Is_Public (Full, Is_Public (Priv));
13320 Set_Is_Pure (Full, Is_Pure (Priv));
13321 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13322 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13323 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13324 Set_Has_Pragma_Unreferenced_Objects
13325 (Full, Has_Pragma_Unreferenced_Objects
13326 (Priv));
13327
13328 Conditional_Delay (Full, Priv);
13329
13330 if Is_Tagged_Type (Full) then
13331 Set_Direct_Primitive_Operations
13332 (Full, Direct_Primitive_Operations (Priv));
13333 Set_No_Tagged_Streams_Pragma
13334 (Full, No_Tagged_Streams_Pragma (Priv));
13335
13336 if Is_Base_Type (Priv) then
13337 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13338 end if;
13339 end if;
13340
13341 Set_Is_Volatile (Full, Is_Volatile (Priv));
13342 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13343 Set_Scope (Full, Scope (Priv));
13344 Set_Next_Entity (Full, Next_Entity (Priv));
13345 Set_First_Entity (Full, First_Entity (Priv));
13346 Set_Last_Entity (Full, Last_Entity (Priv));
13347
13348 -- If access types have been recorded for later handling, keep them in
13349 -- the full view so that they get handled when the full view freeze
13350 -- node is expanded.
13351
13352 if Present (Freeze_Node (Priv))
13353 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13354 then
13355 Ensure_Freeze_Node (Full);
13356 Set_Access_Types_To_Process
13357 (Freeze_Node (Full),
13358 Access_Types_To_Process (Freeze_Node (Priv)));
13359 end if;
13360
13361 -- Swap the two entities. Now Private is the full type entity and Full
13362 -- is the private one. They will be swapped back at the end of the
13363 -- private part. This swapping ensures that the entity that is visible
13364 -- in the private part is the full declaration.
13365
13366 Exchange_Entities (Priv, Full);
13367 Append_Entity (Full, Scope (Full));
13368 end Copy_And_Swap;
13369
13370 -------------------------------------
13371 -- Copy_Array_Base_Type_Attributes --
13372 -------------------------------------
13373
13374 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13375 begin
13376 Set_Component_Alignment (T1, Component_Alignment (T2));
13377 Set_Component_Type (T1, Component_Type (T2));
13378 Set_Component_Size (T1, Component_Size (T2));
13379 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13380 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13381 Set_Has_Protected (T1, Has_Protected (T2));
13382 Set_Has_Task (T1, Has_Task (T2));
13383 Set_Is_Packed (T1, Is_Packed (T2));
13384 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13385 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13386 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13387 end Copy_Array_Base_Type_Attributes;
13388
13389 -----------------------------------
13390 -- Copy_Array_Subtype_Attributes --
13391 -----------------------------------
13392
13393 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13394 begin
13395 Set_Size_Info (T1, T2);
13396
13397 Set_First_Index (T1, First_Index (T2));
13398 Set_Is_Aliased (T1, Is_Aliased (T2));
13399 Set_Is_Volatile (T1, Is_Volatile (T2));
13400 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13401 Set_Is_Constrained (T1, Is_Constrained (T2));
13402 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13403 Inherit_Rep_Item_Chain (T1, T2);
13404 Set_Convention (T1, Convention (T2));
13405 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13406 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13407 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13408 end Copy_Array_Subtype_Attributes;
13409
13410 -----------------------------------
13411 -- Create_Constrained_Components --
13412 -----------------------------------
13413
13414 procedure Create_Constrained_Components
13415 (Subt : Entity_Id;
13416 Decl_Node : Node_Id;
13417 Typ : Entity_Id;
13418 Constraints : Elist_Id)
13419 is
13420 Loc : constant Source_Ptr := Sloc (Subt);
13421 Comp_List : constant Elist_Id := New_Elmt_List;
13422 Parent_Type : constant Entity_Id := Etype (Typ);
13423 Assoc_List : constant List_Id := New_List;
13424 Discr_Val : Elmt_Id;
13425 Errors : Boolean;
13426 New_C : Entity_Id;
13427 Old_C : Entity_Id;
13428 Is_Static : Boolean := True;
13429
13430 procedure Collect_Fixed_Components (Typ : Entity_Id);
13431 -- Collect parent type components that do not appear in a variant part
13432
13433 procedure Create_All_Components;
13434 -- Iterate over Comp_List to create the components of the subtype
13435
13436 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13437 -- Creates a new component from Old_Compon, copying all the fields from
13438 -- it, including its Etype, inserts the new component in the Subt entity
13439 -- chain and returns the new component.
13440
13441 function Is_Variant_Record (T : Entity_Id) return Boolean;
13442 -- If true, and discriminants are static, collect only components from
13443 -- variants selected by discriminant values.
13444
13445 ------------------------------
13446 -- Collect_Fixed_Components --
13447 ------------------------------
13448
13449 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13450 begin
13451 -- Build association list for discriminants, and find components of the
13452 -- variant part selected by the values of the discriminants.
13453
13454 Old_C := First_Discriminant (Typ);
13455 Discr_Val := First_Elmt (Constraints);
13456 while Present (Old_C) loop
13457 Append_To (Assoc_List,
13458 Make_Component_Association (Loc,
13459 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13460 Expression => New_Copy (Node (Discr_Val))));
13461
13462 Next_Elmt (Discr_Val);
13463 Next_Discriminant (Old_C);
13464 end loop;
13465
13466 -- The tag and the possible parent component are unconditionally in
13467 -- the subtype.
13468
13469 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13470 Old_C := First_Component (Typ);
13471 while Present (Old_C) loop
13472 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13473 Append_Elmt (Old_C, Comp_List);
13474 end if;
13475
13476 Next_Component (Old_C);
13477 end loop;
13478 end if;
13479 end Collect_Fixed_Components;
13480
13481 ---------------------------
13482 -- Create_All_Components --
13483 ---------------------------
13484
13485 procedure Create_All_Components is
13486 Comp : Elmt_Id;
13487
13488 begin
13489 Comp := First_Elmt (Comp_List);
13490 while Present (Comp) loop
13491 Old_C := Node (Comp);
13492 New_C := Create_Component (Old_C);
13493
13494 Set_Etype
13495 (New_C,
13496 Constrain_Component_Type
13497 (Old_C, Subt, Decl_Node, Typ, Constraints));
13498 Set_Is_Public (New_C, Is_Public (Subt));
13499
13500 Next_Elmt (Comp);
13501 end loop;
13502 end Create_All_Components;
13503
13504 ----------------------
13505 -- Create_Component --
13506 ----------------------
13507
13508 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13509 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13510
13511 begin
13512 if Ekind (Old_Compon) = E_Discriminant
13513 and then Is_Completely_Hidden (Old_Compon)
13514 then
13515 -- This is a shadow discriminant created for a discriminant of
13516 -- the parent type, which needs to be present in the subtype.
13517 -- Give the shadow discriminant an internal name that cannot
13518 -- conflict with that of visible components.
13519
13520 Set_Chars (New_Compon, New_Internal_Name ('C'));
13521 end if;
13522
13523 -- Set the parent so we have a proper link for freezing etc. This is
13524 -- not a real parent pointer, since of course our parent does not own
13525 -- up to us and reference us, we are an illegitimate child of the
13526 -- original parent.
13527
13528 Set_Parent (New_Compon, Parent (Old_Compon));
13529
13530 -- If the old component's Esize was already determined and is a
13531 -- static value, then the new component simply inherits it. Otherwise
13532 -- the old component's size may require run-time determination, but
13533 -- the new component's size still might be statically determinable
13534 -- (if, for example it has a static constraint). In that case we want
13535 -- Layout_Type to recompute the component's size, so we reset its
13536 -- size and positional fields.
13537
13538 if Frontend_Layout_On_Target
13539 and then not Known_Static_Esize (Old_Compon)
13540 then
13541 Set_Esize (New_Compon, Uint_0);
13542 Init_Normalized_First_Bit (New_Compon);
13543 Init_Normalized_Position (New_Compon);
13544 Init_Normalized_Position_Max (New_Compon);
13545 end if;
13546
13547 -- We do not want this node marked as Comes_From_Source, since
13548 -- otherwise it would get first class status and a separate cross-
13549 -- reference line would be generated. Illegitimate children do not
13550 -- rate such recognition.
13551
13552 Set_Comes_From_Source (New_Compon, False);
13553
13554 -- But it is a real entity, and a birth certificate must be properly
13555 -- registered by entering it into the entity list.
13556
13557 Enter_Name (New_Compon);
13558
13559 return New_Compon;
13560 end Create_Component;
13561
13562 -----------------------
13563 -- Is_Variant_Record --
13564 -----------------------
13565
13566 function Is_Variant_Record (T : Entity_Id) return Boolean is
13567 begin
13568 return Nkind (Parent (T)) = N_Full_Type_Declaration
13569 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13570 and then Present (Component_List (Type_Definition (Parent (T))))
13571 and then
13572 Present
13573 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13574 end Is_Variant_Record;
13575
13576 -- Start of processing for Create_Constrained_Components
13577
13578 begin
13579 pragma Assert (Subt /= Base_Type (Subt));
13580 pragma Assert (Typ = Base_Type (Typ));
13581
13582 Set_First_Entity (Subt, Empty);
13583 Set_Last_Entity (Subt, Empty);
13584
13585 -- Check whether constraint is fully static, in which case we can
13586 -- optimize the list of components.
13587
13588 Discr_Val := First_Elmt (Constraints);
13589 while Present (Discr_Val) loop
13590 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13591 Is_Static := False;
13592 exit;
13593 end if;
13594
13595 Next_Elmt (Discr_Val);
13596 end loop;
13597
13598 Set_Has_Static_Discriminants (Subt, Is_Static);
13599
13600 Push_Scope (Subt);
13601
13602 -- Inherit the discriminants of the parent type
13603
13604 Add_Discriminants : declare
13605 Num_Disc : Int;
13606 Num_Gird : Int;
13607
13608 begin
13609 Num_Disc := 0;
13610 Old_C := First_Discriminant (Typ);
13611
13612 while Present (Old_C) loop
13613 Num_Disc := Num_Disc + 1;
13614 New_C := Create_Component (Old_C);
13615 Set_Is_Public (New_C, Is_Public (Subt));
13616 Next_Discriminant (Old_C);
13617 end loop;
13618
13619 -- For an untagged derived subtype, the number of discriminants may
13620 -- be smaller than the number of inherited discriminants, because
13621 -- several of them may be renamed by a single new discriminant or
13622 -- constrained. In this case, add the hidden discriminants back into
13623 -- the subtype, because they need to be present if the optimizer of
13624 -- the GCC 4.x back-end decides to break apart assignments between
13625 -- objects using the parent view into member-wise assignments.
13626
13627 Num_Gird := 0;
13628
13629 if Is_Derived_Type (Typ)
13630 and then not Is_Tagged_Type (Typ)
13631 then
13632 Old_C := First_Stored_Discriminant (Typ);
13633
13634 while Present (Old_C) loop
13635 Num_Gird := Num_Gird + 1;
13636 Next_Stored_Discriminant (Old_C);
13637 end loop;
13638 end if;
13639
13640 if Num_Gird > Num_Disc then
13641
13642 -- Find out multiple uses of new discriminants, and add hidden
13643 -- components for the extra renamed discriminants. We recognize
13644 -- multiple uses through the Corresponding_Discriminant of a
13645 -- new discriminant: if it constrains several old discriminants,
13646 -- this field points to the last one in the parent type. The
13647 -- stored discriminants of the derived type have the same name
13648 -- as those of the parent.
13649
13650 declare
13651 Constr : Elmt_Id;
13652 New_Discr : Entity_Id;
13653 Old_Discr : Entity_Id;
13654
13655 begin
13656 Constr := First_Elmt (Stored_Constraint (Typ));
13657 Old_Discr := First_Stored_Discriminant (Typ);
13658 while Present (Constr) loop
13659 if Is_Entity_Name (Node (Constr))
13660 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13661 then
13662 New_Discr := Entity (Node (Constr));
13663
13664 if Chars (Corresponding_Discriminant (New_Discr)) /=
13665 Chars (Old_Discr)
13666 then
13667 -- The new discriminant has been used to rename a
13668 -- subsequent old discriminant. Introduce a shadow
13669 -- component for the current old discriminant.
13670
13671 New_C := Create_Component (Old_Discr);
13672 Set_Original_Record_Component (New_C, Old_Discr);
13673 end if;
13674
13675 else
13676 -- The constraint has eliminated the old discriminant.
13677 -- Introduce a shadow component.
13678
13679 New_C := Create_Component (Old_Discr);
13680 Set_Original_Record_Component (New_C, Old_Discr);
13681 end if;
13682
13683 Next_Elmt (Constr);
13684 Next_Stored_Discriminant (Old_Discr);
13685 end loop;
13686 end;
13687 end if;
13688 end Add_Discriminants;
13689
13690 if Is_Static
13691 and then Is_Variant_Record (Typ)
13692 then
13693 Collect_Fixed_Components (Typ);
13694
13695 Gather_Components (
13696 Typ,
13697 Component_List (Type_Definition (Parent (Typ))),
13698 Governed_By => Assoc_List,
13699 Into => Comp_List,
13700 Report_Errors => Errors);
13701 pragma Assert (not Errors);
13702
13703 Create_All_Components;
13704
13705 -- If the subtype declaration is created for a tagged type derivation
13706 -- with constraints, we retrieve the record definition of the parent
13707 -- type to select the components of the proper variant.
13708
13709 elsif Is_Static
13710 and then Is_Tagged_Type (Typ)
13711 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13712 and then
13713 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13714 and then Is_Variant_Record (Parent_Type)
13715 then
13716 Collect_Fixed_Components (Typ);
13717
13718 Gather_Components (
13719 Typ,
13720 Component_List (Type_Definition (Parent (Parent_Type))),
13721 Governed_By => Assoc_List,
13722 Into => Comp_List,
13723 Report_Errors => Errors);
13724 pragma Assert (not Errors);
13725
13726 -- If the tagged derivation has a type extension, collect all the
13727 -- new components therein.
13728
13729 if Present
13730 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13731 then
13732 Old_C := First_Component (Typ);
13733 while Present (Old_C) loop
13734 if Original_Record_Component (Old_C) = Old_C
13735 and then Chars (Old_C) /= Name_uTag
13736 and then Chars (Old_C) /= Name_uParent
13737 then
13738 Append_Elmt (Old_C, Comp_List);
13739 end if;
13740
13741 Next_Component (Old_C);
13742 end loop;
13743 end if;
13744
13745 Create_All_Components;
13746
13747 else
13748 -- If discriminants are not static, or if this is a multi-level type
13749 -- extension, we have to include all components of the parent type.
13750
13751 Old_C := First_Component (Typ);
13752 while Present (Old_C) loop
13753 New_C := Create_Component (Old_C);
13754
13755 Set_Etype
13756 (New_C,
13757 Constrain_Component_Type
13758 (Old_C, Subt, Decl_Node, Typ, Constraints));
13759 Set_Is_Public (New_C, Is_Public (Subt));
13760
13761 Next_Component (Old_C);
13762 end loop;
13763 end if;
13764
13765 End_Scope;
13766 end Create_Constrained_Components;
13767
13768 ------------------------------------------
13769 -- Decimal_Fixed_Point_Type_Declaration --
13770 ------------------------------------------
13771
13772 procedure Decimal_Fixed_Point_Type_Declaration
13773 (T : Entity_Id;
13774 Def : Node_Id)
13775 is
13776 Loc : constant Source_Ptr := Sloc (Def);
13777 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13778 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13779 Implicit_Base : Entity_Id;
13780 Digs_Val : Uint;
13781 Delta_Val : Ureal;
13782 Scale_Val : Uint;
13783 Bound_Val : Ureal;
13784
13785 begin
13786 Check_SPARK_05_Restriction
13787 ("decimal fixed point type is not allowed", Def);
13788 Check_Restriction (No_Fixed_Point, Def);
13789
13790 -- Create implicit base type
13791
13792 Implicit_Base :=
13793 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13794 Set_Etype (Implicit_Base, Implicit_Base);
13795
13796 -- Analyze and process delta expression
13797
13798 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13799
13800 Check_Delta_Expression (Delta_Expr);
13801 Delta_Val := Expr_Value_R (Delta_Expr);
13802
13803 -- Check delta is power of 10, and determine scale value from it
13804
13805 declare
13806 Val : Ureal;
13807
13808 begin
13809 Scale_Val := Uint_0;
13810 Val := Delta_Val;
13811
13812 if Val < Ureal_1 then
13813 while Val < Ureal_1 loop
13814 Val := Val * Ureal_10;
13815 Scale_Val := Scale_Val + 1;
13816 end loop;
13817
13818 if Scale_Val > 18 then
13819 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13820 Scale_Val := UI_From_Int (+18);
13821 end if;
13822
13823 else
13824 while Val > Ureal_1 loop
13825 Val := Val / Ureal_10;
13826 Scale_Val := Scale_Val - 1;
13827 end loop;
13828
13829 if Scale_Val < -18 then
13830 Error_Msg_N ("scale is less than minimum value of -18", Def);
13831 Scale_Val := UI_From_Int (-18);
13832 end if;
13833 end if;
13834
13835 if Val /= Ureal_1 then
13836 Error_Msg_N ("delta expression must be a power of 10", Def);
13837 Delta_Val := Ureal_10 ** (-Scale_Val);
13838 end if;
13839 end;
13840
13841 -- Set delta, scale and small (small = delta for decimal type)
13842
13843 Set_Delta_Value (Implicit_Base, Delta_Val);
13844 Set_Scale_Value (Implicit_Base, Scale_Val);
13845 Set_Small_Value (Implicit_Base, Delta_Val);
13846
13847 -- Analyze and process digits expression
13848
13849 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13850 Check_Digits_Expression (Digs_Expr);
13851 Digs_Val := Expr_Value (Digs_Expr);
13852
13853 if Digs_Val > 18 then
13854 Digs_Val := UI_From_Int (+18);
13855 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13856 end if;
13857
13858 Set_Digits_Value (Implicit_Base, Digs_Val);
13859 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13860
13861 -- Set range of base type from digits value for now. This will be
13862 -- expanded to represent the true underlying base range by Freeze.
13863
13864 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13865
13866 -- Note: We leave size as zero for now, size will be set at freeze
13867 -- time. We have to do this for ordinary fixed-point, because the size
13868 -- depends on the specified small, and we might as well do the same for
13869 -- decimal fixed-point.
13870
13871 pragma Assert (Esize (Implicit_Base) = Uint_0);
13872
13873 -- If there are bounds given in the declaration use them as the
13874 -- bounds of the first named subtype.
13875
13876 if Present (Real_Range_Specification (Def)) then
13877 declare
13878 RRS : constant Node_Id := Real_Range_Specification (Def);
13879 Low : constant Node_Id := Low_Bound (RRS);
13880 High : constant Node_Id := High_Bound (RRS);
13881 Low_Val : Ureal;
13882 High_Val : Ureal;
13883
13884 begin
13885 Analyze_And_Resolve (Low, Any_Real);
13886 Analyze_And_Resolve (High, Any_Real);
13887 Check_Real_Bound (Low);
13888 Check_Real_Bound (High);
13889 Low_Val := Expr_Value_R (Low);
13890 High_Val := Expr_Value_R (High);
13891
13892 if Low_Val < (-Bound_Val) then
13893 Error_Msg_N
13894 ("range low bound too small for digits value", Low);
13895 Low_Val := -Bound_Val;
13896 end if;
13897
13898 if High_Val > Bound_Val then
13899 Error_Msg_N
13900 ("range high bound too large for digits value", High);
13901 High_Val := Bound_Val;
13902 end if;
13903
13904 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13905 end;
13906
13907 -- If no explicit range, use range that corresponds to given
13908 -- digits value. This will end up as the final range for the
13909 -- first subtype.
13910
13911 else
13912 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13913 end if;
13914
13915 -- Complete entity for first subtype. The inheritance of the rep item
13916 -- chain ensures that SPARK-related pragmas are not clobbered when the
13917 -- decimal fixed point type acts as a full view of a private type.
13918
13919 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13920 Set_Etype (T, Implicit_Base);
13921 Set_Size_Info (T, Implicit_Base);
13922 Inherit_Rep_Item_Chain (T, Implicit_Base);
13923 Set_Digits_Value (T, Digs_Val);
13924 Set_Delta_Value (T, Delta_Val);
13925 Set_Small_Value (T, Delta_Val);
13926 Set_Scale_Value (T, Scale_Val);
13927 Set_Is_Constrained (T);
13928 end Decimal_Fixed_Point_Type_Declaration;
13929
13930 -----------------------------------
13931 -- Derive_Progenitor_Subprograms --
13932 -----------------------------------
13933
13934 procedure Derive_Progenitor_Subprograms
13935 (Parent_Type : Entity_Id;
13936 Tagged_Type : Entity_Id)
13937 is
13938 E : Entity_Id;
13939 Elmt : Elmt_Id;
13940 Iface : Entity_Id;
13941 Iface_Elmt : Elmt_Id;
13942 Iface_Subp : Entity_Id;
13943 New_Subp : Entity_Id := Empty;
13944 Prim_Elmt : Elmt_Id;
13945 Subp : Entity_Id;
13946 Typ : Entity_Id;
13947
13948 begin
13949 pragma Assert (Ada_Version >= Ada_2005
13950 and then Is_Record_Type (Tagged_Type)
13951 and then Is_Tagged_Type (Tagged_Type)
13952 and then Has_Interfaces (Tagged_Type));
13953
13954 -- Step 1: Transfer to the full-view primitives associated with the
13955 -- partial-view that cover interface primitives. Conceptually this
13956 -- work should be done later by Process_Full_View; done here to
13957 -- simplify its implementation at later stages. It can be safely
13958 -- done here because interfaces must be visible in the partial and
13959 -- private view (RM 7.3(7.3/2)).
13960
13961 -- Small optimization: This work is only required if the parent may
13962 -- have entities whose Alias attribute reference an interface primitive.
13963 -- Such a situation may occur if the parent is an abstract type and the
13964 -- primitive has not been yet overridden or if the parent is a generic
13965 -- formal type covering interfaces.
13966
13967 -- If the tagged type is not abstract, it cannot have abstract
13968 -- primitives (the only entities in the list of primitives of
13969 -- non-abstract tagged types that can reference abstract primitives
13970 -- through its Alias attribute are the internal entities that have
13971 -- attribute Interface_Alias, and these entities are generated later
13972 -- by Add_Internal_Interface_Entities).
13973
13974 if In_Private_Part (Current_Scope)
13975 and then (Is_Abstract_Type (Parent_Type)
13976 or else
13977 Is_Generic_Type (Parent_Type))
13978 then
13979 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13980 while Present (Elmt) loop
13981 Subp := Node (Elmt);
13982
13983 -- At this stage it is not possible to have entities in the list
13984 -- of primitives that have attribute Interface_Alias.
13985
13986 pragma Assert (No (Interface_Alias (Subp)));
13987
13988 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13989
13990 if Is_Interface (Typ) then
13991 E := Find_Primitive_Covering_Interface
13992 (Tagged_Type => Tagged_Type,
13993 Iface_Prim => Subp);
13994
13995 if Present (E)
13996 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13997 then
13998 Replace_Elmt (Elmt, E);
13999 Remove_Homonym (Subp);
14000 end if;
14001 end if;
14002
14003 Next_Elmt (Elmt);
14004 end loop;
14005 end if;
14006
14007 -- Step 2: Add primitives of progenitors that are not implemented by
14008 -- parents of Tagged_Type.
14009
14010 if Present (Interfaces (Base_Type (Tagged_Type))) then
14011 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14012 while Present (Iface_Elmt) loop
14013 Iface := Node (Iface_Elmt);
14014
14015 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14016 while Present (Prim_Elmt) loop
14017 Iface_Subp := Node (Prim_Elmt);
14018
14019 -- Exclude derivation of predefined primitives except those
14020 -- that come from source, or are inherited from one that comes
14021 -- from source. Required to catch declarations of equality
14022 -- operators of interfaces. For example:
14023
14024 -- type Iface is interface;
14025 -- function "=" (Left, Right : Iface) return Boolean;
14026
14027 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14028 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14029 then
14030 E := Find_Primitive_Covering_Interface
14031 (Tagged_Type => Tagged_Type,
14032 Iface_Prim => Iface_Subp);
14033
14034 -- If not found we derive a new primitive leaving its alias
14035 -- attribute referencing the interface primitive.
14036
14037 if No (E) then
14038 Derive_Subprogram
14039 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14040
14041 -- Ada 2012 (AI05-0197): If the covering primitive's name
14042 -- differs from the name of the interface primitive then it
14043 -- is a private primitive inherited from a parent type. In
14044 -- such case, given that Tagged_Type covers the interface,
14045 -- the inherited private primitive becomes visible. For such
14046 -- purpose we add a new entity that renames the inherited
14047 -- private primitive.
14048
14049 elsif Chars (E) /= Chars (Iface_Subp) then
14050 pragma Assert (Has_Suffix (E, 'P'));
14051 Derive_Subprogram
14052 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14053 Set_Alias (New_Subp, E);
14054 Set_Is_Abstract_Subprogram (New_Subp,
14055 Is_Abstract_Subprogram (E));
14056
14057 -- Propagate to the full view interface entities associated
14058 -- with the partial view.
14059
14060 elsif In_Private_Part (Current_Scope)
14061 and then Present (Alias (E))
14062 and then Alias (E) = Iface_Subp
14063 and then
14064 List_Containing (Parent (E)) /=
14065 Private_Declarations
14066 (Specification
14067 (Unit_Declaration_Node (Current_Scope)))
14068 then
14069 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14070 end if;
14071 end if;
14072
14073 Next_Elmt (Prim_Elmt);
14074 end loop;
14075
14076 Next_Elmt (Iface_Elmt);
14077 end loop;
14078 end if;
14079 end Derive_Progenitor_Subprograms;
14080
14081 -----------------------
14082 -- Derive_Subprogram --
14083 -----------------------
14084
14085 procedure Derive_Subprogram
14086 (New_Subp : in out Entity_Id;
14087 Parent_Subp : Entity_Id;
14088 Derived_Type : Entity_Id;
14089 Parent_Type : Entity_Id;
14090 Actual_Subp : Entity_Id := Empty)
14091 is
14092 Formal : Entity_Id;
14093 -- Formal parameter of parent primitive operation
14094
14095 Formal_Of_Actual : Entity_Id;
14096 -- Formal parameter of actual operation, when the derivation is to
14097 -- create a renaming for a primitive operation of an actual in an
14098 -- instantiation.
14099
14100 New_Formal : Entity_Id;
14101 -- Formal of inherited operation
14102
14103 Visible_Subp : Entity_Id := Parent_Subp;
14104
14105 function Is_Private_Overriding return Boolean;
14106 -- If Subp is a private overriding of a visible operation, the inherited
14107 -- operation derives from the overridden op (even though its body is the
14108 -- overriding one) and the inherited operation is visible now. See
14109 -- sem_disp to see the full details of the handling of the overridden
14110 -- subprogram, which is removed from the list of primitive operations of
14111 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14112 -- and used to diagnose abstract operations that need overriding in the
14113 -- derived type.
14114
14115 procedure Replace_Type (Id, New_Id : Entity_Id);
14116 -- When the type is an anonymous access type, create a new access type
14117 -- designating the derived type.
14118
14119 procedure Set_Derived_Name;
14120 -- This procedure sets the appropriate Chars name for New_Subp. This
14121 -- is normally just a copy of the parent name. An exception arises for
14122 -- type support subprograms, where the name is changed to reflect the
14123 -- name of the derived type, e.g. if type foo is derived from type bar,
14124 -- then a procedure barDA is derived with a name fooDA.
14125
14126 ---------------------------
14127 -- Is_Private_Overriding --
14128 ---------------------------
14129
14130 function Is_Private_Overriding return Boolean is
14131 Prev : Entity_Id;
14132
14133 begin
14134 -- If the parent is not a dispatching operation there is no
14135 -- need to investigate overridings
14136
14137 if not Is_Dispatching_Operation (Parent_Subp) then
14138 return False;
14139 end if;
14140
14141 -- The visible operation that is overridden is a homonym of the
14142 -- parent subprogram. We scan the homonym chain to find the one
14143 -- whose alias is the subprogram we are deriving.
14144
14145 Prev := Current_Entity (Parent_Subp);
14146 while Present (Prev) loop
14147 if Ekind (Prev) = Ekind (Parent_Subp)
14148 and then Alias (Prev) = Parent_Subp
14149 and then Scope (Parent_Subp) = Scope (Prev)
14150 and then not Is_Hidden (Prev)
14151 then
14152 Visible_Subp := Prev;
14153 return True;
14154 end if;
14155
14156 Prev := Homonym (Prev);
14157 end loop;
14158
14159 return False;
14160 end Is_Private_Overriding;
14161
14162 ------------------
14163 -- Replace_Type --
14164 ------------------
14165
14166 procedure Replace_Type (Id, New_Id : Entity_Id) is
14167 Id_Type : constant Entity_Id := Etype (Id);
14168 Acc_Type : Entity_Id;
14169 Par : constant Node_Id := Parent (Derived_Type);
14170
14171 begin
14172 -- When the type is an anonymous access type, create a new access
14173 -- type designating the derived type. This itype must be elaborated
14174 -- at the point of the derivation, not on subsequent calls that may
14175 -- be out of the proper scope for Gigi, so we insert a reference to
14176 -- it after the derivation.
14177
14178 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14179 declare
14180 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14181
14182 begin
14183 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14184 and then Present (Full_View (Desig_Typ))
14185 and then not Is_Private_Type (Parent_Type)
14186 then
14187 Desig_Typ := Full_View (Desig_Typ);
14188 end if;
14189
14190 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14191
14192 -- Ada 2005 (AI-251): Handle also derivations of abstract
14193 -- interface primitives.
14194
14195 or else (Is_Interface (Desig_Typ)
14196 and then not Is_Class_Wide_Type (Desig_Typ))
14197 then
14198 Acc_Type := New_Copy (Id_Type);
14199 Set_Etype (Acc_Type, Acc_Type);
14200 Set_Scope (Acc_Type, New_Subp);
14201
14202 -- Set size of anonymous access type. If we have an access
14203 -- to an unconstrained array, this is a fat pointer, so it
14204 -- is sizes at twice addtress size.
14205
14206 if Is_Array_Type (Desig_Typ)
14207 and then not Is_Constrained (Desig_Typ)
14208 then
14209 Init_Size (Acc_Type, 2 * System_Address_Size);
14210
14211 -- Other cases use a thin pointer
14212
14213 else
14214 Init_Size (Acc_Type, System_Address_Size);
14215 end if;
14216
14217 -- Set remaining characterstics of anonymous access type
14218
14219 Init_Alignment (Acc_Type);
14220 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14221
14222 Set_Etype (New_Id, Acc_Type);
14223 Set_Scope (New_Id, New_Subp);
14224
14225 -- Create a reference to it
14226
14227 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14228
14229 else
14230 Set_Etype (New_Id, Id_Type);
14231 end if;
14232 end;
14233
14234 -- In Ada2012, a formal may have an incomplete type but the type
14235 -- derivation that inherits the primitive follows the full view.
14236
14237 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14238 or else
14239 (Ekind (Id_Type) = E_Record_Type_With_Private
14240 and then Present (Full_View (Id_Type))
14241 and then
14242 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14243 or else
14244 (Ada_Version >= Ada_2012
14245 and then Ekind (Id_Type) = E_Incomplete_Type
14246 and then Full_View (Id_Type) = Parent_Type)
14247 then
14248 -- Constraint checks on formals are generated during expansion,
14249 -- based on the signature of the original subprogram. The bounds
14250 -- of the derived type are not relevant, and thus we can use
14251 -- the base type for the formals. However, the return type may be
14252 -- used in a context that requires that the proper static bounds
14253 -- be used (a case statement, for example) and for those cases
14254 -- we must use the derived type (first subtype), not its base.
14255
14256 -- If the derived_type_definition has no constraints, we know that
14257 -- the derived type has the same constraints as the first subtype
14258 -- of the parent, and we can also use it rather than its base,
14259 -- which can lead to more efficient code.
14260
14261 if Etype (Id) = Parent_Type then
14262 if Is_Scalar_Type (Parent_Type)
14263 and then
14264 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14265 then
14266 Set_Etype (New_Id, Derived_Type);
14267
14268 elsif Nkind (Par) = N_Full_Type_Declaration
14269 and then
14270 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14271 and then
14272 Is_Entity_Name
14273 (Subtype_Indication (Type_Definition (Par)))
14274 then
14275 Set_Etype (New_Id, Derived_Type);
14276
14277 else
14278 Set_Etype (New_Id, Base_Type (Derived_Type));
14279 end if;
14280
14281 else
14282 Set_Etype (New_Id, Base_Type (Derived_Type));
14283 end if;
14284
14285 else
14286 Set_Etype (New_Id, Etype (Id));
14287 end if;
14288 end Replace_Type;
14289
14290 ----------------------
14291 -- Set_Derived_Name --
14292 ----------------------
14293
14294 procedure Set_Derived_Name is
14295 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14296 begin
14297 if Nm = TSS_Null then
14298 Set_Chars (New_Subp, Chars (Parent_Subp));
14299 else
14300 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14301 end if;
14302 end Set_Derived_Name;
14303
14304 -- Start of processing for Derive_Subprogram
14305
14306 begin
14307 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14308 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14309 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14310
14311 -- Check whether the inherited subprogram is a private operation that
14312 -- should be inherited but not yet made visible. Such subprograms can
14313 -- become visible at a later point (e.g., the private part of a public
14314 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14315 -- following predicate is true, then this is not such a private
14316 -- operation and the subprogram simply inherits the name of the parent
14317 -- subprogram. Note the special check for the names of controlled
14318 -- operations, which are currently exempted from being inherited with
14319 -- a hidden name because they must be findable for generation of
14320 -- implicit run-time calls.
14321
14322 if not Is_Hidden (Parent_Subp)
14323 or else Is_Internal (Parent_Subp)
14324 or else Is_Private_Overriding
14325 or else Is_Internal_Name (Chars (Parent_Subp))
14326 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14327 Name_Adjust,
14328 Name_Finalize)
14329 then
14330 Set_Derived_Name;
14331
14332 -- An inherited dispatching equality will be overridden by an internally
14333 -- generated one, or by an explicit one, so preserve its name and thus
14334 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14335 -- private operation it may become invisible if the full view has
14336 -- progenitors, and the dispatch table will be malformed.
14337 -- We check that the type is limited to handle the anomalous declaration
14338 -- of Limited_Controlled, which is derived from a non-limited type, and
14339 -- which is handled specially elsewhere as well.
14340
14341 elsif Chars (Parent_Subp) = Name_Op_Eq
14342 and then Is_Dispatching_Operation (Parent_Subp)
14343 and then Etype (Parent_Subp) = Standard_Boolean
14344 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14345 and then
14346 Etype (First_Formal (Parent_Subp)) =
14347 Etype (Next_Formal (First_Formal (Parent_Subp)))
14348 then
14349 Set_Derived_Name;
14350
14351 -- If parent is hidden, this can be a regular derivation if the
14352 -- parent is immediately visible in a non-instantiating context,
14353 -- or if we are in the private part of an instance. This test
14354 -- should still be refined ???
14355
14356 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14357 -- operation as a non-visible operation in cases where the parent
14358 -- subprogram might not be visible now, but was visible within the
14359 -- original generic, so it would be wrong to make the inherited
14360 -- subprogram non-visible now. (Not clear if this test is fully
14361 -- correct; are there any cases where we should declare the inherited
14362 -- operation as not visible to avoid it being overridden, e.g., when
14363 -- the parent type is a generic actual with private primitives ???)
14364
14365 -- (they should be treated the same as other private inherited
14366 -- subprograms, but it's not clear how to do this cleanly). ???
14367
14368 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14369 and then Is_Immediately_Visible (Parent_Subp)
14370 and then not In_Instance)
14371 or else In_Instance_Not_Visible
14372 then
14373 Set_Derived_Name;
14374
14375 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14376 -- overrides an interface primitive because interface primitives
14377 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14378
14379 elsif Ada_Version >= Ada_2005
14380 and then Is_Dispatching_Operation (Parent_Subp)
14381 and then Covers_Some_Interface (Parent_Subp)
14382 then
14383 Set_Derived_Name;
14384
14385 -- Otherwise, the type is inheriting a private operation, so enter
14386 -- it with a special name so it can't be overridden.
14387
14388 else
14389 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14390 end if;
14391
14392 Set_Parent (New_Subp, Parent (Derived_Type));
14393
14394 if Present (Actual_Subp) then
14395 Replace_Type (Actual_Subp, New_Subp);
14396 else
14397 Replace_Type (Parent_Subp, New_Subp);
14398 end if;
14399
14400 Conditional_Delay (New_Subp, Parent_Subp);
14401
14402 -- If we are creating a renaming for a primitive operation of an
14403 -- actual of a generic derived type, we must examine the signature
14404 -- of the actual primitive, not that of the generic formal, which for
14405 -- example may be an interface. However the name and initial value
14406 -- of the inherited operation are those of the formal primitive.
14407
14408 Formal := First_Formal (Parent_Subp);
14409
14410 if Present (Actual_Subp) then
14411 Formal_Of_Actual := First_Formal (Actual_Subp);
14412 else
14413 Formal_Of_Actual := Empty;
14414 end if;
14415
14416 while Present (Formal) loop
14417 New_Formal := New_Copy (Formal);
14418
14419 -- Normally we do not go copying parents, but in the case of
14420 -- formals, we need to link up to the declaration (which is the
14421 -- parameter specification), and it is fine to link up to the
14422 -- original formal's parameter specification in this case.
14423
14424 Set_Parent (New_Formal, Parent (Formal));
14425 Append_Entity (New_Formal, New_Subp);
14426
14427 if Present (Formal_Of_Actual) then
14428 Replace_Type (Formal_Of_Actual, New_Formal);
14429 Next_Formal (Formal_Of_Actual);
14430 else
14431 Replace_Type (Formal, New_Formal);
14432 end if;
14433
14434 Next_Formal (Formal);
14435 end loop;
14436
14437 -- If this derivation corresponds to a tagged generic actual, then
14438 -- primitive operations rename those of the actual. Otherwise the
14439 -- primitive operations rename those of the parent type, If the parent
14440 -- renames an intrinsic operator, so does the new subprogram. We except
14441 -- concatenation, which is always properly typed, and does not get
14442 -- expanded as other intrinsic operations.
14443
14444 if No (Actual_Subp) then
14445 if Is_Intrinsic_Subprogram (Parent_Subp) then
14446 Set_Is_Intrinsic_Subprogram (New_Subp);
14447
14448 if Present (Alias (Parent_Subp))
14449 and then Chars (Parent_Subp) /= Name_Op_Concat
14450 then
14451 Set_Alias (New_Subp, Alias (Parent_Subp));
14452 else
14453 Set_Alias (New_Subp, Parent_Subp);
14454 end if;
14455
14456 else
14457 Set_Alias (New_Subp, Parent_Subp);
14458 end if;
14459
14460 else
14461 Set_Alias (New_Subp, Actual_Subp);
14462 end if;
14463
14464 -- Derived subprograms of a tagged type must inherit the convention
14465 -- of the parent subprogram (a requirement of AI-117). Derived
14466 -- subprograms of untagged types simply get convention Ada by default.
14467
14468 -- If the derived type is a tagged generic formal type with unknown
14469 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14470
14471 -- However, if the type is derived from a generic formal, the further
14472 -- inherited subprogram has the convention of the non-generic ancestor.
14473 -- Otherwise there would be no way to override the operation.
14474 -- (This is subject to forthcoming ARG discussions).
14475
14476 if Is_Tagged_Type (Derived_Type) then
14477 if Is_Generic_Type (Derived_Type)
14478 and then Has_Unknown_Discriminants (Derived_Type)
14479 then
14480 Set_Convention (New_Subp, Convention_Intrinsic);
14481
14482 else
14483 if Is_Generic_Type (Parent_Type)
14484 and then Has_Unknown_Discriminants (Parent_Type)
14485 then
14486 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14487 else
14488 Set_Convention (New_Subp, Convention (Parent_Subp));
14489 end if;
14490 end if;
14491 end if;
14492
14493 -- Predefined controlled operations retain their name even if the parent
14494 -- is hidden (see above), but they are not primitive operations if the
14495 -- ancestor is not visible, for example if the parent is a private
14496 -- extension completed with a controlled extension. Note that a full
14497 -- type that is controlled can break privacy: the flag Is_Controlled is
14498 -- set on both views of the type.
14499
14500 if Is_Controlled (Parent_Type)
14501 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14502 Name_Adjust,
14503 Name_Finalize)
14504 and then Is_Hidden (Parent_Subp)
14505 and then not Is_Visibly_Controlled (Parent_Type)
14506 then
14507 Set_Is_Hidden (New_Subp);
14508 end if;
14509
14510 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14511 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14512
14513 if Ekind (Parent_Subp) = E_Procedure then
14514 Set_Is_Valued_Procedure
14515 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14516 else
14517 Set_Has_Controlling_Result
14518 (New_Subp, Has_Controlling_Result (Parent_Subp));
14519 end if;
14520
14521 -- No_Return must be inherited properly. If this is overridden in the
14522 -- case of a dispatching operation, then a check is made in Sem_Disp
14523 -- that the overriding operation is also No_Return (no such check is
14524 -- required for the case of non-dispatching operation.
14525
14526 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14527
14528 -- A derived function with a controlling result is abstract. If the
14529 -- Derived_Type is a nonabstract formal generic derived type, then
14530 -- inherited operations are not abstract: the required check is done at
14531 -- instantiation time. If the derivation is for a generic actual, the
14532 -- function is not abstract unless the actual is.
14533
14534 if Is_Generic_Type (Derived_Type)
14535 and then not Is_Abstract_Type (Derived_Type)
14536 then
14537 null;
14538
14539 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14540 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14541
14542 -- A subprogram subject to pragma Extensions_Visible with value False
14543 -- requires overriding if the subprogram has at least one controlling
14544 -- OUT parameter.
14545
14546 elsif Ada_Version >= Ada_2005
14547 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14548 or else (Is_Tagged_Type (Derived_Type)
14549 and then Etype (New_Subp) = Derived_Type
14550 and then not Is_Null_Extension (Derived_Type))
14551 or else (Is_Tagged_Type (Derived_Type)
14552 and then Ekind (Etype (New_Subp)) =
14553 E_Anonymous_Access_Type
14554 and then Designated_Type (Etype (New_Subp)) =
14555 Derived_Type
14556 and then not Is_Null_Extension (Derived_Type))
14557 or else Is_EVF_Procedure (Alias (New_Subp)))
14558 and then No (Actual_Subp)
14559 then
14560 if not Is_Tagged_Type (Derived_Type)
14561 or else Is_Abstract_Type (Derived_Type)
14562 or else Is_Abstract_Subprogram (Alias (New_Subp))
14563 then
14564 Set_Is_Abstract_Subprogram (New_Subp);
14565 else
14566 Set_Requires_Overriding (New_Subp);
14567 end if;
14568
14569 elsif Ada_Version < Ada_2005
14570 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14571 or else (Is_Tagged_Type (Derived_Type)
14572 and then Etype (New_Subp) = Derived_Type
14573 and then No (Actual_Subp)))
14574 then
14575 Set_Is_Abstract_Subprogram (New_Subp);
14576
14577 -- AI05-0097 : an inherited operation that dispatches on result is
14578 -- abstract if the derived type is abstract, even if the parent type
14579 -- is concrete and the derived type is a null extension.
14580
14581 elsif Has_Controlling_Result (Alias (New_Subp))
14582 and then Is_Abstract_Type (Etype (New_Subp))
14583 then
14584 Set_Is_Abstract_Subprogram (New_Subp);
14585
14586 -- Finally, if the parent type is abstract we must verify that all
14587 -- inherited operations are either non-abstract or overridden, or that
14588 -- the derived type itself is abstract (this check is performed at the
14589 -- end of a package declaration, in Check_Abstract_Overriding). A
14590 -- private overriding in the parent type will not be visible in the
14591 -- derivation if we are not in an inner package or in a child unit of
14592 -- the parent type, in which case the abstractness of the inherited
14593 -- operation is carried to the new subprogram.
14594
14595 elsif Is_Abstract_Type (Parent_Type)
14596 and then not In_Open_Scopes (Scope (Parent_Type))
14597 and then Is_Private_Overriding
14598 and then Is_Abstract_Subprogram (Visible_Subp)
14599 then
14600 if No (Actual_Subp) then
14601 Set_Alias (New_Subp, Visible_Subp);
14602 Set_Is_Abstract_Subprogram (New_Subp, True);
14603
14604 else
14605 -- If this is a derivation for an instance of a formal derived
14606 -- type, abstractness comes from the primitive operation of the
14607 -- actual, not from the operation inherited from the ancestor.
14608
14609 Set_Is_Abstract_Subprogram
14610 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14611 end if;
14612 end if;
14613
14614 New_Overloaded_Entity (New_Subp, Derived_Type);
14615
14616 -- Check for case of a derived subprogram for the instantiation of a
14617 -- formal derived tagged type, if so mark the subprogram as dispatching
14618 -- and inherit the dispatching attributes of the actual subprogram. The
14619 -- derived subprogram is effectively renaming of the actual subprogram,
14620 -- so it needs to have the same attributes as the actual.
14621
14622 if Present (Actual_Subp)
14623 and then Is_Dispatching_Operation (Actual_Subp)
14624 then
14625 Set_Is_Dispatching_Operation (New_Subp);
14626
14627 if Present (DTC_Entity (Actual_Subp)) then
14628 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14629 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14630 end if;
14631 end if;
14632
14633 -- Indicate that a derived subprogram does not require a body and that
14634 -- it does not require processing of default expressions.
14635
14636 Set_Has_Completion (New_Subp);
14637 Set_Default_Expressions_Processed (New_Subp);
14638
14639 if Ekind (New_Subp) = E_Function then
14640 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14641 end if;
14642 end Derive_Subprogram;
14643
14644 ------------------------
14645 -- Derive_Subprograms --
14646 ------------------------
14647
14648 procedure Derive_Subprograms
14649 (Parent_Type : Entity_Id;
14650 Derived_Type : Entity_Id;
14651 Generic_Actual : Entity_Id := Empty)
14652 is
14653 Op_List : constant Elist_Id :=
14654 Collect_Primitive_Operations (Parent_Type);
14655
14656 function Check_Derived_Type return Boolean;
14657 -- Check that all the entities derived from Parent_Type are found in
14658 -- the list of primitives of Derived_Type exactly in the same order.
14659
14660 procedure Derive_Interface_Subprogram
14661 (New_Subp : in out Entity_Id;
14662 Subp : Entity_Id;
14663 Actual_Subp : Entity_Id);
14664 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14665 -- (which is an interface primitive). If Generic_Actual is present then
14666 -- Actual_Subp is the actual subprogram corresponding with the generic
14667 -- subprogram Subp.
14668
14669 function Check_Derived_Type return Boolean is
14670 E : Entity_Id;
14671 Elmt : Elmt_Id;
14672 List : Elist_Id;
14673 New_Subp : Entity_Id;
14674 Op_Elmt : Elmt_Id;
14675 Subp : Entity_Id;
14676
14677 begin
14678 -- Traverse list of entities in the current scope searching for
14679 -- an incomplete type whose full-view is derived type
14680
14681 E := First_Entity (Scope (Derived_Type));
14682 while Present (E) and then E /= Derived_Type loop
14683 if Ekind (E) = E_Incomplete_Type
14684 and then Present (Full_View (E))
14685 and then Full_View (E) = Derived_Type
14686 then
14687 -- Disable this test if Derived_Type completes an incomplete
14688 -- type because in such case more primitives can be added
14689 -- later to the list of primitives of Derived_Type by routine
14690 -- Process_Incomplete_Dependents
14691
14692 return True;
14693 end if;
14694
14695 E := Next_Entity (E);
14696 end loop;
14697
14698 List := Collect_Primitive_Operations (Derived_Type);
14699 Elmt := First_Elmt (List);
14700
14701 Op_Elmt := First_Elmt (Op_List);
14702 while Present (Op_Elmt) loop
14703 Subp := Node (Op_Elmt);
14704 New_Subp := Node (Elmt);
14705
14706 -- At this early stage Derived_Type has no entities with attribute
14707 -- Interface_Alias. In addition, such primitives are always
14708 -- located at the end of the list of primitives of Parent_Type.
14709 -- Therefore, if found we can safely stop processing pending
14710 -- entities.
14711
14712 exit when Present (Interface_Alias (Subp));
14713
14714 -- Handle hidden entities
14715
14716 if not Is_Predefined_Dispatching_Operation (Subp)
14717 and then Is_Hidden (Subp)
14718 then
14719 if Present (New_Subp)
14720 and then Primitive_Names_Match (Subp, New_Subp)
14721 then
14722 Next_Elmt (Elmt);
14723 end if;
14724
14725 else
14726 if not Present (New_Subp)
14727 or else Ekind (Subp) /= Ekind (New_Subp)
14728 or else not Primitive_Names_Match (Subp, New_Subp)
14729 then
14730 return False;
14731 end if;
14732
14733 Next_Elmt (Elmt);
14734 end if;
14735
14736 Next_Elmt (Op_Elmt);
14737 end loop;
14738
14739 return True;
14740 end Check_Derived_Type;
14741
14742 ---------------------------------
14743 -- Derive_Interface_Subprogram --
14744 ---------------------------------
14745
14746 procedure Derive_Interface_Subprogram
14747 (New_Subp : in out Entity_Id;
14748 Subp : Entity_Id;
14749 Actual_Subp : Entity_Id)
14750 is
14751 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14752 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14753
14754 begin
14755 pragma Assert (Is_Interface (Iface_Type));
14756
14757 Derive_Subprogram
14758 (New_Subp => New_Subp,
14759 Parent_Subp => Iface_Subp,
14760 Derived_Type => Derived_Type,
14761 Parent_Type => Iface_Type,
14762 Actual_Subp => Actual_Subp);
14763
14764 -- Given that this new interface entity corresponds with a primitive
14765 -- of the parent that was not overridden we must leave it associated
14766 -- with its parent primitive to ensure that it will share the same
14767 -- dispatch table slot when overridden.
14768
14769 if No (Actual_Subp) then
14770 Set_Alias (New_Subp, Subp);
14771
14772 -- For instantiations this is not needed since the previous call to
14773 -- Derive_Subprogram leaves the entity well decorated.
14774
14775 else
14776 pragma Assert (Alias (New_Subp) = Actual_Subp);
14777 null;
14778 end if;
14779 end Derive_Interface_Subprogram;
14780
14781 -- Local variables
14782
14783 Alias_Subp : Entity_Id;
14784 Act_List : Elist_Id;
14785 Act_Elmt : Elmt_Id;
14786 Act_Subp : Entity_Id := Empty;
14787 Elmt : Elmt_Id;
14788 Need_Search : Boolean := False;
14789 New_Subp : Entity_Id := Empty;
14790 Parent_Base : Entity_Id;
14791 Subp : Entity_Id;
14792
14793 -- Start of processing for Derive_Subprograms
14794
14795 begin
14796 if Ekind (Parent_Type) = E_Record_Type_With_Private
14797 and then Has_Discriminants (Parent_Type)
14798 and then Present (Full_View (Parent_Type))
14799 then
14800 Parent_Base := Full_View (Parent_Type);
14801 else
14802 Parent_Base := Parent_Type;
14803 end if;
14804
14805 if Present (Generic_Actual) then
14806 Act_List := Collect_Primitive_Operations (Generic_Actual);
14807 Act_Elmt := First_Elmt (Act_List);
14808 else
14809 Act_List := No_Elist;
14810 Act_Elmt := No_Elmt;
14811 end if;
14812
14813 -- Derive primitives inherited from the parent. Note that if the generic
14814 -- actual is present, this is not really a type derivation, it is a
14815 -- completion within an instance.
14816
14817 -- Case 1: Derived_Type does not implement interfaces
14818
14819 if not Is_Tagged_Type (Derived_Type)
14820 or else (not Has_Interfaces (Derived_Type)
14821 and then not (Present (Generic_Actual)
14822 and then Has_Interfaces (Generic_Actual)))
14823 then
14824 Elmt := First_Elmt (Op_List);
14825 while Present (Elmt) loop
14826 Subp := Node (Elmt);
14827
14828 -- Literals are derived earlier in the process of building the
14829 -- derived type, and are skipped here.
14830
14831 if Ekind (Subp) = E_Enumeration_Literal then
14832 null;
14833
14834 -- The actual is a direct descendant and the common primitive
14835 -- operations appear in the same order.
14836
14837 -- If the generic parent type is present, the derived type is an
14838 -- instance of a formal derived type, and within the instance its
14839 -- operations are those of the actual. We derive from the formal
14840 -- type but make the inherited operations aliases of the
14841 -- corresponding operations of the actual.
14842
14843 else
14844 pragma Assert (No (Node (Act_Elmt))
14845 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14846 and then
14847 Type_Conformant
14848 (Subp, Node (Act_Elmt),
14849 Skip_Controlling_Formals => True)));
14850
14851 Derive_Subprogram
14852 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14853
14854 if Present (Act_Elmt) then
14855 Next_Elmt (Act_Elmt);
14856 end if;
14857 end if;
14858
14859 Next_Elmt (Elmt);
14860 end loop;
14861
14862 -- Case 2: Derived_Type implements interfaces
14863
14864 else
14865 -- If the parent type has no predefined primitives we remove
14866 -- predefined primitives from the list of primitives of generic
14867 -- actual to simplify the complexity of this algorithm.
14868
14869 if Present (Generic_Actual) then
14870 declare
14871 Has_Predefined_Primitives : Boolean := False;
14872
14873 begin
14874 -- Check if the parent type has predefined primitives
14875
14876 Elmt := First_Elmt (Op_List);
14877 while Present (Elmt) loop
14878 Subp := Node (Elmt);
14879
14880 if Is_Predefined_Dispatching_Operation (Subp)
14881 and then not Comes_From_Source (Ultimate_Alias (Subp))
14882 then
14883 Has_Predefined_Primitives := True;
14884 exit;
14885 end if;
14886
14887 Next_Elmt (Elmt);
14888 end loop;
14889
14890 -- Remove predefined primitives of Generic_Actual. We must use
14891 -- an auxiliary list because in case of tagged types the value
14892 -- returned by Collect_Primitive_Operations is the value stored
14893 -- in its Primitive_Operations attribute (and we don't want to
14894 -- modify its current contents).
14895
14896 if not Has_Predefined_Primitives then
14897 declare
14898 Aux_List : constant Elist_Id := New_Elmt_List;
14899
14900 begin
14901 Elmt := First_Elmt (Act_List);
14902 while Present (Elmt) loop
14903 Subp := Node (Elmt);
14904
14905 if not Is_Predefined_Dispatching_Operation (Subp)
14906 or else Comes_From_Source (Subp)
14907 then
14908 Append_Elmt (Subp, Aux_List);
14909 end if;
14910
14911 Next_Elmt (Elmt);
14912 end loop;
14913
14914 Act_List := Aux_List;
14915 end;
14916 end if;
14917
14918 Act_Elmt := First_Elmt (Act_List);
14919 Act_Subp := Node (Act_Elmt);
14920 end;
14921 end if;
14922
14923 -- Stage 1: If the generic actual is not present we derive the
14924 -- primitives inherited from the parent type. If the generic parent
14925 -- type is present, the derived type is an instance of a formal
14926 -- derived type, and within the instance its operations are those of
14927 -- the actual. We derive from the formal type but make the inherited
14928 -- operations aliases of the corresponding operations of the actual.
14929
14930 Elmt := First_Elmt (Op_List);
14931 while Present (Elmt) loop
14932 Subp := Node (Elmt);
14933 Alias_Subp := Ultimate_Alias (Subp);
14934
14935 -- Do not derive internal entities of the parent that link
14936 -- interface primitives with their covering primitive. These
14937 -- entities will be added to this type when frozen.
14938
14939 if Present (Interface_Alias (Subp)) then
14940 goto Continue;
14941 end if;
14942
14943 -- If the generic actual is present find the corresponding
14944 -- operation in the generic actual. If the parent type is a
14945 -- direct ancestor of the derived type then, even if it is an
14946 -- interface, the operations are inherited from the primary
14947 -- dispatch table and are in the proper order. If we detect here
14948 -- that primitives are not in the same order we traverse the list
14949 -- of primitive operations of the actual to find the one that
14950 -- implements the interface primitive.
14951
14952 if Need_Search
14953 or else
14954 (Present (Generic_Actual)
14955 and then Present (Act_Subp)
14956 and then not
14957 (Primitive_Names_Match (Subp, Act_Subp)
14958 and then
14959 Type_Conformant (Subp, Act_Subp,
14960 Skip_Controlling_Formals => True)))
14961 then
14962 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14963 Use_Full_View => True));
14964
14965 -- Remember that we need searching for all pending primitives
14966
14967 Need_Search := True;
14968
14969 -- Handle entities associated with interface primitives
14970
14971 if Present (Alias_Subp)
14972 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14973 and then not Is_Predefined_Dispatching_Operation (Subp)
14974 then
14975 -- Search for the primitive in the homonym chain
14976
14977 Act_Subp :=
14978 Find_Primitive_Covering_Interface
14979 (Tagged_Type => Generic_Actual,
14980 Iface_Prim => Alias_Subp);
14981
14982 -- Previous search may not locate primitives covering
14983 -- interfaces defined in generics units or instantiations.
14984 -- (it fails if the covering primitive has formals whose
14985 -- type is also defined in generics or instantiations).
14986 -- In such case we search in the list of primitives of the
14987 -- generic actual for the internal entity that links the
14988 -- interface primitive and the covering primitive.
14989
14990 if No (Act_Subp)
14991 and then Is_Generic_Type (Parent_Type)
14992 then
14993 -- This code has been designed to handle only generic
14994 -- formals that implement interfaces that are defined
14995 -- in a generic unit or instantiation. If this code is
14996 -- needed for other cases we must review it because
14997 -- (given that it relies on Original_Location to locate
14998 -- the primitive of Generic_Actual that covers the
14999 -- interface) it could leave linked through attribute
15000 -- Alias entities of unrelated instantiations).
15001
15002 pragma Assert
15003 (Is_Generic_Unit
15004 (Scope (Find_Dispatching_Type (Alias_Subp)))
15005 or else
15006 Instantiation_Depth
15007 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15008
15009 declare
15010 Iface_Prim_Loc : constant Source_Ptr :=
15011 Original_Location (Sloc (Alias_Subp));
15012
15013 Elmt : Elmt_Id;
15014 Prim : Entity_Id;
15015
15016 begin
15017 Elmt :=
15018 First_Elmt (Primitive_Operations (Generic_Actual));
15019
15020 Search : while Present (Elmt) loop
15021 Prim := Node (Elmt);
15022
15023 if Present (Interface_Alias (Prim))
15024 and then Original_Location
15025 (Sloc (Interface_Alias (Prim))) =
15026 Iface_Prim_Loc
15027 then
15028 Act_Subp := Alias (Prim);
15029 exit Search;
15030 end if;
15031
15032 Next_Elmt (Elmt);
15033 end loop Search;
15034 end;
15035 end if;
15036
15037 pragma Assert (Present (Act_Subp)
15038 or else Is_Abstract_Type (Generic_Actual)
15039 or else Serious_Errors_Detected > 0);
15040
15041 -- Handle predefined primitives plus the rest of user-defined
15042 -- primitives
15043
15044 else
15045 Act_Elmt := First_Elmt (Act_List);
15046 while Present (Act_Elmt) loop
15047 Act_Subp := Node (Act_Elmt);
15048
15049 exit when Primitive_Names_Match (Subp, Act_Subp)
15050 and then Type_Conformant
15051 (Subp, Act_Subp,
15052 Skip_Controlling_Formals => True)
15053 and then No (Interface_Alias (Act_Subp));
15054
15055 Next_Elmt (Act_Elmt);
15056 end loop;
15057
15058 if No (Act_Elmt) then
15059 Act_Subp := Empty;
15060 end if;
15061 end if;
15062 end if;
15063
15064 -- Case 1: If the parent is a limited interface then it has the
15065 -- predefined primitives of synchronized interfaces. However, the
15066 -- actual type may be a non-limited type and hence it does not
15067 -- have such primitives.
15068
15069 if Present (Generic_Actual)
15070 and then not Present (Act_Subp)
15071 and then Is_Limited_Interface (Parent_Base)
15072 and then Is_Predefined_Interface_Primitive (Subp)
15073 then
15074 null;
15075
15076 -- Case 2: Inherit entities associated with interfaces that were
15077 -- not covered by the parent type. We exclude here null interface
15078 -- primitives because they do not need special management.
15079
15080 -- We also exclude interface operations that are renamings. If the
15081 -- subprogram is an explicit renaming of an interface primitive,
15082 -- it is a regular primitive operation, and the presence of its
15083 -- alias is not relevant: it has to be derived like any other
15084 -- primitive.
15085
15086 elsif Present (Alias (Subp))
15087 and then Nkind (Unit_Declaration_Node (Subp)) /=
15088 N_Subprogram_Renaming_Declaration
15089 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15090 and then not
15091 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15092 and then Null_Present (Parent (Alias_Subp)))
15093 then
15094 -- If this is an abstract private type then we transfer the
15095 -- derivation of the interface primitive from the partial view
15096 -- to the full view. This is safe because all the interfaces
15097 -- must be visible in the partial view. Done to avoid adding
15098 -- a new interface derivation to the private part of the
15099 -- enclosing package; otherwise this new derivation would be
15100 -- decorated as hidden when the analysis of the enclosing
15101 -- package completes.
15102
15103 if Is_Abstract_Type (Derived_Type)
15104 and then In_Private_Part (Current_Scope)
15105 and then Has_Private_Declaration (Derived_Type)
15106 then
15107 declare
15108 Partial_View : Entity_Id;
15109 Elmt : Elmt_Id;
15110 Ent : Entity_Id;
15111
15112 begin
15113 Partial_View := First_Entity (Current_Scope);
15114 loop
15115 exit when No (Partial_View)
15116 or else (Has_Private_Declaration (Partial_View)
15117 and then
15118 Full_View (Partial_View) = Derived_Type);
15119
15120 Next_Entity (Partial_View);
15121 end loop;
15122
15123 -- If the partial view was not found then the source code
15124 -- has errors and the derivation is not needed.
15125
15126 if Present (Partial_View) then
15127 Elmt :=
15128 First_Elmt (Primitive_Operations (Partial_View));
15129 while Present (Elmt) loop
15130 Ent := Node (Elmt);
15131
15132 if Present (Alias (Ent))
15133 and then Ultimate_Alias (Ent) = Alias (Subp)
15134 then
15135 Append_Elmt
15136 (Ent, Primitive_Operations (Derived_Type));
15137 exit;
15138 end if;
15139
15140 Next_Elmt (Elmt);
15141 end loop;
15142
15143 -- If the interface primitive was not found in the
15144 -- partial view then this interface primitive was
15145 -- overridden. We add a derivation to activate in
15146 -- Derive_Progenitor_Subprograms the machinery to
15147 -- search for it.
15148
15149 if No (Elmt) then
15150 Derive_Interface_Subprogram
15151 (New_Subp => New_Subp,
15152 Subp => Subp,
15153 Actual_Subp => Act_Subp);
15154 end if;
15155 end if;
15156 end;
15157 else
15158 Derive_Interface_Subprogram
15159 (New_Subp => New_Subp,
15160 Subp => Subp,
15161 Actual_Subp => Act_Subp);
15162 end if;
15163
15164 -- Case 3: Common derivation
15165
15166 else
15167 Derive_Subprogram
15168 (New_Subp => New_Subp,
15169 Parent_Subp => Subp,
15170 Derived_Type => Derived_Type,
15171 Parent_Type => Parent_Base,
15172 Actual_Subp => Act_Subp);
15173 end if;
15174
15175 -- No need to update Act_Elm if we must search for the
15176 -- corresponding operation in the generic actual
15177
15178 if not Need_Search
15179 and then Present (Act_Elmt)
15180 then
15181 Next_Elmt (Act_Elmt);
15182 Act_Subp := Node (Act_Elmt);
15183 end if;
15184
15185 <<Continue>>
15186 Next_Elmt (Elmt);
15187 end loop;
15188
15189 -- Inherit additional operations from progenitors. If the derived
15190 -- type is a generic actual, there are not new primitive operations
15191 -- for the type because it has those of the actual, and therefore
15192 -- nothing needs to be done. The renamings generated above are not
15193 -- primitive operations, and their purpose is simply to make the
15194 -- proper operations visible within an instantiation.
15195
15196 if No (Generic_Actual) then
15197 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15198 end if;
15199 end if;
15200
15201 -- Final check: Direct descendants must have their primitives in the
15202 -- same order. We exclude from this test untagged types and instances
15203 -- of formal derived types. We skip this test if we have already
15204 -- reported serious errors in the sources.
15205
15206 pragma Assert (not Is_Tagged_Type (Derived_Type)
15207 or else Present (Generic_Actual)
15208 or else Serious_Errors_Detected > 0
15209 or else Check_Derived_Type);
15210 end Derive_Subprograms;
15211
15212 --------------------------------
15213 -- Derived_Standard_Character --
15214 --------------------------------
15215
15216 procedure Derived_Standard_Character
15217 (N : Node_Id;
15218 Parent_Type : Entity_Id;
15219 Derived_Type : Entity_Id)
15220 is
15221 Loc : constant Source_Ptr := Sloc (N);
15222 Def : constant Node_Id := Type_Definition (N);
15223 Indic : constant Node_Id := Subtype_Indication (Def);
15224 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15225 Implicit_Base : constant Entity_Id :=
15226 Create_Itype
15227 (E_Enumeration_Type, N, Derived_Type, 'B');
15228
15229 Lo : Node_Id;
15230 Hi : Node_Id;
15231
15232 begin
15233 Discard_Node (Process_Subtype (Indic, N));
15234
15235 Set_Etype (Implicit_Base, Parent_Base);
15236 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15237 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15238
15239 Set_Is_Character_Type (Implicit_Base, True);
15240 Set_Has_Delayed_Freeze (Implicit_Base);
15241
15242 -- The bounds of the implicit base are the bounds of the parent base.
15243 -- Note that their type is the parent base.
15244
15245 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15246 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15247
15248 Set_Scalar_Range (Implicit_Base,
15249 Make_Range (Loc,
15250 Low_Bound => Lo,
15251 High_Bound => Hi));
15252
15253 Conditional_Delay (Derived_Type, Parent_Type);
15254
15255 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15256 Set_Etype (Derived_Type, Implicit_Base);
15257 Set_Size_Info (Derived_Type, Parent_Type);
15258
15259 if Unknown_RM_Size (Derived_Type) then
15260 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15261 end if;
15262
15263 Set_Is_Character_Type (Derived_Type, True);
15264
15265 if Nkind (Indic) /= N_Subtype_Indication then
15266
15267 -- If no explicit constraint, the bounds are those
15268 -- of the parent type.
15269
15270 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15271 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15272 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15273 end if;
15274
15275 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15276
15277 -- Because the implicit base is used in the conversion of the bounds, we
15278 -- have to freeze it now. This is similar to what is done for numeric
15279 -- types, and it equally suspicious, but otherwise a non-static bound
15280 -- will have a reference to an unfrozen type, which is rejected by Gigi
15281 -- (???). This requires specific care for definition of stream
15282 -- attributes. For details, see comments at the end of
15283 -- Build_Derived_Numeric_Type.
15284
15285 Freeze_Before (N, Implicit_Base);
15286 end Derived_Standard_Character;
15287
15288 ------------------------------
15289 -- Derived_Type_Declaration --
15290 ------------------------------
15291
15292 procedure Derived_Type_Declaration
15293 (T : Entity_Id;
15294 N : Node_Id;
15295 Is_Completion : Boolean)
15296 is
15297 Parent_Type : Entity_Id;
15298
15299 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15300 -- Check whether the parent type is a generic formal, or derives
15301 -- directly or indirectly from one.
15302
15303 ------------------------
15304 -- Comes_From_Generic --
15305 ------------------------
15306
15307 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15308 begin
15309 if Is_Generic_Type (Typ) then
15310 return True;
15311
15312 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15313 return True;
15314
15315 elsif Is_Private_Type (Typ)
15316 and then Present (Full_View (Typ))
15317 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15318 then
15319 return True;
15320
15321 elsif Is_Generic_Actual_Type (Typ) then
15322 return True;
15323
15324 else
15325 return False;
15326 end if;
15327 end Comes_From_Generic;
15328
15329 -- Local variables
15330
15331 Def : constant Node_Id := Type_Definition (N);
15332 Iface_Def : Node_Id;
15333 Indic : constant Node_Id := Subtype_Indication (Def);
15334 Extension : constant Node_Id := Record_Extension_Part (Def);
15335 Parent_Node : Node_Id;
15336 Taggd : Boolean;
15337
15338 -- Start of processing for Derived_Type_Declaration
15339
15340 begin
15341 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15342
15343 -- Ada 2005 (AI-251): In case of interface derivation check that the
15344 -- parent is also an interface.
15345
15346 if Interface_Present (Def) then
15347 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15348
15349 if not Is_Interface (Parent_Type) then
15350 Diagnose_Interface (Indic, Parent_Type);
15351
15352 else
15353 Parent_Node := Parent (Base_Type (Parent_Type));
15354 Iface_Def := Type_Definition (Parent_Node);
15355
15356 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15357 -- other limited interfaces.
15358
15359 if Limited_Present (Def) then
15360 if Limited_Present (Iface_Def) then
15361 null;
15362
15363 elsif Protected_Present (Iface_Def) then
15364 Error_Msg_NE
15365 ("descendant of& must be declared"
15366 & " as a protected interface",
15367 N, Parent_Type);
15368
15369 elsif Synchronized_Present (Iface_Def) then
15370 Error_Msg_NE
15371 ("descendant of& must be declared"
15372 & " as a synchronized interface",
15373 N, Parent_Type);
15374
15375 elsif Task_Present (Iface_Def) then
15376 Error_Msg_NE
15377 ("descendant of& must be declared as a task interface",
15378 N, Parent_Type);
15379
15380 else
15381 Error_Msg_N
15382 ("(Ada 2005) limited interface cannot "
15383 & "inherit from non-limited interface", Indic);
15384 end if;
15385
15386 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15387 -- from non-limited or limited interfaces.
15388
15389 elsif not Protected_Present (Def)
15390 and then not Synchronized_Present (Def)
15391 and then not Task_Present (Def)
15392 then
15393 if Limited_Present (Iface_Def) then
15394 null;
15395
15396 elsif Protected_Present (Iface_Def) then
15397 Error_Msg_NE
15398 ("descendant of& must be declared"
15399 & " as a protected interface",
15400 N, Parent_Type);
15401
15402 elsif Synchronized_Present (Iface_Def) then
15403 Error_Msg_NE
15404 ("descendant of& must be declared"
15405 & " as a synchronized interface",
15406 N, Parent_Type);
15407
15408 elsif Task_Present (Iface_Def) then
15409 Error_Msg_NE
15410 ("descendant of& must be declared as a task interface",
15411 N, Parent_Type);
15412 else
15413 null;
15414 end if;
15415 end if;
15416 end if;
15417 end if;
15418
15419 if Is_Tagged_Type (Parent_Type)
15420 and then Is_Concurrent_Type (Parent_Type)
15421 and then not Is_Interface (Parent_Type)
15422 then
15423 Error_Msg_N
15424 ("parent type of a record extension cannot be "
15425 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15426 Set_Etype (T, Any_Type);
15427 return;
15428 end if;
15429
15430 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15431 -- interfaces
15432
15433 if Is_Tagged_Type (Parent_Type)
15434 and then Is_Non_Empty_List (Interface_List (Def))
15435 then
15436 declare
15437 Intf : Node_Id;
15438 T : Entity_Id;
15439
15440 begin
15441 Intf := First (Interface_List (Def));
15442 while Present (Intf) loop
15443 T := Find_Type_Of_Subtype_Indic (Intf);
15444
15445 if not Is_Interface (T) then
15446 Diagnose_Interface (Intf, T);
15447
15448 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15449 -- a limited type from having a nonlimited progenitor.
15450
15451 elsif (Limited_Present (Def)
15452 or else (not Is_Interface (Parent_Type)
15453 and then Is_Limited_Type (Parent_Type)))
15454 and then not Is_Limited_Interface (T)
15455 then
15456 Error_Msg_NE
15457 ("progenitor interface& of limited type must be limited",
15458 N, T);
15459 end if;
15460
15461 Next (Intf);
15462 end loop;
15463 end;
15464 end if;
15465
15466 if Parent_Type = Any_Type
15467 or else Etype (Parent_Type) = Any_Type
15468 or else (Is_Class_Wide_Type (Parent_Type)
15469 and then Etype (Parent_Type) = T)
15470 then
15471 -- If Parent_Type is undefined or illegal, make new type into a
15472 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15473 -- errors. If this is a self-definition, emit error now.
15474
15475 if T = Parent_Type or else T = Etype (Parent_Type) then
15476 Error_Msg_N ("type cannot be used in its own definition", Indic);
15477 end if;
15478
15479 Set_Ekind (T, Ekind (Parent_Type));
15480 Set_Etype (T, Any_Type);
15481 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15482
15483 if Is_Tagged_Type (T)
15484 and then Is_Record_Type (T)
15485 then
15486 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15487 end if;
15488
15489 return;
15490 end if;
15491
15492 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15493 -- an interface is special because the list of interfaces in the full
15494 -- view can be given in any order. For example:
15495
15496 -- type A is interface;
15497 -- type B is interface and A;
15498 -- type D is new B with private;
15499 -- private
15500 -- type D is new A and B with null record; -- 1 --
15501
15502 -- In this case we perform the following transformation of -1-:
15503
15504 -- type D is new B and A with null record;
15505
15506 -- If the parent of the full-view covers the parent of the partial-view
15507 -- we have two possible cases:
15508
15509 -- 1) They have the same parent
15510 -- 2) The parent of the full-view implements some further interfaces
15511
15512 -- In both cases we do not need to perform the transformation. In the
15513 -- first case the source program is correct and the transformation is
15514 -- not needed; in the second case the source program does not fulfill
15515 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15516 -- later.
15517
15518 -- This transformation not only simplifies the rest of the analysis of
15519 -- this type declaration but also simplifies the correct generation of
15520 -- the object layout to the expander.
15521
15522 if In_Private_Part (Current_Scope)
15523 and then Is_Interface (Parent_Type)
15524 then
15525 declare
15526 Iface : Node_Id;
15527 Partial_View : Entity_Id;
15528 Partial_View_Parent : Entity_Id;
15529 New_Iface : Node_Id;
15530
15531 begin
15532 -- Look for the associated private type declaration
15533
15534 Partial_View := First_Entity (Current_Scope);
15535 loop
15536 exit when No (Partial_View)
15537 or else (Has_Private_Declaration (Partial_View)
15538 and then Full_View (Partial_View) = T);
15539
15540 Next_Entity (Partial_View);
15541 end loop;
15542
15543 -- If the partial view was not found then the source code has
15544 -- errors and the transformation is not needed.
15545
15546 if Present (Partial_View) then
15547 Partial_View_Parent := Etype (Partial_View);
15548
15549 -- If the parent of the full-view covers the parent of the
15550 -- partial-view we have nothing else to do.
15551
15552 if Interface_Present_In_Ancestor
15553 (Parent_Type, Partial_View_Parent)
15554 then
15555 null;
15556
15557 -- Traverse the list of interfaces of the full-view to look
15558 -- for the parent of the partial-view and perform the tree
15559 -- transformation.
15560
15561 else
15562 Iface := First (Interface_List (Def));
15563 while Present (Iface) loop
15564 if Etype (Iface) = Etype (Partial_View) then
15565 Rewrite (Subtype_Indication (Def),
15566 New_Copy (Subtype_Indication
15567 (Parent (Partial_View))));
15568
15569 New_Iface :=
15570 Make_Identifier (Sloc (N), Chars (Parent_Type));
15571 Append (New_Iface, Interface_List (Def));
15572
15573 -- Analyze the transformed code
15574
15575 Derived_Type_Declaration (T, N, Is_Completion);
15576 return;
15577 end if;
15578
15579 Next (Iface);
15580 end loop;
15581 end if;
15582 end if;
15583 end;
15584 end if;
15585
15586 -- Only composite types other than array types are allowed to have
15587 -- discriminants.
15588
15589 if Present (Discriminant_Specifications (N)) then
15590 if (Is_Elementary_Type (Parent_Type)
15591 or else
15592 Is_Array_Type (Parent_Type))
15593 and then not Error_Posted (N)
15594 then
15595 Error_Msg_N
15596 ("elementary or array type cannot have discriminants",
15597 Defining_Identifier (First (Discriminant_Specifications (N))));
15598 Set_Has_Discriminants (T, False);
15599
15600 -- The type is allowed to have discriminants
15601
15602 else
15603 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15604 end if;
15605 end if;
15606
15607 -- In Ada 83, a derived type defined in a package specification cannot
15608 -- be used for further derivation until the end of its visible part.
15609 -- Note that derivation in the private part of the package is allowed.
15610
15611 if Ada_Version = Ada_83
15612 and then Is_Derived_Type (Parent_Type)
15613 and then In_Visible_Part (Scope (Parent_Type))
15614 then
15615 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15616 Error_Msg_N
15617 ("(Ada 83): premature use of type for derivation", Indic);
15618 end if;
15619 end if;
15620
15621 -- Check for early use of incomplete or private type
15622
15623 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15624 Error_Msg_N ("premature derivation of incomplete type", Indic);
15625 return;
15626
15627 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15628 and then not Comes_From_Generic (Parent_Type))
15629 or else Has_Private_Component (Parent_Type)
15630 then
15631 -- The ancestor type of a formal type can be incomplete, in which
15632 -- case only the operations of the partial view are available in the
15633 -- generic. Subsequent checks may be required when the full view is
15634 -- analyzed to verify that a derivation from a tagged type has an
15635 -- extension.
15636
15637 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15638 null;
15639
15640 elsif No (Underlying_Type (Parent_Type))
15641 or else Has_Private_Component (Parent_Type)
15642 then
15643 Error_Msg_N
15644 ("premature derivation of derived or private type", Indic);
15645
15646 -- Flag the type itself as being in error, this prevents some
15647 -- nasty problems with subsequent uses of the malformed type.
15648
15649 Set_Error_Posted (T);
15650
15651 -- Check that within the immediate scope of an untagged partial
15652 -- view it's illegal to derive from the partial view if the
15653 -- full view is tagged. (7.3(7))
15654
15655 -- We verify that the Parent_Type is a partial view by checking
15656 -- that it is not a Full_Type_Declaration (i.e. a private type or
15657 -- private extension declaration), to distinguish a partial view
15658 -- from a derivation from a private type which also appears as
15659 -- E_Private_Type. If the parent base type is not declared in an
15660 -- enclosing scope there is no need to check.
15661
15662 elsif Present (Full_View (Parent_Type))
15663 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15664 and then not Is_Tagged_Type (Parent_Type)
15665 and then Is_Tagged_Type (Full_View (Parent_Type))
15666 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15667 then
15668 Error_Msg_N
15669 ("premature derivation from type with tagged full view",
15670 Indic);
15671 end if;
15672 end if;
15673
15674 -- Check that form of derivation is appropriate
15675
15676 Taggd := Is_Tagged_Type (Parent_Type);
15677
15678 -- Perhaps the parent type should be changed to the class-wide type's
15679 -- specific type in this case to prevent cascading errors ???
15680
15681 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15682 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15683 return;
15684 end if;
15685
15686 if Present (Extension) and then not Taggd then
15687 Error_Msg_N
15688 ("type derived from untagged type cannot have extension", Indic);
15689
15690 elsif No (Extension) and then Taggd then
15691
15692 -- If this declaration is within a private part (or body) of a
15693 -- generic instantiation then the derivation is allowed (the parent
15694 -- type can only appear tagged in this case if it's a generic actual
15695 -- type, since it would otherwise have been rejected in the analysis
15696 -- of the generic template).
15697
15698 if not Is_Generic_Actual_Type (Parent_Type)
15699 or else In_Visible_Part (Scope (Parent_Type))
15700 then
15701 if Is_Class_Wide_Type (Parent_Type) then
15702 Error_Msg_N
15703 ("parent type must not be a class-wide type", Indic);
15704
15705 -- Use specific type to prevent cascaded errors.
15706
15707 Parent_Type := Etype (Parent_Type);
15708
15709 else
15710 Error_Msg_N
15711 ("type derived from tagged type must have extension", Indic);
15712 end if;
15713 end if;
15714 end if;
15715
15716 -- AI-443: Synchronized formal derived types require a private
15717 -- extension. There is no point in checking the ancestor type or
15718 -- the progenitors since the construct is wrong to begin with.
15719
15720 if Ada_Version >= Ada_2005
15721 and then Is_Generic_Type (T)
15722 and then Present (Original_Node (N))
15723 then
15724 declare
15725 Decl : constant Node_Id := Original_Node (N);
15726
15727 begin
15728 if Nkind (Decl) = N_Formal_Type_Declaration
15729 and then Nkind (Formal_Type_Definition (Decl)) =
15730 N_Formal_Derived_Type_Definition
15731 and then Synchronized_Present (Formal_Type_Definition (Decl))
15732 and then No (Extension)
15733
15734 -- Avoid emitting a duplicate error message
15735
15736 and then not Error_Posted (Indic)
15737 then
15738 Error_Msg_N
15739 ("synchronized derived type must have extension", N);
15740 end if;
15741 end;
15742 end if;
15743
15744 if Null_Exclusion_Present (Def)
15745 and then not Is_Access_Type (Parent_Type)
15746 then
15747 Error_Msg_N ("null exclusion can only apply to an access type", N);
15748 end if;
15749
15750 -- Avoid deriving parent primitives of underlying record views
15751
15752 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15753 Derive_Subps => not Is_Underlying_Record_View (T));
15754
15755 -- AI-419: The parent type of an explicitly limited derived type must
15756 -- be a limited type or a limited interface.
15757
15758 if Limited_Present (Def) then
15759 Set_Is_Limited_Record (T);
15760
15761 if Is_Interface (T) then
15762 Set_Is_Limited_Interface (T);
15763 end if;
15764
15765 if not Is_Limited_Type (Parent_Type)
15766 and then
15767 (not Is_Interface (Parent_Type)
15768 or else not Is_Limited_Interface (Parent_Type))
15769 then
15770 -- AI05-0096: a derivation in the private part of an instance is
15771 -- legal if the generic formal is untagged limited, and the actual
15772 -- is non-limited.
15773
15774 if Is_Generic_Actual_Type (Parent_Type)
15775 and then In_Private_Part (Current_Scope)
15776 and then
15777 not Is_Tagged_Type
15778 (Generic_Parent_Type (Parent (Parent_Type)))
15779 then
15780 null;
15781
15782 else
15783 Error_Msg_NE
15784 ("parent type& of limited type must be limited",
15785 N, Parent_Type);
15786 end if;
15787 end if;
15788 end if;
15789
15790 -- In SPARK, there are no derived type definitions other than type
15791 -- extensions of tagged record types.
15792
15793 if No (Extension) then
15794 Check_SPARK_05_Restriction
15795 ("derived type is not allowed", Original_Node (N));
15796 end if;
15797 end Derived_Type_Declaration;
15798
15799 ------------------------
15800 -- Diagnose_Interface --
15801 ------------------------
15802
15803 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15804 begin
15805 if not Is_Interface (E)
15806 and then E /= Any_Type
15807 then
15808 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15809 end if;
15810 end Diagnose_Interface;
15811
15812 ----------------------------------
15813 -- Enumeration_Type_Declaration --
15814 ----------------------------------
15815
15816 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15817 Ev : Uint;
15818 L : Node_Id;
15819 R_Node : Node_Id;
15820 B_Node : Node_Id;
15821
15822 begin
15823 -- Create identifier node representing lower bound
15824
15825 B_Node := New_Node (N_Identifier, Sloc (Def));
15826 L := First (Literals (Def));
15827 Set_Chars (B_Node, Chars (L));
15828 Set_Entity (B_Node, L);
15829 Set_Etype (B_Node, T);
15830 Set_Is_Static_Expression (B_Node, True);
15831
15832 R_Node := New_Node (N_Range, Sloc (Def));
15833 Set_Low_Bound (R_Node, B_Node);
15834
15835 Set_Ekind (T, E_Enumeration_Type);
15836 Set_First_Literal (T, L);
15837 Set_Etype (T, T);
15838 Set_Is_Constrained (T);
15839
15840 Ev := Uint_0;
15841
15842 -- Loop through literals of enumeration type setting pos and rep values
15843 -- except that if the Ekind is already set, then it means the literal
15844 -- was already constructed (case of a derived type declaration and we
15845 -- should not disturb the Pos and Rep values.
15846
15847 while Present (L) loop
15848 if Ekind (L) /= E_Enumeration_Literal then
15849 Set_Ekind (L, E_Enumeration_Literal);
15850 Set_Enumeration_Pos (L, Ev);
15851 Set_Enumeration_Rep (L, Ev);
15852 Set_Is_Known_Valid (L, True);
15853 end if;
15854
15855 Set_Etype (L, T);
15856 New_Overloaded_Entity (L);
15857 Generate_Definition (L);
15858 Set_Convention (L, Convention_Intrinsic);
15859
15860 -- Case of character literal
15861
15862 if Nkind (L) = N_Defining_Character_Literal then
15863 Set_Is_Character_Type (T, True);
15864
15865 -- Check violation of No_Wide_Characters
15866
15867 if Restriction_Check_Required (No_Wide_Characters) then
15868 Get_Name_String (Chars (L));
15869
15870 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15871 Check_Restriction (No_Wide_Characters, L);
15872 end if;
15873 end if;
15874 end if;
15875
15876 Ev := Ev + 1;
15877 Next (L);
15878 end loop;
15879
15880 -- Now create a node representing upper bound
15881
15882 B_Node := New_Node (N_Identifier, Sloc (Def));
15883 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15884 Set_Entity (B_Node, Last (Literals (Def)));
15885 Set_Etype (B_Node, T);
15886 Set_Is_Static_Expression (B_Node, True);
15887
15888 Set_High_Bound (R_Node, B_Node);
15889
15890 -- Initialize various fields of the type. Some of this information
15891 -- may be overwritten later through rep.clauses.
15892
15893 Set_Scalar_Range (T, R_Node);
15894 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15895 Set_Enum_Esize (T);
15896 Set_Enum_Pos_To_Rep (T, Empty);
15897
15898 -- Set Discard_Names if configuration pragma set, or if there is
15899 -- a parameterless pragma in the current declarative region
15900
15901 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15902 Set_Discard_Names (T);
15903 end if;
15904
15905 -- Process end label if there is one
15906
15907 if Present (Def) then
15908 Process_End_Label (Def, 'e', T);
15909 end if;
15910 end Enumeration_Type_Declaration;
15911
15912 ---------------------------------
15913 -- Expand_To_Stored_Constraint --
15914 ---------------------------------
15915
15916 function Expand_To_Stored_Constraint
15917 (Typ : Entity_Id;
15918 Constraint : Elist_Id) return Elist_Id
15919 is
15920 Explicitly_Discriminated_Type : Entity_Id;
15921 Expansion : Elist_Id;
15922 Discriminant : Entity_Id;
15923
15924 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15925 -- Find the nearest type that actually specifies discriminants
15926
15927 ---------------------------------
15928 -- Type_With_Explicit_Discrims --
15929 ---------------------------------
15930
15931 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15932 Typ : constant E := Base_Type (Id);
15933
15934 begin
15935 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15936 if Present (Full_View (Typ)) then
15937 return Type_With_Explicit_Discrims (Full_View (Typ));
15938 end if;
15939
15940 else
15941 if Has_Discriminants (Typ) then
15942 return Typ;
15943 end if;
15944 end if;
15945
15946 if Etype (Typ) = Typ then
15947 return Empty;
15948 elsif Has_Discriminants (Typ) then
15949 return Typ;
15950 else
15951 return Type_With_Explicit_Discrims (Etype (Typ));
15952 end if;
15953
15954 end Type_With_Explicit_Discrims;
15955
15956 -- Start of processing for Expand_To_Stored_Constraint
15957
15958 begin
15959 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
15960 return No_Elist;
15961 end if;
15962
15963 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15964
15965 if No (Explicitly_Discriminated_Type) then
15966 return No_Elist;
15967 end if;
15968
15969 Expansion := New_Elmt_List;
15970
15971 Discriminant :=
15972 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15973 while Present (Discriminant) loop
15974 Append_Elmt
15975 (Get_Discriminant_Value
15976 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15977 To => Expansion);
15978 Next_Stored_Discriminant (Discriminant);
15979 end loop;
15980
15981 return Expansion;
15982 end Expand_To_Stored_Constraint;
15983
15984 ---------------------------
15985 -- Find_Hidden_Interface --
15986 ---------------------------
15987
15988 function Find_Hidden_Interface
15989 (Src : Elist_Id;
15990 Dest : Elist_Id) return Entity_Id
15991 is
15992 Iface : Entity_Id;
15993 Iface_Elmt : Elmt_Id;
15994
15995 begin
15996 if Present (Src) and then Present (Dest) then
15997 Iface_Elmt := First_Elmt (Src);
15998 while Present (Iface_Elmt) loop
15999 Iface := Node (Iface_Elmt);
16000
16001 if Is_Interface (Iface)
16002 and then not Contain_Interface (Iface, Dest)
16003 then
16004 return Iface;
16005 end if;
16006
16007 Next_Elmt (Iface_Elmt);
16008 end loop;
16009 end if;
16010
16011 return Empty;
16012 end Find_Hidden_Interface;
16013
16014 --------------------
16015 -- Find_Type_Name --
16016 --------------------
16017
16018 function Find_Type_Name (N : Node_Id) return Entity_Id is
16019 Id : constant Entity_Id := Defining_Identifier (N);
16020 Prev : Entity_Id;
16021 New_Id : Entity_Id;
16022 Prev_Par : Node_Id;
16023
16024 procedure Check_Duplicate_Aspects;
16025 -- Check that aspects specified in a completion have not been specified
16026 -- already in the partial view. Type_Invariant and others can be
16027 -- specified on either view but never on both.
16028
16029 procedure Tag_Mismatch;
16030 -- Diagnose a tagged partial view whose full view is untagged.
16031 -- We post the message on the full view, with a reference to
16032 -- the previous partial view. The partial view can be private
16033 -- or incomplete, and these are handled in a different manner,
16034 -- so we determine the position of the error message from the
16035 -- respective slocs of both.
16036
16037 -----------------------------
16038 -- Check_Duplicate_Aspects --
16039 -----------------------------
16040 procedure Check_Duplicate_Aspects is
16041 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16042 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16043 F_Spec, P_Spec : Node_Id;
16044
16045 begin
16046 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16047 F_Spec := First (Full_Aspects);
16048 while Present (F_Spec) loop
16049 P_Spec := First (Prev_Aspects);
16050 while Present (P_Spec) loop
16051 if
16052 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16053 then
16054 Error_Msg_N
16055 ("aspect already specified in private declaration",
16056 F_Spec);
16057 Remove (F_Spec);
16058 return;
16059 end if;
16060
16061 Next (P_Spec);
16062 end loop;
16063
16064 Next (F_Spec);
16065 end loop;
16066 end if;
16067 end Check_Duplicate_Aspects;
16068
16069 ------------------
16070 -- Tag_Mismatch --
16071 ------------------
16072
16073 procedure Tag_Mismatch is
16074 begin
16075 if Sloc (Prev) < Sloc (Id) then
16076 if Ada_Version >= Ada_2012
16077 and then Nkind (N) = N_Private_Type_Declaration
16078 then
16079 Error_Msg_NE
16080 ("declaration of private } must be a tagged type ", Id, Prev);
16081 else
16082 Error_Msg_NE
16083 ("full declaration of } must be a tagged type ", Id, Prev);
16084 end if;
16085
16086 else
16087 if Ada_Version >= Ada_2012
16088 and then Nkind (N) = N_Private_Type_Declaration
16089 then
16090 Error_Msg_NE
16091 ("declaration of private } must be a tagged type ", Prev, Id);
16092 else
16093 Error_Msg_NE
16094 ("full declaration of } must be a tagged type ", Prev, Id);
16095 end if;
16096 end if;
16097 end Tag_Mismatch;
16098
16099 -- Start of processing for Find_Type_Name
16100
16101 begin
16102 -- Find incomplete declaration, if one was given
16103
16104 Prev := Current_Entity_In_Scope (Id);
16105
16106 -- New type declaration
16107
16108 if No (Prev) then
16109 Enter_Name (Id);
16110 return Id;
16111
16112 -- Previous declaration exists
16113
16114 else
16115 Prev_Par := Parent (Prev);
16116
16117 -- Error if not incomplete/private case except if previous
16118 -- declaration is implicit, etc. Enter_Name will emit error if
16119 -- appropriate.
16120
16121 if not Is_Incomplete_Or_Private_Type (Prev) then
16122 Enter_Name (Id);
16123 New_Id := Id;
16124
16125 -- Check invalid completion of private or incomplete type
16126
16127 elsif not Nkind_In (N, N_Full_Type_Declaration,
16128 N_Task_Type_Declaration,
16129 N_Protected_Type_Declaration)
16130 and then
16131 (Ada_Version < Ada_2012
16132 or else not Is_Incomplete_Type (Prev)
16133 or else not Nkind_In (N, N_Private_Type_Declaration,
16134 N_Private_Extension_Declaration))
16135 then
16136 -- Completion must be a full type declarations (RM 7.3(4))
16137
16138 Error_Msg_Sloc := Sloc (Prev);
16139 Error_Msg_NE ("invalid completion of }", Id, Prev);
16140
16141 -- Set scope of Id to avoid cascaded errors. Entity is never
16142 -- examined again, except when saving globals in generics.
16143
16144 Set_Scope (Id, Current_Scope);
16145 New_Id := Id;
16146
16147 -- If this is a repeated incomplete declaration, no further
16148 -- checks are possible.
16149
16150 if Nkind (N) = N_Incomplete_Type_Declaration then
16151 return Prev;
16152 end if;
16153
16154 -- Case of full declaration of incomplete type
16155
16156 elsif Ekind (Prev) = E_Incomplete_Type
16157 and then (Ada_Version < Ada_2012
16158 or else No (Full_View (Prev))
16159 or else not Is_Private_Type (Full_View (Prev)))
16160 then
16161 -- Indicate that the incomplete declaration has a matching full
16162 -- declaration. The defining occurrence of the incomplete
16163 -- declaration remains the visible one, and the procedure
16164 -- Get_Full_View dereferences it whenever the type is used.
16165
16166 if Present (Full_View (Prev)) then
16167 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16168 end if;
16169
16170 Set_Full_View (Prev, Id);
16171 Append_Entity (Id, Current_Scope);
16172 Set_Is_Public (Id, Is_Public (Prev));
16173 Set_Is_Internal (Id);
16174 New_Id := Prev;
16175
16176 -- If the incomplete view is tagged, a class_wide type has been
16177 -- created already. Use it for the private type as well, in order
16178 -- to prevent multiple incompatible class-wide types that may be
16179 -- created for self-referential anonymous access components.
16180
16181 if Is_Tagged_Type (Prev)
16182 and then Present (Class_Wide_Type (Prev))
16183 then
16184 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16185 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16186
16187 -- If the incomplete type is completed by a private declaration
16188 -- the class-wide type remains associated with the incomplete
16189 -- type, to prevent order-of-elaboration issues in gigi, else
16190 -- we associate the class-wide type with the known full view.
16191
16192 if Nkind (N) /= N_Private_Type_Declaration then
16193 Set_Etype (Class_Wide_Type (Id), Id);
16194 end if;
16195 end if;
16196
16197 -- Case of full declaration of private type
16198
16199 else
16200 -- If the private type was a completion of an incomplete type then
16201 -- update Prev to reference the private type
16202
16203 if Ada_Version >= Ada_2012
16204 and then Ekind (Prev) = E_Incomplete_Type
16205 and then Present (Full_View (Prev))
16206 and then Is_Private_Type (Full_View (Prev))
16207 then
16208 Prev := Full_View (Prev);
16209 Prev_Par := Parent (Prev);
16210 end if;
16211
16212 if Nkind (N) = N_Full_Type_Declaration
16213 and then Nkind_In
16214 (Type_Definition (N), N_Record_Definition,
16215 N_Derived_Type_Definition)
16216 and then Interface_Present (Type_Definition (N))
16217 then
16218 Error_Msg_N
16219 ("completion of private type cannot be an interface", N);
16220 end if;
16221
16222 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16223 if Etype (Prev) /= Prev then
16224
16225 -- Prev is a private subtype or a derived type, and needs
16226 -- no completion.
16227
16228 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16229 New_Id := Id;
16230
16231 elsif Ekind (Prev) = E_Private_Type
16232 and then Nkind_In (N, N_Task_Type_Declaration,
16233 N_Protected_Type_Declaration)
16234 then
16235 Error_Msg_N
16236 ("completion of nonlimited type cannot be limited", N);
16237
16238 elsif Ekind (Prev) = E_Record_Type_With_Private
16239 and then Nkind_In (N, N_Task_Type_Declaration,
16240 N_Protected_Type_Declaration)
16241 then
16242 if not Is_Limited_Record (Prev) then
16243 Error_Msg_N
16244 ("completion of nonlimited type cannot be limited", N);
16245
16246 elsif No (Interface_List (N)) then
16247 Error_Msg_N
16248 ("completion of tagged private type must be tagged",
16249 N);
16250 end if;
16251 end if;
16252
16253 -- Ada 2005 (AI-251): Private extension declaration of a task
16254 -- type or a protected type. This case arises when covering
16255 -- interface types.
16256
16257 elsif Nkind_In (N, N_Task_Type_Declaration,
16258 N_Protected_Type_Declaration)
16259 then
16260 null;
16261
16262 elsif Nkind (N) /= N_Full_Type_Declaration
16263 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16264 then
16265 Error_Msg_N
16266 ("full view of private extension must be an extension", N);
16267
16268 elsif not (Abstract_Present (Parent (Prev)))
16269 and then Abstract_Present (Type_Definition (N))
16270 then
16271 Error_Msg_N
16272 ("full view of non-abstract extension cannot be abstract", N);
16273 end if;
16274
16275 if not In_Private_Part (Current_Scope) then
16276 Error_Msg_N
16277 ("declaration of full view must appear in private part", N);
16278 end if;
16279
16280 if Ada_Version >= Ada_2012 then
16281 Check_Duplicate_Aspects;
16282 end if;
16283
16284 Copy_And_Swap (Prev, Id);
16285 Set_Has_Private_Declaration (Prev);
16286 Set_Has_Private_Declaration (Id);
16287
16288 -- Preserve aspect and iterator flags that may have been set on
16289 -- the partial view.
16290
16291 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16292 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16293
16294 -- If no error, propagate freeze_node from private to full view.
16295 -- It may have been generated for an early operational item.
16296
16297 if Present (Freeze_Node (Id))
16298 and then Serious_Errors_Detected = 0
16299 and then No (Full_View (Id))
16300 then
16301 Set_Freeze_Node (Prev, Freeze_Node (Id));
16302 Set_Freeze_Node (Id, Empty);
16303 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16304 end if;
16305
16306 Set_Full_View (Id, Prev);
16307 New_Id := Prev;
16308 end if;
16309
16310 -- Verify that full declaration conforms to partial one
16311
16312 if Is_Incomplete_Or_Private_Type (Prev)
16313 and then Present (Discriminant_Specifications (Prev_Par))
16314 then
16315 if Present (Discriminant_Specifications (N)) then
16316 if Ekind (Prev) = E_Incomplete_Type then
16317 Check_Discriminant_Conformance (N, Prev, Prev);
16318 else
16319 Check_Discriminant_Conformance (N, Prev, Id);
16320 end if;
16321
16322 else
16323 Error_Msg_N
16324 ("missing discriminants in full type declaration", N);
16325
16326 -- To avoid cascaded errors on subsequent use, share the
16327 -- discriminants of the partial view.
16328
16329 Set_Discriminant_Specifications (N,
16330 Discriminant_Specifications (Prev_Par));
16331 end if;
16332 end if;
16333
16334 -- A prior untagged partial view can have an associated class-wide
16335 -- type due to use of the class attribute, and in this case the full
16336 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16337 -- of incomplete tagged declarations, but we check for it.
16338
16339 if Is_Type (Prev)
16340 and then (Is_Tagged_Type (Prev)
16341 or else Present (Class_Wide_Type (Prev)))
16342 then
16343 -- Ada 2012 (AI05-0162): A private type may be the completion of
16344 -- an incomplete type.
16345
16346 if Ada_Version >= Ada_2012
16347 and then Is_Incomplete_Type (Prev)
16348 and then Nkind_In (N, N_Private_Type_Declaration,
16349 N_Private_Extension_Declaration)
16350 then
16351 -- No need to check private extensions since they are tagged
16352
16353 if Nkind (N) = N_Private_Type_Declaration
16354 and then not Tagged_Present (N)
16355 then
16356 Tag_Mismatch;
16357 end if;
16358
16359 -- The full declaration is either a tagged type (including
16360 -- a synchronized type that implements interfaces) or a
16361 -- type extension, otherwise this is an error.
16362
16363 elsif Nkind_In (N, N_Task_Type_Declaration,
16364 N_Protected_Type_Declaration)
16365 then
16366 if No (Interface_List (N))
16367 and then not Error_Posted (N)
16368 then
16369 Tag_Mismatch;
16370 end if;
16371
16372 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16373
16374 -- Indicate that the previous declaration (tagged incomplete
16375 -- or private declaration) requires the same on the full one.
16376
16377 if not Tagged_Present (Type_Definition (N)) then
16378 Tag_Mismatch;
16379 Set_Is_Tagged_Type (Id);
16380 end if;
16381
16382 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16383 if No (Record_Extension_Part (Type_Definition (N))) then
16384 Error_Msg_NE
16385 ("full declaration of } must be a record extension",
16386 Prev, Id);
16387
16388 -- Set some attributes to produce a usable full view
16389
16390 Set_Is_Tagged_Type (Id);
16391 end if;
16392
16393 else
16394 Tag_Mismatch;
16395 end if;
16396 end if;
16397
16398 if Present (Prev)
16399 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16400 and then Present (Premature_Use (Parent (Prev)))
16401 then
16402 Error_Msg_Sloc := Sloc (N);
16403 Error_Msg_N
16404 ("\full declaration #", Premature_Use (Parent (Prev)));
16405 end if;
16406
16407 return New_Id;
16408 end if;
16409 end Find_Type_Name;
16410
16411 -------------------------
16412 -- Find_Type_Of_Object --
16413 -------------------------
16414
16415 function Find_Type_Of_Object
16416 (Obj_Def : Node_Id;
16417 Related_Nod : Node_Id) return Entity_Id
16418 is
16419 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16420 P : Node_Id := Parent (Obj_Def);
16421 T : Entity_Id;
16422 Nam : Name_Id;
16423
16424 begin
16425 -- If the parent is a component_definition node we climb to the
16426 -- component_declaration node
16427
16428 if Nkind (P) = N_Component_Definition then
16429 P := Parent (P);
16430 end if;
16431
16432 -- Case of an anonymous array subtype
16433
16434 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16435 N_Unconstrained_Array_Definition)
16436 then
16437 T := Empty;
16438 Array_Type_Declaration (T, Obj_Def);
16439
16440 -- Create an explicit subtype whenever possible
16441
16442 elsif Nkind (P) /= N_Component_Declaration
16443 and then Def_Kind = N_Subtype_Indication
16444 then
16445 -- Base name of subtype on object name, which will be unique in
16446 -- the current scope.
16447
16448 -- If this is a duplicate declaration, return base type, to avoid
16449 -- generating duplicate anonymous types.
16450
16451 if Error_Posted (P) then
16452 Analyze (Subtype_Mark (Obj_Def));
16453 return Entity (Subtype_Mark (Obj_Def));
16454 end if;
16455
16456 Nam :=
16457 New_External_Name
16458 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16459
16460 T := Make_Defining_Identifier (Sloc (P), Nam);
16461
16462 Insert_Action (Obj_Def,
16463 Make_Subtype_Declaration (Sloc (P),
16464 Defining_Identifier => T,
16465 Subtype_Indication => Relocate_Node (Obj_Def)));
16466
16467 -- This subtype may need freezing, and this will not be done
16468 -- automatically if the object declaration is not in declarative
16469 -- part. Since this is an object declaration, the type cannot always
16470 -- be frozen here. Deferred constants do not freeze their type
16471 -- (which often enough will be private).
16472
16473 if Nkind (P) = N_Object_Declaration
16474 and then Constant_Present (P)
16475 and then No (Expression (P))
16476 then
16477 null;
16478
16479 -- Here we freeze the base type of object type to catch premature use
16480 -- of discriminated private type without a full view.
16481
16482 else
16483 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16484 end if;
16485
16486 -- Ada 2005 AI-406: the object definition in an object declaration
16487 -- can be an access definition.
16488
16489 elsif Def_Kind = N_Access_Definition then
16490 T := Access_Definition (Related_Nod, Obj_Def);
16491
16492 Set_Is_Local_Anonymous_Access
16493 (T,
16494 V => (Ada_Version < Ada_2012)
16495 or else (Nkind (P) /= N_Object_Declaration)
16496 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16497
16498 -- Otherwise, the object definition is just a subtype_mark
16499
16500 else
16501 T := Process_Subtype (Obj_Def, Related_Nod);
16502
16503 -- If expansion is disabled an object definition that is an aggregate
16504 -- will not get expanded and may lead to scoping problems in the back
16505 -- end, if the object is referenced in an inner scope. In that case
16506 -- create an itype reference for the object definition now. This
16507 -- may be redundant in some cases, but harmless.
16508
16509 if Is_Itype (T)
16510 and then Nkind (Related_Nod) = N_Object_Declaration
16511 and then ASIS_Mode
16512 then
16513 Build_Itype_Reference (T, Related_Nod);
16514 end if;
16515 end if;
16516
16517 return T;
16518 end Find_Type_Of_Object;
16519
16520 --------------------------------
16521 -- Find_Type_Of_Subtype_Indic --
16522 --------------------------------
16523
16524 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16525 Typ : Entity_Id;
16526
16527 begin
16528 -- Case of subtype mark with a constraint
16529
16530 if Nkind (S) = N_Subtype_Indication then
16531 Find_Type (Subtype_Mark (S));
16532 Typ := Entity (Subtype_Mark (S));
16533
16534 if not
16535 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16536 then
16537 Error_Msg_N
16538 ("incorrect constraint for this kind of type", Constraint (S));
16539 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16540 end if;
16541
16542 -- Otherwise we have a subtype mark without a constraint
16543
16544 elsif Error_Posted (S) then
16545 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16546 return Any_Type;
16547
16548 else
16549 Find_Type (S);
16550 Typ := Entity (S);
16551 end if;
16552
16553 -- Check No_Wide_Characters restriction
16554
16555 Check_Wide_Character_Restriction (Typ, S);
16556
16557 return Typ;
16558 end Find_Type_Of_Subtype_Indic;
16559
16560 -------------------------------------
16561 -- Floating_Point_Type_Declaration --
16562 -------------------------------------
16563
16564 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16565 Digs : constant Node_Id := Digits_Expression (Def);
16566 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16567 Digs_Val : Uint;
16568 Base_Typ : Entity_Id;
16569 Implicit_Base : Entity_Id;
16570 Bound : Node_Id;
16571
16572 function Can_Derive_From (E : Entity_Id) return Boolean;
16573 -- Find if given digits value, and possibly a specified range, allows
16574 -- derivation from specified type
16575
16576 function Find_Base_Type return Entity_Id;
16577 -- Find a predefined base type that Def can derive from, or generate
16578 -- an error and substitute Long_Long_Float if none exists.
16579
16580 ---------------------
16581 -- Can_Derive_From --
16582 ---------------------
16583
16584 function Can_Derive_From (E : Entity_Id) return Boolean is
16585 Spec : constant Entity_Id := Real_Range_Specification (Def);
16586
16587 begin
16588 -- Check specified "digits" constraint
16589
16590 if Digs_Val > Digits_Value (E) then
16591 return False;
16592 end if;
16593
16594 -- Check for matching range, if specified
16595
16596 if Present (Spec) then
16597 if Expr_Value_R (Type_Low_Bound (E)) >
16598 Expr_Value_R (Low_Bound (Spec))
16599 then
16600 return False;
16601 end if;
16602
16603 if Expr_Value_R (Type_High_Bound (E)) <
16604 Expr_Value_R (High_Bound (Spec))
16605 then
16606 return False;
16607 end if;
16608 end if;
16609
16610 return True;
16611 end Can_Derive_From;
16612
16613 --------------------
16614 -- Find_Base_Type --
16615 --------------------
16616
16617 function Find_Base_Type return Entity_Id is
16618 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16619
16620 begin
16621 -- Iterate over the predefined types in order, returning the first
16622 -- one that Def can derive from.
16623
16624 while Present (Choice) loop
16625 if Can_Derive_From (Node (Choice)) then
16626 return Node (Choice);
16627 end if;
16628
16629 Next_Elmt (Choice);
16630 end loop;
16631
16632 -- If we can't derive from any existing type, use Long_Long_Float
16633 -- and give appropriate message explaining the problem.
16634
16635 if Digs_Val > Max_Digs_Val then
16636 -- It might be the case that there is a type with the requested
16637 -- range, just not the combination of digits and range.
16638
16639 Error_Msg_N
16640 ("no predefined type has requested range and precision",
16641 Real_Range_Specification (Def));
16642
16643 else
16644 Error_Msg_N
16645 ("range too large for any predefined type",
16646 Real_Range_Specification (Def));
16647 end if;
16648
16649 return Standard_Long_Long_Float;
16650 end Find_Base_Type;
16651
16652 -- Start of processing for Floating_Point_Type_Declaration
16653
16654 begin
16655 Check_Restriction (No_Floating_Point, Def);
16656
16657 -- Create an implicit base type
16658
16659 Implicit_Base :=
16660 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16661
16662 -- Analyze and verify digits value
16663
16664 Analyze_And_Resolve (Digs, Any_Integer);
16665 Check_Digits_Expression (Digs);
16666 Digs_Val := Expr_Value (Digs);
16667
16668 -- Process possible range spec and find correct type to derive from
16669
16670 Process_Real_Range_Specification (Def);
16671
16672 -- Check that requested number of digits is not too high.
16673
16674 if Digs_Val > Max_Digs_Val then
16675 -- The check for Max_Base_Digits may be somewhat expensive, as it
16676 -- requires reading System, so only do it when necessary.
16677
16678 declare
16679 Max_Base_Digits : constant Uint :=
16680 Expr_Value
16681 (Expression
16682 (Parent (RTE (RE_Max_Base_Digits))));
16683
16684 begin
16685 if Digs_Val > Max_Base_Digits then
16686 Error_Msg_Uint_1 := Max_Base_Digits;
16687 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16688
16689 elsif No (Real_Range_Specification (Def)) then
16690 Error_Msg_Uint_1 := Max_Digs_Val;
16691 Error_Msg_N ("types with more than ^ digits need range spec "
16692 & "(RM 3.5.7(6))", Digs);
16693 end if;
16694 end;
16695 end if;
16696
16697 -- Find a suitable type to derive from or complain and use a substitute
16698
16699 Base_Typ := Find_Base_Type;
16700
16701 -- If there are bounds given in the declaration use them as the bounds
16702 -- of the type, otherwise use the bounds of the predefined base type
16703 -- that was chosen based on the Digits value.
16704
16705 if Present (Real_Range_Specification (Def)) then
16706 Set_Scalar_Range (T, Real_Range_Specification (Def));
16707 Set_Is_Constrained (T);
16708
16709 -- The bounds of this range must be converted to machine numbers
16710 -- in accordance with RM 4.9(38).
16711
16712 Bound := Type_Low_Bound (T);
16713
16714 if Nkind (Bound) = N_Real_Literal then
16715 Set_Realval
16716 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16717 Set_Is_Machine_Number (Bound);
16718 end if;
16719
16720 Bound := Type_High_Bound (T);
16721
16722 if Nkind (Bound) = N_Real_Literal then
16723 Set_Realval
16724 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16725 Set_Is_Machine_Number (Bound);
16726 end if;
16727
16728 else
16729 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16730 end if;
16731
16732 -- Complete definition of implicit base and declared first subtype. The
16733 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16734 -- are not clobbered when the floating point type acts as a full view of
16735 -- a private type.
16736
16737 Set_Etype (Implicit_Base, Base_Typ);
16738 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16739 Set_Size_Info (Implicit_Base, Base_Typ);
16740 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16741 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16742 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16743 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16744
16745 Set_Ekind (T, E_Floating_Point_Subtype);
16746 Set_Etype (T, Implicit_Base);
16747 Set_Size_Info (T, Implicit_Base);
16748 Set_RM_Size (T, RM_Size (Implicit_Base));
16749 Inherit_Rep_Item_Chain (T, Implicit_Base);
16750 Set_Digits_Value (T, Digs_Val);
16751 end Floating_Point_Type_Declaration;
16752
16753 ----------------------------
16754 -- Get_Discriminant_Value --
16755 ----------------------------
16756
16757 -- This is the situation:
16758
16759 -- There is a non-derived type
16760
16761 -- type T0 (Dx, Dy, Dz...)
16762
16763 -- There are zero or more levels of derivation, with each derivation
16764 -- either purely inheriting the discriminants, or defining its own.
16765
16766 -- type Ti is new Ti-1
16767 -- or
16768 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16769 -- or
16770 -- subtype Ti is ...
16771
16772 -- The subtype issue is avoided by the use of Original_Record_Component,
16773 -- and the fact that derived subtypes also derive the constraints.
16774
16775 -- This chain leads back from
16776
16777 -- Typ_For_Constraint
16778
16779 -- Typ_For_Constraint has discriminants, and the value for each
16780 -- discriminant is given by its corresponding Elmt of Constraints.
16781
16782 -- Discriminant is some discriminant in this hierarchy
16783
16784 -- We need to return its value
16785
16786 -- We do this by recursively searching each level, and looking for
16787 -- Discriminant. Once we get to the bottom, we start backing up
16788 -- returning the value for it which may in turn be a discriminant
16789 -- further up, so on the backup we continue the substitution.
16790
16791 function Get_Discriminant_Value
16792 (Discriminant : Entity_Id;
16793 Typ_For_Constraint : Entity_Id;
16794 Constraint : Elist_Id) return Node_Id
16795 is
16796 function Root_Corresponding_Discriminant
16797 (Discr : Entity_Id) return Entity_Id;
16798 -- Given a discriminant, traverse the chain of inherited discriminants
16799 -- and return the topmost discriminant.
16800
16801 function Search_Derivation_Levels
16802 (Ti : Entity_Id;
16803 Discrim_Values : Elist_Id;
16804 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16805 -- This is the routine that performs the recursive search of levels
16806 -- as described above.
16807
16808 -------------------------------------
16809 -- Root_Corresponding_Discriminant --
16810 -------------------------------------
16811
16812 function Root_Corresponding_Discriminant
16813 (Discr : Entity_Id) return Entity_Id
16814 is
16815 D : Entity_Id;
16816
16817 begin
16818 D := Discr;
16819 while Present (Corresponding_Discriminant (D)) loop
16820 D := Corresponding_Discriminant (D);
16821 end loop;
16822
16823 return D;
16824 end Root_Corresponding_Discriminant;
16825
16826 ------------------------------
16827 -- Search_Derivation_Levels --
16828 ------------------------------
16829
16830 function Search_Derivation_Levels
16831 (Ti : Entity_Id;
16832 Discrim_Values : Elist_Id;
16833 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16834 is
16835 Assoc : Elmt_Id;
16836 Disc : Entity_Id;
16837 Result : Node_Or_Entity_Id;
16838 Result_Entity : Node_Id;
16839
16840 begin
16841 -- If inappropriate type, return Error, this happens only in
16842 -- cascaded error situations, and we want to avoid a blow up.
16843
16844 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16845 return Error;
16846 end if;
16847
16848 -- Look deeper if possible. Use Stored_Constraints only for
16849 -- untagged types. For tagged types use the given constraint.
16850 -- This asymmetry needs explanation???
16851
16852 if not Stored_Discrim_Values
16853 and then Present (Stored_Constraint (Ti))
16854 and then not Is_Tagged_Type (Ti)
16855 then
16856 Result :=
16857 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16858 else
16859 declare
16860 Td : constant Entity_Id := Etype (Ti);
16861
16862 begin
16863 if Td = Ti then
16864 Result := Discriminant;
16865
16866 else
16867 if Present (Stored_Constraint (Ti)) then
16868 Result :=
16869 Search_Derivation_Levels
16870 (Td, Stored_Constraint (Ti), True);
16871 else
16872 Result :=
16873 Search_Derivation_Levels
16874 (Td, Discrim_Values, Stored_Discrim_Values);
16875 end if;
16876 end if;
16877 end;
16878 end if;
16879
16880 -- Extra underlying places to search, if not found above. For
16881 -- concurrent types, the relevant discriminant appears in the
16882 -- corresponding record. For a type derived from a private type
16883 -- without discriminant, the full view inherits the discriminants
16884 -- of the full view of the parent.
16885
16886 if Result = Discriminant then
16887 if Is_Concurrent_Type (Ti)
16888 and then Present (Corresponding_Record_Type (Ti))
16889 then
16890 Result :=
16891 Search_Derivation_Levels (
16892 Corresponding_Record_Type (Ti),
16893 Discrim_Values,
16894 Stored_Discrim_Values);
16895
16896 elsif Is_Private_Type (Ti)
16897 and then not Has_Discriminants (Ti)
16898 and then Present (Full_View (Ti))
16899 and then Etype (Full_View (Ti)) /= Ti
16900 then
16901 Result :=
16902 Search_Derivation_Levels (
16903 Full_View (Ti),
16904 Discrim_Values,
16905 Stored_Discrim_Values);
16906 end if;
16907 end if;
16908
16909 -- If Result is not a (reference to a) discriminant, return it,
16910 -- otherwise set Result_Entity to the discriminant.
16911
16912 if Nkind (Result) = N_Defining_Identifier then
16913 pragma Assert (Result = Discriminant);
16914 Result_Entity := Result;
16915
16916 else
16917 if not Denotes_Discriminant (Result) then
16918 return Result;
16919 end if;
16920
16921 Result_Entity := Entity (Result);
16922 end if;
16923
16924 -- See if this level of derivation actually has discriminants
16925 -- because tagged derivations can add them, hence the lower
16926 -- levels need not have any.
16927
16928 if not Has_Discriminants (Ti) then
16929 return Result;
16930 end if;
16931
16932 -- Scan Ti's discriminants for Result_Entity,
16933 -- and return its corresponding value, if any.
16934
16935 Result_Entity := Original_Record_Component (Result_Entity);
16936
16937 Assoc := First_Elmt (Discrim_Values);
16938
16939 if Stored_Discrim_Values then
16940 Disc := First_Stored_Discriminant (Ti);
16941 else
16942 Disc := First_Discriminant (Ti);
16943 end if;
16944
16945 while Present (Disc) loop
16946 pragma Assert (Present (Assoc));
16947
16948 if Original_Record_Component (Disc) = Result_Entity then
16949 return Node (Assoc);
16950 end if;
16951
16952 Next_Elmt (Assoc);
16953
16954 if Stored_Discrim_Values then
16955 Next_Stored_Discriminant (Disc);
16956 else
16957 Next_Discriminant (Disc);
16958 end if;
16959 end loop;
16960
16961 -- Could not find it
16962 --
16963 return Result;
16964 end Search_Derivation_Levels;
16965
16966 -- Local Variables
16967
16968 Result : Node_Or_Entity_Id;
16969
16970 -- Start of processing for Get_Discriminant_Value
16971
16972 begin
16973 -- ??? This routine is a gigantic mess and will be deleted. For the
16974 -- time being just test for the trivial case before calling recurse.
16975
16976 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16977 declare
16978 D : Entity_Id;
16979 E : Elmt_Id;
16980
16981 begin
16982 D := First_Discriminant (Typ_For_Constraint);
16983 E := First_Elmt (Constraint);
16984 while Present (D) loop
16985 if Chars (D) = Chars (Discriminant) then
16986 return Node (E);
16987 end if;
16988
16989 Next_Discriminant (D);
16990 Next_Elmt (E);
16991 end loop;
16992 end;
16993 end if;
16994
16995 Result := Search_Derivation_Levels
16996 (Typ_For_Constraint, Constraint, False);
16997
16998 -- ??? hack to disappear when this routine is gone
16999
17000 if Nkind (Result) = N_Defining_Identifier then
17001 declare
17002 D : Entity_Id;
17003 E : Elmt_Id;
17004
17005 begin
17006 D := First_Discriminant (Typ_For_Constraint);
17007 E := First_Elmt (Constraint);
17008 while Present (D) loop
17009 if Root_Corresponding_Discriminant (D) = Discriminant then
17010 return Node (E);
17011 end if;
17012
17013 Next_Discriminant (D);
17014 Next_Elmt (E);
17015 end loop;
17016 end;
17017 end if;
17018
17019 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17020 return Result;
17021 end Get_Discriminant_Value;
17022
17023 --------------------------
17024 -- Has_Range_Constraint --
17025 --------------------------
17026
17027 function Has_Range_Constraint (N : Node_Id) return Boolean is
17028 C : constant Node_Id := Constraint (N);
17029
17030 begin
17031 if Nkind (C) = N_Range_Constraint then
17032 return True;
17033
17034 elsif Nkind (C) = N_Digits_Constraint then
17035 return
17036 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17037 or else Present (Range_Constraint (C));
17038
17039 elsif Nkind (C) = N_Delta_Constraint then
17040 return Present (Range_Constraint (C));
17041
17042 else
17043 return False;
17044 end if;
17045 end Has_Range_Constraint;
17046
17047 ------------------------
17048 -- Inherit_Components --
17049 ------------------------
17050
17051 function Inherit_Components
17052 (N : Node_Id;
17053 Parent_Base : Entity_Id;
17054 Derived_Base : Entity_Id;
17055 Is_Tagged : Boolean;
17056 Inherit_Discr : Boolean;
17057 Discs : Elist_Id) return Elist_Id
17058 is
17059 Assoc_List : constant Elist_Id := New_Elmt_List;
17060
17061 procedure Inherit_Component
17062 (Old_C : Entity_Id;
17063 Plain_Discrim : Boolean := False;
17064 Stored_Discrim : Boolean := False);
17065 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17066 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17067 -- True, Old_C is a stored discriminant. If they are both false then
17068 -- Old_C is a regular component.
17069
17070 -----------------------
17071 -- Inherit_Component --
17072 -----------------------
17073
17074 procedure Inherit_Component
17075 (Old_C : Entity_Id;
17076 Plain_Discrim : Boolean := False;
17077 Stored_Discrim : Boolean := False)
17078 is
17079 procedure Set_Anonymous_Type (Id : Entity_Id);
17080 -- Id denotes the entity of an access discriminant or anonymous
17081 -- access component. Set the type of Id to either the same type of
17082 -- Old_C or create a new one depending on whether the parent and
17083 -- the child types are in the same scope.
17084
17085 ------------------------
17086 -- Set_Anonymous_Type --
17087 ------------------------
17088
17089 procedure Set_Anonymous_Type (Id : Entity_Id) is
17090 Old_Typ : constant Entity_Id := Etype (Old_C);
17091
17092 begin
17093 if Scope (Parent_Base) = Scope (Derived_Base) then
17094 Set_Etype (Id, Old_Typ);
17095
17096 -- The parent and the derived type are in two different scopes.
17097 -- Reuse the type of the original discriminant / component by
17098 -- copying it in order to preserve all attributes.
17099
17100 else
17101 declare
17102 Typ : constant Entity_Id := New_Copy (Old_Typ);
17103
17104 begin
17105 Set_Etype (Id, Typ);
17106
17107 -- Since we do not generate component declarations for
17108 -- inherited components, associate the itype with the
17109 -- derived type.
17110
17111 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17112 Set_Scope (Typ, Derived_Base);
17113 end;
17114 end if;
17115 end Set_Anonymous_Type;
17116
17117 -- Local variables and constants
17118
17119 New_C : constant Entity_Id := New_Copy (Old_C);
17120
17121 Corr_Discrim : Entity_Id;
17122 Discrim : Entity_Id;
17123
17124 -- Start of processing for Inherit_Component
17125
17126 begin
17127 pragma Assert (not Is_Tagged or not Stored_Discrim);
17128
17129 Set_Parent (New_C, Parent (Old_C));
17130
17131 -- Regular discriminants and components must be inserted in the scope
17132 -- of the Derived_Base. Do it here.
17133
17134 if not Stored_Discrim then
17135 Enter_Name (New_C);
17136 end if;
17137
17138 -- For tagged types the Original_Record_Component must point to
17139 -- whatever this field was pointing to in the parent type. This has
17140 -- already been achieved by the call to New_Copy above.
17141
17142 if not Is_Tagged then
17143 Set_Original_Record_Component (New_C, New_C);
17144 end if;
17145
17146 -- Set the proper type of an access discriminant
17147
17148 if Ekind (New_C) = E_Discriminant
17149 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17150 then
17151 Set_Anonymous_Type (New_C);
17152 end if;
17153
17154 -- If we have inherited a component then see if its Etype contains
17155 -- references to Parent_Base discriminants. In this case, replace
17156 -- these references with the constraints given in Discs. We do not
17157 -- do this for the partial view of private types because this is
17158 -- not needed (only the components of the full view will be used
17159 -- for code generation) and cause problem. We also avoid this
17160 -- transformation in some error situations.
17161
17162 if Ekind (New_C) = E_Component then
17163
17164 -- Set the proper type of an anonymous access component
17165
17166 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17167 Set_Anonymous_Type (New_C);
17168
17169 elsif (Is_Private_Type (Derived_Base)
17170 and then not Is_Generic_Type (Derived_Base))
17171 or else (Is_Empty_Elmt_List (Discs)
17172 and then not Expander_Active)
17173 then
17174 Set_Etype (New_C, Etype (Old_C));
17175
17176 else
17177 -- The current component introduces a circularity of the
17178 -- following kind:
17179
17180 -- limited with Pack_2;
17181 -- package Pack_1 is
17182 -- type T_1 is tagged record
17183 -- Comp : access Pack_2.T_2;
17184 -- ...
17185 -- end record;
17186 -- end Pack_1;
17187
17188 -- with Pack_1;
17189 -- package Pack_2 is
17190 -- type T_2 is new Pack_1.T_1 with ...;
17191 -- end Pack_2;
17192
17193 Set_Etype
17194 (New_C,
17195 Constrain_Component_Type
17196 (Old_C, Derived_Base, N, Parent_Base, Discs));
17197 end if;
17198 end if;
17199
17200 -- In derived tagged types it is illegal to reference a non
17201 -- discriminant component in the parent type. To catch this, mark
17202 -- these components with an Ekind of E_Void. This will be reset in
17203 -- Record_Type_Definition after processing the record extension of
17204 -- the derived type.
17205
17206 -- If the declaration is a private extension, there is no further
17207 -- record extension to process, and the components retain their
17208 -- current kind, because they are visible at this point.
17209
17210 if Is_Tagged and then Ekind (New_C) = E_Component
17211 and then Nkind (N) /= N_Private_Extension_Declaration
17212 then
17213 Set_Ekind (New_C, E_Void);
17214 end if;
17215
17216 if Plain_Discrim then
17217 Set_Corresponding_Discriminant (New_C, Old_C);
17218 Build_Discriminal (New_C);
17219
17220 -- If we are explicitly inheriting a stored discriminant it will be
17221 -- completely hidden.
17222
17223 elsif Stored_Discrim then
17224 Set_Corresponding_Discriminant (New_C, Empty);
17225 Set_Discriminal (New_C, Empty);
17226 Set_Is_Completely_Hidden (New_C);
17227
17228 -- Set the Original_Record_Component of each discriminant in the
17229 -- derived base to point to the corresponding stored that we just
17230 -- created.
17231
17232 Discrim := First_Discriminant (Derived_Base);
17233 while Present (Discrim) loop
17234 Corr_Discrim := Corresponding_Discriminant (Discrim);
17235
17236 -- Corr_Discrim could be missing in an error situation
17237
17238 if Present (Corr_Discrim)
17239 and then Original_Record_Component (Corr_Discrim) = Old_C
17240 then
17241 Set_Original_Record_Component (Discrim, New_C);
17242 end if;
17243
17244 Next_Discriminant (Discrim);
17245 end loop;
17246
17247 Append_Entity (New_C, Derived_Base);
17248 end if;
17249
17250 if not Is_Tagged then
17251 Append_Elmt (Old_C, Assoc_List);
17252 Append_Elmt (New_C, Assoc_List);
17253 end if;
17254 end Inherit_Component;
17255
17256 -- Variables local to Inherit_Component
17257
17258 Loc : constant Source_Ptr := Sloc (N);
17259
17260 Parent_Discrim : Entity_Id;
17261 Stored_Discrim : Entity_Id;
17262 D : Entity_Id;
17263 Component : Entity_Id;
17264
17265 -- Start of processing for Inherit_Components
17266
17267 begin
17268 if not Is_Tagged then
17269 Append_Elmt (Parent_Base, Assoc_List);
17270 Append_Elmt (Derived_Base, Assoc_List);
17271 end if;
17272
17273 -- Inherit parent discriminants if needed
17274
17275 if Inherit_Discr then
17276 Parent_Discrim := First_Discriminant (Parent_Base);
17277 while Present (Parent_Discrim) loop
17278 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17279 Next_Discriminant (Parent_Discrim);
17280 end loop;
17281 end if;
17282
17283 -- Create explicit stored discrims for untagged types when necessary
17284
17285 if not Has_Unknown_Discriminants (Derived_Base)
17286 and then Has_Discriminants (Parent_Base)
17287 and then not Is_Tagged
17288 and then
17289 (not Inherit_Discr
17290 or else First_Discriminant (Parent_Base) /=
17291 First_Stored_Discriminant (Parent_Base))
17292 then
17293 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17294 while Present (Stored_Discrim) loop
17295 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17296 Next_Stored_Discriminant (Stored_Discrim);
17297 end loop;
17298 end if;
17299
17300 -- See if we can apply the second transformation for derived types, as
17301 -- explained in point 6. in the comments above Build_Derived_Record_Type
17302 -- This is achieved by appending Derived_Base discriminants into Discs,
17303 -- which has the side effect of returning a non empty Discs list to the
17304 -- caller of Inherit_Components, which is what we want. This must be
17305 -- done for private derived types if there are explicit stored
17306 -- discriminants, to ensure that we can retrieve the values of the
17307 -- constraints provided in the ancestors.
17308
17309 if Inherit_Discr
17310 and then Is_Empty_Elmt_List (Discs)
17311 and then Present (First_Discriminant (Derived_Base))
17312 and then
17313 (not Is_Private_Type (Derived_Base)
17314 or else Is_Completely_Hidden
17315 (First_Stored_Discriminant (Derived_Base))
17316 or else Is_Generic_Type (Derived_Base))
17317 then
17318 D := First_Discriminant (Derived_Base);
17319 while Present (D) loop
17320 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17321 Next_Discriminant (D);
17322 end loop;
17323 end if;
17324
17325 -- Finally, inherit non-discriminant components unless they are not
17326 -- visible because defined or inherited from the full view of the
17327 -- parent. Don't inherit the _parent field of the parent type.
17328
17329 Component := First_Entity (Parent_Base);
17330 while Present (Component) loop
17331
17332 -- Ada 2005 (AI-251): Do not inherit components associated with
17333 -- secondary tags of the parent.
17334
17335 if Ekind (Component) = E_Component
17336 and then Present (Related_Type (Component))
17337 then
17338 null;
17339
17340 elsif Ekind (Component) /= E_Component
17341 or else Chars (Component) = Name_uParent
17342 then
17343 null;
17344
17345 -- If the derived type is within the parent type's declarative
17346 -- region, then the components can still be inherited even though
17347 -- they aren't visible at this point. This can occur for cases
17348 -- such as within public child units where the components must
17349 -- become visible upon entering the child unit's private part.
17350
17351 elsif not Is_Visible_Component (Component)
17352 and then not In_Open_Scopes (Scope (Parent_Base))
17353 then
17354 null;
17355
17356 elsif Ekind_In (Derived_Base, E_Private_Type,
17357 E_Limited_Private_Type)
17358 then
17359 null;
17360
17361 else
17362 Inherit_Component (Component);
17363 end if;
17364
17365 Next_Entity (Component);
17366 end loop;
17367
17368 -- For tagged derived types, inherited discriminants cannot be used in
17369 -- component declarations of the record extension part. To achieve this
17370 -- we mark the inherited discriminants as not visible.
17371
17372 if Is_Tagged and then Inherit_Discr then
17373 D := First_Discriminant (Derived_Base);
17374 while Present (D) loop
17375 Set_Is_Immediately_Visible (D, False);
17376 Next_Discriminant (D);
17377 end loop;
17378 end if;
17379
17380 return Assoc_List;
17381 end Inherit_Components;
17382
17383 -----------------------------
17384 -- Inherit_Predicate_Flags --
17385 -----------------------------
17386
17387 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17388 begin
17389 Set_Has_Predicates (Subt, Has_Predicates (Par));
17390 Set_Has_Static_Predicate_Aspect
17391 (Subt, Has_Static_Predicate_Aspect (Par));
17392 Set_Has_Dynamic_Predicate_Aspect
17393 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17394 end Inherit_Predicate_Flags;
17395
17396 ----------------------
17397 -- Is_EVF_Procedure --
17398 ----------------------
17399
17400 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17401 Formal : Entity_Id;
17402
17403 begin
17404 -- Examine the formals of an Extensions_Visible False procedure looking
17405 -- for a controlling OUT parameter.
17406
17407 if Ekind (Subp) = E_Procedure
17408 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17409 then
17410 Formal := First_Formal (Subp);
17411 while Present (Formal) loop
17412 if Ekind (Formal) = E_Out_Parameter
17413 and then Is_Controlling_Formal (Formal)
17414 then
17415 return True;
17416 end if;
17417
17418 Next_Formal (Formal);
17419 end loop;
17420 end if;
17421
17422 return False;
17423 end Is_EVF_Procedure;
17424
17425 -----------------------
17426 -- Is_Null_Extension --
17427 -----------------------
17428
17429 function Is_Null_Extension (T : Entity_Id) return Boolean is
17430 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17431 Comp_List : Node_Id;
17432 Comp : Node_Id;
17433
17434 begin
17435 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17436 or else not Is_Tagged_Type (T)
17437 or else Nkind (Type_Definition (Type_Decl)) /=
17438 N_Derived_Type_Definition
17439 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17440 then
17441 return False;
17442 end if;
17443
17444 Comp_List :=
17445 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17446
17447 if Present (Discriminant_Specifications (Type_Decl)) then
17448 return False;
17449
17450 elsif Present (Comp_List)
17451 and then Is_Non_Empty_List (Component_Items (Comp_List))
17452 then
17453 Comp := First (Component_Items (Comp_List));
17454
17455 -- Only user-defined components are relevant. The component list
17456 -- may also contain a parent component and internal components
17457 -- corresponding to secondary tags, but these do not determine
17458 -- whether this is a null extension.
17459
17460 while Present (Comp) loop
17461 if Comes_From_Source (Comp) then
17462 return False;
17463 end if;
17464
17465 Next (Comp);
17466 end loop;
17467
17468 return True;
17469 else
17470 return True;
17471 end if;
17472 end Is_Null_Extension;
17473
17474 ------------------------------
17475 -- Is_Valid_Constraint_Kind --
17476 ------------------------------
17477
17478 function Is_Valid_Constraint_Kind
17479 (T_Kind : Type_Kind;
17480 Constraint_Kind : Node_Kind) return Boolean
17481 is
17482 begin
17483 case T_Kind is
17484 when Enumeration_Kind |
17485 Integer_Kind =>
17486 return Constraint_Kind = N_Range_Constraint;
17487
17488 when Decimal_Fixed_Point_Kind =>
17489 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17490 N_Range_Constraint);
17491
17492 when Ordinary_Fixed_Point_Kind =>
17493 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17494 N_Range_Constraint);
17495
17496 when Float_Kind =>
17497 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17498 N_Range_Constraint);
17499
17500 when Access_Kind |
17501 Array_Kind |
17502 E_Record_Type |
17503 E_Record_Subtype |
17504 Class_Wide_Kind |
17505 E_Incomplete_Type |
17506 Private_Kind |
17507 Concurrent_Kind =>
17508 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17509
17510 when others =>
17511 return True; -- Error will be detected later
17512 end case;
17513 end Is_Valid_Constraint_Kind;
17514
17515 --------------------------
17516 -- Is_Visible_Component --
17517 --------------------------
17518
17519 function Is_Visible_Component
17520 (C : Entity_Id;
17521 N : Node_Id := Empty) return Boolean
17522 is
17523 Original_Comp : Entity_Id := Empty;
17524 Original_Scope : Entity_Id;
17525 Type_Scope : Entity_Id;
17526
17527 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17528 -- Check whether parent type of inherited component is declared locally,
17529 -- possibly within a nested package or instance. The current scope is
17530 -- the derived record itself.
17531
17532 -------------------
17533 -- Is_Local_Type --
17534 -------------------
17535
17536 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17537 Scop : Entity_Id;
17538
17539 begin
17540 Scop := Scope (Typ);
17541 while Present (Scop)
17542 and then Scop /= Standard_Standard
17543 loop
17544 if Scop = Scope (Current_Scope) then
17545 return True;
17546 end if;
17547
17548 Scop := Scope (Scop);
17549 end loop;
17550
17551 return False;
17552 end Is_Local_Type;
17553
17554 -- Start of processing for Is_Visible_Component
17555
17556 begin
17557 if Ekind_In (C, E_Component, E_Discriminant) then
17558 Original_Comp := Original_Record_Component (C);
17559 end if;
17560
17561 if No (Original_Comp) then
17562
17563 -- Premature usage, or previous error
17564
17565 return False;
17566
17567 else
17568 Original_Scope := Scope (Original_Comp);
17569 Type_Scope := Scope (Base_Type (Scope (C)));
17570 end if;
17571
17572 -- This test only concerns tagged types
17573
17574 if not Is_Tagged_Type (Original_Scope) then
17575 return True;
17576
17577 -- If it is _Parent or _Tag, there is no visibility issue
17578
17579 elsif not Comes_From_Source (Original_Comp) then
17580 return True;
17581
17582 -- Discriminants are visible unless the (private) type has unknown
17583 -- discriminants. If the discriminant reference is inserted for a
17584 -- discriminant check on a full view it is also visible.
17585
17586 elsif Ekind (Original_Comp) = E_Discriminant
17587 and then
17588 (not Has_Unknown_Discriminants (Original_Scope)
17589 or else (Present (N)
17590 and then Nkind (N) = N_Selected_Component
17591 and then Nkind (Prefix (N)) = N_Type_Conversion
17592 and then not Comes_From_Source (Prefix (N))))
17593 then
17594 return True;
17595
17596 -- In the body of an instantiation, no need to check for the visibility
17597 -- of a component.
17598
17599 elsif In_Instance_Body then
17600 return True;
17601
17602 -- If the component has been declared in an ancestor which is currently
17603 -- a private type, then it is not visible. The same applies if the
17604 -- component's containing type is not in an open scope and the original
17605 -- component's enclosing type is a visible full view of a private type
17606 -- (which can occur in cases where an attempt is being made to reference
17607 -- a component in a sibling package that is inherited from a visible
17608 -- component of a type in an ancestor package; the component in the
17609 -- sibling package should not be visible even though the component it
17610 -- inherited from is visible). This does not apply however in the case
17611 -- where the scope of the type is a private child unit, or when the
17612 -- parent comes from a local package in which the ancestor is currently
17613 -- visible. The latter suppression of visibility is needed for cases
17614 -- that are tested in B730006.
17615
17616 elsif Is_Private_Type (Original_Scope)
17617 or else
17618 (not Is_Private_Descendant (Type_Scope)
17619 and then not In_Open_Scopes (Type_Scope)
17620 and then Has_Private_Declaration (Original_Scope))
17621 then
17622 -- If the type derives from an entity in a formal package, there
17623 -- are no additional visible components.
17624
17625 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17626 N_Formal_Package_Declaration
17627 then
17628 return False;
17629
17630 -- if we are not in the private part of the current package, there
17631 -- are no additional visible components.
17632
17633 elsif Ekind (Scope (Current_Scope)) = E_Package
17634 and then not In_Private_Part (Scope (Current_Scope))
17635 then
17636 return False;
17637 else
17638 return
17639 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17640 and then In_Open_Scopes (Scope (Original_Scope))
17641 and then Is_Local_Type (Type_Scope);
17642 end if;
17643
17644 -- There is another weird way in which a component may be invisible when
17645 -- the private and the full view are not derived from the same ancestor.
17646 -- Here is an example :
17647
17648 -- type A1 is tagged record F1 : integer; end record;
17649 -- type A2 is new A1 with record F2 : integer; end record;
17650 -- type T is new A1 with private;
17651 -- private
17652 -- type T is new A2 with null record;
17653
17654 -- In this case, the full view of T inherits F1 and F2 but the private
17655 -- view inherits only F1
17656
17657 else
17658 declare
17659 Ancestor : Entity_Id := Scope (C);
17660
17661 begin
17662 loop
17663 if Ancestor = Original_Scope then
17664 return True;
17665 elsif Ancestor = Etype (Ancestor) then
17666 return False;
17667 end if;
17668
17669 Ancestor := Etype (Ancestor);
17670 end loop;
17671 end;
17672 end if;
17673 end Is_Visible_Component;
17674
17675 --------------------------
17676 -- Make_Class_Wide_Type --
17677 --------------------------
17678
17679 procedure Make_Class_Wide_Type (T : Entity_Id) is
17680 CW_Type : Entity_Id;
17681 CW_Name : Name_Id;
17682 Next_E : Entity_Id;
17683
17684 begin
17685 if Present (Class_Wide_Type (T)) then
17686
17687 -- The class-wide type is a partially decorated entity created for a
17688 -- unanalyzed tagged type referenced through a limited with clause.
17689 -- When the tagged type is analyzed, its class-wide type needs to be
17690 -- redecorated. Note that we reuse the entity created by Decorate_
17691 -- Tagged_Type in order to preserve all links.
17692
17693 if Materialize_Entity (Class_Wide_Type (T)) then
17694 CW_Type := Class_Wide_Type (T);
17695 Set_Materialize_Entity (CW_Type, False);
17696
17697 -- The class wide type can have been defined by the partial view, in
17698 -- which case everything is already done.
17699
17700 else
17701 return;
17702 end if;
17703
17704 -- Default case, we need to create a new class-wide type
17705
17706 else
17707 CW_Type :=
17708 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17709 end if;
17710
17711 -- Inherit root type characteristics
17712
17713 CW_Name := Chars (CW_Type);
17714 Next_E := Next_Entity (CW_Type);
17715 Copy_Node (T, CW_Type);
17716 Set_Comes_From_Source (CW_Type, False);
17717 Set_Chars (CW_Type, CW_Name);
17718 Set_Parent (CW_Type, Parent (T));
17719 Set_Next_Entity (CW_Type, Next_E);
17720
17721 -- Ensure we have a new freeze node for the class-wide type. The partial
17722 -- view may have freeze action of its own, requiring a proper freeze
17723 -- node, and the same freeze node cannot be shared between the two
17724 -- types.
17725
17726 Set_Has_Delayed_Freeze (CW_Type);
17727 Set_Freeze_Node (CW_Type, Empty);
17728
17729 -- Customize the class-wide type: It has no prim. op., it cannot be
17730 -- abstract and its Etype points back to the specific root type.
17731
17732 Set_Ekind (CW_Type, E_Class_Wide_Type);
17733 Set_Is_Tagged_Type (CW_Type, True);
17734 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17735 Set_Is_Abstract_Type (CW_Type, False);
17736 Set_Is_Constrained (CW_Type, False);
17737 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17738 Set_Default_SSO (CW_Type);
17739
17740 if Ekind (T) = E_Class_Wide_Subtype then
17741 Set_Etype (CW_Type, Etype (Base_Type (T)));
17742 else
17743 Set_Etype (CW_Type, T);
17744 end if;
17745
17746 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17747
17748 -- If this is the class_wide type of a constrained subtype, it does
17749 -- not have discriminants.
17750
17751 Set_Has_Discriminants (CW_Type,
17752 Has_Discriminants (T) and then not Is_Constrained (T));
17753
17754 Set_Has_Unknown_Discriminants (CW_Type, True);
17755 Set_Class_Wide_Type (T, CW_Type);
17756 Set_Equivalent_Type (CW_Type, Empty);
17757
17758 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17759
17760 Set_Class_Wide_Type (CW_Type, CW_Type);
17761 end Make_Class_Wide_Type;
17762
17763 ----------------
17764 -- Make_Index --
17765 ----------------
17766
17767 procedure Make_Index
17768 (N : Node_Id;
17769 Related_Nod : Node_Id;
17770 Related_Id : Entity_Id := Empty;
17771 Suffix_Index : Nat := 1;
17772 In_Iter_Schm : Boolean := False)
17773 is
17774 R : Node_Id;
17775 T : Entity_Id;
17776 Def_Id : Entity_Id := Empty;
17777 Found : Boolean := False;
17778
17779 begin
17780 -- For a discrete range used in a constrained array definition and
17781 -- defined by a range, an implicit conversion to the predefined type
17782 -- INTEGER is assumed if each bound is either a numeric literal, a named
17783 -- number, or an attribute, and the type of both bounds (prior to the
17784 -- implicit conversion) is the type universal_integer. Otherwise, both
17785 -- bounds must be of the same discrete type, other than universal
17786 -- integer; this type must be determinable independently of the
17787 -- context, but using the fact that the type must be discrete and that
17788 -- both bounds must have the same type.
17789
17790 -- Character literals also have a universal type in the absence of
17791 -- of additional context, and are resolved to Standard_Character.
17792
17793 if Nkind (N) = N_Range then
17794
17795 -- The index is given by a range constraint. The bounds are known
17796 -- to be of a consistent type.
17797
17798 if not Is_Overloaded (N) then
17799 T := Etype (N);
17800
17801 -- For universal bounds, choose the specific predefined type
17802
17803 if T = Universal_Integer then
17804 T := Standard_Integer;
17805
17806 elsif T = Any_Character then
17807 Ambiguous_Character (Low_Bound (N));
17808
17809 T := Standard_Character;
17810 end if;
17811
17812 -- The node may be overloaded because some user-defined operators
17813 -- are available, but if a universal interpretation exists it is
17814 -- also the selected one.
17815
17816 elsif Universal_Interpretation (N) = Universal_Integer then
17817 T := Standard_Integer;
17818
17819 else
17820 T := Any_Type;
17821
17822 declare
17823 Ind : Interp_Index;
17824 It : Interp;
17825
17826 begin
17827 Get_First_Interp (N, Ind, It);
17828 while Present (It.Typ) loop
17829 if Is_Discrete_Type (It.Typ) then
17830
17831 if Found
17832 and then not Covers (It.Typ, T)
17833 and then not Covers (T, It.Typ)
17834 then
17835 Error_Msg_N ("ambiguous bounds in discrete range", N);
17836 exit;
17837 else
17838 T := It.Typ;
17839 Found := True;
17840 end if;
17841 end if;
17842
17843 Get_Next_Interp (Ind, It);
17844 end loop;
17845
17846 if T = Any_Type then
17847 Error_Msg_N ("discrete type required for range", N);
17848 Set_Etype (N, Any_Type);
17849 return;
17850
17851 elsif T = Universal_Integer then
17852 T := Standard_Integer;
17853 end if;
17854 end;
17855 end if;
17856
17857 if not Is_Discrete_Type (T) then
17858 Error_Msg_N ("discrete type required for range", N);
17859 Set_Etype (N, Any_Type);
17860 return;
17861 end if;
17862
17863 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17864 and then Attribute_Name (Low_Bound (N)) = Name_First
17865 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17866 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17867 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17868 then
17869 -- The type of the index will be the type of the prefix, as long
17870 -- as the upper bound is 'Last of the same type.
17871
17872 Def_Id := Entity (Prefix (Low_Bound (N)));
17873
17874 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17875 or else Attribute_Name (High_Bound (N)) /= Name_Last
17876 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17877 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17878 then
17879 Def_Id := Empty;
17880 end if;
17881 end if;
17882
17883 R := N;
17884 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17885
17886 elsif Nkind (N) = N_Subtype_Indication then
17887
17888 -- The index is given by a subtype with a range constraint
17889
17890 T := Base_Type (Entity (Subtype_Mark (N)));
17891
17892 if not Is_Discrete_Type (T) then
17893 Error_Msg_N ("discrete type required for range", N);
17894 Set_Etype (N, Any_Type);
17895 return;
17896 end if;
17897
17898 R := Range_Expression (Constraint (N));
17899
17900 Resolve (R, T);
17901 Process_Range_Expr_In_Decl
17902 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17903
17904 elsif Nkind (N) = N_Attribute_Reference then
17905
17906 -- Catch beginner's error (use of attribute other than 'Range)
17907
17908 if Attribute_Name (N) /= Name_Range then
17909 Error_Msg_N ("expect attribute ''Range", N);
17910 Set_Etype (N, Any_Type);
17911 return;
17912 end if;
17913
17914 -- If the node denotes the range of a type mark, that is also the
17915 -- resulting type, and we do not need to create an Itype for it.
17916
17917 if Is_Entity_Name (Prefix (N))
17918 and then Comes_From_Source (N)
17919 and then Is_Type (Entity (Prefix (N)))
17920 and then Is_Discrete_Type (Entity (Prefix (N)))
17921 then
17922 Def_Id := Entity (Prefix (N));
17923 end if;
17924
17925 Analyze_And_Resolve (N);
17926 T := Etype (N);
17927 R := N;
17928
17929 -- If none of the above, must be a subtype. We convert this to a
17930 -- range attribute reference because in the case of declared first
17931 -- named subtypes, the types in the range reference can be different
17932 -- from the type of the entity. A range attribute normalizes the
17933 -- reference and obtains the correct types for the bounds.
17934
17935 -- This transformation is in the nature of an expansion, is only
17936 -- done if expansion is active. In particular, it is not done on
17937 -- formal generic types, because we need to retain the name of the
17938 -- original index for instantiation purposes.
17939
17940 else
17941 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17942 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17943 Set_Etype (N, Any_Integer);
17944 return;
17945
17946 else
17947 -- The type mark may be that of an incomplete type. It is only
17948 -- now that we can get the full view, previous analysis does
17949 -- not look specifically for a type mark.
17950
17951 Set_Entity (N, Get_Full_View (Entity (N)));
17952 Set_Etype (N, Entity (N));
17953 Def_Id := Entity (N);
17954
17955 if not Is_Discrete_Type (Def_Id) then
17956 Error_Msg_N ("discrete type required for index", N);
17957 Set_Etype (N, Any_Type);
17958 return;
17959 end if;
17960 end if;
17961
17962 if Expander_Active then
17963 Rewrite (N,
17964 Make_Attribute_Reference (Sloc (N),
17965 Attribute_Name => Name_Range,
17966 Prefix => Relocate_Node (N)));
17967
17968 -- The original was a subtype mark that does not freeze. This
17969 -- means that the rewritten version must not freeze either.
17970
17971 Set_Must_Not_Freeze (N);
17972 Set_Must_Not_Freeze (Prefix (N));
17973 Analyze_And_Resolve (N);
17974 T := Etype (N);
17975 R := N;
17976
17977 -- If expander is inactive, type is legal, nothing else to construct
17978
17979 else
17980 return;
17981 end if;
17982 end if;
17983
17984 if not Is_Discrete_Type (T) then
17985 Error_Msg_N ("discrete type required for range", N);
17986 Set_Etype (N, Any_Type);
17987 return;
17988
17989 elsif T = Any_Type then
17990 Set_Etype (N, Any_Type);
17991 return;
17992 end if;
17993
17994 -- We will now create the appropriate Itype to describe the range, but
17995 -- first a check. If we originally had a subtype, then we just label
17996 -- the range with this subtype. Not only is there no need to construct
17997 -- a new subtype, but it is wrong to do so for two reasons:
17998
17999 -- 1. A legality concern, if we have a subtype, it must not freeze,
18000 -- and the Itype would cause freezing incorrectly
18001
18002 -- 2. An efficiency concern, if we created an Itype, it would not be
18003 -- recognized as the same type for the purposes of eliminating
18004 -- checks in some circumstances.
18005
18006 -- We signal this case by setting the subtype entity in Def_Id
18007
18008 if No (Def_Id) then
18009 Def_Id :=
18010 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18011 Set_Etype (Def_Id, Base_Type (T));
18012
18013 if Is_Signed_Integer_Type (T) then
18014 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18015
18016 elsif Is_Modular_Integer_Type (T) then
18017 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18018
18019 else
18020 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18021 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18022 Set_First_Literal (Def_Id, First_Literal (T));
18023 end if;
18024
18025 Set_Size_Info (Def_Id, (T));
18026 Set_RM_Size (Def_Id, RM_Size (T));
18027 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18028
18029 Set_Scalar_Range (Def_Id, R);
18030 Conditional_Delay (Def_Id, T);
18031
18032 if Nkind (N) = N_Subtype_Indication then
18033 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18034 end if;
18035
18036 -- In the subtype indication case, if the immediate parent of the
18037 -- new subtype is non-static, then the subtype we create is non-
18038 -- static, even if its bounds are static.
18039
18040 if Nkind (N) = N_Subtype_Indication
18041 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18042 then
18043 Set_Is_Non_Static_Subtype (Def_Id);
18044 end if;
18045 end if;
18046
18047 -- Final step is to label the index with this constructed type
18048
18049 Set_Etype (N, Def_Id);
18050 end Make_Index;
18051
18052 ------------------------------
18053 -- Modular_Type_Declaration --
18054 ------------------------------
18055
18056 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18057 Mod_Expr : constant Node_Id := Expression (Def);
18058 M_Val : Uint;
18059
18060 procedure Set_Modular_Size (Bits : Int);
18061 -- Sets RM_Size to Bits, and Esize to normal word size above this
18062
18063 ----------------------
18064 -- Set_Modular_Size --
18065 ----------------------
18066
18067 procedure Set_Modular_Size (Bits : Int) is
18068 begin
18069 Set_RM_Size (T, UI_From_Int (Bits));
18070
18071 if Bits <= 8 then
18072 Init_Esize (T, 8);
18073
18074 elsif Bits <= 16 then
18075 Init_Esize (T, 16);
18076
18077 elsif Bits <= 32 then
18078 Init_Esize (T, 32);
18079
18080 else
18081 Init_Esize (T, System_Max_Binary_Modulus_Power);
18082 end if;
18083
18084 if not Non_Binary_Modulus (T)
18085 and then Esize (T) = RM_Size (T)
18086 then
18087 Set_Is_Known_Valid (T);
18088 end if;
18089 end Set_Modular_Size;
18090
18091 -- Start of processing for Modular_Type_Declaration
18092
18093 begin
18094 -- If the mod expression is (exactly) 2 * literal, where literal is
18095 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18096
18097 if Warn_On_Suspicious_Modulus_Value
18098 and then Nkind (Mod_Expr) = N_Op_Multiply
18099 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18100 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18101 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18102 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18103 then
18104 Error_Msg_N
18105 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18106 end if;
18107
18108 -- Proceed with analysis of mod expression
18109
18110 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18111 Set_Etype (T, T);
18112 Set_Ekind (T, E_Modular_Integer_Type);
18113 Init_Alignment (T);
18114 Set_Is_Constrained (T);
18115
18116 if not Is_OK_Static_Expression (Mod_Expr) then
18117 Flag_Non_Static_Expr
18118 ("non-static expression used for modular type bound!", Mod_Expr);
18119 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18120 else
18121 M_Val := Expr_Value (Mod_Expr);
18122 end if;
18123
18124 if M_Val < 1 then
18125 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18126 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18127 end if;
18128
18129 if M_Val > 2 ** Standard_Long_Integer_Size then
18130 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18131 end if;
18132
18133 Set_Modulus (T, M_Val);
18134
18135 -- Create bounds for the modular type based on the modulus given in
18136 -- the type declaration and then analyze and resolve those bounds.
18137
18138 Set_Scalar_Range (T,
18139 Make_Range (Sloc (Mod_Expr),
18140 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18141 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18142
18143 -- Properly analyze the literals for the range. We do this manually
18144 -- because we can't go calling Resolve, since we are resolving these
18145 -- bounds with the type, and this type is certainly not complete yet.
18146
18147 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18148 Set_Etype (High_Bound (Scalar_Range (T)), T);
18149 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18150 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18151
18152 -- Loop through powers of two to find number of bits required
18153
18154 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18155
18156 -- Binary case
18157
18158 if M_Val = 2 ** Bits then
18159 Set_Modular_Size (Bits);
18160 return;
18161
18162 -- Non-binary case
18163
18164 elsif M_Val < 2 ** Bits then
18165 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18166 Set_Non_Binary_Modulus (T);
18167
18168 if Bits > System_Max_Nonbinary_Modulus_Power then
18169 Error_Msg_Uint_1 :=
18170 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18171 Error_Msg_F
18172 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18173 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18174 return;
18175
18176 else
18177 -- In the non-binary case, set size as per RM 13.3(55)
18178
18179 Set_Modular_Size (Bits);
18180 return;
18181 end if;
18182 end if;
18183
18184 end loop;
18185
18186 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18187 -- so we just signal an error and set the maximum size.
18188
18189 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18190 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18191
18192 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18193 Init_Alignment (T);
18194
18195 end Modular_Type_Declaration;
18196
18197 --------------------------
18198 -- New_Concatenation_Op --
18199 --------------------------
18200
18201 procedure New_Concatenation_Op (Typ : Entity_Id) is
18202 Loc : constant Source_Ptr := Sloc (Typ);
18203 Op : Entity_Id;
18204
18205 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18206 -- Create abbreviated declaration for the formal of a predefined
18207 -- Operator 'Op' of type 'Typ'
18208
18209 --------------------
18210 -- Make_Op_Formal --
18211 --------------------
18212
18213 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18214 Formal : Entity_Id;
18215 begin
18216 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18217 Set_Etype (Formal, Typ);
18218 Set_Mechanism (Formal, Default_Mechanism);
18219 return Formal;
18220 end Make_Op_Formal;
18221
18222 -- Start of processing for New_Concatenation_Op
18223
18224 begin
18225 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18226
18227 Set_Ekind (Op, E_Operator);
18228 Set_Scope (Op, Current_Scope);
18229 Set_Etype (Op, Typ);
18230 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18231 Set_Is_Immediately_Visible (Op);
18232 Set_Is_Intrinsic_Subprogram (Op);
18233 Set_Has_Completion (Op);
18234 Append_Entity (Op, Current_Scope);
18235
18236 Set_Name_Entity_Id (Name_Op_Concat, Op);
18237
18238 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18239 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18240 end New_Concatenation_Op;
18241
18242 -------------------------
18243 -- OK_For_Limited_Init --
18244 -------------------------
18245
18246 -- ???Check all calls of this, and compare the conditions under which it's
18247 -- called.
18248
18249 function OK_For_Limited_Init
18250 (Typ : Entity_Id;
18251 Exp : Node_Id) return Boolean
18252 is
18253 begin
18254 return Is_CPP_Constructor_Call (Exp)
18255 or else (Ada_Version >= Ada_2005
18256 and then not Debug_Flag_Dot_L
18257 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18258 end OK_For_Limited_Init;
18259
18260 -------------------------------
18261 -- OK_For_Limited_Init_In_05 --
18262 -------------------------------
18263
18264 function OK_For_Limited_Init_In_05
18265 (Typ : Entity_Id;
18266 Exp : Node_Id) return Boolean
18267 is
18268 begin
18269 -- An object of a limited interface type can be initialized with any
18270 -- expression of a nonlimited descendant type.
18271
18272 if Is_Class_Wide_Type (Typ)
18273 and then Is_Limited_Interface (Typ)
18274 and then not Is_Limited_Type (Etype (Exp))
18275 then
18276 return True;
18277 end if;
18278
18279 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18280 -- case of limited aggregates (including extension aggregates), and
18281 -- function calls. The function call may have been given in prefixed
18282 -- notation, in which case the original node is an indexed component.
18283 -- If the function is parameterless, the original node was an explicit
18284 -- dereference. The function may also be parameterless, in which case
18285 -- the source node is just an identifier.
18286
18287 case Nkind (Original_Node (Exp)) is
18288 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18289 return True;
18290
18291 when N_Identifier =>
18292 return Present (Entity (Original_Node (Exp)))
18293 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18294
18295 when N_Qualified_Expression =>
18296 return
18297 OK_For_Limited_Init_In_05
18298 (Typ, Expression (Original_Node (Exp)));
18299
18300 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18301 -- with a function call, the expander has rewritten the call into an
18302 -- N_Type_Conversion node to force displacement of the pointer to
18303 -- reference the component containing the secondary dispatch table.
18304 -- Otherwise a type conversion is not a legal context.
18305 -- A return statement for a build-in-place function returning a
18306 -- synchronized type also introduces an unchecked conversion.
18307
18308 when N_Type_Conversion |
18309 N_Unchecked_Type_Conversion =>
18310 return not Comes_From_Source (Exp)
18311 and then
18312 OK_For_Limited_Init_In_05
18313 (Typ, Expression (Original_Node (Exp)));
18314
18315 when N_Indexed_Component |
18316 N_Selected_Component |
18317 N_Explicit_Dereference =>
18318 return Nkind (Exp) = N_Function_Call;
18319
18320 -- A use of 'Input is a function call, hence allowed. Normally the
18321 -- attribute will be changed to a call, but the attribute by itself
18322 -- can occur with -gnatc.
18323
18324 when N_Attribute_Reference =>
18325 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18326
18327 -- For a case expression, all dependent expressions must be legal
18328
18329 when N_Case_Expression =>
18330 declare
18331 Alt : Node_Id;
18332
18333 begin
18334 Alt := First (Alternatives (Original_Node (Exp)));
18335 while Present (Alt) loop
18336 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18337 return False;
18338 end if;
18339
18340 Next (Alt);
18341 end loop;
18342
18343 return True;
18344 end;
18345
18346 -- For an if expression, all dependent expressions must be legal
18347
18348 when N_If_Expression =>
18349 declare
18350 Then_Expr : constant Node_Id :=
18351 Next (First (Expressions (Original_Node (Exp))));
18352 Else_Expr : constant Node_Id := Next (Then_Expr);
18353 begin
18354 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18355 and then
18356 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18357 end;
18358
18359 when others =>
18360 return False;
18361 end case;
18362 end OK_For_Limited_Init_In_05;
18363
18364 -------------------------------------------
18365 -- Ordinary_Fixed_Point_Type_Declaration --
18366 -------------------------------------------
18367
18368 procedure Ordinary_Fixed_Point_Type_Declaration
18369 (T : Entity_Id;
18370 Def : Node_Id)
18371 is
18372 Loc : constant Source_Ptr := Sloc (Def);
18373 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18374 RRS : constant Node_Id := Real_Range_Specification (Def);
18375 Implicit_Base : Entity_Id;
18376 Delta_Val : Ureal;
18377 Small_Val : Ureal;
18378 Low_Val : Ureal;
18379 High_Val : Ureal;
18380
18381 begin
18382 Check_Restriction (No_Fixed_Point, Def);
18383
18384 -- Create implicit base type
18385
18386 Implicit_Base :=
18387 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18388 Set_Etype (Implicit_Base, Implicit_Base);
18389
18390 -- Analyze and process delta expression
18391
18392 Analyze_And_Resolve (Delta_Expr, Any_Real);
18393
18394 Check_Delta_Expression (Delta_Expr);
18395 Delta_Val := Expr_Value_R (Delta_Expr);
18396
18397 Set_Delta_Value (Implicit_Base, Delta_Val);
18398
18399 -- Compute default small from given delta, which is the largest power
18400 -- of two that does not exceed the given delta value.
18401
18402 declare
18403 Tmp : Ureal;
18404 Scale : Int;
18405
18406 begin
18407 Tmp := Ureal_1;
18408 Scale := 0;
18409
18410 if Delta_Val < Ureal_1 then
18411 while Delta_Val < Tmp loop
18412 Tmp := Tmp / Ureal_2;
18413 Scale := Scale + 1;
18414 end loop;
18415
18416 else
18417 loop
18418 Tmp := Tmp * Ureal_2;
18419 exit when Tmp > Delta_Val;
18420 Scale := Scale - 1;
18421 end loop;
18422 end if;
18423
18424 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18425 end;
18426
18427 Set_Small_Value (Implicit_Base, Small_Val);
18428
18429 -- If no range was given, set a dummy range
18430
18431 if RRS <= Empty_Or_Error then
18432 Low_Val := -Small_Val;
18433 High_Val := Small_Val;
18434
18435 -- Otherwise analyze and process given range
18436
18437 else
18438 declare
18439 Low : constant Node_Id := Low_Bound (RRS);
18440 High : constant Node_Id := High_Bound (RRS);
18441
18442 begin
18443 Analyze_And_Resolve (Low, Any_Real);
18444 Analyze_And_Resolve (High, Any_Real);
18445 Check_Real_Bound (Low);
18446 Check_Real_Bound (High);
18447
18448 -- Obtain and set the range
18449
18450 Low_Val := Expr_Value_R (Low);
18451 High_Val := Expr_Value_R (High);
18452
18453 if Low_Val > High_Val then
18454 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18455 end if;
18456 end;
18457 end if;
18458
18459 -- The range for both the implicit base and the declared first subtype
18460 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18461 -- set a temporary range in place. Note that the bounds of the base
18462 -- type will be widened to be symmetrical and to fill the available
18463 -- bits when the type is frozen.
18464
18465 -- We could do this with all discrete types, and probably should, but
18466 -- we absolutely have to do it for fixed-point, since the end-points
18467 -- of the range and the size are determined by the small value, which
18468 -- could be reset before the freeze point.
18469
18470 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18471 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18472
18473 -- Complete definition of first subtype. The inheritance of the rep item
18474 -- chain ensures that SPARK-related pragmas are not clobbered when the
18475 -- ordinary fixed point type acts as a full view of a private type.
18476
18477 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18478 Set_Etype (T, Implicit_Base);
18479 Init_Size_Align (T);
18480 Inherit_Rep_Item_Chain (T, Implicit_Base);
18481 Set_Small_Value (T, Small_Val);
18482 Set_Delta_Value (T, Delta_Val);
18483 Set_Is_Constrained (T);
18484 end Ordinary_Fixed_Point_Type_Declaration;
18485
18486 ----------------------------------
18487 -- Preanalyze_Assert_Expression --
18488 ----------------------------------
18489
18490 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18491 begin
18492 In_Assertion_Expr := In_Assertion_Expr + 1;
18493 Preanalyze_Spec_Expression (N, T);
18494 In_Assertion_Expr := In_Assertion_Expr - 1;
18495 end Preanalyze_Assert_Expression;
18496
18497 -----------------------------------
18498 -- Preanalyze_Default_Expression --
18499 -----------------------------------
18500
18501 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18502 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18503 begin
18504 In_Default_Expr := True;
18505 Preanalyze_Spec_Expression (N, T);
18506 In_Default_Expr := Save_In_Default_Expr;
18507 end Preanalyze_Default_Expression;
18508
18509 --------------------------------
18510 -- Preanalyze_Spec_Expression --
18511 --------------------------------
18512
18513 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18514 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18515 begin
18516 In_Spec_Expression := True;
18517 Preanalyze_And_Resolve (N, T);
18518 In_Spec_Expression := Save_In_Spec_Expression;
18519 end Preanalyze_Spec_Expression;
18520
18521 ----------------------------------------
18522 -- Prepare_Private_Subtype_Completion --
18523 ----------------------------------------
18524
18525 procedure Prepare_Private_Subtype_Completion
18526 (Id : Entity_Id;
18527 Related_Nod : Node_Id)
18528 is
18529 Id_B : constant Entity_Id := Base_Type (Id);
18530 Full_B : Entity_Id := Full_View (Id_B);
18531 Full : Entity_Id;
18532
18533 begin
18534 if Present (Full_B) then
18535
18536 -- Get to the underlying full view if necessary
18537
18538 if Is_Private_Type (Full_B)
18539 and then Present (Underlying_Full_View (Full_B))
18540 then
18541 Full_B := Underlying_Full_View (Full_B);
18542 end if;
18543
18544 -- The Base_Type is already completed, we can complete the subtype
18545 -- now. We have to create a new entity with the same name, Thus we
18546 -- can't use Create_Itype.
18547
18548 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18549 Set_Is_Itype (Full);
18550 Set_Associated_Node_For_Itype (Full, Related_Nod);
18551 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18552 end if;
18553
18554 -- The parent subtype may be private, but the base might not, in some
18555 -- nested instances. In that case, the subtype does not need to be
18556 -- exchanged. It would still be nice to make private subtypes and their
18557 -- bases consistent at all times ???
18558
18559 if Is_Private_Type (Id_B) then
18560 Append_Elmt (Id, Private_Dependents (Id_B));
18561 end if;
18562 end Prepare_Private_Subtype_Completion;
18563
18564 ---------------------------
18565 -- Process_Discriminants --
18566 ---------------------------
18567
18568 procedure Process_Discriminants
18569 (N : Node_Id;
18570 Prev : Entity_Id := Empty)
18571 is
18572 Elist : constant Elist_Id := New_Elmt_List;
18573 Id : Node_Id;
18574 Discr : Node_Id;
18575 Discr_Number : Uint;
18576 Discr_Type : Entity_Id;
18577 Default_Present : Boolean := False;
18578 Default_Not_Present : Boolean := False;
18579
18580 begin
18581 -- A composite type other than an array type can have discriminants.
18582 -- On entry, the current scope is the composite type.
18583
18584 -- The discriminants are initially entered into the scope of the type
18585 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18586 -- use, as explained at the end of this procedure.
18587
18588 Discr := First (Discriminant_Specifications (N));
18589 while Present (Discr) loop
18590 Enter_Name (Defining_Identifier (Discr));
18591
18592 -- For navigation purposes we add a reference to the discriminant
18593 -- in the entity for the type. If the current declaration is a
18594 -- completion, place references on the partial view. Otherwise the
18595 -- type is the current scope.
18596
18597 if Present (Prev) then
18598
18599 -- The references go on the partial view, if present. If the
18600 -- partial view has discriminants, the references have been
18601 -- generated already.
18602
18603 if not Has_Discriminants (Prev) then
18604 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18605 end if;
18606 else
18607 Generate_Reference
18608 (Current_Scope, Defining_Identifier (Discr), 'd');
18609 end if;
18610
18611 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18612 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18613
18614 -- Ada 2005 (AI-254)
18615
18616 if Present (Access_To_Subprogram_Definition
18617 (Discriminant_Type (Discr)))
18618 and then Protected_Present (Access_To_Subprogram_Definition
18619 (Discriminant_Type (Discr)))
18620 then
18621 Discr_Type :=
18622 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18623 end if;
18624
18625 else
18626 Find_Type (Discriminant_Type (Discr));
18627 Discr_Type := Etype (Discriminant_Type (Discr));
18628
18629 if Error_Posted (Discriminant_Type (Discr)) then
18630 Discr_Type := Any_Type;
18631 end if;
18632 end if;
18633
18634 -- Handling of discriminants that are access types
18635
18636 if Is_Access_Type (Discr_Type) then
18637
18638 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18639 -- limited record types
18640
18641 if Ada_Version < Ada_2005 then
18642 Check_Access_Discriminant_Requires_Limited
18643 (Discr, Discriminant_Type (Discr));
18644 end if;
18645
18646 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18647 Error_Msg_N
18648 ("(Ada 83) access discriminant not allowed", Discr);
18649 end if;
18650
18651 -- If not access type, must be a discrete type
18652
18653 elsif not Is_Discrete_Type (Discr_Type) then
18654 Error_Msg_N
18655 ("discriminants must have a discrete or access type",
18656 Discriminant_Type (Discr));
18657 end if;
18658
18659 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18660
18661 -- If a discriminant specification includes the assignment compound
18662 -- delimiter followed by an expression, the expression is the default
18663 -- expression of the discriminant; the default expression must be of
18664 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18665 -- a default expression, we do the special preanalysis, since this
18666 -- expression does not freeze (see section "Handling of Default and
18667 -- Per-Object Expressions" in spec of package Sem).
18668
18669 if Present (Expression (Discr)) then
18670 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18671
18672 -- Legaity checks
18673
18674 if Nkind (N) = N_Formal_Type_Declaration then
18675 Error_Msg_N
18676 ("discriminant defaults not allowed for formal type",
18677 Expression (Discr));
18678
18679 -- Flag an error for a tagged type with defaulted discriminants,
18680 -- excluding limited tagged types when compiling for Ada 2012
18681 -- (see AI05-0214).
18682
18683 elsif Is_Tagged_Type (Current_Scope)
18684 and then (not Is_Limited_Type (Current_Scope)
18685 or else Ada_Version < Ada_2012)
18686 and then Comes_From_Source (N)
18687 then
18688 -- Note: see similar test in Check_Or_Process_Discriminants, to
18689 -- handle the (illegal) case of the completion of an untagged
18690 -- view with discriminants with defaults by a tagged full view.
18691 -- We skip the check if Discr does not come from source, to
18692 -- account for the case of an untagged derived type providing
18693 -- defaults for a renamed discriminant from a private untagged
18694 -- ancestor with a tagged full view (ACATS B460006).
18695
18696 if Ada_Version >= Ada_2012 then
18697 Error_Msg_N
18698 ("discriminants of nonlimited tagged type cannot have"
18699 & " defaults",
18700 Expression (Discr));
18701 else
18702 Error_Msg_N
18703 ("discriminants of tagged type cannot have defaults",
18704 Expression (Discr));
18705 end if;
18706
18707 else
18708 Default_Present := True;
18709 Append_Elmt (Expression (Discr), Elist);
18710
18711 -- Tag the defining identifiers for the discriminants with
18712 -- their corresponding default expressions from the tree.
18713
18714 Set_Discriminant_Default_Value
18715 (Defining_Identifier (Discr), Expression (Discr));
18716 end if;
18717
18718 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18719 -- gets set unless we can be sure that no range check is required.
18720
18721 if (GNATprove_Mode or not Expander_Active)
18722 and then not
18723 Is_In_Range
18724 (Expression (Discr), Discr_Type, Assume_Valid => True)
18725 then
18726 Set_Do_Range_Check (Expression (Discr));
18727 end if;
18728
18729 -- No default discriminant value given
18730
18731 else
18732 Default_Not_Present := True;
18733 end if;
18734
18735 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18736 -- Discr_Type but with the null-exclusion attribute
18737
18738 if Ada_Version >= Ada_2005 then
18739
18740 -- Ada 2005 (AI-231): Static checks
18741
18742 if Can_Never_Be_Null (Discr_Type) then
18743 Null_Exclusion_Static_Checks (Discr);
18744
18745 elsif Is_Access_Type (Discr_Type)
18746 and then Null_Exclusion_Present (Discr)
18747
18748 -- No need to check itypes because in their case this check
18749 -- was done at their point of creation
18750
18751 and then not Is_Itype (Discr_Type)
18752 then
18753 if Can_Never_Be_Null (Discr_Type) then
18754 Error_Msg_NE
18755 ("`NOT NULL` not allowed (& already excludes null)",
18756 Discr,
18757 Discr_Type);
18758 end if;
18759
18760 Set_Etype (Defining_Identifier (Discr),
18761 Create_Null_Excluding_Itype
18762 (T => Discr_Type,
18763 Related_Nod => Discr));
18764
18765 -- Check for improper null exclusion if the type is otherwise
18766 -- legal for a discriminant.
18767
18768 elsif Null_Exclusion_Present (Discr)
18769 and then Is_Discrete_Type (Discr_Type)
18770 then
18771 Error_Msg_N
18772 ("null exclusion can only apply to an access type", Discr);
18773 end if;
18774
18775 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18776 -- can't have defaults. Synchronized types, or types that are
18777 -- explicitly limited are fine, but special tests apply to derived
18778 -- types in generics: in a generic body we have to assume the
18779 -- worst, and therefore defaults are not allowed if the parent is
18780 -- a generic formal private type (see ACATS B370001).
18781
18782 if Is_Access_Type (Discr_Type) and then Default_Present then
18783 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18784 or else Is_Limited_Record (Current_Scope)
18785 or else Is_Concurrent_Type (Current_Scope)
18786 or else Is_Concurrent_Record_Type (Current_Scope)
18787 or else Ekind (Current_Scope) = E_Limited_Private_Type
18788 then
18789 if not Is_Derived_Type (Current_Scope)
18790 or else not Is_Generic_Type (Etype (Current_Scope))
18791 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18792 or else Limited_Present
18793 (Type_Definition (Parent (Current_Scope)))
18794 then
18795 null;
18796
18797 else
18798 Error_Msg_N ("access discriminants of nonlimited types",
18799 Expression (Discr));
18800 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18801 end if;
18802
18803 elsif Present (Expression (Discr)) then
18804 Error_Msg_N
18805 ("(Ada 2005) access discriminants of nonlimited types",
18806 Expression (Discr));
18807 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18808 end if;
18809 end if;
18810 end if;
18811
18812 -- A discriminant cannot be effectively volatile. This check is only
18813 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18814 -- rule (SPARK RM 7.1.3(6)).
18815
18816 if SPARK_Mode = On
18817 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18818 then
18819 Error_Msg_N ("discriminant cannot be volatile", Discr);
18820 end if;
18821
18822 Next (Discr);
18823 end loop;
18824
18825 -- An element list consisting of the default expressions of the
18826 -- discriminants is constructed in the above loop and used to set
18827 -- the Discriminant_Constraint attribute for the type. If an object
18828 -- is declared of this (record or task) type without any explicit
18829 -- discriminant constraint given, this element list will form the
18830 -- actual parameters for the corresponding initialization procedure
18831 -- for the type.
18832
18833 Set_Discriminant_Constraint (Current_Scope, Elist);
18834 Set_Stored_Constraint (Current_Scope, No_Elist);
18835
18836 -- Default expressions must be provided either for all or for none
18837 -- of the discriminants of a discriminant part. (RM 3.7.1)
18838
18839 if Default_Present and then Default_Not_Present then
18840 Error_Msg_N
18841 ("incomplete specification of defaults for discriminants", N);
18842 end if;
18843
18844 -- The use of the name of a discriminant is not allowed in default
18845 -- expressions of a discriminant part if the specification of the
18846 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18847
18848 -- To detect this, the discriminant names are entered initially with an
18849 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18850 -- attempt to use a void entity (for example in an expression that is
18851 -- type-checked) produces the error message: premature usage. Now after
18852 -- completing the semantic analysis of the discriminant part, we can set
18853 -- the Ekind of all the discriminants appropriately.
18854
18855 Discr := First (Discriminant_Specifications (N));
18856 Discr_Number := Uint_1;
18857 while Present (Discr) loop
18858 Id := Defining_Identifier (Discr);
18859 Set_Ekind (Id, E_Discriminant);
18860 Init_Component_Location (Id);
18861 Init_Esize (Id);
18862 Set_Discriminant_Number (Id, Discr_Number);
18863
18864 -- Make sure this is always set, even in illegal programs
18865
18866 Set_Corresponding_Discriminant (Id, Empty);
18867
18868 -- Initialize the Original_Record_Component to the entity itself.
18869 -- Inherit_Components will propagate the right value to
18870 -- discriminants in derived record types.
18871
18872 Set_Original_Record_Component (Id, Id);
18873
18874 -- Create the discriminal for the discriminant
18875
18876 Build_Discriminal (Id);
18877
18878 Next (Discr);
18879 Discr_Number := Discr_Number + 1;
18880 end loop;
18881
18882 Set_Has_Discriminants (Current_Scope);
18883 end Process_Discriminants;
18884
18885 -----------------------
18886 -- Process_Full_View --
18887 -----------------------
18888
18889 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18890 procedure Collect_Implemented_Interfaces
18891 (Typ : Entity_Id;
18892 Ifaces : Elist_Id);
18893 -- Ada 2005: Gather all the interfaces that Typ directly or
18894 -- inherently implements. Duplicate entries are not added to
18895 -- the list Ifaces.
18896
18897 ------------------------------------
18898 -- Collect_Implemented_Interfaces --
18899 ------------------------------------
18900
18901 procedure Collect_Implemented_Interfaces
18902 (Typ : Entity_Id;
18903 Ifaces : Elist_Id)
18904 is
18905 Iface : Entity_Id;
18906 Iface_Elmt : Elmt_Id;
18907
18908 begin
18909 -- Abstract interfaces are only associated with tagged record types
18910
18911 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
18912 return;
18913 end if;
18914
18915 -- Recursively climb to the ancestors
18916
18917 if Etype (Typ) /= Typ
18918
18919 -- Protect the frontend against wrong cyclic declarations like:
18920
18921 -- type B is new A with private;
18922 -- type C is new A with private;
18923 -- private
18924 -- type B is new C with null record;
18925 -- type C is new B with null record;
18926
18927 and then Etype (Typ) /= Priv_T
18928 and then Etype (Typ) /= Full_T
18929 then
18930 -- Keep separate the management of private type declarations
18931
18932 if Ekind (Typ) = E_Record_Type_With_Private then
18933
18934 -- Handle the following illegal usage:
18935 -- type Private_Type is tagged private;
18936 -- private
18937 -- type Private_Type is new Type_Implementing_Iface;
18938
18939 if Present (Full_View (Typ))
18940 and then Etype (Typ) /= Full_View (Typ)
18941 then
18942 if Is_Interface (Etype (Typ)) then
18943 Append_Unique_Elmt (Etype (Typ), Ifaces);
18944 end if;
18945
18946 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18947 end if;
18948
18949 -- Non-private types
18950
18951 else
18952 if Is_Interface (Etype (Typ)) then
18953 Append_Unique_Elmt (Etype (Typ), Ifaces);
18954 end if;
18955
18956 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18957 end if;
18958 end if;
18959
18960 -- Handle entities in the list of abstract interfaces
18961
18962 if Present (Interfaces (Typ)) then
18963 Iface_Elmt := First_Elmt (Interfaces (Typ));
18964 while Present (Iface_Elmt) loop
18965 Iface := Node (Iface_Elmt);
18966
18967 pragma Assert (Is_Interface (Iface));
18968
18969 if not Contain_Interface (Iface, Ifaces) then
18970 Append_Elmt (Iface, Ifaces);
18971 Collect_Implemented_Interfaces (Iface, Ifaces);
18972 end if;
18973
18974 Next_Elmt (Iface_Elmt);
18975 end loop;
18976 end if;
18977 end Collect_Implemented_Interfaces;
18978
18979 -- Local variables
18980
18981 Full_Indic : Node_Id;
18982 Full_Parent : Entity_Id;
18983 Priv_Parent : Entity_Id;
18984
18985 -- Start of processing for Process_Full_View
18986
18987 begin
18988 -- First some sanity checks that must be done after semantic
18989 -- decoration of the full view and thus cannot be placed with other
18990 -- similar checks in Find_Type_Name
18991
18992 if not Is_Limited_Type (Priv_T)
18993 and then (Is_Limited_Type (Full_T)
18994 or else Is_Limited_Composite (Full_T))
18995 then
18996 if In_Instance then
18997 null;
18998 else
18999 Error_Msg_N
19000 ("completion of nonlimited type cannot be limited", Full_T);
19001 Explain_Limited_Type (Full_T, Full_T);
19002 end if;
19003
19004 elsif Is_Abstract_Type (Full_T)
19005 and then not Is_Abstract_Type (Priv_T)
19006 then
19007 Error_Msg_N
19008 ("completion of nonabstract type cannot be abstract", Full_T);
19009
19010 elsif Is_Tagged_Type (Priv_T)
19011 and then Is_Limited_Type (Priv_T)
19012 and then not Is_Limited_Type (Full_T)
19013 then
19014 -- If pragma CPP_Class was applied to the private declaration
19015 -- propagate the limitedness to the full-view
19016
19017 if Is_CPP_Class (Priv_T) then
19018 Set_Is_Limited_Record (Full_T);
19019
19020 -- GNAT allow its own definition of Limited_Controlled to disobey
19021 -- this rule in order in ease the implementation. This test is safe
19022 -- because Root_Controlled is defined in a child of System that
19023 -- normal programs are not supposed to use.
19024
19025 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19026 Set_Is_Limited_Composite (Full_T);
19027 else
19028 Error_Msg_N
19029 ("completion of limited tagged type must be limited", Full_T);
19030 end if;
19031
19032 elsif Is_Generic_Type (Priv_T) then
19033 Error_Msg_N ("generic type cannot have a completion", Full_T);
19034 end if;
19035
19036 -- Check that ancestor interfaces of private and full views are
19037 -- consistent. We omit this check for synchronized types because
19038 -- they are performed on the corresponding record type when frozen.
19039
19040 if Ada_Version >= Ada_2005
19041 and then Is_Tagged_Type (Priv_T)
19042 and then Is_Tagged_Type (Full_T)
19043 and then not Is_Concurrent_Type (Full_T)
19044 then
19045 declare
19046 Iface : Entity_Id;
19047 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19048 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19049
19050 begin
19051 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19052 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19053
19054 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19055 -- an interface type if and only if the full type is descendant
19056 -- of the interface type (AARM 7.3 (7.3/2)).
19057
19058 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19059
19060 if Present (Iface) then
19061 Error_Msg_NE
19062 ("interface in partial view& not implemented by full type "
19063 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19064 end if;
19065
19066 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19067
19068 if Present (Iface) then
19069 Error_Msg_NE
19070 ("interface & not implemented by partial view "
19071 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19072 end if;
19073 end;
19074 end if;
19075
19076 if Is_Tagged_Type (Priv_T)
19077 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19078 and then Is_Derived_Type (Full_T)
19079 then
19080 Priv_Parent := Etype (Priv_T);
19081
19082 -- The full view of a private extension may have been transformed
19083 -- into an unconstrained derived type declaration and a subtype
19084 -- declaration (see build_derived_record_type for details).
19085
19086 if Nkind (N) = N_Subtype_Declaration then
19087 Full_Indic := Subtype_Indication (N);
19088 Full_Parent := Etype (Base_Type (Full_T));
19089 else
19090 Full_Indic := Subtype_Indication (Type_Definition (N));
19091 Full_Parent := Etype (Full_T);
19092 end if;
19093
19094 -- Check that the parent type of the full type is a descendant of
19095 -- the ancestor subtype given in the private extension. If either
19096 -- entity has an Etype equal to Any_Type then we had some previous
19097 -- error situation [7.3(8)].
19098
19099 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19100 return;
19101
19102 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19103 -- any order. Therefore we don't have to check that its parent must
19104 -- be a descendant of the parent of the private type declaration.
19105
19106 elsif Is_Interface (Priv_Parent)
19107 and then Is_Interface (Full_Parent)
19108 then
19109 null;
19110
19111 -- Ada 2005 (AI-251): If the parent of the private type declaration
19112 -- is an interface there is no need to check that it is an ancestor
19113 -- of the associated full type declaration. The required tests for
19114 -- this case are performed by Build_Derived_Record_Type.
19115
19116 elsif not Is_Interface (Base_Type (Priv_Parent))
19117 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19118 then
19119 Error_Msg_N
19120 ("parent of full type must descend from parent"
19121 & " of private extension", Full_Indic);
19122
19123 -- First check a formal restriction, and then proceed with checking
19124 -- Ada rules. Since the formal restriction is not a serious error, we
19125 -- don't prevent further error detection for this check, hence the
19126 -- ELSE.
19127
19128 else
19129 -- In formal mode, when completing a private extension the type
19130 -- named in the private part must be exactly the same as that
19131 -- named in the visible part.
19132
19133 if Priv_Parent /= Full_Parent then
19134 Error_Msg_Name_1 := Chars (Priv_Parent);
19135 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19136 end if;
19137
19138 -- Check the rules of 7.3(10): if the private extension inherits
19139 -- known discriminants, then the full type must also inherit those
19140 -- discriminants from the same (ancestor) type, and the parent
19141 -- subtype of the full type must be constrained if and only if
19142 -- the ancestor subtype of the private extension is constrained.
19143
19144 if No (Discriminant_Specifications (Parent (Priv_T)))
19145 and then not Has_Unknown_Discriminants (Priv_T)
19146 and then Has_Discriminants (Base_Type (Priv_Parent))
19147 then
19148 declare
19149 Priv_Indic : constant Node_Id :=
19150 Subtype_Indication (Parent (Priv_T));
19151
19152 Priv_Constr : constant Boolean :=
19153 Is_Constrained (Priv_Parent)
19154 or else
19155 Nkind (Priv_Indic) = N_Subtype_Indication
19156 or else
19157 Is_Constrained (Entity (Priv_Indic));
19158
19159 Full_Constr : constant Boolean :=
19160 Is_Constrained (Full_Parent)
19161 or else
19162 Nkind (Full_Indic) = N_Subtype_Indication
19163 or else
19164 Is_Constrained (Entity (Full_Indic));
19165
19166 Priv_Discr : Entity_Id;
19167 Full_Discr : Entity_Id;
19168
19169 begin
19170 Priv_Discr := First_Discriminant (Priv_Parent);
19171 Full_Discr := First_Discriminant (Full_Parent);
19172 while Present (Priv_Discr) and then Present (Full_Discr) loop
19173 if Original_Record_Component (Priv_Discr) =
19174 Original_Record_Component (Full_Discr)
19175 or else
19176 Corresponding_Discriminant (Priv_Discr) =
19177 Corresponding_Discriminant (Full_Discr)
19178 then
19179 null;
19180 else
19181 exit;
19182 end if;
19183
19184 Next_Discriminant (Priv_Discr);
19185 Next_Discriminant (Full_Discr);
19186 end loop;
19187
19188 if Present (Priv_Discr) or else Present (Full_Discr) then
19189 Error_Msg_N
19190 ("full view must inherit discriminants of the parent"
19191 & " type used in the private extension", Full_Indic);
19192
19193 elsif Priv_Constr and then not Full_Constr then
19194 Error_Msg_N
19195 ("parent subtype of full type must be constrained",
19196 Full_Indic);
19197
19198 elsif Full_Constr and then not Priv_Constr then
19199 Error_Msg_N
19200 ("parent subtype of full type must be unconstrained",
19201 Full_Indic);
19202 end if;
19203 end;
19204
19205 -- Check the rules of 7.3(12): if a partial view has neither
19206 -- known or unknown discriminants, then the full type
19207 -- declaration shall define a definite subtype.
19208
19209 elsif not Has_Unknown_Discriminants (Priv_T)
19210 and then not Has_Discriminants (Priv_T)
19211 and then not Is_Constrained (Full_T)
19212 then
19213 Error_Msg_N
19214 ("full view must define a constrained type if partial view"
19215 & " has no discriminants", Full_T);
19216 end if;
19217
19218 -- ??????? Do we implement the following properly ?????
19219 -- If the ancestor subtype of a private extension has constrained
19220 -- discriminants, then the parent subtype of the full view shall
19221 -- impose a statically matching constraint on those discriminants
19222 -- [7.3(13)].
19223 end if;
19224
19225 else
19226 -- For untagged types, verify that a type without discriminants is
19227 -- not completed with an unconstrained type. A separate error message
19228 -- is produced if the full type has defaulted discriminants.
19229
19230 if not Is_Indefinite_Subtype (Priv_T)
19231 and then Is_Indefinite_Subtype (Full_T)
19232 then
19233 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19234 Error_Msg_NE
19235 ("full view of& not compatible with declaration#",
19236 Full_T, Priv_T);
19237
19238 if not Is_Tagged_Type (Full_T) then
19239 Error_Msg_N
19240 ("\one is constrained, the other unconstrained", Full_T);
19241 end if;
19242 end if;
19243 end if;
19244
19245 -- AI-419: verify that the use of "limited" is consistent
19246
19247 declare
19248 Orig_Decl : constant Node_Id := Original_Node (N);
19249
19250 begin
19251 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19252 and then not Limited_Present (Parent (Priv_T))
19253 and then not Synchronized_Present (Parent (Priv_T))
19254 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19255 and then Nkind
19256 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19257 and then Limited_Present (Type_Definition (Orig_Decl))
19258 then
19259 Error_Msg_N
19260 ("full view of non-limited extension cannot be limited", N);
19261 end if;
19262 end;
19263
19264 -- Ada 2005 (AI-443): A synchronized private extension must be
19265 -- completed by a task or protected type.
19266
19267 if Ada_Version >= Ada_2005
19268 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19269 and then Synchronized_Present (Parent (Priv_T))
19270 and then not Is_Concurrent_Type (Full_T)
19271 then
19272 Error_Msg_N ("full view of synchronized extension must " &
19273 "be synchronized type", N);
19274 end if;
19275
19276 -- Ada 2005 AI-363: if the full view has discriminants with
19277 -- defaults, it is illegal to declare constrained access subtypes
19278 -- whose designated type is the current type. This allows objects
19279 -- of the type that are declared in the heap to be unconstrained.
19280
19281 if not Has_Unknown_Discriminants (Priv_T)
19282 and then not Has_Discriminants (Priv_T)
19283 and then Has_Discriminants (Full_T)
19284 and then
19285 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19286 then
19287 Set_Has_Constrained_Partial_View (Full_T);
19288 Set_Has_Constrained_Partial_View (Priv_T);
19289 end if;
19290
19291 -- Create a full declaration for all its subtypes recorded in
19292 -- Private_Dependents and swap them similarly to the base type. These
19293 -- are subtypes that have been define before the full declaration of
19294 -- the private type. We also swap the entry in Private_Dependents list
19295 -- so we can properly restore the private view on exit from the scope.
19296
19297 declare
19298 Priv_Elmt : Elmt_Id;
19299 Priv_Scop : Entity_Id;
19300 Priv : Entity_Id;
19301 Full : Entity_Id;
19302
19303 begin
19304 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19305 while Present (Priv_Elmt) loop
19306 Priv := Node (Priv_Elmt);
19307 Priv_Scop := Scope (Priv);
19308
19309 if Ekind_In (Priv, E_Private_Subtype,
19310 E_Limited_Private_Subtype,
19311 E_Record_Subtype_With_Private)
19312 then
19313 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19314 Set_Is_Itype (Full);
19315 Set_Parent (Full, Parent (Priv));
19316 Set_Associated_Node_For_Itype (Full, N);
19317
19318 -- Now we need to complete the private subtype, but since the
19319 -- base type has already been swapped, we must also swap the
19320 -- subtypes (and thus, reverse the arguments in the call to
19321 -- Complete_Private_Subtype). Also note that we may need to
19322 -- re-establish the scope of the private subtype.
19323
19324 Copy_And_Swap (Priv, Full);
19325
19326 if not In_Open_Scopes (Priv_Scop) then
19327 Push_Scope (Priv_Scop);
19328
19329 else
19330 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19331
19332 Priv_Scop := Empty;
19333 end if;
19334
19335 Complete_Private_Subtype (Full, Priv, Full_T, N);
19336
19337 if Present (Priv_Scop) then
19338 Pop_Scope;
19339 end if;
19340
19341 Replace_Elmt (Priv_Elmt, Full);
19342 end if;
19343
19344 Next_Elmt (Priv_Elmt);
19345 end loop;
19346 end;
19347
19348 -- If the private view was tagged, copy the new primitive operations
19349 -- from the private view to the full view.
19350
19351 if Is_Tagged_Type (Full_T) then
19352 declare
19353 Disp_Typ : Entity_Id;
19354 Full_List : Elist_Id;
19355 Prim : Entity_Id;
19356 Prim_Elmt : Elmt_Id;
19357 Priv_List : Elist_Id;
19358
19359 function Contains
19360 (E : Entity_Id;
19361 L : Elist_Id) return Boolean;
19362 -- Determine whether list L contains element E
19363
19364 --------------
19365 -- Contains --
19366 --------------
19367
19368 function Contains
19369 (E : Entity_Id;
19370 L : Elist_Id) return Boolean
19371 is
19372 List_Elmt : Elmt_Id;
19373
19374 begin
19375 List_Elmt := First_Elmt (L);
19376 while Present (List_Elmt) loop
19377 if Node (List_Elmt) = E then
19378 return True;
19379 end if;
19380
19381 Next_Elmt (List_Elmt);
19382 end loop;
19383
19384 return False;
19385 end Contains;
19386
19387 -- Start of processing
19388
19389 begin
19390 if Is_Tagged_Type (Priv_T) then
19391 Priv_List := Primitive_Operations (Priv_T);
19392 Prim_Elmt := First_Elmt (Priv_List);
19393
19394 -- In the case of a concurrent type completing a private tagged
19395 -- type, primitives may have been declared in between the two
19396 -- views. These subprograms need to be wrapped the same way
19397 -- entries and protected procedures are handled because they
19398 -- cannot be directly shared by the two views.
19399
19400 if Is_Concurrent_Type (Full_T) then
19401 declare
19402 Conc_Typ : constant Entity_Id :=
19403 Corresponding_Record_Type (Full_T);
19404 Curr_Nod : Node_Id := Parent (Conc_Typ);
19405 Wrap_Spec : Node_Id;
19406
19407 begin
19408 while Present (Prim_Elmt) loop
19409 Prim := Node (Prim_Elmt);
19410
19411 if Comes_From_Source (Prim)
19412 and then not Is_Abstract_Subprogram (Prim)
19413 then
19414 Wrap_Spec :=
19415 Make_Subprogram_Declaration (Sloc (Prim),
19416 Specification =>
19417 Build_Wrapper_Spec
19418 (Subp_Id => Prim,
19419 Obj_Typ => Conc_Typ,
19420 Formals =>
19421 Parameter_Specifications (
19422 Parent (Prim))));
19423
19424 Insert_After (Curr_Nod, Wrap_Spec);
19425 Curr_Nod := Wrap_Spec;
19426
19427 Analyze (Wrap_Spec);
19428 end if;
19429
19430 Next_Elmt (Prim_Elmt);
19431 end loop;
19432
19433 return;
19434 end;
19435
19436 -- For non-concurrent types, transfer explicit primitives, but
19437 -- omit those inherited from the parent of the private view
19438 -- since they will be re-inherited later on.
19439
19440 else
19441 Full_List := Primitive_Operations (Full_T);
19442
19443 while Present (Prim_Elmt) loop
19444 Prim := Node (Prim_Elmt);
19445
19446 if Comes_From_Source (Prim)
19447 and then not Contains (Prim, Full_List)
19448 then
19449 Append_Elmt (Prim, Full_List);
19450 end if;
19451
19452 Next_Elmt (Prim_Elmt);
19453 end loop;
19454 end if;
19455
19456 -- Untagged private view
19457
19458 else
19459 Full_List := Primitive_Operations (Full_T);
19460
19461 -- In this case the partial view is untagged, so here we locate
19462 -- all of the earlier primitives that need to be treated as
19463 -- dispatching (those that appear between the two views). Note
19464 -- that these additional operations must all be new operations
19465 -- (any earlier operations that override inherited operations
19466 -- of the full view will already have been inserted in the
19467 -- primitives list, marked by Check_Operation_From_Private_View
19468 -- as dispatching. Note that implicit "/=" operators are
19469 -- excluded from being added to the primitives list since they
19470 -- shouldn't be treated as dispatching (tagged "/=" is handled
19471 -- specially).
19472
19473 Prim := Next_Entity (Full_T);
19474 while Present (Prim) and then Prim /= Priv_T loop
19475 if Ekind_In (Prim, E_Procedure, E_Function) then
19476 Disp_Typ := Find_Dispatching_Type (Prim);
19477
19478 if Disp_Typ = Full_T
19479 and then (Chars (Prim) /= Name_Op_Ne
19480 or else Comes_From_Source (Prim))
19481 then
19482 Check_Controlling_Formals (Full_T, Prim);
19483
19484 if not Is_Dispatching_Operation (Prim) then
19485 Append_Elmt (Prim, Full_List);
19486 Set_Is_Dispatching_Operation (Prim, True);
19487 Set_DT_Position (Prim, No_Uint);
19488 end if;
19489
19490 elsif Is_Dispatching_Operation (Prim)
19491 and then Disp_Typ /= Full_T
19492 then
19493
19494 -- Verify that it is not otherwise controlled by a
19495 -- formal or a return value of type T.
19496
19497 Check_Controlling_Formals (Disp_Typ, Prim);
19498 end if;
19499 end if;
19500
19501 Next_Entity (Prim);
19502 end loop;
19503 end if;
19504
19505 -- For the tagged case, the two views can share the same primitive
19506 -- operations list and the same class-wide type. Update attributes
19507 -- of the class-wide type which depend on the full declaration.
19508
19509 if Is_Tagged_Type (Priv_T) then
19510 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19511 Set_Class_Wide_Type
19512 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19513
19514 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19515 Set_Has_Protected
19516 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19517 end if;
19518 end;
19519 end if;
19520
19521 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19522
19523 if Known_To_Have_Preelab_Init (Priv_T) then
19524
19525 -- Case where there is a pragma Preelaborable_Initialization. We
19526 -- always allow this in predefined units, which is cheating a bit,
19527 -- but it means we don't have to struggle to meet the requirements in
19528 -- the RM for having Preelaborable Initialization. Otherwise we
19529 -- require that the type meets the RM rules. But we can't check that
19530 -- yet, because of the rule about overriding Initialize, so we simply
19531 -- set a flag that will be checked at freeze time.
19532
19533 if not In_Predefined_Unit (Full_T) then
19534 Set_Must_Have_Preelab_Init (Full_T);
19535 end if;
19536 end if;
19537
19538 -- If pragma CPP_Class was applied to the private type declaration,
19539 -- propagate it now to the full type declaration.
19540
19541 if Is_CPP_Class (Priv_T) then
19542 Set_Is_CPP_Class (Full_T);
19543 Set_Convention (Full_T, Convention_CPP);
19544
19545 -- Check that components of imported CPP types do not have default
19546 -- expressions.
19547
19548 Check_CPP_Type_Has_No_Defaults (Full_T);
19549 end if;
19550
19551 -- If the private view has user specified stream attributes, then so has
19552 -- the full view.
19553
19554 -- Why the test, how could these flags be already set in Full_T ???
19555
19556 if Has_Specified_Stream_Read (Priv_T) then
19557 Set_Has_Specified_Stream_Read (Full_T);
19558 end if;
19559
19560 if Has_Specified_Stream_Write (Priv_T) then
19561 Set_Has_Specified_Stream_Write (Full_T);
19562 end if;
19563
19564 if Has_Specified_Stream_Input (Priv_T) then
19565 Set_Has_Specified_Stream_Input (Full_T);
19566 end if;
19567
19568 if Has_Specified_Stream_Output (Priv_T) then
19569 Set_Has_Specified_Stream_Output (Full_T);
19570 end if;
19571
19572 -- Propagate the attributes related to pragma Default_Initial_Condition
19573 -- from the private to the full view. Note that both flags are mutually
19574 -- exclusive.
19575
19576 if Has_Default_Init_Cond (Priv_T)
19577 or else Has_Inherited_Default_Init_Cond (Priv_T)
19578 then
19579 Propagate_Default_Init_Cond_Attributes
19580 (From_Typ => Priv_T,
19581 To_Typ => Full_T,
19582 Private_To_Full_View => True);
19583
19584 -- In the case where the full view is derived from another private type,
19585 -- the attributes related to pragma Default_Initial_Condition must be
19586 -- propagated from the full to the private view to maintain consistency
19587 -- of views.
19588
19589 -- package Pack is
19590 -- type Parent_Typ is private
19591 -- with Default_Initial_Condition ...;
19592 -- private
19593 -- type Parent_Typ is ...;
19594 -- end Pack;
19595
19596 -- with Pack; use Pack;
19597 -- package Pack_2 is
19598 -- type Deriv_Typ is private; -- must inherit
19599 -- private
19600 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19601 -- end Pack_2;
19602
19603 elsif Has_Default_Init_Cond (Full_T)
19604 or else Has_Inherited_Default_Init_Cond (Full_T)
19605 then
19606 Propagate_Default_Init_Cond_Attributes
19607 (From_Typ => Full_T,
19608 To_Typ => Priv_T,
19609 Private_To_Full_View => True);
19610 end if;
19611
19612 -- Propagate invariants to full type
19613
19614 if Has_Invariants (Priv_T) then
19615 Set_Has_Invariants (Full_T);
19616 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19617 end if;
19618
19619 if Has_Inheritable_Invariants (Priv_T) then
19620 Set_Has_Inheritable_Invariants (Full_T);
19621 end if;
19622
19623 -- Propagate predicates to full type, and predicate function if already
19624 -- defined. It is not clear that this can actually happen? the partial
19625 -- view cannot be frozen yet, and the predicate function has not been
19626 -- built. Still it is a cheap check and seems safer to make it.
19627
19628 if Has_Predicates (Priv_T) then
19629 if Present (Predicate_Function (Priv_T)) then
19630 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19631 end if;
19632
19633 Set_Has_Predicates (Full_T);
19634 end if;
19635 end Process_Full_View;
19636
19637 -----------------------------------
19638 -- Process_Incomplete_Dependents --
19639 -----------------------------------
19640
19641 procedure Process_Incomplete_Dependents
19642 (N : Node_Id;
19643 Full_T : Entity_Id;
19644 Inc_T : Entity_Id)
19645 is
19646 Inc_Elmt : Elmt_Id;
19647 Priv_Dep : Entity_Id;
19648 New_Subt : Entity_Id;
19649
19650 Disc_Constraint : Elist_Id;
19651
19652 begin
19653 if No (Private_Dependents (Inc_T)) then
19654 return;
19655 end if;
19656
19657 -- Itypes that may be generated by the completion of an incomplete
19658 -- subtype are not used by the back-end and not attached to the tree.
19659 -- They are created only for constraint-checking purposes.
19660
19661 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19662 while Present (Inc_Elmt) loop
19663 Priv_Dep := Node (Inc_Elmt);
19664
19665 if Ekind (Priv_Dep) = E_Subprogram_Type then
19666
19667 -- An Access_To_Subprogram type may have a return type or a
19668 -- parameter type that is incomplete. Replace with the full view.
19669
19670 if Etype (Priv_Dep) = Inc_T then
19671 Set_Etype (Priv_Dep, Full_T);
19672 end if;
19673
19674 declare
19675 Formal : Entity_Id;
19676
19677 begin
19678 Formal := First_Formal (Priv_Dep);
19679 while Present (Formal) loop
19680 if Etype (Formal) = Inc_T then
19681 Set_Etype (Formal, Full_T);
19682 end if;
19683
19684 Next_Formal (Formal);
19685 end loop;
19686 end;
19687
19688 elsif Is_Overloadable (Priv_Dep) then
19689
19690 -- If a subprogram in the incomplete dependents list is primitive
19691 -- for a tagged full type then mark it as a dispatching operation,
19692 -- check whether it overrides an inherited subprogram, and check
19693 -- restrictions on its controlling formals. Note that a protected
19694 -- operation is never dispatching: only its wrapper operation
19695 -- (which has convention Ada) is.
19696
19697 if Is_Tagged_Type (Full_T)
19698 and then Is_Primitive (Priv_Dep)
19699 and then Convention (Priv_Dep) /= Convention_Protected
19700 then
19701 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19702 Set_Is_Dispatching_Operation (Priv_Dep);
19703 Check_Controlling_Formals (Full_T, Priv_Dep);
19704 end if;
19705
19706 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19707
19708 -- Can happen during processing of a body before the completion
19709 -- of a TA type. Ignore, because spec is also on dependent list.
19710
19711 return;
19712
19713 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19714 -- corresponding subtype of the full view.
19715
19716 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19717 Set_Subtype_Indication
19718 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19719 Set_Etype (Priv_Dep, Full_T);
19720 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19721 Set_Analyzed (Parent (Priv_Dep), False);
19722
19723 -- Reanalyze the declaration, suppressing the call to
19724 -- Enter_Name to avoid duplicate names.
19725
19726 Analyze_Subtype_Declaration
19727 (N => Parent (Priv_Dep),
19728 Skip => True);
19729
19730 -- Dependent is a subtype
19731
19732 else
19733 -- We build a new subtype indication using the full view of the
19734 -- incomplete parent. The discriminant constraints have been
19735 -- elaborated already at the point of the subtype declaration.
19736
19737 New_Subt := Create_Itype (E_Void, N);
19738
19739 if Has_Discriminants (Full_T) then
19740 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19741 else
19742 Disc_Constraint := No_Elist;
19743 end if;
19744
19745 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19746 Set_Full_View (Priv_Dep, New_Subt);
19747 end if;
19748
19749 Next_Elmt (Inc_Elmt);
19750 end loop;
19751 end Process_Incomplete_Dependents;
19752
19753 --------------------------------
19754 -- Process_Range_Expr_In_Decl --
19755 --------------------------------
19756
19757 procedure Process_Range_Expr_In_Decl
19758 (R : Node_Id;
19759 T : Entity_Id;
19760 Subtyp : Entity_Id := Empty;
19761 Check_List : List_Id := Empty_List;
19762 R_Check_Off : Boolean := False;
19763 In_Iter_Schm : Boolean := False)
19764 is
19765 Lo, Hi : Node_Id;
19766 R_Checks : Check_Result;
19767 Insert_Node : Node_Id;
19768 Def_Id : Entity_Id;
19769
19770 begin
19771 Analyze_And_Resolve (R, Base_Type (T));
19772
19773 if Nkind (R) = N_Range then
19774
19775 -- In SPARK, all ranges should be static, with the exception of the
19776 -- discrete type definition of a loop parameter specification.
19777
19778 if not In_Iter_Schm
19779 and then not Is_OK_Static_Range (R)
19780 then
19781 Check_SPARK_05_Restriction ("range should be static", R);
19782 end if;
19783
19784 Lo := Low_Bound (R);
19785 Hi := High_Bound (R);
19786
19787 -- Validity checks on the range of a quantified expression are
19788 -- delayed until the construct is transformed into a loop.
19789
19790 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19791 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19792 then
19793 null;
19794
19795 -- We need to ensure validity of the bounds here, because if we
19796 -- go ahead and do the expansion, then the expanded code will get
19797 -- analyzed with range checks suppressed and we miss the check.
19798
19799 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19800 -- the temporaries generated by routine Remove_Side_Effects by means
19801 -- of validity checks must use the same names. When a range appears
19802 -- in the parent of a generic, the range is processed with checks
19803 -- disabled as part of the generic context and with checks enabled
19804 -- for code generation purposes. This leads to link issues as the
19805 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19806 -- template sees the temporaries generated by Remove_Side_Effects.
19807
19808 else
19809 Validity_Check_Range (R, Subtyp);
19810 end if;
19811
19812 -- If there were errors in the declaration, try and patch up some
19813 -- common mistakes in the bounds. The cases handled are literals
19814 -- which are Integer where the expected type is Real and vice versa.
19815 -- These corrections allow the compilation process to proceed further
19816 -- along since some basic assumptions of the format of the bounds
19817 -- are guaranteed.
19818
19819 if Etype (R) = Any_Type then
19820 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19821 Rewrite (Lo,
19822 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19823
19824 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19825 Rewrite (Hi,
19826 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19827
19828 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19829 Rewrite (Lo,
19830 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19831
19832 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19833 Rewrite (Hi,
19834 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19835 end if;
19836
19837 Set_Etype (Lo, T);
19838 Set_Etype (Hi, T);
19839 end if;
19840
19841 -- If the bounds of the range have been mistakenly given as string
19842 -- literals (perhaps in place of character literals), then an error
19843 -- has already been reported, but we rewrite the string literal as a
19844 -- bound of the range's type to avoid blowups in later processing
19845 -- that looks at static values.
19846
19847 if Nkind (Lo) = N_String_Literal then
19848 Rewrite (Lo,
19849 Make_Attribute_Reference (Sloc (Lo),
19850 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
19851 Attribute_Name => Name_First));
19852 Analyze_And_Resolve (Lo);
19853 end if;
19854
19855 if Nkind (Hi) = N_String_Literal then
19856 Rewrite (Hi,
19857 Make_Attribute_Reference (Sloc (Hi),
19858 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
19859 Attribute_Name => Name_First));
19860 Analyze_And_Resolve (Hi);
19861 end if;
19862
19863 -- If bounds aren't scalar at this point then exit, avoiding
19864 -- problems with further processing of the range in this procedure.
19865
19866 if not Is_Scalar_Type (Etype (Lo)) then
19867 return;
19868 end if;
19869
19870 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19871 -- then range of the base type. Here we check whether the bounds
19872 -- are in the range of the subtype itself. Note that if the bounds
19873 -- represent the null range the Constraint_Error exception should
19874 -- not be raised.
19875
19876 -- ??? The following code should be cleaned up as follows
19877
19878 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19879 -- is done in the call to Range_Check (R, T); below
19880
19881 -- 2. The use of R_Check_Off should be investigated and possibly
19882 -- removed, this would clean up things a bit.
19883
19884 if Is_Null_Range (Lo, Hi) then
19885 null;
19886
19887 else
19888 -- Capture values of bounds and generate temporaries for them
19889 -- if needed, before applying checks, since checks may cause
19890 -- duplication of the expression without forcing evaluation.
19891
19892 -- The forced evaluation removes side effects from expressions,
19893 -- which should occur also in GNATprove mode. Otherwise, we end up
19894 -- with unexpected insertions of actions at places where this is
19895 -- not supposed to occur, e.g. on default parameters of a call.
19896
19897 if Expander_Active or GNATprove_Mode then
19898
19899 -- If no subtype name, then just call Force_Evaluation to
19900 -- create declarations as needed to deal with side effects.
19901 -- Also ignore calls from within a record type, where we
19902 -- have possible scoping issues.
19903
19904 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19905 Force_Evaluation (Lo);
19906 Force_Evaluation (Hi);
19907
19908 -- If a subtype is given, then we capture the bounds if they
19909 -- are not known at compile time, using constant identifiers
19910 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19911
19912 -- Note: we do this transformation even if expansion is not
19913 -- active, and in particular we do it in GNATprove_Mode since
19914 -- the transformation is in general required to ensure that the
19915 -- resulting tree has proper Ada semantics.
19916
19917 -- Historical note: We used to just do Force_Evaluation calls
19918 -- in all cases, but it is better to capture the bounds with
19919 -- proper non-serialized names, since these will be accessed
19920 -- from other units, and hence may be public, and also we can
19921 -- then expand 'First and 'Last references to be references to
19922 -- these special names.
19923
19924 else
19925 if not Compile_Time_Known_Value (Lo)
19926
19927 -- No need to capture bounds if they already are
19928 -- references to constants.
19929
19930 and then not (Is_Entity_Name (Lo)
19931 and then Is_Constant_Object (Entity (Lo)))
19932 then
19933 declare
19934 Loc : constant Source_Ptr := Sloc (Lo);
19935 Lov : constant Entity_Id :=
19936 Make_Defining_Identifier (Loc,
19937 Chars =>
19938 New_External_Name (Chars (Subtyp), "_FIRST"));
19939 begin
19940 Insert_Action (R,
19941 Make_Object_Declaration (Loc,
19942 Defining_Identifier => Lov,
19943 Object_Definition =>
19944 New_Occurrence_Of (Base_Type (T), Loc),
19945 Constant_Present => True,
19946 Expression => Relocate_Node (Lo)));
19947 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19948 end;
19949 end if;
19950
19951 if not Compile_Time_Known_Value (Hi)
19952 and then not (Is_Entity_Name (Hi)
19953 and then Is_Constant_Object (Entity (Hi)))
19954 then
19955 declare
19956 Loc : constant Source_Ptr := Sloc (Hi);
19957 Hiv : constant Entity_Id :=
19958 Make_Defining_Identifier (Loc,
19959 Chars =>
19960 New_External_Name (Chars (Subtyp), "_LAST"));
19961 begin
19962 Insert_Action (R,
19963 Make_Object_Declaration (Loc,
19964 Defining_Identifier => Hiv,
19965 Object_Definition =>
19966 New_Occurrence_Of (Base_Type (T), Loc),
19967 Constant_Present => True,
19968 Expression => Relocate_Node (Hi)));
19969 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19970 end;
19971 end if;
19972 end if;
19973 end if;
19974
19975 -- We use a flag here instead of suppressing checks on the
19976 -- type because the type we check against isn't necessarily
19977 -- the place where we put the check.
19978
19979 if not R_Check_Off then
19980 R_Checks := Get_Range_Checks (R, T);
19981
19982 -- Look up tree to find an appropriate insertion point. We
19983 -- can't just use insert_actions because later processing
19984 -- depends on the insertion node. Prior to Ada 2012 the
19985 -- insertion point could only be a declaration or a loop, but
19986 -- quantified expressions can appear within any context in an
19987 -- expression, and the insertion point can be any statement,
19988 -- pragma, or declaration.
19989
19990 Insert_Node := Parent (R);
19991 while Present (Insert_Node) loop
19992 exit when
19993 Nkind (Insert_Node) in N_Declaration
19994 and then
19995 not Nkind_In
19996 (Insert_Node, N_Component_Declaration,
19997 N_Loop_Parameter_Specification,
19998 N_Function_Specification,
19999 N_Procedure_Specification);
20000
20001 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20002 or else Nkind (Insert_Node) in
20003 N_Statement_Other_Than_Procedure_Call
20004 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20005 N_Pragma);
20006
20007 Insert_Node := Parent (Insert_Node);
20008 end loop;
20009
20010 -- Why would Type_Decl not be present??? Without this test,
20011 -- short regression tests fail.
20012
20013 if Present (Insert_Node) then
20014
20015 -- Case of loop statement. Verify that the range is part
20016 -- of the subtype indication of the iteration scheme.
20017
20018 if Nkind (Insert_Node) = N_Loop_Statement then
20019 declare
20020 Indic : Node_Id;
20021
20022 begin
20023 Indic := Parent (R);
20024 while Present (Indic)
20025 and then Nkind (Indic) /= N_Subtype_Indication
20026 loop
20027 Indic := Parent (Indic);
20028 end loop;
20029
20030 if Present (Indic) then
20031 Def_Id := Etype (Subtype_Mark (Indic));
20032
20033 Insert_Range_Checks
20034 (R_Checks,
20035 Insert_Node,
20036 Def_Id,
20037 Sloc (Insert_Node),
20038 R,
20039 Do_Before => True);
20040 end if;
20041 end;
20042
20043 -- Insertion before a declaration. If the declaration
20044 -- includes discriminants, the list of applicable checks
20045 -- is given by the caller.
20046
20047 elsif Nkind (Insert_Node) in N_Declaration then
20048 Def_Id := Defining_Identifier (Insert_Node);
20049
20050 if (Ekind (Def_Id) = E_Record_Type
20051 and then Depends_On_Discriminant (R))
20052 or else
20053 (Ekind (Def_Id) = E_Protected_Type
20054 and then Has_Discriminants (Def_Id))
20055 then
20056 Append_Range_Checks
20057 (R_Checks,
20058 Check_List, Def_Id, Sloc (Insert_Node), R);
20059
20060 else
20061 Insert_Range_Checks
20062 (R_Checks,
20063 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20064
20065 end if;
20066
20067 -- Insertion before a statement. Range appears in the
20068 -- context of a quantified expression. Insertion will
20069 -- take place when expression is expanded.
20070
20071 else
20072 null;
20073 end if;
20074 end if;
20075 end if;
20076 end if;
20077
20078 -- Case of other than an explicit N_Range node
20079
20080 -- The forced evaluation removes side effects from expressions, which
20081 -- should occur also in GNATprove mode. Otherwise, we end up with
20082 -- unexpected insertions of actions at places where this is not
20083 -- supposed to occur, e.g. on default parameters of a call.
20084
20085 elsif Expander_Active or GNATprove_Mode then
20086 Get_Index_Bounds (R, Lo, Hi);
20087 Force_Evaluation (Lo);
20088 Force_Evaluation (Hi);
20089 end if;
20090 end Process_Range_Expr_In_Decl;
20091
20092 --------------------------------------
20093 -- Process_Real_Range_Specification --
20094 --------------------------------------
20095
20096 procedure Process_Real_Range_Specification (Def : Node_Id) is
20097 Spec : constant Node_Id := Real_Range_Specification (Def);
20098 Lo : Node_Id;
20099 Hi : Node_Id;
20100 Err : Boolean := False;
20101
20102 procedure Analyze_Bound (N : Node_Id);
20103 -- Analyze and check one bound
20104
20105 -------------------
20106 -- Analyze_Bound --
20107 -------------------
20108
20109 procedure Analyze_Bound (N : Node_Id) is
20110 begin
20111 Analyze_And_Resolve (N, Any_Real);
20112
20113 if not Is_OK_Static_Expression (N) then
20114 Flag_Non_Static_Expr
20115 ("bound in real type definition is not static!", N);
20116 Err := True;
20117 end if;
20118 end Analyze_Bound;
20119
20120 -- Start of processing for Process_Real_Range_Specification
20121
20122 begin
20123 if Present (Spec) then
20124 Lo := Low_Bound (Spec);
20125 Hi := High_Bound (Spec);
20126 Analyze_Bound (Lo);
20127 Analyze_Bound (Hi);
20128
20129 -- If error, clear away junk range specification
20130
20131 if Err then
20132 Set_Real_Range_Specification (Def, Empty);
20133 end if;
20134 end if;
20135 end Process_Real_Range_Specification;
20136
20137 ---------------------
20138 -- Process_Subtype --
20139 ---------------------
20140
20141 function Process_Subtype
20142 (S : Node_Id;
20143 Related_Nod : Node_Id;
20144 Related_Id : Entity_Id := Empty;
20145 Suffix : Character := ' ') return Entity_Id
20146 is
20147 P : Node_Id;
20148 Def_Id : Entity_Id;
20149 Error_Node : Node_Id;
20150 Full_View_Id : Entity_Id;
20151 Subtype_Mark_Id : Entity_Id;
20152
20153 May_Have_Null_Exclusion : Boolean;
20154
20155 procedure Check_Incomplete (T : Entity_Id);
20156 -- Called to verify that an incomplete type is not used prematurely
20157
20158 ----------------------
20159 -- Check_Incomplete --
20160 ----------------------
20161
20162 procedure Check_Incomplete (T : Entity_Id) is
20163 begin
20164 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20165
20166 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20167 and then
20168 not (Ada_Version >= Ada_2005
20169 and then
20170 (Nkind (Parent (T)) = N_Subtype_Declaration
20171 or else (Nkind (Parent (T)) = N_Subtype_Indication
20172 and then Nkind (Parent (Parent (T))) =
20173 N_Subtype_Declaration)))
20174 then
20175 Error_Msg_N ("invalid use of type before its full declaration", T);
20176 end if;
20177 end Check_Incomplete;
20178
20179 -- Start of processing for Process_Subtype
20180
20181 begin
20182 -- Case of no constraints present
20183
20184 if Nkind (S) /= N_Subtype_Indication then
20185 Find_Type (S);
20186 Check_Incomplete (S);
20187 P := Parent (S);
20188
20189 -- Ada 2005 (AI-231): Static check
20190
20191 if Ada_Version >= Ada_2005
20192 and then Present (P)
20193 and then Null_Exclusion_Present (P)
20194 and then Nkind (P) /= N_Access_To_Object_Definition
20195 and then not Is_Access_Type (Entity (S))
20196 then
20197 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20198 end if;
20199
20200 -- The following is ugly, can't we have a range or even a flag???
20201
20202 May_Have_Null_Exclusion :=
20203 Nkind_In (P, N_Access_Definition,
20204 N_Access_Function_Definition,
20205 N_Access_Procedure_Definition,
20206 N_Access_To_Object_Definition,
20207 N_Allocator,
20208 N_Component_Definition)
20209 or else
20210 Nkind_In (P, N_Derived_Type_Definition,
20211 N_Discriminant_Specification,
20212 N_Formal_Object_Declaration,
20213 N_Object_Declaration,
20214 N_Object_Renaming_Declaration,
20215 N_Parameter_Specification,
20216 N_Subtype_Declaration);
20217
20218 -- Create an Itype that is a duplicate of Entity (S) but with the
20219 -- null-exclusion attribute.
20220
20221 if May_Have_Null_Exclusion
20222 and then Is_Access_Type (Entity (S))
20223 and then Null_Exclusion_Present (P)
20224
20225 -- No need to check the case of an access to object definition.
20226 -- It is correct to define double not-null pointers.
20227
20228 -- Example:
20229 -- type Not_Null_Int_Ptr is not null access Integer;
20230 -- type Acc is not null access Not_Null_Int_Ptr;
20231
20232 and then Nkind (P) /= N_Access_To_Object_Definition
20233 then
20234 if Can_Never_Be_Null (Entity (S)) then
20235 case Nkind (Related_Nod) is
20236 when N_Full_Type_Declaration =>
20237 if Nkind (Type_Definition (Related_Nod))
20238 in N_Array_Type_Definition
20239 then
20240 Error_Node :=
20241 Subtype_Indication
20242 (Component_Definition
20243 (Type_Definition (Related_Nod)));
20244 else
20245 Error_Node :=
20246 Subtype_Indication (Type_Definition (Related_Nod));
20247 end if;
20248
20249 when N_Subtype_Declaration =>
20250 Error_Node := Subtype_Indication (Related_Nod);
20251
20252 when N_Object_Declaration =>
20253 Error_Node := Object_Definition (Related_Nod);
20254
20255 when N_Component_Declaration =>
20256 Error_Node :=
20257 Subtype_Indication (Component_Definition (Related_Nod));
20258
20259 when N_Allocator =>
20260 Error_Node := Expression (Related_Nod);
20261
20262 when others =>
20263 pragma Assert (False);
20264 Error_Node := Related_Nod;
20265 end case;
20266
20267 Error_Msg_NE
20268 ("`NOT NULL` not allowed (& already excludes null)",
20269 Error_Node,
20270 Entity (S));
20271 end if;
20272
20273 Set_Etype (S,
20274 Create_Null_Excluding_Itype
20275 (T => Entity (S),
20276 Related_Nod => P));
20277 Set_Entity (S, Etype (S));
20278 end if;
20279
20280 return Entity (S);
20281
20282 -- Case of constraint present, so that we have an N_Subtype_Indication
20283 -- node (this node is created only if constraints are present).
20284
20285 else
20286 Find_Type (Subtype_Mark (S));
20287
20288 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20289 and then not
20290 (Nkind (Parent (S)) = N_Subtype_Declaration
20291 and then Is_Itype (Defining_Identifier (Parent (S))))
20292 then
20293 Check_Incomplete (Subtype_Mark (S));
20294 end if;
20295
20296 P := Parent (S);
20297 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20298
20299 -- Explicit subtype declaration case
20300
20301 if Nkind (P) = N_Subtype_Declaration then
20302 Def_Id := Defining_Identifier (P);
20303
20304 -- Explicit derived type definition case
20305
20306 elsif Nkind (P) = N_Derived_Type_Definition then
20307 Def_Id := Defining_Identifier (Parent (P));
20308
20309 -- Implicit case, the Def_Id must be created as an implicit type.
20310 -- The one exception arises in the case of concurrent types, array
20311 -- and access types, where other subsidiary implicit types may be
20312 -- created and must appear before the main implicit type. In these
20313 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20314 -- has not yet been called to create Def_Id.
20315
20316 else
20317 if Is_Array_Type (Subtype_Mark_Id)
20318 or else Is_Concurrent_Type (Subtype_Mark_Id)
20319 or else Is_Access_Type (Subtype_Mark_Id)
20320 then
20321 Def_Id := Empty;
20322
20323 -- For the other cases, we create a new unattached Itype,
20324 -- and set the indication to ensure it gets attached later.
20325
20326 else
20327 Def_Id :=
20328 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20329 end if;
20330 end if;
20331
20332 -- If the kind of constraint is invalid for this kind of type,
20333 -- then give an error, and then pretend no constraint was given.
20334
20335 if not Is_Valid_Constraint_Kind
20336 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20337 then
20338 Error_Msg_N
20339 ("incorrect constraint for this kind of type", Constraint (S));
20340
20341 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20342
20343 -- Set Ekind of orphan itype, to prevent cascaded errors
20344
20345 if Present (Def_Id) then
20346 Set_Ekind (Def_Id, Ekind (Any_Type));
20347 end if;
20348
20349 -- Make recursive call, having got rid of the bogus constraint
20350
20351 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20352 end if;
20353
20354 -- Remaining processing depends on type. Select on Base_Type kind to
20355 -- ensure getting to the concrete type kind in the case of a private
20356 -- subtype (needed when only doing semantic analysis).
20357
20358 case Ekind (Base_Type (Subtype_Mark_Id)) is
20359 when Access_Kind =>
20360
20361 -- If this is a constraint on a class-wide type, discard it.
20362 -- There is currently no way to express a partial discriminant
20363 -- constraint on a type with unknown discriminants. This is
20364 -- a pathology that the ACATS wisely decides not to test.
20365
20366 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20367 if Comes_From_Source (S) then
20368 Error_Msg_N
20369 ("constraint on class-wide type ignored??",
20370 Constraint (S));
20371 end if;
20372
20373 if Nkind (P) = N_Subtype_Declaration then
20374 Set_Subtype_Indication (P,
20375 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20376 end if;
20377
20378 return Subtype_Mark_Id;
20379 end if;
20380
20381 Constrain_Access (Def_Id, S, Related_Nod);
20382
20383 if Expander_Active
20384 and then Is_Itype (Designated_Type (Def_Id))
20385 and then Nkind (Related_Nod) = N_Subtype_Declaration
20386 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20387 then
20388 Build_Itype_Reference
20389 (Designated_Type (Def_Id), Related_Nod);
20390 end if;
20391
20392 when Array_Kind =>
20393 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20394
20395 when Decimal_Fixed_Point_Kind =>
20396 Constrain_Decimal (Def_Id, S);
20397
20398 when Enumeration_Kind =>
20399 Constrain_Enumeration (Def_Id, S);
20400 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20401
20402 when Ordinary_Fixed_Point_Kind =>
20403 Constrain_Ordinary_Fixed (Def_Id, S);
20404
20405 when Float_Kind =>
20406 Constrain_Float (Def_Id, S);
20407
20408 when Integer_Kind =>
20409 Constrain_Integer (Def_Id, S);
20410 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20411
20412 when E_Record_Type |
20413 E_Record_Subtype |
20414 Class_Wide_Kind |
20415 E_Incomplete_Type =>
20416 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20417
20418 if Ekind (Def_Id) = E_Incomplete_Type then
20419 Set_Private_Dependents (Def_Id, New_Elmt_List);
20420 end if;
20421
20422 when Private_Kind =>
20423 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20424 Set_Private_Dependents (Def_Id, New_Elmt_List);
20425
20426 -- In case of an invalid constraint prevent further processing
20427 -- since the type constructed is missing expected fields.
20428
20429 if Etype (Def_Id) = Any_Type then
20430 return Def_Id;
20431 end if;
20432
20433 -- If the full view is that of a task with discriminants,
20434 -- we must constrain both the concurrent type and its
20435 -- corresponding record type. Otherwise we will just propagate
20436 -- the constraint to the full view, if available.
20437
20438 if Present (Full_View (Subtype_Mark_Id))
20439 and then Has_Discriminants (Subtype_Mark_Id)
20440 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20441 then
20442 Full_View_Id :=
20443 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20444
20445 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20446 Constrain_Concurrent (Full_View_Id, S,
20447 Related_Nod, Related_Id, Suffix);
20448 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20449 Set_Full_View (Def_Id, Full_View_Id);
20450
20451 -- Introduce an explicit reference to the private subtype,
20452 -- to prevent scope anomalies in gigi if first use appears
20453 -- in a nested context, e.g. a later function body.
20454 -- Should this be generated in other contexts than a full
20455 -- type declaration?
20456
20457 if Is_Itype (Def_Id)
20458 and then
20459 Nkind (Parent (P)) = N_Full_Type_Declaration
20460 then
20461 Build_Itype_Reference (Def_Id, Parent (P));
20462 end if;
20463
20464 else
20465 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20466 end if;
20467
20468 when Concurrent_Kind =>
20469 Constrain_Concurrent (Def_Id, S,
20470 Related_Nod, Related_Id, Suffix);
20471
20472 when others =>
20473 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20474 end case;
20475
20476 -- Size and Convention are always inherited from the base type
20477
20478 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20479 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20480
20481 return Def_Id;
20482 end if;
20483 end Process_Subtype;
20484
20485 --------------------------------------------
20486 -- Propagate_Default_Init_Cond_Attributes --
20487 --------------------------------------------
20488
20489 procedure Propagate_Default_Init_Cond_Attributes
20490 (From_Typ : Entity_Id;
20491 To_Typ : Entity_Id;
20492 Parent_To_Derivation : Boolean := False;
20493 Private_To_Full_View : Boolean := False)
20494 is
20495 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20496 -- Remove the default initial procedure (if any) from the rep chain of
20497 -- type Typ.
20498
20499 ----------------------------------------
20500 -- Remove_Default_Init_Cond_Procedure --
20501 ----------------------------------------
20502
20503 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20504 Found : Boolean := False;
20505 Prev : Entity_Id;
20506 Subp : Entity_Id;
20507
20508 begin
20509 Prev := Typ;
20510 Subp := Subprograms_For_Type (Typ);
20511 while Present (Subp) loop
20512 if Is_Default_Init_Cond_Procedure (Subp) then
20513 Found := True;
20514 exit;
20515 end if;
20516
20517 Prev := Subp;
20518 Subp := Subprograms_For_Type (Subp);
20519 end loop;
20520
20521 if Found then
20522 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20523 Set_Subprograms_For_Type (Subp, Empty);
20524 end if;
20525 end Remove_Default_Init_Cond_Procedure;
20526
20527 -- Local variables
20528
20529 Inherit_Procedure : Boolean := False;
20530
20531 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20532
20533 begin
20534 if Has_Default_Init_Cond (From_Typ) then
20535
20536 -- A derived type inherits the attributes from its parent type
20537
20538 if Parent_To_Derivation then
20539 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20540
20541 -- A full view shares the attributes with its private view
20542
20543 else
20544 Set_Has_Default_Init_Cond (To_Typ);
20545 end if;
20546
20547 Inherit_Procedure := True;
20548
20549 -- Due to the order of expansion, a derived private type is processed
20550 -- by two routines which both attempt to set the attributes related
20551 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20552 -- Process_Full_View.
20553
20554 -- package Pack is
20555 -- type Parent_Typ is private
20556 -- with Default_Initial_Condition ...;
20557 -- private
20558 -- type Parent_Typ is ...;
20559 -- end Pack;
20560
20561 -- with Pack; use Pack;
20562 -- package Pack_2 is
20563 -- type Deriv_Typ is private
20564 -- with Default_Initial_Condition ...;
20565 -- private
20566 -- type Deriv_Typ is new Parent_Typ;
20567 -- end Pack_2;
20568
20569 -- When Build_Derived_Type operates, it sets the attributes on the
20570 -- full view without taking into account that the private view may
20571 -- define its own default initial condition procedure. This becomes
20572 -- apparent in Process_Full_View which must undo some of the work by
20573 -- Build_Derived_Type and propagate the attributes from the private
20574 -- to the full view.
20575
20576 if Private_To_Full_View then
20577 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20578 Remove_Default_Init_Cond_Procedure (To_Typ);
20579 end if;
20580
20581 -- A type must inherit the default initial condition procedure from a
20582 -- parent type when the parent itself is inheriting the procedure or
20583 -- when it is defining one. This circuitry is also used when dealing
20584 -- with the private / full view of a type.
20585
20586 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20587 or (Parent_To_Derivation
20588 and Present (Get_Pragma
20589 (From_Typ, Pragma_Default_Initial_Condition)))
20590 then
20591 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20592 Inherit_Procedure := True;
20593 end if;
20594
20595 if Inherit_Procedure
20596 and then No (Default_Init_Cond_Procedure (To_Typ))
20597 then
20598 Set_Default_Init_Cond_Procedure
20599 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20600 end if;
20601 end Propagate_Default_Init_Cond_Attributes;
20602
20603 -----------------------------
20604 -- Record_Type_Declaration --
20605 -----------------------------
20606
20607 procedure Record_Type_Declaration
20608 (T : Entity_Id;
20609 N : Node_Id;
20610 Prev : Entity_Id)
20611 is
20612 Def : constant Node_Id := Type_Definition (N);
20613 Is_Tagged : Boolean;
20614 Tag_Comp : Entity_Id;
20615
20616 begin
20617 -- These flags must be initialized before calling Process_Discriminants
20618 -- because this routine makes use of them.
20619
20620 Set_Ekind (T, E_Record_Type);
20621 Set_Etype (T, T);
20622 Init_Size_Align (T);
20623 Set_Interfaces (T, No_Elist);
20624 Set_Stored_Constraint (T, No_Elist);
20625 Set_Default_SSO (T);
20626
20627 -- Normal case
20628
20629 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20630 if Limited_Present (Def) then
20631 Check_SPARK_05_Restriction ("limited is not allowed", N);
20632 end if;
20633
20634 if Abstract_Present (Def) then
20635 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20636 end if;
20637
20638 -- The flag Is_Tagged_Type might have already been set by
20639 -- Find_Type_Name if it detected an error for declaration T. This
20640 -- arises in the case of private tagged types where the full view
20641 -- omits the word tagged.
20642
20643 Is_Tagged :=
20644 Tagged_Present (Def)
20645 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20646
20647 Set_Is_Limited_Record (T, Limited_Present (Def));
20648
20649 if Is_Tagged then
20650 Set_Is_Tagged_Type (T, True);
20651 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20652 end if;
20653
20654 -- Type is abstract if full declaration carries keyword, or if
20655 -- previous partial view did.
20656
20657 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20658 or else Abstract_Present (Def));
20659
20660 else
20661 Check_SPARK_05_Restriction ("interface is not allowed", N);
20662
20663 Is_Tagged := True;
20664 Analyze_Interface_Declaration (T, Def);
20665
20666 if Present (Discriminant_Specifications (N)) then
20667 Error_Msg_N
20668 ("interface types cannot have discriminants",
20669 Defining_Identifier
20670 (First (Discriminant_Specifications (N))));
20671 end if;
20672 end if;
20673
20674 -- First pass: if there are self-referential access components,
20675 -- create the required anonymous access type declarations, and if
20676 -- need be an incomplete type declaration for T itself.
20677
20678 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20679
20680 if Ada_Version >= Ada_2005
20681 and then Present (Interface_List (Def))
20682 then
20683 Check_Interfaces (N, Def);
20684
20685 declare
20686 Ifaces_List : Elist_Id;
20687
20688 begin
20689 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20690 -- already in the parents.
20691
20692 Collect_Interfaces
20693 (T => T,
20694 Ifaces_List => Ifaces_List,
20695 Exclude_Parents => True);
20696
20697 Set_Interfaces (T, Ifaces_List);
20698 end;
20699 end if;
20700
20701 -- Records constitute a scope for the component declarations within.
20702 -- The scope is created prior to the processing of these declarations.
20703 -- Discriminants are processed first, so that they are visible when
20704 -- processing the other components. The Ekind of the record type itself
20705 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20706
20707 -- Enter record scope
20708
20709 Push_Scope (T);
20710
20711 -- If an incomplete or private type declaration was already given for
20712 -- the type, then this scope already exists, and the discriminants have
20713 -- been declared within. We must verify that the full declaration
20714 -- matches the incomplete one.
20715
20716 Check_Or_Process_Discriminants (N, T, Prev);
20717
20718 Set_Is_Constrained (T, not Has_Discriminants (T));
20719 Set_Has_Delayed_Freeze (T, True);
20720
20721 -- For tagged types add a manually analyzed component corresponding
20722 -- to the component _tag, the corresponding piece of tree will be
20723 -- expanded as part of the freezing actions if it is not a CPP_Class.
20724
20725 if Is_Tagged then
20726
20727 -- Do not add the tag unless we are in expansion mode
20728
20729 if Expander_Active then
20730 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20731 Enter_Name (Tag_Comp);
20732
20733 Set_Ekind (Tag_Comp, E_Component);
20734 Set_Is_Tag (Tag_Comp);
20735 Set_Is_Aliased (Tag_Comp);
20736 Set_Etype (Tag_Comp, RTE (RE_Tag));
20737 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20738 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20739 Init_Component_Location (Tag_Comp);
20740
20741 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20742 -- implemented interfaces.
20743
20744 if Has_Interfaces (T) then
20745 Add_Interface_Tag_Components (N, T);
20746 end if;
20747 end if;
20748
20749 Make_Class_Wide_Type (T);
20750 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20751 end if;
20752
20753 -- We must suppress range checks when processing record components in
20754 -- the presence of discriminants, since we don't want spurious checks to
20755 -- be generated during their analysis, but Suppress_Range_Checks flags
20756 -- must be reset the after processing the record definition.
20757
20758 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20759 -- couldn't we just use the normal range check suppression method here.
20760 -- That would seem cleaner ???
20761
20762 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20763 Set_Kill_Range_Checks (T, True);
20764 Record_Type_Definition (Def, Prev);
20765 Set_Kill_Range_Checks (T, False);
20766 else
20767 Record_Type_Definition (Def, Prev);
20768 end if;
20769
20770 -- Exit from record scope
20771
20772 End_Scope;
20773
20774 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20775 -- the implemented interfaces and associate them an aliased entity.
20776
20777 if Is_Tagged
20778 and then not Is_Empty_List (Interface_List (Def))
20779 then
20780 Derive_Progenitor_Subprograms (T, T);
20781 end if;
20782
20783 Check_Function_Writable_Actuals (N);
20784 end Record_Type_Declaration;
20785
20786 ----------------------------
20787 -- Record_Type_Definition --
20788 ----------------------------
20789
20790 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20791 Component : Entity_Id;
20792 Ctrl_Components : Boolean := False;
20793 Final_Storage_Only : Boolean;
20794 T : Entity_Id;
20795
20796 begin
20797 if Ekind (Prev_T) = E_Incomplete_Type then
20798 T := Full_View (Prev_T);
20799 else
20800 T := Prev_T;
20801 end if;
20802
20803 -- In SPARK, tagged types and type extensions may only be declared in
20804 -- the specification of library unit packages.
20805
20806 if Present (Def) and then Is_Tagged_Type (T) then
20807 declare
20808 Typ : Node_Id;
20809 Ctxt : Node_Id;
20810
20811 begin
20812 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20813 Typ := Parent (Def);
20814 else
20815 pragma Assert
20816 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20817 Typ := Parent (Parent (Def));
20818 end if;
20819
20820 Ctxt := Parent (Typ);
20821
20822 if Nkind (Ctxt) = N_Package_Body
20823 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20824 then
20825 Check_SPARK_05_Restriction
20826 ("type should be defined in package specification", Typ);
20827
20828 elsif Nkind (Ctxt) /= N_Package_Specification
20829 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20830 then
20831 Check_SPARK_05_Restriction
20832 ("type should be defined in library unit package", Typ);
20833 end if;
20834 end;
20835 end if;
20836
20837 Final_Storage_Only := not Is_Controlled (T);
20838
20839 -- Ada 2005: Check whether an explicit Limited is present in a derived
20840 -- type declaration.
20841
20842 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20843 and then Limited_Present (Parent (Def))
20844 then
20845 Set_Is_Limited_Record (T);
20846 end if;
20847
20848 -- If the component list of a record type is defined by the reserved
20849 -- word null and there is no discriminant part, then the record type has
20850 -- no components and all records of the type are null records (RM 3.7)
20851 -- This procedure is also called to process the extension part of a
20852 -- record extension, in which case the current scope may have inherited
20853 -- components.
20854
20855 if No (Def)
20856 or else No (Component_List (Def))
20857 or else Null_Present (Component_List (Def))
20858 then
20859 if not Is_Tagged_Type (T) then
20860 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20861 end if;
20862
20863 else
20864 Analyze_Declarations (Component_Items (Component_List (Def)));
20865
20866 if Present (Variant_Part (Component_List (Def))) then
20867 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20868 Analyze (Variant_Part (Component_List (Def)));
20869 end if;
20870 end if;
20871
20872 -- After completing the semantic analysis of the record definition,
20873 -- record components, both new and inherited, are accessible. Set their
20874 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20875 -- whose Ekind may be void.
20876
20877 Component := First_Entity (Current_Scope);
20878 while Present (Component) loop
20879 if Ekind (Component) = E_Void
20880 and then not Is_Itype (Component)
20881 then
20882 Set_Ekind (Component, E_Component);
20883 Init_Component_Location (Component);
20884 end if;
20885
20886 if Has_Task (Etype (Component)) then
20887 Set_Has_Task (T);
20888 end if;
20889
20890 if Has_Protected (Etype (Component)) then
20891 Set_Has_Protected (T);
20892 end if;
20893
20894 if Ekind (Component) /= E_Component then
20895 null;
20896
20897 -- Do not set Has_Controlled_Component on a class-wide equivalent
20898 -- type. See Make_CW_Equivalent_Type.
20899
20900 elsif not Is_Class_Wide_Equivalent_Type (T)
20901 and then (Has_Controlled_Component (Etype (Component))
20902 or else (Chars (Component) /= Name_uParent
20903 and then Is_Controlled (Etype (Component))))
20904 then
20905 Set_Has_Controlled_Component (T, True);
20906 Final_Storage_Only :=
20907 Final_Storage_Only
20908 and then Finalize_Storage_Only (Etype (Component));
20909 Ctrl_Components := True;
20910 end if;
20911
20912 Next_Entity (Component);
20913 end loop;
20914
20915 -- A Type is Finalize_Storage_Only only if all its controlled components
20916 -- are also.
20917
20918 if Ctrl_Components then
20919 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20920 end if;
20921
20922 -- Place reference to end record on the proper entity, which may
20923 -- be a partial view.
20924
20925 if Present (Def) then
20926 Process_End_Label (Def, 'e', Prev_T);
20927 end if;
20928 end Record_Type_Definition;
20929
20930 ------------------------
20931 -- Replace_Components --
20932 ------------------------
20933
20934 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20935 function Process (N : Node_Id) return Traverse_Result;
20936
20937 -------------
20938 -- Process --
20939 -------------
20940
20941 function Process (N : Node_Id) return Traverse_Result is
20942 Comp : Entity_Id;
20943
20944 begin
20945 if Nkind (N) = N_Discriminant_Specification then
20946 Comp := First_Discriminant (Typ);
20947 while Present (Comp) loop
20948 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20949 Set_Defining_Identifier (N, Comp);
20950 exit;
20951 end if;
20952
20953 Next_Discriminant (Comp);
20954 end loop;
20955
20956 elsif Nkind (N) = N_Component_Declaration then
20957 Comp := First_Component (Typ);
20958 while Present (Comp) loop
20959 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20960 Set_Defining_Identifier (N, Comp);
20961 exit;
20962 end if;
20963
20964 Next_Component (Comp);
20965 end loop;
20966 end if;
20967
20968 return OK;
20969 end Process;
20970
20971 procedure Replace is new Traverse_Proc (Process);
20972
20973 -- Start of processing for Replace_Components
20974
20975 begin
20976 Replace (Decl);
20977 end Replace_Components;
20978
20979 -------------------------------
20980 -- Set_Completion_Referenced --
20981 -------------------------------
20982
20983 procedure Set_Completion_Referenced (E : Entity_Id) is
20984 begin
20985 -- If in main unit, mark entity that is a completion as referenced,
20986 -- warnings go on the partial view when needed.
20987
20988 if In_Extended_Main_Source_Unit (E) then
20989 Set_Referenced (E);
20990 end if;
20991 end Set_Completion_Referenced;
20992
20993 ---------------------
20994 -- Set_Default_SSO --
20995 ---------------------
20996
20997 procedure Set_Default_SSO (T : Entity_Id) is
20998 begin
20999 case Opt.Default_SSO is
21000 when ' ' =>
21001 null;
21002 when 'L' =>
21003 Set_SSO_Set_Low_By_Default (T, True);
21004 when 'H' =>
21005 Set_SSO_Set_High_By_Default (T, True);
21006 when others =>
21007 raise Program_Error;
21008 end case;
21009 end Set_Default_SSO;
21010
21011 ---------------------
21012 -- Set_Fixed_Range --
21013 ---------------------
21014
21015 -- The range for fixed-point types is complicated by the fact that we
21016 -- do not know the exact end points at the time of the declaration. This
21017 -- is true for three reasons:
21018
21019 -- A size clause may affect the fudging of the end-points.
21020 -- A small clause may affect the values of the end-points.
21021 -- We try to include the end-points if it does not affect the size.
21022
21023 -- This means that the actual end-points must be established at the
21024 -- point when the type is frozen. Meanwhile, we first narrow the range
21025 -- as permitted (so that it will fit if necessary in a small specified
21026 -- size), and then build a range subtree with these narrowed bounds.
21027 -- Set_Fixed_Range constructs the range from real literal values, and
21028 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21029
21030 -- The parent of this range is set to point to the entity so that it is
21031 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21032 -- other scalar types, which are just pointers to the range in the
21033 -- original tree, this would otherwise be an orphan).
21034
21035 -- The tree is left unanalyzed. When the type is frozen, the processing
21036 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21037 -- analyzed, and uses this as an indication that it should complete
21038 -- work on the range (it will know the final small and size values).
21039
21040 procedure Set_Fixed_Range
21041 (E : Entity_Id;
21042 Loc : Source_Ptr;
21043 Lo : Ureal;
21044 Hi : Ureal)
21045 is
21046 S : constant Node_Id :=
21047 Make_Range (Loc,
21048 Low_Bound => Make_Real_Literal (Loc, Lo),
21049 High_Bound => Make_Real_Literal (Loc, Hi));
21050 begin
21051 Set_Scalar_Range (E, S);
21052 Set_Parent (S, E);
21053
21054 -- Before the freeze point, the bounds of a fixed point are universal
21055 -- and carry the corresponding type.
21056
21057 Set_Etype (Low_Bound (S), Universal_Real);
21058 Set_Etype (High_Bound (S), Universal_Real);
21059 end Set_Fixed_Range;
21060
21061 ----------------------------------
21062 -- Set_Scalar_Range_For_Subtype --
21063 ----------------------------------
21064
21065 procedure Set_Scalar_Range_For_Subtype
21066 (Def_Id : Entity_Id;
21067 R : Node_Id;
21068 Subt : Entity_Id)
21069 is
21070 Kind : constant Entity_Kind := Ekind (Def_Id);
21071
21072 begin
21073 -- Defend against previous error
21074
21075 if Nkind (R) = N_Error then
21076 return;
21077 end if;
21078
21079 Set_Scalar_Range (Def_Id, R);
21080
21081 -- We need to link the range into the tree before resolving it so
21082 -- that types that are referenced, including importantly the subtype
21083 -- itself, are properly frozen (Freeze_Expression requires that the
21084 -- expression be properly linked into the tree). Of course if it is
21085 -- already linked in, then we do not disturb the current link.
21086
21087 if No (Parent (R)) then
21088 Set_Parent (R, Def_Id);
21089 end if;
21090
21091 -- Reset the kind of the subtype during analysis of the range, to
21092 -- catch possible premature use in the bounds themselves.
21093
21094 Set_Ekind (Def_Id, E_Void);
21095 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21096 Set_Ekind (Def_Id, Kind);
21097 end Set_Scalar_Range_For_Subtype;
21098
21099 --------------------------------------------------------
21100 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21101 --------------------------------------------------------
21102
21103 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21104 (E : Entity_Id)
21105 is
21106 begin
21107 -- Make sure set if encountered during Expand_To_Stored_Constraint
21108
21109 Set_Stored_Constraint (E, No_Elist);
21110
21111 -- Give it the right value
21112
21113 if Is_Constrained (E) and then Has_Discriminants (E) then
21114 Set_Stored_Constraint (E,
21115 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21116 end if;
21117 end Set_Stored_Constraint_From_Discriminant_Constraint;
21118
21119 -------------------------------------
21120 -- Signed_Integer_Type_Declaration --
21121 -------------------------------------
21122
21123 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21124 Implicit_Base : Entity_Id;
21125 Base_Typ : Entity_Id;
21126 Lo_Val : Uint;
21127 Hi_Val : Uint;
21128 Errs : Boolean := False;
21129 Lo : Node_Id;
21130 Hi : Node_Id;
21131
21132 function Can_Derive_From (E : Entity_Id) return Boolean;
21133 -- Determine whether given bounds allow derivation from specified type
21134
21135 procedure Check_Bound (Expr : Node_Id);
21136 -- Check bound to make sure it is integral and static. If not, post
21137 -- appropriate error message and set Errs flag
21138
21139 ---------------------
21140 -- Can_Derive_From --
21141 ---------------------
21142
21143 -- Note we check both bounds against both end values, to deal with
21144 -- strange types like ones with a range of 0 .. -12341234.
21145
21146 function Can_Derive_From (E : Entity_Id) return Boolean is
21147 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21148 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21149 begin
21150 return Lo <= Lo_Val and then Lo_Val <= Hi
21151 and then
21152 Lo <= Hi_Val and then Hi_Val <= Hi;
21153 end Can_Derive_From;
21154
21155 -----------------
21156 -- Check_Bound --
21157 -----------------
21158
21159 procedure Check_Bound (Expr : Node_Id) is
21160 begin
21161 -- If a range constraint is used as an integer type definition, each
21162 -- bound of the range must be defined by a static expression of some
21163 -- integer type, but the two bounds need not have the same integer
21164 -- type (Negative bounds are allowed.) (RM 3.5.4)
21165
21166 if not Is_Integer_Type (Etype (Expr)) then
21167 Error_Msg_N
21168 ("integer type definition bounds must be of integer type", Expr);
21169 Errs := True;
21170
21171 elsif not Is_OK_Static_Expression (Expr) then
21172 Flag_Non_Static_Expr
21173 ("non-static expression used for integer type bound!", Expr);
21174 Errs := True;
21175
21176 -- The bounds are folded into literals, and we set their type to be
21177 -- universal, to avoid typing difficulties: we cannot set the type
21178 -- of the literal to the new type, because this would be a forward
21179 -- reference for the back end, and if the original type is user-
21180 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21181
21182 else
21183 if Is_Entity_Name (Expr) then
21184 Fold_Uint (Expr, Expr_Value (Expr), True);
21185 end if;
21186
21187 Set_Etype (Expr, Universal_Integer);
21188 end if;
21189 end Check_Bound;
21190
21191 -- Start of processing for Signed_Integer_Type_Declaration
21192
21193 begin
21194 -- Create an anonymous base type
21195
21196 Implicit_Base :=
21197 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21198
21199 -- Analyze and check the bounds, they can be of any integer type
21200
21201 Lo := Low_Bound (Def);
21202 Hi := High_Bound (Def);
21203
21204 -- Arbitrarily use Integer as the type if either bound had an error
21205
21206 if Hi = Error or else Lo = Error then
21207 Base_Typ := Any_Integer;
21208 Set_Error_Posted (T, True);
21209
21210 -- Here both bounds are OK expressions
21211
21212 else
21213 Analyze_And_Resolve (Lo, Any_Integer);
21214 Analyze_And_Resolve (Hi, Any_Integer);
21215
21216 Check_Bound (Lo);
21217 Check_Bound (Hi);
21218
21219 if Errs then
21220 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21221 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21222 end if;
21223
21224 -- Find type to derive from
21225
21226 Lo_Val := Expr_Value (Lo);
21227 Hi_Val := Expr_Value (Hi);
21228
21229 if Can_Derive_From (Standard_Short_Short_Integer) then
21230 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21231
21232 elsif Can_Derive_From (Standard_Short_Integer) then
21233 Base_Typ := Base_Type (Standard_Short_Integer);
21234
21235 elsif Can_Derive_From (Standard_Integer) then
21236 Base_Typ := Base_Type (Standard_Integer);
21237
21238 elsif Can_Derive_From (Standard_Long_Integer) then
21239 Base_Typ := Base_Type (Standard_Long_Integer);
21240
21241 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21242 Check_Restriction (No_Long_Long_Integers, Def);
21243 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21244
21245 else
21246 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21247 Error_Msg_N ("integer type definition bounds out of range", Def);
21248 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21249 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21250 end if;
21251 end if;
21252
21253 -- Complete both implicit base and declared first subtype entities. The
21254 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21255 -- are not clobbered when the signed integer type acts as a full view of
21256 -- a private type.
21257
21258 Set_Etype (Implicit_Base, Base_Typ);
21259 Set_Size_Info (Implicit_Base, Base_Typ);
21260 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21261 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21262 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21263
21264 Set_Ekind (T, E_Signed_Integer_Subtype);
21265 Set_Etype (T, Implicit_Base);
21266 Set_Size_Info (T, Implicit_Base);
21267 Inherit_Rep_Item_Chain (T, Implicit_Base);
21268 Set_Scalar_Range (T, Def);
21269 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21270 Set_Is_Constrained (T);
21271 end Signed_Integer_Type_Declaration;
21272
21273 end Sem_Ch3;