[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
866
867 return Anon_Type;
868 end if;
869
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
872
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
875
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
879
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
883
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
887
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
893
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
897
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
899
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
901
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
903
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
911
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
919
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
925
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
931
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
934
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
941
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
947
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
959
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
962
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
975
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
980
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
984
985 return Anon_Type;
986 end Access_Definition;
987
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
991
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
995 is
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1000
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1004
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1007
1008 begin
1009 -- Check for a subtype mark
1010
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1016
1017 -- If this is not a subtype, then this is an access_definition
1018
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1026
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1029
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1038
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1044
1045 -- Local variables
1046
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052
1053 -- Start of processing for Access_Subprogram_Declaration
1054
1055 begin
1056 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1057
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1061
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1066
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1074
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1086
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1101
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1106
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1116
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1123
1124 else
1125 Analyze (Result_Definition (T_Def));
1126
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1134
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1143
1144 else
1145 if From_Limited_With (Typ) then
1146
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1149
1150 if Ada_Version >= Ada_2012 then
1151 null;
1152
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1158
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1172
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1177
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1183
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1187
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1190
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1194
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1197
1198 declare
1199 F : Node_Id;
1200
1201 begin
1202 F := First (Formals);
1203
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1209
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1219
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1224
1225 Next (F);
1226 end loop;
1227 end;
1228
1229 Process_Formals (Formals, Parent (T_Def));
1230
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1234
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1239
1240 -- Check for premature usage of the type being defined
1241
1242 Check_For_Premature_Usage (T_Def);
1243
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1249
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1261
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1268
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1272
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1275
1276 May_Need_Actuals (Desig_Type);
1277
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1281
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1289
1290 Check_Delayed_Subprogram (Desig_Type);
1291
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1298
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304
1305 Generate_Reference_To_Formals (T_Name);
1306
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1313
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1317
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1321
1322 Full_Desig : Entity_Id;
1323
1324 begin
1325 Check_SPARK_Restriction ("access type is not allowed", Def);
1326
1327 -- Check for permissible use of incomplete type
1328
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1331
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334 else
1335 Set_Directly_Designated_Type (T,
1336 Process_Subtype (S, P, T, 'P'));
1337 end if;
1338
1339 -- If the access definition is of the form: ACCESS NOT NULL ..
1340 -- the subtype indication must be of an access type. Create
1341 -- a null-excluding subtype of it.
1342
1343 if Null_Excluding_Subtype (Def) then
1344 if not Is_Access_Type (Entity (S)) then
1345 Error_Msg_N ("null exclusion must apply to access type", Def);
1346
1347 else
1348 declare
1349 Loc : constant Source_Ptr := Sloc (S);
1350 Decl : Node_Id;
1351 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1352
1353 begin
1354 Decl :=
1355 Make_Subtype_Declaration (Loc,
1356 Defining_Identifier => Nam,
1357 Subtype_Indication =>
1358 New_Occurrence_Of (Entity (S), Loc));
1359 Set_Null_Exclusion_Present (Decl);
1360 Insert_Before (Parent (Def), Decl);
1361 Analyze (Decl);
1362 Set_Entity (S, Nam);
1363 end;
1364 end if;
1365 end if;
1366
1367 else
1368 Set_Directly_Designated_Type (T,
1369 Process_Subtype (S, P, T, 'P'));
1370 end if;
1371
1372 if All_Present (Def) or Constant_Present (Def) then
1373 Set_Ekind (T, E_General_Access_Type);
1374 else
1375 Set_Ekind (T, E_Access_Type);
1376 end if;
1377
1378 Full_Desig := Designated_Type (T);
1379
1380 if Base_Type (Full_Desig) = T then
1381 Error_Msg_N ("access type cannot designate itself", S);
1382
1383 -- In Ada 2005, the type may have a limited view through some unit in
1384 -- its own context, allowing the following circularity that cannot be
1385 -- detected earlier.
1386
1387 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1388 then
1389 Error_Msg_N
1390 ("access type cannot designate its own classwide type", S);
1391
1392 -- Clean up indication of tagged status to prevent cascaded errors
1393
1394 Set_Is_Tagged_Type (T, False);
1395 end if;
1396
1397 Set_Etype (T, T);
1398
1399 -- If the type has appeared already in a with_type clause, it is frozen
1400 -- and the pointer size is already set. Else, initialize.
1401
1402 if not From_Limited_With (T) then
1403 Init_Size_Align (T);
1404 end if;
1405
1406 -- Note that Has_Task is always false, since the access type itself
1407 -- is not a task type. See Einfo for more description on this point.
1408 -- Exactly the same consideration applies to Has_Controlled_Component
1409 -- and to Has_Protected.
1410
1411 Set_Has_Task (T, False);
1412 Set_Has_Controlled_Component (T, False);
1413 Set_Has_Protected (T, False);
1414
1415 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1416 -- problems where an incomplete view of this entity has been previously
1417 -- established by a limited with and an overlaid version of this field
1418 -- (Stored_Constraint) was initialized for the incomplete view.
1419
1420 -- This reset is performed in most cases except where the access type
1421 -- has been created for the purposes of allocating or deallocating a
1422 -- build-in-place object. Such access types have explicitly set pools
1423 -- and finalization masters.
1424
1425 if No (Associated_Storage_Pool (T)) then
1426 Set_Finalization_Master (T, Empty);
1427 end if;
1428
1429 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1430 -- attributes
1431
1432 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1433 Set_Is_Access_Constant (T, Constant_Present (Def));
1434 end Access_Type_Declaration;
1435
1436 ----------------------------------
1437 -- Add_Interface_Tag_Components --
1438 ----------------------------------
1439
1440 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1441 Loc : constant Source_Ptr := Sloc (N);
1442 L : List_Id;
1443 Last_Tag : Node_Id;
1444
1445 procedure Add_Tag (Iface : Entity_Id);
1446 -- Add tag for one of the progenitor interfaces
1447
1448 -------------
1449 -- Add_Tag --
1450 -------------
1451
1452 procedure Add_Tag (Iface : Entity_Id) is
1453 Decl : Node_Id;
1454 Def : Node_Id;
1455 Tag : Entity_Id;
1456 Offset : Entity_Id;
1457
1458 begin
1459 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1460
1461 -- This is a reasonable place to propagate predicates
1462
1463 if Has_Predicates (Iface) then
1464 Set_Has_Predicates (Typ);
1465 end if;
1466
1467 Def :=
1468 Make_Component_Definition (Loc,
1469 Aliased_Present => True,
1470 Subtype_Indication =>
1471 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1472
1473 Tag := Make_Temporary (Loc, 'V');
1474
1475 Decl :=
1476 Make_Component_Declaration (Loc,
1477 Defining_Identifier => Tag,
1478 Component_Definition => Def);
1479
1480 Analyze_Component_Declaration (Decl);
1481
1482 Set_Analyzed (Decl);
1483 Set_Ekind (Tag, E_Component);
1484 Set_Is_Tag (Tag);
1485 Set_Is_Aliased (Tag);
1486 Set_Related_Type (Tag, Iface);
1487 Init_Component_Location (Tag);
1488
1489 pragma Assert (Is_Frozen (Iface));
1490
1491 Set_DT_Entry_Count (Tag,
1492 DT_Entry_Count (First_Entity (Iface)));
1493
1494 if No (Last_Tag) then
1495 Prepend (Decl, L);
1496 else
1497 Insert_After (Last_Tag, Decl);
1498 end if;
1499
1500 Last_Tag := Decl;
1501
1502 -- If the ancestor has discriminants we need to give special support
1503 -- to store the offset_to_top value of the secondary dispatch tables.
1504 -- For this purpose we add a supplementary component just after the
1505 -- field that contains the tag associated with each secondary DT.
1506
1507 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1508 Def :=
1509 Make_Component_Definition (Loc,
1510 Subtype_Indication =>
1511 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1512
1513 Offset := Make_Temporary (Loc, 'V');
1514
1515 Decl :=
1516 Make_Component_Declaration (Loc,
1517 Defining_Identifier => Offset,
1518 Component_Definition => Def);
1519
1520 Analyze_Component_Declaration (Decl);
1521
1522 Set_Analyzed (Decl);
1523 Set_Ekind (Offset, E_Component);
1524 Set_Is_Aliased (Offset);
1525 Set_Related_Type (Offset, Iface);
1526 Init_Component_Location (Offset);
1527 Insert_After (Last_Tag, Decl);
1528 Last_Tag := Decl;
1529 end if;
1530 end Add_Tag;
1531
1532 -- Local variables
1533
1534 Elmt : Elmt_Id;
1535 Ext : Node_Id;
1536 Comp : Node_Id;
1537
1538 -- Start of processing for Add_Interface_Tag_Components
1539
1540 begin
1541 if not RTE_Available (RE_Interface_Tag) then
1542 Error_Msg
1543 ("(Ada 2005) interface types not supported by this run-time!",
1544 Sloc (N));
1545 return;
1546 end if;
1547
1548 if Ekind (Typ) /= E_Record_Type
1549 or else (Is_Concurrent_Record_Type (Typ)
1550 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1551 or else (not Is_Concurrent_Record_Type (Typ)
1552 and then No (Interfaces (Typ))
1553 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1554 then
1555 return;
1556 end if;
1557
1558 -- Find the current last tag
1559
1560 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1561 Ext := Record_Extension_Part (Type_Definition (N));
1562 else
1563 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1564 Ext := Type_Definition (N);
1565 end if;
1566
1567 Last_Tag := Empty;
1568
1569 if not (Present (Component_List (Ext))) then
1570 Set_Null_Present (Ext, False);
1571 L := New_List;
1572 Set_Component_List (Ext,
1573 Make_Component_List (Loc,
1574 Component_Items => L,
1575 Null_Present => False));
1576 else
1577 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1578 L := Component_Items
1579 (Component_List
1580 (Record_Extension_Part
1581 (Type_Definition (N))));
1582 else
1583 L := Component_Items
1584 (Component_List
1585 (Type_Definition (N)));
1586 end if;
1587
1588 -- Find the last tag component
1589
1590 Comp := First (L);
1591 while Present (Comp) loop
1592 if Nkind (Comp) = N_Component_Declaration
1593 and then Is_Tag (Defining_Identifier (Comp))
1594 then
1595 Last_Tag := Comp;
1596 end if;
1597
1598 Next (Comp);
1599 end loop;
1600 end if;
1601
1602 -- At this point L references the list of components and Last_Tag
1603 -- references the current last tag (if any). Now we add the tag
1604 -- corresponding with all the interfaces that are not implemented
1605 -- by the parent.
1606
1607 if Present (Interfaces (Typ)) then
1608 Elmt := First_Elmt (Interfaces (Typ));
1609 while Present (Elmt) loop
1610 Add_Tag (Node (Elmt));
1611 Next_Elmt (Elmt);
1612 end loop;
1613 end if;
1614 end Add_Interface_Tag_Components;
1615
1616 -------------------------------------
1617 -- Add_Internal_Interface_Entities --
1618 -------------------------------------
1619
1620 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1621 Elmt : Elmt_Id;
1622 Iface : Entity_Id;
1623 Iface_Elmt : Elmt_Id;
1624 Iface_Prim : Entity_Id;
1625 Ifaces_List : Elist_Id;
1626 New_Subp : Entity_Id := Empty;
1627 Prim : Entity_Id;
1628 Restore_Scope : Boolean := False;
1629
1630 begin
1631 pragma Assert (Ada_Version >= Ada_2005
1632 and then Is_Record_Type (Tagged_Type)
1633 and then Is_Tagged_Type (Tagged_Type)
1634 and then Has_Interfaces (Tagged_Type)
1635 and then not Is_Interface (Tagged_Type));
1636
1637 -- Ensure that the internal entities are added to the scope of the type
1638
1639 if Scope (Tagged_Type) /= Current_Scope then
1640 Push_Scope (Scope (Tagged_Type));
1641 Restore_Scope := True;
1642 end if;
1643
1644 Collect_Interfaces (Tagged_Type, Ifaces_List);
1645
1646 Iface_Elmt := First_Elmt (Ifaces_List);
1647 while Present (Iface_Elmt) loop
1648 Iface := Node (Iface_Elmt);
1649
1650 -- Originally we excluded here from this processing interfaces that
1651 -- are parents of Tagged_Type because their primitives are located
1652 -- in the primary dispatch table (and hence no auxiliary internal
1653 -- entities are required to handle secondary dispatch tables in such
1654 -- case). However, these auxiliary entities are also required to
1655 -- handle derivations of interfaces in formals of generics (see
1656 -- Derive_Subprograms).
1657
1658 Elmt := First_Elmt (Primitive_Operations (Iface));
1659 while Present (Elmt) loop
1660 Iface_Prim := Node (Elmt);
1661
1662 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1663 Prim :=
1664 Find_Primitive_Covering_Interface
1665 (Tagged_Type => Tagged_Type,
1666 Iface_Prim => Iface_Prim);
1667
1668 if No (Prim) and then Serious_Errors_Detected > 0 then
1669 goto Continue;
1670 end if;
1671
1672 pragma Assert (Present (Prim));
1673
1674 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1675 -- differs from the name of the interface primitive then it is
1676 -- a private primitive inherited from a parent type. In such
1677 -- case, given that Tagged_Type covers the interface, the
1678 -- inherited private primitive becomes visible. For such
1679 -- purpose we add a new entity that renames the inherited
1680 -- private primitive.
1681
1682 if Chars (Prim) /= Chars (Iface_Prim) then
1683 pragma Assert (Has_Suffix (Prim, 'P'));
1684 Derive_Subprogram
1685 (New_Subp => New_Subp,
1686 Parent_Subp => Iface_Prim,
1687 Derived_Type => Tagged_Type,
1688 Parent_Type => Iface);
1689 Set_Alias (New_Subp, Prim);
1690 Set_Is_Abstract_Subprogram
1691 (New_Subp, Is_Abstract_Subprogram (Prim));
1692 end if;
1693
1694 Derive_Subprogram
1695 (New_Subp => New_Subp,
1696 Parent_Subp => Iface_Prim,
1697 Derived_Type => Tagged_Type,
1698 Parent_Type => Iface);
1699
1700 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1701 -- associated with interface types. These entities are
1702 -- only registered in the list of primitives of its
1703 -- corresponding tagged type because they are only used
1704 -- to fill the contents of the secondary dispatch tables.
1705 -- Therefore they are removed from the homonym chains.
1706
1707 Set_Is_Hidden (New_Subp);
1708 Set_Is_Internal (New_Subp);
1709 Set_Alias (New_Subp, Prim);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp, Is_Abstract_Subprogram (Prim));
1712 Set_Interface_Alias (New_Subp, Iface_Prim);
1713
1714 -- If the returned type is an interface then propagate it to
1715 -- the returned type. Needed by the thunk to generate the code
1716 -- which displaces "this" to reference the corresponding
1717 -- secondary dispatch table in the returned object.
1718
1719 if Is_Interface (Etype (Iface_Prim)) then
1720 Set_Etype (New_Subp, Etype (Iface_Prim));
1721 end if;
1722
1723 -- Internal entities associated with interface types are
1724 -- only registered in the list of primitives of the tagged
1725 -- type. They are only used to fill the contents of the
1726 -- secondary dispatch tables. Therefore they are not needed
1727 -- in the homonym chains.
1728
1729 Remove_Homonym (New_Subp);
1730
1731 -- Hidden entities associated with interfaces must have set
1732 -- the Has_Delay_Freeze attribute to ensure that, in case of
1733 -- locally defined tagged types (or compiling with static
1734 -- dispatch tables generation disabled) the corresponding
1735 -- entry of the secondary dispatch table is filled when
1736 -- such an entity is frozen.
1737
1738 Set_Has_Delayed_Freeze (New_Subp);
1739 end if;
1740
1741 <<Continue>>
1742 Next_Elmt (Elmt);
1743 end loop;
1744
1745 Next_Elmt (Iface_Elmt);
1746 end loop;
1747
1748 if Restore_Scope then
1749 Pop_Scope;
1750 end if;
1751 end Add_Internal_Interface_Entities;
1752
1753 -----------------------------------
1754 -- Analyze_Component_Declaration --
1755 -----------------------------------
1756
1757 procedure Analyze_Component_Declaration (N : Node_Id) is
1758 Id : constant Entity_Id := Defining_Identifier (N);
1759 E : constant Node_Id := Expression (N);
1760 Typ : constant Node_Id :=
1761 Subtype_Indication (Component_Definition (N));
1762 T : Entity_Id;
1763 P : Entity_Id;
1764
1765 function Contains_POC (Constr : Node_Id) return Boolean;
1766 -- Determines whether a constraint uses the discriminant of a record
1767 -- type thus becoming a per-object constraint (POC).
1768
1769 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1770 -- Typ is the type of the current component, check whether this type is
1771 -- a limited type. Used to validate declaration against that of
1772 -- enclosing record.
1773
1774 ------------------
1775 -- Contains_POC --
1776 ------------------
1777
1778 function Contains_POC (Constr : Node_Id) return Boolean is
1779 begin
1780 -- Prevent cascaded errors
1781
1782 if Error_Posted (Constr) then
1783 return False;
1784 end if;
1785
1786 case Nkind (Constr) is
1787 when N_Attribute_Reference =>
1788 return Attribute_Name (Constr) = Name_Access
1789 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1790
1791 when N_Discriminant_Association =>
1792 return Denotes_Discriminant (Expression (Constr));
1793
1794 when N_Identifier =>
1795 return Denotes_Discriminant (Constr);
1796
1797 when N_Index_Or_Discriminant_Constraint =>
1798 declare
1799 IDC : Node_Id;
1800
1801 begin
1802 IDC := First (Constraints (Constr));
1803 while Present (IDC) loop
1804
1805 -- One per-object constraint is sufficient
1806
1807 if Contains_POC (IDC) then
1808 return True;
1809 end if;
1810
1811 Next (IDC);
1812 end loop;
1813
1814 return False;
1815 end;
1816
1817 when N_Range =>
1818 return Denotes_Discriminant (Low_Bound (Constr))
1819 or else
1820 Denotes_Discriminant (High_Bound (Constr));
1821
1822 when N_Range_Constraint =>
1823 return Denotes_Discriminant (Range_Expression (Constr));
1824
1825 when others =>
1826 return False;
1827
1828 end case;
1829 end Contains_POC;
1830
1831 ----------------------
1832 -- Is_Known_Limited --
1833 ----------------------
1834
1835 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1836 P : constant Entity_Id := Etype (Typ);
1837 R : constant Entity_Id := Root_Type (Typ);
1838
1839 begin
1840 if Is_Limited_Record (Typ) then
1841 return True;
1842
1843 -- If the root type is limited (and not a limited interface)
1844 -- so is the current type
1845
1846 elsif Is_Limited_Record (R)
1847 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1848 then
1849 return True;
1850
1851 -- Else the type may have a limited interface progenitor, but a
1852 -- limited record parent.
1853
1854 elsif R /= P and then Is_Limited_Record (P) then
1855 return True;
1856
1857 else
1858 return False;
1859 end if;
1860 end Is_Known_Limited;
1861
1862 -- Start of processing for Analyze_Component_Declaration
1863
1864 begin
1865 Generate_Definition (Id);
1866 Enter_Name (Id);
1867
1868 if Present (Typ) then
1869 T := Find_Type_Of_Object
1870 (Subtype_Indication (Component_Definition (N)), N);
1871
1872 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1873 Check_SPARK_Restriction ("subtype mark required", Typ);
1874 end if;
1875
1876 -- Ada 2005 (AI-230): Access Definition case
1877
1878 else
1879 pragma Assert (Present
1880 (Access_Definition (Component_Definition (N))));
1881
1882 T := Access_Definition
1883 (Related_Nod => N,
1884 N => Access_Definition (Component_Definition (N)));
1885 Set_Is_Local_Anonymous_Access (T);
1886
1887 -- Ada 2005 (AI-254)
1888
1889 if Present (Access_To_Subprogram_Definition
1890 (Access_Definition (Component_Definition (N))))
1891 and then Protected_Present (Access_To_Subprogram_Definition
1892 (Access_Definition
1893 (Component_Definition (N))))
1894 then
1895 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1896 end if;
1897 end if;
1898
1899 -- If the subtype is a constrained subtype of the enclosing record,
1900 -- (which must have a partial view) the back-end does not properly
1901 -- handle the recursion. Rewrite the component declaration with an
1902 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1903 -- the tree directly because side effects have already been removed from
1904 -- discriminant constraints.
1905
1906 if Ekind (T) = E_Access_Subtype
1907 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1908 and then Comes_From_Source (T)
1909 and then Nkind (Parent (T)) = N_Subtype_Declaration
1910 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1911 then
1912 Rewrite
1913 (Subtype_Indication (Component_Definition (N)),
1914 New_Copy_Tree (Subtype_Indication (Parent (T))));
1915 T := Find_Type_Of_Object
1916 (Subtype_Indication (Component_Definition (N)), N);
1917 end if;
1918
1919 -- If the component declaration includes a default expression, then we
1920 -- check that the component is not of a limited type (RM 3.7(5)),
1921 -- and do the special preanalysis of the expression (see section on
1922 -- "Handling of Default and Per-Object Expressions" in the spec of
1923 -- package Sem).
1924
1925 if Present (E) then
1926 Check_SPARK_Restriction ("default expression is not allowed", E);
1927 Preanalyze_Spec_Expression (E, T);
1928 Check_Initialization (T, E);
1929
1930 if Ada_Version >= Ada_2005
1931 and then Ekind (T) = E_Anonymous_Access_Type
1932 and then Etype (E) /= Any_Type
1933 then
1934 -- Check RM 3.9.2(9): "if the expected type for an expression is
1935 -- an anonymous access-to-specific tagged type, then the object
1936 -- designated by the expression shall not be dynamically tagged
1937 -- unless it is a controlling operand in a call on a dispatching
1938 -- operation"
1939
1940 if Is_Tagged_Type (Directly_Designated_Type (T))
1941 and then
1942 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1943 and then
1944 Ekind (Directly_Designated_Type (Etype (E))) =
1945 E_Class_Wide_Type
1946 then
1947 Error_Msg_N
1948 ("access to specific tagged type required (RM 3.9.2(9))", E);
1949 end if;
1950
1951 -- (Ada 2005: AI-230): Accessibility check for anonymous
1952 -- components
1953
1954 if Type_Access_Level (Etype (E)) >
1955 Deepest_Type_Access_Level (T)
1956 then
1957 Error_Msg_N
1958 ("expression has deeper access level than component " &
1959 "(RM 3.10.2 (12.2))", E);
1960 end if;
1961
1962 -- The initialization expression is a reference to an access
1963 -- discriminant. The type of the discriminant is always deeper
1964 -- than any access type.
1965
1966 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1967 and then Is_Entity_Name (E)
1968 and then Ekind (Entity (E)) = E_In_Parameter
1969 and then Present (Discriminal_Link (Entity (E)))
1970 then
1971 Error_Msg_N
1972 ("discriminant has deeper accessibility level than target",
1973 E);
1974 end if;
1975 end if;
1976 end if;
1977
1978 -- The parent type may be a private view with unknown discriminants,
1979 -- and thus unconstrained. Regular components must be constrained.
1980
1981 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1982 if Is_Class_Wide_Type (T) then
1983 Error_Msg_N
1984 ("class-wide subtype with unknown discriminants" &
1985 " in component declaration",
1986 Subtype_Indication (Component_Definition (N)));
1987 else
1988 Error_Msg_N
1989 ("unconstrained subtype in component declaration",
1990 Subtype_Indication (Component_Definition (N)));
1991 end if;
1992
1993 -- Components cannot be abstract, except for the special case of
1994 -- the _Parent field (case of extending an abstract tagged type)
1995
1996 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1997 Error_Msg_N ("type of a component cannot be abstract", N);
1998 end if;
1999
2000 Set_Etype (Id, T);
2001 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2002
2003 -- The component declaration may have a per-object constraint, set
2004 -- the appropriate flag in the defining identifier of the subtype.
2005
2006 if Present (Subtype_Indication (Component_Definition (N))) then
2007 declare
2008 Sindic : constant Node_Id :=
2009 Subtype_Indication (Component_Definition (N));
2010 begin
2011 if Nkind (Sindic) = N_Subtype_Indication
2012 and then Present (Constraint (Sindic))
2013 and then Contains_POC (Constraint (Sindic))
2014 then
2015 Set_Has_Per_Object_Constraint (Id);
2016 end if;
2017 end;
2018 end if;
2019
2020 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2021 -- out some static checks.
2022
2023 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2024 Null_Exclusion_Static_Checks (N);
2025 end if;
2026
2027 -- If this component is private (or depends on a private type), flag the
2028 -- record type to indicate that some operations are not available.
2029
2030 P := Private_Component (T);
2031
2032 if Present (P) then
2033
2034 -- Check for circular definitions
2035
2036 if P = Any_Type then
2037 Set_Etype (Id, Any_Type);
2038
2039 -- There is a gap in the visibility of operations only if the
2040 -- component type is not defined in the scope of the record type.
2041
2042 elsif Scope (P) = Scope (Current_Scope) then
2043 null;
2044
2045 elsif Is_Limited_Type (P) then
2046 Set_Is_Limited_Composite (Current_Scope);
2047
2048 else
2049 Set_Is_Private_Composite (Current_Scope);
2050 end if;
2051 end if;
2052
2053 if P /= Any_Type
2054 and then Is_Limited_Type (T)
2055 and then Chars (Id) /= Name_uParent
2056 and then Is_Tagged_Type (Current_Scope)
2057 then
2058 if Is_Derived_Type (Current_Scope)
2059 and then not Is_Known_Limited (Current_Scope)
2060 then
2061 Error_Msg_N
2062 ("extension of nonlimited type cannot have limited components",
2063 N);
2064
2065 if Is_Interface (Root_Type (Current_Scope)) then
2066 Error_Msg_N
2067 ("\limitedness is not inherited from limited interface", N);
2068 Error_Msg_N ("\add LIMITED to type indication", N);
2069 end if;
2070
2071 Explain_Limited_Type (T, N);
2072 Set_Etype (Id, Any_Type);
2073 Set_Is_Limited_Composite (Current_Scope, False);
2074
2075 elsif not Is_Derived_Type (Current_Scope)
2076 and then not Is_Limited_Record (Current_Scope)
2077 and then not Is_Concurrent_Type (Current_Scope)
2078 then
2079 Error_Msg_N
2080 ("nonlimited tagged type cannot have limited components", N);
2081 Explain_Limited_Type (T, N);
2082 Set_Etype (Id, Any_Type);
2083 Set_Is_Limited_Composite (Current_Scope, False);
2084 end if;
2085 end if;
2086
2087 Set_Original_Record_Component (Id, Id);
2088
2089 if Has_Aspects (N) then
2090 Analyze_Aspect_Specifications (N, Id);
2091 end if;
2092
2093 Analyze_Dimension (N);
2094 end Analyze_Component_Declaration;
2095
2096 --------------------------
2097 -- Analyze_Declarations --
2098 --------------------------
2099
2100 procedure Analyze_Declarations (L : List_Id) is
2101 Decl : Node_Id;
2102
2103 procedure Adjust_Decl;
2104 -- Adjust Decl not to include implicit label declarations, since these
2105 -- have strange Sloc values that result in elaboration check problems.
2106 -- (They have the sloc of the label as found in the source, and that
2107 -- is ahead of the current declarative part).
2108
2109 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2110 -- Determine whether Body_Decl denotes the body of a late controlled
2111 -- primitive (either Initialize, Adjust or Finalize). If this is the
2112 -- case, add a proper spec if the body lacks one. The spec is inserted
2113 -- before Body_Decl and immedately analyzed.
2114
2115 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2116 -- Spec_Id is the entity of a package that may define abstract states.
2117 -- If the states have visible refinement, remove the visibility of each
2118 -- constituent at the end of the package body declarations.
2119
2120 -----------------
2121 -- Adjust_Decl --
2122 -----------------
2123
2124 procedure Adjust_Decl is
2125 begin
2126 while Present (Prev (Decl))
2127 and then Nkind (Decl) = N_Implicit_Label_Declaration
2128 loop
2129 Prev (Decl);
2130 end loop;
2131 end Adjust_Decl;
2132
2133 --------------------------------------
2134 -- Handle_Late_Controlled_Primitive --
2135 --------------------------------------
2136
2137 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2138 Body_Spec : constant Node_Id := Specification (Body_Decl);
2139 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2140 Loc : constant Source_Ptr := Sloc (Body_Id);
2141 Params : constant List_Id :=
2142 Parameter_Specifications (Body_Spec);
2143 Spec : Node_Id;
2144 Spec_Id : Entity_Id;
2145
2146 Dummy : Entity_Id;
2147 -- A dummy variable used to capture the unused result of subprogram
2148 -- spec analysis.
2149
2150 begin
2151 -- Consider only procedure bodies whose name matches one of the three
2152 -- controlled primitives.
2153
2154 if Nkind (Body_Spec) /= N_Procedure_Specification
2155 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2156 Name_Finalize,
2157 Name_Initialize)
2158 then
2159 return;
2160
2161 -- A controlled primitive must have exactly one formal
2162
2163 elsif List_Length (Params) /= 1 then
2164 return;
2165 end if;
2166
2167 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2168
2169 -- The type of the formal must be derived from [Limited_]Controlled
2170
2171 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2172 return;
2173 end if;
2174
2175 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2176
2177 -- The body has a matching spec, therefore it cannot be a late
2178 -- primitive.
2179
2180 if Present (Spec_Id) then
2181 return;
2182 end if;
2183
2184 -- At this point the body is known to be a late controlled primitive.
2185 -- Generate a matching spec and insert it before the body. Note the
2186 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2187 -- tree in this case.
2188
2189 Spec := Copy_Separate_Tree (Body_Spec);
2190
2191 -- Ensure that the subprogram declaration does not inherit the null
2192 -- indicator from the body as we now have a proper spec/body pair.
2193
2194 Set_Null_Present (Spec, False);
2195
2196 Insert_Before_And_Analyze (Body_Decl,
2197 Make_Subprogram_Declaration (Loc,
2198 Specification => Spec));
2199 end Handle_Late_Controlled_Primitive;
2200
2201 --------------------------------
2202 -- Remove_Visible_Refinements --
2203 --------------------------------
2204
2205 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2206 State_Elmt : Elmt_Id;
2207 begin
2208 if Present (Abstract_States (Spec_Id)) then
2209 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2210 while Present (State_Elmt) loop
2211 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2212 Next_Elmt (State_Elmt);
2213 end loop;
2214 end if;
2215 end Remove_Visible_Refinements;
2216
2217 -- Local variables
2218
2219 Context : Node_Id;
2220 Freeze_From : Entity_Id := Empty;
2221 Next_Decl : Node_Id;
2222 Spec_Id : Entity_Id;
2223
2224 Body_Seen : Boolean := False;
2225 -- Flag set when the first body [stub] is encountered
2226
2227 In_Package_Body : Boolean := False;
2228 -- Flag set when the current declaration list belongs to a package body
2229
2230 -- Start of processing for Analyze_Declarations
2231
2232 begin
2233 if Restriction_Check_Required (SPARK_05) then
2234 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2235 end if;
2236
2237 Decl := First (L);
2238 while Present (Decl) loop
2239
2240 -- Package spec cannot contain a package declaration in SPARK
2241
2242 if Nkind (Decl) = N_Package_Declaration
2243 and then Nkind (Parent (L)) = N_Package_Specification
2244 then
2245 Check_SPARK_Restriction
2246 ("package specification cannot contain a package declaration",
2247 Decl);
2248 end if;
2249
2250 -- Complete analysis of declaration
2251
2252 Analyze (Decl);
2253 Next_Decl := Next (Decl);
2254
2255 if No (Freeze_From) then
2256 Freeze_From := First_Entity (Current_Scope);
2257 end if;
2258
2259 -- At the end of a declarative part, freeze remaining entities
2260 -- declared in it. The end of the visible declarations of package
2261 -- specification is not the end of a declarative part if private
2262 -- declarations are present. The end of a package declaration is a
2263 -- freezing point only if it a library package. A task definition or
2264 -- protected type definition is not a freeze point either. Finally,
2265 -- we do not freeze entities in generic scopes, because there is no
2266 -- code generated for them and freeze nodes will be generated for
2267 -- the instance.
2268
2269 -- The end of a package instantiation is not a freeze point, but
2270 -- for now we make it one, because the generic body is inserted
2271 -- (currently) immediately after. Generic instantiations will not
2272 -- be a freeze point once delayed freezing of bodies is implemented.
2273 -- (This is needed in any case for early instantiations ???).
2274
2275 if No (Next_Decl) then
2276 if Nkind_In (Parent (L), N_Component_List,
2277 N_Task_Definition,
2278 N_Protected_Definition)
2279 then
2280 null;
2281
2282 elsif Nkind (Parent (L)) /= N_Package_Specification then
2283 if Nkind (Parent (L)) = N_Package_Body then
2284 Freeze_From := First_Entity (Current_Scope);
2285 end if;
2286
2287 -- There may have been several freezing points previously,
2288 -- for example object declarations or subprogram bodies, but
2289 -- at the end of a declarative part we check freezing from
2290 -- the beginning, even though entities may already be frozen,
2291 -- in order to perform visibility checks on delayed aspects.
2292
2293 Adjust_Decl;
2294 Freeze_All (First_Entity (Current_Scope), Decl);
2295 Freeze_From := Last_Entity (Current_Scope);
2296
2297 elsif Scope (Current_Scope) /= Standard_Standard
2298 and then not Is_Child_Unit (Current_Scope)
2299 and then No (Generic_Parent (Parent (L)))
2300 then
2301 null;
2302
2303 elsif L /= Visible_Declarations (Parent (L))
2304 or else No (Private_Declarations (Parent (L)))
2305 or else Is_Empty_List (Private_Declarations (Parent (L)))
2306 then
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310 end if;
2311
2312 -- If next node is a body then freeze all types before the body.
2313 -- An exception occurs for some expander-generated bodies. If these
2314 -- are generated at places where in general language rules would not
2315 -- allow a freeze point, then we assume that the expander has
2316 -- explicitly checked that all required types are properly frozen,
2317 -- and we do not cause general freezing here. This special circuit
2318 -- is used when the encountered body is marked as having already
2319 -- been analyzed.
2320
2321 -- In all other cases (bodies that come from source, and expander
2322 -- generated bodies that have not been analyzed yet), freeze all
2323 -- types now. Note that in the latter case, the expander must take
2324 -- care to attach the bodies at a proper place in the tree so as to
2325 -- not cause unwanted freezing at that point.
2326
2327 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2328
2329 -- When a controlled type is frozen, the expander generates stream
2330 -- and controlled type support routines. If the freeze is caused
2331 -- by the stand alone body of Initialize, Adjust and Finalize, the
2332 -- expander will end up using the wrong version of these routines
2333 -- as the body has not been processed yet. To remedy this, detect
2334 -- a late controlled primitive and create a proper spec for it.
2335 -- This ensures that the primitive will override its inherited
2336 -- counterpart before the freeze takes place.
2337
2338 -- If the declaration we just processed is a body, do not attempt
2339 -- to examine Next_Decl as the late primitive idiom can only apply
2340 -- to the first encountered body.
2341
2342 -- The spec of the late primitive is not generated in ASIS mode to
2343 -- ensure a consistent list of primitives that indicates the true
2344 -- semantic structure of the program (which is not relevant when
2345 -- generating executable code.
2346
2347 -- ??? a cleaner approach may be possible and/or this solution
2348 -- could be extended to general-purpose late primitives, TBD.
2349
2350 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2351 then
2352 Body_Seen := True;
2353
2354 if Nkind (Next_Decl) = N_Subprogram_Body then
2355 Handle_Late_Controlled_Primitive (Next_Decl);
2356 end if;
2357 end if;
2358
2359 Adjust_Decl;
2360 Freeze_All (Freeze_From, Decl);
2361 Freeze_From := Last_Entity (Current_Scope);
2362 end if;
2363
2364 Decl := Next_Decl;
2365 end loop;
2366
2367 -- Analyze the contracts of packages and their bodies
2368
2369 if Present (L) then
2370 Context := Parent (L);
2371
2372 if Nkind (Context) = N_Package_Specification then
2373
2374 -- When a package has private declarations, its contract must be
2375 -- analyzed at the end of the said declarations. This way both the
2376 -- analysis and freeze actions are properly synchronized in case
2377 -- of private type use within the contract.
2378
2379 if L = Private_Declarations (Context) then
2380 Analyze_Package_Contract (Defining_Entity (Context));
2381
2382 -- Otherwise the contract is analyzed at the end of the visible
2383 -- declarations.
2384
2385 elsif L = Visible_Declarations (Context)
2386 and then No (Private_Declarations (Context))
2387 then
2388 Analyze_Package_Contract (Defining_Entity (Context));
2389 end if;
2390
2391 elsif Nkind (Context) = N_Package_Body then
2392 In_Package_Body := True;
2393 Spec_Id := Corresponding_Spec (Context);
2394
2395 Analyze_Package_Body_Contract (Defining_Entity (Context));
2396 end if;
2397 end if;
2398
2399 -- Analyze the contracts of subprogram declarations, subprogram bodies
2400 -- and variables now due to the delayed visibility requirements of their
2401 -- aspects.
2402
2403 Decl := First (L);
2404 while Present (Decl) loop
2405 if Nkind (Decl) = N_Object_Declaration then
2406 Analyze_Object_Contract (Defining_Entity (Decl));
2407
2408 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2409 N_Subprogram_Declaration)
2410 then
2411 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2412
2413 elsif Nkind (Decl) = N_Subprogram_Body then
2414 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2415
2416 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2417 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2418 end if;
2419
2420 Next (Decl);
2421 end loop;
2422
2423 -- State refinements are visible upto the end the of the package body
2424 -- declarations. Hide the refinements from visibility to restore the
2425 -- original state conditions.
2426
2427 if In_Package_Body then
2428 Remove_Visible_Refinements (Spec_Id);
2429 end if;
2430 end Analyze_Declarations;
2431
2432 -----------------------------------
2433 -- Analyze_Full_Type_Declaration --
2434 -----------------------------------
2435
2436 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2437 Def : constant Node_Id := Type_Definition (N);
2438 Def_Id : constant Entity_Id := Defining_Identifier (N);
2439 T : Entity_Id;
2440 Prev : Entity_Id;
2441
2442 Is_Remote : constant Boolean :=
2443 (Is_Remote_Types (Current_Scope)
2444 or else Is_Remote_Call_Interface (Current_Scope))
2445 and then not (In_Private_Part (Current_Scope)
2446 or else In_Package_Body (Current_Scope));
2447
2448 procedure Check_Ops_From_Incomplete_Type;
2449 -- If there is a tagged incomplete partial view of the type, traverse
2450 -- the primitives of the incomplete view and change the type of any
2451 -- controlling formals and result to indicate the full view. The
2452 -- primitives will be added to the full type's primitive operations
2453 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2454 -- is called from Process_Incomplete_Dependents).
2455
2456 ------------------------------------
2457 -- Check_Ops_From_Incomplete_Type --
2458 ------------------------------------
2459
2460 procedure Check_Ops_From_Incomplete_Type is
2461 Elmt : Elmt_Id;
2462 Formal : Entity_Id;
2463 Op : Entity_Id;
2464
2465 begin
2466 if Prev /= T
2467 and then Ekind (Prev) = E_Incomplete_Type
2468 and then Is_Tagged_Type (Prev)
2469 and then Is_Tagged_Type (T)
2470 then
2471 Elmt := First_Elmt (Primitive_Operations (Prev));
2472 while Present (Elmt) loop
2473 Op := Node (Elmt);
2474
2475 Formal := First_Formal (Op);
2476 while Present (Formal) loop
2477 if Etype (Formal) = Prev then
2478 Set_Etype (Formal, T);
2479 end if;
2480
2481 Next_Formal (Formal);
2482 end loop;
2483
2484 if Etype (Op) = Prev then
2485 Set_Etype (Op, T);
2486 end if;
2487
2488 Next_Elmt (Elmt);
2489 end loop;
2490 end if;
2491 end Check_Ops_From_Incomplete_Type;
2492
2493 -- Start of processing for Analyze_Full_Type_Declaration
2494
2495 begin
2496 Prev := Find_Type_Name (N);
2497
2498 -- The full view, if present, now points to the current type
2499 -- If there is an incomplete partial view, set a link to it, to
2500 -- simplify the retrieval of primitive operations of the type.
2501
2502 -- Ada 2005 (AI-50217): If the type was previously decorated when
2503 -- imported through a LIMITED WITH clause, it appears as incomplete
2504 -- but has no full view.
2505
2506 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2507 then
2508 T := Full_View (Prev);
2509 Set_Incomplete_View (N, Parent (Prev));
2510 else
2511 T := Prev;
2512 end if;
2513
2514 Set_Is_Pure (T, Is_Pure (Current_Scope));
2515
2516 -- We set the flag Is_First_Subtype here. It is needed to set the
2517 -- corresponding flag for the Implicit class-wide-type created
2518 -- during tagged types processing.
2519
2520 Set_Is_First_Subtype (T, True);
2521
2522 -- Only composite types other than array types are allowed to have
2523 -- discriminants.
2524
2525 case Nkind (Def) is
2526
2527 -- For derived types, the rule will be checked once we've figured
2528 -- out the parent type.
2529
2530 when N_Derived_Type_Definition =>
2531 null;
2532
2533 -- For record types, discriminants are allowed, unless we are in
2534 -- SPARK.
2535
2536 when N_Record_Definition =>
2537 if Present (Discriminant_Specifications (N)) then
2538 Check_SPARK_Restriction
2539 ("discriminant type is not allowed",
2540 Defining_Identifier
2541 (First (Discriminant_Specifications (N))));
2542 end if;
2543
2544 when others =>
2545 if Present (Discriminant_Specifications (N)) then
2546 Error_Msg_N
2547 ("elementary or array type cannot have discriminants",
2548 Defining_Identifier
2549 (First (Discriminant_Specifications (N))));
2550 end if;
2551 end case;
2552
2553 -- Elaborate the type definition according to kind, and generate
2554 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2555 -- already done (this happens during the reanalysis that follows a call
2556 -- to the high level optimizer).
2557
2558 if not Analyzed (T) then
2559 Set_Analyzed (T);
2560
2561 case Nkind (Def) is
2562
2563 when N_Access_To_Subprogram_Definition =>
2564 Access_Subprogram_Declaration (T, Def);
2565
2566 -- If this is a remote access to subprogram, we must create the
2567 -- equivalent fat pointer type, and related subprograms.
2568
2569 if Is_Remote then
2570 Process_Remote_AST_Declaration (N);
2571 end if;
2572
2573 -- Validate categorization rule against access type declaration
2574 -- usually a violation in Pure unit, Shared_Passive unit.
2575
2576 Validate_Access_Type_Declaration (T, N);
2577
2578 when N_Access_To_Object_Definition =>
2579 Access_Type_Declaration (T, Def);
2580
2581 -- Validate categorization rule against access type declaration
2582 -- usually a violation in Pure unit, Shared_Passive unit.
2583
2584 Validate_Access_Type_Declaration (T, N);
2585
2586 -- If we are in a Remote_Call_Interface package and define a
2587 -- RACW, then calling stubs and specific stream attributes
2588 -- must be added.
2589
2590 if Is_Remote
2591 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2592 then
2593 Add_RACW_Features (Def_Id);
2594 end if;
2595
2596 -- Set no strict aliasing flag if config pragma seen
2597
2598 if Opt.No_Strict_Aliasing then
2599 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2600 end if;
2601
2602 when N_Array_Type_Definition =>
2603 Array_Type_Declaration (T, Def);
2604
2605 when N_Derived_Type_Definition =>
2606 Derived_Type_Declaration (T, N, T /= Def_Id);
2607
2608 when N_Enumeration_Type_Definition =>
2609 Enumeration_Type_Declaration (T, Def);
2610
2611 when N_Floating_Point_Definition =>
2612 Floating_Point_Type_Declaration (T, Def);
2613
2614 when N_Decimal_Fixed_Point_Definition =>
2615 Decimal_Fixed_Point_Type_Declaration (T, Def);
2616
2617 when N_Ordinary_Fixed_Point_Definition =>
2618 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2619
2620 when N_Signed_Integer_Type_Definition =>
2621 Signed_Integer_Type_Declaration (T, Def);
2622
2623 when N_Modular_Type_Definition =>
2624 Modular_Type_Declaration (T, Def);
2625
2626 when N_Record_Definition =>
2627 Record_Type_Declaration (T, N, Prev);
2628
2629 -- If declaration has a parse error, nothing to elaborate.
2630
2631 when N_Error =>
2632 null;
2633
2634 when others =>
2635 raise Program_Error;
2636
2637 end case;
2638 end if;
2639
2640 if Etype (T) = Any_Type then
2641 return;
2642 end if;
2643
2644 -- Controlled type is not allowed in SPARK
2645
2646 if Is_Visibly_Controlled (T) then
2647 Check_SPARK_Restriction ("controlled type is not allowed", N);
2648 end if;
2649
2650 -- Some common processing for all types
2651
2652 Set_Depends_On_Private (T, Has_Private_Component (T));
2653 Check_Ops_From_Incomplete_Type;
2654
2655 -- Both the declared entity, and its anonymous base type if one
2656 -- was created, need freeze nodes allocated.
2657
2658 declare
2659 B : constant Entity_Id := Base_Type (T);
2660
2661 begin
2662 -- In the case where the base type differs from the first subtype, we
2663 -- pre-allocate a freeze node, and set the proper link to the first
2664 -- subtype. Freeze_Entity will use this preallocated freeze node when
2665 -- it freezes the entity.
2666
2667 -- This does not apply if the base type is a generic type, whose
2668 -- declaration is independent of the current derived definition.
2669
2670 if B /= T and then not Is_Generic_Type (B) then
2671 Ensure_Freeze_Node (B);
2672 Set_First_Subtype_Link (Freeze_Node (B), T);
2673 end if;
2674
2675 -- A type that is imported through a limited_with clause cannot
2676 -- generate any code, and thus need not be frozen. However, an access
2677 -- type with an imported designated type needs a finalization list,
2678 -- which may be referenced in some other package that has non-limited
2679 -- visibility on the designated type. Thus we must create the
2680 -- finalization list at the point the access type is frozen, to
2681 -- prevent unsatisfied references at link time.
2682
2683 if not From_Limited_With (T) or else Is_Access_Type (T) then
2684 Set_Has_Delayed_Freeze (T);
2685 end if;
2686 end;
2687
2688 -- Case where T is the full declaration of some private type which has
2689 -- been swapped in Defining_Identifier (N).
2690
2691 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2692 Process_Full_View (N, T, Def_Id);
2693
2694 -- Record the reference. The form of this is a little strange, since
2695 -- the full declaration has been swapped in. So the first parameter
2696 -- here represents the entity to which a reference is made which is
2697 -- the "real" entity, i.e. the one swapped in, and the second
2698 -- parameter provides the reference location.
2699
2700 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2701 -- since we don't want a complaint about the full type being an
2702 -- unwanted reference to the private type
2703
2704 declare
2705 B : constant Boolean := Has_Pragma_Unreferenced (T);
2706 begin
2707 Set_Has_Pragma_Unreferenced (T, False);
2708 Generate_Reference (T, T, 'c');
2709 Set_Has_Pragma_Unreferenced (T, B);
2710 end;
2711
2712 Set_Completion_Referenced (Def_Id);
2713
2714 -- For completion of incomplete type, process incomplete dependents
2715 -- and always mark the full type as referenced (it is the incomplete
2716 -- type that we get for any real reference).
2717
2718 elsif Ekind (Prev) = E_Incomplete_Type then
2719 Process_Incomplete_Dependents (N, T, Prev);
2720 Generate_Reference (Prev, Def_Id, 'c');
2721 Set_Completion_Referenced (Def_Id);
2722
2723 -- If not private type or incomplete type completion, this is a real
2724 -- definition of a new entity, so record it.
2725
2726 else
2727 Generate_Definition (Def_Id);
2728 end if;
2729
2730 if Chars (Scope (Def_Id)) = Name_System
2731 and then Chars (Def_Id) = Name_Address
2732 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2733 then
2734 Set_Is_Descendent_Of_Address (Def_Id);
2735 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2736 Set_Is_Descendent_Of_Address (Prev);
2737 end if;
2738
2739 Set_Optimize_Alignment_Flags (Def_Id);
2740 Check_Eliminated (Def_Id);
2741
2742 -- If the declaration is a completion and aspects are present, apply
2743 -- them to the entity for the type which is currently the partial
2744 -- view, but which is the one that will be frozen.
2745
2746 if Has_Aspects (N) then
2747 if Prev /= Def_Id then
2748 Analyze_Aspect_Specifications (N, Prev);
2749 else
2750 Analyze_Aspect_Specifications (N, Def_Id);
2751 end if;
2752 end if;
2753 end Analyze_Full_Type_Declaration;
2754
2755 ----------------------------------
2756 -- Analyze_Incomplete_Type_Decl --
2757 ----------------------------------
2758
2759 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2760 F : constant Boolean := Is_Pure (Current_Scope);
2761 T : Entity_Id;
2762
2763 begin
2764 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2765
2766 Generate_Definition (Defining_Identifier (N));
2767
2768 -- Process an incomplete declaration. The identifier must not have been
2769 -- declared already in the scope. However, an incomplete declaration may
2770 -- appear in the private part of a package, for a private type that has
2771 -- already been declared.
2772
2773 -- In this case, the discriminants (if any) must match
2774
2775 T := Find_Type_Name (N);
2776
2777 Set_Ekind (T, E_Incomplete_Type);
2778 Init_Size_Align (T);
2779 Set_Is_First_Subtype (T, True);
2780 Set_Etype (T, T);
2781
2782 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2783 -- incomplete types.
2784
2785 if Tagged_Present (N) then
2786 Set_Is_Tagged_Type (T);
2787 Make_Class_Wide_Type (T);
2788 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2789 end if;
2790
2791 Push_Scope (T);
2792
2793 Set_Stored_Constraint (T, No_Elist);
2794
2795 if Present (Discriminant_Specifications (N)) then
2796 Process_Discriminants (N);
2797 end if;
2798
2799 End_Scope;
2800
2801 -- If the type has discriminants, non-trivial subtypes may be
2802 -- declared before the full view of the type. The full views of those
2803 -- subtypes will be built after the full view of the type.
2804
2805 Set_Private_Dependents (T, New_Elmt_List);
2806 Set_Is_Pure (T, F);
2807 end Analyze_Incomplete_Type_Decl;
2808
2809 -----------------------------------
2810 -- Analyze_Interface_Declaration --
2811 -----------------------------------
2812
2813 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2814 CW : constant Entity_Id := Class_Wide_Type (T);
2815
2816 begin
2817 Set_Is_Tagged_Type (T);
2818
2819 Set_Is_Limited_Record (T, Limited_Present (Def)
2820 or else Task_Present (Def)
2821 or else Protected_Present (Def)
2822 or else Synchronized_Present (Def));
2823
2824 -- Type is abstract if full declaration carries keyword, or if previous
2825 -- partial view did.
2826
2827 Set_Is_Abstract_Type (T);
2828 Set_Is_Interface (T);
2829
2830 -- Type is a limited interface if it includes the keyword limited, task,
2831 -- protected, or synchronized.
2832
2833 Set_Is_Limited_Interface
2834 (T, Limited_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def)
2837 or else Task_Present (Def));
2838
2839 Set_Interfaces (T, New_Elmt_List);
2840 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2841
2842 -- Complete the decoration of the class-wide entity if it was already
2843 -- built (i.e. during the creation of the limited view)
2844
2845 if Present (CW) then
2846 Set_Is_Interface (CW);
2847 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2848 end if;
2849
2850 -- Check runtime support for synchronized interfaces
2851
2852 if VM_Target = No_VM
2853 and then (Is_Task_Interface (T)
2854 or else Is_Protected_Interface (T)
2855 or else Is_Synchronized_Interface (T))
2856 and then not RTE_Available (RE_Select_Specific_Data)
2857 then
2858 Error_Msg_CRT ("synchronized interfaces", T);
2859 end if;
2860 end Analyze_Interface_Declaration;
2861
2862 -----------------------------
2863 -- Analyze_Itype_Reference --
2864 -----------------------------
2865
2866 -- Nothing to do. This node is placed in the tree only for the benefit of
2867 -- back end processing, and has no effect on the semantic processing.
2868
2869 procedure Analyze_Itype_Reference (N : Node_Id) is
2870 begin
2871 pragma Assert (Is_Itype (Itype (N)));
2872 null;
2873 end Analyze_Itype_Reference;
2874
2875 --------------------------------
2876 -- Analyze_Number_Declaration --
2877 --------------------------------
2878
2879 procedure Analyze_Number_Declaration (N : Node_Id) is
2880 Id : constant Entity_Id := Defining_Identifier (N);
2881 E : constant Node_Id := Expression (N);
2882 T : Entity_Id;
2883 Index : Interp_Index;
2884 It : Interp;
2885
2886 begin
2887 Generate_Definition (Id);
2888 Enter_Name (Id);
2889
2890 -- This is an optimization of a common case of an integer literal
2891
2892 if Nkind (E) = N_Integer_Literal then
2893 Set_Is_Static_Expression (E, True);
2894 Set_Etype (E, Universal_Integer);
2895
2896 Set_Etype (Id, Universal_Integer);
2897 Set_Ekind (Id, E_Named_Integer);
2898 Set_Is_Frozen (Id, True);
2899 return;
2900 end if;
2901
2902 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2903
2904 -- Process expression, replacing error by integer zero, to avoid
2905 -- cascaded errors or aborts further along in the processing
2906
2907 -- Replace Error by integer zero, which seems least likely to cause
2908 -- cascaded errors.
2909
2910 if E = Error then
2911 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2912 Set_Error_Posted (E);
2913 end if;
2914
2915 Analyze (E);
2916
2917 -- Verify that the expression is static and numeric. If
2918 -- the expression is overloaded, we apply the preference
2919 -- rule that favors root numeric types.
2920
2921 if not Is_Overloaded (E) then
2922 T := Etype (E);
2923
2924 else
2925 T := Any_Type;
2926
2927 Get_First_Interp (E, Index, It);
2928 while Present (It.Typ) loop
2929 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2930 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2931 then
2932 if T = Any_Type then
2933 T := It.Typ;
2934
2935 elsif It.Typ = Universal_Real
2936 or else It.Typ = Universal_Integer
2937 then
2938 -- Choose universal interpretation over any other
2939
2940 T := It.Typ;
2941 exit;
2942 end if;
2943 end if;
2944
2945 Get_Next_Interp (Index, It);
2946 end loop;
2947 end if;
2948
2949 if Is_Integer_Type (T) then
2950 Resolve (E, T);
2951 Set_Etype (Id, Universal_Integer);
2952 Set_Ekind (Id, E_Named_Integer);
2953
2954 elsif Is_Real_Type (T) then
2955
2956 -- Because the real value is converted to universal_real, this is a
2957 -- legal context for a universal fixed expression.
2958
2959 if T = Universal_Fixed then
2960 declare
2961 Loc : constant Source_Ptr := Sloc (N);
2962 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2963 Subtype_Mark =>
2964 New_Occurrence_Of (Universal_Real, Loc),
2965 Expression => Relocate_Node (E));
2966
2967 begin
2968 Rewrite (E, Conv);
2969 Analyze (E);
2970 end;
2971
2972 elsif T = Any_Fixed then
2973 Error_Msg_N ("illegal context for mixed mode operation", E);
2974
2975 -- Expression is of the form : universal_fixed * integer. Try to
2976 -- resolve as universal_real.
2977
2978 T := Universal_Real;
2979 Set_Etype (E, T);
2980 end if;
2981
2982 Resolve (E, T);
2983 Set_Etype (Id, Universal_Real);
2984 Set_Ekind (Id, E_Named_Real);
2985
2986 else
2987 Wrong_Type (E, Any_Numeric);
2988 Resolve (E, T);
2989
2990 Set_Etype (Id, T);
2991 Set_Ekind (Id, E_Constant);
2992 Set_Never_Set_In_Source (Id, True);
2993 Set_Is_True_Constant (Id, True);
2994 return;
2995 end if;
2996
2997 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2998 Set_Etype (E, Etype (Id));
2999 end if;
3000
3001 if not Is_OK_Static_Expression (E) then
3002 Flag_Non_Static_Expr
3003 ("non-static expression used in number declaration!", E);
3004 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3005 Set_Etype (E, Any_Type);
3006 end if;
3007 end Analyze_Number_Declaration;
3008
3009 -----------------------------
3010 -- Analyze_Object_Contract --
3011 -----------------------------
3012
3013 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3014 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3015 AR_Val : Boolean := False;
3016 AW_Val : Boolean := False;
3017 ER_Val : Boolean := False;
3018 EW_Val : Boolean := False;
3019 Prag : Node_Id;
3020 Seen : Boolean := False;
3021
3022 begin
3023 if Ekind (Obj_Id) = E_Constant then
3024
3025 -- A constant cannot be effectively volatile. This check is only
3026 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3027 -- rule. Do not flag internally-generated constants that map generic
3028 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3029
3030 if SPARK_Mode = On
3031 and then Is_Effectively_Volatile (Obj_Id)
3032 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3033 then
3034 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3035 end if;
3036
3037 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3038
3039 -- The following checks are only relevant when SPARK_Mode is on as
3040 -- they are not standard Ada legality rules.
3041
3042 if SPARK_Mode = On then
3043 if Is_Effectively_Volatile (Obj_Id) then
3044
3045 -- The declaration of an effectively volatile object must
3046 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3047
3048 if not Is_Library_Level_Entity (Obj_Id) then
3049 Error_Msg_N
3050 ("volatile variable & must be declared at library level",
3051 Obj_Id);
3052
3053 -- An object of a discriminated type cannot be effectively
3054 -- volatile (SPARK RM C.6(4)).
3055
3056 elsif Has_Discriminants (Obj_Typ) then
3057 Error_Msg_N
3058 ("discriminated object & cannot be volatile", Obj_Id);
3059
3060 -- An object of a tagged type cannot be effectively volatile
3061 -- (SPARK RM C.6(5)).
3062
3063 elsif Is_Tagged_Type (Obj_Typ) then
3064 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3065 end if;
3066
3067 -- The object is not effectively volatile
3068
3069 else
3070 -- A non-effectively volatile object cannot have effectively
3071 -- volatile components (SPARK RM 7.1.3(7)).
3072
3073 if not Is_Effectively_Volatile (Obj_Id)
3074 and then Has_Volatile_Component (Obj_Typ)
3075 then
3076 Error_Msg_N
3077 ("non-volatile object & cannot have volatile components",
3078 Obj_Id);
3079 end if;
3080 end if;
3081 end if;
3082
3083 -- Analyze all external properties
3084
3085 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3086
3087 if Present (Prag) then
3088 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3089 Seen := True;
3090 end if;
3091
3092 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3093
3094 if Present (Prag) then
3095 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3096 Seen := True;
3097 end if;
3098
3099 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3100
3101 if Present (Prag) then
3102 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3103 Seen := True;
3104 end if;
3105
3106 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3107
3108 if Present (Prag) then
3109 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3110 Seen := True;
3111 end if;
3112
3113 -- Verify the mutual interaction of the various external properties
3114
3115 if Seen then
3116 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3117 end if;
3118
3119 -- Check whether the lack of indicator Part_Of agrees with the
3120 -- placement of the variable with respect to the state space.
3121
3122 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3123
3124 if No (Prag) then
3125 Check_Missing_Part_Of (Obj_Id);
3126 end if;
3127 end if;
3128 end Analyze_Object_Contract;
3129
3130 --------------------------------
3131 -- Analyze_Object_Declaration --
3132 --------------------------------
3133
3134 procedure Analyze_Object_Declaration (N : Node_Id) is
3135 Loc : constant Source_Ptr := Sloc (N);
3136 Id : constant Entity_Id := Defining_Identifier (N);
3137 T : Entity_Id;
3138 Act_T : Entity_Id;
3139
3140 E : Node_Id := Expression (N);
3141 -- E is set to Expression (N) throughout this routine. When
3142 -- Expression (N) is modified, E is changed accordingly.
3143
3144 Prev_Entity : Entity_Id := Empty;
3145
3146 function Count_Tasks (T : Entity_Id) return Uint;
3147 -- This function is called when a non-generic library level object of a
3148 -- task type is declared. Its function is to count the static number of
3149 -- tasks declared within the type (it is only called if Has_Tasks is set
3150 -- for T). As a side effect, if an array of tasks with non-static bounds
3151 -- or a variant record type is encountered, Check_Restrictions is called
3152 -- indicating the count is unknown.
3153
3154 -----------------
3155 -- Count_Tasks --
3156 -----------------
3157
3158 function Count_Tasks (T : Entity_Id) return Uint is
3159 C : Entity_Id;
3160 X : Node_Id;
3161 V : Uint;
3162
3163 begin
3164 if Is_Task_Type (T) then
3165 return Uint_1;
3166
3167 elsif Is_Record_Type (T) then
3168 if Has_Discriminants (T) then
3169 Check_Restriction (Max_Tasks, N);
3170 return Uint_0;
3171
3172 else
3173 V := Uint_0;
3174 C := First_Component (T);
3175 while Present (C) loop
3176 V := V + Count_Tasks (Etype (C));
3177 Next_Component (C);
3178 end loop;
3179
3180 return V;
3181 end if;
3182
3183 elsif Is_Array_Type (T) then
3184 X := First_Index (T);
3185 V := Count_Tasks (Component_Type (T));
3186 while Present (X) loop
3187 C := Etype (X);
3188
3189 if not Is_OK_Static_Subtype (C) then
3190 Check_Restriction (Max_Tasks, N);
3191 return Uint_0;
3192 else
3193 V := V * (UI_Max (Uint_0,
3194 Expr_Value (Type_High_Bound (C)) -
3195 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3196 end if;
3197
3198 Next_Index (X);
3199 end loop;
3200
3201 return V;
3202
3203 else
3204 return Uint_0;
3205 end if;
3206 end Count_Tasks;
3207
3208 -- Start of processing for Analyze_Object_Declaration
3209
3210 begin
3211 -- There are three kinds of implicit types generated by an
3212 -- object declaration:
3213
3214 -- 1. Those generated by the original Object Definition
3215
3216 -- 2. Those generated by the Expression
3217
3218 -- 3. Those used to constrain the Object Definition with the
3219 -- expression constraints when the definition is unconstrained.
3220
3221 -- They must be generated in this order to avoid order of elaboration
3222 -- issues. Thus the first step (after entering the name) is to analyze
3223 -- the object definition.
3224
3225 if Constant_Present (N) then
3226 Prev_Entity := Current_Entity_In_Scope (Id);
3227
3228 if Present (Prev_Entity)
3229 and then
3230 -- If the homograph is an implicit subprogram, it is overridden
3231 -- by the current declaration.
3232
3233 ((Is_Overloadable (Prev_Entity)
3234 and then Is_Inherited_Operation (Prev_Entity))
3235
3236 -- The current object is a discriminal generated for an entry
3237 -- family index. Even though the index is a constant, in this
3238 -- particular context there is no true constant redeclaration.
3239 -- Enter_Name will handle the visibility.
3240
3241 or else
3242 (Is_Discriminal (Id)
3243 and then Ekind (Discriminal_Link (Id)) =
3244 E_Entry_Index_Parameter)
3245
3246 -- The current object is the renaming for a generic declared
3247 -- within the instance.
3248
3249 or else
3250 (Ekind (Prev_Entity) = E_Package
3251 and then Nkind (Parent (Prev_Entity)) =
3252 N_Package_Renaming_Declaration
3253 and then not Comes_From_Source (Prev_Entity)
3254 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3255 then
3256 Prev_Entity := Empty;
3257 end if;
3258 end if;
3259
3260 if Present (Prev_Entity) then
3261 Constant_Redeclaration (Id, N, T);
3262
3263 Generate_Reference (Prev_Entity, Id, 'c');
3264 Set_Completion_Referenced (Id);
3265
3266 if Error_Posted (N) then
3267
3268 -- Type mismatch or illegal redeclaration, Do not analyze
3269 -- expression to avoid cascaded errors.
3270
3271 T := Find_Type_Of_Object (Object_Definition (N), N);
3272 Set_Etype (Id, T);
3273 Set_Ekind (Id, E_Variable);
3274 goto Leave;
3275 end if;
3276
3277 -- In the normal case, enter identifier at the start to catch premature
3278 -- usage in the initialization expression.
3279
3280 else
3281 Generate_Definition (Id);
3282 Enter_Name (Id);
3283
3284 Mark_Coextensions (N, Object_Definition (N));
3285
3286 T := Find_Type_Of_Object (Object_Definition (N), N);
3287
3288 if Nkind (Object_Definition (N)) = N_Access_Definition
3289 and then Present
3290 (Access_To_Subprogram_Definition (Object_Definition (N)))
3291 and then Protected_Present
3292 (Access_To_Subprogram_Definition (Object_Definition (N)))
3293 then
3294 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3295 end if;
3296
3297 if Error_Posted (Id) then
3298 Set_Etype (Id, T);
3299 Set_Ekind (Id, E_Variable);
3300 goto Leave;
3301 end if;
3302 end if;
3303
3304 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3305 -- out some static checks
3306
3307 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3308
3309 -- In case of aggregates we must also take care of the correct
3310 -- initialization of nested aggregates bug this is done at the
3311 -- point of the analysis of the aggregate (see sem_aggr.adb).
3312
3313 if Present (Expression (N))
3314 and then Nkind (Expression (N)) = N_Aggregate
3315 then
3316 null;
3317
3318 else
3319 declare
3320 Save_Typ : constant Entity_Id := Etype (Id);
3321 begin
3322 Set_Etype (Id, T); -- Temp. decoration for static checks
3323 Null_Exclusion_Static_Checks (N);
3324 Set_Etype (Id, Save_Typ);
3325 end;
3326 end if;
3327 end if;
3328
3329 -- Object is marked pure if it is in a pure scope
3330
3331 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3332
3333 -- If deferred constant, make sure context is appropriate. We detect
3334 -- a deferred constant as a constant declaration with no expression.
3335 -- A deferred constant can appear in a package body if its completion
3336 -- is by means of an interface pragma.
3337
3338 if Constant_Present (N) and then No (E) then
3339
3340 -- A deferred constant may appear in the declarative part of the
3341 -- following constructs:
3342
3343 -- blocks
3344 -- entry bodies
3345 -- extended return statements
3346 -- package specs
3347 -- package bodies
3348 -- subprogram bodies
3349 -- task bodies
3350
3351 -- When declared inside a package spec, a deferred constant must be
3352 -- completed by a full constant declaration or pragma Import. In all
3353 -- other cases, the only proper completion is pragma Import. Extended
3354 -- return statements are flagged as invalid contexts because they do
3355 -- not have a declarative part and so cannot accommodate the pragma.
3356
3357 if Ekind (Current_Scope) = E_Return_Statement then
3358 Error_Msg_N
3359 ("invalid context for deferred constant declaration (RM 7.4)",
3360 N);
3361 Error_Msg_N
3362 ("\declaration requires an initialization expression",
3363 N);
3364 Set_Constant_Present (N, False);
3365
3366 -- In Ada 83, deferred constant must be of private type
3367
3368 elsif not Is_Private_Type (T) then
3369 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3370 Error_Msg_N
3371 ("(Ada 83) deferred constant must be private type", N);
3372 end if;
3373 end if;
3374
3375 -- If not a deferred constant, then object declaration freezes its type
3376
3377 else
3378 Check_Fully_Declared (T, N);
3379 Freeze_Before (N, T);
3380 end if;
3381
3382 -- If the object was created by a constrained array definition, then
3383 -- set the link in both the anonymous base type and anonymous subtype
3384 -- that are built to represent the array type to point to the object.
3385
3386 if Nkind (Object_Definition (Declaration_Node (Id))) =
3387 N_Constrained_Array_Definition
3388 then
3389 Set_Related_Array_Object (T, Id);
3390 Set_Related_Array_Object (Base_Type (T), Id);
3391 end if;
3392
3393 -- Special checks for protected objects not at library level
3394
3395 if Is_Protected_Type (T)
3396 and then not Is_Library_Level_Entity (Id)
3397 then
3398 Check_Restriction (No_Local_Protected_Objects, Id);
3399
3400 -- Protected objects with interrupt handlers must be at library level
3401
3402 -- Ada 2005: This test is not needed (and the corresponding clause
3403 -- in the RM is removed) because accessibility checks are sufficient
3404 -- to make handlers not at the library level illegal.
3405
3406 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3407 -- applies to the '95 version of the language as well.
3408
3409 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3410 Error_Msg_N
3411 ("interrupt object can only be declared at library level", Id);
3412 end if;
3413 end if;
3414
3415 -- The actual subtype of the object is the nominal subtype, unless
3416 -- the nominal one is unconstrained and obtained from the expression.
3417
3418 Act_T := T;
3419
3420 -- These checks should be performed before the initialization expression
3421 -- is considered, so that the Object_Definition node is still the same
3422 -- as in source code.
3423
3424 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3425 -- shall not be unconstrained. (The only exception to this is the
3426 -- admission of declarations of constants of type String.)
3427
3428 if not
3429 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3430 then
3431 Check_SPARK_Restriction
3432 ("subtype mark required", Object_Definition (N));
3433
3434 elsif Is_Array_Type (T)
3435 and then not Is_Constrained (T)
3436 and then T /= Standard_String
3437 then
3438 Check_SPARK_Restriction
3439 ("subtype mark of constrained type expected",
3440 Object_Definition (N));
3441 end if;
3442
3443 -- There are no aliased objects in SPARK
3444
3445 if Aliased_Present (N) then
3446 Check_SPARK_Restriction ("aliased object is not allowed", N);
3447 end if;
3448
3449 -- Process initialization expression if present and not in error
3450
3451 if Present (E) and then E /= Error then
3452
3453 -- Generate an error in case of CPP class-wide object initialization.
3454 -- Required because otherwise the expansion of the class-wide
3455 -- assignment would try to use 'size to initialize the object
3456 -- (primitive that is not available in CPP tagged types).
3457
3458 if Is_Class_Wide_Type (Act_T)
3459 and then
3460 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3461 or else
3462 (Present (Full_View (Root_Type (Etype (Act_T))))
3463 and then
3464 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3465 then
3466 Error_Msg_N
3467 ("predefined assignment not available for 'C'P'P tagged types",
3468 E);
3469 end if;
3470
3471 Mark_Coextensions (N, E);
3472 Analyze (E);
3473
3474 -- In case of errors detected in the analysis of the expression,
3475 -- decorate it with the expected type to avoid cascaded errors
3476
3477 if No (Etype (E)) then
3478 Set_Etype (E, T);
3479 end if;
3480
3481 -- If an initialization expression is present, then we set the
3482 -- Is_True_Constant flag. It will be reset if this is a variable
3483 -- and it is indeed modified.
3484
3485 Set_Is_True_Constant (Id, True);
3486
3487 -- If we are analyzing a constant declaration, set its completion
3488 -- flag after analyzing and resolving the expression.
3489
3490 if Constant_Present (N) then
3491 Set_Has_Completion (Id);
3492 end if;
3493
3494 -- Set type and resolve (type may be overridden later on). Note:
3495 -- Ekind (Id) must still be E_Void at this point so that incorrect
3496 -- early usage within E is properly diagnosed.
3497
3498 Set_Etype (Id, T);
3499
3500 -- If the expression is an aggregate we must look ahead to detect
3501 -- the possible presence of an address clause, and defer resolution
3502 -- and expansion of the aggregate to the freeze point of the entity.
3503
3504 if Comes_From_Source (N)
3505 and then Expander_Active
3506 and then Has_Following_Address_Clause (N)
3507 and then Nkind (E) = N_Aggregate
3508 then
3509 Set_Etype (E, T);
3510
3511 else
3512 Resolve (E, T);
3513 end if;
3514
3515 -- No further action needed if E is a call to an inlined function
3516 -- which returns an unconstrained type and it has been expanded into
3517 -- a procedure call. In that case N has been replaced by an object
3518 -- declaration without initializing expression and it has been
3519 -- analyzed (see Expand_Inlined_Call).
3520
3521 if Back_End_Inlining
3522 and then Expander_Active
3523 and then Nkind (E) = N_Function_Call
3524 and then Nkind (Name (E)) in N_Has_Entity
3525 and then Is_Inlined (Entity (Name (E)))
3526 and then not Is_Constrained (Etype (E))
3527 and then Analyzed (N)
3528 and then No (Expression (N))
3529 then
3530 return;
3531 end if;
3532
3533 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3534 -- node (which was marked already-analyzed), we need to set the type
3535 -- to something other than Any_Access in order to keep gigi happy.
3536
3537 if Etype (E) = Any_Access then
3538 Set_Etype (E, T);
3539 end if;
3540
3541 -- If the object is an access to variable, the initialization
3542 -- expression cannot be an access to constant.
3543
3544 if Is_Access_Type (T)
3545 and then not Is_Access_Constant (T)
3546 and then Is_Access_Type (Etype (E))
3547 and then Is_Access_Constant (Etype (E))
3548 then
3549 Error_Msg_N
3550 ("access to variable cannot be initialized "
3551 & "with an access-to-constant expression", E);
3552 end if;
3553
3554 if not Assignment_OK (N) then
3555 Check_Initialization (T, E);
3556 end if;
3557
3558 Check_Unset_Reference (E);
3559
3560 -- If this is a variable, then set current value. If this is a
3561 -- declared constant of a scalar type with a static expression,
3562 -- indicate that it is always valid.
3563
3564 if not Constant_Present (N) then
3565 if Compile_Time_Known_Value (E) then
3566 Set_Current_Value (Id, E);
3567 end if;
3568
3569 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3570 Set_Is_Known_Valid (Id);
3571 end if;
3572
3573 -- Deal with setting of null flags
3574
3575 if Is_Access_Type (T) then
3576 if Known_Non_Null (E) then
3577 Set_Is_Known_Non_Null (Id, True);
3578 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3579 Set_Is_Known_Null (Id, True);
3580 end if;
3581 end if;
3582
3583 -- Check incorrect use of dynamically tagged expressions
3584
3585 if Is_Tagged_Type (T) then
3586 Check_Dynamically_Tagged_Expression
3587 (Expr => E,
3588 Typ => T,
3589 Related_Nod => N);
3590 end if;
3591
3592 Apply_Scalar_Range_Check (E, T);
3593 Apply_Static_Length_Check (E, T);
3594
3595 if Nkind (Original_Node (N)) = N_Object_Declaration
3596 and then Comes_From_Source (Original_Node (N))
3597
3598 -- Only call test if needed
3599
3600 and then Restriction_Check_Required (SPARK_05)
3601 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3602 then
3603 Check_SPARK_Restriction
3604 ("initialization expression is not appropriate", E);
3605 end if;
3606 end if;
3607
3608 -- If the No_Streams restriction is set, check that the type of the
3609 -- object is not, and does not contain, any subtype derived from
3610 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3611 -- Has_Stream just for efficiency reasons. There is no point in
3612 -- spending time on a Has_Stream check if the restriction is not set.
3613
3614 if Restriction_Check_Required (No_Streams) then
3615 if Has_Stream (T) then
3616 Check_Restriction (No_Streams, N);
3617 end if;
3618 end if;
3619
3620 -- Deal with predicate check before we start to do major rewriting. It
3621 -- is OK to initialize and then check the initialized value, since the
3622 -- object goes out of scope if we get a predicate failure. Note that we
3623 -- do this in the analyzer and not the expander because the analyzer
3624 -- does some substantial rewriting in some cases.
3625
3626 -- We need a predicate check if the type has predicates, and if either
3627 -- there is an initializing expression, or for default initialization
3628 -- when we have at least one case of an explicit default initial value
3629 -- and then this is not an internal declaration whose initialization
3630 -- comes later (as for an aggregate expansion).
3631
3632 if not Suppress_Assignment_Checks (N)
3633 and then Present (Predicate_Function (T))
3634 and then not No_Initialization (N)
3635 and then
3636 (Present (E)
3637 or else
3638 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3639 then
3640 -- If the type has a static predicate and the expression is known at
3641 -- compile time, see if the expression satisfies the predicate.
3642
3643 if Present (E) then
3644 Check_Expression_Against_Static_Predicate (E, T);
3645 end if;
3646
3647 Insert_After (N,
3648 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3649 end if;
3650
3651 -- Case of unconstrained type
3652
3653 if Is_Indefinite_Subtype (T) then
3654
3655 -- In SPARK, a declaration of unconstrained type is allowed
3656 -- only for constants of type string.
3657
3658 if Is_String_Type (T) and then not Constant_Present (N) then
3659 Check_SPARK_Restriction
3660 ("declaration of object of unconstrained type not allowed", N);
3661 end if;
3662
3663 -- Nothing to do in deferred constant case
3664
3665 if Constant_Present (N) and then No (E) then
3666 null;
3667
3668 -- Case of no initialization present
3669
3670 elsif No (E) then
3671 if No_Initialization (N) then
3672 null;
3673
3674 elsif Is_Class_Wide_Type (T) then
3675 Error_Msg_N
3676 ("initialization required in class-wide declaration ", N);
3677
3678 else
3679 Error_Msg_N
3680 ("unconstrained subtype not allowed (need initialization)",
3681 Object_Definition (N));
3682
3683 if Is_Record_Type (T) and then Has_Discriminants (T) then
3684 Error_Msg_N
3685 ("\provide initial value or explicit discriminant values",
3686 Object_Definition (N));
3687
3688 Error_Msg_NE
3689 ("\or give default discriminant values for type&",
3690 Object_Definition (N), T);
3691
3692 elsif Is_Array_Type (T) then
3693 Error_Msg_N
3694 ("\provide initial value or explicit array bounds",
3695 Object_Definition (N));
3696 end if;
3697 end if;
3698
3699 -- Case of initialization present but in error. Set initial
3700 -- expression as absent (but do not make above complaints)
3701
3702 elsif E = Error then
3703 Set_Expression (N, Empty);
3704 E := Empty;
3705
3706 -- Case of initialization present
3707
3708 else
3709 -- Check restrictions in Ada 83
3710
3711 if not Constant_Present (N) then
3712
3713 -- Unconstrained variables not allowed in Ada 83 mode
3714
3715 if Ada_Version = Ada_83
3716 and then Comes_From_Source (Object_Definition (N))
3717 then
3718 Error_Msg_N
3719 ("(Ada 83) unconstrained variable not allowed",
3720 Object_Definition (N));
3721 end if;
3722 end if;
3723
3724 -- Now we constrain the variable from the initializing expression
3725
3726 -- If the expression is an aggregate, it has been expanded into
3727 -- individual assignments. Retrieve the actual type from the
3728 -- expanded construct.
3729
3730 if Is_Array_Type (T)
3731 and then No_Initialization (N)
3732 and then Nkind (Original_Node (E)) = N_Aggregate
3733 then
3734 Act_T := Etype (E);
3735
3736 -- In case of class-wide interface object declarations we delay
3737 -- the generation of the equivalent record type declarations until
3738 -- its expansion because there are cases in they are not required.
3739
3740 elsif Is_Interface (T) then
3741 null;
3742
3743 else
3744 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3745 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3746 end if;
3747
3748 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3749
3750 if Aliased_Present (N) then
3751 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3752 end if;
3753
3754 Freeze_Before (N, Act_T);
3755 Freeze_Before (N, T);
3756 end if;
3757
3758 elsif Is_Array_Type (T)
3759 and then No_Initialization (N)
3760 and then Nkind (Original_Node (E)) = N_Aggregate
3761 then
3762 if not Is_Entity_Name (Object_Definition (N)) then
3763 Act_T := Etype (E);
3764 Check_Compile_Time_Size (Act_T);
3765
3766 if Aliased_Present (N) then
3767 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3768 end if;
3769 end if;
3770
3771 -- When the given object definition and the aggregate are specified
3772 -- independently, and their lengths might differ do a length check.
3773 -- This cannot happen if the aggregate is of the form (others =>...)
3774
3775 if not Is_Constrained (T) then
3776 null;
3777
3778 elsif Nkind (E) = N_Raise_Constraint_Error then
3779
3780 -- Aggregate is statically illegal. Place back in declaration
3781
3782 Set_Expression (N, E);
3783 Set_No_Initialization (N, False);
3784
3785 elsif T = Etype (E) then
3786 null;
3787
3788 elsif Nkind (E) = N_Aggregate
3789 and then Present (Component_Associations (E))
3790 and then Present (Choices (First (Component_Associations (E))))
3791 and then Nkind (First
3792 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3793 then
3794 null;
3795
3796 else
3797 Apply_Length_Check (E, T);
3798 end if;
3799
3800 -- If the type is limited unconstrained with defaulted discriminants and
3801 -- there is no expression, then the object is constrained by the
3802 -- defaults, so it is worthwhile building the corresponding subtype.
3803
3804 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3805 and then not Is_Constrained (T)
3806 and then Has_Discriminants (T)
3807 then
3808 if No (E) then
3809 Act_T := Build_Default_Subtype (T, N);
3810 else
3811 -- Ada 2005: A limited object may be initialized by means of an
3812 -- aggregate. If the type has default discriminants it has an
3813 -- unconstrained nominal type, Its actual subtype will be obtained
3814 -- from the aggregate, and not from the default discriminants.
3815
3816 Act_T := Etype (E);
3817 end if;
3818
3819 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3820
3821 elsif Nkind (E) = N_Function_Call
3822 and then Constant_Present (N)
3823 and then Has_Unconstrained_Elements (Etype (E))
3824 then
3825 -- The back-end has problems with constants of a discriminated type
3826 -- with defaults, if the initial value is a function call. We
3827 -- generate an intermediate temporary that will receive a reference
3828 -- to the result of the call. The initialization expression then
3829 -- becomes a dereference of that temporary.
3830
3831 Remove_Side_Effects (E);
3832
3833 -- If this is a constant declaration of an unconstrained type and
3834 -- the initialization is an aggregate, we can use the subtype of the
3835 -- aggregate for the declared entity because it is immutable.
3836
3837 elsif not Is_Constrained (T)
3838 and then Has_Discriminants (T)
3839 and then Constant_Present (N)
3840 and then not Has_Unchecked_Union (T)
3841 and then Nkind (E) = N_Aggregate
3842 then
3843 Act_T := Etype (E);
3844 end if;
3845
3846 -- Check No_Wide_Characters restriction
3847
3848 Check_Wide_Character_Restriction (T, Object_Definition (N));
3849
3850 -- Indicate this is not set in source. Certainly true for constants, and
3851 -- true for variables so far (will be reset for a variable if and when
3852 -- we encounter a modification in the source).
3853
3854 Set_Never_Set_In_Source (Id, True);
3855
3856 -- Now establish the proper kind and type of the object
3857
3858 if Constant_Present (N) then
3859 Set_Ekind (Id, E_Constant);
3860 Set_Is_True_Constant (Id);
3861
3862 else
3863 Set_Ekind (Id, E_Variable);
3864
3865 -- A variable is set as shared passive if it appears in a shared
3866 -- passive package, and is at the outer level. This is not done for
3867 -- entities generated during expansion, because those are always
3868 -- manipulated locally.
3869
3870 if Is_Shared_Passive (Current_Scope)
3871 and then Is_Library_Level_Entity (Id)
3872 and then Comes_From_Source (Id)
3873 then
3874 Set_Is_Shared_Passive (Id);
3875 Check_Shared_Var (Id, T, N);
3876 end if;
3877
3878 -- Set Has_Initial_Value if initializing expression present. Note
3879 -- that if there is no initializing expression, we leave the state
3880 -- of this flag unchanged (usually it will be False, but notably in
3881 -- the case of exception choice variables, it will already be true).
3882
3883 if Present (E) then
3884 Set_Has_Initial_Value (Id, True);
3885 end if;
3886
3887 Set_Contract (Id, Make_Contract (Sloc (Id)));
3888 end if;
3889
3890 -- Initialize alignment and size and capture alignment setting
3891
3892 Init_Alignment (Id);
3893 Init_Esize (Id);
3894 Set_Optimize_Alignment_Flags (Id);
3895
3896 -- Deal with aliased case
3897
3898 if Aliased_Present (N) then
3899 Set_Is_Aliased (Id);
3900
3901 -- If the object is aliased and the type is unconstrained with
3902 -- defaulted discriminants and there is no expression, then the
3903 -- object is constrained by the defaults, so it is worthwhile
3904 -- building the corresponding subtype.
3905
3906 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3907 -- unconstrained, then only establish an actual subtype if the
3908 -- nominal subtype is indefinite. In definite cases the object is
3909 -- unconstrained in Ada 2005.
3910
3911 if No (E)
3912 and then Is_Record_Type (T)
3913 and then not Is_Constrained (T)
3914 and then Has_Discriminants (T)
3915 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3916 then
3917 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3918 end if;
3919 end if;
3920
3921 -- Now we can set the type of the object
3922
3923 Set_Etype (Id, Act_T);
3924
3925 -- Object is marked to be treated as volatile if type is volatile and
3926 -- we clear the Current_Value setting that may have been set above.
3927
3928 if Treat_As_Volatile (Etype (Id)) then
3929 Set_Treat_As_Volatile (Id);
3930 Set_Current_Value (Id, Empty);
3931 end if;
3932
3933 -- Deal with controlled types
3934
3935 if Has_Controlled_Component (Etype (Id))
3936 or else Is_Controlled (Etype (Id))
3937 then
3938 if not Is_Library_Level_Entity (Id) then
3939 Check_Restriction (No_Nested_Finalization, N);
3940 else
3941 Validate_Controlled_Object (Id);
3942 end if;
3943 end if;
3944
3945 if Has_Task (Etype (Id)) then
3946 Check_Restriction (No_Tasking, N);
3947
3948 -- Deal with counting max tasks
3949
3950 -- Nothing to do if inside a generic
3951
3952 if Inside_A_Generic then
3953 null;
3954
3955 -- If library level entity, then count tasks
3956
3957 elsif Is_Library_Level_Entity (Id) then
3958 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3959
3960 -- If not library level entity, then indicate we don't know max
3961 -- tasks and also check task hierarchy restriction and blocking
3962 -- operation (since starting a task is definitely blocking).
3963
3964 else
3965 Check_Restriction (Max_Tasks, N);
3966 Check_Restriction (No_Task_Hierarchy, N);
3967 Check_Potentially_Blocking_Operation (N);
3968 end if;
3969
3970 -- A rather specialized test. If we see two tasks being declared
3971 -- of the same type in the same object declaration, and the task
3972 -- has an entry with an address clause, we know that program error
3973 -- will be raised at run time since we can't have two tasks with
3974 -- entries at the same address.
3975
3976 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3977 declare
3978 E : Entity_Id;
3979
3980 begin
3981 E := First_Entity (Etype (Id));
3982 while Present (E) loop
3983 if Ekind (E) = E_Entry
3984 and then Present (Get_Attribute_Definition_Clause
3985 (E, Attribute_Address))
3986 then
3987 Error_Msg_Warn := SPARK_Mode /= On;
3988 Error_Msg_N
3989 ("more than one task with same entry address<<", N);
3990 Error_Msg_N ("\Program_Error [<<", N);
3991 Insert_Action (N,
3992 Make_Raise_Program_Error (Loc,
3993 Reason => PE_Duplicated_Entry_Address));
3994 exit;
3995 end if;
3996
3997 Next_Entity (E);
3998 end loop;
3999 end;
4000 end if;
4001 end if;
4002
4003 -- Some simple constant-propagation: if the expression is a constant
4004 -- string initialized with a literal, share the literal. This avoids
4005 -- a run-time copy.
4006
4007 if Present (E)
4008 and then Is_Entity_Name (E)
4009 and then Ekind (Entity (E)) = E_Constant
4010 and then Base_Type (Etype (E)) = Standard_String
4011 then
4012 declare
4013 Val : constant Node_Id := Constant_Value (Entity (E));
4014 begin
4015 if Present (Val) and then Nkind (Val) = N_String_Literal then
4016 Rewrite (E, New_Copy (Val));
4017 end if;
4018 end;
4019 end if;
4020
4021 -- Another optimization: if the nominal subtype is unconstrained and
4022 -- the expression is a function call that returns an unconstrained
4023 -- type, rewrite the declaration as a renaming of the result of the
4024 -- call. The exceptions below are cases where the copy is expected,
4025 -- either by the back end (Aliased case) or by the semantics, as for
4026 -- initializing controlled types or copying tags for classwide types.
4027
4028 if Present (E)
4029 and then Nkind (E) = N_Explicit_Dereference
4030 and then Nkind (Original_Node (E)) = N_Function_Call
4031 and then not Is_Library_Level_Entity (Id)
4032 and then not Is_Constrained (Underlying_Type (T))
4033 and then not Is_Aliased (Id)
4034 and then not Is_Class_Wide_Type (T)
4035 and then not Is_Controlled (T)
4036 and then not Has_Controlled_Component (Base_Type (T))
4037 and then Expander_Active
4038 then
4039 Rewrite (N,
4040 Make_Object_Renaming_Declaration (Loc,
4041 Defining_Identifier => Id,
4042 Access_Definition => Empty,
4043 Subtype_Mark => New_Occurrence_Of
4044 (Base_Type (Etype (Id)), Loc),
4045 Name => E));
4046
4047 Set_Renamed_Object (Id, E);
4048
4049 -- Force generation of debugging information for the constant and for
4050 -- the renamed function call.
4051
4052 Set_Debug_Info_Needed (Id);
4053 Set_Debug_Info_Needed (Entity (Prefix (E)));
4054 end if;
4055
4056 if Present (Prev_Entity)
4057 and then Is_Frozen (Prev_Entity)
4058 and then not Error_Posted (Id)
4059 then
4060 Error_Msg_N ("full constant declaration appears too late", N);
4061 end if;
4062
4063 Check_Eliminated (Id);
4064
4065 -- Deal with setting In_Private_Part flag if in private part
4066
4067 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4068 then
4069 Set_In_Private_Part (Id);
4070 end if;
4071
4072 -- Check for violation of No_Local_Timing_Events
4073
4074 if Restriction_Check_Required (No_Local_Timing_Events)
4075 and then not Is_Library_Level_Entity (Id)
4076 and then Is_RTE (Etype (Id), RE_Timing_Event)
4077 then
4078 Check_Restriction (No_Local_Timing_Events, N);
4079 end if;
4080
4081 <<Leave>>
4082 -- Initialize the refined state of a variable here because this is a
4083 -- common destination for legal and illegal object declarations.
4084
4085 if Ekind (Id) = E_Variable then
4086 Set_Encapsulating_State (Id, Empty);
4087 end if;
4088
4089 if Has_Aspects (N) then
4090 Analyze_Aspect_Specifications (N, Id);
4091 end if;
4092
4093 Analyze_Dimension (N);
4094
4095 -- Verify whether the object declaration introduces an illegal hidden
4096 -- state within a package subject to a null abstract state.
4097
4098 if Ekind (Id) = E_Variable then
4099 Check_No_Hidden_State (Id);
4100 end if;
4101 end Analyze_Object_Declaration;
4102
4103 ---------------------------
4104 -- Analyze_Others_Choice --
4105 ---------------------------
4106
4107 -- Nothing to do for the others choice node itself, the semantic analysis
4108 -- of the others choice will occur as part of the processing of the parent
4109
4110 procedure Analyze_Others_Choice (N : Node_Id) is
4111 pragma Warnings (Off, N);
4112 begin
4113 null;
4114 end Analyze_Others_Choice;
4115
4116 -------------------------------------------
4117 -- Analyze_Private_Extension_Declaration --
4118 -------------------------------------------
4119
4120 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4121 T : constant Entity_Id := Defining_Identifier (N);
4122 Indic : constant Node_Id := Subtype_Indication (N);
4123 Parent_Type : Entity_Id;
4124 Parent_Base : Entity_Id;
4125
4126 begin
4127 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4128
4129 if Is_Non_Empty_List (Interface_List (N)) then
4130 declare
4131 Intf : Node_Id;
4132 T : Entity_Id;
4133
4134 begin
4135 Intf := First (Interface_List (N));
4136 while Present (Intf) loop
4137 T := Find_Type_Of_Subtype_Indic (Intf);
4138
4139 Diagnose_Interface (Intf, T);
4140 Next (Intf);
4141 end loop;
4142 end;
4143 end if;
4144
4145 Generate_Definition (T);
4146
4147 -- For other than Ada 2012, just enter the name in the current scope
4148
4149 if Ada_Version < Ada_2012 then
4150 Enter_Name (T);
4151
4152 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4153 -- case of private type that completes an incomplete type.
4154
4155 else
4156 declare
4157 Prev : Entity_Id;
4158
4159 begin
4160 Prev := Find_Type_Name (N);
4161
4162 pragma Assert (Prev = T
4163 or else (Ekind (Prev) = E_Incomplete_Type
4164 and then Present (Full_View (Prev))
4165 and then Full_View (Prev) = T));
4166 end;
4167 end if;
4168
4169 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4170 Parent_Base := Base_Type (Parent_Type);
4171
4172 if Parent_Type = Any_Type
4173 or else Etype (Parent_Type) = Any_Type
4174 then
4175 Set_Ekind (T, Ekind (Parent_Type));
4176 Set_Etype (T, Any_Type);
4177 goto Leave;
4178
4179 elsif not Is_Tagged_Type (Parent_Type) then
4180 Error_Msg_N
4181 ("parent of type extension must be a tagged type ", Indic);
4182 goto Leave;
4183
4184 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4185 Error_Msg_N ("premature derivation of incomplete type", Indic);
4186 goto Leave;
4187
4188 elsif Is_Concurrent_Type (Parent_Type) then
4189 Error_Msg_N
4190 ("parent type of a private extension cannot be "
4191 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4192
4193 Set_Etype (T, Any_Type);
4194 Set_Ekind (T, E_Limited_Private_Type);
4195 Set_Private_Dependents (T, New_Elmt_List);
4196 Set_Error_Posted (T);
4197 goto Leave;
4198 end if;
4199
4200 -- Perhaps the parent type should be changed to the class-wide type's
4201 -- specific type in this case to prevent cascading errors ???
4202
4203 if Is_Class_Wide_Type (Parent_Type) then
4204 Error_Msg_N
4205 ("parent of type extension must not be a class-wide type", Indic);
4206 goto Leave;
4207 end if;
4208
4209 if (not Is_Package_Or_Generic_Package (Current_Scope)
4210 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4211 or else In_Private_Part (Current_Scope)
4212
4213 then
4214 Error_Msg_N ("invalid context for private extension", N);
4215 end if;
4216
4217 -- Set common attributes
4218
4219 Set_Is_Pure (T, Is_Pure (Current_Scope));
4220 Set_Scope (T, Current_Scope);
4221 Set_Ekind (T, E_Record_Type_With_Private);
4222 Init_Size_Align (T);
4223 Set_Default_SSO (T);
4224
4225 Set_Etype (T, Parent_Base);
4226 Set_Has_Task (T, Has_Task (Parent_Base));
4227 Set_Has_Protected (T, Has_Task (Parent_Base));
4228
4229 Set_Convention (T, Convention (Parent_Type));
4230 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4231 Set_Is_First_Subtype (T);
4232 Make_Class_Wide_Type (T);
4233
4234 if Unknown_Discriminants_Present (N) then
4235 Set_Discriminant_Constraint (T, No_Elist);
4236 end if;
4237
4238 Build_Derived_Record_Type (N, Parent_Type, T);
4239
4240 -- Propagate inherited invariant information. The new type has
4241 -- invariants, if the parent type has inheritable invariants,
4242 -- and these invariants can in turn be inherited.
4243
4244 if Has_Inheritable_Invariants (Parent_Type) then
4245 Set_Has_Inheritable_Invariants (T);
4246 Set_Has_Invariants (T);
4247 end if;
4248
4249 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4250 -- synchronized formal derived type.
4251
4252 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4253 Set_Is_Limited_Record (T);
4254
4255 -- Formal derived type case
4256
4257 if Is_Generic_Type (T) then
4258
4259 -- The parent must be a tagged limited type or a synchronized
4260 -- interface.
4261
4262 if (not Is_Tagged_Type (Parent_Type)
4263 or else not Is_Limited_Type (Parent_Type))
4264 and then
4265 (not Is_Interface (Parent_Type)
4266 or else not Is_Synchronized_Interface (Parent_Type))
4267 then
4268 Error_Msg_NE ("parent type of & must be tagged limited " &
4269 "or synchronized", N, T);
4270 end if;
4271
4272 -- The progenitors (if any) must be limited or synchronized
4273 -- interfaces.
4274
4275 if Present (Interfaces (T)) then
4276 declare
4277 Iface : Entity_Id;
4278 Iface_Elmt : Elmt_Id;
4279
4280 begin
4281 Iface_Elmt := First_Elmt (Interfaces (T));
4282 while Present (Iface_Elmt) loop
4283 Iface := Node (Iface_Elmt);
4284
4285 if not Is_Limited_Interface (Iface)
4286 and then not Is_Synchronized_Interface (Iface)
4287 then
4288 Error_Msg_NE ("progenitor & must be limited " &
4289 "or synchronized", N, Iface);
4290 end if;
4291
4292 Next_Elmt (Iface_Elmt);
4293 end loop;
4294 end;
4295 end if;
4296
4297 -- Regular derived extension, the parent must be a limited or
4298 -- synchronized interface.
4299
4300 else
4301 if not Is_Interface (Parent_Type)
4302 or else (not Is_Limited_Interface (Parent_Type)
4303 and then not Is_Synchronized_Interface (Parent_Type))
4304 then
4305 Error_Msg_NE
4306 ("parent type of & must be limited interface", N, T);
4307 end if;
4308 end if;
4309
4310 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4311 -- extension with a synchronized parent must be explicitly declared
4312 -- synchronized, because the full view will be a synchronized type.
4313 -- This must be checked before the check for limited types below,
4314 -- to ensure that types declared limited are not allowed to extend
4315 -- synchronized interfaces.
4316
4317 elsif Is_Interface (Parent_Type)
4318 and then Is_Synchronized_Interface (Parent_Type)
4319 and then not Synchronized_Present (N)
4320 then
4321 Error_Msg_NE
4322 ("private extension of& must be explicitly synchronized",
4323 N, Parent_Type);
4324
4325 elsif Limited_Present (N) then
4326 Set_Is_Limited_Record (T);
4327
4328 if not Is_Limited_Type (Parent_Type)
4329 and then
4330 (not Is_Interface (Parent_Type)
4331 or else not Is_Limited_Interface (Parent_Type))
4332 then
4333 Error_Msg_NE ("parent type& of limited extension must be limited",
4334 N, Parent_Type);
4335 end if;
4336 end if;
4337
4338 <<Leave>>
4339 if Has_Aspects (N) then
4340 Analyze_Aspect_Specifications (N, T);
4341 end if;
4342 end Analyze_Private_Extension_Declaration;
4343
4344 ---------------------------------
4345 -- Analyze_Subtype_Declaration --
4346 ---------------------------------
4347
4348 procedure Analyze_Subtype_Declaration
4349 (N : Node_Id;
4350 Skip : Boolean := False)
4351 is
4352 Id : constant Entity_Id := Defining_Identifier (N);
4353 T : Entity_Id;
4354 R_Checks : Check_Result;
4355
4356 begin
4357 Generate_Definition (Id);
4358 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4359 Init_Size_Align (Id);
4360
4361 -- The following guard condition on Enter_Name is to handle cases where
4362 -- the defining identifier has already been entered into the scope but
4363 -- the declaration as a whole needs to be analyzed.
4364
4365 -- This case in particular happens for derived enumeration types. The
4366 -- derived enumeration type is processed as an inserted enumeration type
4367 -- declaration followed by a rewritten subtype declaration. The defining
4368 -- identifier, however, is entered into the name scope very early in the
4369 -- processing of the original type declaration and therefore needs to be
4370 -- avoided here, when the created subtype declaration is analyzed. (See
4371 -- Build_Derived_Types)
4372
4373 -- This also happens when the full view of a private type is derived
4374 -- type with constraints. In this case the entity has been introduced
4375 -- in the private declaration.
4376
4377 -- Finally this happens in some complex cases when validity checks are
4378 -- enabled, where the same subtype declaration may be analyzed twice.
4379 -- This can happen if the subtype is created by the pre-analysis of
4380 -- an attribute tht gives the range of a loop statement, and the loop
4381 -- itself appears within an if_statement that will be rewritten during
4382 -- expansion.
4383
4384 if Skip
4385 or else (Present (Etype (Id))
4386 and then (Is_Private_Type (Etype (Id))
4387 or else Is_Task_Type (Etype (Id))
4388 or else Is_Rewrite_Substitution (N)))
4389 then
4390 null;
4391
4392 elsif Current_Entity (Id) = Id then
4393 null;
4394
4395 else
4396 Enter_Name (Id);
4397 end if;
4398
4399 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4400
4401 -- Class-wide equivalent types of records with unknown discriminants
4402 -- involve the generation of an itype which serves as the private view
4403 -- of a constrained record subtype. In such cases the base type of the
4404 -- current subtype we are processing is the private itype. Use the full
4405 -- of the private itype when decorating various attributes.
4406
4407 if Is_Itype (T)
4408 and then Is_Private_Type (T)
4409 and then Present (Full_View (T))
4410 then
4411 T := Full_View (T);
4412 end if;
4413
4414 -- Inherit common attributes
4415
4416 Set_Is_Volatile (Id, Is_Volatile (T));
4417 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4418 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4419 Set_Convention (Id, Convention (T));
4420
4421 -- If ancestor has predicates then so does the subtype, and in addition
4422 -- we must delay the freeze to properly arrange predicate inheritance.
4423
4424 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4425 -- in which T = ID, so the above tests and assignments do nothing???
4426
4427 if Has_Predicates (T)
4428 or else (Present (Ancestor_Subtype (T))
4429 and then Has_Predicates (Ancestor_Subtype (T)))
4430 then
4431 Set_Has_Predicates (Id);
4432 Set_Has_Delayed_Freeze (Id);
4433 end if;
4434
4435 -- Subtype of Boolean cannot have a constraint in SPARK
4436
4437 if Is_Boolean_Type (T)
4438 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4439 then
4440 Check_SPARK_Restriction
4441 ("subtype of Boolean cannot have constraint", N);
4442 end if;
4443
4444 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4445 declare
4446 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4447 One_Cstr : Node_Id;
4448 Low : Node_Id;
4449 High : Node_Id;
4450
4451 begin
4452 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4453 One_Cstr := First (Constraints (Cstr));
4454 while Present (One_Cstr) loop
4455
4456 -- Index or discriminant constraint in SPARK must be a
4457 -- subtype mark.
4458
4459 if not
4460 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4461 then
4462 Check_SPARK_Restriction
4463 ("subtype mark required", One_Cstr);
4464
4465 -- String subtype must have a lower bound of 1 in SPARK.
4466 -- Note that we do not need to test for the non-static case
4467 -- here, since that was already taken care of in
4468 -- Process_Range_Expr_In_Decl.
4469
4470 elsif Base_Type (T) = Standard_String then
4471 Get_Index_Bounds (One_Cstr, Low, High);
4472
4473 if Is_OK_Static_Expression (Low)
4474 and then Expr_Value (Low) /= 1
4475 then
4476 Check_SPARK_Restriction
4477 ("String subtype must have lower bound of 1", N);
4478 end if;
4479 end if;
4480
4481 Next (One_Cstr);
4482 end loop;
4483 end if;
4484 end;
4485 end if;
4486
4487 -- In the case where there is no constraint given in the subtype
4488 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4489 -- semantic attributes must be established here.
4490
4491 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4492 Set_Etype (Id, Base_Type (T));
4493
4494 -- Subtype of unconstrained array without constraint is not allowed
4495 -- in SPARK.
4496
4497 if Is_Array_Type (T) and then not Is_Constrained (T) then
4498 Check_SPARK_Restriction
4499 ("subtype of unconstrained array must have constraint", N);
4500 end if;
4501
4502 case Ekind (T) is
4503 when Array_Kind =>
4504 Set_Ekind (Id, E_Array_Subtype);
4505 Copy_Array_Subtype_Attributes (Id, T);
4506
4507 when Decimal_Fixed_Point_Kind =>
4508 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4509 Set_Digits_Value (Id, Digits_Value (T));
4510 Set_Delta_Value (Id, Delta_Value (T));
4511 Set_Scale_Value (Id, Scale_Value (T));
4512 Set_Small_Value (Id, Small_Value (T));
4513 Set_Scalar_Range (Id, Scalar_Range (T));
4514 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4515 Set_Is_Constrained (Id, Is_Constrained (T));
4516 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4517 Set_RM_Size (Id, RM_Size (T));
4518
4519 when Enumeration_Kind =>
4520 Set_Ekind (Id, E_Enumeration_Subtype);
4521 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4522 Set_Scalar_Range (Id, Scalar_Range (T));
4523 Set_Is_Character_Type (Id, Is_Character_Type (T));
4524 Set_Is_Constrained (Id, Is_Constrained (T));
4525 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4526 Set_RM_Size (Id, RM_Size (T));
4527 Inherit_Predicate_Flags (Id, T);
4528
4529 when Ordinary_Fixed_Point_Kind =>
4530 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4531 Set_Scalar_Range (Id, Scalar_Range (T));
4532 Set_Small_Value (Id, Small_Value (T));
4533 Set_Delta_Value (Id, Delta_Value (T));
4534 Set_Is_Constrained (Id, Is_Constrained (T));
4535 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4536 Set_RM_Size (Id, RM_Size (T));
4537
4538 when Float_Kind =>
4539 Set_Ekind (Id, E_Floating_Point_Subtype);
4540 Set_Scalar_Range (Id, Scalar_Range (T));
4541 Set_Digits_Value (Id, Digits_Value (T));
4542 Set_Is_Constrained (Id, Is_Constrained (T));
4543
4544 when Signed_Integer_Kind =>
4545 Set_Ekind (Id, E_Signed_Integer_Subtype);
4546 Set_Scalar_Range (Id, Scalar_Range (T));
4547 Set_Is_Constrained (Id, Is_Constrained (T));
4548 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4549 Set_RM_Size (Id, RM_Size (T));
4550 Inherit_Predicate_Flags (Id, T);
4551
4552 when Modular_Integer_Kind =>
4553 Set_Ekind (Id, E_Modular_Integer_Subtype);
4554 Set_Scalar_Range (Id, Scalar_Range (T));
4555 Set_Is_Constrained (Id, Is_Constrained (T));
4556 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4557 Set_RM_Size (Id, RM_Size (T));
4558 Inherit_Predicate_Flags (Id, T);
4559
4560 when Class_Wide_Kind =>
4561 Set_Ekind (Id, E_Class_Wide_Subtype);
4562 Set_First_Entity (Id, First_Entity (T));
4563 Set_Last_Entity (Id, Last_Entity (T));
4564 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4565 Set_Cloned_Subtype (Id, T);
4566 Set_Is_Tagged_Type (Id, True);
4567 Set_Has_Unknown_Discriminants
4568 (Id, True);
4569
4570 if Ekind (T) = E_Class_Wide_Subtype then
4571 Set_Equivalent_Type (Id, Equivalent_Type (T));
4572 end if;
4573
4574 when E_Record_Type | E_Record_Subtype =>
4575 Set_Ekind (Id, E_Record_Subtype);
4576
4577 if Ekind (T) = E_Record_Subtype
4578 and then Present (Cloned_Subtype (T))
4579 then
4580 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4581 else
4582 Set_Cloned_Subtype (Id, T);
4583 end if;
4584
4585 Set_First_Entity (Id, First_Entity (T));
4586 Set_Last_Entity (Id, Last_Entity (T));
4587 Set_Has_Discriminants (Id, Has_Discriminants (T));
4588 Set_Is_Constrained (Id, Is_Constrained (T));
4589 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4590 Set_Has_Implicit_Dereference
4591 (Id, Has_Implicit_Dereference (T));
4592 Set_Has_Unknown_Discriminants
4593 (Id, Has_Unknown_Discriminants (T));
4594
4595 if Has_Discriminants (T) then
4596 Set_Discriminant_Constraint
4597 (Id, Discriminant_Constraint (T));
4598 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4599
4600 elsif Has_Unknown_Discriminants (Id) then
4601 Set_Discriminant_Constraint (Id, No_Elist);
4602 end if;
4603
4604 if Is_Tagged_Type (T) then
4605 Set_Is_Tagged_Type (Id);
4606 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4607 Set_Direct_Primitive_Operations
4608 (Id, Direct_Primitive_Operations (T));
4609 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4610
4611 if Is_Interface (T) then
4612 Set_Is_Interface (Id);
4613 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4614 end if;
4615 end if;
4616
4617 when Private_Kind =>
4618 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4619 Set_Has_Discriminants (Id, Has_Discriminants (T));
4620 Set_Is_Constrained (Id, Is_Constrained (T));
4621 Set_First_Entity (Id, First_Entity (T));
4622 Set_Last_Entity (Id, Last_Entity (T));
4623 Set_Private_Dependents (Id, New_Elmt_List);
4624 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4625 Set_Has_Implicit_Dereference
4626 (Id, Has_Implicit_Dereference (T));
4627 Set_Has_Unknown_Discriminants
4628 (Id, Has_Unknown_Discriminants (T));
4629 Set_Known_To_Have_Preelab_Init
4630 (Id, Known_To_Have_Preelab_Init (T));
4631
4632 if Is_Tagged_Type (T) then
4633 Set_Is_Tagged_Type (Id);
4634 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4635 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4636 Set_Direct_Primitive_Operations (Id,
4637 Direct_Primitive_Operations (T));
4638 end if;
4639
4640 -- In general the attributes of the subtype of a private type
4641 -- are the attributes of the partial view of parent. However,
4642 -- the full view may be a discriminated type, and the subtype
4643 -- must share the discriminant constraint to generate correct
4644 -- calls to initialization procedures.
4645
4646 if Has_Discriminants (T) then
4647 Set_Discriminant_Constraint
4648 (Id, Discriminant_Constraint (T));
4649 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4650
4651 elsif Present (Full_View (T))
4652 and then Has_Discriminants (Full_View (T))
4653 then
4654 Set_Discriminant_Constraint
4655 (Id, Discriminant_Constraint (Full_View (T)));
4656 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4657
4658 -- This would seem semantically correct, but apparently
4659 -- generates spurious errors about missing components ???
4660
4661 -- Set_Has_Discriminants (Id);
4662 end if;
4663
4664 Prepare_Private_Subtype_Completion (Id, N);
4665
4666 -- If this is the subtype of a constrained private type with
4667 -- discriminants that has got a full view and we also have
4668 -- built a completion just above, show that the completion
4669 -- is a clone of the full view to the back-end.
4670
4671 if Has_Discriminants (T)
4672 and then not Has_Unknown_Discriminants (T)
4673 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4674 and then Present (Full_View (T))
4675 and then Present (Full_View (Id))
4676 then
4677 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4678 end if;
4679
4680 when Access_Kind =>
4681 Set_Ekind (Id, E_Access_Subtype);
4682 Set_Is_Constrained (Id, Is_Constrained (T));
4683 Set_Is_Access_Constant
4684 (Id, Is_Access_Constant (T));
4685 Set_Directly_Designated_Type
4686 (Id, Designated_Type (T));
4687 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4688
4689 -- A Pure library_item must not contain the declaration of a
4690 -- named access type, except within a subprogram, generic
4691 -- subprogram, task unit, or protected unit, or if it has
4692 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4693
4694 if Comes_From_Source (Id)
4695 and then In_Pure_Unit
4696 and then not In_Subprogram_Task_Protected_Unit
4697 and then not No_Pool_Assigned (Id)
4698 then
4699 Error_Msg_N
4700 ("named access types not allowed in pure unit", N);
4701 end if;
4702
4703 when Concurrent_Kind =>
4704 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4705 Set_Corresponding_Record_Type (Id,
4706 Corresponding_Record_Type (T));
4707 Set_First_Entity (Id, First_Entity (T));
4708 Set_First_Private_Entity (Id, First_Private_Entity (T));
4709 Set_Has_Discriminants (Id, Has_Discriminants (T));
4710 Set_Is_Constrained (Id, Is_Constrained (T));
4711 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4712 Set_Last_Entity (Id, Last_Entity (T));
4713
4714 if Has_Discriminants (T) then
4715 Set_Discriminant_Constraint (Id,
4716 Discriminant_Constraint (T));
4717 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4718 end if;
4719
4720 when E_Incomplete_Type =>
4721 if Ada_Version >= Ada_2005 then
4722
4723 -- In Ada 2005 an incomplete type can be explicitly tagged:
4724 -- propagate indication.
4725
4726 Set_Ekind (Id, E_Incomplete_Subtype);
4727 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4728 Set_Private_Dependents (Id, New_Elmt_List);
4729
4730 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4731 -- incomplete type visible through a limited with clause.
4732
4733 if From_Limited_With (T)
4734 and then Present (Non_Limited_View (T))
4735 then
4736 Set_From_Limited_With (Id);
4737 Set_Non_Limited_View (Id, Non_Limited_View (T));
4738
4739 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4740 -- to the private dependents of the original incomplete
4741 -- type for future transformation.
4742
4743 else
4744 Append_Elmt (Id, Private_Dependents (T));
4745 end if;
4746
4747 -- If the subtype name denotes an incomplete type an error
4748 -- was already reported by Process_Subtype.
4749
4750 else
4751 Set_Etype (Id, Any_Type);
4752 end if;
4753
4754 when others =>
4755 raise Program_Error;
4756 end case;
4757 end if;
4758
4759 if Etype (Id) = Any_Type then
4760 goto Leave;
4761 end if;
4762
4763 -- Some common processing on all types
4764
4765 Set_Size_Info (Id, T);
4766 Set_First_Rep_Item (Id, First_Rep_Item (T));
4767
4768 -- If the parent type is a generic actual, so is the subtype. This may
4769 -- happen in a nested instance. Why Comes_From_Source test???
4770
4771 if not Comes_From_Source (N) then
4772 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4773 end if;
4774
4775 T := Etype (Id);
4776
4777 Set_Is_Immediately_Visible (Id, True);
4778 Set_Depends_On_Private (Id, Has_Private_Component (T));
4779 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4780
4781 if Is_Interface (T) then
4782 Set_Is_Interface (Id);
4783 end if;
4784
4785 if Present (Generic_Parent_Type (N))
4786 and then
4787 (Nkind (Parent (Generic_Parent_Type (N))) /=
4788 N_Formal_Type_Declaration
4789 or else Nkind
4790 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4791 N_Formal_Private_Type_Definition)
4792 then
4793 if Is_Tagged_Type (Id) then
4794
4795 -- If this is a generic actual subtype for a synchronized type,
4796 -- the primitive operations are those of the corresponding record
4797 -- for which there is a separate subtype declaration.
4798
4799 if Is_Concurrent_Type (Id) then
4800 null;
4801 elsif Is_Class_Wide_Type (Id) then
4802 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4803 else
4804 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4805 end if;
4806
4807 elsif Scope (Etype (Id)) /= Standard_Standard then
4808 Derive_Subprograms (Generic_Parent_Type (N), Id);
4809 end if;
4810 end if;
4811
4812 if Is_Private_Type (T) and then Present (Full_View (T)) then
4813 Conditional_Delay (Id, Full_View (T));
4814
4815 -- The subtypes of components or subcomponents of protected types
4816 -- do not need freeze nodes, which would otherwise appear in the
4817 -- wrong scope (before the freeze node for the protected type). The
4818 -- proper subtypes are those of the subcomponents of the corresponding
4819 -- record.
4820
4821 elsif Ekind (Scope (Id)) /= E_Protected_Type
4822 and then Present (Scope (Scope (Id))) -- error defense
4823 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4824 then
4825 Conditional_Delay (Id, T);
4826 end if;
4827
4828 -- Check that Constraint_Error is raised for a scalar subtype indication
4829 -- when the lower or upper bound of a non-null range lies outside the
4830 -- range of the type mark.
4831
4832 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4833 if Is_Scalar_Type (Etype (Id))
4834 and then Scalar_Range (Id) /=
4835 Scalar_Range (Etype (Subtype_Mark
4836 (Subtype_Indication (N))))
4837 then
4838 Apply_Range_Check
4839 (Scalar_Range (Id),
4840 Etype (Subtype_Mark (Subtype_Indication (N))));
4841
4842 -- In the array case, check compatibility for each index
4843
4844 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4845 then
4846 -- This really should be a subprogram that finds the indications
4847 -- to check???
4848
4849 declare
4850 Subt_Index : Node_Id := First_Index (Id);
4851 Target_Index : Node_Id :=
4852 First_Index (Etype
4853 (Subtype_Mark (Subtype_Indication (N))));
4854 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4855
4856 begin
4857 while Present (Subt_Index) loop
4858 if ((Nkind (Subt_Index) = N_Identifier
4859 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4860 or else Nkind (Subt_Index) = N_Subtype_Indication)
4861 and then
4862 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4863 then
4864 declare
4865 Target_Typ : constant Entity_Id :=
4866 Etype (Target_Index);
4867 begin
4868 R_Checks :=
4869 Get_Range_Checks
4870 (Scalar_Range (Etype (Subt_Index)),
4871 Target_Typ,
4872 Etype (Subt_Index),
4873 Defining_Identifier (N));
4874
4875 -- Reset Has_Dynamic_Range_Check on the subtype to
4876 -- prevent elision of the index check due to a dynamic
4877 -- check generated for a preceding index (needed since
4878 -- Insert_Range_Checks tries to avoid generating
4879 -- redundant checks on a given declaration).
4880
4881 Set_Has_Dynamic_Range_Check (N, False);
4882
4883 Insert_Range_Checks
4884 (R_Checks,
4885 N,
4886 Target_Typ,
4887 Sloc (Defining_Identifier (N)));
4888
4889 -- Record whether this index involved a dynamic check
4890
4891 Has_Dyn_Chk :=
4892 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4893 end;
4894 end if;
4895
4896 Next_Index (Subt_Index);
4897 Next_Index (Target_Index);
4898 end loop;
4899
4900 -- Finally, mark whether the subtype involves dynamic checks
4901
4902 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4903 end;
4904 end if;
4905 end if;
4906
4907 -- Make sure that generic actual types are properly frozen. The subtype
4908 -- is marked as a generic actual type when the enclosing instance is
4909 -- analyzed, so here we identify the subtype from the tree structure.
4910
4911 if Expander_Active
4912 and then Is_Generic_Actual_Type (Id)
4913 and then In_Instance
4914 and then not Comes_From_Source (N)
4915 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4916 and then Is_Frozen (T)
4917 then
4918 Freeze_Before (N, Id);
4919 end if;
4920
4921 Set_Optimize_Alignment_Flags (Id);
4922 Check_Eliminated (Id);
4923
4924 <<Leave>>
4925 if Has_Aspects (N) then
4926 Analyze_Aspect_Specifications (N, Id);
4927 end if;
4928
4929 Analyze_Dimension (N);
4930 end Analyze_Subtype_Declaration;
4931
4932 --------------------------------
4933 -- Analyze_Subtype_Indication --
4934 --------------------------------
4935
4936 procedure Analyze_Subtype_Indication (N : Node_Id) is
4937 T : constant Entity_Id := Subtype_Mark (N);
4938 R : constant Node_Id := Range_Expression (Constraint (N));
4939
4940 begin
4941 Analyze (T);
4942
4943 if R /= Error then
4944 Analyze (R);
4945 Set_Etype (N, Etype (R));
4946 Resolve (R, Entity (T));
4947 else
4948 Set_Error_Posted (R);
4949 Set_Error_Posted (T);
4950 end if;
4951 end Analyze_Subtype_Indication;
4952
4953 --------------------------
4954 -- Analyze_Variant_Part --
4955 --------------------------
4956
4957 procedure Analyze_Variant_Part (N : Node_Id) is
4958 Discr_Name : Node_Id;
4959 Discr_Type : Entity_Id;
4960
4961 procedure Process_Variant (A : Node_Id);
4962 -- Analyze declarations for a single variant
4963
4964 package Analyze_Variant_Choices is
4965 new Generic_Analyze_Choices (Process_Variant);
4966 use Analyze_Variant_Choices;
4967
4968 ---------------------
4969 -- Process_Variant --
4970 ---------------------
4971
4972 procedure Process_Variant (A : Node_Id) is
4973 CL : constant Node_Id := Component_List (A);
4974 begin
4975 if not Null_Present (CL) then
4976 Analyze_Declarations (Component_Items (CL));
4977
4978 if Present (Variant_Part (CL)) then
4979 Analyze (Variant_Part (CL));
4980 end if;
4981 end if;
4982 end Process_Variant;
4983
4984 -- Start of processing for Analyze_Variant_Part
4985
4986 begin
4987 Discr_Name := Name (N);
4988 Analyze (Discr_Name);
4989
4990 -- If Discr_Name bad, get out (prevent cascaded errors)
4991
4992 if Etype (Discr_Name) = Any_Type then
4993 return;
4994 end if;
4995
4996 -- Check invalid discriminant in variant part
4997
4998 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4999 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5000 end if;
5001
5002 Discr_Type := Etype (Entity (Discr_Name));
5003
5004 if not Is_Discrete_Type (Discr_Type) then
5005 Error_Msg_N
5006 ("discriminant in a variant part must be of a discrete type",
5007 Name (N));
5008 return;
5009 end if;
5010
5011 -- Now analyze the choices, which also analyzes the declarations that
5012 -- are associated with each choice.
5013
5014 Analyze_Choices (Variants (N), Discr_Type);
5015
5016 -- Note: we used to instantiate and call Check_Choices here to check
5017 -- that the choices covered the discriminant, but it's too early to do
5018 -- that because of statically predicated subtypes, whose analysis may
5019 -- be deferred to their freeze point which may be as late as the freeze
5020 -- point of the containing record. So this call is now to be found in
5021 -- Freeze_Record_Declaration.
5022
5023 end Analyze_Variant_Part;
5024
5025 ----------------------------
5026 -- Array_Type_Declaration --
5027 ----------------------------
5028
5029 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5030 Component_Def : constant Node_Id := Component_Definition (Def);
5031 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5032 Element_Type : Entity_Id;
5033 Implicit_Base : Entity_Id;
5034 Index : Node_Id;
5035 Related_Id : Entity_Id := Empty;
5036 Nb_Index : Nat;
5037 P : constant Node_Id := Parent (Def);
5038 Priv : Entity_Id;
5039
5040 begin
5041 if Nkind (Def) = N_Constrained_Array_Definition then
5042 Index := First (Discrete_Subtype_Definitions (Def));
5043 else
5044 Index := First (Subtype_Marks (Def));
5045 end if;
5046
5047 -- Find proper names for the implicit types which may be public. In case
5048 -- of anonymous arrays we use the name of the first object of that type
5049 -- as prefix.
5050
5051 if No (T) then
5052 Related_Id := Defining_Identifier (P);
5053 else
5054 Related_Id := T;
5055 end if;
5056
5057 Nb_Index := 1;
5058 while Present (Index) loop
5059 Analyze (Index);
5060
5061 -- Test for odd case of trying to index a type by the type itself
5062
5063 if Is_Entity_Name (Index) and then Entity (Index) = T then
5064 Error_Msg_N ("type& cannot be indexed by itself", Index);
5065 Set_Entity (Index, Standard_Boolean);
5066 Set_Etype (Index, Standard_Boolean);
5067 end if;
5068
5069 -- Check SPARK restriction requiring a subtype mark
5070
5071 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5072 Check_SPARK_Restriction ("subtype mark required", Index);
5073 end if;
5074
5075 -- Add a subtype declaration for each index of private array type
5076 -- declaration whose etype is also private. For example:
5077
5078 -- package Pkg is
5079 -- type Index is private;
5080 -- private
5081 -- type Table is array (Index) of ...
5082 -- end;
5083
5084 -- This is currently required by the expander for the internally
5085 -- generated equality subprogram of records with variant parts in
5086 -- which the etype of some component is such private type.
5087
5088 if Ekind (Current_Scope) = E_Package
5089 and then In_Private_Part (Current_Scope)
5090 and then Has_Private_Declaration (Etype (Index))
5091 then
5092 declare
5093 Loc : constant Source_Ptr := Sloc (Def);
5094 New_E : Entity_Id;
5095 Decl : Entity_Id;
5096
5097 begin
5098 New_E := Make_Temporary (Loc, 'T');
5099 Set_Is_Internal (New_E);
5100
5101 Decl :=
5102 Make_Subtype_Declaration (Loc,
5103 Defining_Identifier => New_E,
5104 Subtype_Indication =>
5105 New_Occurrence_Of (Etype (Index), Loc));
5106
5107 Insert_Before (Parent (Def), Decl);
5108 Analyze (Decl);
5109 Set_Etype (Index, New_E);
5110
5111 -- If the index is a range the Entity attribute is not
5112 -- available. Example:
5113
5114 -- package Pkg is
5115 -- type T is private;
5116 -- private
5117 -- type T is new Natural;
5118 -- Table : array (T(1) .. T(10)) of Boolean;
5119 -- end Pkg;
5120
5121 if Nkind (Index) /= N_Range then
5122 Set_Entity (Index, New_E);
5123 end if;
5124 end;
5125 end if;
5126
5127 Make_Index (Index, P, Related_Id, Nb_Index);
5128
5129 -- Check error of subtype with predicate for index type
5130
5131 Bad_Predicated_Subtype_Use
5132 ("subtype& has predicate, not allowed as index subtype",
5133 Index, Etype (Index));
5134
5135 -- Move to next index
5136
5137 Next_Index (Index);
5138 Nb_Index := Nb_Index + 1;
5139 end loop;
5140
5141 -- Process subtype indication if one is present
5142
5143 if Present (Component_Typ) then
5144 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5145
5146 Set_Etype (Component_Typ, Element_Type);
5147
5148 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5149 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5150 end if;
5151
5152 -- Ada 2005 (AI-230): Access Definition case
5153
5154 else pragma Assert (Present (Access_Definition (Component_Def)));
5155
5156 -- Indicate that the anonymous access type is created by the
5157 -- array type declaration.
5158
5159 Element_Type := Access_Definition
5160 (Related_Nod => P,
5161 N => Access_Definition (Component_Def));
5162 Set_Is_Local_Anonymous_Access (Element_Type);
5163
5164 -- Propagate the parent. This field is needed if we have to generate
5165 -- the master_id associated with an anonymous access to task type
5166 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5167
5168 Set_Parent (Element_Type, Parent (T));
5169
5170 -- Ada 2005 (AI-230): In case of components that are anonymous access
5171 -- types the level of accessibility depends on the enclosing type
5172 -- declaration
5173
5174 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5175
5176 -- Ada 2005 (AI-254)
5177
5178 declare
5179 CD : constant Node_Id :=
5180 Access_To_Subprogram_Definition
5181 (Access_Definition (Component_Def));
5182 begin
5183 if Present (CD) and then Protected_Present (CD) then
5184 Element_Type :=
5185 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5186 end if;
5187 end;
5188 end if;
5189
5190 -- Constrained array case
5191
5192 if No (T) then
5193 T := Create_Itype (E_Void, P, Related_Id, 'T');
5194 end if;
5195
5196 if Nkind (Def) = N_Constrained_Array_Definition then
5197
5198 -- Establish Implicit_Base as unconstrained base type
5199
5200 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5201
5202 Set_Etype (Implicit_Base, Implicit_Base);
5203 Set_Scope (Implicit_Base, Current_Scope);
5204 Set_Has_Delayed_Freeze (Implicit_Base);
5205 Set_Default_SSO (Implicit_Base);
5206
5207 -- The constrained array type is a subtype of the unconstrained one
5208
5209 Set_Ekind (T, E_Array_Subtype);
5210 Init_Size_Align (T);
5211 Set_Etype (T, Implicit_Base);
5212 Set_Scope (T, Current_Scope);
5213 Set_Is_Constrained (T, True);
5214 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5215 Set_Has_Delayed_Freeze (T);
5216
5217 -- Complete setup of implicit base type
5218
5219 Set_First_Index (Implicit_Base, First_Index (T));
5220 Set_Component_Type (Implicit_Base, Element_Type);
5221 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5222 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5223 Set_Component_Size (Implicit_Base, Uint_0);
5224 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5225 Set_Has_Controlled_Component
5226 (Implicit_Base, Has_Controlled_Component
5227 (Element_Type)
5228 or else Is_Controlled
5229 (Element_Type));
5230 Set_Finalize_Storage_Only
5231 (Implicit_Base, Finalize_Storage_Only
5232 (Element_Type));
5233
5234 -- Unconstrained array case
5235
5236 else
5237 Set_Ekind (T, E_Array_Type);
5238 Init_Size_Align (T);
5239 Set_Etype (T, T);
5240 Set_Scope (T, Current_Scope);
5241 Set_Component_Size (T, Uint_0);
5242 Set_Is_Constrained (T, False);
5243 Set_First_Index (T, First (Subtype_Marks (Def)));
5244 Set_Has_Delayed_Freeze (T, True);
5245 Set_Has_Task (T, Has_Task (Element_Type));
5246 Set_Has_Protected (T, Has_Protected (Element_Type));
5247 Set_Has_Controlled_Component (T, Has_Controlled_Component
5248 (Element_Type)
5249 or else
5250 Is_Controlled (Element_Type));
5251 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5252 (Element_Type));
5253 Set_Default_SSO (T);
5254 end if;
5255
5256 -- Common attributes for both cases
5257
5258 Set_Component_Type (Base_Type (T), Element_Type);
5259 Set_Packed_Array_Impl_Type (T, Empty);
5260
5261 if Aliased_Present (Component_Definition (Def)) then
5262 Check_SPARK_Restriction
5263 ("aliased is not allowed", Component_Definition (Def));
5264 Set_Has_Aliased_Components (Etype (T));
5265 end if;
5266
5267 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5268 -- array type to ensure that objects of this type are initialized.
5269
5270 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5271 Set_Can_Never_Be_Null (T);
5272
5273 if Null_Exclusion_Present (Component_Definition (Def))
5274
5275 -- No need to check itypes because in their case this check was
5276 -- done at their point of creation
5277
5278 and then not Is_Itype (Element_Type)
5279 then
5280 Error_Msg_N
5281 ("`NOT NULL` not allowed (null already excluded)",
5282 Subtype_Indication (Component_Definition (Def)));
5283 end if;
5284 end if;
5285
5286 Priv := Private_Component (Element_Type);
5287
5288 if Present (Priv) then
5289
5290 -- Check for circular definitions
5291
5292 if Priv = Any_Type then
5293 Set_Component_Type (Etype (T), Any_Type);
5294
5295 -- There is a gap in the visibility of operations on the composite
5296 -- type only if the component type is defined in a different scope.
5297
5298 elsif Scope (Priv) = Current_Scope then
5299 null;
5300
5301 elsif Is_Limited_Type (Priv) then
5302 Set_Is_Limited_Composite (Etype (T));
5303 Set_Is_Limited_Composite (T);
5304 else
5305 Set_Is_Private_Composite (Etype (T));
5306 Set_Is_Private_Composite (T);
5307 end if;
5308 end if;
5309
5310 -- A syntax error in the declaration itself may lead to an empty index
5311 -- list, in which case do a minimal patch.
5312
5313 if No (First_Index (T)) then
5314 Error_Msg_N ("missing index definition in array type declaration", T);
5315
5316 declare
5317 Indexes : constant List_Id :=
5318 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5319 begin
5320 Set_Discrete_Subtype_Definitions (Def, Indexes);
5321 Set_First_Index (T, First (Indexes));
5322 return;
5323 end;
5324 end if;
5325
5326 -- Create a concatenation operator for the new type. Internal array
5327 -- types created for packed entities do not need such, they are
5328 -- compatible with the user-defined type.
5329
5330 if Number_Dimensions (T) = 1
5331 and then not Is_Packed_Array_Impl_Type (T)
5332 then
5333 New_Concatenation_Op (T);
5334 end if;
5335
5336 -- In the case of an unconstrained array the parser has already verified
5337 -- that all the indexes are unconstrained but we still need to make sure
5338 -- that the element type is constrained.
5339
5340 if Is_Indefinite_Subtype (Element_Type) then
5341 Error_Msg_N
5342 ("unconstrained element type in array declaration",
5343 Subtype_Indication (Component_Def));
5344
5345 elsif Is_Abstract_Type (Element_Type) then
5346 Error_Msg_N
5347 ("the type of a component cannot be abstract",
5348 Subtype_Indication (Component_Def));
5349 end if;
5350
5351 -- There may be an invariant declared for the component type, but
5352 -- the construction of the component invariant checking procedure
5353 -- takes place during expansion.
5354 end Array_Type_Declaration;
5355
5356 ------------------------------------------------------
5357 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5358 ------------------------------------------------------
5359
5360 function Replace_Anonymous_Access_To_Protected_Subprogram
5361 (N : Node_Id) return Entity_Id
5362 is
5363 Loc : constant Source_Ptr := Sloc (N);
5364
5365 Curr_Scope : constant Scope_Stack_Entry :=
5366 Scope_Stack.Table (Scope_Stack.Last);
5367
5368 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5369
5370 Acc : Node_Id;
5371 -- Access definition in declaration
5372
5373 Comp : Node_Id;
5374 -- Object definition or formal definition with an access definition
5375
5376 Decl : Node_Id;
5377 -- Declaration of anonymous access to subprogram type
5378
5379 Spec : Node_Id;
5380 -- Original specification in access to subprogram
5381
5382 P : Node_Id;
5383
5384 begin
5385 Set_Is_Internal (Anon);
5386
5387 case Nkind (N) is
5388 when N_Component_Declaration |
5389 N_Unconstrained_Array_Definition |
5390 N_Constrained_Array_Definition =>
5391 Comp := Component_Definition (N);
5392 Acc := Access_Definition (Comp);
5393
5394 when N_Discriminant_Specification =>
5395 Comp := Discriminant_Type (N);
5396 Acc := Comp;
5397
5398 when N_Parameter_Specification =>
5399 Comp := Parameter_Type (N);
5400 Acc := Comp;
5401
5402 when N_Access_Function_Definition =>
5403 Comp := Result_Definition (N);
5404 Acc := Comp;
5405
5406 when N_Object_Declaration =>
5407 Comp := Object_Definition (N);
5408 Acc := Comp;
5409
5410 when N_Function_Specification =>
5411 Comp := Result_Definition (N);
5412 Acc := Comp;
5413
5414 when others =>
5415 raise Program_Error;
5416 end case;
5417
5418 Spec := Access_To_Subprogram_Definition (Acc);
5419
5420 Decl :=
5421 Make_Full_Type_Declaration (Loc,
5422 Defining_Identifier => Anon,
5423 Type_Definition => Copy_Separate_Tree (Spec));
5424
5425 Mark_Rewrite_Insertion (Decl);
5426
5427 -- In ASIS mode, analyze the profile on the original node, because
5428 -- the separate copy does not provide enough links to recover the
5429 -- original tree. Analysis is limited to type annotations, within
5430 -- a temporary scope that serves as an anonymous subprogram to collect
5431 -- otherwise useless temporaries and itypes.
5432
5433 if ASIS_Mode then
5434 declare
5435 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5436
5437 begin
5438 if Nkind (Spec) = N_Access_Function_Definition then
5439 Set_Ekind (Typ, E_Function);
5440 else
5441 Set_Ekind (Typ, E_Procedure);
5442 end if;
5443
5444 Set_Parent (Typ, N);
5445 Set_Scope (Typ, Current_Scope);
5446 Push_Scope (Typ);
5447
5448 Process_Formals (Parameter_Specifications (Spec), Spec);
5449
5450 if Nkind (Spec) = N_Access_Function_Definition then
5451 declare
5452 Def : constant Node_Id := Result_Definition (Spec);
5453
5454 begin
5455 -- The result might itself be an anonymous access type, so
5456 -- have to recurse.
5457
5458 if Nkind (Def) = N_Access_Definition then
5459 if Present (Access_To_Subprogram_Definition (Def)) then
5460 Set_Etype
5461 (Def,
5462 Replace_Anonymous_Access_To_Protected_Subprogram
5463 (Spec));
5464 else
5465 Find_Type (Subtype_Mark (Def));
5466 end if;
5467
5468 else
5469 Find_Type (Def);
5470 end if;
5471 end;
5472 end if;
5473
5474 End_Scope;
5475 end;
5476 end if;
5477
5478 -- Insert the new declaration in the nearest enclosing scope. If the
5479 -- node is a body and N is its return type, the declaration belongs in
5480 -- the enclosing scope.
5481
5482 P := Parent (N);
5483
5484 if Nkind (P) = N_Subprogram_Body
5485 and then Nkind (N) = N_Function_Specification
5486 then
5487 P := Parent (P);
5488 end if;
5489
5490 while Present (P) and then not Has_Declarations (P) loop
5491 P := Parent (P);
5492 end loop;
5493
5494 pragma Assert (Present (P));
5495
5496 if Nkind (P) = N_Package_Specification then
5497 Prepend (Decl, Visible_Declarations (P));
5498 else
5499 Prepend (Decl, Declarations (P));
5500 end if;
5501
5502 -- Replace the anonymous type with an occurrence of the new declaration.
5503 -- In all cases the rewritten node does not have the null-exclusion
5504 -- attribute because (if present) it was already inherited by the
5505 -- anonymous entity (Anon). Thus, in case of components we do not
5506 -- inherit this attribute.
5507
5508 if Nkind (N) = N_Parameter_Specification then
5509 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5510 Set_Etype (Defining_Identifier (N), Anon);
5511 Set_Null_Exclusion_Present (N, False);
5512
5513 elsif Nkind (N) = N_Object_Declaration then
5514 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5515 Set_Etype (Defining_Identifier (N), Anon);
5516
5517 elsif Nkind (N) = N_Access_Function_Definition then
5518 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5519
5520 elsif Nkind (N) = N_Function_Specification then
5521 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5522 Set_Etype (Defining_Unit_Name (N), Anon);
5523
5524 else
5525 Rewrite (Comp,
5526 Make_Component_Definition (Loc,
5527 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5528 end if;
5529
5530 Mark_Rewrite_Insertion (Comp);
5531
5532 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5533 Analyze (Decl);
5534
5535 else
5536 -- Temporarily remove the current scope (record or subprogram) from
5537 -- the stack to add the new declarations to the enclosing scope.
5538
5539 Scope_Stack.Decrement_Last;
5540 Analyze (Decl);
5541 Set_Is_Itype (Anon);
5542 Scope_Stack.Append (Curr_Scope);
5543 end if;
5544
5545 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5546 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5547 return Anon;
5548 end Replace_Anonymous_Access_To_Protected_Subprogram;
5549
5550 -------------------------------
5551 -- Build_Derived_Access_Type --
5552 -------------------------------
5553
5554 procedure Build_Derived_Access_Type
5555 (N : Node_Id;
5556 Parent_Type : Entity_Id;
5557 Derived_Type : Entity_Id)
5558 is
5559 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5560
5561 Desig_Type : Entity_Id;
5562 Discr : Entity_Id;
5563 Discr_Con_Elist : Elist_Id;
5564 Discr_Con_El : Elmt_Id;
5565 Subt : Entity_Id;
5566
5567 begin
5568 -- Set the designated type so it is available in case this is an access
5569 -- to a self-referential type, e.g. a standard list type with a next
5570 -- pointer. Will be reset after subtype is built.
5571
5572 Set_Directly_Designated_Type
5573 (Derived_Type, Designated_Type (Parent_Type));
5574
5575 Subt := Process_Subtype (S, N);
5576
5577 if Nkind (S) /= N_Subtype_Indication
5578 and then Subt /= Base_Type (Subt)
5579 then
5580 Set_Ekind (Derived_Type, E_Access_Subtype);
5581 end if;
5582
5583 if Ekind (Derived_Type) = E_Access_Subtype then
5584 declare
5585 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5586 Ibase : constant Entity_Id :=
5587 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5588 Svg_Chars : constant Name_Id := Chars (Ibase);
5589 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5590
5591 begin
5592 Copy_Node (Pbase, Ibase);
5593
5594 Set_Chars (Ibase, Svg_Chars);
5595 Set_Next_Entity (Ibase, Svg_Next_E);
5596 Set_Sloc (Ibase, Sloc (Derived_Type));
5597 Set_Scope (Ibase, Scope (Derived_Type));
5598 Set_Freeze_Node (Ibase, Empty);
5599 Set_Is_Frozen (Ibase, False);
5600 Set_Comes_From_Source (Ibase, False);
5601 Set_Is_First_Subtype (Ibase, False);
5602
5603 Set_Etype (Ibase, Pbase);
5604 Set_Etype (Derived_Type, Ibase);
5605 end;
5606 end if;
5607
5608 Set_Directly_Designated_Type
5609 (Derived_Type, Designated_Type (Subt));
5610
5611 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5612 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5613 Set_Size_Info (Derived_Type, Parent_Type);
5614 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5615 Set_Depends_On_Private (Derived_Type,
5616 Has_Private_Component (Derived_Type));
5617 Conditional_Delay (Derived_Type, Subt);
5618
5619 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5620 -- that it is not redundant.
5621
5622 if Null_Exclusion_Present (Type_Definition (N)) then
5623 Set_Can_Never_Be_Null (Derived_Type);
5624
5625 -- What is with the "AND THEN FALSE" here ???
5626
5627 if Can_Never_Be_Null (Parent_Type)
5628 and then False
5629 then
5630 Error_Msg_NE
5631 ("`NOT NULL` not allowed (& already excludes null)",
5632 N, Parent_Type);
5633 end if;
5634
5635 elsif Can_Never_Be_Null (Parent_Type) then
5636 Set_Can_Never_Be_Null (Derived_Type);
5637 end if;
5638
5639 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5640 -- the root type for this information.
5641
5642 -- Apply range checks to discriminants for derived record case
5643 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5644
5645 Desig_Type := Designated_Type (Derived_Type);
5646 if Is_Composite_Type (Desig_Type)
5647 and then (not Is_Array_Type (Desig_Type))
5648 and then Has_Discriminants (Desig_Type)
5649 and then Base_Type (Desig_Type) /= Desig_Type
5650 then
5651 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5652 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5653
5654 Discr := First_Discriminant (Base_Type (Desig_Type));
5655 while Present (Discr_Con_El) loop
5656 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5657 Next_Elmt (Discr_Con_El);
5658 Next_Discriminant (Discr);
5659 end loop;
5660 end if;
5661 end Build_Derived_Access_Type;
5662
5663 ------------------------------
5664 -- Build_Derived_Array_Type --
5665 ------------------------------
5666
5667 procedure Build_Derived_Array_Type
5668 (N : Node_Id;
5669 Parent_Type : Entity_Id;
5670 Derived_Type : Entity_Id)
5671 is
5672 Loc : constant Source_Ptr := Sloc (N);
5673 Tdef : constant Node_Id := Type_Definition (N);
5674 Indic : constant Node_Id := Subtype_Indication (Tdef);
5675 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5676 Implicit_Base : Entity_Id;
5677 New_Indic : Node_Id;
5678
5679 procedure Make_Implicit_Base;
5680 -- If the parent subtype is constrained, the derived type is a subtype
5681 -- of an implicit base type derived from the parent base.
5682
5683 ------------------------
5684 -- Make_Implicit_Base --
5685 ------------------------
5686
5687 procedure Make_Implicit_Base is
5688 begin
5689 Implicit_Base :=
5690 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5691
5692 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5693 Set_Etype (Implicit_Base, Parent_Base);
5694
5695 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5696 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5697
5698 Set_Has_Delayed_Freeze (Implicit_Base, True);
5699 end Make_Implicit_Base;
5700
5701 -- Start of processing for Build_Derived_Array_Type
5702
5703 begin
5704 if not Is_Constrained (Parent_Type) then
5705 if Nkind (Indic) /= N_Subtype_Indication then
5706 Set_Ekind (Derived_Type, E_Array_Type);
5707
5708 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5709 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5710
5711 Set_Has_Delayed_Freeze (Derived_Type, True);
5712
5713 else
5714 Make_Implicit_Base;
5715 Set_Etype (Derived_Type, Implicit_Base);
5716
5717 New_Indic :=
5718 Make_Subtype_Declaration (Loc,
5719 Defining_Identifier => Derived_Type,
5720 Subtype_Indication =>
5721 Make_Subtype_Indication (Loc,
5722 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5723 Constraint => Constraint (Indic)));
5724
5725 Rewrite (N, New_Indic);
5726 Analyze (N);
5727 end if;
5728
5729 else
5730 if Nkind (Indic) /= N_Subtype_Indication then
5731 Make_Implicit_Base;
5732
5733 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5734 Set_Etype (Derived_Type, Implicit_Base);
5735 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5736
5737 else
5738 Error_Msg_N ("illegal constraint on constrained type", Indic);
5739 end if;
5740 end if;
5741
5742 -- If parent type is not a derived type itself, and is declared in
5743 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5744 -- the new type's concatenation operator since Derive_Subprograms
5745 -- will not inherit the parent's operator. If the parent type is
5746 -- unconstrained, the operator is of the unconstrained base type.
5747
5748 if Number_Dimensions (Parent_Type) = 1
5749 and then not Is_Limited_Type (Parent_Type)
5750 and then not Is_Derived_Type (Parent_Type)
5751 and then not Is_Package_Or_Generic_Package
5752 (Scope (Base_Type (Parent_Type)))
5753 then
5754 if not Is_Constrained (Parent_Type)
5755 and then Is_Constrained (Derived_Type)
5756 then
5757 New_Concatenation_Op (Implicit_Base);
5758 else
5759 New_Concatenation_Op (Derived_Type);
5760 end if;
5761 end if;
5762 end Build_Derived_Array_Type;
5763
5764 -----------------------------------
5765 -- Build_Derived_Concurrent_Type --
5766 -----------------------------------
5767
5768 procedure Build_Derived_Concurrent_Type
5769 (N : Node_Id;
5770 Parent_Type : Entity_Id;
5771 Derived_Type : Entity_Id)
5772 is
5773 Loc : constant Source_Ptr := Sloc (N);
5774
5775 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5776 Corr_Decl : Node_Id;
5777 Corr_Decl_Needed : Boolean;
5778 -- If the derived type has fewer discriminants than its parent, the
5779 -- corresponding record is also a derived type, in order to account for
5780 -- the bound discriminants. We create a full type declaration for it in
5781 -- this case.
5782
5783 Constraint_Present : constant Boolean :=
5784 Nkind (Subtype_Indication (Type_Definition (N))) =
5785 N_Subtype_Indication;
5786
5787 D_Constraint : Node_Id;
5788 New_Constraint : Elist_Id;
5789 Old_Disc : Entity_Id;
5790 New_Disc : Entity_Id;
5791 New_N : Node_Id;
5792
5793 begin
5794 Set_Stored_Constraint (Derived_Type, No_Elist);
5795 Corr_Decl_Needed := False;
5796 Old_Disc := Empty;
5797
5798 if Present (Discriminant_Specifications (N))
5799 and then Constraint_Present
5800 then
5801 Old_Disc := First_Discriminant (Parent_Type);
5802 New_Disc := First (Discriminant_Specifications (N));
5803 while Present (New_Disc) and then Present (Old_Disc) loop
5804 Next_Discriminant (Old_Disc);
5805 Next (New_Disc);
5806 end loop;
5807 end if;
5808
5809 if Present (Old_Disc) and then Expander_Active then
5810
5811 -- The new type has fewer discriminants, so we need to create a new
5812 -- corresponding record, which is derived from the corresponding
5813 -- record of the parent, and has a stored constraint that captures
5814 -- the values of the discriminant constraints. The corresponding
5815 -- record is needed only if expander is active and code generation is
5816 -- enabled.
5817
5818 -- The type declaration for the derived corresponding record has the
5819 -- same discriminant part and constraints as the current declaration.
5820 -- Copy the unanalyzed tree to build declaration.
5821
5822 Corr_Decl_Needed := True;
5823 New_N := Copy_Separate_Tree (N);
5824
5825 Corr_Decl :=
5826 Make_Full_Type_Declaration (Loc,
5827 Defining_Identifier => Corr_Record,
5828 Discriminant_Specifications =>
5829 Discriminant_Specifications (New_N),
5830 Type_Definition =>
5831 Make_Derived_Type_Definition (Loc,
5832 Subtype_Indication =>
5833 Make_Subtype_Indication (Loc,
5834 Subtype_Mark =>
5835 New_Occurrence_Of
5836 (Corresponding_Record_Type (Parent_Type), Loc),
5837 Constraint =>
5838 Constraint
5839 (Subtype_Indication (Type_Definition (New_N))))));
5840 end if;
5841
5842 -- Copy Storage_Size and Relative_Deadline variables if task case
5843
5844 if Is_Task_Type (Parent_Type) then
5845 Set_Storage_Size_Variable (Derived_Type,
5846 Storage_Size_Variable (Parent_Type));
5847 Set_Relative_Deadline_Variable (Derived_Type,
5848 Relative_Deadline_Variable (Parent_Type));
5849 end if;
5850
5851 if Present (Discriminant_Specifications (N)) then
5852 Push_Scope (Derived_Type);
5853 Check_Or_Process_Discriminants (N, Derived_Type);
5854
5855 if Constraint_Present then
5856 New_Constraint :=
5857 Expand_To_Stored_Constraint
5858 (Parent_Type,
5859 Build_Discriminant_Constraints
5860 (Parent_Type,
5861 Subtype_Indication (Type_Definition (N)), True));
5862 end if;
5863
5864 End_Scope;
5865
5866 elsif Constraint_Present then
5867
5868 -- Build constrained subtype, copying the constraint, and derive
5869 -- from it to create a derived constrained type.
5870
5871 declare
5872 Loc : constant Source_Ptr := Sloc (N);
5873 Anon : constant Entity_Id :=
5874 Make_Defining_Identifier (Loc,
5875 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5876 Decl : Node_Id;
5877
5878 begin
5879 Decl :=
5880 Make_Subtype_Declaration (Loc,
5881 Defining_Identifier => Anon,
5882 Subtype_Indication =>
5883 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5884 Insert_Before (N, Decl);
5885 Analyze (Decl);
5886
5887 Rewrite (Subtype_Indication (Type_Definition (N)),
5888 New_Occurrence_Of (Anon, Loc));
5889 Set_Analyzed (Derived_Type, False);
5890 Analyze (N);
5891 return;
5892 end;
5893 end if;
5894
5895 -- By default, operations and private data are inherited from parent.
5896 -- However, in the presence of bound discriminants, a new corresponding
5897 -- record will be created, see below.
5898
5899 Set_Has_Discriminants
5900 (Derived_Type, Has_Discriminants (Parent_Type));
5901 Set_Corresponding_Record_Type
5902 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5903
5904 -- Is_Constrained is set according the parent subtype, but is set to
5905 -- False if the derived type is declared with new discriminants.
5906
5907 Set_Is_Constrained
5908 (Derived_Type,
5909 (Is_Constrained (Parent_Type) or else Constraint_Present)
5910 and then not Present (Discriminant_Specifications (N)));
5911
5912 if Constraint_Present then
5913 if not Has_Discriminants (Parent_Type) then
5914 Error_Msg_N ("untagged parent must have discriminants", N);
5915
5916 elsif Present (Discriminant_Specifications (N)) then
5917
5918 -- Verify that new discriminants are used to constrain old ones
5919
5920 D_Constraint :=
5921 First
5922 (Constraints
5923 (Constraint (Subtype_Indication (Type_Definition (N)))));
5924
5925 Old_Disc := First_Discriminant (Parent_Type);
5926
5927 while Present (D_Constraint) loop
5928 if Nkind (D_Constraint) /= N_Discriminant_Association then
5929
5930 -- Positional constraint. If it is a reference to a new
5931 -- discriminant, it constrains the corresponding old one.
5932
5933 if Nkind (D_Constraint) = N_Identifier then
5934 New_Disc := First_Discriminant (Derived_Type);
5935 while Present (New_Disc) loop
5936 exit when Chars (New_Disc) = Chars (D_Constraint);
5937 Next_Discriminant (New_Disc);
5938 end loop;
5939
5940 if Present (New_Disc) then
5941 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5942 end if;
5943 end if;
5944
5945 Next_Discriminant (Old_Disc);
5946
5947 -- if this is a named constraint, search by name for the old
5948 -- discriminants constrained by the new one.
5949
5950 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5951
5952 -- Find new discriminant with that name
5953
5954 New_Disc := First_Discriminant (Derived_Type);
5955 while Present (New_Disc) loop
5956 exit when
5957 Chars (New_Disc) = Chars (Expression (D_Constraint));
5958 Next_Discriminant (New_Disc);
5959 end loop;
5960
5961 if Present (New_Disc) then
5962
5963 -- Verify that new discriminant renames some discriminant
5964 -- of the parent type, and associate the new discriminant
5965 -- with one or more old ones that it renames.
5966
5967 declare
5968 Selector : Node_Id;
5969
5970 begin
5971 Selector := First (Selector_Names (D_Constraint));
5972 while Present (Selector) loop
5973 Old_Disc := First_Discriminant (Parent_Type);
5974 while Present (Old_Disc) loop
5975 exit when Chars (Old_Disc) = Chars (Selector);
5976 Next_Discriminant (Old_Disc);
5977 end loop;
5978
5979 if Present (Old_Disc) then
5980 Set_Corresponding_Discriminant
5981 (New_Disc, Old_Disc);
5982 end if;
5983
5984 Next (Selector);
5985 end loop;
5986 end;
5987 end if;
5988 end if;
5989
5990 Next (D_Constraint);
5991 end loop;
5992
5993 New_Disc := First_Discriminant (Derived_Type);
5994 while Present (New_Disc) loop
5995 if No (Corresponding_Discriminant (New_Disc)) then
5996 Error_Msg_NE
5997 ("new discriminant& must constrain old one", N, New_Disc);
5998
5999 elsif not
6000 Subtypes_Statically_Compatible
6001 (Etype (New_Disc),
6002 Etype (Corresponding_Discriminant (New_Disc)))
6003 then
6004 Error_Msg_NE
6005 ("& not statically compatible with parent discriminant",
6006 N, New_Disc);
6007 end if;
6008
6009 Next_Discriminant (New_Disc);
6010 end loop;
6011 end if;
6012
6013 elsif Present (Discriminant_Specifications (N)) then
6014 Error_Msg_N
6015 ("missing discriminant constraint in untagged derivation", N);
6016 end if;
6017
6018 -- The entity chain of the derived type includes the new discriminants
6019 -- but shares operations with the parent.
6020
6021 if Present (Discriminant_Specifications (N)) then
6022 Old_Disc := First_Discriminant (Parent_Type);
6023 while Present (Old_Disc) loop
6024 if No (Next_Entity (Old_Disc))
6025 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6026 then
6027 Set_Next_Entity
6028 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6029 exit;
6030 end if;
6031
6032 Next_Discriminant (Old_Disc);
6033 end loop;
6034
6035 else
6036 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6037 if Has_Discriminants (Parent_Type) then
6038 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6039 Set_Discriminant_Constraint (
6040 Derived_Type, Discriminant_Constraint (Parent_Type));
6041 end if;
6042 end if;
6043
6044 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6045
6046 Set_Has_Completion (Derived_Type);
6047
6048 if Corr_Decl_Needed then
6049 Set_Stored_Constraint (Derived_Type, New_Constraint);
6050 Insert_After (N, Corr_Decl);
6051 Analyze (Corr_Decl);
6052 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6053 end if;
6054 end Build_Derived_Concurrent_Type;
6055
6056 ------------------------------------
6057 -- Build_Derived_Enumeration_Type --
6058 ------------------------------------
6059
6060 procedure Build_Derived_Enumeration_Type
6061 (N : Node_Id;
6062 Parent_Type : Entity_Id;
6063 Derived_Type : Entity_Id)
6064 is
6065 Loc : constant Source_Ptr := Sloc (N);
6066 Def : constant Node_Id := Type_Definition (N);
6067 Indic : constant Node_Id := Subtype_Indication (Def);
6068 Implicit_Base : Entity_Id;
6069 Literal : Entity_Id;
6070 New_Lit : Entity_Id;
6071 Literals_List : List_Id;
6072 Type_Decl : Node_Id;
6073 Hi, Lo : Node_Id;
6074 Rang_Expr : Node_Id;
6075
6076 begin
6077 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6078 -- not have explicit literals lists we need to process types derived
6079 -- from them specially. This is handled by Derived_Standard_Character.
6080 -- If the parent type is a generic type, there are no literals either,
6081 -- and we construct the same skeletal representation as for the generic
6082 -- parent type.
6083
6084 if Is_Standard_Character_Type (Parent_Type) then
6085 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6086
6087 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6088 declare
6089 Lo : Node_Id;
6090 Hi : Node_Id;
6091
6092 begin
6093 if Nkind (Indic) /= N_Subtype_Indication then
6094 Lo :=
6095 Make_Attribute_Reference (Loc,
6096 Attribute_Name => Name_First,
6097 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6098 Set_Etype (Lo, Derived_Type);
6099
6100 Hi :=
6101 Make_Attribute_Reference (Loc,
6102 Attribute_Name => Name_Last,
6103 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6104 Set_Etype (Hi, Derived_Type);
6105
6106 Set_Scalar_Range (Derived_Type,
6107 Make_Range (Loc,
6108 Low_Bound => Lo,
6109 High_Bound => Hi));
6110 else
6111
6112 -- Analyze subtype indication and verify compatibility
6113 -- with parent type.
6114
6115 if Base_Type (Process_Subtype (Indic, N)) /=
6116 Base_Type (Parent_Type)
6117 then
6118 Error_Msg_N
6119 ("illegal constraint for formal discrete type", N);
6120 end if;
6121 end if;
6122 end;
6123
6124 else
6125 -- If a constraint is present, analyze the bounds to catch
6126 -- premature usage of the derived literals.
6127
6128 if Nkind (Indic) = N_Subtype_Indication
6129 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6130 then
6131 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6132 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6133 end if;
6134
6135 -- Introduce an implicit base type for the derived type even if there
6136 -- is no constraint attached to it, since this seems closer to the
6137 -- Ada semantics. Build a full type declaration tree for the derived
6138 -- type using the implicit base type as the defining identifier. The
6139 -- build a subtype declaration tree which applies the constraint (if
6140 -- any) have it replace the derived type declaration.
6141
6142 Literal := First_Literal (Parent_Type);
6143 Literals_List := New_List;
6144 while Present (Literal)
6145 and then Ekind (Literal) = E_Enumeration_Literal
6146 loop
6147 -- Literals of the derived type have the same representation as
6148 -- those of the parent type, but this representation can be
6149 -- overridden by an explicit representation clause. Indicate
6150 -- that there is no explicit representation given yet. These
6151 -- derived literals are implicit operations of the new type,
6152 -- and can be overridden by explicit ones.
6153
6154 if Nkind (Literal) = N_Defining_Character_Literal then
6155 New_Lit :=
6156 Make_Defining_Character_Literal (Loc, Chars (Literal));
6157 else
6158 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6159 end if;
6160
6161 Set_Ekind (New_Lit, E_Enumeration_Literal);
6162 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6163 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6164 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6165 Set_Alias (New_Lit, Literal);
6166 Set_Is_Known_Valid (New_Lit, True);
6167
6168 Append (New_Lit, Literals_List);
6169 Next_Literal (Literal);
6170 end loop;
6171
6172 Implicit_Base :=
6173 Make_Defining_Identifier (Sloc (Derived_Type),
6174 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6175
6176 -- Indicate the proper nature of the derived type. This must be done
6177 -- before analysis of the literals, to recognize cases when a literal
6178 -- may be hidden by a previous explicit function definition (cf.
6179 -- c83031a).
6180
6181 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6182 Set_Etype (Derived_Type, Implicit_Base);
6183
6184 Type_Decl :=
6185 Make_Full_Type_Declaration (Loc,
6186 Defining_Identifier => Implicit_Base,
6187 Discriminant_Specifications => No_List,
6188 Type_Definition =>
6189 Make_Enumeration_Type_Definition (Loc, Literals_List));
6190
6191 Mark_Rewrite_Insertion (Type_Decl);
6192 Insert_Before (N, Type_Decl);
6193 Analyze (Type_Decl);
6194
6195 -- After the implicit base is analyzed its Etype needs to be changed
6196 -- to reflect the fact that it is derived from the parent type which
6197 -- was ignored during analysis. We also set the size at this point.
6198
6199 Set_Etype (Implicit_Base, Parent_Type);
6200
6201 Set_Size_Info (Implicit_Base, Parent_Type);
6202 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6203 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6204
6205 -- Copy other flags from parent type
6206
6207 Set_Has_Non_Standard_Rep
6208 (Implicit_Base, Has_Non_Standard_Rep
6209 (Parent_Type));
6210 Set_Has_Pragma_Ordered
6211 (Implicit_Base, Has_Pragma_Ordered
6212 (Parent_Type));
6213 Set_Has_Delayed_Freeze (Implicit_Base);
6214
6215 -- Process the subtype indication including a validation check on the
6216 -- constraint, if any. If a constraint is given, its bounds must be
6217 -- implicitly converted to the new type.
6218
6219 if Nkind (Indic) = N_Subtype_Indication then
6220 declare
6221 R : constant Node_Id :=
6222 Range_Expression (Constraint (Indic));
6223
6224 begin
6225 if Nkind (R) = N_Range then
6226 Hi := Build_Scalar_Bound
6227 (High_Bound (R), Parent_Type, Implicit_Base);
6228 Lo := Build_Scalar_Bound
6229 (Low_Bound (R), Parent_Type, Implicit_Base);
6230
6231 else
6232 -- Constraint is a Range attribute. Replace with explicit
6233 -- mention of the bounds of the prefix, which must be a
6234 -- subtype.
6235
6236 Analyze (Prefix (R));
6237 Hi :=
6238 Convert_To (Implicit_Base,
6239 Make_Attribute_Reference (Loc,
6240 Attribute_Name => Name_Last,
6241 Prefix =>
6242 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6243
6244 Lo :=
6245 Convert_To (Implicit_Base,
6246 Make_Attribute_Reference (Loc,
6247 Attribute_Name => Name_First,
6248 Prefix =>
6249 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6250 end if;
6251 end;
6252
6253 else
6254 Hi :=
6255 Build_Scalar_Bound
6256 (Type_High_Bound (Parent_Type),
6257 Parent_Type, Implicit_Base);
6258 Lo :=
6259 Build_Scalar_Bound
6260 (Type_Low_Bound (Parent_Type),
6261 Parent_Type, Implicit_Base);
6262 end if;
6263
6264 Rang_Expr :=
6265 Make_Range (Loc,
6266 Low_Bound => Lo,
6267 High_Bound => Hi);
6268
6269 -- If we constructed a default range for the case where no range
6270 -- was given, then the expressions in the range must not freeze
6271 -- since they do not correspond to expressions in the source.
6272
6273 if Nkind (Indic) /= N_Subtype_Indication then
6274 Set_Must_Not_Freeze (Lo);
6275 Set_Must_Not_Freeze (Hi);
6276 Set_Must_Not_Freeze (Rang_Expr);
6277 end if;
6278
6279 Rewrite (N,
6280 Make_Subtype_Declaration (Loc,
6281 Defining_Identifier => Derived_Type,
6282 Subtype_Indication =>
6283 Make_Subtype_Indication (Loc,
6284 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6285 Constraint =>
6286 Make_Range_Constraint (Loc,
6287 Range_Expression => Rang_Expr))));
6288
6289 Analyze (N);
6290
6291 -- Apply a range check. Since this range expression doesn't have an
6292 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6293 -- this right???
6294
6295 if Nkind (Indic) = N_Subtype_Indication then
6296 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6297 Parent_Type,
6298 Source_Typ => Entity (Subtype_Mark (Indic)));
6299 end if;
6300 end if;
6301 end Build_Derived_Enumeration_Type;
6302
6303 --------------------------------
6304 -- Build_Derived_Numeric_Type --
6305 --------------------------------
6306
6307 procedure Build_Derived_Numeric_Type
6308 (N : Node_Id;
6309 Parent_Type : Entity_Id;
6310 Derived_Type : Entity_Id)
6311 is
6312 Loc : constant Source_Ptr := Sloc (N);
6313 Tdef : constant Node_Id := Type_Definition (N);
6314 Indic : constant Node_Id := Subtype_Indication (Tdef);
6315 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6316 No_Constraint : constant Boolean := Nkind (Indic) /=
6317 N_Subtype_Indication;
6318 Implicit_Base : Entity_Id;
6319
6320 Lo : Node_Id;
6321 Hi : Node_Id;
6322
6323 begin
6324 -- Process the subtype indication including a validation check on
6325 -- the constraint if any.
6326
6327 Discard_Node (Process_Subtype (Indic, N));
6328
6329 -- Introduce an implicit base type for the derived type even if there
6330 -- is no constraint attached to it, since this seems closer to the Ada
6331 -- semantics.
6332
6333 Implicit_Base :=
6334 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6335
6336 Set_Etype (Implicit_Base, Parent_Base);
6337 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6338 Set_Size_Info (Implicit_Base, Parent_Base);
6339 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6340 Set_Parent (Implicit_Base, Parent (Derived_Type));
6341 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6342
6343 -- Set RM Size for discrete type or decimal fixed-point type
6344 -- Ordinary fixed-point is excluded, why???
6345
6346 if Is_Discrete_Type (Parent_Base)
6347 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6348 then
6349 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6350 end if;
6351
6352 Set_Has_Delayed_Freeze (Implicit_Base);
6353
6354 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6355 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6356
6357 Set_Scalar_Range (Implicit_Base,
6358 Make_Range (Loc,
6359 Low_Bound => Lo,
6360 High_Bound => Hi));
6361
6362 if Has_Infinities (Parent_Base) then
6363 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6364 end if;
6365
6366 -- The Derived_Type, which is the entity of the declaration, is a
6367 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6368 -- absence of an explicit constraint.
6369
6370 Set_Etype (Derived_Type, Implicit_Base);
6371
6372 -- If we did not have a constraint, then the Ekind is set from the
6373 -- parent type (otherwise Process_Subtype has set the bounds)
6374
6375 if No_Constraint then
6376 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6377 end if;
6378
6379 -- If we did not have a range constraint, then set the range from the
6380 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6381
6382 if No_Constraint
6383 or else not Has_Range_Constraint (Indic)
6384 then
6385 Set_Scalar_Range (Derived_Type,
6386 Make_Range (Loc,
6387 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6388 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6389 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6390
6391 if Has_Infinities (Parent_Type) then
6392 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6393 end if;
6394
6395 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6396 end if;
6397
6398 Set_Is_Descendent_Of_Address (Derived_Type,
6399 Is_Descendent_Of_Address (Parent_Type));
6400 Set_Is_Descendent_Of_Address (Implicit_Base,
6401 Is_Descendent_Of_Address (Parent_Type));
6402
6403 -- Set remaining type-specific fields, depending on numeric type
6404
6405 if Is_Modular_Integer_Type (Parent_Type) then
6406 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6407
6408 Set_Non_Binary_Modulus
6409 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6410
6411 Set_Is_Known_Valid
6412 (Implicit_Base, Is_Known_Valid (Parent_Base));
6413
6414 elsif Is_Floating_Point_Type (Parent_Type) then
6415
6416 -- Digits of base type is always copied from the digits value of
6417 -- the parent base type, but the digits of the derived type will
6418 -- already have been set if there was a constraint present.
6419
6420 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6421 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6422
6423 if No_Constraint then
6424 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6425 end if;
6426
6427 elsif Is_Fixed_Point_Type (Parent_Type) then
6428
6429 -- Small of base type and derived type are always copied from the
6430 -- parent base type, since smalls never change. The delta of the
6431 -- base type is also copied from the parent base type. However the
6432 -- delta of the derived type will have been set already if a
6433 -- constraint was present.
6434
6435 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6436 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6437 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6438
6439 if No_Constraint then
6440 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6441 end if;
6442
6443 -- The scale and machine radix in the decimal case are always
6444 -- copied from the parent base type.
6445
6446 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6447 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6448 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6449
6450 Set_Machine_Radix_10
6451 (Derived_Type, Machine_Radix_10 (Parent_Base));
6452 Set_Machine_Radix_10
6453 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6454
6455 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6456
6457 if No_Constraint then
6458 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6459
6460 else
6461 -- the analysis of the subtype_indication sets the
6462 -- digits value of the derived type.
6463
6464 null;
6465 end if;
6466 end if;
6467 end if;
6468
6469 if Is_Integer_Type (Parent_Type) then
6470 Set_Has_Shift_Operator
6471 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6472 end if;
6473
6474 -- The type of the bounds is that of the parent type, and they
6475 -- must be converted to the derived type.
6476
6477 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6478
6479 -- The implicit_base should be frozen when the derived type is frozen,
6480 -- but note that it is used in the conversions of the bounds. For fixed
6481 -- types we delay the determination of the bounds until the proper
6482 -- freezing point. For other numeric types this is rejected by GCC, for
6483 -- reasons that are currently unclear (???), so we choose to freeze the
6484 -- implicit base now. In the case of integers and floating point types
6485 -- this is harmless because subsequent representation clauses cannot
6486 -- affect anything, but it is still baffling that we cannot use the
6487 -- same mechanism for all derived numeric types.
6488
6489 -- There is a further complication: actually some representation
6490 -- clauses can affect the implicit base type. For example, attribute
6491 -- definition clauses for stream-oriented attributes need to set the
6492 -- corresponding TSS entries on the base type, and this normally
6493 -- cannot be done after the base type is frozen, so the circuitry in
6494 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6495 -- and not use Set_TSS in this case.
6496
6497 -- There are also consequences for the case of delayed representation
6498 -- aspects for some cases. For example, a Size aspect is delayed and
6499 -- should not be evaluated to the freeze point. This early freezing
6500 -- means that the size attribute evaluation happens too early???
6501
6502 if Is_Fixed_Point_Type (Parent_Type) then
6503 Conditional_Delay (Implicit_Base, Parent_Type);
6504 else
6505 Freeze_Before (N, Implicit_Base);
6506 end if;
6507 end Build_Derived_Numeric_Type;
6508
6509 --------------------------------
6510 -- Build_Derived_Private_Type --
6511 --------------------------------
6512
6513 procedure Build_Derived_Private_Type
6514 (N : Node_Id;
6515 Parent_Type : Entity_Id;
6516 Derived_Type : Entity_Id;
6517 Is_Completion : Boolean;
6518 Derive_Subps : Boolean := True)
6519 is
6520 Loc : constant Source_Ptr := Sloc (N);
6521 Der_Base : Entity_Id;
6522 Discr : Entity_Id;
6523 Full_Decl : Node_Id := Empty;
6524 Full_Der : Entity_Id;
6525 Full_P : Entity_Id;
6526 Last_Discr : Entity_Id;
6527 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6528 Swapped : Boolean := False;
6529
6530 procedure Copy_And_Build;
6531 -- Copy derived type declaration, replace parent with its full view,
6532 -- and analyze new declaration.
6533
6534 --------------------
6535 -- Copy_And_Build --
6536 --------------------
6537
6538 procedure Copy_And_Build is
6539 Full_N : Node_Id;
6540
6541 begin
6542 if Ekind (Parent_Type) in Record_Kind
6543 or else
6544 (Ekind (Parent_Type) in Enumeration_Kind
6545 and then not Is_Standard_Character_Type (Parent_Type)
6546 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6547 then
6548 Full_N := New_Copy_Tree (N);
6549 Insert_After (N, Full_N);
6550 Build_Derived_Type (
6551 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6552
6553 else
6554 Build_Derived_Type (
6555 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6556 end if;
6557 end Copy_And_Build;
6558
6559 -- Start of processing for Build_Derived_Private_Type
6560
6561 begin
6562 if Is_Tagged_Type (Parent_Type) then
6563 Full_P := Full_View (Parent_Type);
6564
6565 -- A type extension of a type with unknown discriminants is an
6566 -- indefinite type that the back-end cannot handle directly.
6567 -- We treat it as a private type, and build a completion that is
6568 -- derived from the full view of the parent, and hopefully has
6569 -- known discriminants.
6570
6571 -- If the full view of the parent type has an underlying record view,
6572 -- use it to generate the underlying record view of this derived type
6573 -- (required for chains of derivations with unknown discriminants).
6574
6575 -- Minor optimization: we avoid the generation of useless underlying
6576 -- record view entities if the private type declaration has unknown
6577 -- discriminants but its corresponding full view has no
6578 -- discriminants.
6579
6580 if Has_Unknown_Discriminants (Parent_Type)
6581 and then Present (Full_P)
6582 and then (Has_Discriminants (Full_P)
6583 or else Present (Underlying_Record_View (Full_P)))
6584 and then not In_Open_Scopes (Par_Scope)
6585 and then Expander_Active
6586 then
6587 declare
6588 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6589 New_Ext : constant Node_Id :=
6590 Copy_Separate_Tree
6591 (Record_Extension_Part (Type_Definition (N)));
6592 Decl : Node_Id;
6593
6594 begin
6595 Build_Derived_Record_Type
6596 (N, Parent_Type, Derived_Type, Derive_Subps);
6597
6598 -- Build anonymous completion, as a derivation from the full
6599 -- view of the parent. This is not a completion in the usual
6600 -- sense, because the current type is not private.
6601
6602 Decl :=
6603 Make_Full_Type_Declaration (Loc,
6604 Defining_Identifier => Full_Der,
6605 Type_Definition =>
6606 Make_Derived_Type_Definition (Loc,
6607 Subtype_Indication =>
6608 New_Copy_Tree
6609 (Subtype_Indication (Type_Definition (N))),
6610 Record_Extension_Part => New_Ext));
6611
6612 -- If the parent type has an underlying record view, use it
6613 -- here to build the new underlying record view.
6614
6615 if Present (Underlying_Record_View (Full_P)) then
6616 pragma Assert
6617 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6618 = N_Identifier);
6619 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6620 Underlying_Record_View (Full_P));
6621 end if;
6622
6623 Install_Private_Declarations (Par_Scope);
6624 Install_Visible_Declarations (Par_Scope);
6625 Insert_Before (N, Decl);
6626
6627 -- Mark entity as an underlying record view before analysis,
6628 -- to avoid generating the list of its primitive operations
6629 -- (which is not really required for this entity) and thus
6630 -- prevent spurious errors associated with missing overriding
6631 -- of abstract primitives (overridden only for Derived_Type).
6632
6633 Set_Ekind (Full_Der, E_Record_Type);
6634 Set_Is_Underlying_Record_View (Full_Der);
6635 Set_Default_SSO (Full_Der);
6636
6637 Analyze (Decl);
6638
6639 pragma Assert (Has_Discriminants (Full_Der)
6640 and then not Has_Unknown_Discriminants (Full_Der));
6641
6642 Uninstall_Declarations (Par_Scope);
6643
6644 -- Freeze the underlying record view, to prevent generation of
6645 -- useless dispatching information, which is simply shared with
6646 -- the real derived type.
6647
6648 Set_Is_Frozen (Full_Der);
6649
6650 -- Set up links between real entity and underlying record view
6651
6652 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6653 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6654 end;
6655
6656 -- If discriminants are known, build derived record
6657
6658 else
6659 Build_Derived_Record_Type
6660 (N, Parent_Type, Derived_Type, Derive_Subps);
6661 end if;
6662
6663 return;
6664
6665 elsif Has_Discriminants (Parent_Type) then
6666 if Present (Full_View (Parent_Type)) then
6667 if not Is_Completion then
6668
6669 -- Copy declaration for subsequent analysis, to provide a
6670 -- completion for what is a private declaration. Indicate that
6671 -- the full type is internally generated.
6672
6673 Full_Decl := New_Copy_Tree (N);
6674 Full_Der := New_Copy (Derived_Type);
6675 Set_Comes_From_Source (Full_Decl, False);
6676 Set_Comes_From_Source (Full_Der, False);
6677 Set_Parent (Full_Der, Full_Decl);
6678
6679 Insert_After (N, Full_Decl);
6680
6681 else
6682 -- If this is a completion, the full view being built is itself
6683 -- private. We build a subtype of the parent with the same
6684 -- constraints as this full view, to convey to the back end the
6685 -- constrained components and the size of this subtype. If the
6686 -- parent is constrained, its full view can serve as the
6687 -- underlying full view of the derived type.
6688
6689 if No (Discriminant_Specifications (N)) then
6690 if Nkind (Subtype_Indication (Type_Definition (N))) =
6691 N_Subtype_Indication
6692 then
6693 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6694
6695 elsif Is_Constrained (Full_View (Parent_Type)) then
6696 Set_Underlying_Full_View
6697 (Derived_Type, Full_View (Parent_Type));
6698 end if;
6699
6700 else
6701 -- If there are new discriminants, the parent subtype is
6702 -- constrained by them, but it is not clear how to build
6703 -- the Underlying_Full_View in this case???
6704
6705 null;
6706 end if;
6707 end if;
6708 end if;
6709
6710 -- Build partial view of derived type from partial view of parent
6711
6712 Build_Derived_Record_Type
6713 (N, Parent_Type, Derived_Type, Derive_Subps);
6714
6715 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6716 if not In_Open_Scopes (Par_Scope)
6717 or else not In_Same_Source_Unit (N, Parent_Type)
6718 then
6719 -- Swap partial and full views temporarily
6720
6721 Install_Private_Declarations (Par_Scope);
6722 Install_Visible_Declarations (Par_Scope);
6723 Swapped := True;
6724 end if;
6725
6726 -- Build full view of derived type from full view of parent which
6727 -- is now installed. Subprograms have been derived on the partial
6728 -- view, the completion does not derive them anew.
6729
6730 if not Is_Tagged_Type (Parent_Type) then
6731
6732 -- If the parent is itself derived from another private type,
6733 -- installing the private declarations has not affected its
6734 -- privacy status, so use its own full view explicitly.
6735
6736 if Is_Private_Type (Parent_Type) then
6737 Build_Derived_Record_Type
6738 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6739 else
6740 Build_Derived_Record_Type
6741 (Full_Decl, Parent_Type, Full_Der, False);
6742 end if;
6743
6744 else
6745 -- If full view of parent is tagged, the completion inherits
6746 -- the proper primitive operations.
6747
6748 Set_Defining_Identifier (Full_Decl, Full_Der);
6749 Build_Derived_Record_Type
6750 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6751 end if;
6752
6753 -- The full declaration has been introduced into the tree and
6754 -- processed in the step above. It should not be analyzed again
6755 -- (when encountered later in the current list of declarations)
6756 -- to prevent spurious name conflicts. The full entity remains
6757 -- invisible.
6758
6759 Set_Analyzed (Full_Decl);
6760
6761 if Swapped then
6762 Uninstall_Declarations (Par_Scope);
6763
6764 if In_Open_Scopes (Par_Scope) then
6765 Install_Visible_Declarations (Par_Scope);
6766 end if;
6767 end if;
6768
6769 Der_Base := Base_Type (Derived_Type);
6770 Set_Full_View (Derived_Type, Full_Der);
6771 Set_Full_View (Der_Base, Base_Type (Full_Der));
6772
6773 -- Copy the discriminant list from full view to the partial views
6774 -- (base type and its subtype). Gigi requires that the partial and
6775 -- full views have the same discriminants.
6776
6777 -- Note that since the partial view is pointing to discriminants
6778 -- in the full view, their scope will be that of the full view.
6779 -- This might cause some front end problems and need adjustment???
6780
6781 Discr := First_Discriminant (Base_Type (Full_Der));
6782 Set_First_Entity (Der_Base, Discr);
6783
6784 loop
6785 Last_Discr := Discr;
6786 Next_Discriminant (Discr);
6787 exit when No (Discr);
6788 end loop;
6789
6790 Set_Last_Entity (Der_Base, Last_Discr);
6791
6792 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6793 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6794 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6795
6796 else
6797 -- If this is a completion, the derived type stays private and
6798 -- there is no need to create a further full view, except in the
6799 -- unusual case when the derivation is nested within a child unit,
6800 -- see below.
6801
6802 null;
6803 end if;
6804
6805 elsif Present (Full_View (Parent_Type))
6806 and then Has_Discriminants (Full_View (Parent_Type))
6807 then
6808 if Has_Unknown_Discriminants (Parent_Type)
6809 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6810 N_Subtype_Indication
6811 then
6812 Error_Msg_N
6813 ("cannot constrain type with unknown discriminants",
6814 Subtype_Indication (Type_Definition (N)));
6815 return;
6816 end if;
6817
6818 -- If full view of parent is a record type, build full view as a
6819 -- derivation from the parent's full view. Partial view remains
6820 -- private. For code generation and linking, the full view must have
6821 -- the same public status as the partial one. This full view is only
6822 -- needed if the parent type is in an enclosing scope, so that the
6823 -- full view may actually become visible, e.g. in a child unit. This
6824 -- is both more efficient, and avoids order of freezing problems with
6825 -- the added entities.
6826
6827 if not Is_Private_Type (Full_View (Parent_Type))
6828 and then (In_Open_Scopes (Scope (Parent_Type)))
6829 then
6830 Full_Der :=
6831 Make_Defining_Identifier (Sloc (Derived_Type),
6832 Chars => Chars (Derived_Type));
6833
6834 Set_Is_Itype (Full_Der);
6835 Set_Has_Private_Declaration (Full_Der);
6836 Set_Has_Private_Declaration (Derived_Type);
6837 Set_Associated_Node_For_Itype (Full_Der, N);
6838 Set_Parent (Full_Der, Parent (Derived_Type));
6839 Set_Full_View (Derived_Type, Full_Der);
6840 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6841 Full_P := Full_View (Parent_Type);
6842 Exchange_Declarations (Parent_Type);
6843 Copy_And_Build;
6844 Exchange_Declarations (Full_P);
6845
6846 else
6847 Build_Derived_Record_Type
6848 (N, Full_View (Parent_Type), Derived_Type,
6849 Derive_Subps => False);
6850
6851 -- Except in the context of the full view of the parent, there
6852 -- are no non-extension aggregates for the derived type.
6853
6854 Set_Has_Private_Ancestor (Derived_Type);
6855 end if;
6856
6857 -- In any case, the primitive operations are inherited from the
6858 -- parent type, not from the internal full view.
6859
6860 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6861
6862 if Derive_Subps then
6863 Derive_Subprograms (Parent_Type, Derived_Type);
6864 end if;
6865
6866 else
6867 -- Untagged type, No discriminants on either view
6868
6869 if Nkind (Subtype_Indication (Type_Definition (N))) =
6870 N_Subtype_Indication
6871 then
6872 Error_Msg_N
6873 ("illegal constraint on type without discriminants", N);
6874 end if;
6875
6876 if Present (Discriminant_Specifications (N))
6877 and then Present (Full_View (Parent_Type))
6878 and then not Is_Tagged_Type (Full_View (Parent_Type))
6879 then
6880 Error_Msg_N ("cannot add discriminants to untagged type", N);
6881 end if;
6882
6883 Set_Stored_Constraint (Derived_Type, No_Elist);
6884 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6885 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6886 Set_Has_Controlled_Component
6887 (Derived_Type, Has_Controlled_Component
6888 (Parent_Type));
6889
6890 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6891
6892 if not Is_Controlled (Parent_Type) then
6893 Set_Finalize_Storage_Only
6894 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6895 end if;
6896
6897 -- Construct the implicit full view by deriving from full view of the
6898 -- parent type. In order to get proper visibility, we install the
6899 -- parent scope and its declarations.
6900
6901 -- ??? If the parent is untagged private and its completion is
6902 -- tagged, this mechanism will not work because we cannot derive from
6903 -- the tagged full view unless we have an extension.
6904
6905 if Present (Full_View (Parent_Type))
6906 and then not Is_Tagged_Type (Full_View (Parent_Type))
6907 and then not Is_Completion
6908 then
6909 Full_Der :=
6910 Make_Defining_Identifier
6911 (Sloc (Derived_Type), Chars (Derived_Type));
6912 Set_Is_Itype (Full_Der);
6913 Set_Has_Private_Declaration (Full_Der);
6914 Set_Has_Private_Declaration (Derived_Type);
6915 Set_Associated_Node_For_Itype (Full_Der, N);
6916 Set_Parent (Full_Der, Parent (Derived_Type));
6917 Set_Full_View (Derived_Type, Full_Der);
6918
6919 if not In_Open_Scopes (Par_Scope) then
6920 Install_Private_Declarations (Par_Scope);
6921 Install_Visible_Declarations (Par_Scope);
6922 Copy_And_Build;
6923 Uninstall_Declarations (Par_Scope);
6924
6925 -- If parent scope is open and in another unit, and parent has a
6926 -- completion, then the derivation is taking place in the visible
6927 -- part of a child unit. In that case retrieve the full view of
6928 -- the parent momentarily.
6929
6930 elsif not In_Same_Source_Unit (N, Parent_Type) then
6931 Full_P := Full_View (Parent_Type);
6932 Exchange_Declarations (Parent_Type);
6933 Copy_And_Build;
6934 Exchange_Declarations (Full_P);
6935
6936 -- Otherwise it is a local derivation
6937
6938 else
6939 Copy_And_Build;
6940 end if;
6941
6942 Set_Scope (Full_Der, Current_Scope);
6943 Set_Is_First_Subtype (Full_Der,
6944 Is_First_Subtype (Derived_Type));
6945 Set_Has_Size_Clause (Full_Der, False);
6946 Set_Has_Alignment_Clause (Full_Der, False);
6947 Set_Next_Entity (Full_Der, Empty);
6948 Set_Has_Delayed_Freeze (Full_Der);
6949 Set_Is_Frozen (Full_Der, False);
6950 Set_Freeze_Node (Full_Der, Empty);
6951 Set_Depends_On_Private (Full_Der,
6952 Has_Private_Component (Full_Der));
6953 Set_Public_Status (Full_Der);
6954 end if;
6955 end if;
6956
6957 Set_Has_Unknown_Discriminants (Derived_Type,
6958 Has_Unknown_Discriminants (Parent_Type));
6959
6960 if Is_Private_Type (Derived_Type) then
6961 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6962 end if;
6963
6964 if Is_Private_Type (Parent_Type)
6965 and then Base_Type (Parent_Type) = Parent_Type
6966 and then In_Open_Scopes (Scope (Parent_Type))
6967 then
6968 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6969
6970 -- Check for unusual case where a type completed by a private
6971 -- derivation occurs within a package nested in a child unit, and
6972 -- the parent is declared in an ancestor.
6973
6974 if Is_Child_Unit (Scope (Current_Scope))
6975 and then Is_Completion
6976 and then In_Private_Part (Current_Scope)
6977 and then Scope (Parent_Type) /= Current_Scope
6978
6979 -- Note that if the parent has a completion in the private part,
6980 -- (which is itself a derivation from some other private type)
6981 -- it is that completion that is visible, there is no full view
6982 -- available, and no special processing is needed.
6983
6984 and then Present (Full_View (Parent_Type))
6985 then
6986 -- In this case, the full view of the parent type will become
6987 -- visible in the body of the enclosing child, and only then will
6988 -- the current type be possibly non-private. We build an
6989 -- underlying full view that will be installed when the enclosing
6990 -- child body is compiled.
6991
6992 Full_Der :=
6993 Make_Defining_Identifier
6994 (Sloc (Derived_Type), Chars (Derived_Type));
6995 Set_Is_Itype (Full_Der);
6996 Build_Itype_Reference (Full_Der, N);
6997
6998 -- The full view will be used to swap entities on entry/exit to
6999 -- the body, and must appear in the entity list for the package.
7000
7001 Append_Entity (Full_Der, Scope (Derived_Type));
7002 Set_Has_Private_Declaration (Full_Der);
7003 Set_Has_Private_Declaration (Derived_Type);
7004 Set_Associated_Node_For_Itype (Full_Der, N);
7005 Set_Parent (Full_Der, Parent (Derived_Type));
7006 Full_P := Full_View (Parent_Type);
7007 Exchange_Declarations (Parent_Type);
7008 Copy_And_Build;
7009 Exchange_Declarations (Full_P);
7010 Set_Underlying_Full_View (Derived_Type, Full_Der);
7011 end if;
7012 end if;
7013 end Build_Derived_Private_Type;
7014
7015 -------------------------------
7016 -- Build_Derived_Record_Type --
7017 -------------------------------
7018
7019 -- 1. INTRODUCTION
7020
7021 -- Ideally we would like to use the same model of type derivation for
7022 -- tagged and untagged record types. Unfortunately this is not quite
7023 -- possible because the semantics of representation clauses is different
7024 -- for tagged and untagged records under inheritance. Consider the
7025 -- following:
7026
7027 -- type R (...) is [tagged] record ... end record;
7028 -- type T (...) is new R (...) [with ...];
7029
7030 -- The representation clauses for T can specify a completely different
7031 -- record layout from R's. Hence the same component can be placed in two
7032 -- very different positions in objects of type T and R. If R and T are
7033 -- tagged types, representation clauses for T can only specify the layout
7034 -- of non inherited components, thus components that are common in R and T
7035 -- have the same position in objects of type R and T.
7036
7037 -- This has two implications. The first is that the entire tree for R's
7038 -- declaration needs to be copied for T in the untagged case, so that T
7039 -- can be viewed as a record type of its own with its own representation
7040 -- clauses. The second implication is the way we handle discriminants.
7041 -- Specifically, in the untagged case we need a way to communicate to Gigi
7042 -- what are the real discriminants in the record, while for the semantics
7043 -- we need to consider those introduced by the user to rename the
7044 -- discriminants in the parent type. This is handled by introducing the
7045 -- notion of stored discriminants. See below for more.
7046
7047 -- Fortunately the way regular components are inherited can be handled in
7048 -- the same way in tagged and untagged types.
7049
7050 -- To complicate things a bit more the private view of a private extension
7051 -- cannot be handled in the same way as the full view (for one thing the
7052 -- semantic rules are somewhat different). We will explain what differs
7053 -- below.
7054
7055 -- 2. DISCRIMINANTS UNDER INHERITANCE
7056
7057 -- The semantic rules governing the discriminants of derived types are
7058 -- quite subtle.
7059
7060 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7061 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7062
7063 -- If parent type has discriminants, then the discriminants that are
7064 -- declared in the derived type are [3.4 (11)]:
7065
7066 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7067 -- there is one;
7068
7069 -- o Otherwise, each discriminant of the parent type (implicitly declared
7070 -- in the same order with the same specifications). In this case, the
7071 -- discriminants are said to be "inherited", or if unknown in the parent
7072 -- are also unknown in the derived type.
7073
7074 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7075
7076 -- o The parent subtype shall be constrained;
7077
7078 -- o If the parent type is not a tagged type, then each discriminant of
7079 -- the derived type shall be used in the constraint defining a parent
7080 -- subtype. [Implementation note: This ensures that the new discriminant
7081 -- can share storage with an existing discriminant.]
7082
7083 -- For the derived type each discriminant of the parent type is either
7084 -- inherited, constrained to equal some new discriminant of the derived
7085 -- type, or constrained to the value of an expression.
7086
7087 -- When inherited or constrained to equal some new discriminant, the
7088 -- parent discriminant and the discriminant of the derived type are said
7089 -- to "correspond".
7090
7091 -- If a discriminant of the parent type is constrained to a specific value
7092 -- in the derived type definition, then the discriminant is said to be
7093 -- "specified" by that derived type definition.
7094
7095 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7096
7097 -- We have spoken about stored discriminants in point 1 (introduction)
7098 -- above. There are two sort of stored discriminants: implicit and
7099 -- explicit. As long as the derived type inherits the same discriminants as
7100 -- the root record type, stored discriminants are the same as regular
7101 -- discriminants, and are said to be implicit. However, if any discriminant
7102 -- in the root type was renamed in the derived type, then the derived
7103 -- type will contain explicit stored discriminants. Explicit stored
7104 -- discriminants are discriminants in addition to the semantically visible
7105 -- discriminants defined for the derived type. Stored discriminants are
7106 -- used by Gigi to figure out what are the physical discriminants in
7107 -- objects of the derived type (see precise definition in einfo.ads).
7108 -- As an example, consider the following:
7109
7110 -- type R (D1, D2, D3 : Int) is record ... end record;
7111 -- type T1 is new R;
7112 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7113 -- type T3 is new T2;
7114 -- type T4 (Y : Int) is new T3 (Y, 99);
7115
7116 -- The following table summarizes the discriminants and stored
7117 -- discriminants in R and T1 through T4.
7118
7119 -- Type Discrim Stored Discrim Comment
7120 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7121 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7122 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7123 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7124 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7125
7126 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7127 -- find the corresponding discriminant in the parent type, while
7128 -- Original_Record_Component (abbreviated ORC below), the actual physical
7129 -- component that is renamed. Finally the field Is_Completely_Hidden
7130 -- (abbreviated ICH below) is set for all explicit stored discriminants
7131 -- (see einfo.ads for more info). For the above example this gives:
7132
7133 -- Discrim CD ORC ICH
7134 -- ^^^^^^^ ^^ ^^^ ^^^
7135 -- D1 in R empty itself no
7136 -- D2 in R empty itself no
7137 -- D3 in R empty itself no
7138
7139 -- D1 in T1 D1 in R itself no
7140 -- D2 in T1 D2 in R itself no
7141 -- D3 in T1 D3 in R itself no
7142
7143 -- X1 in T2 D3 in T1 D3 in T2 no
7144 -- X2 in T2 D1 in T1 D1 in T2 no
7145 -- D1 in T2 empty itself yes
7146 -- D2 in T2 empty itself yes
7147 -- D3 in T2 empty itself yes
7148
7149 -- X1 in T3 X1 in T2 D3 in T3 no
7150 -- X2 in T3 X2 in T2 D1 in T3 no
7151 -- D1 in T3 empty itself yes
7152 -- D2 in T3 empty itself yes
7153 -- D3 in T3 empty itself yes
7154
7155 -- Y in T4 X1 in T3 D3 in T3 no
7156 -- D1 in T3 empty itself yes
7157 -- D2 in T3 empty itself yes
7158 -- D3 in T3 empty itself yes
7159
7160 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7161
7162 -- Type derivation for tagged types is fairly straightforward. If no
7163 -- discriminants are specified by the derived type, these are inherited
7164 -- from the parent. No explicit stored discriminants are ever necessary.
7165 -- The only manipulation that is done to the tree is that of adding a
7166 -- _parent field with parent type and constrained to the same constraint
7167 -- specified for the parent in the derived type definition. For instance:
7168
7169 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7170 -- type T1 is new R with null record;
7171 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7172
7173 -- are changed into:
7174
7175 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7176 -- _parent : R (D1, D2, D3);
7177 -- end record;
7178
7179 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7180 -- _parent : T1 (X2, 88, X1);
7181 -- end record;
7182
7183 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7184 -- ORC and ICH fields are:
7185
7186 -- Discrim CD ORC ICH
7187 -- ^^^^^^^ ^^ ^^^ ^^^
7188 -- D1 in R empty itself no
7189 -- D2 in R empty itself no
7190 -- D3 in R empty itself no
7191
7192 -- D1 in T1 D1 in R D1 in R no
7193 -- D2 in T1 D2 in R D2 in R no
7194 -- D3 in T1 D3 in R D3 in R no
7195
7196 -- X1 in T2 D3 in T1 D3 in R no
7197 -- X2 in T2 D1 in T1 D1 in R no
7198
7199 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7200 --
7201 -- Regardless of whether we dealing with a tagged or untagged type
7202 -- we will transform all derived type declarations of the form
7203 --
7204 -- type T is new R (...) [with ...];
7205 -- or
7206 -- subtype S is R (...);
7207 -- type T is new S [with ...];
7208 -- into
7209 -- type BT is new R [with ...];
7210 -- subtype T is BT (...);
7211 --
7212 -- That is, the base derived type is constrained only if it has no
7213 -- discriminants. The reason for doing this is that GNAT's semantic model
7214 -- assumes that a base type with discriminants is unconstrained.
7215 --
7216 -- Note that, strictly speaking, the above transformation is not always
7217 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7218 --
7219 -- procedure B34011A is
7220 -- type REC (D : integer := 0) is record
7221 -- I : Integer;
7222 -- end record;
7223
7224 -- package P is
7225 -- type T6 is new Rec;
7226 -- function F return T6;
7227 -- end P;
7228
7229 -- use P;
7230 -- package Q6 is
7231 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7232 -- end Q6;
7233 --
7234 -- The definition of Q6.U is illegal. However transforming Q6.U into
7235
7236 -- type BaseU is new T6;
7237 -- subtype U is BaseU (Q6.F.I)
7238
7239 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7240 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7241 -- the transformation described above.
7242
7243 -- There is another instance where the above transformation is incorrect.
7244 -- Consider:
7245
7246 -- package Pack is
7247 -- type Base (D : Integer) is tagged null record;
7248 -- procedure P (X : Base);
7249
7250 -- type Der is new Base (2) with null record;
7251 -- procedure P (X : Der);
7252 -- end Pack;
7253
7254 -- Then the above transformation turns this into
7255
7256 -- type Der_Base is new Base with null record;
7257 -- -- procedure P (X : Base) is implicitly inherited here
7258 -- -- as procedure P (X : Der_Base).
7259
7260 -- subtype Der is Der_Base (2);
7261 -- procedure P (X : Der);
7262 -- -- The overriding of P (X : Der_Base) is illegal since we
7263 -- -- have a parameter conformance problem.
7264
7265 -- To get around this problem, after having semantically processed Der_Base
7266 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7267 -- Discriminant_Constraint from Der so that when parameter conformance is
7268 -- checked when P is overridden, no semantic errors are flagged.
7269
7270 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7271
7272 -- Regardless of whether we are dealing with a tagged or untagged type
7273 -- we will transform all derived type declarations of the form
7274
7275 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7276 -- type T is new R [with ...];
7277 -- into
7278 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7279
7280 -- The reason for such transformation is that it allows us to implement a
7281 -- very clean form of component inheritance as explained below.
7282
7283 -- Note that this transformation is not achieved by direct tree rewriting
7284 -- and manipulation, but rather by redoing the semantic actions that the
7285 -- above transformation will entail. This is done directly in routine
7286 -- Inherit_Components.
7287
7288 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7289
7290 -- In both tagged and untagged derived types, regular non discriminant
7291 -- components are inherited in the derived type from the parent type. In
7292 -- the absence of discriminants component, inheritance is straightforward
7293 -- as components can simply be copied from the parent.
7294
7295 -- If the parent has discriminants, inheriting components constrained with
7296 -- these discriminants requires caution. Consider the following example:
7297
7298 -- type R (D1, D2 : Positive) is [tagged] record
7299 -- S : String (D1 .. D2);
7300 -- end record;
7301
7302 -- type T1 is new R [with null record];
7303 -- type T2 (X : positive) is new R (1, X) [with null record];
7304
7305 -- As explained in 6. above, T1 is rewritten as
7306 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7307 -- which makes the treatment for T1 and T2 identical.
7308
7309 -- What we want when inheriting S, is that references to D1 and D2 in R are
7310 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7311 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7312 -- with either discriminant references in the derived type or expressions.
7313 -- This replacement is achieved as follows: before inheriting R's
7314 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7315 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7316 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7317 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7318 -- by String (1 .. X).
7319
7320 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7321
7322 -- We explain here the rules governing private type extensions relevant to
7323 -- type derivation. These rules are explained on the following example:
7324
7325 -- type D [(...)] is new A [(...)] with private; <-- partial view
7326 -- type D [(...)] is new P [(...)] with null record; <-- full view
7327
7328 -- Type A is called the ancestor subtype of the private extension.
7329 -- Type P is the parent type of the full view of the private extension. It
7330 -- must be A or a type derived from A.
7331
7332 -- The rules concerning the discriminants of private type extensions are
7333 -- [7.3(10-13)]:
7334
7335 -- o If a private extension inherits known discriminants from the ancestor
7336 -- subtype, then the full view shall also inherit its discriminants from
7337 -- the ancestor subtype and the parent subtype of the full view shall be
7338 -- constrained if and only if the ancestor subtype is constrained.
7339
7340 -- o If a partial view has unknown discriminants, then the full view may
7341 -- define a definite or an indefinite subtype, with or without
7342 -- discriminants.
7343
7344 -- o If a partial view has neither known nor unknown discriminants, then
7345 -- the full view shall define a definite subtype.
7346
7347 -- o If the ancestor subtype of a private extension has constrained
7348 -- discriminants, then the parent subtype of the full view shall impose a
7349 -- statically matching constraint on those discriminants.
7350
7351 -- This means that only the following forms of private extensions are
7352 -- allowed:
7353
7354 -- type D is new A with private; <-- partial view
7355 -- type D is new P with null record; <-- full view
7356
7357 -- If A has no discriminants than P has no discriminants, otherwise P must
7358 -- inherit A's discriminants.
7359
7360 -- type D is new A (...) with private; <-- partial view
7361 -- type D is new P (:::) with null record; <-- full view
7362
7363 -- P must inherit A's discriminants and (...) and (:::) must statically
7364 -- match.
7365
7366 -- subtype A is R (...);
7367 -- type D is new A with private; <-- partial view
7368 -- type D is new P with null record; <-- full view
7369
7370 -- P must have inherited R's discriminants and must be derived from A or
7371 -- any of its subtypes.
7372
7373 -- type D (..) is new A with private; <-- partial view
7374 -- type D (..) is new P [(:::)] with null record; <-- full view
7375
7376 -- No specific constraints on P's discriminants or constraint (:::).
7377 -- Note that A can be unconstrained, but the parent subtype P must either
7378 -- be constrained or (:::) must be present.
7379
7380 -- type D (..) is new A [(...)] with private; <-- partial view
7381 -- type D (..) is new P [(:::)] with null record; <-- full view
7382
7383 -- P's constraints on A's discriminants must statically match those
7384 -- imposed by (...).
7385
7386 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7387
7388 -- The full view of a private extension is handled exactly as described
7389 -- above. The model chose for the private view of a private extension is
7390 -- the same for what concerns discriminants (i.e. they receive the same
7391 -- treatment as in the tagged case). However, the private view of the
7392 -- private extension always inherits the components of the parent base,
7393 -- without replacing any discriminant reference. Strictly speaking this is
7394 -- incorrect. However, Gigi never uses this view to generate code so this
7395 -- is a purely semantic issue. In theory, a set of transformations similar
7396 -- to those given in 5. and 6. above could be applied to private views of
7397 -- private extensions to have the same model of component inheritance as
7398 -- for non private extensions. However, this is not done because it would
7399 -- further complicate private type processing. Semantically speaking, this
7400 -- leaves us in an uncomfortable situation. As an example consider:
7401
7402 -- package Pack is
7403 -- type R (D : integer) is tagged record
7404 -- S : String (1 .. D);
7405 -- end record;
7406 -- procedure P (X : R);
7407 -- type T is new R (1) with private;
7408 -- private
7409 -- type T is new R (1) with null record;
7410 -- end;
7411
7412 -- This is transformed into:
7413
7414 -- package Pack is
7415 -- type R (D : integer) is tagged record
7416 -- S : String (1 .. D);
7417 -- end record;
7418 -- procedure P (X : R);
7419 -- type T is new R (1) with private;
7420 -- private
7421 -- type BaseT is new R with null record;
7422 -- subtype T is BaseT (1);
7423 -- end;
7424
7425 -- (strictly speaking the above is incorrect Ada)
7426
7427 -- From the semantic standpoint the private view of private extension T
7428 -- should be flagged as constrained since one can clearly have
7429 --
7430 -- Obj : T;
7431 --
7432 -- in a unit withing Pack. However, when deriving subprograms for the
7433 -- private view of private extension T, T must be seen as unconstrained
7434 -- since T has discriminants (this is a constraint of the current
7435 -- subprogram derivation model). Thus, when processing the private view of
7436 -- a private extension such as T, we first mark T as unconstrained, we
7437 -- process it, we perform program derivation and just before returning from
7438 -- Build_Derived_Record_Type we mark T as constrained.
7439
7440 -- ??? Are there are other uncomfortable cases that we will have to
7441 -- deal with.
7442
7443 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7444
7445 -- Types that are derived from a visible record type and have a private
7446 -- extension present other peculiarities. They behave mostly like private
7447 -- types, but if they have primitive operations defined, these will not
7448 -- have the proper signatures for further inheritance, because other
7449 -- primitive operations will use the implicit base that we define for
7450 -- private derivations below. This affect subprogram inheritance (see
7451 -- Derive_Subprograms for details). We also derive the implicit base from
7452 -- the base type of the full view, so that the implicit base is a record
7453 -- type and not another private type, This avoids infinite loops.
7454
7455 procedure Build_Derived_Record_Type
7456 (N : Node_Id;
7457 Parent_Type : Entity_Id;
7458 Derived_Type : Entity_Id;
7459 Derive_Subps : Boolean := True)
7460 is
7461 Discriminant_Specs : constant Boolean :=
7462 Present (Discriminant_Specifications (N));
7463 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7464 Loc : constant Source_Ptr := Sloc (N);
7465 Private_Extension : constant Boolean :=
7466 Nkind (N) = N_Private_Extension_Declaration;
7467 Assoc_List : Elist_Id;
7468 Constraint_Present : Boolean;
7469 Constrs : Elist_Id;
7470 Discrim : Entity_Id;
7471 Indic : Node_Id;
7472 Inherit_Discrims : Boolean := False;
7473 Last_Discrim : Entity_Id;
7474 New_Base : Entity_Id;
7475 New_Decl : Node_Id;
7476 New_Discrs : Elist_Id;
7477 New_Indic : Node_Id;
7478 Parent_Base : Entity_Id;
7479 Save_Etype : Entity_Id;
7480 Save_Discr_Constr : Elist_Id;
7481 Save_Next_Entity : Entity_Id;
7482 Type_Def : Node_Id;
7483
7484 Discs : Elist_Id := New_Elmt_List;
7485 -- An empty Discs list means that there were no constraints in the
7486 -- subtype indication or that there was an error processing it.
7487
7488 begin
7489 if Ekind (Parent_Type) = E_Record_Type_With_Private
7490 and then Present (Full_View (Parent_Type))
7491 and then Has_Discriminants (Parent_Type)
7492 then
7493 Parent_Base := Base_Type (Full_View (Parent_Type));
7494 else
7495 Parent_Base := Base_Type (Parent_Type);
7496 end if;
7497
7498 -- AI05-0115 : if this is a derivation from a private type in some
7499 -- other scope that may lead to invisible components for the derived
7500 -- type, mark it accordingly.
7501
7502 if Is_Private_Type (Parent_Type) then
7503 if Scope (Parent_Type) = Scope (Derived_Type) then
7504 null;
7505
7506 elsif In_Open_Scopes (Scope (Parent_Type))
7507 and then In_Private_Part (Scope (Parent_Type))
7508 then
7509 null;
7510
7511 else
7512 Set_Has_Private_Ancestor (Derived_Type);
7513 end if;
7514
7515 else
7516 Set_Has_Private_Ancestor
7517 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7518 end if;
7519
7520 -- Before we start the previously documented transformations, here is
7521 -- little fix for size and alignment of tagged types. Normally when we
7522 -- derive type D from type P, we copy the size and alignment of P as the
7523 -- default for D, and in the absence of explicit representation clauses
7524 -- for D, the size and alignment are indeed the same as the parent.
7525
7526 -- But this is wrong for tagged types, since fields may be added, and
7527 -- the default size may need to be larger, and the default alignment may
7528 -- need to be larger.
7529
7530 -- We therefore reset the size and alignment fields in the tagged case.
7531 -- Note that the size and alignment will in any case be at least as
7532 -- large as the parent type (since the derived type has a copy of the
7533 -- parent type in the _parent field)
7534
7535 -- The type is also marked as being tagged here, which is needed when
7536 -- processing components with a self-referential anonymous access type
7537 -- in the call to Check_Anonymous_Access_Components below. Note that
7538 -- this flag is also set later on for completeness.
7539
7540 if Is_Tagged then
7541 Set_Is_Tagged_Type (Derived_Type);
7542 Init_Size_Align (Derived_Type);
7543 end if;
7544
7545 -- STEP 0a: figure out what kind of derived type declaration we have
7546
7547 if Private_Extension then
7548 Type_Def := N;
7549 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7550 Set_Default_SSO (Derived_Type);
7551
7552 else
7553 Type_Def := Type_Definition (N);
7554
7555 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7556 -- Parent_Base can be a private type or private extension. However,
7557 -- for tagged types with an extension the newly added fields are
7558 -- visible and hence the Derived_Type is always an E_Record_Type.
7559 -- (except that the parent may have its own private fields).
7560 -- For untagged types we preserve the Ekind of the Parent_Base.
7561
7562 if Present (Record_Extension_Part (Type_Def)) then
7563 Set_Ekind (Derived_Type, E_Record_Type);
7564 Set_Default_SSO (Derived_Type);
7565
7566 -- Create internal access types for components with anonymous
7567 -- access types.
7568
7569 if Ada_Version >= Ada_2005 then
7570 Check_Anonymous_Access_Components
7571 (N, Derived_Type, Derived_Type,
7572 Component_List (Record_Extension_Part (Type_Def)));
7573 end if;
7574
7575 else
7576 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7577 end if;
7578 end if;
7579
7580 -- Indic can either be an N_Identifier if the subtype indication
7581 -- contains no constraint or an N_Subtype_Indication if the subtype
7582 -- indication has a constraint.
7583
7584 Indic := Subtype_Indication (Type_Def);
7585 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7586
7587 -- Check that the type has visible discriminants. The type may be
7588 -- a private type with unknown discriminants whose full view has
7589 -- discriminants which are invisible.
7590
7591 if Constraint_Present then
7592 if not Has_Discriminants (Parent_Base)
7593 or else
7594 (Has_Unknown_Discriminants (Parent_Base)
7595 and then Is_Private_Type (Parent_Base))
7596 then
7597 Error_Msg_N
7598 ("invalid constraint: type has no discriminant",
7599 Constraint (Indic));
7600
7601 Constraint_Present := False;
7602 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7603
7604 elsif Is_Constrained (Parent_Type) then
7605 Error_Msg_N
7606 ("invalid constraint: parent type is already constrained",
7607 Constraint (Indic));
7608
7609 Constraint_Present := False;
7610 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7611 end if;
7612 end if;
7613
7614 -- STEP 0b: If needed, apply transformation given in point 5. above
7615
7616 if not Private_Extension
7617 and then Has_Discriminants (Parent_Type)
7618 and then not Discriminant_Specs
7619 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7620 then
7621 -- First, we must analyze the constraint (see comment in point 5.)
7622 -- The constraint may come from the subtype indication of the full
7623 -- declaration.
7624
7625 if Constraint_Present then
7626 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7627
7628 -- If there is no explicit constraint, there might be one that is
7629 -- inherited from a constrained parent type. In that case verify that
7630 -- it conforms to the constraint in the partial view. In perverse
7631 -- cases the parent subtypes of the partial and full view can have
7632 -- different constraints.
7633
7634 elsif Present (Stored_Constraint (Parent_Type)) then
7635 New_Discrs := Stored_Constraint (Parent_Type);
7636
7637 else
7638 New_Discrs := No_Elist;
7639 end if;
7640
7641 if Has_Discriminants (Derived_Type)
7642 and then Has_Private_Declaration (Derived_Type)
7643 and then Present (Discriminant_Constraint (Derived_Type))
7644 and then Present (New_Discrs)
7645 then
7646 -- Verify that constraints of the full view statically match
7647 -- those given in the partial view.
7648
7649 declare
7650 C1, C2 : Elmt_Id;
7651
7652 begin
7653 C1 := First_Elmt (New_Discrs);
7654 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7655 while Present (C1) and then Present (C2) loop
7656 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7657 or else
7658 (Is_OK_Static_Expression (Node (C1))
7659 and then Is_OK_Static_Expression (Node (C2))
7660 and then
7661 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7662 then
7663 null;
7664
7665 else
7666 if Constraint_Present then
7667 Error_Msg_N
7668 ("constraint not conformant to previous declaration",
7669 Node (C1));
7670 else
7671 Error_Msg_N
7672 ("constraint of full view is incompatible "
7673 & "with partial view", N);
7674 end if;
7675 end if;
7676
7677 Next_Elmt (C1);
7678 Next_Elmt (C2);
7679 end loop;
7680 end;
7681 end if;
7682
7683 -- Insert and analyze the declaration for the unconstrained base type
7684
7685 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7686
7687 New_Decl :=
7688 Make_Full_Type_Declaration (Loc,
7689 Defining_Identifier => New_Base,
7690 Type_Definition =>
7691 Make_Derived_Type_Definition (Loc,
7692 Abstract_Present => Abstract_Present (Type_Def),
7693 Limited_Present => Limited_Present (Type_Def),
7694 Subtype_Indication =>
7695 New_Occurrence_Of (Parent_Base, Loc),
7696 Record_Extension_Part =>
7697 Relocate_Node (Record_Extension_Part (Type_Def)),
7698 Interface_List => Interface_List (Type_Def)));
7699
7700 Set_Parent (New_Decl, Parent (N));
7701 Mark_Rewrite_Insertion (New_Decl);
7702 Insert_Before (N, New_Decl);
7703
7704 -- In the extension case, make sure ancestor is frozen appropriately
7705 -- (see also non-discriminated case below).
7706
7707 if Present (Record_Extension_Part (Type_Def))
7708 or else Is_Interface (Parent_Base)
7709 then
7710 Freeze_Before (New_Decl, Parent_Type);
7711 end if;
7712
7713 -- Note that this call passes False for the Derive_Subps parameter
7714 -- because subprogram derivation is deferred until after creating
7715 -- the subtype (see below).
7716
7717 Build_Derived_Type
7718 (New_Decl, Parent_Base, New_Base,
7719 Is_Completion => True, Derive_Subps => False);
7720
7721 -- ??? This needs re-examination to determine whether the
7722 -- above call can simply be replaced by a call to Analyze.
7723
7724 Set_Analyzed (New_Decl);
7725
7726 -- Insert and analyze the declaration for the constrained subtype
7727
7728 if Constraint_Present then
7729 New_Indic :=
7730 Make_Subtype_Indication (Loc,
7731 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7732 Constraint => Relocate_Node (Constraint (Indic)));
7733
7734 else
7735 declare
7736 Constr_List : constant List_Id := New_List;
7737 C : Elmt_Id;
7738 Expr : Node_Id;
7739
7740 begin
7741 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7742 while Present (C) loop
7743 Expr := Node (C);
7744
7745 -- It is safe here to call New_Copy_Tree since
7746 -- Force_Evaluation was called on each constraint in
7747 -- Build_Discriminant_Constraints.
7748
7749 Append (New_Copy_Tree (Expr), To => Constr_List);
7750
7751 Next_Elmt (C);
7752 end loop;
7753
7754 New_Indic :=
7755 Make_Subtype_Indication (Loc,
7756 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7757 Constraint =>
7758 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7759 end;
7760 end if;
7761
7762 Rewrite (N,
7763 Make_Subtype_Declaration (Loc,
7764 Defining_Identifier => Derived_Type,
7765 Subtype_Indication => New_Indic));
7766
7767 Analyze (N);
7768
7769 -- Derivation of subprograms must be delayed until the full subtype
7770 -- has been established, to ensure proper overriding of subprograms
7771 -- inherited by full types. If the derivations occurred as part of
7772 -- the call to Build_Derived_Type above, then the check for type
7773 -- conformance would fail because earlier primitive subprograms
7774 -- could still refer to the full type prior the change to the new
7775 -- subtype and hence would not match the new base type created here.
7776 -- Subprograms are not derived, however, when Derive_Subps is False
7777 -- (since otherwise there could be redundant derivations).
7778
7779 if Derive_Subps then
7780 Derive_Subprograms (Parent_Type, Derived_Type);
7781 end if;
7782
7783 -- For tagged types the Discriminant_Constraint of the new base itype
7784 -- is inherited from the first subtype so that no subtype conformance
7785 -- problem arise when the first subtype overrides primitive
7786 -- operations inherited by the implicit base type.
7787
7788 if Is_Tagged then
7789 Set_Discriminant_Constraint
7790 (New_Base, Discriminant_Constraint (Derived_Type));
7791 end if;
7792
7793 return;
7794 end if;
7795
7796 -- If we get here Derived_Type will have no discriminants or it will be
7797 -- a discriminated unconstrained base type.
7798
7799 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7800
7801 if Is_Tagged then
7802
7803 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7804 -- The declaration of a specific descendant of an interface type
7805 -- freezes the interface type (RM 13.14).
7806
7807 if not Private_Extension or else Is_Interface (Parent_Base) then
7808 Freeze_Before (N, Parent_Type);
7809 end if;
7810
7811 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7812 -- cannot be declared at a deeper level than its parent type is
7813 -- removed. The check on derivation within a generic body is also
7814 -- relaxed, but there's a restriction that a derived tagged type
7815 -- cannot be declared in a generic body if it's derived directly
7816 -- or indirectly from a formal type of that generic.
7817
7818 if Ada_Version >= Ada_2005 then
7819 if Present (Enclosing_Generic_Body (Derived_Type)) then
7820 declare
7821 Ancestor_Type : Entity_Id;
7822
7823 begin
7824 -- Check to see if any ancestor of the derived type is a
7825 -- formal type.
7826
7827 Ancestor_Type := Parent_Type;
7828 while not Is_Generic_Type (Ancestor_Type)
7829 and then Etype (Ancestor_Type) /= Ancestor_Type
7830 loop
7831 Ancestor_Type := Etype (Ancestor_Type);
7832 end loop;
7833
7834 -- If the derived type does have a formal type as an
7835 -- ancestor, then it's an error if the derived type is
7836 -- declared within the body of the generic unit that
7837 -- declares the formal type in its generic formal part. It's
7838 -- sufficient to check whether the ancestor type is declared
7839 -- inside the same generic body as the derived type (such as
7840 -- within a nested generic spec), in which case the
7841 -- derivation is legal. If the formal type is declared
7842 -- outside of that generic body, then it's guaranteed that
7843 -- the derived type is declared within the generic body of
7844 -- the generic unit declaring the formal type.
7845
7846 if Is_Generic_Type (Ancestor_Type)
7847 and then Enclosing_Generic_Body (Ancestor_Type) /=
7848 Enclosing_Generic_Body (Derived_Type)
7849 then
7850 Error_Msg_NE
7851 ("parent type of& must not be descendant of formal type"
7852 & " of an enclosing generic body",
7853 Indic, Derived_Type);
7854 end if;
7855 end;
7856 end if;
7857
7858 elsif Type_Access_Level (Derived_Type) /=
7859 Type_Access_Level (Parent_Type)
7860 and then not Is_Generic_Type (Derived_Type)
7861 then
7862 if Is_Controlled (Parent_Type) then
7863 Error_Msg_N
7864 ("controlled type must be declared at the library level",
7865 Indic);
7866 else
7867 Error_Msg_N
7868 ("type extension at deeper accessibility level than parent",
7869 Indic);
7870 end if;
7871
7872 else
7873 declare
7874 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7875 begin
7876 if Present (GB)
7877 and then GB /= Enclosing_Generic_Body (Parent_Base)
7878 then
7879 Error_Msg_NE
7880 ("parent type of& must not be outside generic body"
7881 & " (RM 3.9.1(4))",
7882 Indic, Derived_Type);
7883 end if;
7884 end;
7885 end if;
7886 end if;
7887
7888 -- Ada 2005 (AI-251)
7889
7890 if Ada_Version >= Ada_2005 and then Is_Tagged then
7891
7892 -- "The declaration of a specific descendant of an interface type
7893 -- freezes the interface type" (RM 13.14).
7894
7895 declare
7896 Iface : Node_Id;
7897 begin
7898 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7899 Iface := First (Interface_List (Type_Def));
7900 while Present (Iface) loop
7901 Freeze_Before (N, Etype (Iface));
7902 Next (Iface);
7903 end loop;
7904 end if;
7905 end;
7906 end if;
7907
7908 -- STEP 1b : preliminary cleanup of the full view of private types
7909
7910 -- If the type is already marked as having discriminants, then it's the
7911 -- completion of a private type or private extension and we need to
7912 -- retain the discriminants from the partial view if the current
7913 -- declaration has Discriminant_Specifications so that we can verify
7914 -- conformance. However, we must remove any existing components that
7915 -- were inherited from the parent (and attached in Copy_And_Swap)
7916 -- because the full type inherits all appropriate components anyway, and
7917 -- we do not want the partial view's components interfering.
7918
7919 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7920 Discrim := First_Discriminant (Derived_Type);
7921 loop
7922 Last_Discrim := Discrim;
7923 Next_Discriminant (Discrim);
7924 exit when No (Discrim);
7925 end loop;
7926
7927 Set_Last_Entity (Derived_Type, Last_Discrim);
7928
7929 -- In all other cases wipe out the list of inherited components (even
7930 -- inherited discriminants), it will be properly rebuilt here.
7931
7932 else
7933 Set_First_Entity (Derived_Type, Empty);
7934 Set_Last_Entity (Derived_Type, Empty);
7935 end if;
7936
7937 -- STEP 1c: Initialize some flags for the Derived_Type
7938
7939 -- The following flags must be initialized here so that
7940 -- Process_Discriminants can check that discriminants of tagged types do
7941 -- not have a default initial value and that access discriminants are
7942 -- only specified for limited records. For completeness, these flags are
7943 -- also initialized along with all the other flags below.
7944
7945 -- AI-419: Limitedness is not inherited from an interface parent, so to
7946 -- be limited in that case the type must be explicitly declared as
7947 -- limited. However, task and protected interfaces are always limited.
7948
7949 if Limited_Present (Type_Def) then
7950 Set_Is_Limited_Record (Derived_Type);
7951
7952 elsif Is_Limited_Record (Parent_Type)
7953 or else (Present (Full_View (Parent_Type))
7954 and then Is_Limited_Record (Full_View (Parent_Type)))
7955 then
7956 if not Is_Interface (Parent_Type)
7957 or else Is_Synchronized_Interface (Parent_Type)
7958 or else Is_Protected_Interface (Parent_Type)
7959 or else Is_Task_Interface (Parent_Type)
7960 then
7961 Set_Is_Limited_Record (Derived_Type);
7962 end if;
7963 end if;
7964
7965 -- STEP 2a: process discriminants of derived type if any
7966
7967 Push_Scope (Derived_Type);
7968
7969 if Discriminant_Specs then
7970 Set_Has_Unknown_Discriminants (Derived_Type, False);
7971
7972 -- The following call initializes fields Has_Discriminants and
7973 -- Discriminant_Constraint, unless we are processing the completion
7974 -- of a private type declaration.
7975
7976 Check_Or_Process_Discriminants (N, Derived_Type);
7977
7978 -- For untagged types, the constraint on the Parent_Type must be
7979 -- present and is used to rename the discriminants.
7980
7981 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7982 Error_Msg_N ("untagged parent must have discriminants", Indic);
7983
7984 elsif not Is_Tagged and then not Constraint_Present then
7985 Error_Msg_N
7986 ("discriminant constraint needed for derived untagged records",
7987 Indic);
7988
7989 -- Otherwise the parent subtype must be constrained unless we have a
7990 -- private extension.
7991
7992 elsif not Constraint_Present
7993 and then not Private_Extension
7994 and then not Is_Constrained (Parent_Type)
7995 then
7996 Error_Msg_N
7997 ("unconstrained type not allowed in this context", Indic);
7998
7999 elsif Constraint_Present then
8000 -- The following call sets the field Corresponding_Discriminant
8001 -- for the discriminants in the Derived_Type.
8002
8003 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8004
8005 -- For untagged types all new discriminants must rename
8006 -- discriminants in the parent. For private extensions new
8007 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8008
8009 Discrim := First_Discriminant (Derived_Type);
8010 while Present (Discrim) loop
8011 if not Is_Tagged
8012 and then No (Corresponding_Discriminant (Discrim))
8013 then
8014 Error_Msg_N
8015 ("new discriminants must constrain old ones", Discrim);
8016
8017 elsif Private_Extension
8018 and then Present (Corresponding_Discriminant (Discrim))
8019 then
8020 Error_Msg_N
8021 ("only static constraints allowed for parent"
8022 & " discriminants in the partial view", Indic);
8023 exit;
8024 end if;
8025
8026 -- If a new discriminant is used in the constraint, then its
8027 -- subtype must be statically compatible with the parent
8028 -- discriminant's subtype (3.7(15)).
8029
8030 -- However, if the record contains an array constrained by
8031 -- the discriminant but with some different bound, the compiler
8032 -- attemps to create a smaller range for the discriminant type.
8033 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8034 -- the discriminant type is a scalar type, the check must use
8035 -- the original discriminant type in the parent declaration.
8036
8037 declare
8038 Corr_Disc : constant Entity_Id :=
8039 Corresponding_Discriminant (Discrim);
8040 Disc_Type : constant Entity_Id := Etype (Discrim);
8041 Corr_Type : Entity_Id;
8042
8043 begin
8044 if Present (Corr_Disc) then
8045 if Is_Scalar_Type (Disc_Type) then
8046 Corr_Type :=
8047 Entity (Discriminant_Type (Parent (Corr_Disc)));
8048 else
8049 Corr_Type := Etype (Corr_Disc);
8050 end if;
8051
8052 if not
8053 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8054 then
8055 Error_Msg_N
8056 ("subtype must be compatible "
8057 & "with parent discriminant",
8058 Discrim);
8059 end if;
8060 end if;
8061 end;
8062
8063 Next_Discriminant (Discrim);
8064 end loop;
8065
8066 -- Check whether the constraints of the full view statically
8067 -- match those imposed by the parent subtype [7.3(13)].
8068
8069 if Present (Stored_Constraint (Derived_Type)) then
8070 declare
8071 C1, C2 : Elmt_Id;
8072
8073 begin
8074 C1 := First_Elmt (Discs);
8075 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8076 while Present (C1) and then Present (C2) loop
8077 if not
8078 Fully_Conformant_Expressions (Node (C1), Node (C2))
8079 then
8080 Error_Msg_N
8081 ("not conformant with previous declaration",
8082 Node (C1));
8083 end if;
8084
8085 Next_Elmt (C1);
8086 Next_Elmt (C2);
8087 end loop;
8088 end;
8089 end if;
8090 end if;
8091
8092 -- STEP 2b: No new discriminants, inherit discriminants if any
8093
8094 else
8095 if Private_Extension then
8096 Set_Has_Unknown_Discriminants
8097 (Derived_Type,
8098 Has_Unknown_Discriminants (Parent_Type)
8099 or else Unknown_Discriminants_Present (N));
8100
8101 -- The partial view of the parent may have unknown discriminants,
8102 -- but if the full view has discriminants and the parent type is
8103 -- in scope they must be inherited.
8104
8105 elsif Has_Unknown_Discriminants (Parent_Type)
8106 and then
8107 (not Has_Discriminants (Parent_Type)
8108 or else not In_Open_Scopes (Scope (Parent_Type)))
8109 then
8110 Set_Has_Unknown_Discriminants (Derived_Type);
8111 end if;
8112
8113 if not Has_Unknown_Discriminants (Derived_Type)
8114 and then not Has_Unknown_Discriminants (Parent_Base)
8115 and then Has_Discriminants (Parent_Type)
8116 then
8117 Inherit_Discrims := True;
8118 Set_Has_Discriminants
8119 (Derived_Type, True);
8120 Set_Discriminant_Constraint
8121 (Derived_Type, Discriminant_Constraint (Parent_Base));
8122 end if;
8123
8124 -- The following test is true for private types (remember
8125 -- transformation 5. is not applied to those) and in an error
8126 -- situation.
8127
8128 if Constraint_Present then
8129 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8130 end if;
8131
8132 -- For now mark a new derived type as constrained only if it has no
8133 -- discriminants. At the end of Build_Derived_Record_Type we properly
8134 -- set this flag in the case of private extensions. See comments in
8135 -- point 9. just before body of Build_Derived_Record_Type.
8136
8137 Set_Is_Constrained
8138 (Derived_Type,
8139 not (Inherit_Discrims
8140 or else Has_Unknown_Discriminants (Derived_Type)));
8141 end if;
8142
8143 -- STEP 3: initialize fields of derived type
8144
8145 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8146 Set_Stored_Constraint (Derived_Type, No_Elist);
8147
8148 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8149 -- but cannot be interfaces
8150
8151 if not Private_Extension
8152 and then Ekind (Derived_Type) /= E_Private_Type
8153 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8154 then
8155 if Interface_Present (Type_Def) then
8156 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8157 end if;
8158
8159 Set_Interfaces (Derived_Type, No_Elist);
8160 end if;
8161
8162 -- Fields inherited from the Parent_Type
8163
8164 Set_Has_Specified_Layout
8165 (Derived_Type, Has_Specified_Layout (Parent_Type));
8166 Set_Is_Limited_Composite
8167 (Derived_Type, Is_Limited_Composite (Parent_Type));
8168 Set_Is_Private_Composite
8169 (Derived_Type, Is_Private_Composite (Parent_Type));
8170
8171 -- Fields inherited from the Parent_Base
8172
8173 Set_Has_Controlled_Component
8174 (Derived_Type, Has_Controlled_Component (Parent_Base));
8175 Set_Has_Non_Standard_Rep
8176 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8177 Set_Has_Primitive_Operations
8178 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8179
8180 -- Fields inherited from the Parent_Base in the non-private case
8181
8182 if Ekind (Derived_Type) = E_Record_Type then
8183 Set_Has_Complex_Representation
8184 (Derived_Type, Has_Complex_Representation (Parent_Base));
8185 end if;
8186
8187 -- Fields inherited from the Parent_Base for record types
8188
8189 if Is_Record_Type (Derived_Type) then
8190
8191 declare
8192 Parent_Full : Entity_Id;
8193
8194 begin
8195 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8196 -- Parent_Base can be a private type or private extension. Go
8197 -- to the full view here to get the E_Record_Type specific flags.
8198
8199 if Present (Full_View (Parent_Base)) then
8200 Parent_Full := Full_View (Parent_Base);
8201 else
8202 Parent_Full := Parent_Base;
8203 end if;
8204
8205 Set_OK_To_Reorder_Components
8206 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8207 end;
8208 end if;
8209
8210 -- Set fields for private derived types
8211
8212 if Is_Private_Type (Derived_Type) then
8213 Set_Depends_On_Private (Derived_Type, True);
8214 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8215
8216 -- Inherit fields from non private record types. If this is the
8217 -- completion of a derivation from a private type, the parent itself
8218 -- is private, and the attributes come from its full view, which must
8219 -- be present.
8220
8221 else
8222 if Is_Private_Type (Parent_Base)
8223 and then not Is_Record_Type (Parent_Base)
8224 then
8225 Set_Component_Alignment
8226 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8227 Set_C_Pass_By_Copy
8228 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8229 else
8230 Set_Component_Alignment
8231 (Derived_Type, Component_Alignment (Parent_Base));
8232 Set_C_Pass_By_Copy
8233 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8234 end if;
8235 end if;
8236
8237 -- Set fields for tagged types
8238
8239 if Is_Tagged then
8240 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8241
8242 -- All tagged types defined in Ada.Finalization are controlled
8243
8244 if Chars (Scope (Derived_Type)) = Name_Finalization
8245 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8246 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8247 then
8248 Set_Is_Controlled (Derived_Type);
8249 else
8250 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8251 end if;
8252
8253 -- Minor optimization: there is no need to generate the class-wide
8254 -- entity associated with an underlying record view.
8255
8256 if not Is_Underlying_Record_View (Derived_Type) then
8257 Make_Class_Wide_Type (Derived_Type);
8258 end if;
8259
8260 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8261
8262 if Has_Discriminants (Derived_Type)
8263 and then Constraint_Present
8264 then
8265 Set_Stored_Constraint
8266 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8267 end if;
8268
8269 if Ada_Version >= Ada_2005 then
8270 declare
8271 Ifaces_List : Elist_Id;
8272
8273 begin
8274 -- Checks rules 3.9.4 (13/2 and 14/2)
8275
8276 if Comes_From_Source (Derived_Type)
8277 and then not Is_Private_Type (Derived_Type)
8278 and then Is_Interface (Parent_Type)
8279 and then not Is_Interface (Derived_Type)
8280 then
8281 if Is_Task_Interface (Parent_Type) then
8282 Error_Msg_N
8283 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8284 Derived_Type);
8285
8286 elsif Is_Protected_Interface (Parent_Type) then
8287 Error_Msg_N
8288 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8289 Derived_Type);
8290 end if;
8291 end if;
8292
8293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8294
8295 Check_Interfaces (N, Type_Def);
8296
8297 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8298 -- not already in the parents.
8299
8300 Collect_Interfaces
8301 (T => Derived_Type,
8302 Ifaces_List => Ifaces_List,
8303 Exclude_Parents => True);
8304
8305 Set_Interfaces (Derived_Type, Ifaces_List);
8306
8307 -- If the derived type is the anonymous type created for
8308 -- a declaration whose parent has a constraint, propagate
8309 -- the interface list to the source type. This must be done
8310 -- prior to the completion of the analysis of the source type
8311 -- because the components in the extension may contain current
8312 -- instances whose legality depends on some ancestor.
8313
8314 if Is_Itype (Derived_Type) then
8315 declare
8316 Def : constant Node_Id :=
8317 Associated_Node_For_Itype (Derived_Type);
8318 begin
8319 if Present (Def)
8320 and then Nkind (Def) = N_Full_Type_Declaration
8321 then
8322 Set_Interfaces
8323 (Defining_Identifier (Def), Ifaces_List);
8324 end if;
8325 end;
8326 end if;
8327 end;
8328 end if;
8329
8330 else
8331 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8332 Set_Has_Non_Standard_Rep
8333 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8334 end if;
8335
8336 -- STEP 4: Inherit components from the parent base and constrain them.
8337 -- Apply the second transformation described in point 6. above.
8338
8339 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8340 or else not Has_Discriminants (Parent_Type)
8341 or else not Is_Constrained (Parent_Type)
8342 then
8343 Constrs := Discs;
8344 else
8345 Constrs := Discriminant_Constraint (Parent_Type);
8346 end if;
8347
8348 Assoc_List :=
8349 Inherit_Components
8350 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8351
8352 -- STEP 5a: Copy the parent record declaration for untagged types
8353
8354 if not Is_Tagged then
8355
8356 -- Discriminant_Constraint (Derived_Type) has been properly
8357 -- constructed. Save it and temporarily set it to Empty because we
8358 -- do not want the call to New_Copy_Tree below to mess this list.
8359
8360 if Has_Discriminants (Derived_Type) then
8361 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8362 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8363 else
8364 Save_Discr_Constr := No_Elist;
8365 end if;
8366
8367 -- Save the Etype field of Derived_Type. It is correctly set now,
8368 -- but the call to New_Copy tree may remap it to point to itself,
8369 -- which is not what we want. Ditto for the Next_Entity field.
8370
8371 Save_Etype := Etype (Derived_Type);
8372 Save_Next_Entity := Next_Entity (Derived_Type);
8373
8374 -- Assoc_List maps all stored discriminants in the Parent_Base to
8375 -- stored discriminants in the Derived_Type. It is fundamental that
8376 -- no types or itypes with discriminants other than the stored
8377 -- discriminants appear in the entities declared inside
8378 -- Derived_Type, since the back end cannot deal with it.
8379
8380 New_Decl :=
8381 New_Copy_Tree
8382 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8383
8384 -- Restore the fields saved prior to the New_Copy_Tree call
8385 -- and compute the stored constraint.
8386
8387 Set_Etype (Derived_Type, Save_Etype);
8388 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8389
8390 if Has_Discriminants (Derived_Type) then
8391 Set_Discriminant_Constraint
8392 (Derived_Type, Save_Discr_Constr);
8393 Set_Stored_Constraint
8394 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8395 Replace_Components (Derived_Type, New_Decl);
8396 Set_Has_Implicit_Dereference
8397 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8398 end if;
8399
8400 -- Insert the new derived type declaration
8401
8402 Rewrite (N, New_Decl);
8403
8404 -- STEP 5b: Complete the processing for record extensions in generics
8405
8406 -- There is no completion for record extensions declared in the
8407 -- parameter part of a generic, so we need to complete processing for
8408 -- these generic record extensions here. The Record_Type_Definition call
8409 -- will change the Ekind of the components from E_Void to E_Component.
8410
8411 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8412 Record_Type_Definition (Empty, Derived_Type);
8413
8414 -- STEP 5c: Process the record extension for non private tagged types
8415
8416 elsif not Private_Extension then
8417
8418 -- Add the _parent field in the derived type. In ASIS mode there is
8419 -- not enough semantic information for full expansion, but set the
8420 -- parent subtype to allow resolution of selected components in
8421 -- instance bodies.
8422
8423 if ASIS_Mode then
8424 Set_Parent_Subtype (Derived_Type, Parent_Type);
8425 else
8426 Expand_Record_Extension (Derived_Type, Type_Def);
8427 end if;
8428
8429 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8430 -- implemented interfaces if we are in expansion mode
8431
8432 if Expander_Active
8433 and then Has_Interfaces (Derived_Type)
8434 then
8435 Add_Interface_Tag_Components (N, Derived_Type);
8436 end if;
8437
8438 -- Analyze the record extension
8439
8440 Record_Type_Definition
8441 (Record_Extension_Part (Type_Def), Derived_Type);
8442 end if;
8443
8444 End_Scope;
8445
8446 -- Nothing else to do if there is an error in the derivation.
8447 -- An unusual case: the full view may be derived from a type in an
8448 -- instance, when the partial view was used illegally as an actual
8449 -- in that instance, leading to a circular definition.
8450
8451 if Etype (Derived_Type) = Any_Type
8452 or else Etype (Parent_Type) = Derived_Type
8453 then
8454 return;
8455 end if;
8456
8457 -- Set delayed freeze and then derive subprograms, we need to do
8458 -- this in this order so that derived subprograms inherit the
8459 -- derived freeze if necessary.
8460
8461 Set_Has_Delayed_Freeze (Derived_Type);
8462
8463 if Derive_Subps then
8464 Derive_Subprograms (Parent_Type, Derived_Type);
8465 end if;
8466
8467 -- If we have a private extension which defines a constrained derived
8468 -- type mark as constrained here after we have derived subprograms. See
8469 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8470
8471 if Private_Extension and then Inherit_Discrims then
8472 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8473 Set_Is_Constrained (Derived_Type, True);
8474 Set_Discriminant_Constraint (Derived_Type, Discs);
8475
8476 elsif Is_Constrained (Parent_Type) then
8477 Set_Is_Constrained
8478 (Derived_Type, True);
8479 Set_Discriminant_Constraint
8480 (Derived_Type, Discriminant_Constraint (Parent_Type));
8481 end if;
8482 end if;
8483
8484 -- Update the class-wide type, which shares the now-completed entity
8485 -- list with its specific type. In case of underlying record views,
8486 -- we do not generate the corresponding class wide entity.
8487
8488 if Is_Tagged
8489 and then not Is_Underlying_Record_View (Derived_Type)
8490 then
8491 Set_First_Entity
8492 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8493 Set_Last_Entity
8494 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8495 end if;
8496
8497 Check_Function_Writable_Actuals (N);
8498 end Build_Derived_Record_Type;
8499
8500 ------------------------
8501 -- Build_Derived_Type --
8502 ------------------------
8503
8504 procedure Build_Derived_Type
8505 (N : Node_Id;
8506 Parent_Type : Entity_Id;
8507 Derived_Type : Entity_Id;
8508 Is_Completion : Boolean;
8509 Derive_Subps : Boolean := True)
8510 is
8511 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8512
8513 begin
8514 -- Set common attributes
8515
8516 Set_Scope (Derived_Type, Current_Scope);
8517
8518 Set_Etype (Derived_Type, Parent_Base);
8519 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8520 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8521 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8522
8523 Set_Size_Info (Derived_Type, Parent_Type);
8524 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8525 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8526 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8527
8528 -- If the parent has primitive routines, set the derived type link
8529
8530 if Has_Primitive_Operations (Parent_Type) then
8531 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8532 end if;
8533
8534 -- If the parent type is a private subtype, the convention on the base
8535 -- type may be set in the private part, and not propagated to the
8536 -- subtype until later, so we obtain the convention from the base type.
8537
8538 Set_Convention (Derived_Type, Convention (Parent_Base));
8539
8540 -- Set SSO default for record or array type
8541
8542 if (Is_Array_Type (Derived_Type)
8543 or else Is_Record_Type (Derived_Type))
8544 and then Is_Base_Type (Derived_Type)
8545 then
8546 Set_Default_SSO (Derived_Type);
8547 end if;
8548
8549 -- Propagate invariant information. The new type has invariants if
8550 -- they are inherited from the parent type, and these invariants can
8551 -- be further inherited, so both flags are set.
8552
8553 -- We similarly inherit predicates
8554
8555 if Has_Predicates (Parent_Type) then
8556 Set_Has_Predicates (Derived_Type);
8557 end if;
8558
8559 -- The derived type inherits the representation clauses of the parent.
8560 -- However, for a private type that is completed by a derivation, there
8561 -- may be operation attributes that have been specified already (stream
8562 -- attributes and External_Tag) and those must be provided. Finally,
8563 -- if the partial view is a private extension, the representation items
8564 -- of the parent have been inherited already, and should not be chained
8565 -- twice to the derived type.
8566
8567 if Is_Tagged_Type (Parent_Type)
8568 and then Present (First_Rep_Item (Derived_Type))
8569 then
8570 -- The existing items are either operational items or items inherited
8571 -- from a private extension declaration.
8572
8573 declare
8574 Rep : Node_Id;
8575 -- Used to iterate over representation items of the derived type
8576
8577 Last_Rep : Node_Id;
8578 -- Last representation item of the (non-empty) representation
8579 -- item list of the derived type.
8580
8581 Found : Boolean := False;
8582
8583 begin
8584 Rep := First_Rep_Item (Derived_Type);
8585 Last_Rep := Rep;
8586 while Present (Rep) loop
8587 if Rep = First_Rep_Item (Parent_Type) then
8588 Found := True;
8589 exit;
8590
8591 else
8592 Rep := Next_Rep_Item (Rep);
8593
8594 if Present (Rep) then
8595 Last_Rep := Rep;
8596 end if;
8597 end if;
8598 end loop;
8599
8600 -- Here if we either encountered the parent type's first rep
8601 -- item on the derived type's rep item list (in which case
8602 -- Found is True, and we have nothing else to do), or if we
8603 -- reached the last rep item of the derived type, which is
8604 -- Last_Rep, in which case we further chain the parent type's
8605 -- rep items to those of the derived type.
8606
8607 if not Found then
8608 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8609 end if;
8610 end;
8611
8612 else
8613 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8614 end if;
8615
8616 -- If the parent type has delayed rep aspects, then mark the derived
8617 -- type as possibly inheriting a delayed rep aspect.
8618
8619 if Has_Delayed_Rep_Aspects (Parent_Type) then
8620 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8621 end if;
8622
8623 -- Type dependent processing
8624
8625 case Ekind (Parent_Type) is
8626 when Numeric_Kind =>
8627 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8628
8629 when Array_Kind =>
8630 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8631
8632 when E_Record_Type
8633 | E_Record_Subtype
8634 | Class_Wide_Kind =>
8635 Build_Derived_Record_Type
8636 (N, Parent_Type, Derived_Type, Derive_Subps);
8637 return;
8638
8639 when Enumeration_Kind =>
8640 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8641
8642 when Access_Kind =>
8643 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8644
8645 when Incomplete_Or_Private_Kind =>
8646 Build_Derived_Private_Type
8647 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8648
8649 -- For discriminated types, the derivation includes deriving
8650 -- primitive operations. For others it is done below.
8651
8652 if Is_Tagged_Type (Parent_Type)
8653 or else Has_Discriminants (Parent_Type)
8654 or else (Present (Full_View (Parent_Type))
8655 and then Has_Discriminants (Full_View (Parent_Type)))
8656 then
8657 return;
8658 end if;
8659
8660 when Concurrent_Kind =>
8661 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8662
8663 when others =>
8664 raise Program_Error;
8665 end case;
8666
8667 -- Nothing more to do if some error occurred
8668
8669 if Etype (Derived_Type) = Any_Type then
8670 return;
8671 end if;
8672
8673 -- Set delayed freeze and then derive subprograms, we need to do this
8674 -- in this order so that derived subprograms inherit the derived freeze
8675 -- if necessary.
8676
8677 Set_Has_Delayed_Freeze (Derived_Type);
8678
8679 if Derive_Subps then
8680 Derive_Subprograms (Parent_Type, Derived_Type);
8681 end if;
8682
8683 Set_Has_Primitive_Operations
8684 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8685 end Build_Derived_Type;
8686
8687 -----------------------
8688 -- Build_Discriminal --
8689 -----------------------
8690
8691 procedure Build_Discriminal (Discrim : Entity_Id) is
8692 D_Minal : Entity_Id;
8693 CR_Disc : Entity_Id;
8694
8695 begin
8696 -- A discriminal has the same name as the discriminant
8697
8698 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8699
8700 Set_Ekind (D_Minal, E_In_Parameter);
8701 Set_Mechanism (D_Minal, Default_Mechanism);
8702 Set_Etype (D_Minal, Etype (Discrim));
8703 Set_Scope (D_Minal, Current_Scope);
8704
8705 Set_Discriminal (Discrim, D_Minal);
8706 Set_Discriminal_Link (D_Minal, Discrim);
8707
8708 -- For task types, build at once the discriminants of the corresponding
8709 -- record, which are needed if discriminants are used in entry defaults
8710 -- and in family bounds.
8711
8712 if Is_Concurrent_Type (Current_Scope)
8713 or else Is_Limited_Type (Current_Scope)
8714 then
8715 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8716
8717 Set_Ekind (CR_Disc, E_In_Parameter);
8718 Set_Mechanism (CR_Disc, Default_Mechanism);
8719 Set_Etype (CR_Disc, Etype (Discrim));
8720 Set_Scope (CR_Disc, Current_Scope);
8721 Set_Discriminal_Link (CR_Disc, Discrim);
8722 Set_CR_Discriminant (Discrim, CR_Disc);
8723 end if;
8724 end Build_Discriminal;
8725
8726 ------------------------------------
8727 -- Build_Discriminant_Constraints --
8728 ------------------------------------
8729
8730 function Build_Discriminant_Constraints
8731 (T : Entity_Id;
8732 Def : Node_Id;
8733 Derived_Def : Boolean := False) return Elist_Id
8734 is
8735 C : constant Node_Id := Constraint (Def);
8736 Nb_Discr : constant Nat := Number_Discriminants (T);
8737
8738 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8739 -- Saves the expression corresponding to a given discriminant in T
8740
8741 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8742 -- Return the Position number within array Discr_Expr of a discriminant
8743 -- D within the discriminant list of the discriminated type T.
8744
8745 procedure Process_Discriminant_Expression
8746 (Expr : Node_Id;
8747 D : Entity_Id);
8748 -- If this is a discriminant constraint on a partial view, do not
8749 -- generate an overflow check on the discriminant expression. The check
8750 -- will be generated when constraining the full view. Otherwise the
8751 -- backend creates duplicate symbols for the temporaries corresponding
8752 -- to the expressions to be checked, causing spurious assembler errors.
8753
8754 ------------------
8755 -- Pos_Of_Discr --
8756 ------------------
8757
8758 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8759 Disc : Entity_Id;
8760
8761 begin
8762 Disc := First_Discriminant (T);
8763 for J in Discr_Expr'Range loop
8764 if Disc = D then
8765 return J;
8766 end if;
8767
8768 Next_Discriminant (Disc);
8769 end loop;
8770
8771 -- Note: Since this function is called on discriminants that are
8772 -- known to belong to the discriminated type, falling through the
8773 -- loop with no match signals an internal compiler error.
8774
8775 raise Program_Error;
8776 end Pos_Of_Discr;
8777
8778 -------------------------------------
8779 -- Process_Discriminant_Expression --
8780 -------------------------------------
8781
8782 procedure Process_Discriminant_Expression
8783 (Expr : Node_Id;
8784 D : Entity_Id)
8785 is
8786 BDT : constant Entity_Id := Base_Type (Etype (D));
8787
8788 begin
8789 -- If this is a discriminant constraint on a partial view, do
8790 -- not generate an overflow on the discriminant expression. The
8791 -- check will be generated when constraining the full view.
8792
8793 if Is_Private_Type (T)
8794 and then Present (Full_View (T))
8795 then
8796 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8797 else
8798 Analyze_And_Resolve (Expr, BDT);
8799 end if;
8800 end Process_Discriminant_Expression;
8801
8802 -- Declarations local to Build_Discriminant_Constraints
8803
8804 Discr : Entity_Id;
8805 E : Entity_Id;
8806 Elist : constant Elist_Id := New_Elmt_List;
8807
8808 Constr : Node_Id;
8809 Expr : Node_Id;
8810 Id : Node_Id;
8811 Position : Nat;
8812 Found : Boolean;
8813
8814 Discrim_Present : Boolean := False;
8815
8816 -- Start of processing for Build_Discriminant_Constraints
8817
8818 begin
8819 -- The following loop will process positional associations only.
8820 -- For a positional association, the (single) discriminant is
8821 -- implicitly specified by position, in textual order (RM 3.7.2).
8822
8823 Discr := First_Discriminant (T);
8824 Constr := First (Constraints (C));
8825 for D in Discr_Expr'Range loop
8826 exit when Nkind (Constr) = N_Discriminant_Association;
8827
8828 if No (Constr) then
8829 Error_Msg_N ("too few discriminants given in constraint", C);
8830 return New_Elmt_List;
8831
8832 elsif Nkind (Constr) = N_Range
8833 or else (Nkind (Constr) = N_Attribute_Reference
8834 and then
8835 Attribute_Name (Constr) = Name_Range)
8836 then
8837 Error_Msg_N
8838 ("a range is not a valid discriminant constraint", Constr);
8839 Discr_Expr (D) := Error;
8840
8841 else
8842 Process_Discriminant_Expression (Constr, Discr);
8843 Discr_Expr (D) := Constr;
8844 end if;
8845
8846 Next_Discriminant (Discr);
8847 Next (Constr);
8848 end loop;
8849
8850 if No (Discr) and then Present (Constr) then
8851 Error_Msg_N ("too many discriminants given in constraint", Constr);
8852 return New_Elmt_List;
8853 end if;
8854
8855 -- Named associations can be given in any order, but if both positional
8856 -- and named associations are used in the same discriminant constraint,
8857 -- then positional associations must occur first, at their normal
8858 -- position. Hence once a named association is used, the rest of the
8859 -- discriminant constraint must use only named associations.
8860
8861 while Present (Constr) loop
8862
8863 -- Positional association forbidden after a named association
8864
8865 if Nkind (Constr) /= N_Discriminant_Association then
8866 Error_Msg_N ("positional association follows named one", Constr);
8867 return New_Elmt_List;
8868
8869 -- Otherwise it is a named association
8870
8871 else
8872 -- E records the type of the discriminants in the named
8873 -- association. All the discriminants specified in the same name
8874 -- association must have the same type.
8875
8876 E := Empty;
8877
8878 -- Search the list of discriminants in T to see if the simple name
8879 -- given in the constraint matches any of them.
8880
8881 Id := First (Selector_Names (Constr));
8882 while Present (Id) loop
8883 Found := False;
8884
8885 -- If Original_Discriminant is present, we are processing a
8886 -- generic instantiation and this is an instance node. We need
8887 -- to find the name of the corresponding discriminant in the
8888 -- actual record type T and not the name of the discriminant in
8889 -- the generic formal. Example:
8890
8891 -- generic
8892 -- type G (D : int) is private;
8893 -- package P is
8894 -- subtype W is G (D => 1);
8895 -- end package;
8896 -- type Rec (X : int) is record ... end record;
8897 -- package Q is new P (G => Rec);
8898
8899 -- At the point of the instantiation, formal type G is Rec
8900 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8901 -- which really looks like "subtype W is Rec (D => 1);" at
8902 -- the point of instantiation, we want to find the discriminant
8903 -- that corresponds to D in Rec, i.e. X.
8904
8905 if Present (Original_Discriminant (Id))
8906 and then In_Instance
8907 then
8908 Discr := Find_Corresponding_Discriminant (Id, T);
8909 Found := True;
8910
8911 else
8912 Discr := First_Discriminant (T);
8913 while Present (Discr) loop
8914 if Chars (Discr) = Chars (Id) then
8915 Found := True;
8916 exit;
8917 end if;
8918
8919 Next_Discriminant (Discr);
8920 end loop;
8921
8922 if not Found then
8923 Error_Msg_N ("& does not match any discriminant", Id);
8924 return New_Elmt_List;
8925
8926 -- If the parent type is a generic formal, preserve the
8927 -- name of the discriminant for subsequent instances.
8928 -- see comment at the beginning of this if statement.
8929
8930 elsif Is_Generic_Type (Root_Type (T)) then
8931 Set_Original_Discriminant (Id, Discr);
8932 end if;
8933 end if;
8934
8935 Position := Pos_Of_Discr (T, Discr);
8936
8937 if Present (Discr_Expr (Position)) then
8938 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8939
8940 else
8941 -- Each discriminant specified in the same named association
8942 -- must be associated with a separate copy of the
8943 -- corresponding expression.
8944
8945 if Present (Next (Id)) then
8946 Expr := New_Copy_Tree (Expression (Constr));
8947 Set_Parent (Expr, Parent (Expression (Constr)));
8948 else
8949 Expr := Expression (Constr);
8950 end if;
8951
8952 Discr_Expr (Position) := Expr;
8953 Process_Discriminant_Expression (Expr, Discr);
8954 end if;
8955
8956 -- A discriminant association with more than one discriminant
8957 -- name is only allowed if the named discriminants are all of
8958 -- the same type (RM 3.7.1(8)).
8959
8960 if E = Empty then
8961 E := Base_Type (Etype (Discr));
8962
8963 elsif Base_Type (Etype (Discr)) /= E then
8964 Error_Msg_N
8965 ("all discriminants in an association " &
8966 "must have the same type", Id);
8967 end if;
8968
8969 Next (Id);
8970 end loop;
8971 end if;
8972
8973 Next (Constr);
8974 end loop;
8975
8976 -- A discriminant constraint must provide exactly one value for each
8977 -- discriminant of the type (RM 3.7.1(8)).
8978
8979 for J in Discr_Expr'Range loop
8980 if No (Discr_Expr (J)) then
8981 Error_Msg_N ("too few discriminants given in constraint", C);
8982 return New_Elmt_List;
8983 end if;
8984 end loop;
8985
8986 -- Determine if there are discriminant expressions in the constraint
8987
8988 for J in Discr_Expr'Range loop
8989 if Denotes_Discriminant
8990 (Discr_Expr (J), Check_Concurrent => True)
8991 then
8992 Discrim_Present := True;
8993 end if;
8994 end loop;
8995
8996 -- Build an element list consisting of the expressions given in the
8997 -- discriminant constraint and apply the appropriate checks. The list
8998 -- is constructed after resolving any named discriminant associations
8999 -- and therefore the expressions appear in the textual order of the
9000 -- discriminants.
9001
9002 Discr := First_Discriminant (T);
9003 for J in Discr_Expr'Range loop
9004 if Discr_Expr (J) /= Error then
9005 Append_Elmt (Discr_Expr (J), Elist);
9006
9007 -- If any of the discriminant constraints is given by a
9008 -- discriminant and we are in a derived type declaration we
9009 -- have a discriminant renaming. Establish link between new
9010 -- and old discriminant.
9011
9012 if Denotes_Discriminant (Discr_Expr (J)) then
9013 if Derived_Def then
9014 Set_Corresponding_Discriminant
9015 (Entity (Discr_Expr (J)), Discr);
9016 end if;
9017
9018 -- Force the evaluation of non-discriminant expressions.
9019 -- If we have found a discriminant in the constraint 3.4(26)
9020 -- and 3.8(18) demand that no range checks are performed are
9021 -- after evaluation. If the constraint is for a component
9022 -- definition that has a per-object constraint, expressions are
9023 -- evaluated but not checked either. In all other cases perform
9024 -- a range check.
9025
9026 else
9027 if Discrim_Present then
9028 null;
9029
9030 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9031 and then
9032 Has_Per_Object_Constraint
9033 (Defining_Identifier (Parent (Parent (Def))))
9034 then
9035 null;
9036
9037 elsif Is_Access_Type (Etype (Discr)) then
9038 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9039
9040 else
9041 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9042 end if;
9043
9044 Force_Evaluation (Discr_Expr (J));
9045 end if;
9046
9047 -- Check that the designated type of an access discriminant's
9048 -- expression is not a class-wide type unless the discriminant's
9049 -- designated type is also class-wide.
9050
9051 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9052 and then not Is_Class_Wide_Type
9053 (Designated_Type (Etype (Discr)))
9054 and then Etype (Discr_Expr (J)) /= Any_Type
9055 and then Is_Class_Wide_Type
9056 (Designated_Type (Etype (Discr_Expr (J))))
9057 then
9058 Wrong_Type (Discr_Expr (J), Etype (Discr));
9059
9060 elsif Is_Access_Type (Etype (Discr))
9061 and then not Is_Access_Constant (Etype (Discr))
9062 and then Is_Access_Type (Etype (Discr_Expr (J)))
9063 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9064 then
9065 Error_Msg_NE
9066 ("constraint for discriminant& must be access to variable",
9067 Def, Discr);
9068 end if;
9069 end if;
9070
9071 Next_Discriminant (Discr);
9072 end loop;
9073
9074 return Elist;
9075 end Build_Discriminant_Constraints;
9076
9077 ---------------------------------
9078 -- Build_Discriminated_Subtype --
9079 ---------------------------------
9080
9081 procedure Build_Discriminated_Subtype
9082 (T : Entity_Id;
9083 Def_Id : Entity_Id;
9084 Elist : Elist_Id;
9085 Related_Nod : Node_Id;
9086 For_Access : Boolean := False)
9087 is
9088 Has_Discrs : constant Boolean := Has_Discriminants (T);
9089 Constrained : constant Boolean :=
9090 (Has_Discrs
9091 and then not Is_Empty_Elmt_List (Elist)
9092 and then not Is_Class_Wide_Type (T))
9093 or else Is_Constrained (T);
9094
9095 begin
9096 if Ekind (T) = E_Record_Type then
9097 if For_Access then
9098 Set_Ekind (Def_Id, E_Private_Subtype);
9099 Set_Is_For_Access_Subtype (Def_Id, True);
9100 else
9101 Set_Ekind (Def_Id, E_Record_Subtype);
9102 end if;
9103
9104 -- Inherit preelaboration flag from base, for types for which it
9105 -- may have been set: records, private types, protected types.
9106
9107 Set_Known_To_Have_Preelab_Init
9108 (Def_Id, Known_To_Have_Preelab_Init (T));
9109
9110 elsif Ekind (T) = E_Task_Type then
9111 Set_Ekind (Def_Id, E_Task_Subtype);
9112
9113 elsif Ekind (T) = E_Protected_Type then
9114 Set_Ekind (Def_Id, E_Protected_Subtype);
9115 Set_Known_To_Have_Preelab_Init
9116 (Def_Id, Known_To_Have_Preelab_Init (T));
9117
9118 elsif Is_Private_Type (T) then
9119 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9120 Set_Known_To_Have_Preelab_Init
9121 (Def_Id, Known_To_Have_Preelab_Init (T));
9122
9123 -- Private subtypes may have private dependents
9124
9125 Set_Private_Dependents (Def_Id, New_Elmt_List);
9126
9127 elsif Is_Class_Wide_Type (T) then
9128 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9129
9130 else
9131 -- Incomplete type. Attach subtype to list of dependents, to be
9132 -- completed with full view of parent type, unless is it the
9133 -- designated subtype of a record component within an init_proc.
9134 -- This last case arises for a component of an access type whose
9135 -- designated type is incomplete (e.g. a Taft Amendment type).
9136 -- The designated subtype is within an inner scope, and needs no
9137 -- elaboration, because only the access type is needed in the
9138 -- initialization procedure.
9139
9140 Set_Ekind (Def_Id, Ekind (T));
9141
9142 if For_Access and then Within_Init_Proc then
9143 null;
9144 else
9145 Append_Elmt (Def_Id, Private_Dependents (T));
9146 end if;
9147 end if;
9148
9149 Set_Etype (Def_Id, T);
9150 Init_Size_Align (Def_Id);
9151 Set_Has_Discriminants (Def_Id, Has_Discrs);
9152 Set_Is_Constrained (Def_Id, Constrained);
9153
9154 Set_First_Entity (Def_Id, First_Entity (T));
9155 Set_Last_Entity (Def_Id, Last_Entity (T));
9156 Set_Has_Implicit_Dereference
9157 (Def_Id, Has_Implicit_Dereference (T));
9158
9159 -- If the subtype is the completion of a private declaration, there may
9160 -- have been representation clauses for the partial view, and they must
9161 -- be preserved. Build_Derived_Type chains the inherited clauses with
9162 -- the ones appearing on the extension. If this comes from a subtype
9163 -- declaration, all clauses are inherited.
9164
9165 if No (First_Rep_Item (Def_Id)) then
9166 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9167 end if;
9168
9169 if Is_Tagged_Type (T) then
9170 Set_Is_Tagged_Type (Def_Id);
9171 Make_Class_Wide_Type (Def_Id);
9172 end if;
9173
9174 Set_Stored_Constraint (Def_Id, No_Elist);
9175
9176 if Has_Discrs then
9177 Set_Discriminant_Constraint (Def_Id, Elist);
9178 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9179 end if;
9180
9181 if Is_Tagged_Type (T) then
9182
9183 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9184 -- concurrent record type (which has the list of primitive
9185 -- operations).
9186
9187 if Ada_Version >= Ada_2005
9188 and then Is_Concurrent_Type (T)
9189 then
9190 Set_Corresponding_Record_Type (Def_Id,
9191 Corresponding_Record_Type (T));
9192 else
9193 Set_Direct_Primitive_Operations (Def_Id,
9194 Direct_Primitive_Operations (T));
9195 end if;
9196
9197 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9198 end if;
9199
9200 -- Subtypes introduced by component declarations do not need to be
9201 -- marked as delayed, and do not get freeze nodes, because the semantics
9202 -- verifies that the parents of the subtypes are frozen before the
9203 -- enclosing record is frozen.
9204
9205 if not Is_Type (Scope (Def_Id)) then
9206 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9207
9208 if Is_Private_Type (T)
9209 and then Present (Full_View (T))
9210 then
9211 Conditional_Delay (Def_Id, Full_View (T));
9212 else
9213 Conditional_Delay (Def_Id, T);
9214 end if;
9215 end if;
9216
9217 if Is_Record_Type (T) then
9218 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9219
9220 if Has_Discrs
9221 and then not Is_Empty_Elmt_List (Elist)
9222 and then not For_Access
9223 then
9224 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9225 elsif not For_Access then
9226 Set_Cloned_Subtype (Def_Id, T);
9227 end if;
9228 end if;
9229 end Build_Discriminated_Subtype;
9230
9231 ---------------------------
9232 -- Build_Itype_Reference --
9233 ---------------------------
9234
9235 procedure Build_Itype_Reference
9236 (Ityp : Entity_Id;
9237 Nod : Node_Id)
9238 is
9239 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9240 begin
9241
9242 -- Itype references are only created for use by the back-end
9243
9244 if Inside_A_Generic then
9245 return;
9246 else
9247 Set_Itype (IR, Ityp);
9248 Insert_After (Nod, IR);
9249 end if;
9250 end Build_Itype_Reference;
9251
9252 ------------------------
9253 -- Build_Scalar_Bound --
9254 ------------------------
9255
9256 function Build_Scalar_Bound
9257 (Bound : Node_Id;
9258 Par_T : Entity_Id;
9259 Der_T : Entity_Id) return Node_Id
9260 is
9261 New_Bound : Entity_Id;
9262
9263 begin
9264 -- Note: not clear why this is needed, how can the original bound
9265 -- be unanalyzed at this point? and if it is, what business do we
9266 -- have messing around with it? and why is the base type of the
9267 -- parent type the right type for the resolution. It probably is
9268 -- not. It is OK for the new bound we are creating, but not for
9269 -- the old one??? Still if it never happens, no problem.
9270
9271 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9272
9273 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9274 New_Bound := New_Copy (Bound);
9275 Set_Etype (New_Bound, Der_T);
9276 Set_Analyzed (New_Bound);
9277
9278 elsif Is_Entity_Name (Bound) then
9279 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9280
9281 -- The following is almost certainly wrong. What business do we have
9282 -- relocating a node (Bound) that is presumably still attached to
9283 -- the tree elsewhere???
9284
9285 else
9286 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9287 end if;
9288
9289 Set_Etype (New_Bound, Der_T);
9290 return New_Bound;
9291 end Build_Scalar_Bound;
9292
9293 --------------------------------
9294 -- Build_Underlying_Full_View --
9295 --------------------------------
9296
9297 procedure Build_Underlying_Full_View
9298 (N : Node_Id;
9299 Typ : Entity_Id;
9300 Par : Entity_Id)
9301 is
9302 Loc : constant Source_Ptr := Sloc (N);
9303 Subt : constant Entity_Id :=
9304 Make_Defining_Identifier
9305 (Loc, New_External_Name (Chars (Typ), 'S'));
9306
9307 Constr : Node_Id;
9308 Indic : Node_Id;
9309 C : Node_Id;
9310 Id : Node_Id;
9311
9312 procedure Set_Discriminant_Name (Id : Node_Id);
9313 -- If the derived type has discriminants, they may rename discriminants
9314 -- of the parent. When building the full view of the parent, we need to
9315 -- recover the names of the original discriminants if the constraint is
9316 -- given by named associations.
9317
9318 ---------------------------
9319 -- Set_Discriminant_Name --
9320 ---------------------------
9321
9322 procedure Set_Discriminant_Name (Id : Node_Id) is
9323 Disc : Entity_Id;
9324
9325 begin
9326 Set_Original_Discriminant (Id, Empty);
9327
9328 if Has_Discriminants (Typ) then
9329 Disc := First_Discriminant (Typ);
9330 while Present (Disc) loop
9331 if Chars (Disc) = Chars (Id)
9332 and then Present (Corresponding_Discriminant (Disc))
9333 then
9334 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9335 end if;
9336 Next_Discriminant (Disc);
9337 end loop;
9338 end if;
9339 end Set_Discriminant_Name;
9340
9341 -- Start of processing for Build_Underlying_Full_View
9342
9343 begin
9344 if Nkind (N) = N_Full_Type_Declaration then
9345 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9346
9347 elsif Nkind (N) = N_Subtype_Declaration then
9348 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9349
9350 elsif Nkind (N) = N_Component_Declaration then
9351 Constr :=
9352 New_Copy_Tree
9353 (Constraint (Subtype_Indication (Component_Definition (N))));
9354
9355 else
9356 raise Program_Error;
9357 end if;
9358
9359 C := First (Constraints (Constr));
9360 while Present (C) loop
9361 if Nkind (C) = N_Discriminant_Association then
9362 Id := First (Selector_Names (C));
9363 while Present (Id) loop
9364 Set_Discriminant_Name (Id);
9365 Next (Id);
9366 end loop;
9367 end if;
9368
9369 Next (C);
9370 end loop;
9371
9372 Indic :=
9373 Make_Subtype_Declaration (Loc,
9374 Defining_Identifier => Subt,
9375 Subtype_Indication =>
9376 Make_Subtype_Indication (Loc,
9377 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9378 Constraint => New_Copy_Tree (Constr)));
9379
9380 -- If this is a component subtype for an outer itype, it is not
9381 -- a list member, so simply set the parent link for analysis: if
9382 -- the enclosing type does not need to be in a declarative list,
9383 -- neither do the components.
9384
9385 if Is_List_Member (N)
9386 and then Nkind (N) /= N_Component_Declaration
9387 then
9388 Insert_Before (N, Indic);
9389 else
9390 Set_Parent (Indic, Parent (N));
9391 end if;
9392
9393 Analyze (Indic);
9394 Set_Underlying_Full_View (Typ, Full_View (Subt));
9395 end Build_Underlying_Full_View;
9396
9397 -------------------------------
9398 -- Check_Abstract_Overriding --
9399 -------------------------------
9400
9401 procedure Check_Abstract_Overriding (T : Entity_Id) is
9402 Alias_Subp : Entity_Id;
9403 Elmt : Elmt_Id;
9404 Op_List : Elist_Id;
9405 Subp : Entity_Id;
9406 Type_Def : Node_Id;
9407
9408 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9409 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9410 -- which has pragma Implemented already set. Check whether Subp's entity
9411 -- kind conforms to the implementation kind of the overridden routine.
9412
9413 procedure Check_Pragma_Implemented
9414 (Subp : Entity_Id;
9415 Iface_Subp : Entity_Id);
9416 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9417 -- Iface_Subp and both entities have pragma Implemented already set on
9418 -- them. Check whether the two implementation kinds are conforming.
9419
9420 procedure Inherit_Pragma_Implemented
9421 (Subp : Entity_Id;
9422 Iface_Subp : Entity_Id);
9423 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9424 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9425 -- Propagate the implementation kind of Iface_Subp to Subp.
9426
9427 ------------------------------
9428 -- Check_Pragma_Implemented --
9429 ------------------------------
9430
9431 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9432 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9433 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9434 Subp_Alias : constant Entity_Id := Alias (Subp);
9435 Contr_Typ : Entity_Id;
9436 Impl_Subp : Entity_Id;
9437
9438 begin
9439 -- Subp must have an alias since it is a hidden entity used to link
9440 -- an interface subprogram to its overriding counterpart.
9441
9442 pragma Assert (Present (Subp_Alias));
9443
9444 -- Handle aliases to synchronized wrappers
9445
9446 Impl_Subp := Subp_Alias;
9447
9448 if Is_Primitive_Wrapper (Impl_Subp) then
9449 Impl_Subp := Wrapped_Entity (Impl_Subp);
9450 end if;
9451
9452 -- Extract the type of the controlling formal
9453
9454 Contr_Typ := Etype (First_Formal (Subp_Alias));
9455
9456 if Is_Concurrent_Record_Type (Contr_Typ) then
9457 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9458 end if;
9459
9460 -- An interface subprogram whose implementation kind is By_Entry must
9461 -- be implemented by an entry.
9462
9463 if Impl_Kind = Name_By_Entry
9464 and then Ekind (Impl_Subp) /= E_Entry
9465 then
9466 Error_Msg_Node_2 := Iface_Alias;
9467 Error_Msg_NE
9468 ("type & must implement abstract subprogram & with an entry",
9469 Subp_Alias, Contr_Typ);
9470
9471 elsif Impl_Kind = Name_By_Protected_Procedure then
9472
9473 -- An interface subprogram whose implementation kind is By_
9474 -- Protected_Procedure cannot be implemented by a primitive
9475 -- procedure of a task type.
9476
9477 if Ekind (Contr_Typ) /= E_Protected_Type then
9478 Error_Msg_Node_2 := Contr_Typ;
9479 Error_Msg_NE
9480 ("interface subprogram & cannot be implemented by a " &
9481 "primitive procedure of task type &", Subp_Alias,
9482 Iface_Alias);
9483
9484 -- An interface subprogram whose implementation kind is By_
9485 -- Protected_Procedure must be implemented by a procedure.
9486
9487 elsif Ekind (Impl_Subp) /= E_Procedure then
9488 Error_Msg_Node_2 := Iface_Alias;
9489 Error_Msg_NE
9490 ("type & must implement abstract subprogram & with a " &
9491 "procedure", Subp_Alias, Contr_Typ);
9492
9493 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9494 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9495 then
9496 Error_Msg_Name_1 := Impl_Kind;
9497 Error_Msg_N
9498 ("overriding operation& must have synchronization%",
9499 Subp_Alias);
9500 end if;
9501
9502 -- If primitive has Optional synchronization, overriding operation
9503 -- must match if it has an explicit synchronization..
9504
9505 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9506 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9507 then
9508 Error_Msg_Name_1 := Impl_Kind;
9509 Error_Msg_N
9510 ("overriding operation& must have syncrhonization%",
9511 Subp_Alias);
9512 end if;
9513 end Check_Pragma_Implemented;
9514
9515 ------------------------------
9516 -- Check_Pragma_Implemented --
9517 ------------------------------
9518
9519 procedure Check_Pragma_Implemented
9520 (Subp : Entity_Id;
9521 Iface_Subp : Entity_Id)
9522 is
9523 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9524 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9525
9526 begin
9527 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9528 -- and overriding subprogram are different. In general this is an
9529 -- error except when the implementation kind of the overridden
9530 -- subprograms is By_Any or Optional.
9531
9532 if Iface_Kind /= Subp_Kind
9533 and then Iface_Kind /= Name_By_Any
9534 and then Iface_Kind /= Name_Optional
9535 then
9536 if Iface_Kind = Name_By_Entry then
9537 Error_Msg_N
9538 ("incompatible implementation kind, overridden subprogram " &
9539 "is marked By_Entry", Subp);
9540 else
9541 Error_Msg_N
9542 ("incompatible implementation kind, overridden subprogram " &
9543 "is marked By_Protected_Procedure", Subp);
9544 end if;
9545 end if;
9546 end Check_Pragma_Implemented;
9547
9548 --------------------------------
9549 -- Inherit_Pragma_Implemented --
9550 --------------------------------
9551
9552 procedure Inherit_Pragma_Implemented
9553 (Subp : Entity_Id;
9554 Iface_Subp : Entity_Id)
9555 is
9556 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9557 Loc : constant Source_Ptr := Sloc (Subp);
9558 Impl_Prag : Node_Id;
9559
9560 begin
9561 -- Since the implementation kind is stored as a representation item
9562 -- rather than a flag, create a pragma node.
9563
9564 Impl_Prag :=
9565 Make_Pragma (Loc,
9566 Chars => Name_Implemented,
9567 Pragma_Argument_Associations => New_List (
9568 Make_Pragma_Argument_Association (Loc,
9569 Expression => New_Occurrence_Of (Subp, Loc)),
9570
9571 Make_Pragma_Argument_Association (Loc,
9572 Expression => Make_Identifier (Loc, Iface_Kind))));
9573
9574 -- The pragma doesn't need to be analyzed because it is internally
9575 -- built. It is safe to directly register it as a rep item since we
9576 -- are only interested in the characters of the implementation kind.
9577
9578 Record_Rep_Item (Subp, Impl_Prag);
9579 end Inherit_Pragma_Implemented;
9580
9581 -- Start of processing for Check_Abstract_Overriding
9582
9583 begin
9584 Op_List := Primitive_Operations (T);
9585
9586 -- Loop to check primitive operations
9587
9588 Elmt := First_Elmt (Op_List);
9589 while Present (Elmt) loop
9590 Subp := Node (Elmt);
9591 Alias_Subp := Alias (Subp);
9592
9593 -- Inherited subprograms are identified by the fact that they do not
9594 -- come from source, and the associated source location is the
9595 -- location of the first subtype of the derived type.
9596
9597 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9598 -- subprograms that "require overriding".
9599
9600 -- Special exception, do not complain about failure to override the
9601 -- stream routines _Input and _Output, as well as the primitive
9602 -- operations used in dispatching selects since we always provide
9603 -- automatic overridings for these subprograms.
9604
9605 -- Also ignore this rule for convention CIL since .NET libraries
9606 -- do bizarre things with interfaces???
9607
9608 -- The partial view of T may have been a private extension, for
9609 -- which inherited functions dispatching on result are abstract.
9610 -- If the full view is a null extension, there is no need for
9611 -- overriding in Ada 2005, but wrappers need to be built for them
9612 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9613
9614 if Is_Null_Extension (T)
9615 and then Has_Controlling_Result (Subp)
9616 and then Ada_Version >= Ada_2005
9617 and then Present (Alias_Subp)
9618 and then not Comes_From_Source (Subp)
9619 and then not Is_Abstract_Subprogram (Alias_Subp)
9620 and then not Is_Access_Type (Etype (Subp))
9621 then
9622 null;
9623
9624 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9625 -- processing because this check is done with the aliased
9626 -- entity
9627
9628 elsif Present (Interface_Alias (Subp)) then
9629 null;
9630
9631 elsif (Is_Abstract_Subprogram (Subp)
9632 or else Requires_Overriding (Subp)
9633 or else
9634 (Has_Controlling_Result (Subp)
9635 and then Present (Alias_Subp)
9636 and then not Comes_From_Source (Subp)
9637 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9638 and then not Is_TSS (Subp, TSS_Stream_Input)
9639 and then not Is_TSS (Subp, TSS_Stream_Output)
9640 and then not Is_Abstract_Type (T)
9641 and then Convention (T) /= Convention_CIL
9642 and then not Is_Predefined_Interface_Primitive (Subp)
9643
9644 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9645 -- with abstract interface types because the check will be done
9646 -- with the aliased entity (otherwise we generate a duplicated
9647 -- error message).
9648
9649 and then not Present (Interface_Alias (Subp))
9650 then
9651 if Present (Alias_Subp) then
9652
9653 -- Only perform the check for a derived subprogram when the
9654 -- type has an explicit record extension. This avoids incorrect
9655 -- flagging of abstract subprograms for the case of a type
9656 -- without an extension that is derived from a formal type
9657 -- with a tagged actual (can occur within a private part).
9658
9659 -- Ada 2005 (AI-391): In the case of an inherited function with
9660 -- a controlling result of the type, the rule does not apply if
9661 -- the type is a null extension (unless the parent function
9662 -- itself is abstract, in which case the function must still be
9663 -- be overridden). The expander will generate an overriding
9664 -- wrapper function calling the parent subprogram (see
9665 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9666
9667 Type_Def := Type_Definition (Parent (T));
9668
9669 if Nkind (Type_Def) = N_Derived_Type_Definition
9670 and then Present (Record_Extension_Part (Type_Def))
9671 and then
9672 (Ada_Version < Ada_2005
9673 or else not Is_Null_Extension (T)
9674 or else Ekind (Subp) = E_Procedure
9675 or else not Has_Controlling_Result (Subp)
9676 or else Is_Abstract_Subprogram (Alias_Subp)
9677 or else Requires_Overriding (Subp)
9678 or else Is_Access_Type (Etype (Subp)))
9679 then
9680 -- Avoid reporting error in case of abstract predefined
9681 -- primitive inherited from interface type because the
9682 -- body of internally generated predefined primitives
9683 -- of tagged types are generated later by Freeze_Type
9684
9685 if Is_Interface (Root_Type (T))
9686 and then Is_Abstract_Subprogram (Subp)
9687 and then Is_Predefined_Dispatching_Operation (Subp)
9688 and then not Comes_From_Source (Ultimate_Alias (Subp))
9689 then
9690 null;
9691
9692 else
9693 Error_Msg_NE
9694 ("type must be declared abstract or & overridden",
9695 T, Subp);
9696
9697 -- Traverse the whole chain of aliased subprograms to
9698 -- complete the error notification. This is especially
9699 -- useful for traceability of the chain of entities when
9700 -- the subprogram corresponds with an interface
9701 -- subprogram (which may be defined in another package).
9702
9703 if Present (Alias_Subp) then
9704 declare
9705 E : Entity_Id;
9706
9707 begin
9708 E := Subp;
9709 while Present (Alias (E)) loop
9710
9711 -- Avoid reporting redundant errors on entities
9712 -- inherited from interfaces
9713
9714 if Sloc (E) /= Sloc (T) then
9715 Error_Msg_Sloc := Sloc (E);
9716 Error_Msg_NE
9717 ("\& has been inherited #", T, Subp);
9718 end if;
9719
9720 E := Alias (E);
9721 end loop;
9722
9723 Error_Msg_Sloc := Sloc (E);
9724
9725 -- AI05-0068: report if there is an overriding
9726 -- non-abstract subprogram that is invisible.
9727
9728 if Is_Hidden (E)
9729 and then not Is_Abstract_Subprogram (E)
9730 then
9731 Error_Msg_NE
9732 ("\& subprogram# is not visible",
9733 T, Subp);
9734
9735 else
9736 Error_Msg_NE
9737 ("\& has been inherited from subprogram #",
9738 T, Subp);
9739 end if;
9740 end;
9741 end if;
9742 end if;
9743
9744 -- Ada 2005 (AI-345): Protected or task type implementing
9745 -- abstract interfaces.
9746
9747 elsif Is_Concurrent_Record_Type (T)
9748 and then Present (Interfaces (T))
9749 then
9750 -- If an inherited subprogram is implemented by a protected
9751 -- procedure or an entry, then the first parameter of the
9752 -- inherited subprogram shall be of mode OUT or IN OUT, or
9753 -- an access-to-variable parameter (RM 9.4(11.9/3))
9754
9755 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9756 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9757 and then Ekind (Subp) /= E_Function
9758 and then not Is_Predefined_Dispatching_Operation (Subp)
9759 then
9760 Error_Msg_PT (T, Subp);
9761
9762 -- Some other kind of overriding failure
9763
9764 else
9765 Error_Msg_NE
9766 ("interface subprogram & must be overridden",
9767 T, Subp);
9768
9769 -- Examine primitive operations of synchronized type,
9770 -- to find homonyms that have the wrong profile.
9771
9772 declare
9773 Prim : Entity_Id;
9774
9775 begin
9776 Prim :=
9777 First_Entity (Corresponding_Concurrent_Type (T));
9778 while Present (Prim) loop
9779 if Chars (Prim) = Chars (Subp) then
9780 Error_Msg_NE
9781 ("profile is not type conformant with "
9782 & "prefixed view profile of "
9783 & "inherited operation&", Prim, Subp);
9784 end if;
9785
9786 Next_Entity (Prim);
9787 end loop;
9788 end;
9789 end if;
9790 end if;
9791
9792 else
9793 Error_Msg_Node_2 := T;
9794 Error_Msg_N
9795 ("abstract subprogram& not allowed for type&", Subp);
9796
9797 -- Also post unconditional warning on the type (unconditional
9798 -- so that if there are more than one of these cases, we get
9799 -- them all, and not just the first one).
9800
9801 Error_Msg_Node_2 := Subp;
9802 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9803 end if;
9804 end if;
9805
9806 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9807
9808 -- Subp is an expander-generated procedure which maps an interface
9809 -- alias to a protected wrapper. The interface alias is flagged by
9810 -- pragma Implemented. Ensure that Subp is a procedure when the
9811 -- implementation kind is By_Protected_Procedure or an entry when
9812 -- By_Entry.
9813
9814 if Ada_Version >= Ada_2012
9815 and then Is_Hidden (Subp)
9816 and then Present (Interface_Alias (Subp))
9817 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9818 then
9819 Check_Pragma_Implemented (Subp);
9820 end if;
9821
9822 -- Subp is an interface primitive which overrides another interface
9823 -- primitive marked with pragma Implemented.
9824
9825 if Ada_Version >= Ada_2012
9826 and then Present (Overridden_Operation (Subp))
9827 and then Has_Rep_Pragma
9828 (Overridden_Operation (Subp), Name_Implemented)
9829 then
9830 -- If the overriding routine is also marked by Implemented, check
9831 -- that the two implementation kinds are conforming.
9832
9833 if Has_Rep_Pragma (Subp, Name_Implemented) then
9834 Check_Pragma_Implemented
9835 (Subp => Subp,
9836 Iface_Subp => Overridden_Operation (Subp));
9837
9838 -- Otherwise the overriding routine inherits the implementation
9839 -- kind from the overridden subprogram.
9840
9841 else
9842 Inherit_Pragma_Implemented
9843 (Subp => Subp,
9844 Iface_Subp => Overridden_Operation (Subp));
9845 end if;
9846 end if;
9847
9848 -- If the operation is a wrapper for a synchronized primitive, it
9849 -- may be called indirectly through a dispatching select. We assume
9850 -- that it will be referenced elsewhere indirectly, and suppress
9851 -- warnings about an unused entity.
9852
9853 if Is_Primitive_Wrapper (Subp)
9854 and then Present (Wrapped_Entity (Subp))
9855 then
9856 Set_Referenced (Wrapped_Entity (Subp));
9857 end if;
9858
9859 Next_Elmt (Elmt);
9860 end loop;
9861 end Check_Abstract_Overriding;
9862
9863 ------------------------------------------------
9864 -- Check_Access_Discriminant_Requires_Limited --
9865 ------------------------------------------------
9866
9867 procedure Check_Access_Discriminant_Requires_Limited
9868 (D : Node_Id;
9869 Loc : Node_Id)
9870 is
9871 begin
9872 -- A discriminant_specification for an access discriminant shall appear
9873 -- only in the declaration for a task or protected type, or for a type
9874 -- with the reserved word 'limited' in its definition or in one of its
9875 -- ancestors (RM 3.7(10)).
9876
9877 -- AI-0063: The proper condition is that type must be immutably limited,
9878 -- or else be a partial view.
9879
9880 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9881 if Is_Limited_View (Current_Scope)
9882 or else
9883 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9884 and then Limited_Present (Parent (Current_Scope)))
9885 then
9886 null;
9887
9888 else
9889 Error_Msg_N
9890 ("access discriminants allowed only for limited types", Loc);
9891 end if;
9892 end if;
9893 end Check_Access_Discriminant_Requires_Limited;
9894
9895 -----------------------------------
9896 -- Check_Aliased_Component_Types --
9897 -----------------------------------
9898
9899 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9900 C : Entity_Id;
9901
9902 begin
9903 -- ??? Also need to check components of record extensions, but not
9904 -- components of protected types (which are always limited).
9905
9906 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9907 -- types to be unconstrained. This is safe because it is illegal to
9908 -- create access subtypes to such types with explicit discriminant
9909 -- constraints.
9910
9911 if not Is_Limited_Type (T) then
9912 if Ekind (T) = E_Record_Type then
9913 C := First_Component (T);
9914 while Present (C) loop
9915 if Is_Aliased (C)
9916 and then Has_Discriminants (Etype (C))
9917 and then not Is_Constrained (Etype (C))
9918 and then not In_Instance_Body
9919 and then Ada_Version < Ada_2005
9920 then
9921 Error_Msg_N
9922 ("aliased component must be constrained (RM 3.6(11))",
9923 C);
9924 end if;
9925
9926 Next_Component (C);
9927 end loop;
9928
9929 elsif Ekind (T) = E_Array_Type then
9930 if Has_Aliased_Components (T)
9931 and then Has_Discriminants (Component_Type (T))
9932 and then not Is_Constrained (Component_Type (T))
9933 and then not In_Instance_Body
9934 and then Ada_Version < Ada_2005
9935 then
9936 Error_Msg_N
9937 ("aliased component type must be constrained (RM 3.6(11))",
9938 T);
9939 end if;
9940 end if;
9941 end if;
9942 end Check_Aliased_Component_Types;
9943
9944 ----------------------
9945 -- Check_Completion --
9946 ----------------------
9947
9948 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9949 E : Entity_Id;
9950
9951 procedure Post_Error;
9952 -- Post error message for lack of completion for entity E
9953
9954 ----------------
9955 -- Post_Error --
9956 ----------------
9957
9958 procedure Post_Error is
9959
9960 procedure Missing_Body;
9961 -- Output missing body message
9962
9963 ------------------
9964 -- Missing_Body --
9965 ------------------
9966
9967 procedure Missing_Body is
9968 begin
9969 -- Spec is in same unit, so we can post on spec
9970
9971 if In_Same_Source_Unit (Body_Id, E) then
9972 Error_Msg_N ("missing body for &", E);
9973
9974 -- Spec is in a separate unit, so we have to post on the body
9975
9976 else
9977 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9978 end if;
9979 end Missing_Body;
9980
9981 -- Start of processing for Post_Error
9982
9983 begin
9984 if not Comes_From_Source (E) then
9985
9986 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9987 -- It may be an anonymous protected type created for a
9988 -- single variable. Post error on variable, if present.
9989
9990 declare
9991 Var : Entity_Id;
9992
9993 begin
9994 Var := First_Entity (Current_Scope);
9995 while Present (Var) loop
9996 exit when Etype (Var) = E
9997 and then Comes_From_Source (Var);
9998
9999 Next_Entity (Var);
10000 end loop;
10001
10002 if Present (Var) then
10003 E := Var;
10004 end if;
10005 end;
10006 end if;
10007 end if;
10008
10009 -- If a generated entity has no completion, then either previous
10010 -- semantic errors have disabled the expansion phase, or else we had
10011 -- missing subunits, or else we are compiling without expansion,
10012 -- or else something is very wrong.
10013
10014 if not Comes_From_Source (E) then
10015 pragma Assert
10016 (Serious_Errors_Detected > 0
10017 or else Configurable_Run_Time_Violations > 0
10018 or else Subunits_Missing
10019 or else not Expander_Active);
10020 return;
10021
10022 -- Here for source entity
10023
10024 else
10025 -- Here if no body to post the error message, so we post the error
10026 -- on the declaration that has no completion. This is not really
10027 -- the right place to post it, think about this later ???
10028
10029 if No (Body_Id) then
10030 if Is_Type (E) then
10031 Error_Msg_NE
10032 ("missing full declaration for }", Parent (E), E);
10033 else
10034 Error_Msg_NE ("missing body for &", Parent (E), E);
10035 end if;
10036
10037 -- Package body has no completion for a declaration that appears
10038 -- in the corresponding spec. Post error on the body, with a
10039 -- reference to the non-completed declaration.
10040
10041 else
10042 Error_Msg_Sloc := Sloc (E);
10043
10044 if Is_Type (E) then
10045 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10046
10047 elsif Is_Overloadable (E)
10048 and then Current_Entity_In_Scope (E) /= E
10049 then
10050 -- It may be that the completion is mistyped and appears as
10051 -- a distinct overloading of the entity.
10052
10053 declare
10054 Candidate : constant Entity_Id :=
10055 Current_Entity_In_Scope (E);
10056 Decl : constant Node_Id :=
10057 Unit_Declaration_Node (Candidate);
10058
10059 begin
10060 if Is_Overloadable (Candidate)
10061 and then Ekind (Candidate) = Ekind (E)
10062 and then Nkind (Decl) = N_Subprogram_Body
10063 and then Acts_As_Spec (Decl)
10064 then
10065 Check_Type_Conformant (Candidate, E);
10066
10067 else
10068 Missing_Body;
10069 end if;
10070 end;
10071
10072 else
10073 Missing_Body;
10074 end if;
10075 end if;
10076 end if;
10077 end Post_Error;
10078
10079 -- Start of processing for Check_Completion
10080
10081 begin
10082 E := First_Entity (Current_Scope);
10083 while Present (E) loop
10084 if Is_Intrinsic_Subprogram (E) then
10085 null;
10086
10087 -- The following situation requires special handling: a child unit
10088 -- that appears in the context clause of the body of its parent:
10089
10090 -- procedure Parent.Child (...);
10091
10092 -- with Parent.Child;
10093 -- package body Parent is
10094
10095 -- Here Parent.Child appears as a local entity, but should not be
10096 -- flagged as requiring completion, because it is a compilation
10097 -- unit.
10098
10099 -- Ignore missing completion for a subprogram that does not come from
10100 -- source (including the _Call primitive operation of RAS types,
10101 -- which has to have the flag Comes_From_Source for other purposes):
10102 -- we assume that the expander will provide the missing completion.
10103 -- In case of previous errors, other expansion actions that provide
10104 -- bodies for null procedures with not be invoked, so inhibit message
10105 -- in those cases.
10106
10107 -- Note that E_Operator is not in the list that follows, because
10108 -- this kind is reserved for predefined operators, that are
10109 -- intrinsic and do not need completion.
10110
10111 elsif Ekind (E) = E_Function
10112 or else Ekind (E) = E_Procedure
10113 or else Ekind (E) = E_Generic_Function
10114 or else Ekind (E) = E_Generic_Procedure
10115 then
10116 if Has_Completion (E) then
10117 null;
10118
10119 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10120 null;
10121
10122 elsif Is_Subprogram (E)
10123 and then (not Comes_From_Source (E)
10124 or else Chars (E) = Name_uCall)
10125 then
10126 null;
10127
10128 elsif
10129 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10130 then
10131 null;
10132
10133 elsif Nkind (Parent (E)) = N_Procedure_Specification
10134 and then Null_Present (Parent (E))
10135 and then Serious_Errors_Detected > 0
10136 then
10137 null;
10138
10139 else
10140 Post_Error;
10141 end if;
10142
10143 elsif Is_Entry (E) then
10144 if not Has_Completion (E) and then
10145 (Ekind (Scope (E)) = E_Protected_Object
10146 or else Ekind (Scope (E)) = E_Protected_Type)
10147 then
10148 Post_Error;
10149 end if;
10150
10151 elsif Is_Package_Or_Generic_Package (E) then
10152 if Unit_Requires_Body (E) then
10153 if not Has_Completion (E)
10154 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10155 N_Compilation_Unit
10156 then
10157 Post_Error;
10158 end if;
10159
10160 elsif not Is_Child_Unit (E) then
10161 May_Need_Implicit_Body (E);
10162 end if;
10163
10164 -- A formal incomplete type (Ada 2012) does not require a completion;
10165 -- other incomplete type declarations do.
10166
10167 elsif Ekind (E) = E_Incomplete_Type
10168 and then No (Underlying_Type (E))
10169 and then not Is_Generic_Type (E)
10170 then
10171 Post_Error;
10172
10173 elsif (Ekind (E) = E_Task_Type or else
10174 Ekind (E) = E_Protected_Type)
10175 and then not Has_Completion (E)
10176 then
10177 Post_Error;
10178
10179 -- A single task declared in the current scope is a constant, verify
10180 -- that the body of its anonymous type is in the same scope. If the
10181 -- task is defined elsewhere, this may be a renaming declaration for
10182 -- which no completion is needed.
10183
10184 elsif Ekind (E) = E_Constant
10185 and then Ekind (Etype (E)) = E_Task_Type
10186 and then not Has_Completion (Etype (E))
10187 and then Scope (Etype (E)) = Current_Scope
10188 then
10189 Post_Error;
10190
10191 elsif Ekind (E) = E_Protected_Object
10192 and then not Has_Completion (Etype (E))
10193 then
10194 Post_Error;
10195
10196 elsif Ekind (E) = E_Record_Type then
10197 if Is_Tagged_Type (E) then
10198 Check_Abstract_Overriding (E);
10199 Check_Conventions (E);
10200 end if;
10201
10202 Check_Aliased_Component_Types (E);
10203
10204 elsif Ekind (E) = E_Array_Type then
10205 Check_Aliased_Component_Types (E);
10206
10207 end if;
10208
10209 Next_Entity (E);
10210 end loop;
10211 end Check_Completion;
10212
10213 ------------------------------------
10214 -- Check_CPP_Type_Has_No_Defaults --
10215 ------------------------------------
10216
10217 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10218 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10219 Clist : Node_Id;
10220 Comp : Node_Id;
10221
10222 begin
10223 -- Obtain the component list
10224
10225 if Nkind (Tdef) = N_Record_Definition then
10226 Clist := Component_List (Tdef);
10227 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10228 Clist := Component_List (Record_Extension_Part (Tdef));
10229 end if;
10230
10231 -- Check all components to ensure no default expressions
10232
10233 if Present (Clist) then
10234 Comp := First (Component_Items (Clist));
10235 while Present (Comp) loop
10236 if Present (Expression (Comp)) then
10237 Error_Msg_N
10238 ("component of imported 'C'P'P type cannot have "
10239 & "default expression", Expression (Comp));
10240 end if;
10241
10242 Next (Comp);
10243 end loop;
10244 end if;
10245 end Check_CPP_Type_Has_No_Defaults;
10246
10247 ----------------------------
10248 -- Check_Delta_Expression --
10249 ----------------------------
10250
10251 procedure Check_Delta_Expression (E : Node_Id) is
10252 begin
10253 if not (Is_Real_Type (Etype (E))) then
10254 Wrong_Type (E, Any_Real);
10255
10256 elsif not Is_OK_Static_Expression (E) then
10257 Flag_Non_Static_Expr
10258 ("non-static expression used for delta value!", E);
10259
10260 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10261 Error_Msg_N ("delta expression must be positive", E);
10262
10263 else
10264 return;
10265 end if;
10266
10267 -- If any of above errors occurred, then replace the incorrect
10268 -- expression by the real 0.1, which should prevent further errors.
10269
10270 Rewrite (E,
10271 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10272 Analyze_And_Resolve (E, Standard_Float);
10273 end Check_Delta_Expression;
10274
10275 -----------------------------
10276 -- Check_Digits_Expression --
10277 -----------------------------
10278
10279 procedure Check_Digits_Expression (E : Node_Id) is
10280 begin
10281 if not (Is_Integer_Type (Etype (E))) then
10282 Wrong_Type (E, Any_Integer);
10283
10284 elsif not Is_OK_Static_Expression (E) then
10285 Flag_Non_Static_Expr
10286 ("non-static expression used for digits value!", E);
10287
10288 elsif Expr_Value (E) <= 0 then
10289 Error_Msg_N ("digits value must be greater than zero", E);
10290
10291 else
10292 return;
10293 end if;
10294
10295 -- If any of above errors occurred, then replace the incorrect
10296 -- expression by the integer 1, which should prevent further errors.
10297
10298 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10299 Analyze_And_Resolve (E, Standard_Integer);
10300
10301 end Check_Digits_Expression;
10302
10303 --------------------------
10304 -- Check_Initialization --
10305 --------------------------
10306
10307 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10308 begin
10309 if Is_Limited_Type (T)
10310 and then not In_Instance
10311 and then not In_Inlined_Body
10312 then
10313 if not OK_For_Limited_Init (T, Exp) then
10314
10315 -- In GNAT mode, this is just a warning, to allow it to be evilly
10316 -- turned off. Otherwise it is a real error.
10317
10318 if GNAT_Mode then
10319 Error_Msg_N
10320 ("??cannot initialize entities of limited type!", Exp);
10321
10322 elsif Ada_Version < Ada_2005 then
10323
10324 -- The side effect removal machinery may generate illegal Ada
10325 -- code to avoid the usage of access types and 'reference in
10326 -- SPARK mode. Since this is legal code with respect to theorem
10327 -- proving, do not emit the error.
10328
10329 if GNATprove_Mode
10330 and then Nkind (Exp) = N_Function_Call
10331 and then Nkind (Parent (Exp)) = N_Object_Declaration
10332 and then not Comes_From_Source
10333 (Defining_Identifier (Parent (Exp)))
10334 then
10335 null;
10336
10337 else
10338 Error_Msg_N
10339 ("cannot initialize entities of limited type", Exp);
10340 Explain_Limited_Type (T, Exp);
10341 end if;
10342
10343 else
10344 -- Specialize error message according to kind of illegal
10345 -- initial expression.
10346
10347 if Nkind (Exp) = N_Type_Conversion
10348 and then Nkind (Expression (Exp)) = N_Function_Call
10349 then
10350 Error_Msg_N
10351 ("illegal context for call"
10352 & " to function with limited result", Exp);
10353
10354 else
10355 Error_Msg_N
10356 ("initialization of limited object requires aggregate "
10357 & "or function call", Exp);
10358 end if;
10359 end if;
10360 end if;
10361 end if;
10362 end Check_Initialization;
10363
10364 ----------------------
10365 -- Check_Interfaces --
10366 ----------------------
10367
10368 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10369 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10370
10371 Iface : Node_Id;
10372 Iface_Def : Node_Id;
10373 Iface_Typ : Entity_Id;
10374 Parent_Node : Node_Id;
10375
10376 Is_Task : Boolean := False;
10377 -- Set True if parent type or any progenitor is a task interface
10378
10379 Is_Protected : Boolean := False;
10380 -- Set True if parent type or any progenitor is a protected interface
10381
10382 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10383 -- Check that a progenitor is compatible with declaration.
10384 -- Error is posted on Error_Node.
10385
10386 ------------------
10387 -- Check_Ifaces --
10388 ------------------
10389
10390 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10391 Iface_Id : constant Entity_Id :=
10392 Defining_Identifier (Parent (Iface_Def));
10393 Type_Def : Node_Id;
10394
10395 begin
10396 if Nkind (N) = N_Private_Extension_Declaration then
10397 Type_Def := N;
10398 else
10399 Type_Def := Type_Definition (N);
10400 end if;
10401
10402 if Is_Task_Interface (Iface_Id) then
10403 Is_Task := True;
10404
10405 elsif Is_Protected_Interface (Iface_Id) then
10406 Is_Protected := True;
10407 end if;
10408
10409 if Is_Synchronized_Interface (Iface_Id) then
10410
10411 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10412 -- extension derived from a synchronized interface must explicitly
10413 -- be declared synchronized, because the full view will be a
10414 -- synchronized type.
10415
10416 if Nkind (N) = N_Private_Extension_Declaration then
10417 if not Synchronized_Present (N) then
10418 Error_Msg_NE
10419 ("private extension of& must be explicitly synchronized",
10420 N, Iface_Id);
10421 end if;
10422
10423 -- However, by 3.9.4(16/2), a full type that is a record extension
10424 -- is never allowed to derive from a synchronized interface (note
10425 -- that interfaces must be excluded from this check, because those
10426 -- are represented by derived type definitions in some cases).
10427
10428 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10429 and then not Interface_Present (Type_Definition (N))
10430 then
10431 Error_Msg_N ("record extension cannot derive from synchronized"
10432 & " interface", Error_Node);
10433 end if;
10434 end if;
10435
10436 -- Check that the characteristics of the progenitor are compatible
10437 -- with the explicit qualifier in the declaration.
10438 -- The check only applies to qualifiers that come from source.
10439 -- Limited_Present also appears in the declaration of corresponding
10440 -- records, and the check does not apply to them.
10441
10442 if Limited_Present (Type_Def)
10443 and then not
10444 Is_Concurrent_Record_Type (Defining_Identifier (N))
10445 then
10446 if Is_Limited_Interface (Parent_Type)
10447 and then not Is_Limited_Interface (Iface_Id)
10448 then
10449 Error_Msg_NE
10450 ("progenitor& must be limited interface",
10451 Error_Node, Iface_Id);
10452
10453 elsif
10454 (Task_Present (Iface_Def)
10455 or else Protected_Present (Iface_Def)
10456 or else Synchronized_Present (Iface_Def))
10457 and then Nkind (N) /= N_Private_Extension_Declaration
10458 and then not Error_Posted (N)
10459 then
10460 Error_Msg_NE
10461 ("progenitor& must be limited interface",
10462 Error_Node, Iface_Id);
10463 end if;
10464
10465 -- Protected interfaces can only inherit from limited, synchronized
10466 -- or protected interfaces.
10467
10468 elsif Nkind (N) = N_Full_Type_Declaration
10469 and then Protected_Present (Type_Def)
10470 then
10471 if Limited_Present (Iface_Def)
10472 or else Synchronized_Present (Iface_Def)
10473 or else Protected_Present (Iface_Def)
10474 then
10475 null;
10476
10477 elsif Task_Present (Iface_Def) then
10478 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10479 & " from task interface", Error_Node);
10480
10481 else
10482 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10483 & " from non-limited interface", Error_Node);
10484 end if;
10485
10486 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10487 -- limited and synchronized.
10488
10489 elsif Synchronized_Present (Type_Def) then
10490 if Limited_Present (Iface_Def)
10491 or else Synchronized_Present (Iface_Def)
10492 then
10493 null;
10494
10495 elsif Protected_Present (Iface_Def)
10496 and then Nkind (N) /= N_Private_Extension_Declaration
10497 then
10498 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10499 & " from protected interface", Error_Node);
10500
10501 elsif Task_Present (Iface_Def)
10502 and then Nkind (N) /= N_Private_Extension_Declaration
10503 then
10504 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10505 & " from task interface", Error_Node);
10506
10507 elsif not Is_Limited_Interface (Iface_Id) then
10508 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10509 & " from non-limited interface", Error_Node);
10510 end if;
10511
10512 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10513 -- synchronized or task interfaces.
10514
10515 elsif Nkind (N) = N_Full_Type_Declaration
10516 and then Task_Present (Type_Def)
10517 then
10518 if Limited_Present (Iface_Def)
10519 or else Synchronized_Present (Iface_Def)
10520 or else Task_Present (Iface_Def)
10521 then
10522 null;
10523
10524 elsif Protected_Present (Iface_Def) then
10525 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10526 & " protected interface", Error_Node);
10527
10528 else
10529 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10530 & " non-limited interface", Error_Node);
10531 end if;
10532 end if;
10533 end Check_Ifaces;
10534
10535 -- Start of processing for Check_Interfaces
10536
10537 begin
10538 if Is_Interface (Parent_Type) then
10539 if Is_Task_Interface (Parent_Type) then
10540 Is_Task := True;
10541
10542 elsif Is_Protected_Interface (Parent_Type) then
10543 Is_Protected := True;
10544 end if;
10545 end if;
10546
10547 if Nkind (N) = N_Private_Extension_Declaration then
10548
10549 -- Check that progenitors are compatible with declaration
10550
10551 Iface := First (Interface_List (Def));
10552 while Present (Iface) loop
10553 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10554
10555 Parent_Node := Parent (Base_Type (Iface_Typ));
10556 Iface_Def := Type_Definition (Parent_Node);
10557
10558 if not Is_Interface (Iface_Typ) then
10559 Diagnose_Interface (Iface, Iface_Typ);
10560
10561 else
10562 Check_Ifaces (Iface_Def, Iface);
10563 end if;
10564
10565 Next (Iface);
10566 end loop;
10567
10568 if Is_Task and Is_Protected then
10569 Error_Msg_N
10570 ("type cannot derive from task and protected interface", N);
10571 end if;
10572
10573 return;
10574 end if;
10575
10576 -- Full type declaration of derived type.
10577 -- Check compatibility with parent if it is interface type
10578
10579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10580 and then Is_Interface (Parent_Type)
10581 then
10582 Parent_Node := Parent (Parent_Type);
10583
10584 -- More detailed checks for interface varieties
10585
10586 Check_Ifaces
10587 (Iface_Def => Type_Definition (Parent_Node),
10588 Error_Node => Subtype_Indication (Type_Definition (N)));
10589 end if;
10590
10591 Iface := First (Interface_List (Def));
10592 while Present (Iface) loop
10593 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10594
10595 Parent_Node := Parent (Base_Type (Iface_Typ));
10596 Iface_Def := Type_Definition (Parent_Node);
10597
10598 if not Is_Interface (Iface_Typ) then
10599 Diagnose_Interface (Iface, Iface_Typ);
10600
10601 else
10602 -- "The declaration of a specific descendant of an interface
10603 -- type freezes the interface type" RM 13.14
10604
10605 Freeze_Before (N, Iface_Typ);
10606 Check_Ifaces (Iface_Def, Error_Node => Iface);
10607 end if;
10608
10609 Next (Iface);
10610 end loop;
10611
10612 if Is_Task and Is_Protected then
10613 Error_Msg_N
10614 ("type cannot derive from task and protected interface", N);
10615 end if;
10616 end Check_Interfaces;
10617
10618 ------------------------------------
10619 -- Check_Or_Process_Discriminants --
10620 ------------------------------------
10621
10622 -- If an incomplete or private type declaration was already given for the
10623 -- type, the discriminants may have already been processed if they were
10624 -- present on the incomplete declaration. In this case a full conformance
10625 -- check has been performed in Find_Type_Name, and we then recheck here
10626 -- some properties that can't be checked on the partial view alone.
10627 -- Otherwise we call Process_Discriminants.
10628
10629 procedure Check_Or_Process_Discriminants
10630 (N : Node_Id;
10631 T : Entity_Id;
10632 Prev : Entity_Id := Empty)
10633 is
10634 begin
10635 if Has_Discriminants (T) then
10636
10637 -- Discriminants are already set on T if they were already present
10638 -- on the partial view. Make them visible to component declarations.
10639
10640 declare
10641 D : Entity_Id;
10642 -- Discriminant on T (full view) referencing expr on partial view
10643
10644 Prev_D : Entity_Id;
10645 -- Entity of corresponding discriminant on partial view
10646
10647 New_D : Node_Id;
10648 -- Discriminant specification for full view, expression is the
10649 -- syntactic copy on full view (which has been checked for
10650 -- conformance with partial view), only used here to post error
10651 -- message.
10652
10653 begin
10654 D := First_Discriminant (T);
10655 New_D := First (Discriminant_Specifications (N));
10656 while Present (D) loop
10657 Prev_D := Current_Entity (D);
10658 Set_Current_Entity (D);
10659 Set_Is_Immediately_Visible (D);
10660 Set_Homonym (D, Prev_D);
10661
10662 -- Handle the case where there is an untagged partial view and
10663 -- the full view is tagged: must disallow discriminants with
10664 -- defaults, unless compiling for Ada 2012, which allows a
10665 -- limited tagged type to have defaulted discriminants (see
10666 -- AI05-0214). However, suppress error here if it was already
10667 -- reported on the default expression of the partial view.
10668
10669 if Is_Tagged_Type (T)
10670 and then Present (Expression (Parent (D)))
10671 and then (not Is_Limited_Type (Current_Scope)
10672 or else Ada_Version < Ada_2012)
10673 and then not Error_Posted (Expression (Parent (D)))
10674 then
10675 if Ada_Version >= Ada_2012 then
10676 Error_Msg_N
10677 ("discriminants of nonlimited tagged type cannot have"
10678 & " defaults",
10679 Expression (New_D));
10680 else
10681 Error_Msg_N
10682 ("discriminants of tagged type cannot have defaults",
10683 Expression (New_D));
10684 end if;
10685 end if;
10686
10687 -- Ada 2005 (AI-230): Access discriminant allowed in
10688 -- non-limited record types.
10689
10690 if Ada_Version < Ada_2005 then
10691
10692 -- This restriction gets applied to the full type here. It
10693 -- has already been applied earlier to the partial view.
10694
10695 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10696 end if;
10697
10698 Next_Discriminant (D);
10699 Next (New_D);
10700 end loop;
10701 end;
10702
10703 elsif Present (Discriminant_Specifications (N)) then
10704 Process_Discriminants (N, Prev);
10705 end if;
10706 end Check_Or_Process_Discriminants;
10707
10708 ----------------------
10709 -- Check_Real_Bound --
10710 ----------------------
10711
10712 procedure Check_Real_Bound (Bound : Node_Id) is
10713 begin
10714 if not Is_Real_Type (Etype (Bound)) then
10715 Error_Msg_N
10716 ("bound in real type definition must be of real type", Bound);
10717
10718 elsif not Is_OK_Static_Expression (Bound) then
10719 Flag_Non_Static_Expr
10720 ("non-static expression used for real type bound!", Bound);
10721
10722 else
10723 return;
10724 end if;
10725
10726 Rewrite
10727 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10728 Analyze (Bound);
10729 Resolve (Bound, Standard_Float);
10730 end Check_Real_Bound;
10731
10732 ------------------------------
10733 -- Complete_Private_Subtype --
10734 ------------------------------
10735
10736 procedure Complete_Private_Subtype
10737 (Priv : Entity_Id;
10738 Full : Entity_Id;
10739 Full_Base : Entity_Id;
10740 Related_Nod : Node_Id)
10741 is
10742 Save_Next_Entity : Entity_Id;
10743 Save_Homonym : Entity_Id;
10744
10745 begin
10746 -- Set semantic attributes for (implicit) private subtype completion.
10747 -- If the full type has no discriminants, then it is a copy of the full
10748 -- view of the base. Otherwise, it is a subtype of the base with a
10749 -- possible discriminant constraint. Save and restore the original
10750 -- Next_Entity field of full to ensure that the calls to Copy_Node
10751 -- do not corrupt the entity chain.
10752
10753 -- Note that the type of the full view is the same entity as the type of
10754 -- the partial view. In this fashion, the subtype has access to the
10755 -- correct view of the parent.
10756
10757 Save_Next_Entity := Next_Entity (Full);
10758 Save_Homonym := Homonym (Priv);
10759
10760 case Ekind (Full_Base) is
10761 when E_Record_Type |
10762 E_Record_Subtype |
10763 Class_Wide_Kind |
10764 Private_Kind |
10765 Task_Kind |
10766 Protected_Kind =>
10767 Copy_Node (Priv, Full);
10768
10769 Set_Has_Discriminants
10770 (Full, Has_Discriminants (Full_Base));
10771 Set_Has_Unknown_Discriminants
10772 (Full, Has_Unknown_Discriminants (Full_Base));
10773 Set_First_Entity (Full, First_Entity (Full_Base));
10774 Set_Last_Entity (Full, Last_Entity (Full_Base));
10775
10776 -- If the underlying base type is constrained, we know that the
10777 -- full view of the subtype is constrained as well (the converse
10778 -- is not necessarily true).
10779
10780 if Is_Constrained (Full_Base) then
10781 Set_Is_Constrained (Full);
10782 end if;
10783
10784 when others =>
10785 Copy_Node (Full_Base, Full);
10786
10787 Set_Chars (Full, Chars (Priv));
10788 Conditional_Delay (Full, Priv);
10789 Set_Sloc (Full, Sloc (Priv));
10790 end case;
10791
10792 Set_Next_Entity (Full, Save_Next_Entity);
10793 Set_Homonym (Full, Save_Homonym);
10794 Set_Associated_Node_For_Itype (Full, Related_Nod);
10795
10796 -- Set common attributes for all subtypes: kind, convention, etc.
10797
10798 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10799 Set_Convention (Full, Convention (Full_Base));
10800
10801 -- The Etype of the full view is inconsistent. Gigi needs to see the
10802 -- structural full view, which is what the current scheme gives:
10803 -- the Etype of the full view is the etype of the full base. However,
10804 -- if the full base is a derived type, the full view then looks like
10805 -- a subtype of the parent, not a subtype of the full base. If instead
10806 -- we write:
10807
10808 -- Set_Etype (Full, Full_Base);
10809
10810 -- then we get inconsistencies in the front-end (confusion between
10811 -- views). Several outstanding bugs are related to this ???
10812
10813 Set_Is_First_Subtype (Full, False);
10814 Set_Scope (Full, Scope (Priv));
10815 Set_Size_Info (Full, Full_Base);
10816 Set_RM_Size (Full, RM_Size (Full_Base));
10817 Set_Is_Itype (Full);
10818
10819 -- A subtype of a private-type-without-discriminants, whose full-view
10820 -- has discriminants with default expressions, is not constrained.
10821
10822 if not Has_Discriminants (Priv) then
10823 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10824
10825 if Has_Discriminants (Full_Base) then
10826 Set_Discriminant_Constraint
10827 (Full, Discriminant_Constraint (Full_Base));
10828
10829 -- The partial view may have been indefinite, the full view
10830 -- might not be.
10831
10832 Set_Has_Unknown_Discriminants
10833 (Full, Has_Unknown_Discriminants (Full_Base));
10834 end if;
10835 end if;
10836
10837 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10838 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10839
10840 -- Freeze the private subtype entity if its parent is delayed, and not
10841 -- already frozen. We skip this processing if the type is an anonymous
10842 -- subtype of a record component, or is the corresponding record of a
10843 -- protected type, since ???
10844
10845 if not Is_Type (Scope (Full)) then
10846 Set_Has_Delayed_Freeze (Full,
10847 Has_Delayed_Freeze (Full_Base)
10848 and then (not Is_Frozen (Full_Base)));
10849 end if;
10850
10851 Set_Freeze_Node (Full, Empty);
10852 Set_Is_Frozen (Full, False);
10853 Set_Full_View (Priv, Full);
10854
10855 if Has_Discriminants (Full) then
10856 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10857 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10858
10859 if Has_Unknown_Discriminants (Full) then
10860 Set_Discriminant_Constraint (Full, No_Elist);
10861 end if;
10862 end if;
10863
10864 if Ekind (Full_Base) = E_Record_Type
10865 and then Has_Discriminants (Full_Base)
10866 and then Has_Discriminants (Priv) -- might not, if errors
10867 and then not Has_Unknown_Discriminants (Priv)
10868 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10869 then
10870 Create_Constrained_Components
10871 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10872
10873 -- If the full base is itself derived from private, build a congruent
10874 -- subtype of its underlying type, for use by the back end. For a
10875 -- constrained record component, the declaration cannot be placed on
10876 -- the component list, but it must nevertheless be built an analyzed, to
10877 -- supply enough information for Gigi to compute the size of component.
10878
10879 elsif Ekind (Full_Base) in Private_Kind
10880 and then Is_Derived_Type (Full_Base)
10881 and then Has_Discriminants (Full_Base)
10882 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10883 then
10884 if not Is_Itype (Priv)
10885 and then
10886 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10887 then
10888 Build_Underlying_Full_View
10889 (Parent (Priv), Full, Etype (Full_Base));
10890
10891 elsif Nkind (Related_Nod) = N_Component_Declaration then
10892 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10893 end if;
10894
10895 elsif Is_Record_Type (Full_Base) then
10896
10897 -- Show Full is simply a renaming of Full_Base
10898
10899 Set_Cloned_Subtype (Full, Full_Base);
10900 end if;
10901
10902 -- It is unsafe to share the bounds of a scalar type, because the Itype
10903 -- is elaborated on demand, and if a bound is non-static then different
10904 -- orders of elaboration in different units will lead to different
10905 -- external symbols.
10906
10907 if Is_Scalar_Type (Full_Base) then
10908 Set_Scalar_Range (Full,
10909 Make_Range (Sloc (Related_Nod),
10910 Low_Bound =>
10911 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10912 High_Bound =>
10913 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10914
10915 -- This completion inherits the bounds of the full parent, but if
10916 -- the parent is an unconstrained floating point type, so is the
10917 -- completion.
10918
10919 if Is_Floating_Point_Type (Full_Base) then
10920 Set_Includes_Infinities
10921 (Scalar_Range (Full), Has_Infinities (Full_Base));
10922 end if;
10923 end if;
10924
10925 -- ??? It seems that a lot of fields are missing that should be copied
10926 -- from Full_Base to Full. Here are some that are introduced in a
10927 -- non-disruptive way but a cleanup is necessary.
10928
10929 if Is_Tagged_Type (Full_Base) then
10930 Set_Is_Tagged_Type (Full);
10931 Set_Direct_Primitive_Operations (Full,
10932 Direct_Primitive_Operations (Full_Base));
10933
10934 -- Inherit class_wide type of full_base in case the partial view was
10935 -- not tagged. Otherwise it has already been created when the private
10936 -- subtype was analyzed.
10937
10938 if No (Class_Wide_Type (Full)) then
10939 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10940 end if;
10941
10942 -- If this is a subtype of a protected or task type, constrain its
10943 -- corresponding record, unless this is a subtype without constraints,
10944 -- i.e. a simple renaming as with an actual subtype in an instance.
10945
10946 elsif Is_Concurrent_Type (Full_Base) then
10947 if Has_Discriminants (Full)
10948 and then Present (Corresponding_Record_Type (Full_Base))
10949 and then
10950 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10951 then
10952 Set_Corresponding_Record_Type (Full,
10953 Constrain_Corresponding_Record
10954 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10955
10956 else
10957 Set_Corresponding_Record_Type (Full,
10958 Corresponding_Record_Type (Full_Base));
10959 end if;
10960 end if;
10961
10962 -- Link rep item chain, and also setting of Has_Predicates from private
10963 -- subtype to full subtype, since we will need these on the full subtype
10964 -- to create the predicate function. Note that the full subtype may
10965 -- already have rep items, inherited from the full view of the base
10966 -- type, so we must be sure not to overwrite these entries.
10967
10968 declare
10969 Append : Boolean;
10970 Item : Node_Id;
10971 Next_Item : Node_Id;
10972
10973 begin
10974 Item := First_Rep_Item (Full);
10975
10976 -- If no existing rep items on full type, we can just link directly
10977 -- to the list of items on the private type.
10978
10979 if No (Item) then
10980 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10981
10982 -- Otherwise, search to the end of items currently linked to the full
10983 -- subtype and append the private items to the end. However, if Priv
10984 -- and Full already have the same list of rep items, then the append
10985 -- is not done, as that would create a circularity.
10986
10987 elsif Item /= First_Rep_Item (Priv) then
10988 Append := True;
10989
10990 loop
10991 Next_Item := Next_Rep_Item (Item);
10992 exit when No (Next_Item);
10993 Item := Next_Item;
10994
10995 -- If the private view has aspect specifications, the full view
10996 -- inherits them. Since these aspects may already have been
10997 -- attached to the full view during derivation, do not append
10998 -- them if already present.
10999
11000 if Item = First_Rep_Item (Priv) then
11001 Append := False;
11002 exit;
11003 end if;
11004 end loop;
11005
11006 -- And link the private type items at the end of the chain
11007
11008 if Append then
11009 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11010 end if;
11011 end if;
11012 end;
11013
11014 -- Make sure Has_Predicates is set on full type if it is set on the
11015 -- private type. Note that it may already be set on the full type and
11016 -- if so, we don't want to unset it.
11017
11018 if Has_Predicates (Priv) then
11019 Set_Has_Predicates (Full);
11020 end if;
11021 end Complete_Private_Subtype;
11022
11023 ----------------------------
11024 -- Constant_Redeclaration --
11025 ----------------------------
11026
11027 procedure Constant_Redeclaration
11028 (Id : Entity_Id;
11029 N : Node_Id;
11030 T : out Entity_Id)
11031 is
11032 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11033 Obj_Def : constant Node_Id := Object_Definition (N);
11034 New_T : Entity_Id;
11035
11036 procedure Check_Possible_Deferred_Completion
11037 (Prev_Id : Entity_Id;
11038 Prev_Obj_Def : Node_Id;
11039 Curr_Obj_Def : Node_Id);
11040 -- Determine whether the two object definitions describe the partial
11041 -- and the full view of a constrained deferred constant. Generate
11042 -- a subtype for the full view and verify that it statically matches
11043 -- the subtype of the partial view.
11044
11045 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11046 -- If deferred constant is an access type initialized with an allocator,
11047 -- check whether there is an illegal recursion in the definition,
11048 -- through a default value of some record subcomponent. This is normally
11049 -- detected when generating init procs, but requires this additional
11050 -- mechanism when expansion is disabled.
11051
11052 ----------------------------------------
11053 -- Check_Possible_Deferred_Completion --
11054 ----------------------------------------
11055
11056 procedure Check_Possible_Deferred_Completion
11057 (Prev_Id : Entity_Id;
11058 Prev_Obj_Def : Node_Id;
11059 Curr_Obj_Def : Node_Id)
11060 is
11061 begin
11062 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11063 and then Present (Constraint (Prev_Obj_Def))
11064 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11065 and then Present (Constraint (Curr_Obj_Def))
11066 then
11067 declare
11068 Loc : constant Source_Ptr := Sloc (N);
11069 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11070 Decl : constant Node_Id :=
11071 Make_Subtype_Declaration (Loc,
11072 Defining_Identifier => Def_Id,
11073 Subtype_Indication =>
11074 Relocate_Node (Curr_Obj_Def));
11075
11076 begin
11077 Insert_Before_And_Analyze (N, Decl);
11078 Set_Etype (Id, Def_Id);
11079
11080 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11081 Error_Msg_Sloc := Sloc (Prev_Id);
11082 Error_Msg_N ("subtype does not statically match deferred " &
11083 "declaration#", N);
11084 end if;
11085 end;
11086 end if;
11087 end Check_Possible_Deferred_Completion;
11088
11089 ---------------------------------
11090 -- Check_Recursive_Declaration --
11091 ---------------------------------
11092
11093 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11094 Comp : Entity_Id;
11095
11096 begin
11097 if Is_Record_Type (Typ) then
11098 Comp := First_Component (Typ);
11099 while Present (Comp) loop
11100 if Comes_From_Source (Comp) then
11101 if Present (Expression (Parent (Comp)))
11102 and then Is_Entity_Name (Expression (Parent (Comp)))
11103 and then Entity (Expression (Parent (Comp))) = Prev
11104 then
11105 Error_Msg_Sloc := Sloc (Parent (Comp));
11106 Error_Msg_NE
11107 ("illegal circularity with declaration for&#",
11108 N, Comp);
11109 return;
11110
11111 elsif Is_Record_Type (Etype (Comp)) then
11112 Check_Recursive_Declaration (Etype (Comp));
11113 end if;
11114 end if;
11115
11116 Next_Component (Comp);
11117 end loop;
11118 end if;
11119 end Check_Recursive_Declaration;
11120
11121 -- Start of processing for Constant_Redeclaration
11122
11123 begin
11124 if Nkind (Parent (Prev)) = N_Object_Declaration then
11125 if Nkind (Object_Definition
11126 (Parent (Prev))) = N_Subtype_Indication
11127 then
11128 -- Find type of new declaration. The constraints of the two
11129 -- views must match statically, but there is no point in
11130 -- creating an itype for the full view.
11131
11132 if Nkind (Obj_Def) = N_Subtype_Indication then
11133 Find_Type (Subtype_Mark (Obj_Def));
11134 New_T := Entity (Subtype_Mark (Obj_Def));
11135
11136 else
11137 Find_Type (Obj_Def);
11138 New_T := Entity (Obj_Def);
11139 end if;
11140
11141 T := Etype (Prev);
11142
11143 else
11144 -- The full view may impose a constraint, even if the partial
11145 -- view does not, so construct the subtype.
11146
11147 New_T := Find_Type_Of_Object (Obj_Def, N);
11148 T := New_T;
11149 end if;
11150
11151 else
11152 -- Current declaration is illegal, diagnosed below in Enter_Name
11153
11154 T := Empty;
11155 New_T := Any_Type;
11156 end if;
11157
11158 -- If previous full declaration or a renaming declaration exists, or if
11159 -- a homograph is present, let Enter_Name handle it, either with an
11160 -- error or with the removal of an overridden implicit subprogram.
11161 -- The previous one is a full declaration if it has an expression
11162 -- (which in the case of an aggregate is indicated by the Init flag).
11163
11164 if Ekind (Prev) /= E_Constant
11165 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11166 or else Present (Expression (Parent (Prev)))
11167 or else Has_Init_Expression (Parent (Prev))
11168 or else Present (Full_View (Prev))
11169 then
11170 Enter_Name (Id);
11171
11172 -- Verify that types of both declarations match, or else that both types
11173 -- are anonymous access types whose designated subtypes statically match
11174 -- (as allowed in Ada 2005 by AI-385).
11175
11176 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11177 and then
11178 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11179 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11180 or else Is_Access_Constant (Etype (New_T)) /=
11181 Is_Access_Constant (Etype (Prev))
11182 or else Can_Never_Be_Null (Etype (New_T)) /=
11183 Can_Never_Be_Null (Etype (Prev))
11184 or else Null_Exclusion_Present (Parent (Prev)) /=
11185 Null_Exclusion_Present (Parent (Id))
11186 or else not Subtypes_Statically_Match
11187 (Designated_Type (Etype (Prev)),
11188 Designated_Type (Etype (New_T))))
11189 then
11190 Error_Msg_Sloc := Sloc (Prev);
11191 Error_Msg_N ("type does not match declaration#", N);
11192 Set_Full_View (Prev, Id);
11193 Set_Etype (Id, Any_Type);
11194
11195 elsif
11196 Null_Exclusion_Present (Parent (Prev))
11197 and then not Null_Exclusion_Present (N)
11198 then
11199 Error_Msg_Sloc := Sloc (Prev);
11200 Error_Msg_N ("null-exclusion does not match declaration#", N);
11201 Set_Full_View (Prev, Id);
11202 Set_Etype (Id, Any_Type);
11203
11204 -- If so, process the full constant declaration
11205
11206 else
11207 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11208 -- the deferred declaration is constrained, then the subtype defined
11209 -- by the subtype_indication in the full declaration shall match it
11210 -- statically.
11211
11212 Check_Possible_Deferred_Completion
11213 (Prev_Id => Prev,
11214 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11215 Curr_Obj_Def => Obj_Def);
11216
11217 Set_Full_View (Prev, Id);
11218 Set_Is_Public (Id, Is_Public (Prev));
11219 Set_Is_Internal (Id);
11220 Append_Entity (Id, Current_Scope);
11221
11222 -- Check ALIASED present if present before (RM 7.4(7))
11223
11224 if Is_Aliased (Prev)
11225 and then not Aliased_Present (N)
11226 then
11227 Error_Msg_Sloc := Sloc (Prev);
11228 Error_Msg_N ("ALIASED required (see declaration#)", N);
11229 end if;
11230
11231 -- Check that placement is in private part and that the incomplete
11232 -- declaration appeared in the visible part.
11233
11234 if Ekind (Current_Scope) = E_Package
11235 and then not In_Private_Part (Current_Scope)
11236 then
11237 Error_Msg_Sloc := Sloc (Prev);
11238 Error_Msg_N
11239 ("full constant for declaration#"
11240 & " must be in private part", N);
11241
11242 elsif Ekind (Current_Scope) = E_Package
11243 and then
11244 List_Containing (Parent (Prev)) /=
11245 Visible_Declarations (Package_Specification (Current_Scope))
11246 then
11247 Error_Msg_N
11248 ("deferred constant must be declared in visible part",
11249 Parent (Prev));
11250 end if;
11251
11252 if Is_Access_Type (T)
11253 and then Nkind (Expression (N)) = N_Allocator
11254 then
11255 Check_Recursive_Declaration (Designated_Type (T));
11256 end if;
11257
11258 -- A deferred constant is a visible entity. If type has invariants,
11259 -- verify that the initial value satisfies them.
11260
11261 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11262 Insert_After (N,
11263 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11264 end if;
11265 end if;
11266 end Constant_Redeclaration;
11267
11268 ----------------------
11269 -- Constrain_Access --
11270 ----------------------
11271
11272 procedure Constrain_Access
11273 (Def_Id : in out Entity_Id;
11274 S : Node_Id;
11275 Related_Nod : Node_Id)
11276 is
11277 T : constant Entity_Id := Entity (Subtype_Mark (S));
11278 Desig_Type : constant Entity_Id := Designated_Type (T);
11279 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11280 Constraint_OK : Boolean := True;
11281
11282 begin
11283 if Is_Array_Type (Desig_Type) then
11284 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11285
11286 elsif (Is_Record_Type (Desig_Type)
11287 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11288 and then not Is_Constrained (Desig_Type)
11289 then
11290 -- ??? The following code is a temporary bypass to ignore a
11291 -- discriminant constraint on access type if it is constraining
11292 -- the current record. Avoid creating the implicit subtype of the
11293 -- record we are currently compiling since right now, we cannot
11294 -- handle these. For now, just return the access type itself.
11295
11296 if Desig_Type = Current_Scope
11297 and then No (Def_Id)
11298 then
11299 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11300 Def_Id := Entity (Subtype_Mark (S));
11301
11302 -- This call added to ensure that the constraint is analyzed
11303 -- (needed for a B test). Note that we still return early from
11304 -- this procedure to avoid recursive processing. ???
11305
11306 Constrain_Discriminated_Type
11307 (Desig_Subtype, S, Related_Nod, For_Access => True);
11308 return;
11309 end if;
11310
11311 -- Enforce rule that the constraint is illegal if there is an
11312 -- unconstrained view of the designated type. This means that the
11313 -- partial view (either a private type declaration or a derivation
11314 -- from a private type) has no discriminants. (Defect Report
11315 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11316
11317 -- Rule updated for Ada 2005: The private type is said to have
11318 -- a constrained partial view, given that objects of the type
11319 -- can be declared. Furthermore, the rule applies to all access
11320 -- types, unlike the rule concerning default discriminants (see
11321 -- RM 3.7.1(7/3))
11322
11323 if (Ekind (T) = E_General_Access_Type
11324 or else Ada_Version >= Ada_2005)
11325 and then Has_Private_Declaration (Desig_Type)
11326 and then In_Open_Scopes (Scope (Desig_Type))
11327 and then Has_Discriminants (Desig_Type)
11328 then
11329 declare
11330 Pack : constant Node_Id :=
11331 Unit_Declaration_Node (Scope (Desig_Type));
11332 Decls : List_Id;
11333 Decl : Node_Id;
11334
11335 begin
11336 if Nkind (Pack) = N_Package_Declaration then
11337 Decls := Visible_Declarations (Specification (Pack));
11338 Decl := First (Decls);
11339 while Present (Decl) loop
11340 if (Nkind (Decl) = N_Private_Type_Declaration
11341 and then
11342 Chars (Defining_Identifier (Decl)) =
11343 Chars (Desig_Type))
11344
11345 or else
11346 (Nkind (Decl) = N_Full_Type_Declaration
11347 and then
11348 Chars (Defining_Identifier (Decl)) =
11349 Chars (Desig_Type)
11350 and then Is_Derived_Type (Desig_Type)
11351 and then
11352 Has_Private_Declaration (Etype (Desig_Type)))
11353 then
11354 if No (Discriminant_Specifications (Decl)) then
11355 Error_Msg_N
11356 ("cannot constrain access type if designated " &
11357 "type has constrained partial view", S);
11358 end if;
11359
11360 exit;
11361 end if;
11362
11363 Next (Decl);
11364 end loop;
11365 end if;
11366 end;
11367 end if;
11368
11369 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11370 For_Access => True);
11371
11372 elsif (Is_Task_Type (Desig_Type)
11373 or else Is_Protected_Type (Desig_Type))
11374 and then not Is_Constrained (Desig_Type)
11375 then
11376 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11377
11378 else
11379 Error_Msg_N ("invalid constraint on access type", S);
11380 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11381 Constraint_OK := False;
11382 end if;
11383
11384 if No (Def_Id) then
11385 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11386 else
11387 Set_Ekind (Def_Id, E_Access_Subtype);
11388 end if;
11389
11390 if Constraint_OK then
11391 Set_Etype (Def_Id, Base_Type (T));
11392
11393 if Is_Private_Type (Desig_Type) then
11394 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11395 end if;
11396 else
11397 Set_Etype (Def_Id, Any_Type);
11398 end if;
11399
11400 Set_Size_Info (Def_Id, T);
11401 Set_Is_Constrained (Def_Id, Constraint_OK);
11402 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11403 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11404 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11405
11406 Conditional_Delay (Def_Id, T);
11407
11408 -- AI-363 : Subtypes of general access types whose designated types have
11409 -- default discriminants are disallowed. In instances, the rule has to
11410 -- be checked against the actual, of which T is the subtype. In a
11411 -- generic body, the rule is checked assuming that the actual type has
11412 -- defaulted discriminants.
11413
11414 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11415 if Ekind (Base_Type (T)) = E_General_Access_Type
11416 and then Has_Defaulted_Discriminants (Desig_Type)
11417 then
11418 if Ada_Version < Ada_2005 then
11419 Error_Msg_N
11420 ("access subtype of general access type would not " &
11421 "be allowed in Ada 2005?y?", S);
11422 else
11423 Error_Msg_N
11424 ("access subtype of general access type not allowed", S);
11425 end if;
11426
11427 Error_Msg_N ("\discriminants have defaults", S);
11428
11429 elsif Is_Access_Type (T)
11430 and then Is_Generic_Type (Desig_Type)
11431 and then Has_Discriminants (Desig_Type)
11432 and then In_Package_Body (Current_Scope)
11433 then
11434 if Ada_Version < Ada_2005 then
11435 Error_Msg_N
11436 ("access subtype would not be allowed in generic body " &
11437 "in Ada 2005?y?", S);
11438 else
11439 Error_Msg_N
11440 ("access subtype not allowed in generic body", S);
11441 end if;
11442
11443 Error_Msg_N
11444 ("\designated type is a discriminated formal", S);
11445 end if;
11446 end if;
11447 end Constrain_Access;
11448
11449 ---------------------
11450 -- Constrain_Array --
11451 ---------------------
11452
11453 procedure Constrain_Array
11454 (Def_Id : in out Entity_Id;
11455 SI : Node_Id;
11456 Related_Nod : Node_Id;
11457 Related_Id : Entity_Id;
11458 Suffix : Character)
11459 is
11460 C : constant Node_Id := Constraint (SI);
11461 Number_Of_Constraints : Nat := 0;
11462 Index : Node_Id;
11463 S, T : Entity_Id;
11464 Constraint_OK : Boolean := True;
11465
11466 begin
11467 T := Entity (Subtype_Mark (SI));
11468
11469 if Is_Access_Type (T) then
11470 T := Designated_Type (T);
11471 end if;
11472
11473 -- If an index constraint follows a subtype mark in a subtype indication
11474 -- then the type or subtype denoted by the subtype mark must not already
11475 -- impose an index constraint. The subtype mark must denote either an
11476 -- unconstrained array type or an access type whose designated type
11477 -- is such an array type... (RM 3.6.1)
11478
11479 if Is_Constrained (T) then
11480 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11481 Constraint_OK := False;
11482
11483 else
11484 S := First (Constraints (C));
11485 while Present (S) loop
11486 Number_Of_Constraints := Number_Of_Constraints + 1;
11487 Next (S);
11488 end loop;
11489
11490 -- In either case, the index constraint must provide a discrete
11491 -- range for each index of the array type and the type of each
11492 -- discrete range must be the same as that of the corresponding
11493 -- index. (RM 3.6.1)
11494
11495 if Number_Of_Constraints /= Number_Dimensions (T) then
11496 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11497 Constraint_OK := False;
11498
11499 else
11500 S := First (Constraints (C));
11501 Index := First_Index (T);
11502 Analyze (Index);
11503
11504 -- Apply constraints to each index type
11505
11506 for J in 1 .. Number_Of_Constraints loop
11507 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11508 Next (Index);
11509 Next (S);
11510 end loop;
11511
11512 end if;
11513 end if;
11514
11515 if No (Def_Id) then
11516 Def_Id :=
11517 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11518 Set_Parent (Def_Id, Related_Nod);
11519
11520 else
11521 Set_Ekind (Def_Id, E_Array_Subtype);
11522 end if;
11523
11524 Set_Size_Info (Def_Id, (T));
11525 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11526 Set_Etype (Def_Id, Base_Type (T));
11527
11528 if Constraint_OK then
11529 Set_First_Index (Def_Id, First (Constraints (C)));
11530 else
11531 Set_First_Index (Def_Id, First_Index (T));
11532 end if;
11533
11534 Set_Is_Constrained (Def_Id, True);
11535 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11536 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11537
11538 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11539 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11540
11541 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11542 -- We need to initialize the attribute because if Def_Id is previously
11543 -- analyzed through a limited_with clause, it will have the attributes
11544 -- of an incomplete type, one of which is an Elist that overlaps the
11545 -- Packed_Array_Impl_Type field.
11546
11547 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11548
11549 -- Build a freeze node if parent still needs one. Also make sure that
11550 -- the Depends_On_Private status is set because the subtype will need
11551 -- reprocessing at the time the base type does, and also we must set a
11552 -- conditional delay.
11553
11554 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11555 Conditional_Delay (Def_Id, T);
11556 end Constrain_Array;
11557
11558 ------------------------------
11559 -- Constrain_Component_Type --
11560 ------------------------------
11561
11562 function Constrain_Component_Type
11563 (Comp : Entity_Id;
11564 Constrained_Typ : Entity_Id;
11565 Related_Node : Node_Id;
11566 Typ : Entity_Id;
11567 Constraints : Elist_Id) return Entity_Id
11568 is
11569 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11570 Compon_Type : constant Entity_Id := Etype (Comp);
11571
11572 function Build_Constrained_Array_Type
11573 (Old_Type : Entity_Id) return Entity_Id;
11574 -- If Old_Type is an array type, one of whose indexes is constrained
11575 -- by a discriminant, build an Itype whose constraint replaces the
11576 -- discriminant with its value in the constraint.
11577
11578 function Build_Constrained_Discriminated_Type
11579 (Old_Type : Entity_Id) return Entity_Id;
11580 -- Ditto for record components
11581
11582 function Build_Constrained_Access_Type
11583 (Old_Type : Entity_Id) return Entity_Id;
11584 -- Ditto for access types. Makes use of previous two functions, to
11585 -- constrain designated type.
11586
11587 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11588 -- T is an array or discriminated type, C is a list of constraints
11589 -- that apply to T. This routine builds the constrained subtype.
11590
11591 function Is_Discriminant (Expr : Node_Id) return Boolean;
11592 -- Returns True if Expr is a discriminant
11593
11594 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11595 -- Find the value of discriminant Discrim in Constraint
11596
11597 -----------------------------------
11598 -- Build_Constrained_Access_Type --
11599 -----------------------------------
11600
11601 function Build_Constrained_Access_Type
11602 (Old_Type : Entity_Id) return Entity_Id
11603 is
11604 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11605 Itype : Entity_Id;
11606 Desig_Subtype : Entity_Id;
11607 Scop : Entity_Id;
11608
11609 begin
11610 -- if the original access type was not embedded in the enclosing
11611 -- type definition, there is no need to produce a new access
11612 -- subtype. In fact every access type with an explicit constraint
11613 -- generates an itype whose scope is the enclosing record.
11614
11615 if not Is_Type (Scope (Old_Type)) then
11616 return Old_Type;
11617
11618 elsif Is_Array_Type (Desig_Type) then
11619 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11620
11621 elsif Has_Discriminants (Desig_Type) then
11622
11623 -- This may be an access type to an enclosing record type for
11624 -- which we are constructing the constrained components. Return
11625 -- the enclosing record subtype. This is not always correct,
11626 -- but avoids infinite recursion. ???
11627
11628 Desig_Subtype := Any_Type;
11629
11630 for J in reverse 0 .. Scope_Stack.Last loop
11631 Scop := Scope_Stack.Table (J).Entity;
11632
11633 if Is_Type (Scop)
11634 and then Base_Type (Scop) = Base_Type (Desig_Type)
11635 then
11636 Desig_Subtype := Scop;
11637 end if;
11638
11639 exit when not Is_Type (Scop);
11640 end loop;
11641
11642 if Desig_Subtype = Any_Type then
11643 Desig_Subtype :=
11644 Build_Constrained_Discriminated_Type (Desig_Type);
11645 end if;
11646
11647 else
11648 return Old_Type;
11649 end if;
11650
11651 if Desig_Subtype /= Desig_Type then
11652
11653 -- The Related_Node better be here or else we won't be able
11654 -- to attach new itypes to a node in the tree.
11655
11656 pragma Assert (Present (Related_Node));
11657
11658 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11659
11660 Set_Etype (Itype, Base_Type (Old_Type));
11661 Set_Size_Info (Itype, (Old_Type));
11662 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11663 Set_Depends_On_Private (Itype, Has_Private_Component
11664 (Old_Type));
11665 Set_Is_Access_Constant (Itype, Is_Access_Constant
11666 (Old_Type));
11667
11668 -- The new itype needs freezing when it depends on a not frozen
11669 -- type and the enclosing subtype needs freezing.
11670
11671 if Has_Delayed_Freeze (Constrained_Typ)
11672 and then not Is_Frozen (Constrained_Typ)
11673 then
11674 Conditional_Delay (Itype, Base_Type (Old_Type));
11675 end if;
11676
11677 return Itype;
11678
11679 else
11680 return Old_Type;
11681 end if;
11682 end Build_Constrained_Access_Type;
11683
11684 ----------------------------------
11685 -- Build_Constrained_Array_Type --
11686 ----------------------------------
11687
11688 function Build_Constrained_Array_Type
11689 (Old_Type : Entity_Id) return Entity_Id
11690 is
11691 Lo_Expr : Node_Id;
11692 Hi_Expr : Node_Id;
11693 Old_Index : Node_Id;
11694 Range_Node : Node_Id;
11695 Constr_List : List_Id;
11696
11697 Need_To_Create_Itype : Boolean := False;
11698
11699 begin
11700 Old_Index := First_Index (Old_Type);
11701 while Present (Old_Index) loop
11702 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11703
11704 if Is_Discriminant (Lo_Expr)
11705 or else Is_Discriminant (Hi_Expr)
11706 then
11707 Need_To_Create_Itype := True;
11708 end if;
11709
11710 Next_Index (Old_Index);
11711 end loop;
11712
11713 if Need_To_Create_Itype then
11714 Constr_List := New_List;
11715
11716 Old_Index := First_Index (Old_Type);
11717 while Present (Old_Index) loop
11718 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11719
11720 if Is_Discriminant (Lo_Expr) then
11721 Lo_Expr := Get_Discr_Value (Lo_Expr);
11722 end if;
11723
11724 if Is_Discriminant (Hi_Expr) then
11725 Hi_Expr := Get_Discr_Value (Hi_Expr);
11726 end if;
11727
11728 Range_Node :=
11729 Make_Range
11730 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11731
11732 Append (Range_Node, To => Constr_List);
11733
11734 Next_Index (Old_Index);
11735 end loop;
11736
11737 return Build_Subtype (Old_Type, Constr_List);
11738
11739 else
11740 return Old_Type;
11741 end if;
11742 end Build_Constrained_Array_Type;
11743
11744 ------------------------------------------
11745 -- Build_Constrained_Discriminated_Type --
11746 ------------------------------------------
11747
11748 function Build_Constrained_Discriminated_Type
11749 (Old_Type : Entity_Id) return Entity_Id
11750 is
11751 Expr : Node_Id;
11752 Constr_List : List_Id;
11753 Old_Constraint : Elmt_Id;
11754
11755 Need_To_Create_Itype : Boolean := False;
11756
11757 begin
11758 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11759 while Present (Old_Constraint) loop
11760 Expr := Node (Old_Constraint);
11761
11762 if Is_Discriminant (Expr) then
11763 Need_To_Create_Itype := True;
11764 end if;
11765
11766 Next_Elmt (Old_Constraint);
11767 end loop;
11768
11769 if Need_To_Create_Itype then
11770 Constr_List := New_List;
11771
11772 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11773 while Present (Old_Constraint) loop
11774 Expr := Node (Old_Constraint);
11775
11776 if Is_Discriminant (Expr) then
11777 Expr := Get_Discr_Value (Expr);
11778 end if;
11779
11780 Append (New_Copy_Tree (Expr), To => Constr_List);
11781
11782 Next_Elmt (Old_Constraint);
11783 end loop;
11784
11785 return Build_Subtype (Old_Type, Constr_List);
11786
11787 else
11788 return Old_Type;
11789 end if;
11790 end Build_Constrained_Discriminated_Type;
11791
11792 -------------------
11793 -- Build_Subtype --
11794 -------------------
11795
11796 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11797 Indic : Node_Id;
11798 Subtyp_Decl : Node_Id;
11799 Def_Id : Entity_Id;
11800 Btyp : Entity_Id := Base_Type (T);
11801
11802 begin
11803 -- The Related_Node better be here or else we won't be able to
11804 -- attach new itypes to a node in the tree.
11805
11806 pragma Assert (Present (Related_Node));
11807
11808 -- If the view of the component's type is incomplete or private
11809 -- with unknown discriminants, then the constraint must be applied
11810 -- to the full type.
11811
11812 if Has_Unknown_Discriminants (Btyp)
11813 and then Present (Underlying_Type (Btyp))
11814 then
11815 Btyp := Underlying_Type (Btyp);
11816 end if;
11817
11818 Indic :=
11819 Make_Subtype_Indication (Loc,
11820 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11821 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11822
11823 Def_Id := Create_Itype (Ekind (T), Related_Node);
11824
11825 Subtyp_Decl :=
11826 Make_Subtype_Declaration (Loc,
11827 Defining_Identifier => Def_Id,
11828 Subtype_Indication => Indic);
11829
11830 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11831
11832 -- Itypes must be analyzed with checks off (see package Itypes)
11833
11834 Analyze (Subtyp_Decl, Suppress => All_Checks);
11835
11836 return Def_Id;
11837 end Build_Subtype;
11838
11839 ---------------------
11840 -- Get_Discr_Value --
11841 ---------------------
11842
11843 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11844 D : Entity_Id;
11845 E : Elmt_Id;
11846
11847 begin
11848 -- The discriminant may be declared for the type, in which case we
11849 -- find it by iterating over the list of discriminants. If the
11850 -- discriminant is inherited from a parent type, it appears as the
11851 -- corresponding discriminant of the current type. This will be the
11852 -- case when constraining an inherited component whose constraint is
11853 -- given by a discriminant of the parent.
11854
11855 D := First_Discriminant (Typ);
11856 E := First_Elmt (Constraints);
11857
11858 while Present (D) loop
11859 if D = Entity (Discrim)
11860 or else D = CR_Discriminant (Entity (Discrim))
11861 or else Corresponding_Discriminant (D) = Entity (Discrim)
11862 then
11863 return Node (E);
11864 end if;
11865
11866 Next_Discriminant (D);
11867 Next_Elmt (E);
11868 end loop;
11869
11870 -- The Corresponding_Discriminant mechanism is incomplete, because
11871 -- the correspondence between new and old discriminants is not one
11872 -- to one: one new discriminant can constrain several old ones. In
11873 -- that case, scan sequentially the stored_constraint, the list of
11874 -- discriminants of the parents, and the constraints.
11875
11876 -- Previous code checked for the present of the Stored_Constraint
11877 -- list for the derived type, but did not use it at all. Should it
11878 -- be present when the component is a discriminated task type?
11879
11880 if Is_Derived_Type (Typ)
11881 and then Scope (Entity (Discrim)) = Etype (Typ)
11882 then
11883 D := First_Discriminant (Etype (Typ));
11884 E := First_Elmt (Constraints);
11885 while Present (D) loop
11886 if D = Entity (Discrim) then
11887 return Node (E);
11888 end if;
11889
11890 Next_Discriminant (D);
11891 Next_Elmt (E);
11892 end loop;
11893 end if;
11894
11895 -- Something is wrong if we did not find the value
11896
11897 raise Program_Error;
11898 end Get_Discr_Value;
11899
11900 ---------------------
11901 -- Is_Discriminant --
11902 ---------------------
11903
11904 function Is_Discriminant (Expr : Node_Id) return Boolean is
11905 Discrim_Scope : Entity_Id;
11906
11907 begin
11908 if Denotes_Discriminant (Expr) then
11909 Discrim_Scope := Scope (Entity (Expr));
11910
11911 -- Either we have a reference to one of Typ's discriminants,
11912
11913 pragma Assert (Discrim_Scope = Typ
11914
11915 -- or to the discriminants of the parent type, in the case
11916 -- of a derivation of a tagged type with variants.
11917
11918 or else Discrim_Scope = Etype (Typ)
11919 or else Full_View (Discrim_Scope) = Etype (Typ)
11920
11921 -- or same as above for the case where the discriminants
11922 -- were declared in Typ's private view.
11923
11924 or else (Is_Private_Type (Discrim_Scope)
11925 and then Chars (Discrim_Scope) = Chars (Typ))
11926
11927 -- or else we are deriving from the full view and the
11928 -- discriminant is declared in the private entity.
11929
11930 or else (Is_Private_Type (Typ)
11931 and then Chars (Discrim_Scope) = Chars (Typ))
11932
11933 -- Or we are constrained the corresponding record of a
11934 -- synchronized type that completes a private declaration.
11935
11936 or else (Is_Concurrent_Record_Type (Typ)
11937 and then
11938 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11939
11940 -- or we have a class-wide type, in which case make sure the
11941 -- discriminant found belongs to the root type.
11942
11943 or else (Is_Class_Wide_Type (Typ)
11944 and then Etype (Typ) = Discrim_Scope));
11945
11946 return True;
11947 end if;
11948
11949 -- In all other cases we have something wrong
11950
11951 return False;
11952 end Is_Discriminant;
11953
11954 -- Start of processing for Constrain_Component_Type
11955
11956 begin
11957 if Nkind (Parent (Comp)) = N_Component_Declaration
11958 and then Comes_From_Source (Parent (Comp))
11959 and then Comes_From_Source
11960 (Subtype_Indication (Component_Definition (Parent (Comp))))
11961 and then
11962 Is_Entity_Name
11963 (Subtype_Indication (Component_Definition (Parent (Comp))))
11964 then
11965 return Compon_Type;
11966
11967 elsif Is_Array_Type (Compon_Type) then
11968 return Build_Constrained_Array_Type (Compon_Type);
11969
11970 elsif Has_Discriminants (Compon_Type) then
11971 return Build_Constrained_Discriminated_Type (Compon_Type);
11972
11973 elsif Is_Access_Type (Compon_Type) then
11974 return Build_Constrained_Access_Type (Compon_Type);
11975
11976 else
11977 return Compon_Type;
11978 end if;
11979 end Constrain_Component_Type;
11980
11981 --------------------------
11982 -- Constrain_Concurrent --
11983 --------------------------
11984
11985 -- For concurrent types, the associated record value type carries the same
11986 -- discriminants, so when we constrain a concurrent type, we must constrain
11987 -- the corresponding record type as well.
11988
11989 procedure Constrain_Concurrent
11990 (Def_Id : in out Entity_Id;
11991 SI : Node_Id;
11992 Related_Nod : Node_Id;
11993 Related_Id : Entity_Id;
11994 Suffix : Character)
11995 is
11996 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11997 -- case of a private subtype (needed when only doing semantic analysis).
11998
11999 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12000 T_Val : Entity_Id;
12001
12002 begin
12003 if Is_Access_Type (T_Ent) then
12004 T_Ent := Designated_Type (T_Ent);
12005 end if;
12006
12007 T_Val := Corresponding_Record_Type (T_Ent);
12008
12009 if Present (T_Val) then
12010
12011 if No (Def_Id) then
12012 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12013 end if;
12014
12015 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12016
12017 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12018 Set_Corresponding_Record_Type (Def_Id,
12019 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12020
12021 else
12022 -- If there is no associated record, expansion is disabled and this
12023 -- is a generic context. Create a subtype in any case, so that
12024 -- semantic analysis can proceed.
12025
12026 if No (Def_Id) then
12027 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12028 end if;
12029
12030 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12031 end if;
12032 end Constrain_Concurrent;
12033
12034 ------------------------------------
12035 -- Constrain_Corresponding_Record --
12036 ------------------------------------
12037
12038 function Constrain_Corresponding_Record
12039 (Prot_Subt : Entity_Id;
12040 Corr_Rec : Entity_Id;
12041 Related_Nod : Node_Id) return Entity_Id
12042 is
12043 T_Sub : constant Entity_Id :=
12044 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12045
12046 begin
12047 Set_Etype (T_Sub, Corr_Rec);
12048 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12049 Set_Is_Constrained (T_Sub, True);
12050 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12051 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12052
12053 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12054 Set_Discriminant_Constraint
12055 (T_Sub, Discriminant_Constraint (Prot_Subt));
12056 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12057 Create_Constrained_Components
12058 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12059 end if;
12060
12061 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12062
12063 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12064 Conditional_Delay (T_Sub, Corr_Rec);
12065
12066 else
12067 -- This is a component subtype: it will be frozen in the context of
12068 -- the enclosing record's init_proc, so that discriminant references
12069 -- are resolved to discriminals. (Note: we used to skip freezing
12070 -- altogether in that case, which caused errors downstream for
12071 -- components of a bit packed array type).
12072
12073 Set_Has_Delayed_Freeze (T_Sub);
12074 end if;
12075
12076 return T_Sub;
12077 end Constrain_Corresponding_Record;
12078
12079 -----------------------
12080 -- Constrain_Decimal --
12081 -----------------------
12082
12083 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12084 T : constant Entity_Id := Entity (Subtype_Mark (S));
12085 C : constant Node_Id := Constraint (S);
12086 Loc : constant Source_Ptr := Sloc (C);
12087 Range_Expr : Node_Id;
12088 Digits_Expr : Node_Id;
12089 Digits_Val : Uint;
12090 Bound_Val : Ureal;
12091
12092 begin
12093 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12094
12095 if Nkind (C) = N_Range_Constraint then
12096 Range_Expr := Range_Expression (C);
12097 Digits_Val := Digits_Value (T);
12098
12099 else
12100 pragma Assert (Nkind (C) = N_Digits_Constraint);
12101
12102 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12103
12104 Digits_Expr := Digits_Expression (C);
12105 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12106
12107 Check_Digits_Expression (Digits_Expr);
12108 Digits_Val := Expr_Value (Digits_Expr);
12109
12110 if Digits_Val > Digits_Value (T) then
12111 Error_Msg_N
12112 ("digits expression is incompatible with subtype", C);
12113 Digits_Val := Digits_Value (T);
12114 end if;
12115
12116 if Present (Range_Constraint (C)) then
12117 Range_Expr := Range_Expression (Range_Constraint (C));
12118 else
12119 Range_Expr := Empty;
12120 end if;
12121 end if;
12122
12123 Set_Etype (Def_Id, Base_Type (T));
12124 Set_Size_Info (Def_Id, (T));
12125 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12126 Set_Delta_Value (Def_Id, Delta_Value (T));
12127 Set_Scale_Value (Def_Id, Scale_Value (T));
12128 Set_Small_Value (Def_Id, Small_Value (T));
12129 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12130 Set_Digits_Value (Def_Id, Digits_Val);
12131
12132 -- Manufacture range from given digits value if no range present
12133
12134 if No (Range_Expr) then
12135 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12136 Range_Expr :=
12137 Make_Range (Loc,
12138 Low_Bound =>
12139 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12140 High_Bound =>
12141 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12142 end if;
12143
12144 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12145 Set_Discrete_RM_Size (Def_Id);
12146
12147 -- Unconditionally delay the freeze, since we cannot set size
12148 -- information in all cases correctly until the freeze point.
12149
12150 Set_Has_Delayed_Freeze (Def_Id);
12151 end Constrain_Decimal;
12152
12153 ----------------------------------
12154 -- Constrain_Discriminated_Type --
12155 ----------------------------------
12156
12157 procedure Constrain_Discriminated_Type
12158 (Def_Id : Entity_Id;
12159 S : Node_Id;
12160 Related_Nod : Node_Id;
12161 For_Access : Boolean := False)
12162 is
12163 E : constant Entity_Id := Entity (Subtype_Mark (S));
12164 T : Entity_Id;
12165 C : Node_Id;
12166 Elist : Elist_Id := New_Elmt_List;
12167
12168 procedure Fixup_Bad_Constraint;
12169 -- This is called after finding a bad constraint, and after having
12170 -- posted an appropriate error message. The mission is to leave the
12171 -- entity T in as reasonable state as possible.
12172
12173 --------------------------
12174 -- Fixup_Bad_Constraint --
12175 --------------------------
12176
12177 procedure Fixup_Bad_Constraint is
12178 begin
12179 -- Set a reasonable Ekind for the entity. For an incomplete type,
12180 -- we can't do much, but for other types, we can set the proper
12181 -- corresponding subtype kind.
12182
12183 if Ekind (T) = E_Incomplete_Type then
12184 Set_Ekind (Def_Id, Ekind (T));
12185 else
12186 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12187 end if;
12188
12189 -- Set Etype to the known type, to reduce chances of cascaded errors
12190
12191 Set_Etype (Def_Id, E);
12192 Set_Error_Posted (Def_Id);
12193 end Fixup_Bad_Constraint;
12194
12195 -- Start of processing for Constrain_Discriminated_Type
12196
12197 begin
12198 C := Constraint (S);
12199
12200 -- A discriminant constraint is only allowed in a subtype indication,
12201 -- after a subtype mark. This subtype mark must denote either a type
12202 -- with discriminants, or an access type whose designated type is a
12203 -- type with discriminants. A discriminant constraint specifies the
12204 -- values of these discriminants (RM 3.7.2(5)).
12205
12206 T := Base_Type (Entity (Subtype_Mark (S)));
12207
12208 if Is_Access_Type (T) then
12209 T := Designated_Type (T);
12210 end if;
12211
12212 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12213 -- Avoid generating an error for access-to-incomplete subtypes.
12214
12215 if Ada_Version >= Ada_2005
12216 and then Ekind (T) = E_Incomplete_Type
12217 and then Nkind (Parent (S)) = N_Subtype_Declaration
12218 and then not Is_Itype (Def_Id)
12219 then
12220 -- A little sanity check, emit an error message if the type
12221 -- has discriminants to begin with. Type T may be a regular
12222 -- incomplete type or imported via a limited with clause.
12223
12224 if Has_Discriminants (T)
12225 or else (From_Limited_With (T)
12226 and then Present (Non_Limited_View (T))
12227 and then Nkind (Parent (Non_Limited_View (T))) =
12228 N_Full_Type_Declaration
12229 and then Present (Discriminant_Specifications
12230 (Parent (Non_Limited_View (T)))))
12231 then
12232 Error_Msg_N
12233 ("(Ada 2005) incomplete subtype may not be constrained", C);
12234 else
12235 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12236 end if;
12237
12238 Fixup_Bad_Constraint;
12239 return;
12240
12241 -- Check that the type has visible discriminants. The type may be
12242 -- a private type with unknown discriminants whose full view has
12243 -- discriminants which are invisible.
12244
12245 elsif not Has_Discriminants (T)
12246 or else
12247 (Has_Unknown_Discriminants (T)
12248 and then Is_Private_Type (T))
12249 then
12250 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12251 Fixup_Bad_Constraint;
12252 return;
12253
12254 elsif Is_Constrained (E)
12255 or else (Ekind (E) = E_Class_Wide_Subtype
12256 and then Present (Discriminant_Constraint (E)))
12257 then
12258 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12259 Fixup_Bad_Constraint;
12260 return;
12261 end if;
12262
12263 -- T may be an unconstrained subtype (e.g. a generic actual).
12264 -- Constraint applies to the base type.
12265
12266 T := Base_Type (T);
12267
12268 Elist := Build_Discriminant_Constraints (T, S);
12269
12270 -- If the list returned was empty we had an error in building the
12271 -- discriminant constraint. We have also already signalled an error
12272 -- in the incomplete type case
12273
12274 if Is_Empty_Elmt_List (Elist) then
12275 Fixup_Bad_Constraint;
12276 return;
12277 end if;
12278
12279 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12280 end Constrain_Discriminated_Type;
12281
12282 ---------------------------
12283 -- Constrain_Enumeration --
12284 ---------------------------
12285
12286 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12287 T : constant Entity_Id := Entity (Subtype_Mark (S));
12288 C : constant Node_Id := Constraint (S);
12289
12290 begin
12291 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12292
12293 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12294
12295 Set_Etype (Def_Id, Base_Type (T));
12296 Set_Size_Info (Def_Id, (T));
12297 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12298 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12299
12300 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12301
12302 Set_Discrete_RM_Size (Def_Id);
12303 end Constrain_Enumeration;
12304
12305 ----------------------
12306 -- Constrain_Float --
12307 ----------------------
12308
12309 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12310 T : constant Entity_Id := Entity (Subtype_Mark (S));
12311 C : Node_Id;
12312 D : Node_Id;
12313 Rais : Node_Id;
12314
12315 begin
12316 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12317
12318 Set_Etype (Def_Id, Base_Type (T));
12319 Set_Size_Info (Def_Id, (T));
12320 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12321
12322 -- Process the constraint
12323
12324 C := Constraint (S);
12325
12326 -- Digits constraint present
12327
12328 if Nkind (C) = N_Digits_Constraint then
12329
12330 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12331 Check_Restriction (No_Obsolescent_Features, C);
12332
12333 if Warn_On_Obsolescent_Feature then
12334 Error_Msg_N
12335 ("subtype digits constraint is an " &
12336 "obsolescent feature (RM J.3(8))?j?", C);
12337 end if;
12338
12339 D := Digits_Expression (C);
12340 Analyze_And_Resolve (D, Any_Integer);
12341 Check_Digits_Expression (D);
12342 Set_Digits_Value (Def_Id, Expr_Value (D));
12343
12344 -- Check that digits value is in range. Obviously we can do this
12345 -- at compile time, but it is strictly a runtime check, and of
12346 -- course there is an ACVC test that checks this.
12347
12348 if Digits_Value (Def_Id) > Digits_Value (T) then
12349 Error_Msg_Uint_1 := Digits_Value (T);
12350 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12351 Rais :=
12352 Make_Raise_Constraint_Error (Sloc (D),
12353 Reason => CE_Range_Check_Failed);
12354 Insert_Action (Declaration_Node (Def_Id), Rais);
12355 end if;
12356
12357 C := Range_Constraint (C);
12358
12359 -- No digits constraint present
12360
12361 else
12362 Set_Digits_Value (Def_Id, Digits_Value (T));
12363 end if;
12364
12365 -- Range constraint present
12366
12367 if Nkind (C) = N_Range_Constraint then
12368 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12369
12370 -- No range constraint present
12371
12372 else
12373 pragma Assert (No (C));
12374 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12375 end if;
12376
12377 Set_Is_Constrained (Def_Id);
12378 end Constrain_Float;
12379
12380 ---------------------
12381 -- Constrain_Index --
12382 ---------------------
12383
12384 procedure Constrain_Index
12385 (Index : Node_Id;
12386 S : Node_Id;
12387 Related_Nod : Node_Id;
12388 Related_Id : Entity_Id;
12389 Suffix : Character;
12390 Suffix_Index : Nat)
12391 is
12392 Def_Id : Entity_Id;
12393 R : Node_Id := Empty;
12394 T : constant Entity_Id := Etype (Index);
12395
12396 begin
12397 if Nkind (S) = N_Range
12398 or else
12399 (Nkind (S) = N_Attribute_Reference
12400 and then Attribute_Name (S) = Name_Range)
12401 then
12402 -- A Range attribute will be transformed into N_Range by Resolve
12403
12404 Analyze (S);
12405 Set_Etype (S, T);
12406 R := S;
12407
12408 Process_Range_Expr_In_Decl (R, T);
12409
12410 if not Error_Posted (S)
12411 and then
12412 (Nkind (S) /= N_Range
12413 or else not Covers (T, (Etype (Low_Bound (S))))
12414 or else not Covers (T, (Etype (High_Bound (S)))))
12415 then
12416 if Base_Type (T) /= Any_Type
12417 and then Etype (Low_Bound (S)) /= Any_Type
12418 and then Etype (High_Bound (S)) /= Any_Type
12419 then
12420 Error_Msg_N ("range expected", S);
12421 end if;
12422 end if;
12423
12424 elsif Nkind (S) = N_Subtype_Indication then
12425
12426 -- The parser has verified that this is a discrete indication
12427
12428 Resolve_Discrete_Subtype_Indication (S, T);
12429 R := Range_Expression (Constraint (S));
12430
12431 -- Capture values of bounds and generate temporaries for them if
12432 -- needed, since checks may cause duplication of the expressions
12433 -- which must not be reevaluated.
12434
12435 -- The forced evaluation removes side effects from expressions, which
12436 -- should occur also in GNATprove mode. Otherwise, we end up with
12437 -- unexpected insertions of actions at places where this is not
12438 -- supposed to occur, e.g. on default parameters of a call.
12439
12440 if Expander_Active or GNATprove_Mode then
12441 Force_Evaluation (Low_Bound (R));
12442 Force_Evaluation (High_Bound (R));
12443 end if;
12444
12445 elsif Nkind (S) = N_Discriminant_Association then
12446
12447 -- Syntactically valid in subtype indication
12448
12449 Error_Msg_N ("invalid index constraint", S);
12450 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12451 return;
12452
12453 -- Subtype_Mark case, no anonymous subtypes to construct
12454
12455 else
12456 Analyze (S);
12457
12458 if Is_Entity_Name (S) then
12459 if not Is_Type (Entity (S)) then
12460 Error_Msg_N ("expect subtype mark for index constraint", S);
12461
12462 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12463 Wrong_Type (S, Base_Type (T));
12464
12465 -- Check error of subtype with predicate in index constraint
12466
12467 else
12468 Bad_Predicated_Subtype_Use
12469 ("subtype& has predicate, not allowed in index constraint",
12470 S, Entity (S));
12471 end if;
12472
12473 return;
12474
12475 else
12476 Error_Msg_N ("invalid index constraint", S);
12477 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12478 return;
12479 end if;
12480 end if;
12481
12482 Def_Id :=
12483 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12484
12485 Set_Etype (Def_Id, Base_Type (T));
12486
12487 if Is_Modular_Integer_Type (T) then
12488 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12489
12490 elsif Is_Integer_Type (T) then
12491 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12492
12493 else
12494 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12495 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12496 Set_First_Literal (Def_Id, First_Literal (T));
12497 end if;
12498
12499 Set_Size_Info (Def_Id, (T));
12500 Set_RM_Size (Def_Id, RM_Size (T));
12501 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12502
12503 Set_Scalar_Range (Def_Id, R);
12504
12505 Set_Etype (S, Def_Id);
12506 Set_Discrete_RM_Size (Def_Id);
12507 end Constrain_Index;
12508
12509 -----------------------
12510 -- Constrain_Integer --
12511 -----------------------
12512
12513 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12514 T : constant Entity_Id := Entity (Subtype_Mark (S));
12515 C : constant Node_Id := Constraint (S);
12516
12517 begin
12518 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12519
12520 if Is_Modular_Integer_Type (T) then
12521 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12522 else
12523 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12524 end if;
12525
12526 Set_Etype (Def_Id, Base_Type (T));
12527 Set_Size_Info (Def_Id, (T));
12528 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12529 Set_Discrete_RM_Size (Def_Id);
12530 end Constrain_Integer;
12531
12532 ------------------------------
12533 -- Constrain_Ordinary_Fixed --
12534 ------------------------------
12535
12536 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12537 T : constant Entity_Id := Entity (Subtype_Mark (S));
12538 C : Node_Id;
12539 D : Node_Id;
12540 Rais : Node_Id;
12541
12542 begin
12543 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12544 Set_Etype (Def_Id, Base_Type (T));
12545 Set_Size_Info (Def_Id, (T));
12546 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12547 Set_Small_Value (Def_Id, Small_Value (T));
12548
12549 -- Process the constraint
12550
12551 C := Constraint (S);
12552
12553 -- Delta constraint present
12554
12555 if Nkind (C) = N_Delta_Constraint then
12556
12557 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12558 Check_Restriction (No_Obsolescent_Features, C);
12559
12560 if Warn_On_Obsolescent_Feature then
12561 Error_Msg_S
12562 ("subtype delta constraint is an " &
12563 "obsolescent feature (RM J.3(7))?j?");
12564 end if;
12565
12566 D := Delta_Expression (C);
12567 Analyze_And_Resolve (D, Any_Real);
12568 Check_Delta_Expression (D);
12569 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12570
12571 -- Check that delta value is in range. Obviously we can do this
12572 -- at compile time, but it is strictly a runtime check, and of
12573 -- course there is an ACVC test that checks this.
12574
12575 if Delta_Value (Def_Id) < Delta_Value (T) then
12576 Error_Msg_N ("??delta value is too small", D);
12577 Rais :=
12578 Make_Raise_Constraint_Error (Sloc (D),
12579 Reason => CE_Range_Check_Failed);
12580 Insert_Action (Declaration_Node (Def_Id), Rais);
12581 end if;
12582
12583 C := Range_Constraint (C);
12584
12585 -- No delta constraint present
12586
12587 else
12588 Set_Delta_Value (Def_Id, Delta_Value (T));
12589 end if;
12590
12591 -- Range constraint present
12592
12593 if Nkind (C) = N_Range_Constraint then
12594 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12595
12596 -- No range constraint present
12597
12598 else
12599 pragma Assert (No (C));
12600 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12601
12602 end if;
12603
12604 Set_Discrete_RM_Size (Def_Id);
12605
12606 -- Unconditionally delay the freeze, since we cannot set size
12607 -- information in all cases correctly until the freeze point.
12608
12609 Set_Has_Delayed_Freeze (Def_Id);
12610 end Constrain_Ordinary_Fixed;
12611
12612 -----------------------
12613 -- Contain_Interface --
12614 -----------------------
12615
12616 function Contain_Interface
12617 (Iface : Entity_Id;
12618 Ifaces : Elist_Id) return Boolean
12619 is
12620 Iface_Elmt : Elmt_Id;
12621
12622 begin
12623 if Present (Ifaces) then
12624 Iface_Elmt := First_Elmt (Ifaces);
12625 while Present (Iface_Elmt) loop
12626 if Node (Iface_Elmt) = Iface then
12627 return True;
12628 end if;
12629
12630 Next_Elmt (Iface_Elmt);
12631 end loop;
12632 end if;
12633
12634 return False;
12635 end Contain_Interface;
12636
12637 ---------------------------
12638 -- Convert_Scalar_Bounds --
12639 ---------------------------
12640
12641 procedure Convert_Scalar_Bounds
12642 (N : Node_Id;
12643 Parent_Type : Entity_Id;
12644 Derived_Type : Entity_Id;
12645 Loc : Source_Ptr)
12646 is
12647 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12648
12649 Lo : Node_Id;
12650 Hi : Node_Id;
12651 Rng : Node_Id;
12652
12653 begin
12654 -- Defend against previous errors
12655
12656 if No (Scalar_Range (Derived_Type)) then
12657 Check_Error_Detected;
12658 return;
12659 end if;
12660
12661 Lo := Build_Scalar_Bound
12662 (Type_Low_Bound (Derived_Type),
12663 Parent_Type, Implicit_Base);
12664
12665 Hi := Build_Scalar_Bound
12666 (Type_High_Bound (Derived_Type),
12667 Parent_Type, Implicit_Base);
12668
12669 Rng :=
12670 Make_Range (Loc,
12671 Low_Bound => Lo,
12672 High_Bound => Hi);
12673
12674 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12675
12676 Set_Parent (Rng, N);
12677 Set_Scalar_Range (Derived_Type, Rng);
12678
12679 -- Analyze the bounds
12680
12681 Analyze_And_Resolve (Lo, Implicit_Base);
12682 Analyze_And_Resolve (Hi, Implicit_Base);
12683
12684 -- Analyze the range itself, except that we do not analyze it if
12685 -- the bounds are real literals, and we have a fixed-point type.
12686 -- The reason for this is that we delay setting the bounds in this
12687 -- case till we know the final Small and Size values (see circuit
12688 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12689
12690 if Is_Fixed_Point_Type (Parent_Type)
12691 and then Nkind (Lo) = N_Real_Literal
12692 and then Nkind (Hi) = N_Real_Literal
12693 then
12694 return;
12695
12696 -- Here we do the analysis of the range
12697
12698 -- Note: we do this manually, since if we do a normal Analyze and
12699 -- Resolve call, there are problems with the conversions used for
12700 -- the derived type range.
12701
12702 else
12703 Set_Etype (Rng, Implicit_Base);
12704 Set_Analyzed (Rng, True);
12705 end if;
12706 end Convert_Scalar_Bounds;
12707
12708 -------------------
12709 -- Copy_And_Swap --
12710 -------------------
12711
12712 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12713 begin
12714 -- Initialize new full declaration entity by copying the pertinent
12715 -- fields of the corresponding private declaration entity.
12716
12717 -- We temporarily set Ekind to a value appropriate for a type to
12718 -- avoid assert failures in Einfo from checking for setting type
12719 -- attributes on something that is not a type. Ekind (Priv) is an
12720 -- appropriate choice, since it allowed the attributes to be set
12721 -- in the first place. This Ekind value will be modified later.
12722
12723 Set_Ekind (Full, Ekind (Priv));
12724
12725 -- Also set Etype temporarily to Any_Type, again, in the absence
12726 -- of errors, it will be properly reset, and if there are errors,
12727 -- then we want a value of Any_Type to remain.
12728
12729 Set_Etype (Full, Any_Type);
12730
12731 -- Now start copying attributes
12732
12733 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12734
12735 if Has_Discriminants (Full) then
12736 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12737 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12738 end if;
12739
12740 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12741 Set_Homonym (Full, Homonym (Priv));
12742 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12743 Set_Is_Public (Full, Is_Public (Priv));
12744 Set_Is_Pure (Full, Is_Pure (Priv));
12745 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12746 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12747 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12748 Set_Has_Pragma_Unreferenced_Objects
12749 (Full, Has_Pragma_Unreferenced_Objects
12750 (Priv));
12751
12752 Conditional_Delay (Full, Priv);
12753
12754 if Is_Tagged_Type (Full) then
12755 Set_Direct_Primitive_Operations (Full,
12756 Direct_Primitive_Operations (Priv));
12757
12758 if Is_Base_Type (Priv) then
12759 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12760 end if;
12761 end if;
12762
12763 Set_Is_Volatile (Full, Is_Volatile (Priv));
12764 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12765 Set_Scope (Full, Scope (Priv));
12766 Set_Next_Entity (Full, Next_Entity (Priv));
12767 Set_First_Entity (Full, First_Entity (Priv));
12768 Set_Last_Entity (Full, Last_Entity (Priv));
12769
12770 -- If access types have been recorded for later handling, keep them in
12771 -- the full view so that they get handled when the full view freeze
12772 -- node is expanded.
12773
12774 if Present (Freeze_Node (Priv))
12775 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12776 then
12777 Ensure_Freeze_Node (Full);
12778 Set_Access_Types_To_Process
12779 (Freeze_Node (Full),
12780 Access_Types_To_Process (Freeze_Node (Priv)));
12781 end if;
12782
12783 -- Swap the two entities. Now Private is the full type entity and Full
12784 -- is the private one. They will be swapped back at the end of the
12785 -- private part. This swapping ensures that the entity that is visible
12786 -- in the private part is the full declaration.
12787
12788 Exchange_Entities (Priv, Full);
12789 Append_Entity (Full, Scope (Full));
12790 end Copy_And_Swap;
12791
12792 -------------------------------------
12793 -- Copy_Array_Base_Type_Attributes --
12794 -------------------------------------
12795
12796 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12797 begin
12798 Set_Component_Alignment (T1, Component_Alignment (T2));
12799 Set_Component_Type (T1, Component_Type (T2));
12800 Set_Component_Size (T1, Component_Size (T2));
12801 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12802 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12803 Set_Has_Protected (T1, Has_Protected (T2));
12804 Set_Has_Task (T1, Has_Task (T2));
12805 Set_Is_Packed (T1, Is_Packed (T2));
12806 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12807 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12808 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12809 end Copy_Array_Base_Type_Attributes;
12810
12811 -----------------------------------
12812 -- Copy_Array_Subtype_Attributes --
12813 -----------------------------------
12814
12815 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12816 begin
12817 Set_Size_Info (T1, T2);
12818
12819 Set_First_Index (T1, First_Index (T2));
12820 Set_Is_Aliased (T1, Is_Aliased (T2));
12821 Set_Is_Volatile (T1, Is_Volatile (T2));
12822 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12823 Set_Is_Constrained (T1, Is_Constrained (T2));
12824 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12825 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12826 Set_Convention (T1, Convention (T2));
12827 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12828 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12829 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12830 end Copy_Array_Subtype_Attributes;
12831
12832 -----------------------------------
12833 -- Create_Constrained_Components --
12834 -----------------------------------
12835
12836 procedure Create_Constrained_Components
12837 (Subt : Entity_Id;
12838 Decl_Node : Node_Id;
12839 Typ : Entity_Id;
12840 Constraints : Elist_Id)
12841 is
12842 Loc : constant Source_Ptr := Sloc (Subt);
12843 Comp_List : constant Elist_Id := New_Elmt_List;
12844 Parent_Type : constant Entity_Id := Etype (Typ);
12845 Assoc_List : constant List_Id := New_List;
12846 Discr_Val : Elmt_Id;
12847 Errors : Boolean;
12848 New_C : Entity_Id;
12849 Old_C : Entity_Id;
12850 Is_Static : Boolean := True;
12851
12852 procedure Collect_Fixed_Components (Typ : Entity_Id);
12853 -- Collect parent type components that do not appear in a variant part
12854
12855 procedure Create_All_Components;
12856 -- Iterate over Comp_List to create the components of the subtype
12857
12858 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12859 -- Creates a new component from Old_Compon, copying all the fields from
12860 -- it, including its Etype, inserts the new component in the Subt entity
12861 -- chain and returns the new component.
12862
12863 function Is_Variant_Record (T : Entity_Id) return Boolean;
12864 -- If true, and discriminants are static, collect only components from
12865 -- variants selected by discriminant values.
12866
12867 ------------------------------
12868 -- Collect_Fixed_Components --
12869 ------------------------------
12870
12871 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12872 begin
12873 -- Build association list for discriminants, and find components of the
12874 -- variant part selected by the values of the discriminants.
12875
12876 Old_C := First_Discriminant (Typ);
12877 Discr_Val := First_Elmt (Constraints);
12878 while Present (Old_C) loop
12879 Append_To (Assoc_List,
12880 Make_Component_Association (Loc,
12881 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12882 Expression => New_Copy (Node (Discr_Val))));
12883
12884 Next_Elmt (Discr_Val);
12885 Next_Discriminant (Old_C);
12886 end loop;
12887
12888 -- The tag and the possible parent component are unconditionally in
12889 -- the subtype.
12890
12891 if Is_Tagged_Type (Typ)
12892 or else Has_Controlled_Component (Typ)
12893 then
12894 Old_C := First_Component (Typ);
12895 while Present (Old_C) loop
12896 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12897 Append_Elmt (Old_C, Comp_List);
12898 end if;
12899
12900 Next_Component (Old_C);
12901 end loop;
12902 end if;
12903 end Collect_Fixed_Components;
12904
12905 ---------------------------
12906 -- Create_All_Components --
12907 ---------------------------
12908
12909 procedure Create_All_Components is
12910 Comp : Elmt_Id;
12911
12912 begin
12913 Comp := First_Elmt (Comp_List);
12914 while Present (Comp) loop
12915 Old_C := Node (Comp);
12916 New_C := Create_Component (Old_C);
12917
12918 Set_Etype
12919 (New_C,
12920 Constrain_Component_Type
12921 (Old_C, Subt, Decl_Node, Typ, Constraints));
12922 Set_Is_Public (New_C, Is_Public (Subt));
12923
12924 Next_Elmt (Comp);
12925 end loop;
12926 end Create_All_Components;
12927
12928 ----------------------
12929 -- Create_Component --
12930 ----------------------
12931
12932 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12933 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12934
12935 begin
12936 if Ekind (Old_Compon) = E_Discriminant
12937 and then Is_Completely_Hidden (Old_Compon)
12938 then
12939 -- This is a shadow discriminant created for a discriminant of
12940 -- the parent type, which needs to be present in the subtype.
12941 -- Give the shadow discriminant an internal name that cannot
12942 -- conflict with that of visible components.
12943
12944 Set_Chars (New_Compon, New_Internal_Name ('C'));
12945 end if;
12946
12947 -- Set the parent so we have a proper link for freezing etc. This is
12948 -- not a real parent pointer, since of course our parent does not own
12949 -- up to us and reference us, we are an illegitimate child of the
12950 -- original parent.
12951
12952 Set_Parent (New_Compon, Parent (Old_Compon));
12953
12954 -- If the old component's Esize was already determined and is a
12955 -- static value, then the new component simply inherits it. Otherwise
12956 -- the old component's size may require run-time determination, but
12957 -- the new component's size still might be statically determinable
12958 -- (if, for example it has a static constraint). In that case we want
12959 -- Layout_Type to recompute the component's size, so we reset its
12960 -- size and positional fields.
12961
12962 if Frontend_Layout_On_Target
12963 and then not Known_Static_Esize (Old_Compon)
12964 then
12965 Set_Esize (New_Compon, Uint_0);
12966 Init_Normalized_First_Bit (New_Compon);
12967 Init_Normalized_Position (New_Compon);
12968 Init_Normalized_Position_Max (New_Compon);
12969 end if;
12970
12971 -- We do not want this node marked as Comes_From_Source, since
12972 -- otherwise it would get first class status and a separate cross-
12973 -- reference line would be generated. Illegitimate children do not
12974 -- rate such recognition.
12975
12976 Set_Comes_From_Source (New_Compon, False);
12977
12978 -- But it is a real entity, and a birth certificate must be properly
12979 -- registered by entering it into the entity list.
12980
12981 Enter_Name (New_Compon);
12982
12983 return New_Compon;
12984 end Create_Component;
12985
12986 -----------------------
12987 -- Is_Variant_Record --
12988 -----------------------
12989
12990 function Is_Variant_Record (T : Entity_Id) return Boolean is
12991 begin
12992 return Nkind (Parent (T)) = N_Full_Type_Declaration
12993 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12994 and then Present (Component_List (Type_Definition (Parent (T))))
12995 and then
12996 Present
12997 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12998 end Is_Variant_Record;
12999
13000 -- Start of processing for Create_Constrained_Components
13001
13002 begin
13003 pragma Assert (Subt /= Base_Type (Subt));
13004 pragma Assert (Typ = Base_Type (Typ));
13005
13006 Set_First_Entity (Subt, Empty);
13007 Set_Last_Entity (Subt, Empty);
13008
13009 -- Check whether constraint is fully static, in which case we can
13010 -- optimize the list of components.
13011
13012 Discr_Val := First_Elmt (Constraints);
13013 while Present (Discr_Val) loop
13014 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13015 Is_Static := False;
13016 exit;
13017 end if;
13018
13019 Next_Elmt (Discr_Val);
13020 end loop;
13021
13022 Set_Has_Static_Discriminants (Subt, Is_Static);
13023
13024 Push_Scope (Subt);
13025
13026 -- Inherit the discriminants of the parent type
13027
13028 Add_Discriminants : declare
13029 Num_Disc : Int;
13030 Num_Gird : Int;
13031
13032 begin
13033 Num_Disc := 0;
13034 Old_C := First_Discriminant (Typ);
13035
13036 while Present (Old_C) loop
13037 Num_Disc := Num_Disc + 1;
13038 New_C := Create_Component (Old_C);
13039 Set_Is_Public (New_C, Is_Public (Subt));
13040 Next_Discriminant (Old_C);
13041 end loop;
13042
13043 -- For an untagged derived subtype, the number of discriminants may
13044 -- be smaller than the number of inherited discriminants, because
13045 -- several of them may be renamed by a single new discriminant or
13046 -- constrained. In this case, add the hidden discriminants back into
13047 -- the subtype, because they need to be present if the optimizer of
13048 -- the GCC 4.x back-end decides to break apart assignments between
13049 -- objects using the parent view into member-wise assignments.
13050
13051 Num_Gird := 0;
13052
13053 if Is_Derived_Type (Typ)
13054 and then not Is_Tagged_Type (Typ)
13055 then
13056 Old_C := First_Stored_Discriminant (Typ);
13057
13058 while Present (Old_C) loop
13059 Num_Gird := Num_Gird + 1;
13060 Next_Stored_Discriminant (Old_C);
13061 end loop;
13062 end if;
13063
13064 if Num_Gird > Num_Disc then
13065
13066 -- Find out multiple uses of new discriminants, and add hidden
13067 -- components for the extra renamed discriminants. We recognize
13068 -- multiple uses through the Corresponding_Discriminant of a
13069 -- new discriminant: if it constrains several old discriminants,
13070 -- this field points to the last one in the parent type. The
13071 -- stored discriminants of the derived type have the same name
13072 -- as those of the parent.
13073
13074 declare
13075 Constr : Elmt_Id;
13076 New_Discr : Entity_Id;
13077 Old_Discr : Entity_Id;
13078
13079 begin
13080 Constr := First_Elmt (Stored_Constraint (Typ));
13081 Old_Discr := First_Stored_Discriminant (Typ);
13082 while Present (Constr) loop
13083 if Is_Entity_Name (Node (Constr))
13084 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13085 then
13086 New_Discr := Entity (Node (Constr));
13087
13088 if Chars (Corresponding_Discriminant (New_Discr)) /=
13089 Chars (Old_Discr)
13090 then
13091 -- The new discriminant has been used to rename a
13092 -- subsequent old discriminant. Introduce a shadow
13093 -- component for the current old discriminant.
13094
13095 New_C := Create_Component (Old_Discr);
13096 Set_Original_Record_Component (New_C, Old_Discr);
13097 end if;
13098
13099 else
13100 -- The constraint has eliminated the old discriminant.
13101 -- Introduce a shadow component.
13102
13103 New_C := Create_Component (Old_Discr);
13104 Set_Original_Record_Component (New_C, Old_Discr);
13105 end if;
13106
13107 Next_Elmt (Constr);
13108 Next_Stored_Discriminant (Old_Discr);
13109 end loop;
13110 end;
13111 end if;
13112 end Add_Discriminants;
13113
13114 if Is_Static
13115 and then Is_Variant_Record (Typ)
13116 then
13117 Collect_Fixed_Components (Typ);
13118
13119 Gather_Components (
13120 Typ,
13121 Component_List (Type_Definition (Parent (Typ))),
13122 Governed_By => Assoc_List,
13123 Into => Comp_List,
13124 Report_Errors => Errors);
13125 pragma Assert (not Errors);
13126
13127 Create_All_Components;
13128
13129 -- If the subtype declaration is created for a tagged type derivation
13130 -- with constraints, we retrieve the record definition of the parent
13131 -- type to select the components of the proper variant.
13132
13133 elsif Is_Static
13134 and then Is_Tagged_Type (Typ)
13135 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13136 and then
13137 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13138 and then Is_Variant_Record (Parent_Type)
13139 then
13140 Collect_Fixed_Components (Typ);
13141
13142 Gather_Components (
13143 Typ,
13144 Component_List (Type_Definition (Parent (Parent_Type))),
13145 Governed_By => Assoc_List,
13146 Into => Comp_List,
13147 Report_Errors => Errors);
13148 pragma Assert (not Errors);
13149
13150 -- If the tagged derivation has a type extension, collect all the
13151 -- new components therein.
13152
13153 if Present
13154 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13155 then
13156 Old_C := First_Component (Typ);
13157 while Present (Old_C) loop
13158 if Original_Record_Component (Old_C) = Old_C
13159 and then Chars (Old_C) /= Name_uTag
13160 and then Chars (Old_C) /= Name_uParent
13161 then
13162 Append_Elmt (Old_C, Comp_List);
13163 end if;
13164
13165 Next_Component (Old_C);
13166 end loop;
13167 end if;
13168
13169 Create_All_Components;
13170
13171 else
13172 -- If discriminants are not static, or if this is a multi-level type
13173 -- extension, we have to include all components of the parent type.
13174
13175 Old_C := First_Component (Typ);
13176 while Present (Old_C) loop
13177 New_C := Create_Component (Old_C);
13178
13179 Set_Etype
13180 (New_C,
13181 Constrain_Component_Type
13182 (Old_C, Subt, Decl_Node, Typ, Constraints));
13183 Set_Is_Public (New_C, Is_Public (Subt));
13184
13185 Next_Component (Old_C);
13186 end loop;
13187 end if;
13188
13189 End_Scope;
13190 end Create_Constrained_Components;
13191
13192 ------------------------------------------
13193 -- Decimal_Fixed_Point_Type_Declaration --
13194 ------------------------------------------
13195
13196 procedure Decimal_Fixed_Point_Type_Declaration
13197 (T : Entity_Id;
13198 Def : Node_Id)
13199 is
13200 Loc : constant Source_Ptr := Sloc (Def);
13201 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13202 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13203 Implicit_Base : Entity_Id;
13204 Digs_Val : Uint;
13205 Delta_Val : Ureal;
13206 Scale_Val : Uint;
13207 Bound_Val : Ureal;
13208
13209 begin
13210 Check_SPARK_Restriction
13211 ("decimal fixed point type is not allowed", Def);
13212 Check_Restriction (No_Fixed_Point, Def);
13213
13214 -- Create implicit base type
13215
13216 Implicit_Base :=
13217 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13218 Set_Etype (Implicit_Base, Implicit_Base);
13219
13220 -- Analyze and process delta expression
13221
13222 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13223
13224 Check_Delta_Expression (Delta_Expr);
13225 Delta_Val := Expr_Value_R (Delta_Expr);
13226
13227 -- Check delta is power of 10, and determine scale value from it
13228
13229 declare
13230 Val : Ureal;
13231
13232 begin
13233 Scale_Val := Uint_0;
13234 Val := Delta_Val;
13235
13236 if Val < Ureal_1 then
13237 while Val < Ureal_1 loop
13238 Val := Val * Ureal_10;
13239 Scale_Val := Scale_Val + 1;
13240 end loop;
13241
13242 if Scale_Val > 18 then
13243 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13244 Scale_Val := UI_From_Int (+18);
13245 end if;
13246
13247 else
13248 while Val > Ureal_1 loop
13249 Val := Val / Ureal_10;
13250 Scale_Val := Scale_Val - 1;
13251 end loop;
13252
13253 if Scale_Val < -18 then
13254 Error_Msg_N ("scale is less than minimum value of -18", Def);
13255 Scale_Val := UI_From_Int (-18);
13256 end if;
13257 end if;
13258
13259 if Val /= Ureal_1 then
13260 Error_Msg_N ("delta expression must be a power of 10", Def);
13261 Delta_Val := Ureal_10 ** (-Scale_Val);
13262 end if;
13263 end;
13264
13265 -- Set delta, scale and small (small = delta for decimal type)
13266
13267 Set_Delta_Value (Implicit_Base, Delta_Val);
13268 Set_Scale_Value (Implicit_Base, Scale_Val);
13269 Set_Small_Value (Implicit_Base, Delta_Val);
13270
13271 -- Analyze and process digits expression
13272
13273 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13274 Check_Digits_Expression (Digs_Expr);
13275 Digs_Val := Expr_Value (Digs_Expr);
13276
13277 if Digs_Val > 18 then
13278 Digs_Val := UI_From_Int (+18);
13279 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13280 end if;
13281
13282 Set_Digits_Value (Implicit_Base, Digs_Val);
13283 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13284
13285 -- Set range of base type from digits value for now. This will be
13286 -- expanded to represent the true underlying base range by Freeze.
13287
13288 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13289
13290 -- Note: We leave size as zero for now, size will be set at freeze
13291 -- time. We have to do this for ordinary fixed-point, because the size
13292 -- depends on the specified small, and we might as well do the same for
13293 -- decimal fixed-point.
13294
13295 pragma Assert (Esize (Implicit_Base) = Uint_0);
13296
13297 -- If there are bounds given in the declaration use them as the
13298 -- bounds of the first named subtype.
13299
13300 if Present (Real_Range_Specification (Def)) then
13301 declare
13302 RRS : constant Node_Id := Real_Range_Specification (Def);
13303 Low : constant Node_Id := Low_Bound (RRS);
13304 High : constant Node_Id := High_Bound (RRS);
13305 Low_Val : Ureal;
13306 High_Val : Ureal;
13307
13308 begin
13309 Analyze_And_Resolve (Low, Any_Real);
13310 Analyze_And_Resolve (High, Any_Real);
13311 Check_Real_Bound (Low);
13312 Check_Real_Bound (High);
13313 Low_Val := Expr_Value_R (Low);
13314 High_Val := Expr_Value_R (High);
13315
13316 if Low_Val < (-Bound_Val) then
13317 Error_Msg_N
13318 ("range low bound too small for digits value", Low);
13319 Low_Val := -Bound_Val;
13320 end if;
13321
13322 if High_Val > Bound_Val then
13323 Error_Msg_N
13324 ("range high bound too large for digits value", High);
13325 High_Val := Bound_Val;
13326 end if;
13327
13328 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13329 end;
13330
13331 -- If no explicit range, use range that corresponds to given
13332 -- digits value. This will end up as the final range for the
13333 -- first subtype.
13334
13335 else
13336 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13337 end if;
13338
13339 -- Complete entity for first subtype
13340
13341 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13342 Set_Etype (T, Implicit_Base);
13343 Set_Size_Info (T, Implicit_Base);
13344 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13345 Set_Digits_Value (T, Digs_Val);
13346 Set_Delta_Value (T, Delta_Val);
13347 Set_Small_Value (T, Delta_Val);
13348 Set_Scale_Value (T, Scale_Val);
13349 Set_Is_Constrained (T);
13350 end Decimal_Fixed_Point_Type_Declaration;
13351
13352 -----------------------------------
13353 -- Derive_Progenitor_Subprograms --
13354 -----------------------------------
13355
13356 procedure Derive_Progenitor_Subprograms
13357 (Parent_Type : Entity_Id;
13358 Tagged_Type : Entity_Id)
13359 is
13360 E : Entity_Id;
13361 Elmt : Elmt_Id;
13362 Iface : Entity_Id;
13363 Iface_Elmt : Elmt_Id;
13364 Iface_Subp : Entity_Id;
13365 New_Subp : Entity_Id := Empty;
13366 Prim_Elmt : Elmt_Id;
13367 Subp : Entity_Id;
13368 Typ : Entity_Id;
13369
13370 begin
13371 pragma Assert (Ada_Version >= Ada_2005
13372 and then Is_Record_Type (Tagged_Type)
13373 and then Is_Tagged_Type (Tagged_Type)
13374 and then Has_Interfaces (Tagged_Type));
13375
13376 -- Step 1: Transfer to the full-view primitives associated with the
13377 -- partial-view that cover interface primitives. Conceptually this
13378 -- work should be done later by Process_Full_View; done here to
13379 -- simplify its implementation at later stages. It can be safely
13380 -- done here because interfaces must be visible in the partial and
13381 -- private view (RM 7.3(7.3/2)).
13382
13383 -- Small optimization: This work is only required if the parent may
13384 -- have entities whose Alias attribute reference an interface primitive.
13385 -- Such a situation may occur if the parent is an abstract type and the
13386 -- primitive has not been yet overridden or if the parent is a generic
13387 -- formal type covering interfaces.
13388
13389 -- If the tagged type is not abstract, it cannot have abstract
13390 -- primitives (the only entities in the list of primitives of
13391 -- non-abstract tagged types that can reference abstract primitives
13392 -- through its Alias attribute are the internal entities that have
13393 -- attribute Interface_Alias, and these entities are generated later
13394 -- by Add_Internal_Interface_Entities).
13395
13396 if In_Private_Part (Current_Scope)
13397 and then (Is_Abstract_Type (Parent_Type)
13398 or else
13399 Is_Generic_Type (Parent_Type))
13400 then
13401 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13402 while Present (Elmt) loop
13403 Subp := Node (Elmt);
13404
13405 -- At this stage it is not possible to have entities in the list
13406 -- of primitives that have attribute Interface_Alias.
13407
13408 pragma Assert (No (Interface_Alias (Subp)));
13409
13410 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13411
13412 if Is_Interface (Typ) then
13413 E := Find_Primitive_Covering_Interface
13414 (Tagged_Type => Tagged_Type,
13415 Iface_Prim => Subp);
13416
13417 if Present (E)
13418 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13419 then
13420 Replace_Elmt (Elmt, E);
13421 Remove_Homonym (Subp);
13422 end if;
13423 end if;
13424
13425 Next_Elmt (Elmt);
13426 end loop;
13427 end if;
13428
13429 -- Step 2: Add primitives of progenitors that are not implemented by
13430 -- parents of Tagged_Type.
13431
13432 if Present (Interfaces (Base_Type (Tagged_Type))) then
13433 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13434 while Present (Iface_Elmt) loop
13435 Iface := Node (Iface_Elmt);
13436
13437 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13438 while Present (Prim_Elmt) loop
13439 Iface_Subp := Node (Prim_Elmt);
13440
13441 -- Exclude derivation of predefined primitives except those
13442 -- that come from source, or are inherited from one that comes
13443 -- from source. Required to catch declarations of equality
13444 -- operators of interfaces. For example:
13445
13446 -- type Iface is interface;
13447 -- function "=" (Left, Right : Iface) return Boolean;
13448
13449 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13450 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13451 then
13452 E := Find_Primitive_Covering_Interface
13453 (Tagged_Type => Tagged_Type,
13454 Iface_Prim => Iface_Subp);
13455
13456 -- If not found we derive a new primitive leaving its alias
13457 -- attribute referencing the interface primitive.
13458
13459 if No (E) then
13460 Derive_Subprogram
13461 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13462
13463 -- Ada 2012 (AI05-0197): If the covering primitive's name
13464 -- differs from the name of the interface primitive then it
13465 -- is a private primitive inherited from a parent type. In
13466 -- such case, given that Tagged_Type covers the interface,
13467 -- the inherited private primitive becomes visible. For such
13468 -- purpose we add a new entity that renames the inherited
13469 -- private primitive.
13470
13471 elsif Chars (E) /= Chars (Iface_Subp) then
13472 pragma Assert (Has_Suffix (E, 'P'));
13473 Derive_Subprogram
13474 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13475 Set_Alias (New_Subp, E);
13476 Set_Is_Abstract_Subprogram (New_Subp,
13477 Is_Abstract_Subprogram (E));
13478
13479 -- Propagate to the full view interface entities associated
13480 -- with the partial view.
13481
13482 elsif In_Private_Part (Current_Scope)
13483 and then Present (Alias (E))
13484 and then Alias (E) = Iface_Subp
13485 and then
13486 List_Containing (Parent (E)) /=
13487 Private_Declarations
13488 (Specification
13489 (Unit_Declaration_Node (Current_Scope)))
13490 then
13491 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13492 end if;
13493 end if;
13494
13495 Next_Elmt (Prim_Elmt);
13496 end loop;
13497
13498 Next_Elmt (Iface_Elmt);
13499 end loop;
13500 end if;
13501 end Derive_Progenitor_Subprograms;
13502
13503 -----------------------
13504 -- Derive_Subprogram --
13505 -----------------------
13506
13507 procedure Derive_Subprogram
13508 (New_Subp : in out Entity_Id;
13509 Parent_Subp : Entity_Id;
13510 Derived_Type : Entity_Id;
13511 Parent_Type : Entity_Id;
13512 Actual_Subp : Entity_Id := Empty)
13513 is
13514 Formal : Entity_Id;
13515 -- Formal parameter of parent primitive operation
13516
13517 Formal_Of_Actual : Entity_Id;
13518 -- Formal parameter of actual operation, when the derivation is to
13519 -- create a renaming for a primitive operation of an actual in an
13520 -- instantiation.
13521
13522 New_Formal : Entity_Id;
13523 -- Formal of inherited operation
13524
13525 Visible_Subp : Entity_Id := Parent_Subp;
13526
13527 function Is_Private_Overriding return Boolean;
13528 -- If Subp is a private overriding of a visible operation, the inherited
13529 -- operation derives from the overridden op (even though its body is the
13530 -- overriding one) and the inherited operation is visible now. See
13531 -- sem_disp to see the full details of the handling of the overridden
13532 -- subprogram, which is removed from the list of primitive operations of
13533 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13534 -- and used to diagnose abstract operations that need overriding in the
13535 -- derived type.
13536
13537 procedure Replace_Type (Id, New_Id : Entity_Id);
13538 -- When the type is an anonymous access type, create a new access type
13539 -- designating the derived type.
13540
13541 procedure Set_Derived_Name;
13542 -- This procedure sets the appropriate Chars name for New_Subp. This
13543 -- is normally just a copy of the parent name. An exception arises for
13544 -- type support subprograms, where the name is changed to reflect the
13545 -- name of the derived type, e.g. if type foo is derived from type bar,
13546 -- then a procedure barDA is derived with a name fooDA.
13547
13548 ---------------------------
13549 -- Is_Private_Overriding --
13550 ---------------------------
13551
13552 function Is_Private_Overriding return Boolean is
13553 Prev : Entity_Id;
13554
13555 begin
13556 -- If the parent is not a dispatching operation there is no
13557 -- need to investigate overridings
13558
13559 if not Is_Dispatching_Operation (Parent_Subp) then
13560 return False;
13561 end if;
13562
13563 -- The visible operation that is overridden is a homonym of the
13564 -- parent subprogram. We scan the homonym chain to find the one
13565 -- whose alias is the subprogram we are deriving.
13566
13567 Prev := Current_Entity (Parent_Subp);
13568 while Present (Prev) loop
13569 if Ekind (Prev) = Ekind (Parent_Subp)
13570 and then Alias (Prev) = Parent_Subp
13571 and then Scope (Parent_Subp) = Scope (Prev)
13572 and then not Is_Hidden (Prev)
13573 then
13574 Visible_Subp := Prev;
13575 return True;
13576 end if;
13577
13578 Prev := Homonym (Prev);
13579 end loop;
13580
13581 return False;
13582 end Is_Private_Overriding;
13583
13584 ------------------
13585 -- Replace_Type --
13586 ------------------
13587
13588 procedure Replace_Type (Id, New_Id : Entity_Id) is
13589 Id_Type : constant Entity_Id := Etype (Id);
13590 Acc_Type : Entity_Id;
13591 Par : constant Node_Id := Parent (Derived_Type);
13592
13593 begin
13594 -- When the type is an anonymous access type, create a new access
13595 -- type designating the derived type. This itype must be elaborated
13596 -- at the point of the derivation, not on subsequent calls that may
13597 -- be out of the proper scope for Gigi, so we insert a reference to
13598 -- it after the derivation.
13599
13600 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13601 declare
13602 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13603
13604 begin
13605 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13606 and then Present (Full_View (Desig_Typ))
13607 and then not Is_Private_Type (Parent_Type)
13608 then
13609 Desig_Typ := Full_View (Desig_Typ);
13610 end if;
13611
13612 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13613
13614 -- Ada 2005 (AI-251): Handle also derivations of abstract
13615 -- interface primitives.
13616
13617 or else (Is_Interface (Desig_Typ)
13618 and then not Is_Class_Wide_Type (Desig_Typ))
13619 then
13620 Acc_Type := New_Copy (Id_Type);
13621 Set_Etype (Acc_Type, Acc_Type);
13622 Set_Scope (Acc_Type, New_Subp);
13623
13624 -- Set size of anonymous access type. If we have an access
13625 -- to an unconstrained array, this is a fat pointer, so it
13626 -- is sizes at twice addtress size.
13627
13628 if Is_Array_Type (Desig_Typ)
13629 and then not Is_Constrained (Desig_Typ)
13630 then
13631 Init_Size (Acc_Type, 2 * System_Address_Size);
13632
13633 -- Other cases use a thin pointer
13634
13635 else
13636 Init_Size (Acc_Type, System_Address_Size);
13637 end if;
13638
13639 -- Set remaining characterstics of anonymous access type
13640
13641 Init_Alignment (Acc_Type);
13642 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13643
13644 Set_Etype (New_Id, Acc_Type);
13645 Set_Scope (New_Id, New_Subp);
13646
13647 -- Create a reference to it
13648
13649 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13650
13651 else
13652 Set_Etype (New_Id, Id_Type);
13653 end if;
13654 end;
13655
13656 -- In Ada2012, a formal may have an incomplete type but the type
13657 -- derivation that inherits the primitive follows the full view.
13658
13659 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13660 or else
13661 (Ekind (Id_Type) = E_Record_Type_With_Private
13662 and then Present (Full_View (Id_Type))
13663 and then
13664 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13665 or else
13666 (Ada_Version >= Ada_2012
13667 and then Ekind (Id_Type) = E_Incomplete_Type
13668 and then Full_View (Id_Type) = Parent_Type)
13669 then
13670 -- Constraint checks on formals are generated during expansion,
13671 -- based on the signature of the original subprogram. The bounds
13672 -- of the derived type are not relevant, and thus we can use
13673 -- the base type for the formals. However, the return type may be
13674 -- used in a context that requires that the proper static bounds
13675 -- be used (a case statement, for example) and for those cases
13676 -- we must use the derived type (first subtype), not its base.
13677
13678 -- If the derived_type_definition has no constraints, we know that
13679 -- the derived type has the same constraints as the first subtype
13680 -- of the parent, and we can also use it rather than its base,
13681 -- which can lead to more efficient code.
13682
13683 if Etype (Id) = Parent_Type then
13684 if Is_Scalar_Type (Parent_Type)
13685 and then
13686 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13687 then
13688 Set_Etype (New_Id, Derived_Type);
13689
13690 elsif Nkind (Par) = N_Full_Type_Declaration
13691 and then
13692 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13693 and then
13694 Is_Entity_Name
13695 (Subtype_Indication (Type_Definition (Par)))
13696 then
13697 Set_Etype (New_Id, Derived_Type);
13698
13699 else
13700 Set_Etype (New_Id, Base_Type (Derived_Type));
13701 end if;
13702
13703 else
13704 Set_Etype (New_Id, Base_Type (Derived_Type));
13705 end if;
13706
13707 else
13708 Set_Etype (New_Id, Etype (Id));
13709 end if;
13710 end Replace_Type;
13711
13712 ----------------------
13713 -- Set_Derived_Name --
13714 ----------------------
13715
13716 procedure Set_Derived_Name is
13717 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13718 begin
13719 if Nm = TSS_Null then
13720 Set_Chars (New_Subp, Chars (Parent_Subp));
13721 else
13722 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13723 end if;
13724 end Set_Derived_Name;
13725
13726 -- Start of processing for Derive_Subprogram
13727
13728 begin
13729 New_Subp :=
13730 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13731 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13732 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13733
13734 -- Check whether the inherited subprogram is a private operation that
13735 -- should be inherited but not yet made visible. Such subprograms can
13736 -- become visible at a later point (e.g., the private part of a public
13737 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13738 -- following predicate is true, then this is not such a private
13739 -- operation and the subprogram simply inherits the name of the parent
13740 -- subprogram. Note the special check for the names of controlled
13741 -- operations, which are currently exempted from being inherited with
13742 -- a hidden name because they must be findable for generation of
13743 -- implicit run-time calls.
13744
13745 if not Is_Hidden (Parent_Subp)
13746 or else Is_Internal (Parent_Subp)
13747 or else Is_Private_Overriding
13748 or else Is_Internal_Name (Chars (Parent_Subp))
13749 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13750 Name_Adjust,
13751 Name_Finalize)
13752 then
13753 Set_Derived_Name;
13754
13755 -- An inherited dispatching equality will be overridden by an internally
13756 -- generated one, or by an explicit one, so preserve its name and thus
13757 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13758 -- private operation it may become invisible if the full view has
13759 -- progenitors, and the dispatch table will be malformed.
13760 -- We check that the type is limited to handle the anomalous declaration
13761 -- of Limited_Controlled, which is derived from a non-limited type, and
13762 -- which is handled specially elsewhere as well.
13763
13764 elsif Chars (Parent_Subp) = Name_Op_Eq
13765 and then Is_Dispatching_Operation (Parent_Subp)
13766 and then Etype (Parent_Subp) = Standard_Boolean
13767 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13768 and then
13769 Etype (First_Formal (Parent_Subp)) =
13770 Etype (Next_Formal (First_Formal (Parent_Subp)))
13771 then
13772 Set_Derived_Name;
13773
13774 -- If parent is hidden, this can be a regular derivation if the
13775 -- parent is immediately visible in a non-instantiating context,
13776 -- or if we are in the private part of an instance. This test
13777 -- should still be refined ???
13778
13779 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13780 -- operation as a non-visible operation in cases where the parent
13781 -- subprogram might not be visible now, but was visible within the
13782 -- original generic, so it would be wrong to make the inherited
13783 -- subprogram non-visible now. (Not clear if this test is fully
13784 -- correct; are there any cases where we should declare the inherited
13785 -- operation as not visible to avoid it being overridden, e.g., when
13786 -- the parent type is a generic actual with private primitives ???)
13787
13788 -- (they should be treated the same as other private inherited
13789 -- subprograms, but it's not clear how to do this cleanly). ???
13790
13791 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13792 and then Is_Immediately_Visible (Parent_Subp)
13793 and then not In_Instance)
13794 or else In_Instance_Not_Visible
13795 then
13796 Set_Derived_Name;
13797
13798 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13799 -- overrides an interface primitive because interface primitives
13800 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13801
13802 elsif Ada_Version >= Ada_2005
13803 and then Is_Dispatching_Operation (Parent_Subp)
13804 and then Covers_Some_Interface (Parent_Subp)
13805 then
13806 Set_Derived_Name;
13807
13808 -- Otherwise, the type is inheriting a private operation, so enter
13809 -- it with a special name so it can't be overridden.
13810
13811 else
13812 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13813 end if;
13814
13815 Set_Parent (New_Subp, Parent (Derived_Type));
13816
13817 if Present (Actual_Subp) then
13818 Replace_Type (Actual_Subp, New_Subp);
13819 else
13820 Replace_Type (Parent_Subp, New_Subp);
13821 end if;
13822
13823 Conditional_Delay (New_Subp, Parent_Subp);
13824
13825 -- If we are creating a renaming for a primitive operation of an
13826 -- actual of a generic derived type, we must examine the signature
13827 -- of the actual primitive, not that of the generic formal, which for
13828 -- example may be an interface. However the name and initial value
13829 -- of the inherited operation are those of the formal primitive.
13830
13831 Formal := First_Formal (Parent_Subp);
13832
13833 if Present (Actual_Subp) then
13834 Formal_Of_Actual := First_Formal (Actual_Subp);
13835 else
13836 Formal_Of_Actual := Empty;
13837 end if;
13838
13839 while Present (Formal) loop
13840 New_Formal := New_Copy (Formal);
13841
13842 -- Normally we do not go copying parents, but in the case of
13843 -- formals, we need to link up to the declaration (which is the
13844 -- parameter specification), and it is fine to link up to the
13845 -- original formal's parameter specification in this case.
13846
13847 Set_Parent (New_Formal, Parent (Formal));
13848 Append_Entity (New_Formal, New_Subp);
13849
13850 if Present (Formal_Of_Actual) then
13851 Replace_Type (Formal_Of_Actual, New_Formal);
13852 Next_Formal (Formal_Of_Actual);
13853 else
13854 Replace_Type (Formal, New_Formal);
13855 end if;
13856
13857 Next_Formal (Formal);
13858 end loop;
13859
13860 -- If this derivation corresponds to a tagged generic actual, then
13861 -- primitive operations rename those of the actual. Otherwise the
13862 -- primitive operations rename those of the parent type, If the parent
13863 -- renames an intrinsic operator, so does the new subprogram. We except
13864 -- concatenation, which is always properly typed, and does not get
13865 -- expanded as other intrinsic operations.
13866
13867 if No (Actual_Subp) then
13868 if Is_Intrinsic_Subprogram (Parent_Subp) then
13869 Set_Is_Intrinsic_Subprogram (New_Subp);
13870
13871 if Present (Alias (Parent_Subp))
13872 and then Chars (Parent_Subp) /= Name_Op_Concat
13873 then
13874 Set_Alias (New_Subp, Alias (Parent_Subp));
13875 else
13876 Set_Alias (New_Subp, Parent_Subp);
13877 end if;
13878
13879 else
13880 Set_Alias (New_Subp, Parent_Subp);
13881 end if;
13882
13883 else
13884 Set_Alias (New_Subp, Actual_Subp);
13885 end if;
13886
13887 -- Derived subprograms of a tagged type must inherit the convention
13888 -- of the parent subprogram (a requirement of AI-117). Derived
13889 -- subprograms of untagged types simply get convention Ada by default.
13890
13891 -- If the derived type is a tagged generic formal type with unknown
13892 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13893
13894 -- However, if the type is derived from a generic formal, the further
13895 -- inherited subprogram has the convention of the non-generic ancestor.
13896 -- Otherwise there would be no way to override the operation.
13897 -- (This is subject to forthcoming ARG discussions).
13898
13899 if Is_Tagged_Type (Derived_Type) then
13900 if Is_Generic_Type (Derived_Type)
13901 and then Has_Unknown_Discriminants (Derived_Type)
13902 then
13903 Set_Convention (New_Subp, Convention_Intrinsic);
13904
13905 else
13906 if Is_Generic_Type (Parent_Type)
13907 and then Has_Unknown_Discriminants (Parent_Type)
13908 then
13909 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13910 else
13911 Set_Convention (New_Subp, Convention (Parent_Subp));
13912 end if;
13913 end if;
13914 end if;
13915
13916 -- Predefined controlled operations retain their name even if the parent
13917 -- is hidden (see above), but they are not primitive operations if the
13918 -- ancestor is not visible, for example if the parent is a private
13919 -- extension completed with a controlled extension. Note that a full
13920 -- type that is controlled can break privacy: the flag Is_Controlled is
13921 -- set on both views of the type.
13922
13923 if Is_Controlled (Parent_Type)
13924 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13925 Name_Adjust,
13926 Name_Finalize)
13927 and then Is_Hidden (Parent_Subp)
13928 and then not Is_Visibly_Controlled (Parent_Type)
13929 then
13930 Set_Is_Hidden (New_Subp);
13931 end if;
13932
13933 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13934 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13935
13936 if Ekind (Parent_Subp) = E_Procedure then
13937 Set_Is_Valued_Procedure
13938 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13939 else
13940 Set_Has_Controlling_Result
13941 (New_Subp, Has_Controlling_Result (Parent_Subp));
13942 end if;
13943
13944 -- No_Return must be inherited properly. If this is overridden in the
13945 -- case of a dispatching operation, then a check is made in Sem_Disp
13946 -- that the overriding operation is also No_Return (no such check is
13947 -- required for the case of non-dispatching operation.
13948
13949 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13950
13951 -- A derived function with a controlling result is abstract. If the
13952 -- Derived_Type is a nonabstract formal generic derived type, then
13953 -- inherited operations are not abstract: the required check is done at
13954 -- instantiation time. If the derivation is for a generic actual, the
13955 -- function is not abstract unless the actual is.
13956
13957 if Is_Generic_Type (Derived_Type)
13958 and then not Is_Abstract_Type (Derived_Type)
13959 then
13960 null;
13961
13962 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13963 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13964
13965 elsif Ada_Version >= Ada_2005
13966 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13967 or else (Is_Tagged_Type (Derived_Type)
13968 and then Etype (New_Subp) = Derived_Type
13969 and then not Is_Null_Extension (Derived_Type))
13970 or else (Is_Tagged_Type (Derived_Type)
13971 and then Ekind (Etype (New_Subp)) =
13972 E_Anonymous_Access_Type
13973 and then Designated_Type (Etype (New_Subp)) =
13974 Derived_Type
13975 and then not Is_Null_Extension (Derived_Type)))
13976 and then No (Actual_Subp)
13977 then
13978 if not Is_Tagged_Type (Derived_Type)
13979 or else Is_Abstract_Type (Derived_Type)
13980 or else Is_Abstract_Subprogram (Alias (New_Subp))
13981 then
13982 Set_Is_Abstract_Subprogram (New_Subp);
13983 else
13984 Set_Requires_Overriding (New_Subp);
13985 end if;
13986
13987 elsif Ada_Version < Ada_2005
13988 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13989 or else (Is_Tagged_Type (Derived_Type)
13990 and then Etype (New_Subp) = Derived_Type
13991 and then No (Actual_Subp)))
13992 then
13993 Set_Is_Abstract_Subprogram (New_Subp);
13994
13995 -- AI05-0097 : an inherited operation that dispatches on result is
13996 -- abstract if the derived type is abstract, even if the parent type
13997 -- is concrete and the derived type is a null extension.
13998
13999 elsif Has_Controlling_Result (Alias (New_Subp))
14000 and then Is_Abstract_Type (Etype (New_Subp))
14001 then
14002 Set_Is_Abstract_Subprogram (New_Subp);
14003
14004 -- Finally, if the parent type is abstract we must verify that all
14005 -- inherited operations are either non-abstract or overridden, or that
14006 -- the derived type itself is abstract (this check is performed at the
14007 -- end of a package declaration, in Check_Abstract_Overriding). A
14008 -- private overriding in the parent type will not be visible in the
14009 -- derivation if we are not in an inner package or in a child unit of
14010 -- the parent type, in which case the abstractness of the inherited
14011 -- operation is carried to the new subprogram.
14012
14013 elsif Is_Abstract_Type (Parent_Type)
14014 and then not In_Open_Scopes (Scope (Parent_Type))
14015 and then Is_Private_Overriding
14016 and then Is_Abstract_Subprogram (Visible_Subp)
14017 then
14018 if No (Actual_Subp) then
14019 Set_Alias (New_Subp, Visible_Subp);
14020 Set_Is_Abstract_Subprogram (New_Subp, True);
14021
14022 else
14023 -- If this is a derivation for an instance of a formal derived
14024 -- type, abstractness comes from the primitive operation of the
14025 -- actual, not from the operation inherited from the ancestor.
14026
14027 Set_Is_Abstract_Subprogram
14028 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14029 end if;
14030 end if;
14031
14032 New_Overloaded_Entity (New_Subp, Derived_Type);
14033
14034 -- Check for case of a derived subprogram for the instantiation of a
14035 -- formal derived tagged type, if so mark the subprogram as dispatching
14036 -- and inherit the dispatching attributes of the actual subprogram. The
14037 -- derived subprogram is effectively renaming of the actual subprogram,
14038 -- so it needs to have the same attributes as the actual.
14039
14040 if Present (Actual_Subp)
14041 and then Is_Dispatching_Operation (Actual_Subp)
14042 then
14043 Set_Is_Dispatching_Operation (New_Subp);
14044
14045 if Present (DTC_Entity (Actual_Subp)) then
14046 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14047 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14048 end if;
14049 end if;
14050
14051 -- Indicate that a derived subprogram does not require a body and that
14052 -- it does not require processing of default expressions.
14053
14054 Set_Has_Completion (New_Subp);
14055 Set_Default_Expressions_Processed (New_Subp);
14056
14057 if Ekind (New_Subp) = E_Function then
14058 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14059 end if;
14060 end Derive_Subprogram;
14061
14062 ------------------------
14063 -- Derive_Subprograms --
14064 ------------------------
14065
14066 procedure Derive_Subprograms
14067 (Parent_Type : Entity_Id;
14068 Derived_Type : Entity_Id;
14069 Generic_Actual : Entity_Id := Empty)
14070 is
14071 Op_List : constant Elist_Id :=
14072 Collect_Primitive_Operations (Parent_Type);
14073
14074 function Check_Derived_Type return Boolean;
14075 -- Check that all the entities derived from Parent_Type are found in
14076 -- the list of primitives of Derived_Type exactly in the same order.
14077
14078 procedure Derive_Interface_Subprogram
14079 (New_Subp : in out Entity_Id;
14080 Subp : Entity_Id;
14081 Actual_Subp : Entity_Id);
14082 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14083 -- (which is an interface primitive). If Generic_Actual is present then
14084 -- Actual_Subp is the actual subprogram corresponding with the generic
14085 -- subprogram Subp.
14086
14087 function Check_Derived_Type return Boolean is
14088 E : Entity_Id;
14089 Elmt : Elmt_Id;
14090 List : Elist_Id;
14091 New_Subp : Entity_Id;
14092 Op_Elmt : Elmt_Id;
14093 Subp : Entity_Id;
14094
14095 begin
14096 -- Traverse list of entities in the current scope searching for
14097 -- an incomplete type whose full-view is derived type
14098
14099 E := First_Entity (Scope (Derived_Type));
14100 while Present (E) and then E /= Derived_Type loop
14101 if Ekind (E) = E_Incomplete_Type
14102 and then Present (Full_View (E))
14103 and then Full_View (E) = Derived_Type
14104 then
14105 -- Disable this test if Derived_Type completes an incomplete
14106 -- type because in such case more primitives can be added
14107 -- later to the list of primitives of Derived_Type by routine
14108 -- Process_Incomplete_Dependents
14109
14110 return True;
14111 end if;
14112
14113 E := Next_Entity (E);
14114 end loop;
14115
14116 List := Collect_Primitive_Operations (Derived_Type);
14117 Elmt := First_Elmt (List);
14118
14119 Op_Elmt := First_Elmt (Op_List);
14120 while Present (Op_Elmt) loop
14121 Subp := Node (Op_Elmt);
14122 New_Subp := Node (Elmt);
14123
14124 -- At this early stage Derived_Type has no entities with attribute
14125 -- Interface_Alias. In addition, such primitives are always
14126 -- located at the end of the list of primitives of Parent_Type.
14127 -- Therefore, if found we can safely stop processing pending
14128 -- entities.
14129
14130 exit when Present (Interface_Alias (Subp));
14131
14132 -- Handle hidden entities
14133
14134 if not Is_Predefined_Dispatching_Operation (Subp)
14135 and then Is_Hidden (Subp)
14136 then
14137 if Present (New_Subp)
14138 and then Primitive_Names_Match (Subp, New_Subp)
14139 then
14140 Next_Elmt (Elmt);
14141 end if;
14142
14143 else
14144 if not Present (New_Subp)
14145 or else Ekind (Subp) /= Ekind (New_Subp)
14146 or else not Primitive_Names_Match (Subp, New_Subp)
14147 then
14148 return False;
14149 end if;
14150
14151 Next_Elmt (Elmt);
14152 end if;
14153
14154 Next_Elmt (Op_Elmt);
14155 end loop;
14156
14157 return True;
14158 end Check_Derived_Type;
14159
14160 ---------------------------------
14161 -- Derive_Interface_Subprogram --
14162 ---------------------------------
14163
14164 procedure Derive_Interface_Subprogram
14165 (New_Subp : in out Entity_Id;
14166 Subp : Entity_Id;
14167 Actual_Subp : Entity_Id)
14168 is
14169 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14170 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14171
14172 begin
14173 pragma Assert (Is_Interface (Iface_Type));
14174
14175 Derive_Subprogram
14176 (New_Subp => New_Subp,
14177 Parent_Subp => Iface_Subp,
14178 Derived_Type => Derived_Type,
14179 Parent_Type => Iface_Type,
14180 Actual_Subp => Actual_Subp);
14181
14182 -- Given that this new interface entity corresponds with a primitive
14183 -- of the parent that was not overridden we must leave it associated
14184 -- with its parent primitive to ensure that it will share the same
14185 -- dispatch table slot when overridden.
14186
14187 if No (Actual_Subp) then
14188 Set_Alias (New_Subp, Subp);
14189
14190 -- For instantiations this is not needed since the previous call to
14191 -- Derive_Subprogram leaves the entity well decorated.
14192
14193 else
14194 pragma Assert (Alias (New_Subp) = Actual_Subp);
14195 null;
14196 end if;
14197 end Derive_Interface_Subprogram;
14198
14199 -- Local variables
14200
14201 Alias_Subp : Entity_Id;
14202 Act_List : Elist_Id;
14203 Act_Elmt : Elmt_Id;
14204 Act_Subp : Entity_Id := Empty;
14205 Elmt : Elmt_Id;
14206 Need_Search : Boolean := False;
14207 New_Subp : Entity_Id := Empty;
14208 Parent_Base : Entity_Id;
14209 Subp : Entity_Id;
14210
14211 -- Start of processing for Derive_Subprograms
14212
14213 begin
14214 if Ekind (Parent_Type) = E_Record_Type_With_Private
14215 and then Has_Discriminants (Parent_Type)
14216 and then Present (Full_View (Parent_Type))
14217 then
14218 Parent_Base := Full_View (Parent_Type);
14219 else
14220 Parent_Base := Parent_Type;
14221 end if;
14222
14223 if Present (Generic_Actual) then
14224 Act_List := Collect_Primitive_Operations (Generic_Actual);
14225 Act_Elmt := First_Elmt (Act_List);
14226 else
14227 Act_List := No_Elist;
14228 Act_Elmt := No_Elmt;
14229 end if;
14230
14231 -- Derive primitives inherited from the parent. Note that if the generic
14232 -- actual is present, this is not really a type derivation, it is a
14233 -- completion within an instance.
14234
14235 -- Case 1: Derived_Type does not implement interfaces
14236
14237 if not Is_Tagged_Type (Derived_Type)
14238 or else (not Has_Interfaces (Derived_Type)
14239 and then not (Present (Generic_Actual)
14240 and then Has_Interfaces (Generic_Actual)))
14241 then
14242 Elmt := First_Elmt (Op_List);
14243 while Present (Elmt) loop
14244 Subp := Node (Elmt);
14245
14246 -- Literals are derived earlier in the process of building the
14247 -- derived type, and are skipped here.
14248
14249 if Ekind (Subp) = E_Enumeration_Literal then
14250 null;
14251
14252 -- The actual is a direct descendant and the common primitive
14253 -- operations appear in the same order.
14254
14255 -- If the generic parent type is present, the derived type is an
14256 -- instance of a formal derived type, and within the instance its
14257 -- operations are those of the actual. We derive from the formal
14258 -- type but make the inherited operations aliases of the
14259 -- corresponding operations of the actual.
14260
14261 else
14262 pragma Assert (No (Node (Act_Elmt))
14263 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14264 and then
14265 Type_Conformant
14266 (Subp, Node (Act_Elmt),
14267 Skip_Controlling_Formals => True)));
14268
14269 Derive_Subprogram
14270 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14271
14272 if Present (Act_Elmt) then
14273 Next_Elmt (Act_Elmt);
14274 end if;
14275 end if;
14276
14277 Next_Elmt (Elmt);
14278 end loop;
14279
14280 -- Case 2: Derived_Type implements interfaces
14281
14282 else
14283 -- If the parent type has no predefined primitives we remove
14284 -- predefined primitives from the list of primitives of generic
14285 -- actual to simplify the complexity of this algorithm.
14286
14287 if Present (Generic_Actual) then
14288 declare
14289 Has_Predefined_Primitives : Boolean := False;
14290
14291 begin
14292 -- Check if the parent type has predefined primitives
14293
14294 Elmt := First_Elmt (Op_List);
14295 while Present (Elmt) loop
14296 Subp := Node (Elmt);
14297
14298 if Is_Predefined_Dispatching_Operation (Subp)
14299 and then not Comes_From_Source (Ultimate_Alias (Subp))
14300 then
14301 Has_Predefined_Primitives := True;
14302 exit;
14303 end if;
14304
14305 Next_Elmt (Elmt);
14306 end loop;
14307
14308 -- Remove predefined primitives of Generic_Actual. We must use
14309 -- an auxiliary list because in case of tagged types the value
14310 -- returned by Collect_Primitive_Operations is the value stored
14311 -- in its Primitive_Operations attribute (and we don't want to
14312 -- modify its current contents).
14313
14314 if not Has_Predefined_Primitives then
14315 declare
14316 Aux_List : constant Elist_Id := New_Elmt_List;
14317
14318 begin
14319 Elmt := First_Elmt (Act_List);
14320 while Present (Elmt) loop
14321 Subp := Node (Elmt);
14322
14323 if not Is_Predefined_Dispatching_Operation (Subp)
14324 or else Comes_From_Source (Subp)
14325 then
14326 Append_Elmt (Subp, Aux_List);
14327 end if;
14328
14329 Next_Elmt (Elmt);
14330 end loop;
14331
14332 Act_List := Aux_List;
14333 end;
14334 end if;
14335
14336 Act_Elmt := First_Elmt (Act_List);
14337 Act_Subp := Node (Act_Elmt);
14338 end;
14339 end if;
14340
14341 -- Stage 1: If the generic actual is not present we derive the
14342 -- primitives inherited from the parent type. If the generic parent
14343 -- type is present, the derived type is an instance of a formal
14344 -- derived type, and within the instance its operations are those of
14345 -- the actual. We derive from the formal type but make the inherited
14346 -- operations aliases of the corresponding operations of the actual.
14347
14348 Elmt := First_Elmt (Op_List);
14349 while Present (Elmt) loop
14350 Subp := Node (Elmt);
14351 Alias_Subp := Ultimate_Alias (Subp);
14352
14353 -- Do not derive internal entities of the parent that link
14354 -- interface primitives with their covering primitive. These
14355 -- entities will be added to this type when frozen.
14356
14357 if Present (Interface_Alias (Subp)) then
14358 goto Continue;
14359 end if;
14360
14361 -- If the generic actual is present find the corresponding
14362 -- operation in the generic actual. If the parent type is a
14363 -- direct ancestor of the derived type then, even if it is an
14364 -- interface, the operations are inherited from the primary
14365 -- dispatch table and are in the proper order. If we detect here
14366 -- that primitives are not in the same order we traverse the list
14367 -- of primitive operations of the actual to find the one that
14368 -- implements the interface primitive.
14369
14370 if Need_Search
14371 or else
14372 (Present (Generic_Actual)
14373 and then Present (Act_Subp)
14374 and then not
14375 (Primitive_Names_Match (Subp, Act_Subp)
14376 and then
14377 Type_Conformant (Subp, Act_Subp,
14378 Skip_Controlling_Formals => True)))
14379 then
14380 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14381 Use_Full_View => True));
14382
14383 -- Remember that we need searching for all pending primitives
14384
14385 Need_Search := True;
14386
14387 -- Handle entities associated with interface primitives
14388
14389 if Present (Alias_Subp)
14390 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14391 and then not Is_Predefined_Dispatching_Operation (Subp)
14392 then
14393 -- Search for the primitive in the homonym chain
14394
14395 Act_Subp :=
14396 Find_Primitive_Covering_Interface
14397 (Tagged_Type => Generic_Actual,
14398 Iface_Prim => Alias_Subp);
14399
14400 -- Previous search may not locate primitives covering
14401 -- interfaces defined in generics units or instantiations.
14402 -- (it fails if the covering primitive has formals whose
14403 -- type is also defined in generics or instantiations).
14404 -- In such case we search in the list of primitives of the
14405 -- generic actual for the internal entity that links the
14406 -- interface primitive and the covering primitive.
14407
14408 if No (Act_Subp)
14409 and then Is_Generic_Type (Parent_Type)
14410 then
14411 -- This code has been designed to handle only generic
14412 -- formals that implement interfaces that are defined
14413 -- in a generic unit or instantiation. If this code is
14414 -- needed for other cases we must review it because
14415 -- (given that it relies on Original_Location to locate
14416 -- the primitive of Generic_Actual that covers the
14417 -- interface) it could leave linked through attribute
14418 -- Alias entities of unrelated instantiations).
14419
14420 pragma Assert
14421 (Is_Generic_Unit
14422 (Scope (Find_Dispatching_Type (Alias_Subp)))
14423 or else
14424 Instantiation_Depth
14425 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14426
14427 declare
14428 Iface_Prim_Loc : constant Source_Ptr :=
14429 Original_Location (Sloc (Alias_Subp));
14430
14431 Elmt : Elmt_Id;
14432 Prim : Entity_Id;
14433
14434 begin
14435 Elmt :=
14436 First_Elmt (Primitive_Operations (Generic_Actual));
14437
14438 Search : while Present (Elmt) loop
14439 Prim := Node (Elmt);
14440
14441 if Present (Interface_Alias (Prim))
14442 and then Original_Location
14443 (Sloc (Interface_Alias (Prim))) =
14444 Iface_Prim_Loc
14445 then
14446 Act_Subp := Alias (Prim);
14447 exit Search;
14448 end if;
14449
14450 Next_Elmt (Elmt);
14451 end loop Search;
14452 end;
14453 end if;
14454
14455 pragma Assert (Present (Act_Subp)
14456 or else Is_Abstract_Type (Generic_Actual)
14457 or else Serious_Errors_Detected > 0);
14458
14459 -- Handle predefined primitives plus the rest of user-defined
14460 -- primitives
14461
14462 else
14463 Act_Elmt := First_Elmt (Act_List);
14464 while Present (Act_Elmt) loop
14465 Act_Subp := Node (Act_Elmt);
14466
14467 exit when Primitive_Names_Match (Subp, Act_Subp)
14468 and then Type_Conformant
14469 (Subp, Act_Subp,
14470 Skip_Controlling_Formals => True)
14471 and then No (Interface_Alias (Act_Subp));
14472
14473 Next_Elmt (Act_Elmt);
14474 end loop;
14475
14476 if No (Act_Elmt) then
14477 Act_Subp := Empty;
14478 end if;
14479 end if;
14480 end if;
14481
14482 -- Case 1: If the parent is a limited interface then it has the
14483 -- predefined primitives of synchronized interfaces. However, the
14484 -- actual type may be a non-limited type and hence it does not
14485 -- have such primitives.
14486
14487 if Present (Generic_Actual)
14488 and then not Present (Act_Subp)
14489 and then Is_Limited_Interface (Parent_Base)
14490 and then Is_Predefined_Interface_Primitive (Subp)
14491 then
14492 null;
14493
14494 -- Case 2: Inherit entities associated with interfaces that were
14495 -- not covered by the parent type. We exclude here null interface
14496 -- primitives because they do not need special management.
14497
14498 -- We also exclude interface operations that are renamings. If the
14499 -- subprogram is an explicit renaming of an interface primitive,
14500 -- it is a regular primitive operation, and the presence of its
14501 -- alias is not relevant: it has to be derived like any other
14502 -- primitive.
14503
14504 elsif Present (Alias (Subp))
14505 and then Nkind (Unit_Declaration_Node (Subp)) /=
14506 N_Subprogram_Renaming_Declaration
14507 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14508 and then not
14509 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14510 and then Null_Present (Parent (Alias_Subp)))
14511 then
14512 -- If this is an abstract private type then we transfer the
14513 -- derivation of the interface primitive from the partial view
14514 -- to the full view. This is safe because all the interfaces
14515 -- must be visible in the partial view. Done to avoid adding
14516 -- a new interface derivation to the private part of the
14517 -- enclosing package; otherwise this new derivation would be
14518 -- decorated as hidden when the analysis of the enclosing
14519 -- package completes.
14520
14521 if Is_Abstract_Type (Derived_Type)
14522 and then In_Private_Part (Current_Scope)
14523 and then Has_Private_Declaration (Derived_Type)
14524 then
14525 declare
14526 Partial_View : Entity_Id;
14527 Elmt : Elmt_Id;
14528 Ent : Entity_Id;
14529
14530 begin
14531 Partial_View := First_Entity (Current_Scope);
14532 loop
14533 exit when No (Partial_View)
14534 or else (Has_Private_Declaration (Partial_View)
14535 and then
14536 Full_View (Partial_View) = Derived_Type);
14537
14538 Next_Entity (Partial_View);
14539 end loop;
14540
14541 -- If the partial view was not found then the source code
14542 -- has errors and the derivation is not needed.
14543
14544 if Present (Partial_View) then
14545 Elmt :=
14546 First_Elmt (Primitive_Operations (Partial_View));
14547 while Present (Elmt) loop
14548 Ent := Node (Elmt);
14549
14550 if Present (Alias (Ent))
14551 and then Ultimate_Alias (Ent) = Alias (Subp)
14552 then
14553 Append_Elmt
14554 (Ent, Primitive_Operations (Derived_Type));
14555 exit;
14556 end if;
14557
14558 Next_Elmt (Elmt);
14559 end loop;
14560
14561 -- If the interface primitive was not found in the
14562 -- partial view then this interface primitive was
14563 -- overridden. We add a derivation to activate in
14564 -- Derive_Progenitor_Subprograms the machinery to
14565 -- search for it.
14566
14567 if No (Elmt) then
14568 Derive_Interface_Subprogram
14569 (New_Subp => New_Subp,
14570 Subp => Subp,
14571 Actual_Subp => Act_Subp);
14572 end if;
14573 end if;
14574 end;
14575 else
14576 Derive_Interface_Subprogram
14577 (New_Subp => New_Subp,
14578 Subp => Subp,
14579 Actual_Subp => Act_Subp);
14580 end if;
14581
14582 -- Case 3: Common derivation
14583
14584 else
14585 Derive_Subprogram
14586 (New_Subp => New_Subp,
14587 Parent_Subp => Subp,
14588 Derived_Type => Derived_Type,
14589 Parent_Type => Parent_Base,
14590 Actual_Subp => Act_Subp);
14591 end if;
14592
14593 -- No need to update Act_Elm if we must search for the
14594 -- corresponding operation in the generic actual
14595
14596 if not Need_Search
14597 and then Present (Act_Elmt)
14598 then
14599 Next_Elmt (Act_Elmt);
14600 Act_Subp := Node (Act_Elmt);
14601 end if;
14602
14603 <<Continue>>
14604 Next_Elmt (Elmt);
14605 end loop;
14606
14607 -- Inherit additional operations from progenitors. If the derived
14608 -- type is a generic actual, there are not new primitive operations
14609 -- for the type because it has those of the actual, and therefore
14610 -- nothing needs to be done. The renamings generated above are not
14611 -- primitive operations, and their purpose is simply to make the
14612 -- proper operations visible within an instantiation.
14613
14614 if No (Generic_Actual) then
14615 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14616 end if;
14617 end if;
14618
14619 -- Final check: Direct descendants must have their primitives in the
14620 -- same order. We exclude from this test untagged types and instances
14621 -- of formal derived types. We skip this test if we have already
14622 -- reported serious errors in the sources.
14623
14624 pragma Assert (not Is_Tagged_Type (Derived_Type)
14625 or else Present (Generic_Actual)
14626 or else Serious_Errors_Detected > 0
14627 or else Check_Derived_Type);
14628 end Derive_Subprograms;
14629
14630 --------------------------------
14631 -- Derived_Standard_Character --
14632 --------------------------------
14633
14634 procedure Derived_Standard_Character
14635 (N : Node_Id;
14636 Parent_Type : Entity_Id;
14637 Derived_Type : Entity_Id)
14638 is
14639 Loc : constant Source_Ptr := Sloc (N);
14640 Def : constant Node_Id := Type_Definition (N);
14641 Indic : constant Node_Id := Subtype_Indication (Def);
14642 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14643 Implicit_Base : constant Entity_Id :=
14644 Create_Itype
14645 (E_Enumeration_Type, N, Derived_Type, 'B');
14646
14647 Lo : Node_Id;
14648 Hi : Node_Id;
14649
14650 begin
14651 Discard_Node (Process_Subtype (Indic, N));
14652
14653 Set_Etype (Implicit_Base, Parent_Base);
14654 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14655 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14656
14657 Set_Is_Character_Type (Implicit_Base, True);
14658 Set_Has_Delayed_Freeze (Implicit_Base);
14659
14660 -- The bounds of the implicit base are the bounds of the parent base.
14661 -- Note that their type is the parent base.
14662
14663 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14664 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14665
14666 Set_Scalar_Range (Implicit_Base,
14667 Make_Range (Loc,
14668 Low_Bound => Lo,
14669 High_Bound => Hi));
14670
14671 Conditional_Delay (Derived_Type, Parent_Type);
14672
14673 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14674 Set_Etype (Derived_Type, Implicit_Base);
14675 Set_Size_Info (Derived_Type, Parent_Type);
14676
14677 if Unknown_RM_Size (Derived_Type) then
14678 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14679 end if;
14680
14681 Set_Is_Character_Type (Derived_Type, True);
14682
14683 if Nkind (Indic) /= N_Subtype_Indication then
14684
14685 -- If no explicit constraint, the bounds are those
14686 -- of the parent type.
14687
14688 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14689 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14690 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14691 end if;
14692
14693 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14694
14695 -- Because the implicit base is used in the conversion of the bounds, we
14696 -- have to freeze it now. This is similar to what is done for numeric
14697 -- types, and it equally suspicious, but otherwise a non-static bound
14698 -- will have a reference to an unfrozen type, which is rejected by Gigi
14699 -- (???). This requires specific care for definition of stream
14700 -- attributes. For details, see comments at the end of
14701 -- Build_Derived_Numeric_Type.
14702
14703 Freeze_Before (N, Implicit_Base);
14704 end Derived_Standard_Character;
14705
14706 ------------------------------
14707 -- Derived_Type_Declaration --
14708 ------------------------------
14709
14710 procedure Derived_Type_Declaration
14711 (T : Entity_Id;
14712 N : Node_Id;
14713 Is_Completion : Boolean)
14714 is
14715 Parent_Type : Entity_Id;
14716
14717 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14718 -- Check whether the parent type is a generic formal, or derives
14719 -- directly or indirectly from one.
14720
14721 ------------------------
14722 -- Comes_From_Generic --
14723 ------------------------
14724
14725 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14726 begin
14727 if Is_Generic_Type (Typ) then
14728 return True;
14729
14730 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14731 return True;
14732
14733 elsif Is_Private_Type (Typ)
14734 and then Present (Full_View (Typ))
14735 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14736 then
14737 return True;
14738
14739 elsif Is_Generic_Actual_Type (Typ) then
14740 return True;
14741
14742 else
14743 return False;
14744 end if;
14745 end Comes_From_Generic;
14746
14747 -- Local variables
14748
14749 Def : constant Node_Id := Type_Definition (N);
14750 Iface_Def : Node_Id;
14751 Indic : constant Node_Id := Subtype_Indication (Def);
14752 Extension : constant Node_Id := Record_Extension_Part (Def);
14753 Parent_Node : Node_Id;
14754 Taggd : Boolean;
14755
14756 -- Start of processing for Derived_Type_Declaration
14757
14758 begin
14759 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14760
14761 -- Ada 2005 (AI-251): In case of interface derivation check that the
14762 -- parent is also an interface.
14763
14764 if Interface_Present (Def) then
14765 Check_SPARK_Restriction ("interface is not allowed", Def);
14766
14767 if not Is_Interface (Parent_Type) then
14768 Diagnose_Interface (Indic, Parent_Type);
14769
14770 else
14771 Parent_Node := Parent (Base_Type (Parent_Type));
14772 Iface_Def := Type_Definition (Parent_Node);
14773
14774 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14775 -- other limited interfaces.
14776
14777 if Limited_Present (Def) then
14778 if Limited_Present (Iface_Def) then
14779 null;
14780
14781 elsif Protected_Present (Iface_Def) then
14782 Error_Msg_NE
14783 ("descendant of& must be declared"
14784 & " as a protected interface",
14785 N, Parent_Type);
14786
14787 elsif Synchronized_Present (Iface_Def) then
14788 Error_Msg_NE
14789 ("descendant of& must be declared"
14790 & " as a synchronized interface",
14791 N, Parent_Type);
14792
14793 elsif Task_Present (Iface_Def) then
14794 Error_Msg_NE
14795 ("descendant of& must be declared as a task interface",
14796 N, Parent_Type);
14797
14798 else
14799 Error_Msg_N
14800 ("(Ada 2005) limited interface cannot "
14801 & "inherit from non-limited interface", Indic);
14802 end if;
14803
14804 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14805 -- from non-limited or limited interfaces.
14806
14807 elsif not Protected_Present (Def)
14808 and then not Synchronized_Present (Def)
14809 and then not Task_Present (Def)
14810 then
14811 if Limited_Present (Iface_Def) then
14812 null;
14813
14814 elsif Protected_Present (Iface_Def) then
14815 Error_Msg_NE
14816 ("descendant of& must be declared"
14817 & " as a protected interface",
14818 N, Parent_Type);
14819
14820 elsif Synchronized_Present (Iface_Def) then
14821 Error_Msg_NE
14822 ("descendant of& must be declared"
14823 & " as a synchronized interface",
14824 N, Parent_Type);
14825
14826 elsif Task_Present (Iface_Def) then
14827 Error_Msg_NE
14828 ("descendant of& must be declared as a task interface",
14829 N, Parent_Type);
14830 else
14831 null;
14832 end if;
14833 end if;
14834 end if;
14835 end if;
14836
14837 if Is_Tagged_Type (Parent_Type)
14838 and then Is_Concurrent_Type (Parent_Type)
14839 and then not Is_Interface (Parent_Type)
14840 then
14841 Error_Msg_N
14842 ("parent type of a record extension cannot be "
14843 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14844 Set_Etype (T, Any_Type);
14845 return;
14846 end if;
14847
14848 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14849 -- interfaces
14850
14851 if Is_Tagged_Type (Parent_Type)
14852 and then Is_Non_Empty_List (Interface_List (Def))
14853 then
14854 declare
14855 Intf : Node_Id;
14856 T : Entity_Id;
14857
14858 begin
14859 Intf := First (Interface_List (Def));
14860 while Present (Intf) loop
14861 T := Find_Type_Of_Subtype_Indic (Intf);
14862
14863 if not Is_Interface (T) then
14864 Diagnose_Interface (Intf, T);
14865
14866 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14867 -- a limited type from having a nonlimited progenitor.
14868
14869 elsif (Limited_Present (Def)
14870 or else (not Is_Interface (Parent_Type)
14871 and then Is_Limited_Type (Parent_Type)))
14872 and then not Is_Limited_Interface (T)
14873 then
14874 Error_Msg_NE
14875 ("progenitor interface& of limited type must be limited",
14876 N, T);
14877 end if;
14878
14879 Next (Intf);
14880 end loop;
14881 end;
14882 end if;
14883
14884 if Parent_Type = Any_Type
14885 or else Etype (Parent_Type) = Any_Type
14886 or else (Is_Class_Wide_Type (Parent_Type)
14887 and then Etype (Parent_Type) = T)
14888 then
14889 -- If Parent_Type is undefined or illegal, make new type into a
14890 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14891 -- errors. If this is a self-definition, emit error now.
14892
14893 if T = Parent_Type
14894 or else T = Etype (Parent_Type)
14895 then
14896 Error_Msg_N ("type cannot be used in its own definition", Indic);
14897 end if;
14898
14899 Set_Ekind (T, Ekind (Parent_Type));
14900 Set_Etype (T, Any_Type);
14901 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14902
14903 if Is_Tagged_Type (T)
14904 and then Is_Record_Type (T)
14905 then
14906 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14907 end if;
14908
14909 return;
14910 end if;
14911
14912 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14913 -- an interface is special because the list of interfaces in the full
14914 -- view can be given in any order. For example:
14915
14916 -- type A is interface;
14917 -- type B is interface and A;
14918 -- type D is new B with private;
14919 -- private
14920 -- type D is new A and B with null record; -- 1 --
14921
14922 -- In this case we perform the following transformation of -1-:
14923
14924 -- type D is new B and A with null record;
14925
14926 -- If the parent of the full-view covers the parent of the partial-view
14927 -- we have two possible cases:
14928
14929 -- 1) They have the same parent
14930 -- 2) The parent of the full-view implements some further interfaces
14931
14932 -- In both cases we do not need to perform the transformation. In the
14933 -- first case the source program is correct and the transformation is
14934 -- not needed; in the second case the source program does not fulfill
14935 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14936 -- later.
14937
14938 -- This transformation not only simplifies the rest of the analysis of
14939 -- this type declaration but also simplifies the correct generation of
14940 -- the object layout to the expander.
14941
14942 if In_Private_Part (Current_Scope)
14943 and then Is_Interface (Parent_Type)
14944 then
14945 declare
14946 Iface : Node_Id;
14947 Partial_View : Entity_Id;
14948 Partial_View_Parent : Entity_Id;
14949 New_Iface : Node_Id;
14950
14951 begin
14952 -- Look for the associated private type declaration
14953
14954 Partial_View := First_Entity (Current_Scope);
14955 loop
14956 exit when No (Partial_View)
14957 or else (Has_Private_Declaration (Partial_View)
14958 and then Full_View (Partial_View) = T);
14959
14960 Next_Entity (Partial_View);
14961 end loop;
14962
14963 -- If the partial view was not found then the source code has
14964 -- errors and the transformation is not needed.
14965
14966 if Present (Partial_View) then
14967 Partial_View_Parent := Etype (Partial_View);
14968
14969 -- If the parent of the full-view covers the parent of the
14970 -- partial-view we have nothing else to do.
14971
14972 if Interface_Present_In_Ancestor
14973 (Parent_Type, Partial_View_Parent)
14974 then
14975 null;
14976
14977 -- Traverse the list of interfaces of the full-view to look
14978 -- for the parent of the partial-view and perform the tree
14979 -- transformation.
14980
14981 else
14982 Iface := First (Interface_List (Def));
14983 while Present (Iface) loop
14984 if Etype (Iface) = Etype (Partial_View) then
14985 Rewrite (Subtype_Indication (Def),
14986 New_Copy (Subtype_Indication
14987 (Parent (Partial_View))));
14988
14989 New_Iface :=
14990 Make_Identifier (Sloc (N), Chars (Parent_Type));
14991 Append (New_Iface, Interface_List (Def));
14992
14993 -- Analyze the transformed code
14994
14995 Derived_Type_Declaration (T, N, Is_Completion);
14996 return;
14997 end if;
14998
14999 Next (Iface);
15000 end loop;
15001 end if;
15002 end if;
15003 end;
15004 end if;
15005
15006 -- Only composite types other than array types are allowed to have
15007 -- discriminants. In SPARK, no types are allowed to have discriminants.
15008
15009 if Present (Discriminant_Specifications (N)) then
15010 if (Is_Elementary_Type (Parent_Type)
15011 or else Is_Array_Type (Parent_Type))
15012 and then not Error_Posted (N)
15013 then
15014 Error_Msg_N
15015 ("elementary or array type cannot have discriminants",
15016 Defining_Identifier (First (Discriminant_Specifications (N))));
15017 Set_Has_Discriminants (T, False);
15018 else
15019 Check_SPARK_Restriction ("discriminant type is not allowed", N);
15020 end if;
15021 end if;
15022
15023 -- In Ada 83, a derived type defined in a package specification cannot
15024 -- be used for further derivation until the end of its visible part.
15025 -- Note that derivation in the private part of the package is allowed.
15026
15027 if Ada_Version = Ada_83
15028 and then Is_Derived_Type (Parent_Type)
15029 and then In_Visible_Part (Scope (Parent_Type))
15030 then
15031 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15032 Error_Msg_N
15033 ("(Ada 83): premature use of type for derivation", Indic);
15034 end if;
15035 end if;
15036
15037 -- Check for early use of incomplete or private type
15038
15039 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15040 Error_Msg_N ("premature derivation of incomplete type", Indic);
15041 return;
15042
15043 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15044 and then not Comes_From_Generic (Parent_Type))
15045 or else Has_Private_Component (Parent_Type)
15046 then
15047 -- The ancestor type of a formal type can be incomplete, in which
15048 -- case only the operations of the partial view are available in the
15049 -- generic. Subsequent checks may be required when the full view is
15050 -- analyzed to verify that a derivation from a tagged type has an
15051 -- extension.
15052
15053 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15054 null;
15055
15056 elsif No (Underlying_Type (Parent_Type))
15057 or else Has_Private_Component (Parent_Type)
15058 then
15059 Error_Msg_N
15060 ("premature derivation of derived or private type", Indic);
15061
15062 -- Flag the type itself as being in error, this prevents some
15063 -- nasty problems with subsequent uses of the malformed type.
15064
15065 Set_Error_Posted (T);
15066
15067 -- Check that within the immediate scope of an untagged partial
15068 -- view it's illegal to derive from the partial view if the
15069 -- full view is tagged. (7.3(7))
15070
15071 -- We verify that the Parent_Type is a partial view by checking
15072 -- that it is not a Full_Type_Declaration (i.e. a private type or
15073 -- private extension declaration), to distinguish a partial view
15074 -- from a derivation from a private type which also appears as
15075 -- E_Private_Type. If the parent base type is not declared in an
15076 -- enclosing scope there is no need to check.
15077
15078 elsif Present (Full_View (Parent_Type))
15079 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15080 and then not Is_Tagged_Type (Parent_Type)
15081 and then Is_Tagged_Type (Full_View (Parent_Type))
15082 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15083 then
15084 Error_Msg_N
15085 ("premature derivation from type with tagged full view",
15086 Indic);
15087 end if;
15088 end if;
15089
15090 -- Check that form of derivation is appropriate
15091
15092 Taggd := Is_Tagged_Type (Parent_Type);
15093
15094 -- Perhaps the parent type should be changed to the class-wide type's
15095 -- specific type in this case to prevent cascading errors ???
15096
15097 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15098 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15099 return;
15100 end if;
15101
15102 if Present (Extension) and then not Taggd then
15103 Error_Msg_N
15104 ("type derived from untagged type cannot have extension", Indic);
15105
15106 elsif No (Extension) and then Taggd then
15107
15108 -- If this declaration is within a private part (or body) of a
15109 -- generic instantiation then the derivation is allowed (the parent
15110 -- type can only appear tagged in this case if it's a generic actual
15111 -- type, since it would otherwise have been rejected in the analysis
15112 -- of the generic template).
15113
15114 if not Is_Generic_Actual_Type (Parent_Type)
15115 or else In_Visible_Part (Scope (Parent_Type))
15116 then
15117 if Is_Class_Wide_Type (Parent_Type) then
15118 Error_Msg_N
15119 ("parent type must not be a class-wide type", Indic);
15120
15121 -- Use specific type to prevent cascaded errors.
15122
15123 Parent_Type := Etype (Parent_Type);
15124
15125 else
15126 Error_Msg_N
15127 ("type derived from tagged type must have extension", Indic);
15128 end if;
15129 end if;
15130 end if;
15131
15132 -- AI-443: Synchronized formal derived types require a private
15133 -- extension. There is no point in checking the ancestor type or
15134 -- the progenitors since the construct is wrong to begin with.
15135
15136 if Ada_Version >= Ada_2005
15137 and then Is_Generic_Type (T)
15138 and then Present (Original_Node (N))
15139 then
15140 declare
15141 Decl : constant Node_Id := Original_Node (N);
15142
15143 begin
15144 if Nkind (Decl) = N_Formal_Type_Declaration
15145 and then Nkind (Formal_Type_Definition (Decl)) =
15146 N_Formal_Derived_Type_Definition
15147 and then Synchronized_Present (Formal_Type_Definition (Decl))
15148 and then No (Extension)
15149
15150 -- Avoid emitting a duplicate error message
15151
15152 and then not Error_Posted (Indic)
15153 then
15154 Error_Msg_N
15155 ("synchronized derived type must have extension", N);
15156 end if;
15157 end;
15158 end if;
15159
15160 if Null_Exclusion_Present (Def)
15161 and then not Is_Access_Type (Parent_Type)
15162 then
15163 Error_Msg_N ("null exclusion can only apply to an access type", N);
15164 end if;
15165
15166 -- Avoid deriving parent primitives of underlying record views
15167
15168 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15169 Derive_Subps => not Is_Underlying_Record_View (T));
15170
15171 -- AI-419: The parent type of an explicitly limited derived type must
15172 -- be a limited type or a limited interface.
15173
15174 if Limited_Present (Def) then
15175 Set_Is_Limited_Record (T);
15176
15177 if Is_Interface (T) then
15178 Set_Is_Limited_Interface (T);
15179 end if;
15180
15181 if not Is_Limited_Type (Parent_Type)
15182 and then
15183 (not Is_Interface (Parent_Type)
15184 or else not Is_Limited_Interface (Parent_Type))
15185 then
15186 -- AI05-0096: a derivation in the private part of an instance is
15187 -- legal if the generic formal is untagged limited, and the actual
15188 -- is non-limited.
15189
15190 if Is_Generic_Actual_Type (Parent_Type)
15191 and then In_Private_Part (Current_Scope)
15192 and then
15193 not Is_Tagged_Type
15194 (Generic_Parent_Type (Parent (Parent_Type)))
15195 then
15196 null;
15197
15198 else
15199 Error_Msg_NE
15200 ("parent type& of limited type must be limited",
15201 N, Parent_Type);
15202 end if;
15203 end if;
15204 end if;
15205
15206 -- In SPARK, there are no derived type definitions other than type
15207 -- extensions of tagged record types.
15208
15209 if No (Extension) then
15210 Check_SPARK_Restriction
15211 ("derived type is not allowed", Original_Node (N));
15212 end if;
15213 end Derived_Type_Declaration;
15214
15215 ------------------------
15216 -- Diagnose_Interface --
15217 ------------------------
15218
15219 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15220 begin
15221 if not Is_Interface (E)
15222 and then E /= Any_Type
15223 then
15224 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15225 end if;
15226 end Diagnose_Interface;
15227
15228 ----------------------------------
15229 -- Enumeration_Type_Declaration --
15230 ----------------------------------
15231
15232 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15233 Ev : Uint;
15234 L : Node_Id;
15235 R_Node : Node_Id;
15236 B_Node : Node_Id;
15237
15238 begin
15239 -- Create identifier node representing lower bound
15240
15241 B_Node := New_Node (N_Identifier, Sloc (Def));
15242 L := First (Literals (Def));
15243 Set_Chars (B_Node, Chars (L));
15244 Set_Entity (B_Node, L);
15245 Set_Etype (B_Node, T);
15246 Set_Is_Static_Expression (B_Node, True);
15247
15248 R_Node := New_Node (N_Range, Sloc (Def));
15249 Set_Low_Bound (R_Node, B_Node);
15250
15251 Set_Ekind (T, E_Enumeration_Type);
15252 Set_First_Literal (T, L);
15253 Set_Etype (T, T);
15254 Set_Is_Constrained (T);
15255
15256 Ev := Uint_0;
15257
15258 -- Loop through literals of enumeration type setting pos and rep values
15259 -- except that if the Ekind is already set, then it means the literal
15260 -- was already constructed (case of a derived type declaration and we
15261 -- should not disturb the Pos and Rep values.
15262
15263 while Present (L) loop
15264 if Ekind (L) /= E_Enumeration_Literal then
15265 Set_Ekind (L, E_Enumeration_Literal);
15266 Set_Enumeration_Pos (L, Ev);
15267 Set_Enumeration_Rep (L, Ev);
15268 Set_Is_Known_Valid (L, True);
15269 end if;
15270
15271 Set_Etype (L, T);
15272 New_Overloaded_Entity (L);
15273 Generate_Definition (L);
15274 Set_Convention (L, Convention_Intrinsic);
15275
15276 -- Case of character literal
15277
15278 if Nkind (L) = N_Defining_Character_Literal then
15279 Set_Is_Character_Type (T, True);
15280
15281 -- Check violation of No_Wide_Characters
15282
15283 if Restriction_Check_Required (No_Wide_Characters) then
15284 Get_Name_String (Chars (L));
15285
15286 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15287 Check_Restriction (No_Wide_Characters, L);
15288 end if;
15289 end if;
15290 end if;
15291
15292 Ev := Ev + 1;
15293 Next (L);
15294 end loop;
15295
15296 -- Now create a node representing upper bound
15297
15298 B_Node := New_Node (N_Identifier, Sloc (Def));
15299 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15300 Set_Entity (B_Node, Last (Literals (Def)));
15301 Set_Etype (B_Node, T);
15302 Set_Is_Static_Expression (B_Node, True);
15303
15304 Set_High_Bound (R_Node, B_Node);
15305
15306 -- Initialize various fields of the type. Some of this information
15307 -- may be overwritten later through rep.clauses.
15308
15309 Set_Scalar_Range (T, R_Node);
15310 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15311 Set_Enum_Esize (T);
15312 Set_Enum_Pos_To_Rep (T, Empty);
15313
15314 -- Set Discard_Names if configuration pragma set, or if there is
15315 -- a parameterless pragma in the current declarative region
15316
15317 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15318 Set_Discard_Names (T);
15319 end if;
15320
15321 -- Process end label if there is one
15322
15323 if Present (Def) then
15324 Process_End_Label (Def, 'e', T);
15325 end if;
15326 end Enumeration_Type_Declaration;
15327
15328 ---------------------------------
15329 -- Expand_To_Stored_Constraint --
15330 ---------------------------------
15331
15332 function Expand_To_Stored_Constraint
15333 (Typ : Entity_Id;
15334 Constraint : Elist_Id) return Elist_Id
15335 is
15336 Explicitly_Discriminated_Type : Entity_Id;
15337 Expansion : Elist_Id;
15338 Discriminant : Entity_Id;
15339
15340 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15341 -- Find the nearest type that actually specifies discriminants
15342
15343 ---------------------------------
15344 -- Type_With_Explicit_Discrims --
15345 ---------------------------------
15346
15347 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15348 Typ : constant E := Base_Type (Id);
15349
15350 begin
15351 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15352 if Present (Full_View (Typ)) then
15353 return Type_With_Explicit_Discrims (Full_View (Typ));
15354 end if;
15355
15356 else
15357 if Has_Discriminants (Typ) then
15358 return Typ;
15359 end if;
15360 end if;
15361
15362 if Etype (Typ) = Typ then
15363 return Empty;
15364 elsif Has_Discriminants (Typ) then
15365 return Typ;
15366 else
15367 return Type_With_Explicit_Discrims (Etype (Typ));
15368 end if;
15369
15370 end Type_With_Explicit_Discrims;
15371
15372 -- Start of processing for Expand_To_Stored_Constraint
15373
15374 begin
15375 if No (Constraint)
15376 or else Is_Empty_Elmt_List (Constraint)
15377 then
15378 return No_Elist;
15379 end if;
15380
15381 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15382
15383 if No (Explicitly_Discriminated_Type) then
15384 return No_Elist;
15385 end if;
15386
15387 Expansion := New_Elmt_List;
15388
15389 Discriminant :=
15390 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15391 while Present (Discriminant) loop
15392 Append_Elmt
15393 (Get_Discriminant_Value
15394 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15395 To => Expansion);
15396 Next_Stored_Discriminant (Discriminant);
15397 end loop;
15398
15399 return Expansion;
15400 end Expand_To_Stored_Constraint;
15401
15402 ---------------------------
15403 -- Find_Hidden_Interface --
15404 ---------------------------
15405
15406 function Find_Hidden_Interface
15407 (Src : Elist_Id;
15408 Dest : Elist_Id) return Entity_Id
15409 is
15410 Iface : Entity_Id;
15411 Iface_Elmt : Elmt_Id;
15412
15413 begin
15414 if Present (Src) and then Present (Dest) then
15415 Iface_Elmt := First_Elmt (Src);
15416 while Present (Iface_Elmt) loop
15417 Iface := Node (Iface_Elmt);
15418
15419 if Is_Interface (Iface)
15420 and then not Contain_Interface (Iface, Dest)
15421 then
15422 return Iface;
15423 end if;
15424
15425 Next_Elmt (Iface_Elmt);
15426 end loop;
15427 end if;
15428
15429 return Empty;
15430 end Find_Hidden_Interface;
15431
15432 --------------------
15433 -- Find_Type_Name --
15434 --------------------
15435
15436 function Find_Type_Name (N : Node_Id) return Entity_Id is
15437 Id : constant Entity_Id := Defining_Identifier (N);
15438 Prev : Entity_Id;
15439 New_Id : Entity_Id;
15440 Prev_Par : Node_Id;
15441
15442 procedure Check_Duplicate_Aspects;
15443 -- Check that aspects specified in a completion have not been specified
15444 -- already in the partial view. Type_Invariant and others can be
15445 -- specified on either view but never on both.
15446
15447 procedure Tag_Mismatch;
15448 -- Diagnose a tagged partial view whose full view is untagged.
15449 -- We post the message on the full view, with a reference to
15450 -- the previous partial view. The partial view can be private
15451 -- or incomplete, and these are handled in a different manner,
15452 -- so we determine the position of the error message from the
15453 -- respective slocs of both.
15454
15455 -----------------------------
15456 -- Check_Duplicate_Aspects --
15457 -----------------------------
15458 procedure Check_Duplicate_Aspects is
15459 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15460 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15461 F_Spec, P_Spec : Node_Id;
15462
15463 begin
15464 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15465 F_Spec := First (Full_Aspects);
15466 while Present (F_Spec) loop
15467 P_Spec := First (Prev_Aspects);
15468 while Present (P_Spec) loop
15469 if
15470 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15471 then
15472 Error_Msg_N
15473 ("aspect already specified in private declaration",
15474 F_Spec);
15475 Remove (F_Spec);
15476 return;
15477 end if;
15478
15479 Next (P_Spec);
15480 end loop;
15481
15482 Next (F_Spec);
15483 end loop;
15484 end if;
15485 end Check_Duplicate_Aspects;
15486
15487 ------------------
15488 -- Tag_Mismatch --
15489 ------------------
15490
15491 procedure Tag_Mismatch is
15492 begin
15493 if Sloc (Prev) < Sloc (Id) then
15494 if Ada_Version >= Ada_2012
15495 and then Nkind (N) = N_Private_Type_Declaration
15496 then
15497 Error_Msg_NE
15498 ("declaration of private } must be a tagged type ", Id, Prev);
15499 else
15500 Error_Msg_NE
15501 ("full declaration of } must be a tagged type ", Id, Prev);
15502 end if;
15503
15504 else
15505 if Ada_Version >= Ada_2012
15506 and then Nkind (N) = N_Private_Type_Declaration
15507 then
15508 Error_Msg_NE
15509 ("declaration of private } must be a tagged type ", Prev, Id);
15510 else
15511 Error_Msg_NE
15512 ("full declaration of } must be a tagged type ", Prev, Id);
15513 end if;
15514 end if;
15515 end Tag_Mismatch;
15516
15517 -- Start of processing for Find_Type_Name
15518
15519 begin
15520 -- Find incomplete declaration, if one was given
15521
15522 Prev := Current_Entity_In_Scope (Id);
15523
15524 -- New type declaration
15525
15526 if No (Prev) then
15527 Enter_Name (Id);
15528 return Id;
15529
15530 -- Previous declaration exists
15531
15532 else
15533 Prev_Par := Parent (Prev);
15534
15535 -- Error if not incomplete/private case except if previous
15536 -- declaration is implicit, etc. Enter_Name will emit error if
15537 -- appropriate.
15538
15539 if not Is_Incomplete_Or_Private_Type (Prev) then
15540 Enter_Name (Id);
15541 New_Id := Id;
15542
15543 -- Check invalid completion of private or incomplete type
15544
15545 elsif not Nkind_In (N, N_Full_Type_Declaration,
15546 N_Task_Type_Declaration,
15547 N_Protected_Type_Declaration)
15548 and then
15549 (Ada_Version < Ada_2012
15550 or else not Is_Incomplete_Type (Prev)
15551 or else not Nkind_In (N, N_Private_Type_Declaration,
15552 N_Private_Extension_Declaration))
15553 then
15554 -- Completion must be a full type declarations (RM 7.3(4))
15555
15556 Error_Msg_Sloc := Sloc (Prev);
15557 Error_Msg_NE ("invalid completion of }", Id, Prev);
15558
15559 -- Set scope of Id to avoid cascaded errors. Entity is never
15560 -- examined again, except when saving globals in generics.
15561
15562 Set_Scope (Id, Current_Scope);
15563 New_Id := Id;
15564
15565 -- If this is a repeated incomplete declaration, no further
15566 -- checks are possible.
15567
15568 if Nkind (N) = N_Incomplete_Type_Declaration then
15569 return Prev;
15570 end if;
15571
15572 -- Case of full declaration of incomplete type
15573
15574 elsif Ekind (Prev) = E_Incomplete_Type
15575 and then (Ada_Version < Ada_2012
15576 or else No (Full_View (Prev))
15577 or else not Is_Private_Type (Full_View (Prev)))
15578 then
15579 -- Indicate that the incomplete declaration has a matching full
15580 -- declaration. The defining occurrence of the incomplete
15581 -- declaration remains the visible one, and the procedure
15582 -- Get_Full_View dereferences it whenever the type is used.
15583
15584 if Present (Full_View (Prev)) then
15585 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15586 end if;
15587
15588 Set_Full_View (Prev, Id);
15589 Append_Entity (Id, Current_Scope);
15590 Set_Is_Public (Id, Is_Public (Prev));
15591 Set_Is_Internal (Id);
15592 New_Id := Prev;
15593
15594 -- If the incomplete view is tagged, a class_wide type has been
15595 -- created already. Use it for the private type as well, in order
15596 -- to prevent multiple incompatible class-wide types that may be
15597 -- created for self-referential anonymous access components.
15598
15599 if Is_Tagged_Type (Prev)
15600 and then Present (Class_Wide_Type (Prev))
15601 then
15602 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15603 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15604
15605 -- If the incomplete type is completed by a private declaration
15606 -- the class-wide type remains associated with the incomplete
15607 -- type, to prevent order-of-elaboration issues in gigi, else
15608 -- we associate the class-wide type with the known full view.
15609
15610 if Nkind (N) /= N_Private_Type_Declaration then
15611 Set_Etype (Class_Wide_Type (Id), Id);
15612 end if;
15613 end if;
15614
15615 -- Case of full declaration of private type
15616
15617 else
15618 -- If the private type was a completion of an incomplete type then
15619 -- update Prev to reference the private type
15620
15621 if Ada_Version >= Ada_2012
15622 and then Ekind (Prev) = E_Incomplete_Type
15623 and then Present (Full_View (Prev))
15624 and then Is_Private_Type (Full_View (Prev))
15625 then
15626 Prev := Full_View (Prev);
15627 Prev_Par := Parent (Prev);
15628 end if;
15629
15630 if Nkind (N) = N_Full_Type_Declaration
15631 and then Nkind_In
15632 (Type_Definition (N), N_Record_Definition,
15633 N_Derived_Type_Definition)
15634 and then Interface_Present (Type_Definition (N))
15635 then
15636 Error_Msg_N
15637 ("completion of private type cannot be an interface", N);
15638 end if;
15639
15640 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15641 if Etype (Prev) /= Prev then
15642
15643 -- Prev is a private subtype or a derived type, and needs
15644 -- no completion.
15645
15646 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15647 New_Id := Id;
15648
15649 elsif Ekind (Prev) = E_Private_Type
15650 and then Nkind_In (N, N_Task_Type_Declaration,
15651 N_Protected_Type_Declaration)
15652 then
15653 Error_Msg_N
15654 ("completion of nonlimited type cannot be limited", N);
15655
15656 elsif Ekind (Prev) = E_Record_Type_With_Private
15657 and then Nkind_In (N, N_Task_Type_Declaration,
15658 N_Protected_Type_Declaration)
15659 then
15660 if not Is_Limited_Record (Prev) then
15661 Error_Msg_N
15662 ("completion of nonlimited type cannot be limited", N);
15663
15664 elsif No (Interface_List (N)) then
15665 Error_Msg_N
15666 ("completion of tagged private type must be tagged",
15667 N);
15668 end if;
15669 end if;
15670
15671 -- Ada 2005 (AI-251): Private extension declaration of a task
15672 -- type or a protected type. This case arises when covering
15673 -- interface types.
15674
15675 elsif Nkind_In (N, N_Task_Type_Declaration,
15676 N_Protected_Type_Declaration)
15677 then
15678 null;
15679
15680 elsif Nkind (N) /= N_Full_Type_Declaration
15681 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15682 then
15683 Error_Msg_N
15684 ("full view of private extension must be an extension", N);
15685
15686 elsif not (Abstract_Present (Parent (Prev)))
15687 and then Abstract_Present (Type_Definition (N))
15688 then
15689 Error_Msg_N
15690 ("full view of non-abstract extension cannot be abstract", N);
15691 end if;
15692
15693 if not In_Private_Part (Current_Scope) then
15694 Error_Msg_N
15695 ("declaration of full view must appear in private part", N);
15696 end if;
15697
15698 if Ada_Version >= Ada_2012 then
15699 Check_Duplicate_Aspects;
15700 end if;
15701
15702 Copy_And_Swap (Prev, Id);
15703 Set_Has_Private_Declaration (Prev);
15704 Set_Has_Private_Declaration (Id);
15705
15706 -- Preserve aspect and iterator flags that may have been set on
15707 -- the partial view.
15708
15709 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15710 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15711
15712 -- If no error, propagate freeze_node from private to full view.
15713 -- It may have been generated for an early operational item.
15714
15715 if Present (Freeze_Node (Id))
15716 and then Serious_Errors_Detected = 0
15717 and then No (Full_View (Id))
15718 then
15719 Set_Freeze_Node (Prev, Freeze_Node (Id));
15720 Set_Freeze_Node (Id, Empty);
15721 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15722 end if;
15723
15724 Set_Full_View (Id, Prev);
15725 New_Id := Prev;
15726 end if;
15727
15728 -- Verify that full declaration conforms to partial one
15729
15730 if Is_Incomplete_Or_Private_Type (Prev)
15731 and then Present (Discriminant_Specifications (Prev_Par))
15732 then
15733 if Present (Discriminant_Specifications (N)) then
15734 if Ekind (Prev) = E_Incomplete_Type then
15735 Check_Discriminant_Conformance (N, Prev, Prev);
15736 else
15737 Check_Discriminant_Conformance (N, Prev, Id);
15738 end if;
15739
15740 else
15741 Error_Msg_N
15742 ("missing discriminants in full type declaration", N);
15743
15744 -- To avoid cascaded errors on subsequent use, share the
15745 -- discriminants of the partial view.
15746
15747 Set_Discriminant_Specifications (N,
15748 Discriminant_Specifications (Prev_Par));
15749 end if;
15750 end if;
15751
15752 -- A prior untagged partial view can have an associated class-wide
15753 -- type due to use of the class attribute, and in this case the full
15754 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15755 -- of incomplete tagged declarations, but we check for it.
15756
15757 if Is_Type (Prev)
15758 and then (Is_Tagged_Type (Prev)
15759 or else Present (Class_Wide_Type (Prev)))
15760 then
15761 -- Ada 2012 (AI05-0162): A private type may be the completion of
15762 -- an incomplete type.
15763
15764 if Ada_Version >= Ada_2012
15765 and then Is_Incomplete_Type (Prev)
15766 and then Nkind_In (N, N_Private_Type_Declaration,
15767 N_Private_Extension_Declaration)
15768 then
15769 -- No need to check private extensions since they are tagged
15770
15771 if Nkind (N) = N_Private_Type_Declaration
15772 and then not Tagged_Present (N)
15773 then
15774 Tag_Mismatch;
15775 end if;
15776
15777 -- The full declaration is either a tagged type (including
15778 -- a synchronized type that implements interfaces) or a
15779 -- type extension, otherwise this is an error.
15780
15781 elsif Nkind_In (N, N_Task_Type_Declaration,
15782 N_Protected_Type_Declaration)
15783 then
15784 if No (Interface_List (N))
15785 and then not Error_Posted (N)
15786 then
15787 Tag_Mismatch;
15788 end if;
15789
15790 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15791
15792 -- Indicate that the previous declaration (tagged incomplete
15793 -- or private declaration) requires the same on the full one.
15794
15795 if not Tagged_Present (Type_Definition (N)) then
15796 Tag_Mismatch;
15797 Set_Is_Tagged_Type (Id);
15798 end if;
15799
15800 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15801 if No (Record_Extension_Part (Type_Definition (N))) then
15802 Error_Msg_NE
15803 ("full declaration of } must be a record extension",
15804 Prev, Id);
15805
15806 -- Set some attributes to produce a usable full view
15807
15808 Set_Is_Tagged_Type (Id);
15809 end if;
15810
15811 else
15812 Tag_Mismatch;
15813 end if;
15814 end if;
15815
15816 if Present (Prev)
15817 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15818 and then Present (Premature_Use (Parent (Prev)))
15819 then
15820 Error_Msg_Sloc := Sloc (N);
15821 Error_Msg_N
15822 ("\full declaration #", Premature_Use (Parent (Prev)));
15823 end if;
15824
15825 return New_Id;
15826 end if;
15827 end Find_Type_Name;
15828
15829 -------------------------
15830 -- Find_Type_Of_Object --
15831 -------------------------
15832
15833 function Find_Type_Of_Object
15834 (Obj_Def : Node_Id;
15835 Related_Nod : Node_Id) return Entity_Id
15836 is
15837 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15838 P : Node_Id := Parent (Obj_Def);
15839 T : Entity_Id;
15840 Nam : Name_Id;
15841
15842 begin
15843 -- If the parent is a component_definition node we climb to the
15844 -- component_declaration node
15845
15846 if Nkind (P) = N_Component_Definition then
15847 P := Parent (P);
15848 end if;
15849
15850 -- Case of an anonymous array subtype
15851
15852 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15853 N_Unconstrained_Array_Definition)
15854 then
15855 T := Empty;
15856 Array_Type_Declaration (T, Obj_Def);
15857
15858 -- Create an explicit subtype whenever possible
15859
15860 elsif Nkind (P) /= N_Component_Declaration
15861 and then Def_Kind = N_Subtype_Indication
15862 then
15863 -- Base name of subtype on object name, which will be unique in
15864 -- the current scope.
15865
15866 -- If this is a duplicate declaration, return base type, to avoid
15867 -- generating duplicate anonymous types.
15868
15869 if Error_Posted (P) then
15870 Analyze (Subtype_Mark (Obj_Def));
15871 return Entity (Subtype_Mark (Obj_Def));
15872 end if;
15873
15874 Nam :=
15875 New_External_Name
15876 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15877
15878 T := Make_Defining_Identifier (Sloc (P), Nam);
15879
15880 Insert_Action (Obj_Def,
15881 Make_Subtype_Declaration (Sloc (P),
15882 Defining_Identifier => T,
15883 Subtype_Indication => Relocate_Node (Obj_Def)));
15884
15885 -- This subtype may need freezing, and this will not be done
15886 -- automatically if the object declaration is not in declarative
15887 -- part. Since this is an object declaration, the type cannot always
15888 -- be frozen here. Deferred constants do not freeze their type
15889 -- (which often enough will be private).
15890
15891 if Nkind (P) = N_Object_Declaration
15892 and then Constant_Present (P)
15893 and then No (Expression (P))
15894 then
15895 null;
15896
15897 -- Here we freeze the base type of object type to catch premature use
15898 -- of discriminated private type without a full view.
15899
15900 else
15901 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15902 end if;
15903
15904 -- Ada 2005 AI-406: the object definition in an object declaration
15905 -- can be an access definition.
15906
15907 elsif Def_Kind = N_Access_Definition then
15908 T := Access_Definition (Related_Nod, Obj_Def);
15909
15910 Set_Is_Local_Anonymous_Access
15911 (T,
15912 V => (Ada_Version < Ada_2012)
15913 or else (Nkind (P) /= N_Object_Declaration)
15914 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15915
15916 -- Otherwise, the object definition is just a subtype_mark
15917
15918 else
15919 T := Process_Subtype (Obj_Def, Related_Nod);
15920
15921 -- If expansion is disabled an object definition that is an aggregate
15922 -- will not get expanded and may lead to scoping problems in the back
15923 -- end, if the object is referenced in an inner scope. In that case
15924 -- create an itype reference for the object definition now. This
15925 -- may be redundant in some cases, but harmless.
15926
15927 if Is_Itype (T)
15928 and then Nkind (Related_Nod) = N_Object_Declaration
15929 and then ASIS_Mode
15930 then
15931 Build_Itype_Reference (T, Related_Nod);
15932 end if;
15933 end if;
15934
15935 return T;
15936 end Find_Type_Of_Object;
15937
15938 --------------------------------
15939 -- Find_Type_Of_Subtype_Indic --
15940 --------------------------------
15941
15942 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15943 Typ : Entity_Id;
15944
15945 begin
15946 -- Case of subtype mark with a constraint
15947
15948 if Nkind (S) = N_Subtype_Indication then
15949 Find_Type (Subtype_Mark (S));
15950 Typ := Entity (Subtype_Mark (S));
15951
15952 if not
15953 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15954 then
15955 Error_Msg_N
15956 ("incorrect constraint for this kind of type", Constraint (S));
15957 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15958 end if;
15959
15960 -- Otherwise we have a subtype mark without a constraint
15961
15962 elsif Error_Posted (S) then
15963 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15964 return Any_Type;
15965
15966 else
15967 Find_Type (S);
15968 Typ := Entity (S);
15969 end if;
15970
15971 -- Check No_Wide_Characters restriction
15972
15973 Check_Wide_Character_Restriction (Typ, S);
15974
15975 return Typ;
15976 end Find_Type_Of_Subtype_Indic;
15977
15978 -------------------------------------
15979 -- Floating_Point_Type_Declaration --
15980 -------------------------------------
15981
15982 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15983 Digs : constant Node_Id := Digits_Expression (Def);
15984 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15985 Digs_Val : Uint;
15986 Base_Typ : Entity_Id;
15987 Implicit_Base : Entity_Id;
15988 Bound : Node_Id;
15989
15990 function Can_Derive_From (E : Entity_Id) return Boolean;
15991 -- Find if given digits value, and possibly a specified range, allows
15992 -- derivation from specified type
15993
15994 function Find_Base_Type return Entity_Id;
15995 -- Find a predefined base type that Def can derive from, or generate
15996 -- an error and substitute Long_Long_Float if none exists.
15997
15998 ---------------------
15999 -- Can_Derive_From --
16000 ---------------------
16001
16002 function Can_Derive_From (E : Entity_Id) return Boolean is
16003 Spec : constant Entity_Id := Real_Range_Specification (Def);
16004
16005 begin
16006 -- Check specified "digits" constraint
16007
16008 if Digs_Val > Digits_Value (E) then
16009 return False;
16010 end if;
16011
16012 -- Check for matching range, if specified
16013
16014 if Present (Spec) then
16015 if Expr_Value_R (Type_Low_Bound (E)) >
16016 Expr_Value_R (Low_Bound (Spec))
16017 then
16018 return False;
16019 end if;
16020
16021 if Expr_Value_R (Type_High_Bound (E)) <
16022 Expr_Value_R (High_Bound (Spec))
16023 then
16024 return False;
16025 end if;
16026 end if;
16027
16028 return True;
16029 end Can_Derive_From;
16030
16031 --------------------
16032 -- Find_Base_Type --
16033 --------------------
16034
16035 function Find_Base_Type return Entity_Id is
16036 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16037
16038 begin
16039 -- Iterate over the predefined types in order, returning the first
16040 -- one that Def can derive from.
16041
16042 while Present (Choice) loop
16043 if Can_Derive_From (Node (Choice)) then
16044 return Node (Choice);
16045 end if;
16046
16047 Next_Elmt (Choice);
16048 end loop;
16049
16050 -- If we can't derive from any existing type, use Long_Long_Float
16051 -- and give appropriate message explaining the problem.
16052
16053 if Digs_Val > Max_Digs_Val then
16054 -- It might be the case that there is a type with the requested
16055 -- range, just not the combination of digits and range.
16056
16057 Error_Msg_N
16058 ("no predefined type has requested range and precision",
16059 Real_Range_Specification (Def));
16060
16061 else
16062 Error_Msg_N
16063 ("range too large for any predefined type",
16064 Real_Range_Specification (Def));
16065 end if;
16066
16067 return Standard_Long_Long_Float;
16068 end Find_Base_Type;
16069
16070 -- Start of processing for Floating_Point_Type_Declaration
16071
16072 begin
16073 Check_Restriction (No_Floating_Point, Def);
16074
16075 -- Create an implicit base type
16076
16077 Implicit_Base :=
16078 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16079
16080 -- Analyze and verify digits value
16081
16082 Analyze_And_Resolve (Digs, Any_Integer);
16083 Check_Digits_Expression (Digs);
16084 Digs_Val := Expr_Value (Digs);
16085
16086 -- Process possible range spec and find correct type to derive from
16087
16088 Process_Real_Range_Specification (Def);
16089
16090 -- Check that requested number of digits is not too high.
16091
16092 if Digs_Val > Max_Digs_Val then
16093 -- The check for Max_Base_Digits may be somewhat expensive, as it
16094 -- requires reading System, so only do it when necessary.
16095
16096 declare
16097 Max_Base_Digits : constant Uint :=
16098 Expr_Value
16099 (Expression
16100 (Parent (RTE (RE_Max_Base_Digits))));
16101
16102 begin
16103 if Digs_Val > Max_Base_Digits then
16104 Error_Msg_Uint_1 := Max_Base_Digits;
16105 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16106
16107 elsif No (Real_Range_Specification (Def)) then
16108 Error_Msg_Uint_1 := Max_Digs_Val;
16109 Error_Msg_N ("types with more than ^ digits need range spec "
16110 & "(RM 3.5.7(6))", Digs);
16111 end if;
16112 end;
16113 end if;
16114
16115 -- Find a suitable type to derive from or complain and use a substitute
16116
16117 Base_Typ := Find_Base_Type;
16118
16119 -- If there are bounds given in the declaration use them as the bounds
16120 -- of the type, otherwise use the bounds of the predefined base type
16121 -- that was chosen based on the Digits value.
16122
16123 if Present (Real_Range_Specification (Def)) then
16124 Set_Scalar_Range (T, Real_Range_Specification (Def));
16125 Set_Is_Constrained (T);
16126
16127 -- The bounds of this range must be converted to machine numbers
16128 -- in accordance with RM 4.9(38).
16129
16130 Bound := Type_Low_Bound (T);
16131
16132 if Nkind (Bound) = N_Real_Literal then
16133 Set_Realval
16134 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16135 Set_Is_Machine_Number (Bound);
16136 end if;
16137
16138 Bound := Type_High_Bound (T);
16139
16140 if Nkind (Bound) = N_Real_Literal then
16141 Set_Realval
16142 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16143 Set_Is_Machine_Number (Bound);
16144 end if;
16145
16146 else
16147 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16148 end if;
16149
16150 -- Complete definition of implicit base and declared first subtype
16151
16152 Set_Etype (Implicit_Base, Base_Typ);
16153
16154 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16155 Set_Size_Info (Implicit_Base, (Base_Typ));
16156 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16157 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16158 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16159 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16160
16161 Set_Ekind (T, E_Floating_Point_Subtype);
16162 Set_Etype (T, Implicit_Base);
16163
16164 Set_Size_Info (T, (Implicit_Base));
16165 Set_RM_Size (T, RM_Size (Implicit_Base));
16166 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16167 Set_Digits_Value (T, Digs_Val);
16168 end Floating_Point_Type_Declaration;
16169
16170 ----------------------------
16171 -- Get_Discriminant_Value --
16172 ----------------------------
16173
16174 -- This is the situation:
16175
16176 -- There is a non-derived type
16177
16178 -- type T0 (Dx, Dy, Dz...)
16179
16180 -- There are zero or more levels of derivation, with each derivation
16181 -- either purely inheriting the discriminants, or defining its own.
16182
16183 -- type Ti is new Ti-1
16184 -- or
16185 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16186 -- or
16187 -- subtype Ti is ...
16188
16189 -- The subtype issue is avoided by the use of Original_Record_Component,
16190 -- and the fact that derived subtypes also derive the constraints.
16191
16192 -- This chain leads back from
16193
16194 -- Typ_For_Constraint
16195
16196 -- Typ_For_Constraint has discriminants, and the value for each
16197 -- discriminant is given by its corresponding Elmt of Constraints.
16198
16199 -- Discriminant is some discriminant in this hierarchy
16200
16201 -- We need to return its value
16202
16203 -- We do this by recursively searching each level, and looking for
16204 -- Discriminant. Once we get to the bottom, we start backing up
16205 -- returning the value for it which may in turn be a discriminant
16206 -- further up, so on the backup we continue the substitution.
16207
16208 function Get_Discriminant_Value
16209 (Discriminant : Entity_Id;
16210 Typ_For_Constraint : Entity_Id;
16211 Constraint : Elist_Id) return Node_Id
16212 is
16213 function Root_Corresponding_Discriminant
16214 (Discr : Entity_Id) return Entity_Id;
16215 -- Given a discriminant, traverse the chain of inherited discriminants
16216 -- and return the topmost discriminant.
16217
16218 function Search_Derivation_Levels
16219 (Ti : Entity_Id;
16220 Discrim_Values : Elist_Id;
16221 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16222 -- This is the routine that performs the recursive search of levels
16223 -- as described above.
16224
16225 -------------------------------------
16226 -- Root_Corresponding_Discriminant --
16227 -------------------------------------
16228
16229 function Root_Corresponding_Discriminant
16230 (Discr : Entity_Id) return Entity_Id
16231 is
16232 D : Entity_Id;
16233
16234 begin
16235 D := Discr;
16236 while Present (Corresponding_Discriminant (D)) loop
16237 D := Corresponding_Discriminant (D);
16238 end loop;
16239
16240 return D;
16241 end Root_Corresponding_Discriminant;
16242
16243 ------------------------------
16244 -- Search_Derivation_Levels --
16245 ------------------------------
16246
16247 function Search_Derivation_Levels
16248 (Ti : Entity_Id;
16249 Discrim_Values : Elist_Id;
16250 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16251 is
16252 Assoc : Elmt_Id;
16253 Disc : Entity_Id;
16254 Result : Node_Or_Entity_Id;
16255 Result_Entity : Node_Id;
16256
16257 begin
16258 -- If inappropriate type, return Error, this happens only in
16259 -- cascaded error situations, and we want to avoid a blow up.
16260
16261 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16262 return Error;
16263 end if;
16264
16265 -- Look deeper if possible. Use Stored_Constraints only for
16266 -- untagged types. For tagged types use the given constraint.
16267 -- This asymmetry needs explanation???
16268
16269 if not Stored_Discrim_Values
16270 and then Present (Stored_Constraint (Ti))
16271 and then not Is_Tagged_Type (Ti)
16272 then
16273 Result :=
16274 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16275 else
16276 declare
16277 Td : constant Entity_Id := Etype (Ti);
16278
16279 begin
16280 if Td = Ti then
16281 Result := Discriminant;
16282
16283 else
16284 if Present (Stored_Constraint (Ti)) then
16285 Result :=
16286 Search_Derivation_Levels
16287 (Td, Stored_Constraint (Ti), True);
16288 else
16289 Result :=
16290 Search_Derivation_Levels
16291 (Td, Discrim_Values, Stored_Discrim_Values);
16292 end if;
16293 end if;
16294 end;
16295 end if;
16296
16297 -- Extra underlying places to search, if not found above. For
16298 -- concurrent types, the relevant discriminant appears in the
16299 -- corresponding record. For a type derived from a private type
16300 -- without discriminant, the full view inherits the discriminants
16301 -- of the full view of the parent.
16302
16303 if Result = Discriminant then
16304 if Is_Concurrent_Type (Ti)
16305 and then Present (Corresponding_Record_Type (Ti))
16306 then
16307 Result :=
16308 Search_Derivation_Levels (
16309 Corresponding_Record_Type (Ti),
16310 Discrim_Values,
16311 Stored_Discrim_Values);
16312
16313 elsif Is_Private_Type (Ti)
16314 and then not Has_Discriminants (Ti)
16315 and then Present (Full_View (Ti))
16316 and then Etype (Full_View (Ti)) /= Ti
16317 then
16318 Result :=
16319 Search_Derivation_Levels (
16320 Full_View (Ti),
16321 Discrim_Values,
16322 Stored_Discrim_Values);
16323 end if;
16324 end if;
16325
16326 -- If Result is not a (reference to a) discriminant, return it,
16327 -- otherwise set Result_Entity to the discriminant.
16328
16329 if Nkind (Result) = N_Defining_Identifier then
16330 pragma Assert (Result = Discriminant);
16331 Result_Entity := Result;
16332
16333 else
16334 if not Denotes_Discriminant (Result) then
16335 return Result;
16336 end if;
16337
16338 Result_Entity := Entity (Result);
16339 end if;
16340
16341 -- See if this level of derivation actually has discriminants
16342 -- because tagged derivations can add them, hence the lower
16343 -- levels need not have any.
16344
16345 if not Has_Discriminants (Ti) then
16346 return Result;
16347 end if;
16348
16349 -- Scan Ti's discriminants for Result_Entity,
16350 -- and return its corresponding value, if any.
16351
16352 Result_Entity := Original_Record_Component (Result_Entity);
16353
16354 Assoc := First_Elmt (Discrim_Values);
16355
16356 if Stored_Discrim_Values then
16357 Disc := First_Stored_Discriminant (Ti);
16358 else
16359 Disc := First_Discriminant (Ti);
16360 end if;
16361
16362 while Present (Disc) loop
16363 pragma Assert (Present (Assoc));
16364
16365 if Original_Record_Component (Disc) = Result_Entity then
16366 return Node (Assoc);
16367 end if;
16368
16369 Next_Elmt (Assoc);
16370
16371 if Stored_Discrim_Values then
16372 Next_Stored_Discriminant (Disc);
16373 else
16374 Next_Discriminant (Disc);
16375 end if;
16376 end loop;
16377
16378 -- Could not find it
16379 --
16380 return Result;
16381 end Search_Derivation_Levels;
16382
16383 -- Local Variables
16384
16385 Result : Node_Or_Entity_Id;
16386
16387 -- Start of processing for Get_Discriminant_Value
16388
16389 begin
16390 -- ??? This routine is a gigantic mess and will be deleted. For the
16391 -- time being just test for the trivial case before calling recurse.
16392
16393 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16394 declare
16395 D : Entity_Id;
16396 E : Elmt_Id;
16397
16398 begin
16399 D := First_Discriminant (Typ_For_Constraint);
16400 E := First_Elmt (Constraint);
16401 while Present (D) loop
16402 if Chars (D) = Chars (Discriminant) then
16403 return Node (E);
16404 end if;
16405
16406 Next_Discriminant (D);
16407 Next_Elmt (E);
16408 end loop;
16409 end;
16410 end if;
16411
16412 Result := Search_Derivation_Levels
16413 (Typ_For_Constraint, Constraint, False);
16414
16415 -- ??? hack to disappear when this routine is gone
16416
16417 if Nkind (Result) = N_Defining_Identifier then
16418 declare
16419 D : Entity_Id;
16420 E : Elmt_Id;
16421
16422 begin
16423 D := First_Discriminant (Typ_For_Constraint);
16424 E := First_Elmt (Constraint);
16425 while Present (D) loop
16426 if Root_Corresponding_Discriminant (D) = Discriminant then
16427 return Node (E);
16428 end if;
16429
16430 Next_Discriminant (D);
16431 Next_Elmt (E);
16432 end loop;
16433 end;
16434 end if;
16435
16436 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16437 return Result;
16438 end Get_Discriminant_Value;
16439
16440 --------------------------
16441 -- Has_Range_Constraint --
16442 --------------------------
16443
16444 function Has_Range_Constraint (N : Node_Id) return Boolean is
16445 C : constant Node_Id := Constraint (N);
16446
16447 begin
16448 if Nkind (C) = N_Range_Constraint then
16449 return True;
16450
16451 elsif Nkind (C) = N_Digits_Constraint then
16452 return
16453 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16454 or else
16455 Present (Range_Constraint (C));
16456
16457 elsif Nkind (C) = N_Delta_Constraint then
16458 return Present (Range_Constraint (C));
16459
16460 else
16461 return False;
16462 end if;
16463 end Has_Range_Constraint;
16464
16465 ------------------------
16466 -- Inherit_Components --
16467 ------------------------
16468
16469 function Inherit_Components
16470 (N : Node_Id;
16471 Parent_Base : Entity_Id;
16472 Derived_Base : Entity_Id;
16473 Is_Tagged : Boolean;
16474 Inherit_Discr : Boolean;
16475 Discs : Elist_Id) return Elist_Id
16476 is
16477 Assoc_List : constant Elist_Id := New_Elmt_List;
16478
16479 procedure Inherit_Component
16480 (Old_C : Entity_Id;
16481 Plain_Discrim : Boolean := False;
16482 Stored_Discrim : Boolean := False);
16483 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16484 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16485 -- True, Old_C is a stored discriminant. If they are both false then
16486 -- Old_C is a regular component.
16487
16488 -----------------------
16489 -- Inherit_Component --
16490 -----------------------
16491
16492 procedure Inherit_Component
16493 (Old_C : Entity_Id;
16494 Plain_Discrim : Boolean := False;
16495 Stored_Discrim : Boolean := False)
16496 is
16497 procedure Set_Anonymous_Type (Id : Entity_Id);
16498 -- Id denotes the entity of an access discriminant or anonymous
16499 -- access component. Set the type of Id to either the same type of
16500 -- Old_C or create a new one depending on whether the parent and
16501 -- the child types are in the same scope.
16502
16503 ------------------------
16504 -- Set_Anonymous_Type --
16505 ------------------------
16506
16507 procedure Set_Anonymous_Type (Id : Entity_Id) is
16508 Old_Typ : constant Entity_Id := Etype (Old_C);
16509
16510 begin
16511 if Scope (Parent_Base) = Scope (Derived_Base) then
16512 Set_Etype (Id, Old_Typ);
16513
16514 -- The parent and the derived type are in two different scopes.
16515 -- Reuse the type of the original discriminant / component by
16516 -- copying it in order to preserve all attributes.
16517
16518 else
16519 declare
16520 Typ : constant Entity_Id := New_Copy (Old_Typ);
16521
16522 begin
16523 Set_Etype (Id, Typ);
16524
16525 -- Since we do not generate component declarations for
16526 -- inherited components, associate the itype with the
16527 -- derived type.
16528
16529 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16530 Set_Scope (Typ, Derived_Base);
16531 end;
16532 end if;
16533 end Set_Anonymous_Type;
16534
16535 -- Local variables and constants
16536
16537 New_C : constant Entity_Id := New_Copy (Old_C);
16538
16539 Corr_Discrim : Entity_Id;
16540 Discrim : Entity_Id;
16541
16542 -- Start of processing for Inherit_Component
16543
16544 begin
16545 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16546
16547 Set_Parent (New_C, Parent (Old_C));
16548
16549 -- Regular discriminants and components must be inserted in the scope
16550 -- of the Derived_Base. Do it here.
16551
16552 if not Stored_Discrim then
16553 Enter_Name (New_C);
16554 end if;
16555
16556 -- For tagged types the Original_Record_Component must point to
16557 -- whatever this field was pointing to in the parent type. This has
16558 -- already been achieved by the call to New_Copy above.
16559
16560 if not Is_Tagged then
16561 Set_Original_Record_Component (New_C, New_C);
16562 end if;
16563
16564 -- Set the proper type of an access discriminant
16565
16566 if Ekind (New_C) = E_Discriminant
16567 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16568 then
16569 Set_Anonymous_Type (New_C);
16570 end if;
16571
16572 -- If we have inherited a component then see if its Etype contains
16573 -- references to Parent_Base discriminants. In this case, replace
16574 -- these references with the constraints given in Discs. We do not
16575 -- do this for the partial view of private types because this is
16576 -- not needed (only the components of the full view will be used
16577 -- for code generation) and cause problem. We also avoid this
16578 -- transformation in some error situations.
16579
16580 if Ekind (New_C) = E_Component then
16581
16582 -- Set the proper type of an anonymous access component
16583
16584 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16585 Set_Anonymous_Type (New_C);
16586
16587 elsif (Is_Private_Type (Derived_Base)
16588 and then not Is_Generic_Type (Derived_Base))
16589 or else (Is_Empty_Elmt_List (Discs)
16590 and then not Expander_Active)
16591 then
16592 Set_Etype (New_C, Etype (Old_C));
16593
16594 else
16595 -- The current component introduces a circularity of the
16596 -- following kind:
16597
16598 -- limited with Pack_2;
16599 -- package Pack_1 is
16600 -- type T_1 is tagged record
16601 -- Comp : access Pack_2.T_2;
16602 -- ...
16603 -- end record;
16604 -- end Pack_1;
16605
16606 -- with Pack_1;
16607 -- package Pack_2 is
16608 -- type T_2 is new Pack_1.T_1 with ...;
16609 -- end Pack_2;
16610
16611 Set_Etype
16612 (New_C,
16613 Constrain_Component_Type
16614 (Old_C, Derived_Base, N, Parent_Base, Discs));
16615 end if;
16616 end if;
16617
16618 -- In derived tagged types it is illegal to reference a non
16619 -- discriminant component in the parent type. To catch this, mark
16620 -- these components with an Ekind of E_Void. This will be reset in
16621 -- Record_Type_Definition after processing the record extension of
16622 -- the derived type.
16623
16624 -- If the declaration is a private extension, there is no further
16625 -- record extension to process, and the components retain their
16626 -- current kind, because they are visible at this point.
16627
16628 if Is_Tagged and then Ekind (New_C) = E_Component
16629 and then Nkind (N) /= N_Private_Extension_Declaration
16630 then
16631 Set_Ekind (New_C, E_Void);
16632 end if;
16633
16634 if Plain_Discrim then
16635 Set_Corresponding_Discriminant (New_C, Old_C);
16636 Build_Discriminal (New_C);
16637
16638 -- If we are explicitly inheriting a stored discriminant it will be
16639 -- completely hidden.
16640
16641 elsif Stored_Discrim then
16642 Set_Corresponding_Discriminant (New_C, Empty);
16643 Set_Discriminal (New_C, Empty);
16644 Set_Is_Completely_Hidden (New_C);
16645
16646 -- Set the Original_Record_Component of each discriminant in the
16647 -- derived base to point to the corresponding stored that we just
16648 -- created.
16649
16650 Discrim := First_Discriminant (Derived_Base);
16651 while Present (Discrim) loop
16652 Corr_Discrim := Corresponding_Discriminant (Discrim);
16653
16654 -- Corr_Discrim could be missing in an error situation
16655
16656 if Present (Corr_Discrim)
16657 and then Original_Record_Component (Corr_Discrim) = Old_C
16658 then
16659 Set_Original_Record_Component (Discrim, New_C);
16660 end if;
16661
16662 Next_Discriminant (Discrim);
16663 end loop;
16664
16665 Append_Entity (New_C, Derived_Base);
16666 end if;
16667
16668 if not Is_Tagged then
16669 Append_Elmt (Old_C, Assoc_List);
16670 Append_Elmt (New_C, Assoc_List);
16671 end if;
16672 end Inherit_Component;
16673
16674 -- Variables local to Inherit_Component
16675
16676 Loc : constant Source_Ptr := Sloc (N);
16677
16678 Parent_Discrim : Entity_Id;
16679 Stored_Discrim : Entity_Id;
16680 D : Entity_Id;
16681 Component : Entity_Id;
16682
16683 -- Start of processing for Inherit_Components
16684
16685 begin
16686 if not Is_Tagged then
16687 Append_Elmt (Parent_Base, Assoc_List);
16688 Append_Elmt (Derived_Base, Assoc_List);
16689 end if;
16690
16691 -- Inherit parent discriminants if needed
16692
16693 if Inherit_Discr then
16694 Parent_Discrim := First_Discriminant (Parent_Base);
16695 while Present (Parent_Discrim) loop
16696 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16697 Next_Discriminant (Parent_Discrim);
16698 end loop;
16699 end if;
16700
16701 -- Create explicit stored discrims for untagged types when necessary
16702
16703 if not Has_Unknown_Discriminants (Derived_Base)
16704 and then Has_Discriminants (Parent_Base)
16705 and then not Is_Tagged
16706 and then
16707 (not Inherit_Discr
16708 or else First_Discriminant (Parent_Base) /=
16709 First_Stored_Discriminant (Parent_Base))
16710 then
16711 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16712 while Present (Stored_Discrim) loop
16713 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16714 Next_Stored_Discriminant (Stored_Discrim);
16715 end loop;
16716 end if;
16717
16718 -- See if we can apply the second transformation for derived types, as
16719 -- explained in point 6. in the comments above Build_Derived_Record_Type
16720 -- This is achieved by appending Derived_Base discriminants into Discs,
16721 -- which has the side effect of returning a non empty Discs list to the
16722 -- caller of Inherit_Components, which is what we want. This must be
16723 -- done for private derived types if there are explicit stored
16724 -- discriminants, to ensure that we can retrieve the values of the
16725 -- constraints provided in the ancestors.
16726
16727 if Inherit_Discr
16728 and then Is_Empty_Elmt_List (Discs)
16729 and then Present (First_Discriminant (Derived_Base))
16730 and then
16731 (not Is_Private_Type (Derived_Base)
16732 or else Is_Completely_Hidden
16733 (First_Stored_Discriminant (Derived_Base))
16734 or else Is_Generic_Type (Derived_Base))
16735 then
16736 D := First_Discriminant (Derived_Base);
16737 while Present (D) loop
16738 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16739 Next_Discriminant (D);
16740 end loop;
16741 end if;
16742
16743 -- Finally, inherit non-discriminant components unless they are not
16744 -- visible because defined or inherited from the full view of the
16745 -- parent. Don't inherit the _parent field of the parent type.
16746
16747 Component := First_Entity (Parent_Base);
16748 while Present (Component) loop
16749
16750 -- Ada 2005 (AI-251): Do not inherit components associated with
16751 -- secondary tags of the parent.
16752
16753 if Ekind (Component) = E_Component
16754 and then Present (Related_Type (Component))
16755 then
16756 null;
16757
16758 elsif Ekind (Component) /= E_Component
16759 or else Chars (Component) = Name_uParent
16760 then
16761 null;
16762
16763 -- If the derived type is within the parent type's declarative
16764 -- region, then the components can still be inherited even though
16765 -- they aren't visible at this point. This can occur for cases
16766 -- such as within public child units where the components must
16767 -- become visible upon entering the child unit's private part.
16768
16769 elsif not Is_Visible_Component (Component)
16770 and then not In_Open_Scopes (Scope (Parent_Base))
16771 then
16772 null;
16773
16774 elsif Ekind_In (Derived_Base, E_Private_Type,
16775 E_Limited_Private_Type)
16776 then
16777 null;
16778
16779 else
16780 Inherit_Component (Component);
16781 end if;
16782
16783 Next_Entity (Component);
16784 end loop;
16785
16786 -- For tagged derived types, inherited discriminants cannot be used in
16787 -- component declarations of the record extension part. To achieve this
16788 -- we mark the inherited discriminants as not visible.
16789
16790 if Is_Tagged and then Inherit_Discr then
16791 D := First_Discriminant (Derived_Base);
16792 while Present (D) loop
16793 Set_Is_Immediately_Visible (D, False);
16794 Next_Discriminant (D);
16795 end loop;
16796 end if;
16797
16798 return Assoc_List;
16799 end Inherit_Components;
16800
16801 -----------------------------
16802 -- Inherit_Predicate_Flags --
16803 -----------------------------
16804
16805 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16806 begin
16807 Set_Has_Static_Predicate_Aspect
16808 (Subt, Has_Static_Predicate_Aspect (Par));
16809 Set_Has_Dynamic_Predicate_Aspect
16810 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16811 end Inherit_Predicate_Flags;
16812
16813 -----------------------
16814 -- Is_Null_Extension --
16815 -----------------------
16816
16817 function Is_Null_Extension (T : Entity_Id) return Boolean is
16818 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16819 Comp_List : Node_Id;
16820 Comp : Node_Id;
16821
16822 begin
16823 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16824 or else not Is_Tagged_Type (T)
16825 or else Nkind (Type_Definition (Type_Decl)) /=
16826 N_Derived_Type_Definition
16827 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16828 then
16829 return False;
16830 end if;
16831
16832 Comp_List :=
16833 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16834
16835 if Present (Discriminant_Specifications (Type_Decl)) then
16836 return False;
16837
16838 elsif Present (Comp_List)
16839 and then Is_Non_Empty_List (Component_Items (Comp_List))
16840 then
16841 Comp := First (Component_Items (Comp_List));
16842
16843 -- Only user-defined components are relevant. The component list
16844 -- may also contain a parent component and internal components
16845 -- corresponding to secondary tags, but these do not determine
16846 -- whether this is a null extension.
16847
16848 while Present (Comp) loop
16849 if Comes_From_Source (Comp) then
16850 return False;
16851 end if;
16852
16853 Next (Comp);
16854 end loop;
16855
16856 return True;
16857 else
16858 return True;
16859 end if;
16860 end Is_Null_Extension;
16861
16862 ------------------------------
16863 -- Is_Valid_Constraint_Kind --
16864 ------------------------------
16865
16866 function Is_Valid_Constraint_Kind
16867 (T_Kind : Type_Kind;
16868 Constraint_Kind : Node_Kind) return Boolean
16869 is
16870 begin
16871 case T_Kind is
16872 when Enumeration_Kind |
16873 Integer_Kind =>
16874 return Constraint_Kind = N_Range_Constraint;
16875
16876 when Decimal_Fixed_Point_Kind =>
16877 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16878 N_Range_Constraint);
16879
16880 when Ordinary_Fixed_Point_Kind =>
16881 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16882 N_Range_Constraint);
16883
16884 when Float_Kind =>
16885 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16886 N_Range_Constraint);
16887
16888 when Access_Kind |
16889 Array_Kind |
16890 E_Record_Type |
16891 E_Record_Subtype |
16892 Class_Wide_Kind |
16893 E_Incomplete_Type |
16894 Private_Kind |
16895 Concurrent_Kind =>
16896 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16897
16898 when others =>
16899 return True; -- Error will be detected later
16900 end case;
16901 end Is_Valid_Constraint_Kind;
16902
16903 --------------------------
16904 -- Is_Visible_Component --
16905 --------------------------
16906
16907 function Is_Visible_Component
16908 (C : Entity_Id;
16909 N : Node_Id := Empty) return Boolean
16910 is
16911 Original_Comp : Entity_Id := Empty;
16912 Original_Scope : Entity_Id;
16913 Type_Scope : Entity_Id;
16914
16915 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16916 -- Check whether parent type of inherited component is declared locally,
16917 -- possibly within a nested package or instance. The current scope is
16918 -- the derived record itself.
16919
16920 -------------------
16921 -- Is_Local_Type --
16922 -------------------
16923
16924 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16925 Scop : Entity_Id;
16926
16927 begin
16928 Scop := Scope (Typ);
16929 while Present (Scop)
16930 and then Scop /= Standard_Standard
16931 loop
16932 if Scop = Scope (Current_Scope) then
16933 return True;
16934 end if;
16935
16936 Scop := Scope (Scop);
16937 end loop;
16938
16939 return False;
16940 end Is_Local_Type;
16941
16942 -- Start of processing for Is_Visible_Component
16943
16944 begin
16945 if Ekind_In (C, E_Component, E_Discriminant) then
16946 Original_Comp := Original_Record_Component (C);
16947 end if;
16948
16949 if No (Original_Comp) then
16950
16951 -- Premature usage, or previous error
16952
16953 return False;
16954
16955 else
16956 Original_Scope := Scope (Original_Comp);
16957 Type_Scope := Scope (Base_Type (Scope (C)));
16958 end if;
16959
16960 -- For an untagged type derived from a private type, the only visible
16961 -- components are new discriminants. In an instance all components are
16962 -- visible (see Analyze_Selected_Component).
16963
16964 if not Is_Tagged_Type (Original_Scope) then
16965 return not Has_Private_Ancestor (Original_Scope)
16966 or else In_Open_Scopes (Scope (Original_Scope))
16967 or else In_Instance
16968 or else (Ekind (Original_Comp) = E_Discriminant
16969 and then Original_Scope = Type_Scope);
16970
16971 -- If it is _Parent or _Tag, there is no visibility issue
16972
16973 elsif not Comes_From_Source (Original_Comp) then
16974 return True;
16975
16976 -- Discriminants are visible unless the (private) type has unknown
16977 -- discriminants. If the discriminant reference is inserted for a
16978 -- discriminant check on a full view it is also visible.
16979
16980 elsif Ekind (Original_Comp) = E_Discriminant
16981 and then
16982 (not Has_Unknown_Discriminants (Original_Scope)
16983 or else (Present (N)
16984 and then Nkind (N) = N_Selected_Component
16985 and then Nkind (Prefix (N)) = N_Type_Conversion
16986 and then not Comes_From_Source (Prefix (N))))
16987 then
16988 return True;
16989
16990 -- In the body of an instantiation, no need to check for the visibility
16991 -- of a component.
16992
16993 elsif In_Instance_Body then
16994 return True;
16995
16996 -- If the component has been declared in an ancestor which is currently
16997 -- a private type, then it is not visible. The same applies if the
16998 -- component's containing type is not in an open scope and the original
16999 -- component's enclosing type is a visible full view of a private type
17000 -- (which can occur in cases where an attempt is being made to reference
17001 -- a component in a sibling package that is inherited from a visible
17002 -- component of a type in an ancestor package; the component in the
17003 -- sibling package should not be visible even though the component it
17004 -- inherited from is visible). This does not apply however in the case
17005 -- where the scope of the type is a private child unit, or when the
17006 -- parent comes from a local package in which the ancestor is currently
17007 -- visible. The latter suppression of visibility is needed for cases
17008 -- that are tested in B730006.
17009
17010 elsif Is_Private_Type (Original_Scope)
17011 or else
17012 (not Is_Private_Descendant (Type_Scope)
17013 and then not In_Open_Scopes (Type_Scope)
17014 and then Has_Private_Declaration (Original_Scope))
17015 then
17016 -- If the type derives from an entity in a formal package, there
17017 -- are no additional visible components.
17018
17019 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17020 N_Formal_Package_Declaration
17021 then
17022 return False;
17023
17024 -- if we are not in the private part of the current package, there
17025 -- are no additional visible components.
17026
17027 elsif Ekind (Scope (Current_Scope)) = E_Package
17028 and then not In_Private_Part (Scope (Current_Scope))
17029 then
17030 return False;
17031 else
17032 return
17033 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17034 and then In_Open_Scopes (Scope (Original_Scope))
17035 and then Is_Local_Type (Type_Scope);
17036 end if;
17037
17038 -- There is another weird way in which a component may be invisible when
17039 -- the private and the full view are not derived from the same ancestor.
17040 -- Here is an example :
17041
17042 -- type A1 is tagged record F1 : integer; end record;
17043 -- type A2 is new A1 with record F2 : integer; end record;
17044 -- type T is new A1 with private;
17045 -- private
17046 -- type T is new A2 with null record;
17047
17048 -- In this case, the full view of T inherits F1 and F2 but the private
17049 -- view inherits only F1
17050
17051 else
17052 declare
17053 Ancestor : Entity_Id := Scope (C);
17054
17055 begin
17056 loop
17057 if Ancestor = Original_Scope then
17058 return True;
17059 elsif Ancestor = Etype (Ancestor) then
17060 return False;
17061 end if;
17062
17063 Ancestor := Etype (Ancestor);
17064 end loop;
17065 end;
17066 end if;
17067 end Is_Visible_Component;
17068
17069 --------------------------
17070 -- Make_Class_Wide_Type --
17071 --------------------------
17072
17073 procedure Make_Class_Wide_Type (T : Entity_Id) is
17074 CW_Type : Entity_Id;
17075 CW_Name : Name_Id;
17076 Next_E : Entity_Id;
17077
17078 begin
17079 if Present (Class_Wide_Type (T)) then
17080
17081 -- The class-wide type is a partially decorated entity created for a
17082 -- unanalyzed tagged type referenced through a limited with clause.
17083 -- When the tagged type is analyzed, its class-wide type needs to be
17084 -- redecorated. Note that we reuse the entity created by Decorate_
17085 -- Tagged_Type in order to preserve all links.
17086
17087 if Materialize_Entity (Class_Wide_Type (T)) then
17088 CW_Type := Class_Wide_Type (T);
17089 Set_Materialize_Entity (CW_Type, False);
17090
17091 -- The class wide type can have been defined by the partial view, in
17092 -- which case everything is already done.
17093
17094 else
17095 return;
17096 end if;
17097
17098 -- Default case, we need to create a new class-wide type
17099
17100 else
17101 CW_Type :=
17102 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17103 end if;
17104
17105 -- Inherit root type characteristics
17106
17107 CW_Name := Chars (CW_Type);
17108 Next_E := Next_Entity (CW_Type);
17109 Copy_Node (T, CW_Type);
17110 Set_Comes_From_Source (CW_Type, False);
17111 Set_Chars (CW_Type, CW_Name);
17112 Set_Parent (CW_Type, Parent (T));
17113 Set_Next_Entity (CW_Type, Next_E);
17114
17115 -- Ensure we have a new freeze node for the class-wide type. The partial
17116 -- view may have freeze action of its own, requiring a proper freeze
17117 -- node, and the same freeze node cannot be shared between the two
17118 -- types.
17119
17120 Set_Has_Delayed_Freeze (CW_Type);
17121 Set_Freeze_Node (CW_Type, Empty);
17122
17123 -- Customize the class-wide type: It has no prim. op., it cannot be
17124 -- abstract and its Etype points back to the specific root type.
17125
17126 Set_Ekind (CW_Type, E_Class_Wide_Type);
17127 Set_Is_Tagged_Type (CW_Type, True);
17128 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17129 Set_Is_Abstract_Type (CW_Type, False);
17130 Set_Is_Constrained (CW_Type, False);
17131 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17132 Set_Default_SSO (CW_Type);
17133
17134 if Ekind (T) = E_Class_Wide_Subtype then
17135 Set_Etype (CW_Type, Etype (Base_Type (T)));
17136 else
17137 Set_Etype (CW_Type, T);
17138 end if;
17139
17140 -- If this is the class_wide type of a constrained subtype, it does
17141 -- not have discriminants.
17142
17143 Set_Has_Discriminants (CW_Type,
17144 Has_Discriminants (T) and then not Is_Constrained (T));
17145
17146 Set_Has_Unknown_Discriminants (CW_Type, True);
17147 Set_Class_Wide_Type (T, CW_Type);
17148 Set_Equivalent_Type (CW_Type, Empty);
17149
17150 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17151
17152 Set_Class_Wide_Type (CW_Type, CW_Type);
17153 end Make_Class_Wide_Type;
17154
17155 ----------------
17156 -- Make_Index --
17157 ----------------
17158
17159 procedure Make_Index
17160 (N : Node_Id;
17161 Related_Nod : Node_Id;
17162 Related_Id : Entity_Id := Empty;
17163 Suffix_Index : Nat := 1;
17164 In_Iter_Schm : Boolean := False)
17165 is
17166 R : Node_Id;
17167 T : Entity_Id;
17168 Def_Id : Entity_Id := Empty;
17169 Found : Boolean := False;
17170
17171 begin
17172 -- For a discrete range used in a constrained array definition and
17173 -- defined by a range, an implicit conversion to the predefined type
17174 -- INTEGER is assumed if each bound is either a numeric literal, a named
17175 -- number, or an attribute, and the type of both bounds (prior to the
17176 -- implicit conversion) is the type universal_integer. Otherwise, both
17177 -- bounds must be of the same discrete type, other than universal
17178 -- integer; this type must be determinable independently of the
17179 -- context, but using the fact that the type must be discrete and that
17180 -- both bounds must have the same type.
17181
17182 -- Character literals also have a universal type in the absence of
17183 -- of additional context, and are resolved to Standard_Character.
17184
17185 if Nkind (N) = N_Range then
17186
17187 -- The index is given by a range constraint. The bounds are known
17188 -- to be of a consistent type.
17189
17190 if not Is_Overloaded (N) then
17191 T := Etype (N);
17192
17193 -- For universal bounds, choose the specific predefined type
17194
17195 if T = Universal_Integer then
17196 T := Standard_Integer;
17197
17198 elsif T = Any_Character then
17199 Ambiguous_Character (Low_Bound (N));
17200
17201 T := Standard_Character;
17202 end if;
17203
17204 -- The node may be overloaded because some user-defined operators
17205 -- are available, but if a universal interpretation exists it is
17206 -- also the selected one.
17207
17208 elsif Universal_Interpretation (N) = Universal_Integer then
17209 T := Standard_Integer;
17210
17211 else
17212 T := Any_Type;
17213
17214 declare
17215 Ind : Interp_Index;
17216 It : Interp;
17217
17218 begin
17219 Get_First_Interp (N, Ind, It);
17220 while Present (It.Typ) loop
17221 if Is_Discrete_Type (It.Typ) then
17222
17223 if Found
17224 and then not Covers (It.Typ, T)
17225 and then not Covers (T, It.Typ)
17226 then
17227 Error_Msg_N ("ambiguous bounds in discrete range", N);
17228 exit;
17229 else
17230 T := It.Typ;
17231 Found := True;
17232 end if;
17233 end if;
17234
17235 Get_Next_Interp (Ind, It);
17236 end loop;
17237
17238 if T = Any_Type then
17239 Error_Msg_N ("discrete type required for range", N);
17240 Set_Etype (N, Any_Type);
17241 return;
17242
17243 elsif T = Universal_Integer then
17244 T := Standard_Integer;
17245 end if;
17246 end;
17247 end if;
17248
17249 if not Is_Discrete_Type (T) then
17250 Error_Msg_N ("discrete type required for range", N);
17251 Set_Etype (N, Any_Type);
17252 return;
17253 end if;
17254
17255 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17256 and then Attribute_Name (Low_Bound (N)) = Name_First
17257 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17258 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17259 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17260 then
17261 -- The type of the index will be the type of the prefix, as long
17262 -- as the upper bound is 'Last of the same type.
17263
17264 Def_Id := Entity (Prefix (Low_Bound (N)));
17265
17266 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17267 or else Attribute_Name (High_Bound (N)) /= Name_Last
17268 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17269 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17270 then
17271 Def_Id := Empty;
17272 end if;
17273 end if;
17274
17275 R := N;
17276 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17277
17278 elsif Nkind (N) = N_Subtype_Indication then
17279
17280 -- The index is given by a subtype with a range constraint
17281
17282 T := Base_Type (Entity (Subtype_Mark (N)));
17283
17284 if not Is_Discrete_Type (T) then
17285 Error_Msg_N ("discrete type required for range", N);
17286 Set_Etype (N, Any_Type);
17287 return;
17288 end if;
17289
17290 R := Range_Expression (Constraint (N));
17291
17292 Resolve (R, T);
17293 Process_Range_Expr_In_Decl
17294 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17295
17296 elsif Nkind (N) = N_Attribute_Reference then
17297
17298 -- Catch beginner's error (use of attribute other than 'Range)
17299
17300 if Attribute_Name (N) /= Name_Range then
17301 Error_Msg_N ("expect attribute ''Range", N);
17302 Set_Etype (N, Any_Type);
17303 return;
17304 end if;
17305
17306 -- If the node denotes the range of a type mark, that is also the
17307 -- resulting type, and we do not need to create an Itype for it.
17308
17309 if Is_Entity_Name (Prefix (N))
17310 and then Comes_From_Source (N)
17311 and then Is_Type (Entity (Prefix (N)))
17312 and then Is_Discrete_Type (Entity (Prefix (N)))
17313 then
17314 Def_Id := Entity (Prefix (N));
17315 end if;
17316
17317 Analyze_And_Resolve (N);
17318 T := Etype (N);
17319 R := N;
17320
17321 -- If none of the above, must be a subtype. We convert this to a
17322 -- range attribute reference because in the case of declared first
17323 -- named subtypes, the types in the range reference can be different
17324 -- from the type of the entity. A range attribute normalizes the
17325 -- reference and obtains the correct types for the bounds.
17326
17327 -- This transformation is in the nature of an expansion, is only
17328 -- done if expansion is active. In particular, it is not done on
17329 -- formal generic types, because we need to retain the name of the
17330 -- original index for instantiation purposes.
17331
17332 else
17333 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17334 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17335 Set_Etype (N, Any_Integer);
17336 return;
17337
17338 else
17339 -- The type mark may be that of an incomplete type. It is only
17340 -- now that we can get the full view, previous analysis does
17341 -- not look specifically for a type mark.
17342
17343 Set_Entity (N, Get_Full_View (Entity (N)));
17344 Set_Etype (N, Entity (N));
17345 Def_Id := Entity (N);
17346
17347 if not Is_Discrete_Type (Def_Id) then
17348 Error_Msg_N ("discrete type required for index", N);
17349 Set_Etype (N, Any_Type);
17350 return;
17351 end if;
17352 end if;
17353
17354 if Expander_Active then
17355 Rewrite (N,
17356 Make_Attribute_Reference (Sloc (N),
17357 Attribute_Name => Name_Range,
17358 Prefix => Relocate_Node (N)));
17359
17360 -- The original was a subtype mark that does not freeze. This
17361 -- means that the rewritten version must not freeze either.
17362
17363 Set_Must_Not_Freeze (N);
17364 Set_Must_Not_Freeze (Prefix (N));
17365 Analyze_And_Resolve (N);
17366 T := Etype (N);
17367 R := N;
17368
17369 -- If expander is inactive, type is legal, nothing else to construct
17370
17371 else
17372 return;
17373 end if;
17374 end if;
17375
17376 if not Is_Discrete_Type (T) then
17377 Error_Msg_N ("discrete type required for range", N);
17378 Set_Etype (N, Any_Type);
17379 return;
17380
17381 elsif T = Any_Type then
17382 Set_Etype (N, Any_Type);
17383 return;
17384 end if;
17385
17386 -- We will now create the appropriate Itype to describe the range, but
17387 -- first a check. If we originally had a subtype, then we just label
17388 -- the range with this subtype. Not only is there no need to construct
17389 -- a new subtype, but it is wrong to do so for two reasons:
17390
17391 -- 1. A legality concern, if we have a subtype, it must not freeze,
17392 -- and the Itype would cause freezing incorrectly
17393
17394 -- 2. An efficiency concern, if we created an Itype, it would not be
17395 -- recognized as the same type for the purposes of eliminating
17396 -- checks in some circumstances.
17397
17398 -- We signal this case by setting the subtype entity in Def_Id
17399
17400 if No (Def_Id) then
17401 Def_Id :=
17402 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17403 Set_Etype (Def_Id, Base_Type (T));
17404
17405 if Is_Signed_Integer_Type (T) then
17406 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17407
17408 elsif Is_Modular_Integer_Type (T) then
17409 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17410
17411 else
17412 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17413 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17414 Set_First_Literal (Def_Id, First_Literal (T));
17415 end if;
17416
17417 Set_Size_Info (Def_Id, (T));
17418 Set_RM_Size (Def_Id, RM_Size (T));
17419 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17420
17421 Set_Scalar_Range (Def_Id, R);
17422 Conditional_Delay (Def_Id, T);
17423
17424 -- In the subtype indication case, if the immediate parent of the
17425 -- new subtype is non-static, then the subtype we create is non-
17426 -- static, even if its bounds are static.
17427
17428 if Nkind (N) = N_Subtype_Indication
17429 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17430 then
17431 Set_Is_Non_Static_Subtype (Def_Id);
17432 end if;
17433 end if;
17434
17435 -- Final step is to label the index with this constructed type
17436
17437 Set_Etype (N, Def_Id);
17438 end Make_Index;
17439
17440 ------------------------------
17441 -- Modular_Type_Declaration --
17442 ------------------------------
17443
17444 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17445 Mod_Expr : constant Node_Id := Expression (Def);
17446 M_Val : Uint;
17447
17448 procedure Set_Modular_Size (Bits : Int);
17449 -- Sets RM_Size to Bits, and Esize to normal word size above this
17450
17451 ----------------------
17452 -- Set_Modular_Size --
17453 ----------------------
17454
17455 procedure Set_Modular_Size (Bits : Int) is
17456 begin
17457 Set_RM_Size (T, UI_From_Int (Bits));
17458
17459 if Bits <= 8 then
17460 Init_Esize (T, 8);
17461
17462 elsif Bits <= 16 then
17463 Init_Esize (T, 16);
17464
17465 elsif Bits <= 32 then
17466 Init_Esize (T, 32);
17467
17468 else
17469 Init_Esize (T, System_Max_Binary_Modulus_Power);
17470 end if;
17471
17472 if not Non_Binary_Modulus (T)
17473 and then Esize (T) = RM_Size (T)
17474 then
17475 Set_Is_Known_Valid (T);
17476 end if;
17477 end Set_Modular_Size;
17478
17479 -- Start of processing for Modular_Type_Declaration
17480
17481 begin
17482 -- If the mod expression is (exactly) 2 * literal, where literal is
17483 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17484
17485 if Warn_On_Suspicious_Modulus_Value
17486 and then Nkind (Mod_Expr) = N_Op_Multiply
17487 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17488 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17489 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17490 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17491 then
17492 Error_Msg_N
17493 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17494 end if;
17495
17496 -- Proceed with analysis of mod expression
17497
17498 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17499 Set_Etype (T, T);
17500 Set_Ekind (T, E_Modular_Integer_Type);
17501 Init_Alignment (T);
17502 Set_Is_Constrained (T);
17503
17504 if not Is_OK_Static_Expression (Mod_Expr) then
17505 Flag_Non_Static_Expr
17506 ("non-static expression used for modular type bound!", Mod_Expr);
17507 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17508 else
17509 M_Val := Expr_Value (Mod_Expr);
17510 end if;
17511
17512 if M_Val < 1 then
17513 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17514 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17515 end if;
17516
17517 if M_Val > 2 ** Standard_Long_Integer_Size then
17518 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17519 end if;
17520
17521 Set_Modulus (T, M_Val);
17522
17523 -- Create bounds for the modular type based on the modulus given in
17524 -- the type declaration and then analyze and resolve those bounds.
17525
17526 Set_Scalar_Range (T,
17527 Make_Range (Sloc (Mod_Expr),
17528 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17529 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17530
17531 -- Properly analyze the literals for the range. We do this manually
17532 -- because we can't go calling Resolve, since we are resolving these
17533 -- bounds with the type, and this type is certainly not complete yet.
17534
17535 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17536 Set_Etype (High_Bound (Scalar_Range (T)), T);
17537 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17538 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17539
17540 -- Loop through powers of two to find number of bits required
17541
17542 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17543
17544 -- Binary case
17545
17546 if M_Val = 2 ** Bits then
17547 Set_Modular_Size (Bits);
17548 return;
17549
17550 -- Non-binary case
17551
17552 elsif M_Val < 2 ** Bits then
17553 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17554 Set_Non_Binary_Modulus (T);
17555
17556 if Bits > System_Max_Nonbinary_Modulus_Power then
17557 Error_Msg_Uint_1 :=
17558 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17559 Error_Msg_F
17560 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17561 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17562 return;
17563
17564 else
17565 -- In the non-binary case, set size as per RM 13.3(55)
17566
17567 Set_Modular_Size (Bits);
17568 return;
17569 end if;
17570 end if;
17571
17572 end loop;
17573
17574 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17575 -- so we just signal an error and set the maximum size.
17576
17577 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17578 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17579
17580 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17581 Init_Alignment (T);
17582
17583 end Modular_Type_Declaration;
17584
17585 --------------------------
17586 -- New_Concatenation_Op --
17587 --------------------------
17588
17589 procedure New_Concatenation_Op (Typ : Entity_Id) is
17590 Loc : constant Source_Ptr := Sloc (Typ);
17591 Op : Entity_Id;
17592
17593 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17594 -- Create abbreviated declaration for the formal of a predefined
17595 -- Operator 'Op' of type 'Typ'
17596
17597 --------------------
17598 -- Make_Op_Formal --
17599 --------------------
17600
17601 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17602 Formal : Entity_Id;
17603 begin
17604 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17605 Set_Etype (Formal, Typ);
17606 Set_Mechanism (Formal, Default_Mechanism);
17607 return Formal;
17608 end Make_Op_Formal;
17609
17610 -- Start of processing for New_Concatenation_Op
17611
17612 begin
17613 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17614
17615 Set_Ekind (Op, E_Operator);
17616 Set_Scope (Op, Current_Scope);
17617 Set_Etype (Op, Typ);
17618 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17619 Set_Is_Immediately_Visible (Op);
17620 Set_Is_Intrinsic_Subprogram (Op);
17621 Set_Has_Completion (Op);
17622 Append_Entity (Op, Current_Scope);
17623
17624 Set_Name_Entity_Id (Name_Op_Concat, Op);
17625
17626 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17627 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17628 end New_Concatenation_Op;
17629
17630 -------------------------
17631 -- OK_For_Limited_Init --
17632 -------------------------
17633
17634 -- ???Check all calls of this, and compare the conditions under which it's
17635 -- called.
17636
17637 function OK_For_Limited_Init
17638 (Typ : Entity_Id;
17639 Exp : Node_Id) return Boolean
17640 is
17641 begin
17642 return Is_CPP_Constructor_Call (Exp)
17643 or else (Ada_Version >= Ada_2005
17644 and then not Debug_Flag_Dot_L
17645 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17646 end OK_For_Limited_Init;
17647
17648 -------------------------------
17649 -- OK_For_Limited_Init_In_05 --
17650 -------------------------------
17651
17652 function OK_For_Limited_Init_In_05
17653 (Typ : Entity_Id;
17654 Exp : Node_Id) return Boolean
17655 is
17656 begin
17657 -- An object of a limited interface type can be initialized with any
17658 -- expression of a nonlimited descendant type.
17659
17660 if Is_Class_Wide_Type (Typ)
17661 and then Is_Limited_Interface (Typ)
17662 and then not Is_Limited_Type (Etype (Exp))
17663 then
17664 return True;
17665 end if;
17666
17667 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17668 -- case of limited aggregates (including extension aggregates), and
17669 -- function calls. The function call may have been given in prefixed
17670 -- notation, in which case the original node is an indexed component.
17671 -- If the function is parameterless, the original node was an explicit
17672 -- dereference. The function may also be parameterless, in which case
17673 -- the source node is just an identifier.
17674
17675 case Nkind (Original_Node (Exp)) is
17676 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17677 return True;
17678
17679 when N_Identifier =>
17680 return Present (Entity (Original_Node (Exp)))
17681 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17682
17683 when N_Qualified_Expression =>
17684 return
17685 OK_For_Limited_Init_In_05
17686 (Typ, Expression (Original_Node (Exp)));
17687
17688 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17689 -- with a function call, the expander has rewritten the call into an
17690 -- N_Type_Conversion node to force displacement of the pointer to
17691 -- reference the component containing the secondary dispatch table.
17692 -- Otherwise a type conversion is not a legal context.
17693 -- A return statement for a build-in-place function returning a
17694 -- synchronized type also introduces an unchecked conversion.
17695
17696 when N_Type_Conversion |
17697 N_Unchecked_Type_Conversion =>
17698 return not Comes_From_Source (Exp)
17699 and then
17700 OK_For_Limited_Init_In_05
17701 (Typ, Expression (Original_Node (Exp)));
17702
17703 when N_Indexed_Component |
17704 N_Selected_Component |
17705 N_Explicit_Dereference =>
17706 return Nkind (Exp) = N_Function_Call;
17707
17708 -- A use of 'Input is a function call, hence allowed. Normally the
17709 -- attribute will be changed to a call, but the attribute by itself
17710 -- can occur with -gnatc.
17711
17712 when N_Attribute_Reference =>
17713 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17714
17715 -- For a case expression, all dependent expressions must be legal
17716
17717 when N_Case_Expression =>
17718 declare
17719 Alt : Node_Id;
17720
17721 begin
17722 Alt := First (Alternatives (Original_Node (Exp)));
17723 while Present (Alt) loop
17724 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17725 return False;
17726 end if;
17727
17728 Next (Alt);
17729 end loop;
17730
17731 return True;
17732 end;
17733
17734 -- For an if expression, all dependent expressions must be legal
17735
17736 when N_If_Expression =>
17737 declare
17738 Then_Expr : constant Node_Id :=
17739 Next (First (Expressions (Original_Node (Exp))));
17740 Else_Expr : constant Node_Id := Next (Then_Expr);
17741 begin
17742 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17743 and then
17744 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17745 end;
17746
17747 when others =>
17748 return False;
17749 end case;
17750 end OK_For_Limited_Init_In_05;
17751
17752 -------------------------------------------
17753 -- Ordinary_Fixed_Point_Type_Declaration --
17754 -------------------------------------------
17755
17756 procedure Ordinary_Fixed_Point_Type_Declaration
17757 (T : Entity_Id;
17758 Def : Node_Id)
17759 is
17760 Loc : constant Source_Ptr := Sloc (Def);
17761 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17762 RRS : constant Node_Id := Real_Range_Specification (Def);
17763 Implicit_Base : Entity_Id;
17764 Delta_Val : Ureal;
17765 Small_Val : Ureal;
17766 Low_Val : Ureal;
17767 High_Val : Ureal;
17768
17769 begin
17770 Check_Restriction (No_Fixed_Point, Def);
17771
17772 -- Create implicit base type
17773
17774 Implicit_Base :=
17775 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17776 Set_Etype (Implicit_Base, Implicit_Base);
17777
17778 -- Analyze and process delta expression
17779
17780 Analyze_And_Resolve (Delta_Expr, Any_Real);
17781
17782 Check_Delta_Expression (Delta_Expr);
17783 Delta_Val := Expr_Value_R (Delta_Expr);
17784
17785 Set_Delta_Value (Implicit_Base, Delta_Val);
17786
17787 -- Compute default small from given delta, which is the largest power
17788 -- of two that does not exceed the given delta value.
17789
17790 declare
17791 Tmp : Ureal;
17792 Scale : Int;
17793
17794 begin
17795 Tmp := Ureal_1;
17796 Scale := 0;
17797
17798 if Delta_Val < Ureal_1 then
17799 while Delta_Val < Tmp loop
17800 Tmp := Tmp / Ureal_2;
17801 Scale := Scale + 1;
17802 end loop;
17803
17804 else
17805 loop
17806 Tmp := Tmp * Ureal_2;
17807 exit when Tmp > Delta_Val;
17808 Scale := Scale - 1;
17809 end loop;
17810 end if;
17811
17812 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17813 end;
17814
17815 Set_Small_Value (Implicit_Base, Small_Val);
17816
17817 -- If no range was given, set a dummy range
17818
17819 if RRS <= Empty_Or_Error then
17820 Low_Val := -Small_Val;
17821 High_Val := Small_Val;
17822
17823 -- Otherwise analyze and process given range
17824
17825 else
17826 declare
17827 Low : constant Node_Id := Low_Bound (RRS);
17828 High : constant Node_Id := High_Bound (RRS);
17829
17830 begin
17831 Analyze_And_Resolve (Low, Any_Real);
17832 Analyze_And_Resolve (High, Any_Real);
17833 Check_Real_Bound (Low);
17834 Check_Real_Bound (High);
17835
17836 -- Obtain and set the range
17837
17838 Low_Val := Expr_Value_R (Low);
17839 High_Val := Expr_Value_R (High);
17840
17841 if Low_Val > High_Val then
17842 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17843 end if;
17844 end;
17845 end if;
17846
17847 -- The range for both the implicit base and the declared first subtype
17848 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17849 -- set a temporary range in place. Note that the bounds of the base
17850 -- type will be widened to be symmetrical and to fill the available
17851 -- bits when the type is frozen.
17852
17853 -- We could do this with all discrete types, and probably should, but
17854 -- we absolutely have to do it for fixed-point, since the end-points
17855 -- of the range and the size are determined by the small value, which
17856 -- could be reset before the freeze point.
17857
17858 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17859 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17860
17861 -- Complete definition of first subtype
17862
17863 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17864 Set_Etype (T, Implicit_Base);
17865 Init_Size_Align (T);
17866 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17867 Set_Small_Value (T, Small_Val);
17868 Set_Delta_Value (T, Delta_Val);
17869 Set_Is_Constrained (T);
17870
17871 end Ordinary_Fixed_Point_Type_Declaration;
17872
17873 ----------------------------------------
17874 -- Prepare_Private_Subtype_Completion --
17875 ----------------------------------------
17876
17877 procedure Prepare_Private_Subtype_Completion
17878 (Id : Entity_Id;
17879 Related_Nod : Node_Id)
17880 is
17881 Id_B : constant Entity_Id := Base_Type (Id);
17882 Full_B : constant Entity_Id := Full_View (Id_B);
17883 Full : Entity_Id;
17884
17885 begin
17886 if Present (Full_B) then
17887
17888 -- The Base_Type is already completed, we can complete the subtype
17889 -- now. We have to create a new entity with the same name, Thus we
17890 -- can't use Create_Itype.
17891
17892 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17893 Set_Is_Itype (Full);
17894 Set_Associated_Node_For_Itype (Full, Related_Nod);
17895 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17896 end if;
17897
17898 -- The parent subtype may be private, but the base might not, in some
17899 -- nested instances. In that case, the subtype does not need to be
17900 -- exchanged. It would still be nice to make private subtypes and their
17901 -- bases consistent at all times ???
17902
17903 if Is_Private_Type (Id_B) then
17904 Append_Elmt (Id, Private_Dependents (Id_B));
17905 end if;
17906 end Prepare_Private_Subtype_Completion;
17907
17908 ---------------------------
17909 -- Process_Discriminants --
17910 ---------------------------
17911
17912 procedure Process_Discriminants
17913 (N : Node_Id;
17914 Prev : Entity_Id := Empty)
17915 is
17916 Elist : constant Elist_Id := New_Elmt_List;
17917 Id : Node_Id;
17918 Discr : Node_Id;
17919 Discr_Number : Uint;
17920 Discr_Type : Entity_Id;
17921 Default_Present : Boolean := False;
17922 Default_Not_Present : Boolean := False;
17923
17924 begin
17925 -- A composite type other than an array type can have discriminants.
17926 -- On entry, the current scope is the composite type.
17927
17928 -- The discriminants are initially entered into the scope of the type
17929 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17930 -- use, as explained at the end of this procedure.
17931
17932 Discr := First (Discriminant_Specifications (N));
17933 while Present (Discr) loop
17934 Enter_Name (Defining_Identifier (Discr));
17935
17936 -- For navigation purposes we add a reference to the discriminant
17937 -- in the entity for the type. If the current declaration is a
17938 -- completion, place references on the partial view. Otherwise the
17939 -- type is the current scope.
17940
17941 if Present (Prev) then
17942
17943 -- The references go on the partial view, if present. If the
17944 -- partial view has discriminants, the references have been
17945 -- generated already.
17946
17947 if not Has_Discriminants (Prev) then
17948 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17949 end if;
17950 else
17951 Generate_Reference
17952 (Current_Scope, Defining_Identifier (Discr), 'd');
17953 end if;
17954
17955 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17956 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17957
17958 -- Ada 2005 (AI-254)
17959
17960 if Present (Access_To_Subprogram_Definition
17961 (Discriminant_Type (Discr)))
17962 and then Protected_Present (Access_To_Subprogram_Definition
17963 (Discriminant_Type (Discr)))
17964 then
17965 Discr_Type :=
17966 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17967 end if;
17968
17969 else
17970 Find_Type (Discriminant_Type (Discr));
17971 Discr_Type := Etype (Discriminant_Type (Discr));
17972
17973 if Error_Posted (Discriminant_Type (Discr)) then
17974 Discr_Type := Any_Type;
17975 end if;
17976 end if;
17977
17978 if Is_Access_Type (Discr_Type) then
17979
17980 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17981 -- record types
17982
17983 if Ada_Version < Ada_2005 then
17984 Check_Access_Discriminant_Requires_Limited
17985 (Discr, Discriminant_Type (Discr));
17986 end if;
17987
17988 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17989 Error_Msg_N
17990 ("(Ada 83) access discriminant not allowed", Discr);
17991 end if;
17992
17993 elsif not Is_Discrete_Type (Discr_Type) then
17994 Error_Msg_N ("discriminants must have a discrete or access type",
17995 Discriminant_Type (Discr));
17996 end if;
17997
17998 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17999
18000 -- If a discriminant specification includes the assignment compound
18001 -- delimiter followed by an expression, the expression is the default
18002 -- expression of the discriminant; the default expression must be of
18003 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18004 -- a default expression, we do the special preanalysis, since this
18005 -- expression does not freeze (see "Handling of Default and Per-
18006 -- Object Expressions" in spec of package Sem).
18007
18008 if Present (Expression (Discr)) then
18009 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18010
18011 if Nkind (N) = N_Formal_Type_Declaration then
18012 Error_Msg_N
18013 ("discriminant defaults not allowed for formal type",
18014 Expression (Discr));
18015
18016 -- Flag an error for a tagged type with defaulted discriminants,
18017 -- excluding limited tagged types when compiling for Ada 2012
18018 -- (see AI05-0214).
18019
18020 elsif Is_Tagged_Type (Current_Scope)
18021 and then (not Is_Limited_Type (Current_Scope)
18022 or else Ada_Version < Ada_2012)
18023 and then Comes_From_Source (N)
18024 then
18025 -- Note: see similar test in Check_Or_Process_Discriminants, to
18026 -- handle the (illegal) case of the completion of an untagged
18027 -- view with discriminants with defaults by a tagged full view.
18028 -- We skip the check if Discr does not come from source, to
18029 -- account for the case of an untagged derived type providing
18030 -- defaults for a renamed discriminant from a private untagged
18031 -- ancestor with a tagged full view (ACATS B460006).
18032
18033 if Ada_Version >= Ada_2012 then
18034 Error_Msg_N
18035 ("discriminants of nonlimited tagged type cannot have"
18036 & " defaults",
18037 Expression (Discr));
18038 else
18039 Error_Msg_N
18040 ("discriminants of tagged type cannot have defaults",
18041 Expression (Discr));
18042 end if;
18043
18044 else
18045 Default_Present := True;
18046 Append_Elmt (Expression (Discr), Elist);
18047
18048 -- Tag the defining identifiers for the discriminants with
18049 -- their corresponding default expressions from the tree.
18050
18051 Set_Discriminant_Default_Value
18052 (Defining_Identifier (Discr), Expression (Discr));
18053 end if;
18054
18055 else
18056 Default_Not_Present := True;
18057 end if;
18058
18059 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18060 -- Discr_Type but with the null-exclusion attribute
18061
18062 if Ada_Version >= Ada_2005 then
18063
18064 -- Ada 2005 (AI-231): Static checks
18065
18066 if Can_Never_Be_Null (Discr_Type) then
18067 Null_Exclusion_Static_Checks (Discr);
18068
18069 elsif Is_Access_Type (Discr_Type)
18070 and then Null_Exclusion_Present (Discr)
18071
18072 -- No need to check itypes because in their case this check
18073 -- was done at their point of creation
18074
18075 and then not Is_Itype (Discr_Type)
18076 then
18077 if Can_Never_Be_Null (Discr_Type) then
18078 Error_Msg_NE
18079 ("`NOT NULL` not allowed (& already excludes null)",
18080 Discr,
18081 Discr_Type);
18082 end if;
18083
18084 Set_Etype (Defining_Identifier (Discr),
18085 Create_Null_Excluding_Itype
18086 (T => Discr_Type,
18087 Related_Nod => Discr));
18088
18089 -- Check for improper null exclusion if the type is otherwise
18090 -- legal for a discriminant.
18091
18092 elsif Null_Exclusion_Present (Discr)
18093 and then Is_Discrete_Type (Discr_Type)
18094 then
18095 Error_Msg_N
18096 ("null exclusion can only apply to an access type", Discr);
18097 end if;
18098
18099 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18100 -- can't have defaults. Synchronized types, or types that are
18101 -- explicitly limited are fine, but special tests apply to derived
18102 -- types in generics: in a generic body we have to assume the
18103 -- worst, and therefore defaults are not allowed if the parent is
18104 -- a generic formal private type (see ACATS B370001).
18105
18106 if Is_Access_Type (Discr_Type) and then Default_Present then
18107 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18108 or else Is_Limited_Record (Current_Scope)
18109 or else Is_Concurrent_Type (Current_Scope)
18110 or else Is_Concurrent_Record_Type (Current_Scope)
18111 or else Ekind (Current_Scope) = E_Limited_Private_Type
18112 then
18113 if not Is_Derived_Type (Current_Scope)
18114 or else not Is_Generic_Type (Etype (Current_Scope))
18115 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18116 or else Limited_Present
18117 (Type_Definition (Parent (Current_Scope)))
18118 then
18119 null;
18120
18121 else
18122 Error_Msg_N ("access discriminants of nonlimited types",
18123 Expression (Discr));
18124 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18125 end if;
18126
18127 elsif Present (Expression (Discr)) then
18128 Error_Msg_N
18129 ("(Ada 2005) access discriminants of nonlimited types",
18130 Expression (Discr));
18131 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18132 end if;
18133 end if;
18134 end if;
18135
18136 -- A discriminant cannot be effectively volatile. This check is only
18137 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18138 -- rule (SPARK RM 7.1.3(6)).
18139
18140 if SPARK_Mode = On
18141 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18142 then
18143 Error_Msg_N ("discriminant cannot be volatile", Discr);
18144 end if;
18145
18146 Next (Discr);
18147 end loop;
18148
18149 -- An element list consisting of the default expressions of the
18150 -- discriminants is constructed in the above loop and used to set
18151 -- the Discriminant_Constraint attribute for the type. If an object
18152 -- is declared of this (record or task) type without any explicit
18153 -- discriminant constraint given, this element list will form the
18154 -- actual parameters for the corresponding initialization procedure
18155 -- for the type.
18156
18157 Set_Discriminant_Constraint (Current_Scope, Elist);
18158 Set_Stored_Constraint (Current_Scope, No_Elist);
18159
18160 -- Default expressions must be provided either for all or for none
18161 -- of the discriminants of a discriminant part. (RM 3.7.1)
18162
18163 if Default_Present and then Default_Not_Present then
18164 Error_Msg_N
18165 ("incomplete specification of defaults for discriminants", N);
18166 end if;
18167
18168 -- The use of the name of a discriminant is not allowed in default
18169 -- expressions of a discriminant part if the specification of the
18170 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18171
18172 -- To detect this, the discriminant names are entered initially with an
18173 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18174 -- attempt to use a void entity (for example in an expression that is
18175 -- type-checked) produces the error message: premature usage. Now after
18176 -- completing the semantic analysis of the discriminant part, we can set
18177 -- the Ekind of all the discriminants appropriately.
18178
18179 Discr := First (Discriminant_Specifications (N));
18180 Discr_Number := Uint_1;
18181 while Present (Discr) loop
18182 Id := Defining_Identifier (Discr);
18183 Set_Ekind (Id, E_Discriminant);
18184 Init_Component_Location (Id);
18185 Init_Esize (Id);
18186 Set_Discriminant_Number (Id, Discr_Number);
18187
18188 -- Make sure this is always set, even in illegal programs
18189
18190 Set_Corresponding_Discriminant (Id, Empty);
18191
18192 -- Initialize the Original_Record_Component to the entity itself.
18193 -- Inherit_Components will propagate the right value to
18194 -- discriminants in derived record types.
18195
18196 Set_Original_Record_Component (Id, Id);
18197
18198 -- Create the discriminal for the discriminant
18199
18200 Build_Discriminal (Id);
18201
18202 Next (Discr);
18203 Discr_Number := Discr_Number + 1;
18204 end loop;
18205
18206 Set_Has_Discriminants (Current_Scope);
18207 end Process_Discriminants;
18208
18209 -----------------------
18210 -- Process_Full_View --
18211 -----------------------
18212
18213 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18214 Priv_Parent : Entity_Id;
18215 Full_Parent : Entity_Id;
18216 Full_Indic : Node_Id;
18217
18218 procedure Collect_Implemented_Interfaces
18219 (Typ : Entity_Id;
18220 Ifaces : Elist_Id);
18221 -- Ada 2005: Gather all the interfaces that Typ directly or
18222 -- inherently implements. Duplicate entries are not added to
18223 -- the list Ifaces.
18224
18225 ------------------------------------
18226 -- Collect_Implemented_Interfaces --
18227 ------------------------------------
18228
18229 procedure Collect_Implemented_Interfaces
18230 (Typ : Entity_Id;
18231 Ifaces : Elist_Id)
18232 is
18233 Iface : Entity_Id;
18234 Iface_Elmt : Elmt_Id;
18235
18236 begin
18237 -- Abstract interfaces are only associated with tagged record types
18238
18239 if not Is_Tagged_Type (Typ)
18240 or else not Is_Record_Type (Typ)
18241 then
18242 return;
18243 end if;
18244
18245 -- Recursively climb to the ancestors
18246
18247 if Etype (Typ) /= Typ
18248
18249 -- Protect the frontend against wrong cyclic declarations like:
18250
18251 -- type B is new A with private;
18252 -- type C is new A with private;
18253 -- private
18254 -- type B is new C with null record;
18255 -- type C is new B with null record;
18256
18257 and then Etype (Typ) /= Priv_T
18258 and then Etype (Typ) /= Full_T
18259 then
18260 -- Keep separate the management of private type declarations
18261
18262 if Ekind (Typ) = E_Record_Type_With_Private then
18263
18264 -- Handle the following illegal usage:
18265 -- type Private_Type is tagged private;
18266 -- private
18267 -- type Private_Type is new Type_Implementing_Iface;
18268
18269 if Present (Full_View (Typ))
18270 and then Etype (Typ) /= Full_View (Typ)
18271 then
18272 if Is_Interface (Etype (Typ)) then
18273 Append_Unique_Elmt (Etype (Typ), Ifaces);
18274 end if;
18275
18276 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18277 end if;
18278
18279 -- Non-private types
18280
18281 else
18282 if Is_Interface (Etype (Typ)) then
18283 Append_Unique_Elmt (Etype (Typ), Ifaces);
18284 end if;
18285
18286 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18287 end if;
18288 end if;
18289
18290 -- Handle entities in the list of abstract interfaces
18291
18292 if Present (Interfaces (Typ)) then
18293 Iface_Elmt := First_Elmt (Interfaces (Typ));
18294 while Present (Iface_Elmt) loop
18295 Iface := Node (Iface_Elmt);
18296
18297 pragma Assert (Is_Interface (Iface));
18298
18299 if not Contain_Interface (Iface, Ifaces) then
18300 Append_Elmt (Iface, Ifaces);
18301 Collect_Implemented_Interfaces (Iface, Ifaces);
18302 end if;
18303
18304 Next_Elmt (Iface_Elmt);
18305 end loop;
18306 end if;
18307 end Collect_Implemented_Interfaces;
18308
18309 -- Start of processing for Process_Full_View
18310
18311 begin
18312 -- First some sanity checks that must be done after semantic
18313 -- decoration of the full view and thus cannot be placed with other
18314 -- similar checks in Find_Type_Name
18315
18316 if not Is_Limited_Type (Priv_T)
18317 and then (Is_Limited_Type (Full_T)
18318 or else Is_Limited_Composite (Full_T))
18319 then
18320 if In_Instance then
18321 null;
18322 else
18323 Error_Msg_N
18324 ("completion of nonlimited type cannot be limited", Full_T);
18325 Explain_Limited_Type (Full_T, Full_T);
18326 end if;
18327
18328 elsif Is_Abstract_Type (Full_T)
18329 and then not Is_Abstract_Type (Priv_T)
18330 then
18331 Error_Msg_N
18332 ("completion of nonabstract type cannot be abstract", Full_T);
18333
18334 elsif Is_Tagged_Type (Priv_T)
18335 and then Is_Limited_Type (Priv_T)
18336 and then not Is_Limited_Type (Full_T)
18337 then
18338 -- If pragma CPP_Class was applied to the private declaration
18339 -- propagate the limitedness to the full-view
18340
18341 if Is_CPP_Class (Priv_T) then
18342 Set_Is_Limited_Record (Full_T);
18343
18344 -- GNAT allow its own definition of Limited_Controlled to disobey
18345 -- this rule in order in ease the implementation. This test is safe
18346 -- because Root_Controlled is defined in a child of System that
18347 -- normal programs are not supposed to use.
18348
18349 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18350 Set_Is_Limited_Composite (Full_T);
18351 else
18352 Error_Msg_N
18353 ("completion of limited tagged type must be limited", Full_T);
18354 end if;
18355
18356 elsif Is_Generic_Type (Priv_T) then
18357 Error_Msg_N ("generic type cannot have a completion", Full_T);
18358 end if;
18359
18360 -- Check that ancestor interfaces of private and full views are
18361 -- consistent. We omit this check for synchronized types because
18362 -- they are performed on the corresponding record type when frozen.
18363
18364 if Ada_Version >= Ada_2005
18365 and then Is_Tagged_Type (Priv_T)
18366 and then Is_Tagged_Type (Full_T)
18367 and then not Is_Concurrent_Type (Full_T)
18368 then
18369 declare
18370 Iface : Entity_Id;
18371 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18372 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18373
18374 begin
18375 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18376 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18377
18378 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18379 -- an interface type if and only if the full type is descendant
18380 -- of the interface type (AARM 7.3 (7.3/2)).
18381
18382 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18383
18384 if Present (Iface) then
18385 Error_Msg_NE
18386 ("interface in partial view& not implemented by full type "
18387 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18388 end if;
18389
18390 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18391
18392 if Present (Iface) then
18393 Error_Msg_NE
18394 ("interface & not implemented by partial view "
18395 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18396 end if;
18397 end;
18398 end if;
18399
18400 if Is_Tagged_Type (Priv_T)
18401 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18402 and then Is_Derived_Type (Full_T)
18403 then
18404 Priv_Parent := Etype (Priv_T);
18405
18406 -- The full view of a private extension may have been transformed
18407 -- into an unconstrained derived type declaration and a subtype
18408 -- declaration (see build_derived_record_type for details).
18409
18410 if Nkind (N) = N_Subtype_Declaration then
18411 Full_Indic := Subtype_Indication (N);
18412 Full_Parent := Etype (Base_Type (Full_T));
18413 else
18414 Full_Indic := Subtype_Indication (Type_Definition (N));
18415 Full_Parent := Etype (Full_T);
18416 end if;
18417
18418 -- Check that the parent type of the full type is a descendant of
18419 -- the ancestor subtype given in the private extension. If either
18420 -- entity has an Etype equal to Any_Type then we had some previous
18421 -- error situation [7.3(8)].
18422
18423 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18424 return;
18425
18426 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18427 -- any order. Therefore we don't have to check that its parent must
18428 -- be a descendant of the parent of the private type declaration.
18429
18430 elsif Is_Interface (Priv_Parent)
18431 and then Is_Interface (Full_Parent)
18432 then
18433 null;
18434
18435 -- Ada 2005 (AI-251): If the parent of the private type declaration
18436 -- is an interface there is no need to check that it is an ancestor
18437 -- of the associated full type declaration. The required tests for
18438 -- this case are performed by Build_Derived_Record_Type.
18439
18440 elsif not Is_Interface (Base_Type (Priv_Parent))
18441 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18442 then
18443 Error_Msg_N
18444 ("parent of full type must descend from parent"
18445 & " of private extension", Full_Indic);
18446
18447 -- First check a formal restriction, and then proceed with checking
18448 -- Ada rules. Since the formal restriction is not a serious error, we
18449 -- don't prevent further error detection for this check, hence the
18450 -- ELSE.
18451
18452 else
18453
18454 -- In formal mode, when completing a private extension the type
18455 -- named in the private part must be exactly the same as that
18456 -- named in the visible part.
18457
18458 if Priv_Parent /= Full_Parent then
18459 Error_Msg_Name_1 := Chars (Priv_Parent);
18460 Check_SPARK_Restriction ("% expected", Full_Indic);
18461 end if;
18462
18463 -- Check the rules of 7.3(10): if the private extension inherits
18464 -- known discriminants, then the full type must also inherit those
18465 -- discriminants from the same (ancestor) type, and the parent
18466 -- subtype of the full type must be constrained if and only if
18467 -- the ancestor subtype of the private extension is constrained.
18468
18469 if No (Discriminant_Specifications (Parent (Priv_T)))
18470 and then not Has_Unknown_Discriminants (Priv_T)
18471 and then Has_Discriminants (Base_Type (Priv_Parent))
18472 then
18473 declare
18474 Priv_Indic : constant Node_Id :=
18475 Subtype_Indication (Parent (Priv_T));
18476
18477 Priv_Constr : constant Boolean :=
18478 Is_Constrained (Priv_Parent)
18479 or else
18480 Nkind (Priv_Indic) = N_Subtype_Indication
18481 or else
18482 Is_Constrained (Entity (Priv_Indic));
18483
18484 Full_Constr : constant Boolean :=
18485 Is_Constrained (Full_Parent)
18486 or else
18487 Nkind (Full_Indic) = N_Subtype_Indication
18488 or else
18489 Is_Constrained (Entity (Full_Indic));
18490
18491 Priv_Discr : Entity_Id;
18492 Full_Discr : Entity_Id;
18493
18494 begin
18495 Priv_Discr := First_Discriminant (Priv_Parent);
18496 Full_Discr := First_Discriminant (Full_Parent);
18497 while Present (Priv_Discr) and then Present (Full_Discr) loop
18498 if Original_Record_Component (Priv_Discr) =
18499 Original_Record_Component (Full_Discr)
18500 or else
18501 Corresponding_Discriminant (Priv_Discr) =
18502 Corresponding_Discriminant (Full_Discr)
18503 then
18504 null;
18505 else
18506 exit;
18507 end if;
18508
18509 Next_Discriminant (Priv_Discr);
18510 Next_Discriminant (Full_Discr);
18511 end loop;
18512
18513 if Present (Priv_Discr) or else Present (Full_Discr) then
18514 Error_Msg_N
18515 ("full view must inherit discriminants of the parent"
18516 & " type used in the private extension", Full_Indic);
18517
18518 elsif Priv_Constr and then not Full_Constr then
18519 Error_Msg_N
18520 ("parent subtype of full type must be constrained",
18521 Full_Indic);
18522
18523 elsif Full_Constr and then not Priv_Constr then
18524 Error_Msg_N
18525 ("parent subtype of full type must be unconstrained",
18526 Full_Indic);
18527 end if;
18528 end;
18529
18530 -- Check the rules of 7.3(12): if a partial view has neither
18531 -- known or unknown discriminants, then the full type
18532 -- declaration shall define a definite subtype.
18533
18534 elsif not Has_Unknown_Discriminants (Priv_T)
18535 and then not Has_Discriminants (Priv_T)
18536 and then not Is_Constrained (Full_T)
18537 then
18538 Error_Msg_N
18539 ("full view must define a constrained type if partial view"
18540 & " has no discriminants", Full_T);
18541 end if;
18542
18543 -- ??????? Do we implement the following properly ?????
18544 -- If the ancestor subtype of a private extension has constrained
18545 -- discriminants, then the parent subtype of the full view shall
18546 -- impose a statically matching constraint on those discriminants
18547 -- [7.3(13)].
18548 end if;
18549
18550 else
18551 -- For untagged types, verify that a type without discriminants is
18552 -- not completed with an unconstrained type. A separate error message
18553 -- is produced if the full type has defaulted discriminants.
18554
18555 if not Is_Indefinite_Subtype (Priv_T)
18556 and then Is_Indefinite_Subtype (Full_T)
18557 then
18558 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18559 Error_Msg_NE
18560 ("full view of& not compatible with declaration#",
18561 Full_T, Priv_T);
18562
18563 if not Is_Tagged_Type (Full_T) then
18564 Error_Msg_N
18565 ("\one is constrained, the other unconstrained", Full_T);
18566 end if;
18567 end if;
18568 end if;
18569
18570 -- AI-419: verify that the use of "limited" is consistent
18571
18572 declare
18573 Orig_Decl : constant Node_Id := Original_Node (N);
18574
18575 begin
18576 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18577 and then not Limited_Present (Parent (Priv_T))
18578 and then not Synchronized_Present (Parent (Priv_T))
18579 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18580 and then Nkind
18581 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18582 and then Limited_Present (Type_Definition (Orig_Decl))
18583 then
18584 Error_Msg_N
18585 ("full view of non-limited extension cannot be limited", N);
18586 end if;
18587 end;
18588
18589 -- Ada 2005 (AI-443): A synchronized private extension must be
18590 -- completed by a task or protected type.
18591
18592 if Ada_Version >= Ada_2005
18593 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18594 and then Synchronized_Present (Parent (Priv_T))
18595 and then not Is_Concurrent_Type (Full_T)
18596 then
18597 Error_Msg_N ("full view of synchronized extension must " &
18598 "be synchronized type", N);
18599 end if;
18600
18601 -- Ada 2005 AI-363: if the full view has discriminants with
18602 -- defaults, it is illegal to declare constrained access subtypes
18603 -- whose designated type is the current type. This allows objects
18604 -- of the type that are declared in the heap to be unconstrained.
18605
18606 if not Has_Unknown_Discriminants (Priv_T)
18607 and then not Has_Discriminants (Priv_T)
18608 and then Has_Discriminants (Full_T)
18609 and then
18610 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18611 then
18612 Set_Has_Constrained_Partial_View (Full_T);
18613 Set_Has_Constrained_Partial_View (Priv_T);
18614 end if;
18615
18616 -- Create a full declaration for all its subtypes recorded in
18617 -- Private_Dependents and swap them similarly to the base type. These
18618 -- are subtypes that have been define before the full declaration of
18619 -- the private type. We also swap the entry in Private_Dependents list
18620 -- so we can properly restore the private view on exit from the scope.
18621
18622 declare
18623 Priv_Elmt : Elmt_Id;
18624 Priv_Scop : Entity_Id;
18625 Priv : Entity_Id;
18626 Full : Entity_Id;
18627
18628 begin
18629 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18630 while Present (Priv_Elmt) loop
18631 Priv := Node (Priv_Elmt);
18632 Priv_Scop := Scope (Priv);
18633
18634 if Ekind_In (Priv, E_Private_Subtype,
18635 E_Limited_Private_Subtype,
18636 E_Record_Subtype_With_Private)
18637 then
18638 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18639 Set_Is_Itype (Full);
18640 Set_Parent (Full, Parent (Priv));
18641 Set_Associated_Node_For_Itype (Full, N);
18642
18643 -- Now we need to complete the private subtype, but since the
18644 -- base type has already been swapped, we must also swap the
18645 -- subtypes (and thus, reverse the arguments in the call to
18646 -- Complete_Private_Subtype). Also note that we may need to
18647 -- re-establish the scope of the private subtype.
18648
18649 Copy_And_Swap (Priv, Full);
18650
18651 if not In_Open_Scopes (Priv_Scop) then
18652 Push_Scope (Priv_Scop);
18653
18654 else
18655 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18656
18657 Priv_Scop := Empty;
18658 end if;
18659
18660 Complete_Private_Subtype (Full, Priv, Full_T, N);
18661
18662 if Present (Priv_Scop) then
18663 Pop_Scope;
18664 end if;
18665
18666 Replace_Elmt (Priv_Elmt, Full);
18667 end if;
18668
18669 Next_Elmt (Priv_Elmt);
18670 end loop;
18671 end;
18672
18673 -- If the private view was tagged, copy the new primitive operations
18674 -- from the private view to the full view.
18675
18676 if Is_Tagged_Type (Full_T) then
18677 declare
18678 Disp_Typ : Entity_Id;
18679 Full_List : Elist_Id;
18680 Prim : Entity_Id;
18681 Prim_Elmt : Elmt_Id;
18682 Priv_List : Elist_Id;
18683
18684 function Contains
18685 (E : Entity_Id;
18686 L : Elist_Id) return Boolean;
18687 -- Determine whether list L contains element E
18688
18689 --------------
18690 -- Contains --
18691 --------------
18692
18693 function Contains
18694 (E : Entity_Id;
18695 L : Elist_Id) return Boolean
18696 is
18697 List_Elmt : Elmt_Id;
18698
18699 begin
18700 List_Elmt := First_Elmt (L);
18701 while Present (List_Elmt) loop
18702 if Node (List_Elmt) = E then
18703 return True;
18704 end if;
18705
18706 Next_Elmt (List_Elmt);
18707 end loop;
18708
18709 return False;
18710 end Contains;
18711
18712 -- Start of processing
18713
18714 begin
18715 if Is_Tagged_Type (Priv_T) then
18716 Priv_List := Primitive_Operations (Priv_T);
18717 Prim_Elmt := First_Elmt (Priv_List);
18718
18719 -- In the case of a concurrent type completing a private tagged
18720 -- type, primitives may have been declared in between the two
18721 -- views. These subprograms need to be wrapped the same way
18722 -- entries and protected procedures are handled because they
18723 -- cannot be directly shared by the two views.
18724
18725 if Is_Concurrent_Type (Full_T) then
18726 declare
18727 Conc_Typ : constant Entity_Id :=
18728 Corresponding_Record_Type (Full_T);
18729 Curr_Nod : Node_Id := Parent (Conc_Typ);
18730 Wrap_Spec : Node_Id;
18731
18732 begin
18733 while Present (Prim_Elmt) loop
18734 Prim := Node (Prim_Elmt);
18735
18736 if Comes_From_Source (Prim)
18737 and then not Is_Abstract_Subprogram (Prim)
18738 then
18739 Wrap_Spec :=
18740 Make_Subprogram_Declaration (Sloc (Prim),
18741 Specification =>
18742 Build_Wrapper_Spec
18743 (Subp_Id => Prim,
18744 Obj_Typ => Conc_Typ,
18745 Formals =>
18746 Parameter_Specifications (
18747 Parent (Prim))));
18748
18749 Insert_After (Curr_Nod, Wrap_Spec);
18750 Curr_Nod := Wrap_Spec;
18751
18752 Analyze (Wrap_Spec);
18753 end if;
18754
18755 Next_Elmt (Prim_Elmt);
18756 end loop;
18757
18758 return;
18759 end;
18760
18761 -- For non-concurrent types, transfer explicit primitives, but
18762 -- omit those inherited from the parent of the private view
18763 -- since they will be re-inherited later on.
18764
18765 else
18766 Full_List := Primitive_Operations (Full_T);
18767
18768 while Present (Prim_Elmt) loop
18769 Prim := Node (Prim_Elmt);
18770
18771 if Comes_From_Source (Prim)
18772 and then not Contains (Prim, Full_List)
18773 then
18774 Append_Elmt (Prim, Full_List);
18775 end if;
18776
18777 Next_Elmt (Prim_Elmt);
18778 end loop;
18779 end if;
18780
18781 -- Untagged private view
18782
18783 else
18784 Full_List := Primitive_Operations (Full_T);
18785
18786 -- In this case the partial view is untagged, so here we locate
18787 -- all of the earlier primitives that need to be treated as
18788 -- dispatching (those that appear between the two views). Note
18789 -- that these additional operations must all be new operations
18790 -- (any earlier operations that override inherited operations
18791 -- of the full view will already have been inserted in the
18792 -- primitives list, marked by Check_Operation_From_Private_View
18793 -- as dispatching. Note that implicit "/=" operators are
18794 -- excluded from being added to the primitives list since they
18795 -- shouldn't be treated as dispatching (tagged "/=" is handled
18796 -- specially).
18797
18798 Prim := Next_Entity (Full_T);
18799 while Present (Prim) and then Prim /= Priv_T loop
18800 if Ekind_In (Prim, E_Procedure, E_Function) then
18801 Disp_Typ := Find_Dispatching_Type (Prim);
18802
18803 if Disp_Typ = Full_T
18804 and then (Chars (Prim) /= Name_Op_Ne
18805 or else Comes_From_Source (Prim))
18806 then
18807 Check_Controlling_Formals (Full_T, Prim);
18808
18809 if not Is_Dispatching_Operation (Prim) then
18810 Append_Elmt (Prim, Full_List);
18811 Set_Is_Dispatching_Operation (Prim, True);
18812 Set_DT_Position (Prim, No_Uint);
18813 end if;
18814
18815 elsif Is_Dispatching_Operation (Prim)
18816 and then Disp_Typ /= Full_T
18817 then
18818
18819 -- Verify that it is not otherwise controlled by a
18820 -- formal or a return value of type T.
18821
18822 Check_Controlling_Formals (Disp_Typ, Prim);
18823 end if;
18824 end if;
18825
18826 Next_Entity (Prim);
18827 end loop;
18828 end if;
18829
18830 -- For the tagged case, the two views can share the same primitive
18831 -- operations list and the same class-wide type. Update attributes
18832 -- of the class-wide type which depend on the full declaration.
18833
18834 if Is_Tagged_Type (Priv_T) then
18835 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18836 Set_Class_Wide_Type
18837 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18838
18839 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18840 Set_Has_Protected
18841 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18842 end if;
18843 end;
18844 end if;
18845
18846 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18847
18848 if Known_To_Have_Preelab_Init (Priv_T) then
18849
18850 -- Case where there is a pragma Preelaborable_Initialization. We
18851 -- always allow this in predefined units, which is cheating a bit,
18852 -- but it means we don't have to struggle to meet the requirements in
18853 -- the RM for having Preelaborable Initialization. Otherwise we
18854 -- require that the type meets the RM rules. But we can't check that
18855 -- yet, because of the rule about overriding Initialize, so we simply
18856 -- set a flag that will be checked at freeze time.
18857
18858 if not In_Predefined_Unit (Full_T) then
18859 Set_Must_Have_Preelab_Init (Full_T);
18860 end if;
18861 end if;
18862
18863 -- If pragma CPP_Class was applied to the private type declaration,
18864 -- propagate it now to the full type declaration.
18865
18866 if Is_CPP_Class (Priv_T) then
18867 Set_Is_CPP_Class (Full_T);
18868 Set_Convention (Full_T, Convention_CPP);
18869
18870 -- Check that components of imported CPP types do not have default
18871 -- expressions.
18872
18873 Check_CPP_Type_Has_No_Defaults (Full_T);
18874 end if;
18875
18876 -- If the private view has user specified stream attributes, then so has
18877 -- the full view.
18878
18879 -- Why the test, how could these flags be already set in Full_T ???
18880
18881 if Has_Specified_Stream_Read (Priv_T) then
18882 Set_Has_Specified_Stream_Read (Full_T);
18883 end if;
18884
18885 if Has_Specified_Stream_Write (Priv_T) then
18886 Set_Has_Specified_Stream_Write (Full_T);
18887 end if;
18888
18889 if Has_Specified_Stream_Input (Priv_T) then
18890 Set_Has_Specified_Stream_Input (Full_T);
18891 end if;
18892
18893 if Has_Specified_Stream_Output (Priv_T) then
18894 Set_Has_Specified_Stream_Output (Full_T);
18895 end if;
18896
18897 -- Propagate invariants to full type
18898
18899 if Has_Invariants (Priv_T) then
18900 Set_Has_Invariants (Full_T);
18901 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18902 end if;
18903
18904 if Has_Inheritable_Invariants (Priv_T) then
18905 Set_Has_Inheritable_Invariants (Full_T);
18906 end if;
18907
18908 -- Propagate predicates to full type, and predicate function if already
18909 -- defined. It is not clear that this can actually happen? the partial
18910 -- view cannot be frozen yet, and the predicate function has not been
18911 -- built. Still it is a cheap check and seems safer to make it.
18912
18913 if Has_Predicates (Priv_T) then
18914 if Present (Predicate_Function (Priv_T)) then
18915 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18916 end if;
18917
18918 Set_Has_Predicates (Full_T);
18919 end if;
18920 end Process_Full_View;
18921
18922 -----------------------------------
18923 -- Process_Incomplete_Dependents --
18924 -----------------------------------
18925
18926 procedure Process_Incomplete_Dependents
18927 (N : Node_Id;
18928 Full_T : Entity_Id;
18929 Inc_T : Entity_Id)
18930 is
18931 Inc_Elmt : Elmt_Id;
18932 Priv_Dep : Entity_Id;
18933 New_Subt : Entity_Id;
18934
18935 Disc_Constraint : Elist_Id;
18936
18937 begin
18938 if No (Private_Dependents (Inc_T)) then
18939 return;
18940 end if;
18941
18942 -- Itypes that may be generated by the completion of an incomplete
18943 -- subtype are not used by the back-end and not attached to the tree.
18944 -- They are created only for constraint-checking purposes.
18945
18946 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18947 while Present (Inc_Elmt) loop
18948 Priv_Dep := Node (Inc_Elmt);
18949
18950 if Ekind (Priv_Dep) = E_Subprogram_Type then
18951
18952 -- An Access_To_Subprogram type may have a return type or a
18953 -- parameter type that is incomplete. Replace with the full view.
18954
18955 if Etype (Priv_Dep) = Inc_T then
18956 Set_Etype (Priv_Dep, Full_T);
18957 end if;
18958
18959 declare
18960 Formal : Entity_Id;
18961
18962 begin
18963 Formal := First_Formal (Priv_Dep);
18964 while Present (Formal) loop
18965 if Etype (Formal) = Inc_T then
18966 Set_Etype (Formal, Full_T);
18967 end if;
18968
18969 Next_Formal (Formal);
18970 end loop;
18971 end;
18972
18973 elsif Is_Overloadable (Priv_Dep) then
18974
18975 -- If a subprogram in the incomplete dependents list is primitive
18976 -- for a tagged full type then mark it as a dispatching operation,
18977 -- check whether it overrides an inherited subprogram, and check
18978 -- restrictions on its controlling formals. Note that a protected
18979 -- operation is never dispatching: only its wrapper operation
18980 -- (which has convention Ada) is.
18981
18982 if Is_Tagged_Type (Full_T)
18983 and then Is_Primitive (Priv_Dep)
18984 and then Convention (Priv_Dep) /= Convention_Protected
18985 then
18986 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18987 Set_Is_Dispatching_Operation (Priv_Dep);
18988 Check_Controlling_Formals (Full_T, Priv_Dep);
18989 end if;
18990
18991 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18992
18993 -- Can happen during processing of a body before the completion
18994 -- of a TA type. Ignore, because spec is also on dependent list.
18995
18996 return;
18997
18998 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18999 -- corresponding subtype of the full view.
19000
19001 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19002 Set_Subtype_Indication
19003 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19004 Set_Etype (Priv_Dep, Full_T);
19005 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19006 Set_Analyzed (Parent (Priv_Dep), False);
19007
19008 -- Reanalyze the declaration, suppressing the call to
19009 -- Enter_Name to avoid duplicate names.
19010
19011 Analyze_Subtype_Declaration
19012 (N => Parent (Priv_Dep),
19013 Skip => True);
19014
19015 -- Dependent is a subtype
19016
19017 else
19018 -- We build a new subtype indication using the full view of the
19019 -- incomplete parent. The discriminant constraints have been
19020 -- elaborated already at the point of the subtype declaration.
19021
19022 New_Subt := Create_Itype (E_Void, N);
19023
19024 if Has_Discriminants (Full_T) then
19025 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19026 else
19027 Disc_Constraint := No_Elist;
19028 end if;
19029
19030 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19031 Set_Full_View (Priv_Dep, New_Subt);
19032 end if;
19033
19034 Next_Elmt (Inc_Elmt);
19035 end loop;
19036 end Process_Incomplete_Dependents;
19037
19038 --------------------------------
19039 -- Process_Range_Expr_In_Decl --
19040 --------------------------------
19041
19042 procedure Process_Range_Expr_In_Decl
19043 (R : Node_Id;
19044 T : Entity_Id;
19045 Subtyp : Entity_Id := Empty;
19046 Check_List : List_Id := Empty_List;
19047 R_Check_Off : Boolean := False;
19048 In_Iter_Schm : Boolean := False)
19049 is
19050 Lo, Hi : Node_Id;
19051 R_Checks : Check_Result;
19052 Insert_Node : Node_Id;
19053 Def_Id : Entity_Id;
19054
19055 begin
19056 Analyze_And_Resolve (R, Base_Type (T));
19057
19058 if Nkind (R) = N_Range then
19059
19060 -- In SPARK, all ranges should be static, with the exception of the
19061 -- discrete type definition of a loop parameter specification.
19062
19063 if not In_Iter_Schm
19064 and then not Is_OK_Static_Range (R)
19065 then
19066 Check_SPARK_Restriction ("range should be static", R);
19067 end if;
19068
19069 Lo := Low_Bound (R);
19070 Hi := High_Bound (R);
19071
19072 -- We need to ensure validity of the bounds here, because if we
19073 -- go ahead and do the expansion, then the expanded code will get
19074 -- analyzed with range checks suppressed and we miss the check.
19075 -- Validity checks on the range of a quantified expression are
19076 -- delayed until the construct is transformed into a loop.
19077
19078 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19079 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19080 then
19081 Validity_Check_Range (R);
19082 end if;
19083
19084 -- If there were errors in the declaration, try and patch up some
19085 -- common mistakes in the bounds. The cases handled are literals
19086 -- which are Integer where the expected type is Real and vice versa.
19087 -- These corrections allow the compilation process to proceed further
19088 -- along since some basic assumptions of the format of the bounds
19089 -- are guaranteed.
19090
19091 if Etype (R) = Any_Type then
19092 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19093 Rewrite (Lo,
19094 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19095
19096 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19097 Rewrite (Hi,
19098 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19099
19100 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19101 Rewrite (Lo,
19102 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19103
19104 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19105 Rewrite (Hi,
19106 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19107 end if;
19108
19109 Set_Etype (Lo, T);
19110 Set_Etype (Hi, T);
19111 end if;
19112
19113 -- If the bounds of the range have been mistakenly given as string
19114 -- literals (perhaps in place of character literals), then an error
19115 -- has already been reported, but we rewrite the string literal as a
19116 -- bound of the range's type to avoid blowups in later processing
19117 -- that looks at static values.
19118
19119 if Nkind (Lo) = N_String_Literal then
19120 Rewrite (Lo,
19121 Make_Attribute_Reference (Sloc (Lo),
19122 Attribute_Name => Name_First,
19123 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19124 Analyze_And_Resolve (Lo);
19125 end if;
19126
19127 if Nkind (Hi) = N_String_Literal then
19128 Rewrite (Hi,
19129 Make_Attribute_Reference (Sloc (Hi),
19130 Attribute_Name => Name_First,
19131 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19132 Analyze_And_Resolve (Hi);
19133 end if;
19134
19135 -- If bounds aren't scalar at this point then exit, avoiding
19136 -- problems with further processing of the range in this procedure.
19137
19138 if not Is_Scalar_Type (Etype (Lo)) then
19139 return;
19140 end if;
19141
19142 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19143 -- then range of the base type. Here we check whether the bounds
19144 -- are in the range of the subtype itself. Note that if the bounds
19145 -- represent the null range the Constraint_Error exception should
19146 -- not be raised.
19147
19148 -- ??? The following code should be cleaned up as follows
19149
19150 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19151 -- is done in the call to Range_Check (R, T); below
19152
19153 -- 2. The use of R_Check_Off should be investigated and possibly
19154 -- removed, this would clean up things a bit.
19155
19156 if Is_Null_Range (Lo, Hi) then
19157 null;
19158
19159 else
19160 -- Capture values of bounds and generate temporaries for them
19161 -- if needed, before applying checks, since checks may cause
19162 -- duplication of the expression without forcing evaluation.
19163
19164 -- The forced evaluation removes side effects from expressions,
19165 -- which should occur also in GNATprove mode. Otherwise, we end up
19166 -- with unexpected insertions of actions at places where this is
19167 -- not supposed to occur, e.g. on default parameters of a call.
19168
19169 if Expander_Active or GNATprove_Mode then
19170
19171 -- If no subtype name, then just call Force_Evaluation to
19172 -- create declarations as needed to deal with side effects.
19173 -- Also ignore calls from within a record type, where we
19174 -- have possible scoping issues.
19175
19176 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19177 Force_Evaluation (Lo);
19178 Force_Evaluation (Hi);
19179
19180 -- If a subtype is given, then we capture the bounds if they
19181 -- are not known at compile time, using constant identifiers
19182 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19183
19184 -- Note: we do this transformation even if expansion is not
19185 -- active, and in particular we do it in GNATprove_Mode since
19186 -- the transformation is in general required to ensure that the
19187 -- resulting tree has proper Ada semantics.
19188
19189 -- Historical note: We used to just do Force_Evaluation calls
19190 -- in all cases, but it is better to capture the bounds with
19191 -- proper non-serialized names, since these will be accessed
19192 -- from other units, and hence may be public, and also we can
19193 -- then expand 'First and 'Last references to be references to
19194 -- these special names.
19195
19196 else
19197 if not Compile_Time_Known_Value (Lo)
19198
19199 -- No need to capture bounds if they already are
19200 -- references to constants.
19201
19202 and then not (Is_Entity_Name (Lo)
19203 and then Is_Constant_Object (Entity (Lo)))
19204 then
19205 declare
19206 Loc : constant Source_Ptr := Sloc (Lo);
19207 Lov : constant Entity_Id :=
19208 Make_Defining_Identifier (Loc,
19209 Chars =>
19210 New_External_Name (Chars (Subtyp), "_FIRST"));
19211 begin
19212 Insert_Action (R,
19213 Make_Object_Declaration (Loc,
19214 Defining_Identifier => Lov,
19215 Object_Definition =>
19216 New_Occurrence_Of (Base_Type (T), Loc),
19217 Constant_Present => True,
19218 Expression => Relocate_Node (Lo)));
19219 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19220 end;
19221 end if;
19222
19223 if not Compile_Time_Known_Value (Hi)
19224 and then not (Is_Entity_Name (Hi)
19225 and then Is_Constant_Object (Entity (Hi)))
19226 then
19227 declare
19228 Loc : constant Source_Ptr := Sloc (Hi);
19229 Hiv : constant Entity_Id :=
19230 Make_Defining_Identifier (Loc,
19231 Chars =>
19232 New_External_Name (Chars (Subtyp), "_LAST"));
19233 begin
19234 Insert_Action (R,
19235 Make_Object_Declaration (Loc,
19236 Defining_Identifier => Hiv,
19237 Object_Definition =>
19238 New_Occurrence_Of (Base_Type (T), Loc),
19239 Constant_Present => True,
19240 Expression => Relocate_Node (Hi)));
19241 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19242 end;
19243 end if;
19244 end if;
19245 end if;
19246
19247 -- We use a flag here instead of suppressing checks on the
19248 -- type because the type we check against isn't necessarily
19249 -- the place where we put the check.
19250
19251 if not R_Check_Off then
19252 R_Checks := Get_Range_Checks (R, T);
19253
19254 -- Look up tree to find an appropriate insertion point. We
19255 -- can't just use insert_actions because later processing
19256 -- depends on the insertion node. Prior to Ada 2012 the
19257 -- insertion point could only be a declaration or a loop, but
19258 -- quantified expressions can appear within any context in an
19259 -- expression, and the insertion point can be any statement,
19260 -- pragma, or declaration.
19261
19262 Insert_Node := Parent (R);
19263 while Present (Insert_Node) loop
19264 exit when
19265 Nkind (Insert_Node) in N_Declaration
19266 and then
19267 not Nkind_In
19268 (Insert_Node, N_Component_Declaration,
19269 N_Loop_Parameter_Specification,
19270 N_Function_Specification,
19271 N_Procedure_Specification);
19272
19273 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19274 or else Nkind (Insert_Node) in
19275 N_Statement_Other_Than_Procedure_Call
19276 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19277 N_Pragma);
19278
19279 Insert_Node := Parent (Insert_Node);
19280 end loop;
19281
19282 -- Why would Type_Decl not be present??? Without this test,
19283 -- short regression tests fail.
19284
19285 if Present (Insert_Node) then
19286
19287 -- Case of loop statement. Verify that the range is part
19288 -- of the subtype indication of the iteration scheme.
19289
19290 if Nkind (Insert_Node) = N_Loop_Statement then
19291 declare
19292 Indic : Node_Id;
19293
19294 begin
19295 Indic := Parent (R);
19296 while Present (Indic)
19297 and then Nkind (Indic) /= N_Subtype_Indication
19298 loop
19299 Indic := Parent (Indic);
19300 end loop;
19301
19302 if Present (Indic) then
19303 Def_Id := Etype (Subtype_Mark (Indic));
19304
19305 Insert_Range_Checks
19306 (R_Checks,
19307 Insert_Node,
19308 Def_Id,
19309 Sloc (Insert_Node),
19310 R,
19311 Do_Before => True);
19312 end if;
19313 end;
19314
19315 -- Insertion before a declaration. If the declaration
19316 -- includes discriminants, the list of applicable checks
19317 -- is given by the caller.
19318
19319 elsif Nkind (Insert_Node) in N_Declaration then
19320 Def_Id := Defining_Identifier (Insert_Node);
19321
19322 if (Ekind (Def_Id) = E_Record_Type
19323 and then Depends_On_Discriminant (R))
19324 or else
19325 (Ekind (Def_Id) = E_Protected_Type
19326 and then Has_Discriminants (Def_Id))
19327 then
19328 Append_Range_Checks
19329 (R_Checks,
19330 Check_List, Def_Id, Sloc (Insert_Node), R);
19331
19332 else
19333 Insert_Range_Checks
19334 (R_Checks,
19335 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19336
19337 end if;
19338
19339 -- Insertion before a statement. Range appears in the
19340 -- context of a quantified expression. Insertion will
19341 -- take place when expression is expanded.
19342
19343 else
19344 null;
19345 end if;
19346 end if;
19347 end if;
19348 end if;
19349
19350 -- Case of other than an explicit N_Range node
19351
19352 -- The forced evaluation removes side effects from expressions, which
19353 -- should occur also in GNATprove mode. Otherwise, we end up with
19354 -- unexpected insertions of actions at places where this is not
19355 -- supposed to occur, e.g. on default parameters of a call.
19356
19357 elsif Expander_Active or GNATprove_Mode then
19358 Get_Index_Bounds (R, Lo, Hi);
19359 Force_Evaluation (Lo);
19360 Force_Evaluation (Hi);
19361 end if;
19362 end Process_Range_Expr_In_Decl;
19363
19364 --------------------------------------
19365 -- Process_Real_Range_Specification --
19366 --------------------------------------
19367
19368 procedure Process_Real_Range_Specification (Def : Node_Id) is
19369 Spec : constant Node_Id := Real_Range_Specification (Def);
19370 Lo : Node_Id;
19371 Hi : Node_Id;
19372 Err : Boolean := False;
19373
19374 procedure Analyze_Bound (N : Node_Id);
19375 -- Analyze and check one bound
19376
19377 -------------------
19378 -- Analyze_Bound --
19379 -------------------
19380
19381 procedure Analyze_Bound (N : Node_Id) is
19382 begin
19383 Analyze_And_Resolve (N, Any_Real);
19384
19385 if not Is_OK_Static_Expression (N) then
19386 Flag_Non_Static_Expr
19387 ("bound in real type definition is not static!", N);
19388 Err := True;
19389 end if;
19390 end Analyze_Bound;
19391
19392 -- Start of processing for Process_Real_Range_Specification
19393
19394 begin
19395 if Present (Spec) then
19396 Lo := Low_Bound (Spec);
19397 Hi := High_Bound (Spec);
19398 Analyze_Bound (Lo);
19399 Analyze_Bound (Hi);
19400
19401 -- If error, clear away junk range specification
19402
19403 if Err then
19404 Set_Real_Range_Specification (Def, Empty);
19405 end if;
19406 end if;
19407 end Process_Real_Range_Specification;
19408
19409 ---------------------
19410 -- Process_Subtype --
19411 ---------------------
19412
19413 function Process_Subtype
19414 (S : Node_Id;
19415 Related_Nod : Node_Id;
19416 Related_Id : Entity_Id := Empty;
19417 Suffix : Character := ' ') return Entity_Id
19418 is
19419 P : Node_Id;
19420 Def_Id : Entity_Id;
19421 Error_Node : Node_Id;
19422 Full_View_Id : Entity_Id;
19423 Subtype_Mark_Id : Entity_Id;
19424
19425 May_Have_Null_Exclusion : Boolean;
19426
19427 procedure Check_Incomplete (T : Entity_Id);
19428 -- Called to verify that an incomplete type is not used prematurely
19429
19430 ----------------------
19431 -- Check_Incomplete --
19432 ----------------------
19433
19434 procedure Check_Incomplete (T : Entity_Id) is
19435 begin
19436 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19437
19438 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19439 and then
19440 not (Ada_Version >= Ada_2005
19441 and then
19442 (Nkind (Parent (T)) = N_Subtype_Declaration
19443 or else
19444 (Nkind (Parent (T)) = N_Subtype_Indication
19445 and then Nkind (Parent (Parent (T))) =
19446 N_Subtype_Declaration)))
19447 then
19448 Error_Msg_N ("invalid use of type before its full declaration", T);
19449 end if;
19450 end Check_Incomplete;
19451
19452 -- Start of processing for Process_Subtype
19453
19454 begin
19455 -- Case of no constraints present
19456
19457 if Nkind (S) /= N_Subtype_Indication then
19458 Find_Type (S);
19459 Check_Incomplete (S);
19460 P := Parent (S);
19461
19462 -- Ada 2005 (AI-231): Static check
19463
19464 if Ada_Version >= Ada_2005
19465 and then Present (P)
19466 and then Null_Exclusion_Present (P)
19467 and then Nkind (P) /= N_Access_To_Object_Definition
19468 and then not Is_Access_Type (Entity (S))
19469 then
19470 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19471 end if;
19472
19473 -- The following is ugly, can't we have a range or even a flag???
19474
19475 May_Have_Null_Exclusion :=
19476 Nkind_In (P, N_Access_Definition,
19477 N_Access_Function_Definition,
19478 N_Access_Procedure_Definition,
19479 N_Access_To_Object_Definition,
19480 N_Allocator,
19481 N_Component_Definition)
19482 or else
19483 Nkind_In (P, N_Derived_Type_Definition,
19484 N_Discriminant_Specification,
19485 N_Formal_Object_Declaration,
19486 N_Object_Declaration,
19487 N_Object_Renaming_Declaration,
19488 N_Parameter_Specification,
19489 N_Subtype_Declaration);
19490
19491 -- Create an Itype that is a duplicate of Entity (S) but with the
19492 -- null-exclusion attribute.
19493
19494 if May_Have_Null_Exclusion
19495 and then Is_Access_Type (Entity (S))
19496 and then Null_Exclusion_Present (P)
19497
19498 -- No need to check the case of an access to object definition.
19499 -- It is correct to define double not-null pointers.
19500
19501 -- Example:
19502 -- type Not_Null_Int_Ptr is not null access Integer;
19503 -- type Acc is not null access Not_Null_Int_Ptr;
19504
19505 and then Nkind (P) /= N_Access_To_Object_Definition
19506 then
19507 if Can_Never_Be_Null (Entity (S)) then
19508 case Nkind (Related_Nod) is
19509 when N_Full_Type_Declaration =>
19510 if Nkind (Type_Definition (Related_Nod))
19511 in N_Array_Type_Definition
19512 then
19513 Error_Node :=
19514 Subtype_Indication
19515 (Component_Definition
19516 (Type_Definition (Related_Nod)));
19517 else
19518 Error_Node :=
19519 Subtype_Indication (Type_Definition (Related_Nod));
19520 end if;
19521
19522 when N_Subtype_Declaration =>
19523 Error_Node := Subtype_Indication (Related_Nod);
19524
19525 when N_Object_Declaration =>
19526 Error_Node := Object_Definition (Related_Nod);
19527
19528 when N_Component_Declaration =>
19529 Error_Node :=
19530 Subtype_Indication (Component_Definition (Related_Nod));
19531
19532 when N_Allocator =>
19533 Error_Node := Expression (Related_Nod);
19534
19535 when others =>
19536 pragma Assert (False);
19537 Error_Node := Related_Nod;
19538 end case;
19539
19540 Error_Msg_NE
19541 ("`NOT NULL` not allowed (& already excludes null)",
19542 Error_Node,
19543 Entity (S));
19544 end if;
19545
19546 Set_Etype (S,
19547 Create_Null_Excluding_Itype
19548 (T => Entity (S),
19549 Related_Nod => P));
19550 Set_Entity (S, Etype (S));
19551 end if;
19552
19553 return Entity (S);
19554
19555 -- Case of constraint present, so that we have an N_Subtype_Indication
19556 -- node (this node is created only if constraints are present).
19557
19558 else
19559 Find_Type (Subtype_Mark (S));
19560
19561 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19562 and then not
19563 (Nkind (Parent (S)) = N_Subtype_Declaration
19564 and then Is_Itype (Defining_Identifier (Parent (S))))
19565 then
19566 Check_Incomplete (Subtype_Mark (S));
19567 end if;
19568
19569 P := Parent (S);
19570 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19571
19572 -- Explicit subtype declaration case
19573
19574 if Nkind (P) = N_Subtype_Declaration then
19575 Def_Id := Defining_Identifier (P);
19576
19577 -- Explicit derived type definition case
19578
19579 elsif Nkind (P) = N_Derived_Type_Definition then
19580 Def_Id := Defining_Identifier (Parent (P));
19581
19582 -- Implicit case, the Def_Id must be created as an implicit type.
19583 -- The one exception arises in the case of concurrent types, array
19584 -- and access types, where other subsidiary implicit types may be
19585 -- created and must appear before the main implicit type. In these
19586 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19587 -- has not yet been called to create Def_Id.
19588
19589 else
19590 if Is_Array_Type (Subtype_Mark_Id)
19591 or else Is_Concurrent_Type (Subtype_Mark_Id)
19592 or else Is_Access_Type (Subtype_Mark_Id)
19593 then
19594 Def_Id := Empty;
19595
19596 -- For the other cases, we create a new unattached Itype,
19597 -- and set the indication to ensure it gets attached later.
19598
19599 else
19600 Def_Id :=
19601 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19602 end if;
19603 end if;
19604
19605 -- If the kind of constraint is invalid for this kind of type,
19606 -- then give an error, and then pretend no constraint was given.
19607
19608 if not Is_Valid_Constraint_Kind
19609 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19610 then
19611 Error_Msg_N
19612 ("incorrect constraint for this kind of type", Constraint (S));
19613
19614 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19615
19616 -- Set Ekind of orphan itype, to prevent cascaded errors
19617
19618 if Present (Def_Id) then
19619 Set_Ekind (Def_Id, Ekind (Any_Type));
19620 end if;
19621
19622 -- Make recursive call, having got rid of the bogus constraint
19623
19624 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19625 end if;
19626
19627 -- Remaining processing depends on type. Select on Base_Type kind to
19628 -- ensure getting to the concrete type kind in the case of a private
19629 -- subtype (needed when only doing semantic analysis).
19630
19631 case Ekind (Base_Type (Subtype_Mark_Id)) is
19632 when Access_Kind =>
19633
19634 -- If this is a constraint on a class-wide type, discard it.
19635 -- There is currently no way to express a partial discriminant
19636 -- constraint on a type with unknown discriminants. This is
19637 -- a pathology that the ACATS wisely decides not to test.
19638
19639 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19640 if Comes_From_Source (S) then
19641 Error_Msg_N
19642 ("constraint on class-wide type ignored??",
19643 Constraint (S));
19644 end if;
19645
19646 if Nkind (P) = N_Subtype_Declaration then
19647 Set_Subtype_Indication (P,
19648 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19649 end if;
19650
19651 return Subtype_Mark_Id;
19652 end if;
19653
19654 Constrain_Access (Def_Id, S, Related_Nod);
19655
19656 if Expander_Active
19657 and then Is_Itype (Designated_Type (Def_Id))
19658 and then Nkind (Related_Nod) = N_Subtype_Declaration
19659 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19660 then
19661 Build_Itype_Reference
19662 (Designated_Type (Def_Id), Related_Nod);
19663 end if;
19664
19665 when Array_Kind =>
19666 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19667
19668 when Decimal_Fixed_Point_Kind =>
19669 Constrain_Decimal (Def_Id, S);
19670
19671 when Enumeration_Kind =>
19672 Constrain_Enumeration (Def_Id, S);
19673 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19674
19675 when Ordinary_Fixed_Point_Kind =>
19676 Constrain_Ordinary_Fixed (Def_Id, S);
19677
19678 when Float_Kind =>
19679 Constrain_Float (Def_Id, S);
19680
19681 when Integer_Kind =>
19682 Constrain_Integer (Def_Id, S);
19683 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19684
19685 when E_Record_Type |
19686 E_Record_Subtype |
19687 Class_Wide_Kind |
19688 E_Incomplete_Type =>
19689 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19690
19691 if Ekind (Def_Id) = E_Incomplete_Type then
19692 Set_Private_Dependents (Def_Id, New_Elmt_List);
19693 end if;
19694
19695 when Private_Kind =>
19696 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19697 Set_Private_Dependents (Def_Id, New_Elmt_List);
19698
19699 -- In case of an invalid constraint prevent further processing
19700 -- since the type constructed is missing expected fields.
19701
19702 if Etype (Def_Id) = Any_Type then
19703 return Def_Id;
19704 end if;
19705
19706 -- If the full view is that of a task with discriminants,
19707 -- we must constrain both the concurrent type and its
19708 -- corresponding record type. Otherwise we will just propagate
19709 -- the constraint to the full view, if available.
19710
19711 if Present (Full_View (Subtype_Mark_Id))
19712 and then Has_Discriminants (Subtype_Mark_Id)
19713 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19714 then
19715 Full_View_Id :=
19716 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19717
19718 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19719 Constrain_Concurrent (Full_View_Id, S,
19720 Related_Nod, Related_Id, Suffix);
19721 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19722 Set_Full_View (Def_Id, Full_View_Id);
19723
19724 -- Introduce an explicit reference to the private subtype,
19725 -- to prevent scope anomalies in gigi if first use appears
19726 -- in a nested context, e.g. a later function body.
19727 -- Should this be generated in other contexts than a full
19728 -- type declaration?
19729
19730 if Is_Itype (Def_Id)
19731 and then
19732 Nkind (Parent (P)) = N_Full_Type_Declaration
19733 then
19734 Build_Itype_Reference (Def_Id, Parent (P));
19735 end if;
19736
19737 else
19738 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19739 end if;
19740
19741 when Concurrent_Kind =>
19742 Constrain_Concurrent (Def_Id, S,
19743 Related_Nod, Related_Id, Suffix);
19744
19745 when others =>
19746 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19747 end case;
19748
19749 -- Size and Convention are always inherited from the base type
19750
19751 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19752 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19753
19754 return Def_Id;
19755 end if;
19756 end Process_Subtype;
19757
19758 ---------------------------------------
19759 -- Check_Anonymous_Access_Components --
19760 ---------------------------------------
19761
19762 procedure Check_Anonymous_Access_Components
19763 (Typ_Decl : Node_Id;
19764 Typ : Entity_Id;
19765 Prev : Entity_Id;
19766 Comp_List : Node_Id)
19767 is
19768 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19769 Anon_Access : Entity_Id;
19770 Acc_Def : Node_Id;
19771 Comp : Node_Id;
19772 Comp_Def : Node_Id;
19773 Decl : Node_Id;
19774 Type_Def : Node_Id;
19775
19776 procedure Build_Incomplete_Type_Declaration;
19777 -- If the record type contains components that include an access to the
19778 -- current record, then create an incomplete type declaration for the
19779 -- record, to be used as the designated type of the anonymous access.
19780 -- This is done only once, and only if there is no previous partial
19781 -- view of the type.
19782
19783 function Designates_T (Subt : Node_Id) return Boolean;
19784 -- Check whether a node designates the enclosing record type, or 'Class
19785 -- of that type
19786
19787 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19788 -- Check whether an access definition includes a reference to
19789 -- the enclosing record type. The reference can be a subtype mark
19790 -- in the access definition itself, a 'Class attribute reference, or
19791 -- recursively a reference appearing in a parameter specification
19792 -- or result definition of an access_to_subprogram definition.
19793
19794 --------------------------------------
19795 -- Build_Incomplete_Type_Declaration --
19796 --------------------------------------
19797
19798 procedure Build_Incomplete_Type_Declaration is
19799 Decl : Node_Id;
19800 Inc_T : Entity_Id;
19801 H : Entity_Id;
19802
19803 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19804 -- it's "is new ... with record" or else "is tagged record ...".
19805
19806 Is_Tagged : constant Boolean :=
19807 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19808 and then
19809 Present
19810 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19811 or else
19812 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19813 and then Tagged_Present (Type_Definition (Typ_Decl)));
19814
19815 begin
19816 -- If there is a previous partial view, no need to create a new one
19817 -- If the partial view, given by Prev, is incomplete, If Prev is
19818 -- a private declaration, full declaration is flagged accordingly.
19819
19820 if Prev /= Typ then
19821 if Is_Tagged then
19822 Make_Class_Wide_Type (Prev);
19823 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19824 Set_Etype (Class_Wide_Type (Typ), Typ);
19825 end if;
19826
19827 return;
19828
19829 elsif Has_Private_Declaration (Typ) then
19830
19831 -- If we refer to T'Class inside T, and T is the completion of a
19832 -- private type, then we need to make sure the class-wide type
19833 -- exists.
19834
19835 if Is_Tagged then
19836 Make_Class_Wide_Type (Typ);
19837 end if;
19838
19839 return;
19840
19841 -- If there was a previous anonymous access type, the incomplete
19842 -- type declaration will have been created already.
19843
19844 elsif Present (Current_Entity (Typ))
19845 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19846 and then Full_View (Current_Entity (Typ)) = Typ
19847 then
19848 if Is_Tagged
19849 and then Comes_From_Source (Current_Entity (Typ))
19850 and then not Is_Tagged_Type (Current_Entity (Typ))
19851 then
19852 Make_Class_Wide_Type (Typ);
19853 Error_Msg_N
19854 ("incomplete view of tagged type should be declared tagged??",
19855 Parent (Current_Entity (Typ)));
19856 end if;
19857 return;
19858
19859 else
19860 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19861 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19862
19863 -- Type has already been inserted into the current scope. Remove
19864 -- it, and add incomplete declaration for type, so that subsequent
19865 -- anonymous access types can use it. The entity is unchained from
19866 -- the homonym list and from immediate visibility. After analysis,
19867 -- the entity in the incomplete declaration becomes immediately
19868 -- visible in the record declaration that follows.
19869
19870 H := Current_Entity (Typ);
19871
19872 if H = Typ then
19873 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19874 else
19875 while Present (H)
19876 and then Homonym (H) /= Typ
19877 loop
19878 H := Homonym (Typ);
19879 end loop;
19880
19881 Set_Homonym (H, Homonym (Typ));
19882 end if;
19883
19884 Insert_Before (Typ_Decl, Decl);
19885 Analyze (Decl);
19886 Set_Full_View (Inc_T, Typ);
19887
19888 if Is_Tagged then
19889
19890 -- Create a common class-wide type for both views, and set the
19891 -- Etype of the class-wide type to the full view.
19892
19893 Make_Class_Wide_Type (Inc_T);
19894 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19895 Set_Etype (Class_Wide_Type (Typ), Typ);
19896 end if;
19897 end if;
19898 end Build_Incomplete_Type_Declaration;
19899
19900 ------------------
19901 -- Designates_T --
19902 ------------------
19903
19904 function Designates_T (Subt : Node_Id) return Boolean is
19905 Type_Id : constant Name_Id := Chars (Typ);
19906
19907 function Names_T (Nam : Node_Id) return Boolean;
19908 -- The record type has not been introduced in the current scope
19909 -- yet, so we must examine the name of the type itself, either
19910 -- an identifier T, or an expanded name of the form P.T, where
19911 -- P denotes the current scope.
19912
19913 -------------
19914 -- Names_T --
19915 -------------
19916
19917 function Names_T (Nam : Node_Id) return Boolean is
19918 begin
19919 if Nkind (Nam) = N_Identifier then
19920 return Chars (Nam) = Type_Id;
19921
19922 elsif Nkind (Nam) = N_Selected_Component then
19923 if Chars (Selector_Name (Nam)) = Type_Id then
19924 if Nkind (Prefix (Nam)) = N_Identifier then
19925 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19926
19927 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19928 return Chars (Selector_Name (Prefix (Nam))) =
19929 Chars (Current_Scope);
19930 else
19931 return False;
19932 end if;
19933
19934 else
19935 return False;
19936 end if;
19937
19938 else
19939 return False;
19940 end if;
19941 end Names_T;
19942
19943 -- Start of processing for Designates_T
19944
19945 begin
19946 if Nkind (Subt) = N_Identifier then
19947 return Chars (Subt) = Type_Id;
19948
19949 -- Reference can be through an expanded name which has not been
19950 -- analyzed yet, and which designates enclosing scopes.
19951
19952 elsif Nkind (Subt) = N_Selected_Component then
19953 if Names_T (Subt) then
19954 return True;
19955
19956 -- Otherwise it must denote an entity that is already visible.
19957 -- The access definition may name a subtype of the enclosing
19958 -- type, if there is a previous incomplete declaration for it.
19959
19960 else
19961 Find_Selected_Component (Subt);
19962 return
19963 Is_Entity_Name (Subt)
19964 and then Scope (Entity (Subt)) = Current_Scope
19965 and then
19966 (Chars (Base_Type (Entity (Subt))) = Type_Id
19967 or else
19968 (Is_Class_Wide_Type (Entity (Subt))
19969 and then
19970 Chars (Etype (Base_Type (Entity (Subt)))) =
19971 Type_Id));
19972 end if;
19973
19974 -- A reference to the current type may appear as the prefix of
19975 -- a 'Class attribute.
19976
19977 elsif Nkind (Subt) = N_Attribute_Reference
19978 and then Attribute_Name (Subt) = Name_Class
19979 then
19980 return Names_T (Prefix (Subt));
19981
19982 else
19983 return False;
19984 end if;
19985 end Designates_T;
19986
19987 ----------------
19988 -- Mentions_T --
19989 ----------------
19990
19991 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19992 Param_Spec : Node_Id;
19993
19994 Acc_Subprg : constant Node_Id :=
19995 Access_To_Subprogram_Definition (Acc_Def);
19996
19997 begin
19998 if No (Acc_Subprg) then
19999 return Designates_T (Subtype_Mark (Acc_Def));
20000 end if;
20001
20002 -- Component is an access_to_subprogram: examine its formals,
20003 -- and result definition in the case of an access_to_function.
20004
20005 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20006 while Present (Param_Spec) loop
20007 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20008 and then Mentions_T (Parameter_Type (Param_Spec))
20009 then
20010 return True;
20011
20012 elsif Designates_T (Parameter_Type (Param_Spec)) then
20013 return True;
20014 end if;
20015
20016 Next (Param_Spec);
20017 end loop;
20018
20019 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20020 if Nkind (Result_Definition (Acc_Subprg)) =
20021 N_Access_Definition
20022 then
20023 return Mentions_T (Result_Definition (Acc_Subprg));
20024 else
20025 return Designates_T (Result_Definition (Acc_Subprg));
20026 end if;
20027 end if;
20028
20029 return False;
20030 end Mentions_T;
20031
20032 -- Start of processing for Check_Anonymous_Access_Components
20033
20034 begin
20035 if No (Comp_List) then
20036 return;
20037 end if;
20038
20039 Comp := First (Component_Items (Comp_List));
20040 while Present (Comp) loop
20041 if Nkind (Comp) = N_Component_Declaration
20042 and then Present
20043 (Access_Definition (Component_Definition (Comp)))
20044 and then
20045 Mentions_T (Access_Definition (Component_Definition (Comp)))
20046 then
20047 Comp_Def := Component_Definition (Comp);
20048 Acc_Def :=
20049 Access_To_Subprogram_Definition
20050 (Access_Definition (Comp_Def));
20051
20052 Build_Incomplete_Type_Declaration;
20053 Anon_Access := Make_Temporary (Loc, 'S');
20054
20055 -- Create a declaration for the anonymous access type: either
20056 -- an access_to_object or an access_to_subprogram.
20057
20058 if Present (Acc_Def) then
20059 if Nkind (Acc_Def) = N_Access_Function_Definition then
20060 Type_Def :=
20061 Make_Access_Function_Definition (Loc,
20062 Parameter_Specifications =>
20063 Parameter_Specifications (Acc_Def),
20064 Result_Definition => Result_Definition (Acc_Def));
20065 else
20066 Type_Def :=
20067 Make_Access_Procedure_Definition (Loc,
20068 Parameter_Specifications =>
20069 Parameter_Specifications (Acc_Def));
20070 end if;
20071
20072 else
20073 Type_Def :=
20074 Make_Access_To_Object_Definition (Loc,
20075 Subtype_Indication =>
20076 Relocate_Node
20077 (Subtype_Mark
20078 (Access_Definition (Comp_Def))));
20079
20080 Set_Constant_Present
20081 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20082 Set_All_Present
20083 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20084 end if;
20085
20086 Set_Null_Exclusion_Present
20087 (Type_Def,
20088 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20089
20090 Decl :=
20091 Make_Full_Type_Declaration (Loc,
20092 Defining_Identifier => Anon_Access,
20093 Type_Definition => Type_Def);
20094
20095 Insert_Before (Typ_Decl, Decl);
20096 Analyze (Decl);
20097
20098 -- If an access to subprogram, create the extra formals
20099
20100 if Present (Acc_Def) then
20101 Create_Extra_Formals (Designated_Type (Anon_Access));
20102
20103 -- If an access to object, preserve entity of designated type,
20104 -- for ASIS use, before rewriting the component definition.
20105
20106 else
20107 declare
20108 Desig : Entity_Id;
20109
20110 begin
20111 Desig := Entity (Subtype_Indication (Type_Def));
20112
20113 -- If the access definition is to the current record,
20114 -- the visible entity at this point is an incomplete
20115 -- type. Retrieve the full view to simplify ASIS queries
20116
20117 if Ekind (Desig) = E_Incomplete_Type then
20118 Desig := Full_View (Desig);
20119 end if;
20120
20121 Set_Entity
20122 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20123 end;
20124 end if;
20125
20126 Rewrite (Comp_Def,
20127 Make_Component_Definition (Loc,
20128 Subtype_Indication =>
20129 New_Occurrence_Of (Anon_Access, Loc)));
20130
20131 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20132 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20133 else
20134 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20135 end if;
20136
20137 Set_Is_Local_Anonymous_Access (Anon_Access);
20138 end if;
20139
20140 Next (Comp);
20141 end loop;
20142
20143 if Present (Variant_Part (Comp_List)) then
20144 declare
20145 V : Node_Id;
20146 begin
20147 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20148 while Present (V) loop
20149 Check_Anonymous_Access_Components
20150 (Typ_Decl, Typ, Prev, Component_List (V));
20151 Next_Non_Pragma (V);
20152 end loop;
20153 end;
20154 end if;
20155 end Check_Anonymous_Access_Components;
20156
20157 ----------------------------------
20158 -- Preanalyze_Assert_Expression --
20159 ----------------------------------
20160
20161 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20162 begin
20163 In_Assertion_Expr := In_Assertion_Expr + 1;
20164 Preanalyze_Spec_Expression (N, T);
20165 In_Assertion_Expr := In_Assertion_Expr - 1;
20166 end Preanalyze_Assert_Expression;
20167
20168 --------------------------------
20169 -- Preanalyze_Spec_Expression --
20170 --------------------------------
20171
20172 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20173 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20174 begin
20175 In_Spec_Expression := True;
20176 Preanalyze_And_Resolve (N, T);
20177 In_Spec_Expression := Save_In_Spec_Expression;
20178 end Preanalyze_Spec_Expression;
20179
20180 -----------------------------
20181 -- Record_Type_Declaration --
20182 -----------------------------
20183
20184 procedure Record_Type_Declaration
20185 (T : Entity_Id;
20186 N : Node_Id;
20187 Prev : Entity_Id)
20188 is
20189 Def : constant Node_Id := Type_Definition (N);
20190 Is_Tagged : Boolean;
20191 Tag_Comp : Entity_Id;
20192
20193 begin
20194 -- These flags must be initialized before calling Process_Discriminants
20195 -- because this routine makes use of them.
20196
20197 Set_Ekind (T, E_Record_Type);
20198 Set_Etype (T, T);
20199 Init_Size_Align (T);
20200 Set_Interfaces (T, No_Elist);
20201 Set_Stored_Constraint (T, No_Elist);
20202 Set_Default_SSO (T);
20203
20204 -- Normal case
20205
20206 if Ada_Version < Ada_2005
20207 or else not Interface_Present (Def)
20208 then
20209 if Limited_Present (Def) then
20210 Check_SPARK_Restriction ("limited is not allowed", N);
20211 end if;
20212
20213 if Abstract_Present (Def) then
20214 Check_SPARK_Restriction ("abstract is not allowed", N);
20215 end if;
20216
20217 -- The flag Is_Tagged_Type might have already been set by
20218 -- Find_Type_Name if it detected an error for declaration T. This
20219 -- arises in the case of private tagged types where the full view
20220 -- omits the word tagged.
20221
20222 Is_Tagged :=
20223 Tagged_Present (Def)
20224 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20225
20226 Set_Is_Tagged_Type (T, Is_Tagged);
20227 Set_Is_Limited_Record (T, Limited_Present (Def));
20228
20229 -- Type is abstract if full declaration carries keyword, or if
20230 -- previous partial view did.
20231
20232 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20233 or else Abstract_Present (Def));
20234
20235 else
20236 Check_SPARK_Restriction ("interface is not allowed", N);
20237
20238 Is_Tagged := True;
20239 Analyze_Interface_Declaration (T, Def);
20240
20241 if Present (Discriminant_Specifications (N)) then
20242 Error_Msg_N
20243 ("interface types cannot have discriminants",
20244 Defining_Identifier
20245 (First (Discriminant_Specifications (N))));
20246 end if;
20247 end if;
20248
20249 -- First pass: if there are self-referential access components,
20250 -- create the required anonymous access type declarations, and if
20251 -- need be an incomplete type declaration for T itself.
20252
20253 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20254
20255 if Ada_Version >= Ada_2005
20256 and then Present (Interface_List (Def))
20257 then
20258 Check_Interfaces (N, Def);
20259
20260 declare
20261 Ifaces_List : Elist_Id;
20262
20263 begin
20264 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20265 -- already in the parents.
20266
20267 Collect_Interfaces
20268 (T => T,
20269 Ifaces_List => Ifaces_List,
20270 Exclude_Parents => True);
20271
20272 Set_Interfaces (T, Ifaces_List);
20273 end;
20274 end if;
20275
20276 -- Records constitute a scope for the component declarations within.
20277 -- The scope is created prior to the processing of these declarations.
20278 -- Discriminants are processed first, so that they are visible when
20279 -- processing the other components. The Ekind of the record type itself
20280 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20281
20282 -- Enter record scope
20283
20284 Push_Scope (T);
20285
20286 -- If an incomplete or private type declaration was already given for
20287 -- the type, then this scope already exists, and the discriminants have
20288 -- been declared within. We must verify that the full declaration
20289 -- matches the incomplete one.
20290
20291 Check_Or_Process_Discriminants (N, T, Prev);
20292
20293 Set_Is_Constrained (T, not Has_Discriminants (T));
20294 Set_Has_Delayed_Freeze (T, True);
20295
20296 -- For tagged types add a manually analyzed component corresponding
20297 -- to the component _tag, the corresponding piece of tree will be
20298 -- expanded as part of the freezing actions if it is not a CPP_Class.
20299
20300 if Is_Tagged then
20301
20302 -- Do not add the tag unless we are in expansion mode
20303
20304 if Expander_Active then
20305 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20306 Enter_Name (Tag_Comp);
20307
20308 Set_Ekind (Tag_Comp, E_Component);
20309 Set_Is_Tag (Tag_Comp);
20310 Set_Is_Aliased (Tag_Comp);
20311 Set_Etype (Tag_Comp, RTE (RE_Tag));
20312 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20313 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20314 Init_Component_Location (Tag_Comp);
20315
20316 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20317 -- implemented interfaces.
20318
20319 if Has_Interfaces (T) then
20320 Add_Interface_Tag_Components (N, T);
20321 end if;
20322 end if;
20323
20324 Make_Class_Wide_Type (T);
20325 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20326 end if;
20327
20328 -- We must suppress range checks when processing record components in
20329 -- the presence of discriminants, since we don't want spurious checks to
20330 -- be generated during their analysis, but Suppress_Range_Checks flags
20331 -- must be reset the after processing the record definition.
20332
20333 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20334 -- couldn't we just use the normal range check suppression method here.
20335 -- That would seem cleaner ???
20336
20337 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20338 Set_Kill_Range_Checks (T, True);
20339 Record_Type_Definition (Def, Prev);
20340 Set_Kill_Range_Checks (T, False);
20341 else
20342 Record_Type_Definition (Def, Prev);
20343 end if;
20344
20345 -- Exit from record scope
20346
20347 End_Scope;
20348
20349 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20350 -- the implemented interfaces and associate them an aliased entity.
20351
20352 if Is_Tagged
20353 and then not Is_Empty_List (Interface_List (Def))
20354 then
20355 Derive_Progenitor_Subprograms (T, T);
20356 end if;
20357
20358 Check_Function_Writable_Actuals (N);
20359 end Record_Type_Declaration;
20360
20361 ----------------------------
20362 -- Record_Type_Definition --
20363 ----------------------------
20364
20365 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20366 Component : Entity_Id;
20367 Ctrl_Components : Boolean := False;
20368 Final_Storage_Only : Boolean;
20369 T : Entity_Id;
20370
20371 begin
20372 if Ekind (Prev_T) = E_Incomplete_Type then
20373 T := Full_View (Prev_T);
20374 else
20375 T := Prev_T;
20376 end if;
20377
20378 -- In SPARK, tagged types and type extensions may only be declared in
20379 -- the specification of library unit packages.
20380
20381 if Present (Def) and then Is_Tagged_Type (T) then
20382 declare
20383 Typ : Node_Id;
20384 Ctxt : Node_Id;
20385
20386 begin
20387 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20388 Typ := Parent (Def);
20389 else
20390 pragma Assert
20391 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20392 Typ := Parent (Parent (Def));
20393 end if;
20394
20395 Ctxt := Parent (Typ);
20396
20397 if Nkind (Ctxt) = N_Package_Body
20398 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20399 then
20400 Check_SPARK_Restriction
20401 ("type should be defined in package specification", Typ);
20402
20403 elsif Nkind (Ctxt) /= N_Package_Specification
20404 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20405 then
20406 Check_SPARK_Restriction
20407 ("type should be defined in library unit package", Typ);
20408 end if;
20409 end;
20410 end if;
20411
20412 Final_Storage_Only := not Is_Controlled (T);
20413
20414 -- Ada 2005: Check whether an explicit Limited is present in a derived
20415 -- type declaration.
20416
20417 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20418 and then Limited_Present (Parent (Def))
20419 then
20420 Set_Is_Limited_Record (T);
20421 end if;
20422
20423 -- If the component list of a record type is defined by the reserved
20424 -- word null and there is no discriminant part, then the record type has
20425 -- no components and all records of the type are null records (RM 3.7)
20426 -- This procedure is also called to process the extension part of a
20427 -- record extension, in which case the current scope may have inherited
20428 -- components.
20429
20430 if No (Def)
20431 or else No (Component_List (Def))
20432 or else Null_Present (Component_List (Def))
20433 then
20434 if not Is_Tagged_Type (T) then
20435 Check_SPARK_Restriction ("untagged record cannot be null", Def);
20436 end if;
20437
20438 else
20439 Analyze_Declarations (Component_Items (Component_List (Def)));
20440
20441 if Present (Variant_Part (Component_List (Def))) then
20442 Check_SPARK_Restriction ("variant part is not allowed", Def);
20443 Analyze (Variant_Part (Component_List (Def)));
20444 end if;
20445 end if;
20446
20447 -- After completing the semantic analysis of the record definition,
20448 -- record components, both new and inherited, are accessible. Set their
20449 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20450 -- whose Ekind may be void.
20451
20452 Component := First_Entity (Current_Scope);
20453 while Present (Component) loop
20454 if Ekind (Component) = E_Void
20455 and then not Is_Itype (Component)
20456 then
20457 Set_Ekind (Component, E_Component);
20458 Init_Component_Location (Component);
20459 end if;
20460
20461 if Has_Task (Etype (Component)) then
20462 Set_Has_Task (T);
20463 end if;
20464
20465 if Has_Protected (Etype (Component)) then
20466 Set_Has_Protected (T);
20467 end if;
20468
20469 if Ekind (Component) /= E_Component then
20470 null;
20471
20472 -- Do not set Has_Controlled_Component on a class-wide equivalent
20473 -- type. See Make_CW_Equivalent_Type.
20474
20475 elsif not Is_Class_Wide_Equivalent_Type (T)
20476 and then (Has_Controlled_Component (Etype (Component))
20477 or else (Chars (Component) /= Name_uParent
20478 and then Is_Controlled (Etype (Component))))
20479 then
20480 Set_Has_Controlled_Component (T, True);
20481 Final_Storage_Only :=
20482 Final_Storage_Only
20483 and then Finalize_Storage_Only (Etype (Component));
20484 Ctrl_Components := True;
20485 end if;
20486
20487 Next_Entity (Component);
20488 end loop;
20489
20490 -- A Type is Finalize_Storage_Only only if all its controlled components
20491 -- are also.
20492
20493 if Ctrl_Components then
20494 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20495 end if;
20496
20497 -- Place reference to end record on the proper entity, which may
20498 -- be a partial view.
20499
20500 if Present (Def) then
20501 Process_End_Label (Def, 'e', Prev_T);
20502 end if;
20503 end Record_Type_Definition;
20504
20505 ------------------------
20506 -- Replace_Components --
20507 ------------------------
20508
20509 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20510 function Process (N : Node_Id) return Traverse_Result;
20511
20512 -------------
20513 -- Process --
20514 -------------
20515
20516 function Process (N : Node_Id) return Traverse_Result is
20517 Comp : Entity_Id;
20518
20519 begin
20520 if Nkind (N) = N_Discriminant_Specification then
20521 Comp := First_Discriminant (Typ);
20522 while Present (Comp) loop
20523 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20524 Set_Defining_Identifier (N, Comp);
20525 exit;
20526 end if;
20527
20528 Next_Discriminant (Comp);
20529 end loop;
20530
20531 elsif Nkind (N) = N_Component_Declaration then
20532 Comp := First_Component (Typ);
20533 while Present (Comp) loop
20534 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20535 Set_Defining_Identifier (N, Comp);
20536 exit;
20537 end if;
20538
20539 Next_Component (Comp);
20540 end loop;
20541 end if;
20542
20543 return OK;
20544 end Process;
20545
20546 procedure Replace is new Traverse_Proc (Process);
20547
20548 -- Start of processing for Replace_Components
20549
20550 begin
20551 Replace (Decl);
20552 end Replace_Components;
20553
20554 -------------------------------
20555 -- Set_Completion_Referenced --
20556 -------------------------------
20557
20558 procedure Set_Completion_Referenced (E : Entity_Id) is
20559 begin
20560 -- If in main unit, mark entity that is a completion as referenced,
20561 -- warnings go on the partial view when needed.
20562
20563 if In_Extended_Main_Source_Unit (E) then
20564 Set_Referenced (E);
20565 end if;
20566 end Set_Completion_Referenced;
20567
20568 ---------------------
20569 -- Set_Default_SSO --
20570 ---------------------
20571
20572 procedure Set_Default_SSO (T : Entity_Id) is
20573 begin
20574 case Opt.Default_SSO is
20575 when ' ' =>
20576 null;
20577 when 'L' =>
20578 Set_SSO_Set_Low_By_Default (T, True);
20579 when 'H' =>
20580 Set_SSO_Set_High_By_Default (T, True);
20581 when others =>
20582 raise Program_Error;
20583 end case;
20584 end Set_Default_SSO;
20585
20586 ---------------------
20587 -- Set_Fixed_Range --
20588 ---------------------
20589
20590 -- The range for fixed-point types is complicated by the fact that we
20591 -- do not know the exact end points at the time of the declaration. This
20592 -- is true for three reasons:
20593
20594 -- A size clause may affect the fudging of the end-points.
20595 -- A small clause may affect the values of the end-points.
20596 -- We try to include the end-points if it does not affect the size.
20597
20598 -- This means that the actual end-points must be established at the
20599 -- point when the type is frozen. Meanwhile, we first narrow the range
20600 -- as permitted (so that it will fit if necessary in a small specified
20601 -- size), and then build a range subtree with these narrowed bounds.
20602 -- Set_Fixed_Range constructs the range from real literal values, and
20603 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20604
20605 -- The parent of this range is set to point to the entity so that it is
20606 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20607 -- other scalar types, which are just pointers to the range in the
20608 -- original tree, this would otherwise be an orphan).
20609
20610 -- The tree is left unanalyzed. When the type is frozen, the processing
20611 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20612 -- analyzed, and uses this as an indication that it should complete
20613 -- work on the range (it will know the final small and size values).
20614
20615 procedure Set_Fixed_Range
20616 (E : Entity_Id;
20617 Loc : Source_Ptr;
20618 Lo : Ureal;
20619 Hi : Ureal)
20620 is
20621 S : constant Node_Id :=
20622 Make_Range (Loc,
20623 Low_Bound => Make_Real_Literal (Loc, Lo),
20624 High_Bound => Make_Real_Literal (Loc, Hi));
20625 begin
20626 Set_Scalar_Range (E, S);
20627 Set_Parent (S, E);
20628
20629 -- Before the freeze point, the bounds of a fixed point are universal
20630 -- and carry the corresponding type.
20631
20632 Set_Etype (Low_Bound (S), Universal_Real);
20633 Set_Etype (High_Bound (S), Universal_Real);
20634 end Set_Fixed_Range;
20635
20636 ----------------------------------
20637 -- Set_Scalar_Range_For_Subtype --
20638 ----------------------------------
20639
20640 procedure Set_Scalar_Range_For_Subtype
20641 (Def_Id : Entity_Id;
20642 R : Node_Id;
20643 Subt : Entity_Id)
20644 is
20645 Kind : constant Entity_Kind := Ekind (Def_Id);
20646
20647 begin
20648 -- Defend against previous error
20649
20650 if Nkind (R) = N_Error then
20651 return;
20652 end if;
20653
20654 Set_Scalar_Range (Def_Id, R);
20655
20656 -- We need to link the range into the tree before resolving it so
20657 -- that types that are referenced, including importantly the subtype
20658 -- itself, are properly frozen (Freeze_Expression requires that the
20659 -- expression be properly linked into the tree). Of course if it is
20660 -- already linked in, then we do not disturb the current link.
20661
20662 if No (Parent (R)) then
20663 Set_Parent (R, Def_Id);
20664 end if;
20665
20666 -- Reset the kind of the subtype during analysis of the range, to
20667 -- catch possible premature use in the bounds themselves.
20668
20669 Set_Ekind (Def_Id, E_Void);
20670 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20671 Set_Ekind (Def_Id, Kind);
20672 end Set_Scalar_Range_For_Subtype;
20673
20674 --------------------------------------------------------
20675 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20676 --------------------------------------------------------
20677
20678 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20679 (E : Entity_Id)
20680 is
20681 begin
20682 -- Make sure set if encountered during Expand_To_Stored_Constraint
20683
20684 Set_Stored_Constraint (E, No_Elist);
20685
20686 -- Give it the right value
20687
20688 if Is_Constrained (E) and then Has_Discriminants (E) then
20689 Set_Stored_Constraint (E,
20690 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20691 end if;
20692 end Set_Stored_Constraint_From_Discriminant_Constraint;
20693
20694 -------------------------------------
20695 -- Signed_Integer_Type_Declaration --
20696 -------------------------------------
20697
20698 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20699 Implicit_Base : Entity_Id;
20700 Base_Typ : Entity_Id;
20701 Lo_Val : Uint;
20702 Hi_Val : Uint;
20703 Errs : Boolean := False;
20704 Lo : Node_Id;
20705 Hi : Node_Id;
20706
20707 function Can_Derive_From (E : Entity_Id) return Boolean;
20708 -- Determine whether given bounds allow derivation from specified type
20709
20710 procedure Check_Bound (Expr : Node_Id);
20711 -- Check bound to make sure it is integral and static. If not, post
20712 -- appropriate error message and set Errs flag
20713
20714 ---------------------
20715 -- Can_Derive_From --
20716 ---------------------
20717
20718 -- Note we check both bounds against both end values, to deal with
20719 -- strange types like ones with a range of 0 .. -12341234.
20720
20721 function Can_Derive_From (E : Entity_Id) return Boolean is
20722 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20723 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20724 begin
20725 return Lo <= Lo_Val and then Lo_Val <= Hi
20726 and then
20727 Lo <= Hi_Val and then Hi_Val <= Hi;
20728 end Can_Derive_From;
20729
20730 -----------------
20731 -- Check_Bound --
20732 -----------------
20733
20734 procedure Check_Bound (Expr : Node_Id) is
20735 begin
20736 -- If a range constraint is used as an integer type definition, each
20737 -- bound of the range must be defined by a static expression of some
20738 -- integer type, but the two bounds need not have the same integer
20739 -- type (Negative bounds are allowed.) (RM 3.5.4)
20740
20741 if not Is_Integer_Type (Etype (Expr)) then
20742 Error_Msg_N
20743 ("integer type definition bounds must be of integer type", Expr);
20744 Errs := True;
20745
20746 elsif not Is_OK_Static_Expression (Expr) then
20747 Flag_Non_Static_Expr
20748 ("non-static expression used for integer type bound!", Expr);
20749 Errs := True;
20750
20751 -- The bounds are folded into literals, and we set their type to be
20752 -- universal, to avoid typing difficulties: we cannot set the type
20753 -- of the literal to the new type, because this would be a forward
20754 -- reference for the back end, and if the original type is user-
20755 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20756
20757 else
20758 if Is_Entity_Name (Expr) then
20759 Fold_Uint (Expr, Expr_Value (Expr), True);
20760 end if;
20761
20762 Set_Etype (Expr, Universal_Integer);
20763 end if;
20764 end Check_Bound;
20765
20766 -- Start of processing for Signed_Integer_Type_Declaration
20767
20768 begin
20769 -- Create an anonymous base type
20770
20771 Implicit_Base :=
20772 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20773
20774 -- Analyze and check the bounds, they can be of any integer type
20775
20776 Lo := Low_Bound (Def);
20777 Hi := High_Bound (Def);
20778
20779 -- Arbitrarily use Integer as the type if either bound had an error
20780
20781 if Hi = Error or else Lo = Error then
20782 Base_Typ := Any_Integer;
20783 Set_Error_Posted (T, True);
20784
20785 -- Here both bounds are OK expressions
20786
20787 else
20788 Analyze_And_Resolve (Lo, Any_Integer);
20789 Analyze_And_Resolve (Hi, Any_Integer);
20790
20791 Check_Bound (Lo);
20792 Check_Bound (Hi);
20793
20794 if Errs then
20795 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20796 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20797 end if;
20798
20799 -- Find type to derive from
20800
20801 Lo_Val := Expr_Value (Lo);
20802 Hi_Val := Expr_Value (Hi);
20803
20804 if Can_Derive_From (Standard_Short_Short_Integer) then
20805 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20806
20807 elsif Can_Derive_From (Standard_Short_Integer) then
20808 Base_Typ := Base_Type (Standard_Short_Integer);
20809
20810 elsif Can_Derive_From (Standard_Integer) then
20811 Base_Typ := Base_Type (Standard_Integer);
20812
20813 elsif Can_Derive_From (Standard_Long_Integer) then
20814 Base_Typ := Base_Type (Standard_Long_Integer);
20815
20816 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20817 Check_Restriction (No_Long_Long_Integers, Def);
20818 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20819
20820 else
20821 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20822 Error_Msg_N ("integer type definition bounds out of range", Def);
20823 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20824 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20825 end if;
20826 end if;
20827
20828 -- Complete both implicit base and declared first subtype entities
20829
20830 Set_Etype (Implicit_Base, Base_Typ);
20831 Set_Size_Info (Implicit_Base, (Base_Typ));
20832 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20833 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20834
20835 Set_Ekind (T, E_Signed_Integer_Subtype);
20836 Set_Etype (T, Implicit_Base);
20837
20838 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20839
20840 Set_Size_Info (T, (Implicit_Base));
20841 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20842 Set_Scalar_Range (T, Def);
20843 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20844 Set_Is_Constrained (T);
20845 end Signed_Integer_Type_Declaration;
20846
20847 end Sem_Ch3;