sem_ch3.adb, [...]: Code clean ups.
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
866
867 return Anon_Type;
868 end if;
869
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
872
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
875
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
879
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
883
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
887
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
893
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
897
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
899
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
901
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
903
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
911
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
919
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
925
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
931
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
934
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
941
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
947
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
959
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
962
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
975
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
980
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
984
985 return Anon_Type;
986 end Access_Definition;
987
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
991
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
995 is
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1000
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1004
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1007
1008 begin
1009 -- Check for a subtype mark
1010
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1016
1017 -- If this is not a subtype, then this is an access_definition
1018
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1026
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1029
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1038
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1044
1045 -- Local variables
1046
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052
1053 -- Start of processing for Access_Subprogram_Declaration
1054
1055 begin
1056 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1057
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1061
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1066
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1074
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1086
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1101
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1106
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1116
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1123
1124 else
1125 Analyze (Result_Definition (T_Def));
1126
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1134
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1143
1144 else
1145 if From_Limited_With (Typ) then
1146
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1149
1150 if Ada_Version >= Ada_2012 then
1151 null;
1152
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1158
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1172
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1177
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1183
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1187
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1190
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1194
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1197
1198 declare
1199 F : Node_Id;
1200
1201 begin
1202 F := First (Formals);
1203
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1209
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1219
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1224
1225 Next (F);
1226 end loop;
1227 end;
1228
1229 Process_Formals (Formals, Parent (T_Def));
1230
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1234
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1239
1240 -- Check for premature usage of the type being defined
1241
1242 Check_For_Premature_Usage (T_Def);
1243
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1249
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1261
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1268
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1272
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1275
1276 May_Need_Actuals (Desig_Type);
1277
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1281
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1289
1290 Check_Delayed_Subprogram (Desig_Type);
1291
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1298
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304
1305 Generate_Reference_To_Formals (T_Name);
1306
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1313
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1317
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1321
1322 Full_Desig : Entity_Id;
1323
1324 begin
1325 Check_SPARK_Restriction ("access type is not allowed", Def);
1326
1327 -- Check for permissible use of incomplete type
1328
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1331
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334
1335 -- If the designated type is a limited view, we cannot tell if
1336 -- the full view contains tasks, and there is no way to handle
1337 -- that full view in a client. We create a master entity for the
1338 -- scope, which will be used when a client determines that one
1339 -- is needed.
1340
1341 if From_Limited_With (Entity (S))
1342 and then not Is_Class_Wide_Type (Entity (S))
1343 then
1344 Set_Ekind (T, E_Access_Type);
1345 Build_Master_Entity (T);
1346 Build_Master_Renaming (T);
1347 end if;
1348
1349 else
1350 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1351 end if;
1352
1353 -- If the access definition is of the form: ACCESS NOT NULL ..
1354 -- the subtype indication must be of an access type. Create
1355 -- a null-excluding subtype of it.
1356
1357 if Null_Excluding_Subtype (Def) then
1358 if not Is_Access_Type (Entity (S)) then
1359 Error_Msg_N ("null exclusion must apply to access type", Def);
1360
1361 else
1362 declare
1363 Loc : constant Source_Ptr := Sloc (S);
1364 Decl : Node_Id;
1365 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1366
1367 begin
1368 Decl :=
1369 Make_Subtype_Declaration (Loc,
1370 Defining_Identifier => Nam,
1371 Subtype_Indication =>
1372 New_Occurrence_Of (Entity (S), Loc));
1373 Set_Null_Exclusion_Present (Decl);
1374 Insert_Before (Parent (Def), Decl);
1375 Analyze (Decl);
1376 Set_Entity (S, Nam);
1377 end;
1378 end if;
1379 end if;
1380
1381 else
1382 Set_Directly_Designated_Type (T,
1383 Process_Subtype (S, P, T, 'P'));
1384 end if;
1385
1386 if All_Present (Def) or Constant_Present (Def) then
1387 Set_Ekind (T, E_General_Access_Type);
1388 else
1389 Set_Ekind (T, E_Access_Type);
1390 end if;
1391
1392 Full_Desig := Designated_Type (T);
1393
1394 if Base_Type (Full_Desig) = T then
1395 Error_Msg_N ("access type cannot designate itself", S);
1396
1397 -- In Ada 2005, the type may have a limited view through some unit in
1398 -- its own context, allowing the following circularity that cannot be
1399 -- detected earlier.
1400
1401 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1402 then
1403 Error_Msg_N
1404 ("access type cannot designate its own classwide type", S);
1405
1406 -- Clean up indication of tagged status to prevent cascaded errors
1407
1408 Set_Is_Tagged_Type (T, False);
1409 end if;
1410
1411 Set_Etype (T, T);
1412
1413 -- If the type has appeared already in a with_type clause, it is frozen
1414 -- and the pointer size is already set. Else, initialize.
1415
1416 if not From_Limited_With (T) then
1417 Init_Size_Align (T);
1418 end if;
1419
1420 -- Note that Has_Task is always false, since the access type itself
1421 -- is not a task type. See Einfo for more description on this point.
1422 -- Exactly the same consideration applies to Has_Controlled_Component
1423 -- and to Has_Protected.
1424
1425 Set_Has_Task (T, False);
1426 Set_Has_Controlled_Component (T, False);
1427 Set_Has_Protected (T, False);
1428
1429 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1430 -- problems where an incomplete view of this entity has been previously
1431 -- established by a limited with and an overlaid version of this field
1432 -- (Stored_Constraint) was initialized for the incomplete view.
1433
1434 -- This reset is performed in most cases except where the access type
1435 -- has been created for the purposes of allocating or deallocating a
1436 -- build-in-place object. Such access types have explicitly set pools
1437 -- and finalization masters.
1438
1439 if No (Associated_Storage_Pool (T)) then
1440 Set_Finalization_Master (T, Empty);
1441 end if;
1442
1443 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1444 -- attributes
1445
1446 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1447 Set_Is_Access_Constant (T, Constant_Present (Def));
1448 end Access_Type_Declaration;
1449
1450 ----------------------------------
1451 -- Add_Interface_Tag_Components --
1452 ----------------------------------
1453
1454 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1455 Loc : constant Source_Ptr := Sloc (N);
1456 L : List_Id;
1457 Last_Tag : Node_Id;
1458
1459 procedure Add_Tag (Iface : Entity_Id);
1460 -- Add tag for one of the progenitor interfaces
1461
1462 -------------
1463 -- Add_Tag --
1464 -------------
1465
1466 procedure Add_Tag (Iface : Entity_Id) is
1467 Decl : Node_Id;
1468 Def : Node_Id;
1469 Tag : Entity_Id;
1470 Offset : Entity_Id;
1471
1472 begin
1473 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1474
1475 -- This is a reasonable place to propagate predicates
1476
1477 if Has_Predicates (Iface) then
1478 Set_Has_Predicates (Typ);
1479 end if;
1480
1481 Def :=
1482 Make_Component_Definition (Loc,
1483 Aliased_Present => True,
1484 Subtype_Indication =>
1485 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1486
1487 Tag := Make_Temporary (Loc, 'V');
1488
1489 Decl :=
1490 Make_Component_Declaration (Loc,
1491 Defining_Identifier => Tag,
1492 Component_Definition => Def);
1493
1494 Analyze_Component_Declaration (Decl);
1495
1496 Set_Analyzed (Decl);
1497 Set_Ekind (Tag, E_Component);
1498 Set_Is_Tag (Tag);
1499 Set_Is_Aliased (Tag);
1500 Set_Related_Type (Tag, Iface);
1501 Init_Component_Location (Tag);
1502
1503 pragma Assert (Is_Frozen (Iface));
1504
1505 Set_DT_Entry_Count (Tag,
1506 DT_Entry_Count (First_Entity (Iface)));
1507
1508 if No (Last_Tag) then
1509 Prepend (Decl, L);
1510 else
1511 Insert_After (Last_Tag, Decl);
1512 end if;
1513
1514 Last_Tag := Decl;
1515
1516 -- If the ancestor has discriminants we need to give special support
1517 -- to store the offset_to_top value of the secondary dispatch tables.
1518 -- For this purpose we add a supplementary component just after the
1519 -- field that contains the tag associated with each secondary DT.
1520
1521 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1522 Def :=
1523 Make_Component_Definition (Loc,
1524 Subtype_Indication =>
1525 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1526
1527 Offset := Make_Temporary (Loc, 'V');
1528
1529 Decl :=
1530 Make_Component_Declaration (Loc,
1531 Defining_Identifier => Offset,
1532 Component_Definition => Def);
1533
1534 Analyze_Component_Declaration (Decl);
1535
1536 Set_Analyzed (Decl);
1537 Set_Ekind (Offset, E_Component);
1538 Set_Is_Aliased (Offset);
1539 Set_Related_Type (Offset, Iface);
1540 Init_Component_Location (Offset);
1541 Insert_After (Last_Tag, Decl);
1542 Last_Tag := Decl;
1543 end if;
1544 end Add_Tag;
1545
1546 -- Local variables
1547
1548 Elmt : Elmt_Id;
1549 Ext : Node_Id;
1550 Comp : Node_Id;
1551
1552 -- Start of processing for Add_Interface_Tag_Components
1553
1554 begin
1555 if not RTE_Available (RE_Interface_Tag) then
1556 Error_Msg
1557 ("(Ada 2005) interface types not supported by this run-time!",
1558 Sloc (N));
1559 return;
1560 end if;
1561
1562 if Ekind (Typ) /= E_Record_Type
1563 or else (Is_Concurrent_Record_Type (Typ)
1564 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1565 or else (not Is_Concurrent_Record_Type (Typ)
1566 and then No (Interfaces (Typ))
1567 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1568 then
1569 return;
1570 end if;
1571
1572 -- Find the current last tag
1573
1574 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1575 Ext := Record_Extension_Part (Type_Definition (N));
1576 else
1577 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1578 Ext := Type_Definition (N);
1579 end if;
1580
1581 Last_Tag := Empty;
1582
1583 if not (Present (Component_List (Ext))) then
1584 Set_Null_Present (Ext, False);
1585 L := New_List;
1586 Set_Component_List (Ext,
1587 Make_Component_List (Loc,
1588 Component_Items => L,
1589 Null_Present => False));
1590 else
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 L := Component_Items
1593 (Component_List
1594 (Record_Extension_Part
1595 (Type_Definition (N))));
1596 else
1597 L := Component_Items
1598 (Component_List
1599 (Type_Definition (N)));
1600 end if;
1601
1602 -- Find the last tag component
1603
1604 Comp := First (L);
1605 while Present (Comp) loop
1606 if Nkind (Comp) = N_Component_Declaration
1607 and then Is_Tag (Defining_Identifier (Comp))
1608 then
1609 Last_Tag := Comp;
1610 end if;
1611
1612 Next (Comp);
1613 end loop;
1614 end if;
1615
1616 -- At this point L references the list of components and Last_Tag
1617 -- references the current last tag (if any). Now we add the tag
1618 -- corresponding with all the interfaces that are not implemented
1619 -- by the parent.
1620
1621 if Present (Interfaces (Typ)) then
1622 Elmt := First_Elmt (Interfaces (Typ));
1623 while Present (Elmt) loop
1624 Add_Tag (Node (Elmt));
1625 Next_Elmt (Elmt);
1626 end loop;
1627 end if;
1628 end Add_Interface_Tag_Components;
1629
1630 -------------------------------------
1631 -- Add_Internal_Interface_Entities --
1632 -------------------------------------
1633
1634 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1635 Elmt : Elmt_Id;
1636 Iface : Entity_Id;
1637 Iface_Elmt : Elmt_Id;
1638 Iface_Prim : Entity_Id;
1639 Ifaces_List : Elist_Id;
1640 New_Subp : Entity_Id := Empty;
1641 Prim : Entity_Id;
1642 Restore_Scope : Boolean := False;
1643
1644 begin
1645 pragma Assert (Ada_Version >= Ada_2005
1646 and then Is_Record_Type (Tagged_Type)
1647 and then Is_Tagged_Type (Tagged_Type)
1648 and then Has_Interfaces (Tagged_Type)
1649 and then not Is_Interface (Tagged_Type));
1650
1651 -- Ensure that the internal entities are added to the scope of the type
1652
1653 if Scope (Tagged_Type) /= Current_Scope then
1654 Push_Scope (Scope (Tagged_Type));
1655 Restore_Scope := True;
1656 end if;
1657
1658 Collect_Interfaces (Tagged_Type, Ifaces_List);
1659
1660 Iface_Elmt := First_Elmt (Ifaces_List);
1661 while Present (Iface_Elmt) loop
1662 Iface := Node (Iface_Elmt);
1663
1664 -- Originally we excluded here from this processing interfaces that
1665 -- are parents of Tagged_Type because their primitives are located
1666 -- in the primary dispatch table (and hence no auxiliary internal
1667 -- entities are required to handle secondary dispatch tables in such
1668 -- case). However, these auxiliary entities are also required to
1669 -- handle derivations of interfaces in formals of generics (see
1670 -- Derive_Subprograms).
1671
1672 Elmt := First_Elmt (Primitive_Operations (Iface));
1673 while Present (Elmt) loop
1674 Iface_Prim := Node (Elmt);
1675
1676 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1677 Prim :=
1678 Find_Primitive_Covering_Interface
1679 (Tagged_Type => Tagged_Type,
1680 Iface_Prim => Iface_Prim);
1681
1682 if No (Prim) and then Serious_Errors_Detected > 0 then
1683 goto Continue;
1684 end if;
1685
1686 pragma Assert (Present (Prim));
1687
1688 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1689 -- differs from the name of the interface primitive then it is
1690 -- a private primitive inherited from a parent type. In such
1691 -- case, given that Tagged_Type covers the interface, the
1692 -- inherited private primitive becomes visible. For such
1693 -- purpose we add a new entity that renames the inherited
1694 -- private primitive.
1695
1696 if Chars (Prim) /= Chars (Iface_Prim) then
1697 pragma Assert (Has_Suffix (Prim, 'P'));
1698 Derive_Subprogram
1699 (New_Subp => New_Subp,
1700 Parent_Subp => Iface_Prim,
1701 Derived_Type => Tagged_Type,
1702 Parent_Type => Iface);
1703 Set_Alias (New_Subp, Prim);
1704 Set_Is_Abstract_Subprogram
1705 (New_Subp, Is_Abstract_Subprogram (Prim));
1706 end if;
1707
1708 Derive_Subprogram
1709 (New_Subp => New_Subp,
1710 Parent_Subp => Iface_Prim,
1711 Derived_Type => Tagged_Type,
1712 Parent_Type => Iface);
1713
1714 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1715 -- associated with interface types. These entities are
1716 -- only registered in the list of primitives of its
1717 -- corresponding tagged type because they are only used
1718 -- to fill the contents of the secondary dispatch tables.
1719 -- Therefore they are removed from the homonym chains.
1720
1721 Set_Is_Hidden (New_Subp);
1722 Set_Is_Internal (New_Subp);
1723 Set_Alias (New_Subp, Prim);
1724 Set_Is_Abstract_Subprogram
1725 (New_Subp, Is_Abstract_Subprogram (Prim));
1726 Set_Interface_Alias (New_Subp, Iface_Prim);
1727
1728 -- If the returned type is an interface then propagate it to
1729 -- the returned type. Needed by the thunk to generate the code
1730 -- which displaces "this" to reference the corresponding
1731 -- secondary dispatch table in the returned object.
1732
1733 if Is_Interface (Etype (Iface_Prim)) then
1734 Set_Etype (New_Subp, Etype (Iface_Prim));
1735 end if;
1736
1737 -- Internal entities associated with interface types are
1738 -- only registered in the list of primitives of the tagged
1739 -- type. They are only used to fill the contents of the
1740 -- secondary dispatch tables. Therefore they are not needed
1741 -- in the homonym chains.
1742
1743 Remove_Homonym (New_Subp);
1744
1745 -- Hidden entities associated with interfaces must have set
1746 -- the Has_Delay_Freeze attribute to ensure that, in case of
1747 -- locally defined tagged types (or compiling with static
1748 -- dispatch tables generation disabled) the corresponding
1749 -- entry of the secondary dispatch table is filled when
1750 -- such an entity is frozen.
1751
1752 Set_Has_Delayed_Freeze (New_Subp);
1753 end if;
1754
1755 <<Continue>>
1756 Next_Elmt (Elmt);
1757 end loop;
1758
1759 Next_Elmt (Iface_Elmt);
1760 end loop;
1761
1762 if Restore_Scope then
1763 Pop_Scope;
1764 end if;
1765 end Add_Internal_Interface_Entities;
1766
1767 -----------------------------------
1768 -- Analyze_Component_Declaration --
1769 -----------------------------------
1770
1771 procedure Analyze_Component_Declaration (N : Node_Id) is
1772 Id : constant Entity_Id := Defining_Identifier (N);
1773 E : constant Node_Id := Expression (N);
1774 Typ : constant Node_Id :=
1775 Subtype_Indication (Component_Definition (N));
1776 T : Entity_Id;
1777 P : Entity_Id;
1778
1779 function Contains_POC (Constr : Node_Id) return Boolean;
1780 -- Determines whether a constraint uses the discriminant of a record
1781 -- type thus becoming a per-object constraint (POC).
1782
1783 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1784 -- Typ is the type of the current component, check whether this type is
1785 -- a limited type. Used to validate declaration against that of
1786 -- enclosing record.
1787
1788 ------------------
1789 -- Contains_POC --
1790 ------------------
1791
1792 function Contains_POC (Constr : Node_Id) return Boolean is
1793 begin
1794 -- Prevent cascaded errors
1795
1796 if Error_Posted (Constr) then
1797 return False;
1798 end if;
1799
1800 case Nkind (Constr) is
1801 when N_Attribute_Reference =>
1802 return Attribute_Name (Constr) = Name_Access
1803 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1804
1805 when N_Discriminant_Association =>
1806 return Denotes_Discriminant (Expression (Constr));
1807
1808 when N_Identifier =>
1809 return Denotes_Discriminant (Constr);
1810
1811 when N_Index_Or_Discriminant_Constraint =>
1812 declare
1813 IDC : Node_Id;
1814
1815 begin
1816 IDC := First (Constraints (Constr));
1817 while Present (IDC) loop
1818
1819 -- One per-object constraint is sufficient
1820
1821 if Contains_POC (IDC) then
1822 return True;
1823 end if;
1824
1825 Next (IDC);
1826 end loop;
1827
1828 return False;
1829 end;
1830
1831 when N_Range =>
1832 return Denotes_Discriminant (Low_Bound (Constr))
1833 or else
1834 Denotes_Discriminant (High_Bound (Constr));
1835
1836 when N_Range_Constraint =>
1837 return Denotes_Discriminant (Range_Expression (Constr));
1838
1839 when others =>
1840 return False;
1841
1842 end case;
1843 end Contains_POC;
1844
1845 ----------------------
1846 -- Is_Known_Limited --
1847 ----------------------
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1850 P : constant Entity_Id := Etype (Typ);
1851 R : constant Entity_Id := Root_Type (Typ);
1852
1853 begin
1854 if Is_Limited_Record (Typ) then
1855 return True;
1856
1857 -- If the root type is limited (and not a limited interface)
1858 -- so is the current type
1859
1860 elsif Is_Limited_Record (R)
1861 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1862 then
1863 return True;
1864
1865 -- Else the type may have a limited interface progenitor, but a
1866 -- limited record parent.
1867
1868 elsif R /= P and then Is_Limited_Record (P) then
1869 return True;
1870
1871 else
1872 return False;
1873 end if;
1874 end Is_Known_Limited;
1875
1876 -- Start of processing for Analyze_Component_Declaration
1877
1878 begin
1879 Generate_Definition (Id);
1880 Enter_Name (Id);
1881
1882 if Present (Typ) then
1883 T := Find_Type_Of_Object
1884 (Subtype_Indication (Component_Definition (N)), N);
1885
1886 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1887 Check_SPARK_Restriction ("subtype mark required", Typ);
1888 end if;
1889
1890 -- Ada 2005 (AI-230): Access Definition case
1891
1892 else
1893 pragma Assert (Present
1894 (Access_Definition (Component_Definition (N))));
1895
1896 T := Access_Definition
1897 (Related_Nod => N,
1898 N => Access_Definition (Component_Definition (N)));
1899 Set_Is_Local_Anonymous_Access (T);
1900
1901 -- Ada 2005 (AI-254)
1902
1903 if Present (Access_To_Subprogram_Definition
1904 (Access_Definition (Component_Definition (N))))
1905 and then Protected_Present (Access_To_Subprogram_Definition
1906 (Access_Definition
1907 (Component_Definition (N))))
1908 then
1909 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1910 end if;
1911 end if;
1912
1913 -- If the subtype is a constrained subtype of the enclosing record,
1914 -- (which must have a partial view) the back-end does not properly
1915 -- handle the recursion. Rewrite the component declaration with an
1916 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1917 -- the tree directly because side effects have already been removed from
1918 -- discriminant constraints.
1919
1920 if Ekind (T) = E_Access_Subtype
1921 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1922 and then Comes_From_Source (T)
1923 and then Nkind (Parent (T)) = N_Subtype_Declaration
1924 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1925 then
1926 Rewrite
1927 (Subtype_Indication (Component_Definition (N)),
1928 New_Copy_Tree (Subtype_Indication (Parent (T))));
1929 T := Find_Type_Of_Object
1930 (Subtype_Indication (Component_Definition (N)), N);
1931 end if;
1932
1933 -- If the component declaration includes a default expression, then we
1934 -- check that the component is not of a limited type (RM 3.7(5)),
1935 -- and do the special preanalysis of the expression (see section on
1936 -- "Handling of Default and Per-Object Expressions" in the spec of
1937 -- package Sem).
1938
1939 if Present (E) then
1940 Check_SPARK_Restriction ("default expression is not allowed", E);
1941 Preanalyze_Spec_Expression (E, T);
1942 Check_Initialization (T, E);
1943
1944 if Ada_Version >= Ada_2005
1945 and then Ekind (T) = E_Anonymous_Access_Type
1946 and then Etype (E) /= Any_Type
1947 then
1948 -- Check RM 3.9.2(9): "if the expected type for an expression is
1949 -- an anonymous access-to-specific tagged type, then the object
1950 -- designated by the expression shall not be dynamically tagged
1951 -- unless it is a controlling operand in a call on a dispatching
1952 -- operation"
1953
1954 if Is_Tagged_Type (Directly_Designated_Type (T))
1955 and then
1956 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1957 and then
1958 Ekind (Directly_Designated_Type (Etype (E))) =
1959 E_Class_Wide_Type
1960 then
1961 Error_Msg_N
1962 ("access to specific tagged type required (RM 3.9.2(9))", E);
1963 end if;
1964
1965 -- (Ada 2005: AI-230): Accessibility check for anonymous
1966 -- components
1967
1968 if Type_Access_Level (Etype (E)) >
1969 Deepest_Type_Access_Level (T)
1970 then
1971 Error_Msg_N
1972 ("expression has deeper access level than component " &
1973 "(RM 3.10.2 (12.2))", E);
1974 end if;
1975
1976 -- The initialization expression is a reference to an access
1977 -- discriminant. The type of the discriminant is always deeper
1978 -- than any access type.
1979
1980 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1981 and then Is_Entity_Name (E)
1982 and then Ekind (Entity (E)) = E_In_Parameter
1983 and then Present (Discriminal_Link (Entity (E)))
1984 then
1985 Error_Msg_N
1986 ("discriminant has deeper accessibility level than target",
1987 E);
1988 end if;
1989 end if;
1990 end if;
1991
1992 -- The parent type may be a private view with unknown discriminants,
1993 -- and thus unconstrained. Regular components must be constrained.
1994
1995 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1996 if Is_Class_Wide_Type (T) then
1997 Error_Msg_N
1998 ("class-wide subtype with unknown discriminants" &
1999 " in component declaration",
2000 Subtype_Indication (Component_Definition (N)));
2001 else
2002 Error_Msg_N
2003 ("unconstrained subtype in component declaration",
2004 Subtype_Indication (Component_Definition (N)));
2005 end if;
2006
2007 -- Components cannot be abstract, except for the special case of
2008 -- the _Parent field (case of extending an abstract tagged type)
2009
2010 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2011 Error_Msg_N ("type of a component cannot be abstract", N);
2012 end if;
2013
2014 Set_Etype (Id, T);
2015 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2016
2017 -- The component declaration may have a per-object constraint, set
2018 -- the appropriate flag in the defining identifier of the subtype.
2019
2020 if Present (Subtype_Indication (Component_Definition (N))) then
2021 declare
2022 Sindic : constant Node_Id :=
2023 Subtype_Indication (Component_Definition (N));
2024 begin
2025 if Nkind (Sindic) = N_Subtype_Indication
2026 and then Present (Constraint (Sindic))
2027 and then Contains_POC (Constraint (Sindic))
2028 then
2029 Set_Has_Per_Object_Constraint (Id);
2030 end if;
2031 end;
2032 end if;
2033
2034 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2035 -- out some static checks.
2036
2037 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2038 Null_Exclusion_Static_Checks (N);
2039 end if;
2040
2041 -- If this component is private (or depends on a private type), flag the
2042 -- record type to indicate that some operations are not available.
2043
2044 P := Private_Component (T);
2045
2046 if Present (P) then
2047
2048 -- Check for circular definitions
2049
2050 if P = Any_Type then
2051 Set_Etype (Id, Any_Type);
2052
2053 -- There is a gap in the visibility of operations only if the
2054 -- component type is not defined in the scope of the record type.
2055
2056 elsif Scope (P) = Scope (Current_Scope) then
2057 null;
2058
2059 elsif Is_Limited_Type (P) then
2060 Set_Is_Limited_Composite (Current_Scope);
2061
2062 else
2063 Set_Is_Private_Composite (Current_Scope);
2064 end if;
2065 end if;
2066
2067 if P /= Any_Type
2068 and then Is_Limited_Type (T)
2069 and then Chars (Id) /= Name_uParent
2070 and then Is_Tagged_Type (Current_Scope)
2071 then
2072 if Is_Derived_Type (Current_Scope)
2073 and then not Is_Known_Limited (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("extension of nonlimited type cannot have limited components",
2077 N);
2078
2079 if Is_Interface (Root_Type (Current_Scope)) then
2080 Error_Msg_N
2081 ("\limitedness is not inherited from limited interface", N);
2082 Error_Msg_N ("\add LIMITED to type indication", N);
2083 end if;
2084
2085 Explain_Limited_Type (T, N);
2086 Set_Etype (Id, Any_Type);
2087 Set_Is_Limited_Composite (Current_Scope, False);
2088
2089 elsif not Is_Derived_Type (Current_Scope)
2090 and then not Is_Limited_Record (Current_Scope)
2091 and then not Is_Concurrent_Type (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("nonlimited tagged type cannot have limited components", N);
2095 Explain_Limited_Type (T, N);
2096 Set_Etype (Id, Any_Type);
2097 Set_Is_Limited_Composite (Current_Scope, False);
2098 end if;
2099 end if;
2100
2101 Set_Original_Record_Component (Id, Id);
2102
2103 if Has_Aspects (N) then
2104 Analyze_Aspect_Specifications (N, Id);
2105 end if;
2106
2107 Analyze_Dimension (N);
2108 end Analyze_Component_Declaration;
2109
2110 --------------------------
2111 -- Analyze_Declarations --
2112 --------------------------
2113
2114 procedure Analyze_Declarations (L : List_Id) is
2115 Decl : Node_Id;
2116
2117 procedure Adjust_Decl;
2118 -- Adjust Decl not to include implicit label declarations, since these
2119 -- have strange Sloc values that result in elaboration check problems.
2120 -- (They have the sloc of the label as found in the source, and that
2121 -- is ahead of the current declarative part).
2122
2123 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2124 -- Determine whether Body_Decl denotes the body of a late controlled
2125 -- primitive (either Initialize, Adjust or Finalize). If this is the
2126 -- case, add a proper spec if the body lacks one. The spec is inserted
2127 -- before Body_Decl and immedately analyzed.
2128
2129 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2130 -- Spec_Id is the entity of a package that may define abstract states.
2131 -- If the states have visible refinement, remove the visibility of each
2132 -- constituent at the end of the package body declarations.
2133
2134 -----------------
2135 -- Adjust_Decl --
2136 -----------------
2137
2138 procedure Adjust_Decl is
2139 begin
2140 while Present (Prev (Decl))
2141 and then Nkind (Decl) = N_Implicit_Label_Declaration
2142 loop
2143 Prev (Decl);
2144 end loop;
2145 end Adjust_Decl;
2146
2147 --------------------------------------
2148 -- Handle_Late_Controlled_Primitive --
2149 --------------------------------------
2150
2151 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2152 Body_Spec : constant Node_Id := Specification (Body_Decl);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154 Loc : constant Source_Ptr := Sloc (Body_Id);
2155 Params : constant List_Id :=
2156 Parameter_Specifications (Body_Spec);
2157 Spec : Node_Id;
2158 Spec_Id : Entity_Id;
2159
2160 Dummy : Entity_Id;
2161 -- A dummy variable used to capture the unused result of subprogram
2162 -- spec analysis.
2163
2164 begin
2165 -- Consider only procedure bodies whose name matches one of the three
2166 -- controlled primitives.
2167
2168 if Nkind (Body_Spec) /= N_Procedure_Specification
2169 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2170 Name_Finalize,
2171 Name_Initialize)
2172 then
2173 return;
2174
2175 -- A controlled primitive must have exactly one formal
2176
2177 elsif List_Length (Params) /= 1 then
2178 return;
2179 end if;
2180
2181 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2182
2183 -- The type of the formal must be derived from [Limited_]Controlled
2184
2185 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2186 return;
2187 end if;
2188
2189 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2190
2191 -- The body has a matching spec, therefore it cannot be a late
2192 -- primitive.
2193
2194 if Present (Spec_Id) then
2195 return;
2196 end if;
2197
2198 -- At this point the body is known to be a late controlled primitive.
2199 -- Generate a matching spec and insert it before the body. Note the
2200 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2201 -- tree in this case.
2202
2203 Spec := Copy_Separate_Tree (Body_Spec);
2204
2205 -- Ensure that the subprogram declaration does not inherit the null
2206 -- indicator from the body as we now have a proper spec/body pair.
2207
2208 Set_Null_Present (Spec, False);
2209
2210 Insert_Before_And_Analyze (Body_Decl,
2211 Make_Subprogram_Declaration (Loc,
2212 Specification => Spec));
2213 end Handle_Late_Controlled_Primitive;
2214
2215 --------------------------------
2216 -- Remove_Visible_Refinements --
2217 --------------------------------
2218
2219 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2220 State_Elmt : Elmt_Id;
2221 begin
2222 if Present (Abstract_States (Spec_Id)) then
2223 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2224 while Present (State_Elmt) loop
2225 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2226 Next_Elmt (State_Elmt);
2227 end loop;
2228 end if;
2229 end Remove_Visible_Refinements;
2230
2231 -- Local variables
2232
2233 Context : Node_Id;
2234 Freeze_From : Entity_Id := Empty;
2235 Next_Decl : Node_Id;
2236 Spec_Id : Entity_Id;
2237
2238 Body_Seen : Boolean := False;
2239 -- Flag set when the first body [stub] is encountered
2240
2241 In_Package_Body : Boolean := False;
2242 -- Flag set when the current declaration list belongs to a package body
2243
2244 -- Start of processing for Analyze_Declarations
2245
2246 begin
2247 if Restriction_Check_Required (SPARK_05) then
2248 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2249 end if;
2250
2251 Decl := First (L);
2252 while Present (Decl) loop
2253
2254 -- Package spec cannot contain a package declaration in SPARK
2255
2256 if Nkind (Decl) = N_Package_Declaration
2257 and then Nkind (Parent (L)) = N_Package_Specification
2258 then
2259 Check_SPARK_Restriction
2260 ("package specification cannot contain a package declaration",
2261 Decl);
2262 end if;
2263
2264 -- Complete analysis of declaration
2265
2266 Analyze (Decl);
2267 Next_Decl := Next (Decl);
2268
2269 if No (Freeze_From) then
2270 Freeze_From := First_Entity (Current_Scope);
2271 end if;
2272
2273 -- At the end of a declarative part, freeze remaining entities
2274 -- declared in it. The end of the visible declarations of package
2275 -- specification is not the end of a declarative part if private
2276 -- declarations are present. The end of a package declaration is a
2277 -- freezing point only if it a library package. A task definition or
2278 -- protected type definition is not a freeze point either. Finally,
2279 -- we do not freeze entities in generic scopes, because there is no
2280 -- code generated for them and freeze nodes will be generated for
2281 -- the instance.
2282
2283 -- The end of a package instantiation is not a freeze point, but
2284 -- for now we make it one, because the generic body is inserted
2285 -- (currently) immediately after. Generic instantiations will not
2286 -- be a freeze point once delayed freezing of bodies is implemented.
2287 -- (This is needed in any case for early instantiations ???).
2288
2289 if No (Next_Decl) then
2290 if Nkind_In (Parent (L), N_Component_List,
2291 N_Task_Definition,
2292 N_Protected_Definition)
2293 then
2294 null;
2295
2296 elsif Nkind (Parent (L)) /= N_Package_Specification then
2297 if Nkind (Parent (L)) = N_Package_Body then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- There may have been several freezing points previously,
2302 -- for example object declarations or subprogram bodies, but
2303 -- at the end of a declarative part we check freezing from
2304 -- the beginning, even though entities may already be frozen,
2305 -- in order to perform visibility checks on delayed aspects.
2306
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310
2311 elsif Scope (Current_Scope) /= Standard_Standard
2312 and then not Is_Child_Unit (Current_Scope)
2313 and then No (Generic_Parent (Parent (L)))
2314 then
2315 null;
2316
2317 elsif L /= Visible_Declarations (Parent (L))
2318 or else No (Private_Declarations (Parent (L)))
2319 or else Is_Empty_List (Private_Declarations (Parent (L)))
2320 then
2321 Adjust_Decl;
2322 Freeze_All (First_Entity (Current_Scope), Decl);
2323 Freeze_From := Last_Entity (Current_Scope);
2324 end if;
2325
2326 -- If next node is a body then freeze all types before the body.
2327 -- An exception occurs for some expander-generated bodies. If these
2328 -- are generated at places where in general language rules would not
2329 -- allow a freeze point, then we assume that the expander has
2330 -- explicitly checked that all required types are properly frozen,
2331 -- and we do not cause general freezing here. This special circuit
2332 -- is used when the encountered body is marked as having already
2333 -- been analyzed.
2334
2335 -- In all other cases (bodies that come from source, and expander
2336 -- generated bodies that have not been analyzed yet), freeze all
2337 -- types now. Note that in the latter case, the expander must take
2338 -- care to attach the bodies at a proper place in the tree so as to
2339 -- not cause unwanted freezing at that point.
2340
2341 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2342
2343 -- When a controlled type is frozen, the expander generates stream
2344 -- and controlled type support routines. If the freeze is caused
2345 -- by the stand alone body of Initialize, Adjust and Finalize, the
2346 -- expander will end up using the wrong version of these routines
2347 -- as the body has not been processed yet. To remedy this, detect
2348 -- a late controlled primitive and create a proper spec for it.
2349 -- This ensures that the primitive will override its inherited
2350 -- counterpart before the freeze takes place.
2351
2352 -- If the declaration we just processed is a body, do not attempt
2353 -- to examine Next_Decl as the late primitive idiom can only apply
2354 -- to the first encountered body.
2355
2356 -- The spec of the late primitive is not generated in ASIS mode to
2357 -- ensure a consistent list of primitives that indicates the true
2358 -- semantic structure of the program (which is not relevant when
2359 -- generating executable code.
2360
2361 -- ??? a cleaner approach may be possible and/or this solution
2362 -- could be extended to general-purpose late primitives, TBD.
2363
2364 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2365 then
2366 Body_Seen := True;
2367
2368 if Nkind (Next_Decl) = N_Subprogram_Body then
2369 Handle_Late_Controlled_Primitive (Next_Decl);
2370 end if;
2371 end if;
2372
2373 Adjust_Decl;
2374 Freeze_All (Freeze_From, Decl);
2375 Freeze_From := Last_Entity (Current_Scope);
2376 end if;
2377
2378 Decl := Next_Decl;
2379 end loop;
2380
2381 -- Analyze the contracts of packages and their bodies
2382
2383 if Present (L) then
2384 Context := Parent (L);
2385
2386 if Nkind (Context) = N_Package_Specification then
2387
2388 -- When a package has private declarations, its contract must be
2389 -- analyzed at the end of the said declarations. This way both the
2390 -- analysis and freeze actions are properly synchronized in case
2391 -- of private type use within the contract.
2392
2393 if L = Private_Declarations (Context) then
2394 Analyze_Package_Contract (Defining_Entity (Context));
2395
2396 -- Otherwise the contract is analyzed at the end of the visible
2397 -- declarations.
2398
2399 elsif L = Visible_Declarations (Context)
2400 and then No (Private_Declarations (Context))
2401 then
2402 Analyze_Package_Contract (Defining_Entity (Context));
2403 end if;
2404
2405 elsif Nkind (Context) = N_Package_Body then
2406 In_Package_Body := True;
2407 Spec_Id := Corresponding_Spec (Context);
2408
2409 Analyze_Package_Body_Contract (Defining_Entity (Context));
2410 end if;
2411 end if;
2412
2413 -- Analyze the contracts of subprogram declarations, subprogram bodies
2414 -- and variables now due to the delayed visibility requirements of their
2415 -- aspects.
2416
2417 Decl := First (L);
2418 while Present (Decl) loop
2419 if Nkind (Decl) = N_Object_Declaration then
2420 Analyze_Object_Contract (Defining_Entity (Decl));
2421
2422 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2423 N_Subprogram_Declaration)
2424 then
2425 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2426
2427 elsif Nkind (Decl) = N_Subprogram_Body then
2428 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2429
2430 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2431 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2432 end if;
2433
2434 Next (Decl);
2435 end loop;
2436
2437 -- State refinements are visible upto the end the of the package body
2438 -- declarations. Hide the refinements from visibility to restore the
2439 -- original state conditions.
2440
2441 if In_Package_Body then
2442 Remove_Visible_Refinements (Spec_Id);
2443 end if;
2444 end Analyze_Declarations;
2445
2446 -----------------------------------
2447 -- Analyze_Full_Type_Declaration --
2448 -----------------------------------
2449
2450 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2451 Def : constant Node_Id := Type_Definition (N);
2452 Def_Id : constant Entity_Id := Defining_Identifier (N);
2453 T : Entity_Id;
2454 Prev : Entity_Id;
2455
2456 Is_Remote : constant Boolean :=
2457 (Is_Remote_Types (Current_Scope)
2458 or else Is_Remote_Call_Interface (Current_Scope))
2459 and then not (In_Private_Part (Current_Scope)
2460 or else In_Package_Body (Current_Scope));
2461
2462 procedure Check_Ops_From_Incomplete_Type;
2463 -- If there is a tagged incomplete partial view of the type, traverse
2464 -- the primitives of the incomplete view and change the type of any
2465 -- controlling formals and result to indicate the full view. The
2466 -- primitives will be added to the full type's primitive operations
2467 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2468 -- is called from Process_Incomplete_Dependents).
2469
2470 ------------------------------------
2471 -- Check_Ops_From_Incomplete_Type --
2472 ------------------------------------
2473
2474 procedure Check_Ops_From_Incomplete_Type is
2475 Elmt : Elmt_Id;
2476 Formal : Entity_Id;
2477 Op : Entity_Id;
2478
2479 begin
2480 if Prev /= T
2481 and then Ekind (Prev) = E_Incomplete_Type
2482 and then Is_Tagged_Type (Prev)
2483 and then Is_Tagged_Type (T)
2484 then
2485 Elmt := First_Elmt (Primitive_Operations (Prev));
2486 while Present (Elmt) loop
2487 Op := Node (Elmt);
2488
2489 Formal := First_Formal (Op);
2490 while Present (Formal) loop
2491 if Etype (Formal) = Prev then
2492 Set_Etype (Formal, T);
2493 end if;
2494
2495 Next_Formal (Formal);
2496 end loop;
2497
2498 if Etype (Op) = Prev then
2499 Set_Etype (Op, T);
2500 end if;
2501
2502 Next_Elmt (Elmt);
2503 end loop;
2504 end if;
2505 end Check_Ops_From_Incomplete_Type;
2506
2507 -- Start of processing for Analyze_Full_Type_Declaration
2508
2509 begin
2510 Prev := Find_Type_Name (N);
2511
2512 -- The full view, if present, now points to the current type
2513 -- If there is an incomplete partial view, set a link to it, to
2514 -- simplify the retrieval of primitive operations of the type.
2515
2516 -- Ada 2005 (AI-50217): If the type was previously decorated when
2517 -- imported through a LIMITED WITH clause, it appears as incomplete
2518 -- but has no full view.
2519
2520 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2521 then
2522 T := Full_View (Prev);
2523 Set_Incomplete_View (N, Parent (Prev));
2524 else
2525 T := Prev;
2526 end if;
2527
2528 Set_Is_Pure (T, Is_Pure (Current_Scope));
2529
2530 -- We set the flag Is_First_Subtype here. It is needed to set the
2531 -- corresponding flag for the Implicit class-wide-type created
2532 -- during tagged types processing.
2533
2534 Set_Is_First_Subtype (T, True);
2535
2536 -- Only composite types other than array types are allowed to have
2537 -- discriminants.
2538
2539 case Nkind (Def) is
2540
2541 -- For derived types, the rule will be checked once we've figured
2542 -- out the parent type.
2543
2544 when N_Derived_Type_Definition =>
2545 null;
2546
2547 -- For record types, discriminants are allowed, unless we are in
2548 -- SPARK.
2549
2550 when N_Record_Definition =>
2551 if Present (Discriminant_Specifications (N)) then
2552 Check_SPARK_Restriction
2553 ("discriminant type is not allowed",
2554 Defining_Identifier
2555 (First (Discriminant_Specifications (N))));
2556 end if;
2557
2558 when others =>
2559 if Present (Discriminant_Specifications (N)) then
2560 Error_Msg_N
2561 ("elementary or array type cannot have discriminants",
2562 Defining_Identifier
2563 (First (Discriminant_Specifications (N))));
2564 end if;
2565 end case;
2566
2567 -- Elaborate the type definition according to kind, and generate
2568 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2569 -- already done (this happens during the reanalysis that follows a call
2570 -- to the high level optimizer).
2571
2572 if not Analyzed (T) then
2573 Set_Analyzed (T);
2574
2575 case Nkind (Def) is
2576
2577 when N_Access_To_Subprogram_Definition =>
2578 Access_Subprogram_Declaration (T, Def);
2579
2580 -- If this is a remote access to subprogram, we must create the
2581 -- equivalent fat pointer type, and related subprograms.
2582
2583 if Is_Remote then
2584 Process_Remote_AST_Declaration (N);
2585 end if;
2586
2587 -- Validate categorization rule against access type declaration
2588 -- usually a violation in Pure unit, Shared_Passive unit.
2589
2590 Validate_Access_Type_Declaration (T, N);
2591
2592 when N_Access_To_Object_Definition =>
2593 Access_Type_Declaration (T, Def);
2594
2595 -- Validate categorization rule against access type declaration
2596 -- usually a violation in Pure unit, Shared_Passive unit.
2597
2598 Validate_Access_Type_Declaration (T, N);
2599
2600 -- If we are in a Remote_Call_Interface package and define a
2601 -- RACW, then calling stubs and specific stream attributes
2602 -- must be added.
2603
2604 if Is_Remote
2605 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2606 then
2607 Add_RACW_Features (Def_Id);
2608 end if;
2609
2610 -- Set no strict aliasing flag if config pragma seen
2611
2612 if Opt.No_Strict_Aliasing then
2613 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2614 end if;
2615
2616 when N_Array_Type_Definition =>
2617 Array_Type_Declaration (T, Def);
2618
2619 when N_Derived_Type_Definition =>
2620 Derived_Type_Declaration (T, N, T /= Def_Id);
2621
2622 when N_Enumeration_Type_Definition =>
2623 Enumeration_Type_Declaration (T, Def);
2624
2625 when N_Floating_Point_Definition =>
2626 Floating_Point_Type_Declaration (T, Def);
2627
2628 when N_Decimal_Fixed_Point_Definition =>
2629 Decimal_Fixed_Point_Type_Declaration (T, Def);
2630
2631 when N_Ordinary_Fixed_Point_Definition =>
2632 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2633
2634 when N_Signed_Integer_Type_Definition =>
2635 Signed_Integer_Type_Declaration (T, Def);
2636
2637 when N_Modular_Type_Definition =>
2638 Modular_Type_Declaration (T, Def);
2639
2640 when N_Record_Definition =>
2641 Record_Type_Declaration (T, N, Prev);
2642
2643 -- If declaration has a parse error, nothing to elaborate.
2644
2645 when N_Error =>
2646 null;
2647
2648 when others =>
2649 raise Program_Error;
2650
2651 end case;
2652 end if;
2653
2654 if Etype (T) = Any_Type then
2655 return;
2656 end if;
2657
2658 -- Controlled type is not allowed in SPARK
2659
2660 if Is_Visibly_Controlled (T) then
2661 Check_SPARK_Restriction ("controlled type is not allowed", N);
2662 end if;
2663
2664 -- Some common processing for all types
2665
2666 Set_Depends_On_Private (T, Has_Private_Component (T));
2667 Check_Ops_From_Incomplete_Type;
2668
2669 -- Both the declared entity, and its anonymous base type if one
2670 -- was created, need freeze nodes allocated.
2671
2672 declare
2673 B : constant Entity_Id := Base_Type (T);
2674
2675 begin
2676 -- In the case where the base type differs from the first subtype, we
2677 -- pre-allocate a freeze node, and set the proper link to the first
2678 -- subtype. Freeze_Entity will use this preallocated freeze node when
2679 -- it freezes the entity.
2680
2681 -- This does not apply if the base type is a generic type, whose
2682 -- declaration is independent of the current derived definition.
2683
2684 if B /= T and then not Is_Generic_Type (B) then
2685 Ensure_Freeze_Node (B);
2686 Set_First_Subtype_Link (Freeze_Node (B), T);
2687 end if;
2688
2689 -- A type that is imported through a limited_with clause cannot
2690 -- generate any code, and thus need not be frozen. However, an access
2691 -- type with an imported designated type needs a finalization list,
2692 -- which may be referenced in some other package that has non-limited
2693 -- visibility on the designated type. Thus we must create the
2694 -- finalization list at the point the access type is frozen, to
2695 -- prevent unsatisfied references at link time.
2696
2697 if not From_Limited_With (T) or else Is_Access_Type (T) then
2698 Set_Has_Delayed_Freeze (T);
2699 end if;
2700 end;
2701
2702 -- Case where T is the full declaration of some private type which has
2703 -- been swapped in Defining_Identifier (N).
2704
2705 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2706 Process_Full_View (N, T, Def_Id);
2707
2708 -- Record the reference. The form of this is a little strange, since
2709 -- the full declaration has been swapped in. So the first parameter
2710 -- here represents the entity to which a reference is made which is
2711 -- the "real" entity, i.e. the one swapped in, and the second
2712 -- parameter provides the reference location.
2713
2714 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2715 -- since we don't want a complaint about the full type being an
2716 -- unwanted reference to the private type
2717
2718 declare
2719 B : constant Boolean := Has_Pragma_Unreferenced (T);
2720 begin
2721 Set_Has_Pragma_Unreferenced (T, False);
2722 Generate_Reference (T, T, 'c');
2723 Set_Has_Pragma_Unreferenced (T, B);
2724 end;
2725
2726 Set_Completion_Referenced (Def_Id);
2727
2728 -- For completion of incomplete type, process incomplete dependents
2729 -- and always mark the full type as referenced (it is the incomplete
2730 -- type that we get for any real reference).
2731
2732 elsif Ekind (Prev) = E_Incomplete_Type then
2733 Process_Incomplete_Dependents (N, T, Prev);
2734 Generate_Reference (Prev, Def_Id, 'c');
2735 Set_Completion_Referenced (Def_Id);
2736
2737 -- If not private type or incomplete type completion, this is a real
2738 -- definition of a new entity, so record it.
2739
2740 else
2741 Generate_Definition (Def_Id);
2742 end if;
2743
2744 if Chars (Scope (Def_Id)) = Name_System
2745 and then Chars (Def_Id) = Name_Address
2746 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2747 then
2748 Set_Is_Descendent_Of_Address (Def_Id);
2749 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2750 Set_Is_Descendent_Of_Address (Prev);
2751 end if;
2752
2753 Set_Optimize_Alignment_Flags (Def_Id);
2754 Check_Eliminated (Def_Id);
2755
2756 -- If the declaration is a completion and aspects are present, apply
2757 -- them to the entity for the type which is currently the partial
2758 -- view, but which is the one that will be frozen.
2759
2760 if Has_Aspects (N) then
2761 if Prev /= Def_Id then
2762 Analyze_Aspect_Specifications (N, Prev);
2763 else
2764 Analyze_Aspect_Specifications (N, Def_Id);
2765 end if;
2766 end if;
2767 end Analyze_Full_Type_Declaration;
2768
2769 ----------------------------------
2770 -- Analyze_Incomplete_Type_Decl --
2771 ----------------------------------
2772
2773 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2774 F : constant Boolean := Is_Pure (Current_Scope);
2775 T : Entity_Id;
2776
2777 begin
2778 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2779
2780 Generate_Definition (Defining_Identifier (N));
2781
2782 -- Process an incomplete declaration. The identifier must not have been
2783 -- declared already in the scope. However, an incomplete declaration may
2784 -- appear in the private part of a package, for a private type that has
2785 -- already been declared.
2786
2787 -- In this case, the discriminants (if any) must match
2788
2789 T := Find_Type_Name (N);
2790
2791 Set_Ekind (T, E_Incomplete_Type);
2792 Init_Size_Align (T);
2793 Set_Is_First_Subtype (T, True);
2794 Set_Etype (T, T);
2795
2796 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2797 -- incomplete types.
2798
2799 if Tagged_Present (N) then
2800 Set_Is_Tagged_Type (T);
2801 Make_Class_Wide_Type (T);
2802 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2803 end if;
2804
2805 Push_Scope (T);
2806
2807 Set_Stored_Constraint (T, No_Elist);
2808
2809 if Present (Discriminant_Specifications (N)) then
2810 Process_Discriminants (N);
2811 end if;
2812
2813 End_Scope;
2814
2815 -- If the type has discriminants, non-trivial subtypes may be
2816 -- declared before the full view of the type. The full views of those
2817 -- subtypes will be built after the full view of the type.
2818
2819 Set_Private_Dependents (T, New_Elmt_List);
2820 Set_Is_Pure (T, F);
2821 end Analyze_Incomplete_Type_Decl;
2822
2823 -----------------------------------
2824 -- Analyze_Interface_Declaration --
2825 -----------------------------------
2826
2827 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2828 CW : constant Entity_Id := Class_Wide_Type (T);
2829
2830 begin
2831 Set_Is_Tagged_Type (T);
2832
2833 Set_Is_Limited_Record (T, Limited_Present (Def)
2834 or else Task_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def));
2837
2838 -- Type is abstract if full declaration carries keyword, or if previous
2839 -- partial view did.
2840
2841 Set_Is_Abstract_Type (T);
2842 Set_Is_Interface (T);
2843
2844 -- Type is a limited interface if it includes the keyword limited, task,
2845 -- protected, or synchronized.
2846
2847 Set_Is_Limited_Interface
2848 (T, Limited_Present (Def)
2849 or else Protected_Present (Def)
2850 or else Synchronized_Present (Def)
2851 or else Task_Present (Def));
2852
2853 Set_Interfaces (T, New_Elmt_List);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2855
2856 -- Complete the decoration of the class-wide entity if it was already
2857 -- built (i.e. during the creation of the limited view)
2858
2859 if Present (CW) then
2860 Set_Is_Interface (CW);
2861 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2862 end if;
2863
2864 -- Check runtime support for synchronized interfaces
2865
2866 if VM_Target = No_VM
2867 and then (Is_Task_Interface (T)
2868 or else Is_Protected_Interface (T)
2869 or else Is_Synchronized_Interface (T))
2870 and then not RTE_Available (RE_Select_Specific_Data)
2871 then
2872 Error_Msg_CRT ("synchronized interfaces", T);
2873 end if;
2874 end Analyze_Interface_Declaration;
2875
2876 -----------------------------
2877 -- Analyze_Itype_Reference --
2878 -----------------------------
2879
2880 -- Nothing to do. This node is placed in the tree only for the benefit of
2881 -- back end processing, and has no effect on the semantic processing.
2882
2883 procedure Analyze_Itype_Reference (N : Node_Id) is
2884 begin
2885 pragma Assert (Is_Itype (Itype (N)));
2886 null;
2887 end Analyze_Itype_Reference;
2888
2889 --------------------------------
2890 -- Analyze_Number_Declaration --
2891 --------------------------------
2892
2893 procedure Analyze_Number_Declaration (N : Node_Id) is
2894 Id : constant Entity_Id := Defining_Identifier (N);
2895 E : constant Node_Id := Expression (N);
2896 T : Entity_Id;
2897 Index : Interp_Index;
2898 It : Interp;
2899
2900 begin
2901 Generate_Definition (Id);
2902 Enter_Name (Id);
2903
2904 -- This is an optimization of a common case of an integer literal
2905
2906 if Nkind (E) = N_Integer_Literal then
2907 Set_Is_Static_Expression (E, True);
2908 Set_Etype (E, Universal_Integer);
2909
2910 Set_Etype (Id, Universal_Integer);
2911 Set_Ekind (Id, E_Named_Integer);
2912 Set_Is_Frozen (Id, True);
2913 return;
2914 end if;
2915
2916 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2917
2918 -- Process expression, replacing error by integer zero, to avoid
2919 -- cascaded errors or aborts further along in the processing
2920
2921 -- Replace Error by integer zero, which seems least likely to cause
2922 -- cascaded errors.
2923
2924 if E = Error then
2925 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2926 Set_Error_Posted (E);
2927 end if;
2928
2929 Analyze (E);
2930
2931 -- Verify that the expression is static and numeric. If
2932 -- the expression is overloaded, we apply the preference
2933 -- rule that favors root numeric types.
2934
2935 if not Is_Overloaded (E) then
2936 T := Etype (E);
2937 if Has_Dynamic_Predicate_Aspect (T) then
2938 Error_Msg_N
2939 ("subtype has dynamic predicate, "
2940 & "not allowed in number declaration", N);
2941 end if;
2942
2943 else
2944 T := Any_Type;
2945
2946 Get_First_Interp (E, Index, It);
2947 while Present (It.Typ) loop
2948 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2949 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2950 then
2951 if T = Any_Type then
2952 T := It.Typ;
2953
2954 elsif It.Typ = Universal_Real
2955 or else It.Typ = Universal_Integer
2956 then
2957 -- Choose universal interpretation over any other
2958
2959 T := It.Typ;
2960 exit;
2961 end if;
2962 end if;
2963
2964 Get_Next_Interp (Index, It);
2965 end loop;
2966 end if;
2967
2968 if Is_Integer_Type (T) then
2969 Resolve (E, T);
2970 Set_Etype (Id, Universal_Integer);
2971 Set_Ekind (Id, E_Named_Integer);
2972
2973 elsif Is_Real_Type (T) then
2974
2975 -- Because the real value is converted to universal_real, this is a
2976 -- legal context for a universal fixed expression.
2977
2978 if T = Universal_Fixed then
2979 declare
2980 Loc : constant Source_Ptr := Sloc (N);
2981 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2982 Subtype_Mark =>
2983 New_Occurrence_Of (Universal_Real, Loc),
2984 Expression => Relocate_Node (E));
2985
2986 begin
2987 Rewrite (E, Conv);
2988 Analyze (E);
2989 end;
2990
2991 elsif T = Any_Fixed then
2992 Error_Msg_N ("illegal context for mixed mode operation", E);
2993
2994 -- Expression is of the form : universal_fixed * integer. Try to
2995 -- resolve as universal_real.
2996
2997 T := Universal_Real;
2998 Set_Etype (E, T);
2999 end if;
3000
3001 Resolve (E, T);
3002 Set_Etype (Id, Universal_Real);
3003 Set_Ekind (Id, E_Named_Real);
3004
3005 else
3006 Wrong_Type (E, Any_Numeric);
3007 Resolve (E, T);
3008
3009 Set_Etype (Id, T);
3010 Set_Ekind (Id, E_Constant);
3011 Set_Never_Set_In_Source (Id, True);
3012 Set_Is_True_Constant (Id, True);
3013 return;
3014 end if;
3015
3016 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3017 Set_Etype (E, Etype (Id));
3018 end if;
3019
3020 if not Is_OK_Static_Expression (E) then
3021 Flag_Non_Static_Expr
3022 ("non-static expression used in number declaration!", E);
3023 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3024 Set_Etype (E, Any_Type);
3025 end if;
3026 end Analyze_Number_Declaration;
3027
3028 -----------------------------
3029 -- Analyze_Object_Contract --
3030 -----------------------------
3031
3032 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3033 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3034 AR_Val : Boolean := False;
3035 AW_Val : Boolean := False;
3036 ER_Val : Boolean := False;
3037 EW_Val : Boolean := False;
3038 Prag : Node_Id;
3039 Seen : Boolean := False;
3040
3041 begin
3042 if Ekind (Obj_Id) = E_Constant then
3043
3044 -- A constant cannot be effectively volatile. This check is only
3045 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3046 -- rule. Do not flag internally-generated constants that map generic
3047 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3048
3049 if SPARK_Mode = On
3050 and then Is_Effectively_Volatile (Obj_Id)
3051 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3052 then
3053 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3054 end if;
3055
3056 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3057
3058 -- The following checks are only relevant when SPARK_Mode is on as
3059 -- they are not standard Ada legality rules. Internally generated
3060 -- temporaries are ignored.
3061
3062 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3063 if Is_Effectively_Volatile (Obj_Id) then
3064
3065 -- The declaration of an effectively volatile object must
3066 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3067
3068 if not Is_Library_Level_Entity (Obj_Id) then
3069 Error_Msg_N
3070 ("volatile variable & must be declared at library level",
3071 Obj_Id);
3072
3073 -- An object of a discriminated type cannot be effectively
3074 -- volatile (SPARK RM C.6(4)).
3075
3076 elsif Has_Discriminants (Obj_Typ) then
3077 Error_Msg_N
3078 ("discriminated object & cannot be volatile", Obj_Id);
3079
3080 -- An object of a tagged type cannot be effectively volatile
3081 -- (SPARK RM C.6(5)).
3082
3083 elsif Is_Tagged_Type (Obj_Typ) then
3084 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3085 end if;
3086
3087 -- The object is not effectively volatile
3088
3089 else
3090 -- A non-effectively volatile object cannot have effectively
3091 -- volatile components (SPARK RM 7.1.3(7)).
3092
3093 if not Is_Effectively_Volatile (Obj_Id)
3094 and then Has_Volatile_Component (Obj_Typ)
3095 then
3096 Error_Msg_N
3097 ("non-volatile object & cannot have volatile components",
3098 Obj_Id);
3099 end if;
3100 end if;
3101 end if;
3102
3103 -- Analyze all external properties
3104
3105 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3106
3107 if Present (Prag) then
3108 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3109 Seen := True;
3110 end if;
3111
3112 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3113
3114 if Present (Prag) then
3115 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3116 Seen := True;
3117 end if;
3118
3119 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3120
3121 if Present (Prag) then
3122 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3123 Seen := True;
3124 end if;
3125
3126 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3127
3128 if Present (Prag) then
3129 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3130 Seen := True;
3131 end if;
3132
3133 -- Verify the mutual interaction of the various external properties
3134
3135 if Seen then
3136 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3137 end if;
3138
3139 -- Check whether the lack of indicator Part_Of agrees with the
3140 -- placement of the variable with respect to the state space.
3141
3142 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3143
3144 if No (Prag) then
3145 Check_Missing_Part_Of (Obj_Id);
3146 end if;
3147 end if;
3148 end Analyze_Object_Contract;
3149
3150 --------------------------------
3151 -- Analyze_Object_Declaration --
3152 --------------------------------
3153
3154 procedure Analyze_Object_Declaration (N : Node_Id) is
3155 Loc : constant Source_Ptr := Sloc (N);
3156 Id : constant Entity_Id := Defining_Identifier (N);
3157 T : Entity_Id;
3158 Act_T : Entity_Id;
3159
3160 E : Node_Id := Expression (N);
3161 -- E is set to Expression (N) throughout this routine. When
3162 -- Expression (N) is modified, E is changed accordingly.
3163
3164 Prev_Entity : Entity_Id := Empty;
3165
3166 function Count_Tasks (T : Entity_Id) return Uint;
3167 -- This function is called when a non-generic library level object of a
3168 -- task type is declared. Its function is to count the static number of
3169 -- tasks declared within the type (it is only called if Has_Tasks is set
3170 -- for T). As a side effect, if an array of tasks with non-static bounds
3171 -- or a variant record type is encountered, Check_Restrictions is called
3172 -- indicating the count is unknown.
3173
3174 -----------------
3175 -- Count_Tasks --
3176 -----------------
3177
3178 function Count_Tasks (T : Entity_Id) return Uint is
3179 C : Entity_Id;
3180 X : Node_Id;
3181 V : Uint;
3182
3183 begin
3184 if Is_Task_Type (T) then
3185 return Uint_1;
3186
3187 elsif Is_Record_Type (T) then
3188 if Has_Discriminants (T) then
3189 Check_Restriction (Max_Tasks, N);
3190 return Uint_0;
3191
3192 else
3193 V := Uint_0;
3194 C := First_Component (T);
3195 while Present (C) loop
3196 V := V + Count_Tasks (Etype (C));
3197 Next_Component (C);
3198 end loop;
3199
3200 return V;
3201 end if;
3202
3203 elsif Is_Array_Type (T) then
3204 X := First_Index (T);
3205 V := Count_Tasks (Component_Type (T));
3206 while Present (X) loop
3207 C := Etype (X);
3208
3209 if not Is_OK_Static_Subtype (C) then
3210 Check_Restriction (Max_Tasks, N);
3211 return Uint_0;
3212 else
3213 V := V * (UI_Max (Uint_0,
3214 Expr_Value (Type_High_Bound (C)) -
3215 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3216 end if;
3217
3218 Next_Index (X);
3219 end loop;
3220
3221 return V;
3222
3223 else
3224 return Uint_0;
3225 end if;
3226 end Count_Tasks;
3227
3228 -- Start of processing for Analyze_Object_Declaration
3229
3230 begin
3231 -- There are three kinds of implicit types generated by an
3232 -- object declaration:
3233
3234 -- 1. Those generated by the original Object Definition
3235
3236 -- 2. Those generated by the Expression
3237
3238 -- 3. Those used to constrain the Object Definition with the
3239 -- expression constraints when the definition is unconstrained.
3240
3241 -- They must be generated in this order to avoid order of elaboration
3242 -- issues. Thus the first step (after entering the name) is to analyze
3243 -- the object definition.
3244
3245 if Constant_Present (N) then
3246 Prev_Entity := Current_Entity_In_Scope (Id);
3247
3248 if Present (Prev_Entity)
3249 and then
3250 -- If the homograph is an implicit subprogram, it is overridden
3251 -- by the current declaration.
3252
3253 ((Is_Overloadable (Prev_Entity)
3254 and then Is_Inherited_Operation (Prev_Entity))
3255
3256 -- The current object is a discriminal generated for an entry
3257 -- family index. Even though the index is a constant, in this
3258 -- particular context there is no true constant redeclaration.
3259 -- Enter_Name will handle the visibility.
3260
3261 or else
3262 (Is_Discriminal (Id)
3263 and then Ekind (Discriminal_Link (Id)) =
3264 E_Entry_Index_Parameter)
3265
3266 -- The current object is the renaming for a generic declared
3267 -- within the instance.
3268
3269 or else
3270 (Ekind (Prev_Entity) = E_Package
3271 and then Nkind (Parent (Prev_Entity)) =
3272 N_Package_Renaming_Declaration
3273 and then not Comes_From_Source (Prev_Entity)
3274 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3275 then
3276 Prev_Entity := Empty;
3277 end if;
3278 end if;
3279
3280 if Present (Prev_Entity) then
3281 Constant_Redeclaration (Id, N, T);
3282
3283 Generate_Reference (Prev_Entity, Id, 'c');
3284 Set_Completion_Referenced (Id);
3285
3286 if Error_Posted (N) then
3287
3288 -- Type mismatch or illegal redeclaration, Do not analyze
3289 -- expression to avoid cascaded errors.
3290
3291 T := Find_Type_Of_Object (Object_Definition (N), N);
3292 Set_Etype (Id, T);
3293 Set_Ekind (Id, E_Variable);
3294 goto Leave;
3295 end if;
3296
3297 -- In the normal case, enter identifier at the start to catch premature
3298 -- usage in the initialization expression.
3299
3300 else
3301 Generate_Definition (Id);
3302 Enter_Name (Id);
3303
3304 Mark_Coextensions (N, Object_Definition (N));
3305
3306 T := Find_Type_Of_Object (Object_Definition (N), N);
3307
3308 if Nkind (Object_Definition (N)) = N_Access_Definition
3309 and then Present
3310 (Access_To_Subprogram_Definition (Object_Definition (N)))
3311 and then Protected_Present
3312 (Access_To_Subprogram_Definition (Object_Definition (N)))
3313 then
3314 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3315 end if;
3316
3317 if Error_Posted (Id) then
3318 Set_Etype (Id, T);
3319 Set_Ekind (Id, E_Variable);
3320 goto Leave;
3321 end if;
3322 end if;
3323
3324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3325 -- out some static checks
3326
3327 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3328
3329 -- In case of aggregates we must also take care of the correct
3330 -- initialization of nested aggregates bug this is done at the
3331 -- point of the analysis of the aggregate (see sem_aggr.adb).
3332
3333 if Present (Expression (N))
3334 and then Nkind (Expression (N)) = N_Aggregate
3335 then
3336 null;
3337
3338 else
3339 declare
3340 Save_Typ : constant Entity_Id := Etype (Id);
3341 begin
3342 Set_Etype (Id, T); -- Temp. decoration for static checks
3343 Null_Exclusion_Static_Checks (N);
3344 Set_Etype (Id, Save_Typ);
3345 end;
3346 end if;
3347 end if;
3348
3349 -- Object is marked pure if it is in a pure scope
3350
3351 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3352
3353 -- If deferred constant, make sure context is appropriate. We detect
3354 -- a deferred constant as a constant declaration with no expression.
3355 -- A deferred constant can appear in a package body if its completion
3356 -- is by means of an interface pragma.
3357
3358 if Constant_Present (N) and then No (E) then
3359
3360 -- A deferred constant may appear in the declarative part of the
3361 -- following constructs:
3362
3363 -- blocks
3364 -- entry bodies
3365 -- extended return statements
3366 -- package specs
3367 -- package bodies
3368 -- subprogram bodies
3369 -- task bodies
3370
3371 -- When declared inside a package spec, a deferred constant must be
3372 -- completed by a full constant declaration or pragma Import. In all
3373 -- other cases, the only proper completion is pragma Import. Extended
3374 -- return statements are flagged as invalid contexts because they do
3375 -- not have a declarative part and so cannot accommodate the pragma.
3376
3377 if Ekind (Current_Scope) = E_Return_Statement then
3378 Error_Msg_N
3379 ("invalid context for deferred constant declaration (RM 7.4)",
3380 N);
3381 Error_Msg_N
3382 ("\declaration requires an initialization expression",
3383 N);
3384 Set_Constant_Present (N, False);
3385
3386 -- In Ada 83, deferred constant must be of private type
3387
3388 elsif not Is_Private_Type (T) then
3389 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3390 Error_Msg_N
3391 ("(Ada 83) deferred constant must be private type", N);
3392 end if;
3393 end if;
3394
3395 -- If not a deferred constant, then object declaration freezes its type
3396
3397 else
3398 Check_Fully_Declared (T, N);
3399 Freeze_Before (N, T);
3400 end if;
3401
3402 -- If the object was created by a constrained array definition, then
3403 -- set the link in both the anonymous base type and anonymous subtype
3404 -- that are built to represent the array type to point to the object.
3405
3406 if Nkind (Object_Definition (Declaration_Node (Id))) =
3407 N_Constrained_Array_Definition
3408 then
3409 Set_Related_Array_Object (T, Id);
3410 Set_Related_Array_Object (Base_Type (T), Id);
3411 end if;
3412
3413 -- Special checks for protected objects not at library level
3414
3415 if Is_Protected_Type (T)
3416 and then not Is_Library_Level_Entity (Id)
3417 then
3418 Check_Restriction (No_Local_Protected_Objects, Id);
3419
3420 -- Protected objects with interrupt handlers must be at library level
3421
3422 -- Ada 2005: This test is not needed (and the corresponding clause
3423 -- in the RM is removed) because accessibility checks are sufficient
3424 -- to make handlers not at the library level illegal.
3425
3426 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3427 -- applies to the '95 version of the language as well.
3428
3429 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3430 Error_Msg_N
3431 ("interrupt object can only be declared at library level", Id);
3432 end if;
3433 end if;
3434
3435 -- The actual subtype of the object is the nominal subtype, unless
3436 -- the nominal one is unconstrained and obtained from the expression.
3437
3438 Act_T := T;
3439
3440 -- These checks should be performed before the initialization expression
3441 -- is considered, so that the Object_Definition node is still the same
3442 -- as in source code.
3443
3444 -- In SPARK, the nominal subtype is always given by a subtype mark
3445 -- and must not be unconstrained. (The only exception to this is the
3446 -- acceptance of declarations of constants of type String.)
3447
3448 if not
3449 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3450 then
3451 Check_SPARK_Restriction
3452 ("subtype mark required", Object_Definition (N));
3453
3454 elsif Is_Array_Type (T)
3455 and then not Is_Constrained (T)
3456 and then T /= Standard_String
3457 then
3458 Check_SPARK_Restriction
3459 ("subtype mark of constrained type expected",
3460 Object_Definition (N));
3461 end if;
3462
3463 -- There are no aliased objects in SPARK
3464
3465 if Aliased_Present (N) then
3466 Check_SPARK_Restriction ("aliased object is not allowed", N);
3467 end if;
3468
3469 -- Process initialization expression if present and not in error
3470
3471 if Present (E) and then E /= Error then
3472
3473 -- Generate an error in case of CPP class-wide object initialization.
3474 -- Required because otherwise the expansion of the class-wide
3475 -- assignment would try to use 'size to initialize the object
3476 -- (primitive that is not available in CPP tagged types).
3477
3478 if Is_Class_Wide_Type (Act_T)
3479 and then
3480 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3481 or else
3482 (Present (Full_View (Root_Type (Etype (Act_T))))
3483 and then
3484 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3485 then
3486 Error_Msg_N
3487 ("predefined assignment not available for 'C'P'P tagged types",
3488 E);
3489 end if;
3490
3491 Mark_Coextensions (N, E);
3492 Analyze (E);
3493
3494 -- In case of errors detected in the analysis of the expression,
3495 -- decorate it with the expected type to avoid cascaded errors
3496
3497 if No (Etype (E)) then
3498 Set_Etype (E, T);
3499 end if;
3500
3501 -- If an initialization expression is present, then we set the
3502 -- Is_True_Constant flag. It will be reset if this is a variable
3503 -- and it is indeed modified.
3504
3505 Set_Is_True_Constant (Id, True);
3506
3507 -- If we are analyzing a constant declaration, set its completion
3508 -- flag after analyzing and resolving the expression.
3509
3510 if Constant_Present (N) then
3511 Set_Has_Completion (Id);
3512 end if;
3513
3514 -- Set type and resolve (type may be overridden later on). Note:
3515 -- Ekind (Id) must still be E_Void at this point so that incorrect
3516 -- early usage within E is properly diagnosed.
3517
3518 Set_Etype (Id, T);
3519
3520 -- If the expression is an aggregate we must look ahead to detect
3521 -- the possible presence of an address clause, and defer resolution
3522 -- and expansion of the aggregate to the freeze point of the entity.
3523
3524 if Comes_From_Source (N)
3525 and then Expander_Active
3526 and then Has_Following_Address_Clause (N)
3527 and then Nkind (E) = N_Aggregate
3528 then
3529 Set_Etype (E, T);
3530
3531 else
3532 Resolve (E, T);
3533 end if;
3534
3535 -- No further action needed if E is a call to an inlined function
3536 -- which returns an unconstrained type and it has been expanded into
3537 -- a procedure call. In that case N has been replaced by an object
3538 -- declaration without initializing expression and it has been
3539 -- analyzed (see Expand_Inlined_Call).
3540
3541 if Back_End_Inlining
3542 and then Expander_Active
3543 and then Nkind (E) = N_Function_Call
3544 and then Nkind (Name (E)) in N_Has_Entity
3545 and then Is_Inlined (Entity (Name (E)))
3546 and then not Is_Constrained (Etype (E))
3547 and then Analyzed (N)
3548 and then No (Expression (N))
3549 then
3550 return;
3551 end if;
3552
3553 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3554 -- node (which was marked already-analyzed), we need to set the type
3555 -- to something other than Any_Access in order to keep gigi happy.
3556
3557 if Etype (E) = Any_Access then
3558 Set_Etype (E, T);
3559 end if;
3560
3561 -- If the object is an access to variable, the initialization
3562 -- expression cannot be an access to constant.
3563
3564 if Is_Access_Type (T)
3565 and then not Is_Access_Constant (T)
3566 and then Is_Access_Type (Etype (E))
3567 and then Is_Access_Constant (Etype (E))
3568 then
3569 Error_Msg_N
3570 ("access to variable cannot be initialized "
3571 & "with an access-to-constant expression", E);
3572 end if;
3573
3574 if not Assignment_OK (N) then
3575 Check_Initialization (T, E);
3576 end if;
3577
3578 Check_Unset_Reference (E);
3579
3580 -- If this is a variable, then set current value. If this is a
3581 -- declared constant of a scalar type with a static expression,
3582 -- indicate that it is always valid.
3583
3584 if not Constant_Present (N) then
3585 if Compile_Time_Known_Value (E) then
3586 Set_Current_Value (Id, E);
3587 end if;
3588
3589 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3590 Set_Is_Known_Valid (Id);
3591 end if;
3592
3593 -- Deal with setting of null flags
3594
3595 if Is_Access_Type (T) then
3596 if Known_Non_Null (E) then
3597 Set_Is_Known_Non_Null (Id, True);
3598 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3599 Set_Is_Known_Null (Id, True);
3600 end if;
3601 end if;
3602
3603 -- Check incorrect use of dynamically tagged expressions
3604
3605 if Is_Tagged_Type (T) then
3606 Check_Dynamically_Tagged_Expression
3607 (Expr => E,
3608 Typ => T,
3609 Related_Nod => N);
3610 end if;
3611
3612 Apply_Scalar_Range_Check (E, T);
3613 Apply_Static_Length_Check (E, T);
3614
3615 if Nkind (Original_Node (N)) = N_Object_Declaration
3616 and then Comes_From_Source (Original_Node (N))
3617
3618 -- Only call test if needed
3619
3620 and then Restriction_Check_Required (SPARK_05)
3621 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3622 then
3623 Check_SPARK_Restriction
3624 ("initialization expression is not appropriate", E);
3625 end if;
3626 end if;
3627
3628 -- If the No_Streams restriction is set, check that the type of the
3629 -- object is not, and does not contain, any subtype derived from
3630 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3631 -- Has_Stream just for efficiency reasons. There is no point in
3632 -- spending time on a Has_Stream check if the restriction is not set.
3633
3634 if Restriction_Check_Required (No_Streams) then
3635 if Has_Stream (T) then
3636 Check_Restriction (No_Streams, N);
3637 end if;
3638 end if;
3639
3640 -- Deal with predicate check before we start to do major rewriting. It
3641 -- is OK to initialize and then check the initialized value, since the
3642 -- object goes out of scope if we get a predicate failure. Note that we
3643 -- do this in the analyzer and not the expander because the analyzer
3644 -- does some substantial rewriting in some cases.
3645
3646 -- We need a predicate check if the type has predicates, and if either
3647 -- there is an initializing expression, or for default initialization
3648 -- when we have at least one case of an explicit default initial value
3649 -- and then this is not an internal declaration whose initialization
3650 -- comes later (as for an aggregate expansion).
3651
3652 if not Suppress_Assignment_Checks (N)
3653 and then Present (Predicate_Function (T))
3654 and then not No_Initialization (N)
3655 and then
3656 (Present (E)
3657 or else
3658 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3659 then
3660 -- If the type has a static predicate and the expression is known at
3661 -- compile time, see if the expression satisfies the predicate.
3662
3663 if Present (E) then
3664 Check_Expression_Against_Static_Predicate (E, T);
3665 end if;
3666
3667 Insert_After (N,
3668 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3669 end if;
3670
3671 -- Case of unconstrained type
3672
3673 if Is_Indefinite_Subtype (T) then
3674
3675 -- In SPARK, a declaration of unconstrained type is allowed
3676 -- only for constants of type string.
3677
3678 if Is_String_Type (T) and then not Constant_Present (N) then
3679 Check_SPARK_Restriction
3680 ("declaration of object of unconstrained type not allowed", N);
3681 end if;
3682
3683 -- Nothing to do in deferred constant case
3684
3685 if Constant_Present (N) and then No (E) then
3686 null;
3687
3688 -- Case of no initialization present
3689
3690 elsif No (E) then
3691 if No_Initialization (N) then
3692 null;
3693
3694 elsif Is_Class_Wide_Type (T) then
3695 Error_Msg_N
3696 ("initialization required in class-wide declaration ", N);
3697
3698 else
3699 Error_Msg_N
3700 ("unconstrained subtype not allowed (need initialization)",
3701 Object_Definition (N));
3702
3703 if Is_Record_Type (T) and then Has_Discriminants (T) then
3704 Error_Msg_N
3705 ("\provide initial value or explicit discriminant values",
3706 Object_Definition (N));
3707
3708 Error_Msg_NE
3709 ("\or give default discriminant values for type&",
3710 Object_Definition (N), T);
3711
3712 elsif Is_Array_Type (T) then
3713 Error_Msg_N
3714 ("\provide initial value or explicit array bounds",
3715 Object_Definition (N));
3716 end if;
3717 end if;
3718
3719 -- Case of initialization present but in error. Set initial
3720 -- expression as absent (but do not make above complaints)
3721
3722 elsif E = Error then
3723 Set_Expression (N, Empty);
3724 E := Empty;
3725
3726 -- Case of initialization present
3727
3728 else
3729 -- Check restrictions in Ada 83
3730
3731 if not Constant_Present (N) then
3732
3733 -- Unconstrained variables not allowed in Ada 83 mode
3734
3735 if Ada_Version = Ada_83
3736 and then Comes_From_Source (Object_Definition (N))
3737 then
3738 Error_Msg_N
3739 ("(Ada 83) unconstrained variable not allowed",
3740 Object_Definition (N));
3741 end if;
3742 end if;
3743
3744 -- Now we constrain the variable from the initializing expression
3745
3746 -- If the expression is an aggregate, it has been expanded into
3747 -- individual assignments. Retrieve the actual type from the
3748 -- expanded construct.
3749
3750 if Is_Array_Type (T)
3751 and then No_Initialization (N)
3752 and then Nkind (Original_Node (E)) = N_Aggregate
3753 then
3754 Act_T := Etype (E);
3755
3756 -- In case of class-wide interface object declarations we delay
3757 -- the generation of the equivalent record type declarations until
3758 -- its expansion because there are cases in they are not required.
3759
3760 elsif Is_Interface (T) then
3761 null;
3762
3763 else
3764 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3765 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3766 end if;
3767
3768 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3769
3770 if Aliased_Present (N) then
3771 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3772 end if;
3773
3774 Freeze_Before (N, Act_T);
3775 Freeze_Before (N, T);
3776 end if;
3777
3778 elsif Is_Array_Type (T)
3779 and then No_Initialization (N)
3780 and then Nkind (Original_Node (E)) = N_Aggregate
3781 then
3782 if not Is_Entity_Name (Object_Definition (N)) then
3783 Act_T := Etype (E);
3784 Check_Compile_Time_Size (Act_T);
3785
3786 if Aliased_Present (N) then
3787 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3788 end if;
3789 end if;
3790
3791 -- When the given object definition and the aggregate are specified
3792 -- independently, and their lengths might differ do a length check.
3793 -- This cannot happen if the aggregate is of the form (others =>...)
3794
3795 if not Is_Constrained (T) then
3796 null;
3797
3798 elsif Nkind (E) = N_Raise_Constraint_Error then
3799
3800 -- Aggregate is statically illegal. Place back in declaration
3801
3802 Set_Expression (N, E);
3803 Set_No_Initialization (N, False);
3804
3805 elsif T = Etype (E) then
3806 null;
3807
3808 elsif Nkind (E) = N_Aggregate
3809 and then Present (Component_Associations (E))
3810 and then Present (Choices (First (Component_Associations (E))))
3811 and then Nkind (First
3812 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3813 then
3814 null;
3815
3816 else
3817 Apply_Length_Check (E, T);
3818 end if;
3819
3820 -- If the type is limited unconstrained with defaulted discriminants and
3821 -- there is no expression, then the object is constrained by the
3822 -- defaults, so it is worthwhile building the corresponding subtype.
3823
3824 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3825 and then not Is_Constrained (T)
3826 and then Has_Discriminants (T)
3827 then
3828 if No (E) then
3829 Act_T := Build_Default_Subtype (T, N);
3830 else
3831 -- Ada 2005: A limited object may be initialized by means of an
3832 -- aggregate. If the type has default discriminants it has an
3833 -- unconstrained nominal type, Its actual subtype will be obtained
3834 -- from the aggregate, and not from the default discriminants.
3835
3836 Act_T := Etype (E);
3837 end if;
3838
3839 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3840
3841 elsif Nkind (E) = N_Function_Call
3842 and then Constant_Present (N)
3843 and then Has_Unconstrained_Elements (Etype (E))
3844 then
3845 -- The back-end has problems with constants of a discriminated type
3846 -- with defaults, if the initial value is a function call. We
3847 -- generate an intermediate temporary that will receive a reference
3848 -- to the result of the call. The initialization expression then
3849 -- becomes a dereference of that temporary.
3850
3851 Remove_Side_Effects (E);
3852
3853 -- If this is a constant declaration of an unconstrained type and
3854 -- the initialization is an aggregate, we can use the subtype of the
3855 -- aggregate for the declared entity because it is immutable.
3856
3857 elsif not Is_Constrained (T)
3858 and then Has_Discriminants (T)
3859 and then Constant_Present (N)
3860 and then not Has_Unchecked_Union (T)
3861 and then Nkind (E) = N_Aggregate
3862 then
3863 Act_T := Etype (E);
3864 end if;
3865
3866 -- Check No_Wide_Characters restriction
3867
3868 Check_Wide_Character_Restriction (T, Object_Definition (N));
3869
3870 -- Indicate this is not set in source. Certainly true for constants, and
3871 -- true for variables so far (will be reset for a variable if and when
3872 -- we encounter a modification in the source).
3873
3874 Set_Never_Set_In_Source (Id, True);
3875
3876 -- Now establish the proper kind and type of the object
3877
3878 if Constant_Present (N) then
3879 Set_Ekind (Id, E_Constant);
3880 Set_Is_True_Constant (Id);
3881
3882 else
3883 Set_Ekind (Id, E_Variable);
3884
3885 -- A variable is set as shared passive if it appears in a shared
3886 -- passive package, and is at the outer level. This is not done for
3887 -- entities generated during expansion, because those are always
3888 -- manipulated locally.
3889
3890 if Is_Shared_Passive (Current_Scope)
3891 and then Is_Library_Level_Entity (Id)
3892 and then Comes_From_Source (Id)
3893 then
3894 Set_Is_Shared_Passive (Id);
3895 Check_Shared_Var (Id, T, N);
3896 end if;
3897
3898 -- Set Has_Initial_Value if initializing expression present. Note
3899 -- that if there is no initializing expression, we leave the state
3900 -- of this flag unchanged (usually it will be False, but notably in
3901 -- the case of exception choice variables, it will already be true).
3902
3903 if Present (E) then
3904 Set_Has_Initial_Value (Id, True);
3905 end if;
3906
3907 Set_Contract (Id, Make_Contract (Sloc (Id)));
3908 end if;
3909
3910 -- Initialize alignment and size and capture alignment setting
3911
3912 Init_Alignment (Id);
3913 Init_Esize (Id);
3914 Set_Optimize_Alignment_Flags (Id);
3915
3916 -- Deal with aliased case
3917
3918 if Aliased_Present (N) then
3919 Set_Is_Aliased (Id);
3920
3921 -- If the object is aliased and the type is unconstrained with
3922 -- defaulted discriminants and there is no expression, then the
3923 -- object is constrained by the defaults, so it is worthwhile
3924 -- building the corresponding subtype.
3925
3926 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3927 -- unconstrained, then only establish an actual subtype if the
3928 -- nominal subtype is indefinite. In definite cases the object is
3929 -- unconstrained in Ada 2005.
3930
3931 if No (E)
3932 and then Is_Record_Type (T)
3933 and then not Is_Constrained (T)
3934 and then Has_Discriminants (T)
3935 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3936 then
3937 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3938 end if;
3939 end if;
3940
3941 -- Now we can set the type of the object
3942
3943 Set_Etype (Id, Act_T);
3944
3945 -- Non-constant object is marked to be treated as volatile if type is
3946 -- volatile and we clear the Current_Value setting that may have been
3947 -- set above. Doing so for constants isn't required and might interfere
3948 -- with possible uses of the object as a static expression in contexts
3949 -- incompatible with volatility (e.g. as a case-statement alternative).
3950
3951 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3952 Set_Treat_As_Volatile (Id);
3953 Set_Current_Value (Id, Empty);
3954 end if;
3955
3956 -- Deal with controlled types
3957
3958 if Has_Controlled_Component (Etype (Id))
3959 or else Is_Controlled (Etype (Id))
3960 then
3961 if not Is_Library_Level_Entity (Id) then
3962 Check_Restriction (No_Nested_Finalization, N);
3963 else
3964 Validate_Controlled_Object (Id);
3965 end if;
3966 end if;
3967
3968 if Has_Task (Etype (Id)) then
3969 Check_Restriction (No_Tasking, N);
3970
3971 -- Deal with counting max tasks
3972
3973 -- Nothing to do if inside a generic
3974
3975 if Inside_A_Generic then
3976 null;
3977
3978 -- If library level entity, then count tasks
3979
3980 elsif Is_Library_Level_Entity (Id) then
3981 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3982
3983 -- If not library level entity, then indicate we don't know max
3984 -- tasks and also check task hierarchy restriction and blocking
3985 -- operation (since starting a task is definitely blocking).
3986
3987 else
3988 Check_Restriction (Max_Tasks, N);
3989 Check_Restriction (No_Task_Hierarchy, N);
3990 Check_Potentially_Blocking_Operation (N);
3991 end if;
3992
3993 -- A rather specialized test. If we see two tasks being declared
3994 -- of the same type in the same object declaration, and the task
3995 -- has an entry with an address clause, we know that program error
3996 -- will be raised at run time since we can't have two tasks with
3997 -- entries at the same address.
3998
3999 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4000 declare
4001 E : Entity_Id;
4002
4003 begin
4004 E := First_Entity (Etype (Id));
4005 while Present (E) loop
4006 if Ekind (E) = E_Entry
4007 and then Present (Get_Attribute_Definition_Clause
4008 (E, Attribute_Address))
4009 then
4010 Error_Msg_Warn := SPARK_Mode /= On;
4011 Error_Msg_N
4012 ("more than one task with same entry address<<", N);
4013 Error_Msg_N ("\Program_Error [<<", N);
4014 Insert_Action (N,
4015 Make_Raise_Program_Error (Loc,
4016 Reason => PE_Duplicated_Entry_Address));
4017 exit;
4018 end if;
4019
4020 Next_Entity (E);
4021 end loop;
4022 end;
4023 end if;
4024 end if;
4025
4026 -- Some simple constant-propagation: if the expression is a constant
4027 -- string initialized with a literal, share the literal. This avoids
4028 -- a run-time copy.
4029
4030 if Present (E)
4031 and then Is_Entity_Name (E)
4032 and then Ekind (Entity (E)) = E_Constant
4033 and then Base_Type (Etype (E)) = Standard_String
4034 then
4035 declare
4036 Val : constant Node_Id := Constant_Value (Entity (E));
4037 begin
4038 if Present (Val) and then Nkind (Val) = N_String_Literal then
4039 Rewrite (E, New_Copy (Val));
4040 end if;
4041 end;
4042 end if;
4043
4044 -- Another optimization: if the nominal subtype is unconstrained and
4045 -- the expression is a function call that returns an unconstrained
4046 -- type, rewrite the declaration as a renaming of the result of the
4047 -- call. The exceptions below are cases where the copy is expected,
4048 -- either by the back end (Aliased case) or by the semantics, as for
4049 -- initializing controlled types or copying tags for classwide types.
4050
4051 if Present (E)
4052 and then Nkind (E) = N_Explicit_Dereference
4053 and then Nkind (Original_Node (E)) = N_Function_Call
4054 and then not Is_Library_Level_Entity (Id)
4055 and then not Is_Constrained (Underlying_Type (T))
4056 and then not Is_Aliased (Id)
4057 and then not Is_Class_Wide_Type (T)
4058 and then not Is_Controlled (T)
4059 and then not Has_Controlled_Component (Base_Type (T))
4060 and then Expander_Active
4061 then
4062 Rewrite (N,
4063 Make_Object_Renaming_Declaration (Loc,
4064 Defining_Identifier => Id,
4065 Access_Definition => Empty,
4066 Subtype_Mark => New_Occurrence_Of
4067 (Base_Type (Etype (Id)), Loc),
4068 Name => E));
4069
4070 Set_Renamed_Object (Id, E);
4071
4072 -- Force generation of debugging information for the constant and for
4073 -- the renamed function call.
4074
4075 Set_Debug_Info_Needed (Id);
4076 Set_Debug_Info_Needed (Entity (Prefix (E)));
4077 end if;
4078
4079 if Present (Prev_Entity)
4080 and then Is_Frozen (Prev_Entity)
4081 and then not Error_Posted (Id)
4082 then
4083 Error_Msg_N ("full constant declaration appears too late", N);
4084 end if;
4085
4086 Check_Eliminated (Id);
4087
4088 -- Deal with setting In_Private_Part flag if in private part
4089
4090 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4091 then
4092 Set_In_Private_Part (Id);
4093 end if;
4094
4095 -- Check for violation of No_Local_Timing_Events
4096
4097 if Restriction_Check_Required (No_Local_Timing_Events)
4098 and then not Is_Library_Level_Entity (Id)
4099 and then Is_RTE (Etype (Id), RE_Timing_Event)
4100 then
4101 Check_Restriction (No_Local_Timing_Events, N);
4102 end if;
4103
4104 <<Leave>>
4105 -- Initialize the refined state of a variable here because this is a
4106 -- common destination for legal and illegal object declarations.
4107
4108 if Ekind (Id) = E_Variable then
4109 Set_Encapsulating_State (Id, Empty);
4110 end if;
4111
4112 if Has_Aspects (N) then
4113 Analyze_Aspect_Specifications (N, Id);
4114 end if;
4115
4116 Analyze_Dimension (N);
4117
4118 -- Verify whether the object declaration introduces an illegal hidden
4119 -- state within a package subject to a null abstract state.
4120
4121 if Ekind (Id) = E_Variable then
4122 Check_No_Hidden_State (Id);
4123 end if;
4124 end Analyze_Object_Declaration;
4125
4126 ---------------------------
4127 -- Analyze_Others_Choice --
4128 ---------------------------
4129
4130 -- Nothing to do for the others choice node itself, the semantic analysis
4131 -- of the others choice will occur as part of the processing of the parent
4132
4133 procedure Analyze_Others_Choice (N : Node_Id) is
4134 pragma Warnings (Off, N);
4135 begin
4136 null;
4137 end Analyze_Others_Choice;
4138
4139 -------------------------------------------
4140 -- Analyze_Private_Extension_Declaration --
4141 -------------------------------------------
4142
4143 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4144 T : constant Entity_Id := Defining_Identifier (N);
4145 Indic : constant Node_Id := Subtype_Indication (N);
4146 Parent_Type : Entity_Id;
4147 Parent_Base : Entity_Id;
4148
4149 begin
4150 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4151
4152 if Is_Non_Empty_List (Interface_List (N)) then
4153 declare
4154 Intf : Node_Id;
4155 T : Entity_Id;
4156
4157 begin
4158 Intf := First (Interface_List (N));
4159 while Present (Intf) loop
4160 T := Find_Type_Of_Subtype_Indic (Intf);
4161
4162 Diagnose_Interface (Intf, T);
4163 Next (Intf);
4164 end loop;
4165 end;
4166 end if;
4167
4168 Generate_Definition (T);
4169
4170 -- For other than Ada 2012, just enter the name in the current scope
4171
4172 if Ada_Version < Ada_2012 then
4173 Enter_Name (T);
4174
4175 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4176 -- case of private type that completes an incomplete type.
4177
4178 else
4179 declare
4180 Prev : Entity_Id;
4181
4182 begin
4183 Prev := Find_Type_Name (N);
4184
4185 pragma Assert (Prev = T
4186 or else (Ekind (Prev) = E_Incomplete_Type
4187 and then Present (Full_View (Prev))
4188 and then Full_View (Prev) = T));
4189 end;
4190 end if;
4191
4192 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4193 Parent_Base := Base_Type (Parent_Type);
4194
4195 if Parent_Type = Any_Type
4196 or else Etype (Parent_Type) = Any_Type
4197 then
4198 Set_Ekind (T, Ekind (Parent_Type));
4199 Set_Etype (T, Any_Type);
4200 goto Leave;
4201
4202 elsif not Is_Tagged_Type (Parent_Type) then
4203 Error_Msg_N
4204 ("parent of type extension must be a tagged type ", Indic);
4205 goto Leave;
4206
4207 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4208 Error_Msg_N ("premature derivation of incomplete type", Indic);
4209 goto Leave;
4210
4211 elsif Is_Concurrent_Type (Parent_Type) then
4212 Error_Msg_N
4213 ("parent type of a private extension cannot be "
4214 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4215
4216 Set_Etype (T, Any_Type);
4217 Set_Ekind (T, E_Limited_Private_Type);
4218 Set_Private_Dependents (T, New_Elmt_List);
4219 Set_Error_Posted (T);
4220 goto Leave;
4221 end if;
4222
4223 -- Perhaps the parent type should be changed to the class-wide type's
4224 -- specific type in this case to prevent cascading errors ???
4225
4226 if Is_Class_Wide_Type (Parent_Type) then
4227 Error_Msg_N
4228 ("parent of type extension must not be a class-wide type", Indic);
4229 goto Leave;
4230 end if;
4231
4232 if (not Is_Package_Or_Generic_Package (Current_Scope)
4233 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4234 or else In_Private_Part (Current_Scope)
4235
4236 then
4237 Error_Msg_N ("invalid context for private extension", N);
4238 end if;
4239
4240 -- Set common attributes
4241
4242 Set_Is_Pure (T, Is_Pure (Current_Scope));
4243 Set_Scope (T, Current_Scope);
4244 Set_Ekind (T, E_Record_Type_With_Private);
4245 Init_Size_Align (T);
4246 Set_Default_SSO (T);
4247
4248 Set_Etype (T, Parent_Base);
4249 Set_Has_Task (T, Has_Task (Parent_Base));
4250 Set_Has_Protected (T, Has_Task (Parent_Base));
4251
4252 Set_Convention (T, Convention (Parent_Type));
4253 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4254 Set_Is_First_Subtype (T);
4255 Make_Class_Wide_Type (T);
4256
4257 if Unknown_Discriminants_Present (N) then
4258 Set_Discriminant_Constraint (T, No_Elist);
4259 end if;
4260
4261 Build_Derived_Record_Type (N, Parent_Type, T);
4262
4263 -- Propagate inherited invariant information. The new type has
4264 -- invariants, if the parent type has inheritable invariants,
4265 -- and these invariants can in turn be inherited.
4266
4267 if Has_Inheritable_Invariants (Parent_Type) then
4268 Set_Has_Inheritable_Invariants (T);
4269 Set_Has_Invariants (T);
4270 end if;
4271
4272 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4273 -- synchronized formal derived type.
4274
4275 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4276 Set_Is_Limited_Record (T);
4277
4278 -- Formal derived type case
4279
4280 if Is_Generic_Type (T) then
4281
4282 -- The parent must be a tagged limited type or a synchronized
4283 -- interface.
4284
4285 if (not Is_Tagged_Type (Parent_Type)
4286 or else not Is_Limited_Type (Parent_Type))
4287 and then
4288 (not Is_Interface (Parent_Type)
4289 or else not Is_Synchronized_Interface (Parent_Type))
4290 then
4291 Error_Msg_NE ("parent type of & must be tagged limited " &
4292 "or synchronized", N, T);
4293 end if;
4294
4295 -- The progenitors (if any) must be limited or synchronized
4296 -- interfaces.
4297
4298 if Present (Interfaces (T)) then
4299 declare
4300 Iface : Entity_Id;
4301 Iface_Elmt : Elmt_Id;
4302
4303 begin
4304 Iface_Elmt := First_Elmt (Interfaces (T));
4305 while Present (Iface_Elmt) loop
4306 Iface := Node (Iface_Elmt);
4307
4308 if not Is_Limited_Interface (Iface)
4309 and then not Is_Synchronized_Interface (Iface)
4310 then
4311 Error_Msg_NE ("progenitor & must be limited " &
4312 "or synchronized", N, Iface);
4313 end if;
4314
4315 Next_Elmt (Iface_Elmt);
4316 end loop;
4317 end;
4318 end if;
4319
4320 -- Regular derived extension, the parent must be a limited or
4321 -- synchronized interface.
4322
4323 else
4324 if not Is_Interface (Parent_Type)
4325 or else (not Is_Limited_Interface (Parent_Type)
4326 and then not Is_Synchronized_Interface (Parent_Type))
4327 then
4328 Error_Msg_NE
4329 ("parent type of & must be limited interface", N, T);
4330 end if;
4331 end if;
4332
4333 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4334 -- extension with a synchronized parent must be explicitly declared
4335 -- synchronized, because the full view will be a synchronized type.
4336 -- This must be checked before the check for limited types below,
4337 -- to ensure that types declared limited are not allowed to extend
4338 -- synchronized interfaces.
4339
4340 elsif Is_Interface (Parent_Type)
4341 and then Is_Synchronized_Interface (Parent_Type)
4342 and then not Synchronized_Present (N)
4343 then
4344 Error_Msg_NE
4345 ("private extension of& must be explicitly synchronized",
4346 N, Parent_Type);
4347
4348 elsif Limited_Present (N) then
4349 Set_Is_Limited_Record (T);
4350
4351 if not Is_Limited_Type (Parent_Type)
4352 and then
4353 (not Is_Interface (Parent_Type)
4354 or else not Is_Limited_Interface (Parent_Type))
4355 then
4356 Error_Msg_NE ("parent type& of limited extension must be limited",
4357 N, Parent_Type);
4358 end if;
4359 end if;
4360
4361 <<Leave>>
4362 if Has_Aspects (N) then
4363 Analyze_Aspect_Specifications (N, T);
4364 end if;
4365 end Analyze_Private_Extension_Declaration;
4366
4367 ---------------------------------
4368 -- Analyze_Subtype_Declaration --
4369 ---------------------------------
4370
4371 procedure Analyze_Subtype_Declaration
4372 (N : Node_Id;
4373 Skip : Boolean := False)
4374 is
4375 Id : constant Entity_Id := Defining_Identifier (N);
4376 T : Entity_Id;
4377 R_Checks : Check_Result;
4378
4379 begin
4380 Generate_Definition (Id);
4381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4382 Init_Size_Align (Id);
4383
4384 -- The following guard condition on Enter_Name is to handle cases where
4385 -- the defining identifier has already been entered into the scope but
4386 -- the declaration as a whole needs to be analyzed.
4387
4388 -- This case in particular happens for derived enumeration types. The
4389 -- derived enumeration type is processed as an inserted enumeration type
4390 -- declaration followed by a rewritten subtype declaration. The defining
4391 -- identifier, however, is entered into the name scope very early in the
4392 -- processing of the original type declaration and therefore needs to be
4393 -- avoided here, when the created subtype declaration is analyzed. (See
4394 -- Build_Derived_Types)
4395
4396 -- This also happens when the full view of a private type is derived
4397 -- type with constraints. In this case the entity has been introduced
4398 -- in the private declaration.
4399
4400 -- Finally this happens in some complex cases when validity checks are
4401 -- enabled, where the same subtype declaration may be analyzed twice.
4402 -- This can happen if the subtype is created by the pre-analysis of
4403 -- an attribute tht gives the range of a loop statement, and the loop
4404 -- itself appears within an if_statement that will be rewritten during
4405 -- expansion.
4406
4407 if Skip
4408 or else (Present (Etype (Id))
4409 and then (Is_Private_Type (Etype (Id))
4410 or else Is_Task_Type (Etype (Id))
4411 or else Is_Rewrite_Substitution (N)))
4412 then
4413 null;
4414
4415 elsif Current_Entity (Id) = Id then
4416 null;
4417
4418 else
4419 Enter_Name (Id);
4420 end if;
4421
4422 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4423
4424 -- Class-wide equivalent types of records with unknown discriminants
4425 -- involve the generation of an itype which serves as the private view
4426 -- of a constrained record subtype. In such cases the base type of the
4427 -- current subtype we are processing is the private itype. Use the full
4428 -- of the private itype when decorating various attributes.
4429
4430 if Is_Itype (T)
4431 and then Is_Private_Type (T)
4432 and then Present (Full_View (T))
4433 then
4434 T := Full_View (T);
4435 end if;
4436
4437 -- Inherit common attributes
4438
4439 Set_Is_Volatile (Id, Is_Volatile (T));
4440 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4441 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4442 Set_Convention (Id, Convention (T));
4443
4444 -- If ancestor has predicates then so does the subtype, and in addition
4445 -- we must delay the freeze to properly arrange predicate inheritance.
4446
4447 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4448 -- in which T = ID, so the above tests and assignments do nothing???
4449
4450 if Has_Predicates (T)
4451 or else (Present (Ancestor_Subtype (T))
4452 and then Has_Predicates (Ancestor_Subtype (T)))
4453 then
4454 Set_Has_Predicates (Id);
4455 Set_Has_Delayed_Freeze (Id);
4456 end if;
4457
4458 -- Subtype of Boolean cannot have a constraint in SPARK
4459
4460 if Is_Boolean_Type (T)
4461 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4462 then
4463 Check_SPARK_Restriction
4464 ("subtype of Boolean cannot have constraint", N);
4465 end if;
4466
4467 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4468 declare
4469 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4470 One_Cstr : Node_Id;
4471 Low : Node_Id;
4472 High : Node_Id;
4473
4474 begin
4475 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4476 One_Cstr := First (Constraints (Cstr));
4477 while Present (One_Cstr) loop
4478
4479 -- Index or discriminant constraint in SPARK must be a
4480 -- subtype mark.
4481
4482 if not
4483 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4484 then
4485 Check_SPARK_Restriction
4486 ("subtype mark required", One_Cstr);
4487
4488 -- String subtype must have a lower bound of 1 in SPARK.
4489 -- Note that we do not need to test for the non-static case
4490 -- here, since that was already taken care of in
4491 -- Process_Range_Expr_In_Decl.
4492
4493 elsif Base_Type (T) = Standard_String then
4494 Get_Index_Bounds (One_Cstr, Low, High);
4495
4496 if Is_OK_Static_Expression (Low)
4497 and then Expr_Value (Low) /= 1
4498 then
4499 Check_SPARK_Restriction
4500 ("String subtype must have lower bound of 1", N);
4501 end if;
4502 end if;
4503
4504 Next (One_Cstr);
4505 end loop;
4506 end if;
4507 end;
4508 end if;
4509
4510 -- In the case where there is no constraint given in the subtype
4511 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4512 -- semantic attributes must be established here.
4513
4514 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4515 Set_Etype (Id, Base_Type (T));
4516
4517 -- Subtype of unconstrained array without constraint is not allowed
4518 -- in SPARK.
4519
4520 if Is_Array_Type (T) and then not Is_Constrained (T) then
4521 Check_SPARK_Restriction
4522 ("subtype of unconstrained array must have constraint", N);
4523 end if;
4524
4525 case Ekind (T) is
4526 when Array_Kind =>
4527 Set_Ekind (Id, E_Array_Subtype);
4528 Copy_Array_Subtype_Attributes (Id, T);
4529
4530 when Decimal_Fixed_Point_Kind =>
4531 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4532 Set_Digits_Value (Id, Digits_Value (T));
4533 Set_Delta_Value (Id, Delta_Value (T));
4534 Set_Scale_Value (Id, Scale_Value (T));
4535 Set_Small_Value (Id, Small_Value (T));
4536 Set_Scalar_Range (Id, Scalar_Range (T));
4537 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4538 Set_Is_Constrained (Id, Is_Constrained (T));
4539 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4540 Set_RM_Size (Id, RM_Size (T));
4541
4542 when Enumeration_Kind =>
4543 Set_Ekind (Id, E_Enumeration_Subtype);
4544 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4545 Set_Scalar_Range (Id, Scalar_Range (T));
4546 Set_Is_Character_Type (Id, Is_Character_Type (T));
4547 Set_Is_Constrained (Id, Is_Constrained (T));
4548 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4549 Set_RM_Size (Id, RM_Size (T));
4550 Inherit_Predicate_Flags (Id, T);
4551
4552 when Ordinary_Fixed_Point_Kind =>
4553 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4554 Set_Scalar_Range (Id, Scalar_Range (T));
4555 Set_Small_Value (Id, Small_Value (T));
4556 Set_Delta_Value (Id, Delta_Value (T));
4557 Set_Is_Constrained (Id, Is_Constrained (T));
4558 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4559 Set_RM_Size (Id, RM_Size (T));
4560
4561 when Float_Kind =>
4562 Set_Ekind (Id, E_Floating_Point_Subtype);
4563 Set_Scalar_Range (Id, Scalar_Range (T));
4564 Set_Digits_Value (Id, Digits_Value (T));
4565 Set_Is_Constrained (Id, Is_Constrained (T));
4566
4567 when Signed_Integer_Kind =>
4568 Set_Ekind (Id, E_Signed_Integer_Subtype);
4569 Set_Scalar_Range (Id, Scalar_Range (T));
4570 Set_Is_Constrained (Id, Is_Constrained (T));
4571 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4572 Set_RM_Size (Id, RM_Size (T));
4573 Inherit_Predicate_Flags (Id, T);
4574
4575 when Modular_Integer_Kind =>
4576 Set_Ekind (Id, E_Modular_Integer_Subtype);
4577 Set_Scalar_Range (Id, Scalar_Range (T));
4578 Set_Is_Constrained (Id, Is_Constrained (T));
4579 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4580 Set_RM_Size (Id, RM_Size (T));
4581 Inherit_Predicate_Flags (Id, T);
4582
4583 when Class_Wide_Kind =>
4584 Set_Ekind (Id, E_Class_Wide_Subtype);
4585 Set_First_Entity (Id, First_Entity (T));
4586 Set_Last_Entity (Id, Last_Entity (T));
4587 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4588 Set_Cloned_Subtype (Id, T);
4589 Set_Is_Tagged_Type (Id, True);
4590 Set_Has_Unknown_Discriminants
4591 (Id, True);
4592
4593 if Ekind (T) = E_Class_Wide_Subtype then
4594 Set_Equivalent_Type (Id, Equivalent_Type (T));
4595 end if;
4596
4597 when E_Record_Type | E_Record_Subtype =>
4598 Set_Ekind (Id, E_Record_Subtype);
4599
4600 if Ekind (T) = E_Record_Subtype
4601 and then Present (Cloned_Subtype (T))
4602 then
4603 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4604 else
4605 Set_Cloned_Subtype (Id, T);
4606 end if;
4607
4608 Set_First_Entity (Id, First_Entity (T));
4609 Set_Last_Entity (Id, Last_Entity (T));
4610 Set_Has_Discriminants (Id, Has_Discriminants (T));
4611 Set_Is_Constrained (Id, Is_Constrained (T));
4612 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4613 Set_Has_Implicit_Dereference
4614 (Id, Has_Implicit_Dereference (T));
4615 Set_Has_Unknown_Discriminants
4616 (Id, Has_Unknown_Discriminants (T));
4617
4618 if Has_Discriminants (T) then
4619 Set_Discriminant_Constraint
4620 (Id, Discriminant_Constraint (T));
4621 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4622
4623 elsif Has_Unknown_Discriminants (Id) then
4624 Set_Discriminant_Constraint (Id, No_Elist);
4625 end if;
4626
4627 if Is_Tagged_Type (T) then
4628 Set_Is_Tagged_Type (Id);
4629 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4630 Set_Direct_Primitive_Operations
4631 (Id, Direct_Primitive_Operations (T));
4632 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4633
4634 if Is_Interface (T) then
4635 Set_Is_Interface (Id);
4636 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4637 end if;
4638 end if;
4639
4640 when Private_Kind =>
4641 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4642 Set_Has_Discriminants (Id, Has_Discriminants (T));
4643 Set_Is_Constrained (Id, Is_Constrained (T));
4644 Set_First_Entity (Id, First_Entity (T));
4645 Set_Last_Entity (Id, Last_Entity (T));
4646 Set_Private_Dependents (Id, New_Elmt_List);
4647 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4648 Set_Has_Implicit_Dereference
4649 (Id, Has_Implicit_Dereference (T));
4650 Set_Has_Unknown_Discriminants
4651 (Id, Has_Unknown_Discriminants (T));
4652 Set_Known_To_Have_Preelab_Init
4653 (Id, Known_To_Have_Preelab_Init (T));
4654
4655 if Is_Tagged_Type (T) then
4656 Set_Is_Tagged_Type (Id);
4657 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4658 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4659 Set_Direct_Primitive_Operations (Id,
4660 Direct_Primitive_Operations (T));
4661 end if;
4662
4663 -- In general the attributes of the subtype of a private type
4664 -- are the attributes of the partial view of parent. However,
4665 -- the full view may be a discriminated type, and the subtype
4666 -- must share the discriminant constraint to generate correct
4667 -- calls to initialization procedures.
4668
4669 if Has_Discriminants (T) then
4670 Set_Discriminant_Constraint
4671 (Id, Discriminant_Constraint (T));
4672 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4673
4674 elsif Present (Full_View (T))
4675 and then Has_Discriminants (Full_View (T))
4676 then
4677 Set_Discriminant_Constraint
4678 (Id, Discriminant_Constraint (Full_View (T)));
4679 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4680
4681 -- This would seem semantically correct, but apparently
4682 -- generates spurious errors about missing components ???
4683
4684 -- Set_Has_Discriminants (Id);
4685 end if;
4686
4687 Prepare_Private_Subtype_Completion (Id, N);
4688
4689 -- If this is the subtype of a constrained private type with
4690 -- discriminants that has got a full view and we also have
4691 -- built a completion just above, show that the completion
4692 -- is a clone of the full view to the back-end.
4693
4694 if Has_Discriminants (T)
4695 and then not Has_Unknown_Discriminants (T)
4696 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4697 and then Present (Full_View (T))
4698 and then Present (Full_View (Id))
4699 then
4700 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4701 end if;
4702
4703 when Access_Kind =>
4704 Set_Ekind (Id, E_Access_Subtype);
4705 Set_Is_Constrained (Id, Is_Constrained (T));
4706 Set_Is_Access_Constant
4707 (Id, Is_Access_Constant (T));
4708 Set_Directly_Designated_Type
4709 (Id, Designated_Type (T));
4710 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4711
4712 -- A Pure library_item must not contain the declaration of a
4713 -- named access type, except within a subprogram, generic
4714 -- subprogram, task unit, or protected unit, or if it has
4715 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4716
4717 if Comes_From_Source (Id)
4718 and then In_Pure_Unit
4719 and then not In_Subprogram_Task_Protected_Unit
4720 and then not No_Pool_Assigned (Id)
4721 then
4722 Error_Msg_N
4723 ("named access types not allowed in pure unit", N);
4724 end if;
4725
4726 when Concurrent_Kind =>
4727 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4728 Set_Corresponding_Record_Type (Id,
4729 Corresponding_Record_Type (T));
4730 Set_First_Entity (Id, First_Entity (T));
4731 Set_First_Private_Entity (Id, First_Private_Entity (T));
4732 Set_Has_Discriminants (Id, Has_Discriminants (T));
4733 Set_Is_Constrained (Id, Is_Constrained (T));
4734 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4735 Set_Last_Entity (Id, Last_Entity (T));
4736
4737 if Has_Discriminants (T) then
4738 Set_Discriminant_Constraint (Id,
4739 Discriminant_Constraint (T));
4740 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4741 end if;
4742
4743 when E_Incomplete_Type =>
4744 if Ada_Version >= Ada_2005 then
4745
4746 -- In Ada 2005 an incomplete type can be explicitly tagged:
4747 -- propagate indication.
4748
4749 Set_Ekind (Id, E_Incomplete_Subtype);
4750 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4752
4753 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4754 -- incomplete type visible through a limited with clause.
4755
4756 if From_Limited_With (T)
4757 and then Present (Non_Limited_View (T))
4758 then
4759 Set_From_Limited_With (Id);
4760 Set_Non_Limited_View (Id, Non_Limited_View (T));
4761
4762 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4763 -- to the private dependents of the original incomplete
4764 -- type for future transformation.
4765
4766 else
4767 Append_Elmt (Id, Private_Dependents (T));
4768 end if;
4769
4770 -- If the subtype name denotes an incomplete type an error
4771 -- was already reported by Process_Subtype.
4772
4773 else
4774 Set_Etype (Id, Any_Type);
4775 end if;
4776
4777 when others =>
4778 raise Program_Error;
4779 end case;
4780 end if;
4781
4782 if Etype (Id) = Any_Type then
4783 goto Leave;
4784 end if;
4785
4786 -- Some common processing on all types
4787
4788 Set_Size_Info (Id, T);
4789 Set_First_Rep_Item (Id, First_Rep_Item (T));
4790
4791 -- If the parent type is a generic actual, so is the subtype. This may
4792 -- happen in a nested instance. Why Comes_From_Source test???
4793
4794 if not Comes_From_Source (N) then
4795 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4796 end if;
4797
4798 T := Etype (Id);
4799
4800 Set_Is_Immediately_Visible (Id, True);
4801 Set_Depends_On_Private (Id, Has_Private_Component (T));
4802 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4803
4804 if Is_Interface (T) then
4805 Set_Is_Interface (Id);
4806 end if;
4807
4808 if Present (Generic_Parent_Type (N))
4809 and then
4810 (Nkind (Parent (Generic_Parent_Type (N))) /=
4811 N_Formal_Type_Declaration
4812 or else Nkind
4813 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4814 N_Formal_Private_Type_Definition)
4815 then
4816 if Is_Tagged_Type (Id) then
4817
4818 -- If this is a generic actual subtype for a synchronized type,
4819 -- the primitive operations are those of the corresponding record
4820 -- for which there is a separate subtype declaration.
4821
4822 if Is_Concurrent_Type (Id) then
4823 null;
4824 elsif Is_Class_Wide_Type (Id) then
4825 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4826 else
4827 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4828 end if;
4829
4830 elsif Scope (Etype (Id)) /= Standard_Standard then
4831 Derive_Subprograms (Generic_Parent_Type (N), Id);
4832 end if;
4833 end if;
4834
4835 if Is_Private_Type (T) and then Present (Full_View (T)) then
4836 Conditional_Delay (Id, Full_View (T));
4837
4838 -- The subtypes of components or subcomponents of protected types
4839 -- do not need freeze nodes, which would otherwise appear in the
4840 -- wrong scope (before the freeze node for the protected type). The
4841 -- proper subtypes are those of the subcomponents of the corresponding
4842 -- record.
4843
4844 elsif Ekind (Scope (Id)) /= E_Protected_Type
4845 and then Present (Scope (Scope (Id))) -- error defense
4846 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4847 then
4848 Conditional_Delay (Id, T);
4849 end if;
4850
4851 -- Check that Constraint_Error is raised for a scalar subtype indication
4852 -- when the lower or upper bound of a non-null range lies outside the
4853 -- range of the type mark.
4854
4855 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4856 if Is_Scalar_Type (Etype (Id))
4857 and then Scalar_Range (Id) /=
4858 Scalar_Range (Etype (Subtype_Mark
4859 (Subtype_Indication (N))))
4860 then
4861 Apply_Range_Check
4862 (Scalar_Range (Id),
4863 Etype (Subtype_Mark (Subtype_Indication (N))));
4864
4865 -- In the array case, check compatibility for each index
4866
4867 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4868 then
4869 -- This really should be a subprogram that finds the indications
4870 -- to check???
4871
4872 declare
4873 Subt_Index : Node_Id := First_Index (Id);
4874 Target_Index : Node_Id :=
4875 First_Index (Etype
4876 (Subtype_Mark (Subtype_Indication (N))));
4877 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4878
4879 begin
4880 while Present (Subt_Index) loop
4881 if ((Nkind (Subt_Index) = N_Identifier
4882 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4883 or else Nkind (Subt_Index) = N_Subtype_Indication)
4884 and then
4885 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4886 then
4887 declare
4888 Target_Typ : constant Entity_Id :=
4889 Etype (Target_Index);
4890 begin
4891 R_Checks :=
4892 Get_Range_Checks
4893 (Scalar_Range (Etype (Subt_Index)),
4894 Target_Typ,
4895 Etype (Subt_Index),
4896 Defining_Identifier (N));
4897
4898 -- Reset Has_Dynamic_Range_Check on the subtype to
4899 -- prevent elision of the index check due to a dynamic
4900 -- check generated for a preceding index (needed since
4901 -- Insert_Range_Checks tries to avoid generating
4902 -- redundant checks on a given declaration).
4903
4904 Set_Has_Dynamic_Range_Check (N, False);
4905
4906 Insert_Range_Checks
4907 (R_Checks,
4908 N,
4909 Target_Typ,
4910 Sloc (Defining_Identifier (N)));
4911
4912 -- Record whether this index involved a dynamic check
4913
4914 Has_Dyn_Chk :=
4915 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4916 end;
4917 end if;
4918
4919 Next_Index (Subt_Index);
4920 Next_Index (Target_Index);
4921 end loop;
4922
4923 -- Finally, mark whether the subtype involves dynamic checks
4924
4925 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4926 end;
4927 end if;
4928 end if;
4929
4930 -- Make sure that generic actual types are properly frozen. The subtype
4931 -- is marked as a generic actual type when the enclosing instance is
4932 -- analyzed, so here we identify the subtype from the tree structure.
4933
4934 if Expander_Active
4935 and then Is_Generic_Actual_Type (Id)
4936 and then In_Instance
4937 and then not Comes_From_Source (N)
4938 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4939 and then Is_Frozen (T)
4940 then
4941 Freeze_Before (N, Id);
4942 end if;
4943
4944 Set_Optimize_Alignment_Flags (Id);
4945 Check_Eliminated (Id);
4946
4947 <<Leave>>
4948 if Has_Aspects (N) then
4949 Analyze_Aspect_Specifications (N, Id);
4950 end if;
4951
4952 Analyze_Dimension (N);
4953 end Analyze_Subtype_Declaration;
4954
4955 --------------------------------
4956 -- Analyze_Subtype_Indication --
4957 --------------------------------
4958
4959 procedure Analyze_Subtype_Indication (N : Node_Id) is
4960 T : constant Entity_Id := Subtype_Mark (N);
4961 R : constant Node_Id := Range_Expression (Constraint (N));
4962
4963 begin
4964 Analyze (T);
4965
4966 if R /= Error then
4967 Analyze (R);
4968 Set_Etype (N, Etype (R));
4969 Resolve (R, Entity (T));
4970 else
4971 Set_Error_Posted (R);
4972 Set_Error_Posted (T);
4973 end if;
4974 end Analyze_Subtype_Indication;
4975
4976 --------------------------
4977 -- Analyze_Variant_Part --
4978 --------------------------
4979
4980 procedure Analyze_Variant_Part (N : Node_Id) is
4981 Discr_Name : Node_Id;
4982 Discr_Type : Entity_Id;
4983
4984 procedure Process_Variant (A : Node_Id);
4985 -- Analyze declarations for a single variant
4986
4987 package Analyze_Variant_Choices is
4988 new Generic_Analyze_Choices (Process_Variant);
4989 use Analyze_Variant_Choices;
4990
4991 ---------------------
4992 -- Process_Variant --
4993 ---------------------
4994
4995 procedure Process_Variant (A : Node_Id) is
4996 CL : constant Node_Id := Component_List (A);
4997 begin
4998 if not Null_Present (CL) then
4999 Analyze_Declarations (Component_Items (CL));
5000
5001 if Present (Variant_Part (CL)) then
5002 Analyze (Variant_Part (CL));
5003 end if;
5004 end if;
5005 end Process_Variant;
5006
5007 -- Start of processing for Analyze_Variant_Part
5008
5009 begin
5010 Discr_Name := Name (N);
5011 Analyze (Discr_Name);
5012
5013 -- If Discr_Name bad, get out (prevent cascaded errors)
5014
5015 if Etype (Discr_Name) = Any_Type then
5016 return;
5017 end if;
5018
5019 -- Check invalid discriminant in variant part
5020
5021 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5022 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5023 end if;
5024
5025 Discr_Type := Etype (Entity (Discr_Name));
5026
5027 if not Is_Discrete_Type (Discr_Type) then
5028 Error_Msg_N
5029 ("discriminant in a variant part must be of a discrete type",
5030 Name (N));
5031 return;
5032 end if;
5033
5034 -- Now analyze the choices, which also analyzes the declarations that
5035 -- are associated with each choice.
5036
5037 Analyze_Choices (Variants (N), Discr_Type);
5038
5039 -- Note: we used to instantiate and call Check_Choices here to check
5040 -- that the choices covered the discriminant, but it's too early to do
5041 -- that because of statically predicated subtypes, whose analysis may
5042 -- be deferred to their freeze point which may be as late as the freeze
5043 -- point of the containing record. So this call is now to be found in
5044 -- Freeze_Record_Declaration.
5045
5046 end Analyze_Variant_Part;
5047
5048 ----------------------------
5049 -- Array_Type_Declaration --
5050 ----------------------------
5051
5052 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5053 Component_Def : constant Node_Id := Component_Definition (Def);
5054 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5055 Element_Type : Entity_Id;
5056 Implicit_Base : Entity_Id;
5057 Index : Node_Id;
5058 Related_Id : Entity_Id := Empty;
5059 Nb_Index : Nat;
5060 P : constant Node_Id := Parent (Def);
5061 Priv : Entity_Id;
5062
5063 begin
5064 if Nkind (Def) = N_Constrained_Array_Definition then
5065 Index := First (Discrete_Subtype_Definitions (Def));
5066 else
5067 Index := First (Subtype_Marks (Def));
5068 end if;
5069
5070 -- Find proper names for the implicit types which may be public. In case
5071 -- of anonymous arrays we use the name of the first object of that type
5072 -- as prefix.
5073
5074 if No (T) then
5075 Related_Id := Defining_Identifier (P);
5076 else
5077 Related_Id := T;
5078 end if;
5079
5080 Nb_Index := 1;
5081 while Present (Index) loop
5082 Analyze (Index);
5083
5084 -- Test for odd case of trying to index a type by the type itself
5085
5086 if Is_Entity_Name (Index) and then Entity (Index) = T then
5087 Error_Msg_N ("type& cannot be indexed by itself", Index);
5088 Set_Entity (Index, Standard_Boolean);
5089 Set_Etype (Index, Standard_Boolean);
5090 end if;
5091
5092 -- Check SPARK restriction requiring a subtype mark
5093
5094 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5095 Check_SPARK_Restriction ("subtype mark required", Index);
5096 end if;
5097
5098 -- Add a subtype declaration for each index of private array type
5099 -- declaration whose etype is also private. For example:
5100
5101 -- package Pkg is
5102 -- type Index is private;
5103 -- private
5104 -- type Table is array (Index) of ...
5105 -- end;
5106
5107 -- This is currently required by the expander for the internally
5108 -- generated equality subprogram of records with variant parts in
5109 -- which the etype of some component is such private type.
5110
5111 if Ekind (Current_Scope) = E_Package
5112 and then In_Private_Part (Current_Scope)
5113 and then Has_Private_Declaration (Etype (Index))
5114 then
5115 declare
5116 Loc : constant Source_Ptr := Sloc (Def);
5117 New_E : Entity_Id;
5118 Decl : Entity_Id;
5119
5120 begin
5121 New_E := Make_Temporary (Loc, 'T');
5122 Set_Is_Internal (New_E);
5123
5124 Decl :=
5125 Make_Subtype_Declaration (Loc,
5126 Defining_Identifier => New_E,
5127 Subtype_Indication =>
5128 New_Occurrence_Of (Etype (Index), Loc));
5129
5130 Insert_Before (Parent (Def), Decl);
5131 Analyze (Decl);
5132 Set_Etype (Index, New_E);
5133
5134 -- If the index is a range the Entity attribute is not
5135 -- available. Example:
5136
5137 -- package Pkg is
5138 -- type T is private;
5139 -- private
5140 -- type T is new Natural;
5141 -- Table : array (T(1) .. T(10)) of Boolean;
5142 -- end Pkg;
5143
5144 if Nkind (Index) /= N_Range then
5145 Set_Entity (Index, New_E);
5146 end if;
5147 end;
5148 end if;
5149
5150 Make_Index (Index, P, Related_Id, Nb_Index);
5151
5152 -- Check error of subtype with predicate for index type
5153
5154 Bad_Predicated_Subtype_Use
5155 ("subtype& has predicate, not allowed as index subtype",
5156 Index, Etype (Index));
5157
5158 -- Move to next index
5159
5160 Next_Index (Index);
5161 Nb_Index := Nb_Index + 1;
5162 end loop;
5163
5164 -- Process subtype indication if one is present
5165
5166 if Present (Component_Typ) then
5167 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5168
5169 Set_Etype (Component_Typ, Element_Type);
5170
5171 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5172 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5173 end if;
5174
5175 -- Ada 2005 (AI-230): Access Definition case
5176
5177 else pragma Assert (Present (Access_Definition (Component_Def)));
5178
5179 -- Indicate that the anonymous access type is created by the
5180 -- array type declaration.
5181
5182 Element_Type := Access_Definition
5183 (Related_Nod => P,
5184 N => Access_Definition (Component_Def));
5185 Set_Is_Local_Anonymous_Access (Element_Type);
5186
5187 -- Propagate the parent. This field is needed if we have to generate
5188 -- the master_id associated with an anonymous access to task type
5189 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5190
5191 Set_Parent (Element_Type, Parent (T));
5192
5193 -- Ada 2005 (AI-230): In case of components that are anonymous access
5194 -- types the level of accessibility depends on the enclosing type
5195 -- declaration
5196
5197 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5198
5199 -- Ada 2005 (AI-254)
5200
5201 declare
5202 CD : constant Node_Id :=
5203 Access_To_Subprogram_Definition
5204 (Access_Definition (Component_Def));
5205 begin
5206 if Present (CD) and then Protected_Present (CD) then
5207 Element_Type :=
5208 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5209 end if;
5210 end;
5211 end if;
5212
5213 -- Constrained array case
5214
5215 if No (T) then
5216 T := Create_Itype (E_Void, P, Related_Id, 'T');
5217 end if;
5218
5219 if Nkind (Def) = N_Constrained_Array_Definition then
5220
5221 -- Establish Implicit_Base as unconstrained base type
5222
5223 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5224
5225 Set_Etype (Implicit_Base, Implicit_Base);
5226 Set_Scope (Implicit_Base, Current_Scope);
5227 Set_Has_Delayed_Freeze (Implicit_Base);
5228 Set_Default_SSO (Implicit_Base);
5229
5230 -- The constrained array type is a subtype of the unconstrained one
5231
5232 Set_Ekind (T, E_Array_Subtype);
5233 Init_Size_Align (T);
5234 Set_Etype (T, Implicit_Base);
5235 Set_Scope (T, Current_Scope);
5236 Set_Is_Constrained (T, True);
5237 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5238 Set_Has_Delayed_Freeze (T);
5239
5240 -- Complete setup of implicit base type
5241
5242 Set_First_Index (Implicit_Base, First_Index (T));
5243 Set_Component_Type (Implicit_Base, Element_Type);
5244 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5245 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5246 Set_Component_Size (Implicit_Base, Uint_0);
5247 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5248 Set_Has_Controlled_Component
5249 (Implicit_Base, Has_Controlled_Component
5250 (Element_Type)
5251 or else Is_Controlled
5252 (Element_Type));
5253 Set_Finalize_Storage_Only
5254 (Implicit_Base, Finalize_Storage_Only
5255 (Element_Type));
5256
5257 -- Unconstrained array case
5258
5259 else
5260 Set_Ekind (T, E_Array_Type);
5261 Init_Size_Align (T);
5262 Set_Etype (T, T);
5263 Set_Scope (T, Current_Scope);
5264 Set_Component_Size (T, Uint_0);
5265 Set_Is_Constrained (T, False);
5266 Set_First_Index (T, First (Subtype_Marks (Def)));
5267 Set_Has_Delayed_Freeze (T, True);
5268 Set_Has_Task (T, Has_Task (Element_Type));
5269 Set_Has_Protected (T, Has_Protected (Element_Type));
5270 Set_Has_Controlled_Component (T, Has_Controlled_Component
5271 (Element_Type)
5272 or else
5273 Is_Controlled (Element_Type));
5274 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5275 (Element_Type));
5276 Set_Default_SSO (T);
5277 end if;
5278
5279 -- Common attributes for both cases
5280
5281 Set_Component_Type (Base_Type (T), Element_Type);
5282 Set_Packed_Array_Impl_Type (T, Empty);
5283
5284 if Aliased_Present (Component_Definition (Def)) then
5285 Check_SPARK_Restriction
5286 ("aliased is not allowed", Component_Definition (Def));
5287 Set_Has_Aliased_Components (Etype (T));
5288 end if;
5289
5290 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5291 -- array type to ensure that objects of this type are initialized.
5292
5293 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5294 Set_Can_Never_Be_Null (T);
5295
5296 if Null_Exclusion_Present (Component_Definition (Def))
5297
5298 -- No need to check itypes because in their case this check was
5299 -- done at their point of creation
5300
5301 and then not Is_Itype (Element_Type)
5302 then
5303 Error_Msg_N
5304 ("`NOT NULL` not allowed (null already excluded)",
5305 Subtype_Indication (Component_Definition (Def)));
5306 end if;
5307 end if;
5308
5309 Priv := Private_Component (Element_Type);
5310
5311 if Present (Priv) then
5312
5313 -- Check for circular definitions
5314
5315 if Priv = Any_Type then
5316 Set_Component_Type (Etype (T), Any_Type);
5317
5318 -- There is a gap in the visibility of operations on the composite
5319 -- type only if the component type is defined in a different scope.
5320
5321 elsif Scope (Priv) = Current_Scope then
5322 null;
5323
5324 elsif Is_Limited_Type (Priv) then
5325 Set_Is_Limited_Composite (Etype (T));
5326 Set_Is_Limited_Composite (T);
5327 else
5328 Set_Is_Private_Composite (Etype (T));
5329 Set_Is_Private_Composite (T);
5330 end if;
5331 end if;
5332
5333 -- A syntax error in the declaration itself may lead to an empty index
5334 -- list, in which case do a minimal patch.
5335
5336 if No (First_Index (T)) then
5337 Error_Msg_N ("missing index definition in array type declaration", T);
5338
5339 declare
5340 Indexes : constant List_Id :=
5341 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5342 begin
5343 Set_Discrete_Subtype_Definitions (Def, Indexes);
5344 Set_First_Index (T, First (Indexes));
5345 return;
5346 end;
5347 end if;
5348
5349 -- Create a concatenation operator for the new type. Internal array
5350 -- types created for packed entities do not need such, they are
5351 -- compatible with the user-defined type.
5352
5353 if Number_Dimensions (T) = 1
5354 and then not Is_Packed_Array_Impl_Type (T)
5355 then
5356 New_Concatenation_Op (T);
5357 end if;
5358
5359 -- In the case of an unconstrained array the parser has already verified
5360 -- that all the indexes are unconstrained but we still need to make sure
5361 -- that the element type is constrained.
5362
5363 if Is_Indefinite_Subtype (Element_Type) then
5364 Error_Msg_N
5365 ("unconstrained element type in array declaration",
5366 Subtype_Indication (Component_Def));
5367
5368 elsif Is_Abstract_Type (Element_Type) then
5369 Error_Msg_N
5370 ("the type of a component cannot be abstract",
5371 Subtype_Indication (Component_Def));
5372 end if;
5373
5374 -- There may be an invariant declared for the component type, but
5375 -- the construction of the component invariant checking procedure
5376 -- takes place during expansion.
5377 end Array_Type_Declaration;
5378
5379 ------------------------------------------------------
5380 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5381 ------------------------------------------------------
5382
5383 function Replace_Anonymous_Access_To_Protected_Subprogram
5384 (N : Node_Id) return Entity_Id
5385 is
5386 Loc : constant Source_Ptr := Sloc (N);
5387
5388 Curr_Scope : constant Scope_Stack_Entry :=
5389 Scope_Stack.Table (Scope_Stack.Last);
5390
5391 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5392
5393 Acc : Node_Id;
5394 -- Access definition in declaration
5395
5396 Comp : Node_Id;
5397 -- Object definition or formal definition with an access definition
5398
5399 Decl : Node_Id;
5400 -- Declaration of anonymous access to subprogram type
5401
5402 Spec : Node_Id;
5403 -- Original specification in access to subprogram
5404
5405 P : Node_Id;
5406
5407 begin
5408 Set_Is_Internal (Anon);
5409
5410 case Nkind (N) is
5411 when N_Component_Declaration |
5412 N_Unconstrained_Array_Definition |
5413 N_Constrained_Array_Definition =>
5414 Comp := Component_Definition (N);
5415 Acc := Access_Definition (Comp);
5416
5417 when N_Discriminant_Specification =>
5418 Comp := Discriminant_Type (N);
5419 Acc := Comp;
5420
5421 when N_Parameter_Specification =>
5422 Comp := Parameter_Type (N);
5423 Acc := Comp;
5424
5425 when N_Access_Function_Definition =>
5426 Comp := Result_Definition (N);
5427 Acc := Comp;
5428
5429 when N_Object_Declaration =>
5430 Comp := Object_Definition (N);
5431 Acc := Comp;
5432
5433 when N_Function_Specification =>
5434 Comp := Result_Definition (N);
5435 Acc := Comp;
5436
5437 when others =>
5438 raise Program_Error;
5439 end case;
5440
5441 Spec := Access_To_Subprogram_Definition (Acc);
5442
5443 Decl :=
5444 Make_Full_Type_Declaration (Loc,
5445 Defining_Identifier => Anon,
5446 Type_Definition => Copy_Separate_Tree (Spec));
5447
5448 Mark_Rewrite_Insertion (Decl);
5449
5450 -- In ASIS mode, analyze the profile on the original node, because
5451 -- the separate copy does not provide enough links to recover the
5452 -- original tree. Analysis is limited to type annotations, within
5453 -- a temporary scope that serves as an anonymous subprogram to collect
5454 -- otherwise useless temporaries and itypes.
5455
5456 if ASIS_Mode then
5457 declare
5458 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5459
5460 begin
5461 if Nkind (Spec) = N_Access_Function_Definition then
5462 Set_Ekind (Typ, E_Function);
5463 else
5464 Set_Ekind (Typ, E_Procedure);
5465 end if;
5466
5467 Set_Parent (Typ, N);
5468 Set_Scope (Typ, Current_Scope);
5469 Push_Scope (Typ);
5470
5471 Process_Formals (Parameter_Specifications (Spec), Spec);
5472
5473 if Nkind (Spec) = N_Access_Function_Definition then
5474 declare
5475 Def : constant Node_Id := Result_Definition (Spec);
5476
5477 begin
5478 -- The result might itself be an anonymous access type, so
5479 -- have to recurse.
5480
5481 if Nkind (Def) = N_Access_Definition then
5482 if Present (Access_To_Subprogram_Definition (Def)) then
5483 Set_Etype
5484 (Def,
5485 Replace_Anonymous_Access_To_Protected_Subprogram
5486 (Spec));
5487 else
5488 Find_Type (Subtype_Mark (Def));
5489 end if;
5490
5491 else
5492 Find_Type (Def);
5493 end if;
5494 end;
5495 end if;
5496
5497 End_Scope;
5498 end;
5499 end if;
5500
5501 -- Insert the new declaration in the nearest enclosing scope. If the
5502 -- node is a body and N is its return type, the declaration belongs in
5503 -- the enclosing scope.
5504
5505 P := Parent (N);
5506
5507 if Nkind (P) = N_Subprogram_Body
5508 and then Nkind (N) = N_Function_Specification
5509 then
5510 P := Parent (P);
5511 end if;
5512
5513 while Present (P) and then not Has_Declarations (P) loop
5514 P := Parent (P);
5515 end loop;
5516
5517 pragma Assert (Present (P));
5518
5519 if Nkind (P) = N_Package_Specification then
5520 Prepend (Decl, Visible_Declarations (P));
5521 else
5522 Prepend (Decl, Declarations (P));
5523 end if;
5524
5525 -- Replace the anonymous type with an occurrence of the new declaration.
5526 -- In all cases the rewritten node does not have the null-exclusion
5527 -- attribute because (if present) it was already inherited by the
5528 -- anonymous entity (Anon). Thus, in case of components we do not
5529 -- inherit this attribute.
5530
5531 if Nkind (N) = N_Parameter_Specification then
5532 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5533 Set_Etype (Defining_Identifier (N), Anon);
5534 Set_Null_Exclusion_Present (N, False);
5535
5536 elsif Nkind (N) = N_Object_Declaration then
5537 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5538 Set_Etype (Defining_Identifier (N), Anon);
5539
5540 elsif Nkind (N) = N_Access_Function_Definition then
5541 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5542
5543 elsif Nkind (N) = N_Function_Specification then
5544 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5545 Set_Etype (Defining_Unit_Name (N), Anon);
5546
5547 else
5548 Rewrite (Comp,
5549 Make_Component_Definition (Loc,
5550 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5551 end if;
5552
5553 Mark_Rewrite_Insertion (Comp);
5554
5555 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5556 Analyze (Decl);
5557
5558 else
5559 -- Temporarily remove the current scope (record or subprogram) from
5560 -- the stack to add the new declarations to the enclosing scope.
5561
5562 Scope_Stack.Decrement_Last;
5563 Analyze (Decl);
5564 Set_Is_Itype (Anon);
5565 Scope_Stack.Append (Curr_Scope);
5566 end if;
5567
5568 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5569 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5570 return Anon;
5571 end Replace_Anonymous_Access_To_Protected_Subprogram;
5572
5573 -------------------------------
5574 -- Build_Derived_Access_Type --
5575 -------------------------------
5576
5577 procedure Build_Derived_Access_Type
5578 (N : Node_Id;
5579 Parent_Type : Entity_Id;
5580 Derived_Type : Entity_Id)
5581 is
5582 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5583
5584 Desig_Type : Entity_Id;
5585 Discr : Entity_Id;
5586 Discr_Con_Elist : Elist_Id;
5587 Discr_Con_El : Elmt_Id;
5588 Subt : Entity_Id;
5589
5590 begin
5591 -- Set the designated type so it is available in case this is an access
5592 -- to a self-referential type, e.g. a standard list type with a next
5593 -- pointer. Will be reset after subtype is built.
5594
5595 Set_Directly_Designated_Type
5596 (Derived_Type, Designated_Type (Parent_Type));
5597
5598 Subt := Process_Subtype (S, N);
5599
5600 if Nkind (S) /= N_Subtype_Indication
5601 and then Subt /= Base_Type (Subt)
5602 then
5603 Set_Ekind (Derived_Type, E_Access_Subtype);
5604 end if;
5605
5606 if Ekind (Derived_Type) = E_Access_Subtype then
5607 declare
5608 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5609 Ibase : constant Entity_Id :=
5610 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5611 Svg_Chars : constant Name_Id := Chars (Ibase);
5612 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5613
5614 begin
5615 Copy_Node (Pbase, Ibase);
5616
5617 Set_Chars (Ibase, Svg_Chars);
5618 Set_Next_Entity (Ibase, Svg_Next_E);
5619 Set_Sloc (Ibase, Sloc (Derived_Type));
5620 Set_Scope (Ibase, Scope (Derived_Type));
5621 Set_Freeze_Node (Ibase, Empty);
5622 Set_Is_Frozen (Ibase, False);
5623 Set_Comes_From_Source (Ibase, False);
5624 Set_Is_First_Subtype (Ibase, False);
5625
5626 Set_Etype (Ibase, Pbase);
5627 Set_Etype (Derived_Type, Ibase);
5628 end;
5629 end if;
5630
5631 Set_Directly_Designated_Type
5632 (Derived_Type, Designated_Type (Subt));
5633
5634 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5635 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5636 Set_Size_Info (Derived_Type, Parent_Type);
5637 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5638 Set_Depends_On_Private (Derived_Type,
5639 Has_Private_Component (Derived_Type));
5640 Conditional_Delay (Derived_Type, Subt);
5641
5642 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5643 -- that it is not redundant.
5644
5645 if Null_Exclusion_Present (Type_Definition (N)) then
5646 Set_Can_Never_Be_Null (Derived_Type);
5647
5648 -- What is with the "AND THEN FALSE" here ???
5649
5650 if Can_Never_Be_Null (Parent_Type)
5651 and then False
5652 then
5653 Error_Msg_NE
5654 ("`NOT NULL` not allowed (& already excludes null)",
5655 N, Parent_Type);
5656 end if;
5657
5658 elsif Can_Never_Be_Null (Parent_Type) then
5659 Set_Can_Never_Be_Null (Derived_Type);
5660 end if;
5661
5662 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5663 -- the root type for this information.
5664
5665 -- Apply range checks to discriminants for derived record case
5666 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5667
5668 Desig_Type := Designated_Type (Derived_Type);
5669 if Is_Composite_Type (Desig_Type)
5670 and then (not Is_Array_Type (Desig_Type))
5671 and then Has_Discriminants (Desig_Type)
5672 and then Base_Type (Desig_Type) /= Desig_Type
5673 then
5674 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5675 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5676
5677 Discr := First_Discriminant (Base_Type (Desig_Type));
5678 while Present (Discr_Con_El) loop
5679 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5680 Next_Elmt (Discr_Con_El);
5681 Next_Discriminant (Discr);
5682 end loop;
5683 end if;
5684 end Build_Derived_Access_Type;
5685
5686 ------------------------------
5687 -- Build_Derived_Array_Type --
5688 ------------------------------
5689
5690 procedure Build_Derived_Array_Type
5691 (N : Node_Id;
5692 Parent_Type : Entity_Id;
5693 Derived_Type : Entity_Id)
5694 is
5695 Loc : constant Source_Ptr := Sloc (N);
5696 Tdef : constant Node_Id := Type_Definition (N);
5697 Indic : constant Node_Id := Subtype_Indication (Tdef);
5698 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5699 Implicit_Base : Entity_Id;
5700 New_Indic : Node_Id;
5701
5702 procedure Make_Implicit_Base;
5703 -- If the parent subtype is constrained, the derived type is a subtype
5704 -- of an implicit base type derived from the parent base.
5705
5706 ------------------------
5707 -- Make_Implicit_Base --
5708 ------------------------
5709
5710 procedure Make_Implicit_Base is
5711 begin
5712 Implicit_Base :=
5713 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5714
5715 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5716 Set_Etype (Implicit_Base, Parent_Base);
5717
5718 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5719 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5720
5721 Set_Has_Delayed_Freeze (Implicit_Base, True);
5722 end Make_Implicit_Base;
5723
5724 -- Start of processing for Build_Derived_Array_Type
5725
5726 begin
5727 if not Is_Constrained (Parent_Type) then
5728 if Nkind (Indic) /= N_Subtype_Indication then
5729 Set_Ekind (Derived_Type, E_Array_Type);
5730
5731 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5732 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5733
5734 Set_Has_Delayed_Freeze (Derived_Type, True);
5735
5736 else
5737 Make_Implicit_Base;
5738 Set_Etype (Derived_Type, Implicit_Base);
5739
5740 New_Indic :=
5741 Make_Subtype_Declaration (Loc,
5742 Defining_Identifier => Derived_Type,
5743 Subtype_Indication =>
5744 Make_Subtype_Indication (Loc,
5745 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5746 Constraint => Constraint (Indic)));
5747
5748 Rewrite (N, New_Indic);
5749 Analyze (N);
5750 end if;
5751
5752 else
5753 if Nkind (Indic) /= N_Subtype_Indication then
5754 Make_Implicit_Base;
5755
5756 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5757 Set_Etype (Derived_Type, Implicit_Base);
5758 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5759
5760 else
5761 Error_Msg_N ("illegal constraint on constrained type", Indic);
5762 end if;
5763 end if;
5764
5765 -- If parent type is not a derived type itself, and is declared in
5766 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5767 -- the new type's concatenation operator since Derive_Subprograms
5768 -- will not inherit the parent's operator. If the parent type is
5769 -- unconstrained, the operator is of the unconstrained base type.
5770
5771 if Number_Dimensions (Parent_Type) = 1
5772 and then not Is_Limited_Type (Parent_Type)
5773 and then not Is_Derived_Type (Parent_Type)
5774 and then not Is_Package_Or_Generic_Package
5775 (Scope (Base_Type (Parent_Type)))
5776 then
5777 if not Is_Constrained (Parent_Type)
5778 and then Is_Constrained (Derived_Type)
5779 then
5780 New_Concatenation_Op (Implicit_Base);
5781 else
5782 New_Concatenation_Op (Derived_Type);
5783 end if;
5784 end if;
5785 end Build_Derived_Array_Type;
5786
5787 -----------------------------------
5788 -- Build_Derived_Concurrent_Type --
5789 -----------------------------------
5790
5791 procedure Build_Derived_Concurrent_Type
5792 (N : Node_Id;
5793 Parent_Type : Entity_Id;
5794 Derived_Type : Entity_Id)
5795 is
5796 Loc : constant Source_Ptr := Sloc (N);
5797
5798 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5799 Corr_Decl : Node_Id;
5800 Corr_Decl_Needed : Boolean;
5801 -- If the derived type has fewer discriminants than its parent, the
5802 -- corresponding record is also a derived type, in order to account for
5803 -- the bound discriminants. We create a full type declaration for it in
5804 -- this case.
5805
5806 Constraint_Present : constant Boolean :=
5807 Nkind (Subtype_Indication (Type_Definition (N))) =
5808 N_Subtype_Indication;
5809
5810 D_Constraint : Node_Id;
5811 New_Constraint : Elist_Id;
5812 Old_Disc : Entity_Id;
5813 New_Disc : Entity_Id;
5814 New_N : Node_Id;
5815
5816 begin
5817 Set_Stored_Constraint (Derived_Type, No_Elist);
5818 Corr_Decl_Needed := False;
5819 Old_Disc := Empty;
5820
5821 if Present (Discriminant_Specifications (N))
5822 and then Constraint_Present
5823 then
5824 Old_Disc := First_Discriminant (Parent_Type);
5825 New_Disc := First (Discriminant_Specifications (N));
5826 while Present (New_Disc) and then Present (Old_Disc) loop
5827 Next_Discriminant (Old_Disc);
5828 Next (New_Disc);
5829 end loop;
5830 end if;
5831
5832 if Present (Old_Disc) and then Expander_Active then
5833
5834 -- The new type has fewer discriminants, so we need to create a new
5835 -- corresponding record, which is derived from the corresponding
5836 -- record of the parent, and has a stored constraint that captures
5837 -- the values of the discriminant constraints. The corresponding
5838 -- record is needed only if expander is active and code generation is
5839 -- enabled.
5840
5841 -- The type declaration for the derived corresponding record has the
5842 -- same discriminant part and constraints as the current declaration.
5843 -- Copy the unanalyzed tree to build declaration.
5844
5845 Corr_Decl_Needed := True;
5846 New_N := Copy_Separate_Tree (N);
5847
5848 Corr_Decl :=
5849 Make_Full_Type_Declaration (Loc,
5850 Defining_Identifier => Corr_Record,
5851 Discriminant_Specifications =>
5852 Discriminant_Specifications (New_N),
5853 Type_Definition =>
5854 Make_Derived_Type_Definition (Loc,
5855 Subtype_Indication =>
5856 Make_Subtype_Indication (Loc,
5857 Subtype_Mark =>
5858 New_Occurrence_Of
5859 (Corresponding_Record_Type (Parent_Type), Loc),
5860 Constraint =>
5861 Constraint
5862 (Subtype_Indication (Type_Definition (New_N))))));
5863 end if;
5864
5865 -- Copy Storage_Size and Relative_Deadline variables if task case
5866
5867 if Is_Task_Type (Parent_Type) then
5868 Set_Storage_Size_Variable (Derived_Type,
5869 Storage_Size_Variable (Parent_Type));
5870 Set_Relative_Deadline_Variable (Derived_Type,
5871 Relative_Deadline_Variable (Parent_Type));
5872 end if;
5873
5874 if Present (Discriminant_Specifications (N)) then
5875 Push_Scope (Derived_Type);
5876 Check_Or_Process_Discriminants (N, Derived_Type);
5877
5878 if Constraint_Present then
5879 New_Constraint :=
5880 Expand_To_Stored_Constraint
5881 (Parent_Type,
5882 Build_Discriminant_Constraints
5883 (Parent_Type,
5884 Subtype_Indication (Type_Definition (N)), True));
5885 end if;
5886
5887 End_Scope;
5888
5889 elsif Constraint_Present then
5890
5891 -- Build constrained subtype, copying the constraint, and derive
5892 -- from it to create a derived constrained type.
5893
5894 declare
5895 Loc : constant Source_Ptr := Sloc (N);
5896 Anon : constant Entity_Id :=
5897 Make_Defining_Identifier (Loc,
5898 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5899 Decl : Node_Id;
5900
5901 begin
5902 Decl :=
5903 Make_Subtype_Declaration (Loc,
5904 Defining_Identifier => Anon,
5905 Subtype_Indication =>
5906 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5907 Insert_Before (N, Decl);
5908 Analyze (Decl);
5909
5910 Rewrite (Subtype_Indication (Type_Definition (N)),
5911 New_Occurrence_Of (Anon, Loc));
5912 Set_Analyzed (Derived_Type, False);
5913 Analyze (N);
5914 return;
5915 end;
5916 end if;
5917
5918 -- By default, operations and private data are inherited from parent.
5919 -- However, in the presence of bound discriminants, a new corresponding
5920 -- record will be created, see below.
5921
5922 Set_Has_Discriminants
5923 (Derived_Type, Has_Discriminants (Parent_Type));
5924 Set_Corresponding_Record_Type
5925 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5926
5927 -- Is_Constrained is set according the parent subtype, but is set to
5928 -- False if the derived type is declared with new discriminants.
5929
5930 Set_Is_Constrained
5931 (Derived_Type,
5932 (Is_Constrained (Parent_Type) or else Constraint_Present)
5933 and then not Present (Discriminant_Specifications (N)));
5934
5935 if Constraint_Present then
5936 if not Has_Discriminants (Parent_Type) then
5937 Error_Msg_N ("untagged parent must have discriminants", N);
5938
5939 elsif Present (Discriminant_Specifications (N)) then
5940
5941 -- Verify that new discriminants are used to constrain old ones
5942
5943 D_Constraint :=
5944 First
5945 (Constraints
5946 (Constraint (Subtype_Indication (Type_Definition (N)))));
5947
5948 Old_Disc := First_Discriminant (Parent_Type);
5949
5950 while Present (D_Constraint) loop
5951 if Nkind (D_Constraint) /= N_Discriminant_Association then
5952
5953 -- Positional constraint. If it is a reference to a new
5954 -- discriminant, it constrains the corresponding old one.
5955
5956 if Nkind (D_Constraint) = N_Identifier then
5957 New_Disc := First_Discriminant (Derived_Type);
5958 while Present (New_Disc) loop
5959 exit when Chars (New_Disc) = Chars (D_Constraint);
5960 Next_Discriminant (New_Disc);
5961 end loop;
5962
5963 if Present (New_Disc) then
5964 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5965 end if;
5966 end if;
5967
5968 Next_Discriminant (Old_Disc);
5969
5970 -- if this is a named constraint, search by name for the old
5971 -- discriminants constrained by the new one.
5972
5973 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5974
5975 -- Find new discriminant with that name
5976
5977 New_Disc := First_Discriminant (Derived_Type);
5978 while Present (New_Disc) loop
5979 exit when
5980 Chars (New_Disc) = Chars (Expression (D_Constraint));
5981 Next_Discriminant (New_Disc);
5982 end loop;
5983
5984 if Present (New_Disc) then
5985
5986 -- Verify that new discriminant renames some discriminant
5987 -- of the parent type, and associate the new discriminant
5988 -- with one or more old ones that it renames.
5989
5990 declare
5991 Selector : Node_Id;
5992
5993 begin
5994 Selector := First (Selector_Names (D_Constraint));
5995 while Present (Selector) loop
5996 Old_Disc := First_Discriminant (Parent_Type);
5997 while Present (Old_Disc) loop
5998 exit when Chars (Old_Disc) = Chars (Selector);
5999 Next_Discriminant (Old_Disc);
6000 end loop;
6001
6002 if Present (Old_Disc) then
6003 Set_Corresponding_Discriminant
6004 (New_Disc, Old_Disc);
6005 end if;
6006
6007 Next (Selector);
6008 end loop;
6009 end;
6010 end if;
6011 end if;
6012
6013 Next (D_Constraint);
6014 end loop;
6015
6016 New_Disc := First_Discriminant (Derived_Type);
6017 while Present (New_Disc) loop
6018 if No (Corresponding_Discriminant (New_Disc)) then
6019 Error_Msg_NE
6020 ("new discriminant& must constrain old one", N, New_Disc);
6021
6022 elsif not
6023 Subtypes_Statically_Compatible
6024 (Etype (New_Disc),
6025 Etype (Corresponding_Discriminant (New_Disc)))
6026 then
6027 Error_Msg_NE
6028 ("& not statically compatible with parent discriminant",
6029 N, New_Disc);
6030 end if;
6031
6032 Next_Discriminant (New_Disc);
6033 end loop;
6034 end if;
6035
6036 elsif Present (Discriminant_Specifications (N)) then
6037 Error_Msg_N
6038 ("missing discriminant constraint in untagged derivation", N);
6039 end if;
6040
6041 -- The entity chain of the derived type includes the new discriminants
6042 -- but shares operations with the parent.
6043
6044 if Present (Discriminant_Specifications (N)) then
6045 Old_Disc := First_Discriminant (Parent_Type);
6046 while Present (Old_Disc) loop
6047 if No (Next_Entity (Old_Disc))
6048 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6049 then
6050 Set_Next_Entity
6051 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6052 exit;
6053 end if;
6054
6055 Next_Discriminant (Old_Disc);
6056 end loop;
6057
6058 else
6059 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6060 if Has_Discriminants (Parent_Type) then
6061 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6062 Set_Discriminant_Constraint (
6063 Derived_Type, Discriminant_Constraint (Parent_Type));
6064 end if;
6065 end if;
6066
6067 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6068
6069 Set_Has_Completion (Derived_Type);
6070
6071 if Corr_Decl_Needed then
6072 Set_Stored_Constraint (Derived_Type, New_Constraint);
6073 Insert_After (N, Corr_Decl);
6074 Analyze (Corr_Decl);
6075 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6076 end if;
6077 end Build_Derived_Concurrent_Type;
6078
6079 ------------------------------------
6080 -- Build_Derived_Enumeration_Type --
6081 ------------------------------------
6082
6083 procedure Build_Derived_Enumeration_Type
6084 (N : Node_Id;
6085 Parent_Type : Entity_Id;
6086 Derived_Type : Entity_Id)
6087 is
6088 Loc : constant Source_Ptr := Sloc (N);
6089 Def : constant Node_Id := Type_Definition (N);
6090 Indic : constant Node_Id := Subtype_Indication (Def);
6091 Implicit_Base : Entity_Id;
6092 Literal : Entity_Id;
6093 New_Lit : Entity_Id;
6094 Literals_List : List_Id;
6095 Type_Decl : Node_Id;
6096 Hi, Lo : Node_Id;
6097 Rang_Expr : Node_Id;
6098
6099 begin
6100 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6101 -- not have explicit literals lists we need to process types derived
6102 -- from them specially. This is handled by Derived_Standard_Character.
6103 -- If the parent type is a generic type, there are no literals either,
6104 -- and we construct the same skeletal representation as for the generic
6105 -- parent type.
6106
6107 if Is_Standard_Character_Type (Parent_Type) then
6108 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6109
6110 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6111 declare
6112 Lo : Node_Id;
6113 Hi : Node_Id;
6114
6115 begin
6116 if Nkind (Indic) /= N_Subtype_Indication then
6117 Lo :=
6118 Make_Attribute_Reference (Loc,
6119 Attribute_Name => Name_First,
6120 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6121 Set_Etype (Lo, Derived_Type);
6122
6123 Hi :=
6124 Make_Attribute_Reference (Loc,
6125 Attribute_Name => Name_Last,
6126 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6127 Set_Etype (Hi, Derived_Type);
6128
6129 Set_Scalar_Range (Derived_Type,
6130 Make_Range (Loc,
6131 Low_Bound => Lo,
6132 High_Bound => Hi));
6133 else
6134
6135 -- Analyze subtype indication and verify compatibility
6136 -- with parent type.
6137
6138 if Base_Type (Process_Subtype (Indic, N)) /=
6139 Base_Type (Parent_Type)
6140 then
6141 Error_Msg_N
6142 ("illegal constraint for formal discrete type", N);
6143 end if;
6144 end if;
6145 end;
6146
6147 else
6148 -- If a constraint is present, analyze the bounds to catch
6149 -- premature usage of the derived literals.
6150
6151 if Nkind (Indic) = N_Subtype_Indication
6152 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6153 then
6154 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6155 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6156 end if;
6157
6158 -- Introduce an implicit base type for the derived type even if there
6159 -- is no constraint attached to it, since this seems closer to the
6160 -- Ada semantics. Build a full type declaration tree for the derived
6161 -- type using the implicit base type as the defining identifier. The
6162 -- build a subtype declaration tree which applies the constraint (if
6163 -- any) have it replace the derived type declaration.
6164
6165 Literal := First_Literal (Parent_Type);
6166 Literals_List := New_List;
6167 while Present (Literal)
6168 and then Ekind (Literal) = E_Enumeration_Literal
6169 loop
6170 -- Literals of the derived type have the same representation as
6171 -- those of the parent type, but this representation can be
6172 -- overridden by an explicit representation clause. Indicate
6173 -- that there is no explicit representation given yet. These
6174 -- derived literals are implicit operations of the new type,
6175 -- and can be overridden by explicit ones.
6176
6177 if Nkind (Literal) = N_Defining_Character_Literal then
6178 New_Lit :=
6179 Make_Defining_Character_Literal (Loc, Chars (Literal));
6180 else
6181 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6182 end if;
6183
6184 Set_Ekind (New_Lit, E_Enumeration_Literal);
6185 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6186 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6187 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6188 Set_Alias (New_Lit, Literal);
6189 Set_Is_Known_Valid (New_Lit, True);
6190
6191 Append (New_Lit, Literals_List);
6192 Next_Literal (Literal);
6193 end loop;
6194
6195 Implicit_Base :=
6196 Make_Defining_Identifier (Sloc (Derived_Type),
6197 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6198
6199 -- Indicate the proper nature of the derived type. This must be done
6200 -- before analysis of the literals, to recognize cases when a literal
6201 -- may be hidden by a previous explicit function definition (cf.
6202 -- c83031a).
6203
6204 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6205 Set_Etype (Derived_Type, Implicit_Base);
6206
6207 Type_Decl :=
6208 Make_Full_Type_Declaration (Loc,
6209 Defining_Identifier => Implicit_Base,
6210 Discriminant_Specifications => No_List,
6211 Type_Definition =>
6212 Make_Enumeration_Type_Definition (Loc, Literals_List));
6213
6214 Mark_Rewrite_Insertion (Type_Decl);
6215 Insert_Before (N, Type_Decl);
6216 Analyze (Type_Decl);
6217
6218 -- After the implicit base is analyzed its Etype needs to be changed
6219 -- to reflect the fact that it is derived from the parent type which
6220 -- was ignored during analysis. We also set the size at this point.
6221
6222 Set_Etype (Implicit_Base, Parent_Type);
6223
6224 Set_Size_Info (Implicit_Base, Parent_Type);
6225 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6226 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6227
6228 -- Copy other flags from parent type
6229
6230 Set_Has_Non_Standard_Rep
6231 (Implicit_Base, Has_Non_Standard_Rep
6232 (Parent_Type));
6233 Set_Has_Pragma_Ordered
6234 (Implicit_Base, Has_Pragma_Ordered
6235 (Parent_Type));
6236 Set_Has_Delayed_Freeze (Implicit_Base);
6237
6238 -- Process the subtype indication including a validation check on the
6239 -- constraint, if any. If a constraint is given, its bounds must be
6240 -- implicitly converted to the new type.
6241
6242 if Nkind (Indic) = N_Subtype_Indication then
6243 declare
6244 R : constant Node_Id :=
6245 Range_Expression (Constraint (Indic));
6246
6247 begin
6248 if Nkind (R) = N_Range then
6249 Hi := Build_Scalar_Bound
6250 (High_Bound (R), Parent_Type, Implicit_Base);
6251 Lo := Build_Scalar_Bound
6252 (Low_Bound (R), Parent_Type, Implicit_Base);
6253
6254 else
6255 -- Constraint is a Range attribute. Replace with explicit
6256 -- mention of the bounds of the prefix, which must be a
6257 -- subtype.
6258
6259 Analyze (Prefix (R));
6260 Hi :=
6261 Convert_To (Implicit_Base,
6262 Make_Attribute_Reference (Loc,
6263 Attribute_Name => Name_Last,
6264 Prefix =>
6265 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6266
6267 Lo :=
6268 Convert_To (Implicit_Base,
6269 Make_Attribute_Reference (Loc,
6270 Attribute_Name => Name_First,
6271 Prefix =>
6272 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6273 end if;
6274 end;
6275
6276 else
6277 Hi :=
6278 Build_Scalar_Bound
6279 (Type_High_Bound (Parent_Type),
6280 Parent_Type, Implicit_Base);
6281 Lo :=
6282 Build_Scalar_Bound
6283 (Type_Low_Bound (Parent_Type),
6284 Parent_Type, Implicit_Base);
6285 end if;
6286
6287 Rang_Expr :=
6288 Make_Range (Loc,
6289 Low_Bound => Lo,
6290 High_Bound => Hi);
6291
6292 -- If we constructed a default range for the case where no range
6293 -- was given, then the expressions in the range must not freeze
6294 -- since they do not correspond to expressions in the source.
6295
6296 if Nkind (Indic) /= N_Subtype_Indication then
6297 Set_Must_Not_Freeze (Lo);
6298 Set_Must_Not_Freeze (Hi);
6299 Set_Must_Not_Freeze (Rang_Expr);
6300 end if;
6301
6302 Rewrite (N,
6303 Make_Subtype_Declaration (Loc,
6304 Defining_Identifier => Derived_Type,
6305 Subtype_Indication =>
6306 Make_Subtype_Indication (Loc,
6307 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6308 Constraint =>
6309 Make_Range_Constraint (Loc,
6310 Range_Expression => Rang_Expr))));
6311
6312 Analyze (N);
6313
6314 -- Apply a range check. Since this range expression doesn't have an
6315 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6316 -- this right???
6317
6318 if Nkind (Indic) = N_Subtype_Indication then
6319 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6320 Parent_Type,
6321 Source_Typ => Entity (Subtype_Mark (Indic)));
6322 end if;
6323 end if;
6324 end Build_Derived_Enumeration_Type;
6325
6326 --------------------------------
6327 -- Build_Derived_Numeric_Type --
6328 --------------------------------
6329
6330 procedure Build_Derived_Numeric_Type
6331 (N : Node_Id;
6332 Parent_Type : Entity_Id;
6333 Derived_Type : Entity_Id)
6334 is
6335 Loc : constant Source_Ptr := Sloc (N);
6336 Tdef : constant Node_Id := Type_Definition (N);
6337 Indic : constant Node_Id := Subtype_Indication (Tdef);
6338 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6339 No_Constraint : constant Boolean := Nkind (Indic) /=
6340 N_Subtype_Indication;
6341 Implicit_Base : Entity_Id;
6342
6343 Lo : Node_Id;
6344 Hi : Node_Id;
6345
6346 begin
6347 -- Process the subtype indication including a validation check on
6348 -- the constraint if any.
6349
6350 Discard_Node (Process_Subtype (Indic, N));
6351
6352 -- Introduce an implicit base type for the derived type even if there
6353 -- is no constraint attached to it, since this seems closer to the Ada
6354 -- semantics.
6355
6356 Implicit_Base :=
6357 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6358
6359 Set_Etype (Implicit_Base, Parent_Base);
6360 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6361 Set_Size_Info (Implicit_Base, Parent_Base);
6362 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6363 Set_Parent (Implicit_Base, Parent (Derived_Type));
6364 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6365
6366 -- Set RM Size for discrete type or decimal fixed-point type
6367 -- Ordinary fixed-point is excluded, why???
6368
6369 if Is_Discrete_Type (Parent_Base)
6370 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6371 then
6372 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6373 end if;
6374
6375 Set_Has_Delayed_Freeze (Implicit_Base);
6376
6377 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6378 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6379
6380 Set_Scalar_Range (Implicit_Base,
6381 Make_Range (Loc,
6382 Low_Bound => Lo,
6383 High_Bound => Hi));
6384
6385 if Has_Infinities (Parent_Base) then
6386 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6387 end if;
6388
6389 -- The Derived_Type, which is the entity of the declaration, is a
6390 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6391 -- absence of an explicit constraint.
6392
6393 Set_Etype (Derived_Type, Implicit_Base);
6394
6395 -- If we did not have a constraint, then the Ekind is set from the
6396 -- parent type (otherwise Process_Subtype has set the bounds)
6397
6398 if No_Constraint then
6399 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6400 end if;
6401
6402 -- If we did not have a range constraint, then set the range from the
6403 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6404
6405 if No_Constraint
6406 or else not Has_Range_Constraint (Indic)
6407 then
6408 Set_Scalar_Range (Derived_Type,
6409 Make_Range (Loc,
6410 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6411 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6412 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6413
6414 if Has_Infinities (Parent_Type) then
6415 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6416 end if;
6417
6418 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6419 end if;
6420
6421 Set_Is_Descendent_Of_Address (Derived_Type,
6422 Is_Descendent_Of_Address (Parent_Type));
6423 Set_Is_Descendent_Of_Address (Implicit_Base,
6424 Is_Descendent_Of_Address (Parent_Type));
6425
6426 -- Set remaining type-specific fields, depending on numeric type
6427
6428 if Is_Modular_Integer_Type (Parent_Type) then
6429 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6430
6431 Set_Non_Binary_Modulus
6432 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6433
6434 Set_Is_Known_Valid
6435 (Implicit_Base, Is_Known_Valid (Parent_Base));
6436
6437 elsif Is_Floating_Point_Type (Parent_Type) then
6438
6439 -- Digits of base type is always copied from the digits value of
6440 -- the parent base type, but the digits of the derived type will
6441 -- already have been set if there was a constraint present.
6442
6443 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6444 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6445
6446 if No_Constraint then
6447 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6448 end if;
6449
6450 elsif Is_Fixed_Point_Type (Parent_Type) then
6451
6452 -- Small of base type and derived type are always copied from the
6453 -- parent base type, since smalls never change. The delta of the
6454 -- base type is also copied from the parent base type. However the
6455 -- delta of the derived type will have been set already if a
6456 -- constraint was present.
6457
6458 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6459 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6460 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6461
6462 if No_Constraint then
6463 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6464 end if;
6465
6466 -- The scale and machine radix in the decimal case are always
6467 -- copied from the parent base type.
6468
6469 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6470 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6471 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6472
6473 Set_Machine_Radix_10
6474 (Derived_Type, Machine_Radix_10 (Parent_Base));
6475 Set_Machine_Radix_10
6476 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6477
6478 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6479
6480 if No_Constraint then
6481 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6482
6483 else
6484 -- the analysis of the subtype_indication sets the
6485 -- digits value of the derived type.
6486
6487 null;
6488 end if;
6489 end if;
6490 end if;
6491
6492 if Is_Integer_Type (Parent_Type) then
6493 Set_Has_Shift_Operator
6494 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6495 end if;
6496
6497 -- The type of the bounds is that of the parent type, and they
6498 -- must be converted to the derived type.
6499
6500 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6501
6502 -- The implicit_base should be frozen when the derived type is frozen,
6503 -- but note that it is used in the conversions of the bounds. For fixed
6504 -- types we delay the determination of the bounds until the proper
6505 -- freezing point. For other numeric types this is rejected by GCC, for
6506 -- reasons that are currently unclear (???), so we choose to freeze the
6507 -- implicit base now. In the case of integers and floating point types
6508 -- this is harmless because subsequent representation clauses cannot
6509 -- affect anything, but it is still baffling that we cannot use the
6510 -- same mechanism for all derived numeric types.
6511
6512 -- There is a further complication: actually some representation
6513 -- clauses can affect the implicit base type. For example, attribute
6514 -- definition clauses for stream-oriented attributes need to set the
6515 -- corresponding TSS entries on the base type, and this normally
6516 -- cannot be done after the base type is frozen, so the circuitry in
6517 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6518 -- and not use Set_TSS in this case.
6519
6520 -- There are also consequences for the case of delayed representation
6521 -- aspects for some cases. For example, a Size aspect is delayed and
6522 -- should not be evaluated to the freeze point. This early freezing
6523 -- means that the size attribute evaluation happens too early???
6524
6525 if Is_Fixed_Point_Type (Parent_Type) then
6526 Conditional_Delay (Implicit_Base, Parent_Type);
6527 else
6528 Freeze_Before (N, Implicit_Base);
6529 end if;
6530 end Build_Derived_Numeric_Type;
6531
6532 --------------------------------
6533 -- Build_Derived_Private_Type --
6534 --------------------------------
6535
6536 procedure Build_Derived_Private_Type
6537 (N : Node_Id;
6538 Parent_Type : Entity_Id;
6539 Derived_Type : Entity_Id;
6540 Is_Completion : Boolean;
6541 Derive_Subps : Boolean := True)
6542 is
6543 Loc : constant Source_Ptr := Sloc (N);
6544 Der_Base : Entity_Id;
6545 Discr : Entity_Id;
6546 Full_Der : Entity_Id;
6547 Full_P : Entity_Id;
6548 Last_Discr : Entity_Id;
6549 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6550
6551 procedure Build_Full_Derivation;
6552 -- Build full derivation, i.e. derive from the full view
6553
6554 procedure Copy_And_Build;
6555 -- Copy derived type declaration, replace parent with its full view,
6556 -- and build derivation
6557
6558 ---------------------------
6559 -- Build_Full_Derivation --
6560 ---------------------------
6561
6562 procedure Build_Full_Derivation is
6563 begin
6564 -- If parent scope is not open, install the declarations
6565
6566 if not In_Open_Scopes (Par_Scope) then
6567 Install_Private_Declarations (Par_Scope);
6568 Install_Visible_Declarations (Par_Scope);
6569 Copy_And_Build;
6570 Uninstall_Declarations (Par_Scope);
6571
6572 -- If parent scope is open and in another unit, and parent has a
6573 -- completion, then the derivation is taking place in the visible
6574 -- part of a child unit. In that case retrieve the full view of
6575 -- the parent momentarily.
6576
6577 elsif not In_Same_Source_Unit (N, Parent_Type) then
6578 Full_P := Full_View (Parent_Type);
6579 Exchange_Declarations (Parent_Type);
6580 Copy_And_Build;
6581 Exchange_Declarations (Full_P);
6582
6583 -- Otherwise it is a local derivation
6584
6585 else
6586 Copy_And_Build;
6587 end if;
6588 end Build_Full_Derivation;
6589
6590 --------------------
6591 -- Copy_And_Build --
6592 --------------------
6593
6594 procedure Copy_And_Build is
6595 Full_N : Node_Id;
6596 Full_Parent : Entity_Id := Parent_Type;
6597
6598 begin
6599 -- If the parent is itself derived from another private type,
6600 -- installing the private declarations has not affected its
6601 -- privacy status, so use its own full view explicitly.
6602
6603 if Is_Private_Type (Full_Parent)
6604 and then Present (Full_View (Full_Parent))
6605 then
6606 Full_Parent := Full_View (Full_Parent);
6607 end if;
6608
6609 -- And its underlying full view if necessary
6610
6611 if Is_Private_Type (Full_Parent)
6612 and then Present (Underlying_Full_View (Full_Parent))
6613 then
6614 Full_Parent := Underlying_Full_View (Full_Parent);
6615 end if;
6616
6617 if Ekind (Full_Parent) in Record_Kind
6618 or else
6619 (Ekind (Full_Parent) in Enumeration_Kind
6620 and then not Is_Standard_Character_Type (Full_Parent)
6621 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6622 then
6623 -- Copy declaration to provide a completion for what is a private
6624 -- declaration. Indicate that full view is internally generated.
6625
6626 Full_N := New_Copy_Tree (N);
6627 Full_Der := New_Copy (Derived_Type);
6628 Set_Comes_From_Source (Full_N, False);
6629 Set_Comes_From_Source (Full_Der, False);
6630 Set_Defining_Identifier (Full_N, Full_Der);
6631 Set_Parent (Full_Der, Full_N);
6632 Insert_After (N, Full_N);
6633
6634 -- Build full view of derived type from full view of parent which
6635 -- is now installed. Subprograms have been derived on the partial
6636 -- view, the completion does not derive them anew.
6637
6638 if Ekind (Full_Parent) in Record_Kind then
6639
6640 -- If parent type is tagged, the completion inherits the proper
6641 -- primitive operations.
6642
6643 if Is_Tagged_Type (Parent_Type) then
6644 Build_Derived_Record_Type
6645 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6646 else
6647 Build_Derived_Record_Type
6648 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6649 end if;
6650
6651 else
6652 Build_Derived_Enumeration_Type (Full_N, Full_Parent, Full_Der);
6653 end if;
6654
6655 -- The full declaration has been introduced into the tree and
6656 -- processed in the step above. It should not be analyzed again
6657 -- (when encountered later in the current list of declarations)
6658 -- to prevent spurious name conflicts. The full entity remains
6659 -- invisible.
6660
6661 Set_Analyzed (Full_N);
6662
6663 else
6664 Full_Der :=
6665 Make_Defining_Identifier (Sloc (Derived_Type),
6666 Chars => Chars (Derived_Type));
6667 Set_Is_Itype (Full_Der);
6668 Set_Associated_Node_For_Itype (Full_Der, N);
6669 Set_Parent (Full_Der, N);
6670 Build_Derived_Type
6671 (N, Full_Parent, Full_Der, True, Derive_Subps => False);
6672 end if;
6673
6674 Set_Has_Private_Declaration (Full_Der);
6675 Set_Has_Private_Declaration (Derived_Type);
6676
6677 Set_Scope (Full_Der, Scope (Derived_Type));
6678 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6679 Set_Has_Size_Clause (Full_Der, False);
6680 Set_Has_Alignment_Clause (Full_Der, False);
6681 Set_Has_Delayed_Freeze (Full_Der);
6682 Set_Is_Frozen (Full_Der, False);
6683 Set_Freeze_Node (Full_Der, Empty);
6684 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6685 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6686
6687 -- The convention on the base type may be set in the private part
6688 -- and not propagated to the subtype until later, so we obtain the
6689 -- convention from the base type of the parent.
6690
6691 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6692 end Copy_And_Build;
6693
6694 -- Start of processing for Build_Derived_Private_Type
6695
6696 begin
6697 if Is_Tagged_Type (Parent_Type) then
6698 Full_P := Full_View (Parent_Type);
6699
6700 -- A type extension of a type with unknown discriminants is an
6701 -- indefinite type that the back-end cannot handle directly.
6702 -- We treat it as a private type, and build a completion that is
6703 -- derived from the full view of the parent, and hopefully has
6704 -- known discriminants.
6705
6706 -- If the full view of the parent type has an underlying record view,
6707 -- use it to generate the underlying record view of this derived type
6708 -- (required for chains of derivations with unknown discriminants).
6709
6710 -- Minor optimization: we avoid the generation of useless underlying
6711 -- record view entities if the private type declaration has unknown
6712 -- discriminants but its corresponding full view has no
6713 -- discriminants.
6714
6715 if Has_Unknown_Discriminants (Parent_Type)
6716 and then Present (Full_P)
6717 and then (Has_Discriminants (Full_P)
6718 or else Present (Underlying_Record_View (Full_P)))
6719 and then not In_Open_Scopes (Par_Scope)
6720 and then Expander_Active
6721 then
6722 declare
6723 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6724 New_Ext : constant Node_Id :=
6725 Copy_Separate_Tree
6726 (Record_Extension_Part (Type_Definition (N)));
6727 Decl : Node_Id;
6728
6729 begin
6730 Build_Derived_Record_Type
6731 (N, Parent_Type, Derived_Type, Derive_Subps);
6732
6733 -- Build anonymous completion, as a derivation from the full
6734 -- view of the parent. This is not a completion in the usual
6735 -- sense, because the current type is not private.
6736
6737 Decl :=
6738 Make_Full_Type_Declaration (Loc,
6739 Defining_Identifier => Full_Der,
6740 Type_Definition =>
6741 Make_Derived_Type_Definition (Loc,
6742 Subtype_Indication =>
6743 New_Copy_Tree
6744 (Subtype_Indication (Type_Definition (N))),
6745 Record_Extension_Part => New_Ext));
6746
6747 -- If the parent type has an underlying record view, use it
6748 -- here to build the new underlying record view.
6749
6750 if Present (Underlying_Record_View (Full_P)) then
6751 pragma Assert
6752 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6753 = N_Identifier);
6754 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6755 Underlying_Record_View (Full_P));
6756 end if;
6757
6758 Install_Private_Declarations (Par_Scope);
6759 Install_Visible_Declarations (Par_Scope);
6760 Insert_Before (N, Decl);
6761
6762 -- Mark entity as an underlying record view before analysis,
6763 -- to avoid generating the list of its primitive operations
6764 -- (which is not really required for this entity) and thus
6765 -- prevent spurious errors associated with missing overriding
6766 -- of abstract primitives (overridden only for Derived_Type).
6767
6768 Set_Ekind (Full_Der, E_Record_Type);
6769 Set_Is_Underlying_Record_View (Full_Der);
6770 Set_Default_SSO (Full_Der);
6771
6772 Analyze (Decl);
6773
6774 pragma Assert (Has_Discriminants (Full_Der)
6775 and then not Has_Unknown_Discriminants (Full_Der));
6776
6777 Uninstall_Declarations (Par_Scope);
6778
6779 -- Freeze the underlying record view, to prevent generation of
6780 -- useless dispatching information, which is simply shared with
6781 -- the real derived type.
6782
6783 Set_Is_Frozen (Full_Der);
6784
6785 -- Set up links between real entity and underlying record view
6786
6787 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6788 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6789 end;
6790
6791 -- If discriminants are known, build derived record
6792
6793 else
6794 Build_Derived_Record_Type
6795 (N, Parent_Type, Derived_Type, Derive_Subps);
6796 end if;
6797
6798 return;
6799
6800 elsif Has_Discriminants (Parent_Type) then
6801 if Present (Full_View (Parent_Type)) then
6802 if not Is_Completion then
6803 -- If this is not a completion, construct the implicit full
6804 -- view by deriving from the full view of the parent type.
6805
6806 Build_Full_Derivation;
6807
6808 else
6809 -- If this is a completion, the full view being built is itself
6810 -- private. We build a subtype of the parent with the same
6811 -- constraints as this full view, to convey to the back end the
6812 -- constrained components and the size of this subtype. If the
6813 -- parent is constrained, its full view can serve as the
6814 -- underlying full view of the derived type.
6815
6816 if No (Discriminant_Specifications (N)) then
6817 if Nkind (Subtype_Indication (Type_Definition (N))) =
6818 N_Subtype_Indication
6819 then
6820 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6821
6822 elsif Is_Constrained (Full_View (Parent_Type)) then
6823 Set_Underlying_Full_View
6824 (Derived_Type, Full_View (Parent_Type));
6825 end if;
6826
6827 else
6828 -- If there are new discriminants, the parent subtype is
6829 -- constrained by them, but it is not clear how to build
6830 -- the Underlying_Full_View in this case???
6831
6832 null;
6833 end if;
6834 end if;
6835 end if;
6836
6837 -- Build partial view of derived type from partial view of parent
6838
6839 Build_Derived_Record_Type
6840 (N, Parent_Type, Derived_Type, Derive_Subps);
6841
6842 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6843 -- Install full view in derived type (base type and subtype)
6844
6845 Der_Base := Base_Type (Derived_Type);
6846 Set_Full_View (Derived_Type, Full_Der);
6847 Set_Full_View (Der_Base, Base_Type (Full_Der));
6848
6849 -- Copy the discriminant list from full view to the partial views
6850 -- (base type and its subtype). Gigi requires that the partial and
6851 -- full views have the same discriminants.
6852
6853 -- Note that since the partial view is pointing to discriminants
6854 -- in the full view, their scope will be that of the full view.
6855 -- This might cause some front end problems and need adjustment???
6856
6857 Discr := First_Discriminant (Base_Type (Full_Der));
6858 Set_First_Entity (Der_Base, Discr);
6859
6860 loop
6861 Last_Discr := Discr;
6862 Next_Discriminant (Discr);
6863 exit when No (Discr);
6864 end loop;
6865
6866 Set_Last_Entity (Der_Base, Last_Discr);
6867
6868 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6869 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6870 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6871 end if;
6872
6873 elsif Present (Full_View (Parent_Type))
6874 and then Has_Discriminants (Full_View (Parent_Type))
6875 then
6876 if Has_Unknown_Discriminants (Parent_Type)
6877 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6878 N_Subtype_Indication
6879 then
6880 Error_Msg_N
6881 ("cannot constrain type with unknown discriminants",
6882 Subtype_Indication (Type_Definition (N)));
6883 return;
6884 end if;
6885
6886 if not Is_Completion then
6887 -- If this is not a completion, construct the implicit full view
6888 -- by deriving from the full view of the parent type.
6889
6890 Build_Full_Derivation;
6891 Set_Full_View (Derived_Type, Full_Der);
6892
6893 else
6894 -- If this is a completion, the full view being built is itself
6895 -- private. Construct an underlying full view by deriving from
6896 -- the full view of the parent type.
6897
6898 Build_Full_Derivation;
6899 Set_Underlying_Full_View (Derived_Type, Full_Der);
6900 end if;
6901
6902 -- In any case, the primitive operations are inherited from the
6903 -- parent type, not from the internal full view.
6904
6905 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6906
6907 if Derive_Subps then
6908 Derive_Subprograms (Parent_Type, Derived_Type);
6909 end if;
6910
6911 Set_Stored_Constraint (Derived_Type, No_Elist);
6912 Set_Is_Constrained
6913 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
6914
6915 else
6916 -- Untagged type, No discriminants on either view
6917
6918 if Nkind (Subtype_Indication (Type_Definition (N))) =
6919 N_Subtype_Indication
6920 then
6921 Error_Msg_N
6922 ("illegal constraint on type without discriminants", N);
6923 end if;
6924
6925 if Present (Discriminant_Specifications (N))
6926 and then Present (Full_View (Parent_Type))
6927 and then not Is_Tagged_Type (Full_View (Parent_Type))
6928 then
6929 Error_Msg_N ("cannot add discriminants to untagged type", N);
6930 end if;
6931
6932 Set_Stored_Constraint (Derived_Type, No_Elist);
6933 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6934 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6935 Set_Has_Controlled_Component
6936 (Derived_Type, Has_Controlled_Component
6937 (Parent_Type));
6938
6939 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6940
6941 if not Is_Controlled (Parent_Type) then
6942 Set_Finalize_Storage_Only
6943 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6944 end if;
6945
6946 -- If this is not a completion, construct the implicit full view by
6947 -- deriving from the full view of the parent type.
6948
6949 -- ??? If the parent is untagged private and its completion is
6950 -- tagged, this mechanism will not work because we cannot derive from
6951 -- the tagged full view unless we have an extension.
6952
6953 if Present (Full_View (Parent_Type))
6954 and then not Is_Tagged_Type (Full_View (Parent_Type))
6955 and then not Is_Completion
6956 then
6957 Build_Full_Derivation;
6958 Set_Full_View (Derived_Type, Full_Der);
6959 end if;
6960 end if;
6961
6962 Set_Has_Unknown_Discriminants (Derived_Type,
6963 Has_Unknown_Discriminants (Parent_Type));
6964
6965 if Is_Private_Type (Derived_Type) then
6966 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6967 end if;
6968
6969 if Is_Private_Type (Parent_Type)
6970 and then Base_Type (Parent_Type) = Parent_Type
6971 and then In_Open_Scopes (Scope (Parent_Type))
6972 then
6973 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6974
6975 -- Check for unusual case where a type completed by a private
6976 -- derivation occurs within a package nested in a child unit, and
6977 -- the parent is declared in an ancestor.
6978
6979 if Is_Child_Unit (Scope (Current_Scope))
6980 and then Is_Completion
6981 and then In_Private_Part (Current_Scope)
6982 and then Scope (Parent_Type) /= Current_Scope
6983
6984 -- Note that if the parent has a completion in the private part,
6985 -- (which is itself a derivation from some other private type)
6986 -- it is that completion that is visible, there is no full view
6987 -- available, and no special processing is needed.
6988
6989 and then Present (Full_View (Parent_Type))
6990 then
6991 -- In this case, the full view of the parent type will become
6992 -- visible in the body of the enclosing child, and only then will
6993 -- the current type be possibly non-private. We build an
6994 -- underlying full view that will be installed when the enclosing
6995 -- child body is compiled.
6996
6997 if Present (Underlying_Full_View (Derived_Type)) then
6998 Full_Der := Underlying_Full_View (Derived_Type);
6999 else
7000 Build_Full_Derivation;
7001 Set_Underlying_Full_View (Derived_Type, Full_Der);
7002 end if;
7003
7004 -- The full view will be used to swap entities on entry/exit to
7005 -- the body, and must appear in the entity list for the package.
7006
7007 Append_Entity (Full_Der, Scope (Derived_Type));
7008 end if;
7009 end if;
7010 end Build_Derived_Private_Type;
7011
7012 -------------------------------
7013 -- Build_Derived_Record_Type --
7014 -------------------------------
7015
7016 -- 1. INTRODUCTION
7017
7018 -- Ideally we would like to use the same model of type derivation for
7019 -- tagged and untagged record types. Unfortunately this is not quite
7020 -- possible because the semantics of representation clauses is different
7021 -- for tagged and untagged records under inheritance. Consider the
7022 -- following:
7023
7024 -- type R (...) is [tagged] record ... end record;
7025 -- type T (...) is new R (...) [with ...];
7026
7027 -- The representation clauses for T can specify a completely different
7028 -- record layout from R's. Hence the same component can be placed in two
7029 -- very different positions in objects of type T and R. If R and T are
7030 -- tagged types, representation clauses for T can only specify the layout
7031 -- of non inherited components, thus components that are common in R and T
7032 -- have the same position in objects of type R and T.
7033
7034 -- This has two implications. The first is that the entire tree for R's
7035 -- declaration needs to be copied for T in the untagged case, so that T
7036 -- can be viewed as a record type of its own with its own representation
7037 -- clauses. The second implication is the way we handle discriminants.
7038 -- Specifically, in the untagged case we need a way to communicate to Gigi
7039 -- what are the real discriminants in the record, while for the semantics
7040 -- we need to consider those introduced by the user to rename the
7041 -- discriminants in the parent type. This is handled by introducing the
7042 -- notion of stored discriminants. See below for more.
7043
7044 -- Fortunately the way regular components are inherited can be handled in
7045 -- the same way in tagged and untagged types.
7046
7047 -- To complicate things a bit more the private view of a private extension
7048 -- cannot be handled in the same way as the full view (for one thing the
7049 -- semantic rules are somewhat different). We will explain what differs
7050 -- below.
7051
7052 -- 2. DISCRIMINANTS UNDER INHERITANCE
7053
7054 -- The semantic rules governing the discriminants of derived types are
7055 -- quite subtle.
7056
7057 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7058 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7059
7060 -- If parent type has discriminants, then the discriminants that are
7061 -- declared in the derived type are [3.4 (11)]:
7062
7063 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7064 -- there is one;
7065
7066 -- o Otherwise, each discriminant of the parent type (implicitly declared
7067 -- in the same order with the same specifications). In this case, the
7068 -- discriminants are said to be "inherited", or if unknown in the parent
7069 -- are also unknown in the derived type.
7070
7071 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7072
7073 -- o The parent subtype must be constrained;
7074
7075 -- o If the parent type is not a tagged type, then each discriminant of
7076 -- the derived type must be used in the constraint defining a parent
7077 -- subtype. [Implementation note: This ensures that the new discriminant
7078 -- can share storage with an existing discriminant.]
7079
7080 -- For the derived type each discriminant of the parent type is either
7081 -- inherited, constrained to equal some new discriminant of the derived
7082 -- type, or constrained to the value of an expression.
7083
7084 -- When inherited or constrained to equal some new discriminant, the
7085 -- parent discriminant and the discriminant of the derived type are said
7086 -- to "correspond".
7087
7088 -- If a discriminant of the parent type is constrained to a specific value
7089 -- in the derived type definition, then the discriminant is said to be
7090 -- "specified" by that derived type definition.
7091
7092 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7093
7094 -- We have spoken about stored discriminants in point 1 (introduction)
7095 -- above. There are two sort of stored discriminants: implicit and
7096 -- explicit. As long as the derived type inherits the same discriminants as
7097 -- the root record type, stored discriminants are the same as regular
7098 -- discriminants, and are said to be implicit. However, if any discriminant
7099 -- in the root type was renamed in the derived type, then the derived
7100 -- type will contain explicit stored discriminants. Explicit stored
7101 -- discriminants are discriminants in addition to the semantically visible
7102 -- discriminants defined for the derived type. Stored discriminants are
7103 -- used by Gigi to figure out what are the physical discriminants in
7104 -- objects of the derived type (see precise definition in einfo.ads).
7105 -- As an example, consider the following:
7106
7107 -- type R (D1, D2, D3 : Int) is record ... end record;
7108 -- type T1 is new R;
7109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7110 -- type T3 is new T2;
7111 -- type T4 (Y : Int) is new T3 (Y, 99);
7112
7113 -- The following table summarizes the discriminants and stored
7114 -- discriminants in R and T1 through T4.
7115
7116 -- Type Discrim Stored Discrim Comment
7117 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7118 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7119 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7120 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7121 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7122
7123 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7124 -- find the corresponding discriminant in the parent type, while
7125 -- Original_Record_Component (abbreviated ORC below), the actual physical
7126 -- component that is renamed. Finally the field Is_Completely_Hidden
7127 -- (abbreviated ICH below) is set for all explicit stored discriminants
7128 -- (see einfo.ads for more info). For the above example this gives:
7129
7130 -- Discrim CD ORC ICH
7131 -- ^^^^^^^ ^^ ^^^ ^^^
7132 -- D1 in R empty itself no
7133 -- D2 in R empty itself no
7134 -- D3 in R empty itself no
7135
7136 -- D1 in T1 D1 in R itself no
7137 -- D2 in T1 D2 in R itself no
7138 -- D3 in T1 D3 in R itself no
7139
7140 -- X1 in T2 D3 in T1 D3 in T2 no
7141 -- X2 in T2 D1 in T1 D1 in T2 no
7142 -- D1 in T2 empty itself yes
7143 -- D2 in T2 empty itself yes
7144 -- D3 in T2 empty itself yes
7145
7146 -- X1 in T3 X1 in T2 D3 in T3 no
7147 -- X2 in T3 X2 in T2 D1 in T3 no
7148 -- D1 in T3 empty itself yes
7149 -- D2 in T3 empty itself yes
7150 -- D3 in T3 empty itself yes
7151
7152 -- Y in T4 X1 in T3 D3 in T3 no
7153 -- D1 in T3 empty itself yes
7154 -- D2 in T3 empty itself yes
7155 -- D3 in T3 empty itself yes
7156
7157 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7158
7159 -- Type derivation for tagged types is fairly straightforward. If no
7160 -- discriminants are specified by the derived type, these are inherited
7161 -- from the parent. No explicit stored discriminants are ever necessary.
7162 -- The only manipulation that is done to the tree is that of adding a
7163 -- _parent field with parent type and constrained to the same constraint
7164 -- specified for the parent in the derived type definition. For instance:
7165
7166 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7167 -- type T1 is new R with null record;
7168 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7169
7170 -- are changed into:
7171
7172 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7173 -- _parent : R (D1, D2, D3);
7174 -- end record;
7175
7176 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7177 -- _parent : T1 (X2, 88, X1);
7178 -- end record;
7179
7180 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7181 -- ORC and ICH fields are:
7182
7183 -- Discrim CD ORC ICH
7184 -- ^^^^^^^ ^^ ^^^ ^^^
7185 -- D1 in R empty itself no
7186 -- D2 in R empty itself no
7187 -- D3 in R empty itself no
7188
7189 -- D1 in T1 D1 in R D1 in R no
7190 -- D2 in T1 D2 in R D2 in R no
7191 -- D3 in T1 D3 in R D3 in R no
7192
7193 -- X1 in T2 D3 in T1 D3 in R no
7194 -- X2 in T2 D1 in T1 D1 in R no
7195
7196 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7197 --
7198 -- Regardless of whether we dealing with a tagged or untagged type
7199 -- we will transform all derived type declarations of the form
7200 --
7201 -- type T is new R (...) [with ...];
7202 -- or
7203 -- subtype S is R (...);
7204 -- type T is new S [with ...];
7205 -- into
7206 -- type BT is new R [with ...];
7207 -- subtype T is BT (...);
7208 --
7209 -- That is, the base derived type is constrained only if it has no
7210 -- discriminants. The reason for doing this is that GNAT's semantic model
7211 -- assumes that a base type with discriminants is unconstrained.
7212 --
7213 -- Note that, strictly speaking, the above transformation is not always
7214 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7215 --
7216 -- procedure B34011A is
7217 -- type REC (D : integer := 0) is record
7218 -- I : Integer;
7219 -- end record;
7220
7221 -- package P is
7222 -- type T6 is new Rec;
7223 -- function F return T6;
7224 -- end P;
7225
7226 -- use P;
7227 -- package Q6 is
7228 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7229 -- end Q6;
7230 --
7231 -- The definition of Q6.U is illegal. However transforming Q6.U into
7232
7233 -- type BaseU is new T6;
7234 -- subtype U is BaseU (Q6.F.I)
7235
7236 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7237 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7238 -- the transformation described above.
7239
7240 -- There is another instance where the above transformation is incorrect.
7241 -- Consider:
7242
7243 -- package Pack is
7244 -- type Base (D : Integer) is tagged null record;
7245 -- procedure P (X : Base);
7246
7247 -- type Der is new Base (2) with null record;
7248 -- procedure P (X : Der);
7249 -- end Pack;
7250
7251 -- Then the above transformation turns this into
7252
7253 -- type Der_Base is new Base with null record;
7254 -- -- procedure P (X : Base) is implicitly inherited here
7255 -- -- as procedure P (X : Der_Base).
7256
7257 -- subtype Der is Der_Base (2);
7258 -- procedure P (X : Der);
7259 -- -- The overriding of P (X : Der_Base) is illegal since we
7260 -- -- have a parameter conformance problem.
7261
7262 -- To get around this problem, after having semantically processed Der_Base
7263 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7264 -- Discriminant_Constraint from Der so that when parameter conformance is
7265 -- checked when P is overridden, no semantic errors are flagged.
7266
7267 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7268
7269 -- Regardless of whether we are dealing with a tagged or untagged type
7270 -- we will transform all derived type declarations of the form
7271
7272 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7273 -- type T is new R [with ...];
7274 -- into
7275 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7276
7277 -- The reason for such transformation is that it allows us to implement a
7278 -- very clean form of component inheritance as explained below.
7279
7280 -- Note that this transformation is not achieved by direct tree rewriting
7281 -- and manipulation, but rather by redoing the semantic actions that the
7282 -- above transformation will entail. This is done directly in routine
7283 -- Inherit_Components.
7284
7285 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7286
7287 -- In both tagged and untagged derived types, regular non discriminant
7288 -- components are inherited in the derived type from the parent type. In
7289 -- the absence of discriminants component, inheritance is straightforward
7290 -- as components can simply be copied from the parent.
7291
7292 -- If the parent has discriminants, inheriting components constrained with
7293 -- these discriminants requires caution. Consider the following example:
7294
7295 -- type R (D1, D2 : Positive) is [tagged] record
7296 -- S : String (D1 .. D2);
7297 -- end record;
7298
7299 -- type T1 is new R [with null record];
7300 -- type T2 (X : positive) is new R (1, X) [with null record];
7301
7302 -- As explained in 6. above, T1 is rewritten as
7303 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7304 -- which makes the treatment for T1 and T2 identical.
7305
7306 -- What we want when inheriting S, is that references to D1 and D2 in R are
7307 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7308 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7309 -- with either discriminant references in the derived type or expressions.
7310 -- This replacement is achieved as follows: before inheriting R's
7311 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7312 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7313 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7314 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7315 -- by String (1 .. X).
7316
7317 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7318
7319 -- We explain here the rules governing private type extensions relevant to
7320 -- type derivation. These rules are explained on the following example:
7321
7322 -- type D [(...)] is new A [(...)] with private; <-- partial view
7323 -- type D [(...)] is new P [(...)] with null record; <-- full view
7324
7325 -- Type A is called the ancestor subtype of the private extension.
7326 -- Type P is the parent type of the full view of the private extension. It
7327 -- must be A or a type derived from A.
7328
7329 -- The rules concerning the discriminants of private type extensions are
7330 -- [7.3(10-13)]:
7331
7332 -- o If a private extension inherits known discriminants from the ancestor
7333 -- subtype, then the full view must also inherit its discriminants from
7334 -- the ancestor subtype and the parent subtype of the full view must be
7335 -- constrained if and only if the ancestor subtype is constrained.
7336
7337 -- o If a partial view has unknown discriminants, then the full view may
7338 -- define a definite or an indefinite subtype, with or without
7339 -- discriminants.
7340
7341 -- o If a partial view has neither known nor unknown discriminants, then
7342 -- the full view must define a definite subtype.
7343
7344 -- o If the ancestor subtype of a private extension has constrained
7345 -- discriminants, then the parent subtype of the full view must impose a
7346 -- statically matching constraint on those discriminants.
7347
7348 -- This means that only the following forms of private extensions are
7349 -- allowed:
7350
7351 -- type D is new A with private; <-- partial view
7352 -- type D is new P with null record; <-- full view
7353
7354 -- If A has no discriminants than P has no discriminants, otherwise P must
7355 -- inherit A's discriminants.
7356
7357 -- type D is new A (...) with private; <-- partial view
7358 -- type D is new P (:::) with null record; <-- full view
7359
7360 -- P must inherit A's discriminants and (...) and (:::) must statically
7361 -- match.
7362
7363 -- subtype A is R (...);
7364 -- type D is new A with private; <-- partial view
7365 -- type D is new P with null record; <-- full view
7366
7367 -- P must have inherited R's discriminants and must be derived from A or
7368 -- any of its subtypes.
7369
7370 -- type D (..) is new A with private; <-- partial view
7371 -- type D (..) is new P [(:::)] with null record; <-- full view
7372
7373 -- No specific constraints on P's discriminants or constraint (:::).
7374 -- Note that A can be unconstrained, but the parent subtype P must either
7375 -- be constrained or (:::) must be present.
7376
7377 -- type D (..) is new A [(...)] with private; <-- partial view
7378 -- type D (..) is new P [(:::)] with null record; <-- full view
7379
7380 -- P's constraints on A's discriminants must statically match those
7381 -- imposed by (...).
7382
7383 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7384
7385 -- The full view of a private extension is handled exactly as described
7386 -- above. The model chose for the private view of a private extension is
7387 -- the same for what concerns discriminants (i.e. they receive the same
7388 -- treatment as in the tagged case). However, the private view of the
7389 -- private extension always inherits the components of the parent base,
7390 -- without replacing any discriminant reference. Strictly speaking this is
7391 -- incorrect. However, Gigi never uses this view to generate code so this
7392 -- is a purely semantic issue. In theory, a set of transformations similar
7393 -- to those given in 5. and 6. above could be applied to private views of
7394 -- private extensions to have the same model of component inheritance as
7395 -- for non private extensions. However, this is not done because it would
7396 -- further complicate private type processing. Semantically speaking, this
7397 -- leaves us in an uncomfortable situation. As an example consider:
7398
7399 -- package Pack is
7400 -- type R (D : integer) is tagged record
7401 -- S : String (1 .. D);
7402 -- end record;
7403 -- procedure P (X : R);
7404 -- type T is new R (1) with private;
7405 -- private
7406 -- type T is new R (1) with null record;
7407 -- end;
7408
7409 -- This is transformed into:
7410
7411 -- package Pack is
7412 -- type R (D : integer) is tagged record
7413 -- S : String (1 .. D);
7414 -- end record;
7415 -- procedure P (X : R);
7416 -- type T is new R (1) with private;
7417 -- private
7418 -- type BaseT is new R with null record;
7419 -- subtype T is BaseT (1);
7420 -- end;
7421
7422 -- (strictly speaking the above is incorrect Ada)
7423
7424 -- From the semantic standpoint the private view of private extension T
7425 -- should be flagged as constrained since one can clearly have
7426 --
7427 -- Obj : T;
7428 --
7429 -- in a unit withing Pack. However, when deriving subprograms for the
7430 -- private view of private extension T, T must be seen as unconstrained
7431 -- since T has discriminants (this is a constraint of the current
7432 -- subprogram derivation model). Thus, when processing the private view of
7433 -- a private extension such as T, we first mark T as unconstrained, we
7434 -- process it, we perform program derivation and just before returning from
7435 -- Build_Derived_Record_Type we mark T as constrained.
7436
7437 -- ??? Are there are other uncomfortable cases that we will have to
7438 -- deal with.
7439
7440 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7441
7442 -- Types that are derived from a visible record type and have a private
7443 -- extension present other peculiarities. They behave mostly like private
7444 -- types, but if they have primitive operations defined, these will not
7445 -- have the proper signatures for further inheritance, because other
7446 -- primitive operations will use the implicit base that we define for
7447 -- private derivations below. This affect subprogram inheritance (see
7448 -- Derive_Subprograms for details). We also derive the implicit base from
7449 -- the base type of the full view, so that the implicit base is a record
7450 -- type and not another private type, This avoids infinite loops.
7451
7452 procedure Build_Derived_Record_Type
7453 (N : Node_Id;
7454 Parent_Type : Entity_Id;
7455 Derived_Type : Entity_Id;
7456 Derive_Subps : Boolean := True)
7457 is
7458 Discriminant_Specs : constant Boolean :=
7459 Present (Discriminant_Specifications (N));
7460 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7461 Loc : constant Source_Ptr := Sloc (N);
7462 Private_Extension : constant Boolean :=
7463 Nkind (N) = N_Private_Extension_Declaration;
7464 Assoc_List : Elist_Id;
7465 Constraint_Present : Boolean;
7466 Constrs : Elist_Id;
7467 Discrim : Entity_Id;
7468 Indic : Node_Id;
7469 Inherit_Discrims : Boolean := False;
7470 Last_Discrim : Entity_Id;
7471 New_Base : Entity_Id;
7472 New_Decl : Node_Id;
7473 New_Discrs : Elist_Id;
7474 New_Indic : Node_Id;
7475 Parent_Base : Entity_Id;
7476 Save_Etype : Entity_Id;
7477 Save_Discr_Constr : Elist_Id;
7478 Save_Next_Entity : Entity_Id;
7479 Type_Def : Node_Id;
7480
7481 Discs : Elist_Id := New_Elmt_List;
7482 -- An empty Discs list means that there were no constraints in the
7483 -- subtype indication or that there was an error processing it.
7484
7485 begin
7486 if Ekind (Parent_Type) = E_Record_Type_With_Private
7487 and then Present (Full_View (Parent_Type))
7488 and then Has_Discriminants (Parent_Type)
7489 then
7490 Parent_Base := Base_Type (Full_View (Parent_Type));
7491 else
7492 Parent_Base := Base_Type (Parent_Type);
7493 end if;
7494
7495 -- AI05-0115 : if this is a derivation from a private type in some
7496 -- other scope that may lead to invisible components for the derived
7497 -- type, mark it accordingly.
7498
7499 if Is_Private_Type (Parent_Type) then
7500 if Scope (Parent_Type) = Scope (Derived_Type) then
7501 null;
7502
7503 elsif In_Open_Scopes (Scope (Parent_Type))
7504 and then In_Private_Part (Scope (Parent_Type))
7505 then
7506 null;
7507
7508 else
7509 Set_Has_Private_Ancestor (Derived_Type);
7510 end if;
7511
7512 else
7513 Set_Has_Private_Ancestor
7514 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7515 end if;
7516
7517 -- Before we start the previously documented transformations, here is
7518 -- little fix for size and alignment of tagged types. Normally when we
7519 -- derive type D from type P, we copy the size and alignment of P as the
7520 -- default for D, and in the absence of explicit representation clauses
7521 -- for D, the size and alignment are indeed the same as the parent.
7522
7523 -- But this is wrong for tagged types, since fields may be added, and
7524 -- the default size may need to be larger, and the default alignment may
7525 -- need to be larger.
7526
7527 -- We therefore reset the size and alignment fields in the tagged case.
7528 -- Note that the size and alignment will in any case be at least as
7529 -- large as the parent type (since the derived type has a copy of the
7530 -- parent type in the _parent field)
7531
7532 -- The type is also marked as being tagged here, which is needed when
7533 -- processing components with a self-referential anonymous access type
7534 -- in the call to Check_Anonymous_Access_Components below. Note that
7535 -- this flag is also set later on for completeness.
7536
7537 if Is_Tagged then
7538 Set_Is_Tagged_Type (Derived_Type);
7539 Init_Size_Align (Derived_Type);
7540 end if;
7541
7542 -- STEP 0a: figure out what kind of derived type declaration we have
7543
7544 if Private_Extension then
7545 Type_Def := N;
7546 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7547 Set_Default_SSO (Derived_Type);
7548
7549 else
7550 Type_Def := Type_Definition (N);
7551
7552 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7553 -- Parent_Base can be a private type or private extension. However,
7554 -- for tagged types with an extension the newly added fields are
7555 -- visible and hence the Derived_Type is always an E_Record_Type.
7556 -- (except that the parent may have its own private fields).
7557 -- For untagged types we preserve the Ekind of the Parent_Base.
7558
7559 if Present (Record_Extension_Part (Type_Def)) then
7560 Set_Ekind (Derived_Type, E_Record_Type);
7561 Set_Default_SSO (Derived_Type);
7562
7563 -- Create internal access types for components with anonymous
7564 -- access types.
7565
7566 if Ada_Version >= Ada_2005 then
7567 Check_Anonymous_Access_Components
7568 (N, Derived_Type, Derived_Type,
7569 Component_List (Record_Extension_Part (Type_Def)));
7570 end if;
7571
7572 else
7573 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7574 end if;
7575 end if;
7576
7577 -- Indic can either be an N_Identifier if the subtype indication
7578 -- contains no constraint or an N_Subtype_Indication if the subtype
7579 -- indication has a constraint.
7580
7581 Indic := Subtype_Indication (Type_Def);
7582 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7583
7584 -- Check that the type has visible discriminants. The type may be
7585 -- a private type with unknown discriminants whose full view has
7586 -- discriminants which are invisible.
7587
7588 if Constraint_Present then
7589 if not Has_Discriminants (Parent_Base)
7590 or else
7591 (Has_Unknown_Discriminants (Parent_Base)
7592 and then Is_Private_Type (Parent_Base))
7593 then
7594 Error_Msg_N
7595 ("invalid constraint: type has no discriminant",
7596 Constraint (Indic));
7597
7598 Constraint_Present := False;
7599 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7600
7601 elsif Is_Constrained (Parent_Type) then
7602 Error_Msg_N
7603 ("invalid constraint: parent type is already constrained",
7604 Constraint (Indic));
7605
7606 Constraint_Present := False;
7607 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7608 end if;
7609 end if;
7610
7611 -- STEP 0b: If needed, apply transformation given in point 5. above
7612
7613 if not Private_Extension
7614 and then Has_Discriminants (Parent_Type)
7615 and then not Discriminant_Specs
7616 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7617 then
7618 -- First, we must analyze the constraint (see comment in point 5.)
7619 -- The constraint may come from the subtype indication of the full
7620 -- declaration.
7621
7622 if Constraint_Present then
7623 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7624
7625 -- If there is no explicit constraint, there might be one that is
7626 -- inherited from a constrained parent type. In that case verify that
7627 -- it conforms to the constraint in the partial view. In perverse
7628 -- cases the parent subtypes of the partial and full view can have
7629 -- different constraints.
7630
7631 elsif Present (Stored_Constraint (Parent_Type)) then
7632 New_Discrs := Stored_Constraint (Parent_Type);
7633
7634 else
7635 New_Discrs := No_Elist;
7636 end if;
7637
7638 if Has_Discriminants (Derived_Type)
7639 and then Has_Private_Declaration (Derived_Type)
7640 and then Present (Discriminant_Constraint (Derived_Type))
7641 and then Present (New_Discrs)
7642 then
7643 -- Verify that constraints of the full view statically match
7644 -- those given in the partial view.
7645
7646 declare
7647 C1, C2 : Elmt_Id;
7648
7649 begin
7650 C1 := First_Elmt (New_Discrs);
7651 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7652 while Present (C1) and then Present (C2) loop
7653 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7654 or else
7655 (Is_OK_Static_Expression (Node (C1))
7656 and then Is_OK_Static_Expression (Node (C2))
7657 and then
7658 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7659 then
7660 null;
7661
7662 else
7663 if Constraint_Present then
7664 Error_Msg_N
7665 ("constraint not conformant to previous declaration",
7666 Node (C1));
7667 else
7668 Error_Msg_N
7669 ("constraint of full view is incompatible "
7670 & "with partial view", N);
7671 end if;
7672 end if;
7673
7674 Next_Elmt (C1);
7675 Next_Elmt (C2);
7676 end loop;
7677 end;
7678 end if;
7679
7680 -- Insert and analyze the declaration for the unconstrained base type
7681
7682 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7683
7684 New_Decl :=
7685 Make_Full_Type_Declaration (Loc,
7686 Defining_Identifier => New_Base,
7687 Type_Definition =>
7688 Make_Derived_Type_Definition (Loc,
7689 Abstract_Present => Abstract_Present (Type_Def),
7690 Limited_Present => Limited_Present (Type_Def),
7691 Subtype_Indication =>
7692 New_Occurrence_Of (Parent_Base, Loc),
7693 Record_Extension_Part =>
7694 Relocate_Node (Record_Extension_Part (Type_Def)),
7695 Interface_List => Interface_List (Type_Def)));
7696
7697 Set_Parent (New_Decl, Parent (N));
7698 Mark_Rewrite_Insertion (New_Decl);
7699 Insert_Before (N, New_Decl);
7700
7701 -- In the extension case, make sure ancestor is frozen appropriately
7702 -- (see also non-discriminated case below).
7703
7704 if Present (Record_Extension_Part (Type_Def))
7705 or else Is_Interface (Parent_Base)
7706 then
7707 Freeze_Before (New_Decl, Parent_Type);
7708 end if;
7709
7710 -- Note that this call passes False for the Derive_Subps parameter
7711 -- because subprogram derivation is deferred until after creating
7712 -- the subtype (see below).
7713
7714 Build_Derived_Type
7715 (New_Decl, Parent_Base, New_Base,
7716 Is_Completion => True, Derive_Subps => False);
7717
7718 -- ??? This needs re-examination to determine whether the
7719 -- above call can simply be replaced by a call to Analyze.
7720
7721 Set_Analyzed (New_Decl);
7722
7723 -- Insert and analyze the declaration for the constrained subtype
7724
7725 if Constraint_Present then
7726 New_Indic :=
7727 Make_Subtype_Indication (Loc,
7728 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7729 Constraint => Relocate_Node (Constraint (Indic)));
7730
7731 else
7732 declare
7733 Constr_List : constant List_Id := New_List;
7734 C : Elmt_Id;
7735 Expr : Node_Id;
7736
7737 begin
7738 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7739 while Present (C) loop
7740 Expr := Node (C);
7741
7742 -- It is safe here to call New_Copy_Tree since
7743 -- Force_Evaluation was called on each constraint in
7744 -- Build_Discriminant_Constraints.
7745
7746 Append (New_Copy_Tree (Expr), To => Constr_List);
7747
7748 Next_Elmt (C);
7749 end loop;
7750
7751 New_Indic :=
7752 Make_Subtype_Indication (Loc,
7753 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7754 Constraint =>
7755 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7756 end;
7757 end if;
7758
7759 Rewrite (N,
7760 Make_Subtype_Declaration (Loc,
7761 Defining_Identifier => Derived_Type,
7762 Subtype_Indication => New_Indic));
7763
7764 Analyze (N);
7765
7766 -- Derivation of subprograms must be delayed until the full subtype
7767 -- has been established, to ensure proper overriding of subprograms
7768 -- inherited by full types. If the derivations occurred as part of
7769 -- the call to Build_Derived_Type above, then the check for type
7770 -- conformance would fail because earlier primitive subprograms
7771 -- could still refer to the full type prior the change to the new
7772 -- subtype and hence would not match the new base type created here.
7773 -- Subprograms are not derived, however, when Derive_Subps is False
7774 -- (since otherwise there could be redundant derivations).
7775
7776 if Derive_Subps then
7777 Derive_Subprograms (Parent_Type, Derived_Type);
7778 end if;
7779
7780 -- For tagged types the Discriminant_Constraint of the new base itype
7781 -- is inherited from the first subtype so that no subtype conformance
7782 -- problem arise when the first subtype overrides primitive
7783 -- operations inherited by the implicit base type.
7784
7785 if Is_Tagged then
7786 Set_Discriminant_Constraint
7787 (New_Base, Discriminant_Constraint (Derived_Type));
7788 end if;
7789
7790 return;
7791 end if;
7792
7793 -- If we get here Derived_Type will have no discriminants or it will be
7794 -- a discriminated unconstrained base type.
7795
7796 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7797
7798 if Is_Tagged then
7799
7800 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7801 -- The declaration of a specific descendant of an interface type
7802 -- freezes the interface type (RM 13.14).
7803
7804 if not Private_Extension or else Is_Interface (Parent_Base) then
7805 Freeze_Before (N, Parent_Type);
7806 end if;
7807
7808 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7809 -- cannot be declared at a deeper level than its parent type is
7810 -- removed. The check on derivation within a generic body is also
7811 -- relaxed, but there's a restriction that a derived tagged type
7812 -- cannot be declared in a generic body if it's derived directly
7813 -- or indirectly from a formal type of that generic.
7814
7815 if Ada_Version >= Ada_2005 then
7816 if Present (Enclosing_Generic_Body (Derived_Type)) then
7817 declare
7818 Ancestor_Type : Entity_Id;
7819
7820 begin
7821 -- Check to see if any ancestor of the derived type is a
7822 -- formal type.
7823
7824 Ancestor_Type := Parent_Type;
7825 while not Is_Generic_Type (Ancestor_Type)
7826 and then Etype (Ancestor_Type) /= Ancestor_Type
7827 loop
7828 Ancestor_Type := Etype (Ancestor_Type);
7829 end loop;
7830
7831 -- If the derived type does have a formal type as an
7832 -- ancestor, then it's an error if the derived type is
7833 -- declared within the body of the generic unit that
7834 -- declares the formal type in its generic formal part. It's
7835 -- sufficient to check whether the ancestor type is declared
7836 -- inside the same generic body as the derived type (such as
7837 -- within a nested generic spec), in which case the
7838 -- derivation is legal. If the formal type is declared
7839 -- outside of that generic body, then it's guaranteed that
7840 -- the derived type is declared within the generic body of
7841 -- the generic unit declaring the formal type.
7842
7843 if Is_Generic_Type (Ancestor_Type)
7844 and then Enclosing_Generic_Body (Ancestor_Type) /=
7845 Enclosing_Generic_Body (Derived_Type)
7846 then
7847 Error_Msg_NE
7848 ("parent type of& must not be descendant of formal type"
7849 & " of an enclosing generic body",
7850 Indic, Derived_Type);
7851 end if;
7852 end;
7853 end if;
7854
7855 elsif Type_Access_Level (Derived_Type) /=
7856 Type_Access_Level (Parent_Type)
7857 and then not Is_Generic_Type (Derived_Type)
7858 then
7859 if Is_Controlled (Parent_Type) then
7860 Error_Msg_N
7861 ("controlled type must be declared at the library level",
7862 Indic);
7863 else
7864 Error_Msg_N
7865 ("type extension at deeper accessibility level than parent",
7866 Indic);
7867 end if;
7868
7869 else
7870 declare
7871 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7872 begin
7873 if Present (GB)
7874 and then GB /= Enclosing_Generic_Body (Parent_Base)
7875 then
7876 Error_Msg_NE
7877 ("parent type of& must not be outside generic body"
7878 & " (RM 3.9.1(4))",
7879 Indic, Derived_Type);
7880 end if;
7881 end;
7882 end if;
7883 end if;
7884
7885 -- Ada 2005 (AI-251)
7886
7887 if Ada_Version >= Ada_2005 and then Is_Tagged then
7888
7889 -- "The declaration of a specific descendant of an interface type
7890 -- freezes the interface type" (RM 13.14).
7891
7892 declare
7893 Iface : Node_Id;
7894 begin
7895 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7896 Iface := First (Interface_List (Type_Def));
7897 while Present (Iface) loop
7898 Freeze_Before (N, Etype (Iface));
7899 Next (Iface);
7900 end loop;
7901 end if;
7902 end;
7903 end if;
7904
7905 -- STEP 1b : preliminary cleanup of the full view of private types
7906
7907 -- If the type is already marked as having discriminants, then it's the
7908 -- completion of a private type or private extension and we need to
7909 -- retain the discriminants from the partial view if the current
7910 -- declaration has Discriminant_Specifications so that we can verify
7911 -- conformance. However, we must remove any existing components that
7912 -- were inherited from the parent (and attached in Copy_And_Swap)
7913 -- because the full type inherits all appropriate components anyway, and
7914 -- we do not want the partial view's components interfering.
7915
7916 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7917 Discrim := First_Discriminant (Derived_Type);
7918 loop
7919 Last_Discrim := Discrim;
7920 Next_Discriminant (Discrim);
7921 exit when No (Discrim);
7922 end loop;
7923
7924 Set_Last_Entity (Derived_Type, Last_Discrim);
7925
7926 -- In all other cases wipe out the list of inherited components (even
7927 -- inherited discriminants), it will be properly rebuilt here.
7928
7929 else
7930 Set_First_Entity (Derived_Type, Empty);
7931 Set_Last_Entity (Derived_Type, Empty);
7932 end if;
7933
7934 -- STEP 1c: Initialize some flags for the Derived_Type
7935
7936 -- The following flags must be initialized here so that
7937 -- Process_Discriminants can check that discriminants of tagged types do
7938 -- not have a default initial value and that access discriminants are
7939 -- only specified for limited records. For completeness, these flags are
7940 -- also initialized along with all the other flags below.
7941
7942 -- AI-419: Limitedness is not inherited from an interface parent, so to
7943 -- be limited in that case the type must be explicitly declared as
7944 -- limited. However, task and protected interfaces are always limited.
7945
7946 if Limited_Present (Type_Def) then
7947 Set_Is_Limited_Record (Derived_Type);
7948
7949 elsif Is_Limited_Record (Parent_Type)
7950 or else (Present (Full_View (Parent_Type))
7951 and then Is_Limited_Record (Full_View (Parent_Type)))
7952 then
7953 if not Is_Interface (Parent_Type)
7954 or else Is_Synchronized_Interface (Parent_Type)
7955 or else Is_Protected_Interface (Parent_Type)
7956 or else Is_Task_Interface (Parent_Type)
7957 then
7958 Set_Is_Limited_Record (Derived_Type);
7959 end if;
7960 end if;
7961
7962 -- STEP 2a: process discriminants of derived type if any
7963
7964 Push_Scope (Derived_Type);
7965
7966 if Discriminant_Specs then
7967 Set_Has_Unknown_Discriminants (Derived_Type, False);
7968
7969 -- The following call initializes fields Has_Discriminants and
7970 -- Discriminant_Constraint, unless we are processing the completion
7971 -- of a private type declaration.
7972
7973 Check_Or_Process_Discriminants (N, Derived_Type);
7974
7975 -- For untagged types, the constraint on the Parent_Type must be
7976 -- present and is used to rename the discriminants.
7977
7978 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7979 Error_Msg_N ("untagged parent must have discriminants", Indic);
7980
7981 elsif not Is_Tagged and then not Constraint_Present then
7982 Error_Msg_N
7983 ("discriminant constraint needed for derived untagged records",
7984 Indic);
7985
7986 -- Otherwise the parent subtype must be constrained unless we have a
7987 -- private extension.
7988
7989 elsif not Constraint_Present
7990 and then not Private_Extension
7991 and then not Is_Constrained (Parent_Type)
7992 then
7993 Error_Msg_N
7994 ("unconstrained type not allowed in this context", Indic);
7995
7996 elsif Constraint_Present then
7997 -- The following call sets the field Corresponding_Discriminant
7998 -- for the discriminants in the Derived_Type.
7999
8000 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8001
8002 -- For untagged types all new discriminants must rename
8003 -- discriminants in the parent. For private extensions new
8004 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8005
8006 Discrim := First_Discriminant (Derived_Type);
8007 while Present (Discrim) loop
8008 if not Is_Tagged
8009 and then No (Corresponding_Discriminant (Discrim))
8010 then
8011 Error_Msg_N
8012 ("new discriminants must constrain old ones", Discrim);
8013
8014 elsif Private_Extension
8015 and then Present (Corresponding_Discriminant (Discrim))
8016 then
8017 Error_Msg_N
8018 ("only static constraints allowed for parent"
8019 & " discriminants in the partial view", Indic);
8020 exit;
8021 end if;
8022
8023 -- If a new discriminant is used in the constraint, then its
8024 -- subtype must be statically compatible with the parent
8025 -- discriminant's subtype (3.7(15)).
8026
8027 -- However, if the record contains an array constrained by
8028 -- the discriminant but with some different bound, the compiler
8029 -- attemps to create a smaller range for the discriminant type.
8030 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8031 -- the discriminant type is a scalar type, the check must use
8032 -- the original discriminant type in the parent declaration.
8033
8034 declare
8035 Corr_Disc : constant Entity_Id :=
8036 Corresponding_Discriminant (Discrim);
8037 Disc_Type : constant Entity_Id := Etype (Discrim);
8038 Corr_Type : Entity_Id;
8039
8040 begin
8041 if Present (Corr_Disc) then
8042 if Is_Scalar_Type (Disc_Type) then
8043 Corr_Type :=
8044 Entity (Discriminant_Type (Parent (Corr_Disc)));
8045 else
8046 Corr_Type := Etype (Corr_Disc);
8047 end if;
8048
8049 if not
8050 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8051 then
8052 Error_Msg_N
8053 ("subtype must be compatible "
8054 & "with parent discriminant",
8055 Discrim);
8056 end if;
8057 end if;
8058 end;
8059
8060 Next_Discriminant (Discrim);
8061 end loop;
8062
8063 -- Check whether the constraints of the full view statically
8064 -- match those imposed by the parent subtype [7.3(13)].
8065
8066 if Present (Stored_Constraint (Derived_Type)) then
8067 declare
8068 C1, C2 : Elmt_Id;
8069
8070 begin
8071 C1 := First_Elmt (Discs);
8072 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8073 while Present (C1) and then Present (C2) loop
8074 if not
8075 Fully_Conformant_Expressions (Node (C1), Node (C2))
8076 then
8077 Error_Msg_N
8078 ("not conformant with previous declaration",
8079 Node (C1));
8080 end if;
8081
8082 Next_Elmt (C1);
8083 Next_Elmt (C2);
8084 end loop;
8085 end;
8086 end if;
8087 end if;
8088
8089 -- STEP 2b: No new discriminants, inherit discriminants if any
8090
8091 else
8092 if Private_Extension then
8093 Set_Has_Unknown_Discriminants
8094 (Derived_Type,
8095 Has_Unknown_Discriminants (Parent_Type)
8096 or else Unknown_Discriminants_Present (N));
8097
8098 -- The partial view of the parent may have unknown discriminants,
8099 -- but if the full view has discriminants and the parent type is
8100 -- in scope they must be inherited.
8101
8102 elsif Has_Unknown_Discriminants (Parent_Type)
8103 and then
8104 (not Has_Discriminants (Parent_Type)
8105 or else not In_Open_Scopes (Scope (Parent_Type)))
8106 then
8107 Set_Has_Unknown_Discriminants (Derived_Type);
8108 end if;
8109
8110 if not Has_Unknown_Discriminants (Derived_Type)
8111 and then not Has_Unknown_Discriminants (Parent_Base)
8112 and then Has_Discriminants (Parent_Type)
8113 then
8114 Inherit_Discrims := True;
8115 Set_Has_Discriminants
8116 (Derived_Type, True);
8117 Set_Discriminant_Constraint
8118 (Derived_Type, Discriminant_Constraint (Parent_Base));
8119 end if;
8120
8121 -- The following test is true for private types (remember
8122 -- transformation 5. is not applied to those) and in an error
8123 -- situation.
8124
8125 if Constraint_Present then
8126 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8127 end if;
8128
8129 -- For now mark a new derived type as constrained only if it has no
8130 -- discriminants. At the end of Build_Derived_Record_Type we properly
8131 -- set this flag in the case of private extensions. See comments in
8132 -- point 9. just before body of Build_Derived_Record_Type.
8133
8134 Set_Is_Constrained
8135 (Derived_Type,
8136 not (Inherit_Discrims
8137 or else Has_Unknown_Discriminants (Derived_Type)));
8138 end if;
8139
8140 -- STEP 3: initialize fields of derived type
8141
8142 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8143 Set_Stored_Constraint (Derived_Type, No_Elist);
8144
8145 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8146 -- but cannot be interfaces
8147
8148 if not Private_Extension
8149 and then Ekind (Derived_Type) /= E_Private_Type
8150 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8151 then
8152 if Interface_Present (Type_Def) then
8153 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8154 end if;
8155
8156 Set_Interfaces (Derived_Type, No_Elist);
8157 end if;
8158
8159 -- Fields inherited from the Parent_Type
8160
8161 Set_Has_Specified_Layout
8162 (Derived_Type, Has_Specified_Layout (Parent_Type));
8163 Set_Is_Limited_Composite
8164 (Derived_Type, Is_Limited_Composite (Parent_Type));
8165 Set_Is_Private_Composite
8166 (Derived_Type, Is_Private_Composite (Parent_Type));
8167
8168 -- Fields inherited from the Parent_Base
8169
8170 Set_Has_Controlled_Component
8171 (Derived_Type, Has_Controlled_Component (Parent_Base));
8172 Set_Has_Non_Standard_Rep
8173 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8174 Set_Has_Primitive_Operations
8175 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8176
8177 -- Fields inherited from the Parent_Base in the non-private case
8178
8179 if Ekind (Derived_Type) = E_Record_Type then
8180 Set_Has_Complex_Representation
8181 (Derived_Type, Has_Complex_Representation (Parent_Base));
8182 end if;
8183
8184 -- Fields inherited from the Parent_Base for record types
8185
8186 if Is_Record_Type (Derived_Type) then
8187
8188 declare
8189 Parent_Full : Entity_Id;
8190
8191 begin
8192 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8193 -- Parent_Base can be a private type or private extension. Go
8194 -- to the full view here to get the E_Record_Type specific flags.
8195
8196 if Present (Full_View (Parent_Base)) then
8197 Parent_Full := Full_View (Parent_Base);
8198 else
8199 Parent_Full := Parent_Base;
8200 end if;
8201
8202 Set_OK_To_Reorder_Components
8203 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8204 end;
8205 end if;
8206
8207 -- Set fields for private derived types
8208
8209 if Is_Private_Type (Derived_Type) then
8210 Set_Depends_On_Private (Derived_Type, True);
8211 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8212
8213 -- Inherit fields from non private record types. If this is the
8214 -- completion of a derivation from a private type, the parent itself
8215 -- is private, and the attributes come from its full view, which must
8216 -- be present.
8217
8218 else
8219 if Is_Private_Type (Parent_Base)
8220 and then not Is_Record_Type (Parent_Base)
8221 then
8222 Set_Component_Alignment
8223 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8224 Set_C_Pass_By_Copy
8225 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8226 else
8227 Set_Component_Alignment
8228 (Derived_Type, Component_Alignment (Parent_Base));
8229 Set_C_Pass_By_Copy
8230 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8231 end if;
8232 end if;
8233
8234 -- Set fields for tagged types
8235
8236 if Is_Tagged then
8237 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8238
8239 -- All tagged types defined in Ada.Finalization are controlled
8240
8241 if Chars (Scope (Derived_Type)) = Name_Finalization
8242 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8243 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8244 then
8245 Set_Is_Controlled (Derived_Type);
8246 else
8247 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8248 end if;
8249
8250 -- Minor optimization: there is no need to generate the class-wide
8251 -- entity associated with an underlying record view.
8252
8253 if not Is_Underlying_Record_View (Derived_Type) then
8254 Make_Class_Wide_Type (Derived_Type);
8255 end if;
8256
8257 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8258
8259 if Has_Discriminants (Derived_Type)
8260 and then Constraint_Present
8261 then
8262 Set_Stored_Constraint
8263 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8264 end if;
8265
8266 if Ada_Version >= Ada_2005 then
8267 declare
8268 Ifaces_List : Elist_Id;
8269
8270 begin
8271 -- Checks rules 3.9.4 (13/2 and 14/2)
8272
8273 if Comes_From_Source (Derived_Type)
8274 and then not Is_Private_Type (Derived_Type)
8275 and then Is_Interface (Parent_Type)
8276 and then not Is_Interface (Derived_Type)
8277 then
8278 if Is_Task_Interface (Parent_Type) then
8279 Error_Msg_N
8280 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8281 Derived_Type);
8282
8283 elsif Is_Protected_Interface (Parent_Type) then
8284 Error_Msg_N
8285 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8286 Derived_Type);
8287 end if;
8288 end if;
8289
8290 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8291
8292 Check_Interfaces (N, Type_Def);
8293
8294 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8295 -- not already in the parents.
8296
8297 Collect_Interfaces
8298 (T => Derived_Type,
8299 Ifaces_List => Ifaces_List,
8300 Exclude_Parents => True);
8301
8302 Set_Interfaces (Derived_Type, Ifaces_List);
8303
8304 -- If the derived type is the anonymous type created for
8305 -- a declaration whose parent has a constraint, propagate
8306 -- the interface list to the source type. This must be done
8307 -- prior to the completion of the analysis of the source type
8308 -- because the components in the extension may contain current
8309 -- instances whose legality depends on some ancestor.
8310
8311 if Is_Itype (Derived_Type) then
8312 declare
8313 Def : constant Node_Id :=
8314 Associated_Node_For_Itype (Derived_Type);
8315 begin
8316 if Present (Def)
8317 and then Nkind (Def) = N_Full_Type_Declaration
8318 then
8319 Set_Interfaces
8320 (Defining_Identifier (Def), Ifaces_List);
8321 end if;
8322 end;
8323 end if;
8324 end;
8325 end if;
8326
8327 else
8328 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8329 Set_Has_Non_Standard_Rep
8330 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8331 end if;
8332
8333 -- STEP 4: Inherit components from the parent base and constrain them.
8334 -- Apply the second transformation described in point 6. above.
8335
8336 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8337 or else not Has_Discriminants (Parent_Type)
8338 or else not Is_Constrained (Parent_Type)
8339 then
8340 Constrs := Discs;
8341 else
8342 Constrs := Discriminant_Constraint (Parent_Type);
8343 end if;
8344
8345 Assoc_List :=
8346 Inherit_Components
8347 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8348
8349 -- STEP 5a: Copy the parent record declaration for untagged types
8350
8351 if not Is_Tagged then
8352
8353 -- Discriminant_Constraint (Derived_Type) has been properly
8354 -- constructed. Save it and temporarily set it to Empty because we
8355 -- do not want the call to New_Copy_Tree below to mess this list.
8356
8357 if Has_Discriminants (Derived_Type) then
8358 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8359 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8360 else
8361 Save_Discr_Constr := No_Elist;
8362 end if;
8363
8364 -- Save the Etype field of Derived_Type. It is correctly set now,
8365 -- but the call to New_Copy tree may remap it to point to itself,
8366 -- which is not what we want. Ditto for the Next_Entity field.
8367
8368 Save_Etype := Etype (Derived_Type);
8369 Save_Next_Entity := Next_Entity (Derived_Type);
8370
8371 -- Assoc_List maps all stored discriminants in the Parent_Base to
8372 -- stored discriminants in the Derived_Type. It is fundamental that
8373 -- no types or itypes with discriminants other than the stored
8374 -- discriminants appear in the entities declared inside
8375 -- Derived_Type, since the back end cannot deal with it.
8376
8377 New_Decl :=
8378 New_Copy_Tree
8379 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8380
8381 -- Restore the fields saved prior to the New_Copy_Tree call
8382 -- and compute the stored constraint.
8383
8384 Set_Etype (Derived_Type, Save_Etype);
8385 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8386
8387 if Has_Discriminants (Derived_Type) then
8388 Set_Discriminant_Constraint
8389 (Derived_Type, Save_Discr_Constr);
8390 Set_Stored_Constraint
8391 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8392 Replace_Components (Derived_Type, New_Decl);
8393 Set_Has_Implicit_Dereference
8394 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8395 end if;
8396
8397 -- Insert the new derived type declaration
8398
8399 Rewrite (N, New_Decl);
8400
8401 -- STEP 5b: Complete the processing for record extensions in generics
8402
8403 -- There is no completion for record extensions declared in the
8404 -- parameter part of a generic, so we need to complete processing for
8405 -- these generic record extensions here. The Record_Type_Definition call
8406 -- will change the Ekind of the components from E_Void to E_Component.
8407
8408 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8409 Record_Type_Definition (Empty, Derived_Type);
8410
8411 -- STEP 5c: Process the record extension for non private tagged types
8412
8413 elsif not Private_Extension then
8414 Expand_Record_Extension (Derived_Type, Type_Def);
8415
8416 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8417 -- derived type to propagate some semantic information. This led
8418 -- to other ASIS failures and has been removed.
8419
8420 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8421 -- implemented interfaces if we are in expansion mode
8422
8423 if Expander_Active
8424 and then Has_Interfaces (Derived_Type)
8425 then
8426 Add_Interface_Tag_Components (N, Derived_Type);
8427 end if;
8428
8429 -- Analyze the record extension
8430
8431 Record_Type_Definition
8432 (Record_Extension_Part (Type_Def), Derived_Type);
8433 end if;
8434
8435 End_Scope;
8436
8437 -- Nothing else to do if there is an error in the derivation.
8438 -- An unusual case: the full view may be derived from a type in an
8439 -- instance, when the partial view was used illegally as an actual
8440 -- in that instance, leading to a circular definition.
8441
8442 if Etype (Derived_Type) = Any_Type
8443 or else Etype (Parent_Type) = Derived_Type
8444 then
8445 return;
8446 end if;
8447
8448 -- Set delayed freeze and then derive subprograms, we need to do
8449 -- this in this order so that derived subprograms inherit the
8450 -- derived freeze if necessary.
8451
8452 Set_Has_Delayed_Freeze (Derived_Type);
8453
8454 if Derive_Subps then
8455 Derive_Subprograms (Parent_Type, Derived_Type);
8456 end if;
8457
8458 -- If we have a private extension which defines a constrained derived
8459 -- type mark as constrained here after we have derived subprograms. See
8460 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8461
8462 if Private_Extension and then Inherit_Discrims then
8463 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8464 Set_Is_Constrained (Derived_Type, True);
8465 Set_Discriminant_Constraint (Derived_Type, Discs);
8466
8467 elsif Is_Constrained (Parent_Type) then
8468 Set_Is_Constrained
8469 (Derived_Type, True);
8470 Set_Discriminant_Constraint
8471 (Derived_Type, Discriminant_Constraint (Parent_Type));
8472 end if;
8473 end if;
8474
8475 -- Update the class-wide type, which shares the now-completed entity
8476 -- list with its specific type. In case of underlying record views,
8477 -- we do not generate the corresponding class wide entity.
8478
8479 if Is_Tagged
8480 and then not Is_Underlying_Record_View (Derived_Type)
8481 then
8482 Set_First_Entity
8483 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8484 Set_Last_Entity
8485 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8486 end if;
8487
8488 Check_Function_Writable_Actuals (N);
8489 end Build_Derived_Record_Type;
8490
8491 ------------------------
8492 -- Build_Derived_Type --
8493 ------------------------
8494
8495 procedure Build_Derived_Type
8496 (N : Node_Id;
8497 Parent_Type : Entity_Id;
8498 Derived_Type : Entity_Id;
8499 Is_Completion : Boolean;
8500 Derive_Subps : Boolean := True)
8501 is
8502 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8503
8504 begin
8505 -- Set common attributes
8506
8507 Set_Scope (Derived_Type, Current_Scope);
8508
8509 Set_Etype (Derived_Type, Parent_Base);
8510 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8511 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8512 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8513
8514 Set_Size_Info (Derived_Type, Parent_Type);
8515 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8516 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8517 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8518
8519 -- If the parent has primitive routines, set the derived type link
8520
8521 if Has_Primitive_Operations (Parent_Type) then
8522 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8523 end if;
8524
8525 -- If the parent type is a private subtype, the convention on the base
8526 -- type may be set in the private part, and not propagated to the
8527 -- subtype until later, so we obtain the convention from the base type.
8528
8529 Set_Convention (Derived_Type, Convention (Parent_Base));
8530
8531 -- Set SSO default for record or array type
8532
8533 if (Is_Array_Type (Derived_Type)
8534 or else Is_Record_Type (Derived_Type))
8535 and then Is_Base_Type (Derived_Type)
8536 then
8537 Set_Default_SSO (Derived_Type);
8538 end if;
8539
8540 -- Propagate invariant information. The new type has invariants if
8541 -- they are inherited from the parent type, and these invariants can
8542 -- be further inherited, so both flags are set.
8543
8544 -- We similarly inherit predicates
8545
8546 if Has_Predicates (Parent_Type) then
8547 Set_Has_Predicates (Derived_Type);
8548 end if;
8549
8550 -- The derived type inherits the representation clauses of the parent.
8551 -- However, for a private type that is completed by a derivation, there
8552 -- may be operation attributes that have been specified already (stream
8553 -- attributes and External_Tag) and those must be provided. Finally,
8554 -- if the partial view is a private extension, the representation items
8555 -- of the parent have been inherited already, and should not be chained
8556 -- twice to the derived type.
8557
8558 if Is_Tagged_Type (Parent_Type)
8559 and then Present (First_Rep_Item (Derived_Type))
8560 then
8561 -- The existing items are either operational items or items inherited
8562 -- from a private extension declaration.
8563
8564 declare
8565 Rep : Node_Id;
8566 -- Used to iterate over representation items of the derived type
8567
8568 Last_Rep : Node_Id;
8569 -- Last representation item of the (non-empty) representation
8570 -- item list of the derived type.
8571
8572 Found : Boolean := False;
8573
8574 begin
8575 Rep := First_Rep_Item (Derived_Type);
8576 Last_Rep := Rep;
8577 while Present (Rep) loop
8578 if Rep = First_Rep_Item (Parent_Type) then
8579 Found := True;
8580 exit;
8581
8582 else
8583 Rep := Next_Rep_Item (Rep);
8584
8585 if Present (Rep) then
8586 Last_Rep := Rep;
8587 end if;
8588 end if;
8589 end loop;
8590
8591 -- Here if we either encountered the parent type's first rep
8592 -- item on the derived type's rep item list (in which case
8593 -- Found is True, and we have nothing else to do), or if we
8594 -- reached the last rep item of the derived type, which is
8595 -- Last_Rep, in which case we further chain the parent type's
8596 -- rep items to those of the derived type.
8597
8598 if not Found then
8599 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8600 end if;
8601 end;
8602
8603 else
8604 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8605 end if;
8606
8607 -- If the parent type has delayed rep aspects, then mark the derived
8608 -- type as possibly inheriting a delayed rep aspect.
8609
8610 if Has_Delayed_Rep_Aspects (Parent_Type) then
8611 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8612 end if;
8613
8614 -- Type dependent processing
8615
8616 case Ekind (Parent_Type) is
8617 when Numeric_Kind =>
8618 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8619
8620 when Array_Kind =>
8621 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8622
8623 when E_Record_Type
8624 | E_Record_Subtype
8625 | Class_Wide_Kind =>
8626 Build_Derived_Record_Type
8627 (N, Parent_Type, Derived_Type, Derive_Subps);
8628 return;
8629
8630 when Enumeration_Kind =>
8631 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8632
8633 when Access_Kind =>
8634 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8635
8636 when Incomplete_Or_Private_Kind =>
8637 Build_Derived_Private_Type
8638 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8639
8640 -- For discriminated types, the derivation includes deriving
8641 -- primitive operations. For others it is done below.
8642
8643 if Is_Tagged_Type (Parent_Type)
8644 or else Has_Discriminants (Parent_Type)
8645 or else (Present (Full_View (Parent_Type))
8646 and then Has_Discriminants (Full_View (Parent_Type)))
8647 then
8648 return;
8649 end if;
8650
8651 when Concurrent_Kind =>
8652 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8653
8654 when others =>
8655 raise Program_Error;
8656 end case;
8657
8658 -- Nothing more to do if some error occurred
8659
8660 if Etype (Derived_Type) = Any_Type then
8661 return;
8662 end if;
8663
8664 -- Set delayed freeze and then derive subprograms, we need to do this
8665 -- in this order so that derived subprograms inherit the derived freeze
8666 -- if necessary.
8667
8668 Set_Has_Delayed_Freeze (Derived_Type);
8669
8670 if Derive_Subps then
8671 Derive_Subprograms (Parent_Type, Derived_Type);
8672 end if;
8673
8674 Set_Has_Primitive_Operations
8675 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8676 end Build_Derived_Type;
8677
8678 -----------------------
8679 -- Build_Discriminal --
8680 -----------------------
8681
8682 procedure Build_Discriminal (Discrim : Entity_Id) is
8683 D_Minal : Entity_Id;
8684 CR_Disc : Entity_Id;
8685
8686 begin
8687 -- A discriminal has the same name as the discriminant
8688
8689 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8690
8691 Set_Ekind (D_Minal, E_In_Parameter);
8692 Set_Mechanism (D_Minal, Default_Mechanism);
8693 Set_Etype (D_Minal, Etype (Discrim));
8694 Set_Scope (D_Minal, Current_Scope);
8695
8696 Set_Discriminal (Discrim, D_Minal);
8697 Set_Discriminal_Link (D_Minal, Discrim);
8698
8699 -- For task types, build at once the discriminants of the corresponding
8700 -- record, which are needed if discriminants are used in entry defaults
8701 -- and in family bounds.
8702
8703 if Is_Concurrent_Type (Current_Scope)
8704 or else Is_Limited_Type (Current_Scope)
8705 then
8706 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8707
8708 Set_Ekind (CR_Disc, E_In_Parameter);
8709 Set_Mechanism (CR_Disc, Default_Mechanism);
8710 Set_Etype (CR_Disc, Etype (Discrim));
8711 Set_Scope (CR_Disc, Current_Scope);
8712 Set_Discriminal_Link (CR_Disc, Discrim);
8713 Set_CR_Discriminant (Discrim, CR_Disc);
8714 end if;
8715 end Build_Discriminal;
8716
8717 ------------------------------------
8718 -- Build_Discriminant_Constraints --
8719 ------------------------------------
8720
8721 function Build_Discriminant_Constraints
8722 (T : Entity_Id;
8723 Def : Node_Id;
8724 Derived_Def : Boolean := False) return Elist_Id
8725 is
8726 C : constant Node_Id := Constraint (Def);
8727 Nb_Discr : constant Nat := Number_Discriminants (T);
8728
8729 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8730 -- Saves the expression corresponding to a given discriminant in T
8731
8732 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8733 -- Return the Position number within array Discr_Expr of a discriminant
8734 -- D within the discriminant list of the discriminated type T.
8735
8736 procedure Process_Discriminant_Expression
8737 (Expr : Node_Id;
8738 D : Entity_Id);
8739 -- If this is a discriminant constraint on a partial view, do not
8740 -- generate an overflow check on the discriminant expression. The check
8741 -- will be generated when constraining the full view. Otherwise the
8742 -- backend creates duplicate symbols for the temporaries corresponding
8743 -- to the expressions to be checked, causing spurious assembler errors.
8744
8745 ------------------
8746 -- Pos_Of_Discr --
8747 ------------------
8748
8749 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8750 Disc : Entity_Id;
8751
8752 begin
8753 Disc := First_Discriminant (T);
8754 for J in Discr_Expr'Range loop
8755 if Disc = D then
8756 return J;
8757 end if;
8758
8759 Next_Discriminant (Disc);
8760 end loop;
8761
8762 -- Note: Since this function is called on discriminants that are
8763 -- known to belong to the discriminated type, falling through the
8764 -- loop with no match signals an internal compiler error.
8765
8766 raise Program_Error;
8767 end Pos_Of_Discr;
8768
8769 -------------------------------------
8770 -- Process_Discriminant_Expression --
8771 -------------------------------------
8772
8773 procedure Process_Discriminant_Expression
8774 (Expr : Node_Id;
8775 D : Entity_Id)
8776 is
8777 BDT : constant Entity_Id := Base_Type (Etype (D));
8778
8779 begin
8780 -- If this is a discriminant constraint on a partial view, do
8781 -- not generate an overflow on the discriminant expression. The
8782 -- check will be generated when constraining the full view.
8783
8784 if Is_Private_Type (T)
8785 and then Present (Full_View (T))
8786 then
8787 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8788 else
8789 Analyze_And_Resolve (Expr, BDT);
8790 end if;
8791 end Process_Discriminant_Expression;
8792
8793 -- Declarations local to Build_Discriminant_Constraints
8794
8795 Discr : Entity_Id;
8796 E : Entity_Id;
8797 Elist : constant Elist_Id := New_Elmt_List;
8798
8799 Constr : Node_Id;
8800 Expr : Node_Id;
8801 Id : Node_Id;
8802 Position : Nat;
8803 Found : Boolean;
8804
8805 Discrim_Present : Boolean := False;
8806
8807 -- Start of processing for Build_Discriminant_Constraints
8808
8809 begin
8810 -- The following loop will process positional associations only.
8811 -- For a positional association, the (single) discriminant is
8812 -- implicitly specified by position, in textual order (RM 3.7.2).
8813
8814 Discr := First_Discriminant (T);
8815 Constr := First (Constraints (C));
8816 for D in Discr_Expr'Range loop
8817 exit when Nkind (Constr) = N_Discriminant_Association;
8818
8819 if No (Constr) then
8820 Error_Msg_N ("too few discriminants given in constraint", C);
8821 return New_Elmt_List;
8822
8823 elsif Nkind (Constr) = N_Range
8824 or else (Nkind (Constr) = N_Attribute_Reference
8825 and then
8826 Attribute_Name (Constr) = Name_Range)
8827 then
8828 Error_Msg_N
8829 ("a range is not a valid discriminant constraint", Constr);
8830 Discr_Expr (D) := Error;
8831
8832 else
8833 Process_Discriminant_Expression (Constr, Discr);
8834 Discr_Expr (D) := Constr;
8835 end if;
8836
8837 Next_Discriminant (Discr);
8838 Next (Constr);
8839 end loop;
8840
8841 if No (Discr) and then Present (Constr) then
8842 Error_Msg_N ("too many discriminants given in constraint", Constr);
8843 return New_Elmt_List;
8844 end if;
8845
8846 -- Named associations can be given in any order, but if both positional
8847 -- and named associations are used in the same discriminant constraint,
8848 -- then positional associations must occur first, at their normal
8849 -- position. Hence once a named association is used, the rest of the
8850 -- discriminant constraint must use only named associations.
8851
8852 while Present (Constr) loop
8853
8854 -- Positional association forbidden after a named association
8855
8856 if Nkind (Constr) /= N_Discriminant_Association then
8857 Error_Msg_N ("positional association follows named one", Constr);
8858 return New_Elmt_List;
8859
8860 -- Otherwise it is a named association
8861
8862 else
8863 -- E records the type of the discriminants in the named
8864 -- association. All the discriminants specified in the same name
8865 -- association must have the same type.
8866
8867 E := Empty;
8868
8869 -- Search the list of discriminants in T to see if the simple name
8870 -- given in the constraint matches any of them.
8871
8872 Id := First (Selector_Names (Constr));
8873 while Present (Id) loop
8874 Found := False;
8875
8876 -- If Original_Discriminant is present, we are processing a
8877 -- generic instantiation and this is an instance node. We need
8878 -- to find the name of the corresponding discriminant in the
8879 -- actual record type T and not the name of the discriminant in
8880 -- the generic formal. Example:
8881
8882 -- generic
8883 -- type G (D : int) is private;
8884 -- package P is
8885 -- subtype W is G (D => 1);
8886 -- end package;
8887 -- type Rec (X : int) is record ... end record;
8888 -- package Q is new P (G => Rec);
8889
8890 -- At the point of the instantiation, formal type G is Rec
8891 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8892 -- which really looks like "subtype W is Rec (D => 1);" at
8893 -- the point of instantiation, we want to find the discriminant
8894 -- that corresponds to D in Rec, i.e. X.
8895
8896 if Present (Original_Discriminant (Id))
8897 and then In_Instance
8898 then
8899 Discr := Find_Corresponding_Discriminant (Id, T);
8900 Found := True;
8901
8902 else
8903 Discr := First_Discriminant (T);
8904 while Present (Discr) loop
8905 if Chars (Discr) = Chars (Id) then
8906 Found := True;
8907 exit;
8908 end if;
8909
8910 Next_Discriminant (Discr);
8911 end loop;
8912
8913 if not Found then
8914 Error_Msg_N ("& does not match any discriminant", Id);
8915 return New_Elmt_List;
8916
8917 -- If the parent type is a generic formal, preserve the
8918 -- name of the discriminant for subsequent instances.
8919 -- see comment at the beginning of this if statement.
8920
8921 elsif Is_Generic_Type (Root_Type (T)) then
8922 Set_Original_Discriminant (Id, Discr);
8923 end if;
8924 end if;
8925
8926 Position := Pos_Of_Discr (T, Discr);
8927
8928 if Present (Discr_Expr (Position)) then
8929 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8930
8931 else
8932 -- Each discriminant specified in the same named association
8933 -- must be associated with a separate copy of the
8934 -- corresponding expression.
8935
8936 if Present (Next (Id)) then
8937 Expr := New_Copy_Tree (Expression (Constr));
8938 Set_Parent (Expr, Parent (Expression (Constr)));
8939 else
8940 Expr := Expression (Constr);
8941 end if;
8942
8943 Discr_Expr (Position) := Expr;
8944 Process_Discriminant_Expression (Expr, Discr);
8945 end if;
8946
8947 -- A discriminant association with more than one discriminant
8948 -- name is only allowed if the named discriminants are all of
8949 -- the same type (RM 3.7.1(8)).
8950
8951 if E = Empty then
8952 E := Base_Type (Etype (Discr));
8953
8954 elsif Base_Type (Etype (Discr)) /= E then
8955 Error_Msg_N
8956 ("all discriminants in an association " &
8957 "must have the same type", Id);
8958 end if;
8959
8960 Next (Id);
8961 end loop;
8962 end if;
8963
8964 Next (Constr);
8965 end loop;
8966
8967 -- A discriminant constraint must provide exactly one value for each
8968 -- discriminant of the type (RM 3.7.1(8)).
8969
8970 for J in Discr_Expr'Range loop
8971 if No (Discr_Expr (J)) then
8972 Error_Msg_N ("too few discriminants given in constraint", C);
8973 return New_Elmt_List;
8974 end if;
8975 end loop;
8976
8977 -- Determine if there are discriminant expressions in the constraint
8978
8979 for J in Discr_Expr'Range loop
8980 if Denotes_Discriminant
8981 (Discr_Expr (J), Check_Concurrent => True)
8982 then
8983 Discrim_Present := True;
8984 end if;
8985 end loop;
8986
8987 -- Build an element list consisting of the expressions given in the
8988 -- discriminant constraint and apply the appropriate checks. The list
8989 -- is constructed after resolving any named discriminant associations
8990 -- and therefore the expressions appear in the textual order of the
8991 -- discriminants.
8992
8993 Discr := First_Discriminant (T);
8994 for J in Discr_Expr'Range loop
8995 if Discr_Expr (J) /= Error then
8996 Append_Elmt (Discr_Expr (J), Elist);
8997
8998 -- If any of the discriminant constraints is given by a
8999 -- discriminant and we are in a derived type declaration we
9000 -- have a discriminant renaming. Establish link between new
9001 -- and old discriminant.
9002
9003 if Denotes_Discriminant (Discr_Expr (J)) then
9004 if Derived_Def then
9005 Set_Corresponding_Discriminant
9006 (Entity (Discr_Expr (J)), Discr);
9007 end if;
9008
9009 -- Force the evaluation of non-discriminant expressions.
9010 -- If we have found a discriminant in the constraint 3.4(26)
9011 -- and 3.8(18) demand that no range checks are performed are
9012 -- after evaluation. If the constraint is for a component
9013 -- definition that has a per-object constraint, expressions are
9014 -- evaluated but not checked either. In all other cases perform
9015 -- a range check.
9016
9017 else
9018 if Discrim_Present then
9019 null;
9020
9021 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9022 and then
9023 Has_Per_Object_Constraint
9024 (Defining_Identifier (Parent (Parent (Def))))
9025 then
9026 null;
9027
9028 elsif Is_Access_Type (Etype (Discr)) then
9029 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9030
9031 else
9032 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9033 end if;
9034
9035 Force_Evaluation (Discr_Expr (J));
9036 end if;
9037
9038 -- Check that the designated type of an access discriminant's
9039 -- expression is not a class-wide type unless the discriminant's
9040 -- designated type is also class-wide.
9041
9042 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9043 and then not Is_Class_Wide_Type
9044 (Designated_Type (Etype (Discr)))
9045 and then Etype (Discr_Expr (J)) /= Any_Type
9046 and then Is_Class_Wide_Type
9047 (Designated_Type (Etype (Discr_Expr (J))))
9048 then
9049 Wrong_Type (Discr_Expr (J), Etype (Discr));
9050
9051 elsif Is_Access_Type (Etype (Discr))
9052 and then not Is_Access_Constant (Etype (Discr))
9053 and then Is_Access_Type (Etype (Discr_Expr (J)))
9054 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9055 then
9056 Error_Msg_NE
9057 ("constraint for discriminant& must be access to variable",
9058 Def, Discr);
9059 end if;
9060 end if;
9061
9062 Next_Discriminant (Discr);
9063 end loop;
9064
9065 return Elist;
9066 end Build_Discriminant_Constraints;
9067
9068 ---------------------------------
9069 -- Build_Discriminated_Subtype --
9070 ---------------------------------
9071
9072 procedure Build_Discriminated_Subtype
9073 (T : Entity_Id;
9074 Def_Id : Entity_Id;
9075 Elist : Elist_Id;
9076 Related_Nod : Node_Id;
9077 For_Access : Boolean := False)
9078 is
9079 Has_Discrs : constant Boolean := Has_Discriminants (T);
9080 Constrained : constant Boolean :=
9081 (Has_Discrs
9082 and then not Is_Empty_Elmt_List (Elist)
9083 and then not Is_Class_Wide_Type (T))
9084 or else Is_Constrained (T);
9085
9086 begin
9087 if Ekind (T) = E_Record_Type then
9088 if For_Access then
9089 Set_Ekind (Def_Id, E_Private_Subtype);
9090 Set_Is_For_Access_Subtype (Def_Id, True);
9091 else
9092 Set_Ekind (Def_Id, E_Record_Subtype);
9093 end if;
9094
9095 -- Inherit preelaboration flag from base, for types for which it
9096 -- may have been set: records, private types, protected types.
9097
9098 Set_Known_To_Have_Preelab_Init
9099 (Def_Id, Known_To_Have_Preelab_Init (T));
9100
9101 elsif Ekind (T) = E_Task_Type then
9102 Set_Ekind (Def_Id, E_Task_Subtype);
9103
9104 elsif Ekind (T) = E_Protected_Type then
9105 Set_Ekind (Def_Id, E_Protected_Subtype);
9106 Set_Known_To_Have_Preelab_Init
9107 (Def_Id, Known_To_Have_Preelab_Init (T));
9108
9109 elsif Is_Private_Type (T) then
9110 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9111 Set_Known_To_Have_Preelab_Init
9112 (Def_Id, Known_To_Have_Preelab_Init (T));
9113
9114 -- Private subtypes may have private dependents
9115
9116 Set_Private_Dependents (Def_Id, New_Elmt_List);
9117
9118 elsif Is_Class_Wide_Type (T) then
9119 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9120
9121 else
9122 -- Incomplete type. Attach subtype to list of dependents, to be
9123 -- completed with full view of parent type, unless is it the
9124 -- designated subtype of a record component within an init_proc.
9125 -- This last case arises for a component of an access type whose
9126 -- designated type is incomplete (e.g. a Taft Amendment type).
9127 -- The designated subtype is within an inner scope, and needs no
9128 -- elaboration, because only the access type is needed in the
9129 -- initialization procedure.
9130
9131 Set_Ekind (Def_Id, Ekind (T));
9132
9133 if For_Access and then Within_Init_Proc then
9134 null;
9135 else
9136 Append_Elmt (Def_Id, Private_Dependents (T));
9137 end if;
9138 end if;
9139
9140 Set_Etype (Def_Id, T);
9141 Init_Size_Align (Def_Id);
9142 Set_Has_Discriminants (Def_Id, Has_Discrs);
9143 Set_Is_Constrained (Def_Id, Constrained);
9144
9145 Set_First_Entity (Def_Id, First_Entity (T));
9146 Set_Last_Entity (Def_Id, Last_Entity (T));
9147 Set_Has_Implicit_Dereference
9148 (Def_Id, Has_Implicit_Dereference (T));
9149
9150 -- If the subtype is the completion of a private declaration, there may
9151 -- have been representation clauses for the partial view, and they must
9152 -- be preserved. Build_Derived_Type chains the inherited clauses with
9153 -- the ones appearing on the extension. If this comes from a subtype
9154 -- declaration, all clauses are inherited.
9155
9156 if No (First_Rep_Item (Def_Id)) then
9157 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9158 end if;
9159
9160 if Is_Tagged_Type (T) then
9161 Set_Is_Tagged_Type (Def_Id);
9162 Make_Class_Wide_Type (Def_Id);
9163 end if;
9164
9165 Set_Stored_Constraint (Def_Id, No_Elist);
9166
9167 if Has_Discrs then
9168 Set_Discriminant_Constraint (Def_Id, Elist);
9169 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9170 end if;
9171
9172 if Is_Tagged_Type (T) then
9173
9174 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9175 -- concurrent record type (which has the list of primitive
9176 -- operations).
9177
9178 if Ada_Version >= Ada_2005
9179 and then Is_Concurrent_Type (T)
9180 then
9181 Set_Corresponding_Record_Type (Def_Id,
9182 Corresponding_Record_Type (T));
9183 else
9184 Set_Direct_Primitive_Operations (Def_Id,
9185 Direct_Primitive_Operations (T));
9186 end if;
9187
9188 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9189 end if;
9190
9191 -- Subtypes introduced by component declarations do not need to be
9192 -- marked as delayed, and do not get freeze nodes, because the semantics
9193 -- verifies that the parents of the subtypes are frozen before the
9194 -- enclosing record is frozen.
9195
9196 if not Is_Type (Scope (Def_Id)) then
9197 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9198
9199 if Is_Private_Type (T)
9200 and then Present (Full_View (T))
9201 then
9202 Conditional_Delay (Def_Id, Full_View (T));
9203 else
9204 Conditional_Delay (Def_Id, T);
9205 end if;
9206 end if;
9207
9208 if Is_Record_Type (T) then
9209 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9210
9211 if Has_Discrs
9212 and then not Is_Empty_Elmt_List (Elist)
9213 and then not For_Access
9214 then
9215 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9216 elsif not For_Access then
9217 Set_Cloned_Subtype (Def_Id, T);
9218 end if;
9219 end if;
9220 end Build_Discriminated_Subtype;
9221
9222 ---------------------------
9223 -- Build_Itype_Reference --
9224 ---------------------------
9225
9226 procedure Build_Itype_Reference
9227 (Ityp : Entity_Id;
9228 Nod : Node_Id)
9229 is
9230 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9231 begin
9232
9233 -- Itype references are only created for use by the back-end
9234
9235 if Inside_A_Generic then
9236 return;
9237 else
9238 Set_Itype (IR, Ityp);
9239 Insert_After (Nod, IR);
9240 end if;
9241 end Build_Itype_Reference;
9242
9243 ------------------------
9244 -- Build_Scalar_Bound --
9245 ------------------------
9246
9247 function Build_Scalar_Bound
9248 (Bound : Node_Id;
9249 Par_T : Entity_Id;
9250 Der_T : Entity_Id) return Node_Id
9251 is
9252 New_Bound : Entity_Id;
9253
9254 begin
9255 -- Note: not clear why this is needed, how can the original bound
9256 -- be unanalyzed at this point? and if it is, what business do we
9257 -- have messing around with it? and why is the base type of the
9258 -- parent type the right type for the resolution. It probably is
9259 -- not. It is OK for the new bound we are creating, but not for
9260 -- the old one??? Still if it never happens, no problem.
9261
9262 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9263
9264 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9265 New_Bound := New_Copy (Bound);
9266 Set_Etype (New_Bound, Der_T);
9267 Set_Analyzed (New_Bound);
9268
9269 elsif Is_Entity_Name (Bound) then
9270 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9271
9272 -- The following is almost certainly wrong. What business do we have
9273 -- relocating a node (Bound) that is presumably still attached to
9274 -- the tree elsewhere???
9275
9276 else
9277 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9278 end if;
9279
9280 Set_Etype (New_Bound, Der_T);
9281 return New_Bound;
9282 end Build_Scalar_Bound;
9283
9284 --------------------------------
9285 -- Build_Underlying_Full_View --
9286 --------------------------------
9287
9288 procedure Build_Underlying_Full_View
9289 (N : Node_Id;
9290 Typ : Entity_Id;
9291 Par : Entity_Id)
9292 is
9293 Loc : constant Source_Ptr := Sloc (N);
9294 Subt : constant Entity_Id :=
9295 Make_Defining_Identifier
9296 (Loc, New_External_Name (Chars (Typ), 'S'));
9297
9298 Constr : Node_Id;
9299 Indic : Node_Id;
9300 C : Node_Id;
9301 Id : Node_Id;
9302
9303 procedure Set_Discriminant_Name (Id : Node_Id);
9304 -- If the derived type has discriminants, they may rename discriminants
9305 -- of the parent. When building the full view of the parent, we need to
9306 -- recover the names of the original discriminants if the constraint is
9307 -- given by named associations.
9308
9309 ---------------------------
9310 -- Set_Discriminant_Name --
9311 ---------------------------
9312
9313 procedure Set_Discriminant_Name (Id : Node_Id) is
9314 Disc : Entity_Id;
9315
9316 begin
9317 Set_Original_Discriminant (Id, Empty);
9318
9319 if Has_Discriminants (Typ) then
9320 Disc := First_Discriminant (Typ);
9321 while Present (Disc) loop
9322 if Chars (Disc) = Chars (Id)
9323 and then Present (Corresponding_Discriminant (Disc))
9324 then
9325 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9326 end if;
9327 Next_Discriminant (Disc);
9328 end loop;
9329 end if;
9330 end Set_Discriminant_Name;
9331
9332 -- Start of processing for Build_Underlying_Full_View
9333
9334 begin
9335 if Nkind (N) = N_Full_Type_Declaration then
9336 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9337
9338 elsif Nkind (N) = N_Subtype_Declaration then
9339 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9340
9341 elsif Nkind (N) = N_Component_Declaration then
9342 Constr :=
9343 New_Copy_Tree
9344 (Constraint (Subtype_Indication (Component_Definition (N))));
9345
9346 else
9347 raise Program_Error;
9348 end if;
9349
9350 C := First (Constraints (Constr));
9351 while Present (C) loop
9352 if Nkind (C) = N_Discriminant_Association then
9353 Id := First (Selector_Names (C));
9354 while Present (Id) loop
9355 Set_Discriminant_Name (Id);
9356 Next (Id);
9357 end loop;
9358 end if;
9359
9360 Next (C);
9361 end loop;
9362
9363 Indic :=
9364 Make_Subtype_Declaration (Loc,
9365 Defining_Identifier => Subt,
9366 Subtype_Indication =>
9367 Make_Subtype_Indication (Loc,
9368 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9369 Constraint => New_Copy_Tree (Constr)));
9370
9371 -- If this is a component subtype for an outer itype, it is not
9372 -- a list member, so simply set the parent link for analysis: if
9373 -- the enclosing type does not need to be in a declarative list,
9374 -- neither do the components.
9375
9376 if Is_List_Member (N)
9377 and then Nkind (N) /= N_Component_Declaration
9378 then
9379 Insert_Before (N, Indic);
9380 else
9381 Set_Parent (Indic, Parent (N));
9382 end if;
9383
9384 Analyze (Indic);
9385 Set_Underlying_Full_View (Typ, Full_View (Subt));
9386 end Build_Underlying_Full_View;
9387
9388 -------------------------------
9389 -- Check_Abstract_Overriding --
9390 -------------------------------
9391
9392 procedure Check_Abstract_Overriding (T : Entity_Id) is
9393 Alias_Subp : Entity_Id;
9394 Elmt : Elmt_Id;
9395 Op_List : Elist_Id;
9396 Subp : Entity_Id;
9397 Type_Def : Node_Id;
9398
9399 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9400 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9401 -- which has pragma Implemented already set. Check whether Subp's entity
9402 -- kind conforms to the implementation kind of the overridden routine.
9403
9404 procedure Check_Pragma_Implemented
9405 (Subp : Entity_Id;
9406 Iface_Subp : Entity_Id);
9407 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9408 -- Iface_Subp and both entities have pragma Implemented already set on
9409 -- them. Check whether the two implementation kinds are conforming.
9410
9411 procedure Inherit_Pragma_Implemented
9412 (Subp : Entity_Id;
9413 Iface_Subp : Entity_Id);
9414 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9415 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9416 -- Propagate the implementation kind of Iface_Subp to Subp.
9417
9418 ------------------------------
9419 -- Check_Pragma_Implemented --
9420 ------------------------------
9421
9422 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9423 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9424 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9425 Subp_Alias : constant Entity_Id := Alias (Subp);
9426 Contr_Typ : Entity_Id;
9427 Impl_Subp : Entity_Id;
9428
9429 begin
9430 -- Subp must have an alias since it is a hidden entity used to link
9431 -- an interface subprogram to its overriding counterpart.
9432
9433 pragma Assert (Present (Subp_Alias));
9434
9435 -- Handle aliases to synchronized wrappers
9436
9437 Impl_Subp := Subp_Alias;
9438
9439 if Is_Primitive_Wrapper (Impl_Subp) then
9440 Impl_Subp := Wrapped_Entity (Impl_Subp);
9441 end if;
9442
9443 -- Extract the type of the controlling formal
9444
9445 Contr_Typ := Etype (First_Formal (Subp_Alias));
9446
9447 if Is_Concurrent_Record_Type (Contr_Typ) then
9448 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9449 end if;
9450
9451 -- An interface subprogram whose implementation kind is By_Entry must
9452 -- be implemented by an entry.
9453
9454 if Impl_Kind = Name_By_Entry
9455 and then Ekind (Impl_Subp) /= E_Entry
9456 then
9457 Error_Msg_Node_2 := Iface_Alias;
9458 Error_Msg_NE
9459 ("type & must implement abstract subprogram & with an entry",
9460 Subp_Alias, Contr_Typ);
9461
9462 elsif Impl_Kind = Name_By_Protected_Procedure then
9463
9464 -- An interface subprogram whose implementation kind is By_
9465 -- Protected_Procedure cannot be implemented by a primitive
9466 -- procedure of a task type.
9467
9468 if Ekind (Contr_Typ) /= E_Protected_Type then
9469 Error_Msg_Node_2 := Contr_Typ;
9470 Error_Msg_NE
9471 ("interface subprogram & cannot be implemented by a " &
9472 "primitive procedure of task type &", Subp_Alias,
9473 Iface_Alias);
9474
9475 -- An interface subprogram whose implementation kind is By_
9476 -- Protected_Procedure must be implemented by a procedure.
9477
9478 elsif Ekind (Impl_Subp) /= E_Procedure then
9479 Error_Msg_Node_2 := Iface_Alias;
9480 Error_Msg_NE
9481 ("type & must implement abstract subprogram & with a " &
9482 "procedure", Subp_Alias, Contr_Typ);
9483
9484 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9485 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9486 then
9487 Error_Msg_Name_1 := Impl_Kind;
9488 Error_Msg_N
9489 ("overriding operation& must have synchronization%",
9490 Subp_Alias);
9491 end if;
9492
9493 -- If primitive has Optional synchronization, overriding operation
9494 -- must match if it has an explicit synchronization..
9495
9496 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9497 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9498 then
9499 Error_Msg_Name_1 := Impl_Kind;
9500 Error_Msg_N
9501 ("overriding operation& must have syncrhonization%",
9502 Subp_Alias);
9503 end if;
9504 end Check_Pragma_Implemented;
9505
9506 ------------------------------
9507 -- Check_Pragma_Implemented --
9508 ------------------------------
9509
9510 procedure Check_Pragma_Implemented
9511 (Subp : Entity_Id;
9512 Iface_Subp : Entity_Id)
9513 is
9514 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9515 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9516
9517 begin
9518 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9519 -- and overriding subprogram are different. In general this is an
9520 -- error except when the implementation kind of the overridden
9521 -- subprograms is By_Any or Optional.
9522
9523 if Iface_Kind /= Subp_Kind
9524 and then Iface_Kind /= Name_By_Any
9525 and then Iface_Kind /= Name_Optional
9526 then
9527 if Iface_Kind = Name_By_Entry then
9528 Error_Msg_N
9529 ("incompatible implementation kind, overridden subprogram " &
9530 "is marked By_Entry", Subp);
9531 else
9532 Error_Msg_N
9533 ("incompatible implementation kind, overridden subprogram " &
9534 "is marked By_Protected_Procedure", Subp);
9535 end if;
9536 end if;
9537 end Check_Pragma_Implemented;
9538
9539 --------------------------------
9540 -- Inherit_Pragma_Implemented --
9541 --------------------------------
9542
9543 procedure Inherit_Pragma_Implemented
9544 (Subp : Entity_Id;
9545 Iface_Subp : Entity_Id)
9546 is
9547 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9548 Loc : constant Source_Ptr := Sloc (Subp);
9549 Impl_Prag : Node_Id;
9550
9551 begin
9552 -- Since the implementation kind is stored as a representation item
9553 -- rather than a flag, create a pragma node.
9554
9555 Impl_Prag :=
9556 Make_Pragma (Loc,
9557 Chars => Name_Implemented,
9558 Pragma_Argument_Associations => New_List (
9559 Make_Pragma_Argument_Association (Loc,
9560 Expression => New_Occurrence_Of (Subp, Loc)),
9561
9562 Make_Pragma_Argument_Association (Loc,
9563 Expression => Make_Identifier (Loc, Iface_Kind))));
9564
9565 -- The pragma doesn't need to be analyzed because it is internally
9566 -- built. It is safe to directly register it as a rep item since we
9567 -- are only interested in the characters of the implementation kind.
9568
9569 Record_Rep_Item (Subp, Impl_Prag);
9570 end Inherit_Pragma_Implemented;
9571
9572 -- Start of processing for Check_Abstract_Overriding
9573
9574 begin
9575 Op_List := Primitive_Operations (T);
9576
9577 -- Loop to check primitive operations
9578
9579 Elmt := First_Elmt (Op_List);
9580 while Present (Elmt) loop
9581 Subp := Node (Elmt);
9582 Alias_Subp := Alias (Subp);
9583
9584 -- Inherited subprograms are identified by the fact that they do not
9585 -- come from source, and the associated source location is the
9586 -- location of the first subtype of the derived type.
9587
9588 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9589 -- subprograms that "require overriding".
9590
9591 -- Special exception, do not complain about failure to override the
9592 -- stream routines _Input and _Output, as well as the primitive
9593 -- operations used in dispatching selects since we always provide
9594 -- automatic overridings for these subprograms.
9595
9596 -- Also ignore this rule for convention CIL since .NET libraries
9597 -- do bizarre things with interfaces???
9598
9599 -- The partial view of T may have been a private extension, for
9600 -- which inherited functions dispatching on result are abstract.
9601 -- If the full view is a null extension, there is no need for
9602 -- overriding in Ada 2005, but wrappers need to be built for them
9603 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9604
9605 if Is_Null_Extension (T)
9606 and then Has_Controlling_Result (Subp)
9607 and then Ada_Version >= Ada_2005
9608 and then Present (Alias_Subp)
9609 and then not Comes_From_Source (Subp)
9610 and then not Is_Abstract_Subprogram (Alias_Subp)
9611 and then not Is_Access_Type (Etype (Subp))
9612 then
9613 null;
9614
9615 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9616 -- processing because this check is done with the aliased
9617 -- entity
9618
9619 elsif Present (Interface_Alias (Subp)) then
9620 null;
9621
9622 elsif (Is_Abstract_Subprogram (Subp)
9623 or else Requires_Overriding (Subp)
9624 or else
9625 (Has_Controlling_Result (Subp)
9626 and then Present (Alias_Subp)
9627 and then not Comes_From_Source (Subp)
9628 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9629 and then not Is_TSS (Subp, TSS_Stream_Input)
9630 and then not Is_TSS (Subp, TSS_Stream_Output)
9631 and then not Is_Abstract_Type (T)
9632 and then Convention (T) /= Convention_CIL
9633 and then not Is_Predefined_Interface_Primitive (Subp)
9634
9635 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9636 -- with abstract interface types because the check will be done
9637 -- with the aliased entity (otherwise we generate a duplicated
9638 -- error message).
9639
9640 and then not Present (Interface_Alias (Subp))
9641 then
9642 if Present (Alias_Subp) then
9643
9644 -- Only perform the check for a derived subprogram when the
9645 -- type has an explicit record extension. This avoids incorrect
9646 -- flagging of abstract subprograms for the case of a type
9647 -- without an extension that is derived from a formal type
9648 -- with a tagged actual (can occur within a private part).
9649
9650 -- Ada 2005 (AI-391): In the case of an inherited function with
9651 -- a controlling result of the type, the rule does not apply if
9652 -- the type is a null extension (unless the parent function
9653 -- itself is abstract, in which case the function must still be
9654 -- be overridden). The expander will generate an overriding
9655 -- wrapper function calling the parent subprogram (see
9656 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9657
9658 Type_Def := Type_Definition (Parent (T));
9659
9660 if Nkind (Type_Def) = N_Derived_Type_Definition
9661 and then Present (Record_Extension_Part (Type_Def))
9662 and then
9663 (Ada_Version < Ada_2005
9664 or else not Is_Null_Extension (T)
9665 or else Ekind (Subp) = E_Procedure
9666 or else not Has_Controlling_Result (Subp)
9667 or else Is_Abstract_Subprogram (Alias_Subp)
9668 or else Requires_Overriding (Subp)
9669 or else Is_Access_Type (Etype (Subp)))
9670 then
9671 -- Avoid reporting error in case of abstract predefined
9672 -- primitive inherited from interface type because the
9673 -- body of internally generated predefined primitives
9674 -- of tagged types are generated later by Freeze_Type
9675
9676 if Is_Interface (Root_Type (T))
9677 and then Is_Abstract_Subprogram (Subp)
9678 and then Is_Predefined_Dispatching_Operation (Subp)
9679 and then not Comes_From_Source (Ultimate_Alias (Subp))
9680 then
9681 null;
9682
9683 else
9684 Error_Msg_NE
9685 ("type must be declared abstract or & overridden",
9686 T, Subp);
9687
9688 -- Traverse the whole chain of aliased subprograms to
9689 -- complete the error notification. This is especially
9690 -- useful for traceability of the chain of entities when
9691 -- the subprogram corresponds with an interface
9692 -- subprogram (which may be defined in another package).
9693
9694 if Present (Alias_Subp) then
9695 declare
9696 E : Entity_Id;
9697
9698 begin
9699 E := Subp;
9700 while Present (Alias (E)) loop
9701
9702 -- Avoid reporting redundant errors on entities
9703 -- inherited from interfaces
9704
9705 if Sloc (E) /= Sloc (T) then
9706 Error_Msg_Sloc := Sloc (E);
9707 Error_Msg_NE
9708 ("\& has been inherited #", T, Subp);
9709 end if;
9710
9711 E := Alias (E);
9712 end loop;
9713
9714 Error_Msg_Sloc := Sloc (E);
9715
9716 -- AI05-0068: report if there is an overriding
9717 -- non-abstract subprogram that is invisible.
9718
9719 if Is_Hidden (E)
9720 and then not Is_Abstract_Subprogram (E)
9721 then
9722 Error_Msg_NE
9723 ("\& subprogram# is not visible",
9724 T, Subp);
9725
9726 else
9727 Error_Msg_NE
9728 ("\& has been inherited from subprogram #",
9729 T, Subp);
9730 end if;
9731 end;
9732 end if;
9733 end if;
9734
9735 -- Ada 2005 (AI-345): Protected or task type implementing
9736 -- abstract interfaces.
9737
9738 elsif Is_Concurrent_Record_Type (T)
9739 and then Present (Interfaces (T))
9740 then
9741 -- If an inherited subprogram is implemented by a protected
9742 -- procedure or an entry, then the first parameter of the
9743 -- inherited subprogram shall be of mode OUT or IN OUT, or
9744 -- an access-to-variable parameter (RM 9.4(11.9/3))
9745
9746 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9747 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9748 and then Ekind (Subp) /= E_Function
9749 and then not Is_Predefined_Dispatching_Operation (Subp)
9750 then
9751 Error_Msg_PT (T, Subp);
9752
9753 -- Some other kind of overriding failure
9754
9755 else
9756 Error_Msg_NE
9757 ("interface subprogram & must be overridden",
9758 T, Subp);
9759
9760 -- Examine primitive operations of synchronized type,
9761 -- to find homonyms that have the wrong profile.
9762
9763 declare
9764 Prim : Entity_Id;
9765
9766 begin
9767 Prim :=
9768 First_Entity (Corresponding_Concurrent_Type (T));
9769 while Present (Prim) loop
9770 if Chars (Prim) = Chars (Subp) then
9771 Error_Msg_NE
9772 ("profile is not type conformant with "
9773 & "prefixed view profile of "
9774 & "inherited operation&", Prim, Subp);
9775 end if;
9776
9777 Next_Entity (Prim);
9778 end loop;
9779 end;
9780 end if;
9781 end if;
9782
9783 else
9784 Error_Msg_Node_2 := T;
9785 Error_Msg_N
9786 ("abstract subprogram& not allowed for type&", Subp);
9787
9788 -- Also post unconditional warning on the type (unconditional
9789 -- so that if there are more than one of these cases, we get
9790 -- them all, and not just the first one).
9791
9792 Error_Msg_Node_2 := Subp;
9793 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9794 end if;
9795 end if;
9796
9797 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9798
9799 -- Subp is an expander-generated procedure which maps an interface
9800 -- alias to a protected wrapper. The interface alias is flagged by
9801 -- pragma Implemented. Ensure that Subp is a procedure when the
9802 -- implementation kind is By_Protected_Procedure or an entry when
9803 -- By_Entry.
9804
9805 if Ada_Version >= Ada_2012
9806 and then Is_Hidden (Subp)
9807 and then Present (Interface_Alias (Subp))
9808 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9809 then
9810 Check_Pragma_Implemented (Subp);
9811 end if;
9812
9813 -- Subp is an interface primitive which overrides another interface
9814 -- primitive marked with pragma Implemented.
9815
9816 if Ada_Version >= Ada_2012
9817 and then Present (Overridden_Operation (Subp))
9818 and then Has_Rep_Pragma
9819 (Overridden_Operation (Subp), Name_Implemented)
9820 then
9821 -- If the overriding routine is also marked by Implemented, check
9822 -- that the two implementation kinds are conforming.
9823
9824 if Has_Rep_Pragma (Subp, Name_Implemented) then
9825 Check_Pragma_Implemented
9826 (Subp => Subp,
9827 Iface_Subp => Overridden_Operation (Subp));
9828
9829 -- Otherwise the overriding routine inherits the implementation
9830 -- kind from the overridden subprogram.
9831
9832 else
9833 Inherit_Pragma_Implemented
9834 (Subp => Subp,
9835 Iface_Subp => Overridden_Operation (Subp));
9836 end if;
9837 end if;
9838
9839 -- If the operation is a wrapper for a synchronized primitive, it
9840 -- may be called indirectly through a dispatching select. We assume
9841 -- that it will be referenced elsewhere indirectly, and suppress
9842 -- warnings about an unused entity.
9843
9844 if Is_Primitive_Wrapper (Subp)
9845 and then Present (Wrapped_Entity (Subp))
9846 then
9847 Set_Referenced (Wrapped_Entity (Subp));
9848 end if;
9849
9850 Next_Elmt (Elmt);
9851 end loop;
9852 end Check_Abstract_Overriding;
9853
9854 ------------------------------------------------
9855 -- Check_Access_Discriminant_Requires_Limited --
9856 ------------------------------------------------
9857
9858 procedure Check_Access_Discriminant_Requires_Limited
9859 (D : Node_Id;
9860 Loc : Node_Id)
9861 is
9862 begin
9863 -- A discriminant_specification for an access discriminant shall appear
9864 -- only in the declaration for a task or protected type, or for a type
9865 -- with the reserved word 'limited' in its definition or in one of its
9866 -- ancestors (RM 3.7(10)).
9867
9868 -- AI-0063: The proper condition is that type must be immutably limited,
9869 -- or else be a partial view.
9870
9871 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9872 if Is_Limited_View (Current_Scope)
9873 or else
9874 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9875 and then Limited_Present (Parent (Current_Scope)))
9876 then
9877 null;
9878
9879 else
9880 Error_Msg_N
9881 ("access discriminants allowed only for limited types", Loc);
9882 end if;
9883 end if;
9884 end Check_Access_Discriminant_Requires_Limited;
9885
9886 -----------------------------------
9887 -- Check_Aliased_Component_Types --
9888 -----------------------------------
9889
9890 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9891 C : Entity_Id;
9892
9893 begin
9894 -- ??? Also need to check components of record extensions, but not
9895 -- components of protected types (which are always limited).
9896
9897 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9898 -- types to be unconstrained. This is safe because it is illegal to
9899 -- create access subtypes to such types with explicit discriminant
9900 -- constraints.
9901
9902 if not Is_Limited_Type (T) then
9903 if Ekind (T) = E_Record_Type then
9904 C := First_Component (T);
9905 while Present (C) loop
9906 if Is_Aliased (C)
9907 and then Has_Discriminants (Etype (C))
9908 and then not Is_Constrained (Etype (C))
9909 and then not In_Instance_Body
9910 and then Ada_Version < Ada_2005
9911 then
9912 Error_Msg_N
9913 ("aliased component must be constrained (RM 3.6(11))",
9914 C);
9915 end if;
9916
9917 Next_Component (C);
9918 end loop;
9919
9920 elsif Ekind (T) = E_Array_Type then
9921 if Has_Aliased_Components (T)
9922 and then Has_Discriminants (Component_Type (T))
9923 and then not Is_Constrained (Component_Type (T))
9924 and then not In_Instance_Body
9925 and then Ada_Version < Ada_2005
9926 then
9927 Error_Msg_N
9928 ("aliased component type must be constrained (RM 3.6(11))",
9929 T);
9930 end if;
9931 end if;
9932 end if;
9933 end Check_Aliased_Component_Types;
9934
9935 ----------------------
9936 -- Check_Completion --
9937 ----------------------
9938
9939 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9940 E : Entity_Id;
9941
9942 procedure Post_Error;
9943 -- Post error message for lack of completion for entity E
9944
9945 ----------------
9946 -- Post_Error --
9947 ----------------
9948
9949 procedure Post_Error is
9950
9951 procedure Missing_Body;
9952 -- Output missing body message
9953
9954 ------------------
9955 -- Missing_Body --
9956 ------------------
9957
9958 procedure Missing_Body is
9959 begin
9960 -- Spec is in same unit, so we can post on spec
9961
9962 if In_Same_Source_Unit (Body_Id, E) then
9963 Error_Msg_N ("missing body for &", E);
9964
9965 -- Spec is in a separate unit, so we have to post on the body
9966
9967 else
9968 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9969 end if;
9970 end Missing_Body;
9971
9972 -- Start of processing for Post_Error
9973
9974 begin
9975 if not Comes_From_Source (E) then
9976
9977 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9978 -- It may be an anonymous protected type created for a
9979 -- single variable. Post error on variable, if present.
9980
9981 declare
9982 Var : Entity_Id;
9983
9984 begin
9985 Var := First_Entity (Current_Scope);
9986 while Present (Var) loop
9987 exit when Etype (Var) = E
9988 and then Comes_From_Source (Var);
9989
9990 Next_Entity (Var);
9991 end loop;
9992
9993 if Present (Var) then
9994 E := Var;
9995 end if;
9996 end;
9997 end if;
9998 end if;
9999
10000 -- If a generated entity has no completion, then either previous
10001 -- semantic errors have disabled the expansion phase, or else we had
10002 -- missing subunits, or else we are compiling without expansion,
10003 -- or else something is very wrong.
10004
10005 if not Comes_From_Source (E) then
10006 pragma Assert
10007 (Serious_Errors_Detected > 0
10008 or else Configurable_Run_Time_Violations > 0
10009 or else Subunits_Missing
10010 or else not Expander_Active);
10011 return;
10012
10013 -- Here for source entity
10014
10015 else
10016 -- Here if no body to post the error message, so we post the error
10017 -- on the declaration that has no completion. This is not really
10018 -- the right place to post it, think about this later ???
10019
10020 if No (Body_Id) then
10021 if Is_Type (E) then
10022 Error_Msg_NE
10023 ("missing full declaration for }", Parent (E), E);
10024 else
10025 Error_Msg_NE ("missing body for &", Parent (E), E);
10026 end if;
10027
10028 -- Package body has no completion for a declaration that appears
10029 -- in the corresponding spec. Post error on the body, with a
10030 -- reference to the non-completed declaration.
10031
10032 else
10033 Error_Msg_Sloc := Sloc (E);
10034
10035 if Is_Type (E) then
10036 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10037
10038 elsif Is_Overloadable (E)
10039 and then Current_Entity_In_Scope (E) /= E
10040 then
10041 -- It may be that the completion is mistyped and appears as
10042 -- a distinct overloading of the entity.
10043
10044 declare
10045 Candidate : constant Entity_Id :=
10046 Current_Entity_In_Scope (E);
10047 Decl : constant Node_Id :=
10048 Unit_Declaration_Node (Candidate);
10049
10050 begin
10051 if Is_Overloadable (Candidate)
10052 and then Ekind (Candidate) = Ekind (E)
10053 and then Nkind (Decl) = N_Subprogram_Body
10054 and then Acts_As_Spec (Decl)
10055 then
10056 Check_Type_Conformant (Candidate, E);
10057
10058 else
10059 Missing_Body;
10060 end if;
10061 end;
10062
10063 else
10064 Missing_Body;
10065 end if;
10066 end if;
10067 end if;
10068 end Post_Error;
10069
10070 -- Start of processing for Check_Completion
10071
10072 begin
10073 E := First_Entity (Current_Scope);
10074 while Present (E) loop
10075 if Is_Intrinsic_Subprogram (E) then
10076 null;
10077
10078 -- The following situation requires special handling: a child unit
10079 -- that appears in the context clause of the body of its parent:
10080
10081 -- procedure Parent.Child (...);
10082
10083 -- with Parent.Child;
10084 -- package body Parent is
10085
10086 -- Here Parent.Child appears as a local entity, but should not be
10087 -- flagged as requiring completion, because it is a compilation
10088 -- unit.
10089
10090 -- Ignore missing completion for a subprogram that does not come from
10091 -- source (including the _Call primitive operation of RAS types,
10092 -- which has to have the flag Comes_From_Source for other purposes):
10093 -- we assume that the expander will provide the missing completion.
10094 -- In case of previous errors, other expansion actions that provide
10095 -- bodies for null procedures with not be invoked, so inhibit message
10096 -- in those cases.
10097
10098 -- Note that E_Operator is not in the list that follows, because
10099 -- this kind is reserved for predefined operators, that are
10100 -- intrinsic and do not need completion.
10101
10102 elsif Ekind (E) = E_Function
10103 or else Ekind (E) = E_Procedure
10104 or else Ekind (E) = E_Generic_Function
10105 or else Ekind (E) = E_Generic_Procedure
10106 then
10107 if Has_Completion (E) then
10108 null;
10109
10110 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10111 null;
10112
10113 elsif Is_Subprogram (E)
10114 and then (not Comes_From_Source (E)
10115 or else Chars (E) = Name_uCall)
10116 then
10117 null;
10118
10119 elsif
10120 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10121 then
10122 null;
10123
10124 elsif Nkind (Parent (E)) = N_Procedure_Specification
10125 and then Null_Present (Parent (E))
10126 and then Serious_Errors_Detected > 0
10127 then
10128 null;
10129
10130 else
10131 Post_Error;
10132 end if;
10133
10134 elsif Is_Entry (E) then
10135 if not Has_Completion (E) and then
10136 (Ekind (Scope (E)) = E_Protected_Object
10137 or else Ekind (Scope (E)) = E_Protected_Type)
10138 then
10139 Post_Error;
10140 end if;
10141
10142 elsif Is_Package_Or_Generic_Package (E) then
10143 if Unit_Requires_Body (E) then
10144 if not Has_Completion (E)
10145 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10146 N_Compilation_Unit
10147 then
10148 Post_Error;
10149 end if;
10150
10151 elsif not Is_Child_Unit (E) then
10152 May_Need_Implicit_Body (E);
10153 end if;
10154
10155 -- A formal incomplete type (Ada 2012) does not require a completion;
10156 -- other incomplete type declarations do.
10157
10158 elsif Ekind (E) = E_Incomplete_Type
10159 and then No (Underlying_Type (E))
10160 and then not Is_Generic_Type (E)
10161 then
10162 Post_Error;
10163
10164 elsif (Ekind (E) = E_Task_Type or else
10165 Ekind (E) = E_Protected_Type)
10166 and then not Has_Completion (E)
10167 then
10168 Post_Error;
10169
10170 -- A single task declared in the current scope is a constant, verify
10171 -- that the body of its anonymous type is in the same scope. If the
10172 -- task is defined elsewhere, this may be a renaming declaration for
10173 -- which no completion is needed.
10174
10175 elsif Ekind (E) = E_Constant
10176 and then Ekind (Etype (E)) = E_Task_Type
10177 and then not Has_Completion (Etype (E))
10178 and then Scope (Etype (E)) = Current_Scope
10179 then
10180 Post_Error;
10181
10182 elsif Ekind (E) = E_Protected_Object
10183 and then not Has_Completion (Etype (E))
10184 then
10185 Post_Error;
10186
10187 elsif Ekind (E) = E_Record_Type then
10188 if Is_Tagged_Type (E) then
10189 Check_Abstract_Overriding (E);
10190 Check_Conventions (E);
10191 end if;
10192
10193 Check_Aliased_Component_Types (E);
10194
10195 elsif Ekind (E) = E_Array_Type then
10196 Check_Aliased_Component_Types (E);
10197
10198 end if;
10199
10200 Next_Entity (E);
10201 end loop;
10202 end Check_Completion;
10203
10204 ------------------------------------
10205 -- Check_CPP_Type_Has_No_Defaults --
10206 ------------------------------------
10207
10208 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10209 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10210 Clist : Node_Id;
10211 Comp : Node_Id;
10212
10213 begin
10214 -- Obtain the component list
10215
10216 if Nkind (Tdef) = N_Record_Definition then
10217 Clist := Component_List (Tdef);
10218 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10219 Clist := Component_List (Record_Extension_Part (Tdef));
10220 end if;
10221
10222 -- Check all components to ensure no default expressions
10223
10224 if Present (Clist) then
10225 Comp := First (Component_Items (Clist));
10226 while Present (Comp) loop
10227 if Present (Expression (Comp)) then
10228 Error_Msg_N
10229 ("component of imported 'C'P'P type cannot have "
10230 & "default expression", Expression (Comp));
10231 end if;
10232
10233 Next (Comp);
10234 end loop;
10235 end if;
10236 end Check_CPP_Type_Has_No_Defaults;
10237
10238 ----------------------------
10239 -- Check_Delta_Expression --
10240 ----------------------------
10241
10242 procedure Check_Delta_Expression (E : Node_Id) is
10243 begin
10244 if not (Is_Real_Type (Etype (E))) then
10245 Wrong_Type (E, Any_Real);
10246
10247 elsif not Is_OK_Static_Expression (E) then
10248 Flag_Non_Static_Expr
10249 ("non-static expression used for delta value!", E);
10250
10251 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10252 Error_Msg_N ("delta expression must be positive", E);
10253
10254 else
10255 return;
10256 end if;
10257
10258 -- If any of above errors occurred, then replace the incorrect
10259 -- expression by the real 0.1, which should prevent further errors.
10260
10261 Rewrite (E,
10262 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10263 Analyze_And_Resolve (E, Standard_Float);
10264 end Check_Delta_Expression;
10265
10266 -----------------------------
10267 -- Check_Digits_Expression --
10268 -----------------------------
10269
10270 procedure Check_Digits_Expression (E : Node_Id) is
10271 begin
10272 if not (Is_Integer_Type (Etype (E))) then
10273 Wrong_Type (E, Any_Integer);
10274
10275 elsif not Is_OK_Static_Expression (E) then
10276 Flag_Non_Static_Expr
10277 ("non-static expression used for digits value!", E);
10278
10279 elsif Expr_Value (E) <= 0 then
10280 Error_Msg_N ("digits value must be greater than zero", E);
10281
10282 else
10283 return;
10284 end if;
10285
10286 -- If any of above errors occurred, then replace the incorrect
10287 -- expression by the integer 1, which should prevent further errors.
10288
10289 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10290 Analyze_And_Resolve (E, Standard_Integer);
10291
10292 end Check_Digits_Expression;
10293
10294 --------------------------
10295 -- Check_Initialization --
10296 --------------------------
10297
10298 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10299 begin
10300 -- Special processing for limited types
10301
10302 if Is_Limited_Type (T)
10303 and then not In_Instance
10304 and then not In_Inlined_Body
10305 then
10306 if not OK_For_Limited_Init (T, Exp) then
10307
10308 -- In GNAT mode, this is just a warning, to allow it to be evilly
10309 -- turned off. Otherwise it is a real error.
10310
10311 if GNAT_Mode then
10312 Error_Msg_N
10313 ("??cannot initialize entities of limited type!", Exp);
10314
10315 elsif Ada_Version < Ada_2005 then
10316
10317 -- The side effect removal machinery may generate illegal Ada
10318 -- code to avoid the usage of access types and 'reference in
10319 -- SPARK mode. Since this is legal code with respect to theorem
10320 -- proving, do not emit the error.
10321
10322 if GNATprove_Mode
10323 and then Nkind (Exp) = N_Function_Call
10324 and then Nkind (Parent (Exp)) = N_Object_Declaration
10325 and then not Comes_From_Source
10326 (Defining_Identifier (Parent (Exp)))
10327 then
10328 null;
10329
10330 else
10331 Error_Msg_N
10332 ("cannot initialize entities of limited type", Exp);
10333 Explain_Limited_Type (T, Exp);
10334 end if;
10335
10336 else
10337 -- Specialize error message according to kind of illegal
10338 -- initial expression.
10339
10340 if Nkind (Exp) = N_Type_Conversion
10341 and then Nkind (Expression (Exp)) = N_Function_Call
10342 then
10343 Error_Msg_N
10344 ("illegal context for call"
10345 & " to function with limited result", Exp);
10346
10347 else
10348 Error_Msg_N
10349 ("initialization of limited object requires aggregate "
10350 & "or function call", Exp);
10351 end if;
10352 end if;
10353 end if;
10354 end if;
10355
10356 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10357 -- set unless we can be sure that no range check is required.
10358
10359 if (not Expander_Active and not GNATprove_Mode)
10360 and then Is_Scalar_Type (T)
10361 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10362 then
10363 Set_Do_Range_Check (Exp);
10364 end if;
10365 end Check_Initialization;
10366
10367 ----------------------
10368 -- Check_Interfaces --
10369 ----------------------
10370
10371 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10372 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10373
10374 Iface : Node_Id;
10375 Iface_Def : Node_Id;
10376 Iface_Typ : Entity_Id;
10377 Parent_Node : Node_Id;
10378
10379 Is_Task : Boolean := False;
10380 -- Set True if parent type or any progenitor is a task interface
10381
10382 Is_Protected : Boolean := False;
10383 -- Set True if parent type or any progenitor is a protected interface
10384
10385 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10386 -- Check that a progenitor is compatible with declaration.
10387 -- Error is posted on Error_Node.
10388
10389 ------------------
10390 -- Check_Ifaces --
10391 ------------------
10392
10393 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10394 Iface_Id : constant Entity_Id :=
10395 Defining_Identifier (Parent (Iface_Def));
10396 Type_Def : Node_Id;
10397
10398 begin
10399 if Nkind (N) = N_Private_Extension_Declaration then
10400 Type_Def := N;
10401 else
10402 Type_Def := Type_Definition (N);
10403 end if;
10404
10405 if Is_Task_Interface (Iface_Id) then
10406 Is_Task := True;
10407
10408 elsif Is_Protected_Interface (Iface_Id) then
10409 Is_Protected := True;
10410 end if;
10411
10412 if Is_Synchronized_Interface (Iface_Id) then
10413
10414 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10415 -- extension derived from a synchronized interface must explicitly
10416 -- be declared synchronized, because the full view will be a
10417 -- synchronized type.
10418
10419 if Nkind (N) = N_Private_Extension_Declaration then
10420 if not Synchronized_Present (N) then
10421 Error_Msg_NE
10422 ("private extension of& must be explicitly synchronized",
10423 N, Iface_Id);
10424 end if;
10425
10426 -- However, by 3.9.4(16/2), a full type that is a record extension
10427 -- is never allowed to derive from a synchronized interface (note
10428 -- that interfaces must be excluded from this check, because those
10429 -- are represented by derived type definitions in some cases).
10430
10431 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10432 and then not Interface_Present (Type_Definition (N))
10433 then
10434 Error_Msg_N ("record extension cannot derive from synchronized"
10435 & " interface", Error_Node);
10436 end if;
10437 end if;
10438
10439 -- Check that the characteristics of the progenitor are compatible
10440 -- with the explicit qualifier in the declaration.
10441 -- The check only applies to qualifiers that come from source.
10442 -- Limited_Present also appears in the declaration of corresponding
10443 -- records, and the check does not apply to them.
10444
10445 if Limited_Present (Type_Def)
10446 and then not
10447 Is_Concurrent_Record_Type (Defining_Identifier (N))
10448 then
10449 if Is_Limited_Interface (Parent_Type)
10450 and then not Is_Limited_Interface (Iface_Id)
10451 then
10452 Error_Msg_NE
10453 ("progenitor& must be limited interface",
10454 Error_Node, Iface_Id);
10455
10456 elsif
10457 (Task_Present (Iface_Def)
10458 or else Protected_Present (Iface_Def)
10459 or else Synchronized_Present (Iface_Def))
10460 and then Nkind (N) /= N_Private_Extension_Declaration
10461 and then not Error_Posted (N)
10462 then
10463 Error_Msg_NE
10464 ("progenitor& must be limited interface",
10465 Error_Node, Iface_Id);
10466 end if;
10467
10468 -- Protected interfaces can only inherit from limited, synchronized
10469 -- or protected interfaces.
10470
10471 elsif Nkind (N) = N_Full_Type_Declaration
10472 and then Protected_Present (Type_Def)
10473 then
10474 if Limited_Present (Iface_Def)
10475 or else Synchronized_Present (Iface_Def)
10476 or else Protected_Present (Iface_Def)
10477 then
10478 null;
10479
10480 elsif Task_Present (Iface_Def) then
10481 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10482 & " from task interface", Error_Node);
10483
10484 else
10485 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10486 & " from non-limited interface", Error_Node);
10487 end if;
10488
10489 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10490 -- limited and synchronized.
10491
10492 elsif Synchronized_Present (Type_Def) then
10493 if Limited_Present (Iface_Def)
10494 or else Synchronized_Present (Iface_Def)
10495 then
10496 null;
10497
10498 elsif Protected_Present (Iface_Def)
10499 and then Nkind (N) /= N_Private_Extension_Declaration
10500 then
10501 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10502 & " from protected interface", Error_Node);
10503
10504 elsif Task_Present (Iface_Def)
10505 and then Nkind (N) /= N_Private_Extension_Declaration
10506 then
10507 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10508 & " from task interface", Error_Node);
10509
10510 elsif not Is_Limited_Interface (Iface_Id) then
10511 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10512 & " from non-limited interface", Error_Node);
10513 end if;
10514
10515 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10516 -- synchronized or task interfaces.
10517
10518 elsif Nkind (N) = N_Full_Type_Declaration
10519 and then Task_Present (Type_Def)
10520 then
10521 if Limited_Present (Iface_Def)
10522 or else Synchronized_Present (Iface_Def)
10523 or else Task_Present (Iface_Def)
10524 then
10525 null;
10526
10527 elsif Protected_Present (Iface_Def) then
10528 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10529 & " protected interface", Error_Node);
10530
10531 else
10532 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10533 & " non-limited interface", Error_Node);
10534 end if;
10535 end if;
10536 end Check_Ifaces;
10537
10538 -- Start of processing for Check_Interfaces
10539
10540 begin
10541 if Is_Interface (Parent_Type) then
10542 if Is_Task_Interface (Parent_Type) then
10543 Is_Task := True;
10544
10545 elsif Is_Protected_Interface (Parent_Type) then
10546 Is_Protected := True;
10547 end if;
10548 end if;
10549
10550 if Nkind (N) = N_Private_Extension_Declaration then
10551
10552 -- Check that progenitors are compatible with declaration
10553
10554 Iface := First (Interface_List (Def));
10555 while Present (Iface) loop
10556 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10557
10558 Parent_Node := Parent (Base_Type (Iface_Typ));
10559 Iface_Def := Type_Definition (Parent_Node);
10560
10561 if not Is_Interface (Iface_Typ) then
10562 Diagnose_Interface (Iface, Iface_Typ);
10563
10564 else
10565 Check_Ifaces (Iface_Def, Iface);
10566 end if;
10567
10568 Next (Iface);
10569 end loop;
10570
10571 if Is_Task and Is_Protected then
10572 Error_Msg_N
10573 ("type cannot derive from task and protected interface", N);
10574 end if;
10575
10576 return;
10577 end if;
10578
10579 -- Full type declaration of derived type.
10580 -- Check compatibility with parent if it is interface type
10581
10582 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10583 and then Is_Interface (Parent_Type)
10584 then
10585 Parent_Node := Parent (Parent_Type);
10586
10587 -- More detailed checks for interface varieties
10588
10589 Check_Ifaces
10590 (Iface_Def => Type_Definition (Parent_Node),
10591 Error_Node => Subtype_Indication (Type_Definition (N)));
10592 end if;
10593
10594 Iface := First (Interface_List (Def));
10595 while Present (Iface) loop
10596 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10597
10598 Parent_Node := Parent (Base_Type (Iface_Typ));
10599 Iface_Def := Type_Definition (Parent_Node);
10600
10601 if not Is_Interface (Iface_Typ) then
10602 Diagnose_Interface (Iface, Iface_Typ);
10603
10604 else
10605 -- "The declaration of a specific descendant of an interface
10606 -- type freezes the interface type" RM 13.14
10607
10608 Freeze_Before (N, Iface_Typ);
10609 Check_Ifaces (Iface_Def, Error_Node => Iface);
10610 end if;
10611
10612 Next (Iface);
10613 end loop;
10614
10615 if Is_Task and Is_Protected then
10616 Error_Msg_N
10617 ("type cannot derive from task and protected interface", N);
10618 end if;
10619 end Check_Interfaces;
10620
10621 ------------------------------------
10622 -- Check_Or_Process_Discriminants --
10623 ------------------------------------
10624
10625 -- If an incomplete or private type declaration was already given for the
10626 -- type, the discriminants may have already been processed if they were
10627 -- present on the incomplete declaration. In this case a full conformance
10628 -- check has been performed in Find_Type_Name, and we then recheck here
10629 -- some properties that can't be checked on the partial view alone.
10630 -- Otherwise we call Process_Discriminants.
10631
10632 procedure Check_Or_Process_Discriminants
10633 (N : Node_Id;
10634 T : Entity_Id;
10635 Prev : Entity_Id := Empty)
10636 is
10637 begin
10638 if Has_Discriminants (T) then
10639
10640 -- Discriminants are already set on T if they were already present
10641 -- on the partial view. Make them visible to component declarations.
10642
10643 declare
10644 D : Entity_Id;
10645 -- Discriminant on T (full view) referencing expr on partial view
10646
10647 Prev_D : Entity_Id;
10648 -- Entity of corresponding discriminant on partial view
10649
10650 New_D : Node_Id;
10651 -- Discriminant specification for full view, expression is the
10652 -- syntactic copy on full view (which has been checked for
10653 -- conformance with partial view), only used here to post error
10654 -- message.
10655
10656 begin
10657 D := First_Discriminant (T);
10658 New_D := First (Discriminant_Specifications (N));
10659 while Present (D) loop
10660 Prev_D := Current_Entity (D);
10661 Set_Current_Entity (D);
10662 Set_Is_Immediately_Visible (D);
10663 Set_Homonym (D, Prev_D);
10664
10665 -- Handle the case where there is an untagged partial view and
10666 -- the full view is tagged: must disallow discriminants with
10667 -- defaults, unless compiling for Ada 2012, which allows a
10668 -- limited tagged type to have defaulted discriminants (see
10669 -- AI05-0214). However, suppress error here if it was already
10670 -- reported on the default expression of the partial view.
10671
10672 if Is_Tagged_Type (T)
10673 and then Present (Expression (Parent (D)))
10674 and then (not Is_Limited_Type (Current_Scope)
10675 or else Ada_Version < Ada_2012)
10676 and then not Error_Posted (Expression (Parent (D)))
10677 then
10678 if Ada_Version >= Ada_2012 then
10679 Error_Msg_N
10680 ("discriminants of nonlimited tagged type cannot have"
10681 & " defaults",
10682 Expression (New_D));
10683 else
10684 Error_Msg_N
10685 ("discriminants of tagged type cannot have defaults",
10686 Expression (New_D));
10687 end if;
10688 end if;
10689
10690 -- Ada 2005 (AI-230): Access discriminant allowed in
10691 -- non-limited record types.
10692
10693 if Ada_Version < Ada_2005 then
10694
10695 -- This restriction gets applied to the full type here. It
10696 -- has already been applied earlier to the partial view.
10697
10698 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10699 end if;
10700
10701 Next_Discriminant (D);
10702 Next (New_D);
10703 end loop;
10704 end;
10705
10706 elsif Present (Discriminant_Specifications (N)) then
10707 Process_Discriminants (N, Prev);
10708 end if;
10709 end Check_Or_Process_Discriminants;
10710
10711 ----------------------
10712 -- Check_Real_Bound --
10713 ----------------------
10714
10715 procedure Check_Real_Bound (Bound : Node_Id) is
10716 begin
10717 if not Is_Real_Type (Etype (Bound)) then
10718 Error_Msg_N
10719 ("bound in real type definition must be of real type", Bound);
10720
10721 elsif not Is_OK_Static_Expression (Bound) then
10722 Flag_Non_Static_Expr
10723 ("non-static expression used for real type bound!", Bound);
10724
10725 else
10726 return;
10727 end if;
10728
10729 Rewrite
10730 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10731 Analyze (Bound);
10732 Resolve (Bound, Standard_Float);
10733 end Check_Real_Bound;
10734
10735 ------------------------------
10736 -- Complete_Private_Subtype --
10737 ------------------------------
10738
10739 procedure Complete_Private_Subtype
10740 (Priv : Entity_Id;
10741 Full : Entity_Id;
10742 Full_Base : Entity_Id;
10743 Related_Nod : Node_Id)
10744 is
10745 Save_Next_Entity : Entity_Id;
10746 Save_Homonym : Entity_Id;
10747
10748 begin
10749 -- Set semantic attributes for (implicit) private subtype completion.
10750 -- If the full type has no discriminants, then it is a copy of the full
10751 -- view of the base. Otherwise, it is a subtype of the base with a
10752 -- possible discriminant constraint. Save and restore the original
10753 -- Next_Entity field of full to ensure that the calls to Copy_Node
10754 -- do not corrupt the entity chain.
10755
10756 -- Note that the type of the full view is the same entity as the type of
10757 -- the partial view. In this fashion, the subtype has access to the
10758 -- correct view of the parent.
10759
10760 Save_Next_Entity := Next_Entity (Full);
10761 Save_Homonym := Homonym (Priv);
10762
10763 case Ekind (Full_Base) is
10764 when E_Record_Type |
10765 E_Record_Subtype |
10766 Class_Wide_Kind |
10767 Private_Kind |
10768 Task_Kind |
10769 Protected_Kind =>
10770 Copy_Node (Priv, Full);
10771
10772 Set_Has_Discriminants
10773 (Full, Has_Discriminants (Full_Base));
10774 Set_Has_Unknown_Discriminants
10775 (Full, Has_Unknown_Discriminants (Full_Base));
10776 Set_First_Entity (Full, First_Entity (Full_Base));
10777 Set_Last_Entity (Full, Last_Entity (Full_Base));
10778
10779 -- If the underlying base type is constrained, we know that the
10780 -- full view of the subtype is constrained as well (the converse
10781 -- is not necessarily true).
10782
10783 if Is_Constrained (Full_Base) then
10784 Set_Is_Constrained (Full);
10785 end if;
10786
10787 when others =>
10788 Copy_Node (Full_Base, Full);
10789
10790 Set_Chars (Full, Chars (Priv));
10791 Conditional_Delay (Full, Priv);
10792 Set_Sloc (Full, Sloc (Priv));
10793 end case;
10794
10795 Set_Next_Entity (Full, Save_Next_Entity);
10796 Set_Homonym (Full, Save_Homonym);
10797 Set_Associated_Node_For_Itype (Full, Related_Nod);
10798
10799 -- Set common attributes for all subtypes: kind, convention, etc.
10800
10801 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10802 Set_Convention (Full, Convention (Full_Base));
10803
10804 -- The Etype of the full view is inconsistent. Gigi needs to see the
10805 -- structural full view, which is what the current scheme gives:
10806 -- the Etype of the full view is the etype of the full base. However,
10807 -- if the full base is a derived type, the full view then looks like
10808 -- a subtype of the parent, not a subtype of the full base. If instead
10809 -- we write:
10810
10811 -- Set_Etype (Full, Full_Base);
10812
10813 -- then we get inconsistencies in the front-end (confusion between
10814 -- views). Several outstanding bugs are related to this ???
10815
10816 Set_Is_First_Subtype (Full, False);
10817 Set_Scope (Full, Scope (Priv));
10818 Set_Size_Info (Full, Full_Base);
10819 Set_RM_Size (Full, RM_Size (Full_Base));
10820 Set_Is_Itype (Full);
10821
10822 -- A subtype of a private-type-without-discriminants, whose full-view
10823 -- has discriminants with default expressions, is not constrained.
10824
10825 if not Has_Discriminants (Priv) then
10826 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10827
10828 if Has_Discriminants (Full_Base) then
10829 Set_Discriminant_Constraint
10830 (Full, Discriminant_Constraint (Full_Base));
10831
10832 -- The partial view may have been indefinite, the full view
10833 -- might not be.
10834
10835 Set_Has_Unknown_Discriminants
10836 (Full, Has_Unknown_Discriminants (Full_Base));
10837 end if;
10838 end if;
10839
10840 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10841 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10842
10843 -- Freeze the private subtype entity if its parent is delayed, and not
10844 -- already frozen. We skip this processing if the type is an anonymous
10845 -- subtype of a record component, or is the corresponding record of a
10846 -- protected type, since ???
10847
10848 if not Is_Type (Scope (Full)) then
10849 Set_Has_Delayed_Freeze (Full,
10850 Has_Delayed_Freeze (Full_Base)
10851 and then (not Is_Frozen (Full_Base)));
10852 end if;
10853
10854 Set_Freeze_Node (Full, Empty);
10855 Set_Is_Frozen (Full, False);
10856 Set_Full_View (Priv, Full);
10857
10858 if Has_Discriminants (Full) then
10859 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10860 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10861
10862 if Has_Unknown_Discriminants (Full) then
10863 Set_Discriminant_Constraint (Full, No_Elist);
10864 end if;
10865 end if;
10866
10867 if Ekind (Full_Base) = E_Record_Type
10868 and then Has_Discriminants (Full_Base)
10869 and then Has_Discriminants (Priv) -- might not, if errors
10870 and then not Has_Unknown_Discriminants (Priv)
10871 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10872 then
10873 Create_Constrained_Components
10874 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10875
10876 -- If the full base is itself derived from private, build a congruent
10877 -- subtype of its underlying type, for use by the back end. For a
10878 -- constrained record component, the declaration cannot be placed on
10879 -- the component list, but it must nevertheless be built an analyzed, to
10880 -- supply enough information for Gigi to compute the size of component.
10881
10882 elsif Ekind (Full_Base) in Private_Kind
10883 and then Is_Derived_Type (Full_Base)
10884 and then Has_Discriminants (Full_Base)
10885 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10886 then
10887 if not Is_Itype (Priv)
10888 and then
10889 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10890 then
10891 Build_Underlying_Full_View
10892 (Parent (Priv), Full, Etype (Full_Base));
10893
10894 elsif Nkind (Related_Nod) = N_Component_Declaration then
10895 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10896 end if;
10897
10898 elsif Is_Record_Type (Full_Base) then
10899
10900 -- Show Full is simply a renaming of Full_Base
10901
10902 Set_Cloned_Subtype (Full, Full_Base);
10903 end if;
10904
10905 -- It is unsafe to share the bounds of a scalar type, because the Itype
10906 -- is elaborated on demand, and if a bound is non-static then different
10907 -- orders of elaboration in different units will lead to different
10908 -- external symbols.
10909
10910 if Is_Scalar_Type (Full_Base) then
10911 Set_Scalar_Range (Full,
10912 Make_Range (Sloc (Related_Nod),
10913 Low_Bound =>
10914 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10915 High_Bound =>
10916 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10917
10918 -- This completion inherits the bounds of the full parent, but if
10919 -- the parent is an unconstrained floating point type, so is the
10920 -- completion.
10921
10922 if Is_Floating_Point_Type (Full_Base) then
10923 Set_Includes_Infinities
10924 (Scalar_Range (Full), Has_Infinities (Full_Base));
10925 end if;
10926 end if;
10927
10928 -- ??? It seems that a lot of fields are missing that should be copied
10929 -- from Full_Base to Full. Here are some that are introduced in a
10930 -- non-disruptive way but a cleanup is necessary.
10931
10932 if Is_Tagged_Type (Full_Base) then
10933 Set_Is_Tagged_Type (Full);
10934 Set_Direct_Primitive_Operations (Full,
10935 Direct_Primitive_Operations (Full_Base));
10936
10937 -- Inherit class_wide type of full_base in case the partial view was
10938 -- not tagged. Otherwise it has already been created when the private
10939 -- subtype was analyzed.
10940
10941 if No (Class_Wide_Type (Full)) then
10942 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10943 end if;
10944
10945 -- If this is a subtype of a protected or task type, constrain its
10946 -- corresponding record, unless this is a subtype without constraints,
10947 -- i.e. a simple renaming as with an actual subtype in an instance.
10948
10949 elsif Is_Concurrent_Type (Full_Base) then
10950 if Has_Discriminants (Full)
10951 and then Present (Corresponding_Record_Type (Full_Base))
10952 and then
10953 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10954 then
10955 Set_Corresponding_Record_Type (Full,
10956 Constrain_Corresponding_Record
10957 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10958
10959 else
10960 Set_Corresponding_Record_Type (Full,
10961 Corresponding_Record_Type (Full_Base));
10962 end if;
10963 end if;
10964
10965 -- Link rep item chain, and also setting of Has_Predicates from private
10966 -- subtype to full subtype, since we will need these on the full subtype
10967 -- to create the predicate function. Note that the full subtype may
10968 -- already have rep items, inherited from the full view of the base
10969 -- type, so we must be sure not to overwrite these entries.
10970
10971 declare
10972 Append : Boolean;
10973 Item : Node_Id;
10974 Next_Item : Node_Id;
10975
10976 begin
10977 Item := First_Rep_Item (Full);
10978
10979 -- If no existing rep items on full type, we can just link directly
10980 -- to the list of items on the private type.
10981
10982 if No (Item) then
10983 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10984
10985 -- Otherwise, search to the end of items currently linked to the full
10986 -- subtype and append the private items to the end. However, if Priv
10987 -- and Full already have the same list of rep items, then the append
10988 -- is not done, as that would create a circularity.
10989
10990 elsif Item /= First_Rep_Item (Priv) then
10991 Append := True;
10992
10993 loop
10994 Next_Item := Next_Rep_Item (Item);
10995 exit when No (Next_Item);
10996 Item := Next_Item;
10997
10998 -- If the private view has aspect specifications, the full view
10999 -- inherits them. Since these aspects may already have been
11000 -- attached to the full view during derivation, do not append
11001 -- them if already present.
11002
11003 if Item = First_Rep_Item (Priv) then
11004 Append := False;
11005 exit;
11006 end if;
11007 end loop;
11008
11009 -- And link the private type items at the end of the chain
11010
11011 if Append then
11012 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11013 end if;
11014 end if;
11015 end;
11016
11017 -- Make sure Has_Predicates is set on full type if it is set on the
11018 -- private type. Note that it may already be set on the full type and
11019 -- if so, we don't want to unset it.
11020
11021 if Has_Predicates (Priv) then
11022 Set_Has_Predicates (Full);
11023 end if;
11024 end Complete_Private_Subtype;
11025
11026 ----------------------------
11027 -- Constant_Redeclaration --
11028 ----------------------------
11029
11030 procedure Constant_Redeclaration
11031 (Id : Entity_Id;
11032 N : Node_Id;
11033 T : out Entity_Id)
11034 is
11035 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11036 Obj_Def : constant Node_Id := Object_Definition (N);
11037 New_T : Entity_Id;
11038
11039 procedure Check_Possible_Deferred_Completion
11040 (Prev_Id : Entity_Id;
11041 Prev_Obj_Def : Node_Id;
11042 Curr_Obj_Def : Node_Id);
11043 -- Determine whether the two object definitions describe the partial
11044 -- and the full view of a constrained deferred constant. Generate
11045 -- a subtype for the full view and verify that it statically matches
11046 -- the subtype of the partial view.
11047
11048 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11049 -- If deferred constant is an access type initialized with an allocator,
11050 -- check whether there is an illegal recursion in the definition,
11051 -- through a default value of some record subcomponent. This is normally
11052 -- detected when generating init procs, but requires this additional
11053 -- mechanism when expansion is disabled.
11054
11055 ----------------------------------------
11056 -- Check_Possible_Deferred_Completion --
11057 ----------------------------------------
11058
11059 procedure Check_Possible_Deferred_Completion
11060 (Prev_Id : Entity_Id;
11061 Prev_Obj_Def : Node_Id;
11062 Curr_Obj_Def : Node_Id)
11063 is
11064 begin
11065 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11066 and then Present (Constraint (Prev_Obj_Def))
11067 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11068 and then Present (Constraint (Curr_Obj_Def))
11069 then
11070 declare
11071 Loc : constant Source_Ptr := Sloc (N);
11072 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11073 Decl : constant Node_Id :=
11074 Make_Subtype_Declaration (Loc,
11075 Defining_Identifier => Def_Id,
11076 Subtype_Indication =>
11077 Relocate_Node (Curr_Obj_Def));
11078
11079 begin
11080 Insert_Before_And_Analyze (N, Decl);
11081 Set_Etype (Id, Def_Id);
11082
11083 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11084 Error_Msg_Sloc := Sloc (Prev_Id);
11085 Error_Msg_N ("subtype does not statically match deferred " &
11086 "declaration#", N);
11087 end if;
11088 end;
11089 end if;
11090 end Check_Possible_Deferred_Completion;
11091
11092 ---------------------------------
11093 -- Check_Recursive_Declaration --
11094 ---------------------------------
11095
11096 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11097 Comp : Entity_Id;
11098
11099 begin
11100 if Is_Record_Type (Typ) then
11101 Comp := First_Component (Typ);
11102 while Present (Comp) loop
11103 if Comes_From_Source (Comp) then
11104 if Present (Expression (Parent (Comp)))
11105 and then Is_Entity_Name (Expression (Parent (Comp)))
11106 and then Entity (Expression (Parent (Comp))) = Prev
11107 then
11108 Error_Msg_Sloc := Sloc (Parent (Comp));
11109 Error_Msg_NE
11110 ("illegal circularity with declaration for&#",
11111 N, Comp);
11112 return;
11113
11114 elsif Is_Record_Type (Etype (Comp)) then
11115 Check_Recursive_Declaration (Etype (Comp));
11116 end if;
11117 end if;
11118
11119 Next_Component (Comp);
11120 end loop;
11121 end if;
11122 end Check_Recursive_Declaration;
11123
11124 -- Start of processing for Constant_Redeclaration
11125
11126 begin
11127 if Nkind (Parent (Prev)) = N_Object_Declaration then
11128 if Nkind (Object_Definition
11129 (Parent (Prev))) = N_Subtype_Indication
11130 then
11131 -- Find type of new declaration. The constraints of the two
11132 -- views must match statically, but there is no point in
11133 -- creating an itype for the full view.
11134
11135 if Nkind (Obj_Def) = N_Subtype_Indication then
11136 Find_Type (Subtype_Mark (Obj_Def));
11137 New_T := Entity (Subtype_Mark (Obj_Def));
11138
11139 else
11140 Find_Type (Obj_Def);
11141 New_T := Entity (Obj_Def);
11142 end if;
11143
11144 T := Etype (Prev);
11145
11146 else
11147 -- The full view may impose a constraint, even if the partial
11148 -- view does not, so construct the subtype.
11149
11150 New_T := Find_Type_Of_Object (Obj_Def, N);
11151 T := New_T;
11152 end if;
11153
11154 else
11155 -- Current declaration is illegal, diagnosed below in Enter_Name
11156
11157 T := Empty;
11158 New_T := Any_Type;
11159 end if;
11160
11161 -- If previous full declaration or a renaming declaration exists, or if
11162 -- a homograph is present, let Enter_Name handle it, either with an
11163 -- error or with the removal of an overridden implicit subprogram.
11164 -- The previous one is a full declaration if it has an expression
11165 -- (which in the case of an aggregate is indicated by the Init flag).
11166
11167 if Ekind (Prev) /= E_Constant
11168 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11169 or else Present (Expression (Parent (Prev)))
11170 or else Has_Init_Expression (Parent (Prev))
11171 or else Present (Full_View (Prev))
11172 then
11173 Enter_Name (Id);
11174
11175 -- Verify that types of both declarations match, or else that both types
11176 -- are anonymous access types whose designated subtypes statically match
11177 -- (as allowed in Ada 2005 by AI-385).
11178
11179 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11180 and then
11181 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11182 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11183 or else Is_Access_Constant (Etype (New_T)) /=
11184 Is_Access_Constant (Etype (Prev))
11185 or else Can_Never_Be_Null (Etype (New_T)) /=
11186 Can_Never_Be_Null (Etype (Prev))
11187 or else Null_Exclusion_Present (Parent (Prev)) /=
11188 Null_Exclusion_Present (Parent (Id))
11189 or else not Subtypes_Statically_Match
11190 (Designated_Type (Etype (Prev)),
11191 Designated_Type (Etype (New_T))))
11192 then
11193 Error_Msg_Sloc := Sloc (Prev);
11194 Error_Msg_N ("type does not match declaration#", N);
11195 Set_Full_View (Prev, Id);
11196 Set_Etype (Id, Any_Type);
11197
11198 elsif
11199 Null_Exclusion_Present (Parent (Prev))
11200 and then not Null_Exclusion_Present (N)
11201 then
11202 Error_Msg_Sloc := Sloc (Prev);
11203 Error_Msg_N ("null-exclusion does not match declaration#", N);
11204 Set_Full_View (Prev, Id);
11205 Set_Etype (Id, Any_Type);
11206
11207 -- If so, process the full constant declaration
11208
11209 else
11210 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11211 -- the deferred declaration is constrained, then the subtype defined
11212 -- by the subtype_indication in the full declaration shall match it
11213 -- statically.
11214
11215 Check_Possible_Deferred_Completion
11216 (Prev_Id => Prev,
11217 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11218 Curr_Obj_Def => Obj_Def);
11219
11220 Set_Full_View (Prev, Id);
11221 Set_Is_Public (Id, Is_Public (Prev));
11222 Set_Is_Internal (Id);
11223 Append_Entity (Id, Current_Scope);
11224
11225 -- Check ALIASED present if present before (RM 7.4(7))
11226
11227 if Is_Aliased (Prev)
11228 and then not Aliased_Present (N)
11229 then
11230 Error_Msg_Sloc := Sloc (Prev);
11231 Error_Msg_N ("ALIASED required (see declaration#)", N);
11232 end if;
11233
11234 -- Check that placement is in private part and that the incomplete
11235 -- declaration appeared in the visible part.
11236
11237 if Ekind (Current_Scope) = E_Package
11238 and then not In_Private_Part (Current_Scope)
11239 then
11240 Error_Msg_Sloc := Sloc (Prev);
11241 Error_Msg_N
11242 ("full constant for declaration#"
11243 & " must be in private part", N);
11244
11245 elsif Ekind (Current_Scope) = E_Package
11246 and then
11247 List_Containing (Parent (Prev)) /=
11248 Visible_Declarations (Package_Specification (Current_Scope))
11249 then
11250 Error_Msg_N
11251 ("deferred constant must be declared in visible part",
11252 Parent (Prev));
11253 end if;
11254
11255 if Is_Access_Type (T)
11256 and then Nkind (Expression (N)) = N_Allocator
11257 then
11258 Check_Recursive_Declaration (Designated_Type (T));
11259 end if;
11260
11261 -- A deferred constant is a visible entity. If type has invariants,
11262 -- verify that the initial value satisfies them.
11263
11264 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11265 Insert_After (N,
11266 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11267 end if;
11268 end if;
11269 end Constant_Redeclaration;
11270
11271 ----------------------
11272 -- Constrain_Access --
11273 ----------------------
11274
11275 procedure Constrain_Access
11276 (Def_Id : in out Entity_Id;
11277 S : Node_Id;
11278 Related_Nod : Node_Id)
11279 is
11280 T : constant Entity_Id := Entity (Subtype_Mark (S));
11281 Desig_Type : constant Entity_Id := Designated_Type (T);
11282 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11283 Constraint_OK : Boolean := True;
11284
11285 begin
11286 if Is_Array_Type (Desig_Type) then
11287 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11288
11289 elsif (Is_Record_Type (Desig_Type)
11290 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11291 and then not Is_Constrained (Desig_Type)
11292 then
11293 -- ??? The following code is a temporary bypass to ignore a
11294 -- discriminant constraint on access type if it is constraining
11295 -- the current record. Avoid creating the implicit subtype of the
11296 -- record we are currently compiling since right now, we cannot
11297 -- handle these. For now, just return the access type itself.
11298
11299 if Desig_Type = Current_Scope
11300 and then No (Def_Id)
11301 then
11302 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11303 Def_Id := Entity (Subtype_Mark (S));
11304
11305 -- This call added to ensure that the constraint is analyzed
11306 -- (needed for a B test). Note that we still return early from
11307 -- this procedure to avoid recursive processing. ???
11308
11309 Constrain_Discriminated_Type
11310 (Desig_Subtype, S, Related_Nod, For_Access => True);
11311 return;
11312 end if;
11313
11314 -- Enforce rule that the constraint is illegal if there is an
11315 -- unconstrained view of the designated type. This means that the
11316 -- partial view (either a private type declaration or a derivation
11317 -- from a private type) has no discriminants. (Defect Report
11318 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11319
11320 -- Rule updated for Ada 2005: The private type is said to have
11321 -- a constrained partial view, given that objects of the type
11322 -- can be declared. Furthermore, the rule applies to all access
11323 -- types, unlike the rule concerning default discriminants (see
11324 -- RM 3.7.1(7/3))
11325
11326 if (Ekind (T) = E_General_Access_Type
11327 or else Ada_Version >= Ada_2005)
11328 and then Has_Private_Declaration (Desig_Type)
11329 and then In_Open_Scopes (Scope (Desig_Type))
11330 and then Has_Discriminants (Desig_Type)
11331 then
11332 declare
11333 Pack : constant Node_Id :=
11334 Unit_Declaration_Node (Scope (Desig_Type));
11335 Decls : List_Id;
11336 Decl : Node_Id;
11337
11338 begin
11339 if Nkind (Pack) = N_Package_Declaration then
11340 Decls := Visible_Declarations (Specification (Pack));
11341 Decl := First (Decls);
11342 while Present (Decl) loop
11343 if (Nkind (Decl) = N_Private_Type_Declaration
11344 and then
11345 Chars (Defining_Identifier (Decl)) =
11346 Chars (Desig_Type))
11347
11348 or else
11349 (Nkind (Decl) = N_Full_Type_Declaration
11350 and then
11351 Chars (Defining_Identifier (Decl)) =
11352 Chars (Desig_Type)
11353 and then Is_Derived_Type (Desig_Type)
11354 and then
11355 Has_Private_Declaration (Etype (Desig_Type)))
11356 then
11357 if No (Discriminant_Specifications (Decl)) then
11358 Error_Msg_N
11359 ("cannot constrain access type if designated " &
11360 "type has constrained partial view", S);
11361 end if;
11362
11363 exit;
11364 end if;
11365
11366 Next (Decl);
11367 end loop;
11368 end if;
11369 end;
11370 end if;
11371
11372 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11373 For_Access => True);
11374
11375 elsif (Is_Task_Type (Desig_Type)
11376 or else Is_Protected_Type (Desig_Type))
11377 and then not Is_Constrained (Desig_Type)
11378 then
11379 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11380
11381 else
11382 Error_Msg_N ("invalid constraint on access type", S);
11383 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11384 Constraint_OK := False;
11385 end if;
11386
11387 if No (Def_Id) then
11388 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11389 else
11390 Set_Ekind (Def_Id, E_Access_Subtype);
11391 end if;
11392
11393 if Constraint_OK then
11394 Set_Etype (Def_Id, Base_Type (T));
11395
11396 if Is_Private_Type (Desig_Type) then
11397 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11398 end if;
11399 else
11400 Set_Etype (Def_Id, Any_Type);
11401 end if;
11402
11403 Set_Size_Info (Def_Id, T);
11404 Set_Is_Constrained (Def_Id, Constraint_OK);
11405 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11406 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11407 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11408
11409 Conditional_Delay (Def_Id, T);
11410
11411 -- AI-363 : Subtypes of general access types whose designated types have
11412 -- default discriminants are disallowed. In instances, the rule has to
11413 -- be checked against the actual, of which T is the subtype. In a
11414 -- generic body, the rule is checked assuming that the actual type has
11415 -- defaulted discriminants.
11416
11417 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11418 if Ekind (Base_Type (T)) = E_General_Access_Type
11419 and then Has_Defaulted_Discriminants (Desig_Type)
11420 then
11421 if Ada_Version < Ada_2005 then
11422 Error_Msg_N
11423 ("access subtype of general access type would not " &
11424 "be allowed in Ada 2005?y?", S);
11425 else
11426 Error_Msg_N
11427 ("access subtype of general access type not allowed", S);
11428 end if;
11429
11430 Error_Msg_N ("\discriminants have defaults", S);
11431
11432 elsif Is_Access_Type (T)
11433 and then Is_Generic_Type (Desig_Type)
11434 and then Has_Discriminants (Desig_Type)
11435 and then In_Package_Body (Current_Scope)
11436 then
11437 if Ada_Version < Ada_2005 then
11438 Error_Msg_N
11439 ("access subtype would not be allowed in generic body " &
11440 "in Ada 2005?y?", S);
11441 else
11442 Error_Msg_N
11443 ("access subtype not allowed in generic body", S);
11444 end if;
11445
11446 Error_Msg_N
11447 ("\designated type is a discriminated formal", S);
11448 end if;
11449 end if;
11450 end Constrain_Access;
11451
11452 ---------------------
11453 -- Constrain_Array --
11454 ---------------------
11455
11456 procedure Constrain_Array
11457 (Def_Id : in out Entity_Id;
11458 SI : Node_Id;
11459 Related_Nod : Node_Id;
11460 Related_Id : Entity_Id;
11461 Suffix : Character)
11462 is
11463 C : constant Node_Id := Constraint (SI);
11464 Number_Of_Constraints : Nat := 0;
11465 Index : Node_Id;
11466 S, T : Entity_Id;
11467 Constraint_OK : Boolean := True;
11468
11469 begin
11470 T := Entity (Subtype_Mark (SI));
11471
11472 if Is_Access_Type (T) then
11473 T := Designated_Type (T);
11474 end if;
11475
11476 -- If an index constraint follows a subtype mark in a subtype indication
11477 -- then the type or subtype denoted by the subtype mark must not already
11478 -- impose an index constraint. The subtype mark must denote either an
11479 -- unconstrained array type or an access type whose designated type
11480 -- is such an array type... (RM 3.6.1)
11481
11482 if Is_Constrained (T) then
11483 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11484 Constraint_OK := False;
11485
11486 else
11487 S := First (Constraints (C));
11488 while Present (S) loop
11489 Number_Of_Constraints := Number_Of_Constraints + 1;
11490 Next (S);
11491 end loop;
11492
11493 -- In either case, the index constraint must provide a discrete
11494 -- range for each index of the array type and the type of each
11495 -- discrete range must be the same as that of the corresponding
11496 -- index. (RM 3.6.1)
11497
11498 if Number_Of_Constraints /= Number_Dimensions (T) then
11499 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11500 Constraint_OK := False;
11501
11502 else
11503 S := First (Constraints (C));
11504 Index := First_Index (T);
11505 Analyze (Index);
11506
11507 -- Apply constraints to each index type
11508
11509 for J in 1 .. Number_Of_Constraints loop
11510 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11511 Next (Index);
11512 Next (S);
11513 end loop;
11514
11515 end if;
11516 end if;
11517
11518 if No (Def_Id) then
11519 Def_Id :=
11520 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11521 Set_Parent (Def_Id, Related_Nod);
11522
11523 else
11524 Set_Ekind (Def_Id, E_Array_Subtype);
11525 end if;
11526
11527 Set_Size_Info (Def_Id, (T));
11528 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11529 Set_Etype (Def_Id, Base_Type (T));
11530
11531 if Constraint_OK then
11532 Set_First_Index (Def_Id, First (Constraints (C)));
11533 else
11534 Set_First_Index (Def_Id, First_Index (T));
11535 end if;
11536
11537 Set_Is_Constrained (Def_Id, True);
11538 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11539 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11540
11541 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11542 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11543
11544 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11545 -- We need to initialize the attribute because if Def_Id is previously
11546 -- analyzed through a limited_with clause, it will have the attributes
11547 -- of an incomplete type, one of which is an Elist that overlaps the
11548 -- Packed_Array_Impl_Type field.
11549
11550 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11551
11552 -- Build a freeze node if parent still needs one. Also make sure that
11553 -- the Depends_On_Private status is set because the subtype will need
11554 -- reprocessing at the time the base type does, and also we must set a
11555 -- conditional delay.
11556
11557 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11558 Conditional_Delay (Def_Id, T);
11559 end Constrain_Array;
11560
11561 ------------------------------
11562 -- Constrain_Component_Type --
11563 ------------------------------
11564
11565 function Constrain_Component_Type
11566 (Comp : Entity_Id;
11567 Constrained_Typ : Entity_Id;
11568 Related_Node : Node_Id;
11569 Typ : Entity_Id;
11570 Constraints : Elist_Id) return Entity_Id
11571 is
11572 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11573 Compon_Type : constant Entity_Id := Etype (Comp);
11574
11575 function Build_Constrained_Array_Type
11576 (Old_Type : Entity_Id) return Entity_Id;
11577 -- If Old_Type is an array type, one of whose indexes is constrained
11578 -- by a discriminant, build an Itype whose constraint replaces the
11579 -- discriminant with its value in the constraint.
11580
11581 function Build_Constrained_Discriminated_Type
11582 (Old_Type : Entity_Id) return Entity_Id;
11583 -- Ditto for record components
11584
11585 function Build_Constrained_Access_Type
11586 (Old_Type : Entity_Id) return Entity_Id;
11587 -- Ditto for access types. Makes use of previous two functions, to
11588 -- constrain designated type.
11589
11590 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11591 -- T is an array or discriminated type, C is a list of constraints
11592 -- that apply to T. This routine builds the constrained subtype.
11593
11594 function Is_Discriminant (Expr : Node_Id) return Boolean;
11595 -- Returns True if Expr is a discriminant
11596
11597 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11598 -- Find the value of discriminant Discrim in Constraint
11599
11600 -----------------------------------
11601 -- Build_Constrained_Access_Type --
11602 -----------------------------------
11603
11604 function Build_Constrained_Access_Type
11605 (Old_Type : Entity_Id) return Entity_Id
11606 is
11607 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11608 Itype : Entity_Id;
11609 Desig_Subtype : Entity_Id;
11610 Scop : Entity_Id;
11611
11612 begin
11613 -- if the original access type was not embedded in the enclosing
11614 -- type definition, there is no need to produce a new access
11615 -- subtype. In fact every access type with an explicit constraint
11616 -- generates an itype whose scope is the enclosing record.
11617
11618 if not Is_Type (Scope (Old_Type)) then
11619 return Old_Type;
11620
11621 elsif Is_Array_Type (Desig_Type) then
11622 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11623
11624 elsif Has_Discriminants (Desig_Type) then
11625
11626 -- This may be an access type to an enclosing record type for
11627 -- which we are constructing the constrained components. Return
11628 -- the enclosing record subtype. This is not always correct,
11629 -- but avoids infinite recursion. ???
11630
11631 Desig_Subtype := Any_Type;
11632
11633 for J in reverse 0 .. Scope_Stack.Last loop
11634 Scop := Scope_Stack.Table (J).Entity;
11635
11636 if Is_Type (Scop)
11637 and then Base_Type (Scop) = Base_Type (Desig_Type)
11638 then
11639 Desig_Subtype := Scop;
11640 end if;
11641
11642 exit when not Is_Type (Scop);
11643 end loop;
11644
11645 if Desig_Subtype = Any_Type then
11646 Desig_Subtype :=
11647 Build_Constrained_Discriminated_Type (Desig_Type);
11648 end if;
11649
11650 else
11651 return Old_Type;
11652 end if;
11653
11654 if Desig_Subtype /= Desig_Type then
11655
11656 -- The Related_Node better be here or else we won't be able
11657 -- to attach new itypes to a node in the tree.
11658
11659 pragma Assert (Present (Related_Node));
11660
11661 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11662
11663 Set_Etype (Itype, Base_Type (Old_Type));
11664 Set_Size_Info (Itype, (Old_Type));
11665 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11666 Set_Depends_On_Private (Itype, Has_Private_Component
11667 (Old_Type));
11668 Set_Is_Access_Constant (Itype, Is_Access_Constant
11669 (Old_Type));
11670
11671 -- The new itype needs freezing when it depends on a not frozen
11672 -- type and the enclosing subtype needs freezing.
11673
11674 if Has_Delayed_Freeze (Constrained_Typ)
11675 and then not Is_Frozen (Constrained_Typ)
11676 then
11677 Conditional_Delay (Itype, Base_Type (Old_Type));
11678 end if;
11679
11680 return Itype;
11681
11682 else
11683 return Old_Type;
11684 end if;
11685 end Build_Constrained_Access_Type;
11686
11687 ----------------------------------
11688 -- Build_Constrained_Array_Type --
11689 ----------------------------------
11690
11691 function Build_Constrained_Array_Type
11692 (Old_Type : Entity_Id) return Entity_Id
11693 is
11694 Lo_Expr : Node_Id;
11695 Hi_Expr : Node_Id;
11696 Old_Index : Node_Id;
11697 Range_Node : Node_Id;
11698 Constr_List : List_Id;
11699
11700 Need_To_Create_Itype : Boolean := False;
11701
11702 begin
11703 Old_Index := First_Index (Old_Type);
11704 while Present (Old_Index) loop
11705 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11706
11707 if Is_Discriminant (Lo_Expr)
11708 or else Is_Discriminant (Hi_Expr)
11709 then
11710 Need_To_Create_Itype := True;
11711 end if;
11712
11713 Next_Index (Old_Index);
11714 end loop;
11715
11716 if Need_To_Create_Itype then
11717 Constr_List := New_List;
11718
11719 Old_Index := First_Index (Old_Type);
11720 while Present (Old_Index) loop
11721 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11722
11723 if Is_Discriminant (Lo_Expr) then
11724 Lo_Expr := Get_Discr_Value (Lo_Expr);
11725 end if;
11726
11727 if Is_Discriminant (Hi_Expr) then
11728 Hi_Expr := Get_Discr_Value (Hi_Expr);
11729 end if;
11730
11731 Range_Node :=
11732 Make_Range
11733 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11734
11735 Append (Range_Node, To => Constr_List);
11736
11737 Next_Index (Old_Index);
11738 end loop;
11739
11740 return Build_Subtype (Old_Type, Constr_List);
11741
11742 else
11743 return Old_Type;
11744 end if;
11745 end Build_Constrained_Array_Type;
11746
11747 ------------------------------------------
11748 -- Build_Constrained_Discriminated_Type --
11749 ------------------------------------------
11750
11751 function Build_Constrained_Discriminated_Type
11752 (Old_Type : Entity_Id) return Entity_Id
11753 is
11754 Expr : Node_Id;
11755 Constr_List : List_Id;
11756 Old_Constraint : Elmt_Id;
11757
11758 Need_To_Create_Itype : Boolean := False;
11759
11760 begin
11761 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11762 while Present (Old_Constraint) loop
11763 Expr := Node (Old_Constraint);
11764
11765 if Is_Discriminant (Expr) then
11766 Need_To_Create_Itype := True;
11767 end if;
11768
11769 Next_Elmt (Old_Constraint);
11770 end loop;
11771
11772 if Need_To_Create_Itype then
11773 Constr_List := New_List;
11774
11775 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11776 while Present (Old_Constraint) loop
11777 Expr := Node (Old_Constraint);
11778
11779 if Is_Discriminant (Expr) then
11780 Expr := Get_Discr_Value (Expr);
11781 end if;
11782
11783 Append (New_Copy_Tree (Expr), To => Constr_List);
11784
11785 Next_Elmt (Old_Constraint);
11786 end loop;
11787
11788 return Build_Subtype (Old_Type, Constr_List);
11789
11790 else
11791 return Old_Type;
11792 end if;
11793 end Build_Constrained_Discriminated_Type;
11794
11795 -------------------
11796 -- Build_Subtype --
11797 -------------------
11798
11799 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11800 Indic : Node_Id;
11801 Subtyp_Decl : Node_Id;
11802 Def_Id : Entity_Id;
11803 Btyp : Entity_Id := Base_Type (T);
11804
11805 begin
11806 -- The Related_Node better be here or else we won't be able to
11807 -- attach new itypes to a node in the tree.
11808
11809 pragma Assert (Present (Related_Node));
11810
11811 -- If the view of the component's type is incomplete or private
11812 -- with unknown discriminants, then the constraint must be applied
11813 -- to the full type.
11814
11815 if Has_Unknown_Discriminants (Btyp)
11816 and then Present (Underlying_Type (Btyp))
11817 then
11818 Btyp := Underlying_Type (Btyp);
11819 end if;
11820
11821 Indic :=
11822 Make_Subtype_Indication (Loc,
11823 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11824 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11825
11826 Def_Id := Create_Itype (Ekind (T), Related_Node);
11827
11828 Subtyp_Decl :=
11829 Make_Subtype_Declaration (Loc,
11830 Defining_Identifier => Def_Id,
11831 Subtype_Indication => Indic);
11832
11833 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11834
11835 -- Itypes must be analyzed with checks off (see package Itypes)
11836
11837 Analyze (Subtyp_Decl, Suppress => All_Checks);
11838
11839 return Def_Id;
11840 end Build_Subtype;
11841
11842 ---------------------
11843 -- Get_Discr_Value --
11844 ---------------------
11845
11846 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11847 D : Entity_Id;
11848 E : Elmt_Id;
11849
11850 begin
11851 -- The discriminant may be declared for the type, in which case we
11852 -- find it by iterating over the list of discriminants. If the
11853 -- discriminant is inherited from a parent type, it appears as the
11854 -- corresponding discriminant of the current type. This will be the
11855 -- case when constraining an inherited component whose constraint is
11856 -- given by a discriminant of the parent.
11857
11858 D := First_Discriminant (Typ);
11859 E := First_Elmt (Constraints);
11860
11861 while Present (D) loop
11862 if D = Entity (Discrim)
11863 or else D = CR_Discriminant (Entity (Discrim))
11864 or else Corresponding_Discriminant (D) = Entity (Discrim)
11865 then
11866 return Node (E);
11867 end if;
11868
11869 Next_Discriminant (D);
11870 Next_Elmt (E);
11871 end loop;
11872
11873 -- The Corresponding_Discriminant mechanism is incomplete, because
11874 -- the correspondence between new and old discriminants is not one
11875 -- to one: one new discriminant can constrain several old ones. In
11876 -- that case, scan sequentially the stored_constraint, the list of
11877 -- discriminants of the parents, and the constraints.
11878
11879 -- Previous code checked for the present of the Stored_Constraint
11880 -- list for the derived type, but did not use it at all. Should it
11881 -- be present when the component is a discriminated task type?
11882
11883 if Is_Derived_Type (Typ)
11884 and then Scope (Entity (Discrim)) = Etype (Typ)
11885 then
11886 D := First_Discriminant (Etype (Typ));
11887 E := First_Elmt (Constraints);
11888 while Present (D) loop
11889 if D = Entity (Discrim) then
11890 return Node (E);
11891 end if;
11892
11893 Next_Discriminant (D);
11894 Next_Elmt (E);
11895 end loop;
11896 end if;
11897
11898 -- Something is wrong if we did not find the value
11899
11900 raise Program_Error;
11901 end Get_Discr_Value;
11902
11903 ---------------------
11904 -- Is_Discriminant --
11905 ---------------------
11906
11907 function Is_Discriminant (Expr : Node_Id) return Boolean is
11908 Discrim_Scope : Entity_Id;
11909
11910 begin
11911 if Denotes_Discriminant (Expr) then
11912 Discrim_Scope := Scope (Entity (Expr));
11913
11914 -- Either we have a reference to one of Typ's discriminants,
11915
11916 pragma Assert (Discrim_Scope = Typ
11917
11918 -- or to the discriminants of the parent type, in the case
11919 -- of a derivation of a tagged type with variants.
11920
11921 or else Discrim_Scope = Etype (Typ)
11922 or else Full_View (Discrim_Scope) = Etype (Typ)
11923
11924 -- or same as above for the case where the discriminants
11925 -- were declared in Typ's private view.
11926
11927 or else (Is_Private_Type (Discrim_Scope)
11928 and then Chars (Discrim_Scope) = Chars (Typ))
11929
11930 -- or else we are deriving from the full view and the
11931 -- discriminant is declared in the private entity.
11932
11933 or else (Is_Private_Type (Typ)
11934 and then Chars (Discrim_Scope) = Chars (Typ))
11935
11936 -- Or we are constrained the corresponding record of a
11937 -- synchronized type that completes a private declaration.
11938
11939 or else (Is_Concurrent_Record_Type (Typ)
11940 and then
11941 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11942
11943 -- or we have a class-wide type, in which case make sure the
11944 -- discriminant found belongs to the root type.
11945
11946 or else (Is_Class_Wide_Type (Typ)
11947 and then Etype (Typ) = Discrim_Scope));
11948
11949 return True;
11950 end if;
11951
11952 -- In all other cases we have something wrong
11953
11954 return False;
11955 end Is_Discriminant;
11956
11957 -- Start of processing for Constrain_Component_Type
11958
11959 begin
11960 if Nkind (Parent (Comp)) = N_Component_Declaration
11961 and then Comes_From_Source (Parent (Comp))
11962 and then Comes_From_Source
11963 (Subtype_Indication (Component_Definition (Parent (Comp))))
11964 and then
11965 Is_Entity_Name
11966 (Subtype_Indication (Component_Definition (Parent (Comp))))
11967 then
11968 return Compon_Type;
11969
11970 elsif Is_Array_Type (Compon_Type) then
11971 return Build_Constrained_Array_Type (Compon_Type);
11972
11973 elsif Has_Discriminants (Compon_Type) then
11974 return Build_Constrained_Discriminated_Type (Compon_Type);
11975
11976 elsif Is_Access_Type (Compon_Type) then
11977 return Build_Constrained_Access_Type (Compon_Type);
11978
11979 else
11980 return Compon_Type;
11981 end if;
11982 end Constrain_Component_Type;
11983
11984 --------------------------
11985 -- Constrain_Concurrent --
11986 --------------------------
11987
11988 -- For concurrent types, the associated record value type carries the same
11989 -- discriminants, so when we constrain a concurrent type, we must constrain
11990 -- the corresponding record type as well.
11991
11992 procedure Constrain_Concurrent
11993 (Def_Id : in out Entity_Id;
11994 SI : Node_Id;
11995 Related_Nod : Node_Id;
11996 Related_Id : Entity_Id;
11997 Suffix : Character)
11998 is
11999 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12000 -- case of a private subtype (needed when only doing semantic analysis).
12001
12002 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12003 T_Val : Entity_Id;
12004
12005 begin
12006 if Is_Access_Type (T_Ent) then
12007 T_Ent := Designated_Type (T_Ent);
12008 end if;
12009
12010 T_Val := Corresponding_Record_Type (T_Ent);
12011
12012 if Present (T_Val) then
12013
12014 if No (Def_Id) then
12015 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12016 end if;
12017
12018 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12019
12020 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12021 Set_Corresponding_Record_Type (Def_Id,
12022 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12023
12024 else
12025 -- If there is no associated record, expansion is disabled and this
12026 -- is a generic context. Create a subtype in any case, so that
12027 -- semantic analysis can proceed.
12028
12029 if No (Def_Id) then
12030 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12031 end if;
12032
12033 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12034 end if;
12035 end Constrain_Concurrent;
12036
12037 ------------------------------------
12038 -- Constrain_Corresponding_Record --
12039 ------------------------------------
12040
12041 function Constrain_Corresponding_Record
12042 (Prot_Subt : Entity_Id;
12043 Corr_Rec : Entity_Id;
12044 Related_Nod : Node_Id) return Entity_Id
12045 is
12046 T_Sub : constant Entity_Id :=
12047 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12048
12049 begin
12050 Set_Etype (T_Sub, Corr_Rec);
12051 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12052 Set_Is_Constrained (T_Sub, True);
12053 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12054 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12055
12056 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12057 Set_Discriminant_Constraint
12058 (T_Sub, Discriminant_Constraint (Prot_Subt));
12059 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12060 Create_Constrained_Components
12061 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12062 end if;
12063
12064 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12065
12066 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12067 Conditional_Delay (T_Sub, Corr_Rec);
12068
12069 else
12070 -- This is a component subtype: it will be frozen in the context of
12071 -- the enclosing record's init_proc, so that discriminant references
12072 -- are resolved to discriminals. (Note: we used to skip freezing
12073 -- altogether in that case, which caused errors downstream for
12074 -- components of a bit packed array type).
12075
12076 Set_Has_Delayed_Freeze (T_Sub);
12077 end if;
12078
12079 return T_Sub;
12080 end Constrain_Corresponding_Record;
12081
12082 -----------------------
12083 -- Constrain_Decimal --
12084 -----------------------
12085
12086 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12087 T : constant Entity_Id := Entity (Subtype_Mark (S));
12088 C : constant Node_Id := Constraint (S);
12089 Loc : constant Source_Ptr := Sloc (C);
12090 Range_Expr : Node_Id;
12091 Digits_Expr : Node_Id;
12092 Digits_Val : Uint;
12093 Bound_Val : Ureal;
12094
12095 begin
12096 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12097
12098 if Nkind (C) = N_Range_Constraint then
12099 Range_Expr := Range_Expression (C);
12100 Digits_Val := Digits_Value (T);
12101
12102 else
12103 pragma Assert (Nkind (C) = N_Digits_Constraint);
12104
12105 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12106
12107 Digits_Expr := Digits_Expression (C);
12108 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12109
12110 Check_Digits_Expression (Digits_Expr);
12111 Digits_Val := Expr_Value (Digits_Expr);
12112
12113 if Digits_Val > Digits_Value (T) then
12114 Error_Msg_N
12115 ("digits expression is incompatible with subtype", C);
12116 Digits_Val := Digits_Value (T);
12117 end if;
12118
12119 if Present (Range_Constraint (C)) then
12120 Range_Expr := Range_Expression (Range_Constraint (C));
12121 else
12122 Range_Expr := Empty;
12123 end if;
12124 end if;
12125
12126 Set_Etype (Def_Id, Base_Type (T));
12127 Set_Size_Info (Def_Id, (T));
12128 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12129 Set_Delta_Value (Def_Id, Delta_Value (T));
12130 Set_Scale_Value (Def_Id, Scale_Value (T));
12131 Set_Small_Value (Def_Id, Small_Value (T));
12132 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12133 Set_Digits_Value (Def_Id, Digits_Val);
12134
12135 -- Manufacture range from given digits value if no range present
12136
12137 if No (Range_Expr) then
12138 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12139 Range_Expr :=
12140 Make_Range (Loc,
12141 Low_Bound =>
12142 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12143 High_Bound =>
12144 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12145 end if;
12146
12147 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12148 Set_Discrete_RM_Size (Def_Id);
12149
12150 -- Unconditionally delay the freeze, since we cannot set size
12151 -- information in all cases correctly until the freeze point.
12152
12153 Set_Has_Delayed_Freeze (Def_Id);
12154 end Constrain_Decimal;
12155
12156 ----------------------------------
12157 -- Constrain_Discriminated_Type --
12158 ----------------------------------
12159
12160 procedure Constrain_Discriminated_Type
12161 (Def_Id : Entity_Id;
12162 S : Node_Id;
12163 Related_Nod : Node_Id;
12164 For_Access : Boolean := False)
12165 is
12166 E : constant Entity_Id := Entity (Subtype_Mark (S));
12167 T : Entity_Id;
12168 C : Node_Id;
12169 Elist : Elist_Id := New_Elmt_List;
12170
12171 procedure Fixup_Bad_Constraint;
12172 -- This is called after finding a bad constraint, and after having
12173 -- posted an appropriate error message. The mission is to leave the
12174 -- entity T in as reasonable state as possible.
12175
12176 --------------------------
12177 -- Fixup_Bad_Constraint --
12178 --------------------------
12179
12180 procedure Fixup_Bad_Constraint is
12181 begin
12182 -- Set a reasonable Ekind for the entity. For an incomplete type,
12183 -- we can't do much, but for other types, we can set the proper
12184 -- corresponding subtype kind.
12185
12186 if Ekind (T) = E_Incomplete_Type then
12187 Set_Ekind (Def_Id, Ekind (T));
12188 else
12189 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12190 end if;
12191
12192 -- Set Etype to the known type, to reduce chances of cascaded errors
12193
12194 Set_Etype (Def_Id, E);
12195 Set_Error_Posted (Def_Id);
12196 end Fixup_Bad_Constraint;
12197
12198 -- Start of processing for Constrain_Discriminated_Type
12199
12200 begin
12201 C := Constraint (S);
12202
12203 -- A discriminant constraint is only allowed in a subtype indication,
12204 -- after a subtype mark. This subtype mark must denote either a type
12205 -- with discriminants, or an access type whose designated type is a
12206 -- type with discriminants. A discriminant constraint specifies the
12207 -- values of these discriminants (RM 3.7.2(5)).
12208
12209 T := Base_Type (Entity (Subtype_Mark (S)));
12210
12211 if Is_Access_Type (T) then
12212 T := Designated_Type (T);
12213 end if;
12214
12215 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12216 -- Avoid generating an error for access-to-incomplete subtypes.
12217
12218 if Ada_Version >= Ada_2005
12219 and then Ekind (T) = E_Incomplete_Type
12220 and then Nkind (Parent (S)) = N_Subtype_Declaration
12221 and then not Is_Itype (Def_Id)
12222 then
12223 -- A little sanity check, emit an error message if the type
12224 -- has discriminants to begin with. Type T may be a regular
12225 -- incomplete type or imported via a limited with clause.
12226
12227 if Has_Discriminants (T)
12228 or else (From_Limited_With (T)
12229 and then Present (Non_Limited_View (T))
12230 and then Nkind (Parent (Non_Limited_View (T))) =
12231 N_Full_Type_Declaration
12232 and then Present (Discriminant_Specifications
12233 (Parent (Non_Limited_View (T)))))
12234 then
12235 Error_Msg_N
12236 ("(Ada 2005) incomplete subtype may not be constrained", C);
12237 else
12238 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12239 end if;
12240
12241 Fixup_Bad_Constraint;
12242 return;
12243
12244 -- Check that the type has visible discriminants. The type may be
12245 -- a private type with unknown discriminants whose full view has
12246 -- discriminants which are invisible.
12247
12248 elsif not Has_Discriminants (T)
12249 or else
12250 (Has_Unknown_Discriminants (T)
12251 and then Is_Private_Type (T))
12252 then
12253 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12254 Fixup_Bad_Constraint;
12255 return;
12256
12257 elsif Is_Constrained (E)
12258 or else (Ekind (E) = E_Class_Wide_Subtype
12259 and then Present (Discriminant_Constraint (E)))
12260 then
12261 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12262 Fixup_Bad_Constraint;
12263 return;
12264 end if;
12265
12266 -- T may be an unconstrained subtype (e.g. a generic actual).
12267 -- Constraint applies to the base type.
12268
12269 T := Base_Type (T);
12270
12271 Elist := Build_Discriminant_Constraints (T, S);
12272
12273 -- If the list returned was empty we had an error in building the
12274 -- discriminant constraint. We have also already signalled an error
12275 -- in the incomplete type case
12276
12277 if Is_Empty_Elmt_List (Elist) then
12278 Fixup_Bad_Constraint;
12279 return;
12280 end if;
12281
12282 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12283 end Constrain_Discriminated_Type;
12284
12285 ---------------------------
12286 -- Constrain_Enumeration --
12287 ---------------------------
12288
12289 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12290 T : constant Entity_Id := Entity (Subtype_Mark (S));
12291 C : constant Node_Id := Constraint (S);
12292
12293 begin
12294 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12295
12296 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12297
12298 Set_Etype (Def_Id, Base_Type (T));
12299 Set_Size_Info (Def_Id, (T));
12300 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12301 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12302
12303 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12304
12305 Set_Discrete_RM_Size (Def_Id);
12306 end Constrain_Enumeration;
12307
12308 ----------------------
12309 -- Constrain_Float --
12310 ----------------------
12311
12312 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12313 T : constant Entity_Id := Entity (Subtype_Mark (S));
12314 C : Node_Id;
12315 D : Node_Id;
12316 Rais : Node_Id;
12317
12318 begin
12319 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12320
12321 Set_Etype (Def_Id, Base_Type (T));
12322 Set_Size_Info (Def_Id, (T));
12323 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12324
12325 -- Process the constraint
12326
12327 C := Constraint (S);
12328
12329 -- Digits constraint present
12330
12331 if Nkind (C) = N_Digits_Constraint then
12332
12333 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12334 Check_Restriction (No_Obsolescent_Features, C);
12335
12336 if Warn_On_Obsolescent_Feature then
12337 Error_Msg_N
12338 ("subtype digits constraint is an " &
12339 "obsolescent feature (RM J.3(8))?j?", C);
12340 end if;
12341
12342 D := Digits_Expression (C);
12343 Analyze_And_Resolve (D, Any_Integer);
12344 Check_Digits_Expression (D);
12345 Set_Digits_Value (Def_Id, Expr_Value (D));
12346
12347 -- Check that digits value is in range. Obviously we can do this
12348 -- at compile time, but it is strictly a runtime check, and of
12349 -- course there is an ACVC test that checks this.
12350
12351 if Digits_Value (Def_Id) > Digits_Value (T) then
12352 Error_Msg_Uint_1 := Digits_Value (T);
12353 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12354 Rais :=
12355 Make_Raise_Constraint_Error (Sloc (D),
12356 Reason => CE_Range_Check_Failed);
12357 Insert_Action (Declaration_Node (Def_Id), Rais);
12358 end if;
12359
12360 C := Range_Constraint (C);
12361
12362 -- No digits constraint present
12363
12364 else
12365 Set_Digits_Value (Def_Id, Digits_Value (T));
12366 end if;
12367
12368 -- Range constraint present
12369
12370 if Nkind (C) = N_Range_Constraint then
12371 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12372
12373 -- No range constraint present
12374
12375 else
12376 pragma Assert (No (C));
12377 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12378 end if;
12379
12380 Set_Is_Constrained (Def_Id);
12381 end Constrain_Float;
12382
12383 ---------------------
12384 -- Constrain_Index --
12385 ---------------------
12386
12387 procedure Constrain_Index
12388 (Index : Node_Id;
12389 S : Node_Id;
12390 Related_Nod : Node_Id;
12391 Related_Id : Entity_Id;
12392 Suffix : Character;
12393 Suffix_Index : Nat)
12394 is
12395 Def_Id : Entity_Id;
12396 R : Node_Id := Empty;
12397 T : constant Entity_Id := Etype (Index);
12398
12399 begin
12400 if Nkind (S) = N_Range
12401 or else
12402 (Nkind (S) = N_Attribute_Reference
12403 and then Attribute_Name (S) = Name_Range)
12404 then
12405 -- A Range attribute will be transformed into N_Range by Resolve
12406
12407 Analyze (S);
12408 Set_Etype (S, T);
12409 R := S;
12410
12411 Process_Range_Expr_In_Decl (R, T);
12412
12413 if not Error_Posted (S)
12414 and then
12415 (Nkind (S) /= N_Range
12416 or else not Covers (T, (Etype (Low_Bound (S))))
12417 or else not Covers (T, (Etype (High_Bound (S)))))
12418 then
12419 if Base_Type (T) /= Any_Type
12420 and then Etype (Low_Bound (S)) /= Any_Type
12421 and then Etype (High_Bound (S)) /= Any_Type
12422 then
12423 Error_Msg_N ("range expected", S);
12424 end if;
12425 end if;
12426
12427 elsif Nkind (S) = N_Subtype_Indication then
12428
12429 -- The parser has verified that this is a discrete indication
12430
12431 Resolve_Discrete_Subtype_Indication (S, T);
12432 Bad_Predicated_Subtype_Use
12433 ("subtype& has predicate, not allowed in index constraint",
12434 S, Entity (Subtype_Mark (S)));
12435
12436 R := Range_Expression (Constraint (S));
12437
12438 -- Capture values of bounds and generate temporaries for them if
12439 -- needed, since checks may cause duplication of the expressions
12440 -- which must not be reevaluated.
12441
12442 -- The forced evaluation removes side effects from expressions, which
12443 -- should occur also in GNATprove mode. Otherwise, we end up with
12444 -- unexpected insertions of actions at places where this is not
12445 -- supposed to occur, e.g. on default parameters of a call.
12446
12447 if Expander_Active or GNATprove_Mode then
12448 Force_Evaluation (Low_Bound (R));
12449 Force_Evaluation (High_Bound (R));
12450 end if;
12451
12452 elsif Nkind (S) = N_Discriminant_Association then
12453
12454 -- Syntactically valid in subtype indication
12455
12456 Error_Msg_N ("invalid index constraint", S);
12457 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12458 return;
12459
12460 -- Subtype_Mark case, no anonymous subtypes to construct
12461
12462 else
12463 Analyze (S);
12464
12465 if Is_Entity_Name (S) then
12466 if not Is_Type (Entity (S)) then
12467 Error_Msg_N ("expect subtype mark for index constraint", S);
12468
12469 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12470 Wrong_Type (S, Base_Type (T));
12471
12472 -- Check error of subtype with predicate in index constraint
12473
12474 else
12475 Bad_Predicated_Subtype_Use
12476 ("subtype& has predicate, not allowed in index constraint",
12477 S, Entity (S));
12478 end if;
12479
12480 return;
12481
12482 else
12483 Error_Msg_N ("invalid index constraint", S);
12484 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12485 return;
12486 end if;
12487 end if;
12488
12489 Def_Id :=
12490 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12491
12492 Set_Etype (Def_Id, Base_Type (T));
12493
12494 if Is_Modular_Integer_Type (T) then
12495 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12496
12497 elsif Is_Integer_Type (T) then
12498 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12499
12500 else
12501 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12502 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12503 Set_First_Literal (Def_Id, First_Literal (T));
12504 end if;
12505
12506 Set_Size_Info (Def_Id, (T));
12507 Set_RM_Size (Def_Id, RM_Size (T));
12508 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12509
12510 Set_Scalar_Range (Def_Id, R);
12511
12512 Set_Etype (S, Def_Id);
12513 Set_Discrete_RM_Size (Def_Id);
12514 end Constrain_Index;
12515
12516 -----------------------
12517 -- Constrain_Integer --
12518 -----------------------
12519
12520 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12521 T : constant Entity_Id := Entity (Subtype_Mark (S));
12522 C : constant Node_Id := Constraint (S);
12523
12524 begin
12525 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12526
12527 if Is_Modular_Integer_Type (T) then
12528 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12529 else
12530 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12531 end if;
12532
12533 Set_Etype (Def_Id, Base_Type (T));
12534 Set_Size_Info (Def_Id, (T));
12535 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12536 Set_Discrete_RM_Size (Def_Id);
12537 end Constrain_Integer;
12538
12539 ------------------------------
12540 -- Constrain_Ordinary_Fixed --
12541 ------------------------------
12542
12543 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12544 T : constant Entity_Id := Entity (Subtype_Mark (S));
12545 C : Node_Id;
12546 D : Node_Id;
12547 Rais : Node_Id;
12548
12549 begin
12550 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12551 Set_Etype (Def_Id, Base_Type (T));
12552 Set_Size_Info (Def_Id, (T));
12553 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12554 Set_Small_Value (Def_Id, Small_Value (T));
12555
12556 -- Process the constraint
12557
12558 C := Constraint (S);
12559
12560 -- Delta constraint present
12561
12562 if Nkind (C) = N_Delta_Constraint then
12563
12564 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12565 Check_Restriction (No_Obsolescent_Features, C);
12566
12567 if Warn_On_Obsolescent_Feature then
12568 Error_Msg_S
12569 ("subtype delta constraint is an " &
12570 "obsolescent feature (RM J.3(7))?j?");
12571 end if;
12572
12573 D := Delta_Expression (C);
12574 Analyze_And_Resolve (D, Any_Real);
12575 Check_Delta_Expression (D);
12576 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12577
12578 -- Check that delta value is in range. Obviously we can do this
12579 -- at compile time, but it is strictly a runtime check, and of
12580 -- course there is an ACVC test that checks this.
12581
12582 if Delta_Value (Def_Id) < Delta_Value (T) then
12583 Error_Msg_N ("??delta value is too small", D);
12584 Rais :=
12585 Make_Raise_Constraint_Error (Sloc (D),
12586 Reason => CE_Range_Check_Failed);
12587 Insert_Action (Declaration_Node (Def_Id), Rais);
12588 end if;
12589
12590 C := Range_Constraint (C);
12591
12592 -- No delta constraint present
12593
12594 else
12595 Set_Delta_Value (Def_Id, Delta_Value (T));
12596 end if;
12597
12598 -- Range constraint present
12599
12600 if Nkind (C) = N_Range_Constraint then
12601 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12602
12603 -- No range constraint present
12604
12605 else
12606 pragma Assert (No (C));
12607 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12608
12609 end if;
12610
12611 Set_Discrete_RM_Size (Def_Id);
12612
12613 -- Unconditionally delay the freeze, since we cannot set size
12614 -- information in all cases correctly until the freeze point.
12615
12616 Set_Has_Delayed_Freeze (Def_Id);
12617 end Constrain_Ordinary_Fixed;
12618
12619 -----------------------
12620 -- Contain_Interface --
12621 -----------------------
12622
12623 function Contain_Interface
12624 (Iface : Entity_Id;
12625 Ifaces : Elist_Id) return Boolean
12626 is
12627 Iface_Elmt : Elmt_Id;
12628
12629 begin
12630 if Present (Ifaces) then
12631 Iface_Elmt := First_Elmt (Ifaces);
12632 while Present (Iface_Elmt) loop
12633 if Node (Iface_Elmt) = Iface then
12634 return True;
12635 end if;
12636
12637 Next_Elmt (Iface_Elmt);
12638 end loop;
12639 end if;
12640
12641 return False;
12642 end Contain_Interface;
12643
12644 ---------------------------
12645 -- Convert_Scalar_Bounds --
12646 ---------------------------
12647
12648 procedure Convert_Scalar_Bounds
12649 (N : Node_Id;
12650 Parent_Type : Entity_Id;
12651 Derived_Type : Entity_Id;
12652 Loc : Source_Ptr)
12653 is
12654 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12655
12656 Lo : Node_Id;
12657 Hi : Node_Id;
12658 Rng : Node_Id;
12659
12660 begin
12661 -- Defend against previous errors
12662
12663 if No (Scalar_Range (Derived_Type)) then
12664 Check_Error_Detected;
12665 return;
12666 end if;
12667
12668 Lo := Build_Scalar_Bound
12669 (Type_Low_Bound (Derived_Type),
12670 Parent_Type, Implicit_Base);
12671
12672 Hi := Build_Scalar_Bound
12673 (Type_High_Bound (Derived_Type),
12674 Parent_Type, Implicit_Base);
12675
12676 Rng :=
12677 Make_Range (Loc,
12678 Low_Bound => Lo,
12679 High_Bound => Hi);
12680
12681 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12682
12683 Set_Parent (Rng, N);
12684 Set_Scalar_Range (Derived_Type, Rng);
12685
12686 -- Analyze the bounds
12687
12688 Analyze_And_Resolve (Lo, Implicit_Base);
12689 Analyze_And_Resolve (Hi, Implicit_Base);
12690
12691 -- Analyze the range itself, except that we do not analyze it if
12692 -- the bounds are real literals, and we have a fixed-point type.
12693 -- The reason for this is that we delay setting the bounds in this
12694 -- case till we know the final Small and Size values (see circuit
12695 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12696
12697 if Is_Fixed_Point_Type (Parent_Type)
12698 and then Nkind (Lo) = N_Real_Literal
12699 and then Nkind (Hi) = N_Real_Literal
12700 then
12701 return;
12702
12703 -- Here we do the analysis of the range
12704
12705 -- Note: we do this manually, since if we do a normal Analyze and
12706 -- Resolve call, there are problems with the conversions used for
12707 -- the derived type range.
12708
12709 else
12710 Set_Etype (Rng, Implicit_Base);
12711 Set_Analyzed (Rng, True);
12712 end if;
12713 end Convert_Scalar_Bounds;
12714
12715 -------------------
12716 -- Copy_And_Swap --
12717 -------------------
12718
12719 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12720 begin
12721 -- Initialize new full declaration entity by copying the pertinent
12722 -- fields of the corresponding private declaration entity.
12723
12724 -- We temporarily set Ekind to a value appropriate for a type to
12725 -- avoid assert failures in Einfo from checking for setting type
12726 -- attributes on something that is not a type. Ekind (Priv) is an
12727 -- appropriate choice, since it allowed the attributes to be set
12728 -- in the first place. This Ekind value will be modified later.
12729
12730 Set_Ekind (Full, Ekind (Priv));
12731
12732 -- Also set Etype temporarily to Any_Type, again, in the absence
12733 -- of errors, it will be properly reset, and if there are errors,
12734 -- then we want a value of Any_Type to remain.
12735
12736 Set_Etype (Full, Any_Type);
12737
12738 -- Now start copying attributes
12739
12740 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12741
12742 if Has_Discriminants (Full) then
12743 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12744 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12745 end if;
12746
12747 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12748 Set_Homonym (Full, Homonym (Priv));
12749 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12750 Set_Is_Public (Full, Is_Public (Priv));
12751 Set_Is_Pure (Full, Is_Pure (Priv));
12752 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12753 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12754 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12755 Set_Has_Pragma_Unreferenced_Objects
12756 (Full, Has_Pragma_Unreferenced_Objects
12757 (Priv));
12758
12759 Conditional_Delay (Full, Priv);
12760
12761 if Is_Tagged_Type (Full) then
12762 Set_Direct_Primitive_Operations (Full,
12763 Direct_Primitive_Operations (Priv));
12764
12765 if Is_Base_Type (Priv) then
12766 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12767 end if;
12768 end if;
12769
12770 Set_Is_Volatile (Full, Is_Volatile (Priv));
12771 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12772 Set_Scope (Full, Scope (Priv));
12773 Set_Next_Entity (Full, Next_Entity (Priv));
12774 Set_First_Entity (Full, First_Entity (Priv));
12775 Set_Last_Entity (Full, Last_Entity (Priv));
12776
12777 -- If access types have been recorded for later handling, keep them in
12778 -- the full view so that they get handled when the full view freeze
12779 -- node is expanded.
12780
12781 if Present (Freeze_Node (Priv))
12782 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12783 then
12784 Ensure_Freeze_Node (Full);
12785 Set_Access_Types_To_Process
12786 (Freeze_Node (Full),
12787 Access_Types_To_Process (Freeze_Node (Priv)));
12788 end if;
12789
12790 -- Swap the two entities. Now Private is the full type entity and Full
12791 -- is the private one. They will be swapped back at the end of the
12792 -- private part. This swapping ensures that the entity that is visible
12793 -- in the private part is the full declaration.
12794
12795 Exchange_Entities (Priv, Full);
12796 Append_Entity (Full, Scope (Full));
12797 end Copy_And_Swap;
12798
12799 -------------------------------------
12800 -- Copy_Array_Base_Type_Attributes --
12801 -------------------------------------
12802
12803 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12804 begin
12805 Set_Component_Alignment (T1, Component_Alignment (T2));
12806 Set_Component_Type (T1, Component_Type (T2));
12807 Set_Component_Size (T1, Component_Size (T2));
12808 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12809 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12810 Set_Has_Protected (T1, Has_Protected (T2));
12811 Set_Has_Task (T1, Has_Task (T2));
12812 Set_Is_Packed (T1, Is_Packed (T2));
12813 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12814 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12815 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12816 end Copy_Array_Base_Type_Attributes;
12817
12818 -----------------------------------
12819 -- Copy_Array_Subtype_Attributes --
12820 -----------------------------------
12821
12822 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12823 begin
12824 Set_Size_Info (T1, T2);
12825
12826 Set_First_Index (T1, First_Index (T2));
12827 Set_Is_Aliased (T1, Is_Aliased (T2));
12828 Set_Is_Volatile (T1, Is_Volatile (T2));
12829 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12830 Set_Is_Constrained (T1, Is_Constrained (T2));
12831 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12832 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12833 Set_Convention (T1, Convention (T2));
12834 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12835 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12836 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12837 end Copy_Array_Subtype_Attributes;
12838
12839 -----------------------------------
12840 -- Create_Constrained_Components --
12841 -----------------------------------
12842
12843 procedure Create_Constrained_Components
12844 (Subt : Entity_Id;
12845 Decl_Node : Node_Id;
12846 Typ : Entity_Id;
12847 Constraints : Elist_Id)
12848 is
12849 Loc : constant Source_Ptr := Sloc (Subt);
12850 Comp_List : constant Elist_Id := New_Elmt_List;
12851 Parent_Type : constant Entity_Id := Etype (Typ);
12852 Assoc_List : constant List_Id := New_List;
12853 Discr_Val : Elmt_Id;
12854 Errors : Boolean;
12855 New_C : Entity_Id;
12856 Old_C : Entity_Id;
12857 Is_Static : Boolean := True;
12858
12859 procedure Collect_Fixed_Components (Typ : Entity_Id);
12860 -- Collect parent type components that do not appear in a variant part
12861
12862 procedure Create_All_Components;
12863 -- Iterate over Comp_List to create the components of the subtype
12864
12865 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12866 -- Creates a new component from Old_Compon, copying all the fields from
12867 -- it, including its Etype, inserts the new component in the Subt entity
12868 -- chain and returns the new component.
12869
12870 function Is_Variant_Record (T : Entity_Id) return Boolean;
12871 -- If true, and discriminants are static, collect only components from
12872 -- variants selected by discriminant values.
12873
12874 ------------------------------
12875 -- Collect_Fixed_Components --
12876 ------------------------------
12877
12878 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12879 begin
12880 -- Build association list for discriminants, and find components of the
12881 -- variant part selected by the values of the discriminants.
12882
12883 Old_C := First_Discriminant (Typ);
12884 Discr_Val := First_Elmt (Constraints);
12885 while Present (Old_C) loop
12886 Append_To (Assoc_List,
12887 Make_Component_Association (Loc,
12888 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12889 Expression => New_Copy (Node (Discr_Val))));
12890
12891 Next_Elmt (Discr_Val);
12892 Next_Discriminant (Old_C);
12893 end loop;
12894
12895 -- The tag and the possible parent component are unconditionally in
12896 -- the subtype.
12897
12898 if Is_Tagged_Type (Typ)
12899 or else Has_Controlled_Component (Typ)
12900 then
12901 Old_C := First_Component (Typ);
12902 while Present (Old_C) loop
12903 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12904 Append_Elmt (Old_C, Comp_List);
12905 end if;
12906
12907 Next_Component (Old_C);
12908 end loop;
12909 end if;
12910 end Collect_Fixed_Components;
12911
12912 ---------------------------
12913 -- Create_All_Components --
12914 ---------------------------
12915
12916 procedure Create_All_Components is
12917 Comp : Elmt_Id;
12918
12919 begin
12920 Comp := First_Elmt (Comp_List);
12921 while Present (Comp) loop
12922 Old_C := Node (Comp);
12923 New_C := Create_Component (Old_C);
12924
12925 Set_Etype
12926 (New_C,
12927 Constrain_Component_Type
12928 (Old_C, Subt, Decl_Node, Typ, Constraints));
12929 Set_Is_Public (New_C, Is_Public (Subt));
12930
12931 Next_Elmt (Comp);
12932 end loop;
12933 end Create_All_Components;
12934
12935 ----------------------
12936 -- Create_Component --
12937 ----------------------
12938
12939 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12940 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12941
12942 begin
12943 if Ekind (Old_Compon) = E_Discriminant
12944 and then Is_Completely_Hidden (Old_Compon)
12945 then
12946 -- This is a shadow discriminant created for a discriminant of
12947 -- the parent type, which needs to be present in the subtype.
12948 -- Give the shadow discriminant an internal name that cannot
12949 -- conflict with that of visible components.
12950
12951 Set_Chars (New_Compon, New_Internal_Name ('C'));
12952 end if;
12953
12954 -- Set the parent so we have a proper link for freezing etc. This is
12955 -- not a real parent pointer, since of course our parent does not own
12956 -- up to us and reference us, we are an illegitimate child of the
12957 -- original parent.
12958
12959 Set_Parent (New_Compon, Parent (Old_Compon));
12960
12961 -- If the old component's Esize was already determined and is a
12962 -- static value, then the new component simply inherits it. Otherwise
12963 -- the old component's size may require run-time determination, but
12964 -- the new component's size still might be statically determinable
12965 -- (if, for example it has a static constraint). In that case we want
12966 -- Layout_Type to recompute the component's size, so we reset its
12967 -- size and positional fields.
12968
12969 if Frontend_Layout_On_Target
12970 and then not Known_Static_Esize (Old_Compon)
12971 then
12972 Set_Esize (New_Compon, Uint_0);
12973 Init_Normalized_First_Bit (New_Compon);
12974 Init_Normalized_Position (New_Compon);
12975 Init_Normalized_Position_Max (New_Compon);
12976 end if;
12977
12978 -- We do not want this node marked as Comes_From_Source, since
12979 -- otherwise it would get first class status and a separate cross-
12980 -- reference line would be generated. Illegitimate children do not
12981 -- rate such recognition.
12982
12983 Set_Comes_From_Source (New_Compon, False);
12984
12985 -- But it is a real entity, and a birth certificate must be properly
12986 -- registered by entering it into the entity list.
12987
12988 Enter_Name (New_Compon);
12989
12990 return New_Compon;
12991 end Create_Component;
12992
12993 -----------------------
12994 -- Is_Variant_Record --
12995 -----------------------
12996
12997 function Is_Variant_Record (T : Entity_Id) return Boolean is
12998 begin
12999 return Nkind (Parent (T)) = N_Full_Type_Declaration
13000 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13001 and then Present (Component_List (Type_Definition (Parent (T))))
13002 and then
13003 Present
13004 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13005 end Is_Variant_Record;
13006
13007 -- Start of processing for Create_Constrained_Components
13008
13009 begin
13010 pragma Assert (Subt /= Base_Type (Subt));
13011 pragma Assert (Typ = Base_Type (Typ));
13012
13013 Set_First_Entity (Subt, Empty);
13014 Set_Last_Entity (Subt, Empty);
13015
13016 -- Check whether constraint is fully static, in which case we can
13017 -- optimize the list of components.
13018
13019 Discr_Val := First_Elmt (Constraints);
13020 while Present (Discr_Val) loop
13021 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13022 Is_Static := False;
13023 exit;
13024 end if;
13025
13026 Next_Elmt (Discr_Val);
13027 end loop;
13028
13029 Set_Has_Static_Discriminants (Subt, Is_Static);
13030
13031 Push_Scope (Subt);
13032
13033 -- Inherit the discriminants of the parent type
13034
13035 Add_Discriminants : declare
13036 Num_Disc : Int;
13037 Num_Gird : Int;
13038
13039 begin
13040 Num_Disc := 0;
13041 Old_C := First_Discriminant (Typ);
13042
13043 while Present (Old_C) loop
13044 Num_Disc := Num_Disc + 1;
13045 New_C := Create_Component (Old_C);
13046 Set_Is_Public (New_C, Is_Public (Subt));
13047 Next_Discriminant (Old_C);
13048 end loop;
13049
13050 -- For an untagged derived subtype, the number of discriminants may
13051 -- be smaller than the number of inherited discriminants, because
13052 -- several of them may be renamed by a single new discriminant or
13053 -- constrained. In this case, add the hidden discriminants back into
13054 -- the subtype, because they need to be present if the optimizer of
13055 -- the GCC 4.x back-end decides to break apart assignments between
13056 -- objects using the parent view into member-wise assignments.
13057
13058 Num_Gird := 0;
13059
13060 if Is_Derived_Type (Typ)
13061 and then not Is_Tagged_Type (Typ)
13062 then
13063 Old_C := First_Stored_Discriminant (Typ);
13064
13065 while Present (Old_C) loop
13066 Num_Gird := Num_Gird + 1;
13067 Next_Stored_Discriminant (Old_C);
13068 end loop;
13069 end if;
13070
13071 if Num_Gird > Num_Disc then
13072
13073 -- Find out multiple uses of new discriminants, and add hidden
13074 -- components for the extra renamed discriminants. We recognize
13075 -- multiple uses through the Corresponding_Discriminant of a
13076 -- new discriminant: if it constrains several old discriminants,
13077 -- this field points to the last one in the parent type. The
13078 -- stored discriminants of the derived type have the same name
13079 -- as those of the parent.
13080
13081 declare
13082 Constr : Elmt_Id;
13083 New_Discr : Entity_Id;
13084 Old_Discr : Entity_Id;
13085
13086 begin
13087 Constr := First_Elmt (Stored_Constraint (Typ));
13088 Old_Discr := First_Stored_Discriminant (Typ);
13089 while Present (Constr) loop
13090 if Is_Entity_Name (Node (Constr))
13091 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13092 then
13093 New_Discr := Entity (Node (Constr));
13094
13095 if Chars (Corresponding_Discriminant (New_Discr)) /=
13096 Chars (Old_Discr)
13097 then
13098 -- The new discriminant has been used to rename a
13099 -- subsequent old discriminant. Introduce a shadow
13100 -- component for the current old discriminant.
13101
13102 New_C := Create_Component (Old_Discr);
13103 Set_Original_Record_Component (New_C, Old_Discr);
13104 end if;
13105
13106 else
13107 -- The constraint has eliminated the old discriminant.
13108 -- Introduce a shadow component.
13109
13110 New_C := Create_Component (Old_Discr);
13111 Set_Original_Record_Component (New_C, Old_Discr);
13112 end if;
13113
13114 Next_Elmt (Constr);
13115 Next_Stored_Discriminant (Old_Discr);
13116 end loop;
13117 end;
13118 end if;
13119 end Add_Discriminants;
13120
13121 if Is_Static
13122 and then Is_Variant_Record (Typ)
13123 then
13124 Collect_Fixed_Components (Typ);
13125
13126 Gather_Components (
13127 Typ,
13128 Component_List (Type_Definition (Parent (Typ))),
13129 Governed_By => Assoc_List,
13130 Into => Comp_List,
13131 Report_Errors => Errors);
13132 pragma Assert (not Errors);
13133
13134 Create_All_Components;
13135
13136 -- If the subtype declaration is created for a tagged type derivation
13137 -- with constraints, we retrieve the record definition of the parent
13138 -- type to select the components of the proper variant.
13139
13140 elsif Is_Static
13141 and then Is_Tagged_Type (Typ)
13142 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13143 and then
13144 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13145 and then Is_Variant_Record (Parent_Type)
13146 then
13147 Collect_Fixed_Components (Typ);
13148
13149 Gather_Components (
13150 Typ,
13151 Component_List (Type_Definition (Parent (Parent_Type))),
13152 Governed_By => Assoc_List,
13153 Into => Comp_List,
13154 Report_Errors => Errors);
13155 pragma Assert (not Errors);
13156
13157 -- If the tagged derivation has a type extension, collect all the
13158 -- new components therein.
13159
13160 if Present
13161 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13162 then
13163 Old_C := First_Component (Typ);
13164 while Present (Old_C) loop
13165 if Original_Record_Component (Old_C) = Old_C
13166 and then Chars (Old_C) /= Name_uTag
13167 and then Chars (Old_C) /= Name_uParent
13168 then
13169 Append_Elmt (Old_C, Comp_List);
13170 end if;
13171
13172 Next_Component (Old_C);
13173 end loop;
13174 end if;
13175
13176 Create_All_Components;
13177
13178 else
13179 -- If discriminants are not static, or if this is a multi-level type
13180 -- extension, we have to include all components of the parent type.
13181
13182 Old_C := First_Component (Typ);
13183 while Present (Old_C) loop
13184 New_C := Create_Component (Old_C);
13185
13186 Set_Etype
13187 (New_C,
13188 Constrain_Component_Type
13189 (Old_C, Subt, Decl_Node, Typ, Constraints));
13190 Set_Is_Public (New_C, Is_Public (Subt));
13191
13192 Next_Component (Old_C);
13193 end loop;
13194 end if;
13195
13196 End_Scope;
13197 end Create_Constrained_Components;
13198
13199 ------------------------------------------
13200 -- Decimal_Fixed_Point_Type_Declaration --
13201 ------------------------------------------
13202
13203 procedure Decimal_Fixed_Point_Type_Declaration
13204 (T : Entity_Id;
13205 Def : Node_Id)
13206 is
13207 Loc : constant Source_Ptr := Sloc (Def);
13208 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13209 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13210 Implicit_Base : Entity_Id;
13211 Digs_Val : Uint;
13212 Delta_Val : Ureal;
13213 Scale_Val : Uint;
13214 Bound_Val : Ureal;
13215
13216 begin
13217 Check_SPARK_Restriction
13218 ("decimal fixed point type is not allowed", Def);
13219 Check_Restriction (No_Fixed_Point, Def);
13220
13221 -- Create implicit base type
13222
13223 Implicit_Base :=
13224 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13225 Set_Etype (Implicit_Base, Implicit_Base);
13226
13227 -- Analyze and process delta expression
13228
13229 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13230
13231 Check_Delta_Expression (Delta_Expr);
13232 Delta_Val := Expr_Value_R (Delta_Expr);
13233
13234 -- Check delta is power of 10, and determine scale value from it
13235
13236 declare
13237 Val : Ureal;
13238
13239 begin
13240 Scale_Val := Uint_0;
13241 Val := Delta_Val;
13242
13243 if Val < Ureal_1 then
13244 while Val < Ureal_1 loop
13245 Val := Val * Ureal_10;
13246 Scale_Val := Scale_Val + 1;
13247 end loop;
13248
13249 if Scale_Val > 18 then
13250 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13251 Scale_Val := UI_From_Int (+18);
13252 end if;
13253
13254 else
13255 while Val > Ureal_1 loop
13256 Val := Val / Ureal_10;
13257 Scale_Val := Scale_Val - 1;
13258 end loop;
13259
13260 if Scale_Val < -18 then
13261 Error_Msg_N ("scale is less than minimum value of -18", Def);
13262 Scale_Val := UI_From_Int (-18);
13263 end if;
13264 end if;
13265
13266 if Val /= Ureal_1 then
13267 Error_Msg_N ("delta expression must be a power of 10", Def);
13268 Delta_Val := Ureal_10 ** (-Scale_Val);
13269 end if;
13270 end;
13271
13272 -- Set delta, scale and small (small = delta for decimal type)
13273
13274 Set_Delta_Value (Implicit_Base, Delta_Val);
13275 Set_Scale_Value (Implicit_Base, Scale_Val);
13276 Set_Small_Value (Implicit_Base, Delta_Val);
13277
13278 -- Analyze and process digits expression
13279
13280 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13281 Check_Digits_Expression (Digs_Expr);
13282 Digs_Val := Expr_Value (Digs_Expr);
13283
13284 if Digs_Val > 18 then
13285 Digs_Val := UI_From_Int (+18);
13286 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13287 end if;
13288
13289 Set_Digits_Value (Implicit_Base, Digs_Val);
13290 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13291
13292 -- Set range of base type from digits value for now. This will be
13293 -- expanded to represent the true underlying base range by Freeze.
13294
13295 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13296
13297 -- Note: We leave size as zero for now, size will be set at freeze
13298 -- time. We have to do this for ordinary fixed-point, because the size
13299 -- depends on the specified small, and we might as well do the same for
13300 -- decimal fixed-point.
13301
13302 pragma Assert (Esize (Implicit_Base) = Uint_0);
13303
13304 -- If there are bounds given in the declaration use them as the
13305 -- bounds of the first named subtype.
13306
13307 if Present (Real_Range_Specification (Def)) then
13308 declare
13309 RRS : constant Node_Id := Real_Range_Specification (Def);
13310 Low : constant Node_Id := Low_Bound (RRS);
13311 High : constant Node_Id := High_Bound (RRS);
13312 Low_Val : Ureal;
13313 High_Val : Ureal;
13314
13315 begin
13316 Analyze_And_Resolve (Low, Any_Real);
13317 Analyze_And_Resolve (High, Any_Real);
13318 Check_Real_Bound (Low);
13319 Check_Real_Bound (High);
13320 Low_Val := Expr_Value_R (Low);
13321 High_Val := Expr_Value_R (High);
13322
13323 if Low_Val < (-Bound_Val) then
13324 Error_Msg_N
13325 ("range low bound too small for digits value", Low);
13326 Low_Val := -Bound_Val;
13327 end if;
13328
13329 if High_Val > Bound_Val then
13330 Error_Msg_N
13331 ("range high bound too large for digits value", High);
13332 High_Val := Bound_Val;
13333 end if;
13334
13335 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13336 end;
13337
13338 -- If no explicit range, use range that corresponds to given
13339 -- digits value. This will end up as the final range for the
13340 -- first subtype.
13341
13342 else
13343 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13344 end if;
13345
13346 -- Complete entity for first subtype
13347
13348 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13349 Set_Etype (T, Implicit_Base);
13350 Set_Size_Info (T, Implicit_Base);
13351 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13352 Set_Digits_Value (T, Digs_Val);
13353 Set_Delta_Value (T, Delta_Val);
13354 Set_Small_Value (T, Delta_Val);
13355 Set_Scale_Value (T, Scale_Val);
13356 Set_Is_Constrained (T);
13357 end Decimal_Fixed_Point_Type_Declaration;
13358
13359 -----------------------------------
13360 -- Derive_Progenitor_Subprograms --
13361 -----------------------------------
13362
13363 procedure Derive_Progenitor_Subprograms
13364 (Parent_Type : Entity_Id;
13365 Tagged_Type : Entity_Id)
13366 is
13367 E : Entity_Id;
13368 Elmt : Elmt_Id;
13369 Iface : Entity_Id;
13370 Iface_Elmt : Elmt_Id;
13371 Iface_Subp : Entity_Id;
13372 New_Subp : Entity_Id := Empty;
13373 Prim_Elmt : Elmt_Id;
13374 Subp : Entity_Id;
13375 Typ : Entity_Id;
13376
13377 begin
13378 pragma Assert (Ada_Version >= Ada_2005
13379 and then Is_Record_Type (Tagged_Type)
13380 and then Is_Tagged_Type (Tagged_Type)
13381 and then Has_Interfaces (Tagged_Type));
13382
13383 -- Step 1: Transfer to the full-view primitives associated with the
13384 -- partial-view that cover interface primitives. Conceptually this
13385 -- work should be done later by Process_Full_View; done here to
13386 -- simplify its implementation at later stages. It can be safely
13387 -- done here because interfaces must be visible in the partial and
13388 -- private view (RM 7.3(7.3/2)).
13389
13390 -- Small optimization: This work is only required if the parent may
13391 -- have entities whose Alias attribute reference an interface primitive.
13392 -- Such a situation may occur if the parent is an abstract type and the
13393 -- primitive has not been yet overridden or if the parent is a generic
13394 -- formal type covering interfaces.
13395
13396 -- If the tagged type is not abstract, it cannot have abstract
13397 -- primitives (the only entities in the list of primitives of
13398 -- non-abstract tagged types that can reference abstract primitives
13399 -- through its Alias attribute are the internal entities that have
13400 -- attribute Interface_Alias, and these entities are generated later
13401 -- by Add_Internal_Interface_Entities).
13402
13403 if In_Private_Part (Current_Scope)
13404 and then (Is_Abstract_Type (Parent_Type)
13405 or else
13406 Is_Generic_Type (Parent_Type))
13407 then
13408 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13409 while Present (Elmt) loop
13410 Subp := Node (Elmt);
13411
13412 -- At this stage it is not possible to have entities in the list
13413 -- of primitives that have attribute Interface_Alias.
13414
13415 pragma Assert (No (Interface_Alias (Subp)));
13416
13417 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13418
13419 if Is_Interface (Typ) then
13420 E := Find_Primitive_Covering_Interface
13421 (Tagged_Type => Tagged_Type,
13422 Iface_Prim => Subp);
13423
13424 if Present (E)
13425 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13426 then
13427 Replace_Elmt (Elmt, E);
13428 Remove_Homonym (Subp);
13429 end if;
13430 end if;
13431
13432 Next_Elmt (Elmt);
13433 end loop;
13434 end if;
13435
13436 -- Step 2: Add primitives of progenitors that are not implemented by
13437 -- parents of Tagged_Type.
13438
13439 if Present (Interfaces (Base_Type (Tagged_Type))) then
13440 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13441 while Present (Iface_Elmt) loop
13442 Iface := Node (Iface_Elmt);
13443
13444 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13445 while Present (Prim_Elmt) loop
13446 Iface_Subp := Node (Prim_Elmt);
13447
13448 -- Exclude derivation of predefined primitives except those
13449 -- that come from source, or are inherited from one that comes
13450 -- from source. Required to catch declarations of equality
13451 -- operators of interfaces. For example:
13452
13453 -- type Iface is interface;
13454 -- function "=" (Left, Right : Iface) return Boolean;
13455
13456 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13457 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13458 then
13459 E := Find_Primitive_Covering_Interface
13460 (Tagged_Type => Tagged_Type,
13461 Iface_Prim => Iface_Subp);
13462
13463 -- If not found we derive a new primitive leaving its alias
13464 -- attribute referencing the interface primitive.
13465
13466 if No (E) then
13467 Derive_Subprogram
13468 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13469
13470 -- Ada 2012 (AI05-0197): If the covering primitive's name
13471 -- differs from the name of the interface primitive then it
13472 -- is a private primitive inherited from a parent type. In
13473 -- such case, given that Tagged_Type covers the interface,
13474 -- the inherited private primitive becomes visible. For such
13475 -- purpose we add a new entity that renames the inherited
13476 -- private primitive.
13477
13478 elsif Chars (E) /= Chars (Iface_Subp) then
13479 pragma Assert (Has_Suffix (E, 'P'));
13480 Derive_Subprogram
13481 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13482 Set_Alias (New_Subp, E);
13483 Set_Is_Abstract_Subprogram (New_Subp,
13484 Is_Abstract_Subprogram (E));
13485
13486 -- Propagate to the full view interface entities associated
13487 -- with the partial view.
13488
13489 elsif In_Private_Part (Current_Scope)
13490 and then Present (Alias (E))
13491 and then Alias (E) = Iface_Subp
13492 and then
13493 List_Containing (Parent (E)) /=
13494 Private_Declarations
13495 (Specification
13496 (Unit_Declaration_Node (Current_Scope)))
13497 then
13498 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13499 end if;
13500 end if;
13501
13502 Next_Elmt (Prim_Elmt);
13503 end loop;
13504
13505 Next_Elmt (Iface_Elmt);
13506 end loop;
13507 end if;
13508 end Derive_Progenitor_Subprograms;
13509
13510 -----------------------
13511 -- Derive_Subprogram --
13512 -----------------------
13513
13514 procedure Derive_Subprogram
13515 (New_Subp : in out Entity_Id;
13516 Parent_Subp : Entity_Id;
13517 Derived_Type : Entity_Id;
13518 Parent_Type : Entity_Id;
13519 Actual_Subp : Entity_Id := Empty)
13520 is
13521 Formal : Entity_Id;
13522 -- Formal parameter of parent primitive operation
13523
13524 Formal_Of_Actual : Entity_Id;
13525 -- Formal parameter of actual operation, when the derivation is to
13526 -- create a renaming for a primitive operation of an actual in an
13527 -- instantiation.
13528
13529 New_Formal : Entity_Id;
13530 -- Formal of inherited operation
13531
13532 Visible_Subp : Entity_Id := Parent_Subp;
13533
13534 function Is_Private_Overriding return Boolean;
13535 -- If Subp is a private overriding of a visible operation, the inherited
13536 -- operation derives from the overridden op (even though its body is the
13537 -- overriding one) and the inherited operation is visible now. See
13538 -- sem_disp to see the full details of the handling of the overridden
13539 -- subprogram, which is removed from the list of primitive operations of
13540 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13541 -- and used to diagnose abstract operations that need overriding in the
13542 -- derived type.
13543
13544 procedure Replace_Type (Id, New_Id : Entity_Id);
13545 -- When the type is an anonymous access type, create a new access type
13546 -- designating the derived type.
13547
13548 procedure Set_Derived_Name;
13549 -- This procedure sets the appropriate Chars name for New_Subp. This
13550 -- is normally just a copy of the parent name. An exception arises for
13551 -- type support subprograms, where the name is changed to reflect the
13552 -- name of the derived type, e.g. if type foo is derived from type bar,
13553 -- then a procedure barDA is derived with a name fooDA.
13554
13555 ---------------------------
13556 -- Is_Private_Overriding --
13557 ---------------------------
13558
13559 function Is_Private_Overriding return Boolean is
13560 Prev : Entity_Id;
13561
13562 begin
13563 -- If the parent is not a dispatching operation there is no
13564 -- need to investigate overridings
13565
13566 if not Is_Dispatching_Operation (Parent_Subp) then
13567 return False;
13568 end if;
13569
13570 -- The visible operation that is overridden is a homonym of the
13571 -- parent subprogram. We scan the homonym chain to find the one
13572 -- whose alias is the subprogram we are deriving.
13573
13574 Prev := Current_Entity (Parent_Subp);
13575 while Present (Prev) loop
13576 if Ekind (Prev) = Ekind (Parent_Subp)
13577 and then Alias (Prev) = Parent_Subp
13578 and then Scope (Parent_Subp) = Scope (Prev)
13579 and then not Is_Hidden (Prev)
13580 then
13581 Visible_Subp := Prev;
13582 return True;
13583 end if;
13584
13585 Prev := Homonym (Prev);
13586 end loop;
13587
13588 return False;
13589 end Is_Private_Overriding;
13590
13591 ------------------
13592 -- Replace_Type --
13593 ------------------
13594
13595 procedure Replace_Type (Id, New_Id : Entity_Id) is
13596 Id_Type : constant Entity_Id := Etype (Id);
13597 Acc_Type : Entity_Id;
13598 Par : constant Node_Id := Parent (Derived_Type);
13599
13600 begin
13601 -- When the type is an anonymous access type, create a new access
13602 -- type designating the derived type. This itype must be elaborated
13603 -- at the point of the derivation, not on subsequent calls that may
13604 -- be out of the proper scope for Gigi, so we insert a reference to
13605 -- it after the derivation.
13606
13607 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13608 declare
13609 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13610
13611 begin
13612 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13613 and then Present (Full_View (Desig_Typ))
13614 and then not Is_Private_Type (Parent_Type)
13615 then
13616 Desig_Typ := Full_View (Desig_Typ);
13617 end if;
13618
13619 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13620
13621 -- Ada 2005 (AI-251): Handle also derivations of abstract
13622 -- interface primitives.
13623
13624 or else (Is_Interface (Desig_Typ)
13625 and then not Is_Class_Wide_Type (Desig_Typ))
13626 then
13627 Acc_Type := New_Copy (Id_Type);
13628 Set_Etype (Acc_Type, Acc_Type);
13629 Set_Scope (Acc_Type, New_Subp);
13630
13631 -- Set size of anonymous access type. If we have an access
13632 -- to an unconstrained array, this is a fat pointer, so it
13633 -- is sizes at twice addtress size.
13634
13635 if Is_Array_Type (Desig_Typ)
13636 and then not Is_Constrained (Desig_Typ)
13637 then
13638 Init_Size (Acc_Type, 2 * System_Address_Size);
13639
13640 -- Other cases use a thin pointer
13641
13642 else
13643 Init_Size (Acc_Type, System_Address_Size);
13644 end if;
13645
13646 -- Set remaining characterstics of anonymous access type
13647
13648 Init_Alignment (Acc_Type);
13649 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13650
13651 Set_Etype (New_Id, Acc_Type);
13652 Set_Scope (New_Id, New_Subp);
13653
13654 -- Create a reference to it
13655
13656 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13657
13658 else
13659 Set_Etype (New_Id, Id_Type);
13660 end if;
13661 end;
13662
13663 -- In Ada2012, a formal may have an incomplete type but the type
13664 -- derivation that inherits the primitive follows the full view.
13665
13666 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13667 or else
13668 (Ekind (Id_Type) = E_Record_Type_With_Private
13669 and then Present (Full_View (Id_Type))
13670 and then
13671 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13672 or else
13673 (Ada_Version >= Ada_2012
13674 and then Ekind (Id_Type) = E_Incomplete_Type
13675 and then Full_View (Id_Type) = Parent_Type)
13676 then
13677 -- Constraint checks on formals are generated during expansion,
13678 -- based on the signature of the original subprogram. The bounds
13679 -- of the derived type are not relevant, and thus we can use
13680 -- the base type for the formals. However, the return type may be
13681 -- used in a context that requires that the proper static bounds
13682 -- be used (a case statement, for example) and for those cases
13683 -- we must use the derived type (first subtype), not its base.
13684
13685 -- If the derived_type_definition has no constraints, we know that
13686 -- the derived type has the same constraints as the first subtype
13687 -- of the parent, and we can also use it rather than its base,
13688 -- which can lead to more efficient code.
13689
13690 if Etype (Id) = Parent_Type then
13691 if Is_Scalar_Type (Parent_Type)
13692 and then
13693 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13694 then
13695 Set_Etype (New_Id, Derived_Type);
13696
13697 elsif Nkind (Par) = N_Full_Type_Declaration
13698 and then
13699 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13700 and then
13701 Is_Entity_Name
13702 (Subtype_Indication (Type_Definition (Par)))
13703 then
13704 Set_Etype (New_Id, Derived_Type);
13705
13706 else
13707 Set_Etype (New_Id, Base_Type (Derived_Type));
13708 end if;
13709
13710 else
13711 Set_Etype (New_Id, Base_Type (Derived_Type));
13712 end if;
13713
13714 else
13715 Set_Etype (New_Id, Etype (Id));
13716 end if;
13717 end Replace_Type;
13718
13719 ----------------------
13720 -- Set_Derived_Name --
13721 ----------------------
13722
13723 procedure Set_Derived_Name is
13724 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13725 begin
13726 if Nm = TSS_Null then
13727 Set_Chars (New_Subp, Chars (Parent_Subp));
13728 else
13729 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13730 end if;
13731 end Set_Derived_Name;
13732
13733 -- Start of processing for Derive_Subprogram
13734
13735 begin
13736 New_Subp :=
13737 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13738 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13739 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13740
13741 -- Check whether the inherited subprogram is a private operation that
13742 -- should be inherited but not yet made visible. Such subprograms can
13743 -- become visible at a later point (e.g., the private part of a public
13744 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13745 -- following predicate is true, then this is not such a private
13746 -- operation and the subprogram simply inherits the name of the parent
13747 -- subprogram. Note the special check for the names of controlled
13748 -- operations, which are currently exempted from being inherited with
13749 -- a hidden name because they must be findable for generation of
13750 -- implicit run-time calls.
13751
13752 if not Is_Hidden (Parent_Subp)
13753 or else Is_Internal (Parent_Subp)
13754 or else Is_Private_Overriding
13755 or else Is_Internal_Name (Chars (Parent_Subp))
13756 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13757 Name_Adjust,
13758 Name_Finalize)
13759 then
13760 Set_Derived_Name;
13761
13762 -- An inherited dispatching equality will be overridden by an internally
13763 -- generated one, or by an explicit one, so preserve its name and thus
13764 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13765 -- private operation it may become invisible if the full view has
13766 -- progenitors, and the dispatch table will be malformed.
13767 -- We check that the type is limited to handle the anomalous declaration
13768 -- of Limited_Controlled, which is derived from a non-limited type, and
13769 -- which is handled specially elsewhere as well.
13770
13771 elsif Chars (Parent_Subp) = Name_Op_Eq
13772 and then Is_Dispatching_Operation (Parent_Subp)
13773 and then Etype (Parent_Subp) = Standard_Boolean
13774 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13775 and then
13776 Etype (First_Formal (Parent_Subp)) =
13777 Etype (Next_Formal (First_Formal (Parent_Subp)))
13778 then
13779 Set_Derived_Name;
13780
13781 -- If parent is hidden, this can be a regular derivation if the
13782 -- parent is immediately visible in a non-instantiating context,
13783 -- or if we are in the private part of an instance. This test
13784 -- should still be refined ???
13785
13786 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13787 -- operation as a non-visible operation in cases where the parent
13788 -- subprogram might not be visible now, but was visible within the
13789 -- original generic, so it would be wrong to make the inherited
13790 -- subprogram non-visible now. (Not clear if this test is fully
13791 -- correct; are there any cases where we should declare the inherited
13792 -- operation as not visible to avoid it being overridden, e.g., when
13793 -- the parent type is a generic actual with private primitives ???)
13794
13795 -- (they should be treated the same as other private inherited
13796 -- subprograms, but it's not clear how to do this cleanly). ???
13797
13798 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13799 and then Is_Immediately_Visible (Parent_Subp)
13800 and then not In_Instance)
13801 or else In_Instance_Not_Visible
13802 then
13803 Set_Derived_Name;
13804
13805 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13806 -- overrides an interface primitive because interface primitives
13807 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13808
13809 elsif Ada_Version >= Ada_2005
13810 and then Is_Dispatching_Operation (Parent_Subp)
13811 and then Covers_Some_Interface (Parent_Subp)
13812 then
13813 Set_Derived_Name;
13814
13815 -- Otherwise, the type is inheriting a private operation, so enter
13816 -- it with a special name so it can't be overridden.
13817
13818 else
13819 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13820 end if;
13821
13822 Set_Parent (New_Subp, Parent (Derived_Type));
13823
13824 if Present (Actual_Subp) then
13825 Replace_Type (Actual_Subp, New_Subp);
13826 else
13827 Replace_Type (Parent_Subp, New_Subp);
13828 end if;
13829
13830 Conditional_Delay (New_Subp, Parent_Subp);
13831
13832 -- If we are creating a renaming for a primitive operation of an
13833 -- actual of a generic derived type, we must examine the signature
13834 -- of the actual primitive, not that of the generic formal, which for
13835 -- example may be an interface. However the name and initial value
13836 -- of the inherited operation are those of the formal primitive.
13837
13838 Formal := First_Formal (Parent_Subp);
13839
13840 if Present (Actual_Subp) then
13841 Formal_Of_Actual := First_Formal (Actual_Subp);
13842 else
13843 Formal_Of_Actual := Empty;
13844 end if;
13845
13846 while Present (Formal) loop
13847 New_Formal := New_Copy (Formal);
13848
13849 -- Normally we do not go copying parents, but in the case of
13850 -- formals, we need to link up to the declaration (which is the
13851 -- parameter specification), and it is fine to link up to the
13852 -- original formal's parameter specification in this case.
13853
13854 Set_Parent (New_Formal, Parent (Formal));
13855 Append_Entity (New_Formal, New_Subp);
13856
13857 if Present (Formal_Of_Actual) then
13858 Replace_Type (Formal_Of_Actual, New_Formal);
13859 Next_Formal (Formal_Of_Actual);
13860 else
13861 Replace_Type (Formal, New_Formal);
13862 end if;
13863
13864 Next_Formal (Formal);
13865 end loop;
13866
13867 -- If this derivation corresponds to a tagged generic actual, then
13868 -- primitive operations rename those of the actual. Otherwise the
13869 -- primitive operations rename those of the parent type, If the parent
13870 -- renames an intrinsic operator, so does the new subprogram. We except
13871 -- concatenation, which is always properly typed, and does not get
13872 -- expanded as other intrinsic operations.
13873
13874 if No (Actual_Subp) then
13875 if Is_Intrinsic_Subprogram (Parent_Subp) then
13876 Set_Is_Intrinsic_Subprogram (New_Subp);
13877
13878 if Present (Alias (Parent_Subp))
13879 and then Chars (Parent_Subp) /= Name_Op_Concat
13880 then
13881 Set_Alias (New_Subp, Alias (Parent_Subp));
13882 else
13883 Set_Alias (New_Subp, Parent_Subp);
13884 end if;
13885
13886 else
13887 Set_Alias (New_Subp, Parent_Subp);
13888 end if;
13889
13890 else
13891 Set_Alias (New_Subp, Actual_Subp);
13892 end if;
13893
13894 -- Derived subprograms of a tagged type must inherit the convention
13895 -- of the parent subprogram (a requirement of AI-117). Derived
13896 -- subprograms of untagged types simply get convention Ada by default.
13897
13898 -- If the derived type is a tagged generic formal type with unknown
13899 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13900
13901 -- However, if the type is derived from a generic formal, the further
13902 -- inherited subprogram has the convention of the non-generic ancestor.
13903 -- Otherwise there would be no way to override the operation.
13904 -- (This is subject to forthcoming ARG discussions).
13905
13906 if Is_Tagged_Type (Derived_Type) then
13907 if Is_Generic_Type (Derived_Type)
13908 and then Has_Unknown_Discriminants (Derived_Type)
13909 then
13910 Set_Convention (New_Subp, Convention_Intrinsic);
13911
13912 else
13913 if Is_Generic_Type (Parent_Type)
13914 and then Has_Unknown_Discriminants (Parent_Type)
13915 then
13916 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13917 else
13918 Set_Convention (New_Subp, Convention (Parent_Subp));
13919 end if;
13920 end if;
13921 end if;
13922
13923 -- Predefined controlled operations retain their name even if the parent
13924 -- is hidden (see above), but they are not primitive operations if the
13925 -- ancestor is not visible, for example if the parent is a private
13926 -- extension completed with a controlled extension. Note that a full
13927 -- type that is controlled can break privacy: the flag Is_Controlled is
13928 -- set on both views of the type.
13929
13930 if Is_Controlled (Parent_Type)
13931 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13932 Name_Adjust,
13933 Name_Finalize)
13934 and then Is_Hidden (Parent_Subp)
13935 and then not Is_Visibly_Controlled (Parent_Type)
13936 then
13937 Set_Is_Hidden (New_Subp);
13938 end if;
13939
13940 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13941 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13942
13943 if Ekind (Parent_Subp) = E_Procedure then
13944 Set_Is_Valued_Procedure
13945 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13946 else
13947 Set_Has_Controlling_Result
13948 (New_Subp, Has_Controlling_Result (Parent_Subp));
13949 end if;
13950
13951 -- No_Return must be inherited properly. If this is overridden in the
13952 -- case of a dispatching operation, then a check is made in Sem_Disp
13953 -- that the overriding operation is also No_Return (no such check is
13954 -- required for the case of non-dispatching operation.
13955
13956 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13957
13958 -- A derived function with a controlling result is abstract. If the
13959 -- Derived_Type is a nonabstract formal generic derived type, then
13960 -- inherited operations are not abstract: the required check is done at
13961 -- instantiation time. If the derivation is for a generic actual, the
13962 -- function is not abstract unless the actual is.
13963
13964 if Is_Generic_Type (Derived_Type)
13965 and then not Is_Abstract_Type (Derived_Type)
13966 then
13967 null;
13968
13969 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13970 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13971
13972 elsif Ada_Version >= Ada_2005
13973 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13974 or else (Is_Tagged_Type (Derived_Type)
13975 and then Etype (New_Subp) = Derived_Type
13976 and then not Is_Null_Extension (Derived_Type))
13977 or else (Is_Tagged_Type (Derived_Type)
13978 and then Ekind (Etype (New_Subp)) =
13979 E_Anonymous_Access_Type
13980 and then Designated_Type (Etype (New_Subp)) =
13981 Derived_Type
13982 and then not Is_Null_Extension (Derived_Type)))
13983 and then No (Actual_Subp)
13984 then
13985 if not Is_Tagged_Type (Derived_Type)
13986 or else Is_Abstract_Type (Derived_Type)
13987 or else Is_Abstract_Subprogram (Alias (New_Subp))
13988 then
13989 Set_Is_Abstract_Subprogram (New_Subp);
13990 else
13991 Set_Requires_Overriding (New_Subp);
13992 end if;
13993
13994 elsif Ada_Version < Ada_2005
13995 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13996 or else (Is_Tagged_Type (Derived_Type)
13997 and then Etype (New_Subp) = Derived_Type
13998 and then No (Actual_Subp)))
13999 then
14000 Set_Is_Abstract_Subprogram (New_Subp);
14001
14002 -- AI05-0097 : an inherited operation that dispatches on result is
14003 -- abstract if the derived type is abstract, even if the parent type
14004 -- is concrete and the derived type is a null extension.
14005
14006 elsif Has_Controlling_Result (Alias (New_Subp))
14007 and then Is_Abstract_Type (Etype (New_Subp))
14008 then
14009 Set_Is_Abstract_Subprogram (New_Subp);
14010
14011 -- Finally, if the parent type is abstract we must verify that all
14012 -- inherited operations are either non-abstract or overridden, or that
14013 -- the derived type itself is abstract (this check is performed at the
14014 -- end of a package declaration, in Check_Abstract_Overriding). A
14015 -- private overriding in the parent type will not be visible in the
14016 -- derivation if we are not in an inner package or in a child unit of
14017 -- the parent type, in which case the abstractness of the inherited
14018 -- operation is carried to the new subprogram.
14019
14020 elsif Is_Abstract_Type (Parent_Type)
14021 and then not In_Open_Scopes (Scope (Parent_Type))
14022 and then Is_Private_Overriding
14023 and then Is_Abstract_Subprogram (Visible_Subp)
14024 then
14025 if No (Actual_Subp) then
14026 Set_Alias (New_Subp, Visible_Subp);
14027 Set_Is_Abstract_Subprogram (New_Subp, True);
14028
14029 else
14030 -- If this is a derivation for an instance of a formal derived
14031 -- type, abstractness comes from the primitive operation of the
14032 -- actual, not from the operation inherited from the ancestor.
14033
14034 Set_Is_Abstract_Subprogram
14035 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14036 end if;
14037 end if;
14038
14039 New_Overloaded_Entity (New_Subp, Derived_Type);
14040
14041 -- Check for case of a derived subprogram for the instantiation of a
14042 -- formal derived tagged type, if so mark the subprogram as dispatching
14043 -- and inherit the dispatching attributes of the actual subprogram. The
14044 -- derived subprogram is effectively renaming of the actual subprogram,
14045 -- so it needs to have the same attributes as the actual.
14046
14047 if Present (Actual_Subp)
14048 and then Is_Dispatching_Operation (Actual_Subp)
14049 then
14050 Set_Is_Dispatching_Operation (New_Subp);
14051
14052 if Present (DTC_Entity (Actual_Subp)) then
14053 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14054 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14055 end if;
14056 end if;
14057
14058 -- Indicate that a derived subprogram does not require a body and that
14059 -- it does not require processing of default expressions.
14060
14061 Set_Has_Completion (New_Subp);
14062 Set_Default_Expressions_Processed (New_Subp);
14063
14064 if Ekind (New_Subp) = E_Function then
14065 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14066 end if;
14067 end Derive_Subprogram;
14068
14069 ------------------------
14070 -- Derive_Subprograms --
14071 ------------------------
14072
14073 procedure Derive_Subprograms
14074 (Parent_Type : Entity_Id;
14075 Derived_Type : Entity_Id;
14076 Generic_Actual : Entity_Id := Empty)
14077 is
14078 Op_List : constant Elist_Id :=
14079 Collect_Primitive_Operations (Parent_Type);
14080
14081 function Check_Derived_Type return Boolean;
14082 -- Check that all the entities derived from Parent_Type are found in
14083 -- the list of primitives of Derived_Type exactly in the same order.
14084
14085 procedure Derive_Interface_Subprogram
14086 (New_Subp : in out Entity_Id;
14087 Subp : Entity_Id;
14088 Actual_Subp : Entity_Id);
14089 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14090 -- (which is an interface primitive). If Generic_Actual is present then
14091 -- Actual_Subp is the actual subprogram corresponding with the generic
14092 -- subprogram Subp.
14093
14094 function Check_Derived_Type return Boolean is
14095 E : Entity_Id;
14096 Elmt : Elmt_Id;
14097 List : Elist_Id;
14098 New_Subp : Entity_Id;
14099 Op_Elmt : Elmt_Id;
14100 Subp : Entity_Id;
14101
14102 begin
14103 -- Traverse list of entities in the current scope searching for
14104 -- an incomplete type whose full-view is derived type
14105
14106 E := First_Entity (Scope (Derived_Type));
14107 while Present (E) and then E /= Derived_Type loop
14108 if Ekind (E) = E_Incomplete_Type
14109 and then Present (Full_View (E))
14110 and then Full_View (E) = Derived_Type
14111 then
14112 -- Disable this test if Derived_Type completes an incomplete
14113 -- type because in such case more primitives can be added
14114 -- later to the list of primitives of Derived_Type by routine
14115 -- Process_Incomplete_Dependents
14116
14117 return True;
14118 end if;
14119
14120 E := Next_Entity (E);
14121 end loop;
14122
14123 List := Collect_Primitive_Operations (Derived_Type);
14124 Elmt := First_Elmt (List);
14125
14126 Op_Elmt := First_Elmt (Op_List);
14127 while Present (Op_Elmt) loop
14128 Subp := Node (Op_Elmt);
14129 New_Subp := Node (Elmt);
14130
14131 -- At this early stage Derived_Type has no entities with attribute
14132 -- Interface_Alias. In addition, such primitives are always
14133 -- located at the end of the list of primitives of Parent_Type.
14134 -- Therefore, if found we can safely stop processing pending
14135 -- entities.
14136
14137 exit when Present (Interface_Alias (Subp));
14138
14139 -- Handle hidden entities
14140
14141 if not Is_Predefined_Dispatching_Operation (Subp)
14142 and then Is_Hidden (Subp)
14143 then
14144 if Present (New_Subp)
14145 and then Primitive_Names_Match (Subp, New_Subp)
14146 then
14147 Next_Elmt (Elmt);
14148 end if;
14149
14150 else
14151 if not Present (New_Subp)
14152 or else Ekind (Subp) /= Ekind (New_Subp)
14153 or else not Primitive_Names_Match (Subp, New_Subp)
14154 then
14155 return False;
14156 end if;
14157
14158 Next_Elmt (Elmt);
14159 end if;
14160
14161 Next_Elmt (Op_Elmt);
14162 end loop;
14163
14164 return True;
14165 end Check_Derived_Type;
14166
14167 ---------------------------------
14168 -- Derive_Interface_Subprogram --
14169 ---------------------------------
14170
14171 procedure Derive_Interface_Subprogram
14172 (New_Subp : in out Entity_Id;
14173 Subp : Entity_Id;
14174 Actual_Subp : Entity_Id)
14175 is
14176 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14177 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14178
14179 begin
14180 pragma Assert (Is_Interface (Iface_Type));
14181
14182 Derive_Subprogram
14183 (New_Subp => New_Subp,
14184 Parent_Subp => Iface_Subp,
14185 Derived_Type => Derived_Type,
14186 Parent_Type => Iface_Type,
14187 Actual_Subp => Actual_Subp);
14188
14189 -- Given that this new interface entity corresponds with a primitive
14190 -- of the parent that was not overridden we must leave it associated
14191 -- with its parent primitive to ensure that it will share the same
14192 -- dispatch table slot when overridden.
14193
14194 if No (Actual_Subp) then
14195 Set_Alias (New_Subp, Subp);
14196
14197 -- For instantiations this is not needed since the previous call to
14198 -- Derive_Subprogram leaves the entity well decorated.
14199
14200 else
14201 pragma Assert (Alias (New_Subp) = Actual_Subp);
14202 null;
14203 end if;
14204 end Derive_Interface_Subprogram;
14205
14206 -- Local variables
14207
14208 Alias_Subp : Entity_Id;
14209 Act_List : Elist_Id;
14210 Act_Elmt : Elmt_Id;
14211 Act_Subp : Entity_Id := Empty;
14212 Elmt : Elmt_Id;
14213 Need_Search : Boolean := False;
14214 New_Subp : Entity_Id := Empty;
14215 Parent_Base : Entity_Id;
14216 Subp : Entity_Id;
14217
14218 -- Start of processing for Derive_Subprograms
14219
14220 begin
14221 if Ekind (Parent_Type) = E_Record_Type_With_Private
14222 and then Has_Discriminants (Parent_Type)
14223 and then Present (Full_View (Parent_Type))
14224 then
14225 Parent_Base := Full_View (Parent_Type);
14226 else
14227 Parent_Base := Parent_Type;
14228 end if;
14229
14230 if Present (Generic_Actual) then
14231 Act_List := Collect_Primitive_Operations (Generic_Actual);
14232 Act_Elmt := First_Elmt (Act_List);
14233 else
14234 Act_List := No_Elist;
14235 Act_Elmt := No_Elmt;
14236 end if;
14237
14238 -- Derive primitives inherited from the parent. Note that if the generic
14239 -- actual is present, this is not really a type derivation, it is a
14240 -- completion within an instance.
14241
14242 -- Case 1: Derived_Type does not implement interfaces
14243
14244 if not Is_Tagged_Type (Derived_Type)
14245 or else (not Has_Interfaces (Derived_Type)
14246 and then not (Present (Generic_Actual)
14247 and then Has_Interfaces (Generic_Actual)))
14248 then
14249 Elmt := First_Elmt (Op_List);
14250 while Present (Elmt) loop
14251 Subp := Node (Elmt);
14252
14253 -- Literals are derived earlier in the process of building the
14254 -- derived type, and are skipped here.
14255
14256 if Ekind (Subp) = E_Enumeration_Literal then
14257 null;
14258
14259 -- The actual is a direct descendant and the common primitive
14260 -- operations appear in the same order.
14261
14262 -- If the generic parent type is present, the derived type is an
14263 -- instance of a formal derived type, and within the instance its
14264 -- operations are those of the actual. We derive from the formal
14265 -- type but make the inherited operations aliases of the
14266 -- corresponding operations of the actual.
14267
14268 else
14269 pragma Assert (No (Node (Act_Elmt))
14270 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14271 and then
14272 Type_Conformant
14273 (Subp, Node (Act_Elmt),
14274 Skip_Controlling_Formals => True)));
14275
14276 Derive_Subprogram
14277 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14278
14279 if Present (Act_Elmt) then
14280 Next_Elmt (Act_Elmt);
14281 end if;
14282 end if;
14283
14284 Next_Elmt (Elmt);
14285 end loop;
14286
14287 -- Case 2: Derived_Type implements interfaces
14288
14289 else
14290 -- If the parent type has no predefined primitives we remove
14291 -- predefined primitives from the list of primitives of generic
14292 -- actual to simplify the complexity of this algorithm.
14293
14294 if Present (Generic_Actual) then
14295 declare
14296 Has_Predefined_Primitives : Boolean := False;
14297
14298 begin
14299 -- Check if the parent type has predefined primitives
14300
14301 Elmt := First_Elmt (Op_List);
14302 while Present (Elmt) loop
14303 Subp := Node (Elmt);
14304
14305 if Is_Predefined_Dispatching_Operation (Subp)
14306 and then not Comes_From_Source (Ultimate_Alias (Subp))
14307 then
14308 Has_Predefined_Primitives := True;
14309 exit;
14310 end if;
14311
14312 Next_Elmt (Elmt);
14313 end loop;
14314
14315 -- Remove predefined primitives of Generic_Actual. We must use
14316 -- an auxiliary list because in case of tagged types the value
14317 -- returned by Collect_Primitive_Operations is the value stored
14318 -- in its Primitive_Operations attribute (and we don't want to
14319 -- modify its current contents).
14320
14321 if not Has_Predefined_Primitives then
14322 declare
14323 Aux_List : constant Elist_Id := New_Elmt_List;
14324
14325 begin
14326 Elmt := First_Elmt (Act_List);
14327 while Present (Elmt) loop
14328 Subp := Node (Elmt);
14329
14330 if not Is_Predefined_Dispatching_Operation (Subp)
14331 or else Comes_From_Source (Subp)
14332 then
14333 Append_Elmt (Subp, Aux_List);
14334 end if;
14335
14336 Next_Elmt (Elmt);
14337 end loop;
14338
14339 Act_List := Aux_List;
14340 end;
14341 end if;
14342
14343 Act_Elmt := First_Elmt (Act_List);
14344 Act_Subp := Node (Act_Elmt);
14345 end;
14346 end if;
14347
14348 -- Stage 1: If the generic actual is not present we derive the
14349 -- primitives inherited from the parent type. If the generic parent
14350 -- type is present, the derived type is an instance of a formal
14351 -- derived type, and within the instance its operations are those of
14352 -- the actual. We derive from the formal type but make the inherited
14353 -- operations aliases of the corresponding operations of the actual.
14354
14355 Elmt := First_Elmt (Op_List);
14356 while Present (Elmt) loop
14357 Subp := Node (Elmt);
14358 Alias_Subp := Ultimate_Alias (Subp);
14359
14360 -- Do not derive internal entities of the parent that link
14361 -- interface primitives with their covering primitive. These
14362 -- entities will be added to this type when frozen.
14363
14364 if Present (Interface_Alias (Subp)) then
14365 goto Continue;
14366 end if;
14367
14368 -- If the generic actual is present find the corresponding
14369 -- operation in the generic actual. If the parent type is a
14370 -- direct ancestor of the derived type then, even if it is an
14371 -- interface, the operations are inherited from the primary
14372 -- dispatch table and are in the proper order. If we detect here
14373 -- that primitives are not in the same order we traverse the list
14374 -- of primitive operations of the actual to find the one that
14375 -- implements the interface primitive.
14376
14377 if Need_Search
14378 or else
14379 (Present (Generic_Actual)
14380 and then Present (Act_Subp)
14381 and then not
14382 (Primitive_Names_Match (Subp, Act_Subp)
14383 and then
14384 Type_Conformant (Subp, Act_Subp,
14385 Skip_Controlling_Formals => True)))
14386 then
14387 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14388 Use_Full_View => True));
14389
14390 -- Remember that we need searching for all pending primitives
14391
14392 Need_Search := True;
14393
14394 -- Handle entities associated with interface primitives
14395
14396 if Present (Alias_Subp)
14397 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14398 and then not Is_Predefined_Dispatching_Operation (Subp)
14399 then
14400 -- Search for the primitive in the homonym chain
14401
14402 Act_Subp :=
14403 Find_Primitive_Covering_Interface
14404 (Tagged_Type => Generic_Actual,
14405 Iface_Prim => Alias_Subp);
14406
14407 -- Previous search may not locate primitives covering
14408 -- interfaces defined in generics units or instantiations.
14409 -- (it fails if the covering primitive has formals whose
14410 -- type is also defined in generics or instantiations).
14411 -- In such case we search in the list of primitives of the
14412 -- generic actual for the internal entity that links the
14413 -- interface primitive and the covering primitive.
14414
14415 if No (Act_Subp)
14416 and then Is_Generic_Type (Parent_Type)
14417 then
14418 -- This code has been designed to handle only generic
14419 -- formals that implement interfaces that are defined
14420 -- in a generic unit or instantiation. If this code is
14421 -- needed for other cases we must review it because
14422 -- (given that it relies on Original_Location to locate
14423 -- the primitive of Generic_Actual that covers the
14424 -- interface) it could leave linked through attribute
14425 -- Alias entities of unrelated instantiations).
14426
14427 pragma Assert
14428 (Is_Generic_Unit
14429 (Scope (Find_Dispatching_Type (Alias_Subp)))
14430 or else
14431 Instantiation_Depth
14432 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14433
14434 declare
14435 Iface_Prim_Loc : constant Source_Ptr :=
14436 Original_Location (Sloc (Alias_Subp));
14437
14438 Elmt : Elmt_Id;
14439 Prim : Entity_Id;
14440
14441 begin
14442 Elmt :=
14443 First_Elmt (Primitive_Operations (Generic_Actual));
14444
14445 Search : while Present (Elmt) loop
14446 Prim := Node (Elmt);
14447
14448 if Present (Interface_Alias (Prim))
14449 and then Original_Location
14450 (Sloc (Interface_Alias (Prim))) =
14451 Iface_Prim_Loc
14452 then
14453 Act_Subp := Alias (Prim);
14454 exit Search;
14455 end if;
14456
14457 Next_Elmt (Elmt);
14458 end loop Search;
14459 end;
14460 end if;
14461
14462 pragma Assert (Present (Act_Subp)
14463 or else Is_Abstract_Type (Generic_Actual)
14464 or else Serious_Errors_Detected > 0);
14465
14466 -- Handle predefined primitives plus the rest of user-defined
14467 -- primitives
14468
14469 else
14470 Act_Elmt := First_Elmt (Act_List);
14471 while Present (Act_Elmt) loop
14472 Act_Subp := Node (Act_Elmt);
14473
14474 exit when Primitive_Names_Match (Subp, Act_Subp)
14475 and then Type_Conformant
14476 (Subp, Act_Subp,
14477 Skip_Controlling_Formals => True)
14478 and then No (Interface_Alias (Act_Subp));
14479
14480 Next_Elmt (Act_Elmt);
14481 end loop;
14482
14483 if No (Act_Elmt) then
14484 Act_Subp := Empty;
14485 end if;
14486 end if;
14487 end if;
14488
14489 -- Case 1: If the parent is a limited interface then it has the
14490 -- predefined primitives of synchronized interfaces. However, the
14491 -- actual type may be a non-limited type and hence it does not
14492 -- have such primitives.
14493
14494 if Present (Generic_Actual)
14495 and then not Present (Act_Subp)
14496 and then Is_Limited_Interface (Parent_Base)
14497 and then Is_Predefined_Interface_Primitive (Subp)
14498 then
14499 null;
14500
14501 -- Case 2: Inherit entities associated with interfaces that were
14502 -- not covered by the parent type. We exclude here null interface
14503 -- primitives because they do not need special management.
14504
14505 -- We also exclude interface operations that are renamings. If the
14506 -- subprogram is an explicit renaming of an interface primitive,
14507 -- it is a regular primitive operation, and the presence of its
14508 -- alias is not relevant: it has to be derived like any other
14509 -- primitive.
14510
14511 elsif Present (Alias (Subp))
14512 and then Nkind (Unit_Declaration_Node (Subp)) /=
14513 N_Subprogram_Renaming_Declaration
14514 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14515 and then not
14516 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14517 and then Null_Present (Parent (Alias_Subp)))
14518 then
14519 -- If this is an abstract private type then we transfer the
14520 -- derivation of the interface primitive from the partial view
14521 -- to the full view. This is safe because all the interfaces
14522 -- must be visible in the partial view. Done to avoid adding
14523 -- a new interface derivation to the private part of the
14524 -- enclosing package; otherwise this new derivation would be
14525 -- decorated as hidden when the analysis of the enclosing
14526 -- package completes.
14527
14528 if Is_Abstract_Type (Derived_Type)
14529 and then In_Private_Part (Current_Scope)
14530 and then Has_Private_Declaration (Derived_Type)
14531 then
14532 declare
14533 Partial_View : Entity_Id;
14534 Elmt : Elmt_Id;
14535 Ent : Entity_Id;
14536
14537 begin
14538 Partial_View := First_Entity (Current_Scope);
14539 loop
14540 exit when No (Partial_View)
14541 or else (Has_Private_Declaration (Partial_View)
14542 and then
14543 Full_View (Partial_View) = Derived_Type);
14544
14545 Next_Entity (Partial_View);
14546 end loop;
14547
14548 -- If the partial view was not found then the source code
14549 -- has errors and the derivation is not needed.
14550
14551 if Present (Partial_View) then
14552 Elmt :=
14553 First_Elmt (Primitive_Operations (Partial_View));
14554 while Present (Elmt) loop
14555 Ent := Node (Elmt);
14556
14557 if Present (Alias (Ent))
14558 and then Ultimate_Alias (Ent) = Alias (Subp)
14559 then
14560 Append_Elmt
14561 (Ent, Primitive_Operations (Derived_Type));
14562 exit;
14563 end if;
14564
14565 Next_Elmt (Elmt);
14566 end loop;
14567
14568 -- If the interface primitive was not found in the
14569 -- partial view then this interface primitive was
14570 -- overridden. We add a derivation to activate in
14571 -- Derive_Progenitor_Subprograms the machinery to
14572 -- search for it.
14573
14574 if No (Elmt) then
14575 Derive_Interface_Subprogram
14576 (New_Subp => New_Subp,
14577 Subp => Subp,
14578 Actual_Subp => Act_Subp);
14579 end if;
14580 end if;
14581 end;
14582 else
14583 Derive_Interface_Subprogram
14584 (New_Subp => New_Subp,
14585 Subp => Subp,
14586 Actual_Subp => Act_Subp);
14587 end if;
14588
14589 -- Case 3: Common derivation
14590
14591 else
14592 Derive_Subprogram
14593 (New_Subp => New_Subp,
14594 Parent_Subp => Subp,
14595 Derived_Type => Derived_Type,
14596 Parent_Type => Parent_Base,
14597 Actual_Subp => Act_Subp);
14598 end if;
14599
14600 -- No need to update Act_Elm if we must search for the
14601 -- corresponding operation in the generic actual
14602
14603 if not Need_Search
14604 and then Present (Act_Elmt)
14605 then
14606 Next_Elmt (Act_Elmt);
14607 Act_Subp := Node (Act_Elmt);
14608 end if;
14609
14610 <<Continue>>
14611 Next_Elmt (Elmt);
14612 end loop;
14613
14614 -- Inherit additional operations from progenitors. If the derived
14615 -- type is a generic actual, there are not new primitive operations
14616 -- for the type because it has those of the actual, and therefore
14617 -- nothing needs to be done. The renamings generated above are not
14618 -- primitive operations, and their purpose is simply to make the
14619 -- proper operations visible within an instantiation.
14620
14621 if No (Generic_Actual) then
14622 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14623 end if;
14624 end if;
14625
14626 -- Final check: Direct descendants must have their primitives in the
14627 -- same order. We exclude from this test untagged types and instances
14628 -- of formal derived types. We skip this test if we have already
14629 -- reported serious errors in the sources.
14630
14631 pragma Assert (not Is_Tagged_Type (Derived_Type)
14632 or else Present (Generic_Actual)
14633 or else Serious_Errors_Detected > 0
14634 or else Check_Derived_Type);
14635 end Derive_Subprograms;
14636
14637 --------------------------------
14638 -- Derived_Standard_Character --
14639 --------------------------------
14640
14641 procedure Derived_Standard_Character
14642 (N : Node_Id;
14643 Parent_Type : Entity_Id;
14644 Derived_Type : Entity_Id)
14645 is
14646 Loc : constant Source_Ptr := Sloc (N);
14647 Def : constant Node_Id := Type_Definition (N);
14648 Indic : constant Node_Id := Subtype_Indication (Def);
14649 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14650 Implicit_Base : constant Entity_Id :=
14651 Create_Itype
14652 (E_Enumeration_Type, N, Derived_Type, 'B');
14653
14654 Lo : Node_Id;
14655 Hi : Node_Id;
14656
14657 begin
14658 Discard_Node (Process_Subtype (Indic, N));
14659
14660 Set_Etype (Implicit_Base, Parent_Base);
14661 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14662 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14663
14664 Set_Is_Character_Type (Implicit_Base, True);
14665 Set_Has_Delayed_Freeze (Implicit_Base);
14666
14667 -- The bounds of the implicit base are the bounds of the parent base.
14668 -- Note that their type is the parent base.
14669
14670 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14671 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14672
14673 Set_Scalar_Range (Implicit_Base,
14674 Make_Range (Loc,
14675 Low_Bound => Lo,
14676 High_Bound => Hi));
14677
14678 Conditional_Delay (Derived_Type, Parent_Type);
14679
14680 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14681 Set_Etype (Derived_Type, Implicit_Base);
14682 Set_Size_Info (Derived_Type, Parent_Type);
14683
14684 if Unknown_RM_Size (Derived_Type) then
14685 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14686 end if;
14687
14688 Set_Is_Character_Type (Derived_Type, True);
14689
14690 if Nkind (Indic) /= N_Subtype_Indication then
14691
14692 -- If no explicit constraint, the bounds are those
14693 -- of the parent type.
14694
14695 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14696 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14697 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14698 end if;
14699
14700 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14701
14702 -- Because the implicit base is used in the conversion of the bounds, we
14703 -- have to freeze it now. This is similar to what is done for numeric
14704 -- types, and it equally suspicious, but otherwise a non-static bound
14705 -- will have a reference to an unfrozen type, which is rejected by Gigi
14706 -- (???). This requires specific care for definition of stream
14707 -- attributes. For details, see comments at the end of
14708 -- Build_Derived_Numeric_Type.
14709
14710 Freeze_Before (N, Implicit_Base);
14711 end Derived_Standard_Character;
14712
14713 ------------------------------
14714 -- Derived_Type_Declaration --
14715 ------------------------------
14716
14717 procedure Derived_Type_Declaration
14718 (T : Entity_Id;
14719 N : Node_Id;
14720 Is_Completion : Boolean)
14721 is
14722 Parent_Type : Entity_Id;
14723
14724 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14725 -- Check whether the parent type is a generic formal, or derives
14726 -- directly or indirectly from one.
14727
14728 ------------------------
14729 -- Comes_From_Generic --
14730 ------------------------
14731
14732 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14733 begin
14734 if Is_Generic_Type (Typ) then
14735 return True;
14736
14737 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14738 return True;
14739
14740 elsif Is_Private_Type (Typ)
14741 and then Present (Full_View (Typ))
14742 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14743 then
14744 return True;
14745
14746 elsif Is_Generic_Actual_Type (Typ) then
14747 return True;
14748
14749 else
14750 return False;
14751 end if;
14752 end Comes_From_Generic;
14753
14754 -- Local variables
14755
14756 Def : constant Node_Id := Type_Definition (N);
14757 Iface_Def : Node_Id;
14758 Indic : constant Node_Id := Subtype_Indication (Def);
14759 Extension : constant Node_Id := Record_Extension_Part (Def);
14760 Parent_Node : Node_Id;
14761 Taggd : Boolean;
14762
14763 -- Start of processing for Derived_Type_Declaration
14764
14765 begin
14766 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14767
14768 -- Ada 2005 (AI-251): In case of interface derivation check that the
14769 -- parent is also an interface.
14770
14771 if Interface_Present (Def) then
14772 Check_SPARK_Restriction ("interface is not allowed", Def);
14773
14774 if not Is_Interface (Parent_Type) then
14775 Diagnose_Interface (Indic, Parent_Type);
14776
14777 else
14778 Parent_Node := Parent (Base_Type (Parent_Type));
14779 Iface_Def := Type_Definition (Parent_Node);
14780
14781 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14782 -- other limited interfaces.
14783
14784 if Limited_Present (Def) then
14785 if Limited_Present (Iface_Def) then
14786 null;
14787
14788 elsif Protected_Present (Iface_Def) then
14789 Error_Msg_NE
14790 ("descendant of& must be declared"
14791 & " as a protected interface",
14792 N, Parent_Type);
14793
14794 elsif Synchronized_Present (Iface_Def) then
14795 Error_Msg_NE
14796 ("descendant of& must be declared"
14797 & " as a synchronized interface",
14798 N, Parent_Type);
14799
14800 elsif Task_Present (Iface_Def) then
14801 Error_Msg_NE
14802 ("descendant of& must be declared as a task interface",
14803 N, Parent_Type);
14804
14805 else
14806 Error_Msg_N
14807 ("(Ada 2005) limited interface cannot "
14808 & "inherit from non-limited interface", Indic);
14809 end if;
14810
14811 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14812 -- from non-limited or limited interfaces.
14813
14814 elsif not Protected_Present (Def)
14815 and then not Synchronized_Present (Def)
14816 and then not Task_Present (Def)
14817 then
14818 if Limited_Present (Iface_Def) then
14819 null;
14820
14821 elsif Protected_Present (Iface_Def) then
14822 Error_Msg_NE
14823 ("descendant of& must be declared"
14824 & " as a protected interface",
14825 N, Parent_Type);
14826
14827 elsif Synchronized_Present (Iface_Def) then
14828 Error_Msg_NE
14829 ("descendant of& must be declared"
14830 & " as a synchronized interface",
14831 N, Parent_Type);
14832
14833 elsif Task_Present (Iface_Def) then
14834 Error_Msg_NE
14835 ("descendant of& must be declared as a task interface",
14836 N, Parent_Type);
14837 else
14838 null;
14839 end if;
14840 end if;
14841 end if;
14842 end if;
14843
14844 if Is_Tagged_Type (Parent_Type)
14845 and then Is_Concurrent_Type (Parent_Type)
14846 and then not Is_Interface (Parent_Type)
14847 then
14848 Error_Msg_N
14849 ("parent type of a record extension cannot be "
14850 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14851 Set_Etype (T, Any_Type);
14852 return;
14853 end if;
14854
14855 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14856 -- interfaces
14857
14858 if Is_Tagged_Type (Parent_Type)
14859 and then Is_Non_Empty_List (Interface_List (Def))
14860 then
14861 declare
14862 Intf : Node_Id;
14863 T : Entity_Id;
14864
14865 begin
14866 Intf := First (Interface_List (Def));
14867 while Present (Intf) loop
14868 T := Find_Type_Of_Subtype_Indic (Intf);
14869
14870 if not Is_Interface (T) then
14871 Diagnose_Interface (Intf, T);
14872
14873 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14874 -- a limited type from having a nonlimited progenitor.
14875
14876 elsif (Limited_Present (Def)
14877 or else (not Is_Interface (Parent_Type)
14878 and then Is_Limited_Type (Parent_Type)))
14879 and then not Is_Limited_Interface (T)
14880 then
14881 Error_Msg_NE
14882 ("progenitor interface& of limited type must be limited",
14883 N, T);
14884 end if;
14885
14886 Next (Intf);
14887 end loop;
14888 end;
14889 end if;
14890
14891 if Parent_Type = Any_Type
14892 or else Etype (Parent_Type) = Any_Type
14893 or else (Is_Class_Wide_Type (Parent_Type)
14894 and then Etype (Parent_Type) = T)
14895 then
14896 -- If Parent_Type is undefined or illegal, make new type into a
14897 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14898 -- errors. If this is a self-definition, emit error now.
14899
14900 if T = Parent_Type
14901 or else T = Etype (Parent_Type)
14902 then
14903 Error_Msg_N ("type cannot be used in its own definition", Indic);
14904 end if;
14905
14906 Set_Ekind (T, Ekind (Parent_Type));
14907 Set_Etype (T, Any_Type);
14908 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14909
14910 if Is_Tagged_Type (T)
14911 and then Is_Record_Type (T)
14912 then
14913 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14914 end if;
14915
14916 return;
14917 end if;
14918
14919 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14920 -- an interface is special because the list of interfaces in the full
14921 -- view can be given in any order. For example:
14922
14923 -- type A is interface;
14924 -- type B is interface and A;
14925 -- type D is new B with private;
14926 -- private
14927 -- type D is new A and B with null record; -- 1 --
14928
14929 -- In this case we perform the following transformation of -1-:
14930
14931 -- type D is new B and A with null record;
14932
14933 -- If the parent of the full-view covers the parent of the partial-view
14934 -- we have two possible cases:
14935
14936 -- 1) They have the same parent
14937 -- 2) The parent of the full-view implements some further interfaces
14938
14939 -- In both cases we do not need to perform the transformation. In the
14940 -- first case the source program is correct and the transformation is
14941 -- not needed; in the second case the source program does not fulfill
14942 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14943 -- later.
14944
14945 -- This transformation not only simplifies the rest of the analysis of
14946 -- this type declaration but also simplifies the correct generation of
14947 -- the object layout to the expander.
14948
14949 if In_Private_Part (Current_Scope)
14950 and then Is_Interface (Parent_Type)
14951 then
14952 declare
14953 Iface : Node_Id;
14954 Partial_View : Entity_Id;
14955 Partial_View_Parent : Entity_Id;
14956 New_Iface : Node_Id;
14957
14958 begin
14959 -- Look for the associated private type declaration
14960
14961 Partial_View := First_Entity (Current_Scope);
14962 loop
14963 exit when No (Partial_View)
14964 or else (Has_Private_Declaration (Partial_View)
14965 and then Full_View (Partial_View) = T);
14966
14967 Next_Entity (Partial_View);
14968 end loop;
14969
14970 -- If the partial view was not found then the source code has
14971 -- errors and the transformation is not needed.
14972
14973 if Present (Partial_View) then
14974 Partial_View_Parent := Etype (Partial_View);
14975
14976 -- If the parent of the full-view covers the parent of the
14977 -- partial-view we have nothing else to do.
14978
14979 if Interface_Present_In_Ancestor
14980 (Parent_Type, Partial_View_Parent)
14981 then
14982 null;
14983
14984 -- Traverse the list of interfaces of the full-view to look
14985 -- for the parent of the partial-view and perform the tree
14986 -- transformation.
14987
14988 else
14989 Iface := First (Interface_List (Def));
14990 while Present (Iface) loop
14991 if Etype (Iface) = Etype (Partial_View) then
14992 Rewrite (Subtype_Indication (Def),
14993 New_Copy (Subtype_Indication
14994 (Parent (Partial_View))));
14995
14996 New_Iface :=
14997 Make_Identifier (Sloc (N), Chars (Parent_Type));
14998 Append (New_Iface, Interface_List (Def));
14999
15000 -- Analyze the transformed code
15001
15002 Derived_Type_Declaration (T, N, Is_Completion);
15003 return;
15004 end if;
15005
15006 Next (Iface);
15007 end loop;
15008 end if;
15009 end if;
15010 end;
15011 end if;
15012
15013 -- Only composite types other than array types are allowed to have
15014 -- discriminants. In SPARK, no types are allowed to have discriminants.
15015
15016 if Present (Discriminant_Specifications (N)) then
15017 if (Is_Elementary_Type (Parent_Type)
15018 or else Is_Array_Type (Parent_Type))
15019 and then not Error_Posted (N)
15020 then
15021 Error_Msg_N
15022 ("elementary or array type cannot have discriminants",
15023 Defining_Identifier (First (Discriminant_Specifications (N))));
15024 Set_Has_Discriminants (T, False);
15025 else
15026 Check_SPARK_Restriction ("discriminant type is not allowed", N);
15027 end if;
15028 end if;
15029
15030 -- In Ada 83, a derived type defined in a package specification cannot
15031 -- be used for further derivation until the end of its visible part.
15032 -- Note that derivation in the private part of the package is allowed.
15033
15034 if Ada_Version = Ada_83
15035 and then Is_Derived_Type (Parent_Type)
15036 and then In_Visible_Part (Scope (Parent_Type))
15037 then
15038 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15039 Error_Msg_N
15040 ("(Ada 83): premature use of type for derivation", Indic);
15041 end if;
15042 end if;
15043
15044 -- Check for early use of incomplete or private type
15045
15046 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15047 Error_Msg_N ("premature derivation of incomplete type", Indic);
15048 return;
15049
15050 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15051 and then not Comes_From_Generic (Parent_Type))
15052 or else Has_Private_Component (Parent_Type)
15053 then
15054 -- The ancestor type of a formal type can be incomplete, in which
15055 -- case only the operations of the partial view are available in the
15056 -- generic. Subsequent checks may be required when the full view is
15057 -- analyzed to verify that a derivation from a tagged type has an
15058 -- extension.
15059
15060 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15061 null;
15062
15063 elsif No (Underlying_Type (Parent_Type))
15064 or else Has_Private_Component (Parent_Type)
15065 then
15066 Error_Msg_N
15067 ("premature derivation of derived or private type", Indic);
15068
15069 -- Flag the type itself as being in error, this prevents some
15070 -- nasty problems with subsequent uses of the malformed type.
15071
15072 Set_Error_Posted (T);
15073
15074 -- Check that within the immediate scope of an untagged partial
15075 -- view it's illegal to derive from the partial view if the
15076 -- full view is tagged. (7.3(7))
15077
15078 -- We verify that the Parent_Type is a partial view by checking
15079 -- that it is not a Full_Type_Declaration (i.e. a private type or
15080 -- private extension declaration), to distinguish a partial view
15081 -- from a derivation from a private type which also appears as
15082 -- E_Private_Type. If the parent base type is not declared in an
15083 -- enclosing scope there is no need to check.
15084
15085 elsif Present (Full_View (Parent_Type))
15086 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15087 and then not Is_Tagged_Type (Parent_Type)
15088 and then Is_Tagged_Type (Full_View (Parent_Type))
15089 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15090 then
15091 Error_Msg_N
15092 ("premature derivation from type with tagged full view",
15093 Indic);
15094 end if;
15095 end if;
15096
15097 -- Check that form of derivation is appropriate
15098
15099 Taggd := Is_Tagged_Type (Parent_Type);
15100
15101 -- Perhaps the parent type should be changed to the class-wide type's
15102 -- specific type in this case to prevent cascading errors ???
15103
15104 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15105 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15106 return;
15107 end if;
15108
15109 if Present (Extension) and then not Taggd then
15110 Error_Msg_N
15111 ("type derived from untagged type cannot have extension", Indic);
15112
15113 elsif No (Extension) and then Taggd then
15114
15115 -- If this declaration is within a private part (or body) of a
15116 -- generic instantiation then the derivation is allowed (the parent
15117 -- type can only appear tagged in this case if it's a generic actual
15118 -- type, since it would otherwise have been rejected in the analysis
15119 -- of the generic template).
15120
15121 if not Is_Generic_Actual_Type (Parent_Type)
15122 or else In_Visible_Part (Scope (Parent_Type))
15123 then
15124 if Is_Class_Wide_Type (Parent_Type) then
15125 Error_Msg_N
15126 ("parent type must not be a class-wide type", Indic);
15127
15128 -- Use specific type to prevent cascaded errors.
15129
15130 Parent_Type := Etype (Parent_Type);
15131
15132 else
15133 Error_Msg_N
15134 ("type derived from tagged type must have extension", Indic);
15135 end if;
15136 end if;
15137 end if;
15138
15139 -- AI-443: Synchronized formal derived types require a private
15140 -- extension. There is no point in checking the ancestor type or
15141 -- the progenitors since the construct is wrong to begin with.
15142
15143 if Ada_Version >= Ada_2005
15144 and then Is_Generic_Type (T)
15145 and then Present (Original_Node (N))
15146 then
15147 declare
15148 Decl : constant Node_Id := Original_Node (N);
15149
15150 begin
15151 if Nkind (Decl) = N_Formal_Type_Declaration
15152 and then Nkind (Formal_Type_Definition (Decl)) =
15153 N_Formal_Derived_Type_Definition
15154 and then Synchronized_Present (Formal_Type_Definition (Decl))
15155 and then No (Extension)
15156
15157 -- Avoid emitting a duplicate error message
15158
15159 and then not Error_Posted (Indic)
15160 then
15161 Error_Msg_N
15162 ("synchronized derived type must have extension", N);
15163 end if;
15164 end;
15165 end if;
15166
15167 if Null_Exclusion_Present (Def)
15168 and then not Is_Access_Type (Parent_Type)
15169 then
15170 Error_Msg_N ("null exclusion can only apply to an access type", N);
15171 end if;
15172
15173 -- Avoid deriving parent primitives of underlying record views
15174
15175 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15176 Derive_Subps => not Is_Underlying_Record_View (T));
15177
15178 -- AI-419: The parent type of an explicitly limited derived type must
15179 -- be a limited type or a limited interface.
15180
15181 if Limited_Present (Def) then
15182 Set_Is_Limited_Record (T);
15183
15184 if Is_Interface (T) then
15185 Set_Is_Limited_Interface (T);
15186 end if;
15187
15188 if not Is_Limited_Type (Parent_Type)
15189 and then
15190 (not Is_Interface (Parent_Type)
15191 or else not Is_Limited_Interface (Parent_Type))
15192 then
15193 -- AI05-0096: a derivation in the private part of an instance is
15194 -- legal if the generic formal is untagged limited, and the actual
15195 -- is non-limited.
15196
15197 if Is_Generic_Actual_Type (Parent_Type)
15198 and then In_Private_Part (Current_Scope)
15199 and then
15200 not Is_Tagged_Type
15201 (Generic_Parent_Type (Parent (Parent_Type)))
15202 then
15203 null;
15204
15205 else
15206 Error_Msg_NE
15207 ("parent type& of limited type must be limited",
15208 N, Parent_Type);
15209 end if;
15210 end if;
15211 end if;
15212
15213 -- In SPARK, there are no derived type definitions other than type
15214 -- extensions of tagged record types.
15215
15216 if No (Extension) then
15217 Check_SPARK_Restriction
15218 ("derived type is not allowed", Original_Node (N));
15219 end if;
15220 end Derived_Type_Declaration;
15221
15222 ------------------------
15223 -- Diagnose_Interface --
15224 ------------------------
15225
15226 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15227 begin
15228 if not Is_Interface (E)
15229 and then E /= Any_Type
15230 then
15231 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15232 end if;
15233 end Diagnose_Interface;
15234
15235 ----------------------------------
15236 -- Enumeration_Type_Declaration --
15237 ----------------------------------
15238
15239 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15240 Ev : Uint;
15241 L : Node_Id;
15242 R_Node : Node_Id;
15243 B_Node : Node_Id;
15244
15245 begin
15246 -- Create identifier node representing lower bound
15247
15248 B_Node := New_Node (N_Identifier, Sloc (Def));
15249 L := First (Literals (Def));
15250 Set_Chars (B_Node, Chars (L));
15251 Set_Entity (B_Node, L);
15252 Set_Etype (B_Node, T);
15253 Set_Is_Static_Expression (B_Node, True);
15254
15255 R_Node := New_Node (N_Range, Sloc (Def));
15256 Set_Low_Bound (R_Node, B_Node);
15257
15258 Set_Ekind (T, E_Enumeration_Type);
15259 Set_First_Literal (T, L);
15260 Set_Etype (T, T);
15261 Set_Is_Constrained (T);
15262
15263 Ev := Uint_0;
15264
15265 -- Loop through literals of enumeration type setting pos and rep values
15266 -- except that if the Ekind is already set, then it means the literal
15267 -- was already constructed (case of a derived type declaration and we
15268 -- should not disturb the Pos and Rep values.
15269
15270 while Present (L) loop
15271 if Ekind (L) /= E_Enumeration_Literal then
15272 Set_Ekind (L, E_Enumeration_Literal);
15273 Set_Enumeration_Pos (L, Ev);
15274 Set_Enumeration_Rep (L, Ev);
15275 Set_Is_Known_Valid (L, True);
15276 end if;
15277
15278 Set_Etype (L, T);
15279 New_Overloaded_Entity (L);
15280 Generate_Definition (L);
15281 Set_Convention (L, Convention_Intrinsic);
15282
15283 -- Case of character literal
15284
15285 if Nkind (L) = N_Defining_Character_Literal then
15286 Set_Is_Character_Type (T, True);
15287
15288 -- Check violation of No_Wide_Characters
15289
15290 if Restriction_Check_Required (No_Wide_Characters) then
15291 Get_Name_String (Chars (L));
15292
15293 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15294 Check_Restriction (No_Wide_Characters, L);
15295 end if;
15296 end if;
15297 end if;
15298
15299 Ev := Ev + 1;
15300 Next (L);
15301 end loop;
15302
15303 -- Now create a node representing upper bound
15304
15305 B_Node := New_Node (N_Identifier, Sloc (Def));
15306 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15307 Set_Entity (B_Node, Last (Literals (Def)));
15308 Set_Etype (B_Node, T);
15309 Set_Is_Static_Expression (B_Node, True);
15310
15311 Set_High_Bound (R_Node, B_Node);
15312
15313 -- Initialize various fields of the type. Some of this information
15314 -- may be overwritten later through rep.clauses.
15315
15316 Set_Scalar_Range (T, R_Node);
15317 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15318 Set_Enum_Esize (T);
15319 Set_Enum_Pos_To_Rep (T, Empty);
15320
15321 -- Set Discard_Names if configuration pragma set, or if there is
15322 -- a parameterless pragma in the current declarative region
15323
15324 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15325 Set_Discard_Names (T);
15326 end if;
15327
15328 -- Process end label if there is one
15329
15330 if Present (Def) then
15331 Process_End_Label (Def, 'e', T);
15332 end if;
15333 end Enumeration_Type_Declaration;
15334
15335 ---------------------------------
15336 -- Expand_To_Stored_Constraint --
15337 ---------------------------------
15338
15339 function Expand_To_Stored_Constraint
15340 (Typ : Entity_Id;
15341 Constraint : Elist_Id) return Elist_Id
15342 is
15343 Explicitly_Discriminated_Type : Entity_Id;
15344 Expansion : Elist_Id;
15345 Discriminant : Entity_Id;
15346
15347 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15348 -- Find the nearest type that actually specifies discriminants
15349
15350 ---------------------------------
15351 -- Type_With_Explicit_Discrims --
15352 ---------------------------------
15353
15354 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15355 Typ : constant E := Base_Type (Id);
15356
15357 begin
15358 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15359 if Present (Full_View (Typ)) then
15360 return Type_With_Explicit_Discrims (Full_View (Typ));
15361 end if;
15362
15363 else
15364 if Has_Discriminants (Typ) then
15365 return Typ;
15366 end if;
15367 end if;
15368
15369 if Etype (Typ) = Typ then
15370 return Empty;
15371 elsif Has_Discriminants (Typ) then
15372 return Typ;
15373 else
15374 return Type_With_Explicit_Discrims (Etype (Typ));
15375 end if;
15376
15377 end Type_With_Explicit_Discrims;
15378
15379 -- Start of processing for Expand_To_Stored_Constraint
15380
15381 begin
15382 if No (Constraint)
15383 or else Is_Empty_Elmt_List (Constraint)
15384 then
15385 return No_Elist;
15386 end if;
15387
15388 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15389
15390 if No (Explicitly_Discriminated_Type) then
15391 return No_Elist;
15392 end if;
15393
15394 Expansion := New_Elmt_List;
15395
15396 Discriminant :=
15397 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15398 while Present (Discriminant) loop
15399 Append_Elmt
15400 (Get_Discriminant_Value
15401 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15402 To => Expansion);
15403 Next_Stored_Discriminant (Discriminant);
15404 end loop;
15405
15406 return Expansion;
15407 end Expand_To_Stored_Constraint;
15408
15409 ---------------------------
15410 -- Find_Hidden_Interface --
15411 ---------------------------
15412
15413 function Find_Hidden_Interface
15414 (Src : Elist_Id;
15415 Dest : Elist_Id) return Entity_Id
15416 is
15417 Iface : Entity_Id;
15418 Iface_Elmt : Elmt_Id;
15419
15420 begin
15421 if Present (Src) and then Present (Dest) then
15422 Iface_Elmt := First_Elmt (Src);
15423 while Present (Iface_Elmt) loop
15424 Iface := Node (Iface_Elmt);
15425
15426 if Is_Interface (Iface)
15427 and then not Contain_Interface (Iface, Dest)
15428 then
15429 return Iface;
15430 end if;
15431
15432 Next_Elmt (Iface_Elmt);
15433 end loop;
15434 end if;
15435
15436 return Empty;
15437 end Find_Hidden_Interface;
15438
15439 --------------------
15440 -- Find_Type_Name --
15441 --------------------
15442
15443 function Find_Type_Name (N : Node_Id) return Entity_Id is
15444 Id : constant Entity_Id := Defining_Identifier (N);
15445 Prev : Entity_Id;
15446 New_Id : Entity_Id;
15447 Prev_Par : Node_Id;
15448
15449 procedure Check_Duplicate_Aspects;
15450 -- Check that aspects specified in a completion have not been specified
15451 -- already in the partial view. Type_Invariant and others can be
15452 -- specified on either view but never on both.
15453
15454 procedure Tag_Mismatch;
15455 -- Diagnose a tagged partial view whose full view is untagged.
15456 -- We post the message on the full view, with a reference to
15457 -- the previous partial view. The partial view can be private
15458 -- or incomplete, and these are handled in a different manner,
15459 -- so we determine the position of the error message from the
15460 -- respective slocs of both.
15461
15462 -----------------------------
15463 -- Check_Duplicate_Aspects --
15464 -----------------------------
15465 procedure Check_Duplicate_Aspects is
15466 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15467 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15468 F_Spec, P_Spec : Node_Id;
15469
15470 begin
15471 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15472 F_Spec := First (Full_Aspects);
15473 while Present (F_Spec) loop
15474 P_Spec := First (Prev_Aspects);
15475 while Present (P_Spec) loop
15476 if
15477 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15478 then
15479 Error_Msg_N
15480 ("aspect already specified in private declaration",
15481 F_Spec);
15482 Remove (F_Spec);
15483 return;
15484 end if;
15485
15486 Next (P_Spec);
15487 end loop;
15488
15489 Next (F_Spec);
15490 end loop;
15491 end if;
15492 end Check_Duplicate_Aspects;
15493
15494 ------------------
15495 -- Tag_Mismatch --
15496 ------------------
15497
15498 procedure Tag_Mismatch is
15499 begin
15500 if Sloc (Prev) < Sloc (Id) then
15501 if Ada_Version >= Ada_2012
15502 and then Nkind (N) = N_Private_Type_Declaration
15503 then
15504 Error_Msg_NE
15505 ("declaration of private } must be a tagged type ", Id, Prev);
15506 else
15507 Error_Msg_NE
15508 ("full declaration of } must be a tagged type ", Id, Prev);
15509 end if;
15510
15511 else
15512 if Ada_Version >= Ada_2012
15513 and then Nkind (N) = N_Private_Type_Declaration
15514 then
15515 Error_Msg_NE
15516 ("declaration of private } must be a tagged type ", Prev, Id);
15517 else
15518 Error_Msg_NE
15519 ("full declaration of } must be a tagged type ", Prev, Id);
15520 end if;
15521 end if;
15522 end Tag_Mismatch;
15523
15524 -- Start of processing for Find_Type_Name
15525
15526 begin
15527 -- Find incomplete declaration, if one was given
15528
15529 Prev := Current_Entity_In_Scope (Id);
15530
15531 -- New type declaration
15532
15533 if No (Prev) then
15534 Enter_Name (Id);
15535 return Id;
15536
15537 -- Previous declaration exists
15538
15539 else
15540 Prev_Par := Parent (Prev);
15541
15542 -- Error if not incomplete/private case except if previous
15543 -- declaration is implicit, etc. Enter_Name will emit error if
15544 -- appropriate.
15545
15546 if not Is_Incomplete_Or_Private_Type (Prev) then
15547 Enter_Name (Id);
15548 New_Id := Id;
15549
15550 -- Check invalid completion of private or incomplete type
15551
15552 elsif not Nkind_In (N, N_Full_Type_Declaration,
15553 N_Task_Type_Declaration,
15554 N_Protected_Type_Declaration)
15555 and then
15556 (Ada_Version < Ada_2012
15557 or else not Is_Incomplete_Type (Prev)
15558 or else not Nkind_In (N, N_Private_Type_Declaration,
15559 N_Private_Extension_Declaration))
15560 then
15561 -- Completion must be a full type declarations (RM 7.3(4))
15562
15563 Error_Msg_Sloc := Sloc (Prev);
15564 Error_Msg_NE ("invalid completion of }", Id, Prev);
15565
15566 -- Set scope of Id to avoid cascaded errors. Entity is never
15567 -- examined again, except when saving globals in generics.
15568
15569 Set_Scope (Id, Current_Scope);
15570 New_Id := Id;
15571
15572 -- If this is a repeated incomplete declaration, no further
15573 -- checks are possible.
15574
15575 if Nkind (N) = N_Incomplete_Type_Declaration then
15576 return Prev;
15577 end if;
15578
15579 -- Case of full declaration of incomplete type
15580
15581 elsif Ekind (Prev) = E_Incomplete_Type
15582 and then (Ada_Version < Ada_2012
15583 or else No (Full_View (Prev))
15584 or else not Is_Private_Type (Full_View (Prev)))
15585 then
15586 -- Indicate that the incomplete declaration has a matching full
15587 -- declaration. The defining occurrence of the incomplete
15588 -- declaration remains the visible one, and the procedure
15589 -- Get_Full_View dereferences it whenever the type is used.
15590
15591 if Present (Full_View (Prev)) then
15592 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15593 end if;
15594
15595 Set_Full_View (Prev, Id);
15596 Append_Entity (Id, Current_Scope);
15597 Set_Is_Public (Id, Is_Public (Prev));
15598 Set_Is_Internal (Id);
15599 New_Id := Prev;
15600
15601 -- If the incomplete view is tagged, a class_wide type has been
15602 -- created already. Use it for the private type as well, in order
15603 -- to prevent multiple incompatible class-wide types that may be
15604 -- created for self-referential anonymous access components.
15605
15606 if Is_Tagged_Type (Prev)
15607 and then Present (Class_Wide_Type (Prev))
15608 then
15609 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15610 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15611
15612 -- If the incomplete type is completed by a private declaration
15613 -- the class-wide type remains associated with the incomplete
15614 -- type, to prevent order-of-elaboration issues in gigi, else
15615 -- we associate the class-wide type with the known full view.
15616
15617 if Nkind (N) /= N_Private_Type_Declaration then
15618 Set_Etype (Class_Wide_Type (Id), Id);
15619 end if;
15620 end if;
15621
15622 -- Case of full declaration of private type
15623
15624 else
15625 -- If the private type was a completion of an incomplete type then
15626 -- update Prev to reference the private type
15627
15628 if Ada_Version >= Ada_2012
15629 and then Ekind (Prev) = E_Incomplete_Type
15630 and then Present (Full_View (Prev))
15631 and then Is_Private_Type (Full_View (Prev))
15632 then
15633 Prev := Full_View (Prev);
15634 Prev_Par := Parent (Prev);
15635 end if;
15636
15637 if Nkind (N) = N_Full_Type_Declaration
15638 and then Nkind_In
15639 (Type_Definition (N), N_Record_Definition,
15640 N_Derived_Type_Definition)
15641 and then Interface_Present (Type_Definition (N))
15642 then
15643 Error_Msg_N
15644 ("completion of private type cannot be an interface", N);
15645 end if;
15646
15647 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15648 if Etype (Prev) /= Prev then
15649
15650 -- Prev is a private subtype or a derived type, and needs
15651 -- no completion.
15652
15653 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15654 New_Id := Id;
15655
15656 elsif Ekind (Prev) = E_Private_Type
15657 and then Nkind_In (N, N_Task_Type_Declaration,
15658 N_Protected_Type_Declaration)
15659 then
15660 Error_Msg_N
15661 ("completion of nonlimited type cannot be limited", N);
15662
15663 elsif Ekind (Prev) = E_Record_Type_With_Private
15664 and then Nkind_In (N, N_Task_Type_Declaration,
15665 N_Protected_Type_Declaration)
15666 then
15667 if not Is_Limited_Record (Prev) then
15668 Error_Msg_N
15669 ("completion of nonlimited type cannot be limited", N);
15670
15671 elsif No (Interface_List (N)) then
15672 Error_Msg_N
15673 ("completion of tagged private type must be tagged",
15674 N);
15675 end if;
15676 end if;
15677
15678 -- Ada 2005 (AI-251): Private extension declaration of a task
15679 -- type or a protected type. This case arises when covering
15680 -- interface types.
15681
15682 elsif Nkind_In (N, N_Task_Type_Declaration,
15683 N_Protected_Type_Declaration)
15684 then
15685 null;
15686
15687 elsif Nkind (N) /= N_Full_Type_Declaration
15688 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15689 then
15690 Error_Msg_N
15691 ("full view of private extension must be an extension", N);
15692
15693 elsif not (Abstract_Present (Parent (Prev)))
15694 and then Abstract_Present (Type_Definition (N))
15695 then
15696 Error_Msg_N
15697 ("full view of non-abstract extension cannot be abstract", N);
15698 end if;
15699
15700 if not In_Private_Part (Current_Scope) then
15701 Error_Msg_N
15702 ("declaration of full view must appear in private part", N);
15703 end if;
15704
15705 if Ada_Version >= Ada_2012 then
15706 Check_Duplicate_Aspects;
15707 end if;
15708
15709 Copy_And_Swap (Prev, Id);
15710 Set_Has_Private_Declaration (Prev);
15711 Set_Has_Private_Declaration (Id);
15712
15713 -- Preserve aspect and iterator flags that may have been set on
15714 -- the partial view.
15715
15716 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15717 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15718
15719 -- If no error, propagate freeze_node from private to full view.
15720 -- It may have been generated for an early operational item.
15721
15722 if Present (Freeze_Node (Id))
15723 and then Serious_Errors_Detected = 0
15724 and then No (Full_View (Id))
15725 then
15726 Set_Freeze_Node (Prev, Freeze_Node (Id));
15727 Set_Freeze_Node (Id, Empty);
15728 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15729 end if;
15730
15731 Set_Full_View (Id, Prev);
15732 New_Id := Prev;
15733 end if;
15734
15735 -- Verify that full declaration conforms to partial one
15736
15737 if Is_Incomplete_Or_Private_Type (Prev)
15738 and then Present (Discriminant_Specifications (Prev_Par))
15739 then
15740 if Present (Discriminant_Specifications (N)) then
15741 if Ekind (Prev) = E_Incomplete_Type then
15742 Check_Discriminant_Conformance (N, Prev, Prev);
15743 else
15744 Check_Discriminant_Conformance (N, Prev, Id);
15745 end if;
15746
15747 else
15748 Error_Msg_N
15749 ("missing discriminants in full type declaration", N);
15750
15751 -- To avoid cascaded errors on subsequent use, share the
15752 -- discriminants of the partial view.
15753
15754 Set_Discriminant_Specifications (N,
15755 Discriminant_Specifications (Prev_Par));
15756 end if;
15757 end if;
15758
15759 -- A prior untagged partial view can have an associated class-wide
15760 -- type due to use of the class attribute, and in this case the full
15761 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15762 -- of incomplete tagged declarations, but we check for it.
15763
15764 if Is_Type (Prev)
15765 and then (Is_Tagged_Type (Prev)
15766 or else Present (Class_Wide_Type (Prev)))
15767 then
15768 -- Ada 2012 (AI05-0162): A private type may be the completion of
15769 -- an incomplete type.
15770
15771 if Ada_Version >= Ada_2012
15772 and then Is_Incomplete_Type (Prev)
15773 and then Nkind_In (N, N_Private_Type_Declaration,
15774 N_Private_Extension_Declaration)
15775 then
15776 -- No need to check private extensions since they are tagged
15777
15778 if Nkind (N) = N_Private_Type_Declaration
15779 and then not Tagged_Present (N)
15780 then
15781 Tag_Mismatch;
15782 end if;
15783
15784 -- The full declaration is either a tagged type (including
15785 -- a synchronized type that implements interfaces) or a
15786 -- type extension, otherwise this is an error.
15787
15788 elsif Nkind_In (N, N_Task_Type_Declaration,
15789 N_Protected_Type_Declaration)
15790 then
15791 if No (Interface_List (N))
15792 and then not Error_Posted (N)
15793 then
15794 Tag_Mismatch;
15795 end if;
15796
15797 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15798
15799 -- Indicate that the previous declaration (tagged incomplete
15800 -- or private declaration) requires the same on the full one.
15801
15802 if not Tagged_Present (Type_Definition (N)) then
15803 Tag_Mismatch;
15804 Set_Is_Tagged_Type (Id);
15805 end if;
15806
15807 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15808 if No (Record_Extension_Part (Type_Definition (N))) then
15809 Error_Msg_NE
15810 ("full declaration of } must be a record extension",
15811 Prev, Id);
15812
15813 -- Set some attributes to produce a usable full view
15814
15815 Set_Is_Tagged_Type (Id);
15816 end if;
15817
15818 else
15819 Tag_Mismatch;
15820 end if;
15821 end if;
15822
15823 if Present (Prev)
15824 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15825 and then Present (Premature_Use (Parent (Prev)))
15826 then
15827 Error_Msg_Sloc := Sloc (N);
15828 Error_Msg_N
15829 ("\full declaration #", Premature_Use (Parent (Prev)));
15830 end if;
15831
15832 return New_Id;
15833 end if;
15834 end Find_Type_Name;
15835
15836 -------------------------
15837 -- Find_Type_Of_Object --
15838 -------------------------
15839
15840 function Find_Type_Of_Object
15841 (Obj_Def : Node_Id;
15842 Related_Nod : Node_Id) return Entity_Id
15843 is
15844 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15845 P : Node_Id := Parent (Obj_Def);
15846 T : Entity_Id;
15847 Nam : Name_Id;
15848
15849 begin
15850 -- If the parent is a component_definition node we climb to the
15851 -- component_declaration node
15852
15853 if Nkind (P) = N_Component_Definition then
15854 P := Parent (P);
15855 end if;
15856
15857 -- Case of an anonymous array subtype
15858
15859 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15860 N_Unconstrained_Array_Definition)
15861 then
15862 T := Empty;
15863 Array_Type_Declaration (T, Obj_Def);
15864
15865 -- Create an explicit subtype whenever possible
15866
15867 elsif Nkind (P) /= N_Component_Declaration
15868 and then Def_Kind = N_Subtype_Indication
15869 then
15870 -- Base name of subtype on object name, which will be unique in
15871 -- the current scope.
15872
15873 -- If this is a duplicate declaration, return base type, to avoid
15874 -- generating duplicate anonymous types.
15875
15876 if Error_Posted (P) then
15877 Analyze (Subtype_Mark (Obj_Def));
15878 return Entity (Subtype_Mark (Obj_Def));
15879 end if;
15880
15881 Nam :=
15882 New_External_Name
15883 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15884
15885 T := Make_Defining_Identifier (Sloc (P), Nam);
15886
15887 Insert_Action (Obj_Def,
15888 Make_Subtype_Declaration (Sloc (P),
15889 Defining_Identifier => T,
15890 Subtype_Indication => Relocate_Node (Obj_Def)));
15891
15892 -- This subtype may need freezing, and this will not be done
15893 -- automatically if the object declaration is not in declarative
15894 -- part. Since this is an object declaration, the type cannot always
15895 -- be frozen here. Deferred constants do not freeze their type
15896 -- (which often enough will be private).
15897
15898 if Nkind (P) = N_Object_Declaration
15899 and then Constant_Present (P)
15900 and then No (Expression (P))
15901 then
15902 null;
15903
15904 -- Here we freeze the base type of object type to catch premature use
15905 -- of discriminated private type without a full view.
15906
15907 else
15908 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15909 end if;
15910
15911 -- Ada 2005 AI-406: the object definition in an object declaration
15912 -- can be an access definition.
15913
15914 elsif Def_Kind = N_Access_Definition then
15915 T := Access_Definition (Related_Nod, Obj_Def);
15916
15917 Set_Is_Local_Anonymous_Access
15918 (T,
15919 V => (Ada_Version < Ada_2012)
15920 or else (Nkind (P) /= N_Object_Declaration)
15921 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15922
15923 -- Otherwise, the object definition is just a subtype_mark
15924
15925 else
15926 T := Process_Subtype (Obj_Def, Related_Nod);
15927
15928 -- If expansion is disabled an object definition that is an aggregate
15929 -- will not get expanded and may lead to scoping problems in the back
15930 -- end, if the object is referenced in an inner scope. In that case
15931 -- create an itype reference for the object definition now. This
15932 -- may be redundant in some cases, but harmless.
15933
15934 if Is_Itype (T)
15935 and then Nkind (Related_Nod) = N_Object_Declaration
15936 and then ASIS_Mode
15937 then
15938 Build_Itype_Reference (T, Related_Nod);
15939 end if;
15940 end if;
15941
15942 return T;
15943 end Find_Type_Of_Object;
15944
15945 --------------------------------
15946 -- Find_Type_Of_Subtype_Indic --
15947 --------------------------------
15948
15949 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15950 Typ : Entity_Id;
15951
15952 begin
15953 -- Case of subtype mark with a constraint
15954
15955 if Nkind (S) = N_Subtype_Indication then
15956 Find_Type (Subtype_Mark (S));
15957 Typ := Entity (Subtype_Mark (S));
15958
15959 if not
15960 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15961 then
15962 Error_Msg_N
15963 ("incorrect constraint for this kind of type", Constraint (S));
15964 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15965 end if;
15966
15967 -- Otherwise we have a subtype mark without a constraint
15968
15969 elsif Error_Posted (S) then
15970 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15971 return Any_Type;
15972
15973 else
15974 Find_Type (S);
15975 Typ := Entity (S);
15976 end if;
15977
15978 -- Check No_Wide_Characters restriction
15979
15980 Check_Wide_Character_Restriction (Typ, S);
15981
15982 return Typ;
15983 end Find_Type_Of_Subtype_Indic;
15984
15985 -------------------------------------
15986 -- Floating_Point_Type_Declaration --
15987 -------------------------------------
15988
15989 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15990 Digs : constant Node_Id := Digits_Expression (Def);
15991 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15992 Digs_Val : Uint;
15993 Base_Typ : Entity_Id;
15994 Implicit_Base : Entity_Id;
15995 Bound : Node_Id;
15996
15997 function Can_Derive_From (E : Entity_Id) return Boolean;
15998 -- Find if given digits value, and possibly a specified range, allows
15999 -- derivation from specified type
16000
16001 function Find_Base_Type return Entity_Id;
16002 -- Find a predefined base type that Def can derive from, or generate
16003 -- an error and substitute Long_Long_Float if none exists.
16004
16005 ---------------------
16006 -- Can_Derive_From --
16007 ---------------------
16008
16009 function Can_Derive_From (E : Entity_Id) return Boolean is
16010 Spec : constant Entity_Id := Real_Range_Specification (Def);
16011
16012 begin
16013 -- Check specified "digits" constraint
16014
16015 if Digs_Val > Digits_Value (E) then
16016 return False;
16017 end if;
16018
16019 -- Check for matching range, if specified
16020
16021 if Present (Spec) then
16022 if Expr_Value_R (Type_Low_Bound (E)) >
16023 Expr_Value_R (Low_Bound (Spec))
16024 then
16025 return False;
16026 end if;
16027
16028 if Expr_Value_R (Type_High_Bound (E)) <
16029 Expr_Value_R (High_Bound (Spec))
16030 then
16031 return False;
16032 end if;
16033 end if;
16034
16035 return True;
16036 end Can_Derive_From;
16037
16038 --------------------
16039 -- Find_Base_Type --
16040 --------------------
16041
16042 function Find_Base_Type return Entity_Id is
16043 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16044
16045 begin
16046 -- Iterate over the predefined types in order, returning the first
16047 -- one that Def can derive from.
16048
16049 while Present (Choice) loop
16050 if Can_Derive_From (Node (Choice)) then
16051 return Node (Choice);
16052 end if;
16053
16054 Next_Elmt (Choice);
16055 end loop;
16056
16057 -- If we can't derive from any existing type, use Long_Long_Float
16058 -- and give appropriate message explaining the problem.
16059
16060 if Digs_Val > Max_Digs_Val then
16061 -- It might be the case that there is a type with the requested
16062 -- range, just not the combination of digits and range.
16063
16064 Error_Msg_N
16065 ("no predefined type has requested range and precision",
16066 Real_Range_Specification (Def));
16067
16068 else
16069 Error_Msg_N
16070 ("range too large for any predefined type",
16071 Real_Range_Specification (Def));
16072 end if;
16073
16074 return Standard_Long_Long_Float;
16075 end Find_Base_Type;
16076
16077 -- Start of processing for Floating_Point_Type_Declaration
16078
16079 begin
16080 Check_Restriction (No_Floating_Point, Def);
16081
16082 -- Create an implicit base type
16083
16084 Implicit_Base :=
16085 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16086
16087 -- Analyze and verify digits value
16088
16089 Analyze_And_Resolve (Digs, Any_Integer);
16090 Check_Digits_Expression (Digs);
16091 Digs_Val := Expr_Value (Digs);
16092
16093 -- Process possible range spec and find correct type to derive from
16094
16095 Process_Real_Range_Specification (Def);
16096
16097 -- Check that requested number of digits is not too high.
16098
16099 if Digs_Val > Max_Digs_Val then
16100 -- The check for Max_Base_Digits may be somewhat expensive, as it
16101 -- requires reading System, so only do it when necessary.
16102
16103 declare
16104 Max_Base_Digits : constant Uint :=
16105 Expr_Value
16106 (Expression
16107 (Parent (RTE (RE_Max_Base_Digits))));
16108
16109 begin
16110 if Digs_Val > Max_Base_Digits then
16111 Error_Msg_Uint_1 := Max_Base_Digits;
16112 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16113
16114 elsif No (Real_Range_Specification (Def)) then
16115 Error_Msg_Uint_1 := Max_Digs_Val;
16116 Error_Msg_N ("types with more than ^ digits need range spec "
16117 & "(RM 3.5.7(6))", Digs);
16118 end if;
16119 end;
16120 end if;
16121
16122 -- Find a suitable type to derive from or complain and use a substitute
16123
16124 Base_Typ := Find_Base_Type;
16125
16126 -- If there are bounds given in the declaration use them as the bounds
16127 -- of the type, otherwise use the bounds of the predefined base type
16128 -- that was chosen based on the Digits value.
16129
16130 if Present (Real_Range_Specification (Def)) then
16131 Set_Scalar_Range (T, Real_Range_Specification (Def));
16132 Set_Is_Constrained (T);
16133
16134 -- The bounds of this range must be converted to machine numbers
16135 -- in accordance with RM 4.9(38).
16136
16137 Bound := Type_Low_Bound (T);
16138
16139 if Nkind (Bound) = N_Real_Literal then
16140 Set_Realval
16141 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16142 Set_Is_Machine_Number (Bound);
16143 end if;
16144
16145 Bound := Type_High_Bound (T);
16146
16147 if Nkind (Bound) = N_Real_Literal then
16148 Set_Realval
16149 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16150 Set_Is_Machine_Number (Bound);
16151 end if;
16152
16153 else
16154 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16155 end if;
16156
16157 -- Complete definition of implicit base and declared first subtype
16158
16159 Set_Etype (Implicit_Base, Base_Typ);
16160
16161 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16162 Set_Size_Info (Implicit_Base, (Base_Typ));
16163 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16164 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16165 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16166 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16167
16168 Set_Ekind (T, E_Floating_Point_Subtype);
16169 Set_Etype (T, Implicit_Base);
16170
16171 Set_Size_Info (T, (Implicit_Base));
16172 Set_RM_Size (T, RM_Size (Implicit_Base));
16173 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16174 Set_Digits_Value (T, Digs_Val);
16175 end Floating_Point_Type_Declaration;
16176
16177 ----------------------------
16178 -- Get_Discriminant_Value --
16179 ----------------------------
16180
16181 -- This is the situation:
16182
16183 -- There is a non-derived type
16184
16185 -- type T0 (Dx, Dy, Dz...)
16186
16187 -- There are zero or more levels of derivation, with each derivation
16188 -- either purely inheriting the discriminants, or defining its own.
16189
16190 -- type Ti is new Ti-1
16191 -- or
16192 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16193 -- or
16194 -- subtype Ti is ...
16195
16196 -- The subtype issue is avoided by the use of Original_Record_Component,
16197 -- and the fact that derived subtypes also derive the constraints.
16198
16199 -- This chain leads back from
16200
16201 -- Typ_For_Constraint
16202
16203 -- Typ_For_Constraint has discriminants, and the value for each
16204 -- discriminant is given by its corresponding Elmt of Constraints.
16205
16206 -- Discriminant is some discriminant in this hierarchy
16207
16208 -- We need to return its value
16209
16210 -- We do this by recursively searching each level, and looking for
16211 -- Discriminant. Once we get to the bottom, we start backing up
16212 -- returning the value for it which may in turn be a discriminant
16213 -- further up, so on the backup we continue the substitution.
16214
16215 function Get_Discriminant_Value
16216 (Discriminant : Entity_Id;
16217 Typ_For_Constraint : Entity_Id;
16218 Constraint : Elist_Id) return Node_Id
16219 is
16220 function Root_Corresponding_Discriminant
16221 (Discr : Entity_Id) return Entity_Id;
16222 -- Given a discriminant, traverse the chain of inherited discriminants
16223 -- and return the topmost discriminant.
16224
16225 function Search_Derivation_Levels
16226 (Ti : Entity_Id;
16227 Discrim_Values : Elist_Id;
16228 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16229 -- This is the routine that performs the recursive search of levels
16230 -- as described above.
16231
16232 -------------------------------------
16233 -- Root_Corresponding_Discriminant --
16234 -------------------------------------
16235
16236 function Root_Corresponding_Discriminant
16237 (Discr : Entity_Id) return Entity_Id
16238 is
16239 D : Entity_Id;
16240
16241 begin
16242 D := Discr;
16243 while Present (Corresponding_Discriminant (D)) loop
16244 D := Corresponding_Discriminant (D);
16245 end loop;
16246
16247 return D;
16248 end Root_Corresponding_Discriminant;
16249
16250 ------------------------------
16251 -- Search_Derivation_Levels --
16252 ------------------------------
16253
16254 function Search_Derivation_Levels
16255 (Ti : Entity_Id;
16256 Discrim_Values : Elist_Id;
16257 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16258 is
16259 Assoc : Elmt_Id;
16260 Disc : Entity_Id;
16261 Result : Node_Or_Entity_Id;
16262 Result_Entity : Node_Id;
16263
16264 begin
16265 -- If inappropriate type, return Error, this happens only in
16266 -- cascaded error situations, and we want to avoid a blow up.
16267
16268 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16269 return Error;
16270 end if;
16271
16272 -- Look deeper if possible. Use Stored_Constraints only for
16273 -- untagged types. For tagged types use the given constraint.
16274 -- This asymmetry needs explanation???
16275
16276 if not Stored_Discrim_Values
16277 and then Present (Stored_Constraint (Ti))
16278 and then not Is_Tagged_Type (Ti)
16279 then
16280 Result :=
16281 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16282 else
16283 declare
16284 Td : constant Entity_Id := Etype (Ti);
16285
16286 begin
16287 if Td = Ti then
16288 Result := Discriminant;
16289
16290 else
16291 if Present (Stored_Constraint (Ti)) then
16292 Result :=
16293 Search_Derivation_Levels
16294 (Td, Stored_Constraint (Ti), True);
16295 else
16296 Result :=
16297 Search_Derivation_Levels
16298 (Td, Discrim_Values, Stored_Discrim_Values);
16299 end if;
16300 end if;
16301 end;
16302 end if;
16303
16304 -- Extra underlying places to search, if not found above. For
16305 -- concurrent types, the relevant discriminant appears in the
16306 -- corresponding record. For a type derived from a private type
16307 -- without discriminant, the full view inherits the discriminants
16308 -- of the full view of the parent.
16309
16310 if Result = Discriminant then
16311 if Is_Concurrent_Type (Ti)
16312 and then Present (Corresponding_Record_Type (Ti))
16313 then
16314 Result :=
16315 Search_Derivation_Levels (
16316 Corresponding_Record_Type (Ti),
16317 Discrim_Values,
16318 Stored_Discrim_Values);
16319
16320 elsif Is_Private_Type (Ti)
16321 and then not Has_Discriminants (Ti)
16322 and then Present (Full_View (Ti))
16323 and then Etype (Full_View (Ti)) /= Ti
16324 then
16325 Result :=
16326 Search_Derivation_Levels (
16327 Full_View (Ti),
16328 Discrim_Values,
16329 Stored_Discrim_Values);
16330 end if;
16331 end if;
16332
16333 -- If Result is not a (reference to a) discriminant, return it,
16334 -- otherwise set Result_Entity to the discriminant.
16335
16336 if Nkind (Result) = N_Defining_Identifier then
16337 pragma Assert (Result = Discriminant);
16338 Result_Entity := Result;
16339
16340 else
16341 if not Denotes_Discriminant (Result) then
16342 return Result;
16343 end if;
16344
16345 Result_Entity := Entity (Result);
16346 end if;
16347
16348 -- See if this level of derivation actually has discriminants
16349 -- because tagged derivations can add them, hence the lower
16350 -- levels need not have any.
16351
16352 if not Has_Discriminants (Ti) then
16353 return Result;
16354 end if;
16355
16356 -- Scan Ti's discriminants for Result_Entity,
16357 -- and return its corresponding value, if any.
16358
16359 Result_Entity := Original_Record_Component (Result_Entity);
16360
16361 Assoc := First_Elmt (Discrim_Values);
16362
16363 if Stored_Discrim_Values then
16364 Disc := First_Stored_Discriminant (Ti);
16365 else
16366 Disc := First_Discriminant (Ti);
16367 end if;
16368
16369 while Present (Disc) loop
16370 pragma Assert (Present (Assoc));
16371
16372 if Original_Record_Component (Disc) = Result_Entity then
16373 return Node (Assoc);
16374 end if;
16375
16376 Next_Elmt (Assoc);
16377
16378 if Stored_Discrim_Values then
16379 Next_Stored_Discriminant (Disc);
16380 else
16381 Next_Discriminant (Disc);
16382 end if;
16383 end loop;
16384
16385 -- Could not find it
16386 --
16387 return Result;
16388 end Search_Derivation_Levels;
16389
16390 -- Local Variables
16391
16392 Result : Node_Or_Entity_Id;
16393
16394 -- Start of processing for Get_Discriminant_Value
16395
16396 begin
16397 -- ??? This routine is a gigantic mess and will be deleted. For the
16398 -- time being just test for the trivial case before calling recurse.
16399
16400 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16401 declare
16402 D : Entity_Id;
16403 E : Elmt_Id;
16404
16405 begin
16406 D := First_Discriminant (Typ_For_Constraint);
16407 E := First_Elmt (Constraint);
16408 while Present (D) loop
16409 if Chars (D) = Chars (Discriminant) then
16410 return Node (E);
16411 end if;
16412
16413 Next_Discriminant (D);
16414 Next_Elmt (E);
16415 end loop;
16416 end;
16417 end if;
16418
16419 Result := Search_Derivation_Levels
16420 (Typ_For_Constraint, Constraint, False);
16421
16422 -- ??? hack to disappear when this routine is gone
16423
16424 if Nkind (Result) = N_Defining_Identifier then
16425 declare
16426 D : Entity_Id;
16427 E : Elmt_Id;
16428
16429 begin
16430 D := First_Discriminant (Typ_For_Constraint);
16431 E := First_Elmt (Constraint);
16432 while Present (D) loop
16433 if Root_Corresponding_Discriminant (D) = Discriminant then
16434 return Node (E);
16435 end if;
16436
16437 Next_Discriminant (D);
16438 Next_Elmt (E);
16439 end loop;
16440 end;
16441 end if;
16442
16443 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16444 return Result;
16445 end Get_Discriminant_Value;
16446
16447 --------------------------
16448 -- Has_Range_Constraint --
16449 --------------------------
16450
16451 function Has_Range_Constraint (N : Node_Id) return Boolean is
16452 C : constant Node_Id := Constraint (N);
16453
16454 begin
16455 if Nkind (C) = N_Range_Constraint then
16456 return True;
16457
16458 elsif Nkind (C) = N_Digits_Constraint then
16459 return
16460 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16461 or else
16462 Present (Range_Constraint (C));
16463
16464 elsif Nkind (C) = N_Delta_Constraint then
16465 return Present (Range_Constraint (C));
16466
16467 else
16468 return False;
16469 end if;
16470 end Has_Range_Constraint;
16471
16472 ------------------------
16473 -- Inherit_Components --
16474 ------------------------
16475
16476 function Inherit_Components
16477 (N : Node_Id;
16478 Parent_Base : Entity_Id;
16479 Derived_Base : Entity_Id;
16480 Is_Tagged : Boolean;
16481 Inherit_Discr : Boolean;
16482 Discs : Elist_Id) return Elist_Id
16483 is
16484 Assoc_List : constant Elist_Id := New_Elmt_List;
16485
16486 procedure Inherit_Component
16487 (Old_C : Entity_Id;
16488 Plain_Discrim : Boolean := False;
16489 Stored_Discrim : Boolean := False);
16490 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16491 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16492 -- True, Old_C is a stored discriminant. If they are both false then
16493 -- Old_C is a regular component.
16494
16495 -----------------------
16496 -- Inherit_Component --
16497 -----------------------
16498
16499 procedure Inherit_Component
16500 (Old_C : Entity_Id;
16501 Plain_Discrim : Boolean := False;
16502 Stored_Discrim : Boolean := False)
16503 is
16504 procedure Set_Anonymous_Type (Id : Entity_Id);
16505 -- Id denotes the entity of an access discriminant or anonymous
16506 -- access component. Set the type of Id to either the same type of
16507 -- Old_C or create a new one depending on whether the parent and
16508 -- the child types are in the same scope.
16509
16510 ------------------------
16511 -- Set_Anonymous_Type --
16512 ------------------------
16513
16514 procedure Set_Anonymous_Type (Id : Entity_Id) is
16515 Old_Typ : constant Entity_Id := Etype (Old_C);
16516
16517 begin
16518 if Scope (Parent_Base) = Scope (Derived_Base) then
16519 Set_Etype (Id, Old_Typ);
16520
16521 -- The parent and the derived type are in two different scopes.
16522 -- Reuse the type of the original discriminant / component by
16523 -- copying it in order to preserve all attributes.
16524
16525 else
16526 declare
16527 Typ : constant Entity_Id := New_Copy (Old_Typ);
16528
16529 begin
16530 Set_Etype (Id, Typ);
16531
16532 -- Since we do not generate component declarations for
16533 -- inherited components, associate the itype with the
16534 -- derived type.
16535
16536 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16537 Set_Scope (Typ, Derived_Base);
16538 end;
16539 end if;
16540 end Set_Anonymous_Type;
16541
16542 -- Local variables and constants
16543
16544 New_C : constant Entity_Id := New_Copy (Old_C);
16545
16546 Corr_Discrim : Entity_Id;
16547 Discrim : Entity_Id;
16548
16549 -- Start of processing for Inherit_Component
16550
16551 begin
16552 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16553
16554 Set_Parent (New_C, Parent (Old_C));
16555
16556 -- Regular discriminants and components must be inserted in the scope
16557 -- of the Derived_Base. Do it here.
16558
16559 if not Stored_Discrim then
16560 Enter_Name (New_C);
16561 end if;
16562
16563 -- For tagged types the Original_Record_Component must point to
16564 -- whatever this field was pointing to in the parent type. This has
16565 -- already been achieved by the call to New_Copy above.
16566
16567 if not Is_Tagged then
16568 Set_Original_Record_Component (New_C, New_C);
16569 end if;
16570
16571 -- Set the proper type of an access discriminant
16572
16573 if Ekind (New_C) = E_Discriminant
16574 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16575 then
16576 Set_Anonymous_Type (New_C);
16577 end if;
16578
16579 -- If we have inherited a component then see if its Etype contains
16580 -- references to Parent_Base discriminants. In this case, replace
16581 -- these references with the constraints given in Discs. We do not
16582 -- do this for the partial view of private types because this is
16583 -- not needed (only the components of the full view will be used
16584 -- for code generation) and cause problem. We also avoid this
16585 -- transformation in some error situations.
16586
16587 if Ekind (New_C) = E_Component then
16588
16589 -- Set the proper type of an anonymous access component
16590
16591 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16592 Set_Anonymous_Type (New_C);
16593
16594 elsif (Is_Private_Type (Derived_Base)
16595 and then not Is_Generic_Type (Derived_Base))
16596 or else (Is_Empty_Elmt_List (Discs)
16597 and then not Expander_Active)
16598 then
16599 Set_Etype (New_C, Etype (Old_C));
16600
16601 else
16602 -- The current component introduces a circularity of the
16603 -- following kind:
16604
16605 -- limited with Pack_2;
16606 -- package Pack_1 is
16607 -- type T_1 is tagged record
16608 -- Comp : access Pack_2.T_2;
16609 -- ...
16610 -- end record;
16611 -- end Pack_1;
16612
16613 -- with Pack_1;
16614 -- package Pack_2 is
16615 -- type T_2 is new Pack_1.T_1 with ...;
16616 -- end Pack_2;
16617
16618 Set_Etype
16619 (New_C,
16620 Constrain_Component_Type
16621 (Old_C, Derived_Base, N, Parent_Base, Discs));
16622 end if;
16623 end if;
16624
16625 -- In derived tagged types it is illegal to reference a non
16626 -- discriminant component in the parent type. To catch this, mark
16627 -- these components with an Ekind of E_Void. This will be reset in
16628 -- Record_Type_Definition after processing the record extension of
16629 -- the derived type.
16630
16631 -- If the declaration is a private extension, there is no further
16632 -- record extension to process, and the components retain their
16633 -- current kind, because they are visible at this point.
16634
16635 if Is_Tagged and then Ekind (New_C) = E_Component
16636 and then Nkind (N) /= N_Private_Extension_Declaration
16637 then
16638 Set_Ekind (New_C, E_Void);
16639 end if;
16640
16641 if Plain_Discrim then
16642 Set_Corresponding_Discriminant (New_C, Old_C);
16643 Build_Discriminal (New_C);
16644
16645 -- If we are explicitly inheriting a stored discriminant it will be
16646 -- completely hidden.
16647
16648 elsif Stored_Discrim then
16649 Set_Corresponding_Discriminant (New_C, Empty);
16650 Set_Discriminal (New_C, Empty);
16651 Set_Is_Completely_Hidden (New_C);
16652
16653 -- Set the Original_Record_Component of each discriminant in the
16654 -- derived base to point to the corresponding stored that we just
16655 -- created.
16656
16657 Discrim := First_Discriminant (Derived_Base);
16658 while Present (Discrim) loop
16659 Corr_Discrim := Corresponding_Discriminant (Discrim);
16660
16661 -- Corr_Discrim could be missing in an error situation
16662
16663 if Present (Corr_Discrim)
16664 and then Original_Record_Component (Corr_Discrim) = Old_C
16665 then
16666 Set_Original_Record_Component (Discrim, New_C);
16667 end if;
16668
16669 Next_Discriminant (Discrim);
16670 end loop;
16671
16672 Append_Entity (New_C, Derived_Base);
16673 end if;
16674
16675 if not Is_Tagged then
16676 Append_Elmt (Old_C, Assoc_List);
16677 Append_Elmt (New_C, Assoc_List);
16678 end if;
16679 end Inherit_Component;
16680
16681 -- Variables local to Inherit_Component
16682
16683 Loc : constant Source_Ptr := Sloc (N);
16684
16685 Parent_Discrim : Entity_Id;
16686 Stored_Discrim : Entity_Id;
16687 D : Entity_Id;
16688 Component : Entity_Id;
16689
16690 -- Start of processing for Inherit_Components
16691
16692 begin
16693 if not Is_Tagged then
16694 Append_Elmt (Parent_Base, Assoc_List);
16695 Append_Elmt (Derived_Base, Assoc_List);
16696 end if;
16697
16698 -- Inherit parent discriminants if needed
16699
16700 if Inherit_Discr then
16701 Parent_Discrim := First_Discriminant (Parent_Base);
16702 while Present (Parent_Discrim) loop
16703 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16704 Next_Discriminant (Parent_Discrim);
16705 end loop;
16706 end if;
16707
16708 -- Create explicit stored discrims for untagged types when necessary
16709
16710 if not Has_Unknown_Discriminants (Derived_Base)
16711 and then Has_Discriminants (Parent_Base)
16712 and then not Is_Tagged
16713 and then
16714 (not Inherit_Discr
16715 or else First_Discriminant (Parent_Base) /=
16716 First_Stored_Discriminant (Parent_Base))
16717 then
16718 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16719 while Present (Stored_Discrim) loop
16720 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16721 Next_Stored_Discriminant (Stored_Discrim);
16722 end loop;
16723 end if;
16724
16725 -- See if we can apply the second transformation for derived types, as
16726 -- explained in point 6. in the comments above Build_Derived_Record_Type
16727 -- This is achieved by appending Derived_Base discriminants into Discs,
16728 -- which has the side effect of returning a non empty Discs list to the
16729 -- caller of Inherit_Components, which is what we want. This must be
16730 -- done for private derived types if there are explicit stored
16731 -- discriminants, to ensure that we can retrieve the values of the
16732 -- constraints provided in the ancestors.
16733
16734 if Inherit_Discr
16735 and then Is_Empty_Elmt_List (Discs)
16736 and then Present (First_Discriminant (Derived_Base))
16737 and then
16738 (not Is_Private_Type (Derived_Base)
16739 or else Is_Completely_Hidden
16740 (First_Stored_Discriminant (Derived_Base))
16741 or else Is_Generic_Type (Derived_Base))
16742 then
16743 D := First_Discriminant (Derived_Base);
16744 while Present (D) loop
16745 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16746 Next_Discriminant (D);
16747 end loop;
16748 end if;
16749
16750 -- Finally, inherit non-discriminant components unless they are not
16751 -- visible because defined or inherited from the full view of the
16752 -- parent. Don't inherit the _parent field of the parent type.
16753
16754 Component := First_Entity (Parent_Base);
16755 while Present (Component) loop
16756
16757 -- Ada 2005 (AI-251): Do not inherit components associated with
16758 -- secondary tags of the parent.
16759
16760 if Ekind (Component) = E_Component
16761 and then Present (Related_Type (Component))
16762 then
16763 null;
16764
16765 elsif Ekind (Component) /= E_Component
16766 or else Chars (Component) = Name_uParent
16767 then
16768 null;
16769
16770 -- If the derived type is within the parent type's declarative
16771 -- region, then the components can still be inherited even though
16772 -- they aren't visible at this point. This can occur for cases
16773 -- such as within public child units where the components must
16774 -- become visible upon entering the child unit's private part.
16775
16776 elsif not Is_Visible_Component (Component)
16777 and then not In_Open_Scopes (Scope (Parent_Base))
16778 then
16779 null;
16780
16781 elsif Ekind_In (Derived_Base, E_Private_Type,
16782 E_Limited_Private_Type)
16783 then
16784 null;
16785
16786 else
16787 Inherit_Component (Component);
16788 end if;
16789
16790 Next_Entity (Component);
16791 end loop;
16792
16793 -- For tagged derived types, inherited discriminants cannot be used in
16794 -- component declarations of the record extension part. To achieve this
16795 -- we mark the inherited discriminants as not visible.
16796
16797 if Is_Tagged and then Inherit_Discr then
16798 D := First_Discriminant (Derived_Base);
16799 while Present (D) loop
16800 Set_Is_Immediately_Visible (D, False);
16801 Next_Discriminant (D);
16802 end loop;
16803 end if;
16804
16805 return Assoc_List;
16806 end Inherit_Components;
16807
16808 -----------------------------
16809 -- Inherit_Predicate_Flags --
16810 -----------------------------
16811
16812 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16813 begin
16814 Set_Has_Predicates (Subt, Has_Predicates (Par));
16815 Set_Has_Static_Predicate_Aspect
16816 (Subt, Has_Static_Predicate_Aspect (Par));
16817 Set_Has_Dynamic_Predicate_Aspect
16818 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16819 end Inherit_Predicate_Flags;
16820
16821 -----------------------
16822 -- Is_Null_Extension --
16823 -----------------------
16824
16825 function Is_Null_Extension (T : Entity_Id) return Boolean is
16826 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16827 Comp_List : Node_Id;
16828 Comp : Node_Id;
16829
16830 begin
16831 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16832 or else not Is_Tagged_Type (T)
16833 or else Nkind (Type_Definition (Type_Decl)) /=
16834 N_Derived_Type_Definition
16835 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16836 then
16837 return False;
16838 end if;
16839
16840 Comp_List :=
16841 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16842
16843 if Present (Discriminant_Specifications (Type_Decl)) then
16844 return False;
16845
16846 elsif Present (Comp_List)
16847 and then Is_Non_Empty_List (Component_Items (Comp_List))
16848 then
16849 Comp := First (Component_Items (Comp_List));
16850
16851 -- Only user-defined components are relevant. The component list
16852 -- may also contain a parent component and internal components
16853 -- corresponding to secondary tags, but these do not determine
16854 -- whether this is a null extension.
16855
16856 while Present (Comp) loop
16857 if Comes_From_Source (Comp) then
16858 return False;
16859 end if;
16860
16861 Next (Comp);
16862 end loop;
16863
16864 return True;
16865 else
16866 return True;
16867 end if;
16868 end Is_Null_Extension;
16869
16870 ------------------------------
16871 -- Is_Valid_Constraint_Kind --
16872 ------------------------------
16873
16874 function Is_Valid_Constraint_Kind
16875 (T_Kind : Type_Kind;
16876 Constraint_Kind : Node_Kind) return Boolean
16877 is
16878 begin
16879 case T_Kind is
16880 when Enumeration_Kind |
16881 Integer_Kind =>
16882 return Constraint_Kind = N_Range_Constraint;
16883
16884 when Decimal_Fixed_Point_Kind =>
16885 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16886 N_Range_Constraint);
16887
16888 when Ordinary_Fixed_Point_Kind =>
16889 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16890 N_Range_Constraint);
16891
16892 when Float_Kind =>
16893 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16894 N_Range_Constraint);
16895
16896 when Access_Kind |
16897 Array_Kind |
16898 E_Record_Type |
16899 E_Record_Subtype |
16900 Class_Wide_Kind |
16901 E_Incomplete_Type |
16902 Private_Kind |
16903 Concurrent_Kind =>
16904 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16905
16906 when others =>
16907 return True; -- Error will be detected later
16908 end case;
16909 end Is_Valid_Constraint_Kind;
16910
16911 --------------------------
16912 -- Is_Visible_Component --
16913 --------------------------
16914
16915 function Is_Visible_Component
16916 (C : Entity_Id;
16917 N : Node_Id := Empty) return Boolean
16918 is
16919 Original_Comp : Entity_Id := Empty;
16920 Original_Scope : Entity_Id;
16921 Type_Scope : Entity_Id;
16922
16923 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16924 -- Check whether parent type of inherited component is declared locally,
16925 -- possibly within a nested package or instance. The current scope is
16926 -- the derived record itself.
16927
16928 -------------------
16929 -- Is_Local_Type --
16930 -------------------
16931
16932 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16933 Scop : Entity_Id;
16934
16935 begin
16936 Scop := Scope (Typ);
16937 while Present (Scop)
16938 and then Scop /= Standard_Standard
16939 loop
16940 if Scop = Scope (Current_Scope) then
16941 return True;
16942 end if;
16943
16944 Scop := Scope (Scop);
16945 end loop;
16946
16947 return False;
16948 end Is_Local_Type;
16949
16950 -- Start of processing for Is_Visible_Component
16951
16952 begin
16953 if Ekind_In (C, E_Component, E_Discriminant) then
16954 Original_Comp := Original_Record_Component (C);
16955 end if;
16956
16957 if No (Original_Comp) then
16958
16959 -- Premature usage, or previous error
16960
16961 return False;
16962
16963 else
16964 Original_Scope := Scope (Original_Comp);
16965 Type_Scope := Scope (Base_Type (Scope (C)));
16966 end if;
16967
16968 -- This test only concerns tagged types
16969
16970 if not Is_Tagged_Type (Original_Scope) then
16971 return True;
16972
16973 -- If it is _Parent or _Tag, there is no visibility issue
16974
16975 elsif not Comes_From_Source (Original_Comp) then
16976 return True;
16977
16978 -- Discriminants are visible unless the (private) type has unknown
16979 -- discriminants. If the discriminant reference is inserted for a
16980 -- discriminant check on a full view it is also visible.
16981
16982 elsif Ekind (Original_Comp) = E_Discriminant
16983 and then
16984 (not Has_Unknown_Discriminants (Original_Scope)
16985 or else (Present (N)
16986 and then Nkind (N) = N_Selected_Component
16987 and then Nkind (Prefix (N)) = N_Type_Conversion
16988 and then not Comes_From_Source (Prefix (N))))
16989 then
16990 return True;
16991
16992 -- In the body of an instantiation, no need to check for the visibility
16993 -- of a component.
16994
16995 elsif In_Instance_Body then
16996 return True;
16997
16998 -- If the component has been declared in an ancestor which is currently
16999 -- a private type, then it is not visible. The same applies if the
17000 -- component's containing type is not in an open scope and the original
17001 -- component's enclosing type is a visible full view of a private type
17002 -- (which can occur in cases where an attempt is being made to reference
17003 -- a component in a sibling package that is inherited from a visible
17004 -- component of a type in an ancestor package; the component in the
17005 -- sibling package should not be visible even though the component it
17006 -- inherited from is visible). This does not apply however in the case
17007 -- where the scope of the type is a private child unit, or when the
17008 -- parent comes from a local package in which the ancestor is currently
17009 -- visible. The latter suppression of visibility is needed for cases
17010 -- that are tested in B730006.
17011
17012 elsif Is_Private_Type (Original_Scope)
17013 or else
17014 (not Is_Private_Descendant (Type_Scope)
17015 and then not In_Open_Scopes (Type_Scope)
17016 and then Has_Private_Declaration (Original_Scope))
17017 then
17018 -- If the type derives from an entity in a formal package, there
17019 -- are no additional visible components.
17020
17021 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17022 N_Formal_Package_Declaration
17023 then
17024 return False;
17025
17026 -- if we are not in the private part of the current package, there
17027 -- are no additional visible components.
17028
17029 elsif Ekind (Scope (Current_Scope)) = E_Package
17030 and then not In_Private_Part (Scope (Current_Scope))
17031 then
17032 return False;
17033 else
17034 return
17035 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17036 and then In_Open_Scopes (Scope (Original_Scope))
17037 and then Is_Local_Type (Type_Scope);
17038 end if;
17039
17040 -- There is another weird way in which a component may be invisible when
17041 -- the private and the full view are not derived from the same ancestor.
17042 -- Here is an example :
17043
17044 -- type A1 is tagged record F1 : integer; end record;
17045 -- type A2 is new A1 with record F2 : integer; end record;
17046 -- type T is new A1 with private;
17047 -- private
17048 -- type T is new A2 with null record;
17049
17050 -- In this case, the full view of T inherits F1 and F2 but the private
17051 -- view inherits only F1
17052
17053 else
17054 declare
17055 Ancestor : Entity_Id := Scope (C);
17056
17057 begin
17058 loop
17059 if Ancestor = Original_Scope then
17060 return True;
17061 elsif Ancestor = Etype (Ancestor) then
17062 return False;
17063 end if;
17064
17065 Ancestor := Etype (Ancestor);
17066 end loop;
17067 end;
17068 end if;
17069 end Is_Visible_Component;
17070
17071 --------------------------
17072 -- Make_Class_Wide_Type --
17073 --------------------------
17074
17075 procedure Make_Class_Wide_Type (T : Entity_Id) is
17076 CW_Type : Entity_Id;
17077 CW_Name : Name_Id;
17078 Next_E : Entity_Id;
17079
17080 begin
17081 if Present (Class_Wide_Type (T)) then
17082
17083 -- The class-wide type is a partially decorated entity created for a
17084 -- unanalyzed tagged type referenced through a limited with clause.
17085 -- When the tagged type is analyzed, its class-wide type needs to be
17086 -- redecorated. Note that we reuse the entity created by Decorate_
17087 -- Tagged_Type in order to preserve all links.
17088
17089 if Materialize_Entity (Class_Wide_Type (T)) then
17090 CW_Type := Class_Wide_Type (T);
17091 Set_Materialize_Entity (CW_Type, False);
17092
17093 -- The class wide type can have been defined by the partial view, in
17094 -- which case everything is already done.
17095
17096 else
17097 return;
17098 end if;
17099
17100 -- Default case, we need to create a new class-wide type
17101
17102 else
17103 CW_Type :=
17104 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17105 end if;
17106
17107 -- Inherit root type characteristics
17108
17109 CW_Name := Chars (CW_Type);
17110 Next_E := Next_Entity (CW_Type);
17111 Copy_Node (T, CW_Type);
17112 Set_Comes_From_Source (CW_Type, False);
17113 Set_Chars (CW_Type, CW_Name);
17114 Set_Parent (CW_Type, Parent (T));
17115 Set_Next_Entity (CW_Type, Next_E);
17116
17117 -- Ensure we have a new freeze node for the class-wide type. The partial
17118 -- view may have freeze action of its own, requiring a proper freeze
17119 -- node, and the same freeze node cannot be shared between the two
17120 -- types.
17121
17122 Set_Has_Delayed_Freeze (CW_Type);
17123 Set_Freeze_Node (CW_Type, Empty);
17124
17125 -- Customize the class-wide type: It has no prim. op., it cannot be
17126 -- abstract and its Etype points back to the specific root type.
17127
17128 Set_Ekind (CW_Type, E_Class_Wide_Type);
17129 Set_Is_Tagged_Type (CW_Type, True);
17130 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17131 Set_Is_Abstract_Type (CW_Type, False);
17132 Set_Is_Constrained (CW_Type, False);
17133 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17134 Set_Default_SSO (CW_Type);
17135
17136 if Ekind (T) = E_Class_Wide_Subtype then
17137 Set_Etype (CW_Type, Etype (Base_Type (T)));
17138 else
17139 Set_Etype (CW_Type, T);
17140 end if;
17141
17142 -- If this is the class_wide type of a constrained subtype, it does
17143 -- not have discriminants.
17144
17145 Set_Has_Discriminants (CW_Type,
17146 Has_Discriminants (T) and then not Is_Constrained (T));
17147
17148 Set_Has_Unknown_Discriminants (CW_Type, True);
17149 Set_Class_Wide_Type (T, CW_Type);
17150 Set_Equivalent_Type (CW_Type, Empty);
17151
17152 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17153
17154 Set_Class_Wide_Type (CW_Type, CW_Type);
17155 end Make_Class_Wide_Type;
17156
17157 ----------------
17158 -- Make_Index --
17159 ----------------
17160
17161 procedure Make_Index
17162 (N : Node_Id;
17163 Related_Nod : Node_Id;
17164 Related_Id : Entity_Id := Empty;
17165 Suffix_Index : Nat := 1;
17166 In_Iter_Schm : Boolean := False)
17167 is
17168 R : Node_Id;
17169 T : Entity_Id;
17170 Def_Id : Entity_Id := Empty;
17171 Found : Boolean := False;
17172
17173 begin
17174 -- For a discrete range used in a constrained array definition and
17175 -- defined by a range, an implicit conversion to the predefined type
17176 -- INTEGER is assumed if each bound is either a numeric literal, a named
17177 -- number, or an attribute, and the type of both bounds (prior to the
17178 -- implicit conversion) is the type universal_integer. Otherwise, both
17179 -- bounds must be of the same discrete type, other than universal
17180 -- integer; this type must be determinable independently of the
17181 -- context, but using the fact that the type must be discrete and that
17182 -- both bounds must have the same type.
17183
17184 -- Character literals also have a universal type in the absence of
17185 -- of additional context, and are resolved to Standard_Character.
17186
17187 if Nkind (N) = N_Range then
17188
17189 -- The index is given by a range constraint. The bounds are known
17190 -- to be of a consistent type.
17191
17192 if not Is_Overloaded (N) then
17193 T := Etype (N);
17194
17195 -- For universal bounds, choose the specific predefined type
17196
17197 if T = Universal_Integer then
17198 T := Standard_Integer;
17199
17200 elsif T = Any_Character then
17201 Ambiguous_Character (Low_Bound (N));
17202
17203 T := Standard_Character;
17204 end if;
17205
17206 -- The node may be overloaded because some user-defined operators
17207 -- are available, but if a universal interpretation exists it is
17208 -- also the selected one.
17209
17210 elsif Universal_Interpretation (N) = Universal_Integer then
17211 T := Standard_Integer;
17212
17213 else
17214 T := Any_Type;
17215
17216 declare
17217 Ind : Interp_Index;
17218 It : Interp;
17219
17220 begin
17221 Get_First_Interp (N, Ind, It);
17222 while Present (It.Typ) loop
17223 if Is_Discrete_Type (It.Typ) then
17224
17225 if Found
17226 and then not Covers (It.Typ, T)
17227 and then not Covers (T, It.Typ)
17228 then
17229 Error_Msg_N ("ambiguous bounds in discrete range", N);
17230 exit;
17231 else
17232 T := It.Typ;
17233 Found := True;
17234 end if;
17235 end if;
17236
17237 Get_Next_Interp (Ind, It);
17238 end loop;
17239
17240 if T = Any_Type then
17241 Error_Msg_N ("discrete type required for range", N);
17242 Set_Etype (N, Any_Type);
17243 return;
17244
17245 elsif T = Universal_Integer then
17246 T := Standard_Integer;
17247 end if;
17248 end;
17249 end if;
17250
17251 if not Is_Discrete_Type (T) then
17252 Error_Msg_N ("discrete type required for range", N);
17253 Set_Etype (N, Any_Type);
17254 return;
17255 end if;
17256
17257 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17258 and then Attribute_Name (Low_Bound (N)) = Name_First
17259 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17260 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17261 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17262 then
17263 -- The type of the index will be the type of the prefix, as long
17264 -- as the upper bound is 'Last of the same type.
17265
17266 Def_Id := Entity (Prefix (Low_Bound (N)));
17267
17268 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17269 or else Attribute_Name (High_Bound (N)) /= Name_Last
17270 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17271 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17272 then
17273 Def_Id := Empty;
17274 end if;
17275 end if;
17276
17277 R := N;
17278 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17279
17280 elsif Nkind (N) = N_Subtype_Indication then
17281
17282 -- The index is given by a subtype with a range constraint
17283
17284 T := Base_Type (Entity (Subtype_Mark (N)));
17285
17286 if not Is_Discrete_Type (T) then
17287 Error_Msg_N ("discrete type required for range", N);
17288 Set_Etype (N, Any_Type);
17289 return;
17290 end if;
17291
17292 R := Range_Expression (Constraint (N));
17293
17294 Resolve (R, T);
17295 Process_Range_Expr_In_Decl
17296 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17297
17298 elsif Nkind (N) = N_Attribute_Reference then
17299
17300 -- Catch beginner's error (use of attribute other than 'Range)
17301
17302 if Attribute_Name (N) /= Name_Range then
17303 Error_Msg_N ("expect attribute ''Range", N);
17304 Set_Etype (N, Any_Type);
17305 return;
17306 end if;
17307
17308 -- If the node denotes the range of a type mark, that is also the
17309 -- resulting type, and we do not need to create an Itype for it.
17310
17311 if Is_Entity_Name (Prefix (N))
17312 and then Comes_From_Source (N)
17313 and then Is_Type (Entity (Prefix (N)))
17314 and then Is_Discrete_Type (Entity (Prefix (N)))
17315 then
17316 Def_Id := Entity (Prefix (N));
17317 end if;
17318
17319 Analyze_And_Resolve (N);
17320 T := Etype (N);
17321 R := N;
17322
17323 -- If none of the above, must be a subtype. We convert this to a
17324 -- range attribute reference because in the case of declared first
17325 -- named subtypes, the types in the range reference can be different
17326 -- from the type of the entity. A range attribute normalizes the
17327 -- reference and obtains the correct types for the bounds.
17328
17329 -- This transformation is in the nature of an expansion, is only
17330 -- done if expansion is active. In particular, it is not done on
17331 -- formal generic types, because we need to retain the name of the
17332 -- original index for instantiation purposes.
17333
17334 else
17335 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17336 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17337 Set_Etype (N, Any_Integer);
17338 return;
17339
17340 else
17341 -- The type mark may be that of an incomplete type. It is only
17342 -- now that we can get the full view, previous analysis does
17343 -- not look specifically for a type mark.
17344
17345 Set_Entity (N, Get_Full_View (Entity (N)));
17346 Set_Etype (N, Entity (N));
17347 Def_Id := Entity (N);
17348
17349 if not Is_Discrete_Type (Def_Id) then
17350 Error_Msg_N ("discrete type required for index", N);
17351 Set_Etype (N, Any_Type);
17352 return;
17353 end if;
17354 end if;
17355
17356 if Expander_Active then
17357 Rewrite (N,
17358 Make_Attribute_Reference (Sloc (N),
17359 Attribute_Name => Name_Range,
17360 Prefix => Relocate_Node (N)));
17361
17362 -- The original was a subtype mark that does not freeze. This
17363 -- means that the rewritten version must not freeze either.
17364
17365 Set_Must_Not_Freeze (N);
17366 Set_Must_Not_Freeze (Prefix (N));
17367 Analyze_And_Resolve (N);
17368 T := Etype (N);
17369 R := N;
17370
17371 -- If expander is inactive, type is legal, nothing else to construct
17372
17373 else
17374 return;
17375 end if;
17376 end if;
17377
17378 if not Is_Discrete_Type (T) then
17379 Error_Msg_N ("discrete type required for range", N);
17380 Set_Etype (N, Any_Type);
17381 return;
17382
17383 elsif T = Any_Type then
17384 Set_Etype (N, Any_Type);
17385 return;
17386 end if;
17387
17388 -- We will now create the appropriate Itype to describe the range, but
17389 -- first a check. If we originally had a subtype, then we just label
17390 -- the range with this subtype. Not only is there no need to construct
17391 -- a new subtype, but it is wrong to do so for two reasons:
17392
17393 -- 1. A legality concern, if we have a subtype, it must not freeze,
17394 -- and the Itype would cause freezing incorrectly
17395
17396 -- 2. An efficiency concern, if we created an Itype, it would not be
17397 -- recognized as the same type for the purposes of eliminating
17398 -- checks in some circumstances.
17399
17400 -- We signal this case by setting the subtype entity in Def_Id
17401
17402 if No (Def_Id) then
17403 Def_Id :=
17404 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17405 Set_Etype (Def_Id, Base_Type (T));
17406
17407 if Is_Signed_Integer_Type (T) then
17408 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17409
17410 elsif Is_Modular_Integer_Type (T) then
17411 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17412
17413 else
17414 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17415 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17416 Set_First_Literal (Def_Id, First_Literal (T));
17417 end if;
17418
17419 Set_Size_Info (Def_Id, (T));
17420 Set_RM_Size (Def_Id, RM_Size (T));
17421 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17422
17423 Set_Scalar_Range (Def_Id, R);
17424 Conditional_Delay (Def_Id, T);
17425
17426 if Nkind (N) = N_Subtype_Indication then
17427 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17428 end if;
17429
17430 -- In the subtype indication case, if the immediate parent of the
17431 -- new subtype is non-static, then the subtype we create is non-
17432 -- static, even if its bounds are static.
17433
17434 if Nkind (N) = N_Subtype_Indication
17435 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17436 then
17437 Set_Is_Non_Static_Subtype (Def_Id);
17438 end if;
17439 end if;
17440
17441 -- Final step is to label the index with this constructed type
17442
17443 Set_Etype (N, Def_Id);
17444 end Make_Index;
17445
17446 ------------------------------
17447 -- Modular_Type_Declaration --
17448 ------------------------------
17449
17450 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17451 Mod_Expr : constant Node_Id := Expression (Def);
17452 M_Val : Uint;
17453
17454 procedure Set_Modular_Size (Bits : Int);
17455 -- Sets RM_Size to Bits, and Esize to normal word size above this
17456
17457 ----------------------
17458 -- Set_Modular_Size --
17459 ----------------------
17460
17461 procedure Set_Modular_Size (Bits : Int) is
17462 begin
17463 Set_RM_Size (T, UI_From_Int (Bits));
17464
17465 if Bits <= 8 then
17466 Init_Esize (T, 8);
17467
17468 elsif Bits <= 16 then
17469 Init_Esize (T, 16);
17470
17471 elsif Bits <= 32 then
17472 Init_Esize (T, 32);
17473
17474 else
17475 Init_Esize (T, System_Max_Binary_Modulus_Power);
17476 end if;
17477
17478 if not Non_Binary_Modulus (T)
17479 and then Esize (T) = RM_Size (T)
17480 then
17481 Set_Is_Known_Valid (T);
17482 end if;
17483 end Set_Modular_Size;
17484
17485 -- Start of processing for Modular_Type_Declaration
17486
17487 begin
17488 -- If the mod expression is (exactly) 2 * literal, where literal is
17489 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17490
17491 if Warn_On_Suspicious_Modulus_Value
17492 and then Nkind (Mod_Expr) = N_Op_Multiply
17493 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17494 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17495 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17496 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17497 then
17498 Error_Msg_N
17499 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17500 end if;
17501
17502 -- Proceed with analysis of mod expression
17503
17504 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17505 Set_Etype (T, T);
17506 Set_Ekind (T, E_Modular_Integer_Type);
17507 Init_Alignment (T);
17508 Set_Is_Constrained (T);
17509
17510 if not Is_OK_Static_Expression (Mod_Expr) then
17511 Flag_Non_Static_Expr
17512 ("non-static expression used for modular type bound!", Mod_Expr);
17513 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17514 else
17515 M_Val := Expr_Value (Mod_Expr);
17516 end if;
17517
17518 if M_Val < 1 then
17519 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17520 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17521 end if;
17522
17523 if M_Val > 2 ** Standard_Long_Integer_Size then
17524 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17525 end if;
17526
17527 Set_Modulus (T, M_Val);
17528
17529 -- Create bounds for the modular type based on the modulus given in
17530 -- the type declaration and then analyze and resolve those bounds.
17531
17532 Set_Scalar_Range (T,
17533 Make_Range (Sloc (Mod_Expr),
17534 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17535 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17536
17537 -- Properly analyze the literals for the range. We do this manually
17538 -- because we can't go calling Resolve, since we are resolving these
17539 -- bounds with the type, and this type is certainly not complete yet.
17540
17541 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17542 Set_Etype (High_Bound (Scalar_Range (T)), T);
17543 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17544 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17545
17546 -- Loop through powers of two to find number of bits required
17547
17548 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17549
17550 -- Binary case
17551
17552 if M_Val = 2 ** Bits then
17553 Set_Modular_Size (Bits);
17554 return;
17555
17556 -- Non-binary case
17557
17558 elsif M_Val < 2 ** Bits then
17559 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17560 Set_Non_Binary_Modulus (T);
17561
17562 if Bits > System_Max_Nonbinary_Modulus_Power then
17563 Error_Msg_Uint_1 :=
17564 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17565 Error_Msg_F
17566 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17567 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17568 return;
17569
17570 else
17571 -- In the non-binary case, set size as per RM 13.3(55)
17572
17573 Set_Modular_Size (Bits);
17574 return;
17575 end if;
17576 end if;
17577
17578 end loop;
17579
17580 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17581 -- so we just signal an error and set the maximum size.
17582
17583 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17584 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17585
17586 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17587 Init_Alignment (T);
17588
17589 end Modular_Type_Declaration;
17590
17591 --------------------------
17592 -- New_Concatenation_Op --
17593 --------------------------
17594
17595 procedure New_Concatenation_Op (Typ : Entity_Id) is
17596 Loc : constant Source_Ptr := Sloc (Typ);
17597 Op : Entity_Id;
17598
17599 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17600 -- Create abbreviated declaration for the formal of a predefined
17601 -- Operator 'Op' of type 'Typ'
17602
17603 --------------------
17604 -- Make_Op_Formal --
17605 --------------------
17606
17607 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17608 Formal : Entity_Id;
17609 begin
17610 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17611 Set_Etype (Formal, Typ);
17612 Set_Mechanism (Formal, Default_Mechanism);
17613 return Formal;
17614 end Make_Op_Formal;
17615
17616 -- Start of processing for New_Concatenation_Op
17617
17618 begin
17619 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17620
17621 Set_Ekind (Op, E_Operator);
17622 Set_Scope (Op, Current_Scope);
17623 Set_Etype (Op, Typ);
17624 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17625 Set_Is_Immediately_Visible (Op);
17626 Set_Is_Intrinsic_Subprogram (Op);
17627 Set_Has_Completion (Op);
17628 Append_Entity (Op, Current_Scope);
17629
17630 Set_Name_Entity_Id (Name_Op_Concat, Op);
17631
17632 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17633 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17634 end New_Concatenation_Op;
17635
17636 -------------------------
17637 -- OK_For_Limited_Init --
17638 -------------------------
17639
17640 -- ???Check all calls of this, and compare the conditions under which it's
17641 -- called.
17642
17643 function OK_For_Limited_Init
17644 (Typ : Entity_Id;
17645 Exp : Node_Id) return Boolean
17646 is
17647 begin
17648 return Is_CPP_Constructor_Call (Exp)
17649 or else (Ada_Version >= Ada_2005
17650 and then not Debug_Flag_Dot_L
17651 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17652 end OK_For_Limited_Init;
17653
17654 -------------------------------
17655 -- OK_For_Limited_Init_In_05 --
17656 -------------------------------
17657
17658 function OK_For_Limited_Init_In_05
17659 (Typ : Entity_Id;
17660 Exp : Node_Id) return Boolean
17661 is
17662 begin
17663 -- An object of a limited interface type can be initialized with any
17664 -- expression of a nonlimited descendant type.
17665
17666 if Is_Class_Wide_Type (Typ)
17667 and then Is_Limited_Interface (Typ)
17668 and then not Is_Limited_Type (Etype (Exp))
17669 then
17670 return True;
17671 end if;
17672
17673 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17674 -- case of limited aggregates (including extension aggregates), and
17675 -- function calls. The function call may have been given in prefixed
17676 -- notation, in which case the original node is an indexed component.
17677 -- If the function is parameterless, the original node was an explicit
17678 -- dereference. The function may also be parameterless, in which case
17679 -- the source node is just an identifier.
17680
17681 case Nkind (Original_Node (Exp)) is
17682 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17683 return True;
17684
17685 when N_Identifier =>
17686 return Present (Entity (Original_Node (Exp)))
17687 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17688
17689 when N_Qualified_Expression =>
17690 return
17691 OK_For_Limited_Init_In_05
17692 (Typ, Expression (Original_Node (Exp)));
17693
17694 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17695 -- with a function call, the expander has rewritten the call into an
17696 -- N_Type_Conversion node to force displacement of the pointer to
17697 -- reference the component containing the secondary dispatch table.
17698 -- Otherwise a type conversion is not a legal context.
17699 -- A return statement for a build-in-place function returning a
17700 -- synchronized type also introduces an unchecked conversion.
17701
17702 when N_Type_Conversion |
17703 N_Unchecked_Type_Conversion =>
17704 return not Comes_From_Source (Exp)
17705 and then
17706 OK_For_Limited_Init_In_05
17707 (Typ, Expression (Original_Node (Exp)));
17708
17709 when N_Indexed_Component |
17710 N_Selected_Component |
17711 N_Explicit_Dereference =>
17712 return Nkind (Exp) = N_Function_Call;
17713
17714 -- A use of 'Input is a function call, hence allowed. Normally the
17715 -- attribute will be changed to a call, but the attribute by itself
17716 -- can occur with -gnatc.
17717
17718 when N_Attribute_Reference =>
17719 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17720
17721 -- For a case expression, all dependent expressions must be legal
17722
17723 when N_Case_Expression =>
17724 declare
17725 Alt : Node_Id;
17726
17727 begin
17728 Alt := First (Alternatives (Original_Node (Exp)));
17729 while Present (Alt) loop
17730 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17731 return False;
17732 end if;
17733
17734 Next (Alt);
17735 end loop;
17736
17737 return True;
17738 end;
17739
17740 -- For an if expression, all dependent expressions must be legal
17741
17742 when N_If_Expression =>
17743 declare
17744 Then_Expr : constant Node_Id :=
17745 Next (First (Expressions (Original_Node (Exp))));
17746 Else_Expr : constant Node_Id := Next (Then_Expr);
17747 begin
17748 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17749 and then
17750 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17751 end;
17752
17753 when others =>
17754 return False;
17755 end case;
17756 end OK_For_Limited_Init_In_05;
17757
17758 -------------------------------------------
17759 -- Ordinary_Fixed_Point_Type_Declaration --
17760 -------------------------------------------
17761
17762 procedure Ordinary_Fixed_Point_Type_Declaration
17763 (T : Entity_Id;
17764 Def : Node_Id)
17765 is
17766 Loc : constant Source_Ptr := Sloc (Def);
17767 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17768 RRS : constant Node_Id := Real_Range_Specification (Def);
17769 Implicit_Base : Entity_Id;
17770 Delta_Val : Ureal;
17771 Small_Val : Ureal;
17772 Low_Val : Ureal;
17773 High_Val : Ureal;
17774
17775 begin
17776 Check_Restriction (No_Fixed_Point, Def);
17777
17778 -- Create implicit base type
17779
17780 Implicit_Base :=
17781 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17782 Set_Etype (Implicit_Base, Implicit_Base);
17783
17784 -- Analyze and process delta expression
17785
17786 Analyze_And_Resolve (Delta_Expr, Any_Real);
17787
17788 Check_Delta_Expression (Delta_Expr);
17789 Delta_Val := Expr_Value_R (Delta_Expr);
17790
17791 Set_Delta_Value (Implicit_Base, Delta_Val);
17792
17793 -- Compute default small from given delta, which is the largest power
17794 -- of two that does not exceed the given delta value.
17795
17796 declare
17797 Tmp : Ureal;
17798 Scale : Int;
17799
17800 begin
17801 Tmp := Ureal_1;
17802 Scale := 0;
17803
17804 if Delta_Val < Ureal_1 then
17805 while Delta_Val < Tmp loop
17806 Tmp := Tmp / Ureal_2;
17807 Scale := Scale + 1;
17808 end loop;
17809
17810 else
17811 loop
17812 Tmp := Tmp * Ureal_2;
17813 exit when Tmp > Delta_Val;
17814 Scale := Scale - 1;
17815 end loop;
17816 end if;
17817
17818 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17819 end;
17820
17821 Set_Small_Value (Implicit_Base, Small_Val);
17822
17823 -- If no range was given, set a dummy range
17824
17825 if RRS <= Empty_Or_Error then
17826 Low_Val := -Small_Val;
17827 High_Val := Small_Val;
17828
17829 -- Otherwise analyze and process given range
17830
17831 else
17832 declare
17833 Low : constant Node_Id := Low_Bound (RRS);
17834 High : constant Node_Id := High_Bound (RRS);
17835
17836 begin
17837 Analyze_And_Resolve (Low, Any_Real);
17838 Analyze_And_Resolve (High, Any_Real);
17839 Check_Real_Bound (Low);
17840 Check_Real_Bound (High);
17841
17842 -- Obtain and set the range
17843
17844 Low_Val := Expr_Value_R (Low);
17845 High_Val := Expr_Value_R (High);
17846
17847 if Low_Val > High_Val then
17848 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17849 end if;
17850 end;
17851 end if;
17852
17853 -- The range for both the implicit base and the declared first subtype
17854 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17855 -- set a temporary range in place. Note that the bounds of the base
17856 -- type will be widened to be symmetrical and to fill the available
17857 -- bits when the type is frozen.
17858
17859 -- We could do this with all discrete types, and probably should, but
17860 -- we absolutely have to do it for fixed-point, since the end-points
17861 -- of the range and the size are determined by the small value, which
17862 -- could be reset before the freeze point.
17863
17864 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17865 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17866
17867 -- Complete definition of first subtype
17868
17869 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17870 Set_Etype (T, Implicit_Base);
17871 Init_Size_Align (T);
17872 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17873 Set_Small_Value (T, Small_Val);
17874 Set_Delta_Value (T, Delta_Val);
17875 Set_Is_Constrained (T);
17876
17877 end Ordinary_Fixed_Point_Type_Declaration;
17878
17879 ----------------------------------------
17880 -- Prepare_Private_Subtype_Completion --
17881 ----------------------------------------
17882
17883 procedure Prepare_Private_Subtype_Completion
17884 (Id : Entity_Id;
17885 Related_Nod : Node_Id)
17886 is
17887 Id_B : constant Entity_Id := Base_Type (Id);
17888 Full_B : Entity_Id := Full_View (Id_B);
17889 Full : Entity_Id;
17890
17891 begin
17892 if Present (Full_B) then
17893
17894 -- Get to the underlying full view if necessary
17895
17896 if Is_Private_Type (Full_B)
17897 and then Present (Underlying_Full_View (Full_B))
17898 then
17899 Full_B := Underlying_Full_View (Full_B);
17900 end if;
17901
17902 -- The Base_Type is already completed, we can complete the subtype
17903 -- now. We have to create a new entity with the same name, Thus we
17904 -- can't use Create_Itype.
17905
17906 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17907 Set_Is_Itype (Full);
17908 Set_Associated_Node_For_Itype (Full, Related_Nod);
17909 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17910 end if;
17911
17912 -- The parent subtype may be private, but the base might not, in some
17913 -- nested instances. In that case, the subtype does not need to be
17914 -- exchanged. It would still be nice to make private subtypes and their
17915 -- bases consistent at all times ???
17916
17917 if Is_Private_Type (Id_B) then
17918 Append_Elmt (Id, Private_Dependents (Id_B));
17919 end if;
17920 end Prepare_Private_Subtype_Completion;
17921
17922 ---------------------------
17923 -- Process_Discriminants --
17924 ---------------------------
17925
17926 procedure Process_Discriminants
17927 (N : Node_Id;
17928 Prev : Entity_Id := Empty)
17929 is
17930 Elist : constant Elist_Id := New_Elmt_List;
17931 Id : Node_Id;
17932 Discr : Node_Id;
17933 Discr_Number : Uint;
17934 Discr_Type : Entity_Id;
17935 Default_Present : Boolean := False;
17936 Default_Not_Present : Boolean := False;
17937
17938 begin
17939 -- A composite type other than an array type can have discriminants.
17940 -- On entry, the current scope is the composite type.
17941
17942 -- The discriminants are initially entered into the scope of the type
17943 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17944 -- use, as explained at the end of this procedure.
17945
17946 Discr := First (Discriminant_Specifications (N));
17947 while Present (Discr) loop
17948 Enter_Name (Defining_Identifier (Discr));
17949
17950 -- For navigation purposes we add a reference to the discriminant
17951 -- in the entity for the type. If the current declaration is a
17952 -- completion, place references on the partial view. Otherwise the
17953 -- type is the current scope.
17954
17955 if Present (Prev) then
17956
17957 -- The references go on the partial view, if present. If the
17958 -- partial view has discriminants, the references have been
17959 -- generated already.
17960
17961 if not Has_Discriminants (Prev) then
17962 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17963 end if;
17964 else
17965 Generate_Reference
17966 (Current_Scope, Defining_Identifier (Discr), 'd');
17967 end if;
17968
17969 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17970 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17971
17972 -- Ada 2005 (AI-254)
17973
17974 if Present (Access_To_Subprogram_Definition
17975 (Discriminant_Type (Discr)))
17976 and then Protected_Present (Access_To_Subprogram_Definition
17977 (Discriminant_Type (Discr)))
17978 then
17979 Discr_Type :=
17980 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17981 end if;
17982
17983 else
17984 Find_Type (Discriminant_Type (Discr));
17985 Discr_Type := Etype (Discriminant_Type (Discr));
17986
17987 if Error_Posted (Discriminant_Type (Discr)) then
17988 Discr_Type := Any_Type;
17989 end if;
17990 end if;
17991
17992 if Is_Access_Type (Discr_Type) then
17993
17994 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17995 -- record types
17996
17997 if Ada_Version < Ada_2005 then
17998 Check_Access_Discriminant_Requires_Limited
17999 (Discr, Discriminant_Type (Discr));
18000 end if;
18001
18002 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18003 Error_Msg_N
18004 ("(Ada 83) access discriminant not allowed", Discr);
18005 end if;
18006
18007 elsif not Is_Discrete_Type (Discr_Type) then
18008 Error_Msg_N ("discriminants must have a discrete or access type",
18009 Discriminant_Type (Discr));
18010 end if;
18011
18012 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18013
18014 -- If a discriminant specification includes the assignment compound
18015 -- delimiter followed by an expression, the expression is the default
18016 -- expression of the discriminant; the default expression must be of
18017 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18018 -- a default expression, we do the special preanalysis, since this
18019 -- expression does not freeze (see "Handling of Default and Per-
18020 -- Object Expressions" in spec of package Sem).
18021
18022 if Present (Expression (Discr)) then
18023 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18024
18025 -- Legaity checks
18026
18027 if Nkind (N) = N_Formal_Type_Declaration then
18028 Error_Msg_N
18029 ("discriminant defaults not allowed for formal type",
18030 Expression (Discr));
18031
18032 -- Flag an error for a tagged type with defaulted discriminants,
18033 -- excluding limited tagged types when compiling for Ada 2012
18034 -- (see AI05-0214).
18035
18036 elsif Is_Tagged_Type (Current_Scope)
18037 and then (not Is_Limited_Type (Current_Scope)
18038 or else Ada_Version < Ada_2012)
18039 and then Comes_From_Source (N)
18040 then
18041 -- Note: see similar test in Check_Or_Process_Discriminants, to
18042 -- handle the (illegal) case of the completion of an untagged
18043 -- view with discriminants with defaults by a tagged full view.
18044 -- We skip the check if Discr does not come from source, to
18045 -- account for the case of an untagged derived type providing
18046 -- defaults for a renamed discriminant from a private untagged
18047 -- ancestor with a tagged full view (ACATS B460006).
18048
18049 if Ada_Version >= Ada_2012 then
18050 Error_Msg_N
18051 ("discriminants of nonlimited tagged type cannot have"
18052 & " defaults",
18053 Expression (Discr));
18054 else
18055 Error_Msg_N
18056 ("discriminants of tagged type cannot have defaults",
18057 Expression (Discr));
18058 end if;
18059
18060 else
18061 Default_Present := True;
18062 Append_Elmt (Expression (Discr), Elist);
18063
18064 -- Tag the defining identifiers for the discriminants with
18065 -- their corresponding default expressions from the tree.
18066
18067 Set_Discriminant_Default_Value
18068 (Defining_Identifier (Discr), Expression (Discr));
18069 end if;
18070
18071 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18072 -- gets set unless we can be sure that no range check is required.
18073
18074 if (not Expander_Active and not GNATprove_Mode)
18075 and then not
18076 Is_In_Range
18077 (Expression (Discr), Discr_Type, Assume_Valid => True)
18078 then
18079 Set_Do_Range_Check (Expression (Discr));
18080 end if;
18081
18082 -- No default discriminant value given
18083
18084 else
18085 Default_Not_Present := True;
18086 end if;
18087
18088 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18089 -- Discr_Type but with the null-exclusion attribute
18090
18091 if Ada_Version >= Ada_2005 then
18092
18093 -- Ada 2005 (AI-231): Static checks
18094
18095 if Can_Never_Be_Null (Discr_Type) then
18096 Null_Exclusion_Static_Checks (Discr);
18097
18098 elsif Is_Access_Type (Discr_Type)
18099 and then Null_Exclusion_Present (Discr)
18100
18101 -- No need to check itypes because in their case this check
18102 -- was done at their point of creation
18103
18104 and then not Is_Itype (Discr_Type)
18105 then
18106 if Can_Never_Be_Null (Discr_Type) then
18107 Error_Msg_NE
18108 ("`NOT NULL` not allowed (& already excludes null)",
18109 Discr,
18110 Discr_Type);
18111 end if;
18112
18113 Set_Etype (Defining_Identifier (Discr),
18114 Create_Null_Excluding_Itype
18115 (T => Discr_Type,
18116 Related_Nod => Discr));
18117
18118 -- Check for improper null exclusion if the type is otherwise
18119 -- legal for a discriminant.
18120
18121 elsif Null_Exclusion_Present (Discr)
18122 and then Is_Discrete_Type (Discr_Type)
18123 then
18124 Error_Msg_N
18125 ("null exclusion can only apply to an access type", Discr);
18126 end if;
18127
18128 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18129 -- can't have defaults. Synchronized types, or types that are
18130 -- explicitly limited are fine, but special tests apply to derived
18131 -- types in generics: in a generic body we have to assume the
18132 -- worst, and therefore defaults are not allowed if the parent is
18133 -- a generic formal private type (see ACATS B370001).
18134
18135 if Is_Access_Type (Discr_Type) and then Default_Present then
18136 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18137 or else Is_Limited_Record (Current_Scope)
18138 or else Is_Concurrent_Type (Current_Scope)
18139 or else Is_Concurrent_Record_Type (Current_Scope)
18140 or else Ekind (Current_Scope) = E_Limited_Private_Type
18141 then
18142 if not Is_Derived_Type (Current_Scope)
18143 or else not Is_Generic_Type (Etype (Current_Scope))
18144 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18145 or else Limited_Present
18146 (Type_Definition (Parent (Current_Scope)))
18147 then
18148 null;
18149
18150 else
18151 Error_Msg_N ("access discriminants of nonlimited types",
18152 Expression (Discr));
18153 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18154 end if;
18155
18156 elsif Present (Expression (Discr)) then
18157 Error_Msg_N
18158 ("(Ada 2005) access discriminants of nonlimited types",
18159 Expression (Discr));
18160 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18161 end if;
18162 end if;
18163 end if;
18164
18165 -- A discriminant cannot be effectively volatile. This check is only
18166 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18167 -- rule (SPARK RM 7.1.3(6)).
18168
18169 if SPARK_Mode = On
18170 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18171 then
18172 Error_Msg_N ("discriminant cannot be volatile", Discr);
18173 end if;
18174
18175 Next (Discr);
18176 end loop;
18177
18178 -- An element list consisting of the default expressions of the
18179 -- discriminants is constructed in the above loop and used to set
18180 -- the Discriminant_Constraint attribute for the type. If an object
18181 -- is declared of this (record or task) type without any explicit
18182 -- discriminant constraint given, this element list will form the
18183 -- actual parameters for the corresponding initialization procedure
18184 -- for the type.
18185
18186 Set_Discriminant_Constraint (Current_Scope, Elist);
18187 Set_Stored_Constraint (Current_Scope, No_Elist);
18188
18189 -- Default expressions must be provided either for all or for none
18190 -- of the discriminants of a discriminant part. (RM 3.7.1)
18191
18192 if Default_Present and then Default_Not_Present then
18193 Error_Msg_N
18194 ("incomplete specification of defaults for discriminants", N);
18195 end if;
18196
18197 -- The use of the name of a discriminant is not allowed in default
18198 -- expressions of a discriminant part if the specification of the
18199 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18200
18201 -- To detect this, the discriminant names are entered initially with an
18202 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18203 -- attempt to use a void entity (for example in an expression that is
18204 -- type-checked) produces the error message: premature usage. Now after
18205 -- completing the semantic analysis of the discriminant part, we can set
18206 -- the Ekind of all the discriminants appropriately.
18207
18208 Discr := First (Discriminant_Specifications (N));
18209 Discr_Number := Uint_1;
18210 while Present (Discr) loop
18211 Id := Defining_Identifier (Discr);
18212 Set_Ekind (Id, E_Discriminant);
18213 Init_Component_Location (Id);
18214 Init_Esize (Id);
18215 Set_Discriminant_Number (Id, Discr_Number);
18216
18217 -- Make sure this is always set, even in illegal programs
18218
18219 Set_Corresponding_Discriminant (Id, Empty);
18220
18221 -- Initialize the Original_Record_Component to the entity itself.
18222 -- Inherit_Components will propagate the right value to
18223 -- discriminants in derived record types.
18224
18225 Set_Original_Record_Component (Id, Id);
18226
18227 -- Create the discriminal for the discriminant
18228
18229 Build_Discriminal (Id);
18230
18231 Next (Discr);
18232 Discr_Number := Discr_Number + 1;
18233 end loop;
18234
18235 Set_Has_Discriminants (Current_Scope);
18236 end Process_Discriminants;
18237
18238 -----------------------
18239 -- Process_Full_View --
18240 -----------------------
18241
18242 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18243 Priv_Parent : Entity_Id;
18244 Full_Parent : Entity_Id;
18245 Full_Indic : Node_Id;
18246
18247 procedure Collect_Implemented_Interfaces
18248 (Typ : Entity_Id;
18249 Ifaces : Elist_Id);
18250 -- Ada 2005: Gather all the interfaces that Typ directly or
18251 -- inherently implements. Duplicate entries are not added to
18252 -- the list Ifaces.
18253
18254 ------------------------------------
18255 -- Collect_Implemented_Interfaces --
18256 ------------------------------------
18257
18258 procedure Collect_Implemented_Interfaces
18259 (Typ : Entity_Id;
18260 Ifaces : Elist_Id)
18261 is
18262 Iface : Entity_Id;
18263 Iface_Elmt : Elmt_Id;
18264
18265 begin
18266 -- Abstract interfaces are only associated with tagged record types
18267
18268 if not Is_Tagged_Type (Typ)
18269 or else not Is_Record_Type (Typ)
18270 then
18271 return;
18272 end if;
18273
18274 -- Recursively climb to the ancestors
18275
18276 if Etype (Typ) /= Typ
18277
18278 -- Protect the frontend against wrong cyclic declarations like:
18279
18280 -- type B is new A with private;
18281 -- type C is new A with private;
18282 -- private
18283 -- type B is new C with null record;
18284 -- type C is new B with null record;
18285
18286 and then Etype (Typ) /= Priv_T
18287 and then Etype (Typ) /= Full_T
18288 then
18289 -- Keep separate the management of private type declarations
18290
18291 if Ekind (Typ) = E_Record_Type_With_Private then
18292
18293 -- Handle the following illegal usage:
18294 -- type Private_Type is tagged private;
18295 -- private
18296 -- type Private_Type is new Type_Implementing_Iface;
18297
18298 if Present (Full_View (Typ))
18299 and then Etype (Typ) /= Full_View (Typ)
18300 then
18301 if Is_Interface (Etype (Typ)) then
18302 Append_Unique_Elmt (Etype (Typ), Ifaces);
18303 end if;
18304
18305 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18306 end if;
18307
18308 -- Non-private types
18309
18310 else
18311 if Is_Interface (Etype (Typ)) then
18312 Append_Unique_Elmt (Etype (Typ), Ifaces);
18313 end if;
18314
18315 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18316 end if;
18317 end if;
18318
18319 -- Handle entities in the list of abstract interfaces
18320
18321 if Present (Interfaces (Typ)) then
18322 Iface_Elmt := First_Elmt (Interfaces (Typ));
18323 while Present (Iface_Elmt) loop
18324 Iface := Node (Iface_Elmt);
18325
18326 pragma Assert (Is_Interface (Iface));
18327
18328 if not Contain_Interface (Iface, Ifaces) then
18329 Append_Elmt (Iface, Ifaces);
18330 Collect_Implemented_Interfaces (Iface, Ifaces);
18331 end if;
18332
18333 Next_Elmt (Iface_Elmt);
18334 end loop;
18335 end if;
18336 end Collect_Implemented_Interfaces;
18337
18338 -- Start of processing for Process_Full_View
18339
18340 begin
18341 -- First some sanity checks that must be done after semantic
18342 -- decoration of the full view and thus cannot be placed with other
18343 -- similar checks in Find_Type_Name
18344
18345 if not Is_Limited_Type (Priv_T)
18346 and then (Is_Limited_Type (Full_T)
18347 or else Is_Limited_Composite (Full_T))
18348 then
18349 if In_Instance then
18350 null;
18351 else
18352 Error_Msg_N
18353 ("completion of nonlimited type cannot be limited", Full_T);
18354 Explain_Limited_Type (Full_T, Full_T);
18355 end if;
18356
18357 elsif Is_Abstract_Type (Full_T)
18358 and then not Is_Abstract_Type (Priv_T)
18359 then
18360 Error_Msg_N
18361 ("completion of nonabstract type cannot be abstract", Full_T);
18362
18363 elsif Is_Tagged_Type (Priv_T)
18364 and then Is_Limited_Type (Priv_T)
18365 and then not Is_Limited_Type (Full_T)
18366 then
18367 -- If pragma CPP_Class was applied to the private declaration
18368 -- propagate the limitedness to the full-view
18369
18370 if Is_CPP_Class (Priv_T) then
18371 Set_Is_Limited_Record (Full_T);
18372
18373 -- GNAT allow its own definition of Limited_Controlled to disobey
18374 -- this rule in order in ease the implementation. This test is safe
18375 -- because Root_Controlled is defined in a child of System that
18376 -- normal programs are not supposed to use.
18377
18378 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18379 Set_Is_Limited_Composite (Full_T);
18380 else
18381 Error_Msg_N
18382 ("completion of limited tagged type must be limited", Full_T);
18383 end if;
18384
18385 elsif Is_Generic_Type (Priv_T) then
18386 Error_Msg_N ("generic type cannot have a completion", Full_T);
18387 end if;
18388
18389 -- Check that ancestor interfaces of private and full views are
18390 -- consistent. We omit this check for synchronized types because
18391 -- they are performed on the corresponding record type when frozen.
18392
18393 if Ada_Version >= Ada_2005
18394 and then Is_Tagged_Type (Priv_T)
18395 and then Is_Tagged_Type (Full_T)
18396 and then not Is_Concurrent_Type (Full_T)
18397 then
18398 declare
18399 Iface : Entity_Id;
18400 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18401 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18402
18403 begin
18404 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18405 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18406
18407 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18408 -- an interface type if and only if the full type is descendant
18409 -- of the interface type (AARM 7.3 (7.3/2)).
18410
18411 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18412
18413 if Present (Iface) then
18414 Error_Msg_NE
18415 ("interface in partial view& not implemented by full type "
18416 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18417 end if;
18418
18419 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18420
18421 if Present (Iface) then
18422 Error_Msg_NE
18423 ("interface & not implemented by partial view "
18424 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18425 end if;
18426 end;
18427 end if;
18428
18429 if Is_Tagged_Type (Priv_T)
18430 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18431 and then Is_Derived_Type (Full_T)
18432 then
18433 Priv_Parent := Etype (Priv_T);
18434
18435 -- The full view of a private extension may have been transformed
18436 -- into an unconstrained derived type declaration and a subtype
18437 -- declaration (see build_derived_record_type for details).
18438
18439 if Nkind (N) = N_Subtype_Declaration then
18440 Full_Indic := Subtype_Indication (N);
18441 Full_Parent := Etype (Base_Type (Full_T));
18442 else
18443 Full_Indic := Subtype_Indication (Type_Definition (N));
18444 Full_Parent := Etype (Full_T);
18445 end if;
18446
18447 -- Check that the parent type of the full type is a descendant of
18448 -- the ancestor subtype given in the private extension. If either
18449 -- entity has an Etype equal to Any_Type then we had some previous
18450 -- error situation [7.3(8)].
18451
18452 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18453 return;
18454
18455 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18456 -- any order. Therefore we don't have to check that its parent must
18457 -- be a descendant of the parent of the private type declaration.
18458
18459 elsif Is_Interface (Priv_Parent)
18460 and then Is_Interface (Full_Parent)
18461 then
18462 null;
18463
18464 -- Ada 2005 (AI-251): If the parent of the private type declaration
18465 -- is an interface there is no need to check that it is an ancestor
18466 -- of the associated full type declaration. The required tests for
18467 -- this case are performed by Build_Derived_Record_Type.
18468
18469 elsif not Is_Interface (Base_Type (Priv_Parent))
18470 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18471 then
18472 Error_Msg_N
18473 ("parent of full type must descend from parent"
18474 & " of private extension", Full_Indic);
18475
18476 -- First check a formal restriction, and then proceed with checking
18477 -- Ada rules. Since the formal restriction is not a serious error, we
18478 -- don't prevent further error detection for this check, hence the
18479 -- ELSE.
18480
18481 else
18482
18483 -- In formal mode, when completing a private extension the type
18484 -- named in the private part must be exactly the same as that
18485 -- named in the visible part.
18486
18487 if Priv_Parent /= Full_Parent then
18488 Error_Msg_Name_1 := Chars (Priv_Parent);
18489 Check_SPARK_Restriction ("% expected", Full_Indic);
18490 end if;
18491
18492 -- Check the rules of 7.3(10): if the private extension inherits
18493 -- known discriminants, then the full type must also inherit those
18494 -- discriminants from the same (ancestor) type, and the parent
18495 -- subtype of the full type must be constrained if and only if
18496 -- the ancestor subtype of the private extension is constrained.
18497
18498 if No (Discriminant_Specifications (Parent (Priv_T)))
18499 and then not Has_Unknown_Discriminants (Priv_T)
18500 and then Has_Discriminants (Base_Type (Priv_Parent))
18501 then
18502 declare
18503 Priv_Indic : constant Node_Id :=
18504 Subtype_Indication (Parent (Priv_T));
18505
18506 Priv_Constr : constant Boolean :=
18507 Is_Constrained (Priv_Parent)
18508 or else
18509 Nkind (Priv_Indic) = N_Subtype_Indication
18510 or else
18511 Is_Constrained (Entity (Priv_Indic));
18512
18513 Full_Constr : constant Boolean :=
18514 Is_Constrained (Full_Parent)
18515 or else
18516 Nkind (Full_Indic) = N_Subtype_Indication
18517 or else
18518 Is_Constrained (Entity (Full_Indic));
18519
18520 Priv_Discr : Entity_Id;
18521 Full_Discr : Entity_Id;
18522
18523 begin
18524 Priv_Discr := First_Discriminant (Priv_Parent);
18525 Full_Discr := First_Discriminant (Full_Parent);
18526 while Present (Priv_Discr) and then Present (Full_Discr) loop
18527 if Original_Record_Component (Priv_Discr) =
18528 Original_Record_Component (Full_Discr)
18529 or else
18530 Corresponding_Discriminant (Priv_Discr) =
18531 Corresponding_Discriminant (Full_Discr)
18532 then
18533 null;
18534 else
18535 exit;
18536 end if;
18537
18538 Next_Discriminant (Priv_Discr);
18539 Next_Discriminant (Full_Discr);
18540 end loop;
18541
18542 if Present (Priv_Discr) or else Present (Full_Discr) then
18543 Error_Msg_N
18544 ("full view must inherit discriminants of the parent"
18545 & " type used in the private extension", Full_Indic);
18546
18547 elsif Priv_Constr and then not Full_Constr then
18548 Error_Msg_N
18549 ("parent subtype of full type must be constrained",
18550 Full_Indic);
18551
18552 elsif Full_Constr and then not Priv_Constr then
18553 Error_Msg_N
18554 ("parent subtype of full type must be unconstrained",
18555 Full_Indic);
18556 end if;
18557 end;
18558
18559 -- Check the rules of 7.3(12): if a partial view has neither
18560 -- known or unknown discriminants, then the full type
18561 -- declaration shall define a definite subtype.
18562
18563 elsif not Has_Unknown_Discriminants (Priv_T)
18564 and then not Has_Discriminants (Priv_T)
18565 and then not Is_Constrained (Full_T)
18566 then
18567 Error_Msg_N
18568 ("full view must define a constrained type if partial view"
18569 & " has no discriminants", Full_T);
18570 end if;
18571
18572 -- ??????? Do we implement the following properly ?????
18573 -- If the ancestor subtype of a private extension has constrained
18574 -- discriminants, then the parent subtype of the full view shall
18575 -- impose a statically matching constraint on those discriminants
18576 -- [7.3(13)].
18577 end if;
18578
18579 else
18580 -- For untagged types, verify that a type without discriminants is
18581 -- not completed with an unconstrained type. A separate error message
18582 -- is produced if the full type has defaulted discriminants.
18583
18584 if not Is_Indefinite_Subtype (Priv_T)
18585 and then Is_Indefinite_Subtype (Full_T)
18586 then
18587 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18588 Error_Msg_NE
18589 ("full view of& not compatible with declaration#",
18590 Full_T, Priv_T);
18591
18592 if not Is_Tagged_Type (Full_T) then
18593 Error_Msg_N
18594 ("\one is constrained, the other unconstrained", Full_T);
18595 end if;
18596 end if;
18597 end if;
18598
18599 -- AI-419: verify that the use of "limited" is consistent
18600
18601 declare
18602 Orig_Decl : constant Node_Id := Original_Node (N);
18603
18604 begin
18605 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18606 and then not Limited_Present (Parent (Priv_T))
18607 and then not Synchronized_Present (Parent (Priv_T))
18608 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18609 and then Nkind
18610 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18611 and then Limited_Present (Type_Definition (Orig_Decl))
18612 then
18613 Error_Msg_N
18614 ("full view of non-limited extension cannot be limited", N);
18615 end if;
18616 end;
18617
18618 -- Ada 2005 (AI-443): A synchronized private extension must be
18619 -- completed by a task or protected type.
18620
18621 if Ada_Version >= Ada_2005
18622 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18623 and then Synchronized_Present (Parent (Priv_T))
18624 and then not Is_Concurrent_Type (Full_T)
18625 then
18626 Error_Msg_N ("full view of synchronized extension must " &
18627 "be synchronized type", N);
18628 end if;
18629
18630 -- Ada 2005 AI-363: if the full view has discriminants with
18631 -- defaults, it is illegal to declare constrained access subtypes
18632 -- whose designated type is the current type. This allows objects
18633 -- of the type that are declared in the heap to be unconstrained.
18634
18635 if not Has_Unknown_Discriminants (Priv_T)
18636 and then not Has_Discriminants (Priv_T)
18637 and then Has_Discriminants (Full_T)
18638 and then
18639 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18640 then
18641 Set_Has_Constrained_Partial_View (Full_T);
18642 Set_Has_Constrained_Partial_View (Priv_T);
18643 end if;
18644
18645 -- Create a full declaration for all its subtypes recorded in
18646 -- Private_Dependents and swap them similarly to the base type. These
18647 -- are subtypes that have been define before the full declaration of
18648 -- the private type. We also swap the entry in Private_Dependents list
18649 -- so we can properly restore the private view on exit from the scope.
18650
18651 declare
18652 Priv_Elmt : Elmt_Id;
18653 Priv_Scop : Entity_Id;
18654 Priv : Entity_Id;
18655 Full : Entity_Id;
18656
18657 begin
18658 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18659 while Present (Priv_Elmt) loop
18660 Priv := Node (Priv_Elmt);
18661 Priv_Scop := Scope (Priv);
18662
18663 if Ekind_In (Priv, E_Private_Subtype,
18664 E_Limited_Private_Subtype,
18665 E_Record_Subtype_With_Private)
18666 then
18667 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18668 Set_Is_Itype (Full);
18669 Set_Parent (Full, Parent (Priv));
18670 Set_Associated_Node_For_Itype (Full, N);
18671
18672 -- Now we need to complete the private subtype, but since the
18673 -- base type has already been swapped, we must also swap the
18674 -- subtypes (and thus, reverse the arguments in the call to
18675 -- Complete_Private_Subtype). Also note that we may need to
18676 -- re-establish the scope of the private subtype.
18677
18678 Copy_And_Swap (Priv, Full);
18679
18680 if not In_Open_Scopes (Priv_Scop) then
18681 Push_Scope (Priv_Scop);
18682
18683 else
18684 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18685
18686 Priv_Scop := Empty;
18687 end if;
18688
18689 Complete_Private_Subtype (Full, Priv, Full_T, N);
18690
18691 if Present (Priv_Scop) then
18692 Pop_Scope;
18693 end if;
18694
18695 Replace_Elmt (Priv_Elmt, Full);
18696 end if;
18697
18698 Next_Elmt (Priv_Elmt);
18699 end loop;
18700 end;
18701
18702 -- If the private view was tagged, copy the new primitive operations
18703 -- from the private view to the full view.
18704
18705 if Is_Tagged_Type (Full_T) then
18706 declare
18707 Disp_Typ : Entity_Id;
18708 Full_List : Elist_Id;
18709 Prim : Entity_Id;
18710 Prim_Elmt : Elmt_Id;
18711 Priv_List : Elist_Id;
18712
18713 function Contains
18714 (E : Entity_Id;
18715 L : Elist_Id) return Boolean;
18716 -- Determine whether list L contains element E
18717
18718 --------------
18719 -- Contains --
18720 --------------
18721
18722 function Contains
18723 (E : Entity_Id;
18724 L : Elist_Id) return Boolean
18725 is
18726 List_Elmt : Elmt_Id;
18727
18728 begin
18729 List_Elmt := First_Elmt (L);
18730 while Present (List_Elmt) loop
18731 if Node (List_Elmt) = E then
18732 return True;
18733 end if;
18734
18735 Next_Elmt (List_Elmt);
18736 end loop;
18737
18738 return False;
18739 end Contains;
18740
18741 -- Start of processing
18742
18743 begin
18744 if Is_Tagged_Type (Priv_T) then
18745 Priv_List := Primitive_Operations (Priv_T);
18746 Prim_Elmt := First_Elmt (Priv_List);
18747
18748 -- In the case of a concurrent type completing a private tagged
18749 -- type, primitives may have been declared in between the two
18750 -- views. These subprograms need to be wrapped the same way
18751 -- entries and protected procedures are handled because they
18752 -- cannot be directly shared by the two views.
18753
18754 if Is_Concurrent_Type (Full_T) then
18755 declare
18756 Conc_Typ : constant Entity_Id :=
18757 Corresponding_Record_Type (Full_T);
18758 Curr_Nod : Node_Id := Parent (Conc_Typ);
18759 Wrap_Spec : Node_Id;
18760
18761 begin
18762 while Present (Prim_Elmt) loop
18763 Prim := Node (Prim_Elmt);
18764
18765 if Comes_From_Source (Prim)
18766 and then not Is_Abstract_Subprogram (Prim)
18767 then
18768 Wrap_Spec :=
18769 Make_Subprogram_Declaration (Sloc (Prim),
18770 Specification =>
18771 Build_Wrapper_Spec
18772 (Subp_Id => Prim,
18773 Obj_Typ => Conc_Typ,
18774 Formals =>
18775 Parameter_Specifications (
18776 Parent (Prim))));
18777
18778 Insert_After (Curr_Nod, Wrap_Spec);
18779 Curr_Nod := Wrap_Spec;
18780
18781 Analyze (Wrap_Spec);
18782 end if;
18783
18784 Next_Elmt (Prim_Elmt);
18785 end loop;
18786
18787 return;
18788 end;
18789
18790 -- For non-concurrent types, transfer explicit primitives, but
18791 -- omit those inherited from the parent of the private view
18792 -- since they will be re-inherited later on.
18793
18794 else
18795 Full_List := Primitive_Operations (Full_T);
18796
18797 while Present (Prim_Elmt) loop
18798 Prim := Node (Prim_Elmt);
18799
18800 if Comes_From_Source (Prim)
18801 and then not Contains (Prim, Full_List)
18802 then
18803 Append_Elmt (Prim, Full_List);
18804 end if;
18805
18806 Next_Elmt (Prim_Elmt);
18807 end loop;
18808 end if;
18809
18810 -- Untagged private view
18811
18812 else
18813 Full_List := Primitive_Operations (Full_T);
18814
18815 -- In this case the partial view is untagged, so here we locate
18816 -- all of the earlier primitives that need to be treated as
18817 -- dispatching (those that appear between the two views). Note
18818 -- that these additional operations must all be new operations
18819 -- (any earlier operations that override inherited operations
18820 -- of the full view will already have been inserted in the
18821 -- primitives list, marked by Check_Operation_From_Private_View
18822 -- as dispatching. Note that implicit "/=" operators are
18823 -- excluded from being added to the primitives list since they
18824 -- shouldn't be treated as dispatching (tagged "/=" is handled
18825 -- specially).
18826
18827 Prim := Next_Entity (Full_T);
18828 while Present (Prim) and then Prim /= Priv_T loop
18829 if Ekind_In (Prim, E_Procedure, E_Function) then
18830 Disp_Typ := Find_Dispatching_Type (Prim);
18831
18832 if Disp_Typ = Full_T
18833 and then (Chars (Prim) /= Name_Op_Ne
18834 or else Comes_From_Source (Prim))
18835 then
18836 Check_Controlling_Formals (Full_T, Prim);
18837
18838 if not Is_Dispatching_Operation (Prim) then
18839 Append_Elmt (Prim, Full_List);
18840 Set_Is_Dispatching_Operation (Prim, True);
18841 Set_DT_Position (Prim, No_Uint);
18842 end if;
18843
18844 elsif Is_Dispatching_Operation (Prim)
18845 and then Disp_Typ /= Full_T
18846 then
18847
18848 -- Verify that it is not otherwise controlled by a
18849 -- formal or a return value of type T.
18850
18851 Check_Controlling_Formals (Disp_Typ, Prim);
18852 end if;
18853 end if;
18854
18855 Next_Entity (Prim);
18856 end loop;
18857 end if;
18858
18859 -- For the tagged case, the two views can share the same primitive
18860 -- operations list and the same class-wide type. Update attributes
18861 -- of the class-wide type which depend on the full declaration.
18862
18863 if Is_Tagged_Type (Priv_T) then
18864 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18865 Set_Class_Wide_Type
18866 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18867
18868 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18869 Set_Has_Protected
18870 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18871 end if;
18872 end;
18873 end if;
18874
18875 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18876
18877 if Known_To_Have_Preelab_Init (Priv_T) then
18878
18879 -- Case where there is a pragma Preelaborable_Initialization. We
18880 -- always allow this in predefined units, which is cheating a bit,
18881 -- but it means we don't have to struggle to meet the requirements in
18882 -- the RM for having Preelaborable Initialization. Otherwise we
18883 -- require that the type meets the RM rules. But we can't check that
18884 -- yet, because of the rule about overriding Initialize, so we simply
18885 -- set a flag that will be checked at freeze time.
18886
18887 if not In_Predefined_Unit (Full_T) then
18888 Set_Must_Have_Preelab_Init (Full_T);
18889 end if;
18890 end if;
18891
18892 -- If pragma CPP_Class was applied to the private type declaration,
18893 -- propagate it now to the full type declaration.
18894
18895 if Is_CPP_Class (Priv_T) then
18896 Set_Is_CPP_Class (Full_T);
18897 Set_Convention (Full_T, Convention_CPP);
18898
18899 -- Check that components of imported CPP types do not have default
18900 -- expressions.
18901
18902 Check_CPP_Type_Has_No_Defaults (Full_T);
18903 end if;
18904
18905 -- If the private view has user specified stream attributes, then so has
18906 -- the full view.
18907
18908 -- Why the test, how could these flags be already set in Full_T ???
18909
18910 if Has_Specified_Stream_Read (Priv_T) then
18911 Set_Has_Specified_Stream_Read (Full_T);
18912 end if;
18913
18914 if Has_Specified_Stream_Write (Priv_T) then
18915 Set_Has_Specified_Stream_Write (Full_T);
18916 end if;
18917
18918 if Has_Specified_Stream_Input (Priv_T) then
18919 Set_Has_Specified_Stream_Input (Full_T);
18920 end if;
18921
18922 if Has_Specified_Stream_Output (Priv_T) then
18923 Set_Has_Specified_Stream_Output (Full_T);
18924 end if;
18925
18926 -- Propagate invariants to full type
18927
18928 if Has_Invariants (Priv_T) then
18929 Set_Has_Invariants (Full_T);
18930 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18931 end if;
18932
18933 if Has_Inheritable_Invariants (Priv_T) then
18934 Set_Has_Inheritable_Invariants (Full_T);
18935 end if;
18936
18937 -- Propagate predicates to full type, and predicate function if already
18938 -- defined. It is not clear that this can actually happen? the partial
18939 -- view cannot be frozen yet, and the predicate function has not been
18940 -- built. Still it is a cheap check and seems safer to make it.
18941
18942 if Has_Predicates (Priv_T) then
18943 if Present (Predicate_Function (Priv_T)) then
18944 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18945 end if;
18946
18947 Set_Has_Predicates (Full_T);
18948 end if;
18949 end Process_Full_View;
18950
18951 -----------------------------------
18952 -- Process_Incomplete_Dependents --
18953 -----------------------------------
18954
18955 procedure Process_Incomplete_Dependents
18956 (N : Node_Id;
18957 Full_T : Entity_Id;
18958 Inc_T : Entity_Id)
18959 is
18960 Inc_Elmt : Elmt_Id;
18961 Priv_Dep : Entity_Id;
18962 New_Subt : Entity_Id;
18963
18964 Disc_Constraint : Elist_Id;
18965
18966 begin
18967 if No (Private_Dependents (Inc_T)) then
18968 return;
18969 end if;
18970
18971 -- Itypes that may be generated by the completion of an incomplete
18972 -- subtype are not used by the back-end and not attached to the tree.
18973 -- They are created only for constraint-checking purposes.
18974
18975 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18976 while Present (Inc_Elmt) loop
18977 Priv_Dep := Node (Inc_Elmt);
18978
18979 if Ekind (Priv_Dep) = E_Subprogram_Type then
18980
18981 -- An Access_To_Subprogram type may have a return type or a
18982 -- parameter type that is incomplete. Replace with the full view.
18983
18984 if Etype (Priv_Dep) = Inc_T then
18985 Set_Etype (Priv_Dep, Full_T);
18986 end if;
18987
18988 declare
18989 Formal : Entity_Id;
18990
18991 begin
18992 Formal := First_Formal (Priv_Dep);
18993 while Present (Formal) loop
18994 if Etype (Formal) = Inc_T then
18995 Set_Etype (Formal, Full_T);
18996 end if;
18997
18998 Next_Formal (Formal);
18999 end loop;
19000 end;
19001
19002 elsif Is_Overloadable (Priv_Dep) then
19003
19004 -- If a subprogram in the incomplete dependents list is primitive
19005 -- for a tagged full type then mark it as a dispatching operation,
19006 -- check whether it overrides an inherited subprogram, and check
19007 -- restrictions on its controlling formals. Note that a protected
19008 -- operation is never dispatching: only its wrapper operation
19009 -- (which has convention Ada) is.
19010
19011 if Is_Tagged_Type (Full_T)
19012 and then Is_Primitive (Priv_Dep)
19013 and then Convention (Priv_Dep) /= Convention_Protected
19014 then
19015 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19016 Set_Is_Dispatching_Operation (Priv_Dep);
19017 Check_Controlling_Formals (Full_T, Priv_Dep);
19018 end if;
19019
19020 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19021
19022 -- Can happen during processing of a body before the completion
19023 -- of a TA type. Ignore, because spec is also on dependent list.
19024
19025 return;
19026
19027 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19028 -- corresponding subtype of the full view.
19029
19030 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19031 Set_Subtype_Indication
19032 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19033 Set_Etype (Priv_Dep, Full_T);
19034 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19035 Set_Analyzed (Parent (Priv_Dep), False);
19036
19037 -- Reanalyze the declaration, suppressing the call to
19038 -- Enter_Name to avoid duplicate names.
19039
19040 Analyze_Subtype_Declaration
19041 (N => Parent (Priv_Dep),
19042 Skip => True);
19043
19044 -- Dependent is a subtype
19045
19046 else
19047 -- We build a new subtype indication using the full view of the
19048 -- incomplete parent. The discriminant constraints have been
19049 -- elaborated already at the point of the subtype declaration.
19050
19051 New_Subt := Create_Itype (E_Void, N);
19052
19053 if Has_Discriminants (Full_T) then
19054 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19055 else
19056 Disc_Constraint := No_Elist;
19057 end if;
19058
19059 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19060 Set_Full_View (Priv_Dep, New_Subt);
19061 end if;
19062
19063 Next_Elmt (Inc_Elmt);
19064 end loop;
19065 end Process_Incomplete_Dependents;
19066
19067 --------------------------------
19068 -- Process_Range_Expr_In_Decl --
19069 --------------------------------
19070
19071 procedure Process_Range_Expr_In_Decl
19072 (R : Node_Id;
19073 T : Entity_Id;
19074 Subtyp : Entity_Id := Empty;
19075 Check_List : List_Id := Empty_List;
19076 R_Check_Off : Boolean := False;
19077 In_Iter_Schm : Boolean := False)
19078 is
19079 Lo, Hi : Node_Id;
19080 R_Checks : Check_Result;
19081 Insert_Node : Node_Id;
19082 Def_Id : Entity_Id;
19083
19084 begin
19085 Analyze_And_Resolve (R, Base_Type (T));
19086
19087 if Nkind (R) = N_Range then
19088
19089 -- In SPARK, all ranges should be static, with the exception of the
19090 -- discrete type definition of a loop parameter specification.
19091
19092 if not In_Iter_Schm
19093 and then not Is_OK_Static_Range (R)
19094 then
19095 Check_SPARK_Restriction ("range should be static", R);
19096 end if;
19097
19098 Lo := Low_Bound (R);
19099 Hi := High_Bound (R);
19100
19101 -- We need to ensure validity of the bounds here, because if we
19102 -- go ahead and do the expansion, then the expanded code will get
19103 -- analyzed with range checks suppressed and we miss the check.
19104 -- Validity checks on the range of a quantified expression are
19105 -- delayed until the construct is transformed into a loop.
19106
19107 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19108 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19109 then
19110 Validity_Check_Range (R);
19111 end if;
19112
19113 -- If there were errors in the declaration, try and patch up some
19114 -- common mistakes in the bounds. The cases handled are literals
19115 -- which are Integer where the expected type is Real and vice versa.
19116 -- These corrections allow the compilation process to proceed further
19117 -- along since some basic assumptions of the format of the bounds
19118 -- are guaranteed.
19119
19120 if Etype (R) = Any_Type then
19121 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19122 Rewrite (Lo,
19123 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19124
19125 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19126 Rewrite (Hi,
19127 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19128
19129 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19130 Rewrite (Lo,
19131 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19132
19133 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19134 Rewrite (Hi,
19135 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19136 end if;
19137
19138 Set_Etype (Lo, T);
19139 Set_Etype (Hi, T);
19140 end if;
19141
19142 -- If the bounds of the range have been mistakenly given as string
19143 -- literals (perhaps in place of character literals), then an error
19144 -- has already been reported, but we rewrite the string literal as a
19145 -- bound of the range's type to avoid blowups in later processing
19146 -- that looks at static values.
19147
19148 if Nkind (Lo) = N_String_Literal then
19149 Rewrite (Lo,
19150 Make_Attribute_Reference (Sloc (Lo),
19151 Attribute_Name => Name_First,
19152 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19153 Analyze_And_Resolve (Lo);
19154 end if;
19155
19156 if Nkind (Hi) = N_String_Literal then
19157 Rewrite (Hi,
19158 Make_Attribute_Reference (Sloc (Hi),
19159 Attribute_Name => Name_First,
19160 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19161 Analyze_And_Resolve (Hi);
19162 end if;
19163
19164 -- If bounds aren't scalar at this point then exit, avoiding
19165 -- problems with further processing of the range in this procedure.
19166
19167 if not Is_Scalar_Type (Etype (Lo)) then
19168 return;
19169 end if;
19170
19171 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19172 -- then range of the base type. Here we check whether the bounds
19173 -- are in the range of the subtype itself. Note that if the bounds
19174 -- represent the null range the Constraint_Error exception should
19175 -- not be raised.
19176
19177 -- ??? The following code should be cleaned up as follows
19178
19179 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19180 -- is done in the call to Range_Check (R, T); below
19181
19182 -- 2. The use of R_Check_Off should be investigated and possibly
19183 -- removed, this would clean up things a bit.
19184
19185 if Is_Null_Range (Lo, Hi) then
19186 null;
19187
19188 else
19189 -- Capture values of bounds and generate temporaries for them
19190 -- if needed, before applying checks, since checks may cause
19191 -- duplication of the expression without forcing evaluation.
19192
19193 -- The forced evaluation removes side effects from expressions,
19194 -- which should occur also in GNATprove mode. Otherwise, we end up
19195 -- with unexpected insertions of actions at places where this is
19196 -- not supposed to occur, e.g. on default parameters of a call.
19197
19198 if Expander_Active or GNATprove_Mode then
19199
19200 -- If no subtype name, then just call Force_Evaluation to
19201 -- create declarations as needed to deal with side effects.
19202 -- Also ignore calls from within a record type, where we
19203 -- have possible scoping issues.
19204
19205 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19206 Force_Evaluation (Lo);
19207 Force_Evaluation (Hi);
19208
19209 -- If a subtype is given, then we capture the bounds if they
19210 -- are not known at compile time, using constant identifiers
19211 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19212
19213 -- Note: we do this transformation even if expansion is not
19214 -- active, and in particular we do it in GNATprove_Mode since
19215 -- the transformation is in general required to ensure that the
19216 -- resulting tree has proper Ada semantics.
19217
19218 -- Historical note: We used to just do Force_Evaluation calls
19219 -- in all cases, but it is better to capture the bounds with
19220 -- proper non-serialized names, since these will be accessed
19221 -- from other units, and hence may be public, and also we can
19222 -- then expand 'First and 'Last references to be references to
19223 -- these special names.
19224
19225 else
19226 if not Compile_Time_Known_Value (Lo)
19227
19228 -- No need to capture bounds if they already are
19229 -- references to constants.
19230
19231 and then not (Is_Entity_Name (Lo)
19232 and then Is_Constant_Object (Entity (Lo)))
19233 then
19234 declare
19235 Loc : constant Source_Ptr := Sloc (Lo);
19236 Lov : constant Entity_Id :=
19237 Make_Defining_Identifier (Loc,
19238 Chars =>
19239 New_External_Name (Chars (Subtyp), "_FIRST"));
19240 begin
19241 Insert_Action (R,
19242 Make_Object_Declaration (Loc,
19243 Defining_Identifier => Lov,
19244 Object_Definition =>
19245 New_Occurrence_Of (Base_Type (T), Loc),
19246 Constant_Present => True,
19247 Expression => Relocate_Node (Lo)));
19248 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19249 end;
19250 end if;
19251
19252 if not Compile_Time_Known_Value (Hi)
19253 and then not (Is_Entity_Name (Hi)
19254 and then Is_Constant_Object (Entity (Hi)))
19255 then
19256 declare
19257 Loc : constant Source_Ptr := Sloc (Hi);
19258 Hiv : constant Entity_Id :=
19259 Make_Defining_Identifier (Loc,
19260 Chars =>
19261 New_External_Name (Chars (Subtyp), "_LAST"));
19262 begin
19263 Insert_Action (R,
19264 Make_Object_Declaration (Loc,
19265 Defining_Identifier => Hiv,
19266 Object_Definition =>
19267 New_Occurrence_Of (Base_Type (T), Loc),
19268 Constant_Present => True,
19269 Expression => Relocate_Node (Hi)));
19270 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19271 end;
19272 end if;
19273 end if;
19274 end if;
19275
19276 -- We use a flag here instead of suppressing checks on the
19277 -- type because the type we check against isn't necessarily
19278 -- the place where we put the check.
19279
19280 if not R_Check_Off then
19281 R_Checks := Get_Range_Checks (R, T);
19282
19283 -- Look up tree to find an appropriate insertion point. We
19284 -- can't just use insert_actions because later processing
19285 -- depends on the insertion node. Prior to Ada 2012 the
19286 -- insertion point could only be a declaration or a loop, but
19287 -- quantified expressions can appear within any context in an
19288 -- expression, and the insertion point can be any statement,
19289 -- pragma, or declaration.
19290
19291 Insert_Node := Parent (R);
19292 while Present (Insert_Node) loop
19293 exit when
19294 Nkind (Insert_Node) in N_Declaration
19295 and then
19296 not Nkind_In
19297 (Insert_Node, N_Component_Declaration,
19298 N_Loop_Parameter_Specification,
19299 N_Function_Specification,
19300 N_Procedure_Specification);
19301
19302 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19303 or else Nkind (Insert_Node) in
19304 N_Statement_Other_Than_Procedure_Call
19305 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19306 N_Pragma);
19307
19308 Insert_Node := Parent (Insert_Node);
19309 end loop;
19310
19311 -- Why would Type_Decl not be present??? Without this test,
19312 -- short regression tests fail.
19313
19314 if Present (Insert_Node) then
19315
19316 -- Case of loop statement. Verify that the range is part
19317 -- of the subtype indication of the iteration scheme.
19318
19319 if Nkind (Insert_Node) = N_Loop_Statement then
19320 declare
19321 Indic : Node_Id;
19322
19323 begin
19324 Indic := Parent (R);
19325 while Present (Indic)
19326 and then Nkind (Indic) /= N_Subtype_Indication
19327 loop
19328 Indic := Parent (Indic);
19329 end loop;
19330
19331 if Present (Indic) then
19332 Def_Id := Etype (Subtype_Mark (Indic));
19333
19334 Insert_Range_Checks
19335 (R_Checks,
19336 Insert_Node,
19337 Def_Id,
19338 Sloc (Insert_Node),
19339 R,
19340 Do_Before => True);
19341 end if;
19342 end;
19343
19344 -- Insertion before a declaration. If the declaration
19345 -- includes discriminants, the list of applicable checks
19346 -- is given by the caller.
19347
19348 elsif Nkind (Insert_Node) in N_Declaration then
19349 Def_Id := Defining_Identifier (Insert_Node);
19350
19351 if (Ekind (Def_Id) = E_Record_Type
19352 and then Depends_On_Discriminant (R))
19353 or else
19354 (Ekind (Def_Id) = E_Protected_Type
19355 and then Has_Discriminants (Def_Id))
19356 then
19357 Append_Range_Checks
19358 (R_Checks,
19359 Check_List, Def_Id, Sloc (Insert_Node), R);
19360
19361 else
19362 Insert_Range_Checks
19363 (R_Checks,
19364 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19365
19366 end if;
19367
19368 -- Insertion before a statement. Range appears in the
19369 -- context of a quantified expression. Insertion will
19370 -- take place when expression is expanded.
19371
19372 else
19373 null;
19374 end if;
19375 end if;
19376 end if;
19377 end if;
19378
19379 -- Case of other than an explicit N_Range node
19380
19381 -- The forced evaluation removes side effects from expressions, which
19382 -- should occur also in GNATprove mode. Otherwise, we end up with
19383 -- unexpected insertions of actions at places where this is not
19384 -- supposed to occur, e.g. on default parameters of a call.
19385
19386 elsif Expander_Active or GNATprove_Mode then
19387 Get_Index_Bounds (R, Lo, Hi);
19388 Force_Evaluation (Lo);
19389 Force_Evaluation (Hi);
19390 end if;
19391 end Process_Range_Expr_In_Decl;
19392
19393 --------------------------------------
19394 -- Process_Real_Range_Specification --
19395 --------------------------------------
19396
19397 procedure Process_Real_Range_Specification (Def : Node_Id) is
19398 Spec : constant Node_Id := Real_Range_Specification (Def);
19399 Lo : Node_Id;
19400 Hi : Node_Id;
19401 Err : Boolean := False;
19402
19403 procedure Analyze_Bound (N : Node_Id);
19404 -- Analyze and check one bound
19405
19406 -------------------
19407 -- Analyze_Bound --
19408 -------------------
19409
19410 procedure Analyze_Bound (N : Node_Id) is
19411 begin
19412 Analyze_And_Resolve (N, Any_Real);
19413
19414 if not Is_OK_Static_Expression (N) then
19415 Flag_Non_Static_Expr
19416 ("bound in real type definition is not static!", N);
19417 Err := True;
19418 end if;
19419 end Analyze_Bound;
19420
19421 -- Start of processing for Process_Real_Range_Specification
19422
19423 begin
19424 if Present (Spec) then
19425 Lo := Low_Bound (Spec);
19426 Hi := High_Bound (Spec);
19427 Analyze_Bound (Lo);
19428 Analyze_Bound (Hi);
19429
19430 -- If error, clear away junk range specification
19431
19432 if Err then
19433 Set_Real_Range_Specification (Def, Empty);
19434 end if;
19435 end if;
19436 end Process_Real_Range_Specification;
19437
19438 ---------------------
19439 -- Process_Subtype --
19440 ---------------------
19441
19442 function Process_Subtype
19443 (S : Node_Id;
19444 Related_Nod : Node_Id;
19445 Related_Id : Entity_Id := Empty;
19446 Suffix : Character := ' ') return Entity_Id
19447 is
19448 P : Node_Id;
19449 Def_Id : Entity_Id;
19450 Error_Node : Node_Id;
19451 Full_View_Id : Entity_Id;
19452 Subtype_Mark_Id : Entity_Id;
19453
19454 May_Have_Null_Exclusion : Boolean;
19455
19456 procedure Check_Incomplete (T : Entity_Id);
19457 -- Called to verify that an incomplete type is not used prematurely
19458
19459 ----------------------
19460 -- Check_Incomplete --
19461 ----------------------
19462
19463 procedure Check_Incomplete (T : Entity_Id) is
19464 begin
19465 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19466
19467 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19468 and then
19469 not (Ada_Version >= Ada_2005
19470 and then
19471 (Nkind (Parent (T)) = N_Subtype_Declaration
19472 or else
19473 (Nkind (Parent (T)) = N_Subtype_Indication
19474 and then Nkind (Parent (Parent (T))) =
19475 N_Subtype_Declaration)))
19476 then
19477 Error_Msg_N ("invalid use of type before its full declaration", T);
19478 end if;
19479 end Check_Incomplete;
19480
19481 -- Start of processing for Process_Subtype
19482
19483 begin
19484 -- Case of no constraints present
19485
19486 if Nkind (S) /= N_Subtype_Indication then
19487 Find_Type (S);
19488 Check_Incomplete (S);
19489 P := Parent (S);
19490
19491 -- Ada 2005 (AI-231): Static check
19492
19493 if Ada_Version >= Ada_2005
19494 and then Present (P)
19495 and then Null_Exclusion_Present (P)
19496 and then Nkind (P) /= N_Access_To_Object_Definition
19497 and then not Is_Access_Type (Entity (S))
19498 then
19499 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19500 end if;
19501
19502 -- The following is ugly, can't we have a range or even a flag???
19503
19504 May_Have_Null_Exclusion :=
19505 Nkind_In (P, N_Access_Definition,
19506 N_Access_Function_Definition,
19507 N_Access_Procedure_Definition,
19508 N_Access_To_Object_Definition,
19509 N_Allocator,
19510 N_Component_Definition)
19511 or else
19512 Nkind_In (P, N_Derived_Type_Definition,
19513 N_Discriminant_Specification,
19514 N_Formal_Object_Declaration,
19515 N_Object_Declaration,
19516 N_Object_Renaming_Declaration,
19517 N_Parameter_Specification,
19518 N_Subtype_Declaration);
19519
19520 -- Create an Itype that is a duplicate of Entity (S) but with the
19521 -- null-exclusion attribute.
19522
19523 if May_Have_Null_Exclusion
19524 and then Is_Access_Type (Entity (S))
19525 and then Null_Exclusion_Present (P)
19526
19527 -- No need to check the case of an access to object definition.
19528 -- It is correct to define double not-null pointers.
19529
19530 -- Example:
19531 -- type Not_Null_Int_Ptr is not null access Integer;
19532 -- type Acc is not null access Not_Null_Int_Ptr;
19533
19534 and then Nkind (P) /= N_Access_To_Object_Definition
19535 then
19536 if Can_Never_Be_Null (Entity (S)) then
19537 case Nkind (Related_Nod) is
19538 when N_Full_Type_Declaration =>
19539 if Nkind (Type_Definition (Related_Nod))
19540 in N_Array_Type_Definition
19541 then
19542 Error_Node :=
19543 Subtype_Indication
19544 (Component_Definition
19545 (Type_Definition (Related_Nod)));
19546 else
19547 Error_Node :=
19548 Subtype_Indication (Type_Definition (Related_Nod));
19549 end if;
19550
19551 when N_Subtype_Declaration =>
19552 Error_Node := Subtype_Indication (Related_Nod);
19553
19554 when N_Object_Declaration =>
19555 Error_Node := Object_Definition (Related_Nod);
19556
19557 when N_Component_Declaration =>
19558 Error_Node :=
19559 Subtype_Indication (Component_Definition (Related_Nod));
19560
19561 when N_Allocator =>
19562 Error_Node := Expression (Related_Nod);
19563
19564 when others =>
19565 pragma Assert (False);
19566 Error_Node := Related_Nod;
19567 end case;
19568
19569 Error_Msg_NE
19570 ("`NOT NULL` not allowed (& already excludes null)",
19571 Error_Node,
19572 Entity (S));
19573 end if;
19574
19575 Set_Etype (S,
19576 Create_Null_Excluding_Itype
19577 (T => Entity (S),
19578 Related_Nod => P));
19579 Set_Entity (S, Etype (S));
19580 end if;
19581
19582 return Entity (S);
19583
19584 -- Case of constraint present, so that we have an N_Subtype_Indication
19585 -- node (this node is created only if constraints are present).
19586
19587 else
19588 Find_Type (Subtype_Mark (S));
19589
19590 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19591 and then not
19592 (Nkind (Parent (S)) = N_Subtype_Declaration
19593 and then Is_Itype (Defining_Identifier (Parent (S))))
19594 then
19595 Check_Incomplete (Subtype_Mark (S));
19596 end if;
19597
19598 P := Parent (S);
19599 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19600
19601 -- Explicit subtype declaration case
19602
19603 if Nkind (P) = N_Subtype_Declaration then
19604 Def_Id := Defining_Identifier (P);
19605
19606 -- Explicit derived type definition case
19607
19608 elsif Nkind (P) = N_Derived_Type_Definition then
19609 Def_Id := Defining_Identifier (Parent (P));
19610
19611 -- Implicit case, the Def_Id must be created as an implicit type.
19612 -- The one exception arises in the case of concurrent types, array
19613 -- and access types, where other subsidiary implicit types may be
19614 -- created and must appear before the main implicit type. In these
19615 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19616 -- has not yet been called to create Def_Id.
19617
19618 else
19619 if Is_Array_Type (Subtype_Mark_Id)
19620 or else Is_Concurrent_Type (Subtype_Mark_Id)
19621 or else Is_Access_Type (Subtype_Mark_Id)
19622 then
19623 Def_Id := Empty;
19624
19625 -- For the other cases, we create a new unattached Itype,
19626 -- and set the indication to ensure it gets attached later.
19627
19628 else
19629 Def_Id :=
19630 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19631 end if;
19632 end if;
19633
19634 -- If the kind of constraint is invalid for this kind of type,
19635 -- then give an error, and then pretend no constraint was given.
19636
19637 if not Is_Valid_Constraint_Kind
19638 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19639 then
19640 Error_Msg_N
19641 ("incorrect constraint for this kind of type", Constraint (S));
19642
19643 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19644
19645 -- Set Ekind of orphan itype, to prevent cascaded errors
19646
19647 if Present (Def_Id) then
19648 Set_Ekind (Def_Id, Ekind (Any_Type));
19649 end if;
19650
19651 -- Make recursive call, having got rid of the bogus constraint
19652
19653 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19654 end if;
19655
19656 -- Remaining processing depends on type. Select on Base_Type kind to
19657 -- ensure getting to the concrete type kind in the case of a private
19658 -- subtype (needed when only doing semantic analysis).
19659
19660 case Ekind (Base_Type (Subtype_Mark_Id)) is
19661 when Access_Kind =>
19662
19663 -- If this is a constraint on a class-wide type, discard it.
19664 -- There is currently no way to express a partial discriminant
19665 -- constraint on a type with unknown discriminants. This is
19666 -- a pathology that the ACATS wisely decides not to test.
19667
19668 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19669 if Comes_From_Source (S) then
19670 Error_Msg_N
19671 ("constraint on class-wide type ignored??",
19672 Constraint (S));
19673 end if;
19674
19675 if Nkind (P) = N_Subtype_Declaration then
19676 Set_Subtype_Indication (P,
19677 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19678 end if;
19679
19680 return Subtype_Mark_Id;
19681 end if;
19682
19683 Constrain_Access (Def_Id, S, Related_Nod);
19684
19685 if Expander_Active
19686 and then Is_Itype (Designated_Type (Def_Id))
19687 and then Nkind (Related_Nod) = N_Subtype_Declaration
19688 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19689 then
19690 Build_Itype_Reference
19691 (Designated_Type (Def_Id), Related_Nod);
19692 end if;
19693
19694 when Array_Kind =>
19695 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19696
19697 when Decimal_Fixed_Point_Kind =>
19698 Constrain_Decimal (Def_Id, S);
19699
19700 when Enumeration_Kind =>
19701 Constrain_Enumeration (Def_Id, S);
19702 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19703
19704 when Ordinary_Fixed_Point_Kind =>
19705 Constrain_Ordinary_Fixed (Def_Id, S);
19706
19707 when Float_Kind =>
19708 Constrain_Float (Def_Id, S);
19709
19710 when Integer_Kind =>
19711 Constrain_Integer (Def_Id, S);
19712 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19713
19714 when E_Record_Type |
19715 E_Record_Subtype |
19716 Class_Wide_Kind |
19717 E_Incomplete_Type =>
19718 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19719
19720 if Ekind (Def_Id) = E_Incomplete_Type then
19721 Set_Private_Dependents (Def_Id, New_Elmt_List);
19722 end if;
19723
19724 when Private_Kind =>
19725 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19726 Set_Private_Dependents (Def_Id, New_Elmt_List);
19727
19728 -- In case of an invalid constraint prevent further processing
19729 -- since the type constructed is missing expected fields.
19730
19731 if Etype (Def_Id) = Any_Type then
19732 return Def_Id;
19733 end if;
19734
19735 -- If the full view is that of a task with discriminants,
19736 -- we must constrain both the concurrent type and its
19737 -- corresponding record type. Otherwise we will just propagate
19738 -- the constraint to the full view, if available.
19739
19740 if Present (Full_View (Subtype_Mark_Id))
19741 and then Has_Discriminants (Subtype_Mark_Id)
19742 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19743 then
19744 Full_View_Id :=
19745 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19746
19747 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19748 Constrain_Concurrent (Full_View_Id, S,
19749 Related_Nod, Related_Id, Suffix);
19750 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19751 Set_Full_View (Def_Id, Full_View_Id);
19752
19753 -- Introduce an explicit reference to the private subtype,
19754 -- to prevent scope anomalies in gigi if first use appears
19755 -- in a nested context, e.g. a later function body.
19756 -- Should this be generated in other contexts than a full
19757 -- type declaration?
19758
19759 if Is_Itype (Def_Id)
19760 and then
19761 Nkind (Parent (P)) = N_Full_Type_Declaration
19762 then
19763 Build_Itype_Reference (Def_Id, Parent (P));
19764 end if;
19765
19766 else
19767 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19768 end if;
19769
19770 when Concurrent_Kind =>
19771 Constrain_Concurrent (Def_Id, S,
19772 Related_Nod, Related_Id, Suffix);
19773
19774 when others =>
19775 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19776 end case;
19777
19778 -- Size and Convention are always inherited from the base type
19779
19780 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19781 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19782
19783 return Def_Id;
19784 end if;
19785 end Process_Subtype;
19786
19787 ---------------------------------------
19788 -- Check_Anonymous_Access_Components --
19789 ---------------------------------------
19790
19791 procedure Check_Anonymous_Access_Components
19792 (Typ_Decl : Node_Id;
19793 Typ : Entity_Id;
19794 Prev : Entity_Id;
19795 Comp_List : Node_Id)
19796 is
19797 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19798 Anon_Access : Entity_Id;
19799 Acc_Def : Node_Id;
19800 Comp : Node_Id;
19801 Comp_Def : Node_Id;
19802 Decl : Node_Id;
19803 Type_Def : Node_Id;
19804
19805 procedure Build_Incomplete_Type_Declaration;
19806 -- If the record type contains components that include an access to the
19807 -- current record, then create an incomplete type declaration for the
19808 -- record, to be used as the designated type of the anonymous access.
19809 -- This is done only once, and only if there is no previous partial
19810 -- view of the type.
19811
19812 function Designates_T (Subt : Node_Id) return Boolean;
19813 -- Check whether a node designates the enclosing record type, or 'Class
19814 -- of that type
19815
19816 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19817 -- Check whether an access definition includes a reference to
19818 -- the enclosing record type. The reference can be a subtype mark
19819 -- in the access definition itself, a 'Class attribute reference, or
19820 -- recursively a reference appearing in a parameter specification
19821 -- or result definition of an access_to_subprogram definition.
19822
19823 --------------------------------------
19824 -- Build_Incomplete_Type_Declaration --
19825 --------------------------------------
19826
19827 procedure Build_Incomplete_Type_Declaration is
19828 Decl : Node_Id;
19829 Inc_T : Entity_Id;
19830 H : Entity_Id;
19831
19832 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19833 -- it's "is new ... with record" or else "is tagged record ...".
19834
19835 Is_Tagged : constant Boolean :=
19836 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19837 and then
19838 Present
19839 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19840 or else
19841 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19842 and then Tagged_Present (Type_Definition (Typ_Decl)));
19843
19844 begin
19845 -- If there is a previous partial view, no need to create a new one
19846 -- If the partial view, given by Prev, is incomplete, If Prev is
19847 -- a private declaration, full declaration is flagged accordingly.
19848
19849 if Prev /= Typ then
19850 if Is_Tagged then
19851 Make_Class_Wide_Type (Prev);
19852 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19853 Set_Etype (Class_Wide_Type (Typ), Typ);
19854 end if;
19855
19856 return;
19857
19858 elsif Has_Private_Declaration (Typ) then
19859
19860 -- If we refer to T'Class inside T, and T is the completion of a
19861 -- private type, then we need to make sure the class-wide type
19862 -- exists.
19863
19864 if Is_Tagged then
19865 Make_Class_Wide_Type (Typ);
19866 end if;
19867
19868 return;
19869
19870 -- If there was a previous anonymous access type, the incomplete
19871 -- type declaration will have been created already.
19872
19873 elsif Present (Current_Entity (Typ))
19874 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19875 and then Full_View (Current_Entity (Typ)) = Typ
19876 then
19877 if Is_Tagged
19878 and then Comes_From_Source (Current_Entity (Typ))
19879 and then not Is_Tagged_Type (Current_Entity (Typ))
19880 then
19881 Make_Class_Wide_Type (Typ);
19882 Error_Msg_N
19883 ("incomplete view of tagged type should be declared tagged??",
19884 Parent (Current_Entity (Typ)));
19885 end if;
19886 return;
19887
19888 else
19889 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19890 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19891
19892 -- Type has already been inserted into the current scope. Remove
19893 -- it, and add incomplete declaration for type, so that subsequent
19894 -- anonymous access types can use it. The entity is unchained from
19895 -- the homonym list and from immediate visibility. After analysis,
19896 -- the entity in the incomplete declaration becomes immediately
19897 -- visible in the record declaration that follows.
19898
19899 H := Current_Entity (Typ);
19900
19901 if H = Typ then
19902 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19903 else
19904 while Present (H)
19905 and then Homonym (H) /= Typ
19906 loop
19907 H := Homonym (Typ);
19908 end loop;
19909
19910 Set_Homonym (H, Homonym (Typ));
19911 end if;
19912
19913 Insert_Before (Typ_Decl, Decl);
19914 Analyze (Decl);
19915 Set_Full_View (Inc_T, Typ);
19916
19917 if Is_Tagged then
19918
19919 -- Create a common class-wide type for both views, and set the
19920 -- Etype of the class-wide type to the full view.
19921
19922 Make_Class_Wide_Type (Inc_T);
19923 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19924 Set_Etype (Class_Wide_Type (Typ), Typ);
19925 end if;
19926 end if;
19927 end Build_Incomplete_Type_Declaration;
19928
19929 ------------------
19930 -- Designates_T --
19931 ------------------
19932
19933 function Designates_T (Subt : Node_Id) return Boolean is
19934 Type_Id : constant Name_Id := Chars (Typ);
19935
19936 function Names_T (Nam : Node_Id) return Boolean;
19937 -- The record type has not been introduced in the current scope
19938 -- yet, so we must examine the name of the type itself, either
19939 -- an identifier T, or an expanded name of the form P.T, where
19940 -- P denotes the current scope.
19941
19942 -------------
19943 -- Names_T --
19944 -------------
19945
19946 function Names_T (Nam : Node_Id) return Boolean is
19947 begin
19948 if Nkind (Nam) = N_Identifier then
19949 return Chars (Nam) = Type_Id;
19950
19951 elsif Nkind (Nam) = N_Selected_Component then
19952 if Chars (Selector_Name (Nam)) = Type_Id then
19953 if Nkind (Prefix (Nam)) = N_Identifier then
19954 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19955
19956 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19957 return Chars (Selector_Name (Prefix (Nam))) =
19958 Chars (Current_Scope);
19959 else
19960 return False;
19961 end if;
19962
19963 else
19964 return False;
19965 end if;
19966
19967 else
19968 return False;
19969 end if;
19970 end Names_T;
19971
19972 -- Start of processing for Designates_T
19973
19974 begin
19975 if Nkind (Subt) = N_Identifier then
19976 return Chars (Subt) = Type_Id;
19977
19978 -- Reference can be through an expanded name which has not been
19979 -- analyzed yet, and which designates enclosing scopes.
19980
19981 elsif Nkind (Subt) = N_Selected_Component then
19982 if Names_T (Subt) then
19983 return True;
19984
19985 -- Otherwise it must denote an entity that is already visible.
19986 -- The access definition may name a subtype of the enclosing
19987 -- type, if there is a previous incomplete declaration for it.
19988
19989 else
19990 Find_Selected_Component (Subt);
19991 return
19992 Is_Entity_Name (Subt)
19993 and then Scope (Entity (Subt)) = Current_Scope
19994 and then
19995 (Chars (Base_Type (Entity (Subt))) = Type_Id
19996 or else
19997 (Is_Class_Wide_Type (Entity (Subt))
19998 and then
19999 Chars (Etype (Base_Type (Entity (Subt)))) =
20000 Type_Id));
20001 end if;
20002
20003 -- A reference to the current type may appear as the prefix of
20004 -- a 'Class attribute.
20005
20006 elsif Nkind (Subt) = N_Attribute_Reference
20007 and then Attribute_Name (Subt) = Name_Class
20008 then
20009 return Names_T (Prefix (Subt));
20010
20011 else
20012 return False;
20013 end if;
20014 end Designates_T;
20015
20016 ----------------
20017 -- Mentions_T --
20018 ----------------
20019
20020 function Mentions_T (Acc_Def : Node_Id) return Boolean is
20021 Param_Spec : Node_Id;
20022
20023 Acc_Subprg : constant Node_Id :=
20024 Access_To_Subprogram_Definition (Acc_Def);
20025
20026 begin
20027 if No (Acc_Subprg) then
20028 return Designates_T (Subtype_Mark (Acc_Def));
20029 end if;
20030
20031 -- Component is an access_to_subprogram: examine its formals,
20032 -- and result definition in the case of an access_to_function.
20033
20034 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20035 while Present (Param_Spec) loop
20036 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20037 and then Mentions_T (Parameter_Type (Param_Spec))
20038 then
20039 return True;
20040
20041 elsif Designates_T (Parameter_Type (Param_Spec)) then
20042 return True;
20043 end if;
20044
20045 Next (Param_Spec);
20046 end loop;
20047
20048 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20049 if Nkind (Result_Definition (Acc_Subprg)) =
20050 N_Access_Definition
20051 then
20052 return Mentions_T (Result_Definition (Acc_Subprg));
20053 else
20054 return Designates_T (Result_Definition (Acc_Subprg));
20055 end if;
20056 end if;
20057
20058 return False;
20059 end Mentions_T;
20060
20061 -- Start of processing for Check_Anonymous_Access_Components
20062
20063 begin
20064 if No (Comp_List) then
20065 return;
20066 end if;
20067
20068 Comp := First (Component_Items (Comp_List));
20069 while Present (Comp) loop
20070 if Nkind (Comp) = N_Component_Declaration
20071 and then Present
20072 (Access_Definition (Component_Definition (Comp)))
20073 and then
20074 Mentions_T (Access_Definition (Component_Definition (Comp)))
20075 then
20076 Comp_Def := Component_Definition (Comp);
20077 Acc_Def :=
20078 Access_To_Subprogram_Definition
20079 (Access_Definition (Comp_Def));
20080
20081 Build_Incomplete_Type_Declaration;
20082 Anon_Access := Make_Temporary (Loc, 'S');
20083
20084 -- Create a declaration for the anonymous access type: either
20085 -- an access_to_object or an access_to_subprogram.
20086
20087 if Present (Acc_Def) then
20088 if Nkind (Acc_Def) = N_Access_Function_Definition then
20089 Type_Def :=
20090 Make_Access_Function_Definition (Loc,
20091 Parameter_Specifications =>
20092 Parameter_Specifications (Acc_Def),
20093 Result_Definition => Result_Definition (Acc_Def));
20094 else
20095 Type_Def :=
20096 Make_Access_Procedure_Definition (Loc,
20097 Parameter_Specifications =>
20098 Parameter_Specifications (Acc_Def));
20099 end if;
20100
20101 else
20102 Type_Def :=
20103 Make_Access_To_Object_Definition (Loc,
20104 Subtype_Indication =>
20105 Relocate_Node
20106 (Subtype_Mark
20107 (Access_Definition (Comp_Def))));
20108
20109 Set_Constant_Present
20110 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20111 Set_All_Present
20112 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20113 end if;
20114
20115 Set_Null_Exclusion_Present
20116 (Type_Def,
20117 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20118
20119 Decl :=
20120 Make_Full_Type_Declaration (Loc,
20121 Defining_Identifier => Anon_Access,
20122 Type_Definition => Type_Def);
20123
20124 Insert_Before (Typ_Decl, Decl);
20125 Analyze (Decl);
20126
20127 -- If an access to subprogram, create the extra formals
20128
20129 if Present (Acc_Def) then
20130 Create_Extra_Formals (Designated_Type (Anon_Access));
20131
20132 -- If an access to object, preserve entity of designated type,
20133 -- for ASIS use, before rewriting the component definition.
20134
20135 else
20136 declare
20137 Desig : Entity_Id;
20138
20139 begin
20140 Desig := Entity (Subtype_Indication (Type_Def));
20141
20142 -- If the access definition is to the current record,
20143 -- the visible entity at this point is an incomplete
20144 -- type. Retrieve the full view to simplify ASIS queries
20145
20146 if Ekind (Desig) = E_Incomplete_Type then
20147 Desig := Full_View (Desig);
20148 end if;
20149
20150 Set_Entity
20151 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20152 end;
20153 end if;
20154
20155 Rewrite (Comp_Def,
20156 Make_Component_Definition (Loc,
20157 Subtype_Indication =>
20158 New_Occurrence_Of (Anon_Access, Loc)));
20159
20160 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20161 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20162 else
20163 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20164 end if;
20165
20166 Set_Is_Local_Anonymous_Access (Anon_Access);
20167 end if;
20168
20169 Next (Comp);
20170 end loop;
20171
20172 if Present (Variant_Part (Comp_List)) then
20173 declare
20174 V : Node_Id;
20175 begin
20176 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20177 while Present (V) loop
20178 Check_Anonymous_Access_Components
20179 (Typ_Decl, Typ, Prev, Component_List (V));
20180 Next_Non_Pragma (V);
20181 end loop;
20182 end;
20183 end if;
20184 end Check_Anonymous_Access_Components;
20185
20186 ----------------------------------
20187 -- Preanalyze_Assert_Expression --
20188 ----------------------------------
20189
20190 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20191 begin
20192 In_Assertion_Expr := In_Assertion_Expr + 1;
20193 Preanalyze_Spec_Expression (N, T);
20194 In_Assertion_Expr := In_Assertion_Expr - 1;
20195 end Preanalyze_Assert_Expression;
20196
20197 --------------------------------
20198 -- Preanalyze_Spec_Expression --
20199 --------------------------------
20200
20201 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20202 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20203 begin
20204 In_Spec_Expression := True;
20205 Preanalyze_And_Resolve (N, T);
20206 In_Spec_Expression := Save_In_Spec_Expression;
20207 end Preanalyze_Spec_Expression;
20208
20209 -----------------------------
20210 -- Record_Type_Declaration --
20211 -----------------------------
20212
20213 procedure Record_Type_Declaration
20214 (T : Entity_Id;
20215 N : Node_Id;
20216 Prev : Entity_Id)
20217 is
20218 Def : constant Node_Id := Type_Definition (N);
20219 Is_Tagged : Boolean;
20220 Tag_Comp : Entity_Id;
20221
20222 begin
20223 -- These flags must be initialized before calling Process_Discriminants
20224 -- because this routine makes use of them.
20225
20226 Set_Ekind (T, E_Record_Type);
20227 Set_Etype (T, T);
20228 Init_Size_Align (T);
20229 Set_Interfaces (T, No_Elist);
20230 Set_Stored_Constraint (T, No_Elist);
20231 Set_Default_SSO (T);
20232
20233 -- Normal case
20234
20235 if Ada_Version < Ada_2005
20236 or else not Interface_Present (Def)
20237 then
20238 if Limited_Present (Def) then
20239 Check_SPARK_Restriction ("limited is not allowed", N);
20240 end if;
20241
20242 if Abstract_Present (Def) then
20243 Check_SPARK_Restriction ("abstract is not allowed", N);
20244 end if;
20245
20246 -- The flag Is_Tagged_Type might have already been set by
20247 -- Find_Type_Name if it detected an error for declaration T. This
20248 -- arises in the case of private tagged types where the full view
20249 -- omits the word tagged.
20250
20251 Is_Tagged :=
20252 Tagged_Present (Def)
20253 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20254
20255 Set_Is_Tagged_Type (T, Is_Tagged);
20256 Set_Is_Limited_Record (T, Limited_Present (Def));
20257
20258 -- Type is abstract if full declaration carries keyword, or if
20259 -- previous partial view did.
20260
20261 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20262 or else Abstract_Present (Def));
20263
20264 else
20265 Check_SPARK_Restriction ("interface is not allowed", N);
20266
20267 Is_Tagged := True;
20268 Analyze_Interface_Declaration (T, Def);
20269
20270 if Present (Discriminant_Specifications (N)) then
20271 Error_Msg_N
20272 ("interface types cannot have discriminants",
20273 Defining_Identifier
20274 (First (Discriminant_Specifications (N))));
20275 end if;
20276 end if;
20277
20278 -- First pass: if there are self-referential access components,
20279 -- create the required anonymous access type declarations, and if
20280 -- need be an incomplete type declaration for T itself.
20281
20282 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20283
20284 if Ada_Version >= Ada_2005
20285 and then Present (Interface_List (Def))
20286 then
20287 Check_Interfaces (N, Def);
20288
20289 declare
20290 Ifaces_List : Elist_Id;
20291
20292 begin
20293 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20294 -- already in the parents.
20295
20296 Collect_Interfaces
20297 (T => T,
20298 Ifaces_List => Ifaces_List,
20299 Exclude_Parents => True);
20300
20301 Set_Interfaces (T, Ifaces_List);
20302 end;
20303 end if;
20304
20305 -- Records constitute a scope for the component declarations within.
20306 -- The scope is created prior to the processing of these declarations.
20307 -- Discriminants are processed first, so that they are visible when
20308 -- processing the other components. The Ekind of the record type itself
20309 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20310
20311 -- Enter record scope
20312
20313 Push_Scope (T);
20314
20315 -- If an incomplete or private type declaration was already given for
20316 -- the type, then this scope already exists, and the discriminants have
20317 -- been declared within. We must verify that the full declaration
20318 -- matches the incomplete one.
20319
20320 Check_Or_Process_Discriminants (N, T, Prev);
20321
20322 Set_Is_Constrained (T, not Has_Discriminants (T));
20323 Set_Has_Delayed_Freeze (T, True);
20324
20325 -- For tagged types add a manually analyzed component corresponding
20326 -- to the component _tag, the corresponding piece of tree will be
20327 -- expanded as part of the freezing actions if it is not a CPP_Class.
20328
20329 if Is_Tagged then
20330
20331 -- Do not add the tag unless we are in expansion mode
20332
20333 if Expander_Active then
20334 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20335 Enter_Name (Tag_Comp);
20336
20337 Set_Ekind (Tag_Comp, E_Component);
20338 Set_Is_Tag (Tag_Comp);
20339 Set_Is_Aliased (Tag_Comp);
20340 Set_Etype (Tag_Comp, RTE (RE_Tag));
20341 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20342 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20343 Init_Component_Location (Tag_Comp);
20344
20345 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20346 -- implemented interfaces.
20347
20348 if Has_Interfaces (T) then
20349 Add_Interface_Tag_Components (N, T);
20350 end if;
20351 end if;
20352
20353 Make_Class_Wide_Type (T);
20354 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20355 end if;
20356
20357 -- We must suppress range checks when processing record components in
20358 -- the presence of discriminants, since we don't want spurious checks to
20359 -- be generated during their analysis, but Suppress_Range_Checks flags
20360 -- must be reset the after processing the record definition.
20361
20362 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20363 -- couldn't we just use the normal range check suppression method here.
20364 -- That would seem cleaner ???
20365
20366 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20367 Set_Kill_Range_Checks (T, True);
20368 Record_Type_Definition (Def, Prev);
20369 Set_Kill_Range_Checks (T, False);
20370 else
20371 Record_Type_Definition (Def, Prev);
20372 end if;
20373
20374 -- Exit from record scope
20375
20376 End_Scope;
20377
20378 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20379 -- the implemented interfaces and associate them an aliased entity.
20380
20381 if Is_Tagged
20382 and then not Is_Empty_List (Interface_List (Def))
20383 then
20384 Derive_Progenitor_Subprograms (T, T);
20385 end if;
20386
20387 Check_Function_Writable_Actuals (N);
20388 end Record_Type_Declaration;
20389
20390 ----------------------------
20391 -- Record_Type_Definition --
20392 ----------------------------
20393
20394 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20395 Component : Entity_Id;
20396 Ctrl_Components : Boolean := False;
20397 Final_Storage_Only : Boolean;
20398 T : Entity_Id;
20399
20400 begin
20401 if Ekind (Prev_T) = E_Incomplete_Type then
20402 T := Full_View (Prev_T);
20403 else
20404 T := Prev_T;
20405 end if;
20406
20407 -- In SPARK, tagged types and type extensions may only be declared in
20408 -- the specification of library unit packages.
20409
20410 if Present (Def) and then Is_Tagged_Type (T) then
20411 declare
20412 Typ : Node_Id;
20413 Ctxt : Node_Id;
20414
20415 begin
20416 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20417 Typ := Parent (Def);
20418 else
20419 pragma Assert
20420 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20421 Typ := Parent (Parent (Def));
20422 end if;
20423
20424 Ctxt := Parent (Typ);
20425
20426 if Nkind (Ctxt) = N_Package_Body
20427 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20428 then
20429 Check_SPARK_Restriction
20430 ("type should be defined in package specification", Typ);
20431
20432 elsif Nkind (Ctxt) /= N_Package_Specification
20433 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20434 then
20435 Check_SPARK_Restriction
20436 ("type should be defined in library unit package", Typ);
20437 end if;
20438 end;
20439 end if;
20440
20441 Final_Storage_Only := not Is_Controlled (T);
20442
20443 -- Ada 2005: Check whether an explicit Limited is present in a derived
20444 -- type declaration.
20445
20446 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20447 and then Limited_Present (Parent (Def))
20448 then
20449 Set_Is_Limited_Record (T);
20450 end if;
20451
20452 -- If the component list of a record type is defined by the reserved
20453 -- word null and there is no discriminant part, then the record type has
20454 -- no components and all records of the type are null records (RM 3.7)
20455 -- This procedure is also called to process the extension part of a
20456 -- record extension, in which case the current scope may have inherited
20457 -- components.
20458
20459 if No (Def)
20460 or else No (Component_List (Def))
20461 or else Null_Present (Component_List (Def))
20462 then
20463 if not Is_Tagged_Type (T) then
20464 Check_SPARK_Restriction ("untagged record cannot be null", Def);
20465 end if;
20466
20467 else
20468 Analyze_Declarations (Component_Items (Component_List (Def)));
20469
20470 if Present (Variant_Part (Component_List (Def))) then
20471 Check_SPARK_Restriction ("variant part is not allowed", Def);
20472 Analyze (Variant_Part (Component_List (Def)));
20473 end if;
20474 end if;
20475
20476 -- After completing the semantic analysis of the record definition,
20477 -- record components, both new and inherited, are accessible. Set their
20478 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20479 -- whose Ekind may be void.
20480
20481 Component := First_Entity (Current_Scope);
20482 while Present (Component) loop
20483 if Ekind (Component) = E_Void
20484 and then not Is_Itype (Component)
20485 then
20486 Set_Ekind (Component, E_Component);
20487 Init_Component_Location (Component);
20488 end if;
20489
20490 if Has_Task (Etype (Component)) then
20491 Set_Has_Task (T);
20492 end if;
20493
20494 if Has_Protected (Etype (Component)) then
20495 Set_Has_Protected (T);
20496 end if;
20497
20498 if Ekind (Component) /= E_Component then
20499 null;
20500
20501 -- Do not set Has_Controlled_Component on a class-wide equivalent
20502 -- type. See Make_CW_Equivalent_Type.
20503
20504 elsif not Is_Class_Wide_Equivalent_Type (T)
20505 and then (Has_Controlled_Component (Etype (Component))
20506 or else (Chars (Component) /= Name_uParent
20507 and then Is_Controlled (Etype (Component))))
20508 then
20509 Set_Has_Controlled_Component (T, True);
20510 Final_Storage_Only :=
20511 Final_Storage_Only
20512 and then Finalize_Storage_Only (Etype (Component));
20513 Ctrl_Components := True;
20514 end if;
20515
20516 Next_Entity (Component);
20517 end loop;
20518
20519 -- A Type is Finalize_Storage_Only only if all its controlled components
20520 -- are also.
20521
20522 if Ctrl_Components then
20523 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20524 end if;
20525
20526 -- Place reference to end record on the proper entity, which may
20527 -- be a partial view.
20528
20529 if Present (Def) then
20530 Process_End_Label (Def, 'e', Prev_T);
20531 end if;
20532 end Record_Type_Definition;
20533
20534 ------------------------
20535 -- Replace_Components --
20536 ------------------------
20537
20538 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20539 function Process (N : Node_Id) return Traverse_Result;
20540
20541 -------------
20542 -- Process --
20543 -------------
20544
20545 function Process (N : Node_Id) return Traverse_Result is
20546 Comp : Entity_Id;
20547
20548 begin
20549 if Nkind (N) = N_Discriminant_Specification then
20550 Comp := First_Discriminant (Typ);
20551 while Present (Comp) loop
20552 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20553 Set_Defining_Identifier (N, Comp);
20554 exit;
20555 end if;
20556
20557 Next_Discriminant (Comp);
20558 end loop;
20559
20560 elsif Nkind (N) = N_Component_Declaration then
20561 Comp := First_Component (Typ);
20562 while Present (Comp) loop
20563 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20564 Set_Defining_Identifier (N, Comp);
20565 exit;
20566 end if;
20567
20568 Next_Component (Comp);
20569 end loop;
20570 end if;
20571
20572 return OK;
20573 end Process;
20574
20575 procedure Replace is new Traverse_Proc (Process);
20576
20577 -- Start of processing for Replace_Components
20578
20579 begin
20580 Replace (Decl);
20581 end Replace_Components;
20582
20583 -------------------------------
20584 -- Set_Completion_Referenced --
20585 -------------------------------
20586
20587 procedure Set_Completion_Referenced (E : Entity_Id) is
20588 begin
20589 -- If in main unit, mark entity that is a completion as referenced,
20590 -- warnings go on the partial view when needed.
20591
20592 if In_Extended_Main_Source_Unit (E) then
20593 Set_Referenced (E);
20594 end if;
20595 end Set_Completion_Referenced;
20596
20597 ---------------------
20598 -- Set_Default_SSO --
20599 ---------------------
20600
20601 procedure Set_Default_SSO (T : Entity_Id) is
20602 begin
20603 case Opt.Default_SSO is
20604 when ' ' =>
20605 null;
20606 when 'L' =>
20607 Set_SSO_Set_Low_By_Default (T, True);
20608 when 'H' =>
20609 Set_SSO_Set_High_By_Default (T, True);
20610 when others =>
20611 raise Program_Error;
20612 end case;
20613 end Set_Default_SSO;
20614
20615 ---------------------
20616 -- Set_Fixed_Range --
20617 ---------------------
20618
20619 -- The range for fixed-point types is complicated by the fact that we
20620 -- do not know the exact end points at the time of the declaration. This
20621 -- is true for three reasons:
20622
20623 -- A size clause may affect the fudging of the end-points.
20624 -- A small clause may affect the values of the end-points.
20625 -- We try to include the end-points if it does not affect the size.
20626
20627 -- This means that the actual end-points must be established at the
20628 -- point when the type is frozen. Meanwhile, we first narrow the range
20629 -- as permitted (so that it will fit if necessary in a small specified
20630 -- size), and then build a range subtree with these narrowed bounds.
20631 -- Set_Fixed_Range constructs the range from real literal values, and
20632 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20633
20634 -- The parent of this range is set to point to the entity so that it is
20635 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20636 -- other scalar types, which are just pointers to the range in the
20637 -- original tree, this would otherwise be an orphan).
20638
20639 -- The tree is left unanalyzed. When the type is frozen, the processing
20640 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20641 -- analyzed, and uses this as an indication that it should complete
20642 -- work on the range (it will know the final small and size values).
20643
20644 procedure Set_Fixed_Range
20645 (E : Entity_Id;
20646 Loc : Source_Ptr;
20647 Lo : Ureal;
20648 Hi : Ureal)
20649 is
20650 S : constant Node_Id :=
20651 Make_Range (Loc,
20652 Low_Bound => Make_Real_Literal (Loc, Lo),
20653 High_Bound => Make_Real_Literal (Loc, Hi));
20654 begin
20655 Set_Scalar_Range (E, S);
20656 Set_Parent (S, E);
20657
20658 -- Before the freeze point, the bounds of a fixed point are universal
20659 -- and carry the corresponding type.
20660
20661 Set_Etype (Low_Bound (S), Universal_Real);
20662 Set_Etype (High_Bound (S), Universal_Real);
20663 end Set_Fixed_Range;
20664
20665 ----------------------------------
20666 -- Set_Scalar_Range_For_Subtype --
20667 ----------------------------------
20668
20669 procedure Set_Scalar_Range_For_Subtype
20670 (Def_Id : Entity_Id;
20671 R : Node_Id;
20672 Subt : Entity_Id)
20673 is
20674 Kind : constant Entity_Kind := Ekind (Def_Id);
20675
20676 begin
20677 -- Defend against previous error
20678
20679 if Nkind (R) = N_Error then
20680 return;
20681 end if;
20682
20683 Set_Scalar_Range (Def_Id, R);
20684
20685 -- We need to link the range into the tree before resolving it so
20686 -- that types that are referenced, including importantly the subtype
20687 -- itself, are properly frozen (Freeze_Expression requires that the
20688 -- expression be properly linked into the tree). Of course if it is
20689 -- already linked in, then we do not disturb the current link.
20690
20691 if No (Parent (R)) then
20692 Set_Parent (R, Def_Id);
20693 end if;
20694
20695 -- Reset the kind of the subtype during analysis of the range, to
20696 -- catch possible premature use in the bounds themselves.
20697
20698 Set_Ekind (Def_Id, E_Void);
20699 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20700 Set_Ekind (Def_Id, Kind);
20701 end Set_Scalar_Range_For_Subtype;
20702
20703 --------------------------------------------------------
20704 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20705 --------------------------------------------------------
20706
20707 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20708 (E : Entity_Id)
20709 is
20710 begin
20711 -- Make sure set if encountered during Expand_To_Stored_Constraint
20712
20713 Set_Stored_Constraint (E, No_Elist);
20714
20715 -- Give it the right value
20716
20717 if Is_Constrained (E) and then Has_Discriminants (E) then
20718 Set_Stored_Constraint (E,
20719 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20720 end if;
20721 end Set_Stored_Constraint_From_Discriminant_Constraint;
20722
20723 -------------------------------------
20724 -- Signed_Integer_Type_Declaration --
20725 -------------------------------------
20726
20727 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20728 Implicit_Base : Entity_Id;
20729 Base_Typ : Entity_Id;
20730 Lo_Val : Uint;
20731 Hi_Val : Uint;
20732 Errs : Boolean := False;
20733 Lo : Node_Id;
20734 Hi : Node_Id;
20735
20736 function Can_Derive_From (E : Entity_Id) return Boolean;
20737 -- Determine whether given bounds allow derivation from specified type
20738
20739 procedure Check_Bound (Expr : Node_Id);
20740 -- Check bound to make sure it is integral and static. If not, post
20741 -- appropriate error message and set Errs flag
20742
20743 ---------------------
20744 -- Can_Derive_From --
20745 ---------------------
20746
20747 -- Note we check both bounds against both end values, to deal with
20748 -- strange types like ones with a range of 0 .. -12341234.
20749
20750 function Can_Derive_From (E : Entity_Id) return Boolean is
20751 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20752 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20753 begin
20754 return Lo <= Lo_Val and then Lo_Val <= Hi
20755 and then
20756 Lo <= Hi_Val and then Hi_Val <= Hi;
20757 end Can_Derive_From;
20758
20759 -----------------
20760 -- Check_Bound --
20761 -----------------
20762
20763 procedure Check_Bound (Expr : Node_Id) is
20764 begin
20765 -- If a range constraint is used as an integer type definition, each
20766 -- bound of the range must be defined by a static expression of some
20767 -- integer type, but the two bounds need not have the same integer
20768 -- type (Negative bounds are allowed.) (RM 3.5.4)
20769
20770 if not Is_Integer_Type (Etype (Expr)) then
20771 Error_Msg_N
20772 ("integer type definition bounds must be of integer type", Expr);
20773 Errs := True;
20774
20775 elsif not Is_OK_Static_Expression (Expr) then
20776 Flag_Non_Static_Expr
20777 ("non-static expression used for integer type bound!", Expr);
20778 Errs := True;
20779
20780 -- The bounds are folded into literals, and we set their type to be
20781 -- universal, to avoid typing difficulties: we cannot set the type
20782 -- of the literal to the new type, because this would be a forward
20783 -- reference for the back end, and if the original type is user-
20784 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20785
20786 else
20787 if Is_Entity_Name (Expr) then
20788 Fold_Uint (Expr, Expr_Value (Expr), True);
20789 end if;
20790
20791 Set_Etype (Expr, Universal_Integer);
20792 end if;
20793 end Check_Bound;
20794
20795 -- Start of processing for Signed_Integer_Type_Declaration
20796
20797 begin
20798 -- Create an anonymous base type
20799
20800 Implicit_Base :=
20801 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20802
20803 -- Analyze and check the bounds, they can be of any integer type
20804
20805 Lo := Low_Bound (Def);
20806 Hi := High_Bound (Def);
20807
20808 -- Arbitrarily use Integer as the type if either bound had an error
20809
20810 if Hi = Error or else Lo = Error then
20811 Base_Typ := Any_Integer;
20812 Set_Error_Posted (T, True);
20813
20814 -- Here both bounds are OK expressions
20815
20816 else
20817 Analyze_And_Resolve (Lo, Any_Integer);
20818 Analyze_And_Resolve (Hi, Any_Integer);
20819
20820 Check_Bound (Lo);
20821 Check_Bound (Hi);
20822
20823 if Errs then
20824 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20825 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20826 end if;
20827
20828 -- Find type to derive from
20829
20830 Lo_Val := Expr_Value (Lo);
20831 Hi_Val := Expr_Value (Hi);
20832
20833 if Can_Derive_From (Standard_Short_Short_Integer) then
20834 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20835
20836 elsif Can_Derive_From (Standard_Short_Integer) then
20837 Base_Typ := Base_Type (Standard_Short_Integer);
20838
20839 elsif Can_Derive_From (Standard_Integer) then
20840 Base_Typ := Base_Type (Standard_Integer);
20841
20842 elsif Can_Derive_From (Standard_Long_Integer) then
20843 Base_Typ := Base_Type (Standard_Long_Integer);
20844
20845 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20846 Check_Restriction (No_Long_Long_Integers, Def);
20847 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20848
20849 else
20850 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20851 Error_Msg_N ("integer type definition bounds out of range", Def);
20852 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20853 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20854 end if;
20855 end if;
20856
20857 -- Complete both implicit base and declared first subtype entities
20858
20859 Set_Etype (Implicit_Base, Base_Typ);
20860 Set_Size_Info (Implicit_Base, (Base_Typ));
20861 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20862 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20863
20864 Set_Ekind (T, E_Signed_Integer_Subtype);
20865 Set_Etype (T, Implicit_Base);
20866
20867 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20868
20869 Set_Size_Info (T, (Implicit_Base));
20870 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20871 Set_Scalar_Range (T, Def);
20872 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20873 Set_Is_Constrained (T);
20874 end Signed_Integer_Type_Declaration;
20875
20876 end Sem_Ch3;