[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
866
867 return Anon_Type;
868 end if;
869
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
872
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
875
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
879
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
883
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
887
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
893
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
897
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
899
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
901
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
903
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
911
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
919
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
925
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
931
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
934
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
941
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
947
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
959
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
962
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
975
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
980
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
984
985 return Anon_Type;
986 end Access_Definition;
987
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
991
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
995 is
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1000
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1004
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1007
1008 begin
1009 -- Check for a subtype mark
1010
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1016
1017 -- If this is not a subtype, then this is an access_definition
1018
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1026
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1029
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1038
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1044
1045 -- Local variables
1046
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052
1053 -- Start of processing for Access_Subprogram_Declaration
1054
1055 begin
1056 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1057
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1061
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1066
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1074
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1086
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1101
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1106
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1116
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1123
1124 else
1125 Analyze (Result_Definition (T_Def));
1126
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1134
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1143
1144 else
1145 if From_Limited_With (Typ) then
1146
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1149
1150 if Ada_Version >= Ada_2012 then
1151 null;
1152
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1158
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1172
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1177
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1183
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1187
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1190
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1194
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1197
1198 declare
1199 F : Node_Id;
1200
1201 begin
1202 F := First (Formals);
1203
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1209
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1219
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1224
1225 Next (F);
1226 end loop;
1227 end;
1228
1229 Process_Formals (Formals, Parent (T_Def));
1230
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1234
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1239
1240 -- Check for premature usage of the type being defined
1241
1242 Check_For_Premature_Usage (T_Def);
1243
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1249
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1261
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1268
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1272
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1275
1276 May_Need_Actuals (Desig_Type);
1277
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1281
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1289
1290 Check_Delayed_Subprogram (Desig_Type);
1291
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1298
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304
1305 Generate_Reference_To_Formals (T_Name);
1306
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1313
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1317
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1321
1322 Full_Desig : Entity_Id;
1323
1324 begin
1325 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1326
1327 -- Check for permissible use of incomplete type
1328
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1331
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334
1335 -- If the designated type is a limited view, we cannot tell if
1336 -- the full view contains tasks, and there is no way to handle
1337 -- that full view in a client. We create a master entity for the
1338 -- scope, which will be used when a client determines that one
1339 -- is needed.
1340
1341 if From_Limited_With (Entity (S))
1342 and then not Is_Class_Wide_Type (Entity (S))
1343 then
1344 Set_Ekind (T, E_Access_Type);
1345 Build_Master_Entity (T);
1346 Build_Master_Renaming (T);
1347 end if;
1348
1349 else
1350 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1351 end if;
1352
1353 -- If the access definition is of the form: ACCESS NOT NULL ..
1354 -- the subtype indication must be of an access type. Create
1355 -- a null-excluding subtype of it.
1356
1357 if Null_Excluding_Subtype (Def) then
1358 if not Is_Access_Type (Entity (S)) then
1359 Error_Msg_N ("null exclusion must apply to access type", Def);
1360
1361 else
1362 declare
1363 Loc : constant Source_Ptr := Sloc (S);
1364 Decl : Node_Id;
1365 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1366
1367 begin
1368 Decl :=
1369 Make_Subtype_Declaration (Loc,
1370 Defining_Identifier => Nam,
1371 Subtype_Indication =>
1372 New_Occurrence_Of (Entity (S), Loc));
1373 Set_Null_Exclusion_Present (Decl);
1374 Insert_Before (Parent (Def), Decl);
1375 Analyze (Decl);
1376 Set_Entity (S, Nam);
1377 end;
1378 end if;
1379 end if;
1380
1381 else
1382 Set_Directly_Designated_Type (T,
1383 Process_Subtype (S, P, T, 'P'));
1384 end if;
1385
1386 if All_Present (Def) or Constant_Present (Def) then
1387 Set_Ekind (T, E_General_Access_Type);
1388 else
1389 Set_Ekind (T, E_Access_Type);
1390 end if;
1391
1392 Full_Desig := Designated_Type (T);
1393
1394 if Base_Type (Full_Desig) = T then
1395 Error_Msg_N ("access type cannot designate itself", S);
1396
1397 -- In Ada 2005, the type may have a limited view through some unit in
1398 -- its own context, allowing the following circularity that cannot be
1399 -- detected earlier.
1400
1401 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1402 then
1403 Error_Msg_N
1404 ("access type cannot designate its own classwide type", S);
1405
1406 -- Clean up indication of tagged status to prevent cascaded errors
1407
1408 Set_Is_Tagged_Type (T, False);
1409 end if;
1410
1411 Set_Etype (T, T);
1412
1413 -- If the type has appeared already in a with_type clause, it is frozen
1414 -- and the pointer size is already set. Else, initialize.
1415
1416 if not From_Limited_With (T) then
1417 Init_Size_Align (T);
1418 end if;
1419
1420 -- Note that Has_Task is always false, since the access type itself
1421 -- is not a task type. See Einfo for more description on this point.
1422 -- Exactly the same consideration applies to Has_Controlled_Component
1423 -- and to Has_Protected.
1424
1425 Set_Has_Task (T, False);
1426 Set_Has_Controlled_Component (T, False);
1427 Set_Has_Protected (T, False);
1428
1429 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1430 -- problems where an incomplete view of this entity has been previously
1431 -- established by a limited with and an overlaid version of this field
1432 -- (Stored_Constraint) was initialized for the incomplete view.
1433
1434 -- This reset is performed in most cases except where the access type
1435 -- has been created for the purposes of allocating or deallocating a
1436 -- build-in-place object. Such access types have explicitly set pools
1437 -- and finalization masters.
1438
1439 if No (Associated_Storage_Pool (T)) then
1440 Set_Finalization_Master (T, Empty);
1441 end if;
1442
1443 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1444 -- attributes
1445
1446 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1447 Set_Is_Access_Constant (T, Constant_Present (Def));
1448 end Access_Type_Declaration;
1449
1450 ----------------------------------
1451 -- Add_Interface_Tag_Components --
1452 ----------------------------------
1453
1454 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1455 Loc : constant Source_Ptr := Sloc (N);
1456 L : List_Id;
1457 Last_Tag : Node_Id;
1458
1459 procedure Add_Tag (Iface : Entity_Id);
1460 -- Add tag for one of the progenitor interfaces
1461
1462 -------------
1463 -- Add_Tag --
1464 -------------
1465
1466 procedure Add_Tag (Iface : Entity_Id) is
1467 Decl : Node_Id;
1468 Def : Node_Id;
1469 Tag : Entity_Id;
1470 Offset : Entity_Id;
1471
1472 begin
1473 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1474
1475 -- This is a reasonable place to propagate predicates
1476
1477 if Has_Predicates (Iface) then
1478 Set_Has_Predicates (Typ);
1479 end if;
1480
1481 Def :=
1482 Make_Component_Definition (Loc,
1483 Aliased_Present => True,
1484 Subtype_Indication =>
1485 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1486
1487 Tag := Make_Temporary (Loc, 'V');
1488
1489 Decl :=
1490 Make_Component_Declaration (Loc,
1491 Defining_Identifier => Tag,
1492 Component_Definition => Def);
1493
1494 Analyze_Component_Declaration (Decl);
1495
1496 Set_Analyzed (Decl);
1497 Set_Ekind (Tag, E_Component);
1498 Set_Is_Tag (Tag);
1499 Set_Is_Aliased (Tag);
1500 Set_Related_Type (Tag, Iface);
1501 Init_Component_Location (Tag);
1502
1503 pragma Assert (Is_Frozen (Iface));
1504
1505 Set_DT_Entry_Count (Tag,
1506 DT_Entry_Count (First_Entity (Iface)));
1507
1508 if No (Last_Tag) then
1509 Prepend (Decl, L);
1510 else
1511 Insert_After (Last_Tag, Decl);
1512 end if;
1513
1514 Last_Tag := Decl;
1515
1516 -- If the ancestor has discriminants we need to give special support
1517 -- to store the offset_to_top value of the secondary dispatch tables.
1518 -- For this purpose we add a supplementary component just after the
1519 -- field that contains the tag associated with each secondary DT.
1520
1521 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1522 Def :=
1523 Make_Component_Definition (Loc,
1524 Subtype_Indication =>
1525 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1526
1527 Offset := Make_Temporary (Loc, 'V');
1528
1529 Decl :=
1530 Make_Component_Declaration (Loc,
1531 Defining_Identifier => Offset,
1532 Component_Definition => Def);
1533
1534 Analyze_Component_Declaration (Decl);
1535
1536 Set_Analyzed (Decl);
1537 Set_Ekind (Offset, E_Component);
1538 Set_Is_Aliased (Offset);
1539 Set_Related_Type (Offset, Iface);
1540 Init_Component_Location (Offset);
1541 Insert_After (Last_Tag, Decl);
1542 Last_Tag := Decl;
1543 end if;
1544 end Add_Tag;
1545
1546 -- Local variables
1547
1548 Elmt : Elmt_Id;
1549 Ext : Node_Id;
1550 Comp : Node_Id;
1551
1552 -- Start of processing for Add_Interface_Tag_Components
1553
1554 begin
1555 if not RTE_Available (RE_Interface_Tag) then
1556 Error_Msg
1557 ("(Ada 2005) interface types not supported by this run-time!",
1558 Sloc (N));
1559 return;
1560 end if;
1561
1562 if Ekind (Typ) /= E_Record_Type
1563 or else (Is_Concurrent_Record_Type (Typ)
1564 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1565 or else (not Is_Concurrent_Record_Type (Typ)
1566 and then No (Interfaces (Typ))
1567 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1568 then
1569 return;
1570 end if;
1571
1572 -- Find the current last tag
1573
1574 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1575 Ext := Record_Extension_Part (Type_Definition (N));
1576 else
1577 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1578 Ext := Type_Definition (N);
1579 end if;
1580
1581 Last_Tag := Empty;
1582
1583 if not (Present (Component_List (Ext))) then
1584 Set_Null_Present (Ext, False);
1585 L := New_List;
1586 Set_Component_List (Ext,
1587 Make_Component_List (Loc,
1588 Component_Items => L,
1589 Null_Present => False));
1590 else
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 L := Component_Items
1593 (Component_List
1594 (Record_Extension_Part
1595 (Type_Definition (N))));
1596 else
1597 L := Component_Items
1598 (Component_List
1599 (Type_Definition (N)));
1600 end if;
1601
1602 -- Find the last tag component
1603
1604 Comp := First (L);
1605 while Present (Comp) loop
1606 if Nkind (Comp) = N_Component_Declaration
1607 and then Is_Tag (Defining_Identifier (Comp))
1608 then
1609 Last_Tag := Comp;
1610 end if;
1611
1612 Next (Comp);
1613 end loop;
1614 end if;
1615
1616 -- At this point L references the list of components and Last_Tag
1617 -- references the current last tag (if any). Now we add the tag
1618 -- corresponding with all the interfaces that are not implemented
1619 -- by the parent.
1620
1621 if Present (Interfaces (Typ)) then
1622 Elmt := First_Elmt (Interfaces (Typ));
1623 while Present (Elmt) loop
1624 Add_Tag (Node (Elmt));
1625 Next_Elmt (Elmt);
1626 end loop;
1627 end if;
1628 end Add_Interface_Tag_Components;
1629
1630 -------------------------------------
1631 -- Add_Internal_Interface_Entities --
1632 -------------------------------------
1633
1634 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1635 Elmt : Elmt_Id;
1636 Iface : Entity_Id;
1637 Iface_Elmt : Elmt_Id;
1638 Iface_Prim : Entity_Id;
1639 Ifaces_List : Elist_Id;
1640 New_Subp : Entity_Id := Empty;
1641 Prim : Entity_Id;
1642 Restore_Scope : Boolean := False;
1643
1644 begin
1645 pragma Assert (Ada_Version >= Ada_2005
1646 and then Is_Record_Type (Tagged_Type)
1647 and then Is_Tagged_Type (Tagged_Type)
1648 and then Has_Interfaces (Tagged_Type)
1649 and then not Is_Interface (Tagged_Type));
1650
1651 -- Ensure that the internal entities are added to the scope of the type
1652
1653 if Scope (Tagged_Type) /= Current_Scope then
1654 Push_Scope (Scope (Tagged_Type));
1655 Restore_Scope := True;
1656 end if;
1657
1658 Collect_Interfaces (Tagged_Type, Ifaces_List);
1659
1660 Iface_Elmt := First_Elmt (Ifaces_List);
1661 while Present (Iface_Elmt) loop
1662 Iface := Node (Iface_Elmt);
1663
1664 -- Originally we excluded here from this processing interfaces that
1665 -- are parents of Tagged_Type because their primitives are located
1666 -- in the primary dispatch table (and hence no auxiliary internal
1667 -- entities are required to handle secondary dispatch tables in such
1668 -- case). However, these auxiliary entities are also required to
1669 -- handle derivations of interfaces in formals of generics (see
1670 -- Derive_Subprograms).
1671
1672 Elmt := First_Elmt (Primitive_Operations (Iface));
1673 while Present (Elmt) loop
1674 Iface_Prim := Node (Elmt);
1675
1676 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1677 Prim :=
1678 Find_Primitive_Covering_Interface
1679 (Tagged_Type => Tagged_Type,
1680 Iface_Prim => Iface_Prim);
1681
1682 if No (Prim) and then Serious_Errors_Detected > 0 then
1683 goto Continue;
1684 end if;
1685
1686 pragma Assert (Present (Prim));
1687
1688 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1689 -- differs from the name of the interface primitive then it is
1690 -- a private primitive inherited from a parent type. In such
1691 -- case, given that Tagged_Type covers the interface, the
1692 -- inherited private primitive becomes visible. For such
1693 -- purpose we add a new entity that renames the inherited
1694 -- private primitive.
1695
1696 if Chars (Prim) /= Chars (Iface_Prim) then
1697 pragma Assert (Has_Suffix (Prim, 'P'));
1698 Derive_Subprogram
1699 (New_Subp => New_Subp,
1700 Parent_Subp => Iface_Prim,
1701 Derived_Type => Tagged_Type,
1702 Parent_Type => Iface);
1703 Set_Alias (New_Subp, Prim);
1704 Set_Is_Abstract_Subprogram
1705 (New_Subp, Is_Abstract_Subprogram (Prim));
1706 end if;
1707
1708 Derive_Subprogram
1709 (New_Subp => New_Subp,
1710 Parent_Subp => Iface_Prim,
1711 Derived_Type => Tagged_Type,
1712 Parent_Type => Iface);
1713
1714 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1715 -- associated with interface types. These entities are
1716 -- only registered in the list of primitives of its
1717 -- corresponding tagged type because they are only used
1718 -- to fill the contents of the secondary dispatch tables.
1719 -- Therefore they are removed from the homonym chains.
1720
1721 Set_Is_Hidden (New_Subp);
1722 Set_Is_Internal (New_Subp);
1723 Set_Alias (New_Subp, Prim);
1724 Set_Is_Abstract_Subprogram
1725 (New_Subp, Is_Abstract_Subprogram (Prim));
1726 Set_Interface_Alias (New_Subp, Iface_Prim);
1727
1728 -- If the returned type is an interface then propagate it to
1729 -- the returned type. Needed by the thunk to generate the code
1730 -- which displaces "this" to reference the corresponding
1731 -- secondary dispatch table in the returned object.
1732
1733 if Is_Interface (Etype (Iface_Prim)) then
1734 Set_Etype (New_Subp, Etype (Iface_Prim));
1735 end if;
1736
1737 -- Internal entities associated with interface types are
1738 -- only registered in the list of primitives of the tagged
1739 -- type. They are only used to fill the contents of the
1740 -- secondary dispatch tables. Therefore they are not needed
1741 -- in the homonym chains.
1742
1743 Remove_Homonym (New_Subp);
1744
1745 -- Hidden entities associated with interfaces must have set
1746 -- the Has_Delay_Freeze attribute to ensure that, in case of
1747 -- locally defined tagged types (or compiling with static
1748 -- dispatch tables generation disabled) the corresponding
1749 -- entry of the secondary dispatch table is filled when
1750 -- such an entity is frozen.
1751
1752 Set_Has_Delayed_Freeze (New_Subp);
1753 end if;
1754
1755 <<Continue>>
1756 Next_Elmt (Elmt);
1757 end loop;
1758
1759 Next_Elmt (Iface_Elmt);
1760 end loop;
1761
1762 if Restore_Scope then
1763 Pop_Scope;
1764 end if;
1765 end Add_Internal_Interface_Entities;
1766
1767 -----------------------------------
1768 -- Analyze_Component_Declaration --
1769 -----------------------------------
1770
1771 procedure Analyze_Component_Declaration (N : Node_Id) is
1772 Id : constant Entity_Id := Defining_Identifier (N);
1773 E : constant Node_Id := Expression (N);
1774 Typ : constant Node_Id :=
1775 Subtype_Indication (Component_Definition (N));
1776 T : Entity_Id;
1777 P : Entity_Id;
1778
1779 function Contains_POC (Constr : Node_Id) return Boolean;
1780 -- Determines whether a constraint uses the discriminant of a record
1781 -- type thus becoming a per-object constraint (POC).
1782
1783 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1784 -- Typ is the type of the current component, check whether this type is
1785 -- a limited type. Used to validate declaration against that of
1786 -- enclosing record.
1787
1788 ------------------
1789 -- Contains_POC --
1790 ------------------
1791
1792 function Contains_POC (Constr : Node_Id) return Boolean is
1793 begin
1794 -- Prevent cascaded errors
1795
1796 if Error_Posted (Constr) then
1797 return False;
1798 end if;
1799
1800 case Nkind (Constr) is
1801 when N_Attribute_Reference =>
1802 return Attribute_Name (Constr) = Name_Access
1803 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1804
1805 when N_Discriminant_Association =>
1806 return Denotes_Discriminant (Expression (Constr));
1807
1808 when N_Identifier =>
1809 return Denotes_Discriminant (Constr);
1810
1811 when N_Index_Or_Discriminant_Constraint =>
1812 declare
1813 IDC : Node_Id;
1814
1815 begin
1816 IDC := First (Constraints (Constr));
1817 while Present (IDC) loop
1818
1819 -- One per-object constraint is sufficient
1820
1821 if Contains_POC (IDC) then
1822 return True;
1823 end if;
1824
1825 Next (IDC);
1826 end loop;
1827
1828 return False;
1829 end;
1830
1831 when N_Range =>
1832 return Denotes_Discriminant (Low_Bound (Constr))
1833 or else
1834 Denotes_Discriminant (High_Bound (Constr));
1835
1836 when N_Range_Constraint =>
1837 return Denotes_Discriminant (Range_Expression (Constr));
1838
1839 when others =>
1840 return False;
1841
1842 end case;
1843 end Contains_POC;
1844
1845 ----------------------
1846 -- Is_Known_Limited --
1847 ----------------------
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1850 P : constant Entity_Id := Etype (Typ);
1851 R : constant Entity_Id := Root_Type (Typ);
1852
1853 begin
1854 if Is_Limited_Record (Typ) then
1855 return True;
1856
1857 -- If the root type is limited (and not a limited interface)
1858 -- so is the current type
1859
1860 elsif Is_Limited_Record (R)
1861 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1862 then
1863 return True;
1864
1865 -- Else the type may have a limited interface progenitor, but a
1866 -- limited record parent.
1867
1868 elsif R /= P and then Is_Limited_Record (P) then
1869 return True;
1870
1871 else
1872 return False;
1873 end if;
1874 end Is_Known_Limited;
1875
1876 -- Start of processing for Analyze_Component_Declaration
1877
1878 begin
1879 Generate_Definition (Id);
1880 Enter_Name (Id);
1881
1882 if Present (Typ) then
1883 T := Find_Type_Of_Object
1884 (Subtype_Indication (Component_Definition (N)), N);
1885
1886 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1887 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1888 end if;
1889
1890 -- Ada 2005 (AI-230): Access Definition case
1891
1892 else
1893 pragma Assert (Present
1894 (Access_Definition (Component_Definition (N))));
1895
1896 T := Access_Definition
1897 (Related_Nod => N,
1898 N => Access_Definition (Component_Definition (N)));
1899 Set_Is_Local_Anonymous_Access (T);
1900
1901 -- Ada 2005 (AI-254)
1902
1903 if Present (Access_To_Subprogram_Definition
1904 (Access_Definition (Component_Definition (N))))
1905 and then Protected_Present (Access_To_Subprogram_Definition
1906 (Access_Definition
1907 (Component_Definition (N))))
1908 then
1909 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1910 end if;
1911 end if;
1912
1913 -- If the subtype is a constrained subtype of the enclosing record,
1914 -- (which must have a partial view) the back-end does not properly
1915 -- handle the recursion. Rewrite the component declaration with an
1916 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1917 -- the tree directly because side effects have already been removed from
1918 -- discriminant constraints.
1919
1920 if Ekind (T) = E_Access_Subtype
1921 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1922 and then Comes_From_Source (T)
1923 and then Nkind (Parent (T)) = N_Subtype_Declaration
1924 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1925 then
1926 Rewrite
1927 (Subtype_Indication (Component_Definition (N)),
1928 New_Copy_Tree (Subtype_Indication (Parent (T))));
1929 T := Find_Type_Of_Object
1930 (Subtype_Indication (Component_Definition (N)), N);
1931 end if;
1932
1933 -- If the component declaration includes a default expression, then we
1934 -- check that the component is not of a limited type (RM 3.7(5)),
1935 -- and do the special preanalysis of the expression (see section on
1936 -- "Handling of Default and Per-Object Expressions" in the spec of
1937 -- package Sem).
1938
1939 if Present (E) then
1940 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1941 Preanalyze_Default_Expression (E, T);
1942 Check_Initialization (T, E);
1943
1944 if Ada_Version >= Ada_2005
1945 and then Ekind (T) = E_Anonymous_Access_Type
1946 and then Etype (E) /= Any_Type
1947 then
1948 -- Check RM 3.9.2(9): "if the expected type for an expression is
1949 -- an anonymous access-to-specific tagged type, then the object
1950 -- designated by the expression shall not be dynamically tagged
1951 -- unless it is a controlling operand in a call on a dispatching
1952 -- operation"
1953
1954 if Is_Tagged_Type (Directly_Designated_Type (T))
1955 and then
1956 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1957 and then
1958 Ekind (Directly_Designated_Type (Etype (E))) =
1959 E_Class_Wide_Type
1960 then
1961 Error_Msg_N
1962 ("access to specific tagged type required (RM 3.9.2(9))", E);
1963 end if;
1964
1965 -- (Ada 2005: AI-230): Accessibility check for anonymous
1966 -- components
1967
1968 if Type_Access_Level (Etype (E)) >
1969 Deepest_Type_Access_Level (T)
1970 then
1971 Error_Msg_N
1972 ("expression has deeper access level than component " &
1973 "(RM 3.10.2 (12.2))", E);
1974 end if;
1975
1976 -- The initialization expression is a reference to an access
1977 -- discriminant. The type of the discriminant is always deeper
1978 -- than any access type.
1979
1980 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1981 and then Is_Entity_Name (E)
1982 and then Ekind (Entity (E)) = E_In_Parameter
1983 and then Present (Discriminal_Link (Entity (E)))
1984 then
1985 Error_Msg_N
1986 ("discriminant has deeper accessibility level than target",
1987 E);
1988 end if;
1989 end if;
1990 end if;
1991
1992 -- The parent type may be a private view with unknown discriminants,
1993 -- and thus unconstrained. Regular components must be constrained.
1994
1995 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1996 if Is_Class_Wide_Type (T) then
1997 Error_Msg_N
1998 ("class-wide subtype with unknown discriminants" &
1999 " in component declaration",
2000 Subtype_Indication (Component_Definition (N)));
2001 else
2002 Error_Msg_N
2003 ("unconstrained subtype in component declaration",
2004 Subtype_Indication (Component_Definition (N)));
2005 end if;
2006
2007 -- Components cannot be abstract, except for the special case of
2008 -- the _Parent field (case of extending an abstract tagged type)
2009
2010 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2011 Error_Msg_N ("type of a component cannot be abstract", N);
2012 end if;
2013
2014 Set_Etype (Id, T);
2015 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2016
2017 -- The component declaration may have a per-object constraint, set
2018 -- the appropriate flag in the defining identifier of the subtype.
2019
2020 if Present (Subtype_Indication (Component_Definition (N))) then
2021 declare
2022 Sindic : constant Node_Id :=
2023 Subtype_Indication (Component_Definition (N));
2024 begin
2025 if Nkind (Sindic) = N_Subtype_Indication
2026 and then Present (Constraint (Sindic))
2027 and then Contains_POC (Constraint (Sindic))
2028 then
2029 Set_Has_Per_Object_Constraint (Id);
2030 end if;
2031 end;
2032 end if;
2033
2034 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2035 -- out some static checks.
2036
2037 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2038 Null_Exclusion_Static_Checks (N);
2039 end if;
2040
2041 -- If this component is private (or depends on a private type), flag the
2042 -- record type to indicate that some operations are not available.
2043
2044 P := Private_Component (T);
2045
2046 if Present (P) then
2047
2048 -- Check for circular definitions
2049
2050 if P = Any_Type then
2051 Set_Etype (Id, Any_Type);
2052
2053 -- There is a gap in the visibility of operations only if the
2054 -- component type is not defined in the scope of the record type.
2055
2056 elsif Scope (P) = Scope (Current_Scope) then
2057 null;
2058
2059 elsif Is_Limited_Type (P) then
2060 Set_Is_Limited_Composite (Current_Scope);
2061
2062 else
2063 Set_Is_Private_Composite (Current_Scope);
2064 end if;
2065 end if;
2066
2067 if P /= Any_Type
2068 and then Is_Limited_Type (T)
2069 and then Chars (Id) /= Name_uParent
2070 and then Is_Tagged_Type (Current_Scope)
2071 then
2072 if Is_Derived_Type (Current_Scope)
2073 and then not Is_Known_Limited (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("extension of nonlimited type cannot have limited components",
2077 N);
2078
2079 if Is_Interface (Root_Type (Current_Scope)) then
2080 Error_Msg_N
2081 ("\limitedness is not inherited from limited interface", N);
2082 Error_Msg_N ("\add LIMITED to type indication", N);
2083 end if;
2084
2085 Explain_Limited_Type (T, N);
2086 Set_Etype (Id, Any_Type);
2087 Set_Is_Limited_Composite (Current_Scope, False);
2088
2089 elsif not Is_Derived_Type (Current_Scope)
2090 and then not Is_Limited_Record (Current_Scope)
2091 and then not Is_Concurrent_Type (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("nonlimited tagged type cannot have limited components", N);
2095 Explain_Limited_Type (T, N);
2096 Set_Etype (Id, Any_Type);
2097 Set_Is_Limited_Composite (Current_Scope, False);
2098 end if;
2099 end if;
2100
2101 Set_Original_Record_Component (Id, Id);
2102
2103 if Has_Aspects (N) then
2104 Analyze_Aspect_Specifications (N, Id);
2105 end if;
2106
2107 Analyze_Dimension (N);
2108 end Analyze_Component_Declaration;
2109
2110 --------------------------
2111 -- Analyze_Declarations --
2112 --------------------------
2113
2114 procedure Analyze_Declarations (L : List_Id) is
2115 Decl : Node_Id;
2116
2117 procedure Adjust_Decl;
2118 -- Adjust Decl not to include implicit label declarations, since these
2119 -- have strange Sloc values that result in elaboration check problems.
2120 -- (They have the sloc of the label as found in the source, and that
2121 -- is ahead of the current declarative part).
2122
2123 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2124 -- Determine whether Body_Decl denotes the body of a late controlled
2125 -- primitive (either Initialize, Adjust or Finalize). If this is the
2126 -- case, add a proper spec if the body lacks one. The spec is inserted
2127 -- before Body_Decl and immedately analyzed.
2128
2129 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2130 -- Spec_Id is the entity of a package that may define abstract states.
2131 -- If the states have visible refinement, remove the visibility of each
2132 -- constituent at the end of the package body declarations.
2133
2134 -----------------
2135 -- Adjust_Decl --
2136 -----------------
2137
2138 procedure Adjust_Decl is
2139 begin
2140 while Present (Prev (Decl))
2141 and then Nkind (Decl) = N_Implicit_Label_Declaration
2142 loop
2143 Prev (Decl);
2144 end loop;
2145 end Adjust_Decl;
2146
2147 --------------------------------------
2148 -- Handle_Late_Controlled_Primitive --
2149 --------------------------------------
2150
2151 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2152 Body_Spec : constant Node_Id := Specification (Body_Decl);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154 Loc : constant Source_Ptr := Sloc (Body_Id);
2155 Params : constant List_Id :=
2156 Parameter_Specifications (Body_Spec);
2157 Spec : Node_Id;
2158 Spec_Id : Entity_Id;
2159
2160 Dummy : Entity_Id;
2161 -- A dummy variable used to capture the unused result of subprogram
2162 -- spec analysis.
2163
2164 begin
2165 -- Consider only procedure bodies whose name matches one of the three
2166 -- controlled primitives.
2167
2168 if Nkind (Body_Spec) /= N_Procedure_Specification
2169 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2170 Name_Finalize,
2171 Name_Initialize)
2172 then
2173 return;
2174
2175 -- A controlled primitive must have exactly one formal
2176
2177 elsif List_Length (Params) /= 1 then
2178 return;
2179 end if;
2180
2181 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2182
2183 -- The type of the formal must be derived from [Limited_]Controlled
2184
2185 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2186 return;
2187 end if;
2188
2189 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2190
2191 -- The body has a matching spec, therefore it cannot be a late
2192 -- primitive.
2193
2194 if Present (Spec_Id) then
2195 return;
2196 end if;
2197
2198 -- At this point the body is known to be a late controlled primitive.
2199 -- Generate a matching spec and insert it before the body. Note the
2200 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2201 -- tree in this case.
2202
2203 Spec := Copy_Separate_Tree (Body_Spec);
2204
2205 -- Ensure that the subprogram declaration does not inherit the null
2206 -- indicator from the body as we now have a proper spec/body pair.
2207
2208 Set_Null_Present (Spec, False);
2209
2210 Insert_Before_And_Analyze (Body_Decl,
2211 Make_Subprogram_Declaration (Loc,
2212 Specification => Spec));
2213 end Handle_Late_Controlled_Primitive;
2214
2215 --------------------------------
2216 -- Remove_Visible_Refinements --
2217 --------------------------------
2218
2219 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2220 State_Elmt : Elmt_Id;
2221 begin
2222 if Present (Abstract_States (Spec_Id)) then
2223 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2224 while Present (State_Elmt) loop
2225 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2226 Next_Elmt (State_Elmt);
2227 end loop;
2228 end if;
2229 end Remove_Visible_Refinements;
2230
2231 -- Local variables
2232
2233 Context : Node_Id;
2234 Freeze_From : Entity_Id := Empty;
2235 Next_Decl : Node_Id;
2236 Spec_Id : Entity_Id;
2237
2238 Body_Seen : Boolean := False;
2239 -- Flag set when the first body [stub] is encountered
2240
2241 In_Package_Body : Boolean := False;
2242 -- Flag set when the current declaration list belongs to a package body
2243
2244 -- Start of processing for Analyze_Declarations
2245
2246 begin
2247 if Restriction_Check_Required (SPARK_05) then
2248 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2249 end if;
2250
2251 Decl := First (L);
2252 while Present (Decl) loop
2253
2254 -- Package spec cannot contain a package declaration in SPARK
2255
2256 if Nkind (Decl) = N_Package_Declaration
2257 and then Nkind (Parent (L)) = N_Package_Specification
2258 then
2259 Check_SPARK_05_Restriction
2260 ("package specification cannot contain a package declaration",
2261 Decl);
2262 end if;
2263
2264 -- Complete analysis of declaration
2265
2266 Analyze (Decl);
2267 Next_Decl := Next (Decl);
2268
2269 if No (Freeze_From) then
2270 Freeze_From := First_Entity (Current_Scope);
2271 end if;
2272
2273 -- At the end of a declarative part, freeze remaining entities
2274 -- declared in it. The end of the visible declarations of package
2275 -- specification is not the end of a declarative part if private
2276 -- declarations are present. The end of a package declaration is a
2277 -- freezing point only if it a library package. A task definition or
2278 -- protected type definition is not a freeze point either. Finally,
2279 -- we do not freeze entities in generic scopes, because there is no
2280 -- code generated for them and freeze nodes will be generated for
2281 -- the instance.
2282
2283 -- The end of a package instantiation is not a freeze point, but
2284 -- for now we make it one, because the generic body is inserted
2285 -- (currently) immediately after. Generic instantiations will not
2286 -- be a freeze point once delayed freezing of bodies is implemented.
2287 -- (This is needed in any case for early instantiations ???).
2288
2289 if No (Next_Decl) then
2290 if Nkind_In (Parent (L), N_Component_List,
2291 N_Task_Definition,
2292 N_Protected_Definition)
2293 then
2294 null;
2295
2296 elsif Nkind (Parent (L)) /= N_Package_Specification then
2297 if Nkind (Parent (L)) = N_Package_Body then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- There may have been several freezing points previously,
2302 -- for example object declarations or subprogram bodies, but
2303 -- at the end of a declarative part we check freezing from
2304 -- the beginning, even though entities may already be frozen,
2305 -- in order to perform visibility checks on delayed aspects.
2306
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310
2311 elsif Scope (Current_Scope) /= Standard_Standard
2312 and then not Is_Child_Unit (Current_Scope)
2313 and then No (Generic_Parent (Parent (L)))
2314 then
2315 null;
2316
2317 elsif L /= Visible_Declarations (Parent (L))
2318 or else No (Private_Declarations (Parent (L)))
2319 or else Is_Empty_List (Private_Declarations (Parent (L)))
2320 then
2321 Adjust_Decl;
2322 Freeze_All (First_Entity (Current_Scope), Decl);
2323 Freeze_From := Last_Entity (Current_Scope);
2324 end if;
2325
2326 -- If next node is a body then freeze all types before the body.
2327 -- An exception occurs for some expander-generated bodies. If these
2328 -- are generated at places where in general language rules would not
2329 -- allow a freeze point, then we assume that the expander has
2330 -- explicitly checked that all required types are properly frozen,
2331 -- and we do not cause general freezing here. This special circuit
2332 -- is used when the encountered body is marked as having already
2333 -- been analyzed.
2334
2335 -- In all other cases (bodies that come from source, and expander
2336 -- generated bodies that have not been analyzed yet), freeze all
2337 -- types now. Note that in the latter case, the expander must take
2338 -- care to attach the bodies at a proper place in the tree so as to
2339 -- not cause unwanted freezing at that point.
2340
2341 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2342
2343 -- When a controlled type is frozen, the expander generates stream
2344 -- and controlled type support routines. If the freeze is caused
2345 -- by the stand alone body of Initialize, Adjust and Finalize, the
2346 -- expander will end up using the wrong version of these routines
2347 -- as the body has not been processed yet. To remedy this, detect
2348 -- a late controlled primitive and create a proper spec for it.
2349 -- This ensures that the primitive will override its inherited
2350 -- counterpart before the freeze takes place.
2351
2352 -- If the declaration we just processed is a body, do not attempt
2353 -- to examine Next_Decl as the late primitive idiom can only apply
2354 -- to the first encountered body.
2355
2356 -- The spec of the late primitive is not generated in ASIS mode to
2357 -- ensure a consistent list of primitives that indicates the true
2358 -- semantic structure of the program (which is not relevant when
2359 -- generating executable code.
2360
2361 -- ??? a cleaner approach may be possible and/or this solution
2362 -- could be extended to general-purpose late primitives, TBD.
2363
2364 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2365 then
2366 Body_Seen := True;
2367
2368 if Nkind (Next_Decl) = N_Subprogram_Body then
2369 Handle_Late_Controlled_Primitive (Next_Decl);
2370 end if;
2371 end if;
2372
2373 Adjust_Decl;
2374 Freeze_All (Freeze_From, Decl);
2375 Freeze_From := Last_Entity (Current_Scope);
2376 end if;
2377
2378 Decl := Next_Decl;
2379 end loop;
2380
2381 -- Analyze the contracts of packages and their bodies
2382
2383 if Present (L) then
2384 Context := Parent (L);
2385
2386 if Nkind (Context) = N_Package_Specification then
2387
2388 -- When a package has private declarations, its contract must be
2389 -- analyzed at the end of the said declarations. This way both the
2390 -- analysis and freeze actions are properly synchronized in case
2391 -- of private type use within the contract.
2392
2393 if L = Private_Declarations (Context) then
2394 Analyze_Package_Contract (Defining_Entity (Context));
2395
2396 -- Build the bodies of the default initial condition procedures
2397 -- for all types subject to pragma Default_Initial_Condition.
2398 -- From a purely Ada stand point, this is a freezing activity,
2399 -- however freezing is not available under GNATprove_Mode. To
2400 -- accomodate both scenarios, the bodies are build at the end
2401 -- of private declaration analysis.
2402
2403 Build_Default_Init_Cond_Procedure_Bodies (L);
2404
2405 -- Otherwise the contract is analyzed at the end of the visible
2406 -- declarations.
2407
2408 elsif L = Visible_Declarations (Context)
2409 and then No (Private_Declarations (Context))
2410 then
2411 Analyze_Package_Contract (Defining_Entity (Context));
2412 end if;
2413
2414 elsif Nkind (Context) = N_Package_Body then
2415 In_Package_Body := True;
2416 Spec_Id := Corresponding_Spec (Context);
2417
2418 Analyze_Package_Body_Contract (Defining_Entity (Context));
2419 end if;
2420 end if;
2421
2422 -- Analyze the contracts of subprogram declarations, subprogram bodies
2423 -- and variables now due to the delayed visibility requirements of their
2424 -- aspects.
2425
2426 Decl := First (L);
2427 while Present (Decl) loop
2428 if Nkind (Decl) = N_Object_Declaration then
2429 Analyze_Object_Contract (Defining_Entity (Decl));
2430
2431 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2432 N_Subprogram_Declaration)
2433 then
2434 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2435
2436 elsif Nkind (Decl) = N_Subprogram_Body then
2437 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2438
2439 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2440 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2441 end if;
2442
2443 Next (Decl);
2444 end loop;
2445
2446 -- State refinements are visible upto the end the of the package body
2447 -- declarations. Hide the refinements from visibility to restore the
2448 -- original state conditions.
2449
2450 if In_Package_Body then
2451 Remove_Visible_Refinements (Spec_Id);
2452 end if;
2453 end Analyze_Declarations;
2454
2455 -----------------------------------
2456 -- Analyze_Full_Type_Declaration --
2457 -----------------------------------
2458
2459 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2460 Def : constant Node_Id := Type_Definition (N);
2461 Def_Id : constant Entity_Id := Defining_Identifier (N);
2462 T : Entity_Id;
2463 Prev : Entity_Id;
2464
2465 Is_Remote : constant Boolean :=
2466 (Is_Remote_Types (Current_Scope)
2467 or else Is_Remote_Call_Interface (Current_Scope))
2468 and then not (In_Private_Part (Current_Scope)
2469 or else In_Package_Body (Current_Scope));
2470
2471 procedure Check_Ops_From_Incomplete_Type;
2472 -- If there is a tagged incomplete partial view of the type, traverse
2473 -- the primitives of the incomplete view and change the type of any
2474 -- controlling formals and result to indicate the full view. The
2475 -- primitives will be added to the full type's primitive operations
2476 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2477 -- is called from Process_Incomplete_Dependents).
2478
2479 ------------------------------------
2480 -- Check_Ops_From_Incomplete_Type --
2481 ------------------------------------
2482
2483 procedure Check_Ops_From_Incomplete_Type is
2484 Elmt : Elmt_Id;
2485 Formal : Entity_Id;
2486 Op : Entity_Id;
2487
2488 begin
2489 if Prev /= T
2490 and then Ekind (Prev) = E_Incomplete_Type
2491 and then Is_Tagged_Type (Prev)
2492 and then Is_Tagged_Type (T)
2493 then
2494 Elmt := First_Elmt (Primitive_Operations (Prev));
2495 while Present (Elmt) loop
2496 Op := Node (Elmt);
2497
2498 Formal := First_Formal (Op);
2499 while Present (Formal) loop
2500 if Etype (Formal) = Prev then
2501 Set_Etype (Formal, T);
2502 end if;
2503
2504 Next_Formal (Formal);
2505 end loop;
2506
2507 if Etype (Op) = Prev then
2508 Set_Etype (Op, T);
2509 end if;
2510
2511 Next_Elmt (Elmt);
2512 end loop;
2513 end if;
2514 end Check_Ops_From_Incomplete_Type;
2515
2516 -- Start of processing for Analyze_Full_Type_Declaration
2517
2518 begin
2519 Prev := Find_Type_Name (N);
2520
2521 -- The full view, if present, now points to the current type
2522 -- If there is an incomplete partial view, set a link to it, to
2523 -- simplify the retrieval of primitive operations of the type.
2524
2525 -- Ada 2005 (AI-50217): If the type was previously decorated when
2526 -- imported through a LIMITED WITH clause, it appears as incomplete
2527 -- but has no full view.
2528
2529 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2530 then
2531 T := Full_View (Prev);
2532 Set_Incomplete_View (N, Parent (Prev));
2533 else
2534 T := Prev;
2535 end if;
2536
2537 Set_Is_Pure (T, Is_Pure (Current_Scope));
2538
2539 -- We set the flag Is_First_Subtype here. It is needed to set the
2540 -- corresponding flag for the Implicit class-wide-type created
2541 -- during tagged types processing.
2542
2543 Set_Is_First_Subtype (T, True);
2544
2545 -- Only composite types other than array types are allowed to have
2546 -- discriminants.
2547
2548 case Nkind (Def) is
2549
2550 -- For derived types, the rule will be checked once we've figured
2551 -- out the parent type.
2552
2553 when N_Derived_Type_Definition =>
2554 null;
2555
2556 -- For record types, discriminants are allowed, unless we are in
2557 -- SPARK.
2558
2559 when N_Record_Definition =>
2560 if Present (Discriminant_Specifications (N)) then
2561 Check_SPARK_05_Restriction
2562 ("discriminant type is not allowed",
2563 Defining_Identifier
2564 (First (Discriminant_Specifications (N))));
2565 end if;
2566
2567 when others =>
2568 if Present (Discriminant_Specifications (N)) then
2569 Error_Msg_N
2570 ("elementary or array type cannot have discriminants",
2571 Defining_Identifier
2572 (First (Discriminant_Specifications (N))));
2573 end if;
2574 end case;
2575
2576 -- Elaborate the type definition according to kind, and generate
2577 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2578 -- already done (this happens during the reanalysis that follows a call
2579 -- to the high level optimizer).
2580
2581 if not Analyzed (T) then
2582 Set_Analyzed (T);
2583
2584 case Nkind (Def) is
2585
2586 when N_Access_To_Subprogram_Definition =>
2587 Access_Subprogram_Declaration (T, Def);
2588
2589 -- If this is a remote access to subprogram, we must create the
2590 -- equivalent fat pointer type, and related subprograms.
2591
2592 if Is_Remote then
2593 Process_Remote_AST_Declaration (N);
2594 end if;
2595
2596 -- Validate categorization rule against access type declaration
2597 -- usually a violation in Pure unit, Shared_Passive unit.
2598
2599 Validate_Access_Type_Declaration (T, N);
2600
2601 when N_Access_To_Object_Definition =>
2602 Access_Type_Declaration (T, Def);
2603
2604 -- Validate categorization rule against access type declaration
2605 -- usually a violation in Pure unit, Shared_Passive unit.
2606
2607 Validate_Access_Type_Declaration (T, N);
2608
2609 -- If we are in a Remote_Call_Interface package and define a
2610 -- RACW, then calling stubs and specific stream attributes
2611 -- must be added.
2612
2613 if Is_Remote
2614 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2615 then
2616 Add_RACW_Features (Def_Id);
2617 end if;
2618
2619 -- Set no strict aliasing flag if config pragma seen
2620
2621 if Opt.No_Strict_Aliasing then
2622 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2623 end if;
2624
2625 when N_Array_Type_Definition =>
2626 Array_Type_Declaration (T, Def);
2627
2628 when N_Derived_Type_Definition =>
2629 Derived_Type_Declaration (T, N, T /= Def_Id);
2630
2631 when N_Enumeration_Type_Definition =>
2632 Enumeration_Type_Declaration (T, Def);
2633
2634 when N_Floating_Point_Definition =>
2635 Floating_Point_Type_Declaration (T, Def);
2636
2637 when N_Decimal_Fixed_Point_Definition =>
2638 Decimal_Fixed_Point_Type_Declaration (T, Def);
2639
2640 when N_Ordinary_Fixed_Point_Definition =>
2641 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2642
2643 when N_Signed_Integer_Type_Definition =>
2644 Signed_Integer_Type_Declaration (T, Def);
2645
2646 when N_Modular_Type_Definition =>
2647 Modular_Type_Declaration (T, Def);
2648
2649 when N_Record_Definition =>
2650 Record_Type_Declaration (T, N, Prev);
2651
2652 -- If declaration has a parse error, nothing to elaborate.
2653
2654 when N_Error =>
2655 null;
2656
2657 when others =>
2658 raise Program_Error;
2659
2660 end case;
2661 end if;
2662
2663 if Etype (T) = Any_Type then
2664 return;
2665 end if;
2666
2667 -- Controlled type is not allowed in SPARK
2668
2669 if Is_Visibly_Controlled (T) then
2670 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2671 end if;
2672
2673 -- Some common processing for all types
2674
2675 Set_Depends_On_Private (T, Has_Private_Component (T));
2676 Check_Ops_From_Incomplete_Type;
2677
2678 -- Both the declared entity, and its anonymous base type if one
2679 -- was created, need freeze nodes allocated.
2680
2681 declare
2682 B : constant Entity_Id := Base_Type (T);
2683
2684 begin
2685 -- In the case where the base type differs from the first subtype, we
2686 -- pre-allocate a freeze node, and set the proper link to the first
2687 -- subtype. Freeze_Entity will use this preallocated freeze node when
2688 -- it freezes the entity.
2689
2690 -- This does not apply if the base type is a generic type, whose
2691 -- declaration is independent of the current derived definition.
2692
2693 if B /= T and then not Is_Generic_Type (B) then
2694 Ensure_Freeze_Node (B);
2695 Set_First_Subtype_Link (Freeze_Node (B), T);
2696 end if;
2697
2698 -- A type that is imported through a limited_with clause cannot
2699 -- generate any code, and thus need not be frozen. However, an access
2700 -- type with an imported designated type needs a finalization list,
2701 -- which may be referenced in some other package that has non-limited
2702 -- visibility on the designated type. Thus we must create the
2703 -- finalization list at the point the access type is frozen, to
2704 -- prevent unsatisfied references at link time.
2705
2706 if not From_Limited_With (T) or else Is_Access_Type (T) then
2707 Set_Has_Delayed_Freeze (T);
2708 end if;
2709 end;
2710
2711 -- Case where T is the full declaration of some private type which has
2712 -- been swapped in Defining_Identifier (N).
2713
2714 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2715 Process_Full_View (N, T, Def_Id);
2716
2717 -- Record the reference. The form of this is a little strange, since
2718 -- the full declaration has been swapped in. So the first parameter
2719 -- here represents the entity to which a reference is made which is
2720 -- the "real" entity, i.e. the one swapped in, and the second
2721 -- parameter provides the reference location.
2722
2723 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2724 -- since we don't want a complaint about the full type being an
2725 -- unwanted reference to the private type
2726
2727 declare
2728 B : constant Boolean := Has_Pragma_Unreferenced (T);
2729 begin
2730 Set_Has_Pragma_Unreferenced (T, False);
2731 Generate_Reference (T, T, 'c');
2732 Set_Has_Pragma_Unreferenced (T, B);
2733 end;
2734
2735 Set_Completion_Referenced (Def_Id);
2736
2737 -- For completion of incomplete type, process incomplete dependents
2738 -- and always mark the full type as referenced (it is the incomplete
2739 -- type that we get for any real reference).
2740
2741 elsif Ekind (Prev) = E_Incomplete_Type then
2742 Process_Incomplete_Dependents (N, T, Prev);
2743 Generate_Reference (Prev, Def_Id, 'c');
2744 Set_Completion_Referenced (Def_Id);
2745
2746 -- If not private type or incomplete type completion, this is a real
2747 -- definition of a new entity, so record it.
2748
2749 else
2750 Generate_Definition (Def_Id);
2751 end if;
2752
2753 if Chars (Scope (Def_Id)) = Name_System
2754 and then Chars (Def_Id) = Name_Address
2755 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2756 then
2757 Set_Is_Descendent_Of_Address (Def_Id);
2758 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2759 Set_Is_Descendent_Of_Address (Prev);
2760 end if;
2761
2762 Set_Optimize_Alignment_Flags (Def_Id);
2763 Check_Eliminated (Def_Id);
2764
2765 -- If the declaration is a completion and aspects are present, apply
2766 -- them to the entity for the type which is currently the partial
2767 -- view, but which is the one that will be frozen.
2768
2769 if Has_Aspects (N) then
2770 if Prev /= Def_Id then
2771 Analyze_Aspect_Specifications (N, Prev);
2772 else
2773 Analyze_Aspect_Specifications (N, Def_Id);
2774 end if;
2775 end if;
2776 end Analyze_Full_Type_Declaration;
2777
2778 ----------------------------------
2779 -- Analyze_Incomplete_Type_Decl --
2780 ----------------------------------
2781
2782 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2783 F : constant Boolean := Is_Pure (Current_Scope);
2784 T : Entity_Id;
2785
2786 begin
2787 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2788
2789 Generate_Definition (Defining_Identifier (N));
2790
2791 -- Process an incomplete declaration. The identifier must not have been
2792 -- declared already in the scope. However, an incomplete declaration may
2793 -- appear in the private part of a package, for a private type that has
2794 -- already been declared.
2795
2796 -- In this case, the discriminants (if any) must match
2797
2798 T := Find_Type_Name (N);
2799
2800 Set_Ekind (T, E_Incomplete_Type);
2801 Init_Size_Align (T);
2802 Set_Is_First_Subtype (T, True);
2803 Set_Etype (T, T);
2804
2805 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2806 -- incomplete types.
2807
2808 if Tagged_Present (N) then
2809 Set_Is_Tagged_Type (T);
2810 Make_Class_Wide_Type (T);
2811 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2812 end if;
2813
2814 Push_Scope (T);
2815
2816 Set_Stored_Constraint (T, No_Elist);
2817
2818 if Present (Discriminant_Specifications (N)) then
2819 Process_Discriminants (N);
2820 end if;
2821
2822 End_Scope;
2823
2824 -- If the type has discriminants, non-trivial subtypes may be
2825 -- declared before the full view of the type. The full views of those
2826 -- subtypes will be built after the full view of the type.
2827
2828 Set_Private_Dependents (T, New_Elmt_List);
2829 Set_Is_Pure (T, F);
2830 end Analyze_Incomplete_Type_Decl;
2831
2832 -----------------------------------
2833 -- Analyze_Interface_Declaration --
2834 -----------------------------------
2835
2836 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2837 CW : constant Entity_Id := Class_Wide_Type (T);
2838
2839 begin
2840 Set_Is_Tagged_Type (T);
2841
2842 Set_Is_Limited_Record (T, Limited_Present (Def)
2843 or else Task_Present (Def)
2844 or else Protected_Present (Def)
2845 or else Synchronized_Present (Def));
2846
2847 -- Type is abstract if full declaration carries keyword, or if previous
2848 -- partial view did.
2849
2850 Set_Is_Abstract_Type (T);
2851 Set_Is_Interface (T);
2852
2853 -- Type is a limited interface if it includes the keyword limited, task,
2854 -- protected, or synchronized.
2855
2856 Set_Is_Limited_Interface
2857 (T, Limited_Present (Def)
2858 or else Protected_Present (Def)
2859 or else Synchronized_Present (Def)
2860 or else Task_Present (Def));
2861
2862 Set_Interfaces (T, New_Elmt_List);
2863 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2864
2865 -- Complete the decoration of the class-wide entity if it was already
2866 -- built (i.e. during the creation of the limited view)
2867
2868 if Present (CW) then
2869 Set_Is_Interface (CW);
2870 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2871 end if;
2872
2873 -- Check runtime support for synchronized interfaces
2874
2875 if VM_Target = No_VM
2876 and then (Is_Task_Interface (T)
2877 or else Is_Protected_Interface (T)
2878 or else Is_Synchronized_Interface (T))
2879 and then not RTE_Available (RE_Select_Specific_Data)
2880 then
2881 Error_Msg_CRT ("synchronized interfaces", T);
2882 end if;
2883 end Analyze_Interface_Declaration;
2884
2885 -----------------------------
2886 -- Analyze_Itype_Reference --
2887 -----------------------------
2888
2889 -- Nothing to do. This node is placed in the tree only for the benefit of
2890 -- back end processing, and has no effect on the semantic processing.
2891
2892 procedure Analyze_Itype_Reference (N : Node_Id) is
2893 begin
2894 pragma Assert (Is_Itype (Itype (N)));
2895 null;
2896 end Analyze_Itype_Reference;
2897
2898 --------------------------------
2899 -- Analyze_Number_Declaration --
2900 --------------------------------
2901
2902 procedure Analyze_Number_Declaration (N : Node_Id) is
2903 Id : constant Entity_Id := Defining_Identifier (N);
2904 E : constant Node_Id := Expression (N);
2905 T : Entity_Id;
2906 Index : Interp_Index;
2907 It : Interp;
2908
2909 begin
2910 Generate_Definition (Id);
2911 Enter_Name (Id);
2912
2913 -- This is an optimization of a common case of an integer literal
2914
2915 if Nkind (E) = N_Integer_Literal then
2916 Set_Is_Static_Expression (E, True);
2917 Set_Etype (E, Universal_Integer);
2918
2919 Set_Etype (Id, Universal_Integer);
2920 Set_Ekind (Id, E_Named_Integer);
2921 Set_Is_Frozen (Id, True);
2922 return;
2923 end if;
2924
2925 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2926
2927 -- Process expression, replacing error by integer zero, to avoid
2928 -- cascaded errors or aborts further along in the processing
2929
2930 -- Replace Error by integer zero, which seems least likely to cause
2931 -- cascaded errors.
2932
2933 if E = Error then
2934 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2935 Set_Error_Posted (E);
2936 end if;
2937
2938 Analyze (E);
2939
2940 -- Verify that the expression is static and numeric. If
2941 -- the expression is overloaded, we apply the preference
2942 -- rule that favors root numeric types.
2943
2944 if not Is_Overloaded (E) then
2945 T := Etype (E);
2946 if Has_Dynamic_Predicate_Aspect (T) then
2947 Error_Msg_N
2948 ("subtype has dynamic predicate, "
2949 & "not allowed in number declaration", N);
2950 end if;
2951
2952 else
2953 T := Any_Type;
2954
2955 Get_First_Interp (E, Index, It);
2956 while Present (It.Typ) loop
2957 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2958 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2959 then
2960 if T = Any_Type then
2961 T := It.Typ;
2962
2963 elsif It.Typ = Universal_Real
2964 or else It.Typ = Universal_Integer
2965 then
2966 -- Choose universal interpretation over any other
2967
2968 T := It.Typ;
2969 exit;
2970 end if;
2971 end if;
2972
2973 Get_Next_Interp (Index, It);
2974 end loop;
2975 end if;
2976
2977 if Is_Integer_Type (T) then
2978 Resolve (E, T);
2979 Set_Etype (Id, Universal_Integer);
2980 Set_Ekind (Id, E_Named_Integer);
2981
2982 elsif Is_Real_Type (T) then
2983
2984 -- Because the real value is converted to universal_real, this is a
2985 -- legal context for a universal fixed expression.
2986
2987 if T = Universal_Fixed then
2988 declare
2989 Loc : constant Source_Ptr := Sloc (N);
2990 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2991 Subtype_Mark =>
2992 New_Occurrence_Of (Universal_Real, Loc),
2993 Expression => Relocate_Node (E));
2994
2995 begin
2996 Rewrite (E, Conv);
2997 Analyze (E);
2998 end;
2999
3000 elsif T = Any_Fixed then
3001 Error_Msg_N ("illegal context for mixed mode operation", E);
3002
3003 -- Expression is of the form : universal_fixed * integer. Try to
3004 -- resolve as universal_real.
3005
3006 T := Universal_Real;
3007 Set_Etype (E, T);
3008 end if;
3009
3010 Resolve (E, T);
3011 Set_Etype (Id, Universal_Real);
3012 Set_Ekind (Id, E_Named_Real);
3013
3014 else
3015 Wrong_Type (E, Any_Numeric);
3016 Resolve (E, T);
3017
3018 Set_Etype (Id, T);
3019 Set_Ekind (Id, E_Constant);
3020 Set_Never_Set_In_Source (Id, True);
3021 Set_Is_True_Constant (Id, True);
3022 return;
3023 end if;
3024
3025 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3026 Set_Etype (E, Etype (Id));
3027 end if;
3028
3029 if not Is_OK_Static_Expression (E) then
3030 Flag_Non_Static_Expr
3031 ("non-static expression used in number declaration!", E);
3032 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3033 Set_Etype (E, Any_Type);
3034 end if;
3035 end Analyze_Number_Declaration;
3036
3037 -----------------------------
3038 -- Analyze_Object_Contract --
3039 -----------------------------
3040
3041 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3042 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3043 AR_Val : Boolean := False;
3044 AW_Val : Boolean := False;
3045 ER_Val : Boolean := False;
3046 EW_Val : Boolean := False;
3047 Prag : Node_Id;
3048 Seen : Boolean := False;
3049
3050 begin
3051 if Ekind (Obj_Id) = E_Constant then
3052
3053 -- A constant cannot be effectively volatile. This check is only
3054 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3055 -- rule. Do not flag internally-generated constants that map generic
3056 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3057
3058 if SPARK_Mode = On
3059 and then Is_Effectively_Volatile (Obj_Id)
3060 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3061 then
3062 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3063 end if;
3064
3065 -- The loop parameter in an element iterator over a formal container
3066 -- is declared with an object declaration but no contracts apply.
3067
3068 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3069 null;
3070
3071 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3072
3073 -- The following checks are only relevant when SPARK_Mode is on as
3074 -- they are not standard Ada legality rules. Internally generated
3075 -- temporaries are ignored.
3076
3077 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3078 if Is_Effectively_Volatile (Obj_Id) then
3079
3080 -- The declaration of an effectively volatile object must
3081 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3082
3083 if not Is_Library_Level_Entity (Obj_Id) then
3084 Error_Msg_N
3085 ("volatile variable & must be declared at library level",
3086 Obj_Id);
3087
3088 -- An object of a discriminated type cannot be effectively
3089 -- volatile (SPARK RM C.6(4)).
3090
3091 elsif Has_Discriminants (Obj_Typ) then
3092 Error_Msg_N
3093 ("discriminated object & cannot be volatile", Obj_Id);
3094
3095 -- An object of a tagged type cannot be effectively volatile
3096 -- (SPARK RM C.6(5)).
3097
3098 elsif Is_Tagged_Type (Obj_Typ) then
3099 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3100 end if;
3101
3102 -- The object is not effectively volatile
3103
3104 else
3105 -- A non-effectively volatile object cannot have effectively
3106 -- volatile components (SPARK RM 7.1.3(7)).
3107
3108 if not Is_Effectively_Volatile (Obj_Id)
3109 and then Has_Volatile_Component (Obj_Typ)
3110 then
3111 Error_Msg_N
3112 ("non-volatile object & cannot have volatile components",
3113 Obj_Id);
3114 end if;
3115 end if;
3116 end if;
3117
3118 -- Analyze all external properties
3119
3120 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3121
3122 if Present (Prag) then
3123 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3124 Seen := True;
3125 end if;
3126
3127 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3128
3129 if Present (Prag) then
3130 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3131 Seen := True;
3132 end if;
3133
3134 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3135
3136 if Present (Prag) then
3137 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3138 Seen := True;
3139 end if;
3140
3141 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3142
3143 if Present (Prag) then
3144 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3145 Seen := True;
3146 end if;
3147
3148 -- Verify the mutual interaction of the various external properties
3149
3150 if Seen then
3151 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3152 end if;
3153
3154 -- Check whether the lack of indicator Part_Of agrees with the
3155 -- placement of the variable with respect to the state space.
3156
3157 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3158
3159 if No (Prag) then
3160 Check_Missing_Part_Of (Obj_Id);
3161 end if;
3162 end if;
3163 end Analyze_Object_Contract;
3164
3165 --------------------------------
3166 -- Analyze_Object_Declaration --
3167 --------------------------------
3168
3169 procedure Analyze_Object_Declaration (N : Node_Id) is
3170 Loc : constant Source_Ptr := Sloc (N);
3171 Id : constant Entity_Id := Defining_Identifier (N);
3172 T : Entity_Id;
3173 Act_T : Entity_Id;
3174
3175 E : Node_Id := Expression (N);
3176 -- E is set to Expression (N) throughout this routine. When
3177 -- Expression (N) is modified, E is changed accordingly.
3178
3179 Prev_Entity : Entity_Id := Empty;
3180
3181 function Count_Tasks (T : Entity_Id) return Uint;
3182 -- This function is called when a non-generic library level object of a
3183 -- task type is declared. Its function is to count the static number of
3184 -- tasks declared within the type (it is only called if Has_Tasks is set
3185 -- for T). As a side effect, if an array of tasks with non-static bounds
3186 -- or a variant record type is encountered, Check_Restrictions is called
3187 -- indicating the count is unknown.
3188
3189 -----------------
3190 -- Count_Tasks --
3191 -----------------
3192
3193 function Count_Tasks (T : Entity_Id) return Uint is
3194 C : Entity_Id;
3195 X : Node_Id;
3196 V : Uint;
3197
3198 begin
3199 if Is_Task_Type (T) then
3200 return Uint_1;
3201
3202 elsif Is_Record_Type (T) then
3203 if Has_Discriminants (T) then
3204 Check_Restriction (Max_Tasks, N);
3205 return Uint_0;
3206
3207 else
3208 V := Uint_0;
3209 C := First_Component (T);
3210 while Present (C) loop
3211 V := V + Count_Tasks (Etype (C));
3212 Next_Component (C);
3213 end loop;
3214
3215 return V;
3216 end if;
3217
3218 elsif Is_Array_Type (T) then
3219 X := First_Index (T);
3220 V := Count_Tasks (Component_Type (T));
3221 while Present (X) loop
3222 C := Etype (X);
3223
3224 if not Is_OK_Static_Subtype (C) then
3225 Check_Restriction (Max_Tasks, N);
3226 return Uint_0;
3227 else
3228 V := V * (UI_Max (Uint_0,
3229 Expr_Value (Type_High_Bound (C)) -
3230 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3231 end if;
3232
3233 Next_Index (X);
3234 end loop;
3235
3236 return V;
3237
3238 else
3239 return Uint_0;
3240 end if;
3241 end Count_Tasks;
3242
3243 -- Start of processing for Analyze_Object_Declaration
3244
3245 begin
3246 -- There are three kinds of implicit types generated by an
3247 -- object declaration:
3248
3249 -- 1. Those generated by the original Object Definition
3250
3251 -- 2. Those generated by the Expression
3252
3253 -- 3. Those used to constrain the Object Definition with the
3254 -- expression constraints when the definition is unconstrained.
3255
3256 -- They must be generated in this order to avoid order of elaboration
3257 -- issues. Thus the first step (after entering the name) is to analyze
3258 -- the object definition.
3259
3260 if Constant_Present (N) then
3261 Prev_Entity := Current_Entity_In_Scope (Id);
3262
3263 if Present (Prev_Entity)
3264 and then
3265 -- If the homograph is an implicit subprogram, it is overridden
3266 -- by the current declaration.
3267
3268 ((Is_Overloadable (Prev_Entity)
3269 and then Is_Inherited_Operation (Prev_Entity))
3270
3271 -- The current object is a discriminal generated for an entry
3272 -- family index. Even though the index is a constant, in this
3273 -- particular context there is no true constant redeclaration.
3274 -- Enter_Name will handle the visibility.
3275
3276 or else
3277 (Is_Discriminal (Id)
3278 and then Ekind (Discriminal_Link (Id)) =
3279 E_Entry_Index_Parameter)
3280
3281 -- The current object is the renaming for a generic declared
3282 -- within the instance.
3283
3284 or else
3285 (Ekind (Prev_Entity) = E_Package
3286 and then Nkind (Parent (Prev_Entity)) =
3287 N_Package_Renaming_Declaration
3288 and then not Comes_From_Source (Prev_Entity)
3289 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3290 then
3291 Prev_Entity := Empty;
3292 end if;
3293 end if;
3294
3295 if Present (Prev_Entity) then
3296 Constant_Redeclaration (Id, N, T);
3297
3298 Generate_Reference (Prev_Entity, Id, 'c');
3299 Set_Completion_Referenced (Id);
3300
3301 if Error_Posted (N) then
3302
3303 -- Type mismatch or illegal redeclaration, Do not analyze
3304 -- expression to avoid cascaded errors.
3305
3306 T := Find_Type_Of_Object (Object_Definition (N), N);
3307 Set_Etype (Id, T);
3308 Set_Ekind (Id, E_Variable);
3309 goto Leave;
3310 end if;
3311
3312 -- In the normal case, enter identifier at the start to catch premature
3313 -- usage in the initialization expression.
3314
3315 else
3316 Generate_Definition (Id);
3317 Enter_Name (Id);
3318
3319 Mark_Coextensions (N, Object_Definition (N));
3320
3321 T := Find_Type_Of_Object (Object_Definition (N), N);
3322
3323 if Nkind (Object_Definition (N)) = N_Access_Definition
3324 and then Present
3325 (Access_To_Subprogram_Definition (Object_Definition (N)))
3326 and then Protected_Present
3327 (Access_To_Subprogram_Definition (Object_Definition (N)))
3328 then
3329 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3330 end if;
3331
3332 if Error_Posted (Id) then
3333 Set_Etype (Id, T);
3334 Set_Ekind (Id, E_Variable);
3335 goto Leave;
3336 end if;
3337 end if;
3338
3339 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3340 -- out some static checks
3341
3342 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3343
3344 -- In case of aggregates we must also take care of the correct
3345 -- initialization of nested aggregates bug this is done at the
3346 -- point of the analysis of the aggregate (see sem_aggr.adb).
3347
3348 if Present (Expression (N))
3349 and then Nkind (Expression (N)) = N_Aggregate
3350 then
3351 null;
3352
3353 else
3354 declare
3355 Save_Typ : constant Entity_Id := Etype (Id);
3356 begin
3357 Set_Etype (Id, T); -- Temp. decoration for static checks
3358 Null_Exclusion_Static_Checks (N);
3359 Set_Etype (Id, Save_Typ);
3360 end;
3361 end if;
3362 end if;
3363
3364 -- Object is marked pure if it is in a pure scope
3365
3366 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3367
3368 -- If deferred constant, make sure context is appropriate. We detect
3369 -- a deferred constant as a constant declaration with no expression.
3370 -- A deferred constant can appear in a package body if its completion
3371 -- is by means of an interface pragma.
3372
3373 if Constant_Present (N) and then No (E) then
3374
3375 -- A deferred constant may appear in the declarative part of the
3376 -- following constructs:
3377
3378 -- blocks
3379 -- entry bodies
3380 -- extended return statements
3381 -- package specs
3382 -- package bodies
3383 -- subprogram bodies
3384 -- task bodies
3385
3386 -- When declared inside a package spec, a deferred constant must be
3387 -- completed by a full constant declaration or pragma Import. In all
3388 -- other cases, the only proper completion is pragma Import. Extended
3389 -- return statements are flagged as invalid contexts because they do
3390 -- not have a declarative part and so cannot accommodate the pragma.
3391
3392 if Ekind (Current_Scope) = E_Return_Statement then
3393 Error_Msg_N
3394 ("invalid context for deferred constant declaration (RM 7.4)",
3395 N);
3396 Error_Msg_N
3397 ("\declaration requires an initialization expression",
3398 N);
3399 Set_Constant_Present (N, False);
3400
3401 -- In Ada 83, deferred constant must be of private type
3402
3403 elsif not Is_Private_Type (T) then
3404 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3405 Error_Msg_N
3406 ("(Ada 83) deferred constant must be private type", N);
3407 end if;
3408 end if;
3409
3410 -- If not a deferred constant, then the object declaration freezes
3411 -- its type, unless the object is of an anonymous type and has delayed
3412 -- aspects. In that case the type is frozen when the object itself is.
3413
3414 else
3415 Check_Fully_Declared (T, N);
3416
3417 if Has_Delayed_Aspects (Id)
3418 and then Is_Array_Type (T)
3419 and then Is_Itype (T)
3420 then
3421 Set_Has_Delayed_Freeze (T);
3422 else
3423 Freeze_Before (N, T);
3424 end if;
3425 end if;
3426
3427 -- If the object was created by a constrained array definition, then
3428 -- set the link in both the anonymous base type and anonymous subtype
3429 -- that are built to represent the array type to point to the object.
3430
3431 if Nkind (Object_Definition (Declaration_Node (Id))) =
3432 N_Constrained_Array_Definition
3433 then
3434 Set_Related_Array_Object (T, Id);
3435 Set_Related_Array_Object (Base_Type (T), Id);
3436 end if;
3437
3438 -- Special checks for protected objects not at library level
3439
3440 if Is_Protected_Type (T)
3441 and then not Is_Library_Level_Entity (Id)
3442 then
3443 Check_Restriction (No_Local_Protected_Objects, Id);
3444
3445 -- Protected objects with interrupt handlers must be at library level
3446
3447 -- Ada 2005: This test is not needed (and the corresponding clause
3448 -- in the RM is removed) because accessibility checks are sufficient
3449 -- to make handlers not at the library level illegal.
3450
3451 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3452 -- applies to the '95 version of the language as well.
3453
3454 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3455 Error_Msg_N
3456 ("interrupt object can only be declared at library level", Id);
3457 end if;
3458 end if;
3459
3460 -- The actual subtype of the object is the nominal subtype, unless
3461 -- the nominal one is unconstrained and obtained from the expression.
3462
3463 Act_T := T;
3464
3465 -- These checks should be performed before the initialization expression
3466 -- is considered, so that the Object_Definition node is still the same
3467 -- as in source code.
3468
3469 -- In SPARK, the nominal subtype is always given by a subtype mark
3470 -- and must not be unconstrained. (The only exception to this is the
3471 -- acceptance of declarations of constants of type String.)
3472
3473 if not
3474 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3475 then
3476 Check_SPARK_05_Restriction
3477 ("subtype mark required", Object_Definition (N));
3478
3479 elsif Is_Array_Type (T)
3480 and then not Is_Constrained (T)
3481 and then T /= Standard_String
3482 then
3483 Check_SPARK_05_Restriction
3484 ("subtype mark of constrained type expected",
3485 Object_Definition (N));
3486 end if;
3487
3488 -- There are no aliased objects in SPARK
3489
3490 if Aliased_Present (N) then
3491 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3492 end if;
3493
3494 -- Process initialization expression if present and not in error
3495
3496 if Present (E) and then E /= Error then
3497
3498 -- Generate an error in case of CPP class-wide object initialization.
3499 -- Required because otherwise the expansion of the class-wide
3500 -- assignment would try to use 'size to initialize the object
3501 -- (primitive that is not available in CPP tagged types).
3502
3503 if Is_Class_Wide_Type (Act_T)
3504 and then
3505 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3506 or else
3507 (Present (Full_View (Root_Type (Etype (Act_T))))
3508 and then
3509 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3510 then
3511 Error_Msg_N
3512 ("predefined assignment not available for 'C'P'P tagged types",
3513 E);
3514 end if;
3515
3516 Mark_Coextensions (N, E);
3517 Analyze (E);
3518
3519 -- In case of errors detected in the analysis of the expression,
3520 -- decorate it with the expected type to avoid cascaded errors
3521
3522 if No (Etype (E)) then
3523 Set_Etype (E, T);
3524 end if;
3525
3526 -- If an initialization expression is present, then we set the
3527 -- Is_True_Constant flag. It will be reset if this is a variable
3528 -- and it is indeed modified.
3529
3530 Set_Is_True_Constant (Id, True);
3531
3532 -- If we are analyzing a constant declaration, set its completion
3533 -- flag after analyzing and resolving the expression.
3534
3535 if Constant_Present (N) then
3536 Set_Has_Completion (Id);
3537 end if;
3538
3539 -- Set type and resolve (type may be overridden later on). Note:
3540 -- Ekind (Id) must still be E_Void at this point so that incorrect
3541 -- early usage within E is properly diagnosed.
3542
3543 Set_Etype (Id, T);
3544
3545 -- If the expression is an aggregate we must look ahead to detect
3546 -- the possible presence of an address clause, and defer resolution
3547 -- and expansion of the aggregate to the freeze point of the entity.
3548
3549 if Comes_From_Source (N)
3550 and then Expander_Active
3551 and then Has_Following_Address_Clause (N)
3552 and then Nkind (E) = N_Aggregate
3553 then
3554 Set_Etype (E, T);
3555
3556 else
3557 Resolve (E, T);
3558 end if;
3559
3560 -- No further action needed if E is a call to an inlined function
3561 -- which returns an unconstrained type and it has been expanded into
3562 -- a procedure call. In that case N has been replaced by an object
3563 -- declaration without initializing expression and it has been
3564 -- analyzed (see Expand_Inlined_Call).
3565
3566 if Back_End_Inlining
3567 and then Expander_Active
3568 and then Nkind (E) = N_Function_Call
3569 and then Nkind (Name (E)) in N_Has_Entity
3570 and then Is_Inlined (Entity (Name (E)))
3571 and then not Is_Constrained (Etype (E))
3572 and then Analyzed (N)
3573 and then No (Expression (N))
3574 then
3575 return;
3576 end if;
3577
3578 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3579 -- node (which was marked already-analyzed), we need to set the type
3580 -- to something other than Any_Access in order to keep gigi happy.
3581
3582 if Etype (E) = Any_Access then
3583 Set_Etype (E, T);
3584 end if;
3585
3586 -- If the object is an access to variable, the initialization
3587 -- expression cannot be an access to constant.
3588
3589 if Is_Access_Type (T)
3590 and then not Is_Access_Constant (T)
3591 and then Is_Access_Type (Etype (E))
3592 and then Is_Access_Constant (Etype (E))
3593 then
3594 Error_Msg_N
3595 ("access to variable cannot be initialized "
3596 & "with an access-to-constant expression", E);
3597 end if;
3598
3599 if not Assignment_OK (N) then
3600 Check_Initialization (T, E);
3601 end if;
3602
3603 Check_Unset_Reference (E);
3604
3605 -- If this is a variable, then set current value. If this is a
3606 -- declared constant of a scalar type with a static expression,
3607 -- indicate that it is always valid.
3608
3609 if not Constant_Present (N) then
3610 if Compile_Time_Known_Value (E) then
3611 Set_Current_Value (Id, E);
3612 end if;
3613
3614 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3615 Set_Is_Known_Valid (Id);
3616 end if;
3617
3618 -- Deal with setting of null flags
3619
3620 if Is_Access_Type (T) then
3621 if Known_Non_Null (E) then
3622 Set_Is_Known_Non_Null (Id, True);
3623 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3624 Set_Is_Known_Null (Id, True);
3625 end if;
3626 end if;
3627
3628 -- Check incorrect use of dynamically tagged expressions
3629
3630 if Is_Tagged_Type (T) then
3631 Check_Dynamically_Tagged_Expression
3632 (Expr => E,
3633 Typ => T,
3634 Related_Nod => N);
3635 end if;
3636
3637 Apply_Scalar_Range_Check (E, T);
3638 Apply_Static_Length_Check (E, T);
3639
3640 if Nkind (Original_Node (N)) = N_Object_Declaration
3641 and then Comes_From_Source (Original_Node (N))
3642
3643 -- Only call test if needed
3644
3645 and then Restriction_Check_Required (SPARK_05)
3646 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3647 then
3648 Check_SPARK_05_Restriction
3649 ("initialization expression is not appropriate", E);
3650 end if;
3651 end if;
3652
3653 -- If the No_Streams restriction is set, check that the type of the
3654 -- object is not, and does not contain, any subtype derived from
3655 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3656 -- Has_Stream just for efficiency reasons. There is no point in
3657 -- spending time on a Has_Stream check if the restriction is not set.
3658
3659 if Restriction_Check_Required (No_Streams) then
3660 if Has_Stream (T) then
3661 Check_Restriction (No_Streams, N);
3662 end if;
3663 end if;
3664
3665 -- Deal with predicate check before we start to do major rewriting. It
3666 -- is OK to initialize and then check the initialized value, since the
3667 -- object goes out of scope if we get a predicate failure. Note that we
3668 -- do this in the analyzer and not the expander because the analyzer
3669 -- does some substantial rewriting in some cases.
3670
3671 -- We need a predicate check if the type has predicates, and if either
3672 -- there is an initializing expression, or for default initialization
3673 -- when we have at least one case of an explicit default initial value
3674 -- and then this is not an internal declaration whose initialization
3675 -- comes later (as for an aggregate expansion).
3676
3677 if not Suppress_Assignment_Checks (N)
3678 and then Present (Predicate_Function (T))
3679 and then not No_Initialization (N)
3680 and then
3681 (Present (E)
3682 or else
3683 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3684 then
3685 -- If the type has a static predicate and the expression is known at
3686 -- compile time, see if the expression satisfies the predicate.
3687
3688 if Present (E) then
3689 Check_Expression_Against_Static_Predicate (E, T);
3690 end if;
3691
3692 Insert_After (N,
3693 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3694 end if;
3695
3696 -- Case of unconstrained type
3697
3698 if Is_Indefinite_Subtype (T) then
3699
3700 -- In SPARK, a declaration of unconstrained type is allowed
3701 -- only for constants of type string.
3702
3703 if Is_String_Type (T) and then not Constant_Present (N) then
3704 Check_SPARK_05_Restriction
3705 ("declaration of object of unconstrained type not allowed", N);
3706 end if;
3707
3708 -- Nothing to do in deferred constant case
3709
3710 if Constant_Present (N) and then No (E) then
3711 null;
3712
3713 -- Case of no initialization present
3714
3715 elsif No (E) then
3716 if No_Initialization (N) then
3717 null;
3718
3719 elsif Is_Class_Wide_Type (T) then
3720 Error_Msg_N
3721 ("initialization required in class-wide declaration ", N);
3722
3723 else
3724 Error_Msg_N
3725 ("unconstrained subtype not allowed (need initialization)",
3726 Object_Definition (N));
3727
3728 if Is_Record_Type (T) and then Has_Discriminants (T) then
3729 Error_Msg_N
3730 ("\provide initial value or explicit discriminant values",
3731 Object_Definition (N));
3732
3733 Error_Msg_NE
3734 ("\or give default discriminant values for type&",
3735 Object_Definition (N), T);
3736
3737 elsif Is_Array_Type (T) then
3738 Error_Msg_N
3739 ("\provide initial value or explicit array bounds",
3740 Object_Definition (N));
3741 end if;
3742 end if;
3743
3744 -- Case of initialization present but in error. Set initial
3745 -- expression as absent (but do not make above complaints)
3746
3747 elsif E = Error then
3748 Set_Expression (N, Empty);
3749 E := Empty;
3750
3751 -- Case of initialization present
3752
3753 else
3754 -- Check restrictions in Ada 83
3755
3756 if not Constant_Present (N) then
3757
3758 -- Unconstrained variables not allowed in Ada 83 mode
3759
3760 if Ada_Version = Ada_83
3761 and then Comes_From_Source (Object_Definition (N))
3762 then
3763 Error_Msg_N
3764 ("(Ada 83) unconstrained variable not allowed",
3765 Object_Definition (N));
3766 end if;
3767 end if;
3768
3769 -- Now we constrain the variable from the initializing expression
3770
3771 -- If the expression is an aggregate, it has been expanded into
3772 -- individual assignments. Retrieve the actual type from the
3773 -- expanded construct.
3774
3775 if Is_Array_Type (T)
3776 and then No_Initialization (N)
3777 and then Nkind (Original_Node (E)) = N_Aggregate
3778 then
3779 Act_T := Etype (E);
3780
3781 -- In case of class-wide interface object declarations we delay
3782 -- the generation of the equivalent record type declarations until
3783 -- its expansion because there are cases in they are not required.
3784
3785 elsif Is_Interface (T) then
3786 null;
3787
3788 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3789 -- we should prevent the generation of another Itype with the
3790 -- same name as the one already generated, or we end up with
3791 -- two identical types in GNATprove.
3792
3793 elsif GNATprove_Mode then
3794 null;
3795
3796 else
3797 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3798 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3799 end if;
3800
3801 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3802
3803 if Aliased_Present (N) then
3804 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3805 end if;
3806
3807 Freeze_Before (N, Act_T);
3808 Freeze_Before (N, T);
3809 end if;
3810
3811 elsif Is_Array_Type (T)
3812 and then No_Initialization (N)
3813 and then Nkind (Original_Node (E)) = N_Aggregate
3814 then
3815 if not Is_Entity_Name (Object_Definition (N)) then
3816 Act_T := Etype (E);
3817 Check_Compile_Time_Size (Act_T);
3818
3819 if Aliased_Present (N) then
3820 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3821 end if;
3822 end if;
3823
3824 -- When the given object definition and the aggregate are specified
3825 -- independently, and their lengths might differ do a length check.
3826 -- This cannot happen if the aggregate is of the form (others =>...)
3827
3828 if not Is_Constrained (T) then
3829 null;
3830
3831 elsif Nkind (E) = N_Raise_Constraint_Error then
3832
3833 -- Aggregate is statically illegal. Place back in declaration
3834
3835 Set_Expression (N, E);
3836 Set_No_Initialization (N, False);
3837
3838 elsif T = Etype (E) then
3839 null;
3840
3841 elsif Nkind (E) = N_Aggregate
3842 and then Present (Component_Associations (E))
3843 and then Present (Choices (First (Component_Associations (E))))
3844 and then Nkind (First
3845 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3846 then
3847 null;
3848
3849 else
3850 Apply_Length_Check (E, T);
3851 end if;
3852
3853 -- If the type is limited unconstrained with defaulted discriminants and
3854 -- there is no expression, then the object is constrained by the
3855 -- defaults, so it is worthwhile building the corresponding subtype.
3856
3857 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3858 and then not Is_Constrained (T)
3859 and then Has_Discriminants (T)
3860 then
3861 if No (E) then
3862 Act_T := Build_Default_Subtype (T, N);
3863 else
3864 -- Ada 2005: A limited object may be initialized by means of an
3865 -- aggregate. If the type has default discriminants it has an
3866 -- unconstrained nominal type, Its actual subtype will be obtained
3867 -- from the aggregate, and not from the default discriminants.
3868
3869 Act_T := Etype (E);
3870 end if;
3871
3872 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3873
3874 elsif Nkind (E) = N_Function_Call
3875 and then Constant_Present (N)
3876 and then Has_Unconstrained_Elements (Etype (E))
3877 then
3878 -- The back-end has problems with constants of a discriminated type
3879 -- with defaults, if the initial value is a function call. We
3880 -- generate an intermediate temporary that will receive a reference
3881 -- to the result of the call. The initialization expression then
3882 -- becomes a dereference of that temporary.
3883
3884 Remove_Side_Effects (E);
3885
3886 -- If this is a constant declaration of an unconstrained type and
3887 -- the initialization is an aggregate, we can use the subtype of the
3888 -- aggregate for the declared entity because it is immutable.
3889
3890 elsif not Is_Constrained (T)
3891 and then Has_Discriminants (T)
3892 and then Constant_Present (N)
3893 and then not Has_Unchecked_Union (T)
3894 and then Nkind (E) = N_Aggregate
3895 then
3896 Act_T := Etype (E);
3897 end if;
3898
3899 -- Check No_Wide_Characters restriction
3900
3901 Check_Wide_Character_Restriction (T, Object_Definition (N));
3902
3903 -- Indicate this is not set in source. Certainly true for constants, and
3904 -- true for variables so far (will be reset for a variable if and when
3905 -- we encounter a modification in the source).
3906
3907 Set_Never_Set_In_Source (Id, True);
3908
3909 -- Now establish the proper kind and type of the object
3910
3911 if Constant_Present (N) then
3912 Set_Ekind (Id, E_Constant);
3913 Set_Is_True_Constant (Id);
3914
3915 else
3916 Set_Ekind (Id, E_Variable);
3917
3918 -- A variable is set as shared passive if it appears in a shared
3919 -- passive package, and is at the outer level. This is not done for
3920 -- entities generated during expansion, because those are always
3921 -- manipulated locally.
3922
3923 if Is_Shared_Passive (Current_Scope)
3924 and then Is_Library_Level_Entity (Id)
3925 and then Comes_From_Source (Id)
3926 then
3927 Set_Is_Shared_Passive (Id);
3928 Check_Shared_Var (Id, T, N);
3929 end if;
3930
3931 -- Set Has_Initial_Value if initializing expression present. Note
3932 -- that if there is no initializing expression, we leave the state
3933 -- of this flag unchanged (usually it will be False, but notably in
3934 -- the case of exception choice variables, it will already be true).
3935
3936 if Present (E) then
3937 Set_Has_Initial_Value (Id, True);
3938 end if;
3939
3940 Set_Contract (Id, Make_Contract (Sloc (Id)));
3941 end if;
3942
3943 -- Initialize alignment and size and capture alignment setting
3944
3945 Init_Alignment (Id);
3946 Init_Esize (Id);
3947 Set_Optimize_Alignment_Flags (Id);
3948
3949 -- Deal with aliased case
3950
3951 if Aliased_Present (N) then
3952 Set_Is_Aliased (Id);
3953
3954 -- If the object is aliased and the type is unconstrained with
3955 -- defaulted discriminants and there is no expression, then the
3956 -- object is constrained by the defaults, so it is worthwhile
3957 -- building the corresponding subtype.
3958
3959 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3960 -- unconstrained, then only establish an actual subtype if the
3961 -- nominal subtype is indefinite. In definite cases the object is
3962 -- unconstrained in Ada 2005.
3963
3964 if No (E)
3965 and then Is_Record_Type (T)
3966 and then not Is_Constrained (T)
3967 and then Has_Discriminants (T)
3968 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3969 then
3970 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3971 end if;
3972 end if;
3973
3974 -- Now we can set the type of the object
3975
3976 Set_Etype (Id, Act_T);
3977
3978 -- Non-constant object is marked to be treated as volatile if type is
3979 -- volatile and we clear the Current_Value setting that may have been
3980 -- set above. Doing so for constants isn't required and might interfere
3981 -- with possible uses of the object as a static expression in contexts
3982 -- incompatible with volatility (e.g. as a case-statement alternative).
3983
3984 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3985 Set_Treat_As_Volatile (Id);
3986 Set_Current_Value (Id, Empty);
3987 end if;
3988
3989 -- Deal with controlled types
3990
3991 if Has_Controlled_Component (Etype (Id))
3992 or else Is_Controlled (Etype (Id))
3993 then
3994 if not Is_Library_Level_Entity (Id) then
3995 Check_Restriction (No_Nested_Finalization, N);
3996 else
3997 Validate_Controlled_Object (Id);
3998 end if;
3999 end if;
4000
4001 if Has_Task (Etype (Id)) then
4002 Check_Restriction (No_Tasking, N);
4003
4004 -- Deal with counting max tasks
4005
4006 -- Nothing to do if inside a generic
4007
4008 if Inside_A_Generic then
4009 null;
4010
4011 -- If library level entity, then count tasks
4012
4013 elsif Is_Library_Level_Entity (Id) then
4014 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4015
4016 -- If not library level entity, then indicate we don't know max
4017 -- tasks and also check task hierarchy restriction and blocking
4018 -- operation (since starting a task is definitely blocking).
4019
4020 else
4021 Check_Restriction (Max_Tasks, N);
4022 Check_Restriction (No_Task_Hierarchy, N);
4023 Check_Potentially_Blocking_Operation (N);
4024 end if;
4025
4026 -- A rather specialized test. If we see two tasks being declared
4027 -- of the same type in the same object declaration, and the task
4028 -- has an entry with an address clause, we know that program error
4029 -- will be raised at run time since we can't have two tasks with
4030 -- entries at the same address.
4031
4032 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4033 declare
4034 E : Entity_Id;
4035
4036 begin
4037 E := First_Entity (Etype (Id));
4038 while Present (E) loop
4039 if Ekind (E) = E_Entry
4040 and then Present (Get_Attribute_Definition_Clause
4041 (E, Attribute_Address))
4042 then
4043 Error_Msg_Warn := SPARK_Mode /= On;
4044 Error_Msg_N
4045 ("more than one task with same entry address<<", N);
4046 Error_Msg_N ("\Program_Error [<<", N);
4047 Insert_Action (N,
4048 Make_Raise_Program_Error (Loc,
4049 Reason => PE_Duplicated_Entry_Address));
4050 exit;
4051 end if;
4052
4053 Next_Entity (E);
4054 end loop;
4055 end;
4056 end if;
4057 end if;
4058
4059 -- Some simple constant-propagation: if the expression is a constant
4060 -- string initialized with a literal, share the literal. This avoids
4061 -- a run-time copy.
4062
4063 if Present (E)
4064 and then Is_Entity_Name (E)
4065 and then Ekind (Entity (E)) = E_Constant
4066 and then Base_Type (Etype (E)) = Standard_String
4067 then
4068 declare
4069 Val : constant Node_Id := Constant_Value (Entity (E));
4070 begin
4071 if Present (Val) and then Nkind (Val) = N_String_Literal then
4072 Rewrite (E, New_Copy (Val));
4073 end if;
4074 end;
4075 end if;
4076
4077 -- Another optimization: if the nominal subtype is unconstrained and
4078 -- the expression is a function call that returns an unconstrained
4079 -- type, rewrite the declaration as a renaming of the result of the
4080 -- call. The exceptions below are cases where the copy is expected,
4081 -- either by the back end (Aliased case) or by the semantics, as for
4082 -- initializing controlled types or copying tags for classwide types.
4083
4084 if Present (E)
4085 and then Nkind (E) = N_Explicit_Dereference
4086 and then Nkind (Original_Node (E)) = N_Function_Call
4087 and then not Is_Library_Level_Entity (Id)
4088 and then not Is_Constrained (Underlying_Type (T))
4089 and then not Is_Aliased (Id)
4090 and then not Is_Class_Wide_Type (T)
4091 and then not Is_Controlled (T)
4092 and then not Has_Controlled_Component (Base_Type (T))
4093 and then Expander_Active
4094 then
4095 Rewrite (N,
4096 Make_Object_Renaming_Declaration (Loc,
4097 Defining_Identifier => Id,
4098 Access_Definition => Empty,
4099 Subtype_Mark => New_Occurrence_Of
4100 (Base_Type (Etype (Id)), Loc),
4101 Name => E));
4102
4103 Set_Renamed_Object (Id, E);
4104
4105 -- Force generation of debugging information for the constant and for
4106 -- the renamed function call.
4107
4108 Set_Debug_Info_Needed (Id);
4109 Set_Debug_Info_Needed (Entity (Prefix (E)));
4110 end if;
4111
4112 if Present (Prev_Entity)
4113 and then Is_Frozen (Prev_Entity)
4114 and then not Error_Posted (Id)
4115 then
4116 Error_Msg_N ("full constant declaration appears too late", N);
4117 end if;
4118
4119 Check_Eliminated (Id);
4120
4121 -- Deal with setting In_Private_Part flag if in private part
4122
4123 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4124 then
4125 Set_In_Private_Part (Id);
4126 end if;
4127
4128 -- Check for violation of No_Local_Timing_Events
4129
4130 if Restriction_Check_Required (No_Local_Timing_Events)
4131 and then not Is_Library_Level_Entity (Id)
4132 and then Is_RTE (Etype (Id), RE_Timing_Event)
4133 then
4134 Check_Restriction (No_Local_Timing_Events, N);
4135 end if;
4136
4137 <<Leave>>
4138 -- Initialize the refined state of a variable here because this is a
4139 -- common destination for legal and illegal object declarations.
4140
4141 if Ekind (Id) = E_Variable then
4142 Set_Encapsulating_State (Id, Empty);
4143 end if;
4144
4145 if Has_Aspects (N) then
4146 Analyze_Aspect_Specifications (N, Id);
4147 end if;
4148
4149 Analyze_Dimension (N);
4150
4151 -- Verify whether the object declaration introduces an illegal hidden
4152 -- state within a package subject to a null abstract state.
4153
4154 if Ekind (Id) = E_Variable then
4155 Check_No_Hidden_State (Id);
4156 end if;
4157 end Analyze_Object_Declaration;
4158
4159 ---------------------------
4160 -- Analyze_Others_Choice --
4161 ---------------------------
4162
4163 -- Nothing to do for the others choice node itself, the semantic analysis
4164 -- of the others choice will occur as part of the processing of the parent
4165
4166 procedure Analyze_Others_Choice (N : Node_Id) is
4167 pragma Warnings (Off, N);
4168 begin
4169 null;
4170 end Analyze_Others_Choice;
4171
4172 -------------------------------------------
4173 -- Analyze_Private_Extension_Declaration --
4174 -------------------------------------------
4175
4176 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4177 T : constant Entity_Id := Defining_Identifier (N);
4178 Indic : constant Node_Id := Subtype_Indication (N);
4179 Parent_Type : Entity_Id;
4180 Parent_Base : Entity_Id;
4181
4182 begin
4183 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4184
4185 if Is_Non_Empty_List (Interface_List (N)) then
4186 declare
4187 Intf : Node_Id;
4188 T : Entity_Id;
4189
4190 begin
4191 Intf := First (Interface_List (N));
4192 while Present (Intf) loop
4193 T := Find_Type_Of_Subtype_Indic (Intf);
4194
4195 Diagnose_Interface (Intf, T);
4196 Next (Intf);
4197 end loop;
4198 end;
4199 end if;
4200
4201 Generate_Definition (T);
4202
4203 -- For other than Ada 2012, just enter the name in the current scope
4204
4205 if Ada_Version < Ada_2012 then
4206 Enter_Name (T);
4207
4208 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4209 -- case of private type that completes an incomplete type.
4210
4211 else
4212 declare
4213 Prev : Entity_Id;
4214
4215 begin
4216 Prev := Find_Type_Name (N);
4217
4218 pragma Assert (Prev = T
4219 or else (Ekind (Prev) = E_Incomplete_Type
4220 and then Present (Full_View (Prev))
4221 and then Full_View (Prev) = T));
4222 end;
4223 end if;
4224
4225 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4226 Parent_Base := Base_Type (Parent_Type);
4227
4228 if Parent_Type = Any_Type
4229 or else Etype (Parent_Type) = Any_Type
4230 then
4231 Set_Ekind (T, Ekind (Parent_Type));
4232 Set_Etype (T, Any_Type);
4233 goto Leave;
4234
4235 elsif not Is_Tagged_Type (Parent_Type) then
4236 Error_Msg_N
4237 ("parent of type extension must be a tagged type ", Indic);
4238 goto Leave;
4239
4240 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4241 Error_Msg_N ("premature derivation of incomplete type", Indic);
4242 goto Leave;
4243
4244 elsif Is_Concurrent_Type (Parent_Type) then
4245 Error_Msg_N
4246 ("parent type of a private extension cannot be "
4247 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4248
4249 Set_Etype (T, Any_Type);
4250 Set_Ekind (T, E_Limited_Private_Type);
4251 Set_Private_Dependents (T, New_Elmt_List);
4252 Set_Error_Posted (T);
4253 goto Leave;
4254 end if;
4255
4256 -- Perhaps the parent type should be changed to the class-wide type's
4257 -- specific type in this case to prevent cascading errors ???
4258
4259 if Is_Class_Wide_Type (Parent_Type) then
4260 Error_Msg_N
4261 ("parent of type extension must not be a class-wide type", Indic);
4262 goto Leave;
4263 end if;
4264
4265 if (not Is_Package_Or_Generic_Package (Current_Scope)
4266 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4267 or else In_Private_Part (Current_Scope)
4268
4269 then
4270 Error_Msg_N ("invalid context for private extension", N);
4271 end if;
4272
4273 -- Set common attributes
4274
4275 Set_Is_Pure (T, Is_Pure (Current_Scope));
4276 Set_Scope (T, Current_Scope);
4277 Set_Ekind (T, E_Record_Type_With_Private);
4278 Init_Size_Align (T);
4279 Set_Default_SSO (T);
4280
4281 Set_Etype (T, Parent_Base);
4282 Set_Has_Task (T, Has_Task (Parent_Base));
4283 Set_Has_Protected (T, Has_Task (Parent_Base));
4284
4285 Set_Convention (T, Convention (Parent_Type));
4286 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4287 Set_Is_First_Subtype (T);
4288 Make_Class_Wide_Type (T);
4289
4290 if Unknown_Discriminants_Present (N) then
4291 Set_Discriminant_Constraint (T, No_Elist);
4292 end if;
4293
4294 Build_Derived_Record_Type (N, Parent_Type, T);
4295
4296 -- Propagate inherited invariant information. The new type has
4297 -- invariants, if the parent type has inheritable invariants,
4298 -- and these invariants can in turn be inherited.
4299
4300 if Has_Inheritable_Invariants (Parent_Type) then
4301 Set_Has_Inheritable_Invariants (T);
4302 Set_Has_Invariants (T);
4303 end if;
4304
4305 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4306 -- synchronized formal derived type.
4307
4308 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4309 Set_Is_Limited_Record (T);
4310
4311 -- Formal derived type case
4312
4313 if Is_Generic_Type (T) then
4314
4315 -- The parent must be a tagged limited type or a synchronized
4316 -- interface.
4317
4318 if (not Is_Tagged_Type (Parent_Type)
4319 or else not Is_Limited_Type (Parent_Type))
4320 and then
4321 (not Is_Interface (Parent_Type)
4322 or else not Is_Synchronized_Interface (Parent_Type))
4323 then
4324 Error_Msg_NE ("parent type of & must be tagged limited " &
4325 "or synchronized", N, T);
4326 end if;
4327
4328 -- The progenitors (if any) must be limited or synchronized
4329 -- interfaces.
4330
4331 if Present (Interfaces (T)) then
4332 declare
4333 Iface : Entity_Id;
4334 Iface_Elmt : Elmt_Id;
4335
4336 begin
4337 Iface_Elmt := First_Elmt (Interfaces (T));
4338 while Present (Iface_Elmt) loop
4339 Iface := Node (Iface_Elmt);
4340
4341 if not Is_Limited_Interface (Iface)
4342 and then not Is_Synchronized_Interface (Iface)
4343 then
4344 Error_Msg_NE ("progenitor & must be limited " &
4345 "or synchronized", N, Iface);
4346 end if;
4347
4348 Next_Elmt (Iface_Elmt);
4349 end loop;
4350 end;
4351 end if;
4352
4353 -- Regular derived extension, the parent must be a limited or
4354 -- synchronized interface.
4355
4356 else
4357 if not Is_Interface (Parent_Type)
4358 or else (not Is_Limited_Interface (Parent_Type)
4359 and then not Is_Synchronized_Interface (Parent_Type))
4360 then
4361 Error_Msg_NE
4362 ("parent type of & must be limited interface", N, T);
4363 end if;
4364 end if;
4365
4366 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4367 -- extension with a synchronized parent must be explicitly declared
4368 -- synchronized, because the full view will be a synchronized type.
4369 -- This must be checked before the check for limited types below,
4370 -- to ensure that types declared limited are not allowed to extend
4371 -- synchronized interfaces.
4372
4373 elsif Is_Interface (Parent_Type)
4374 and then Is_Synchronized_Interface (Parent_Type)
4375 and then not Synchronized_Present (N)
4376 then
4377 Error_Msg_NE
4378 ("private extension of& must be explicitly synchronized",
4379 N, Parent_Type);
4380
4381 elsif Limited_Present (N) then
4382 Set_Is_Limited_Record (T);
4383
4384 if not Is_Limited_Type (Parent_Type)
4385 and then
4386 (not Is_Interface (Parent_Type)
4387 or else not Is_Limited_Interface (Parent_Type))
4388 then
4389 Error_Msg_NE ("parent type& of limited extension must be limited",
4390 N, Parent_Type);
4391 end if;
4392 end if;
4393
4394 <<Leave>>
4395 if Has_Aspects (N) then
4396 Analyze_Aspect_Specifications (N, T);
4397 end if;
4398 end Analyze_Private_Extension_Declaration;
4399
4400 ---------------------------------
4401 -- Analyze_Subtype_Declaration --
4402 ---------------------------------
4403
4404 procedure Analyze_Subtype_Declaration
4405 (N : Node_Id;
4406 Skip : Boolean := False)
4407 is
4408 Id : constant Entity_Id := Defining_Identifier (N);
4409 T : Entity_Id;
4410 R_Checks : Check_Result;
4411
4412 begin
4413 Generate_Definition (Id);
4414 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4415 Init_Size_Align (Id);
4416
4417 -- The following guard condition on Enter_Name is to handle cases where
4418 -- the defining identifier has already been entered into the scope but
4419 -- the declaration as a whole needs to be analyzed.
4420
4421 -- This case in particular happens for derived enumeration types. The
4422 -- derived enumeration type is processed as an inserted enumeration type
4423 -- declaration followed by a rewritten subtype declaration. The defining
4424 -- identifier, however, is entered into the name scope very early in the
4425 -- processing of the original type declaration and therefore needs to be
4426 -- avoided here, when the created subtype declaration is analyzed. (See
4427 -- Build_Derived_Types)
4428
4429 -- This also happens when the full view of a private type is derived
4430 -- type with constraints. In this case the entity has been introduced
4431 -- in the private declaration.
4432
4433 -- Finally this happens in some complex cases when validity checks are
4434 -- enabled, where the same subtype declaration may be analyzed twice.
4435 -- This can happen if the subtype is created by the pre-analysis of
4436 -- an attribute tht gives the range of a loop statement, and the loop
4437 -- itself appears within an if_statement that will be rewritten during
4438 -- expansion.
4439
4440 if Skip
4441 or else (Present (Etype (Id))
4442 and then (Is_Private_Type (Etype (Id))
4443 or else Is_Task_Type (Etype (Id))
4444 or else Is_Rewrite_Substitution (N)))
4445 then
4446 null;
4447
4448 elsif Current_Entity (Id) = Id then
4449 null;
4450
4451 else
4452 Enter_Name (Id);
4453 end if;
4454
4455 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4456
4457 -- Class-wide equivalent types of records with unknown discriminants
4458 -- involve the generation of an itype which serves as the private view
4459 -- of a constrained record subtype. In such cases the base type of the
4460 -- current subtype we are processing is the private itype. Use the full
4461 -- of the private itype when decorating various attributes.
4462
4463 if Is_Itype (T)
4464 and then Is_Private_Type (T)
4465 and then Present (Full_View (T))
4466 then
4467 T := Full_View (T);
4468 end if;
4469
4470 -- Inherit common attributes
4471
4472 Set_Is_Volatile (Id, Is_Volatile (T));
4473 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4474 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4475 Set_Convention (Id, Convention (T));
4476
4477 -- If ancestor has predicates then so does the subtype, and in addition
4478 -- we must delay the freeze to properly arrange predicate inheritance.
4479
4480 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4481 -- in which T = ID, so the above tests and assignments do nothing???
4482
4483 if Has_Predicates (T)
4484 or else (Present (Ancestor_Subtype (T))
4485 and then Has_Predicates (Ancestor_Subtype (T)))
4486 then
4487 Set_Has_Predicates (Id);
4488 Set_Has_Delayed_Freeze (Id);
4489 end if;
4490
4491 -- Subtype of Boolean cannot have a constraint in SPARK
4492
4493 if Is_Boolean_Type (T)
4494 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4495 then
4496 Check_SPARK_05_Restriction
4497 ("subtype of Boolean cannot have constraint", N);
4498 end if;
4499
4500 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4501 declare
4502 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4503 One_Cstr : Node_Id;
4504 Low : Node_Id;
4505 High : Node_Id;
4506
4507 begin
4508 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4509 One_Cstr := First (Constraints (Cstr));
4510 while Present (One_Cstr) loop
4511
4512 -- Index or discriminant constraint in SPARK must be a
4513 -- subtype mark.
4514
4515 if not
4516 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4517 then
4518 Check_SPARK_05_Restriction
4519 ("subtype mark required", One_Cstr);
4520
4521 -- String subtype must have a lower bound of 1 in SPARK.
4522 -- Note that we do not need to test for the non-static case
4523 -- here, since that was already taken care of in
4524 -- Process_Range_Expr_In_Decl.
4525
4526 elsif Base_Type (T) = Standard_String then
4527 Get_Index_Bounds (One_Cstr, Low, High);
4528
4529 if Is_OK_Static_Expression (Low)
4530 and then Expr_Value (Low) /= 1
4531 then
4532 Check_SPARK_05_Restriction
4533 ("String subtype must have lower bound of 1", N);
4534 end if;
4535 end if;
4536
4537 Next (One_Cstr);
4538 end loop;
4539 end if;
4540 end;
4541 end if;
4542
4543 -- In the case where there is no constraint given in the subtype
4544 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4545 -- semantic attributes must be established here.
4546
4547 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4548 Set_Etype (Id, Base_Type (T));
4549
4550 -- Subtype of unconstrained array without constraint is not allowed
4551 -- in SPARK.
4552
4553 if Is_Array_Type (T) and then not Is_Constrained (T) then
4554 Check_SPARK_05_Restriction
4555 ("subtype of unconstrained array must have constraint", N);
4556 end if;
4557
4558 case Ekind (T) is
4559 when Array_Kind =>
4560 Set_Ekind (Id, E_Array_Subtype);
4561 Copy_Array_Subtype_Attributes (Id, T);
4562
4563 when Decimal_Fixed_Point_Kind =>
4564 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4565 Set_Digits_Value (Id, Digits_Value (T));
4566 Set_Delta_Value (Id, Delta_Value (T));
4567 Set_Scale_Value (Id, Scale_Value (T));
4568 Set_Small_Value (Id, Small_Value (T));
4569 Set_Scalar_Range (Id, Scalar_Range (T));
4570 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4571 Set_Is_Constrained (Id, Is_Constrained (T));
4572 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4573 Set_RM_Size (Id, RM_Size (T));
4574
4575 when Enumeration_Kind =>
4576 Set_Ekind (Id, E_Enumeration_Subtype);
4577 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4578 Set_Scalar_Range (Id, Scalar_Range (T));
4579 Set_Is_Character_Type (Id, Is_Character_Type (T));
4580 Set_Is_Constrained (Id, Is_Constrained (T));
4581 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4582 Set_RM_Size (Id, RM_Size (T));
4583 Inherit_Predicate_Flags (Id, T);
4584
4585 when Ordinary_Fixed_Point_Kind =>
4586 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4587 Set_Scalar_Range (Id, Scalar_Range (T));
4588 Set_Small_Value (Id, Small_Value (T));
4589 Set_Delta_Value (Id, Delta_Value (T));
4590 Set_Is_Constrained (Id, Is_Constrained (T));
4591 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4592 Set_RM_Size (Id, RM_Size (T));
4593
4594 when Float_Kind =>
4595 Set_Ekind (Id, E_Floating_Point_Subtype);
4596 Set_Scalar_Range (Id, Scalar_Range (T));
4597 Set_Digits_Value (Id, Digits_Value (T));
4598 Set_Is_Constrained (Id, Is_Constrained (T));
4599
4600 when Signed_Integer_Kind =>
4601 Set_Ekind (Id, E_Signed_Integer_Subtype);
4602 Set_Scalar_Range (Id, Scalar_Range (T));
4603 Set_Is_Constrained (Id, Is_Constrained (T));
4604 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4605 Set_RM_Size (Id, RM_Size (T));
4606 Inherit_Predicate_Flags (Id, T);
4607
4608 when Modular_Integer_Kind =>
4609 Set_Ekind (Id, E_Modular_Integer_Subtype);
4610 Set_Scalar_Range (Id, Scalar_Range (T));
4611 Set_Is_Constrained (Id, Is_Constrained (T));
4612 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4613 Set_RM_Size (Id, RM_Size (T));
4614 Inherit_Predicate_Flags (Id, T);
4615
4616 when Class_Wide_Kind =>
4617 Set_Ekind (Id, E_Class_Wide_Subtype);
4618 Set_First_Entity (Id, First_Entity (T));
4619 Set_Last_Entity (Id, Last_Entity (T));
4620 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4621 Set_Cloned_Subtype (Id, T);
4622 Set_Is_Tagged_Type (Id, True);
4623 Set_Has_Unknown_Discriminants
4624 (Id, True);
4625
4626 if Ekind (T) = E_Class_Wide_Subtype then
4627 Set_Equivalent_Type (Id, Equivalent_Type (T));
4628 end if;
4629
4630 when E_Record_Type | E_Record_Subtype =>
4631 Set_Ekind (Id, E_Record_Subtype);
4632
4633 if Ekind (T) = E_Record_Subtype
4634 and then Present (Cloned_Subtype (T))
4635 then
4636 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4637 else
4638 Set_Cloned_Subtype (Id, T);
4639 end if;
4640
4641 Set_First_Entity (Id, First_Entity (T));
4642 Set_Last_Entity (Id, Last_Entity (T));
4643 Set_Has_Discriminants (Id, Has_Discriminants (T));
4644 Set_Is_Constrained (Id, Is_Constrained (T));
4645 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4646 Set_Has_Implicit_Dereference
4647 (Id, Has_Implicit_Dereference (T));
4648 Set_Has_Unknown_Discriminants
4649 (Id, Has_Unknown_Discriminants (T));
4650
4651 if Has_Discriminants (T) then
4652 Set_Discriminant_Constraint
4653 (Id, Discriminant_Constraint (T));
4654 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4655
4656 elsif Has_Unknown_Discriminants (Id) then
4657 Set_Discriminant_Constraint (Id, No_Elist);
4658 end if;
4659
4660 if Is_Tagged_Type (T) then
4661 Set_Is_Tagged_Type (Id);
4662 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4663 Set_Direct_Primitive_Operations
4664 (Id, Direct_Primitive_Operations (T));
4665 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4666
4667 if Is_Interface (T) then
4668 Set_Is_Interface (Id);
4669 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4670 end if;
4671 end if;
4672
4673 when Private_Kind =>
4674 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4675 Set_Has_Discriminants (Id, Has_Discriminants (T));
4676 Set_Is_Constrained (Id, Is_Constrained (T));
4677 Set_First_Entity (Id, First_Entity (T));
4678 Set_Last_Entity (Id, Last_Entity (T));
4679 Set_Private_Dependents (Id, New_Elmt_List);
4680 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4681 Set_Has_Implicit_Dereference
4682 (Id, Has_Implicit_Dereference (T));
4683 Set_Has_Unknown_Discriminants
4684 (Id, Has_Unknown_Discriminants (T));
4685 Set_Known_To_Have_Preelab_Init
4686 (Id, Known_To_Have_Preelab_Init (T));
4687
4688 if Is_Tagged_Type (T) then
4689 Set_Is_Tagged_Type (Id);
4690 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4691 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4692 Set_Direct_Primitive_Operations (Id,
4693 Direct_Primitive_Operations (T));
4694 end if;
4695
4696 -- In general the attributes of the subtype of a private type
4697 -- are the attributes of the partial view of parent. However,
4698 -- the full view may be a discriminated type, and the subtype
4699 -- must share the discriminant constraint to generate correct
4700 -- calls to initialization procedures.
4701
4702 if Has_Discriminants (T) then
4703 Set_Discriminant_Constraint
4704 (Id, Discriminant_Constraint (T));
4705 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4706
4707 elsif Present (Full_View (T))
4708 and then Has_Discriminants (Full_View (T))
4709 then
4710 Set_Discriminant_Constraint
4711 (Id, Discriminant_Constraint (Full_View (T)));
4712 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4713
4714 -- This would seem semantically correct, but apparently
4715 -- generates spurious errors about missing components ???
4716
4717 -- Set_Has_Discriminants (Id);
4718 end if;
4719
4720 Prepare_Private_Subtype_Completion (Id, N);
4721
4722 -- If this is the subtype of a constrained private type with
4723 -- discriminants that has got a full view and we also have
4724 -- built a completion just above, show that the completion
4725 -- is a clone of the full view to the back-end.
4726
4727 if Has_Discriminants (T)
4728 and then not Has_Unknown_Discriminants (T)
4729 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4730 and then Present (Full_View (T))
4731 and then Present (Full_View (Id))
4732 then
4733 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4734 end if;
4735
4736 when Access_Kind =>
4737 Set_Ekind (Id, E_Access_Subtype);
4738 Set_Is_Constrained (Id, Is_Constrained (T));
4739 Set_Is_Access_Constant
4740 (Id, Is_Access_Constant (T));
4741 Set_Directly_Designated_Type
4742 (Id, Designated_Type (T));
4743 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4744
4745 -- A Pure library_item must not contain the declaration of a
4746 -- named access type, except within a subprogram, generic
4747 -- subprogram, task unit, or protected unit, or if it has
4748 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4749
4750 if Comes_From_Source (Id)
4751 and then In_Pure_Unit
4752 and then not In_Subprogram_Task_Protected_Unit
4753 and then not No_Pool_Assigned (Id)
4754 then
4755 Error_Msg_N
4756 ("named access types not allowed in pure unit", N);
4757 end if;
4758
4759 when Concurrent_Kind =>
4760 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4761 Set_Corresponding_Record_Type (Id,
4762 Corresponding_Record_Type (T));
4763 Set_First_Entity (Id, First_Entity (T));
4764 Set_First_Private_Entity (Id, First_Private_Entity (T));
4765 Set_Has_Discriminants (Id, Has_Discriminants (T));
4766 Set_Is_Constrained (Id, Is_Constrained (T));
4767 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4768 Set_Last_Entity (Id, Last_Entity (T));
4769
4770 if Has_Discriminants (T) then
4771 Set_Discriminant_Constraint (Id,
4772 Discriminant_Constraint (T));
4773 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4774 end if;
4775
4776 when E_Incomplete_Type =>
4777 if Ada_Version >= Ada_2005 then
4778
4779 -- In Ada 2005 an incomplete type can be explicitly tagged:
4780 -- propagate indication.
4781
4782 Set_Ekind (Id, E_Incomplete_Subtype);
4783 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4784 Set_Private_Dependents (Id, New_Elmt_List);
4785
4786 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4787 -- incomplete type visible through a limited with clause.
4788
4789 if From_Limited_With (T)
4790 and then Present (Non_Limited_View (T))
4791 then
4792 Set_From_Limited_With (Id);
4793 Set_Non_Limited_View (Id, Non_Limited_View (T));
4794
4795 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4796 -- to the private dependents of the original incomplete
4797 -- type for future transformation.
4798
4799 else
4800 Append_Elmt (Id, Private_Dependents (T));
4801 end if;
4802
4803 -- If the subtype name denotes an incomplete type an error
4804 -- was already reported by Process_Subtype.
4805
4806 else
4807 Set_Etype (Id, Any_Type);
4808 end if;
4809
4810 when others =>
4811 raise Program_Error;
4812 end case;
4813 end if;
4814
4815 if Etype (Id) = Any_Type then
4816 goto Leave;
4817 end if;
4818
4819 -- Some common processing on all types
4820
4821 Set_Size_Info (Id, T);
4822 Set_First_Rep_Item (Id, First_Rep_Item (T));
4823
4824 -- If the parent type is a generic actual, so is the subtype. This may
4825 -- happen in a nested instance. Why Comes_From_Source test???
4826
4827 if not Comes_From_Source (N) then
4828 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4829 end if;
4830
4831 T := Etype (Id);
4832
4833 Set_Is_Immediately_Visible (Id, True);
4834 Set_Depends_On_Private (Id, Has_Private_Component (T));
4835 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4836
4837 if Is_Interface (T) then
4838 Set_Is_Interface (Id);
4839 end if;
4840
4841 if Present (Generic_Parent_Type (N))
4842 and then
4843 (Nkind (Parent (Generic_Parent_Type (N))) /=
4844 N_Formal_Type_Declaration
4845 or else Nkind
4846 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4847 N_Formal_Private_Type_Definition)
4848 then
4849 if Is_Tagged_Type (Id) then
4850
4851 -- If this is a generic actual subtype for a synchronized type,
4852 -- the primitive operations are those of the corresponding record
4853 -- for which there is a separate subtype declaration.
4854
4855 if Is_Concurrent_Type (Id) then
4856 null;
4857 elsif Is_Class_Wide_Type (Id) then
4858 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4859 else
4860 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4861 end if;
4862
4863 elsif Scope (Etype (Id)) /= Standard_Standard then
4864 Derive_Subprograms (Generic_Parent_Type (N), Id);
4865 end if;
4866 end if;
4867
4868 if Is_Private_Type (T) and then Present (Full_View (T)) then
4869 Conditional_Delay (Id, Full_View (T));
4870
4871 -- The subtypes of components or subcomponents of protected types
4872 -- do not need freeze nodes, which would otherwise appear in the
4873 -- wrong scope (before the freeze node for the protected type). The
4874 -- proper subtypes are those of the subcomponents of the corresponding
4875 -- record.
4876
4877 elsif Ekind (Scope (Id)) /= E_Protected_Type
4878 and then Present (Scope (Scope (Id))) -- error defense
4879 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4880 then
4881 Conditional_Delay (Id, T);
4882 end if;
4883
4884 -- Check that Constraint_Error is raised for a scalar subtype indication
4885 -- when the lower or upper bound of a non-null range lies outside the
4886 -- range of the type mark.
4887
4888 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4889 if Is_Scalar_Type (Etype (Id))
4890 and then Scalar_Range (Id) /=
4891 Scalar_Range (Etype (Subtype_Mark
4892 (Subtype_Indication (N))))
4893 then
4894 Apply_Range_Check
4895 (Scalar_Range (Id),
4896 Etype (Subtype_Mark (Subtype_Indication (N))));
4897
4898 -- In the array case, check compatibility for each index
4899
4900 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4901 then
4902 -- This really should be a subprogram that finds the indications
4903 -- to check???
4904
4905 declare
4906 Subt_Index : Node_Id := First_Index (Id);
4907 Target_Index : Node_Id :=
4908 First_Index (Etype
4909 (Subtype_Mark (Subtype_Indication (N))));
4910 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4911
4912 begin
4913 while Present (Subt_Index) loop
4914 if ((Nkind (Subt_Index) = N_Identifier
4915 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4916 or else Nkind (Subt_Index) = N_Subtype_Indication)
4917 and then
4918 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4919 then
4920 declare
4921 Target_Typ : constant Entity_Id :=
4922 Etype (Target_Index);
4923 begin
4924 R_Checks :=
4925 Get_Range_Checks
4926 (Scalar_Range (Etype (Subt_Index)),
4927 Target_Typ,
4928 Etype (Subt_Index),
4929 Defining_Identifier (N));
4930
4931 -- Reset Has_Dynamic_Range_Check on the subtype to
4932 -- prevent elision of the index check due to a dynamic
4933 -- check generated for a preceding index (needed since
4934 -- Insert_Range_Checks tries to avoid generating
4935 -- redundant checks on a given declaration).
4936
4937 Set_Has_Dynamic_Range_Check (N, False);
4938
4939 Insert_Range_Checks
4940 (R_Checks,
4941 N,
4942 Target_Typ,
4943 Sloc (Defining_Identifier (N)));
4944
4945 -- Record whether this index involved a dynamic check
4946
4947 Has_Dyn_Chk :=
4948 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4949 end;
4950 end if;
4951
4952 Next_Index (Subt_Index);
4953 Next_Index (Target_Index);
4954 end loop;
4955
4956 -- Finally, mark whether the subtype involves dynamic checks
4957
4958 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4959 end;
4960 end if;
4961 end if;
4962
4963 -- A type invariant applies to any subtype in its scope, in particular
4964 -- to a generic actual.
4965
4966 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
4967 Set_Has_Invariants (Id);
4968 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
4969 end if;
4970
4971 -- Make sure that generic actual types are properly frozen. The subtype
4972 -- is marked as a generic actual type when the enclosing instance is
4973 -- analyzed, so here we identify the subtype from the tree structure.
4974
4975 if Expander_Active
4976 and then Is_Generic_Actual_Type (Id)
4977 and then In_Instance
4978 and then not Comes_From_Source (N)
4979 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4980 and then Is_Frozen (T)
4981 then
4982 Freeze_Before (N, Id);
4983 end if;
4984
4985 Set_Optimize_Alignment_Flags (Id);
4986 Check_Eliminated (Id);
4987
4988 <<Leave>>
4989 if Has_Aspects (N) then
4990 Analyze_Aspect_Specifications (N, Id);
4991 end if;
4992
4993 Analyze_Dimension (N);
4994 end Analyze_Subtype_Declaration;
4995
4996 --------------------------------
4997 -- Analyze_Subtype_Indication --
4998 --------------------------------
4999
5000 procedure Analyze_Subtype_Indication (N : Node_Id) is
5001 T : constant Entity_Id := Subtype_Mark (N);
5002 R : constant Node_Id := Range_Expression (Constraint (N));
5003
5004 begin
5005 Analyze (T);
5006
5007 if R /= Error then
5008 Analyze (R);
5009 Set_Etype (N, Etype (R));
5010 Resolve (R, Entity (T));
5011 else
5012 Set_Error_Posted (R);
5013 Set_Error_Posted (T);
5014 end if;
5015 end Analyze_Subtype_Indication;
5016
5017 --------------------------
5018 -- Analyze_Variant_Part --
5019 --------------------------
5020
5021 procedure Analyze_Variant_Part (N : Node_Id) is
5022 Discr_Name : Node_Id;
5023 Discr_Type : Entity_Id;
5024
5025 procedure Process_Variant (A : Node_Id);
5026 -- Analyze declarations for a single variant
5027
5028 package Analyze_Variant_Choices is
5029 new Generic_Analyze_Choices (Process_Variant);
5030 use Analyze_Variant_Choices;
5031
5032 ---------------------
5033 -- Process_Variant --
5034 ---------------------
5035
5036 procedure Process_Variant (A : Node_Id) is
5037 CL : constant Node_Id := Component_List (A);
5038 begin
5039 if not Null_Present (CL) then
5040 Analyze_Declarations (Component_Items (CL));
5041
5042 if Present (Variant_Part (CL)) then
5043 Analyze (Variant_Part (CL));
5044 end if;
5045 end if;
5046 end Process_Variant;
5047
5048 -- Start of processing for Analyze_Variant_Part
5049
5050 begin
5051 Discr_Name := Name (N);
5052 Analyze (Discr_Name);
5053
5054 -- If Discr_Name bad, get out (prevent cascaded errors)
5055
5056 if Etype (Discr_Name) = Any_Type then
5057 return;
5058 end if;
5059
5060 -- Check invalid discriminant in variant part
5061
5062 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5063 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5064 end if;
5065
5066 Discr_Type := Etype (Entity (Discr_Name));
5067
5068 if not Is_Discrete_Type (Discr_Type) then
5069 Error_Msg_N
5070 ("discriminant in a variant part must be of a discrete type",
5071 Name (N));
5072 return;
5073 end if;
5074
5075 -- Now analyze the choices, which also analyzes the declarations that
5076 -- are associated with each choice.
5077
5078 Analyze_Choices (Variants (N), Discr_Type);
5079
5080 -- Note: we used to instantiate and call Check_Choices here to check
5081 -- that the choices covered the discriminant, but it's too early to do
5082 -- that because of statically predicated subtypes, whose analysis may
5083 -- be deferred to their freeze point which may be as late as the freeze
5084 -- point of the containing record. So this call is now to be found in
5085 -- Freeze_Record_Declaration.
5086
5087 end Analyze_Variant_Part;
5088
5089 ----------------------------
5090 -- Array_Type_Declaration --
5091 ----------------------------
5092
5093 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5094 Component_Def : constant Node_Id := Component_Definition (Def);
5095 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5096 Element_Type : Entity_Id;
5097 Implicit_Base : Entity_Id;
5098 Index : Node_Id;
5099 Related_Id : Entity_Id := Empty;
5100 Nb_Index : Nat;
5101 P : constant Node_Id := Parent (Def);
5102 Priv : Entity_Id;
5103
5104 begin
5105 if Nkind (Def) = N_Constrained_Array_Definition then
5106 Index := First (Discrete_Subtype_Definitions (Def));
5107 else
5108 Index := First (Subtype_Marks (Def));
5109 end if;
5110
5111 -- Find proper names for the implicit types which may be public. In case
5112 -- of anonymous arrays we use the name of the first object of that type
5113 -- as prefix.
5114
5115 if No (T) then
5116 Related_Id := Defining_Identifier (P);
5117 else
5118 Related_Id := T;
5119 end if;
5120
5121 Nb_Index := 1;
5122 while Present (Index) loop
5123 Analyze (Index);
5124
5125 -- Test for odd case of trying to index a type by the type itself
5126
5127 if Is_Entity_Name (Index) and then Entity (Index) = T then
5128 Error_Msg_N ("type& cannot be indexed by itself", Index);
5129 Set_Entity (Index, Standard_Boolean);
5130 Set_Etype (Index, Standard_Boolean);
5131 end if;
5132
5133 -- Check SPARK restriction requiring a subtype mark
5134
5135 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5136 Check_SPARK_05_Restriction ("subtype mark required", Index);
5137 end if;
5138
5139 -- Add a subtype declaration for each index of private array type
5140 -- declaration whose etype is also private. For example:
5141
5142 -- package Pkg is
5143 -- type Index is private;
5144 -- private
5145 -- type Table is array (Index) of ...
5146 -- end;
5147
5148 -- This is currently required by the expander for the internally
5149 -- generated equality subprogram of records with variant parts in
5150 -- which the etype of some component is such private type.
5151
5152 if Ekind (Current_Scope) = E_Package
5153 and then In_Private_Part (Current_Scope)
5154 and then Has_Private_Declaration (Etype (Index))
5155 then
5156 declare
5157 Loc : constant Source_Ptr := Sloc (Def);
5158 New_E : Entity_Id;
5159 Decl : Entity_Id;
5160
5161 begin
5162 New_E := Make_Temporary (Loc, 'T');
5163 Set_Is_Internal (New_E);
5164
5165 Decl :=
5166 Make_Subtype_Declaration (Loc,
5167 Defining_Identifier => New_E,
5168 Subtype_Indication =>
5169 New_Occurrence_Of (Etype (Index), Loc));
5170
5171 Insert_Before (Parent (Def), Decl);
5172 Analyze (Decl);
5173 Set_Etype (Index, New_E);
5174
5175 -- If the index is a range the Entity attribute is not
5176 -- available. Example:
5177
5178 -- package Pkg is
5179 -- type T is private;
5180 -- private
5181 -- type T is new Natural;
5182 -- Table : array (T(1) .. T(10)) of Boolean;
5183 -- end Pkg;
5184
5185 if Nkind (Index) /= N_Range then
5186 Set_Entity (Index, New_E);
5187 end if;
5188 end;
5189 end if;
5190
5191 Make_Index (Index, P, Related_Id, Nb_Index);
5192
5193 -- Check error of subtype with predicate for index type
5194
5195 Bad_Predicated_Subtype_Use
5196 ("subtype& has predicate, not allowed as index subtype",
5197 Index, Etype (Index));
5198
5199 -- Move to next index
5200
5201 Next_Index (Index);
5202 Nb_Index := Nb_Index + 1;
5203 end loop;
5204
5205 -- Process subtype indication if one is present
5206
5207 if Present (Component_Typ) then
5208 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5209
5210 Set_Etype (Component_Typ, Element_Type);
5211
5212 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5213 Check_SPARK_05_Restriction
5214 ("subtype mark required", Component_Typ);
5215 end if;
5216
5217 -- Ada 2005 (AI-230): Access Definition case
5218
5219 else pragma Assert (Present (Access_Definition (Component_Def)));
5220
5221 -- Indicate that the anonymous access type is created by the
5222 -- array type declaration.
5223
5224 Element_Type := Access_Definition
5225 (Related_Nod => P,
5226 N => Access_Definition (Component_Def));
5227 Set_Is_Local_Anonymous_Access (Element_Type);
5228
5229 -- Propagate the parent. This field is needed if we have to generate
5230 -- the master_id associated with an anonymous access to task type
5231 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5232
5233 Set_Parent (Element_Type, Parent (T));
5234
5235 -- Ada 2005 (AI-230): In case of components that are anonymous access
5236 -- types the level of accessibility depends on the enclosing type
5237 -- declaration
5238
5239 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5240
5241 -- Ada 2005 (AI-254)
5242
5243 declare
5244 CD : constant Node_Id :=
5245 Access_To_Subprogram_Definition
5246 (Access_Definition (Component_Def));
5247 begin
5248 if Present (CD) and then Protected_Present (CD) then
5249 Element_Type :=
5250 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5251 end if;
5252 end;
5253 end if;
5254
5255 -- Constrained array case
5256
5257 if No (T) then
5258 T := Create_Itype (E_Void, P, Related_Id, 'T');
5259 end if;
5260
5261 if Nkind (Def) = N_Constrained_Array_Definition then
5262
5263 -- Establish Implicit_Base as unconstrained base type
5264
5265 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5266
5267 Set_Etype (Implicit_Base, Implicit_Base);
5268 Set_Scope (Implicit_Base, Current_Scope);
5269 Set_Has_Delayed_Freeze (Implicit_Base);
5270 Set_Default_SSO (Implicit_Base);
5271
5272 -- The constrained array type is a subtype of the unconstrained one
5273
5274 Set_Ekind (T, E_Array_Subtype);
5275 Init_Size_Align (T);
5276 Set_Etype (T, Implicit_Base);
5277 Set_Scope (T, Current_Scope);
5278 Set_Is_Constrained (T, True);
5279 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5280 Set_Has_Delayed_Freeze (T);
5281
5282 -- Complete setup of implicit base type
5283
5284 Set_First_Index (Implicit_Base, First_Index (T));
5285 Set_Component_Type (Implicit_Base, Element_Type);
5286 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5287 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5288 Set_Component_Size (Implicit_Base, Uint_0);
5289 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5290 Set_Has_Controlled_Component
5291 (Implicit_Base, Has_Controlled_Component
5292 (Element_Type)
5293 or else Is_Controlled
5294 (Element_Type));
5295 Set_Finalize_Storage_Only
5296 (Implicit_Base, Finalize_Storage_Only
5297 (Element_Type));
5298
5299 -- Unconstrained array case
5300
5301 else
5302 Set_Ekind (T, E_Array_Type);
5303 Init_Size_Align (T);
5304 Set_Etype (T, T);
5305 Set_Scope (T, Current_Scope);
5306 Set_Component_Size (T, Uint_0);
5307 Set_Is_Constrained (T, False);
5308 Set_First_Index (T, First (Subtype_Marks (Def)));
5309 Set_Has_Delayed_Freeze (T, True);
5310 Set_Has_Task (T, Has_Task (Element_Type));
5311 Set_Has_Protected (T, Has_Protected (Element_Type));
5312 Set_Has_Controlled_Component (T, Has_Controlled_Component
5313 (Element_Type)
5314 or else
5315 Is_Controlled (Element_Type));
5316 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5317 (Element_Type));
5318 Set_Default_SSO (T);
5319 end if;
5320
5321 -- Common attributes for both cases
5322
5323 Set_Component_Type (Base_Type (T), Element_Type);
5324 Set_Packed_Array_Impl_Type (T, Empty);
5325
5326 if Aliased_Present (Component_Definition (Def)) then
5327 Check_SPARK_05_Restriction
5328 ("aliased is not allowed", Component_Definition (Def));
5329 Set_Has_Aliased_Components (Etype (T));
5330 end if;
5331
5332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5333 -- array type to ensure that objects of this type are initialized.
5334
5335 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5336 Set_Can_Never_Be_Null (T);
5337
5338 if Null_Exclusion_Present (Component_Definition (Def))
5339
5340 -- No need to check itypes because in their case this check was
5341 -- done at their point of creation
5342
5343 and then not Is_Itype (Element_Type)
5344 then
5345 Error_Msg_N
5346 ("`NOT NULL` not allowed (null already excluded)",
5347 Subtype_Indication (Component_Definition (Def)));
5348 end if;
5349 end if;
5350
5351 Priv := Private_Component (Element_Type);
5352
5353 if Present (Priv) then
5354
5355 -- Check for circular definitions
5356
5357 if Priv = Any_Type then
5358 Set_Component_Type (Etype (T), Any_Type);
5359
5360 -- There is a gap in the visibility of operations on the composite
5361 -- type only if the component type is defined in a different scope.
5362
5363 elsif Scope (Priv) = Current_Scope then
5364 null;
5365
5366 elsif Is_Limited_Type (Priv) then
5367 Set_Is_Limited_Composite (Etype (T));
5368 Set_Is_Limited_Composite (T);
5369 else
5370 Set_Is_Private_Composite (Etype (T));
5371 Set_Is_Private_Composite (T);
5372 end if;
5373 end if;
5374
5375 -- A syntax error in the declaration itself may lead to an empty index
5376 -- list, in which case do a minimal patch.
5377
5378 if No (First_Index (T)) then
5379 Error_Msg_N ("missing index definition in array type declaration", T);
5380
5381 declare
5382 Indexes : constant List_Id :=
5383 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5384 begin
5385 Set_Discrete_Subtype_Definitions (Def, Indexes);
5386 Set_First_Index (T, First (Indexes));
5387 return;
5388 end;
5389 end if;
5390
5391 -- Create a concatenation operator for the new type. Internal array
5392 -- types created for packed entities do not need such, they are
5393 -- compatible with the user-defined type.
5394
5395 if Number_Dimensions (T) = 1
5396 and then not Is_Packed_Array_Impl_Type (T)
5397 then
5398 New_Concatenation_Op (T);
5399 end if;
5400
5401 -- In the case of an unconstrained array the parser has already verified
5402 -- that all the indexes are unconstrained but we still need to make sure
5403 -- that the element type is constrained.
5404
5405 if Is_Indefinite_Subtype (Element_Type) then
5406 Error_Msg_N
5407 ("unconstrained element type in array declaration",
5408 Subtype_Indication (Component_Def));
5409
5410 elsif Is_Abstract_Type (Element_Type) then
5411 Error_Msg_N
5412 ("the type of a component cannot be abstract",
5413 Subtype_Indication (Component_Def));
5414 end if;
5415
5416 -- There may be an invariant declared for the component type, but
5417 -- the construction of the component invariant checking procedure
5418 -- takes place during expansion.
5419 end Array_Type_Declaration;
5420
5421 ------------------------------------------------------
5422 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5423 ------------------------------------------------------
5424
5425 function Replace_Anonymous_Access_To_Protected_Subprogram
5426 (N : Node_Id) return Entity_Id
5427 is
5428 Loc : constant Source_Ptr := Sloc (N);
5429
5430 Curr_Scope : constant Scope_Stack_Entry :=
5431 Scope_Stack.Table (Scope_Stack.Last);
5432
5433 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5434
5435 Acc : Node_Id;
5436 -- Access definition in declaration
5437
5438 Comp : Node_Id;
5439 -- Object definition or formal definition with an access definition
5440
5441 Decl : Node_Id;
5442 -- Declaration of anonymous access to subprogram type
5443
5444 Spec : Node_Id;
5445 -- Original specification in access to subprogram
5446
5447 P : Node_Id;
5448
5449 begin
5450 Set_Is_Internal (Anon);
5451
5452 case Nkind (N) is
5453 when N_Component_Declaration |
5454 N_Unconstrained_Array_Definition |
5455 N_Constrained_Array_Definition =>
5456 Comp := Component_Definition (N);
5457 Acc := Access_Definition (Comp);
5458
5459 when N_Discriminant_Specification =>
5460 Comp := Discriminant_Type (N);
5461 Acc := Comp;
5462
5463 when N_Parameter_Specification =>
5464 Comp := Parameter_Type (N);
5465 Acc := Comp;
5466
5467 when N_Access_Function_Definition =>
5468 Comp := Result_Definition (N);
5469 Acc := Comp;
5470
5471 when N_Object_Declaration =>
5472 Comp := Object_Definition (N);
5473 Acc := Comp;
5474
5475 when N_Function_Specification =>
5476 Comp := Result_Definition (N);
5477 Acc := Comp;
5478
5479 when others =>
5480 raise Program_Error;
5481 end case;
5482
5483 Spec := Access_To_Subprogram_Definition (Acc);
5484
5485 Decl :=
5486 Make_Full_Type_Declaration (Loc,
5487 Defining_Identifier => Anon,
5488 Type_Definition => Copy_Separate_Tree (Spec));
5489
5490 Mark_Rewrite_Insertion (Decl);
5491
5492 -- In ASIS mode, analyze the profile on the original node, because
5493 -- the separate copy does not provide enough links to recover the
5494 -- original tree. Analysis is limited to type annotations, within
5495 -- a temporary scope that serves as an anonymous subprogram to collect
5496 -- otherwise useless temporaries and itypes.
5497
5498 if ASIS_Mode then
5499 declare
5500 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5501
5502 begin
5503 if Nkind (Spec) = N_Access_Function_Definition then
5504 Set_Ekind (Typ, E_Function);
5505 else
5506 Set_Ekind (Typ, E_Procedure);
5507 end if;
5508
5509 Set_Parent (Typ, N);
5510 Set_Scope (Typ, Current_Scope);
5511 Push_Scope (Typ);
5512
5513 Process_Formals (Parameter_Specifications (Spec), Spec);
5514
5515 if Nkind (Spec) = N_Access_Function_Definition then
5516 declare
5517 Def : constant Node_Id := Result_Definition (Spec);
5518
5519 begin
5520 -- The result might itself be an anonymous access type, so
5521 -- have to recurse.
5522
5523 if Nkind (Def) = N_Access_Definition then
5524 if Present (Access_To_Subprogram_Definition (Def)) then
5525 Set_Etype
5526 (Def,
5527 Replace_Anonymous_Access_To_Protected_Subprogram
5528 (Spec));
5529 else
5530 Find_Type (Subtype_Mark (Def));
5531 end if;
5532
5533 else
5534 Find_Type (Def);
5535 end if;
5536 end;
5537 end if;
5538
5539 End_Scope;
5540 end;
5541 end if;
5542
5543 -- Insert the new declaration in the nearest enclosing scope. If the
5544 -- node is a body and N is its return type, the declaration belongs in
5545 -- the enclosing scope.
5546
5547 P := Parent (N);
5548
5549 if Nkind (P) = N_Subprogram_Body
5550 and then Nkind (N) = N_Function_Specification
5551 then
5552 P := Parent (P);
5553 end if;
5554
5555 while Present (P) and then not Has_Declarations (P) loop
5556 P := Parent (P);
5557 end loop;
5558
5559 pragma Assert (Present (P));
5560
5561 if Nkind (P) = N_Package_Specification then
5562 Prepend (Decl, Visible_Declarations (P));
5563 else
5564 Prepend (Decl, Declarations (P));
5565 end if;
5566
5567 -- Replace the anonymous type with an occurrence of the new declaration.
5568 -- In all cases the rewritten node does not have the null-exclusion
5569 -- attribute because (if present) it was already inherited by the
5570 -- anonymous entity (Anon). Thus, in case of components we do not
5571 -- inherit this attribute.
5572
5573 if Nkind (N) = N_Parameter_Specification then
5574 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5575 Set_Etype (Defining_Identifier (N), Anon);
5576 Set_Null_Exclusion_Present (N, False);
5577
5578 elsif Nkind (N) = N_Object_Declaration then
5579 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5580 Set_Etype (Defining_Identifier (N), Anon);
5581
5582 elsif Nkind (N) = N_Access_Function_Definition then
5583 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5584
5585 elsif Nkind (N) = N_Function_Specification then
5586 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5587 Set_Etype (Defining_Unit_Name (N), Anon);
5588
5589 else
5590 Rewrite (Comp,
5591 Make_Component_Definition (Loc,
5592 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5593 end if;
5594
5595 Mark_Rewrite_Insertion (Comp);
5596
5597 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5598 Analyze (Decl);
5599
5600 else
5601 -- Temporarily remove the current scope (record or subprogram) from
5602 -- the stack to add the new declarations to the enclosing scope.
5603
5604 Scope_Stack.Decrement_Last;
5605 Analyze (Decl);
5606 Set_Is_Itype (Anon);
5607 Scope_Stack.Append (Curr_Scope);
5608 end if;
5609
5610 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5611 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5612 return Anon;
5613 end Replace_Anonymous_Access_To_Protected_Subprogram;
5614
5615 -------------------------------
5616 -- Build_Derived_Access_Type --
5617 -------------------------------
5618
5619 procedure Build_Derived_Access_Type
5620 (N : Node_Id;
5621 Parent_Type : Entity_Id;
5622 Derived_Type : Entity_Id)
5623 is
5624 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5625
5626 Desig_Type : Entity_Id;
5627 Discr : Entity_Id;
5628 Discr_Con_Elist : Elist_Id;
5629 Discr_Con_El : Elmt_Id;
5630 Subt : Entity_Id;
5631
5632 begin
5633 -- Set the designated type so it is available in case this is an access
5634 -- to a self-referential type, e.g. a standard list type with a next
5635 -- pointer. Will be reset after subtype is built.
5636
5637 Set_Directly_Designated_Type
5638 (Derived_Type, Designated_Type (Parent_Type));
5639
5640 Subt := Process_Subtype (S, N);
5641
5642 if Nkind (S) /= N_Subtype_Indication
5643 and then Subt /= Base_Type (Subt)
5644 then
5645 Set_Ekind (Derived_Type, E_Access_Subtype);
5646 end if;
5647
5648 if Ekind (Derived_Type) = E_Access_Subtype then
5649 declare
5650 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5651 Ibase : constant Entity_Id :=
5652 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5653 Svg_Chars : constant Name_Id := Chars (Ibase);
5654 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5655
5656 begin
5657 Copy_Node (Pbase, Ibase);
5658
5659 Set_Chars (Ibase, Svg_Chars);
5660 Set_Next_Entity (Ibase, Svg_Next_E);
5661 Set_Sloc (Ibase, Sloc (Derived_Type));
5662 Set_Scope (Ibase, Scope (Derived_Type));
5663 Set_Freeze_Node (Ibase, Empty);
5664 Set_Is_Frozen (Ibase, False);
5665 Set_Comes_From_Source (Ibase, False);
5666 Set_Is_First_Subtype (Ibase, False);
5667
5668 Set_Etype (Ibase, Pbase);
5669 Set_Etype (Derived_Type, Ibase);
5670 end;
5671 end if;
5672
5673 Set_Directly_Designated_Type
5674 (Derived_Type, Designated_Type (Subt));
5675
5676 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5677 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5678 Set_Size_Info (Derived_Type, Parent_Type);
5679 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5680 Set_Depends_On_Private (Derived_Type,
5681 Has_Private_Component (Derived_Type));
5682 Conditional_Delay (Derived_Type, Subt);
5683
5684 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5685 -- that it is not redundant.
5686
5687 if Null_Exclusion_Present (Type_Definition (N)) then
5688 Set_Can_Never_Be_Null (Derived_Type);
5689
5690 -- What is with the "AND THEN FALSE" here ???
5691
5692 if Can_Never_Be_Null (Parent_Type)
5693 and then False
5694 then
5695 Error_Msg_NE
5696 ("`NOT NULL` not allowed (& already excludes null)",
5697 N, Parent_Type);
5698 end if;
5699
5700 elsif Can_Never_Be_Null (Parent_Type) then
5701 Set_Can_Never_Be_Null (Derived_Type);
5702 end if;
5703
5704 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5705 -- the root type for this information.
5706
5707 -- Apply range checks to discriminants for derived record case
5708 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5709
5710 Desig_Type := Designated_Type (Derived_Type);
5711 if Is_Composite_Type (Desig_Type)
5712 and then (not Is_Array_Type (Desig_Type))
5713 and then Has_Discriminants (Desig_Type)
5714 and then Base_Type (Desig_Type) /= Desig_Type
5715 then
5716 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5717 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5718
5719 Discr := First_Discriminant (Base_Type (Desig_Type));
5720 while Present (Discr_Con_El) loop
5721 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5722 Next_Elmt (Discr_Con_El);
5723 Next_Discriminant (Discr);
5724 end loop;
5725 end if;
5726 end Build_Derived_Access_Type;
5727
5728 ------------------------------
5729 -- Build_Derived_Array_Type --
5730 ------------------------------
5731
5732 procedure Build_Derived_Array_Type
5733 (N : Node_Id;
5734 Parent_Type : Entity_Id;
5735 Derived_Type : Entity_Id)
5736 is
5737 Loc : constant Source_Ptr := Sloc (N);
5738 Tdef : constant Node_Id := Type_Definition (N);
5739 Indic : constant Node_Id := Subtype_Indication (Tdef);
5740 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5741 Implicit_Base : Entity_Id;
5742 New_Indic : Node_Id;
5743
5744 procedure Make_Implicit_Base;
5745 -- If the parent subtype is constrained, the derived type is a subtype
5746 -- of an implicit base type derived from the parent base.
5747
5748 ------------------------
5749 -- Make_Implicit_Base --
5750 ------------------------
5751
5752 procedure Make_Implicit_Base is
5753 begin
5754 Implicit_Base :=
5755 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5756
5757 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5758 Set_Etype (Implicit_Base, Parent_Base);
5759
5760 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5761 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5762
5763 Set_Has_Delayed_Freeze (Implicit_Base, True);
5764 end Make_Implicit_Base;
5765
5766 -- Start of processing for Build_Derived_Array_Type
5767
5768 begin
5769 if not Is_Constrained (Parent_Type) then
5770 if Nkind (Indic) /= N_Subtype_Indication then
5771 Set_Ekind (Derived_Type, E_Array_Type);
5772
5773 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5774 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5775
5776 Set_Has_Delayed_Freeze (Derived_Type, True);
5777
5778 else
5779 Make_Implicit_Base;
5780 Set_Etype (Derived_Type, Implicit_Base);
5781
5782 New_Indic :=
5783 Make_Subtype_Declaration (Loc,
5784 Defining_Identifier => Derived_Type,
5785 Subtype_Indication =>
5786 Make_Subtype_Indication (Loc,
5787 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5788 Constraint => Constraint (Indic)));
5789
5790 Rewrite (N, New_Indic);
5791 Analyze (N);
5792 end if;
5793
5794 else
5795 if Nkind (Indic) /= N_Subtype_Indication then
5796 Make_Implicit_Base;
5797
5798 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5799 Set_Etype (Derived_Type, Implicit_Base);
5800 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5801
5802 else
5803 Error_Msg_N ("illegal constraint on constrained type", Indic);
5804 end if;
5805 end if;
5806
5807 -- If parent type is not a derived type itself, and is declared in
5808 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5809 -- the new type's concatenation operator since Derive_Subprograms
5810 -- will not inherit the parent's operator. If the parent type is
5811 -- unconstrained, the operator is of the unconstrained base type.
5812
5813 if Number_Dimensions (Parent_Type) = 1
5814 and then not Is_Limited_Type (Parent_Type)
5815 and then not Is_Derived_Type (Parent_Type)
5816 and then not Is_Package_Or_Generic_Package
5817 (Scope (Base_Type (Parent_Type)))
5818 then
5819 if not Is_Constrained (Parent_Type)
5820 and then Is_Constrained (Derived_Type)
5821 then
5822 New_Concatenation_Op (Implicit_Base);
5823 else
5824 New_Concatenation_Op (Derived_Type);
5825 end if;
5826 end if;
5827 end Build_Derived_Array_Type;
5828
5829 -----------------------------------
5830 -- Build_Derived_Concurrent_Type --
5831 -----------------------------------
5832
5833 procedure Build_Derived_Concurrent_Type
5834 (N : Node_Id;
5835 Parent_Type : Entity_Id;
5836 Derived_Type : Entity_Id)
5837 is
5838 Loc : constant Source_Ptr := Sloc (N);
5839
5840 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5841 Corr_Decl : Node_Id;
5842 Corr_Decl_Needed : Boolean;
5843 -- If the derived type has fewer discriminants than its parent, the
5844 -- corresponding record is also a derived type, in order to account for
5845 -- the bound discriminants. We create a full type declaration for it in
5846 -- this case.
5847
5848 Constraint_Present : constant Boolean :=
5849 Nkind (Subtype_Indication (Type_Definition (N))) =
5850 N_Subtype_Indication;
5851
5852 D_Constraint : Node_Id;
5853 New_Constraint : Elist_Id;
5854 Old_Disc : Entity_Id;
5855 New_Disc : Entity_Id;
5856 New_N : Node_Id;
5857
5858 begin
5859 Set_Stored_Constraint (Derived_Type, No_Elist);
5860 Corr_Decl_Needed := False;
5861 Old_Disc := Empty;
5862
5863 if Present (Discriminant_Specifications (N))
5864 and then Constraint_Present
5865 then
5866 Old_Disc := First_Discriminant (Parent_Type);
5867 New_Disc := First (Discriminant_Specifications (N));
5868 while Present (New_Disc) and then Present (Old_Disc) loop
5869 Next_Discriminant (Old_Disc);
5870 Next (New_Disc);
5871 end loop;
5872 end if;
5873
5874 if Present (Old_Disc) and then Expander_Active then
5875
5876 -- The new type has fewer discriminants, so we need to create a new
5877 -- corresponding record, which is derived from the corresponding
5878 -- record of the parent, and has a stored constraint that captures
5879 -- the values of the discriminant constraints. The corresponding
5880 -- record is needed only if expander is active and code generation is
5881 -- enabled.
5882
5883 -- The type declaration for the derived corresponding record has the
5884 -- same discriminant part and constraints as the current declaration.
5885 -- Copy the unanalyzed tree to build declaration.
5886
5887 Corr_Decl_Needed := True;
5888 New_N := Copy_Separate_Tree (N);
5889
5890 Corr_Decl :=
5891 Make_Full_Type_Declaration (Loc,
5892 Defining_Identifier => Corr_Record,
5893 Discriminant_Specifications =>
5894 Discriminant_Specifications (New_N),
5895 Type_Definition =>
5896 Make_Derived_Type_Definition (Loc,
5897 Subtype_Indication =>
5898 Make_Subtype_Indication (Loc,
5899 Subtype_Mark =>
5900 New_Occurrence_Of
5901 (Corresponding_Record_Type (Parent_Type), Loc),
5902 Constraint =>
5903 Constraint
5904 (Subtype_Indication (Type_Definition (New_N))))));
5905 end if;
5906
5907 -- Copy Storage_Size and Relative_Deadline variables if task case
5908
5909 if Is_Task_Type (Parent_Type) then
5910 Set_Storage_Size_Variable (Derived_Type,
5911 Storage_Size_Variable (Parent_Type));
5912 Set_Relative_Deadline_Variable (Derived_Type,
5913 Relative_Deadline_Variable (Parent_Type));
5914 end if;
5915
5916 if Present (Discriminant_Specifications (N)) then
5917 Push_Scope (Derived_Type);
5918 Check_Or_Process_Discriminants (N, Derived_Type);
5919
5920 if Constraint_Present then
5921 New_Constraint :=
5922 Expand_To_Stored_Constraint
5923 (Parent_Type,
5924 Build_Discriminant_Constraints
5925 (Parent_Type,
5926 Subtype_Indication (Type_Definition (N)), True));
5927 end if;
5928
5929 End_Scope;
5930
5931 elsif Constraint_Present then
5932
5933 -- Build constrained subtype, copying the constraint, and derive
5934 -- from it to create a derived constrained type.
5935
5936 declare
5937 Loc : constant Source_Ptr := Sloc (N);
5938 Anon : constant Entity_Id :=
5939 Make_Defining_Identifier (Loc,
5940 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5941 Decl : Node_Id;
5942
5943 begin
5944 Decl :=
5945 Make_Subtype_Declaration (Loc,
5946 Defining_Identifier => Anon,
5947 Subtype_Indication =>
5948 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5949 Insert_Before (N, Decl);
5950 Analyze (Decl);
5951
5952 Rewrite (Subtype_Indication (Type_Definition (N)),
5953 New_Occurrence_Of (Anon, Loc));
5954 Set_Analyzed (Derived_Type, False);
5955 Analyze (N);
5956 return;
5957 end;
5958 end if;
5959
5960 -- By default, operations and private data are inherited from parent.
5961 -- However, in the presence of bound discriminants, a new corresponding
5962 -- record will be created, see below.
5963
5964 Set_Has_Discriminants
5965 (Derived_Type, Has_Discriminants (Parent_Type));
5966 Set_Corresponding_Record_Type
5967 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5968
5969 -- Is_Constrained is set according the parent subtype, but is set to
5970 -- False if the derived type is declared with new discriminants.
5971
5972 Set_Is_Constrained
5973 (Derived_Type,
5974 (Is_Constrained (Parent_Type) or else Constraint_Present)
5975 and then not Present (Discriminant_Specifications (N)));
5976
5977 if Constraint_Present then
5978 if not Has_Discriminants (Parent_Type) then
5979 Error_Msg_N ("untagged parent must have discriminants", N);
5980
5981 elsif Present (Discriminant_Specifications (N)) then
5982
5983 -- Verify that new discriminants are used to constrain old ones
5984
5985 D_Constraint :=
5986 First
5987 (Constraints
5988 (Constraint (Subtype_Indication (Type_Definition (N)))));
5989
5990 Old_Disc := First_Discriminant (Parent_Type);
5991
5992 while Present (D_Constraint) loop
5993 if Nkind (D_Constraint) /= N_Discriminant_Association then
5994
5995 -- Positional constraint. If it is a reference to a new
5996 -- discriminant, it constrains the corresponding old one.
5997
5998 if Nkind (D_Constraint) = N_Identifier then
5999 New_Disc := First_Discriminant (Derived_Type);
6000 while Present (New_Disc) loop
6001 exit when Chars (New_Disc) = Chars (D_Constraint);
6002 Next_Discriminant (New_Disc);
6003 end loop;
6004
6005 if Present (New_Disc) then
6006 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6007 end if;
6008 end if;
6009
6010 Next_Discriminant (Old_Disc);
6011
6012 -- if this is a named constraint, search by name for the old
6013 -- discriminants constrained by the new one.
6014
6015 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6016
6017 -- Find new discriminant with that name
6018
6019 New_Disc := First_Discriminant (Derived_Type);
6020 while Present (New_Disc) loop
6021 exit when
6022 Chars (New_Disc) = Chars (Expression (D_Constraint));
6023 Next_Discriminant (New_Disc);
6024 end loop;
6025
6026 if Present (New_Disc) then
6027
6028 -- Verify that new discriminant renames some discriminant
6029 -- of the parent type, and associate the new discriminant
6030 -- with one or more old ones that it renames.
6031
6032 declare
6033 Selector : Node_Id;
6034
6035 begin
6036 Selector := First (Selector_Names (D_Constraint));
6037 while Present (Selector) loop
6038 Old_Disc := First_Discriminant (Parent_Type);
6039 while Present (Old_Disc) loop
6040 exit when Chars (Old_Disc) = Chars (Selector);
6041 Next_Discriminant (Old_Disc);
6042 end loop;
6043
6044 if Present (Old_Disc) then
6045 Set_Corresponding_Discriminant
6046 (New_Disc, Old_Disc);
6047 end if;
6048
6049 Next (Selector);
6050 end loop;
6051 end;
6052 end if;
6053 end if;
6054
6055 Next (D_Constraint);
6056 end loop;
6057
6058 New_Disc := First_Discriminant (Derived_Type);
6059 while Present (New_Disc) loop
6060 if No (Corresponding_Discriminant (New_Disc)) then
6061 Error_Msg_NE
6062 ("new discriminant& must constrain old one", N, New_Disc);
6063
6064 elsif not
6065 Subtypes_Statically_Compatible
6066 (Etype (New_Disc),
6067 Etype (Corresponding_Discriminant (New_Disc)))
6068 then
6069 Error_Msg_NE
6070 ("& not statically compatible with parent discriminant",
6071 N, New_Disc);
6072 end if;
6073
6074 Next_Discriminant (New_Disc);
6075 end loop;
6076 end if;
6077
6078 elsif Present (Discriminant_Specifications (N)) then
6079 Error_Msg_N
6080 ("missing discriminant constraint in untagged derivation", N);
6081 end if;
6082
6083 -- The entity chain of the derived type includes the new discriminants
6084 -- but shares operations with the parent.
6085
6086 if Present (Discriminant_Specifications (N)) then
6087 Old_Disc := First_Discriminant (Parent_Type);
6088 while Present (Old_Disc) loop
6089 if No (Next_Entity (Old_Disc))
6090 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6091 then
6092 Set_Next_Entity
6093 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6094 exit;
6095 end if;
6096
6097 Next_Discriminant (Old_Disc);
6098 end loop;
6099
6100 else
6101 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6102 if Has_Discriminants (Parent_Type) then
6103 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6104 Set_Discriminant_Constraint (
6105 Derived_Type, Discriminant_Constraint (Parent_Type));
6106 end if;
6107 end if;
6108
6109 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6110
6111 Set_Has_Completion (Derived_Type);
6112
6113 if Corr_Decl_Needed then
6114 Set_Stored_Constraint (Derived_Type, New_Constraint);
6115 Insert_After (N, Corr_Decl);
6116 Analyze (Corr_Decl);
6117 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6118 end if;
6119 end Build_Derived_Concurrent_Type;
6120
6121 ------------------------------------
6122 -- Build_Derived_Enumeration_Type --
6123 ------------------------------------
6124
6125 procedure Build_Derived_Enumeration_Type
6126 (N : Node_Id;
6127 Parent_Type : Entity_Id;
6128 Derived_Type : Entity_Id)
6129 is
6130 Loc : constant Source_Ptr := Sloc (N);
6131 Def : constant Node_Id := Type_Definition (N);
6132 Indic : constant Node_Id := Subtype_Indication (Def);
6133 Implicit_Base : Entity_Id;
6134 Literal : Entity_Id;
6135 New_Lit : Entity_Id;
6136 Literals_List : List_Id;
6137 Type_Decl : Node_Id;
6138 Hi, Lo : Node_Id;
6139 Rang_Expr : Node_Id;
6140
6141 begin
6142 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6143 -- not have explicit literals lists we need to process types derived
6144 -- from them specially. This is handled by Derived_Standard_Character.
6145 -- If the parent type is a generic type, there are no literals either,
6146 -- and we construct the same skeletal representation as for the generic
6147 -- parent type.
6148
6149 if Is_Standard_Character_Type (Parent_Type) then
6150 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6151
6152 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6153 declare
6154 Lo : Node_Id;
6155 Hi : Node_Id;
6156
6157 begin
6158 if Nkind (Indic) /= N_Subtype_Indication then
6159 Lo :=
6160 Make_Attribute_Reference (Loc,
6161 Attribute_Name => Name_First,
6162 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6163 Set_Etype (Lo, Derived_Type);
6164
6165 Hi :=
6166 Make_Attribute_Reference (Loc,
6167 Attribute_Name => Name_Last,
6168 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6169 Set_Etype (Hi, Derived_Type);
6170
6171 Set_Scalar_Range (Derived_Type,
6172 Make_Range (Loc,
6173 Low_Bound => Lo,
6174 High_Bound => Hi));
6175 else
6176
6177 -- Analyze subtype indication and verify compatibility
6178 -- with parent type.
6179
6180 if Base_Type (Process_Subtype (Indic, N)) /=
6181 Base_Type (Parent_Type)
6182 then
6183 Error_Msg_N
6184 ("illegal constraint for formal discrete type", N);
6185 end if;
6186 end if;
6187 end;
6188
6189 else
6190 -- If a constraint is present, analyze the bounds to catch
6191 -- premature usage of the derived literals.
6192
6193 if Nkind (Indic) = N_Subtype_Indication
6194 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6195 then
6196 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6197 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6198 end if;
6199
6200 -- Introduce an implicit base type for the derived type even if there
6201 -- is no constraint attached to it, since this seems closer to the
6202 -- Ada semantics. Build a full type declaration tree for the derived
6203 -- type using the implicit base type as the defining identifier. The
6204 -- build a subtype declaration tree which applies the constraint (if
6205 -- any) have it replace the derived type declaration.
6206
6207 Literal := First_Literal (Parent_Type);
6208 Literals_List := New_List;
6209 while Present (Literal)
6210 and then Ekind (Literal) = E_Enumeration_Literal
6211 loop
6212 -- Literals of the derived type have the same representation as
6213 -- those of the parent type, but this representation can be
6214 -- overridden by an explicit representation clause. Indicate
6215 -- that there is no explicit representation given yet. These
6216 -- derived literals are implicit operations of the new type,
6217 -- and can be overridden by explicit ones.
6218
6219 if Nkind (Literal) = N_Defining_Character_Literal then
6220 New_Lit :=
6221 Make_Defining_Character_Literal (Loc, Chars (Literal));
6222 else
6223 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6224 end if;
6225
6226 Set_Ekind (New_Lit, E_Enumeration_Literal);
6227 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6228 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6229 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6230 Set_Alias (New_Lit, Literal);
6231 Set_Is_Known_Valid (New_Lit, True);
6232
6233 Append (New_Lit, Literals_List);
6234 Next_Literal (Literal);
6235 end loop;
6236
6237 Implicit_Base :=
6238 Make_Defining_Identifier (Sloc (Derived_Type),
6239 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6240
6241 -- Indicate the proper nature of the derived type. This must be done
6242 -- before analysis of the literals, to recognize cases when a literal
6243 -- may be hidden by a previous explicit function definition (cf.
6244 -- c83031a).
6245
6246 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6247 Set_Etype (Derived_Type, Implicit_Base);
6248
6249 Type_Decl :=
6250 Make_Full_Type_Declaration (Loc,
6251 Defining_Identifier => Implicit_Base,
6252 Discriminant_Specifications => No_List,
6253 Type_Definition =>
6254 Make_Enumeration_Type_Definition (Loc, Literals_List));
6255
6256 Mark_Rewrite_Insertion (Type_Decl);
6257 Insert_Before (N, Type_Decl);
6258 Analyze (Type_Decl);
6259
6260 -- After the implicit base is analyzed its Etype needs to be changed
6261 -- to reflect the fact that it is derived from the parent type which
6262 -- was ignored during analysis. We also set the size at this point.
6263
6264 Set_Etype (Implicit_Base, Parent_Type);
6265
6266 Set_Size_Info (Implicit_Base, Parent_Type);
6267 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6268 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6269
6270 -- Copy other flags from parent type
6271
6272 Set_Has_Non_Standard_Rep
6273 (Implicit_Base, Has_Non_Standard_Rep
6274 (Parent_Type));
6275 Set_Has_Pragma_Ordered
6276 (Implicit_Base, Has_Pragma_Ordered
6277 (Parent_Type));
6278 Set_Has_Delayed_Freeze (Implicit_Base);
6279
6280 -- Process the subtype indication including a validation check on the
6281 -- constraint, if any. If a constraint is given, its bounds must be
6282 -- implicitly converted to the new type.
6283
6284 if Nkind (Indic) = N_Subtype_Indication then
6285 declare
6286 R : constant Node_Id :=
6287 Range_Expression (Constraint (Indic));
6288
6289 begin
6290 if Nkind (R) = N_Range then
6291 Hi := Build_Scalar_Bound
6292 (High_Bound (R), Parent_Type, Implicit_Base);
6293 Lo := Build_Scalar_Bound
6294 (Low_Bound (R), Parent_Type, Implicit_Base);
6295
6296 else
6297 -- Constraint is a Range attribute. Replace with explicit
6298 -- mention of the bounds of the prefix, which must be a
6299 -- subtype.
6300
6301 Analyze (Prefix (R));
6302 Hi :=
6303 Convert_To (Implicit_Base,
6304 Make_Attribute_Reference (Loc,
6305 Attribute_Name => Name_Last,
6306 Prefix =>
6307 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6308
6309 Lo :=
6310 Convert_To (Implicit_Base,
6311 Make_Attribute_Reference (Loc,
6312 Attribute_Name => Name_First,
6313 Prefix =>
6314 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6315 end if;
6316 end;
6317
6318 else
6319 Hi :=
6320 Build_Scalar_Bound
6321 (Type_High_Bound (Parent_Type),
6322 Parent_Type, Implicit_Base);
6323 Lo :=
6324 Build_Scalar_Bound
6325 (Type_Low_Bound (Parent_Type),
6326 Parent_Type, Implicit_Base);
6327 end if;
6328
6329 Rang_Expr :=
6330 Make_Range (Loc,
6331 Low_Bound => Lo,
6332 High_Bound => Hi);
6333
6334 -- If we constructed a default range for the case where no range
6335 -- was given, then the expressions in the range must not freeze
6336 -- since they do not correspond to expressions in the source.
6337
6338 if Nkind (Indic) /= N_Subtype_Indication then
6339 Set_Must_Not_Freeze (Lo);
6340 Set_Must_Not_Freeze (Hi);
6341 Set_Must_Not_Freeze (Rang_Expr);
6342 end if;
6343
6344 Rewrite (N,
6345 Make_Subtype_Declaration (Loc,
6346 Defining_Identifier => Derived_Type,
6347 Subtype_Indication =>
6348 Make_Subtype_Indication (Loc,
6349 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6350 Constraint =>
6351 Make_Range_Constraint (Loc,
6352 Range_Expression => Rang_Expr))));
6353
6354 Analyze (N);
6355
6356 -- Apply a range check. Since this range expression doesn't have an
6357 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6358 -- this right???
6359
6360 if Nkind (Indic) = N_Subtype_Indication then
6361 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6362 Parent_Type,
6363 Source_Typ => Entity (Subtype_Mark (Indic)));
6364 end if;
6365 end if;
6366 end Build_Derived_Enumeration_Type;
6367
6368 --------------------------------
6369 -- Build_Derived_Numeric_Type --
6370 --------------------------------
6371
6372 procedure Build_Derived_Numeric_Type
6373 (N : Node_Id;
6374 Parent_Type : Entity_Id;
6375 Derived_Type : Entity_Id)
6376 is
6377 Loc : constant Source_Ptr := Sloc (N);
6378 Tdef : constant Node_Id := Type_Definition (N);
6379 Indic : constant Node_Id := Subtype_Indication (Tdef);
6380 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6381 No_Constraint : constant Boolean := Nkind (Indic) /=
6382 N_Subtype_Indication;
6383 Implicit_Base : Entity_Id;
6384
6385 Lo : Node_Id;
6386 Hi : Node_Id;
6387
6388 begin
6389 -- Process the subtype indication including a validation check on
6390 -- the constraint if any.
6391
6392 Discard_Node (Process_Subtype (Indic, N));
6393
6394 -- Introduce an implicit base type for the derived type even if there
6395 -- is no constraint attached to it, since this seems closer to the Ada
6396 -- semantics.
6397
6398 Implicit_Base :=
6399 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6400
6401 Set_Etype (Implicit_Base, Parent_Base);
6402 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6403 Set_Size_Info (Implicit_Base, Parent_Base);
6404 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6405 Set_Parent (Implicit_Base, Parent (Derived_Type));
6406 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6407
6408 -- Set RM Size for discrete type or decimal fixed-point type
6409 -- Ordinary fixed-point is excluded, why???
6410
6411 if Is_Discrete_Type (Parent_Base)
6412 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6413 then
6414 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6415 end if;
6416
6417 Set_Has_Delayed_Freeze (Implicit_Base);
6418
6419 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6420 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6421
6422 Set_Scalar_Range (Implicit_Base,
6423 Make_Range (Loc,
6424 Low_Bound => Lo,
6425 High_Bound => Hi));
6426
6427 if Has_Infinities (Parent_Base) then
6428 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6429 end if;
6430
6431 -- The Derived_Type, which is the entity of the declaration, is a
6432 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6433 -- absence of an explicit constraint.
6434
6435 Set_Etype (Derived_Type, Implicit_Base);
6436
6437 -- If we did not have a constraint, then the Ekind is set from the
6438 -- parent type (otherwise Process_Subtype has set the bounds)
6439
6440 if No_Constraint then
6441 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6442 end if;
6443
6444 -- If we did not have a range constraint, then set the range from the
6445 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6446
6447 if No_Constraint
6448 or else not Has_Range_Constraint (Indic)
6449 then
6450 Set_Scalar_Range (Derived_Type,
6451 Make_Range (Loc,
6452 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6453 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6454 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6455
6456 if Has_Infinities (Parent_Type) then
6457 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6458 end if;
6459
6460 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6461 end if;
6462
6463 Set_Is_Descendent_Of_Address (Derived_Type,
6464 Is_Descendent_Of_Address (Parent_Type));
6465 Set_Is_Descendent_Of_Address (Implicit_Base,
6466 Is_Descendent_Of_Address (Parent_Type));
6467
6468 -- Set remaining type-specific fields, depending on numeric type
6469
6470 if Is_Modular_Integer_Type (Parent_Type) then
6471 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6472
6473 Set_Non_Binary_Modulus
6474 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6475
6476 Set_Is_Known_Valid
6477 (Implicit_Base, Is_Known_Valid (Parent_Base));
6478
6479 elsif Is_Floating_Point_Type (Parent_Type) then
6480
6481 -- Digits of base type is always copied from the digits value of
6482 -- the parent base type, but the digits of the derived type will
6483 -- already have been set if there was a constraint present.
6484
6485 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6486 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6487
6488 if No_Constraint then
6489 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6490 end if;
6491
6492 elsif Is_Fixed_Point_Type (Parent_Type) then
6493
6494 -- Small of base type and derived type are always copied from the
6495 -- parent base type, since smalls never change. The delta of the
6496 -- base type is also copied from the parent base type. However the
6497 -- delta of the derived type will have been set already if a
6498 -- constraint was present.
6499
6500 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6501 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6502 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6503
6504 if No_Constraint then
6505 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6506 end if;
6507
6508 -- The scale and machine radix in the decimal case are always
6509 -- copied from the parent base type.
6510
6511 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6512 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6513 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6514
6515 Set_Machine_Radix_10
6516 (Derived_Type, Machine_Radix_10 (Parent_Base));
6517 Set_Machine_Radix_10
6518 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6519
6520 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6521
6522 if No_Constraint then
6523 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6524
6525 else
6526 -- the analysis of the subtype_indication sets the
6527 -- digits value of the derived type.
6528
6529 null;
6530 end if;
6531 end if;
6532 end if;
6533
6534 if Is_Integer_Type (Parent_Type) then
6535 Set_Has_Shift_Operator
6536 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6537 end if;
6538
6539 -- The type of the bounds is that of the parent type, and they
6540 -- must be converted to the derived type.
6541
6542 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6543
6544 -- The implicit_base should be frozen when the derived type is frozen,
6545 -- but note that it is used in the conversions of the bounds. For fixed
6546 -- types we delay the determination of the bounds until the proper
6547 -- freezing point. For other numeric types this is rejected by GCC, for
6548 -- reasons that are currently unclear (???), so we choose to freeze the
6549 -- implicit base now. In the case of integers and floating point types
6550 -- this is harmless because subsequent representation clauses cannot
6551 -- affect anything, but it is still baffling that we cannot use the
6552 -- same mechanism for all derived numeric types.
6553
6554 -- There is a further complication: actually some representation
6555 -- clauses can affect the implicit base type. For example, attribute
6556 -- definition clauses for stream-oriented attributes need to set the
6557 -- corresponding TSS entries on the base type, and this normally
6558 -- cannot be done after the base type is frozen, so the circuitry in
6559 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6560 -- and not use Set_TSS in this case.
6561
6562 -- There are also consequences for the case of delayed representation
6563 -- aspects for some cases. For example, a Size aspect is delayed and
6564 -- should not be evaluated to the freeze point. This early freezing
6565 -- means that the size attribute evaluation happens too early???
6566
6567 if Is_Fixed_Point_Type (Parent_Type) then
6568 Conditional_Delay (Implicit_Base, Parent_Type);
6569 else
6570 Freeze_Before (N, Implicit_Base);
6571 end if;
6572 end Build_Derived_Numeric_Type;
6573
6574 --------------------------------
6575 -- Build_Derived_Private_Type --
6576 --------------------------------
6577
6578 procedure Build_Derived_Private_Type
6579 (N : Node_Id;
6580 Parent_Type : Entity_Id;
6581 Derived_Type : Entity_Id;
6582 Is_Completion : Boolean;
6583 Derive_Subps : Boolean := True)
6584 is
6585 Loc : constant Source_Ptr := Sloc (N);
6586 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6587 Par_Scope : constant Entity_Id := Scope (Par_Base);
6588 Der_Base : Entity_Id;
6589 Discr : Entity_Id;
6590 Full_Der : Entity_Id;
6591 Full_P : Entity_Id;
6592 Last_Discr : Entity_Id;
6593
6594 procedure Build_Full_Derivation;
6595 -- Build full derivation, i.e. derive from the full view
6596
6597 procedure Copy_And_Build;
6598 -- Copy derived type declaration, replace parent with its full view,
6599 -- and build derivation
6600
6601 ---------------------------
6602 -- Build_Full_Derivation --
6603 ---------------------------
6604
6605 procedure Build_Full_Derivation is
6606 begin
6607 -- If parent scope is not open, install the declarations
6608
6609 if not In_Open_Scopes (Par_Scope) then
6610 Install_Private_Declarations (Par_Scope);
6611 Install_Visible_Declarations (Par_Scope);
6612 Copy_And_Build;
6613 Uninstall_Declarations (Par_Scope);
6614
6615 -- If parent scope is open and in another unit, and parent has a
6616 -- completion, then the derivation is taking place in the visible
6617 -- part of a child unit. In that case retrieve the full view of
6618 -- the parent momentarily.
6619
6620 elsif not In_Same_Source_Unit (N, Parent_Type) then
6621 Full_P := Full_View (Parent_Type);
6622 Exchange_Declarations (Parent_Type);
6623 Copy_And_Build;
6624 Exchange_Declarations (Full_P);
6625
6626 -- Otherwise it is a local derivation
6627
6628 else
6629 Copy_And_Build;
6630 end if;
6631 end Build_Full_Derivation;
6632
6633 --------------------
6634 -- Copy_And_Build --
6635 --------------------
6636
6637 procedure Copy_And_Build is
6638 Full_N : Node_Id;
6639 Full_Parent : Entity_Id := Parent_Type;
6640
6641 begin
6642 -- If the parent is itself derived from another private type,
6643 -- installing the private declarations has not affected its
6644 -- privacy status, so use its own full view explicitly.
6645
6646 if Is_Private_Type (Full_Parent)
6647 and then Present (Full_View (Full_Parent))
6648 then
6649 Full_Parent := Full_View (Full_Parent);
6650 end if;
6651
6652 -- And its underlying full view if necessary
6653
6654 if Is_Private_Type (Full_Parent)
6655 and then Present (Underlying_Full_View (Full_Parent))
6656 then
6657 Full_Parent := Underlying_Full_View (Full_Parent);
6658 end if;
6659
6660 -- For record, access and most enumeration types, derivation from
6661 -- the full view requires a fully-fledged declaration. In the other
6662 -- cases, just use an itype.
6663
6664 if Ekind (Full_Parent) in Record_Kind
6665 or else Ekind (Full_Parent) in Access_Kind
6666 or else
6667 (Ekind (Full_Parent) in Enumeration_Kind
6668 and then not Is_Standard_Character_Type (Full_Parent)
6669 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6670 then
6671 -- Copy and adjust declaration to provide a completion for what
6672 -- is originally a private declaration. Indicate that full view
6673 -- is internally generated.
6674
6675 Full_N := New_Copy_Tree (N);
6676 Full_Der := New_Copy (Derived_Type);
6677 Set_Comes_From_Source (Full_N, False);
6678 Set_Comes_From_Source (Full_Der, False);
6679 Set_Parent (Full_Der, Full_N);
6680 Set_Defining_Identifier (Full_N, Full_Der);
6681
6682 -- If there are no constraints, adjust the subtype mark
6683
6684 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6685 N_Subtype_Indication
6686 then
6687 Set_Subtype_Indication
6688 (Type_Definition (Full_N),
6689 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6690 end if;
6691
6692 Insert_After (N, Full_N);
6693
6694 -- Build full view of derived type from full view of parent which
6695 -- is now installed. Subprograms have been derived on the partial
6696 -- view, the completion does not derive them anew.
6697
6698 if Ekind (Full_Parent) in Record_Kind then
6699
6700 -- If parent type is tagged, the completion inherits the proper
6701 -- primitive operations.
6702
6703 if Is_Tagged_Type (Parent_Type) then
6704 Build_Derived_Record_Type
6705 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6706 else
6707 Build_Derived_Record_Type
6708 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6709 end if;
6710
6711 else
6712 Build_Derived_Type
6713 (Full_N, Full_Parent, Full_Der, True, Derive_Subps => False);
6714 end if;
6715
6716 -- The full declaration has been introduced into the tree and
6717 -- processed in the step above. It should not be analyzed again
6718 -- (when encountered later in the current list of declarations)
6719 -- to prevent spurious name conflicts. The full entity remains
6720 -- invisible.
6721
6722 Set_Analyzed (Full_N);
6723
6724 else
6725 Full_Der :=
6726 Make_Defining_Identifier (Sloc (Derived_Type),
6727 Chars => Chars (Derived_Type));
6728 Set_Is_Itype (Full_Der);
6729 Set_Associated_Node_For_Itype (Full_Der, N);
6730 Set_Parent (Full_Der, N);
6731 Build_Derived_Type
6732 (N, Full_Parent, Full_Der, True, Derive_Subps => False);
6733 end if;
6734
6735 Set_Has_Private_Declaration (Full_Der);
6736 Set_Has_Private_Declaration (Derived_Type);
6737
6738 Set_Scope (Full_Der, Scope (Derived_Type));
6739 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6740 Set_Has_Size_Clause (Full_Der, False);
6741 Set_Has_Alignment_Clause (Full_Der, False);
6742 Set_Has_Delayed_Freeze (Full_Der);
6743 Set_Is_Frozen (Full_Der, False);
6744 Set_Freeze_Node (Full_Der, Empty);
6745 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6746 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6747
6748 -- The convention on the base type may be set in the private part
6749 -- and not propagated to the subtype until later, so we obtain the
6750 -- convention from the base type of the parent.
6751
6752 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6753 end Copy_And_Build;
6754
6755 -- Start of processing for Build_Derived_Private_Type
6756
6757 begin
6758 if Is_Tagged_Type (Parent_Type) then
6759 Full_P := Full_View (Parent_Type);
6760
6761 -- A type extension of a type with unknown discriminants is an
6762 -- indefinite type that the back-end cannot handle directly.
6763 -- We treat it as a private type, and build a completion that is
6764 -- derived from the full view of the parent, and hopefully has
6765 -- known discriminants.
6766
6767 -- If the full view of the parent type has an underlying record view,
6768 -- use it to generate the underlying record view of this derived type
6769 -- (required for chains of derivations with unknown discriminants).
6770
6771 -- Minor optimization: we avoid the generation of useless underlying
6772 -- record view entities if the private type declaration has unknown
6773 -- discriminants but its corresponding full view has no
6774 -- discriminants.
6775
6776 if Has_Unknown_Discriminants (Parent_Type)
6777 and then Present (Full_P)
6778 and then (Has_Discriminants (Full_P)
6779 or else Present (Underlying_Record_View (Full_P)))
6780 and then not In_Open_Scopes (Par_Scope)
6781 and then Expander_Active
6782 then
6783 declare
6784 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6785 New_Ext : constant Node_Id :=
6786 Copy_Separate_Tree
6787 (Record_Extension_Part (Type_Definition (N)));
6788 Decl : Node_Id;
6789
6790 begin
6791 Build_Derived_Record_Type
6792 (N, Parent_Type, Derived_Type, Derive_Subps);
6793
6794 -- Build anonymous completion, as a derivation from the full
6795 -- view of the parent. This is not a completion in the usual
6796 -- sense, because the current type is not private.
6797
6798 Decl :=
6799 Make_Full_Type_Declaration (Loc,
6800 Defining_Identifier => Full_Der,
6801 Type_Definition =>
6802 Make_Derived_Type_Definition (Loc,
6803 Subtype_Indication =>
6804 New_Copy_Tree
6805 (Subtype_Indication (Type_Definition (N))),
6806 Record_Extension_Part => New_Ext));
6807
6808 -- If the parent type has an underlying record view, use it
6809 -- here to build the new underlying record view.
6810
6811 if Present (Underlying_Record_View (Full_P)) then
6812 pragma Assert
6813 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6814 = N_Identifier);
6815 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6816 Underlying_Record_View (Full_P));
6817 end if;
6818
6819 Install_Private_Declarations (Par_Scope);
6820 Install_Visible_Declarations (Par_Scope);
6821 Insert_Before (N, Decl);
6822
6823 -- Mark entity as an underlying record view before analysis,
6824 -- to avoid generating the list of its primitive operations
6825 -- (which is not really required for this entity) and thus
6826 -- prevent spurious errors associated with missing overriding
6827 -- of abstract primitives (overridden only for Derived_Type).
6828
6829 Set_Ekind (Full_Der, E_Record_Type);
6830 Set_Is_Underlying_Record_View (Full_Der);
6831 Set_Default_SSO (Full_Der);
6832
6833 Analyze (Decl);
6834
6835 pragma Assert (Has_Discriminants (Full_Der)
6836 and then not Has_Unknown_Discriminants (Full_Der));
6837
6838 Uninstall_Declarations (Par_Scope);
6839
6840 -- Freeze the underlying record view, to prevent generation of
6841 -- useless dispatching information, which is simply shared with
6842 -- the real derived type.
6843
6844 Set_Is_Frozen (Full_Der);
6845
6846 -- Set up links between real entity and underlying record view
6847
6848 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6849 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6850 end;
6851
6852 -- If discriminants are known, build derived record
6853
6854 else
6855 Build_Derived_Record_Type
6856 (N, Parent_Type, Derived_Type, Derive_Subps);
6857 end if;
6858
6859 return;
6860
6861 elsif Has_Discriminants (Parent_Type) then
6862 if Present (Full_View (Parent_Type)) then
6863 if not Is_Completion then
6864 -- If this is not a completion, construct the implicit full
6865 -- view by deriving from the full view of the parent type.
6866
6867 Build_Full_Derivation;
6868
6869 else
6870 -- If this is a completion, the full view being built is itself
6871 -- private. We build a subtype of the parent with the same
6872 -- constraints as this full view, to convey to the back end the
6873 -- constrained components and the size of this subtype. If the
6874 -- parent is constrained, its full view can serve as the
6875 -- underlying full view of the derived type.
6876
6877 if No (Discriminant_Specifications (N)) then
6878 if Nkind (Subtype_Indication (Type_Definition (N))) =
6879 N_Subtype_Indication
6880 then
6881 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6882
6883 elsif Is_Constrained (Full_View (Parent_Type)) then
6884 Set_Underlying_Full_View
6885 (Derived_Type, Full_View (Parent_Type));
6886 end if;
6887
6888 else
6889 -- If there are new discriminants, the parent subtype is
6890 -- constrained by them, but it is not clear how to build
6891 -- the Underlying_Full_View in this case???
6892
6893 null;
6894 end if;
6895 end if;
6896 end if;
6897
6898 -- Build partial view of derived type from partial view of parent
6899
6900 Build_Derived_Record_Type
6901 (N, Parent_Type, Derived_Type, Derive_Subps);
6902
6903 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6904 -- Install full view in derived type (base type and subtype)
6905
6906 Der_Base := Base_Type (Derived_Type);
6907 Set_Full_View (Derived_Type, Full_Der);
6908 Set_Full_View (Der_Base, Base_Type (Full_Der));
6909
6910 -- Copy the discriminant list from full view to the partial views
6911 -- (base type and its subtype). Gigi requires that the partial and
6912 -- full views have the same discriminants.
6913
6914 -- Note that since the partial view is pointing to discriminants
6915 -- in the full view, their scope will be that of the full view.
6916 -- This might cause some front end problems and need adjustment???
6917
6918 Discr := First_Discriminant (Base_Type (Full_Der));
6919 Set_First_Entity (Der_Base, Discr);
6920
6921 loop
6922 Last_Discr := Discr;
6923 Next_Discriminant (Discr);
6924 exit when No (Discr);
6925 end loop;
6926
6927 Set_Last_Entity (Der_Base, Last_Discr);
6928
6929 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6930 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6931 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6932 end if;
6933
6934 elsif Present (Full_View (Parent_Type))
6935 and then Has_Discriminants (Full_View (Parent_Type))
6936 then
6937 if Has_Unknown_Discriminants (Parent_Type)
6938 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6939 N_Subtype_Indication
6940 then
6941 Error_Msg_N
6942 ("cannot constrain type with unknown discriminants",
6943 Subtype_Indication (Type_Definition (N)));
6944 return;
6945 end if;
6946
6947 -- If this is not a completion, construct the implicit full view by
6948 -- deriving from the full view of the parent type. But if this is a
6949 -- completion, the derived private type being built is a full view
6950 -- and the full derivation can only be its underlying full view.
6951
6952 Build_Full_Derivation;
6953
6954 if not Is_Completion then
6955 Set_Full_View (Derived_Type, Full_Der);
6956 else
6957 Set_Underlying_Full_View (Derived_Type, Full_Der);
6958 end if;
6959
6960 -- In any case, the primitive operations are inherited from the
6961 -- parent type, not from the internal full view.
6962
6963 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6964
6965 if Derive_Subps then
6966 Derive_Subprograms (Parent_Type, Derived_Type);
6967 end if;
6968
6969 Set_Stored_Constraint (Derived_Type, No_Elist);
6970 Set_Is_Constrained
6971 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
6972
6973 else
6974 -- Untagged type, No discriminants on either view
6975
6976 if Nkind (Subtype_Indication (Type_Definition (N))) =
6977 N_Subtype_Indication
6978 then
6979 Error_Msg_N
6980 ("illegal constraint on type without discriminants", N);
6981 end if;
6982
6983 if Present (Discriminant_Specifications (N))
6984 and then Present (Full_View (Parent_Type))
6985 and then not Is_Tagged_Type (Full_View (Parent_Type))
6986 then
6987 Error_Msg_N ("cannot add discriminants to untagged type", N);
6988 end if;
6989
6990 Set_Stored_Constraint (Derived_Type, No_Elist);
6991 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6992 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6993 Set_Has_Controlled_Component
6994 (Derived_Type, Has_Controlled_Component
6995 (Parent_Type));
6996
6997 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6998
6999 if not Is_Controlled (Parent_Type) then
7000 Set_Finalize_Storage_Only
7001 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7002 end if;
7003
7004 -- If this is not a completion, construct the implicit full view by
7005 -- deriving from the full view of the parent type.
7006
7007 -- ??? If the parent is untagged private and its completion is
7008 -- tagged, this mechanism will not work because we cannot derive from
7009 -- the tagged full view unless we have an extension.
7010
7011 if Present (Full_View (Parent_Type))
7012 and then not Is_Tagged_Type (Full_View (Parent_Type))
7013 and then not Is_Completion
7014 then
7015 Build_Full_Derivation;
7016 Set_Full_View (Derived_Type, Full_Der);
7017 end if;
7018 end if;
7019
7020 Set_Has_Unknown_Discriminants (Derived_Type,
7021 Has_Unknown_Discriminants (Parent_Type));
7022
7023 if Is_Private_Type (Derived_Type) then
7024 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7025 end if;
7026
7027 -- If the parent base type is in scope, add the derived type to its
7028 -- list of private dependents, because its full view may become
7029 -- visible subsequently (in a nested private part, a body, or in a
7030 -- further child unit).
7031
7032 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7033 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7034
7035 -- Check for unusual case where a type completed by a private
7036 -- derivation occurs within a package nested in a child unit, and
7037 -- the parent is declared in an ancestor.
7038
7039 if Is_Child_Unit (Scope (Current_Scope))
7040 and then Is_Completion
7041 and then In_Private_Part (Current_Scope)
7042 and then Scope (Parent_Type) /= Current_Scope
7043
7044 -- Note that if the parent has a completion in the private part,
7045 -- (which is itself a derivation from some other private type)
7046 -- it is that completion that is visible, there is no full view
7047 -- available, and no special processing is needed.
7048
7049 and then Present (Full_View (Parent_Type))
7050 then
7051 -- In this case, the full view of the parent type will become
7052 -- visible in the body of the enclosing child, and only then will
7053 -- the current type be possibly non-private. Build an underlying
7054 -- full view that will be installed when the enclosing child body
7055 -- is compiled.
7056
7057 if Present (Underlying_Full_View (Derived_Type)) then
7058 Full_Der := Underlying_Full_View (Derived_Type);
7059 else
7060 Build_Full_Derivation;
7061 Set_Underlying_Full_View (Derived_Type, Full_Der);
7062 end if;
7063
7064 -- The full view will be used to swap entities on entry/exit to
7065 -- the body, and must appear in the entity list for the package.
7066
7067 Append_Entity (Full_Der, Scope (Derived_Type));
7068 end if;
7069 end if;
7070 end Build_Derived_Private_Type;
7071
7072 -------------------------------
7073 -- Build_Derived_Record_Type --
7074 -------------------------------
7075
7076 -- 1. INTRODUCTION
7077
7078 -- Ideally we would like to use the same model of type derivation for
7079 -- tagged and untagged record types. Unfortunately this is not quite
7080 -- possible because the semantics of representation clauses is different
7081 -- for tagged and untagged records under inheritance. Consider the
7082 -- following:
7083
7084 -- type R (...) is [tagged] record ... end record;
7085 -- type T (...) is new R (...) [with ...];
7086
7087 -- The representation clauses for T can specify a completely different
7088 -- record layout from R's. Hence the same component can be placed in two
7089 -- very different positions in objects of type T and R. If R and T are
7090 -- tagged types, representation clauses for T can only specify the layout
7091 -- of non inherited components, thus components that are common in R and T
7092 -- have the same position in objects of type R and T.
7093
7094 -- This has two implications. The first is that the entire tree for R's
7095 -- declaration needs to be copied for T in the untagged case, so that T
7096 -- can be viewed as a record type of its own with its own representation
7097 -- clauses. The second implication is the way we handle discriminants.
7098 -- Specifically, in the untagged case we need a way to communicate to Gigi
7099 -- what are the real discriminants in the record, while for the semantics
7100 -- we need to consider those introduced by the user to rename the
7101 -- discriminants in the parent type. This is handled by introducing the
7102 -- notion of stored discriminants. See below for more.
7103
7104 -- Fortunately the way regular components are inherited can be handled in
7105 -- the same way in tagged and untagged types.
7106
7107 -- To complicate things a bit more the private view of a private extension
7108 -- cannot be handled in the same way as the full view (for one thing the
7109 -- semantic rules are somewhat different). We will explain what differs
7110 -- below.
7111
7112 -- 2. DISCRIMINANTS UNDER INHERITANCE
7113
7114 -- The semantic rules governing the discriminants of derived types are
7115 -- quite subtle.
7116
7117 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7118 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7119
7120 -- If parent type has discriminants, then the discriminants that are
7121 -- declared in the derived type are [3.4 (11)]:
7122
7123 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7124 -- there is one;
7125
7126 -- o Otherwise, each discriminant of the parent type (implicitly declared
7127 -- in the same order with the same specifications). In this case, the
7128 -- discriminants are said to be "inherited", or if unknown in the parent
7129 -- are also unknown in the derived type.
7130
7131 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7132
7133 -- o The parent subtype must be constrained;
7134
7135 -- o If the parent type is not a tagged type, then each discriminant of
7136 -- the derived type must be used in the constraint defining a parent
7137 -- subtype. [Implementation note: This ensures that the new discriminant
7138 -- can share storage with an existing discriminant.]
7139
7140 -- For the derived type each discriminant of the parent type is either
7141 -- inherited, constrained to equal some new discriminant of the derived
7142 -- type, or constrained to the value of an expression.
7143
7144 -- When inherited or constrained to equal some new discriminant, the
7145 -- parent discriminant and the discriminant of the derived type are said
7146 -- to "correspond".
7147
7148 -- If a discriminant of the parent type is constrained to a specific value
7149 -- in the derived type definition, then the discriminant is said to be
7150 -- "specified" by that derived type definition.
7151
7152 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7153
7154 -- We have spoken about stored discriminants in point 1 (introduction)
7155 -- above. There are two sort of stored discriminants: implicit and
7156 -- explicit. As long as the derived type inherits the same discriminants as
7157 -- the root record type, stored discriminants are the same as regular
7158 -- discriminants, and are said to be implicit. However, if any discriminant
7159 -- in the root type was renamed in the derived type, then the derived
7160 -- type will contain explicit stored discriminants. Explicit stored
7161 -- discriminants are discriminants in addition to the semantically visible
7162 -- discriminants defined for the derived type. Stored discriminants are
7163 -- used by Gigi to figure out what are the physical discriminants in
7164 -- objects of the derived type (see precise definition in einfo.ads).
7165 -- As an example, consider the following:
7166
7167 -- type R (D1, D2, D3 : Int) is record ... end record;
7168 -- type T1 is new R;
7169 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7170 -- type T3 is new T2;
7171 -- type T4 (Y : Int) is new T3 (Y, 99);
7172
7173 -- The following table summarizes the discriminants and stored
7174 -- discriminants in R and T1 through T4.
7175
7176 -- Type Discrim Stored Discrim Comment
7177 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7178 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7179 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7180 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7181 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7182
7183 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7184 -- find the corresponding discriminant in the parent type, while
7185 -- Original_Record_Component (abbreviated ORC below), the actual physical
7186 -- component that is renamed. Finally the field Is_Completely_Hidden
7187 -- (abbreviated ICH below) is set for all explicit stored discriminants
7188 -- (see einfo.ads for more info). For the above example this gives:
7189
7190 -- Discrim CD ORC ICH
7191 -- ^^^^^^^ ^^ ^^^ ^^^
7192 -- D1 in R empty itself no
7193 -- D2 in R empty itself no
7194 -- D3 in R empty itself no
7195
7196 -- D1 in T1 D1 in R itself no
7197 -- D2 in T1 D2 in R itself no
7198 -- D3 in T1 D3 in R itself no
7199
7200 -- X1 in T2 D3 in T1 D3 in T2 no
7201 -- X2 in T2 D1 in T1 D1 in T2 no
7202 -- D1 in T2 empty itself yes
7203 -- D2 in T2 empty itself yes
7204 -- D3 in T2 empty itself yes
7205
7206 -- X1 in T3 X1 in T2 D3 in T3 no
7207 -- X2 in T3 X2 in T2 D1 in T3 no
7208 -- D1 in T3 empty itself yes
7209 -- D2 in T3 empty itself yes
7210 -- D3 in T3 empty itself yes
7211
7212 -- Y in T4 X1 in T3 D3 in T3 no
7213 -- D1 in T3 empty itself yes
7214 -- D2 in T3 empty itself yes
7215 -- D3 in T3 empty itself yes
7216
7217 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7218
7219 -- Type derivation for tagged types is fairly straightforward. If no
7220 -- discriminants are specified by the derived type, these are inherited
7221 -- from the parent. No explicit stored discriminants are ever necessary.
7222 -- The only manipulation that is done to the tree is that of adding a
7223 -- _parent field with parent type and constrained to the same constraint
7224 -- specified for the parent in the derived type definition. For instance:
7225
7226 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7227 -- type T1 is new R with null record;
7228 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7229
7230 -- are changed into:
7231
7232 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7233 -- _parent : R (D1, D2, D3);
7234 -- end record;
7235
7236 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7237 -- _parent : T1 (X2, 88, X1);
7238 -- end record;
7239
7240 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7241 -- ORC and ICH fields are:
7242
7243 -- Discrim CD ORC ICH
7244 -- ^^^^^^^ ^^ ^^^ ^^^
7245 -- D1 in R empty itself no
7246 -- D2 in R empty itself no
7247 -- D3 in R empty itself no
7248
7249 -- D1 in T1 D1 in R D1 in R no
7250 -- D2 in T1 D2 in R D2 in R no
7251 -- D3 in T1 D3 in R D3 in R no
7252
7253 -- X1 in T2 D3 in T1 D3 in R no
7254 -- X2 in T2 D1 in T1 D1 in R no
7255
7256 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7257 --
7258 -- Regardless of whether we dealing with a tagged or untagged type
7259 -- we will transform all derived type declarations of the form
7260 --
7261 -- type T is new R (...) [with ...];
7262 -- or
7263 -- subtype S is R (...);
7264 -- type T is new S [with ...];
7265 -- into
7266 -- type BT is new R [with ...];
7267 -- subtype T is BT (...);
7268 --
7269 -- That is, the base derived type is constrained only if it has no
7270 -- discriminants. The reason for doing this is that GNAT's semantic model
7271 -- assumes that a base type with discriminants is unconstrained.
7272 --
7273 -- Note that, strictly speaking, the above transformation is not always
7274 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7275 --
7276 -- procedure B34011A is
7277 -- type REC (D : integer := 0) is record
7278 -- I : Integer;
7279 -- end record;
7280
7281 -- package P is
7282 -- type T6 is new Rec;
7283 -- function F return T6;
7284 -- end P;
7285
7286 -- use P;
7287 -- package Q6 is
7288 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7289 -- end Q6;
7290 --
7291 -- The definition of Q6.U is illegal. However transforming Q6.U into
7292
7293 -- type BaseU is new T6;
7294 -- subtype U is BaseU (Q6.F.I)
7295
7296 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7297 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7298 -- the transformation described above.
7299
7300 -- There is another instance where the above transformation is incorrect.
7301 -- Consider:
7302
7303 -- package Pack is
7304 -- type Base (D : Integer) is tagged null record;
7305 -- procedure P (X : Base);
7306
7307 -- type Der is new Base (2) with null record;
7308 -- procedure P (X : Der);
7309 -- end Pack;
7310
7311 -- Then the above transformation turns this into
7312
7313 -- type Der_Base is new Base with null record;
7314 -- -- procedure P (X : Base) is implicitly inherited here
7315 -- -- as procedure P (X : Der_Base).
7316
7317 -- subtype Der is Der_Base (2);
7318 -- procedure P (X : Der);
7319 -- -- The overriding of P (X : Der_Base) is illegal since we
7320 -- -- have a parameter conformance problem.
7321
7322 -- To get around this problem, after having semantically processed Der_Base
7323 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7324 -- Discriminant_Constraint from Der so that when parameter conformance is
7325 -- checked when P is overridden, no semantic errors are flagged.
7326
7327 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7328
7329 -- Regardless of whether we are dealing with a tagged or untagged type
7330 -- we will transform all derived type declarations of the form
7331
7332 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7333 -- type T is new R [with ...];
7334 -- into
7335 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7336
7337 -- The reason for such transformation is that it allows us to implement a
7338 -- very clean form of component inheritance as explained below.
7339
7340 -- Note that this transformation is not achieved by direct tree rewriting
7341 -- and manipulation, but rather by redoing the semantic actions that the
7342 -- above transformation will entail. This is done directly in routine
7343 -- Inherit_Components.
7344
7345 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7346
7347 -- In both tagged and untagged derived types, regular non discriminant
7348 -- components are inherited in the derived type from the parent type. In
7349 -- the absence of discriminants component, inheritance is straightforward
7350 -- as components can simply be copied from the parent.
7351
7352 -- If the parent has discriminants, inheriting components constrained with
7353 -- these discriminants requires caution. Consider the following example:
7354
7355 -- type R (D1, D2 : Positive) is [tagged] record
7356 -- S : String (D1 .. D2);
7357 -- end record;
7358
7359 -- type T1 is new R [with null record];
7360 -- type T2 (X : positive) is new R (1, X) [with null record];
7361
7362 -- As explained in 6. above, T1 is rewritten as
7363 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7364 -- which makes the treatment for T1 and T2 identical.
7365
7366 -- What we want when inheriting S, is that references to D1 and D2 in R are
7367 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7368 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7369 -- with either discriminant references in the derived type or expressions.
7370 -- This replacement is achieved as follows: before inheriting R's
7371 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7372 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7373 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7374 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7375 -- by String (1 .. X).
7376
7377 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7378
7379 -- We explain here the rules governing private type extensions relevant to
7380 -- type derivation. These rules are explained on the following example:
7381
7382 -- type D [(...)] is new A [(...)] with private; <-- partial view
7383 -- type D [(...)] is new P [(...)] with null record; <-- full view
7384
7385 -- Type A is called the ancestor subtype of the private extension.
7386 -- Type P is the parent type of the full view of the private extension. It
7387 -- must be A or a type derived from A.
7388
7389 -- The rules concerning the discriminants of private type extensions are
7390 -- [7.3(10-13)]:
7391
7392 -- o If a private extension inherits known discriminants from the ancestor
7393 -- subtype, then the full view must also inherit its discriminants from
7394 -- the ancestor subtype and the parent subtype of the full view must be
7395 -- constrained if and only if the ancestor subtype is constrained.
7396
7397 -- o If a partial view has unknown discriminants, then the full view may
7398 -- define a definite or an indefinite subtype, with or without
7399 -- discriminants.
7400
7401 -- o If a partial view has neither known nor unknown discriminants, then
7402 -- the full view must define a definite subtype.
7403
7404 -- o If the ancestor subtype of a private extension has constrained
7405 -- discriminants, then the parent subtype of the full view must impose a
7406 -- statically matching constraint on those discriminants.
7407
7408 -- This means that only the following forms of private extensions are
7409 -- allowed:
7410
7411 -- type D is new A with private; <-- partial view
7412 -- type D is new P with null record; <-- full view
7413
7414 -- If A has no discriminants than P has no discriminants, otherwise P must
7415 -- inherit A's discriminants.
7416
7417 -- type D is new A (...) with private; <-- partial view
7418 -- type D is new P (:::) with null record; <-- full view
7419
7420 -- P must inherit A's discriminants and (...) and (:::) must statically
7421 -- match.
7422
7423 -- subtype A is R (...);
7424 -- type D is new A with private; <-- partial view
7425 -- type D is new P with null record; <-- full view
7426
7427 -- P must have inherited R's discriminants and must be derived from A or
7428 -- any of its subtypes.
7429
7430 -- type D (..) is new A with private; <-- partial view
7431 -- type D (..) is new P [(:::)] with null record; <-- full view
7432
7433 -- No specific constraints on P's discriminants or constraint (:::).
7434 -- Note that A can be unconstrained, but the parent subtype P must either
7435 -- be constrained or (:::) must be present.
7436
7437 -- type D (..) is new A [(...)] with private; <-- partial view
7438 -- type D (..) is new P [(:::)] with null record; <-- full view
7439
7440 -- P's constraints on A's discriminants must statically match those
7441 -- imposed by (...).
7442
7443 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7444
7445 -- The full view of a private extension is handled exactly as described
7446 -- above. The model chose for the private view of a private extension is
7447 -- the same for what concerns discriminants (i.e. they receive the same
7448 -- treatment as in the tagged case). However, the private view of the
7449 -- private extension always inherits the components of the parent base,
7450 -- without replacing any discriminant reference. Strictly speaking this is
7451 -- incorrect. However, Gigi never uses this view to generate code so this
7452 -- is a purely semantic issue. In theory, a set of transformations similar
7453 -- to those given in 5. and 6. above could be applied to private views of
7454 -- private extensions to have the same model of component inheritance as
7455 -- for non private extensions. However, this is not done because it would
7456 -- further complicate private type processing. Semantically speaking, this
7457 -- leaves us in an uncomfortable situation. As an example consider:
7458
7459 -- package Pack is
7460 -- type R (D : integer) is tagged record
7461 -- S : String (1 .. D);
7462 -- end record;
7463 -- procedure P (X : R);
7464 -- type T is new R (1) with private;
7465 -- private
7466 -- type T is new R (1) with null record;
7467 -- end;
7468
7469 -- This is transformed into:
7470
7471 -- package Pack is
7472 -- type R (D : integer) is tagged record
7473 -- S : String (1 .. D);
7474 -- end record;
7475 -- procedure P (X : R);
7476 -- type T is new R (1) with private;
7477 -- private
7478 -- type BaseT is new R with null record;
7479 -- subtype T is BaseT (1);
7480 -- end;
7481
7482 -- (strictly speaking the above is incorrect Ada)
7483
7484 -- From the semantic standpoint the private view of private extension T
7485 -- should be flagged as constrained since one can clearly have
7486 --
7487 -- Obj : T;
7488 --
7489 -- in a unit withing Pack. However, when deriving subprograms for the
7490 -- private view of private extension T, T must be seen as unconstrained
7491 -- since T has discriminants (this is a constraint of the current
7492 -- subprogram derivation model). Thus, when processing the private view of
7493 -- a private extension such as T, we first mark T as unconstrained, we
7494 -- process it, we perform program derivation and just before returning from
7495 -- Build_Derived_Record_Type we mark T as constrained.
7496
7497 -- ??? Are there are other uncomfortable cases that we will have to
7498 -- deal with.
7499
7500 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7501
7502 -- Types that are derived from a visible record type and have a private
7503 -- extension present other peculiarities. They behave mostly like private
7504 -- types, but if they have primitive operations defined, these will not
7505 -- have the proper signatures for further inheritance, because other
7506 -- primitive operations will use the implicit base that we define for
7507 -- private derivations below. This affect subprogram inheritance (see
7508 -- Derive_Subprograms for details). We also derive the implicit base from
7509 -- the base type of the full view, so that the implicit base is a record
7510 -- type and not another private type, This avoids infinite loops.
7511
7512 procedure Build_Derived_Record_Type
7513 (N : Node_Id;
7514 Parent_Type : Entity_Id;
7515 Derived_Type : Entity_Id;
7516 Derive_Subps : Boolean := True)
7517 is
7518 Discriminant_Specs : constant Boolean :=
7519 Present (Discriminant_Specifications (N));
7520 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7521 Loc : constant Source_Ptr := Sloc (N);
7522 Private_Extension : constant Boolean :=
7523 Nkind (N) = N_Private_Extension_Declaration;
7524 Assoc_List : Elist_Id;
7525 Constraint_Present : Boolean;
7526 Constrs : Elist_Id;
7527 Discrim : Entity_Id;
7528 Indic : Node_Id;
7529 Inherit_Discrims : Boolean := False;
7530 Last_Discrim : Entity_Id;
7531 New_Base : Entity_Id;
7532 New_Decl : Node_Id;
7533 New_Discrs : Elist_Id;
7534 New_Indic : Node_Id;
7535 Parent_Base : Entity_Id;
7536 Save_Etype : Entity_Id;
7537 Save_Discr_Constr : Elist_Id;
7538 Save_Next_Entity : Entity_Id;
7539 Type_Def : Node_Id;
7540
7541 Discs : Elist_Id := New_Elmt_List;
7542 -- An empty Discs list means that there were no constraints in the
7543 -- subtype indication or that there was an error processing it.
7544
7545 begin
7546 if Ekind (Parent_Type) = E_Record_Type_With_Private
7547 and then Present (Full_View (Parent_Type))
7548 and then Has_Discriminants (Parent_Type)
7549 then
7550 Parent_Base := Base_Type (Full_View (Parent_Type));
7551 else
7552 Parent_Base := Base_Type (Parent_Type);
7553 end if;
7554
7555 -- AI05-0115 : if this is a derivation from a private type in some
7556 -- other scope that may lead to invisible components for the derived
7557 -- type, mark it accordingly.
7558
7559 if Is_Private_Type (Parent_Type) then
7560 if Scope (Parent_Type) = Scope (Derived_Type) then
7561 null;
7562
7563 elsif In_Open_Scopes (Scope (Parent_Type))
7564 and then In_Private_Part (Scope (Parent_Type))
7565 then
7566 null;
7567
7568 else
7569 Set_Has_Private_Ancestor (Derived_Type);
7570 end if;
7571
7572 else
7573 Set_Has_Private_Ancestor
7574 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7575 end if;
7576
7577 -- Before we start the previously documented transformations, here is
7578 -- little fix for size and alignment of tagged types. Normally when we
7579 -- derive type D from type P, we copy the size and alignment of P as the
7580 -- default for D, and in the absence of explicit representation clauses
7581 -- for D, the size and alignment are indeed the same as the parent.
7582
7583 -- But this is wrong for tagged types, since fields may be added, and
7584 -- the default size may need to be larger, and the default alignment may
7585 -- need to be larger.
7586
7587 -- We therefore reset the size and alignment fields in the tagged case.
7588 -- Note that the size and alignment will in any case be at least as
7589 -- large as the parent type (since the derived type has a copy of the
7590 -- parent type in the _parent field)
7591
7592 -- The type is also marked as being tagged here, which is needed when
7593 -- processing components with a self-referential anonymous access type
7594 -- in the call to Check_Anonymous_Access_Components below. Note that
7595 -- this flag is also set later on for completeness.
7596
7597 if Is_Tagged then
7598 Set_Is_Tagged_Type (Derived_Type);
7599 Init_Size_Align (Derived_Type);
7600 end if;
7601
7602 -- STEP 0a: figure out what kind of derived type declaration we have
7603
7604 if Private_Extension then
7605 Type_Def := N;
7606 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7607 Set_Default_SSO (Derived_Type);
7608
7609 else
7610 Type_Def := Type_Definition (N);
7611
7612 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7613 -- Parent_Base can be a private type or private extension. However,
7614 -- for tagged types with an extension the newly added fields are
7615 -- visible and hence the Derived_Type is always an E_Record_Type.
7616 -- (except that the parent may have its own private fields).
7617 -- For untagged types we preserve the Ekind of the Parent_Base.
7618
7619 if Present (Record_Extension_Part (Type_Def)) then
7620 Set_Ekind (Derived_Type, E_Record_Type);
7621 Set_Default_SSO (Derived_Type);
7622
7623 -- Create internal access types for components with anonymous
7624 -- access types.
7625
7626 if Ada_Version >= Ada_2005 then
7627 Check_Anonymous_Access_Components
7628 (N, Derived_Type, Derived_Type,
7629 Component_List (Record_Extension_Part (Type_Def)));
7630 end if;
7631
7632 else
7633 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7634 end if;
7635 end if;
7636
7637 -- Indic can either be an N_Identifier if the subtype indication
7638 -- contains no constraint or an N_Subtype_Indication if the subtype
7639 -- indication has a constraint.
7640
7641 Indic := Subtype_Indication (Type_Def);
7642 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7643
7644 -- Check that the type has visible discriminants. The type may be
7645 -- a private type with unknown discriminants whose full view has
7646 -- discriminants which are invisible.
7647
7648 if Constraint_Present then
7649 if not Has_Discriminants (Parent_Base)
7650 or else
7651 (Has_Unknown_Discriminants (Parent_Base)
7652 and then Is_Private_Type (Parent_Base))
7653 then
7654 Error_Msg_N
7655 ("invalid constraint: type has no discriminant",
7656 Constraint (Indic));
7657
7658 Constraint_Present := False;
7659 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7660
7661 elsif Is_Constrained (Parent_Type) then
7662 Error_Msg_N
7663 ("invalid constraint: parent type is already constrained",
7664 Constraint (Indic));
7665
7666 Constraint_Present := False;
7667 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7668 end if;
7669 end if;
7670
7671 -- STEP 0b: If needed, apply transformation given in point 5. above
7672
7673 if not Private_Extension
7674 and then Has_Discriminants (Parent_Type)
7675 and then not Discriminant_Specs
7676 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7677 then
7678 -- First, we must analyze the constraint (see comment in point 5.)
7679 -- The constraint may come from the subtype indication of the full
7680 -- declaration.
7681
7682 if Constraint_Present then
7683 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7684
7685 -- If there is no explicit constraint, there might be one that is
7686 -- inherited from a constrained parent type. In that case verify that
7687 -- it conforms to the constraint in the partial view. In perverse
7688 -- cases the parent subtypes of the partial and full view can have
7689 -- different constraints.
7690
7691 elsif Present (Stored_Constraint (Parent_Type)) then
7692 New_Discrs := Stored_Constraint (Parent_Type);
7693
7694 else
7695 New_Discrs := No_Elist;
7696 end if;
7697
7698 if Has_Discriminants (Derived_Type)
7699 and then Has_Private_Declaration (Derived_Type)
7700 and then Present (Discriminant_Constraint (Derived_Type))
7701 and then Present (New_Discrs)
7702 then
7703 -- Verify that constraints of the full view statically match
7704 -- those given in the partial view.
7705
7706 declare
7707 C1, C2 : Elmt_Id;
7708
7709 begin
7710 C1 := First_Elmt (New_Discrs);
7711 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7712 while Present (C1) and then Present (C2) loop
7713 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7714 or else
7715 (Is_OK_Static_Expression (Node (C1))
7716 and then Is_OK_Static_Expression (Node (C2))
7717 and then
7718 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7719 then
7720 null;
7721
7722 else
7723 if Constraint_Present then
7724 Error_Msg_N
7725 ("constraint not conformant to previous declaration",
7726 Node (C1));
7727 else
7728 Error_Msg_N
7729 ("constraint of full view is incompatible "
7730 & "with partial view", N);
7731 end if;
7732 end if;
7733
7734 Next_Elmt (C1);
7735 Next_Elmt (C2);
7736 end loop;
7737 end;
7738 end if;
7739
7740 -- Insert and analyze the declaration for the unconstrained base type
7741
7742 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7743
7744 New_Decl :=
7745 Make_Full_Type_Declaration (Loc,
7746 Defining_Identifier => New_Base,
7747 Type_Definition =>
7748 Make_Derived_Type_Definition (Loc,
7749 Abstract_Present => Abstract_Present (Type_Def),
7750 Limited_Present => Limited_Present (Type_Def),
7751 Subtype_Indication =>
7752 New_Occurrence_Of (Parent_Base, Loc),
7753 Record_Extension_Part =>
7754 Relocate_Node (Record_Extension_Part (Type_Def)),
7755 Interface_List => Interface_List (Type_Def)));
7756
7757 Set_Parent (New_Decl, Parent (N));
7758 Mark_Rewrite_Insertion (New_Decl);
7759 Insert_Before (N, New_Decl);
7760
7761 -- In the extension case, make sure ancestor is frozen appropriately
7762 -- (see also non-discriminated case below).
7763
7764 if Present (Record_Extension_Part (Type_Def))
7765 or else Is_Interface (Parent_Base)
7766 then
7767 Freeze_Before (New_Decl, Parent_Type);
7768 end if;
7769
7770 -- Note that this call passes False for the Derive_Subps parameter
7771 -- because subprogram derivation is deferred until after creating
7772 -- the subtype (see below).
7773
7774 Build_Derived_Type
7775 (New_Decl, Parent_Base, New_Base,
7776 Is_Completion => True, Derive_Subps => False);
7777
7778 -- ??? This needs re-examination to determine whether the
7779 -- above call can simply be replaced by a call to Analyze.
7780
7781 Set_Analyzed (New_Decl);
7782
7783 -- Insert and analyze the declaration for the constrained subtype
7784
7785 if Constraint_Present then
7786 New_Indic :=
7787 Make_Subtype_Indication (Loc,
7788 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7789 Constraint => Relocate_Node (Constraint (Indic)));
7790
7791 else
7792 declare
7793 Constr_List : constant List_Id := New_List;
7794 C : Elmt_Id;
7795 Expr : Node_Id;
7796
7797 begin
7798 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7799 while Present (C) loop
7800 Expr := Node (C);
7801
7802 -- It is safe here to call New_Copy_Tree since
7803 -- Force_Evaluation was called on each constraint in
7804 -- Build_Discriminant_Constraints.
7805
7806 Append (New_Copy_Tree (Expr), To => Constr_List);
7807
7808 Next_Elmt (C);
7809 end loop;
7810
7811 New_Indic :=
7812 Make_Subtype_Indication (Loc,
7813 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7814 Constraint =>
7815 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7816 end;
7817 end if;
7818
7819 Rewrite (N,
7820 Make_Subtype_Declaration (Loc,
7821 Defining_Identifier => Derived_Type,
7822 Subtype_Indication => New_Indic));
7823
7824 Analyze (N);
7825
7826 -- Derivation of subprograms must be delayed until the full subtype
7827 -- has been established, to ensure proper overriding of subprograms
7828 -- inherited by full types. If the derivations occurred as part of
7829 -- the call to Build_Derived_Type above, then the check for type
7830 -- conformance would fail because earlier primitive subprograms
7831 -- could still refer to the full type prior the change to the new
7832 -- subtype and hence would not match the new base type created here.
7833 -- Subprograms are not derived, however, when Derive_Subps is False
7834 -- (since otherwise there could be redundant derivations).
7835
7836 if Derive_Subps then
7837 Derive_Subprograms (Parent_Type, Derived_Type);
7838 end if;
7839
7840 -- For tagged types the Discriminant_Constraint of the new base itype
7841 -- is inherited from the first subtype so that no subtype conformance
7842 -- problem arise when the first subtype overrides primitive
7843 -- operations inherited by the implicit base type.
7844
7845 if Is_Tagged then
7846 Set_Discriminant_Constraint
7847 (New_Base, Discriminant_Constraint (Derived_Type));
7848 end if;
7849
7850 return;
7851 end if;
7852
7853 -- If we get here Derived_Type will have no discriminants or it will be
7854 -- a discriminated unconstrained base type.
7855
7856 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7857
7858 if Is_Tagged then
7859
7860 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7861 -- The declaration of a specific descendant of an interface type
7862 -- freezes the interface type (RM 13.14).
7863
7864 if not Private_Extension or else Is_Interface (Parent_Base) then
7865 Freeze_Before (N, Parent_Type);
7866 end if;
7867
7868 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7869 -- cannot be declared at a deeper level than its parent type is
7870 -- removed. The check on derivation within a generic body is also
7871 -- relaxed, but there's a restriction that a derived tagged type
7872 -- cannot be declared in a generic body if it's derived directly
7873 -- or indirectly from a formal type of that generic.
7874
7875 if Ada_Version >= Ada_2005 then
7876 if Present (Enclosing_Generic_Body (Derived_Type)) then
7877 declare
7878 Ancestor_Type : Entity_Id;
7879
7880 begin
7881 -- Check to see if any ancestor of the derived type is a
7882 -- formal type.
7883
7884 Ancestor_Type := Parent_Type;
7885 while not Is_Generic_Type (Ancestor_Type)
7886 and then Etype (Ancestor_Type) /= Ancestor_Type
7887 loop
7888 Ancestor_Type := Etype (Ancestor_Type);
7889 end loop;
7890
7891 -- If the derived type does have a formal type as an
7892 -- ancestor, then it's an error if the derived type is
7893 -- declared within the body of the generic unit that
7894 -- declares the formal type in its generic formal part. It's
7895 -- sufficient to check whether the ancestor type is declared
7896 -- inside the same generic body as the derived type (such as
7897 -- within a nested generic spec), in which case the
7898 -- derivation is legal. If the formal type is declared
7899 -- outside of that generic body, then it's guaranteed that
7900 -- the derived type is declared within the generic body of
7901 -- the generic unit declaring the formal type.
7902
7903 if Is_Generic_Type (Ancestor_Type)
7904 and then Enclosing_Generic_Body (Ancestor_Type) /=
7905 Enclosing_Generic_Body (Derived_Type)
7906 then
7907 Error_Msg_NE
7908 ("parent type of& must not be descendant of formal type"
7909 & " of an enclosing generic body",
7910 Indic, Derived_Type);
7911 end if;
7912 end;
7913 end if;
7914
7915 elsif Type_Access_Level (Derived_Type) /=
7916 Type_Access_Level (Parent_Type)
7917 and then not Is_Generic_Type (Derived_Type)
7918 then
7919 if Is_Controlled (Parent_Type) then
7920 Error_Msg_N
7921 ("controlled type must be declared at the library level",
7922 Indic);
7923 else
7924 Error_Msg_N
7925 ("type extension at deeper accessibility level than parent",
7926 Indic);
7927 end if;
7928
7929 else
7930 declare
7931 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7932 begin
7933 if Present (GB)
7934 and then GB /= Enclosing_Generic_Body (Parent_Base)
7935 then
7936 Error_Msg_NE
7937 ("parent type of& must not be outside generic body"
7938 & " (RM 3.9.1(4))",
7939 Indic, Derived_Type);
7940 end if;
7941 end;
7942 end if;
7943 end if;
7944
7945 -- Ada 2005 (AI-251)
7946
7947 if Ada_Version >= Ada_2005 and then Is_Tagged then
7948
7949 -- "The declaration of a specific descendant of an interface type
7950 -- freezes the interface type" (RM 13.14).
7951
7952 declare
7953 Iface : Node_Id;
7954 begin
7955 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7956 Iface := First (Interface_List (Type_Def));
7957 while Present (Iface) loop
7958 Freeze_Before (N, Etype (Iface));
7959 Next (Iface);
7960 end loop;
7961 end if;
7962 end;
7963 end if;
7964
7965 -- STEP 1b : preliminary cleanup of the full view of private types
7966
7967 -- If the type is already marked as having discriminants, then it's the
7968 -- completion of a private type or private extension and we need to
7969 -- retain the discriminants from the partial view if the current
7970 -- declaration has Discriminant_Specifications so that we can verify
7971 -- conformance. However, we must remove any existing components that
7972 -- were inherited from the parent (and attached in Copy_And_Swap)
7973 -- because the full type inherits all appropriate components anyway, and
7974 -- we do not want the partial view's components interfering.
7975
7976 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7977 Discrim := First_Discriminant (Derived_Type);
7978 loop
7979 Last_Discrim := Discrim;
7980 Next_Discriminant (Discrim);
7981 exit when No (Discrim);
7982 end loop;
7983
7984 Set_Last_Entity (Derived_Type, Last_Discrim);
7985
7986 -- In all other cases wipe out the list of inherited components (even
7987 -- inherited discriminants), it will be properly rebuilt here.
7988
7989 else
7990 Set_First_Entity (Derived_Type, Empty);
7991 Set_Last_Entity (Derived_Type, Empty);
7992 end if;
7993
7994 -- STEP 1c: Initialize some flags for the Derived_Type
7995
7996 -- The following flags must be initialized here so that
7997 -- Process_Discriminants can check that discriminants of tagged types do
7998 -- not have a default initial value and that access discriminants are
7999 -- only specified for limited records. For completeness, these flags are
8000 -- also initialized along with all the other flags below.
8001
8002 -- AI-419: Limitedness is not inherited from an interface parent, so to
8003 -- be limited in that case the type must be explicitly declared as
8004 -- limited. However, task and protected interfaces are always limited.
8005
8006 if Limited_Present (Type_Def) then
8007 Set_Is_Limited_Record (Derived_Type);
8008
8009 elsif Is_Limited_Record (Parent_Type)
8010 or else (Present (Full_View (Parent_Type))
8011 and then Is_Limited_Record (Full_View (Parent_Type)))
8012 then
8013 if not Is_Interface (Parent_Type)
8014 or else Is_Synchronized_Interface (Parent_Type)
8015 or else Is_Protected_Interface (Parent_Type)
8016 or else Is_Task_Interface (Parent_Type)
8017 then
8018 Set_Is_Limited_Record (Derived_Type);
8019 end if;
8020 end if;
8021
8022 -- STEP 2a: process discriminants of derived type if any
8023
8024 Push_Scope (Derived_Type);
8025
8026 if Discriminant_Specs then
8027 Set_Has_Unknown_Discriminants (Derived_Type, False);
8028
8029 -- The following call initializes fields Has_Discriminants and
8030 -- Discriminant_Constraint, unless we are processing the completion
8031 -- of a private type declaration.
8032
8033 Check_Or_Process_Discriminants (N, Derived_Type);
8034
8035 -- For untagged types, the constraint on the Parent_Type must be
8036 -- present and is used to rename the discriminants.
8037
8038 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8039 Error_Msg_N ("untagged parent must have discriminants", Indic);
8040
8041 elsif not Is_Tagged and then not Constraint_Present then
8042 Error_Msg_N
8043 ("discriminant constraint needed for derived untagged records",
8044 Indic);
8045
8046 -- Otherwise the parent subtype must be constrained unless we have a
8047 -- private extension.
8048
8049 elsif not Constraint_Present
8050 and then not Private_Extension
8051 and then not Is_Constrained (Parent_Type)
8052 then
8053 Error_Msg_N
8054 ("unconstrained type not allowed in this context", Indic);
8055
8056 elsif Constraint_Present then
8057 -- The following call sets the field Corresponding_Discriminant
8058 -- for the discriminants in the Derived_Type.
8059
8060 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8061
8062 -- For untagged types all new discriminants must rename
8063 -- discriminants in the parent. For private extensions new
8064 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8065
8066 Discrim := First_Discriminant (Derived_Type);
8067 while Present (Discrim) loop
8068 if not Is_Tagged
8069 and then No (Corresponding_Discriminant (Discrim))
8070 then
8071 Error_Msg_N
8072 ("new discriminants must constrain old ones", Discrim);
8073
8074 elsif Private_Extension
8075 and then Present (Corresponding_Discriminant (Discrim))
8076 then
8077 Error_Msg_N
8078 ("only static constraints allowed for parent"
8079 & " discriminants in the partial view", Indic);
8080 exit;
8081 end if;
8082
8083 -- If a new discriminant is used in the constraint, then its
8084 -- subtype must be statically compatible with the parent
8085 -- discriminant's subtype (3.7(15)).
8086
8087 -- However, if the record contains an array constrained by
8088 -- the discriminant but with some different bound, the compiler
8089 -- attemps to create a smaller range for the discriminant type.
8090 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8091 -- the discriminant type is a scalar type, the check must use
8092 -- the original discriminant type in the parent declaration.
8093
8094 declare
8095 Corr_Disc : constant Entity_Id :=
8096 Corresponding_Discriminant (Discrim);
8097 Disc_Type : constant Entity_Id := Etype (Discrim);
8098 Corr_Type : Entity_Id;
8099
8100 begin
8101 if Present (Corr_Disc) then
8102 if Is_Scalar_Type (Disc_Type) then
8103 Corr_Type :=
8104 Entity (Discriminant_Type (Parent (Corr_Disc)));
8105 else
8106 Corr_Type := Etype (Corr_Disc);
8107 end if;
8108
8109 if not
8110 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8111 then
8112 Error_Msg_N
8113 ("subtype must be compatible "
8114 & "with parent discriminant",
8115 Discrim);
8116 end if;
8117 end if;
8118 end;
8119
8120 Next_Discriminant (Discrim);
8121 end loop;
8122
8123 -- Check whether the constraints of the full view statically
8124 -- match those imposed by the parent subtype [7.3(13)].
8125
8126 if Present (Stored_Constraint (Derived_Type)) then
8127 declare
8128 C1, C2 : Elmt_Id;
8129
8130 begin
8131 C1 := First_Elmt (Discs);
8132 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8133 while Present (C1) and then Present (C2) loop
8134 if not
8135 Fully_Conformant_Expressions (Node (C1), Node (C2))
8136 then
8137 Error_Msg_N
8138 ("not conformant with previous declaration",
8139 Node (C1));
8140 end if;
8141
8142 Next_Elmt (C1);
8143 Next_Elmt (C2);
8144 end loop;
8145 end;
8146 end if;
8147 end if;
8148
8149 -- STEP 2b: No new discriminants, inherit discriminants if any
8150
8151 else
8152 if Private_Extension then
8153 Set_Has_Unknown_Discriminants
8154 (Derived_Type,
8155 Has_Unknown_Discriminants (Parent_Type)
8156 or else Unknown_Discriminants_Present (N));
8157
8158 -- The partial view of the parent may have unknown discriminants,
8159 -- but if the full view has discriminants and the parent type is
8160 -- in scope they must be inherited.
8161
8162 elsif Has_Unknown_Discriminants (Parent_Type)
8163 and then
8164 (not Has_Discriminants (Parent_Type)
8165 or else not In_Open_Scopes (Scope (Parent_Type)))
8166 then
8167 Set_Has_Unknown_Discriminants (Derived_Type);
8168 end if;
8169
8170 if not Has_Unknown_Discriminants (Derived_Type)
8171 and then not Has_Unknown_Discriminants (Parent_Base)
8172 and then Has_Discriminants (Parent_Type)
8173 then
8174 Inherit_Discrims := True;
8175 Set_Has_Discriminants
8176 (Derived_Type, True);
8177 Set_Discriminant_Constraint
8178 (Derived_Type, Discriminant_Constraint (Parent_Base));
8179 end if;
8180
8181 -- The following test is true for private types (remember
8182 -- transformation 5. is not applied to those) and in an error
8183 -- situation.
8184
8185 if Constraint_Present then
8186 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8187 end if;
8188
8189 -- For now mark a new derived type as constrained only if it has no
8190 -- discriminants. At the end of Build_Derived_Record_Type we properly
8191 -- set this flag in the case of private extensions. See comments in
8192 -- point 9. just before body of Build_Derived_Record_Type.
8193
8194 Set_Is_Constrained
8195 (Derived_Type,
8196 not (Inherit_Discrims
8197 or else Has_Unknown_Discriminants (Derived_Type)));
8198 end if;
8199
8200 -- STEP 3: initialize fields of derived type
8201
8202 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8203 Set_Stored_Constraint (Derived_Type, No_Elist);
8204
8205 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8206 -- but cannot be interfaces
8207
8208 if not Private_Extension
8209 and then Ekind (Derived_Type) /= E_Private_Type
8210 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8211 then
8212 if Interface_Present (Type_Def) then
8213 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8214 end if;
8215
8216 Set_Interfaces (Derived_Type, No_Elist);
8217 end if;
8218
8219 -- Fields inherited from the Parent_Type
8220
8221 Set_Has_Specified_Layout
8222 (Derived_Type, Has_Specified_Layout (Parent_Type));
8223 Set_Is_Limited_Composite
8224 (Derived_Type, Is_Limited_Composite (Parent_Type));
8225 Set_Is_Private_Composite
8226 (Derived_Type, Is_Private_Composite (Parent_Type));
8227
8228 -- Fields inherited from the Parent_Base
8229
8230 Set_Has_Controlled_Component
8231 (Derived_Type, Has_Controlled_Component (Parent_Base));
8232 Set_Has_Non_Standard_Rep
8233 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8234 Set_Has_Primitive_Operations
8235 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8236
8237 -- Fields inherited from the Parent_Base in the non-private case
8238
8239 if Ekind (Derived_Type) = E_Record_Type then
8240 Set_Has_Complex_Representation
8241 (Derived_Type, Has_Complex_Representation (Parent_Base));
8242 end if;
8243
8244 -- Fields inherited from the Parent_Base for record types
8245
8246 if Is_Record_Type (Derived_Type) then
8247
8248 declare
8249 Parent_Full : Entity_Id;
8250
8251 begin
8252 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8253 -- Parent_Base can be a private type or private extension. Go
8254 -- to the full view here to get the E_Record_Type specific flags.
8255
8256 if Present (Full_View (Parent_Base)) then
8257 Parent_Full := Full_View (Parent_Base);
8258 else
8259 Parent_Full := Parent_Base;
8260 end if;
8261
8262 Set_OK_To_Reorder_Components
8263 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8264 end;
8265 end if;
8266
8267 -- Set fields for private derived types
8268
8269 if Is_Private_Type (Derived_Type) then
8270 Set_Depends_On_Private (Derived_Type, True);
8271 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8272
8273 -- Inherit fields from non private record types. If this is the
8274 -- completion of a derivation from a private type, the parent itself
8275 -- is private, and the attributes come from its full view, which must
8276 -- be present.
8277
8278 else
8279 if Is_Private_Type (Parent_Base)
8280 and then not Is_Record_Type (Parent_Base)
8281 then
8282 Set_Component_Alignment
8283 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8284 Set_C_Pass_By_Copy
8285 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8286 else
8287 Set_Component_Alignment
8288 (Derived_Type, Component_Alignment (Parent_Base));
8289 Set_C_Pass_By_Copy
8290 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8291 end if;
8292 end if;
8293
8294 -- Set fields for tagged types
8295
8296 if Is_Tagged then
8297 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8298
8299 -- All tagged types defined in Ada.Finalization are controlled
8300
8301 if Chars (Scope (Derived_Type)) = Name_Finalization
8302 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8303 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8304 then
8305 Set_Is_Controlled (Derived_Type);
8306 else
8307 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8308 end if;
8309
8310 -- Minor optimization: there is no need to generate the class-wide
8311 -- entity associated with an underlying record view.
8312
8313 if not Is_Underlying_Record_View (Derived_Type) then
8314 Make_Class_Wide_Type (Derived_Type);
8315 end if;
8316
8317 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8318
8319 if Has_Discriminants (Derived_Type)
8320 and then Constraint_Present
8321 then
8322 Set_Stored_Constraint
8323 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8324 end if;
8325
8326 if Ada_Version >= Ada_2005 then
8327 declare
8328 Ifaces_List : Elist_Id;
8329
8330 begin
8331 -- Checks rules 3.9.4 (13/2 and 14/2)
8332
8333 if Comes_From_Source (Derived_Type)
8334 and then not Is_Private_Type (Derived_Type)
8335 and then Is_Interface (Parent_Type)
8336 and then not Is_Interface (Derived_Type)
8337 then
8338 if Is_Task_Interface (Parent_Type) then
8339 Error_Msg_N
8340 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8341 Derived_Type);
8342
8343 elsif Is_Protected_Interface (Parent_Type) then
8344 Error_Msg_N
8345 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8346 Derived_Type);
8347 end if;
8348 end if;
8349
8350 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8351
8352 Check_Interfaces (N, Type_Def);
8353
8354 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8355 -- not already in the parents.
8356
8357 Collect_Interfaces
8358 (T => Derived_Type,
8359 Ifaces_List => Ifaces_List,
8360 Exclude_Parents => True);
8361
8362 Set_Interfaces (Derived_Type, Ifaces_List);
8363
8364 -- If the derived type is the anonymous type created for
8365 -- a declaration whose parent has a constraint, propagate
8366 -- the interface list to the source type. This must be done
8367 -- prior to the completion of the analysis of the source type
8368 -- because the components in the extension may contain current
8369 -- instances whose legality depends on some ancestor.
8370
8371 if Is_Itype (Derived_Type) then
8372 declare
8373 Def : constant Node_Id :=
8374 Associated_Node_For_Itype (Derived_Type);
8375 begin
8376 if Present (Def)
8377 and then Nkind (Def) = N_Full_Type_Declaration
8378 then
8379 Set_Interfaces
8380 (Defining_Identifier (Def), Ifaces_List);
8381 end if;
8382 end;
8383 end if;
8384 end;
8385 end if;
8386
8387 else
8388 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8389 Set_Has_Non_Standard_Rep
8390 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8391 end if;
8392
8393 -- STEP 4: Inherit components from the parent base and constrain them.
8394 -- Apply the second transformation described in point 6. above.
8395
8396 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8397 or else not Has_Discriminants (Parent_Type)
8398 or else not Is_Constrained (Parent_Type)
8399 then
8400 Constrs := Discs;
8401 else
8402 Constrs := Discriminant_Constraint (Parent_Type);
8403 end if;
8404
8405 Assoc_List :=
8406 Inherit_Components
8407 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8408
8409 -- STEP 5a: Copy the parent record declaration for untagged types
8410
8411 if not Is_Tagged then
8412
8413 -- Discriminant_Constraint (Derived_Type) has been properly
8414 -- constructed. Save it and temporarily set it to Empty because we
8415 -- do not want the call to New_Copy_Tree below to mess this list.
8416
8417 if Has_Discriminants (Derived_Type) then
8418 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8419 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8420 else
8421 Save_Discr_Constr := No_Elist;
8422 end if;
8423
8424 -- Save the Etype field of Derived_Type. It is correctly set now,
8425 -- but the call to New_Copy tree may remap it to point to itself,
8426 -- which is not what we want. Ditto for the Next_Entity field.
8427
8428 Save_Etype := Etype (Derived_Type);
8429 Save_Next_Entity := Next_Entity (Derived_Type);
8430
8431 -- Assoc_List maps all stored discriminants in the Parent_Base to
8432 -- stored discriminants in the Derived_Type. It is fundamental that
8433 -- no types or itypes with discriminants other than the stored
8434 -- discriminants appear in the entities declared inside
8435 -- Derived_Type, since the back end cannot deal with it.
8436
8437 New_Decl :=
8438 New_Copy_Tree
8439 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8440
8441 -- Restore the fields saved prior to the New_Copy_Tree call
8442 -- and compute the stored constraint.
8443
8444 Set_Etype (Derived_Type, Save_Etype);
8445 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8446
8447 if Has_Discriminants (Derived_Type) then
8448 Set_Discriminant_Constraint
8449 (Derived_Type, Save_Discr_Constr);
8450 Set_Stored_Constraint
8451 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8452 Replace_Components (Derived_Type, New_Decl);
8453 Set_Has_Implicit_Dereference
8454 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8455 end if;
8456
8457 -- Insert the new derived type declaration
8458
8459 Rewrite (N, New_Decl);
8460
8461 -- STEP 5b: Complete the processing for record extensions in generics
8462
8463 -- There is no completion for record extensions declared in the
8464 -- parameter part of a generic, so we need to complete processing for
8465 -- these generic record extensions here. The Record_Type_Definition call
8466 -- will change the Ekind of the components from E_Void to E_Component.
8467
8468 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8469 Record_Type_Definition (Empty, Derived_Type);
8470
8471 -- STEP 5c: Process the record extension for non private tagged types
8472
8473 elsif not Private_Extension then
8474 Expand_Record_Extension (Derived_Type, Type_Def);
8475
8476 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8477 -- derived type to propagate some semantic information. This led
8478 -- to other ASIS failures and has been removed.
8479
8480 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8481 -- implemented interfaces if we are in expansion mode
8482
8483 if Expander_Active
8484 and then Has_Interfaces (Derived_Type)
8485 then
8486 Add_Interface_Tag_Components (N, Derived_Type);
8487 end if;
8488
8489 -- Analyze the record extension
8490
8491 Record_Type_Definition
8492 (Record_Extension_Part (Type_Def), Derived_Type);
8493 end if;
8494
8495 End_Scope;
8496
8497 -- Nothing else to do if there is an error in the derivation.
8498 -- An unusual case: the full view may be derived from a type in an
8499 -- instance, when the partial view was used illegally as an actual
8500 -- in that instance, leading to a circular definition.
8501
8502 if Etype (Derived_Type) = Any_Type
8503 or else Etype (Parent_Type) = Derived_Type
8504 then
8505 return;
8506 end if;
8507
8508 -- Set delayed freeze and then derive subprograms, we need to do
8509 -- this in this order so that derived subprograms inherit the
8510 -- derived freeze if necessary.
8511
8512 Set_Has_Delayed_Freeze (Derived_Type);
8513
8514 if Derive_Subps then
8515 Derive_Subprograms (Parent_Type, Derived_Type);
8516 end if;
8517
8518 -- If we have a private extension which defines a constrained derived
8519 -- type mark as constrained here after we have derived subprograms. See
8520 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8521
8522 if Private_Extension and then Inherit_Discrims then
8523 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8524 Set_Is_Constrained (Derived_Type, True);
8525 Set_Discriminant_Constraint (Derived_Type, Discs);
8526
8527 elsif Is_Constrained (Parent_Type) then
8528 Set_Is_Constrained
8529 (Derived_Type, True);
8530 Set_Discriminant_Constraint
8531 (Derived_Type, Discriminant_Constraint (Parent_Type));
8532 end if;
8533 end if;
8534
8535 -- Update the class-wide type, which shares the now-completed entity
8536 -- list with its specific type. In case of underlying record views,
8537 -- we do not generate the corresponding class wide entity.
8538
8539 if Is_Tagged
8540 and then not Is_Underlying_Record_View (Derived_Type)
8541 then
8542 Set_First_Entity
8543 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8544 Set_Last_Entity
8545 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8546 end if;
8547
8548 Check_Function_Writable_Actuals (N);
8549
8550 -- Propagate the attributes related to pragma Default_Initial_Condition
8551 -- from the parent type to the private extension. A derived type always
8552 -- inherits the default initial condition flag from the parent type. If
8553 -- the derived type carries its own Default_Initial_Condition pragma,
8554 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8555 -- mutually exclusive.
8556
8557 if Has_Inherited_Default_Init_Cond (Parent_Type)
8558 or else Present (Get_Pragma
8559 (Parent_Type, Pragma_Default_Initial_Condition))
8560 then
8561 Set_Has_Inherited_Default_Init_Cond (Derived_Type);
8562
8563 elsif Has_Default_Init_Cond (Parent_Type) then
8564 Set_Has_Default_Init_Cond (Derived_Type);
8565 end if;
8566 end Build_Derived_Record_Type;
8567
8568 ------------------------
8569 -- Build_Derived_Type --
8570 ------------------------
8571
8572 procedure Build_Derived_Type
8573 (N : Node_Id;
8574 Parent_Type : Entity_Id;
8575 Derived_Type : Entity_Id;
8576 Is_Completion : Boolean;
8577 Derive_Subps : Boolean := True)
8578 is
8579 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8580
8581 begin
8582 -- Set common attributes
8583
8584 Set_Scope (Derived_Type, Current_Scope);
8585
8586 Set_Etype (Derived_Type, Parent_Base);
8587 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8588 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8589 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8590
8591 Set_Size_Info (Derived_Type, Parent_Type);
8592 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8593 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8594 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8595
8596 -- If the parent has primitive routines, set the derived type link
8597
8598 if Has_Primitive_Operations (Parent_Type) then
8599 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8600 end if;
8601
8602 -- If the parent type is a private subtype, the convention on the base
8603 -- type may be set in the private part, and not propagated to the
8604 -- subtype until later, so we obtain the convention from the base type.
8605
8606 Set_Convention (Derived_Type, Convention (Parent_Base));
8607
8608 -- Set SSO default for record or array type
8609
8610 if (Is_Array_Type (Derived_Type)
8611 or else Is_Record_Type (Derived_Type))
8612 and then Is_Base_Type (Derived_Type)
8613 then
8614 Set_Default_SSO (Derived_Type);
8615 end if;
8616
8617 -- Propagate invariant information. The new type has invariants if
8618 -- they are inherited from the parent type, and these invariants can
8619 -- be further inherited, so both flags are set.
8620
8621 -- We similarly inherit predicates
8622
8623 if Has_Predicates (Parent_Type) then
8624 Set_Has_Predicates (Derived_Type);
8625 end if;
8626
8627 -- The derived type inherits the representation clauses of the parent.
8628 -- However, for a private type that is completed by a derivation, there
8629 -- may be operation attributes that have been specified already (stream
8630 -- attributes and External_Tag) and those must be provided. Finally, if
8631 -- the partial view is a private extension, the representation items of
8632 -- the parent have been inherited already, and should not be chained
8633 -- twice to the derived type.
8634
8635 -- Historic note: The guard below used to check whether the parent type
8636 -- is tagged. This is no longer needed because an untagged derived type
8637 -- may carry rep items of its own as a result of certain SPARK pragmas.
8638 -- With the old guard in place, the rep items of the derived type were
8639 -- clobbered.
8640
8641 if Present (First_Rep_Item (Derived_Type)) then
8642 declare
8643 Par_Item : constant Node_Id := First_Rep_Item (Parent_Type);
8644 Inherited : Boolean := False;
8645 Item : Node_Id;
8646 Last_Item : Node_Id;
8647
8648 begin
8649 -- Inspect the rep item chain of the derived type and perform the
8650 -- following two functions:
8651 -- 1) Determine whether the derived type already inherited the
8652 -- rep items of the parent type.
8653 -- 2) Find the last rep item of the derived type
8654
8655 Item := First_Rep_Item (Derived_Type);
8656 Last_Item := Item;
8657 while Present (Item) loop
8658 if Item = Par_Item then
8659 Inherited := True;
8660 exit;
8661 end if;
8662
8663 Last_Item := Item;
8664 Item := Next_Rep_Item (Item);
8665 end loop;
8666
8667 -- Nothing to do if the derived type already inherited the rep
8668 -- items from the parent type, otherwise append the parent rep
8669 -- item chain to that of the derived type.
8670
8671 if not Inherited then
8672 Set_Next_Rep_Item (Last_Item, Par_Item);
8673 end if;
8674 end;
8675
8676 -- Otherwise the derived type lacks rep items and directly inherits the
8677 -- rep items of the parent type.
8678
8679 else
8680 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8681 end if;
8682
8683 -- If the parent type has delayed rep aspects, then mark the derived
8684 -- type as possibly inheriting a delayed rep aspect.
8685
8686 if Has_Delayed_Rep_Aspects (Parent_Type) then
8687 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8688 end if;
8689
8690 -- Type dependent processing
8691
8692 case Ekind (Parent_Type) is
8693 when Numeric_Kind =>
8694 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8695
8696 when Array_Kind =>
8697 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8698
8699 when E_Record_Type
8700 | E_Record_Subtype
8701 | Class_Wide_Kind =>
8702 Build_Derived_Record_Type
8703 (N, Parent_Type, Derived_Type, Derive_Subps);
8704 return;
8705
8706 when Enumeration_Kind =>
8707 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8708
8709 when Access_Kind =>
8710 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8711
8712 when Incomplete_Or_Private_Kind =>
8713 Build_Derived_Private_Type
8714 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8715
8716 -- For discriminated types, the derivation includes deriving
8717 -- primitive operations. For others it is done below.
8718
8719 if Is_Tagged_Type (Parent_Type)
8720 or else Has_Discriminants (Parent_Type)
8721 or else (Present (Full_View (Parent_Type))
8722 and then Has_Discriminants (Full_View (Parent_Type)))
8723 then
8724 return;
8725 end if;
8726
8727 when Concurrent_Kind =>
8728 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8729
8730 when others =>
8731 raise Program_Error;
8732 end case;
8733
8734 -- Nothing more to do if some error occurred
8735
8736 if Etype (Derived_Type) = Any_Type then
8737 return;
8738 end if;
8739
8740 -- Set delayed freeze and then derive subprograms, we need to do this
8741 -- in this order so that derived subprograms inherit the derived freeze
8742 -- if necessary.
8743
8744 Set_Has_Delayed_Freeze (Derived_Type);
8745
8746 if Derive_Subps then
8747 Derive_Subprograms (Parent_Type, Derived_Type);
8748 end if;
8749
8750 Set_Has_Primitive_Operations
8751 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8752 end Build_Derived_Type;
8753
8754 -----------------------
8755 -- Build_Discriminal --
8756 -----------------------
8757
8758 procedure Build_Discriminal (Discrim : Entity_Id) is
8759 D_Minal : Entity_Id;
8760 CR_Disc : Entity_Id;
8761
8762 begin
8763 -- A discriminal has the same name as the discriminant
8764
8765 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8766
8767 Set_Ekind (D_Minal, E_In_Parameter);
8768 Set_Mechanism (D_Minal, Default_Mechanism);
8769 Set_Etype (D_Minal, Etype (Discrim));
8770 Set_Scope (D_Minal, Current_Scope);
8771
8772 Set_Discriminal (Discrim, D_Minal);
8773 Set_Discriminal_Link (D_Minal, Discrim);
8774
8775 -- For task types, build at once the discriminants of the corresponding
8776 -- record, which are needed if discriminants are used in entry defaults
8777 -- and in family bounds.
8778
8779 if Is_Concurrent_Type (Current_Scope)
8780 or else Is_Limited_Type (Current_Scope)
8781 then
8782 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8783
8784 Set_Ekind (CR_Disc, E_In_Parameter);
8785 Set_Mechanism (CR_Disc, Default_Mechanism);
8786 Set_Etype (CR_Disc, Etype (Discrim));
8787 Set_Scope (CR_Disc, Current_Scope);
8788 Set_Discriminal_Link (CR_Disc, Discrim);
8789 Set_CR_Discriminant (Discrim, CR_Disc);
8790 end if;
8791 end Build_Discriminal;
8792
8793 ------------------------------------
8794 -- Build_Discriminant_Constraints --
8795 ------------------------------------
8796
8797 function Build_Discriminant_Constraints
8798 (T : Entity_Id;
8799 Def : Node_Id;
8800 Derived_Def : Boolean := False) return Elist_Id
8801 is
8802 C : constant Node_Id := Constraint (Def);
8803 Nb_Discr : constant Nat := Number_Discriminants (T);
8804
8805 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8806 -- Saves the expression corresponding to a given discriminant in T
8807
8808 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8809 -- Return the Position number within array Discr_Expr of a discriminant
8810 -- D within the discriminant list of the discriminated type T.
8811
8812 procedure Process_Discriminant_Expression
8813 (Expr : Node_Id;
8814 D : Entity_Id);
8815 -- If this is a discriminant constraint on a partial view, do not
8816 -- generate an overflow check on the discriminant expression. The check
8817 -- will be generated when constraining the full view. Otherwise the
8818 -- backend creates duplicate symbols for the temporaries corresponding
8819 -- to the expressions to be checked, causing spurious assembler errors.
8820
8821 ------------------
8822 -- Pos_Of_Discr --
8823 ------------------
8824
8825 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8826 Disc : Entity_Id;
8827
8828 begin
8829 Disc := First_Discriminant (T);
8830 for J in Discr_Expr'Range loop
8831 if Disc = D then
8832 return J;
8833 end if;
8834
8835 Next_Discriminant (Disc);
8836 end loop;
8837
8838 -- Note: Since this function is called on discriminants that are
8839 -- known to belong to the discriminated type, falling through the
8840 -- loop with no match signals an internal compiler error.
8841
8842 raise Program_Error;
8843 end Pos_Of_Discr;
8844
8845 -------------------------------------
8846 -- Process_Discriminant_Expression --
8847 -------------------------------------
8848
8849 procedure Process_Discriminant_Expression
8850 (Expr : Node_Id;
8851 D : Entity_Id)
8852 is
8853 BDT : constant Entity_Id := Base_Type (Etype (D));
8854
8855 begin
8856 -- If this is a discriminant constraint on a partial view, do
8857 -- not generate an overflow on the discriminant expression. The
8858 -- check will be generated when constraining the full view.
8859
8860 if Is_Private_Type (T)
8861 and then Present (Full_View (T))
8862 then
8863 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8864 else
8865 Analyze_And_Resolve (Expr, BDT);
8866 end if;
8867 end Process_Discriminant_Expression;
8868
8869 -- Declarations local to Build_Discriminant_Constraints
8870
8871 Discr : Entity_Id;
8872 E : Entity_Id;
8873 Elist : constant Elist_Id := New_Elmt_List;
8874
8875 Constr : Node_Id;
8876 Expr : Node_Id;
8877 Id : Node_Id;
8878 Position : Nat;
8879 Found : Boolean;
8880
8881 Discrim_Present : Boolean := False;
8882
8883 -- Start of processing for Build_Discriminant_Constraints
8884
8885 begin
8886 -- The following loop will process positional associations only.
8887 -- For a positional association, the (single) discriminant is
8888 -- implicitly specified by position, in textual order (RM 3.7.2).
8889
8890 Discr := First_Discriminant (T);
8891 Constr := First (Constraints (C));
8892 for D in Discr_Expr'Range loop
8893 exit when Nkind (Constr) = N_Discriminant_Association;
8894
8895 if No (Constr) then
8896 Error_Msg_N ("too few discriminants given in constraint", C);
8897 return New_Elmt_List;
8898
8899 elsif Nkind (Constr) = N_Range
8900 or else (Nkind (Constr) = N_Attribute_Reference
8901 and then
8902 Attribute_Name (Constr) = Name_Range)
8903 then
8904 Error_Msg_N
8905 ("a range is not a valid discriminant constraint", Constr);
8906 Discr_Expr (D) := Error;
8907
8908 else
8909 Process_Discriminant_Expression (Constr, Discr);
8910 Discr_Expr (D) := Constr;
8911 end if;
8912
8913 Next_Discriminant (Discr);
8914 Next (Constr);
8915 end loop;
8916
8917 if No (Discr) and then Present (Constr) then
8918 Error_Msg_N ("too many discriminants given in constraint", Constr);
8919 return New_Elmt_List;
8920 end if;
8921
8922 -- Named associations can be given in any order, but if both positional
8923 -- and named associations are used in the same discriminant constraint,
8924 -- then positional associations must occur first, at their normal
8925 -- position. Hence once a named association is used, the rest of the
8926 -- discriminant constraint must use only named associations.
8927
8928 while Present (Constr) loop
8929
8930 -- Positional association forbidden after a named association
8931
8932 if Nkind (Constr) /= N_Discriminant_Association then
8933 Error_Msg_N ("positional association follows named one", Constr);
8934 return New_Elmt_List;
8935
8936 -- Otherwise it is a named association
8937
8938 else
8939 -- E records the type of the discriminants in the named
8940 -- association. All the discriminants specified in the same name
8941 -- association must have the same type.
8942
8943 E := Empty;
8944
8945 -- Search the list of discriminants in T to see if the simple name
8946 -- given in the constraint matches any of them.
8947
8948 Id := First (Selector_Names (Constr));
8949 while Present (Id) loop
8950 Found := False;
8951
8952 -- If Original_Discriminant is present, we are processing a
8953 -- generic instantiation and this is an instance node. We need
8954 -- to find the name of the corresponding discriminant in the
8955 -- actual record type T and not the name of the discriminant in
8956 -- the generic formal. Example:
8957
8958 -- generic
8959 -- type G (D : int) is private;
8960 -- package P is
8961 -- subtype W is G (D => 1);
8962 -- end package;
8963 -- type Rec (X : int) is record ... end record;
8964 -- package Q is new P (G => Rec);
8965
8966 -- At the point of the instantiation, formal type G is Rec
8967 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8968 -- which really looks like "subtype W is Rec (D => 1);" at
8969 -- the point of instantiation, we want to find the discriminant
8970 -- that corresponds to D in Rec, i.e. X.
8971
8972 if Present (Original_Discriminant (Id))
8973 and then In_Instance
8974 then
8975 Discr := Find_Corresponding_Discriminant (Id, T);
8976 Found := True;
8977
8978 else
8979 Discr := First_Discriminant (T);
8980 while Present (Discr) loop
8981 if Chars (Discr) = Chars (Id) then
8982 Found := True;
8983 exit;
8984 end if;
8985
8986 Next_Discriminant (Discr);
8987 end loop;
8988
8989 if not Found then
8990 Error_Msg_N ("& does not match any discriminant", Id);
8991 return New_Elmt_List;
8992
8993 -- If the parent type is a generic formal, preserve the
8994 -- name of the discriminant for subsequent instances.
8995 -- see comment at the beginning of this if statement.
8996
8997 elsif Is_Generic_Type (Root_Type (T)) then
8998 Set_Original_Discriminant (Id, Discr);
8999 end if;
9000 end if;
9001
9002 Position := Pos_Of_Discr (T, Discr);
9003
9004 if Present (Discr_Expr (Position)) then
9005 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9006
9007 else
9008 -- Each discriminant specified in the same named association
9009 -- must be associated with a separate copy of the
9010 -- corresponding expression.
9011
9012 if Present (Next (Id)) then
9013 Expr := New_Copy_Tree (Expression (Constr));
9014 Set_Parent (Expr, Parent (Expression (Constr)));
9015 else
9016 Expr := Expression (Constr);
9017 end if;
9018
9019 Discr_Expr (Position) := Expr;
9020 Process_Discriminant_Expression (Expr, Discr);
9021 end if;
9022
9023 -- A discriminant association with more than one discriminant
9024 -- name is only allowed if the named discriminants are all of
9025 -- the same type (RM 3.7.1(8)).
9026
9027 if E = Empty then
9028 E := Base_Type (Etype (Discr));
9029
9030 elsif Base_Type (Etype (Discr)) /= E then
9031 Error_Msg_N
9032 ("all discriminants in an association " &
9033 "must have the same type", Id);
9034 end if;
9035
9036 Next (Id);
9037 end loop;
9038 end if;
9039
9040 Next (Constr);
9041 end loop;
9042
9043 -- A discriminant constraint must provide exactly one value for each
9044 -- discriminant of the type (RM 3.7.1(8)).
9045
9046 for J in Discr_Expr'Range loop
9047 if No (Discr_Expr (J)) then
9048 Error_Msg_N ("too few discriminants given in constraint", C);
9049 return New_Elmt_List;
9050 end if;
9051 end loop;
9052
9053 -- Determine if there are discriminant expressions in the constraint
9054
9055 for J in Discr_Expr'Range loop
9056 if Denotes_Discriminant
9057 (Discr_Expr (J), Check_Concurrent => True)
9058 then
9059 Discrim_Present := True;
9060 end if;
9061 end loop;
9062
9063 -- Build an element list consisting of the expressions given in the
9064 -- discriminant constraint and apply the appropriate checks. The list
9065 -- is constructed after resolving any named discriminant associations
9066 -- and therefore the expressions appear in the textual order of the
9067 -- discriminants.
9068
9069 Discr := First_Discriminant (T);
9070 for J in Discr_Expr'Range loop
9071 if Discr_Expr (J) /= Error then
9072 Append_Elmt (Discr_Expr (J), Elist);
9073
9074 -- If any of the discriminant constraints is given by a
9075 -- discriminant and we are in a derived type declaration we
9076 -- have a discriminant renaming. Establish link between new
9077 -- and old discriminant.
9078
9079 if Denotes_Discriminant (Discr_Expr (J)) then
9080 if Derived_Def then
9081 Set_Corresponding_Discriminant
9082 (Entity (Discr_Expr (J)), Discr);
9083 end if;
9084
9085 -- Force the evaluation of non-discriminant expressions.
9086 -- If we have found a discriminant in the constraint 3.4(26)
9087 -- and 3.8(18) demand that no range checks are performed are
9088 -- after evaluation. If the constraint is for a component
9089 -- definition that has a per-object constraint, expressions are
9090 -- evaluated but not checked either. In all other cases perform
9091 -- a range check.
9092
9093 else
9094 if Discrim_Present then
9095 null;
9096
9097 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9098 and then
9099 Has_Per_Object_Constraint
9100 (Defining_Identifier (Parent (Parent (Def))))
9101 then
9102 null;
9103
9104 elsif Is_Access_Type (Etype (Discr)) then
9105 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9106
9107 else
9108 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9109 end if;
9110
9111 Force_Evaluation (Discr_Expr (J));
9112 end if;
9113
9114 -- Check that the designated type of an access discriminant's
9115 -- expression is not a class-wide type unless the discriminant's
9116 -- designated type is also class-wide.
9117
9118 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9119 and then not Is_Class_Wide_Type
9120 (Designated_Type (Etype (Discr)))
9121 and then Etype (Discr_Expr (J)) /= Any_Type
9122 and then Is_Class_Wide_Type
9123 (Designated_Type (Etype (Discr_Expr (J))))
9124 then
9125 Wrong_Type (Discr_Expr (J), Etype (Discr));
9126
9127 elsif Is_Access_Type (Etype (Discr))
9128 and then not Is_Access_Constant (Etype (Discr))
9129 and then Is_Access_Type (Etype (Discr_Expr (J)))
9130 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9131 then
9132 Error_Msg_NE
9133 ("constraint for discriminant& must be access to variable",
9134 Def, Discr);
9135 end if;
9136 end if;
9137
9138 Next_Discriminant (Discr);
9139 end loop;
9140
9141 return Elist;
9142 end Build_Discriminant_Constraints;
9143
9144 ---------------------------------
9145 -- Build_Discriminated_Subtype --
9146 ---------------------------------
9147
9148 procedure Build_Discriminated_Subtype
9149 (T : Entity_Id;
9150 Def_Id : Entity_Id;
9151 Elist : Elist_Id;
9152 Related_Nod : Node_Id;
9153 For_Access : Boolean := False)
9154 is
9155 Has_Discrs : constant Boolean := Has_Discriminants (T);
9156 Constrained : constant Boolean :=
9157 (Has_Discrs
9158 and then not Is_Empty_Elmt_List (Elist)
9159 and then not Is_Class_Wide_Type (T))
9160 or else Is_Constrained (T);
9161
9162 begin
9163 if Ekind (T) = E_Record_Type then
9164 if For_Access then
9165 Set_Ekind (Def_Id, E_Private_Subtype);
9166 Set_Is_For_Access_Subtype (Def_Id, True);
9167 else
9168 Set_Ekind (Def_Id, E_Record_Subtype);
9169 end if;
9170
9171 -- Inherit preelaboration flag from base, for types for which it
9172 -- may have been set: records, private types, protected types.
9173
9174 Set_Known_To_Have_Preelab_Init
9175 (Def_Id, Known_To_Have_Preelab_Init (T));
9176
9177 elsif Ekind (T) = E_Task_Type then
9178 Set_Ekind (Def_Id, E_Task_Subtype);
9179
9180 elsif Ekind (T) = E_Protected_Type then
9181 Set_Ekind (Def_Id, E_Protected_Subtype);
9182 Set_Known_To_Have_Preelab_Init
9183 (Def_Id, Known_To_Have_Preelab_Init (T));
9184
9185 elsif Is_Private_Type (T) then
9186 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9187 Set_Known_To_Have_Preelab_Init
9188 (Def_Id, Known_To_Have_Preelab_Init (T));
9189
9190 -- Private subtypes may have private dependents
9191
9192 Set_Private_Dependents (Def_Id, New_Elmt_List);
9193
9194 elsif Is_Class_Wide_Type (T) then
9195 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9196
9197 else
9198 -- Incomplete type. Attach subtype to list of dependents, to be
9199 -- completed with full view of parent type, unless is it the
9200 -- designated subtype of a record component within an init_proc.
9201 -- This last case arises for a component of an access type whose
9202 -- designated type is incomplete (e.g. a Taft Amendment type).
9203 -- The designated subtype is within an inner scope, and needs no
9204 -- elaboration, because only the access type is needed in the
9205 -- initialization procedure.
9206
9207 Set_Ekind (Def_Id, Ekind (T));
9208
9209 if For_Access and then Within_Init_Proc then
9210 null;
9211 else
9212 Append_Elmt (Def_Id, Private_Dependents (T));
9213 end if;
9214 end if;
9215
9216 Set_Etype (Def_Id, T);
9217 Init_Size_Align (Def_Id);
9218 Set_Has_Discriminants (Def_Id, Has_Discrs);
9219 Set_Is_Constrained (Def_Id, Constrained);
9220
9221 Set_First_Entity (Def_Id, First_Entity (T));
9222 Set_Last_Entity (Def_Id, Last_Entity (T));
9223 Set_Has_Implicit_Dereference
9224 (Def_Id, Has_Implicit_Dereference (T));
9225
9226 -- If the subtype is the completion of a private declaration, there may
9227 -- have been representation clauses for the partial view, and they must
9228 -- be preserved. Build_Derived_Type chains the inherited clauses with
9229 -- the ones appearing on the extension. If this comes from a subtype
9230 -- declaration, all clauses are inherited.
9231
9232 if No (First_Rep_Item (Def_Id)) then
9233 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9234 end if;
9235
9236 if Is_Tagged_Type (T) then
9237 Set_Is_Tagged_Type (Def_Id);
9238 Make_Class_Wide_Type (Def_Id);
9239 end if;
9240
9241 Set_Stored_Constraint (Def_Id, No_Elist);
9242
9243 if Has_Discrs then
9244 Set_Discriminant_Constraint (Def_Id, Elist);
9245 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9246 end if;
9247
9248 if Is_Tagged_Type (T) then
9249
9250 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9251 -- concurrent record type (which has the list of primitive
9252 -- operations).
9253
9254 if Ada_Version >= Ada_2005
9255 and then Is_Concurrent_Type (T)
9256 then
9257 Set_Corresponding_Record_Type (Def_Id,
9258 Corresponding_Record_Type (T));
9259 else
9260 Set_Direct_Primitive_Operations (Def_Id,
9261 Direct_Primitive_Operations (T));
9262 end if;
9263
9264 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9265 end if;
9266
9267 -- Subtypes introduced by component declarations do not need to be
9268 -- marked as delayed, and do not get freeze nodes, because the semantics
9269 -- verifies that the parents of the subtypes are frozen before the
9270 -- enclosing record is frozen.
9271
9272 if not Is_Type (Scope (Def_Id)) then
9273 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9274
9275 if Is_Private_Type (T)
9276 and then Present (Full_View (T))
9277 then
9278 Conditional_Delay (Def_Id, Full_View (T));
9279 else
9280 Conditional_Delay (Def_Id, T);
9281 end if;
9282 end if;
9283
9284 if Is_Record_Type (T) then
9285 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9286
9287 if Has_Discrs
9288 and then not Is_Empty_Elmt_List (Elist)
9289 and then not For_Access
9290 then
9291 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9292 elsif not For_Access then
9293 Set_Cloned_Subtype (Def_Id, T);
9294 end if;
9295 end if;
9296 end Build_Discriminated_Subtype;
9297
9298 ---------------------------
9299 -- Build_Itype_Reference --
9300 ---------------------------
9301
9302 procedure Build_Itype_Reference
9303 (Ityp : Entity_Id;
9304 Nod : Node_Id)
9305 is
9306 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9307 begin
9308
9309 -- Itype references are only created for use by the back-end
9310
9311 if Inside_A_Generic then
9312 return;
9313 else
9314 Set_Itype (IR, Ityp);
9315 Insert_After (Nod, IR);
9316 end if;
9317 end Build_Itype_Reference;
9318
9319 ------------------------
9320 -- Build_Scalar_Bound --
9321 ------------------------
9322
9323 function Build_Scalar_Bound
9324 (Bound : Node_Id;
9325 Par_T : Entity_Id;
9326 Der_T : Entity_Id) return Node_Id
9327 is
9328 New_Bound : Entity_Id;
9329
9330 begin
9331 -- Note: not clear why this is needed, how can the original bound
9332 -- be unanalyzed at this point? and if it is, what business do we
9333 -- have messing around with it? and why is the base type of the
9334 -- parent type the right type for the resolution. It probably is
9335 -- not. It is OK for the new bound we are creating, but not for
9336 -- the old one??? Still if it never happens, no problem.
9337
9338 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9339
9340 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9341 New_Bound := New_Copy (Bound);
9342 Set_Etype (New_Bound, Der_T);
9343 Set_Analyzed (New_Bound);
9344
9345 elsif Is_Entity_Name (Bound) then
9346 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9347
9348 -- The following is almost certainly wrong. What business do we have
9349 -- relocating a node (Bound) that is presumably still attached to
9350 -- the tree elsewhere???
9351
9352 else
9353 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9354 end if;
9355
9356 Set_Etype (New_Bound, Der_T);
9357 return New_Bound;
9358 end Build_Scalar_Bound;
9359
9360 --------------------------------
9361 -- Build_Underlying_Full_View --
9362 --------------------------------
9363
9364 procedure Build_Underlying_Full_View
9365 (N : Node_Id;
9366 Typ : Entity_Id;
9367 Par : Entity_Id)
9368 is
9369 Loc : constant Source_Ptr := Sloc (N);
9370 Subt : constant Entity_Id :=
9371 Make_Defining_Identifier
9372 (Loc, New_External_Name (Chars (Typ), 'S'));
9373
9374 Constr : Node_Id;
9375 Indic : Node_Id;
9376 C : Node_Id;
9377 Id : Node_Id;
9378
9379 procedure Set_Discriminant_Name (Id : Node_Id);
9380 -- If the derived type has discriminants, they may rename discriminants
9381 -- of the parent. When building the full view of the parent, we need to
9382 -- recover the names of the original discriminants if the constraint is
9383 -- given by named associations.
9384
9385 ---------------------------
9386 -- Set_Discriminant_Name --
9387 ---------------------------
9388
9389 procedure Set_Discriminant_Name (Id : Node_Id) is
9390 Disc : Entity_Id;
9391
9392 begin
9393 Set_Original_Discriminant (Id, Empty);
9394
9395 if Has_Discriminants (Typ) then
9396 Disc := First_Discriminant (Typ);
9397 while Present (Disc) loop
9398 if Chars (Disc) = Chars (Id)
9399 and then Present (Corresponding_Discriminant (Disc))
9400 then
9401 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9402 end if;
9403 Next_Discriminant (Disc);
9404 end loop;
9405 end if;
9406 end Set_Discriminant_Name;
9407
9408 -- Start of processing for Build_Underlying_Full_View
9409
9410 begin
9411 if Nkind (N) = N_Full_Type_Declaration then
9412 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9413
9414 elsif Nkind (N) = N_Subtype_Declaration then
9415 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9416
9417 elsif Nkind (N) = N_Component_Declaration then
9418 Constr :=
9419 New_Copy_Tree
9420 (Constraint (Subtype_Indication (Component_Definition (N))));
9421
9422 else
9423 raise Program_Error;
9424 end if;
9425
9426 C := First (Constraints (Constr));
9427 while Present (C) loop
9428 if Nkind (C) = N_Discriminant_Association then
9429 Id := First (Selector_Names (C));
9430 while Present (Id) loop
9431 Set_Discriminant_Name (Id);
9432 Next (Id);
9433 end loop;
9434 end if;
9435
9436 Next (C);
9437 end loop;
9438
9439 Indic :=
9440 Make_Subtype_Declaration (Loc,
9441 Defining_Identifier => Subt,
9442 Subtype_Indication =>
9443 Make_Subtype_Indication (Loc,
9444 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9445 Constraint => New_Copy_Tree (Constr)));
9446
9447 -- If this is a component subtype for an outer itype, it is not
9448 -- a list member, so simply set the parent link for analysis: if
9449 -- the enclosing type does not need to be in a declarative list,
9450 -- neither do the components.
9451
9452 if Is_List_Member (N)
9453 and then Nkind (N) /= N_Component_Declaration
9454 then
9455 Insert_Before (N, Indic);
9456 else
9457 Set_Parent (Indic, Parent (N));
9458 end if;
9459
9460 Analyze (Indic);
9461 Set_Underlying_Full_View (Typ, Full_View (Subt));
9462 end Build_Underlying_Full_View;
9463
9464 -------------------------------
9465 -- Check_Abstract_Overriding --
9466 -------------------------------
9467
9468 procedure Check_Abstract_Overriding (T : Entity_Id) is
9469 Alias_Subp : Entity_Id;
9470 Elmt : Elmt_Id;
9471 Op_List : Elist_Id;
9472 Subp : Entity_Id;
9473 Type_Def : Node_Id;
9474
9475 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9476 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9477 -- which has pragma Implemented already set. Check whether Subp's entity
9478 -- kind conforms to the implementation kind of the overridden routine.
9479
9480 procedure Check_Pragma_Implemented
9481 (Subp : Entity_Id;
9482 Iface_Subp : Entity_Id);
9483 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9484 -- Iface_Subp and both entities have pragma Implemented already set on
9485 -- them. Check whether the two implementation kinds are conforming.
9486
9487 procedure Inherit_Pragma_Implemented
9488 (Subp : Entity_Id;
9489 Iface_Subp : Entity_Id);
9490 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9491 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9492 -- Propagate the implementation kind of Iface_Subp to Subp.
9493
9494 ------------------------------
9495 -- Check_Pragma_Implemented --
9496 ------------------------------
9497
9498 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9499 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9500 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9501 Subp_Alias : constant Entity_Id := Alias (Subp);
9502 Contr_Typ : Entity_Id;
9503 Impl_Subp : Entity_Id;
9504
9505 begin
9506 -- Subp must have an alias since it is a hidden entity used to link
9507 -- an interface subprogram to its overriding counterpart.
9508
9509 pragma Assert (Present (Subp_Alias));
9510
9511 -- Handle aliases to synchronized wrappers
9512
9513 Impl_Subp := Subp_Alias;
9514
9515 if Is_Primitive_Wrapper (Impl_Subp) then
9516 Impl_Subp := Wrapped_Entity (Impl_Subp);
9517 end if;
9518
9519 -- Extract the type of the controlling formal
9520
9521 Contr_Typ := Etype (First_Formal (Subp_Alias));
9522
9523 if Is_Concurrent_Record_Type (Contr_Typ) then
9524 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9525 end if;
9526
9527 -- An interface subprogram whose implementation kind is By_Entry must
9528 -- be implemented by an entry.
9529
9530 if Impl_Kind = Name_By_Entry
9531 and then Ekind (Impl_Subp) /= E_Entry
9532 then
9533 Error_Msg_Node_2 := Iface_Alias;
9534 Error_Msg_NE
9535 ("type & must implement abstract subprogram & with an entry",
9536 Subp_Alias, Contr_Typ);
9537
9538 elsif Impl_Kind = Name_By_Protected_Procedure then
9539
9540 -- An interface subprogram whose implementation kind is By_
9541 -- Protected_Procedure cannot be implemented by a primitive
9542 -- procedure of a task type.
9543
9544 if Ekind (Contr_Typ) /= E_Protected_Type then
9545 Error_Msg_Node_2 := Contr_Typ;
9546 Error_Msg_NE
9547 ("interface subprogram & cannot be implemented by a " &
9548 "primitive procedure of task type &", Subp_Alias,
9549 Iface_Alias);
9550
9551 -- An interface subprogram whose implementation kind is By_
9552 -- Protected_Procedure must be implemented by a procedure.
9553
9554 elsif Ekind (Impl_Subp) /= E_Procedure then
9555 Error_Msg_Node_2 := Iface_Alias;
9556 Error_Msg_NE
9557 ("type & must implement abstract subprogram & with a " &
9558 "procedure", Subp_Alias, Contr_Typ);
9559
9560 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9561 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9562 then
9563 Error_Msg_Name_1 := Impl_Kind;
9564 Error_Msg_N
9565 ("overriding operation& must have synchronization%",
9566 Subp_Alias);
9567 end if;
9568
9569 -- If primitive has Optional synchronization, overriding operation
9570 -- must match if it has an explicit synchronization..
9571
9572 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9573 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9574 then
9575 Error_Msg_Name_1 := Impl_Kind;
9576 Error_Msg_N
9577 ("overriding operation& must have syncrhonization%",
9578 Subp_Alias);
9579 end if;
9580 end Check_Pragma_Implemented;
9581
9582 ------------------------------
9583 -- Check_Pragma_Implemented --
9584 ------------------------------
9585
9586 procedure Check_Pragma_Implemented
9587 (Subp : Entity_Id;
9588 Iface_Subp : Entity_Id)
9589 is
9590 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9591 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9592
9593 begin
9594 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9595 -- and overriding subprogram are different. In general this is an
9596 -- error except when the implementation kind of the overridden
9597 -- subprograms is By_Any or Optional.
9598
9599 if Iface_Kind /= Subp_Kind
9600 and then Iface_Kind /= Name_By_Any
9601 and then Iface_Kind /= Name_Optional
9602 then
9603 if Iface_Kind = Name_By_Entry then
9604 Error_Msg_N
9605 ("incompatible implementation kind, overridden subprogram " &
9606 "is marked By_Entry", Subp);
9607 else
9608 Error_Msg_N
9609 ("incompatible implementation kind, overridden subprogram " &
9610 "is marked By_Protected_Procedure", Subp);
9611 end if;
9612 end if;
9613 end Check_Pragma_Implemented;
9614
9615 --------------------------------
9616 -- Inherit_Pragma_Implemented --
9617 --------------------------------
9618
9619 procedure Inherit_Pragma_Implemented
9620 (Subp : Entity_Id;
9621 Iface_Subp : Entity_Id)
9622 is
9623 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9624 Loc : constant Source_Ptr := Sloc (Subp);
9625 Impl_Prag : Node_Id;
9626
9627 begin
9628 -- Since the implementation kind is stored as a representation item
9629 -- rather than a flag, create a pragma node.
9630
9631 Impl_Prag :=
9632 Make_Pragma (Loc,
9633 Chars => Name_Implemented,
9634 Pragma_Argument_Associations => New_List (
9635 Make_Pragma_Argument_Association (Loc,
9636 Expression => New_Occurrence_Of (Subp, Loc)),
9637
9638 Make_Pragma_Argument_Association (Loc,
9639 Expression => Make_Identifier (Loc, Iface_Kind))));
9640
9641 -- The pragma doesn't need to be analyzed because it is internally
9642 -- built. It is safe to directly register it as a rep item since we
9643 -- are only interested in the characters of the implementation kind.
9644
9645 Record_Rep_Item (Subp, Impl_Prag);
9646 end Inherit_Pragma_Implemented;
9647
9648 -- Start of processing for Check_Abstract_Overriding
9649
9650 begin
9651 Op_List := Primitive_Operations (T);
9652
9653 -- Loop to check primitive operations
9654
9655 Elmt := First_Elmt (Op_List);
9656 while Present (Elmt) loop
9657 Subp := Node (Elmt);
9658 Alias_Subp := Alias (Subp);
9659
9660 -- Inherited subprograms are identified by the fact that they do not
9661 -- come from source, and the associated source location is the
9662 -- location of the first subtype of the derived type.
9663
9664 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9665 -- subprograms that "require overriding".
9666
9667 -- Special exception, do not complain about failure to override the
9668 -- stream routines _Input and _Output, as well as the primitive
9669 -- operations used in dispatching selects since we always provide
9670 -- automatic overridings for these subprograms.
9671
9672 -- Also ignore this rule for convention CIL since .NET libraries
9673 -- do bizarre things with interfaces???
9674
9675 -- The partial view of T may have been a private extension, for
9676 -- which inherited functions dispatching on result are abstract.
9677 -- If the full view is a null extension, there is no need for
9678 -- overriding in Ada 2005, but wrappers need to be built for them
9679 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9680
9681 if Is_Null_Extension (T)
9682 and then Has_Controlling_Result (Subp)
9683 and then Ada_Version >= Ada_2005
9684 and then Present (Alias_Subp)
9685 and then not Comes_From_Source (Subp)
9686 and then not Is_Abstract_Subprogram (Alias_Subp)
9687 and then not Is_Access_Type (Etype (Subp))
9688 then
9689 null;
9690
9691 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9692 -- processing because this check is done with the aliased
9693 -- entity
9694
9695 elsif Present (Interface_Alias (Subp)) then
9696 null;
9697
9698 elsif (Is_Abstract_Subprogram (Subp)
9699 or else Requires_Overriding (Subp)
9700 or else
9701 (Has_Controlling_Result (Subp)
9702 and then Present (Alias_Subp)
9703 and then not Comes_From_Source (Subp)
9704 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9705 and then not Is_TSS (Subp, TSS_Stream_Input)
9706 and then not Is_TSS (Subp, TSS_Stream_Output)
9707 and then not Is_Abstract_Type (T)
9708 and then Convention (T) /= Convention_CIL
9709 and then not Is_Predefined_Interface_Primitive (Subp)
9710
9711 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9712 -- with abstract interface types because the check will be done
9713 -- with the aliased entity (otherwise we generate a duplicated
9714 -- error message).
9715
9716 and then not Present (Interface_Alias (Subp))
9717 then
9718 if Present (Alias_Subp) then
9719
9720 -- Only perform the check for a derived subprogram when the
9721 -- type has an explicit record extension. This avoids incorrect
9722 -- flagging of abstract subprograms for the case of a type
9723 -- without an extension that is derived from a formal type
9724 -- with a tagged actual (can occur within a private part).
9725
9726 -- Ada 2005 (AI-391): In the case of an inherited function with
9727 -- a controlling result of the type, the rule does not apply if
9728 -- the type is a null extension (unless the parent function
9729 -- itself is abstract, in which case the function must still be
9730 -- be overridden). The expander will generate an overriding
9731 -- wrapper function calling the parent subprogram (see
9732 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9733
9734 Type_Def := Type_Definition (Parent (T));
9735
9736 if Nkind (Type_Def) = N_Derived_Type_Definition
9737 and then Present (Record_Extension_Part (Type_Def))
9738 and then
9739 (Ada_Version < Ada_2005
9740 or else not Is_Null_Extension (T)
9741 or else Ekind (Subp) = E_Procedure
9742 or else not Has_Controlling_Result (Subp)
9743 or else Is_Abstract_Subprogram (Alias_Subp)
9744 or else Requires_Overriding (Subp)
9745 or else Is_Access_Type (Etype (Subp)))
9746 then
9747 -- Avoid reporting error in case of abstract predefined
9748 -- primitive inherited from interface type because the
9749 -- body of internally generated predefined primitives
9750 -- of tagged types are generated later by Freeze_Type
9751
9752 if Is_Interface (Root_Type (T))
9753 and then Is_Abstract_Subprogram (Subp)
9754 and then Is_Predefined_Dispatching_Operation (Subp)
9755 and then not Comes_From_Source (Ultimate_Alias (Subp))
9756 then
9757 null;
9758
9759 else
9760 Error_Msg_NE
9761 ("type must be declared abstract or & overridden",
9762 T, Subp);
9763
9764 -- Traverse the whole chain of aliased subprograms to
9765 -- complete the error notification. This is especially
9766 -- useful for traceability of the chain of entities when
9767 -- the subprogram corresponds with an interface
9768 -- subprogram (which may be defined in another package).
9769
9770 if Present (Alias_Subp) then
9771 declare
9772 E : Entity_Id;
9773
9774 begin
9775 E := Subp;
9776 while Present (Alias (E)) loop
9777
9778 -- Avoid reporting redundant errors on entities
9779 -- inherited from interfaces
9780
9781 if Sloc (E) /= Sloc (T) then
9782 Error_Msg_Sloc := Sloc (E);
9783 Error_Msg_NE
9784 ("\& has been inherited #", T, Subp);
9785 end if;
9786
9787 E := Alias (E);
9788 end loop;
9789
9790 Error_Msg_Sloc := Sloc (E);
9791
9792 -- AI05-0068: report if there is an overriding
9793 -- non-abstract subprogram that is invisible.
9794
9795 if Is_Hidden (E)
9796 and then not Is_Abstract_Subprogram (E)
9797 then
9798 Error_Msg_NE
9799 ("\& subprogram# is not visible",
9800 T, Subp);
9801
9802 else
9803 Error_Msg_NE
9804 ("\& has been inherited from subprogram #",
9805 T, Subp);
9806 end if;
9807 end;
9808 end if;
9809 end if;
9810
9811 -- Ada 2005 (AI-345): Protected or task type implementing
9812 -- abstract interfaces.
9813
9814 elsif Is_Concurrent_Record_Type (T)
9815 and then Present (Interfaces (T))
9816 then
9817 -- If an inherited subprogram is implemented by a protected
9818 -- procedure or an entry, then the first parameter of the
9819 -- inherited subprogram shall be of mode OUT or IN OUT, or
9820 -- an access-to-variable parameter (RM 9.4(11.9/3))
9821
9822 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9823 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9824 and then Ekind (Subp) /= E_Function
9825 and then not Is_Predefined_Dispatching_Operation (Subp)
9826 then
9827 Error_Msg_PT (T, Subp);
9828
9829 -- Some other kind of overriding failure
9830
9831 else
9832 Error_Msg_NE
9833 ("interface subprogram & must be overridden",
9834 T, Subp);
9835
9836 -- Examine primitive operations of synchronized type,
9837 -- to find homonyms that have the wrong profile.
9838
9839 declare
9840 Prim : Entity_Id;
9841
9842 begin
9843 Prim :=
9844 First_Entity (Corresponding_Concurrent_Type (T));
9845 while Present (Prim) loop
9846 if Chars (Prim) = Chars (Subp) then
9847 Error_Msg_NE
9848 ("profile is not type conformant with "
9849 & "prefixed view profile of "
9850 & "inherited operation&", Prim, Subp);
9851 end if;
9852
9853 Next_Entity (Prim);
9854 end loop;
9855 end;
9856 end if;
9857 end if;
9858
9859 else
9860 Error_Msg_Node_2 := T;
9861 Error_Msg_N
9862 ("abstract subprogram& not allowed for type&", Subp);
9863
9864 -- Also post unconditional warning on the type (unconditional
9865 -- so that if there are more than one of these cases, we get
9866 -- them all, and not just the first one).
9867
9868 Error_Msg_Node_2 := Subp;
9869 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9870 end if;
9871 end if;
9872
9873 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9874
9875 -- Subp is an expander-generated procedure which maps an interface
9876 -- alias to a protected wrapper. The interface alias is flagged by
9877 -- pragma Implemented. Ensure that Subp is a procedure when the
9878 -- implementation kind is By_Protected_Procedure or an entry when
9879 -- By_Entry.
9880
9881 if Ada_Version >= Ada_2012
9882 and then Is_Hidden (Subp)
9883 and then Present (Interface_Alias (Subp))
9884 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9885 then
9886 Check_Pragma_Implemented (Subp);
9887 end if;
9888
9889 -- Subp is an interface primitive which overrides another interface
9890 -- primitive marked with pragma Implemented.
9891
9892 if Ada_Version >= Ada_2012
9893 and then Present (Overridden_Operation (Subp))
9894 and then Has_Rep_Pragma
9895 (Overridden_Operation (Subp), Name_Implemented)
9896 then
9897 -- If the overriding routine is also marked by Implemented, check
9898 -- that the two implementation kinds are conforming.
9899
9900 if Has_Rep_Pragma (Subp, Name_Implemented) then
9901 Check_Pragma_Implemented
9902 (Subp => Subp,
9903 Iface_Subp => Overridden_Operation (Subp));
9904
9905 -- Otherwise the overriding routine inherits the implementation
9906 -- kind from the overridden subprogram.
9907
9908 else
9909 Inherit_Pragma_Implemented
9910 (Subp => Subp,
9911 Iface_Subp => Overridden_Operation (Subp));
9912 end if;
9913 end if;
9914
9915 -- If the operation is a wrapper for a synchronized primitive, it
9916 -- may be called indirectly through a dispatching select. We assume
9917 -- that it will be referenced elsewhere indirectly, and suppress
9918 -- warnings about an unused entity.
9919
9920 if Is_Primitive_Wrapper (Subp)
9921 and then Present (Wrapped_Entity (Subp))
9922 then
9923 Set_Referenced (Wrapped_Entity (Subp));
9924 end if;
9925
9926 Next_Elmt (Elmt);
9927 end loop;
9928 end Check_Abstract_Overriding;
9929
9930 ------------------------------------------------
9931 -- Check_Access_Discriminant_Requires_Limited --
9932 ------------------------------------------------
9933
9934 procedure Check_Access_Discriminant_Requires_Limited
9935 (D : Node_Id;
9936 Loc : Node_Id)
9937 is
9938 begin
9939 -- A discriminant_specification for an access discriminant shall appear
9940 -- only in the declaration for a task or protected type, or for a type
9941 -- with the reserved word 'limited' in its definition or in one of its
9942 -- ancestors (RM 3.7(10)).
9943
9944 -- AI-0063: The proper condition is that type must be immutably limited,
9945 -- or else be a partial view.
9946
9947 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9948 if Is_Limited_View (Current_Scope)
9949 or else
9950 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9951 and then Limited_Present (Parent (Current_Scope)))
9952 then
9953 null;
9954
9955 else
9956 Error_Msg_N
9957 ("access discriminants allowed only for limited types", Loc);
9958 end if;
9959 end if;
9960 end Check_Access_Discriminant_Requires_Limited;
9961
9962 -----------------------------------
9963 -- Check_Aliased_Component_Types --
9964 -----------------------------------
9965
9966 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9967 C : Entity_Id;
9968
9969 begin
9970 -- ??? Also need to check components of record extensions, but not
9971 -- components of protected types (which are always limited).
9972
9973 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9974 -- types to be unconstrained. This is safe because it is illegal to
9975 -- create access subtypes to such types with explicit discriminant
9976 -- constraints.
9977
9978 if not Is_Limited_Type (T) then
9979 if Ekind (T) = E_Record_Type then
9980 C := First_Component (T);
9981 while Present (C) loop
9982 if Is_Aliased (C)
9983 and then Has_Discriminants (Etype (C))
9984 and then not Is_Constrained (Etype (C))
9985 and then not In_Instance_Body
9986 and then Ada_Version < Ada_2005
9987 then
9988 Error_Msg_N
9989 ("aliased component must be constrained (RM 3.6(11))",
9990 C);
9991 end if;
9992
9993 Next_Component (C);
9994 end loop;
9995
9996 elsif Ekind (T) = E_Array_Type then
9997 if Has_Aliased_Components (T)
9998 and then Has_Discriminants (Component_Type (T))
9999 and then not Is_Constrained (Component_Type (T))
10000 and then not In_Instance_Body
10001 and then Ada_Version < Ada_2005
10002 then
10003 Error_Msg_N
10004 ("aliased component type must be constrained (RM 3.6(11))",
10005 T);
10006 end if;
10007 end if;
10008 end if;
10009 end Check_Aliased_Component_Types;
10010
10011 ----------------------
10012 -- Check_Completion --
10013 ----------------------
10014
10015 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10016 E : Entity_Id;
10017
10018 procedure Post_Error;
10019 -- Post error message for lack of completion for entity E
10020
10021 ----------------
10022 -- Post_Error --
10023 ----------------
10024
10025 procedure Post_Error is
10026
10027 procedure Missing_Body;
10028 -- Output missing body message
10029
10030 ------------------
10031 -- Missing_Body --
10032 ------------------
10033
10034 procedure Missing_Body is
10035 begin
10036 -- Spec is in same unit, so we can post on spec
10037
10038 if In_Same_Source_Unit (Body_Id, E) then
10039 Error_Msg_N ("missing body for &", E);
10040
10041 -- Spec is in a separate unit, so we have to post on the body
10042
10043 else
10044 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10045 end if;
10046 end Missing_Body;
10047
10048 -- Start of processing for Post_Error
10049
10050 begin
10051 if not Comes_From_Source (E) then
10052
10053 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10054 -- It may be an anonymous protected type created for a
10055 -- single variable. Post error on variable, if present.
10056
10057 declare
10058 Var : Entity_Id;
10059
10060 begin
10061 Var := First_Entity (Current_Scope);
10062 while Present (Var) loop
10063 exit when Etype (Var) = E
10064 and then Comes_From_Source (Var);
10065
10066 Next_Entity (Var);
10067 end loop;
10068
10069 if Present (Var) then
10070 E := Var;
10071 end if;
10072 end;
10073 end if;
10074 end if;
10075
10076 -- If a generated entity has no completion, then either previous
10077 -- semantic errors have disabled the expansion phase, or else we had
10078 -- missing subunits, or else we are compiling without expansion,
10079 -- or else something is very wrong.
10080
10081 if not Comes_From_Source (E) then
10082 pragma Assert
10083 (Serious_Errors_Detected > 0
10084 or else Configurable_Run_Time_Violations > 0
10085 or else Subunits_Missing
10086 or else not Expander_Active);
10087 return;
10088
10089 -- Here for source entity
10090
10091 else
10092 -- Here if no body to post the error message, so we post the error
10093 -- on the declaration that has no completion. This is not really
10094 -- the right place to post it, think about this later ???
10095
10096 if No (Body_Id) then
10097 if Is_Type (E) then
10098 Error_Msg_NE
10099 ("missing full declaration for }", Parent (E), E);
10100 else
10101 Error_Msg_NE ("missing body for &", Parent (E), E);
10102 end if;
10103
10104 -- Package body has no completion for a declaration that appears
10105 -- in the corresponding spec. Post error on the body, with a
10106 -- reference to the non-completed declaration.
10107
10108 else
10109 Error_Msg_Sloc := Sloc (E);
10110
10111 if Is_Type (E) then
10112 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10113
10114 elsif Is_Overloadable (E)
10115 and then Current_Entity_In_Scope (E) /= E
10116 then
10117 -- It may be that the completion is mistyped and appears as
10118 -- a distinct overloading of the entity.
10119
10120 declare
10121 Candidate : constant Entity_Id :=
10122 Current_Entity_In_Scope (E);
10123 Decl : constant Node_Id :=
10124 Unit_Declaration_Node (Candidate);
10125
10126 begin
10127 if Is_Overloadable (Candidate)
10128 and then Ekind (Candidate) = Ekind (E)
10129 and then Nkind (Decl) = N_Subprogram_Body
10130 and then Acts_As_Spec (Decl)
10131 then
10132 Check_Type_Conformant (Candidate, E);
10133
10134 else
10135 Missing_Body;
10136 end if;
10137 end;
10138
10139 else
10140 Missing_Body;
10141 end if;
10142 end if;
10143 end if;
10144 end Post_Error;
10145
10146 -- Start of processing for Check_Completion
10147
10148 begin
10149 E := First_Entity (Current_Scope);
10150 while Present (E) loop
10151 if Is_Intrinsic_Subprogram (E) then
10152 null;
10153
10154 -- The following situation requires special handling: a child unit
10155 -- that appears in the context clause of the body of its parent:
10156
10157 -- procedure Parent.Child (...);
10158
10159 -- with Parent.Child;
10160 -- package body Parent is
10161
10162 -- Here Parent.Child appears as a local entity, but should not be
10163 -- flagged as requiring completion, because it is a compilation
10164 -- unit.
10165
10166 -- Ignore missing completion for a subprogram that does not come from
10167 -- source (including the _Call primitive operation of RAS types,
10168 -- which has to have the flag Comes_From_Source for other purposes):
10169 -- we assume that the expander will provide the missing completion.
10170 -- In case of previous errors, other expansion actions that provide
10171 -- bodies for null procedures with not be invoked, so inhibit message
10172 -- in those cases.
10173
10174 -- Note that E_Operator is not in the list that follows, because
10175 -- this kind is reserved for predefined operators, that are
10176 -- intrinsic and do not need completion.
10177
10178 elsif Ekind (E) = E_Function
10179 or else Ekind (E) = E_Procedure
10180 or else Ekind (E) = E_Generic_Function
10181 or else Ekind (E) = E_Generic_Procedure
10182 then
10183 if Has_Completion (E) then
10184 null;
10185
10186 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10187 null;
10188
10189 elsif Is_Subprogram (E)
10190 and then (not Comes_From_Source (E)
10191 or else Chars (E) = Name_uCall)
10192 then
10193 null;
10194
10195 elsif
10196 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10197 then
10198 null;
10199
10200 elsif Nkind (Parent (E)) = N_Procedure_Specification
10201 and then Null_Present (Parent (E))
10202 and then Serious_Errors_Detected > 0
10203 then
10204 null;
10205
10206 else
10207 Post_Error;
10208 end if;
10209
10210 elsif Is_Entry (E) then
10211 if not Has_Completion (E) and then
10212 (Ekind (Scope (E)) = E_Protected_Object
10213 or else Ekind (Scope (E)) = E_Protected_Type)
10214 then
10215 Post_Error;
10216 end if;
10217
10218 elsif Is_Package_Or_Generic_Package (E) then
10219 if Unit_Requires_Body (E) then
10220 if not Has_Completion (E)
10221 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10222 N_Compilation_Unit
10223 then
10224 Post_Error;
10225 end if;
10226
10227 elsif not Is_Child_Unit (E) then
10228 May_Need_Implicit_Body (E);
10229 end if;
10230
10231 -- A formal incomplete type (Ada 2012) does not require a completion;
10232 -- other incomplete type declarations do.
10233
10234 elsif Ekind (E) = E_Incomplete_Type
10235 and then No (Underlying_Type (E))
10236 and then not Is_Generic_Type (E)
10237 then
10238 Post_Error;
10239
10240 elsif (Ekind (E) = E_Task_Type or else
10241 Ekind (E) = E_Protected_Type)
10242 and then not Has_Completion (E)
10243 then
10244 Post_Error;
10245
10246 -- A single task declared in the current scope is a constant, verify
10247 -- that the body of its anonymous type is in the same scope. If the
10248 -- task is defined elsewhere, this may be a renaming declaration for
10249 -- which no completion is needed.
10250
10251 elsif Ekind (E) = E_Constant
10252 and then Ekind (Etype (E)) = E_Task_Type
10253 and then not Has_Completion (Etype (E))
10254 and then Scope (Etype (E)) = Current_Scope
10255 then
10256 Post_Error;
10257
10258 elsif Ekind (E) = E_Protected_Object
10259 and then not Has_Completion (Etype (E))
10260 then
10261 Post_Error;
10262
10263 elsif Ekind (E) = E_Record_Type then
10264 if Is_Tagged_Type (E) then
10265 Check_Abstract_Overriding (E);
10266 Check_Conventions (E);
10267 end if;
10268
10269 Check_Aliased_Component_Types (E);
10270
10271 elsif Ekind (E) = E_Array_Type then
10272 Check_Aliased_Component_Types (E);
10273
10274 end if;
10275
10276 Next_Entity (E);
10277 end loop;
10278 end Check_Completion;
10279
10280 ------------------------------------
10281 -- Check_CPP_Type_Has_No_Defaults --
10282 ------------------------------------
10283
10284 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10285 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10286 Clist : Node_Id;
10287 Comp : Node_Id;
10288
10289 begin
10290 -- Obtain the component list
10291
10292 if Nkind (Tdef) = N_Record_Definition then
10293 Clist := Component_List (Tdef);
10294 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10295 Clist := Component_List (Record_Extension_Part (Tdef));
10296 end if;
10297
10298 -- Check all components to ensure no default expressions
10299
10300 if Present (Clist) then
10301 Comp := First (Component_Items (Clist));
10302 while Present (Comp) loop
10303 if Present (Expression (Comp)) then
10304 Error_Msg_N
10305 ("component of imported 'C'P'P type cannot have "
10306 & "default expression", Expression (Comp));
10307 end if;
10308
10309 Next (Comp);
10310 end loop;
10311 end if;
10312 end Check_CPP_Type_Has_No_Defaults;
10313
10314 ----------------------------
10315 -- Check_Delta_Expression --
10316 ----------------------------
10317
10318 procedure Check_Delta_Expression (E : Node_Id) is
10319 begin
10320 if not (Is_Real_Type (Etype (E))) then
10321 Wrong_Type (E, Any_Real);
10322
10323 elsif not Is_OK_Static_Expression (E) then
10324 Flag_Non_Static_Expr
10325 ("non-static expression used for delta value!", E);
10326
10327 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10328 Error_Msg_N ("delta expression must be positive", E);
10329
10330 else
10331 return;
10332 end if;
10333
10334 -- If any of above errors occurred, then replace the incorrect
10335 -- expression by the real 0.1, which should prevent further errors.
10336
10337 Rewrite (E,
10338 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10339 Analyze_And_Resolve (E, Standard_Float);
10340 end Check_Delta_Expression;
10341
10342 -----------------------------
10343 -- Check_Digits_Expression --
10344 -----------------------------
10345
10346 procedure Check_Digits_Expression (E : Node_Id) is
10347 begin
10348 if not (Is_Integer_Type (Etype (E))) then
10349 Wrong_Type (E, Any_Integer);
10350
10351 elsif not Is_OK_Static_Expression (E) then
10352 Flag_Non_Static_Expr
10353 ("non-static expression used for digits value!", E);
10354
10355 elsif Expr_Value (E) <= 0 then
10356 Error_Msg_N ("digits value must be greater than zero", E);
10357
10358 else
10359 return;
10360 end if;
10361
10362 -- If any of above errors occurred, then replace the incorrect
10363 -- expression by the integer 1, which should prevent further errors.
10364
10365 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10366 Analyze_And_Resolve (E, Standard_Integer);
10367
10368 end Check_Digits_Expression;
10369
10370 --------------------------
10371 -- Check_Initialization --
10372 --------------------------
10373
10374 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10375 begin
10376 -- Special processing for limited types
10377
10378 if Is_Limited_Type (T)
10379 and then not In_Instance
10380 and then not In_Inlined_Body
10381 then
10382 if not OK_For_Limited_Init (T, Exp) then
10383
10384 -- In GNAT mode, this is just a warning, to allow it to be evilly
10385 -- turned off. Otherwise it is a real error.
10386
10387 if GNAT_Mode then
10388 Error_Msg_N
10389 ("??cannot initialize entities of limited type!", Exp);
10390
10391 elsif Ada_Version < Ada_2005 then
10392
10393 -- The side effect removal machinery may generate illegal Ada
10394 -- code to avoid the usage of access types and 'reference in
10395 -- SPARK mode. Since this is legal code with respect to theorem
10396 -- proving, do not emit the error.
10397
10398 if GNATprove_Mode
10399 and then Nkind (Exp) = N_Function_Call
10400 and then Nkind (Parent (Exp)) = N_Object_Declaration
10401 and then not Comes_From_Source
10402 (Defining_Identifier (Parent (Exp)))
10403 then
10404 null;
10405
10406 else
10407 Error_Msg_N
10408 ("cannot initialize entities of limited type", Exp);
10409 Explain_Limited_Type (T, Exp);
10410 end if;
10411
10412 else
10413 -- Specialize error message according to kind of illegal
10414 -- initial expression.
10415
10416 if Nkind (Exp) = N_Type_Conversion
10417 and then Nkind (Expression (Exp)) = N_Function_Call
10418 then
10419 Error_Msg_N
10420 ("illegal context for call"
10421 & " to function with limited result", Exp);
10422
10423 else
10424 Error_Msg_N
10425 ("initialization of limited object requires aggregate "
10426 & "or function call", Exp);
10427 end if;
10428 end if;
10429 end if;
10430 end if;
10431
10432 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10433 -- set unless we can be sure that no range check is required.
10434
10435 if (GNATprove_Mode or not Expander_Active)
10436 and then Is_Scalar_Type (T)
10437 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10438 then
10439 Set_Do_Range_Check (Exp);
10440 end if;
10441 end Check_Initialization;
10442
10443 ----------------------
10444 -- Check_Interfaces --
10445 ----------------------
10446
10447 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10448 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10449
10450 Iface : Node_Id;
10451 Iface_Def : Node_Id;
10452 Iface_Typ : Entity_Id;
10453 Parent_Node : Node_Id;
10454
10455 Is_Task : Boolean := False;
10456 -- Set True if parent type or any progenitor is a task interface
10457
10458 Is_Protected : Boolean := False;
10459 -- Set True if parent type or any progenitor is a protected interface
10460
10461 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10462 -- Check that a progenitor is compatible with declaration.
10463 -- Error is posted on Error_Node.
10464
10465 ------------------
10466 -- Check_Ifaces --
10467 ------------------
10468
10469 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10470 Iface_Id : constant Entity_Id :=
10471 Defining_Identifier (Parent (Iface_Def));
10472 Type_Def : Node_Id;
10473
10474 begin
10475 if Nkind (N) = N_Private_Extension_Declaration then
10476 Type_Def := N;
10477 else
10478 Type_Def := Type_Definition (N);
10479 end if;
10480
10481 if Is_Task_Interface (Iface_Id) then
10482 Is_Task := True;
10483
10484 elsif Is_Protected_Interface (Iface_Id) then
10485 Is_Protected := True;
10486 end if;
10487
10488 if Is_Synchronized_Interface (Iface_Id) then
10489
10490 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10491 -- extension derived from a synchronized interface must explicitly
10492 -- be declared synchronized, because the full view will be a
10493 -- synchronized type.
10494
10495 if Nkind (N) = N_Private_Extension_Declaration then
10496 if not Synchronized_Present (N) then
10497 Error_Msg_NE
10498 ("private extension of& must be explicitly synchronized",
10499 N, Iface_Id);
10500 end if;
10501
10502 -- However, by 3.9.4(16/2), a full type that is a record extension
10503 -- is never allowed to derive from a synchronized interface (note
10504 -- that interfaces must be excluded from this check, because those
10505 -- are represented by derived type definitions in some cases).
10506
10507 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10508 and then not Interface_Present (Type_Definition (N))
10509 then
10510 Error_Msg_N ("record extension cannot derive from synchronized"
10511 & " interface", Error_Node);
10512 end if;
10513 end if;
10514
10515 -- Check that the characteristics of the progenitor are compatible
10516 -- with the explicit qualifier in the declaration.
10517 -- The check only applies to qualifiers that come from source.
10518 -- Limited_Present also appears in the declaration of corresponding
10519 -- records, and the check does not apply to them.
10520
10521 if Limited_Present (Type_Def)
10522 and then not
10523 Is_Concurrent_Record_Type (Defining_Identifier (N))
10524 then
10525 if Is_Limited_Interface (Parent_Type)
10526 and then not Is_Limited_Interface (Iface_Id)
10527 then
10528 Error_Msg_NE
10529 ("progenitor& must be limited interface",
10530 Error_Node, Iface_Id);
10531
10532 elsif
10533 (Task_Present (Iface_Def)
10534 or else Protected_Present (Iface_Def)
10535 or else Synchronized_Present (Iface_Def))
10536 and then Nkind (N) /= N_Private_Extension_Declaration
10537 and then not Error_Posted (N)
10538 then
10539 Error_Msg_NE
10540 ("progenitor& must be limited interface",
10541 Error_Node, Iface_Id);
10542 end if;
10543
10544 -- Protected interfaces can only inherit from limited, synchronized
10545 -- or protected interfaces.
10546
10547 elsif Nkind (N) = N_Full_Type_Declaration
10548 and then Protected_Present (Type_Def)
10549 then
10550 if Limited_Present (Iface_Def)
10551 or else Synchronized_Present (Iface_Def)
10552 or else Protected_Present (Iface_Def)
10553 then
10554 null;
10555
10556 elsif Task_Present (Iface_Def) then
10557 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10558 & " from task interface", Error_Node);
10559
10560 else
10561 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10562 & " from non-limited interface", Error_Node);
10563 end if;
10564
10565 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10566 -- limited and synchronized.
10567
10568 elsif Synchronized_Present (Type_Def) then
10569 if Limited_Present (Iface_Def)
10570 or else Synchronized_Present (Iface_Def)
10571 then
10572 null;
10573
10574 elsif Protected_Present (Iface_Def)
10575 and then Nkind (N) /= N_Private_Extension_Declaration
10576 then
10577 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10578 & " from protected interface", Error_Node);
10579
10580 elsif Task_Present (Iface_Def)
10581 and then Nkind (N) /= N_Private_Extension_Declaration
10582 then
10583 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10584 & " from task interface", Error_Node);
10585
10586 elsif not Is_Limited_Interface (Iface_Id) then
10587 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10588 & " from non-limited interface", Error_Node);
10589 end if;
10590
10591 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10592 -- synchronized or task interfaces.
10593
10594 elsif Nkind (N) = N_Full_Type_Declaration
10595 and then Task_Present (Type_Def)
10596 then
10597 if Limited_Present (Iface_Def)
10598 or else Synchronized_Present (Iface_Def)
10599 or else Task_Present (Iface_Def)
10600 then
10601 null;
10602
10603 elsif Protected_Present (Iface_Def) then
10604 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10605 & " protected interface", Error_Node);
10606
10607 else
10608 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10609 & " non-limited interface", Error_Node);
10610 end if;
10611 end if;
10612 end Check_Ifaces;
10613
10614 -- Start of processing for Check_Interfaces
10615
10616 begin
10617 if Is_Interface (Parent_Type) then
10618 if Is_Task_Interface (Parent_Type) then
10619 Is_Task := True;
10620
10621 elsif Is_Protected_Interface (Parent_Type) then
10622 Is_Protected := True;
10623 end if;
10624 end if;
10625
10626 if Nkind (N) = N_Private_Extension_Declaration then
10627
10628 -- Check that progenitors are compatible with declaration
10629
10630 Iface := First (Interface_List (Def));
10631 while Present (Iface) loop
10632 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10633
10634 Parent_Node := Parent (Base_Type (Iface_Typ));
10635 Iface_Def := Type_Definition (Parent_Node);
10636
10637 if not Is_Interface (Iface_Typ) then
10638 Diagnose_Interface (Iface, Iface_Typ);
10639
10640 else
10641 Check_Ifaces (Iface_Def, Iface);
10642 end if;
10643
10644 Next (Iface);
10645 end loop;
10646
10647 if Is_Task and Is_Protected then
10648 Error_Msg_N
10649 ("type cannot derive from task and protected interface", N);
10650 end if;
10651
10652 return;
10653 end if;
10654
10655 -- Full type declaration of derived type.
10656 -- Check compatibility with parent if it is interface type
10657
10658 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10659 and then Is_Interface (Parent_Type)
10660 then
10661 Parent_Node := Parent (Parent_Type);
10662
10663 -- More detailed checks for interface varieties
10664
10665 Check_Ifaces
10666 (Iface_Def => Type_Definition (Parent_Node),
10667 Error_Node => Subtype_Indication (Type_Definition (N)));
10668 end if;
10669
10670 Iface := First (Interface_List (Def));
10671 while Present (Iface) loop
10672 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10673
10674 Parent_Node := Parent (Base_Type (Iface_Typ));
10675 Iface_Def := Type_Definition (Parent_Node);
10676
10677 if not Is_Interface (Iface_Typ) then
10678 Diagnose_Interface (Iface, Iface_Typ);
10679
10680 else
10681 -- "The declaration of a specific descendant of an interface
10682 -- type freezes the interface type" RM 13.14
10683
10684 Freeze_Before (N, Iface_Typ);
10685 Check_Ifaces (Iface_Def, Error_Node => Iface);
10686 end if;
10687
10688 Next (Iface);
10689 end loop;
10690
10691 if Is_Task and Is_Protected then
10692 Error_Msg_N
10693 ("type cannot derive from task and protected interface", N);
10694 end if;
10695 end Check_Interfaces;
10696
10697 ------------------------------------
10698 -- Check_Or_Process_Discriminants --
10699 ------------------------------------
10700
10701 -- If an incomplete or private type declaration was already given for the
10702 -- type, the discriminants may have already been processed if they were
10703 -- present on the incomplete declaration. In this case a full conformance
10704 -- check has been performed in Find_Type_Name, and we then recheck here
10705 -- some properties that can't be checked on the partial view alone.
10706 -- Otherwise we call Process_Discriminants.
10707
10708 procedure Check_Or_Process_Discriminants
10709 (N : Node_Id;
10710 T : Entity_Id;
10711 Prev : Entity_Id := Empty)
10712 is
10713 begin
10714 if Has_Discriminants (T) then
10715
10716 -- Discriminants are already set on T if they were already present
10717 -- on the partial view. Make them visible to component declarations.
10718
10719 declare
10720 D : Entity_Id;
10721 -- Discriminant on T (full view) referencing expr on partial view
10722
10723 Prev_D : Entity_Id;
10724 -- Entity of corresponding discriminant on partial view
10725
10726 New_D : Node_Id;
10727 -- Discriminant specification for full view, expression is the
10728 -- syntactic copy on full view (which has been checked for
10729 -- conformance with partial view), only used here to post error
10730 -- message.
10731
10732 begin
10733 D := First_Discriminant (T);
10734 New_D := First (Discriminant_Specifications (N));
10735 while Present (D) loop
10736 Prev_D := Current_Entity (D);
10737 Set_Current_Entity (D);
10738 Set_Is_Immediately_Visible (D);
10739 Set_Homonym (D, Prev_D);
10740
10741 -- Handle the case where there is an untagged partial view and
10742 -- the full view is tagged: must disallow discriminants with
10743 -- defaults, unless compiling for Ada 2012, which allows a
10744 -- limited tagged type to have defaulted discriminants (see
10745 -- AI05-0214). However, suppress error here if it was already
10746 -- reported on the default expression of the partial view.
10747
10748 if Is_Tagged_Type (T)
10749 and then Present (Expression (Parent (D)))
10750 and then (not Is_Limited_Type (Current_Scope)
10751 or else Ada_Version < Ada_2012)
10752 and then not Error_Posted (Expression (Parent (D)))
10753 then
10754 if Ada_Version >= Ada_2012 then
10755 Error_Msg_N
10756 ("discriminants of nonlimited tagged type cannot have"
10757 & " defaults",
10758 Expression (New_D));
10759 else
10760 Error_Msg_N
10761 ("discriminants of tagged type cannot have defaults",
10762 Expression (New_D));
10763 end if;
10764 end if;
10765
10766 -- Ada 2005 (AI-230): Access discriminant allowed in
10767 -- non-limited record types.
10768
10769 if Ada_Version < Ada_2005 then
10770
10771 -- This restriction gets applied to the full type here. It
10772 -- has already been applied earlier to the partial view.
10773
10774 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10775 end if;
10776
10777 Next_Discriminant (D);
10778 Next (New_D);
10779 end loop;
10780 end;
10781
10782 elsif Present (Discriminant_Specifications (N)) then
10783 Process_Discriminants (N, Prev);
10784 end if;
10785 end Check_Or_Process_Discriminants;
10786
10787 ----------------------
10788 -- Check_Real_Bound --
10789 ----------------------
10790
10791 procedure Check_Real_Bound (Bound : Node_Id) is
10792 begin
10793 if not Is_Real_Type (Etype (Bound)) then
10794 Error_Msg_N
10795 ("bound in real type definition must be of real type", Bound);
10796
10797 elsif not Is_OK_Static_Expression (Bound) then
10798 Flag_Non_Static_Expr
10799 ("non-static expression used for real type bound!", Bound);
10800
10801 else
10802 return;
10803 end if;
10804
10805 Rewrite
10806 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10807 Analyze (Bound);
10808 Resolve (Bound, Standard_Float);
10809 end Check_Real_Bound;
10810
10811 ------------------------------
10812 -- Complete_Private_Subtype --
10813 ------------------------------
10814
10815 procedure Complete_Private_Subtype
10816 (Priv : Entity_Id;
10817 Full : Entity_Id;
10818 Full_Base : Entity_Id;
10819 Related_Nod : Node_Id)
10820 is
10821 Save_Next_Entity : Entity_Id;
10822 Save_Homonym : Entity_Id;
10823
10824 begin
10825 -- Set semantic attributes for (implicit) private subtype completion.
10826 -- If the full type has no discriminants, then it is a copy of the full
10827 -- view of the base. Otherwise, it is a subtype of the base with a
10828 -- possible discriminant constraint. Save and restore the original
10829 -- Next_Entity field of full to ensure that the calls to Copy_Node
10830 -- do not corrupt the entity chain.
10831
10832 -- Note that the type of the full view is the same entity as the type of
10833 -- the partial view. In this fashion, the subtype has access to the
10834 -- correct view of the parent.
10835
10836 Save_Next_Entity := Next_Entity (Full);
10837 Save_Homonym := Homonym (Priv);
10838
10839 case Ekind (Full_Base) is
10840 when E_Record_Type |
10841 E_Record_Subtype |
10842 Class_Wide_Kind |
10843 Private_Kind |
10844 Task_Kind |
10845 Protected_Kind =>
10846 Copy_Node (Priv, Full);
10847
10848 Set_Has_Discriminants
10849 (Full, Has_Discriminants (Full_Base));
10850 Set_Has_Unknown_Discriminants
10851 (Full, Has_Unknown_Discriminants (Full_Base));
10852 Set_First_Entity (Full, First_Entity (Full_Base));
10853 Set_Last_Entity (Full, Last_Entity (Full_Base));
10854
10855 -- If the underlying base type is constrained, we know that the
10856 -- full view of the subtype is constrained as well (the converse
10857 -- is not necessarily true).
10858
10859 if Is_Constrained (Full_Base) then
10860 Set_Is_Constrained (Full);
10861 end if;
10862
10863 when others =>
10864 Copy_Node (Full_Base, Full);
10865
10866 Set_Chars (Full, Chars (Priv));
10867 Conditional_Delay (Full, Priv);
10868 Set_Sloc (Full, Sloc (Priv));
10869 end case;
10870
10871 Set_Next_Entity (Full, Save_Next_Entity);
10872 Set_Homonym (Full, Save_Homonym);
10873 Set_Associated_Node_For_Itype (Full, Related_Nod);
10874
10875 -- Set common attributes for all subtypes: kind, convention, etc.
10876
10877 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10878 Set_Convention (Full, Convention (Full_Base));
10879
10880 -- The Etype of the full view is inconsistent. Gigi needs to see the
10881 -- structural full view, which is what the current scheme gives:
10882 -- the Etype of the full view is the etype of the full base. However,
10883 -- if the full base is a derived type, the full view then looks like
10884 -- a subtype of the parent, not a subtype of the full base. If instead
10885 -- we write:
10886
10887 -- Set_Etype (Full, Full_Base);
10888
10889 -- then we get inconsistencies in the front-end (confusion between
10890 -- views). Several outstanding bugs are related to this ???
10891
10892 Set_Is_First_Subtype (Full, False);
10893 Set_Scope (Full, Scope (Priv));
10894 Set_Size_Info (Full, Full_Base);
10895 Set_RM_Size (Full, RM_Size (Full_Base));
10896 Set_Is_Itype (Full);
10897
10898 -- A subtype of a private-type-without-discriminants, whose full-view
10899 -- has discriminants with default expressions, is not constrained.
10900
10901 if not Has_Discriminants (Priv) then
10902 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10903
10904 if Has_Discriminants (Full_Base) then
10905 Set_Discriminant_Constraint
10906 (Full, Discriminant_Constraint (Full_Base));
10907
10908 -- The partial view may have been indefinite, the full view
10909 -- might not be.
10910
10911 Set_Has_Unknown_Discriminants
10912 (Full, Has_Unknown_Discriminants (Full_Base));
10913 end if;
10914 end if;
10915
10916 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10917 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10918
10919 -- Freeze the private subtype entity if its parent is delayed, and not
10920 -- already frozen. We skip this processing if the type is an anonymous
10921 -- subtype of a record component, or is the corresponding record of a
10922 -- protected type, since ???
10923
10924 if not Is_Type (Scope (Full)) then
10925 Set_Has_Delayed_Freeze (Full,
10926 Has_Delayed_Freeze (Full_Base)
10927 and then (not Is_Frozen (Full_Base)));
10928 end if;
10929
10930 Set_Freeze_Node (Full, Empty);
10931 Set_Is_Frozen (Full, False);
10932 Set_Full_View (Priv, Full);
10933
10934 if Has_Discriminants (Full) then
10935 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10936 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10937
10938 if Has_Unknown_Discriminants (Full) then
10939 Set_Discriminant_Constraint (Full, No_Elist);
10940 end if;
10941 end if;
10942
10943 if Ekind (Full_Base) = E_Record_Type
10944 and then Has_Discriminants (Full_Base)
10945 and then Has_Discriminants (Priv) -- might not, if errors
10946 and then not Has_Unknown_Discriminants (Priv)
10947 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10948 then
10949 Create_Constrained_Components
10950 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10951
10952 -- If the full base is itself derived from private, build a congruent
10953 -- subtype of its underlying type, for use by the back end. For a
10954 -- constrained record component, the declaration cannot be placed on
10955 -- the component list, but it must nevertheless be built an analyzed, to
10956 -- supply enough information for Gigi to compute the size of component.
10957
10958 elsif Ekind (Full_Base) in Private_Kind
10959 and then Is_Derived_Type (Full_Base)
10960 and then Has_Discriminants (Full_Base)
10961 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10962 then
10963 if not Is_Itype (Priv)
10964 and then
10965 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10966 then
10967 Build_Underlying_Full_View
10968 (Parent (Priv), Full, Etype (Full_Base));
10969
10970 elsif Nkind (Related_Nod) = N_Component_Declaration then
10971 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10972 end if;
10973
10974 elsif Is_Record_Type (Full_Base) then
10975
10976 -- Show Full is simply a renaming of Full_Base
10977
10978 Set_Cloned_Subtype (Full, Full_Base);
10979 end if;
10980
10981 -- It is unsafe to share the bounds of a scalar type, because the Itype
10982 -- is elaborated on demand, and if a bound is non-static then different
10983 -- orders of elaboration in different units will lead to different
10984 -- external symbols.
10985
10986 if Is_Scalar_Type (Full_Base) then
10987 Set_Scalar_Range (Full,
10988 Make_Range (Sloc (Related_Nod),
10989 Low_Bound =>
10990 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10991 High_Bound =>
10992 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10993
10994 -- This completion inherits the bounds of the full parent, but if
10995 -- the parent is an unconstrained floating point type, so is the
10996 -- completion.
10997
10998 if Is_Floating_Point_Type (Full_Base) then
10999 Set_Includes_Infinities
11000 (Scalar_Range (Full), Has_Infinities (Full_Base));
11001 end if;
11002 end if;
11003
11004 -- ??? It seems that a lot of fields are missing that should be copied
11005 -- from Full_Base to Full. Here are some that are introduced in a
11006 -- non-disruptive way but a cleanup is necessary.
11007
11008 if Is_Tagged_Type (Full_Base) then
11009 Set_Is_Tagged_Type (Full);
11010 Set_Direct_Primitive_Operations (Full,
11011 Direct_Primitive_Operations (Full_Base));
11012
11013 -- Inherit class_wide type of full_base in case the partial view was
11014 -- not tagged. Otherwise it has already been created when the private
11015 -- subtype was analyzed.
11016
11017 if No (Class_Wide_Type (Full)) then
11018 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11019 end if;
11020
11021 -- If this is a subtype of a protected or task type, constrain its
11022 -- corresponding record, unless this is a subtype without constraints,
11023 -- i.e. a simple renaming as with an actual subtype in an instance.
11024
11025 elsif Is_Concurrent_Type (Full_Base) then
11026 if Has_Discriminants (Full)
11027 and then Present (Corresponding_Record_Type (Full_Base))
11028 and then
11029 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11030 then
11031 Set_Corresponding_Record_Type (Full,
11032 Constrain_Corresponding_Record
11033 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11034
11035 else
11036 Set_Corresponding_Record_Type (Full,
11037 Corresponding_Record_Type (Full_Base));
11038 end if;
11039 end if;
11040
11041 -- Link rep item chain, and also setting of Has_Predicates from private
11042 -- subtype to full subtype, since we will need these on the full subtype
11043 -- to create the predicate function. Note that the full subtype may
11044 -- already have rep items, inherited from the full view of the base
11045 -- type, so we must be sure not to overwrite these entries.
11046
11047 declare
11048 Append : Boolean;
11049 Item : Node_Id;
11050 Next_Item : Node_Id;
11051
11052 begin
11053 Item := First_Rep_Item (Full);
11054
11055 -- If no existing rep items on full type, we can just link directly
11056 -- to the list of items on the private type.
11057
11058 if No (Item) then
11059 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11060
11061 -- Otherwise, search to the end of items currently linked to the full
11062 -- subtype and append the private items to the end. However, if Priv
11063 -- and Full already have the same list of rep items, then the append
11064 -- is not done, as that would create a circularity.
11065
11066 elsif Item /= First_Rep_Item (Priv) then
11067 Append := True;
11068
11069 loop
11070 Next_Item := Next_Rep_Item (Item);
11071 exit when No (Next_Item);
11072 Item := Next_Item;
11073
11074 -- If the private view has aspect specifications, the full view
11075 -- inherits them. Since these aspects may already have been
11076 -- attached to the full view during derivation, do not append
11077 -- them if already present.
11078
11079 if Item = First_Rep_Item (Priv) then
11080 Append := False;
11081 exit;
11082 end if;
11083 end loop;
11084
11085 -- And link the private type items at the end of the chain
11086
11087 if Append then
11088 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11089 end if;
11090 end if;
11091 end;
11092
11093 -- Make sure Has_Predicates is set on full type if it is set on the
11094 -- private type. Note that it may already be set on the full type and
11095 -- if so, we don't want to unset it.
11096
11097 if Has_Predicates (Priv) then
11098 Set_Has_Predicates (Full);
11099 end if;
11100 end Complete_Private_Subtype;
11101
11102 ----------------------------
11103 -- Constant_Redeclaration --
11104 ----------------------------
11105
11106 procedure Constant_Redeclaration
11107 (Id : Entity_Id;
11108 N : Node_Id;
11109 T : out Entity_Id)
11110 is
11111 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11112 Obj_Def : constant Node_Id := Object_Definition (N);
11113 New_T : Entity_Id;
11114
11115 procedure Check_Possible_Deferred_Completion
11116 (Prev_Id : Entity_Id;
11117 Prev_Obj_Def : Node_Id;
11118 Curr_Obj_Def : Node_Id);
11119 -- Determine whether the two object definitions describe the partial
11120 -- and the full view of a constrained deferred constant. Generate
11121 -- a subtype for the full view and verify that it statically matches
11122 -- the subtype of the partial view.
11123
11124 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11125 -- If deferred constant is an access type initialized with an allocator,
11126 -- check whether there is an illegal recursion in the definition,
11127 -- through a default value of some record subcomponent. This is normally
11128 -- detected when generating init procs, but requires this additional
11129 -- mechanism when expansion is disabled.
11130
11131 ----------------------------------------
11132 -- Check_Possible_Deferred_Completion --
11133 ----------------------------------------
11134
11135 procedure Check_Possible_Deferred_Completion
11136 (Prev_Id : Entity_Id;
11137 Prev_Obj_Def : Node_Id;
11138 Curr_Obj_Def : Node_Id)
11139 is
11140 begin
11141 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11142 and then Present (Constraint (Prev_Obj_Def))
11143 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11144 and then Present (Constraint (Curr_Obj_Def))
11145 then
11146 declare
11147 Loc : constant Source_Ptr := Sloc (N);
11148 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11149 Decl : constant Node_Id :=
11150 Make_Subtype_Declaration (Loc,
11151 Defining_Identifier => Def_Id,
11152 Subtype_Indication =>
11153 Relocate_Node (Curr_Obj_Def));
11154
11155 begin
11156 Insert_Before_And_Analyze (N, Decl);
11157 Set_Etype (Id, Def_Id);
11158
11159 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11160 Error_Msg_Sloc := Sloc (Prev_Id);
11161 Error_Msg_N ("subtype does not statically match deferred " &
11162 "declaration#", N);
11163 end if;
11164 end;
11165 end if;
11166 end Check_Possible_Deferred_Completion;
11167
11168 ---------------------------------
11169 -- Check_Recursive_Declaration --
11170 ---------------------------------
11171
11172 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11173 Comp : Entity_Id;
11174
11175 begin
11176 if Is_Record_Type (Typ) then
11177 Comp := First_Component (Typ);
11178 while Present (Comp) loop
11179 if Comes_From_Source (Comp) then
11180 if Present (Expression (Parent (Comp)))
11181 and then Is_Entity_Name (Expression (Parent (Comp)))
11182 and then Entity (Expression (Parent (Comp))) = Prev
11183 then
11184 Error_Msg_Sloc := Sloc (Parent (Comp));
11185 Error_Msg_NE
11186 ("illegal circularity with declaration for&#",
11187 N, Comp);
11188 return;
11189
11190 elsif Is_Record_Type (Etype (Comp)) then
11191 Check_Recursive_Declaration (Etype (Comp));
11192 end if;
11193 end if;
11194
11195 Next_Component (Comp);
11196 end loop;
11197 end if;
11198 end Check_Recursive_Declaration;
11199
11200 -- Start of processing for Constant_Redeclaration
11201
11202 begin
11203 if Nkind (Parent (Prev)) = N_Object_Declaration then
11204 if Nkind (Object_Definition
11205 (Parent (Prev))) = N_Subtype_Indication
11206 then
11207 -- Find type of new declaration. The constraints of the two
11208 -- views must match statically, but there is no point in
11209 -- creating an itype for the full view.
11210
11211 if Nkind (Obj_Def) = N_Subtype_Indication then
11212 Find_Type (Subtype_Mark (Obj_Def));
11213 New_T := Entity (Subtype_Mark (Obj_Def));
11214
11215 else
11216 Find_Type (Obj_Def);
11217 New_T := Entity (Obj_Def);
11218 end if;
11219
11220 T := Etype (Prev);
11221
11222 else
11223 -- The full view may impose a constraint, even if the partial
11224 -- view does not, so construct the subtype.
11225
11226 New_T := Find_Type_Of_Object (Obj_Def, N);
11227 T := New_T;
11228 end if;
11229
11230 else
11231 -- Current declaration is illegal, diagnosed below in Enter_Name
11232
11233 T := Empty;
11234 New_T := Any_Type;
11235 end if;
11236
11237 -- If previous full declaration or a renaming declaration exists, or if
11238 -- a homograph is present, let Enter_Name handle it, either with an
11239 -- error or with the removal of an overridden implicit subprogram.
11240 -- The previous one is a full declaration if it has an expression
11241 -- (which in the case of an aggregate is indicated by the Init flag).
11242
11243 if Ekind (Prev) /= E_Constant
11244 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11245 or else Present (Expression (Parent (Prev)))
11246 or else Has_Init_Expression (Parent (Prev))
11247 or else Present (Full_View (Prev))
11248 then
11249 Enter_Name (Id);
11250
11251 -- Verify that types of both declarations match, or else that both types
11252 -- are anonymous access types whose designated subtypes statically match
11253 -- (as allowed in Ada 2005 by AI-385).
11254
11255 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11256 and then
11257 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11258 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11259 or else Is_Access_Constant (Etype (New_T)) /=
11260 Is_Access_Constant (Etype (Prev))
11261 or else Can_Never_Be_Null (Etype (New_T)) /=
11262 Can_Never_Be_Null (Etype (Prev))
11263 or else Null_Exclusion_Present (Parent (Prev)) /=
11264 Null_Exclusion_Present (Parent (Id))
11265 or else not Subtypes_Statically_Match
11266 (Designated_Type (Etype (Prev)),
11267 Designated_Type (Etype (New_T))))
11268 then
11269 Error_Msg_Sloc := Sloc (Prev);
11270 Error_Msg_N ("type does not match declaration#", N);
11271 Set_Full_View (Prev, Id);
11272 Set_Etype (Id, Any_Type);
11273
11274 elsif
11275 Null_Exclusion_Present (Parent (Prev))
11276 and then not Null_Exclusion_Present (N)
11277 then
11278 Error_Msg_Sloc := Sloc (Prev);
11279 Error_Msg_N ("null-exclusion does not match declaration#", N);
11280 Set_Full_View (Prev, Id);
11281 Set_Etype (Id, Any_Type);
11282
11283 -- If so, process the full constant declaration
11284
11285 else
11286 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11287 -- the deferred declaration is constrained, then the subtype defined
11288 -- by the subtype_indication in the full declaration shall match it
11289 -- statically.
11290
11291 Check_Possible_Deferred_Completion
11292 (Prev_Id => Prev,
11293 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11294 Curr_Obj_Def => Obj_Def);
11295
11296 Set_Full_View (Prev, Id);
11297 Set_Is_Public (Id, Is_Public (Prev));
11298 Set_Is_Internal (Id);
11299 Append_Entity (Id, Current_Scope);
11300
11301 -- Check ALIASED present if present before (RM 7.4(7))
11302
11303 if Is_Aliased (Prev)
11304 and then not Aliased_Present (N)
11305 then
11306 Error_Msg_Sloc := Sloc (Prev);
11307 Error_Msg_N ("ALIASED required (see declaration#)", N);
11308 end if;
11309
11310 -- Check that placement is in private part and that the incomplete
11311 -- declaration appeared in the visible part.
11312
11313 if Ekind (Current_Scope) = E_Package
11314 and then not In_Private_Part (Current_Scope)
11315 then
11316 Error_Msg_Sloc := Sloc (Prev);
11317 Error_Msg_N
11318 ("full constant for declaration#"
11319 & " must be in private part", N);
11320
11321 elsif Ekind (Current_Scope) = E_Package
11322 and then
11323 List_Containing (Parent (Prev)) /=
11324 Visible_Declarations (Package_Specification (Current_Scope))
11325 then
11326 Error_Msg_N
11327 ("deferred constant must be declared in visible part",
11328 Parent (Prev));
11329 end if;
11330
11331 if Is_Access_Type (T)
11332 and then Nkind (Expression (N)) = N_Allocator
11333 then
11334 Check_Recursive_Declaration (Designated_Type (T));
11335 end if;
11336
11337 -- A deferred constant is a visible entity. If type has invariants,
11338 -- verify that the initial value satisfies them.
11339
11340 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11341 Insert_After (N,
11342 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11343 end if;
11344 end if;
11345 end Constant_Redeclaration;
11346
11347 ----------------------
11348 -- Constrain_Access --
11349 ----------------------
11350
11351 procedure Constrain_Access
11352 (Def_Id : in out Entity_Id;
11353 S : Node_Id;
11354 Related_Nod : Node_Id)
11355 is
11356 T : constant Entity_Id := Entity (Subtype_Mark (S));
11357 Desig_Type : constant Entity_Id := Designated_Type (T);
11358 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11359 Constraint_OK : Boolean := True;
11360
11361 begin
11362 if Is_Array_Type (Desig_Type) then
11363 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11364
11365 elsif (Is_Record_Type (Desig_Type)
11366 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11367 and then not Is_Constrained (Desig_Type)
11368 then
11369 -- ??? The following code is a temporary bypass to ignore a
11370 -- discriminant constraint on access type if it is constraining
11371 -- the current record. Avoid creating the implicit subtype of the
11372 -- record we are currently compiling since right now, we cannot
11373 -- handle these. For now, just return the access type itself.
11374
11375 if Desig_Type = Current_Scope
11376 and then No (Def_Id)
11377 then
11378 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11379 Def_Id := Entity (Subtype_Mark (S));
11380
11381 -- This call added to ensure that the constraint is analyzed
11382 -- (needed for a B test). Note that we still return early from
11383 -- this procedure to avoid recursive processing. ???
11384
11385 Constrain_Discriminated_Type
11386 (Desig_Subtype, S, Related_Nod, For_Access => True);
11387 return;
11388 end if;
11389
11390 -- Enforce rule that the constraint is illegal if there is an
11391 -- unconstrained view of the designated type. This means that the
11392 -- partial view (either a private type declaration or a derivation
11393 -- from a private type) has no discriminants. (Defect Report
11394 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11395
11396 -- Rule updated for Ada 2005: The private type is said to have
11397 -- a constrained partial view, given that objects of the type
11398 -- can be declared. Furthermore, the rule applies to all access
11399 -- types, unlike the rule concerning default discriminants (see
11400 -- RM 3.7.1(7/3))
11401
11402 if (Ekind (T) = E_General_Access_Type
11403 or else Ada_Version >= Ada_2005)
11404 and then Has_Private_Declaration (Desig_Type)
11405 and then In_Open_Scopes (Scope (Desig_Type))
11406 and then Has_Discriminants (Desig_Type)
11407 then
11408 declare
11409 Pack : constant Node_Id :=
11410 Unit_Declaration_Node (Scope (Desig_Type));
11411 Decls : List_Id;
11412 Decl : Node_Id;
11413
11414 begin
11415 if Nkind (Pack) = N_Package_Declaration then
11416 Decls := Visible_Declarations (Specification (Pack));
11417 Decl := First (Decls);
11418 while Present (Decl) loop
11419 if (Nkind (Decl) = N_Private_Type_Declaration
11420 and then
11421 Chars (Defining_Identifier (Decl)) =
11422 Chars (Desig_Type))
11423
11424 or else
11425 (Nkind (Decl) = N_Full_Type_Declaration
11426 and then
11427 Chars (Defining_Identifier (Decl)) =
11428 Chars (Desig_Type)
11429 and then Is_Derived_Type (Desig_Type)
11430 and then
11431 Has_Private_Declaration (Etype (Desig_Type)))
11432 then
11433 if No (Discriminant_Specifications (Decl)) then
11434 Error_Msg_N
11435 ("cannot constrain access type if designated " &
11436 "type has constrained partial view", S);
11437 end if;
11438
11439 exit;
11440 end if;
11441
11442 Next (Decl);
11443 end loop;
11444 end if;
11445 end;
11446 end if;
11447
11448 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11449 For_Access => True);
11450
11451 elsif (Is_Task_Type (Desig_Type)
11452 or else Is_Protected_Type (Desig_Type))
11453 and then not Is_Constrained (Desig_Type)
11454 then
11455 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11456
11457 else
11458 Error_Msg_N ("invalid constraint on access type", S);
11459 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11460 Constraint_OK := False;
11461 end if;
11462
11463 if No (Def_Id) then
11464 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11465 else
11466 Set_Ekind (Def_Id, E_Access_Subtype);
11467 end if;
11468
11469 if Constraint_OK then
11470 Set_Etype (Def_Id, Base_Type (T));
11471
11472 if Is_Private_Type (Desig_Type) then
11473 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11474 end if;
11475 else
11476 Set_Etype (Def_Id, Any_Type);
11477 end if;
11478
11479 Set_Size_Info (Def_Id, T);
11480 Set_Is_Constrained (Def_Id, Constraint_OK);
11481 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11482 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11483 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11484
11485 Conditional_Delay (Def_Id, T);
11486
11487 -- AI-363 : Subtypes of general access types whose designated types have
11488 -- default discriminants are disallowed. In instances, the rule has to
11489 -- be checked against the actual, of which T is the subtype. In a
11490 -- generic body, the rule is checked assuming that the actual type has
11491 -- defaulted discriminants.
11492
11493 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11494 if Ekind (Base_Type (T)) = E_General_Access_Type
11495 and then Has_Defaulted_Discriminants (Desig_Type)
11496 then
11497 if Ada_Version < Ada_2005 then
11498 Error_Msg_N
11499 ("access subtype of general access type would not " &
11500 "be allowed in Ada 2005?y?", S);
11501 else
11502 Error_Msg_N
11503 ("access subtype of general access type not allowed", S);
11504 end if;
11505
11506 Error_Msg_N ("\discriminants have defaults", S);
11507
11508 elsif Is_Access_Type (T)
11509 and then Is_Generic_Type (Desig_Type)
11510 and then Has_Discriminants (Desig_Type)
11511 and then In_Package_Body (Current_Scope)
11512 then
11513 if Ada_Version < Ada_2005 then
11514 Error_Msg_N
11515 ("access subtype would not be allowed in generic body " &
11516 "in Ada 2005?y?", S);
11517 else
11518 Error_Msg_N
11519 ("access subtype not allowed in generic body", S);
11520 end if;
11521
11522 Error_Msg_N
11523 ("\designated type is a discriminated formal", S);
11524 end if;
11525 end if;
11526 end Constrain_Access;
11527
11528 ---------------------
11529 -- Constrain_Array --
11530 ---------------------
11531
11532 procedure Constrain_Array
11533 (Def_Id : in out Entity_Id;
11534 SI : Node_Id;
11535 Related_Nod : Node_Id;
11536 Related_Id : Entity_Id;
11537 Suffix : Character)
11538 is
11539 C : constant Node_Id := Constraint (SI);
11540 Number_Of_Constraints : Nat := 0;
11541 Index : Node_Id;
11542 S, T : Entity_Id;
11543 Constraint_OK : Boolean := True;
11544
11545 begin
11546 T := Entity (Subtype_Mark (SI));
11547
11548 if Is_Access_Type (T) then
11549 T := Designated_Type (T);
11550 end if;
11551
11552 -- If an index constraint follows a subtype mark in a subtype indication
11553 -- then the type or subtype denoted by the subtype mark must not already
11554 -- impose an index constraint. The subtype mark must denote either an
11555 -- unconstrained array type or an access type whose designated type
11556 -- is such an array type... (RM 3.6.1)
11557
11558 if Is_Constrained (T) then
11559 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11560 Constraint_OK := False;
11561
11562 else
11563 S := First (Constraints (C));
11564 while Present (S) loop
11565 Number_Of_Constraints := Number_Of_Constraints + 1;
11566 Next (S);
11567 end loop;
11568
11569 -- In either case, the index constraint must provide a discrete
11570 -- range for each index of the array type and the type of each
11571 -- discrete range must be the same as that of the corresponding
11572 -- index. (RM 3.6.1)
11573
11574 if Number_Of_Constraints /= Number_Dimensions (T) then
11575 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11576 Constraint_OK := False;
11577
11578 else
11579 S := First (Constraints (C));
11580 Index := First_Index (T);
11581 Analyze (Index);
11582
11583 -- Apply constraints to each index type
11584
11585 for J in 1 .. Number_Of_Constraints loop
11586 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11587 Next (Index);
11588 Next (S);
11589 end loop;
11590
11591 end if;
11592 end if;
11593
11594 if No (Def_Id) then
11595 Def_Id :=
11596 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11597 Set_Parent (Def_Id, Related_Nod);
11598
11599 else
11600 Set_Ekind (Def_Id, E_Array_Subtype);
11601 end if;
11602
11603 Set_Size_Info (Def_Id, (T));
11604 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11605 Set_Etype (Def_Id, Base_Type (T));
11606
11607 if Constraint_OK then
11608 Set_First_Index (Def_Id, First (Constraints (C)));
11609 else
11610 Set_First_Index (Def_Id, First_Index (T));
11611 end if;
11612
11613 Set_Is_Constrained (Def_Id, True);
11614 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11615 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11616
11617 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11618 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11619
11620 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11621 -- We need to initialize the attribute because if Def_Id is previously
11622 -- analyzed through a limited_with clause, it will have the attributes
11623 -- of an incomplete type, one of which is an Elist that overlaps the
11624 -- Packed_Array_Impl_Type field.
11625
11626 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11627
11628 -- Build a freeze node if parent still needs one. Also make sure that
11629 -- the Depends_On_Private status is set because the subtype will need
11630 -- reprocessing at the time the base type does, and also we must set a
11631 -- conditional delay.
11632
11633 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11634 Conditional_Delay (Def_Id, T);
11635 end Constrain_Array;
11636
11637 ------------------------------
11638 -- Constrain_Component_Type --
11639 ------------------------------
11640
11641 function Constrain_Component_Type
11642 (Comp : Entity_Id;
11643 Constrained_Typ : Entity_Id;
11644 Related_Node : Node_Id;
11645 Typ : Entity_Id;
11646 Constraints : Elist_Id) return Entity_Id
11647 is
11648 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11649 Compon_Type : constant Entity_Id := Etype (Comp);
11650
11651 function Build_Constrained_Array_Type
11652 (Old_Type : Entity_Id) return Entity_Id;
11653 -- If Old_Type is an array type, one of whose indexes is constrained
11654 -- by a discriminant, build an Itype whose constraint replaces the
11655 -- discriminant with its value in the constraint.
11656
11657 function Build_Constrained_Discriminated_Type
11658 (Old_Type : Entity_Id) return Entity_Id;
11659 -- Ditto for record components
11660
11661 function Build_Constrained_Access_Type
11662 (Old_Type : Entity_Id) return Entity_Id;
11663 -- Ditto for access types. Makes use of previous two functions, to
11664 -- constrain designated type.
11665
11666 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11667 -- T is an array or discriminated type, C is a list of constraints
11668 -- that apply to T. This routine builds the constrained subtype.
11669
11670 function Is_Discriminant (Expr : Node_Id) return Boolean;
11671 -- Returns True if Expr is a discriminant
11672
11673 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11674 -- Find the value of discriminant Discrim in Constraint
11675
11676 -----------------------------------
11677 -- Build_Constrained_Access_Type --
11678 -----------------------------------
11679
11680 function Build_Constrained_Access_Type
11681 (Old_Type : Entity_Id) return Entity_Id
11682 is
11683 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11684 Itype : Entity_Id;
11685 Desig_Subtype : Entity_Id;
11686 Scop : Entity_Id;
11687
11688 begin
11689 -- if the original access type was not embedded in the enclosing
11690 -- type definition, there is no need to produce a new access
11691 -- subtype. In fact every access type with an explicit constraint
11692 -- generates an itype whose scope is the enclosing record.
11693
11694 if not Is_Type (Scope (Old_Type)) then
11695 return Old_Type;
11696
11697 elsif Is_Array_Type (Desig_Type) then
11698 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11699
11700 elsif Has_Discriminants (Desig_Type) then
11701
11702 -- This may be an access type to an enclosing record type for
11703 -- which we are constructing the constrained components. Return
11704 -- the enclosing record subtype. This is not always correct,
11705 -- but avoids infinite recursion. ???
11706
11707 Desig_Subtype := Any_Type;
11708
11709 for J in reverse 0 .. Scope_Stack.Last loop
11710 Scop := Scope_Stack.Table (J).Entity;
11711
11712 if Is_Type (Scop)
11713 and then Base_Type (Scop) = Base_Type (Desig_Type)
11714 then
11715 Desig_Subtype := Scop;
11716 end if;
11717
11718 exit when not Is_Type (Scop);
11719 end loop;
11720
11721 if Desig_Subtype = Any_Type then
11722 Desig_Subtype :=
11723 Build_Constrained_Discriminated_Type (Desig_Type);
11724 end if;
11725
11726 else
11727 return Old_Type;
11728 end if;
11729
11730 if Desig_Subtype /= Desig_Type then
11731
11732 -- The Related_Node better be here or else we won't be able
11733 -- to attach new itypes to a node in the tree.
11734
11735 pragma Assert (Present (Related_Node));
11736
11737 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11738
11739 Set_Etype (Itype, Base_Type (Old_Type));
11740 Set_Size_Info (Itype, (Old_Type));
11741 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11742 Set_Depends_On_Private (Itype, Has_Private_Component
11743 (Old_Type));
11744 Set_Is_Access_Constant (Itype, Is_Access_Constant
11745 (Old_Type));
11746
11747 -- The new itype needs freezing when it depends on a not frozen
11748 -- type and the enclosing subtype needs freezing.
11749
11750 if Has_Delayed_Freeze (Constrained_Typ)
11751 and then not Is_Frozen (Constrained_Typ)
11752 then
11753 Conditional_Delay (Itype, Base_Type (Old_Type));
11754 end if;
11755
11756 return Itype;
11757
11758 else
11759 return Old_Type;
11760 end if;
11761 end Build_Constrained_Access_Type;
11762
11763 ----------------------------------
11764 -- Build_Constrained_Array_Type --
11765 ----------------------------------
11766
11767 function Build_Constrained_Array_Type
11768 (Old_Type : Entity_Id) return Entity_Id
11769 is
11770 Lo_Expr : Node_Id;
11771 Hi_Expr : Node_Id;
11772 Old_Index : Node_Id;
11773 Range_Node : Node_Id;
11774 Constr_List : List_Id;
11775
11776 Need_To_Create_Itype : Boolean := False;
11777
11778 begin
11779 Old_Index := First_Index (Old_Type);
11780 while Present (Old_Index) loop
11781 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11782
11783 if Is_Discriminant (Lo_Expr)
11784 or else Is_Discriminant (Hi_Expr)
11785 then
11786 Need_To_Create_Itype := True;
11787 end if;
11788
11789 Next_Index (Old_Index);
11790 end loop;
11791
11792 if Need_To_Create_Itype then
11793 Constr_List := New_List;
11794
11795 Old_Index := First_Index (Old_Type);
11796 while Present (Old_Index) loop
11797 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11798
11799 if Is_Discriminant (Lo_Expr) then
11800 Lo_Expr := Get_Discr_Value (Lo_Expr);
11801 end if;
11802
11803 if Is_Discriminant (Hi_Expr) then
11804 Hi_Expr := Get_Discr_Value (Hi_Expr);
11805 end if;
11806
11807 Range_Node :=
11808 Make_Range
11809 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11810
11811 Append (Range_Node, To => Constr_List);
11812
11813 Next_Index (Old_Index);
11814 end loop;
11815
11816 return Build_Subtype (Old_Type, Constr_List);
11817
11818 else
11819 return Old_Type;
11820 end if;
11821 end Build_Constrained_Array_Type;
11822
11823 ------------------------------------------
11824 -- Build_Constrained_Discriminated_Type --
11825 ------------------------------------------
11826
11827 function Build_Constrained_Discriminated_Type
11828 (Old_Type : Entity_Id) return Entity_Id
11829 is
11830 Expr : Node_Id;
11831 Constr_List : List_Id;
11832 Old_Constraint : Elmt_Id;
11833
11834 Need_To_Create_Itype : Boolean := False;
11835
11836 begin
11837 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11838 while Present (Old_Constraint) loop
11839 Expr := Node (Old_Constraint);
11840
11841 if Is_Discriminant (Expr) then
11842 Need_To_Create_Itype := True;
11843 end if;
11844
11845 Next_Elmt (Old_Constraint);
11846 end loop;
11847
11848 if Need_To_Create_Itype then
11849 Constr_List := New_List;
11850
11851 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11852 while Present (Old_Constraint) loop
11853 Expr := Node (Old_Constraint);
11854
11855 if Is_Discriminant (Expr) then
11856 Expr := Get_Discr_Value (Expr);
11857 end if;
11858
11859 Append (New_Copy_Tree (Expr), To => Constr_List);
11860
11861 Next_Elmt (Old_Constraint);
11862 end loop;
11863
11864 return Build_Subtype (Old_Type, Constr_List);
11865
11866 else
11867 return Old_Type;
11868 end if;
11869 end Build_Constrained_Discriminated_Type;
11870
11871 -------------------
11872 -- Build_Subtype --
11873 -------------------
11874
11875 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11876 Indic : Node_Id;
11877 Subtyp_Decl : Node_Id;
11878 Def_Id : Entity_Id;
11879 Btyp : Entity_Id := Base_Type (T);
11880
11881 begin
11882 -- The Related_Node better be here or else we won't be able to
11883 -- attach new itypes to a node in the tree.
11884
11885 pragma Assert (Present (Related_Node));
11886
11887 -- If the view of the component's type is incomplete or private
11888 -- with unknown discriminants, then the constraint must be applied
11889 -- to the full type.
11890
11891 if Has_Unknown_Discriminants (Btyp)
11892 and then Present (Underlying_Type (Btyp))
11893 then
11894 Btyp := Underlying_Type (Btyp);
11895 end if;
11896
11897 Indic :=
11898 Make_Subtype_Indication (Loc,
11899 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11900 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11901
11902 Def_Id := Create_Itype (Ekind (T), Related_Node);
11903
11904 Subtyp_Decl :=
11905 Make_Subtype_Declaration (Loc,
11906 Defining_Identifier => Def_Id,
11907 Subtype_Indication => Indic);
11908
11909 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11910
11911 -- Itypes must be analyzed with checks off (see package Itypes)
11912
11913 Analyze (Subtyp_Decl, Suppress => All_Checks);
11914
11915 return Def_Id;
11916 end Build_Subtype;
11917
11918 ---------------------
11919 -- Get_Discr_Value --
11920 ---------------------
11921
11922 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11923 D : Entity_Id;
11924 E : Elmt_Id;
11925
11926 begin
11927 -- The discriminant may be declared for the type, in which case we
11928 -- find it by iterating over the list of discriminants. If the
11929 -- discriminant is inherited from a parent type, it appears as the
11930 -- corresponding discriminant of the current type. This will be the
11931 -- case when constraining an inherited component whose constraint is
11932 -- given by a discriminant of the parent.
11933
11934 D := First_Discriminant (Typ);
11935 E := First_Elmt (Constraints);
11936
11937 while Present (D) loop
11938 if D = Entity (Discrim)
11939 or else D = CR_Discriminant (Entity (Discrim))
11940 or else Corresponding_Discriminant (D) = Entity (Discrim)
11941 then
11942 return Node (E);
11943 end if;
11944
11945 Next_Discriminant (D);
11946 Next_Elmt (E);
11947 end loop;
11948
11949 -- The Corresponding_Discriminant mechanism is incomplete, because
11950 -- the correspondence between new and old discriminants is not one
11951 -- to one: one new discriminant can constrain several old ones. In
11952 -- that case, scan sequentially the stored_constraint, the list of
11953 -- discriminants of the parents, and the constraints.
11954
11955 -- Previous code checked for the present of the Stored_Constraint
11956 -- list for the derived type, but did not use it at all. Should it
11957 -- be present when the component is a discriminated task type?
11958
11959 if Is_Derived_Type (Typ)
11960 and then Scope (Entity (Discrim)) = Etype (Typ)
11961 then
11962 D := First_Discriminant (Etype (Typ));
11963 E := First_Elmt (Constraints);
11964 while Present (D) loop
11965 if D = Entity (Discrim) then
11966 return Node (E);
11967 end if;
11968
11969 Next_Discriminant (D);
11970 Next_Elmt (E);
11971 end loop;
11972 end if;
11973
11974 -- Something is wrong if we did not find the value
11975
11976 raise Program_Error;
11977 end Get_Discr_Value;
11978
11979 ---------------------
11980 -- Is_Discriminant --
11981 ---------------------
11982
11983 function Is_Discriminant (Expr : Node_Id) return Boolean is
11984 Discrim_Scope : Entity_Id;
11985
11986 begin
11987 if Denotes_Discriminant (Expr) then
11988 Discrim_Scope := Scope (Entity (Expr));
11989
11990 -- Either we have a reference to one of Typ's discriminants,
11991
11992 pragma Assert (Discrim_Scope = Typ
11993
11994 -- or to the discriminants of the parent type, in the case
11995 -- of a derivation of a tagged type with variants.
11996
11997 or else Discrim_Scope = Etype (Typ)
11998 or else Full_View (Discrim_Scope) = Etype (Typ)
11999
12000 -- or same as above for the case where the discriminants
12001 -- were declared in Typ's private view.
12002
12003 or else (Is_Private_Type (Discrim_Scope)
12004 and then Chars (Discrim_Scope) = Chars (Typ))
12005
12006 -- or else we are deriving from the full view and the
12007 -- discriminant is declared in the private entity.
12008
12009 or else (Is_Private_Type (Typ)
12010 and then Chars (Discrim_Scope) = Chars (Typ))
12011
12012 -- Or we are constrained the corresponding record of a
12013 -- synchronized type that completes a private declaration.
12014
12015 or else (Is_Concurrent_Record_Type (Typ)
12016 and then
12017 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12018
12019 -- or we have a class-wide type, in which case make sure the
12020 -- discriminant found belongs to the root type.
12021
12022 or else (Is_Class_Wide_Type (Typ)
12023 and then Etype (Typ) = Discrim_Scope));
12024
12025 return True;
12026 end if;
12027
12028 -- In all other cases we have something wrong
12029
12030 return False;
12031 end Is_Discriminant;
12032
12033 -- Start of processing for Constrain_Component_Type
12034
12035 begin
12036 if Nkind (Parent (Comp)) = N_Component_Declaration
12037 and then Comes_From_Source (Parent (Comp))
12038 and then Comes_From_Source
12039 (Subtype_Indication (Component_Definition (Parent (Comp))))
12040 and then
12041 Is_Entity_Name
12042 (Subtype_Indication (Component_Definition (Parent (Comp))))
12043 then
12044 return Compon_Type;
12045
12046 elsif Is_Array_Type (Compon_Type) then
12047 return Build_Constrained_Array_Type (Compon_Type);
12048
12049 elsif Has_Discriminants (Compon_Type) then
12050 return Build_Constrained_Discriminated_Type (Compon_Type);
12051
12052 elsif Is_Access_Type (Compon_Type) then
12053 return Build_Constrained_Access_Type (Compon_Type);
12054
12055 else
12056 return Compon_Type;
12057 end if;
12058 end Constrain_Component_Type;
12059
12060 --------------------------
12061 -- Constrain_Concurrent --
12062 --------------------------
12063
12064 -- For concurrent types, the associated record value type carries the same
12065 -- discriminants, so when we constrain a concurrent type, we must constrain
12066 -- the corresponding record type as well.
12067
12068 procedure Constrain_Concurrent
12069 (Def_Id : in out Entity_Id;
12070 SI : Node_Id;
12071 Related_Nod : Node_Id;
12072 Related_Id : Entity_Id;
12073 Suffix : Character)
12074 is
12075 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12076 -- case of a private subtype (needed when only doing semantic analysis).
12077
12078 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12079 T_Val : Entity_Id;
12080
12081 begin
12082 if Is_Access_Type (T_Ent) then
12083 T_Ent := Designated_Type (T_Ent);
12084 end if;
12085
12086 T_Val := Corresponding_Record_Type (T_Ent);
12087
12088 if Present (T_Val) then
12089
12090 if No (Def_Id) then
12091 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12092 end if;
12093
12094 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12095
12096 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12097 Set_Corresponding_Record_Type (Def_Id,
12098 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12099
12100 else
12101 -- If there is no associated record, expansion is disabled and this
12102 -- is a generic context. Create a subtype in any case, so that
12103 -- semantic analysis can proceed.
12104
12105 if No (Def_Id) then
12106 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12107 end if;
12108
12109 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12110 end if;
12111 end Constrain_Concurrent;
12112
12113 ------------------------------------
12114 -- Constrain_Corresponding_Record --
12115 ------------------------------------
12116
12117 function Constrain_Corresponding_Record
12118 (Prot_Subt : Entity_Id;
12119 Corr_Rec : Entity_Id;
12120 Related_Nod : Node_Id) return Entity_Id
12121 is
12122 T_Sub : constant Entity_Id :=
12123 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12124
12125 begin
12126 Set_Etype (T_Sub, Corr_Rec);
12127 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12128 Set_Is_Constrained (T_Sub, True);
12129 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12130 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12131
12132 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12133 Set_Discriminant_Constraint
12134 (T_Sub, Discriminant_Constraint (Prot_Subt));
12135 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12136 Create_Constrained_Components
12137 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12138 end if;
12139
12140 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12141
12142 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12143 Conditional_Delay (T_Sub, Corr_Rec);
12144
12145 else
12146 -- This is a component subtype: it will be frozen in the context of
12147 -- the enclosing record's init_proc, so that discriminant references
12148 -- are resolved to discriminals. (Note: we used to skip freezing
12149 -- altogether in that case, which caused errors downstream for
12150 -- components of a bit packed array type).
12151
12152 Set_Has_Delayed_Freeze (T_Sub);
12153 end if;
12154
12155 return T_Sub;
12156 end Constrain_Corresponding_Record;
12157
12158 -----------------------
12159 -- Constrain_Decimal --
12160 -----------------------
12161
12162 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12163 T : constant Entity_Id := Entity (Subtype_Mark (S));
12164 C : constant Node_Id := Constraint (S);
12165 Loc : constant Source_Ptr := Sloc (C);
12166 Range_Expr : Node_Id;
12167 Digits_Expr : Node_Id;
12168 Digits_Val : Uint;
12169 Bound_Val : Ureal;
12170
12171 begin
12172 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12173
12174 if Nkind (C) = N_Range_Constraint then
12175 Range_Expr := Range_Expression (C);
12176 Digits_Val := Digits_Value (T);
12177
12178 else
12179 pragma Assert (Nkind (C) = N_Digits_Constraint);
12180
12181 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12182
12183 Digits_Expr := Digits_Expression (C);
12184 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12185
12186 Check_Digits_Expression (Digits_Expr);
12187 Digits_Val := Expr_Value (Digits_Expr);
12188
12189 if Digits_Val > Digits_Value (T) then
12190 Error_Msg_N
12191 ("digits expression is incompatible with subtype", C);
12192 Digits_Val := Digits_Value (T);
12193 end if;
12194
12195 if Present (Range_Constraint (C)) then
12196 Range_Expr := Range_Expression (Range_Constraint (C));
12197 else
12198 Range_Expr := Empty;
12199 end if;
12200 end if;
12201
12202 Set_Etype (Def_Id, Base_Type (T));
12203 Set_Size_Info (Def_Id, (T));
12204 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12205 Set_Delta_Value (Def_Id, Delta_Value (T));
12206 Set_Scale_Value (Def_Id, Scale_Value (T));
12207 Set_Small_Value (Def_Id, Small_Value (T));
12208 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12209 Set_Digits_Value (Def_Id, Digits_Val);
12210
12211 -- Manufacture range from given digits value if no range present
12212
12213 if No (Range_Expr) then
12214 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12215 Range_Expr :=
12216 Make_Range (Loc,
12217 Low_Bound =>
12218 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12219 High_Bound =>
12220 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12221 end if;
12222
12223 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12224 Set_Discrete_RM_Size (Def_Id);
12225
12226 -- Unconditionally delay the freeze, since we cannot set size
12227 -- information in all cases correctly until the freeze point.
12228
12229 Set_Has_Delayed_Freeze (Def_Id);
12230 end Constrain_Decimal;
12231
12232 ----------------------------------
12233 -- Constrain_Discriminated_Type --
12234 ----------------------------------
12235
12236 procedure Constrain_Discriminated_Type
12237 (Def_Id : Entity_Id;
12238 S : Node_Id;
12239 Related_Nod : Node_Id;
12240 For_Access : Boolean := False)
12241 is
12242 E : constant Entity_Id := Entity (Subtype_Mark (S));
12243 T : Entity_Id;
12244 C : Node_Id;
12245 Elist : Elist_Id := New_Elmt_List;
12246
12247 procedure Fixup_Bad_Constraint;
12248 -- This is called after finding a bad constraint, and after having
12249 -- posted an appropriate error message. The mission is to leave the
12250 -- entity T in as reasonable state as possible.
12251
12252 --------------------------
12253 -- Fixup_Bad_Constraint --
12254 --------------------------
12255
12256 procedure Fixup_Bad_Constraint is
12257 begin
12258 -- Set a reasonable Ekind for the entity. For an incomplete type,
12259 -- we can't do much, but for other types, we can set the proper
12260 -- corresponding subtype kind.
12261
12262 if Ekind (T) = E_Incomplete_Type then
12263 Set_Ekind (Def_Id, Ekind (T));
12264 else
12265 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12266 end if;
12267
12268 -- Set Etype to the known type, to reduce chances of cascaded errors
12269
12270 Set_Etype (Def_Id, E);
12271 Set_Error_Posted (Def_Id);
12272 end Fixup_Bad_Constraint;
12273
12274 -- Start of processing for Constrain_Discriminated_Type
12275
12276 begin
12277 C := Constraint (S);
12278
12279 -- A discriminant constraint is only allowed in a subtype indication,
12280 -- after a subtype mark. This subtype mark must denote either a type
12281 -- with discriminants, or an access type whose designated type is a
12282 -- type with discriminants. A discriminant constraint specifies the
12283 -- values of these discriminants (RM 3.7.2(5)).
12284
12285 T := Base_Type (Entity (Subtype_Mark (S)));
12286
12287 if Is_Access_Type (T) then
12288 T := Designated_Type (T);
12289 end if;
12290
12291 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12292 -- Avoid generating an error for access-to-incomplete subtypes.
12293
12294 if Ada_Version >= Ada_2005
12295 and then Ekind (T) = E_Incomplete_Type
12296 and then Nkind (Parent (S)) = N_Subtype_Declaration
12297 and then not Is_Itype (Def_Id)
12298 then
12299 -- A little sanity check, emit an error message if the type
12300 -- has discriminants to begin with. Type T may be a regular
12301 -- incomplete type or imported via a limited with clause.
12302
12303 if Has_Discriminants (T)
12304 or else (From_Limited_With (T)
12305 and then Present (Non_Limited_View (T))
12306 and then Nkind (Parent (Non_Limited_View (T))) =
12307 N_Full_Type_Declaration
12308 and then Present (Discriminant_Specifications
12309 (Parent (Non_Limited_View (T)))))
12310 then
12311 Error_Msg_N
12312 ("(Ada 2005) incomplete subtype may not be constrained", C);
12313 else
12314 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12315 end if;
12316
12317 Fixup_Bad_Constraint;
12318 return;
12319
12320 -- Check that the type has visible discriminants. The type may be
12321 -- a private type with unknown discriminants whose full view has
12322 -- discriminants which are invisible.
12323
12324 elsif not Has_Discriminants (T)
12325 or else
12326 (Has_Unknown_Discriminants (T)
12327 and then Is_Private_Type (T))
12328 then
12329 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12330 Fixup_Bad_Constraint;
12331 return;
12332
12333 elsif Is_Constrained (E)
12334 or else (Ekind (E) = E_Class_Wide_Subtype
12335 and then Present (Discriminant_Constraint (E)))
12336 then
12337 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12338 Fixup_Bad_Constraint;
12339 return;
12340 end if;
12341
12342 -- T may be an unconstrained subtype (e.g. a generic actual).
12343 -- Constraint applies to the base type.
12344
12345 T := Base_Type (T);
12346
12347 Elist := Build_Discriminant_Constraints (T, S);
12348
12349 -- If the list returned was empty we had an error in building the
12350 -- discriminant constraint. We have also already signalled an error
12351 -- in the incomplete type case
12352
12353 if Is_Empty_Elmt_List (Elist) then
12354 Fixup_Bad_Constraint;
12355 return;
12356 end if;
12357
12358 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12359 end Constrain_Discriminated_Type;
12360
12361 ---------------------------
12362 -- Constrain_Enumeration --
12363 ---------------------------
12364
12365 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12366 T : constant Entity_Id := Entity (Subtype_Mark (S));
12367 C : constant Node_Id := Constraint (S);
12368
12369 begin
12370 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12371
12372 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12373
12374 Set_Etype (Def_Id, Base_Type (T));
12375 Set_Size_Info (Def_Id, (T));
12376 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12377 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12378
12379 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12380
12381 Set_Discrete_RM_Size (Def_Id);
12382 end Constrain_Enumeration;
12383
12384 ----------------------
12385 -- Constrain_Float --
12386 ----------------------
12387
12388 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12389 T : constant Entity_Id := Entity (Subtype_Mark (S));
12390 C : Node_Id;
12391 D : Node_Id;
12392 Rais : Node_Id;
12393
12394 begin
12395 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12396
12397 Set_Etype (Def_Id, Base_Type (T));
12398 Set_Size_Info (Def_Id, (T));
12399 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12400
12401 -- Process the constraint
12402
12403 C := Constraint (S);
12404
12405 -- Digits constraint present
12406
12407 if Nkind (C) = N_Digits_Constraint then
12408
12409 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12410 Check_Restriction (No_Obsolescent_Features, C);
12411
12412 if Warn_On_Obsolescent_Feature then
12413 Error_Msg_N
12414 ("subtype digits constraint is an " &
12415 "obsolescent feature (RM J.3(8))?j?", C);
12416 end if;
12417
12418 D := Digits_Expression (C);
12419 Analyze_And_Resolve (D, Any_Integer);
12420 Check_Digits_Expression (D);
12421 Set_Digits_Value (Def_Id, Expr_Value (D));
12422
12423 -- Check that digits value is in range. Obviously we can do this
12424 -- at compile time, but it is strictly a runtime check, and of
12425 -- course there is an ACVC test that checks this.
12426
12427 if Digits_Value (Def_Id) > Digits_Value (T) then
12428 Error_Msg_Uint_1 := Digits_Value (T);
12429 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12430 Rais :=
12431 Make_Raise_Constraint_Error (Sloc (D),
12432 Reason => CE_Range_Check_Failed);
12433 Insert_Action (Declaration_Node (Def_Id), Rais);
12434 end if;
12435
12436 C := Range_Constraint (C);
12437
12438 -- No digits constraint present
12439
12440 else
12441 Set_Digits_Value (Def_Id, Digits_Value (T));
12442 end if;
12443
12444 -- Range constraint present
12445
12446 if Nkind (C) = N_Range_Constraint then
12447 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12448
12449 -- No range constraint present
12450
12451 else
12452 pragma Assert (No (C));
12453 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12454 end if;
12455
12456 Set_Is_Constrained (Def_Id);
12457 end Constrain_Float;
12458
12459 ---------------------
12460 -- Constrain_Index --
12461 ---------------------
12462
12463 procedure Constrain_Index
12464 (Index : Node_Id;
12465 S : Node_Id;
12466 Related_Nod : Node_Id;
12467 Related_Id : Entity_Id;
12468 Suffix : Character;
12469 Suffix_Index : Nat)
12470 is
12471 Def_Id : Entity_Id;
12472 R : Node_Id := Empty;
12473 T : constant Entity_Id := Etype (Index);
12474
12475 begin
12476 if Nkind (S) = N_Range
12477 or else
12478 (Nkind (S) = N_Attribute_Reference
12479 and then Attribute_Name (S) = Name_Range)
12480 then
12481 -- A Range attribute will be transformed into N_Range by Resolve
12482
12483 Analyze (S);
12484 Set_Etype (S, T);
12485 R := S;
12486
12487 Process_Range_Expr_In_Decl (R, T);
12488
12489 if not Error_Posted (S)
12490 and then
12491 (Nkind (S) /= N_Range
12492 or else not Covers (T, (Etype (Low_Bound (S))))
12493 or else not Covers (T, (Etype (High_Bound (S)))))
12494 then
12495 if Base_Type (T) /= Any_Type
12496 and then Etype (Low_Bound (S)) /= Any_Type
12497 and then Etype (High_Bound (S)) /= Any_Type
12498 then
12499 Error_Msg_N ("range expected", S);
12500 end if;
12501 end if;
12502
12503 elsif Nkind (S) = N_Subtype_Indication then
12504
12505 -- The parser has verified that this is a discrete indication
12506
12507 Resolve_Discrete_Subtype_Indication (S, T);
12508 Bad_Predicated_Subtype_Use
12509 ("subtype& has predicate, not allowed in index constraint",
12510 S, Entity (Subtype_Mark (S)));
12511
12512 R := Range_Expression (Constraint (S));
12513
12514 -- Capture values of bounds and generate temporaries for them if
12515 -- needed, since checks may cause duplication of the expressions
12516 -- which must not be reevaluated.
12517
12518 -- The forced evaluation removes side effects from expressions, which
12519 -- should occur also in GNATprove mode. Otherwise, we end up with
12520 -- unexpected insertions of actions at places where this is not
12521 -- supposed to occur, e.g. on default parameters of a call.
12522
12523 if Expander_Active or GNATprove_Mode then
12524 Force_Evaluation (Low_Bound (R));
12525 Force_Evaluation (High_Bound (R));
12526 end if;
12527
12528 elsif Nkind (S) = N_Discriminant_Association then
12529
12530 -- Syntactically valid in subtype indication
12531
12532 Error_Msg_N ("invalid index constraint", S);
12533 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12534 return;
12535
12536 -- Subtype_Mark case, no anonymous subtypes to construct
12537
12538 else
12539 Analyze (S);
12540
12541 if Is_Entity_Name (S) then
12542 if not Is_Type (Entity (S)) then
12543 Error_Msg_N ("expect subtype mark for index constraint", S);
12544
12545 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12546 Wrong_Type (S, Base_Type (T));
12547
12548 -- Check error of subtype with predicate in index constraint
12549
12550 else
12551 Bad_Predicated_Subtype_Use
12552 ("subtype& has predicate, not allowed in index constraint",
12553 S, Entity (S));
12554 end if;
12555
12556 return;
12557
12558 else
12559 Error_Msg_N ("invalid index constraint", S);
12560 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12561 return;
12562 end if;
12563 end if;
12564
12565 Def_Id :=
12566 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12567
12568 Set_Etype (Def_Id, Base_Type (T));
12569
12570 if Is_Modular_Integer_Type (T) then
12571 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12572
12573 elsif Is_Integer_Type (T) then
12574 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12575
12576 else
12577 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12578 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12579 Set_First_Literal (Def_Id, First_Literal (T));
12580 end if;
12581
12582 Set_Size_Info (Def_Id, (T));
12583 Set_RM_Size (Def_Id, RM_Size (T));
12584 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12585
12586 Set_Scalar_Range (Def_Id, R);
12587
12588 Set_Etype (S, Def_Id);
12589 Set_Discrete_RM_Size (Def_Id);
12590 end Constrain_Index;
12591
12592 -----------------------
12593 -- Constrain_Integer --
12594 -----------------------
12595
12596 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12597 T : constant Entity_Id := Entity (Subtype_Mark (S));
12598 C : constant Node_Id := Constraint (S);
12599
12600 begin
12601 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12602
12603 if Is_Modular_Integer_Type (T) then
12604 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12605 else
12606 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12607 end if;
12608
12609 Set_Etype (Def_Id, Base_Type (T));
12610 Set_Size_Info (Def_Id, (T));
12611 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12612 Set_Discrete_RM_Size (Def_Id);
12613 end Constrain_Integer;
12614
12615 ------------------------------
12616 -- Constrain_Ordinary_Fixed --
12617 ------------------------------
12618
12619 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12620 T : constant Entity_Id := Entity (Subtype_Mark (S));
12621 C : Node_Id;
12622 D : Node_Id;
12623 Rais : Node_Id;
12624
12625 begin
12626 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12627 Set_Etype (Def_Id, Base_Type (T));
12628 Set_Size_Info (Def_Id, (T));
12629 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12630 Set_Small_Value (Def_Id, Small_Value (T));
12631
12632 -- Process the constraint
12633
12634 C := Constraint (S);
12635
12636 -- Delta constraint present
12637
12638 if Nkind (C) = N_Delta_Constraint then
12639
12640 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
12641 Check_Restriction (No_Obsolescent_Features, C);
12642
12643 if Warn_On_Obsolescent_Feature then
12644 Error_Msg_S
12645 ("subtype delta constraint is an " &
12646 "obsolescent feature (RM J.3(7))?j?");
12647 end if;
12648
12649 D := Delta_Expression (C);
12650 Analyze_And_Resolve (D, Any_Real);
12651 Check_Delta_Expression (D);
12652 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12653
12654 -- Check that delta value is in range. Obviously we can do this
12655 -- at compile time, but it is strictly a runtime check, and of
12656 -- course there is an ACVC test that checks this.
12657
12658 if Delta_Value (Def_Id) < Delta_Value (T) then
12659 Error_Msg_N ("??delta value is too small", D);
12660 Rais :=
12661 Make_Raise_Constraint_Error (Sloc (D),
12662 Reason => CE_Range_Check_Failed);
12663 Insert_Action (Declaration_Node (Def_Id), Rais);
12664 end if;
12665
12666 C := Range_Constraint (C);
12667
12668 -- No delta constraint present
12669
12670 else
12671 Set_Delta_Value (Def_Id, Delta_Value (T));
12672 end if;
12673
12674 -- Range constraint present
12675
12676 if Nkind (C) = N_Range_Constraint then
12677 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12678
12679 -- No range constraint present
12680
12681 else
12682 pragma Assert (No (C));
12683 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12684
12685 end if;
12686
12687 Set_Discrete_RM_Size (Def_Id);
12688
12689 -- Unconditionally delay the freeze, since we cannot set size
12690 -- information in all cases correctly until the freeze point.
12691
12692 Set_Has_Delayed_Freeze (Def_Id);
12693 end Constrain_Ordinary_Fixed;
12694
12695 -----------------------
12696 -- Contain_Interface --
12697 -----------------------
12698
12699 function Contain_Interface
12700 (Iface : Entity_Id;
12701 Ifaces : Elist_Id) return Boolean
12702 is
12703 Iface_Elmt : Elmt_Id;
12704
12705 begin
12706 if Present (Ifaces) then
12707 Iface_Elmt := First_Elmt (Ifaces);
12708 while Present (Iface_Elmt) loop
12709 if Node (Iface_Elmt) = Iface then
12710 return True;
12711 end if;
12712
12713 Next_Elmt (Iface_Elmt);
12714 end loop;
12715 end if;
12716
12717 return False;
12718 end Contain_Interface;
12719
12720 ---------------------------
12721 -- Convert_Scalar_Bounds --
12722 ---------------------------
12723
12724 procedure Convert_Scalar_Bounds
12725 (N : Node_Id;
12726 Parent_Type : Entity_Id;
12727 Derived_Type : Entity_Id;
12728 Loc : Source_Ptr)
12729 is
12730 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12731
12732 Lo : Node_Id;
12733 Hi : Node_Id;
12734 Rng : Node_Id;
12735
12736 begin
12737 -- Defend against previous errors
12738
12739 if No (Scalar_Range (Derived_Type)) then
12740 Check_Error_Detected;
12741 return;
12742 end if;
12743
12744 Lo := Build_Scalar_Bound
12745 (Type_Low_Bound (Derived_Type),
12746 Parent_Type, Implicit_Base);
12747
12748 Hi := Build_Scalar_Bound
12749 (Type_High_Bound (Derived_Type),
12750 Parent_Type, Implicit_Base);
12751
12752 Rng :=
12753 Make_Range (Loc,
12754 Low_Bound => Lo,
12755 High_Bound => Hi);
12756
12757 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12758
12759 Set_Parent (Rng, N);
12760 Set_Scalar_Range (Derived_Type, Rng);
12761
12762 -- Analyze the bounds
12763
12764 Analyze_And_Resolve (Lo, Implicit_Base);
12765 Analyze_And_Resolve (Hi, Implicit_Base);
12766
12767 -- Analyze the range itself, except that we do not analyze it if
12768 -- the bounds are real literals, and we have a fixed-point type.
12769 -- The reason for this is that we delay setting the bounds in this
12770 -- case till we know the final Small and Size values (see circuit
12771 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12772
12773 if Is_Fixed_Point_Type (Parent_Type)
12774 and then Nkind (Lo) = N_Real_Literal
12775 and then Nkind (Hi) = N_Real_Literal
12776 then
12777 return;
12778
12779 -- Here we do the analysis of the range
12780
12781 -- Note: we do this manually, since if we do a normal Analyze and
12782 -- Resolve call, there are problems with the conversions used for
12783 -- the derived type range.
12784
12785 else
12786 Set_Etype (Rng, Implicit_Base);
12787 Set_Analyzed (Rng, True);
12788 end if;
12789 end Convert_Scalar_Bounds;
12790
12791 -------------------
12792 -- Copy_And_Swap --
12793 -------------------
12794
12795 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12796 begin
12797 -- Initialize new full declaration entity by copying the pertinent
12798 -- fields of the corresponding private declaration entity.
12799
12800 -- We temporarily set Ekind to a value appropriate for a type to
12801 -- avoid assert failures in Einfo from checking for setting type
12802 -- attributes on something that is not a type. Ekind (Priv) is an
12803 -- appropriate choice, since it allowed the attributes to be set
12804 -- in the first place. This Ekind value will be modified later.
12805
12806 Set_Ekind (Full, Ekind (Priv));
12807
12808 -- Also set Etype temporarily to Any_Type, again, in the absence
12809 -- of errors, it will be properly reset, and if there are errors,
12810 -- then we want a value of Any_Type to remain.
12811
12812 Set_Etype (Full, Any_Type);
12813
12814 -- Now start copying attributes
12815
12816 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12817
12818 if Has_Discriminants (Full) then
12819 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12820 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12821 end if;
12822
12823 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12824 Set_Homonym (Full, Homonym (Priv));
12825 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12826 Set_Is_Public (Full, Is_Public (Priv));
12827 Set_Is_Pure (Full, Is_Pure (Priv));
12828 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12829 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12830 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12831 Set_Has_Pragma_Unreferenced_Objects
12832 (Full, Has_Pragma_Unreferenced_Objects
12833 (Priv));
12834
12835 Conditional_Delay (Full, Priv);
12836
12837 if Is_Tagged_Type (Full) then
12838 Set_Direct_Primitive_Operations (Full,
12839 Direct_Primitive_Operations (Priv));
12840
12841 if Is_Base_Type (Priv) then
12842 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12843 end if;
12844 end if;
12845
12846 Set_Is_Volatile (Full, Is_Volatile (Priv));
12847 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12848 Set_Scope (Full, Scope (Priv));
12849 Set_Next_Entity (Full, Next_Entity (Priv));
12850 Set_First_Entity (Full, First_Entity (Priv));
12851 Set_Last_Entity (Full, Last_Entity (Priv));
12852
12853 -- If access types have been recorded for later handling, keep them in
12854 -- the full view so that they get handled when the full view freeze
12855 -- node is expanded.
12856
12857 if Present (Freeze_Node (Priv))
12858 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12859 then
12860 Ensure_Freeze_Node (Full);
12861 Set_Access_Types_To_Process
12862 (Freeze_Node (Full),
12863 Access_Types_To_Process (Freeze_Node (Priv)));
12864 end if;
12865
12866 -- Swap the two entities. Now Private is the full type entity and Full
12867 -- is the private one. They will be swapped back at the end of the
12868 -- private part. This swapping ensures that the entity that is visible
12869 -- in the private part is the full declaration.
12870
12871 Exchange_Entities (Priv, Full);
12872 Append_Entity (Full, Scope (Full));
12873 end Copy_And_Swap;
12874
12875 -------------------------------------
12876 -- Copy_Array_Base_Type_Attributes --
12877 -------------------------------------
12878
12879 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12880 begin
12881 Set_Component_Alignment (T1, Component_Alignment (T2));
12882 Set_Component_Type (T1, Component_Type (T2));
12883 Set_Component_Size (T1, Component_Size (T2));
12884 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12885 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12886 Set_Has_Protected (T1, Has_Protected (T2));
12887 Set_Has_Task (T1, Has_Task (T2));
12888 Set_Is_Packed (T1, Is_Packed (T2));
12889 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12890 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12891 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12892 end Copy_Array_Base_Type_Attributes;
12893
12894 -----------------------------------
12895 -- Copy_Array_Subtype_Attributes --
12896 -----------------------------------
12897
12898 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12899 begin
12900 Set_Size_Info (T1, T2);
12901
12902 Set_First_Index (T1, First_Index (T2));
12903 Set_Is_Aliased (T1, Is_Aliased (T2));
12904 Set_Is_Volatile (T1, Is_Volatile (T2));
12905 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12906 Set_Is_Constrained (T1, Is_Constrained (T2));
12907 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12908 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12909 Set_Convention (T1, Convention (T2));
12910 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12911 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12912 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12913 end Copy_Array_Subtype_Attributes;
12914
12915 -----------------------------------
12916 -- Create_Constrained_Components --
12917 -----------------------------------
12918
12919 procedure Create_Constrained_Components
12920 (Subt : Entity_Id;
12921 Decl_Node : Node_Id;
12922 Typ : Entity_Id;
12923 Constraints : Elist_Id)
12924 is
12925 Loc : constant Source_Ptr := Sloc (Subt);
12926 Comp_List : constant Elist_Id := New_Elmt_List;
12927 Parent_Type : constant Entity_Id := Etype (Typ);
12928 Assoc_List : constant List_Id := New_List;
12929 Discr_Val : Elmt_Id;
12930 Errors : Boolean;
12931 New_C : Entity_Id;
12932 Old_C : Entity_Id;
12933 Is_Static : Boolean := True;
12934
12935 procedure Collect_Fixed_Components (Typ : Entity_Id);
12936 -- Collect parent type components that do not appear in a variant part
12937
12938 procedure Create_All_Components;
12939 -- Iterate over Comp_List to create the components of the subtype
12940
12941 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12942 -- Creates a new component from Old_Compon, copying all the fields from
12943 -- it, including its Etype, inserts the new component in the Subt entity
12944 -- chain and returns the new component.
12945
12946 function Is_Variant_Record (T : Entity_Id) return Boolean;
12947 -- If true, and discriminants are static, collect only components from
12948 -- variants selected by discriminant values.
12949
12950 ------------------------------
12951 -- Collect_Fixed_Components --
12952 ------------------------------
12953
12954 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12955 begin
12956 -- Build association list for discriminants, and find components of the
12957 -- variant part selected by the values of the discriminants.
12958
12959 Old_C := First_Discriminant (Typ);
12960 Discr_Val := First_Elmt (Constraints);
12961 while Present (Old_C) loop
12962 Append_To (Assoc_List,
12963 Make_Component_Association (Loc,
12964 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12965 Expression => New_Copy (Node (Discr_Val))));
12966
12967 Next_Elmt (Discr_Val);
12968 Next_Discriminant (Old_C);
12969 end loop;
12970
12971 -- The tag and the possible parent component are unconditionally in
12972 -- the subtype.
12973
12974 if Is_Tagged_Type (Typ)
12975 or else Has_Controlled_Component (Typ)
12976 then
12977 Old_C := First_Component (Typ);
12978 while Present (Old_C) loop
12979 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12980 Append_Elmt (Old_C, Comp_List);
12981 end if;
12982
12983 Next_Component (Old_C);
12984 end loop;
12985 end if;
12986 end Collect_Fixed_Components;
12987
12988 ---------------------------
12989 -- Create_All_Components --
12990 ---------------------------
12991
12992 procedure Create_All_Components is
12993 Comp : Elmt_Id;
12994
12995 begin
12996 Comp := First_Elmt (Comp_List);
12997 while Present (Comp) loop
12998 Old_C := Node (Comp);
12999 New_C := Create_Component (Old_C);
13000
13001 Set_Etype
13002 (New_C,
13003 Constrain_Component_Type
13004 (Old_C, Subt, Decl_Node, Typ, Constraints));
13005 Set_Is_Public (New_C, Is_Public (Subt));
13006
13007 Next_Elmt (Comp);
13008 end loop;
13009 end Create_All_Components;
13010
13011 ----------------------
13012 -- Create_Component --
13013 ----------------------
13014
13015 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13016 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13017
13018 begin
13019 if Ekind (Old_Compon) = E_Discriminant
13020 and then Is_Completely_Hidden (Old_Compon)
13021 then
13022 -- This is a shadow discriminant created for a discriminant of
13023 -- the parent type, which needs to be present in the subtype.
13024 -- Give the shadow discriminant an internal name that cannot
13025 -- conflict with that of visible components.
13026
13027 Set_Chars (New_Compon, New_Internal_Name ('C'));
13028 end if;
13029
13030 -- Set the parent so we have a proper link for freezing etc. This is
13031 -- not a real parent pointer, since of course our parent does not own
13032 -- up to us and reference us, we are an illegitimate child of the
13033 -- original parent.
13034
13035 Set_Parent (New_Compon, Parent (Old_Compon));
13036
13037 -- If the old component's Esize was already determined and is a
13038 -- static value, then the new component simply inherits it. Otherwise
13039 -- the old component's size may require run-time determination, but
13040 -- the new component's size still might be statically determinable
13041 -- (if, for example it has a static constraint). In that case we want
13042 -- Layout_Type to recompute the component's size, so we reset its
13043 -- size and positional fields.
13044
13045 if Frontend_Layout_On_Target
13046 and then not Known_Static_Esize (Old_Compon)
13047 then
13048 Set_Esize (New_Compon, Uint_0);
13049 Init_Normalized_First_Bit (New_Compon);
13050 Init_Normalized_Position (New_Compon);
13051 Init_Normalized_Position_Max (New_Compon);
13052 end if;
13053
13054 -- We do not want this node marked as Comes_From_Source, since
13055 -- otherwise it would get first class status and a separate cross-
13056 -- reference line would be generated. Illegitimate children do not
13057 -- rate such recognition.
13058
13059 Set_Comes_From_Source (New_Compon, False);
13060
13061 -- But it is a real entity, and a birth certificate must be properly
13062 -- registered by entering it into the entity list.
13063
13064 Enter_Name (New_Compon);
13065
13066 return New_Compon;
13067 end Create_Component;
13068
13069 -----------------------
13070 -- Is_Variant_Record --
13071 -----------------------
13072
13073 function Is_Variant_Record (T : Entity_Id) return Boolean is
13074 begin
13075 return Nkind (Parent (T)) = N_Full_Type_Declaration
13076 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13077 and then Present (Component_List (Type_Definition (Parent (T))))
13078 and then
13079 Present
13080 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13081 end Is_Variant_Record;
13082
13083 -- Start of processing for Create_Constrained_Components
13084
13085 begin
13086 pragma Assert (Subt /= Base_Type (Subt));
13087 pragma Assert (Typ = Base_Type (Typ));
13088
13089 Set_First_Entity (Subt, Empty);
13090 Set_Last_Entity (Subt, Empty);
13091
13092 -- Check whether constraint is fully static, in which case we can
13093 -- optimize the list of components.
13094
13095 Discr_Val := First_Elmt (Constraints);
13096 while Present (Discr_Val) loop
13097 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13098 Is_Static := False;
13099 exit;
13100 end if;
13101
13102 Next_Elmt (Discr_Val);
13103 end loop;
13104
13105 Set_Has_Static_Discriminants (Subt, Is_Static);
13106
13107 Push_Scope (Subt);
13108
13109 -- Inherit the discriminants of the parent type
13110
13111 Add_Discriminants : declare
13112 Num_Disc : Int;
13113 Num_Gird : Int;
13114
13115 begin
13116 Num_Disc := 0;
13117 Old_C := First_Discriminant (Typ);
13118
13119 while Present (Old_C) loop
13120 Num_Disc := Num_Disc + 1;
13121 New_C := Create_Component (Old_C);
13122 Set_Is_Public (New_C, Is_Public (Subt));
13123 Next_Discriminant (Old_C);
13124 end loop;
13125
13126 -- For an untagged derived subtype, the number of discriminants may
13127 -- be smaller than the number of inherited discriminants, because
13128 -- several of them may be renamed by a single new discriminant or
13129 -- constrained. In this case, add the hidden discriminants back into
13130 -- the subtype, because they need to be present if the optimizer of
13131 -- the GCC 4.x back-end decides to break apart assignments between
13132 -- objects using the parent view into member-wise assignments.
13133
13134 Num_Gird := 0;
13135
13136 if Is_Derived_Type (Typ)
13137 and then not Is_Tagged_Type (Typ)
13138 then
13139 Old_C := First_Stored_Discriminant (Typ);
13140
13141 while Present (Old_C) loop
13142 Num_Gird := Num_Gird + 1;
13143 Next_Stored_Discriminant (Old_C);
13144 end loop;
13145 end if;
13146
13147 if Num_Gird > Num_Disc then
13148
13149 -- Find out multiple uses of new discriminants, and add hidden
13150 -- components for the extra renamed discriminants. We recognize
13151 -- multiple uses through the Corresponding_Discriminant of a
13152 -- new discriminant: if it constrains several old discriminants,
13153 -- this field points to the last one in the parent type. The
13154 -- stored discriminants of the derived type have the same name
13155 -- as those of the parent.
13156
13157 declare
13158 Constr : Elmt_Id;
13159 New_Discr : Entity_Id;
13160 Old_Discr : Entity_Id;
13161
13162 begin
13163 Constr := First_Elmt (Stored_Constraint (Typ));
13164 Old_Discr := First_Stored_Discriminant (Typ);
13165 while Present (Constr) loop
13166 if Is_Entity_Name (Node (Constr))
13167 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13168 then
13169 New_Discr := Entity (Node (Constr));
13170
13171 if Chars (Corresponding_Discriminant (New_Discr)) /=
13172 Chars (Old_Discr)
13173 then
13174 -- The new discriminant has been used to rename a
13175 -- subsequent old discriminant. Introduce a shadow
13176 -- component for the current old discriminant.
13177
13178 New_C := Create_Component (Old_Discr);
13179 Set_Original_Record_Component (New_C, Old_Discr);
13180 end if;
13181
13182 else
13183 -- The constraint has eliminated the old discriminant.
13184 -- Introduce a shadow component.
13185
13186 New_C := Create_Component (Old_Discr);
13187 Set_Original_Record_Component (New_C, Old_Discr);
13188 end if;
13189
13190 Next_Elmt (Constr);
13191 Next_Stored_Discriminant (Old_Discr);
13192 end loop;
13193 end;
13194 end if;
13195 end Add_Discriminants;
13196
13197 if Is_Static
13198 and then Is_Variant_Record (Typ)
13199 then
13200 Collect_Fixed_Components (Typ);
13201
13202 Gather_Components (
13203 Typ,
13204 Component_List (Type_Definition (Parent (Typ))),
13205 Governed_By => Assoc_List,
13206 Into => Comp_List,
13207 Report_Errors => Errors);
13208 pragma Assert (not Errors);
13209
13210 Create_All_Components;
13211
13212 -- If the subtype declaration is created for a tagged type derivation
13213 -- with constraints, we retrieve the record definition of the parent
13214 -- type to select the components of the proper variant.
13215
13216 elsif Is_Static
13217 and then Is_Tagged_Type (Typ)
13218 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13219 and then
13220 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13221 and then Is_Variant_Record (Parent_Type)
13222 then
13223 Collect_Fixed_Components (Typ);
13224
13225 Gather_Components (
13226 Typ,
13227 Component_List (Type_Definition (Parent (Parent_Type))),
13228 Governed_By => Assoc_List,
13229 Into => Comp_List,
13230 Report_Errors => Errors);
13231 pragma Assert (not Errors);
13232
13233 -- If the tagged derivation has a type extension, collect all the
13234 -- new components therein.
13235
13236 if Present
13237 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13238 then
13239 Old_C := First_Component (Typ);
13240 while Present (Old_C) loop
13241 if Original_Record_Component (Old_C) = Old_C
13242 and then Chars (Old_C) /= Name_uTag
13243 and then Chars (Old_C) /= Name_uParent
13244 then
13245 Append_Elmt (Old_C, Comp_List);
13246 end if;
13247
13248 Next_Component (Old_C);
13249 end loop;
13250 end if;
13251
13252 Create_All_Components;
13253
13254 else
13255 -- If discriminants are not static, or if this is a multi-level type
13256 -- extension, we have to include all components of the parent type.
13257
13258 Old_C := First_Component (Typ);
13259 while Present (Old_C) loop
13260 New_C := Create_Component (Old_C);
13261
13262 Set_Etype
13263 (New_C,
13264 Constrain_Component_Type
13265 (Old_C, Subt, Decl_Node, Typ, Constraints));
13266 Set_Is_Public (New_C, Is_Public (Subt));
13267
13268 Next_Component (Old_C);
13269 end loop;
13270 end if;
13271
13272 End_Scope;
13273 end Create_Constrained_Components;
13274
13275 ------------------------------------------
13276 -- Decimal_Fixed_Point_Type_Declaration --
13277 ------------------------------------------
13278
13279 procedure Decimal_Fixed_Point_Type_Declaration
13280 (T : Entity_Id;
13281 Def : Node_Id)
13282 is
13283 Loc : constant Source_Ptr := Sloc (Def);
13284 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13285 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13286 Implicit_Base : Entity_Id;
13287 Digs_Val : Uint;
13288 Delta_Val : Ureal;
13289 Scale_Val : Uint;
13290 Bound_Val : Ureal;
13291
13292 begin
13293 Check_SPARK_05_Restriction
13294 ("decimal fixed point type is not allowed", Def);
13295 Check_Restriction (No_Fixed_Point, Def);
13296
13297 -- Create implicit base type
13298
13299 Implicit_Base :=
13300 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13301 Set_Etype (Implicit_Base, Implicit_Base);
13302
13303 -- Analyze and process delta expression
13304
13305 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13306
13307 Check_Delta_Expression (Delta_Expr);
13308 Delta_Val := Expr_Value_R (Delta_Expr);
13309
13310 -- Check delta is power of 10, and determine scale value from it
13311
13312 declare
13313 Val : Ureal;
13314
13315 begin
13316 Scale_Val := Uint_0;
13317 Val := Delta_Val;
13318
13319 if Val < Ureal_1 then
13320 while Val < Ureal_1 loop
13321 Val := Val * Ureal_10;
13322 Scale_Val := Scale_Val + 1;
13323 end loop;
13324
13325 if Scale_Val > 18 then
13326 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13327 Scale_Val := UI_From_Int (+18);
13328 end if;
13329
13330 else
13331 while Val > Ureal_1 loop
13332 Val := Val / Ureal_10;
13333 Scale_Val := Scale_Val - 1;
13334 end loop;
13335
13336 if Scale_Val < -18 then
13337 Error_Msg_N ("scale is less than minimum value of -18", Def);
13338 Scale_Val := UI_From_Int (-18);
13339 end if;
13340 end if;
13341
13342 if Val /= Ureal_1 then
13343 Error_Msg_N ("delta expression must be a power of 10", Def);
13344 Delta_Val := Ureal_10 ** (-Scale_Val);
13345 end if;
13346 end;
13347
13348 -- Set delta, scale and small (small = delta for decimal type)
13349
13350 Set_Delta_Value (Implicit_Base, Delta_Val);
13351 Set_Scale_Value (Implicit_Base, Scale_Val);
13352 Set_Small_Value (Implicit_Base, Delta_Val);
13353
13354 -- Analyze and process digits expression
13355
13356 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13357 Check_Digits_Expression (Digs_Expr);
13358 Digs_Val := Expr_Value (Digs_Expr);
13359
13360 if Digs_Val > 18 then
13361 Digs_Val := UI_From_Int (+18);
13362 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13363 end if;
13364
13365 Set_Digits_Value (Implicit_Base, Digs_Val);
13366 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13367
13368 -- Set range of base type from digits value for now. This will be
13369 -- expanded to represent the true underlying base range by Freeze.
13370
13371 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13372
13373 -- Note: We leave size as zero for now, size will be set at freeze
13374 -- time. We have to do this for ordinary fixed-point, because the size
13375 -- depends on the specified small, and we might as well do the same for
13376 -- decimal fixed-point.
13377
13378 pragma Assert (Esize (Implicit_Base) = Uint_0);
13379
13380 -- If there are bounds given in the declaration use them as the
13381 -- bounds of the first named subtype.
13382
13383 if Present (Real_Range_Specification (Def)) then
13384 declare
13385 RRS : constant Node_Id := Real_Range_Specification (Def);
13386 Low : constant Node_Id := Low_Bound (RRS);
13387 High : constant Node_Id := High_Bound (RRS);
13388 Low_Val : Ureal;
13389 High_Val : Ureal;
13390
13391 begin
13392 Analyze_And_Resolve (Low, Any_Real);
13393 Analyze_And_Resolve (High, Any_Real);
13394 Check_Real_Bound (Low);
13395 Check_Real_Bound (High);
13396 Low_Val := Expr_Value_R (Low);
13397 High_Val := Expr_Value_R (High);
13398
13399 if Low_Val < (-Bound_Val) then
13400 Error_Msg_N
13401 ("range low bound too small for digits value", Low);
13402 Low_Val := -Bound_Val;
13403 end if;
13404
13405 if High_Val > Bound_Val then
13406 Error_Msg_N
13407 ("range high bound too large for digits value", High);
13408 High_Val := Bound_Val;
13409 end if;
13410
13411 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13412 end;
13413
13414 -- If no explicit range, use range that corresponds to given
13415 -- digits value. This will end up as the final range for the
13416 -- first subtype.
13417
13418 else
13419 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13420 end if;
13421
13422 -- Complete entity for first subtype
13423
13424 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13425 Set_Etype (T, Implicit_Base);
13426 Set_Size_Info (T, Implicit_Base);
13427 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13428 Set_Digits_Value (T, Digs_Val);
13429 Set_Delta_Value (T, Delta_Val);
13430 Set_Small_Value (T, Delta_Val);
13431 Set_Scale_Value (T, Scale_Val);
13432 Set_Is_Constrained (T);
13433 end Decimal_Fixed_Point_Type_Declaration;
13434
13435 -----------------------------------
13436 -- Derive_Progenitor_Subprograms --
13437 -----------------------------------
13438
13439 procedure Derive_Progenitor_Subprograms
13440 (Parent_Type : Entity_Id;
13441 Tagged_Type : Entity_Id)
13442 is
13443 E : Entity_Id;
13444 Elmt : Elmt_Id;
13445 Iface : Entity_Id;
13446 Iface_Elmt : Elmt_Id;
13447 Iface_Subp : Entity_Id;
13448 New_Subp : Entity_Id := Empty;
13449 Prim_Elmt : Elmt_Id;
13450 Subp : Entity_Id;
13451 Typ : Entity_Id;
13452
13453 begin
13454 pragma Assert (Ada_Version >= Ada_2005
13455 and then Is_Record_Type (Tagged_Type)
13456 and then Is_Tagged_Type (Tagged_Type)
13457 and then Has_Interfaces (Tagged_Type));
13458
13459 -- Step 1: Transfer to the full-view primitives associated with the
13460 -- partial-view that cover interface primitives. Conceptually this
13461 -- work should be done later by Process_Full_View; done here to
13462 -- simplify its implementation at later stages. It can be safely
13463 -- done here because interfaces must be visible in the partial and
13464 -- private view (RM 7.3(7.3/2)).
13465
13466 -- Small optimization: This work is only required if the parent may
13467 -- have entities whose Alias attribute reference an interface primitive.
13468 -- Such a situation may occur if the parent is an abstract type and the
13469 -- primitive has not been yet overridden or if the parent is a generic
13470 -- formal type covering interfaces.
13471
13472 -- If the tagged type is not abstract, it cannot have abstract
13473 -- primitives (the only entities in the list of primitives of
13474 -- non-abstract tagged types that can reference abstract primitives
13475 -- through its Alias attribute are the internal entities that have
13476 -- attribute Interface_Alias, and these entities are generated later
13477 -- by Add_Internal_Interface_Entities).
13478
13479 if In_Private_Part (Current_Scope)
13480 and then (Is_Abstract_Type (Parent_Type)
13481 or else
13482 Is_Generic_Type (Parent_Type))
13483 then
13484 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13485 while Present (Elmt) loop
13486 Subp := Node (Elmt);
13487
13488 -- At this stage it is not possible to have entities in the list
13489 -- of primitives that have attribute Interface_Alias.
13490
13491 pragma Assert (No (Interface_Alias (Subp)));
13492
13493 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13494
13495 if Is_Interface (Typ) then
13496 E := Find_Primitive_Covering_Interface
13497 (Tagged_Type => Tagged_Type,
13498 Iface_Prim => Subp);
13499
13500 if Present (E)
13501 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13502 then
13503 Replace_Elmt (Elmt, E);
13504 Remove_Homonym (Subp);
13505 end if;
13506 end if;
13507
13508 Next_Elmt (Elmt);
13509 end loop;
13510 end if;
13511
13512 -- Step 2: Add primitives of progenitors that are not implemented by
13513 -- parents of Tagged_Type.
13514
13515 if Present (Interfaces (Base_Type (Tagged_Type))) then
13516 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13517 while Present (Iface_Elmt) loop
13518 Iface := Node (Iface_Elmt);
13519
13520 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13521 while Present (Prim_Elmt) loop
13522 Iface_Subp := Node (Prim_Elmt);
13523
13524 -- Exclude derivation of predefined primitives except those
13525 -- that come from source, or are inherited from one that comes
13526 -- from source. Required to catch declarations of equality
13527 -- operators of interfaces. For example:
13528
13529 -- type Iface is interface;
13530 -- function "=" (Left, Right : Iface) return Boolean;
13531
13532 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13533 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13534 then
13535 E := Find_Primitive_Covering_Interface
13536 (Tagged_Type => Tagged_Type,
13537 Iface_Prim => Iface_Subp);
13538
13539 -- If not found we derive a new primitive leaving its alias
13540 -- attribute referencing the interface primitive.
13541
13542 if No (E) then
13543 Derive_Subprogram
13544 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13545
13546 -- Ada 2012 (AI05-0197): If the covering primitive's name
13547 -- differs from the name of the interface primitive then it
13548 -- is a private primitive inherited from a parent type. In
13549 -- such case, given that Tagged_Type covers the interface,
13550 -- the inherited private primitive becomes visible. For such
13551 -- purpose we add a new entity that renames the inherited
13552 -- private primitive.
13553
13554 elsif Chars (E) /= Chars (Iface_Subp) then
13555 pragma Assert (Has_Suffix (E, 'P'));
13556 Derive_Subprogram
13557 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13558 Set_Alias (New_Subp, E);
13559 Set_Is_Abstract_Subprogram (New_Subp,
13560 Is_Abstract_Subprogram (E));
13561
13562 -- Propagate to the full view interface entities associated
13563 -- with the partial view.
13564
13565 elsif In_Private_Part (Current_Scope)
13566 and then Present (Alias (E))
13567 and then Alias (E) = Iface_Subp
13568 and then
13569 List_Containing (Parent (E)) /=
13570 Private_Declarations
13571 (Specification
13572 (Unit_Declaration_Node (Current_Scope)))
13573 then
13574 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13575 end if;
13576 end if;
13577
13578 Next_Elmt (Prim_Elmt);
13579 end loop;
13580
13581 Next_Elmt (Iface_Elmt);
13582 end loop;
13583 end if;
13584 end Derive_Progenitor_Subprograms;
13585
13586 -----------------------
13587 -- Derive_Subprogram --
13588 -----------------------
13589
13590 procedure Derive_Subprogram
13591 (New_Subp : in out Entity_Id;
13592 Parent_Subp : Entity_Id;
13593 Derived_Type : Entity_Id;
13594 Parent_Type : Entity_Id;
13595 Actual_Subp : Entity_Id := Empty)
13596 is
13597 Formal : Entity_Id;
13598 -- Formal parameter of parent primitive operation
13599
13600 Formal_Of_Actual : Entity_Id;
13601 -- Formal parameter of actual operation, when the derivation is to
13602 -- create a renaming for a primitive operation of an actual in an
13603 -- instantiation.
13604
13605 New_Formal : Entity_Id;
13606 -- Formal of inherited operation
13607
13608 Visible_Subp : Entity_Id := Parent_Subp;
13609
13610 function Is_Private_Overriding return Boolean;
13611 -- If Subp is a private overriding of a visible operation, the inherited
13612 -- operation derives from the overridden op (even though its body is the
13613 -- overriding one) and the inherited operation is visible now. See
13614 -- sem_disp to see the full details of the handling of the overridden
13615 -- subprogram, which is removed from the list of primitive operations of
13616 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13617 -- and used to diagnose abstract operations that need overriding in the
13618 -- derived type.
13619
13620 procedure Replace_Type (Id, New_Id : Entity_Id);
13621 -- When the type is an anonymous access type, create a new access type
13622 -- designating the derived type.
13623
13624 procedure Set_Derived_Name;
13625 -- This procedure sets the appropriate Chars name for New_Subp. This
13626 -- is normally just a copy of the parent name. An exception arises for
13627 -- type support subprograms, where the name is changed to reflect the
13628 -- name of the derived type, e.g. if type foo is derived from type bar,
13629 -- then a procedure barDA is derived with a name fooDA.
13630
13631 ---------------------------
13632 -- Is_Private_Overriding --
13633 ---------------------------
13634
13635 function Is_Private_Overriding return Boolean is
13636 Prev : Entity_Id;
13637
13638 begin
13639 -- If the parent is not a dispatching operation there is no
13640 -- need to investigate overridings
13641
13642 if not Is_Dispatching_Operation (Parent_Subp) then
13643 return False;
13644 end if;
13645
13646 -- The visible operation that is overridden is a homonym of the
13647 -- parent subprogram. We scan the homonym chain to find the one
13648 -- whose alias is the subprogram we are deriving.
13649
13650 Prev := Current_Entity (Parent_Subp);
13651 while Present (Prev) loop
13652 if Ekind (Prev) = Ekind (Parent_Subp)
13653 and then Alias (Prev) = Parent_Subp
13654 and then Scope (Parent_Subp) = Scope (Prev)
13655 and then not Is_Hidden (Prev)
13656 then
13657 Visible_Subp := Prev;
13658 return True;
13659 end if;
13660
13661 Prev := Homonym (Prev);
13662 end loop;
13663
13664 return False;
13665 end Is_Private_Overriding;
13666
13667 ------------------
13668 -- Replace_Type --
13669 ------------------
13670
13671 procedure Replace_Type (Id, New_Id : Entity_Id) is
13672 Id_Type : constant Entity_Id := Etype (Id);
13673 Acc_Type : Entity_Id;
13674 Par : constant Node_Id := Parent (Derived_Type);
13675
13676 begin
13677 -- When the type is an anonymous access type, create a new access
13678 -- type designating the derived type. This itype must be elaborated
13679 -- at the point of the derivation, not on subsequent calls that may
13680 -- be out of the proper scope for Gigi, so we insert a reference to
13681 -- it after the derivation.
13682
13683 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13684 declare
13685 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13686
13687 begin
13688 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13689 and then Present (Full_View (Desig_Typ))
13690 and then not Is_Private_Type (Parent_Type)
13691 then
13692 Desig_Typ := Full_View (Desig_Typ);
13693 end if;
13694
13695 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13696
13697 -- Ada 2005 (AI-251): Handle also derivations of abstract
13698 -- interface primitives.
13699
13700 or else (Is_Interface (Desig_Typ)
13701 and then not Is_Class_Wide_Type (Desig_Typ))
13702 then
13703 Acc_Type := New_Copy (Id_Type);
13704 Set_Etype (Acc_Type, Acc_Type);
13705 Set_Scope (Acc_Type, New_Subp);
13706
13707 -- Set size of anonymous access type. If we have an access
13708 -- to an unconstrained array, this is a fat pointer, so it
13709 -- is sizes at twice addtress size.
13710
13711 if Is_Array_Type (Desig_Typ)
13712 and then not Is_Constrained (Desig_Typ)
13713 then
13714 Init_Size (Acc_Type, 2 * System_Address_Size);
13715
13716 -- Other cases use a thin pointer
13717
13718 else
13719 Init_Size (Acc_Type, System_Address_Size);
13720 end if;
13721
13722 -- Set remaining characterstics of anonymous access type
13723
13724 Init_Alignment (Acc_Type);
13725 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13726
13727 Set_Etype (New_Id, Acc_Type);
13728 Set_Scope (New_Id, New_Subp);
13729
13730 -- Create a reference to it
13731
13732 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13733
13734 else
13735 Set_Etype (New_Id, Id_Type);
13736 end if;
13737 end;
13738
13739 -- In Ada2012, a formal may have an incomplete type but the type
13740 -- derivation that inherits the primitive follows the full view.
13741
13742 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13743 or else
13744 (Ekind (Id_Type) = E_Record_Type_With_Private
13745 and then Present (Full_View (Id_Type))
13746 and then
13747 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13748 or else
13749 (Ada_Version >= Ada_2012
13750 and then Ekind (Id_Type) = E_Incomplete_Type
13751 and then Full_View (Id_Type) = Parent_Type)
13752 then
13753 -- Constraint checks on formals are generated during expansion,
13754 -- based on the signature of the original subprogram. The bounds
13755 -- of the derived type are not relevant, and thus we can use
13756 -- the base type for the formals. However, the return type may be
13757 -- used in a context that requires that the proper static bounds
13758 -- be used (a case statement, for example) and for those cases
13759 -- we must use the derived type (first subtype), not its base.
13760
13761 -- If the derived_type_definition has no constraints, we know that
13762 -- the derived type has the same constraints as the first subtype
13763 -- of the parent, and we can also use it rather than its base,
13764 -- which can lead to more efficient code.
13765
13766 if Etype (Id) = Parent_Type then
13767 if Is_Scalar_Type (Parent_Type)
13768 and then
13769 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13770 then
13771 Set_Etype (New_Id, Derived_Type);
13772
13773 elsif Nkind (Par) = N_Full_Type_Declaration
13774 and then
13775 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13776 and then
13777 Is_Entity_Name
13778 (Subtype_Indication (Type_Definition (Par)))
13779 then
13780 Set_Etype (New_Id, Derived_Type);
13781
13782 else
13783 Set_Etype (New_Id, Base_Type (Derived_Type));
13784 end if;
13785
13786 else
13787 Set_Etype (New_Id, Base_Type (Derived_Type));
13788 end if;
13789
13790 else
13791 Set_Etype (New_Id, Etype (Id));
13792 end if;
13793 end Replace_Type;
13794
13795 ----------------------
13796 -- Set_Derived_Name --
13797 ----------------------
13798
13799 procedure Set_Derived_Name is
13800 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13801 begin
13802 if Nm = TSS_Null then
13803 Set_Chars (New_Subp, Chars (Parent_Subp));
13804 else
13805 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13806 end if;
13807 end Set_Derived_Name;
13808
13809 -- Start of processing for Derive_Subprogram
13810
13811 begin
13812 New_Subp :=
13813 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13814 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13815 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13816
13817 -- Check whether the inherited subprogram is a private operation that
13818 -- should be inherited but not yet made visible. Such subprograms can
13819 -- become visible at a later point (e.g., the private part of a public
13820 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13821 -- following predicate is true, then this is not such a private
13822 -- operation and the subprogram simply inherits the name of the parent
13823 -- subprogram. Note the special check for the names of controlled
13824 -- operations, which are currently exempted from being inherited with
13825 -- a hidden name because they must be findable for generation of
13826 -- implicit run-time calls.
13827
13828 if not Is_Hidden (Parent_Subp)
13829 or else Is_Internal (Parent_Subp)
13830 or else Is_Private_Overriding
13831 or else Is_Internal_Name (Chars (Parent_Subp))
13832 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13833 Name_Adjust,
13834 Name_Finalize)
13835 then
13836 Set_Derived_Name;
13837
13838 -- An inherited dispatching equality will be overridden by an internally
13839 -- generated one, or by an explicit one, so preserve its name and thus
13840 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13841 -- private operation it may become invisible if the full view has
13842 -- progenitors, and the dispatch table will be malformed.
13843 -- We check that the type is limited to handle the anomalous declaration
13844 -- of Limited_Controlled, which is derived from a non-limited type, and
13845 -- which is handled specially elsewhere as well.
13846
13847 elsif Chars (Parent_Subp) = Name_Op_Eq
13848 and then Is_Dispatching_Operation (Parent_Subp)
13849 and then Etype (Parent_Subp) = Standard_Boolean
13850 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13851 and then
13852 Etype (First_Formal (Parent_Subp)) =
13853 Etype (Next_Formal (First_Formal (Parent_Subp)))
13854 then
13855 Set_Derived_Name;
13856
13857 -- If parent is hidden, this can be a regular derivation if the
13858 -- parent is immediately visible in a non-instantiating context,
13859 -- or if we are in the private part of an instance. This test
13860 -- should still be refined ???
13861
13862 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13863 -- operation as a non-visible operation in cases where the parent
13864 -- subprogram might not be visible now, but was visible within the
13865 -- original generic, so it would be wrong to make the inherited
13866 -- subprogram non-visible now. (Not clear if this test is fully
13867 -- correct; are there any cases where we should declare the inherited
13868 -- operation as not visible to avoid it being overridden, e.g., when
13869 -- the parent type is a generic actual with private primitives ???)
13870
13871 -- (they should be treated the same as other private inherited
13872 -- subprograms, but it's not clear how to do this cleanly). ???
13873
13874 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13875 and then Is_Immediately_Visible (Parent_Subp)
13876 and then not In_Instance)
13877 or else In_Instance_Not_Visible
13878 then
13879 Set_Derived_Name;
13880
13881 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13882 -- overrides an interface primitive because interface primitives
13883 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13884
13885 elsif Ada_Version >= Ada_2005
13886 and then Is_Dispatching_Operation (Parent_Subp)
13887 and then Covers_Some_Interface (Parent_Subp)
13888 then
13889 Set_Derived_Name;
13890
13891 -- Otherwise, the type is inheriting a private operation, so enter
13892 -- it with a special name so it can't be overridden.
13893
13894 else
13895 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13896 end if;
13897
13898 Set_Parent (New_Subp, Parent (Derived_Type));
13899
13900 if Present (Actual_Subp) then
13901 Replace_Type (Actual_Subp, New_Subp);
13902 else
13903 Replace_Type (Parent_Subp, New_Subp);
13904 end if;
13905
13906 Conditional_Delay (New_Subp, Parent_Subp);
13907
13908 -- If we are creating a renaming for a primitive operation of an
13909 -- actual of a generic derived type, we must examine the signature
13910 -- of the actual primitive, not that of the generic formal, which for
13911 -- example may be an interface. However the name and initial value
13912 -- of the inherited operation are those of the formal primitive.
13913
13914 Formal := First_Formal (Parent_Subp);
13915
13916 if Present (Actual_Subp) then
13917 Formal_Of_Actual := First_Formal (Actual_Subp);
13918 else
13919 Formal_Of_Actual := Empty;
13920 end if;
13921
13922 while Present (Formal) loop
13923 New_Formal := New_Copy (Formal);
13924
13925 -- Normally we do not go copying parents, but in the case of
13926 -- formals, we need to link up to the declaration (which is the
13927 -- parameter specification), and it is fine to link up to the
13928 -- original formal's parameter specification in this case.
13929
13930 Set_Parent (New_Formal, Parent (Formal));
13931 Append_Entity (New_Formal, New_Subp);
13932
13933 if Present (Formal_Of_Actual) then
13934 Replace_Type (Formal_Of_Actual, New_Formal);
13935 Next_Formal (Formal_Of_Actual);
13936 else
13937 Replace_Type (Formal, New_Formal);
13938 end if;
13939
13940 Next_Formal (Formal);
13941 end loop;
13942
13943 -- If this derivation corresponds to a tagged generic actual, then
13944 -- primitive operations rename those of the actual. Otherwise the
13945 -- primitive operations rename those of the parent type, If the parent
13946 -- renames an intrinsic operator, so does the new subprogram. We except
13947 -- concatenation, which is always properly typed, and does not get
13948 -- expanded as other intrinsic operations.
13949
13950 if No (Actual_Subp) then
13951 if Is_Intrinsic_Subprogram (Parent_Subp) then
13952 Set_Is_Intrinsic_Subprogram (New_Subp);
13953
13954 if Present (Alias (Parent_Subp))
13955 and then Chars (Parent_Subp) /= Name_Op_Concat
13956 then
13957 Set_Alias (New_Subp, Alias (Parent_Subp));
13958 else
13959 Set_Alias (New_Subp, Parent_Subp);
13960 end if;
13961
13962 else
13963 Set_Alias (New_Subp, Parent_Subp);
13964 end if;
13965
13966 else
13967 Set_Alias (New_Subp, Actual_Subp);
13968 end if;
13969
13970 -- Derived subprograms of a tagged type must inherit the convention
13971 -- of the parent subprogram (a requirement of AI-117). Derived
13972 -- subprograms of untagged types simply get convention Ada by default.
13973
13974 -- If the derived type is a tagged generic formal type with unknown
13975 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13976
13977 -- However, if the type is derived from a generic formal, the further
13978 -- inherited subprogram has the convention of the non-generic ancestor.
13979 -- Otherwise there would be no way to override the operation.
13980 -- (This is subject to forthcoming ARG discussions).
13981
13982 if Is_Tagged_Type (Derived_Type) then
13983 if Is_Generic_Type (Derived_Type)
13984 and then Has_Unknown_Discriminants (Derived_Type)
13985 then
13986 Set_Convention (New_Subp, Convention_Intrinsic);
13987
13988 else
13989 if Is_Generic_Type (Parent_Type)
13990 and then Has_Unknown_Discriminants (Parent_Type)
13991 then
13992 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13993 else
13994 Set_Convention (New_Subp, Convention (Parent_Subp));
13995 end if;
13996 end if;
13997 end if;
13998
13999 -- Predefined controlled operations retain their name even if the parent
14000 -- is hidden (see above), but they are not primitive operations if the
14001 -- ancestor is not visible, for example if the parent is a private
14002 -- extension completed with a controlled extension. Note that a full
14003 -- type that is controlled can break privacy: the flag Is_Controlled is
14004 -- set on both views of the type.
14005
14006 if Is_Controlled (Parent_Type)
14007 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14008 Name_Adjust,
14009 Name_Finalize)
14010 and then Is_Hidden (Parent_Subp)
14011 and then not Is_Visibly_Controlled (Parent_Type)
14012 then
14013 Set_Is_Hidden (New_Subp);
14014 end if;
14015
14016 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14017 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14018
14019 if Ekind (Parent_Subp) = E_Procedure then
14020 Set_Is_Valued_Procedure
14021 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14022 else
14023 Set_Has_Controlling_Result
14024 (New_Subp, Has_Controlling_Result (Parent_Subp));
14025 end if;
14026
14027 -- No_Return must be inherited properly. If this is overridden in the
14028 -- case of a dispatching operation, then a check is made in Sem_Disp
14029 -- that the overriding operation is also No_Return (no such check is
14030 -- required for the case of non-dispatching operation.
14031
14032 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14033
14034 -- A derived function with a controlling result is abstract. If the
14035 -- Derived_Type is a nonabstract formal generic derived type, then
14036 -- inherited operations are not abstract: the required check is done at
14037 -- instantiation time. If the derivation is for a generic actual, the
14038 -- function is not abstract unless the actual is.
14039
14040 if Is_Generic_Type (Derived_Type)
14041 and then not Is_Abstract_Type (Derived_Type)
14042 then
14043 null;
14044
14045 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14046 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14047
14048 elsif Ada_Version >= Ada_2005
14049 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14050 or else (Is_Tagged_Type (Derived_Type)
14051 and then Etype (New_Subp) = Derived_Type
14052 and then not Is_Null_Extension (Derived_Type))
14053 or else (Is_Tagged_Type (Derived_Type)
14054 and then Ekind (Etype (New_Subp)) =
14055 E_Anonymous_Access_Type
14056 and then Designated_Type (Etype (New_Subp)) =
14057 Derived_Type
14058 and then not Is_Null_Extension (Derived_Type)))
14059 and then No (Actual_Subp)
14060 then
14061 if not Is_Tagged_Type (Derived_Type)
14062 or else Is_Abstract_Type (Derived_Type)
14063 or else Is_Abstract_Subprogram (Alias (New_Subp))
14064 then
14065 Set_Is_Abstract_Subprogram (New_Subp);
14066 else
14067 Set_Requires_Overriding (New_Subp);
14068 end if;
14069
14070 elsif Ada_Version < Ada_2005
14071 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14072 or else (Is_Tagged_Type (Derived_Type)
14073 and then Etype (New_Subp) = Derived_Type
14074 and then No (Actual_Subp)))
14075 then
14076 Set_Is_Abstract_Subprogram (New_Subp);
14077
14078 -- AI05-0097 : an inherited operation that dispatches on result is
14079 -- abstract if the derived type is abstract, even if the parent type
14080 -- is concrete and the derived type is a null extension.
14081
14082 elsif Has_Controlling_Result (Alias (New_Subp))
14083 and then Is_Abstract_Type (Etype (New_Subp))
14084 then
14085 Set_Is_Abstract_Subprogram (New_Subp);
14086
14087 -- Finally, if the parent type is abstract we must verify that all
14088 -- inherited operations are either non-abstract or overridden, or that
14089 -- the derived type itself is abstract (this check is performed at the
14090 -- end of a package declaration, in Check_Abstract_Overriding). A
14091 -- private overriding in the parent type will not be visible in the
14092 -- derivation if we are not in an inner package or in a child unit of
14093 -- the parent type, in which case the abstractness of the inherited
14094 -- operation is carried to the new subprogram.
14095
14096 elsif Is_Abstract_Type (Parent_Type)
14097 and then not In_Open_Scopes (Scope (Parent_Type))
14098 and then Is_Private_Overriding
14099 and then Is_Abstract_Subprogram (Visible_Subp)
14100 then
14101 if No (Actual_Subp) then
14102 Set_Alias (New_Subp, Visible_Subp);
14103 Set_Is_Abstract_Subprogram (New_Subp, True);
14104
14105 else
14106 -- If this is a derivation for an instance of a formal derived
14107 -- type, abstractness comes from the primitive operation of the
14108 -- actual, not from the operation inherited from the ancestor.
14109
14110 Set_Is_Abstract_Subprogram
14111 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14112 end if;
14113 end if;
14114
14115 New_Overloaded_Entity (New_Subp, Derived_Type);
14116
14117 -- Check for case of a derived subprogram for the instantiation of a
14118 -- formal derived tagged type, if so mark the subprogram as dispatching
14119 -- and inherit the dispatching attributes of the actual subprogram. The
14120 -- derived subprogram is effectively renaming of the actual subprogram,
14121 -- so it needs to have the same attributes as the actual.
14122
14123 if Present (Actual_Subp)
14124 and then Is_Dispatching_Operation (Actual_Subp)
14125 then
14126 Set_Is_Dispatching_Operation (New_Subp);
14127
14128 if Present (DTC_Entity (Actual_Subp)) then
14129 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14130 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14131 end if;
14132 end if;
14133
14134 -- Indicate that a derived subprogram does not require a body and that
14135 -- it does not require processing of default expressions.
14136
14137 Set_Has_Completion (New_Subp);
14138 Set_Default_Expressions_Processed (New_Subp);
14139
14140 if Ekind (New_Subp) = E_Function then
14141 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14142 end if;
14143 end Derive_Subprogram;
14144
14145 ------------------------
14146 -- Derive_Subprograms --
14147 ------------------------
14148
14149 procedure Derive_Subprograms
14150 (Parent_Type : Entity_Id;
14151 Derived_Type : Entity_Id;
14152 Generic_Actual : Entity_Id := Empty)
14153 is
14154 Op_List : constant Elist_Id :=
14155 Collect_Primitive_Operations (Parent_Type);
14156
14157 function Check_Derived_Type return Boolean;
14158 -- Check that all the entities derived from Parent_Type are found in
14159 -- the list of primitives of Derived_Type exactly in the same order.
14160
14161 procedure Derive_Interface_Subprogram
14162 (New_Subp : in out Entity_Id;
14163 Subp : Entity_Id;
14164 Actual_Subp : Entity_Id);
14165 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14166 -- (which is an interface primitive). If Generic_Actual is present then
14167 -- Actual_Subp is the actual subprogram corresponding with the generic
14168 -- subprogram Subp.
14169
14170 function Check_Derived_Type return Boolean is
14171 E : Entity_Id;
14172 Elmt : Elmt_Id;
14173 List : Elist_Id;
14174 New_Subp : Entity_Id;
14175 Op_Elmt : Elmt_Id;
14176 Subp : Entity_Id;
14177
14178 begin
14179 -- Traverse list of entities in the current scope searching for
14180 -- an incomplete type whose full-view is derived type
14181
14182 E := First_Entity (Scope (Derived_Type));
14183 while Present (E) and then E /= Derived_Type loop
14184 if Ekind (E) = E_Incomplete_Type
14185 and then Present (Full_View (E))
14186 and then Full_View (E) = Derived_Type
14187 then
14188 -- Disable this test if Derived_Type completes an incomplete
14189 -- type because in such case more primitives can be added
14190 -- later to the list of primitives of Derived_Type by routine
14191 -- Process_Incomplete_Dependents
14192
14193 return True;
14194 end if;
14195
14196 E := Next_Entity (E);
14197 end loop;
14198
14199 List := Collect_Primitive_Operations (Derived_Type);
14200 Elmt := First_Elmt (List);
14201
14202 Op_Elmt := First_Elmt (Op_List);
14203 while Present (Op_Elmt) loop
14204 Subp := Node (Op_Elmt);
14205 New_Subp := Node (Elmt);
14206
14207 -- At this early stage Derived_Type has no entities with attribute
14208 -- Interface_Alias. In addition, such primitives are always
14209 -- located at the end of the list of primitives of Parent_Type.
14210 -- Therefore, if found we can safely stop processing pending
14211 -- entities.
14212
14213 exit when Present (Interface_Alias (Subp));
14214
14215 -- Handle hidden entities
14216
14217 if not Is_Predefined_Dispatching_Operation (Subp)
14218 and then Is_Hidden (Subp)
14219 then
14220 if Present (New_Subp)
14221 and then Primitive_Names_Match (Subp, New_Subp)
14222 then
14223 Next_Elmt (Elmt);
14224 end if;
14225
14226 else
14227 if not Present (New_Subp)
14228 or else Ekind (Subp) /= Ekind (New_Subp)
14229 or else not Primitive_Names_Match (Subp, New_Subp)
14230 then
14231 return False;
14232 end if;
14233
14234 Next_Elmt (Elmt);
14235 end if;
14236
14237 Next_Elmt (Op_Elmt);
14238 end loop;
14239
14240 return True;
14241 end Check_Derived_Type;
14242
14243 ---------------------------------
14244 -- Derive_Interface_Subprogram --
14245 ---------------------------------
14246
14247 procedure Derive_Interface_Subprogram
14248 (New_Subp : in out Entity_Id;
14249 Subp : Entity_Id;
14250 Actual_Subp : Entity_Id)
14251 is
14252 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14253 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14254
14255 begin
14256 pragma Assert (Is_Interface (Iface_Type));
14257
14258 Derive_Subprogram
14259 (New_Subp => New_Subp,
14260 Parent_Subp => Iface_Subp,
14261 Derived_Type => Derived_Type,
14262 Parent_Type => Iface_Type,
14263 Actual_Subp => Actual_Subp);
14264
14265 -- Given that this new interface entity corresponds with a primitive
14266 -- of the parent that was not overridden we must leave it associated
14267 -- with its parent primitive to ensure that it will share the same
14268 -- dispatch table slot when overridden.
14269
14270 if No (Actual_Subp) then
14271 Set_Alias (New_Subp, Subp);
14272
14273 -- For instantiations this is not needed since the previous call to
14274 -- Derive_Subprogram leaves the entity well decorated.
14275
14276 else
14277 pragma Assert (Alias (New_Subp) = Actual_Subp);
14278 null;
14279 end if;
14280 end Derive_Interface_Subprogram;
14281
14282 -- Local variables
14283
14284 Alias_Subp : Entity_Id;
14285 Act_List : Elist_Id;
14286 Act_Elmt : Elmt_Id;
14287 Act_Subp : Entity_Id := Empty;
14288 Elmt : Elmt_Id;
14289 Need_Search : Boolean := False;
14290 New_Subp : Entity_Id := Empty;
14291 Parent_Base : Entity_Id;
14292 Subp : Entity_Id;
14293
14294 -- Start of processing for Derive_Subprograms
14295
14296 begin
14297 if Ekind (Parent_Type) = E_Record_Type_With_Private
14298 and then Has_Discriminants (Parent_Type)
14299 and then Present (Full_View (Parent_Type))
14300 then
14301 Parent_Base := Full_View (Parent_Type);
14302 else
14303 Parent_Base := Parent_Type;
14304 end if;
14305
14306 if Present (Generic_Actual) then
14307 Act_List := Collect_Primitive_Operations (Generic_Actual);
14308 Act_Elmt := First_Elmt (Act_List);
14309 else
14310 Act_List := No_Elist;
14311 Act_Elmt := No_Elmt;
14312 end if;
14313
14314 -- Derive primitives inherited from the parent. Note that if the generic
14315 -- actual is present, this is not really a type derivation, it is a
14316 -- completion within an instance.
14317
14318 -- Case 1: Derived_Type does not implement interfaces
14319
14320 if not Is_Tagged_Type (Derived_Type)
14321 or else (not Has_Interfaces (Derived_Type)
14322 and then not (Present (Generic_Actual)
14323 and then Has_Interfaces (Generic_Actual)))
14324 then
14325 Elmt := First_Elmt (Op_List);
14326 while Present (Elmt) loop
14327 Subp := Node (Elmt);
14328
14329 -- Literals are derived earlier in the process of building the
14330 -- derived type, and are skipped here.
14331
14332 if Ekind (Subp) = E_Enumeration_Literal then
14333 null;
14334
14335 -- The actual is a direct descendant and the common primitive
14336 -- operations appear in the same order.
14337
14338 -- If the generic parent type is present, the derived type is an
14339 -- instance of a formal derived type, and within the instance its
14340 -- operations are those of the actual. We derive from the formal
14341 -- type but make the inherited operations aliases of the
14342 -- corresponding operations of the actual.
14343
14344 else
14345 pragma Assert (No (Node (Act_Elmt))
14346 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14347 and then
14348 Type_Conformant
14349 (Subp, Node (Act_Elmt),
14350 Skip_Controlling_Formals => True)));
14351
14352 Derive_Subprogram
14353 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14354
14355 if Present (Act_Elmt) then
14356 Next_Elmt (Act_Elmt);
14357 end if;
14358 end if;
14359
14360 Next_Elmt (Elmt);
14361 end loop;
14362
14363 -- Case 2: Derived_Type implements interfaces
14364
14365 else
14366 -- If the parent type has no predefined primitives we remove
14367 -- predefined primitives from the list of primitives of generic
14368 -- actual to simplify the complexity of this algorithm.
14369
14370 if Present (Generic_Actual) then
14371 declare
14372 Has_Predefined_Primitives : Boolean := False;
14373
14374 begin
14375 -- Check if the parent type has predefined primitives
14376
14377 Elmt := First_Elmt (Op_List);
14378 while Present (Elmt) loop
14379 Subp := Node (Elmt);
14380
14381 if Is_Predefined_Dispatching_Operation (Subp)
14382 and then not Comes_From_Source (Ultimate_Alias (Subp))
14383 then
14384 Has_Predefined_Primitives := True;
14385 exit;
14386 end if;
14387
14388 Next_Elmt (Elmt);
14389 end loop;
14390
14391 -- Remove predefined primitives of Generic_Actual. We must use
14392 -- an auxiliary list because in case of tagged types the value
14393 -- returned by Collect_Primitive_Operations is the value stored
14394 -- in its Primitive_Operations attribute (and we don't want to
14395 -- modify its current contents).
14396
14397 if not Has_Predefined_Primitives then
14398 declare
14399 Aux_List : constant Elist_Id := New_Elmt_List;
14400
14401 begin
14402 Elmt := First_Elmt (Act_List);
14403 while Present (Elmt) loop
14404 Subp := Node (Elmt);
14405
14406 if not Is_Predefined_Dispatching_Operation (Subp)
14407 or else Comes_From_Source (Subp)
14408 then
14409 Append_Elmt (Subp, Aux_List);
14410 end if;
14411
14412 Next_Elmt (Elmt);
14413 end loop;
14414
14415 Act_List := Aux_List;
14416 end;
14417 end if;
14418
14419 Act_Elmt := First_Elmt (Act_List);
14420 Act_Subp := Node (Act_Elmt);
14421 end;
14422 end if;
14423
14424 -- Stage 1: If the generic actual is not present we derive the
14425 -- primitives inherited from the parent type. If the generic parent
14426 -- type is present, the derived type is an instance of a formal
14427 -- derived type, and within the instance its operations are those of
14428 -- the actual. We derive from the formal type but make the inherited
14429 -- operations aliases of the corresponding operations of the actual.
14430
14431 Elmt := First_Elmt (Op_List);
14432 while Present (Elmt) loop
14433 Subp := Node (Elmt);
14434 Alias_Subp := Ultimate_Alias (Subp);
14435
14436 -- Do not derive internal entities of the parent that link
14437 -- interface primitives with their covering primitive. These
14438 -- entities will be added to this type when frozen.
14439
14440 if Present (Interface_Alias (Subp)) then
14441 goto Continue;
14442 end if;
14443
14444 -- If the generic actual is present find the corresponding
14445 -- operation in the generic actual. If the parent type is a
14446 -- direct ancestor of the derived type then, even if it is an
14447 -- interface, the operations are inherited from the primary
14448 -- dispatch table and are in the proper order. If we detect here
14449 -- that primitives are not in the same order we traverse the list
14450 -- of primitive operations of the actual to find the one that
14451 -- implements the interface primitive.
14452
14453 if Need_Search
14454 or else
14455 (Present (Generic_Actual)
14456 and then Present (Act_Subp)
14457 and then not
14458 (Primitive_Names_Match (Subp, Act_Subp)
14459 and then
14460 Type_Conformant (Subp, Act_Subp,
14461 Skip_Controlling_Formals => True)))
14462 then
14463 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14464 Use_Full_View => True));
14465
14466 -- Remember that we need searching for all pending primitives
14467
14468 Need_Search := True;
14469
14470 -- Handle entities associated with interface primitives
14471
14472 if Present (Alias_Subp)
14473 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14474 and then not Is_Predefined_Dispatching_Operation (Subp)
14475 then
14476 -- Search for the primitive in the homonym chain
14477
14478 Act_Subp :=
14479 Find_Primitive_Covering_Interface
14480 (Tagged_Type => Generic_Actual,
14481 Iface_Prim => Alias_Subp);
14482
14483 -- Previous search may not locate primitives covering
14484 -- interfaces defined in generics units or instantiations.
14485 -- (it fails if the covering primitive has formals whose
14486 -- type is also defined in generics or instantiations).
14487 -- In such case we search in the list of primitives of the
14488 -- generic actual for the internal entity that links the
14489 -- interface primitive and the covering primitive.
14490
14491 if No (Act_Subp)
14492 and then Is_Generic_Type (Parent_Type)
14493 then
14494 -- This code has been designed to handle only generic
14495 -- formals that implement interfaces that are defined
14496 -- in a generic unit or instantiation. If this code is
14497 -- needed for other cases we must review it because
14498 -- (given that it relies on Original_Location to locate
14499 -- the primitive of Generic_Actual that covers the
14500 -- interface) it could leave linked through attribute
14501 -- Alias entities of unrelated instantiations).
14502
14503 pragma Assert
14504 (Is_Generic_Unit
14505 (Scope (Find_Dispatching_Type (Alias_Subp)))
14506 or else
14507 Instantiation_Depth
14508 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14509
14510 declare
14511 Iface_Prim_Loc : constant Source_Ptr :=
14512 Original_Location (Sloc (Alias_Subp));
14513
14514 Elmt : Elmt_Id;
14515 Prim : Entity_Id;
14516
14517 begin
14518 Elmt :=
14519 First_Elmt (Primitive_Operations (Generic_Actual));
14520
14521 Search : while Present (Elmt) loop
14522 Prim := Node (Elmt);
14523
14524 if Present (Interface_Alias (Prim))
14525 and then Original_Location
14526 (Sloc (Interface_Alias (Prim))) =
14527 Iface_Prim_Loc
14528 then
14529 Act_Subp := Alias (Prim);
14530 exit Search;
14531 end if;
14532
14533 Next_Elmt (Elmt);
14534 end loop Search;
14535 end;
14536 end if;
14537
14538 pragma Assert (Present (Act_Subp)
14539 or else Is_Abstract_Type (Generic_Actual)
14540 or else Serious_Errors_Detected > 0);
14541
14542 -- Handle predefined primitives plus the rest of user-defined
14543 -- primitives
14544
14545 else
14546 Act_Elmt := First_Elmt (Act_List);
14547 while Present (Act_Elmt) loop
14548 Act_Subp := Node (Act_Elmt);
14549
14550 exit when Primitive_Names_Match (Subp, Act_Subp)
14551 and then Type_Conformant
14552 (Subp, Act_Subp,
14553 Skip_Controlling_Formals => True)
14554 and then No (Interface_Alias (Act_Subp));
14555
14556 Next_Elmt (Act_Elmt);
14557 end loop;
14558
14559 if No (Act_Elmt) then
14560 Act_Subp := Empty;
14561 end if;
14562 end if;
14563 end if;
14564
14565 -- Case 1: If the parent is a limited interface then it has the
14566 -- predefined primitives of synchronized interfaces. However, the
14567 -- actual type may be a non-limited type and hence it does not
14568 -- have such primitives.
14569
14570 if Present (Generic_Actual)
14571 and then not Present (Act_Subp)
14572 and then Is_Limited_Interface (Parent_Base)
14573 and then Is_Predefined_Interface_Primitive (Subp)
14574 then
14575 null;
14576
14577 -- Case 2: Inherit entities associated with interfaces that were
14578 -- not covered by the parent type. We exclude here null interface
14579 -- primitives because they do not need special management.
14580
14581 -- We also exclude interface operations that are renamings. If the
14582 -- subprogram is an explicit renaming of an interface primitive,
14583 -- it is a regular primitive operation, and the presence of its
14584 -- alias is not relevant: it has to be derived like any other
14585 -- primitive.
14586
14587 elsif Present (Alias (Subp))
14588 and then Nkind (Unit_Declaration_Node (Subp)) /=
14589 N_Subprogram_Renaming_Declaration
14590 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14591 and then not
14592 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14593 and then Null_Present (Parent (Alias_Subp)))
14594 then
14595 -- If this is an abstract private type then we transfer the
14596 -- derivation of the interface primitive from the partial view
14597 -- to the full view. This is safe because all the interfaces
14598 -- must be visible in the partial view. Done to avoid adding
14599 -- a new interface derivation to the private part of the
14600 -- enclosing package; otherwise this new derivation would be
14601 -- decorated as hidden when the analysis of the enclosing
14602 -- package completes.
14603
14604 if Is_Abstract_Type (Derived_Type)
14605 and then In_Private_Part (Current_Scope)
14606 and then Has_Private_Declaration (Derived_Type)
14607 then
14608 declare
14609 Partial_View : Entity_Id;
14610 Elmt : Elmt_Id;
14611 Ent : Entity_Id;
14612
14613 begin
14614 Partial_View := First_Entity (Current_Scope);
14615 loop
14616 exit when No (Partial_View)
14617 or else (Has_Private_Declaration (Partial_View)
14618 and then
14619 Full_View (Partial_View) = Derived_Type);
14620
14621 Next_Entity (Partial_View);
14622 end loop;
14623
14624 -- If the partial view was not found then the source code
14625 -- has errors and the derivation is not needed.
14626
14627 if Present (Partial_View) then
14628 Elmt :=
14629 First_Elmt (Primitive_Operations (Partial_View));
14630 while Present (Elmt) loop
14631 Ent := Node (Elmt);
14632
14633 if Present (Alias (Ent))
14634 and then Ultimate_Alias (Ent) = Alias (Subp)
14635 then
14636 Append_Elmt
14637 (Ent, Primitive_Operations (Derived_Type));
14638 exit;
14639 end if;
14640
14641 Next_Elmt (Elmt);
14642 end loop;
14643
14644 -- If the interface primitive was not found in the
14645 -- partial view then this interface primitive was
14646 -- overridden. We add a derivation to activate in
14647 -- Derive_Progenitor_Subprograms the machinery to
14648 -- search for it.
14649
14650 if No (Elmt) then
14651 Derive_Interface_Subprogram
14652 (New_Subp => New_Subp,
14653 Subp => Subp,
14654 Actual_Subp => Act_Subp);
14655 end if;
14656 end if;
14657 end;
14658 else
14659 Derive_Interface_Subprogram
14660 (New_Subp => New_Subp,
14661 Subp => Subp,
14662 Actual_Subp => Act_Subp);
14663 end if;
14664
14665 -- Case 3: Common derivation
14666
14667 else
14668 Derive_Subprogram
14669 (New_Subp => New_Subp,
14670 Parent_Subp => Subp,
14671 Derived_Type => Derived_Type,
14672 Parent_Type => Parent_Base,
14673 Actual_Subp => Act_Subp);
14674 end if;
14675
14676 -- No need to update Act_Elm if we must search for the
14677 -- corresponding operation in the generic actual
14678
14679 if not Need_Search
14680 and then Present (Act_Elmt)
14681 then
14682 Next_Elmt (Act_Elmt);
14683 Act_Subp := Node (Act_Elmt);
14684 end if;
14685
14686 <<Continue>>
14687 Next_Elmt (Elmt);
14688 end loop;
14689
14690 -- Inherit additional operations from progenitors. If the derived
14691 -- type is a generic actual, there are not new primitive operations
14692 -- for the type because it has those of the actual, and therefore
14693 -- nothing needs to be done. The renamings generated above are not
14694 -- primitive operations, and their purpose is simply to make the
14695 -- proper operations visible within an instantiation.
14696
14697 if No (Generic_Actual) then
14698 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14699 end if;
14700 end if;
14701
14702 -- Final check: Direct descendants must have their primitives in the
14703 -- same order. We exclude from this test untagged types and instances
14704 -- of formal derived types. We skip this test if we have already
14705 -- reported serious errors in the sources.
14706
14707 pragma Assert (not Is_Tagged_Type (Derived_Type)
14708 or else Present (Generic_Actual)
14709 or else Serious_Errors_Detected > 0
14710 or else Check_Derived_Type);
14711 end Derive_Subprograms;
14712
14713 --------------------------------
14714 -- Derived_Standard_Character --
14715 --------------------------------
14716
14717 procedure Derived_Standard_Character
14718 (N : Node_Id;
14719 Parent_Type : Entity_Id;
14720 Derived_Type : Entity_Id)
14721 is
14722 Loc : constant Source_Ptr := Sloc (N);
14723 Def : constant Node_Id := Type_Definition (N);
14724 Indic : constant Node_Id := Subtype_Indication (Def);
14725 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14726 Implicit_Base : constant Entity_Id :=
14727 Create_Itype
14728 (E_Enumeration_Type, N, Derived_Type, 'B');
14729
14730 Lo : Node_Id;
14731 Hi : Node_Id;
14732
14733 begin
14734 Discard_Node (Process_Subtype (Indic, N));
14735
14736 Set_Etype (Implicit_Base, Parent_Base);
14737 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14738 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14739
14740 Set_Is_Character_Type (Implicit_Base, True);
14741 Set_Has_Delayed_Freeze (Implicit_Base);
14742
14743 -- The bounds of the implicit base are the bounds of the parent base.
14744 -- Note that their type is the parent base.
14745
14746 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14747 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14748
14749 Set_Scalar_Range (Implicit_Base,
14750 Make_Range (Loc,
14751 Low_Bound => Lo,
14752 High_Bound => Hi));
14753
14754 Conditional_Delay (Derived_Type, Parent_Type);
14755
14756 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14757 Set_Etype (Derived_Type, Implicit_Base);
14758 Set_Size_Info (Derived_Type, Parent_Type);
14759
14760 if Unknown_RM_Size (Derived_Type) then
14761 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14762 end if;
14763
14764 Set_Is_Character_Type (Derived_Type, True);
14765
14766 if Nkind (Indic) /= N_Subtype_Indication then
14767
14768 -- If no explicit constraint, the bounds are those
14769 -- of the parent type.
14770
14771 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14772 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14773 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14774 end if;
14775
14776 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14777
14778 -- Because the implicit base is used in the conversion of the bounds, we
14779 -- have to freeze it now. This is similar to what is done for numeric
14780 -- types, and it equally suspicious, but otherwise a non-static bound
14781 -- will have a reference to an unfrozen type, which is rejected by Gigi
14782 -- (???). This requires specific care for definition of stream
14783 -- attributes. For details, see comments at the end of
14784 -- Build_Derived_Numeric_Type.
14785
14786 Freeze_Before (N, Implicit_Base);
14787 end Derived_Standard_Character;
14788
14789 ------------------------------
14790 -- Derived_Type_Declaration --
14791 ------------------------------
14792
14793 procedure Derived_Type_Declaration
14794 (T : Entity_Id;
14795 N : Node_Id;
14796 Is_Completion : Boolean)
14797 is
14798 Parent_Type : Entity_Id;
14799
14800 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14801 -- Check whether the parent type is a generic formal, or derives
14802 -- directly or indirectly from one.
14803
14804 ------------------------
14805 -- Comes_From_Generic --
14806 ------------------------
14807
14808 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14809 begin
14810 if Is_Generic_Type (Typ) then
14811 return True;
14812
14813 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14814 return True;
14815
14816 elsif Is_Private_Type (Typ)
14817 and then Present (Full_View (Typ))
14818 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14819 then
14820 return True;
14821
14822 elsif Is_Generic_Actual_Type (Typ) then
14823 return True;
14824
14825 else
14826 return False;
14827 end if;
14828 end Comes_From_Generic;
14829
14830 -- Local variables
14831
14832 Def : constant Node_Id := Type_Definition (N);
14833 Iface_Def : Node_Id;
14834 Indic : constant Node_Id := Subtype_Indication (Def);
14835 Extension : constant Node_Id := Record_Extension_Part (Def);
14836 Parent_Node : Node_Id;
14837 Taggd : Boolean;
14838
14839 -- Start of processing for Derived_Type_Declaration
14840
14841 begin
14842 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14843
14844 -- Ada 2005 (AI-251): In case of interface derivation check that the
14845 -- parent is also an interface.
14846
14847 if Interface_Present (Def) then
14848 Check_SPARK_05_Restriction ("interface is not allowed", Def);
14849
14850 if not Is_Interface (Parent_Type) then
14851 Diagnose_Interface (Indic, Parent_Type);
14852
14853 else
14854 Parent_Node := Parent (Base_Type (Parent_Type));
14855 Iface_Def := Type_Definition (Parent_Node);
14856
14857 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14858 -- other limited interfaces.
14859
14860 if Limited_Present (Def) then
14861 if Limited_Present (Iface_Def) then
14862 null;
14863
14864 elsif Protected_Present (Iface_Def) then
14865 Error_Msg_NE
14866 ("descendant of& must be declared"
14867 & " as a protected interface",
14868 N, Parent_Type);
14869
14870 elsif Synchronized_Present (Iface_Def) then
14871 Error_Msg_NE
14872 ("descendant of& must be declared"
14873 & " as a synchronized interface",
14874 N, Parent_Type);
14875
14876 elsif Task_Present (Iface_Def) then
14877 Error_Msg_NE
14878 ("descendant of& must be declared as a task interface",
14879 N, Parent_Type);
14880
14881 else
14882 Error_Msg_N
14883 ("(Ada 2005) limited interface cannot "
14884 & "inherit from non-limited interface", Indic);
14885 end if;
14886
14887 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14888 -- from non-limited or limited interfaces.
14889
14890 elsif not Protected_Present (Def)
14891 and then not Synchronized_Present (Def)
14892 and then not Task_Present (Def)
14893 then
14894 if Limited_Present (Iface_Def) then
14895 null;
14896
14897 elsif Protected_Present (Iface_Def) then
14898 Error_Msg_NE
14899 ("descendant of& must be declared"
14900 & " as a protected interface",
14901 N, Parent_Type);
14902
14903 elsif Synchronized_Present (Iface_Def) then
14904 Error_Msg_NE
14905 ("descendant of& must be declared"
14906 & " as a synchronized interface",
14907 N, Parent_Type);
14908
14909 elsif Task_Present (Iface_Def) then
14910 Error_Msg_NE
14911 ("descendant of& must be declared as a task interface",
14912 N, Parent_Type);
14913 else
14914 null;
14915 end if;
14916 end if;
14917 end if;
14918 end if;
14919
14920 if Is_Tagged_Type (Parent_Type)
14921 and then Is_Concurrent_Type (Parent_Type)
14922 and then not Is_Interface (Parent_Type)
14923 then
14924 Error_Msg_N
14925 ("parent type of a record extension cannot be "
14926 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14927 Set_Etype (T, Any_Type);
14928 return;
14929 end if;
14930
14931 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14932 -- interfaces
14933
14934 if Is_Tagged_Type (Parent_Type)
14935 and then Is_Non_Empty_List (Interface_List (Def))
14936 then
14937 declare
14938 Intf : Node_Id;
14939 T : Entity_Id;
14940
14941 begin
14942 Intf := First (Interface_List (Def));
14943 while Present (Intf) loop
14944 T := Find_Type_Of_Subtype_Indic (Intf);
14945
14946 if not Is_Interface (T) then
14947 Diagnose_Interface (Intf, T);
14948
14949 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14950 -- a limited type from having a nonlimited progenitor.
14951
14952 elsif (Limited_Present (Def)
14953 or else (not Is_Interface (Parent_Type)
14954 and then Is_Limited_Type (Parent_Type)))
14955 and then not Is_Limited_Interface (T)
14956 then
14957 Error_Msg_NE
14958 ("progenitor interface& of limited type must be limited",
14959 N, T);
14960 end if;
14961
14962 Next (Intf);
14963 end loop;
14964 end;
14965 end if;
14966
14967 if Parent_Type = Any_Type
14968 or else Etype (Parent_Type) = Any_Type
14969 or else (Is_Class_Wide_Type (Parent_Type)
14970 and then Etype (Parent_Type) = T)
14971 then
14972 -- If Parent_Type is undefined or illegal, make new type into a
14973 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14974 -- errors. If this is a self-definition, emit error now.
14975
14976 if T = Parent_Type
14977 or else T = Etype (Parent_Type)
14978 then
14979 Error_Msg_N ("type cannot be used in its own definition", Indic);
14980 end if;
14981
14982 Set_Ekind (T, Ekind (Parent_Type));
14983 Set_Etype (T, Any_Type);
14984 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14985
14986 if Is_Tagged_Type (T)
14987 and then Is_Record_Type (T)
14988 then
14989 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14990 end if;
14991
14992 return;
14993 end if;
14994
14995 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14996 -- an interface is special because the list of interfaces in the full
14997 -- view can be given in any order. For example:
14998
14999 -- type A is interface;
15000 -- type B is interface and A;
15001 -- type D is new B with private;
15002 -- private
15003 -- type D is new A and B with null record; -- 1 --
15004
15005 -- In this case we perform the following transformation of -1-:
15006
15007 -- type D is new B and A with null record;
15008
15009 -- If the parent of the full-view covers the parent of the partial-view
15010 -- we have two possible cases:
15011
15012 -- 1) They have the same parent
15013 -- 2) The parent of the full-view implements some further interfaces
15014
15015 -- In both cases we do not need to perform the transformation. In the
15016 -- first case the source program is correct and the transformation is
15017 -- not needed; in the second case the source program does not fulfill
15018 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15019 -- later.
15020
15021 -- This transformation not only simplifies the rest of the analysis of
15022 -- this type declaration but also simplifies the correct generation of
15023 -- the object layout to the expander.
15024
15025 if In_Private_Part (Current_Scope)
15026 and then Is_Interface (Parent_Type)
15027 then
15028 declare
15029 Iface : Node_Id;
15030 Partial_View : Entity_Id;
15031 Partial_View_Parent : Entity_Id;
15032 New_Iface : Node_Id;
15033
15034 begin
15035 -- Look for the associated private type declaration
15036
15037 Partial_View := First_Entity (Current_Scope);
15038 loop
15039 exit when No (Partial_View)
15040 or else (Has_Private_Declaration (Partial_View)
15041 and then Full_View (Partial_View) = T);
15042
15043 Next_Entity (Partial_View);
15044 end loop;
15045
15046 -- If the partial view was not found then the source code has
15047 -- errors and the transformation is not needed.
15048
15049 if Present (Partial_View) then
15050 Partial_View_Parent := Etype (Partial_View);
15051
15052 -- If the parent of the full-view covers the parent of the
15053 -- partial-view we have nothing else to do.
15054
15055 if Interface_Present_In_Ancestor
15056 (Parent_Type, Partial_View_Parent)
15057 then
15058 null;
15059
15060 -- Traverse the list of interfaces of the full-view to look
15061 -- for the parent of the partial-view and perform the tree
15062 -- transformation.
15063
15064 else
15065 Iface := First (Interface_List (Def));
15066 while Present (Iface) loop
15067 if Etype (Iface) = Etype (Partial_View) then
15068 Rewrite (Subtype_Indication (Def),
15069 New_Copy (Subtype_Indication
15070 (Parent (Partial_View))));
15071
15072 New_Iface :=
15073 Make_Identifier (Sloc (N), Chars (Parent_Type));
15074 Append (New_Iface, Interface_List (Def));
15075
15076 -- Analyze the transformed code
15077
15078 Derived_Type_Declaration (T, N, Is_Completion);
15079 return;
15080 end if;
15081
15082 Next (Iface);
15083 end loop;
15084 end if;
15085 end if;
15086 end;
15087 end if;
15088
15089 -- Only composite types other than array types are allowed to have
15090 -- discriminants.
15091
15092 if Present (Discriminant_Specifications (N)) then
15093 if (Is_Elementary_Type (Parent_Type)
15094 or else Is_Array_Type (Parent_Type))
15095 and then not Error_Posted (N)
15096 then
15097 Error_Msg_N
15098 ("elementary or array type cannot have discriminants",
15099 Defining_Identifier (First (Discriminant_Specifications (N))));
15100 Set_Has_Discriminants (T, False);
15101
15102 -- The type is allowed to have discriminants
15103
15104 else
15105 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15106 end if;
15107 end if;
15108
15109 -- In Ada 83, a derived type defined in a package specification cannot
15110 -- be used for further derivation until the end of its visible part.
15111 -- Note that derivation in the private part of the package is allowed.
15112
15113 if Ada_Version = Ada_83
15114 and then Is_Derived_Type (Parent_Type)
15115 and then In_Visible_Part (Scope (Parent_Type))
15116 then
15117 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15118 Error_Msg_N
15119 ("(Ada 83): premature use of type for derivation", Indic);
15120 end if;
15121 end if;
15122
15123 -- Check for early use of incomplete or private type
15124
15125 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15126 Error_Msg_N ("premature derivation of incomplete type", Indic);
15127 return;
15128
15129 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15130 and then not Comes_From_Generic (Parent_Type))
15131 or else Has_Private_Component (Parent_Type)
15132 then
15133 -- The ancestor type of a formal type can be incomplete, in which
15134 -- case only the operations of the partial view are available in the
15135 -- generic. Subsequent checks may be required when the full view is
15136 -- analyzed to verify that a derivation from a tagged type has an
15137 -- extension.
15138
15139 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15140 null;
15141
15142 elsif No (Underlying_Type (Parent_Type))
15143 or else Has_Private_Component (Parent_Type)
15144 then
15145 Error_Msg_N
15146 ("premature derivation of derived or private type", Indic);
15147
15148 -- Flag the type itself as being in error, this prevents some
15149 -- nasty problems with subsequent uses of the malformed type.
15150
15151 Set_Error_Posted (T);
15152
15153 -- Check that within the immediate scope of an untagged partial
15154 -- view it's illegal to derive from the partial view if the
15155 -- full view is tagged. (7.3(7))
15156
15157 -- We verify that the Parent_Type is a partial view by checking
15158 -- that it is not a Full_Type_Declaration (i.e. a private type or
15159 -- private extension declaration), to distinguish a partial view
15160 -- from a derivation from a private type which also appears as
15161 -- E_Private_Type. If the parent base type is not declared in an
15162 -- enclosing scope there is no need to check.
15163
15164 elsif Present (Full_View (Parent_Type))
15165 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15166 and then not Is_Tagged_Type (Parent_Type)
15167 and then Is_Tagged_Type (Full_View (Parent_Type))
15168 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15169 then
15170 Error_Msg_N
15171 ("premature derivation from type with tagged full view",
15172 Indic);
15173 end if;
15174 end if;
15175
15176 -- Check that form of derivation is appropriate
15177
15178 Taggd := Is_Tagged_Type (Parent_Type);
15179
15180 -- Perhaps the parent type should be changed to the class-wide type's
15181 -- specific type in this case to prevent cascading errors ???
15182
15183 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15184 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15185 return;
15186 end if;
15187
15188 if Present (Extension) and then not Taggd then
15189 Error_Msg_N
15190 ("type derived from untagged type cannot have extension", Indic);
15191
15192 elsif No (Extension) and then Taggd then
15193
15194 -- If this declaration is within a private part (or body) of a
15195 -- generic instantiation then the derivation is allowed (the parent
15196 -- type can only appear tagged in this case if it's a generic actual
15197 -- type, since it would otherwise have been rejected in the analysis
15198 -- of the generic template).
15199
15200 if not Is_Generic_Actual_Type (Parent_Type)
15201 or else In_Visible_Part (Scope (Parent_Type))
15202 then
15203 if Is_Class_Wide_Type (Parent_Type) then
15204 Error_Msg_N
15205 ("parent type must not be a class-wide type", Indic);
15206
15207 -- Use specific type to prevent cascaded errors.
15208
15209 Parent_Type := Etype (Parent_Type);
15210
15211 else
15212 Error_Msg_N
15213 ("type derived from tagged type must have extension", Indic);
15214 end if;
15215 end if;
15216 end if;
15217
15218 -- AI-443: Synchronized formal derived types require a private
15219 -- extension. There is no point in checking the ancestor type or
15220 -- the progenitors since the construct is wrong to begin with.
15221
15222 if Ada_Version >= Ada_2005
15223 and then Is_Generic_Type (T)
15224 and then Present (Original_Node (N))
15225 then
15226 declare
15227 Decl : constant Node_Id := Original_Node (N);
15228
15229 begin
15230 if Nkind (Decl) = N_Formal_Type_Declaration
15231 and then Nkind (Formal_Type_Definition (Decl)) =
15232 N_Formal_Derived_Type_Definition
15233 and then Synchronized_Present (Formal_Type_Definition (Decl))
15234 and then No (Extension)
15235
15236 -- Avoid emitting a duplicate error message
15237
15238 and then not Error_Posted (Indic)
15239 then
15240 Error_Msg_N
15241 ("synchronized derived type must have extension", N);
15242 end if;
15243 end;
15244 end if;
15245
15246 if Null_Exclusion_Present (Def)
15247 and then not Is_Access_Type (Parent_Type)
15248 then
15249 Error_Msg_N ("null exclusion can only apply to an access type", N);
15250 end if;
15251
15252 -- Avoid deriving parent primitives of underlying record views
15253
15254 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15255 Derive_Subps => not Is_Underlying_Record_View (T));
15256
15257 -- AI-419: The parent type of an explicitly limited derived type must
15258 -- be a limited type or a limited interface.
15259
15260 if Limited_Present (Def) then
15261 Set_Is_Limited_Record (T);
15262
15263 if Is_Interface (T) then
15264 Set_Is_Limited_Interface (T);
15265 end if;
15266
15267 if not Is_Limited_Type (Parent_Type)
15268 and then
15269 (not Is_Interface (Parent_Type)
15270 or else not Is_Limited_Interface (Parent_Type))
15271 then
15272 -- AI05-0096: a derivation in the private part of an instance is
15273 -- legal if the generic formal is untagged limited, and the actual
15274 -- is non-limited.
15275
15276 if Is_Generic_Actual_Type (Parent_Type)
15277 and then In_Private_Part (Current_Scope)
15278 and then
15279 not Is_Tagged_Type
15280 (Generic_Parent_Type (Parent (Parent_Type)))
15281 then
15282 null;
15283
15284 else
15285 Error_Msg_NE
15286 ("parent type& of limited type must be limited",
15287 N, Parent_Type);
15288 end if;
15289 end if;
15290 end if;
15291
15292 -- In SPARK, there are no derived type definitions other than type
15293 -- extensions of tagged record types.
15294
15295 if No (Extension) then
15296 Check_SPARK_05_Restriction
15297 ("derived type is not allowed", Original_Node (N));
15298 end if;
15299 end Derived_Type_Declaration;
15300
15301 ------------------------
15302 -- Diagnose_Interface --
15303 ------------------------
15304
15305 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15306 begin
15307 if not Is_Interface (E)
15308 and then E /= Any_Type
15309 then
15310 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15311 end if;
15312 end Diagnose_Interface;
15313
15314 ----------------------------------
15315 -- Enumeration_Type_Declaration --
15316 ----------------------------------
15317
15318 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15319 Ev : Uint;
15320 L : Node_Id;
15321 R_Node : Node_Id;
15322 B_Node : Node_Id;
15323
15324 begin
15325 -- Create identifier node representing lower bound
15326
15327 B_Node := New_Node (N_Identifier, Sloc (Def));
15328 L := First (Literals (Def));
15329 Set_Chars (B_Node, Chars (L));
15330 Set_Entity (B_Node, L);
15331 Set_Etype (B_Node, T);
15332 Set_Is_Static_Expression (B_Node, True);
15333
15334 R_Node := New_Node (N_Range, Sloc (Def));
15335 Set_Low_Bound (R_Node, B_Node);
15336
15337 Set_Ekind (T, E_Enumeration_Type);
15338 Set_First_Literal (T, L);
15339 Set_Etype (T, T);
15340 Set_Is_Constrained (T);
15341
15342 Ev := Uint_0;
15343
15344 -- Loop through literals of enumeration type setting pos and rep values
15345 -- except that if the Ekind is already set, then it means the literal
15346 -- was already constructed (case of a derived type declaration and we
15347 -- should not disturb the Pos and Rep values.
15348
15349 while Present (L) loop
15350 if Ekind (L) /= E_Enumeration_Literal then
15351 Set_Ekind (L, E_Enumeration_Literal);
15352 Set_Enumeration_Pos (L, Ev);
15353 Set_Enumeration_Rep (L, Ev);
15354 Set_Is_Known_Valid (L, True);
15355 end if;
15356
15357 Set_Etype (L, T);
15358 New_Overloaded_Entity (L);
15359 Generate_Definition (L);
15360 Set_Convention (L, Convention_Intrinsic);
15361
15362 -- Case of character literal
15363
15364 if Nkind (L) = N_Defining_Character_Literal then
15365 Set_Is_Character_Type (T, True);
15366
15367 -- Check violation of No_Wide_Characters
15368
15369 if Restriction_Check_Required (No_Wide_Characters) then
15370 Get_Name_String (Chars (L));
15371
15372 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15373 Check_Restriction (No_Wide_Characters, L);
15374 end if;
15375 end if;
15376 end if;
15377
15378 Ev := Ev + 1;
15379 Next (L);
15380 end loop;
15381
15382 -- Now create a node representing upper bound
15383
15384 B_Node := New_Node (N_Identifier, Sloc (Def));
15385 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15386 Set_Entity (B_Node, Last (Literals (Def)));
15387 Set_Etype (B_Node, T);
15388 Set_Is_Static_Expression (B_Node, True);
15389
15390 Set_High_Bound (R_Node, B_Node);
15391
15392 -- Initialize various fields of the type. Some of this information
15393 -- may be overwritten later through rep.clauses.
15394
15395 Set_Scalar_Range (T, R_Node);
15396 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15397 Set_Enum_Esize (T);
15398 Set_Enum_Pos_To_Rep (T, Empty);
15399
15400 -- Set Discard_Names if configuration pragma set, or if there is
15401 -- a parameterless pragma in the current declarative region
15402
15403 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15404 Set_Discard_Names (T);
15405 end if;
15406
15407 -- Process end label if there is one
15408
15409 if Present (Def) then
15410 Process_End_Label (Def, 'e', T);
15411 end if;
15412 end Enumeration_Type_Declaration;
15413
15414 ---------------------------------
15415 -- Expand_To_Stored_Constraint --
15416 ---------------------------------
15417
15418 function Expand_To_Stored_Constraint
15419 (Typ : Entity_Id;
15420 Constraint : Elist_Id) return Elist_Id
15421 is
15422 Explicitly_Discriminated_Type : Entity_Id;
15423 Expansion : Elist_Id;
15424 Discriminant : Entity_Id;
15425
15426 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15427 -- Find the nearest type that actually specifies discriminants
15428
15429 ---------------------------------
15430 -- Type_With_Explicit_Discrims --
15431 ---------------------------------
15432
15433 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15434 Typ : constant E := Base_Type (Id);
15435
15436 begin
15437 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15438 if Present (Full_View (Typ)) then
15439 return Type_With_Explicit_Discrims (Full_View (Typ));
15440 end if;
15441
15442 else
15443 if Has_Discriminants (Typ) then
15444 return Typ;
15445 end if;
15446 end if;
15447
15448 if Etype (Typ) = Typ then
15449 return Empty;
15450 elsif Has_Discriminants (Typ) then
15451 return Typ;
15452 else
15453 return Type_With_Explicit_Discrims (Etype (Typ));
15454 end if;
15455
15456 end Type_With_Explicit_Discrims;
15457
15458 -- Start of processing for Expand_To_Stored_Constraint
15459
15460 begin
15461 if No (Constraint)
15462 or else Is_Empty_Elmt_List (Constraint)
15463 then
15464 return No_Elist;
15465 end if;
15466
15467 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15468
15469 if No (Explicitly_Discriminated_Type) then
15470 return No_Elist;
15471 end if;
15472
15473 Expansion := New_Elmt_List;
15474
15475 Discriminant :=
15476 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15477 while Present (Discriminant) loop
15478 Append_Elmt
15479 (Get_Discriminant_Value
15480 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15481 To => Expansion);
15482 Next_Stored_Discriminant (Discriminant);
15483 end loop;
15484
15485 return Expansion;
15486 end Expand_To_Stored_Constraint;
15487
15488 ---------------------------
15489 -- Find_Hidden_Interface --
15490 ---------------------------
15491
15492 function Find_Hidden_Interface
15493 (Src : Elist_Id;
15494 Dest : Elist_Id) return Entity_Id
15495 is
15496 Iface : Entity_Id;
15497 Iface_Elmt : Elmt_Id;
15498
15499 begin
15500 if Present (Src) and then Present (Dest) then
15501 Iface_Elmt := First_Elmt (Src);
15502 while Present (Iface_Elmt) loop
15503 Iface := Node (Iface_Elmt);
15504
15505 if Is_Interface (Iface)
15506 and then not Contain_Interface (Iface, Dest)
15507 then
15508 return Iface;
15509 end if;
15510
15511 Next_Elmt (Iface_Elmt);
15512 end loop;
15513 end if;
15514
15515 return Empty;
15516 end Find_Hidden_Interface;
15517
15518 --------------------
15519 -- Find_Type_Name --
15520 --------------------
15521
15522 function Find_Type_Name (N : Node_Id) return Entity_Id is
15523 Id : constant Entity_Id := Defining_Identifier (N);
15524 Prev : Entity_Id;
15525 New_Id : Entity_Id;
15526 Prev_Par : Node_Id;
15527
15528 procedure Check_Duplicate_Aspects;
15529 -- Check that aspects specified in a completion have not been specified
15530 -- already in the partial view. Type_Invariant and others can be
15531 -- specified on either view but never on both.
15532
15533 procedure Tag_Mismatch;
15534 -- Diagnose a tagged partial view whose full view is untagged.
15535 -- We post the message on the full view, with a reference to
15536 -- the previous partial view. The partial view can be private
15537 -- or incomplete, and these are handled in a different manner,
15538 -- so we determine the position of the error message from the
15539 -- respective slocs of both.
15540
15541 -----------------------------
15542 -- Check_Duplicate_Aspects --
15543 -----------------------------
15544 procedure Check_Duplicate_Aspects is
15545 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15546 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15547 F_Spec, P_Spec : Node_Id;
15548
15549 begin
15550 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15551 F_Spec := First (Full_Aspects);
15552 while Present (F_Spec) loop
15553 P_Spec := First (Prev_Aspects);
15554 while Present (P_Spec) loop
15555 if
15556 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15557 then
15558 Error_Msg_N
15559 ("aspect already specified in private declaration",
15560 F_Spec);
15561 Remove (F_Spec);
15562 return;
15563 end if;
15564
15565 Next (P_Spec);
15566 end loop;
15567
15568 Next (F_Spec);
15569 end loop;
15570 end if;
15571 end Check_Duplicate_Aspects;
15572
15573 ------------------
15574 -- Tag_Mismatch --
15575 ------------------
15576
15577 procedure Tag_Mismatch is
15578 begin
15579 if Sloc (Prev) < Sloc (Id) then
15580 if Ada_Version >= Ada_2012
15581 and then Nkind (N) = N_Private_Type_Declaration
15582 then
15583 Error_Msg_NE
15584 ("declaration of private } must be a tagged type ", Id, Prev);
15585 else
15586 Error_Msg_NE
15587 ("full declaration of } must be a tagged type ", Id, Prev);
15588 end if;
15589
15590 else
15591 if Ada_Version >= Ada_2012
15592 and then Nkind (N) = N_Private_Type_Declaration
15593 then
15594 Error_Msg_NE
15595 ("declaration of private } must be a tagged type ", Prev, Id);
15596 else
15597 Error_Msg_NE
15598 ("full declaration of } must be a tagged type ", Prev, Id);
15599 end if;
15600 end if;
15601 end Tag_Mismatch;
15602
15603 -- Start of processing for Find_Type_Name
15604
15605 begin
15606 -- Find incomplete declaration, if one was given
15607
15608 Prev := Current_Entity_In_Scope (Id);
15609
15610 -- New type declaration
15611
15612 if No (Prev) then
15613 Enter_Name (Id);
15614 return Id;
15615
15616 -- Previous declaration exists
15617
15618 else
15619 Prev_Par := Parent (Prev);
15620
15621 -- Error if not incomplete/private case except if previous
15622 -- declaration is implicit, etc. Enter_Name will emit error if
15623 -- appropriate.
15624
15625 if not Is_Incomplete_Or_Private_Type (Prev) then
15626 Enter_Name (Id);
15627 New_Id := Id;
15628
15629 -- Check invalid completion of private or incomplete type
15630
15631 elsif not Nkind_In (N, N_Full_Type_Declaration,
15632 N_Task_Type_Declaration,
15633 N_Protected_Type_Declaration)
15634 and then
15635 (Ada_Version < Ada_2012
15636 or else not Is_Incomplete_Type (Prev)
15637 or else not Nkind_In (N, N_Private_Type_Declaration,
15638 N_Private_Extension_Declaration))
15639 then
15640 -- Completion must be a full type declarations (RM 7.3(4))
15641
15642 Error_Msg_Sloc := Sloc (Prev);
15643 Error_Msg_NE ("invalid completion of }", Id, Prev);
15644
15645 -- Set scope of Id to avoid cascaded errors. Entity is never
15646 -- examined again, except when saving globals in generics.
15647
15648 Set_Scope (Id, Current_Scope);
15649 New_Id := Id;
15650
15651 -- If this is a repeated incomplete declaration, no further
15652 -- checks are possible.
15653
15654 if Nkind (N) = N_Incomplete_Type_Declaration then
15655 return Prev;
15656 end if;
15657
15658 -- Case of full declaration of incomplete type
15659
15660 elsif Ekind (Prev) = E_Incomplete_Type
15661 and then (Ada_Version < Ada_2012
15662 or else No (Full_View (Prev))
15663 or else not Is_Private_Type (Full_View (Prev)))
15664 then
15665 -- Indicate that the incomplete declaration has a matching full
15666 -- declaration. The defining occurrence of the incomplete
15667 -- declaration remains the visible one, and the procedure
15668 -- Get_Full_View dereferences it whenever the type is used.
15669
15670 if Present (Full_View (Prev)) then
15671 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15672 end if;
15673
15674 Set_Full_View (Prev, Id);
15675 Append_Entity (Id, Current_Scope);
15676 Set_Is_Public (Id, Is_Public (Prev));
15677 Set_Is_Internal (Id);
15678 New_Id := Prev;
15679
15680 -- If the incomplete view is tagged, a class_wide type has been
15681 -- created already. Use it for the private type as well, in order
15682 -- to prevent multiple incompatible class-wide types that may be
15683 -- created for self-referential anonymous access components.
15684
15685 if Is_Tagged_Type (Prev)
15686 and then Present (Class_Wide_Type (Prev))
15687 then
15688 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15689 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15690
15691 -- If the incomplete type is completed by a private declaration
15692 -- the class-wide type remains associated with the incomplete
15693 -- type, to prevent order-of-elaboration issues in gigi, else
15694 -- we associate the class-wide type with the known full view.
15695
15696 if Nkind (N) /= N_Private_Type_Declaration then
15697 Set_Etype (Class_Wide_Type (Id), Id);
15698 end if;
15699 end if;
15700
15701 -- Case of full declaration of private type
15702
15703 else
15704 -- If the private type was a completion of an incomplete type then
15705 -- update Prev to reference the private type
15706
15707 if Ada_Version >= Ada_2012
15708 and then Ekind (Prev) = E_Incomplete_Type
15709 and then Present (Full_View (Prev))
15710 and then Is_Private_Type (Full_View (Prev))
15711 then
15712 Prev := Full_View (Prev);
15713 Prev_Par := Parent (Prev);
15714 end if;
15715
15716 if Nkind (N) = N_Full_Type_Declaration
15717 and then Nkind_In
15718 (Type_Definition (N), N_Record_Definition,
15719 N_Derived_Type_Definition)
15720 and then Interface_Present (Type_Definition (N))
15721 then
15722 Error_Msg_N
15723 ("completion of private type cannot be an interface", N);
15724 end if;
15725
15726 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15727 if Etype (Prev) /= Prev then
15728
15729 -- Prev is a private subtype or a derived type, and needs
15730 -- no completion.
15731
15732 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15733 New_Id := Id;
15734
15735 elsif Ekind (Prev) = E_Private_Type
15736 and then Nkind_In (N, N_Task_Type_Declaration,
15737 N_Protected_Type_Declaration)
15738 then
15739 Error_Msg_N
15740 ("completion of nonlimited type cannot be limited", N);
15741
15742 elsif Ekind (Prev) = E_Record_Type_With_Private
15743 and then Nkind_In (N, N_Task_Type_Declaration,
15744 N_Protected_Type_Declaration)
15745 then
15746 if not Is_Limited_Record (Prev) then
15747 Error_Msg_N
15748 ("completion of nonlimited type cannot be limited", N);
15749
15750 elsif No (Interface_List (N)) then
15751 Error_Msg_N
15752 ("completion of tagged private type must be tagged",
15753 N);
15754 end if;
15755 end if;
15756
15757 -- Ada 2005 (AI-251): Private extension declaration of a task
15758 -- type or a protected type. This case arises when covering
15759 -- interface types.
15760
15761 elsif Nkind_In (N, N_Task_Type_Declaration,
15762 N_Protected_Type_Declaration)
15763 then
15764 null;
15765
15766 elsif Nkind (N) /= N_Full_Type_Declaration
15767 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15768 then
15769 Error_Msg_N
15770 ("full view of private extension must be an extension", N);
15771
15772 elsif not (Abstract_Present (Parent (Prev)))
15773 and then Abstract_Present (Type_Definition (N))
15774 then
15775 Error_Msg_N
15776 ("full view of non-abstract extension cannot be abstract", N);
15777 end if;
15778
15779 if not In_Private_Part (Current_Scope) then
15780 Error_Msg_N
15781 ("declaration of full view must appear in private part", N);
15782 end if;
15783
15784 if Ada_Version >= Ada_2012 then
15785 Check_Duplicate_Aspects;
15786 end if;
15787
15788 Copy_And_Swap (Prev, Id);
15789 Set_Has_Private_Declaration (Prev);
15790 Set_Has_Private_Declaration (Id);
15791
15792 -- Preserve aspect and iterator flags that may have been set on
15793 -- the partial view.
15794
15795 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15796 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15797
15798 -- If no error, propagate freeze_node from private to full view.
15799 -- It may have been generated for an early operational item.
15800
15801 if Present (Freeze_Node (Id))
15802 and then Serious_Errors_Detected = 0
15803 and then No (Full_View (Id))
15804 then
15805 Set_Freeze_Node (Prev, Freeze_Node (Id));
15806 Set_Freeze_Node (Id, Empty);
15807 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15808 end if;
15809
15810 Set_Full_View (Id, Prev);
15811 New_Id := Prev;
15812 end if;
15813
15814 -- Verify that full declaration conforms to partial one
15815
15816 if Is_Incomplete_Or_Private_Type (Prev)
15817 and then Present (Discriminant_Specifications (Prev_Par))
15818 then
15819 if Present (Discriminant_Specifications (N)) then
15820 if Ekind (Prev) = E_Incomplete_Type then
15821 Check_Discriminant_Conformance (N, Prev, Prev);
15822 else
15823 Check_Discriminant_Conformance (N, Prev, Id);
15824 end if;
15825
15826 else
15827 Error_Msg_N
15828 ("missing discriminants in full type declaration", N);
15829
15830 -- To avoid cascaded errors on subsequent use, share the
15831 -- discriminants of the partial view.
15832
15833 Set_Discriminant_Specifications (N,
15834 Discriminant_Specifications (Prev_Par));
15835 end if;
15836 end if;
15837
15838 -- A prior untagged partial view can have an associated class-wide
15839 -- type due to use of the class attribute, and in this case the full
15840 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15841 -- of incomplete tagged declarations, but we check for it.
15842
15843 if Is_Type (Prev)
15844 and then (Is_Tagged_Type (Prev)
15845 or else Present (Class_Wide_Type (Prev)))
15846 then
15847 -- Ada 2012 (AI05-0162): A private type may be the completion of
15848 -- an incomplete type.
15849
15850 if Ada_Version >= Ada_2012
15851 and then Is_Incomplete_Type (Prev)
15852 and then Nkind_In (N, N_Private_Type_Declaration,
15853 N_Private_Extension_Declaration)
15854 then
15855 -- No need to check private extensions since they are tagged
15856
15857 if Nkind (N) = N_Private_Type_Declaration
15858 and then not Tagged_Present (N)
15859 then
15860 Tag_Mismatch;
15861 end if;
15862
15863 -- The full declaration is either a tagged type (including
15864 -- a synchronized type that implements interfaces) or a
15865 -- type extension, otherwise this is an error.
15866
15867 elsif Nkind_In (N, N_Task_Type_Declaration,
15868 N_Protected_Type_Declaration)
15869 then
15870 if No (Interface_List (N))
15871 and then not Error_Posted (N)
15872 then
15873 Tag_Mismatch;
15874 end if;
15875
15876 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15877
15878 -- Indicate that the previous declaration (tagged incomplete
15879 -- or private declaration) requires the same on the full one.
15880
15881 if not Tagged_Present (Type_Definition (N)) then
15882 Tag_Mismatch;
15883 Set_Is_Tagged_Type (Id);
15884 end if;
15885
15886 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15887 if No (Record_Extension_Part (Type_Definition (N))) then
15888 Error_Msg_NE
15889 ("full declaration of } must be a record extension",
15890 Prev, Id);
15891
15892 -- Set some attributes to produce a usable full view
15893
15894 Set_Is_Tagged_Type (Id);
15895 end if;
15896
15897 else
15898 Tag_Mismatch;
15899 end if;
15900 end if;
15901
15902 if Present (Prev)
15903 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15904 and then Present (Premature_Use (Parent (Prev)))
15905 then
15906 Error_Msg_Sloc := Sloc (N);
15907 Error_Msg_N
15908 ("\full declaration #", Premature_Use (Parent (Prev)));
15909 end if;
15910
15911 return New_Id;
15912 end if;
15913 end Find_Type_Name;
15914
15915 -------------------------
15916 -- Find_Type_Of_Object --
15917 -------------------------
15918
15919 function Find_Type_Of_Object
15920 (Obj_Def : Node_Id;
15921 Related_Nod : Node_Id) return Entity_Id
15922 is
15923 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15924 P : Node_Id := Parent (Obj_Def);
15925 T : Entity_Id;
15926 Nam : Name_Id;
15927
15928 begin
15929 -- If the parent is a component_definition node we climb to the
15930 -- component_declaration node
15931
15932 if Nkind (P) = N_Component_Definition then
15933 P := Parent (P);
15934 end if;
15935
15936 -- Case of an anonymous array subtype
15937
15938 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15939 N_Unconstrained_Array_Definition)
15940 then
15941 T := Empty;
15942 Array_Type_Declaration (T, Obj_Def);
15943
15944 -- Create an explicit subtype whenever possible
15945
15946 elsif Nkind (P) /= N_Component_Declaration
15947 and then Def_Kind = N_Subtype_Indication
15948 then
15949 -- Base name of subtype on object name, which will be unique in
15950 -- the current scope.
15951
15952 -- If this is a duplicate declaration, return base type, to avoid
15953 -- generating duplicate anonymous types.
15954
15955 if Error_Posted (P) then
15956 Analyze (Subtype_Mark (Obj_Def));
15957 return Entity (Subtype_Mark (Obj_Def));
15958 end if;
15959
15960 Nam :=
15961 New_External_Name
15962 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15963
15964 T := Make_Defining_Identifier (Sloc (P), Nam);
15965
15966 Insert_Action (Obj_Def,
15967 Make_Subtype_Declaration (Sloc (P),
15968 Defining_Identifier => T,
15969 Subtype_Indication => Relocate_Node (Obj_Def)));
15970
15971 -- This subtype may need freezing, and this will not be done
15972 -- automatically if the object declaration is not in declarative
15973 -- part. Since this is an object declaration, the type cannot always
15974 -- be frozen here. Deferred constants do not freeze their type
15975 -- (which often enough will be private).
15976
15977 if Nkind (P) = N_Object_Declaration
15978 and then Constant_Present (P)
15979 and then No (Expression (P))
15980 then
15981 null;
15982
15983 -- Here we freeze the base type of object type to catch premature use
15984 -- of discriminated private type without a full view.
15985
15986 else
15987 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15988 end if;
15989
15990 -- Ada 2005 AI-406: the object definition in an object declaration
15991 -- can be an access definition.
15992
15993 elsif Def_Kind = N_Access_Definition then
15994 T := Access_Definition (Related_Nod, Obj_Def);
15995
15996 Set_Is_Local_Anonymous_Access
15997 (T,
15998 V => (Ada_Version < Ada_2012)
15999 or else (Nkind (P) /= N_Object_Declaration)
16000 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16001
16002 -- Otherwise, the object definition is just a subtype_mark
16003
16004 else
16005 T := Process_Subtype (Obj_Def, Related_Nod);
16006
16007 -- If expansion is disabled an object definition that is an aggregate
16008 -- will not get expanded and may lead to scoping problems in the back
16009 -- end, if the object is referenced in an inner scope. In that case
16010 -- create an itype reference for the object definition now. This
16011 -- may be redundant in some cases, but harmless.
16012
16013 if Is_Itype (T)
16014 and then Nkind (Related_Nod) = N_Object_Declaration
16015 and then ASIS_Mode
16016 then
16017 Build_Itype_Reference (T, Related_Nod);
16018 end if;
16019 end if;
16020
16021 return T;
16022 end Find_Type_Of_Object;
16023
16024 --------------------------------
16025 -- Find_Type_Of_Subtype_Indic --
16026 --------------------------------
16027
16028 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16029 Typ : Entity_Id;
16030
16031 begin
16032 -- Case of subtype mark with a constraint
16033
16034 if Nkind (S) = N_Subtype_Indication then
16035 Find_Type (Subtype_Mark (S));
16036 Typ := Entity (Subtype_Mark (S));
16037
16038 if not
16039 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16040 then
16041 Error_Msg_N
16042 ("incorrect constraint for this kind of type", Constraint (S));
16043 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16044 end if;
16045
16046 -- Otherwise we have a subtype mark without a constraint
16047
16048 elsif Error_Posted (S) then
16049 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16050 return Any_Type;
16051
16052 else
16053 Find_Type (S);
16054 Typ := Entity (S);
16055 end if;
16056
16057 -- Check No_Wide_Characters restriction
16058
16059 Check_Wide_Character_Restriction (Typ, S);
16060
16061 return Typ;
16062 end Find_Type_Of_Subtype_Indic;
16063
16064 -------------------------------------
16065 -- Floating_Point_Type_Declaration --
16066 -------------------------------------
16067
16068 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16069 Digs : constant Node_Id := Digits_Expression (Def);
16070 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16071 Digs_Val : Uint;
16072 Base_Typ : Entity_Id;
16073 Implicit_Base : Entity_Id;
16074 Bound : Node_Id;
16075
16076 function Can_Derive_From (E : Entity_Id) return Boolean;
16077 -- Find if given digits value, and possibly a specified range, allows
16078 -- derivation from specified type
16079
16080 function Find_Base_Type return Entity_Id;
16081 -- Find a predefined base type that Def can derive from, or generate
16082 -- an error and substitute Long_Long_Float if none exists.
16083
16084 ---------------------
16085 -- Can_Derive_From --
16086 ---------------------
16087
16088 function Can_Derive_From (E : Entity_Id) return Boolean is
16089 Spec : constant Entity_Id := Real_Range_Specification (Def);
16090
16091 begin
16092 -- Check specified "digits" constraint
16093
16094 if Digs_Val > Digits_Value (E) then
16095 return False;
16096 end if;
16097
16098 -- Check for matching range, if specified
16099
16100 if Present (Spec) then
16101 if Expr_Value_R (Type_Low_Bound (E)) >
16102 Expr_Value_R (Low_Bound (Spec))
16103 then
16104 return False;
16105 end if;
16106
16107 if Expr_Value_R (Type_High_Bound (E)) <
16108 Expr_Value_R (High_Bound (Spec))
16109 then
16110 return False;
16111 end if;
16112 end if;
16113
16114 return True;
16115 end Can_Derive_From;
16116
16117 --------------------
16118 -- Find_Base_Type --
16119 --------------------
16120
16121 function Find_Base_Type return Entity_Id is
16122 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16123
16124 begin
16125 -- Iterate over the predefined types in order, returning the first
16126 -- one that Def can derive from.
16127
16128 while Present (Choice) loop
16129 if Can_Derive_From (Node (Choice)) then
16130 return Node (Choice);
16131 end if;
16132
16133 Next_Elmt (Choice);
16134 end loop;
16135
16136 -- If we can't derive from any existing type, use Long_Long_Float
16137 -- and give appropriate message explaining the problem.
16138
16139 if Digs_Val > Max_Digs_Val then
16140 -- It might be the case that there is a type with the requested
16141 -- range, just not the combination of digits and range.
16142
16143 Error_Msg_N
16144 ("no predefined type has requested range and precision",
16145 Real_Range_Specification (Def));
16146
16147 else
16148 Error_Msg_N
16149 ("range too large for any predefined type",
16150 Real_Range_Specification (Def));
16151 end if;
16152
16153 return Standard_Long_Long_Float;
16154 end Find_Base_Type;
16155
16156 -- Start of processing for Floating_Point_Type_Declaration
16157
16158 begin
16159 Check_Restriction (No_Floating_Point, Def);
16160
16161 -- Create an implicit base type
16162
16163 Implicit_Base :=
16164 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16165
16166 -- Analyze and verify digits value
16167
16168 Analyze_And_Resolve (Digs, Any_Integer);
16169 Check_Digits_Expression (Digs);
16170 Digs_Val := Expr_Value (Digs);
16171
16172 -- Process possible range spec and find correct type to derive from
16173
16174 Process_Real_Range_Specification (Def);
16175
16176 -- Check that requested number of digits is not too high.
16177
16178 if Digs_Val > Max_Digs_Val then
16179 -- The check for Max_Base_Digits may be somewhat expensive, as it
16180 -- requires reading System, so only do it when necessary.
16181
16182 declare
16183 Max_Base_Digits : constant Uint :=
16184 Expr_Value
16185 (Expression
16186 (Parent (RTE (RE_Max_Base_Digits))));
16187
16188 begin
16189 if Digs_Val > Max_Base_Digits then
16190 Error_Msg_Uint_1 := Max_Base_Digits;
16191 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16192
16193 elsif No (Real_Range_Specification (Def)) then
16194 Error_Msg_Uint_1 := Max_Digs_Val;
16195 Error_Msg_N ("types with more than ^ digits need range spec "
16196 & "(RM 3.5.7(6))", Digs);
16197 end if;
16198 end;
16199 end if;
16200
16201 -- Find a suitable type to derive from or complain and use a substitute
16202
16203 Base_Typ := Find_Base_Type;
16204
16205 -- If there are bounds given in the declaration use them as the bounds
16206 -- of the type, otherwise use the bounds of the predefined base type
16207 -- that was chosen based on the Digits value.
16208
16209 if Present (Real_Range_Specification (Def)) then
16210 Set_Scalar_Range (T, Real_Range_Specification (Def));
16211 Set_Is_Constrained (T);
16212
16213 -- The bounds of this range must be converted to machine numbers
16214 -- in accordance with RM 4.9(38).
16215
16216 Bound := Type_Low_Bound (T);
16217
16218 if Nkind (Bound) = N_Real_Literal then
16219 Set_Realval
16220 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16221 Set_Is_Machine_Number (Bound);
16222 end if;
16223
16224 Bound := Type_High_Bound (T);
16225
16226 if Nkind (Bound) = N_Real_Literal then
16227 Set_Realval
16228 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16229 Set_Is_Machine_Number (Bound);
16230 end if;
16231
16232 else
16233 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16234 end if;
16235
16236 -- Complete definition of implicit base and declared first subtype
16237
16238 Set_Etype (Implicit_Base, Base_Typ);
16239
16240 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16241 Set_Size_Info (Implicit_Base, (Base_Typ));
16242 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16243 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16244 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16245 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16246
16247 Set_Ekind (T, E_Floating_Point_Subtype);
16248 Set_Etype (T, Implicit_Base);
16249
16250 Set_Size_Info (T, (Implicit_Base));
16251 Set_RM_Size (T, RM_Size (Implicit_Base));
16252 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16253 Set_Digits_Value (T, Digs_Val);
16254 end Floating_Point_Type_Declaration;
16255
16256 ----------------------------
16257 -- Get_Discriminant_Value --
16258 ----------------------------
16259
16260 -- This is the situation:
16261
16262 -- There is a non-derived type
16263
16264 -- type T0 (Dx, Dy, Dz...)
16265
16266 -- There are zero or more levels of derivation, with each derivation
16267 -- either purely inheriting the discriminants, or defining its own.
16268
16269 -- type Ti is new Ti-1
16270 -- or
16271 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16272 -- or
16273 -- subtype Ti is ...
16274
16275 -- The subtype issue is avoided by the use of Original_Record_Component,
16276 -- and the fact that derived subtypes also derive the constraints.
16277
16278 -- This chain leads back from
16279
16280 -- Typ_For_Constraint
16281
16282 -- Typ_For_Constraint has discriminants, and the value for each
16283 -- discriminant is given by its corresponding Elmt of Constraints.
16284
16285 -- Discriminant is some discriminant in this hierarchy
16286
16287 -- We need to return its value
16288
16289 -- We do this by recursively searching each level, and looking for
16290 -- Discriminant. Once we get to the bottom, we start backing up
16291 -- returning the value for it which may in turn be a discriminant
16292 -- further up, so on the backup we continue the substitution.
16293
16294 function Get_Discriminant_Value
16295 (Discriminant : Entity_Id;
16296 Typ_For_Constraint : Entity_Id;
16297 Constraint : Elist_Id) return Node_Id
16298 is
16299 function Root_Corresponding_Discriminant
16300 (Discr : Entity_Id) return Entity_Id;
16301 -- Given a discriminant, traverse the chain of inherited discriminants
16302 -- and return the topmost discriminant.
16303
16304 function Search_Derivation_Levels
16305 (Ti : Entity_Id;
16306 Discrim_Values : Elist_Id;
16307 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16308 -- This is the routine that performs the recursive search of levels
16309 -- as described above.
16310
16311 -------------------------------------
16312 -- Root_Corresponding_Discriminant --
16313 -------------------------------------
16314
16315 function Root_Corresponding_Discriminant
16316 (Discr : Entity_Id) return Entity_Id
16317 is
16318 D : Entity_Id;
16319
16320 begin
16321 D := Discr;
16322 while Present (Corresponding_Discriminant (D)) loop
16323 D := Corresponding_Discriminant (D);
16324 end loop;
16325
16326 return D;
16327 end Root_Corresponding_Discriminant;
16328
16329 ------------------------------
16330 -- Search_Derivation_Levels --
16331 ------------------------------
16332
16333 function Search_Derivation_Levels
16334 (Ti : Entity_Id;
16335 Discrim_Values : Elist_Id;
16336 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16337 is
16338 Assoc : Elmt_Id;
16339 Disc : Entity_Id;
16340 Result : Node_Or_Entity_Id;
16341 Result_Entity : Node_Id;
16342
16343 begin
16344 -- If inappropriate type, return Error, this happens only in
16345 -- cascaded error situations, and we want to avoid a blow up.
16346
16347 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16348 return Error;
16349 end if;
16350
16351 -- Look deeper if possible. Use Stored_Constraints only for
16352 -- untagged types. For tagged types use the given constraint.
16353 -- This asymmetry needs explanation???
16354
16355 if not Stored_Discrim_Values
16356 and then Present (Stored_Constraint (Ti))
16357 and then not Is_Tagged_Type (Ti)
16358 then
16359 Result :=
16360 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16361 else
16362 declare
16363 Td : constant Entity_Id := Etype (Ti);
16364
16365 begin
16366 if Td = Ti then
16367 Result := Discriminant;
16368
16369 else
16370 if Present (Stored_Constraint (Ti)) then
16371 Result :=
16372 Search_Derivation_Levels
16373 (Td, Stored_Constraint (Ti), True);
16374 else
16375 Result :=
16376 Search_Derivation_Levels
16377 (Td, Discrim_Values, Stored_Discrim_Values);
16378 end if;
16379 end if;
16380 end;
16381 end if;
16382
16383 -- Extra underlying places to search, if not found above. For
16384 -- concurrent types, the relevant discriminant appears in the
16385 -- corresponding record. For a type derived from a private type
16386 -- without discriminant, the full view inherits the discriminants
16387 -- of the full view of the parent.
16388
16389 if Result = Discriminant then
16390 if Is_Concurrent_Type (Ti)
16391 and then Present (Corresponding_Record_Type (Ti))
16392 then
16393 Result :=
16394 Search_Derivation_Levels (
16395 Corresponding_Record_Type (Ti),
16396 Discrim_Values,
16397 Stored_Discrim_Values);
16398
16399 elsif Is_Private_Type (Ti)
16400 and then not Has_Discriminants (Ti)
16401 and then Present (Full_View (Ti))
16402 and then Etype (Full_View (Ti)) /= Ti
16403 then
16404 Result :=
16405 Search_Derivation_Levels (
16406 Full_View (Ti),
16407 Discrim_Values,
16408 Stored_Discrim_Values);
16409 end if;
16410 end if;
16411
16412 -- If Result is not a (reference to a) discriminant, return it,
16413 -- otherwise set Result_Entity to the discriminant.
16414
16415 if Nkind (Result) = N_Defining_Identifier then
16416 pragma Assert (Result = Discriminant);
16417 Result_Entity := Result;
16418
16419 else
16420 if not Denotes_Discriminant (Result) then
16421 return Result;
16422 end if;
16423
16424 Result_Entity := Entity (Result);
16425 end if;
16426
16427 -- See if this level of derivation actually has discriminants
16428 -- because tagged derivations can add them, hence the lower
16429 -- levels need not have any.
16430
16431 if not Has_Discriminants (Ti) then
16432 return Result;
16433 end if;
16434
16435 -- Scan Ti's discriminants for Result_Entity,
16436 -- and return its corresponding value, if any.
16437
16438 Result_Entity := Original_Record_Component (Result_Entity);
16439
16440 Assoc := First_Elmt (Discrim_Values);
16441
16442 if Stored_Discrim_Values then
16443 Disc := First_Stored_Discriminant (Ti);
16444 else
16445 Disc := First_Discriminant (Ti);
16446 end if;
16447
16448 while Present (Disc) loop
16449 pragma Assert (Present (Assoc));
16450
16451 if Original_Record_Component (Disc) = Result_Entity then
16452 return Node (Assoc);
16453 end if;
16454
16455 Next_Elmt (Assoc);
16456
16457 if Stored_Discrim_Values then
16458 Next_Stored_Discriminant (Disc);
16459 else
16460 Next_Discriminant (Disc);
16461 end if;
16462 end loop;
16463
16464 -- Could not find it
16465 --
16466 return Result;
16467 end Search_Derivation_Levels;
16468
16469 -- Local Variables
16470
16471 Result : Node_Or_Entity_Id;
16472
16473 -- Start of processing for Get_Discriminant_Value
16474
16475 begin
16476 -- ??? This routine is a gigantic mess and will be deleted. For the
16477 -- time being just test for the trivial case before calling recurse.
16478
16479 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16480 declare
16481 D : Entity_Id;
16482 E : Elmt_Id;
16483
16484 begin
16485 D := First_Discriminant (Typ_For_Constraint);
16486 E := First_Elmt (Constraint);
16487 while Present (D) loop
16488 if Chars (D) = Chars (Discriminant) then
16489 return Node (E);
16490 end if;
16491
16492 Next_Discriminant (D);
16493 Next_Elmt (E);
16494 end loop;
16495 end;
16496 end if;
16497
16498 Result := Search_Derivation_Levels
16499 (Typ_For_Constraint, Constraint, False);
16500
16501 -- ??? hack to disappear when this routine is gone
16502
16503 if Nkind (Result) = N_Defining_Identifier then
16504 declare
16505 D : Entity_Id;
16506 E : Elmt_Id;
16507
16508 begin
16509 D := First_Discriminant (Typ_For_Constraint);
16510 E := First_Elmt (Constraint);
16511 while Present (D) loop
16512 if Root_Corresponding_Discriminant (D) = Discriminant then
16513 return Node (E);
16514 end if;
16515
16516 Next_Discriminant (D);
16517 Next_Elmt (E);
16518 end loop;
16519 end;
16520 end if;
16521
16522 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16523 return Result;
16524 end Get_Discriminant_Value;
16525
16526 --------------------------
16527 -- Has_Range_Constraint --
16528 --------------------------
16529
16530 function Has_Range_Constraint (N : Node_Id) return Boolean is
16531 C : constant Node_Id := Constraint (N);
16532
16533 begin
16534 if Nkind (C) = N_Range_Constraint then
16535 return True;
16536
16537 elsif Nkind (C) = N_Digits_Constraint then
16538 return
16539 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16540 or else
16541 Present (Range_Constraint (C));
16542
16543 elsif Nkind (C) = N_Delta_Constraint then
16544 return Present (Range_Constraint (C));
16545
16546 else
16547 return False;
16548 end if;
16549 end Has_Range_Constraint;
16550
16551 ------------------------
16552 -- Inherit_Components --
16553 ------------------------
16554
16555 function Inherit_Components
16556 (N : Node_Id;
16557 Parent_Base : Entity_Id;
16558 Derived_Base : Entity_Id;
16559 Is_Tagged : Boolean;
16560 Inherit_Discr : Boolean;
16561 Discs : Elist_Id) return Elist_Id
16562 is
16563 Assoc_List : constant Elist_Id := New_Elmt_List;
16564
16565 procedure Inherit_Component
16566 (Old_C : Entity_Id;
16567 Plain_Discrim : Boolean := False;
16568 Stored_Discrim : Boolean := False);
16569 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16570 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16571 -- True, Old_C is a stored discriminant. If they are both false then
16572 -- Old_C is a regular component.
16573
16574 -----------------------
16575 -- Inherit_Component --
16576 -----------------------
16577
16578 procedure Inherit_Component
16579 (Old_C : Entity_Id;
16580 Plain_Discrim : Boolean := False;
16581 Stored_Discrim : Boolean := False)
16582 is
16583 procedure Set_Anonymous_Type (Id : Entity_Id);
16584 -- Id denotes the entity of an access discriminant or anonymous
16585 -- access component. Set the type of Id to either the same type of
16586 -- Old_C or create a new one depending on whether the parent and
16587 -- the child types are in the same scope.
16588
16589 ------------------------
16590 -- Set_Anonymous_Type --
16591 ------------------------
16592
16593 procedure Set_Anonymous_Type (Id : Entity_Id) is
16594 Old_Typ : constant Entity_Id := Etype (Old_C);
16595
16596 begin
16597 if Scope (Parent_Base) = Scope (Derived_Base) then
16598 Set_Etype (Id, Old_Typ);
16599
16600 -- The parent and the derived type are in two different scopes.
16601 -- Reuse the type of the original discriminant / component by
16602 -- copying it in order to preserve all attributes.
16603
16604 else
16605 declare
16606 Typ : constant Entity_Id := New_Copy (Old_Typ);
16607
16608 begin
16609 Set_Etype (Id, Typ);
16610
16611 -- Since we do not generate component declarations for
16612 -- inherited components, associate the itype with the
16613 -- derived type.
16614
16615 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16616 Set_Scope (Typ, Derived_Base);
16617 end;
16618 end if;
16619 end Set_Anonymous_Type;
16620
16621 -- Local variables and constants
16622
16623 New_C : constant Entity_Id := New_Copy (Old_C);
16624
16625 Corr_Discrim : Entity_Id;
16626 Discrim : Entity_Id;
16627
16628 -- Start of processing for Inherit_Component
16629
16630 begin
16631 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16632
16633 Set_Parent (New_C, Parent (Old_C));
16634
16635 -- Regular discriminants and components must be inserted in the scope
16636 -- of the Derived_Base. Do it here.
16637
16638 if not Stored_Discrim then
16639 Enter_Name (New_C);
16640 end if;
16641
16642 -- For tagged types the Original_Record_Component must point to
16643 -- whatever this field was pointing to in the parent type. This has
16644 -- already been achieved by the call to New_Copy above.
16645
16646 if not Is_Tagged then
16647 Set_Original_Record_Component (New_C, New_C);
16648 end if;
16649
16650 -- Set the proper type of an access discriminant
16651
16652 if Ekind (New_C) = E_Discriminant
16653 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16654 then
16655 Set_Anonymous_Type (New_C);
16656 end if;
16657
16658 -- If we have inherited a component then see if its Etype contains
16659 -- references to Parent_Base discriminants. In this case, replace
16660 -- these references with the constraints given in Discs. We do not
16661 -- do this for the partial view of private types because this is
16662 -- not needed (only the components of the full view will be used
16663 -- for code generation) and cause problem. We also avoid this
16664 -- transformation in some error situations.
16665
16666 if Ekind (New_C) = E_Component then
16667
16668 -- Set the proper type of an anonymous access component
16669
16670 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16671 Set_Anonymous_Type (New_C);
16672
16673 elsif (Is_Private_Type (Derived_Base)
16674 and then not Is_Generic_Type (Derived_Base))
16675 or else (Is_Empty_Elmt_List (Discs)
16676 and then not Expander_Active)
16677 then
16678 Set_Etype (New_C, Etype (Old_C));
16679
16680 else
16681 -- The current component introduces a circularity of the
16682 -- following kind:
16683
16684 -- limited with Pack_2;
16685 -- package Pack_1 is
16686 -- type T_1 is tagged record
16687 -- Comp : access Pack_2.T_2;
16688 -- ...
16689 -- end record;
16690 -- end Pack_1;
16691
16692 -- with Pack_1;
16693 -- package Pack_2 is
16694 -- type T_2 is new Pack_1.T_1 with ...;
16695 -- end Pack_2;
16696
16697 Set_Etype
16698 (New_C,
16699 Constrain_Component_Type
16700 (Old_C, Derived_Base, N, Parent_Base, Discs));
16701 end if;
16702 end if;
16703
16704 -- In derived tagged types it is illegal to reference a non
16705 -- discriminant component in the parent type. To catch this, mark
16706 -- these components with an Ekind of E_Void. This will be reset in
16707 -- Record_Type_Definition after processing the record extension of
16708 -- the derived type.
16709
16710 -- If the declaration is a private extension, there is no further
16711 -- record extension to process, and the components retain their
16712 -- current kind, because they are visible at this point.
16713
16714 if Is_Tagged and then Ekind (New_C) = E_Component
16715 and then Nkind (N) /= N_Private_Extension_Declaration
16716 then
16717 Set_Ekind (New_C, E_Void);
16718 end if;
16719
16720 if Plain_Discrim then
16721 Set_Corresponding_Discriminant (New_C, Old_C);
16722 Build_Discriminal (New_C);
16723
16724 -- If we are explicitly inheriting a stored discriminant it will be
16725 -- completely hidden.
16726
16727 elsif Stored_Discrim then
16728 Set_Corresponding_Discriminant (New_C, Empty);
16729 Set_Discriminal (New_C, Empty);
16730 Set_Is_Completely_Hidden (New_C);
16731
16732 -- Set the Original_Record_Component of each discriminant in the
16733 -- derived base to point to the corresponding stored that we just
16734 -- created.
16735
16736 Discrim := First_Discriminant (Derived_Base);
16737 while Present (Discrim) loop
16738 Corr_Discrim := Corresponding_Discriminant (Discrim);
16739
16740 -- Corr_Discrim could be missing in an error situation
16741
16742 if Present (Corr_Discrim)
16743 and then Original_Record_Component (Corr_Discrim) = Old_C
16744 then
16745 Set_Original_Record_Component (Discrim, New_C);
16746 end if;
16747
16748 Next_Discriminant (Discrim);
16749 end loop;
16750
16751 Append_Entity (New_C, Derived_Base);
16752 end if;
16753
16754 if not Is_Tagged then
16755 Append_Elmt (Old_C, Assoc_List);
16756 Append_Elmt (New_C, Assoc_List);
16757 end if;
16758 end Inherit_Component;
16759
16760 -- Variables local to Inherit_Component
16761
16762 Loc : constant Source_Ptr := Sloc (N);
16763
16764 Parent_Discrim : Entity_Id;
16765 Stored_Discrim : Entity_Id;
16766 D : Entity_Id;
16767 Component : Entity_Id;
16768
16769 -- Start of processing for Inherit_Components
16770
16771 begin
16772 if not Is_Tagged then
16773 Append_Elmt (Parent_Base, Assoc_List);
16774 Append_Elmt (Derived_Base, Assoc_List);
16775 end if;
16776
16777 -- Inherit parent discriminants if needed
16778
16779 if Inherit_Discr then
16780 Parent_Discrim := First_Discriminant (Parent_Base);
16781 while Present (Parent_Discrim) loop
16782 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16783 Next_Discriminant (Parent_Discrim);
16784 end loop;
16785 end if;
16786
16787 -- Create explicit stored discrims for untagged types when necessary
16788
16789 if not Has_Unknown_Discriminants (Derived_Base)
16790 and then Has_Discriminants (Parent_Base)
16791 and then not Is_Tagged
16792 and then
16793 (not Inherit_Discr
16794 or else First_Discriminant (Parent_Base) /=
16795 First_Stored_Discriminant (Parent_Base))
16796 then
16797 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16798 while Present (Stored_Discrim) loop
16799 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16800 Next_Stored_Discriminant (Stored_Discrim);
16801 end loop;
16802 end if;
16803
16804 -- See if we can apply the second transformation for derived types, as
16805 -- explained in point 6. in the comments above Build_Derived_Record_Type
16806 -- This is achieved by appending Derived_Base discriminants into Discs,
16807 -- which has the side effect of returning a non empty Discs list to the
16808 -- caller of Inherit_Components, which is what we want. This must be
16809 -- done for private derived types if there are explicit stored
16810 -- discriminants, to ensure that we can retrieve the values of the
16811 -- constraints provided in the ancestors.
16812
16813 if Inherit_Discr
16814 and then Is_Empty_Elmt_List (Discs)
16815 and then Present (First_Discriminant (Derived_Base))
16816 and then
16817 (not Is_Private_Type (Derived_Base)
16818 or else Is_Completely_Hidden
16819 (First_Stored_Discriminant (Derived_Base))
16820 or else Is_Generic_Type (Derived_Base))
16821 then
16822 D := First_Discriminant (Derived_Base);
16823 while Present (D) loop
16824 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16825 Next_Discriminant (D);
16826 end loop;
16827 end if;
16828
16829 -- Finally, inherit non-discriminant components unless they are not
16830 -- visible because defined or inherited from the full view of the
16831 -- parent. Don't inherit the _parent field of the parent type.
16832
16833 Component := First_Entity (Parent_Base);
16834 while Present (Component) loop
16835
16836 -- Ada 2005 (AI-251): Do not inherit components associated with
16837 -- secondary tags of the parent.
16838
16839 if Ekind (Component) = E_Component
16840 and then Present (Related_Type (Component))
16841 then
16842 null;
16843
16844 elsif Ekind (Component) /= E_Component
16845 or else Chars (Component) = Name_uParent
16846 then
16847 null;
16848
16849 -- If the derived type is within the parent type's declarative
16850 -- region, then the components can still be inherited even though
16851 -- they aren't visible at this point. This can occur for cases
16852 -- such as within public child units where the components must
16853 -- become visible upon entering the child unit's private part.
16854
16855 elsif not Is_Visible_Component (Component)
16856 and then not In_Open_Scopes (Scope (Parent_Base))
16857 then
16858 null;
16859
16860 elsif Ekind_In (Derived_Base, E_Private_Type,
16861 E_Limited_Private_Type)
16862 then
16863 null;
16864
16865 else
16866 Inherit_Component (Component);
16867 end if;
16868
16869 Next_Entity (Component);
16870 end loop;
16871
16872 -- For tagged derived types, inherited discriminants cannot be used in
16873 -- component declarations of the record extension part. To achieve this
16874 -- we mark the inherited discriminants as not visible.
16875
16876 if Is_Tagged and then Inherit_Discr then
16877 D := First_Discriminant (Derived_Base);
16878 while Present (D) loop
16879 Set_Is_Immediately_Visible (D, False);
16880 Next_Discriminant (D);
16881 end loop;
16882 end if;
16883
16884 return Assoc_List;
16885 end Inherit_Components;
16886
16887 -----------------------------
16888 -- Inherit_Predicate_Flags --
16889 -----------------------------
16890
16891 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16892 begin
16893 Set_Has_Predicates (Subt, Has_Predicates (Par));
16894 Set_Has_Static_Predicate_Aspect
16895 (Subt, Has_Static_Predicate_Aspect (Par));
16896 Set_Has_Dynamic_Predicate_Aspect
16897 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16898 end Inherit_Predicate_Flags;
16899
16900 -----------------------
16901 -- Is_Null_Extension --
16902 -----------------------
16903
16904 function Is_Null_Extension (T : Entity_Id) return Boolean is
16905 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16906 Comp_List : Node_Id;
16907 Comp : Node_Id;
16908
16909 begin
16910 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16911 or else not Is_Tagged_Type (T)
16912 or else Nkind (Type_Definition (Type_Decl)) /=
16913 N_Derived_Type_Definition
16914 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16915 then
16916 return False;
16917 end if;
16918
16919 Comp_List :=
16920 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16921
16922 if Present (Discriminant_Specifications (Type_Decl)) then
16923 return False;
16924
16925 elsif Present (Comp_List)
16926 and then Is_Non_Empty_List (Component_Items (Comp_List))
16927 then
16928 Comp := First (Component_Items (Comp_List));
16929
16930 -- Only user-defined components are relevant. The component list
16931 -- may also contain a parent component and internal components
16932 -- corresponding to secondary tags, but these do not determine
16933 -- whether this is a null extension.
16934
16935 while Present (Comp) loop
16936 if Comes_From_Source (Comp) then
16937 return False;
16938 end if;
16939
16940 Next (Comp);
16941 end loop;
16942
16943 return True;
16944 else
16945 return True;
16946 end if;
16947 end Is_Null_Extension;
16948
16949 ------------------------------
16950 -- Is_Valid_Constraint_Kind --
16951 ------------------------------
16952
16953 function Is_Valid_Constraint_Kind
16954 (T_Kind : Type_Kind;
16955 Constraint_Kind : Node_Kind) return Boolean
16956 is
16957 begin
16958 case T_Kind is
16959 when Enumeration_Kind |
16960 Integer_Kind =>
16961 return Constraint_Kind = N_Range_Constraint;
16962
16963 when Decimal_Fixed_Point_Kind =>
16964 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16965 N_Range_Constraint);
16966
16967 when Ordinary_Fixed_Point_Kind =>
16968 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16969 N_Range_Constraint);
16970
16971 when Float_Kind =>
16972 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16973 N_Range_Constraint);
16974
16975 when Access_Kind |
16976 Array_Kind |
16977 E_Record_Type |
16978 E_Record_Subtype |
16979 Class_Wide_Kind |
16980 E_Incomplete_Type |
16981 Private_Kind |
16982 Concurrent_Kind =>
16983 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16984
16985 when others =>
16986 return True; -- Error will be detected later
16987 end case;
16988 end Is_Valid_Constraint_Kind;
16989
16990 --------------------------
16991 -- Is_Visible_Component --
16992 --------------------------
16993
16994 function Is_Visible_Component
16995 (C : Entity_Id;
16996 N : Node_Id := Empty) return Boolean
16997 is
16998 Original_Comp : Entity_Id := Empty;
16999 Original_Scope : Entity_Id;
17000 Type_Scope : Entity_Id;
17001
17002 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17003 -- Check whether parent type of inherited component is declared locally,
17004 -- possibly within a nested package or instance. The current scope is
17005 -- the derived record itself.
17006
17007 -------------------
17008 -- Is_Local_Type --
17009 -------------------
17010
17011 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17012 Scop : Entity_Id;
17013
17014 begin
17015 Scop := Scope (Typ);
17016 while Present (Scop)
17017 and then Scop /= Standard_Standard
17018 loop
17019 if Scop = Scope (Current_Scope) then
17020 return True;
17021 end if;
17022
17023 Scop := Scope (Scop);
17024 end loop;
17025
17026 return False;
17027 end Is_Local_Type;
17028
17029 -- Start of processing for Is_Visible_Component
17030
17031 begin
17032 if Ekind_In (C, E_Component, E_Discriminant) then
17033 Original_Comp := Original_Record_Component (C);
17034 end if;
17035
17036 if No (Original_Comp) then
17037
17038 -- Premature usage, or previous error
17039
17040 return False;
17041
17042 else
17043 Original_Scope := Scope (Original_Comp);
17044 Type_Scope := Scope (Base_Type (Scope (C)));
17045 end if;
17046
17047 -- This test only concerns tagged types
17048
17049 if not Is_Tagged_Type (Original_Scope) then
17050 return True;
17051
17052 -- If it is _Parent or _Tag, there is no visibility issue
17053
17054 elsif not Comes_From_Source (Original_Comp) then
17055 return True;
17056
17057 -- Discriminants are visible unless the (private) type has unknown
17058 -- discriminants. If the discriminant reference is inserted for a
17059 -- discriminant check on a full view it is also visible.
17060
17061 elsif Ekind (Original_Comp) = E_Discriminant
17062 and then
17063 (not Has_Unknown_Discriminants (Original_Scope)
17064 or else (Present (N)
17065 and then Nkind (N) = N_Selected_Component
17066 and then Nkind (Prefix (N)) = N_Type_Conversion
17067 and then not Comes_From_Source (Prefix (N))))
17068 then
17069 return True;
17070
17071 -- In the body of an instantiation, no need to check for the visibility
17072 -- of a component.
17073
17074 elsif In_Instance_Body then
17075 return True;
17076
17077 -- If the component has been declared in an ancestor which is currently
17078 -- a private type, then it is not visible. The same applies if the
17079 -- component's containing type is not in an open scope and the original
17080 -- component's enclosing type is a visible full view of a private type
17081 -- (which can occur in cases where an attempt is being made to reference
17082 -- a component in a sibling package that is inherited from a visible
17083 -- component of a type in an ancestor package; the component in the
17084 -- sibling package should not be visible even though the component it
17085 -- inherited from is visible). This does not apply however in the case
17086 -- where the scope of the type is a private child unit, or when the
17087 -- parent comes from a local package in which the ancestor is currently
17088 -- visible. The latter suppression of visibility is needed for cases
17089 -- that are tested in B730006.
17090
17091 elsif Is_Private_Type (Original_Scope)
17092 or else
17093 (not Is_Private_Descendant (Type_Scope)
17094 and then not In_Open_Scopes (Type_Scope)
17095 and then Has_Private_Declaration (Original_Scope))
17096 then
17097 -- If the type derives from an entity in a formal package, there
17098 -- are no additional visible components.
17099
17100 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17101 N_Formal_Package_Declaration
17102 then
17103 return False;
17104
17105 -- if we are not in the private part of the current package, there
17106 -- are no additional visible components.
17107
17108 elsif Ekind (Scope (Current_Scope)) = E_Package
17109 and then not In_Private_Part (Scope (Current_Scope))
17110 then
17111 return False;
17112 else
17113 return
17114 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17115 and then In_Open_Scopes (Scope (Original_Scope))
17116 and then Is_Local_Type (Type_Scope);
17117 end if;
17118
17119 -- There is another weird way in which a component may be invisible when
17120 -- the private and the full view are not derived from the same ancestor.
17121 -- Here is an example :
17122
17123 -- type A1 is tagged record F1 : integer; end record;
17124 -- type A2 is new A1 with record F2 : integer; end record;
17125 -- type T is new A1 with private;
17126 -- private
17127 -- type T is new A2 with null record;
17128
17129 -- In this case, the full view of T inherits F1 and F2 but the private
17130 -- view inherits only F1
17131
17132 else
17133 declare
17134 Ancestor : Entity_Id := Scope (C);
17135
17136 begin
17137 loop
17138 if Ancestor = Original_Scope then
17139 return True;
17140 elsif Ancestor = Etype (Ancestor) then
17141 return False;
17142 end if;
17143
17144 Ancestor := Etype (Ancestor);
17145 end loop;
17146 end;
17147 end if;
17148 end Is_Visible_Component;
17149
17150 --------------------------
17151 -- Make_Class_Wide_Type --
17152 --------------------------
17153
17154 procedure Make_Class_Wide_Type (T : Entity_Id) is
17155 CW_Type : Entity_Id;
17156 CW_Name : Name_Id;
17157 Next_E : Entity_Id;
17158
17159 begin
17160 if Present (Class_Wide_Type (T)) then
17161
17162 -- The class-wide type is a partially decorated entity created for a
17163 -- unanalyzed tagged type referenced through a limited with clause.
17164 -- When the tagged type is analyzed, its class-wide type needs to be
17165 -- redecorated. Note that we reuse the entity created by Decorate_
17166 -- Tagged_Type in order to preserve all links.
17167
17168 if Materialize_Entity (Class_Wide_Type (T)) then
17169 CW_Type := Class_Wide_Type (T);
17170 Set_Materialize_Entity (CW_Type, False);
17171
17172 -- The class wide type can have been defined by the partial view, in
17173 -- which case everything is already done.
17174
17175 else
17176 return;
17177 end if;
17178
17179 -- Default case, we need to create a new class-wide type
17180
17181 else
17182 CW_Type :=
17183 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17184 end if;
17185
17186 -- Inherit root type characteristics
17187
17188 CW_Name := Chars (CW_Type);
17189 Next_E := Next_Entity (CW_Type);
17190 Copy_Node (T, CW_Type);
17191 Set_Comes_From_Source (CW_Type, False);
17192 Set_Chars (CW_Type, CW_Name);
17193 Set_Parent (CW_Type, Parent (T));
17194 Set_Next_Entity (CW_Type, Next_E);
17195
17196 -- Ensure we have a new freeze node for the class-wide type. The partial
17197 -- view may have freeze action of its own, requiring a proper freeze
17198 -- node, and the same freeze node cannot be shared between the two
17199 -- types.
17200
17201 Set_Has_Delayed_Freeze (CW_Type);
17202 Set_Freeze_Node (CW_Type, Empty);
17203
17204 -- Customize the class-wide type: It has no prim. op., it cannot be
17205 -- abstract and its Etype points back to the specific root type.
17206
17207 Set_Ekind (CW_Type, E_Class_Wide_Type);
17208 Set_Is_Tagged_Type (CW_Type, True);
17209 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17210 Set_Is_Abstract_Type (CW_Type, False);
17211 Set_Is_Constrained (CW_Type, False);
17212 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17213 Set_Default_SSO (CW_Type);
17214
17215 if Ekind (T) = E_Class_Wide_Subtype then
17216 Set_Etype (CW_Type, Etype (Base_Type (T)));
17217 else
17218 Set_Etype (CW_Type, T);
17219 end if;
17220
17221 -- If this is the class_wide type of a constrained subtype, it does
17222 -- not have discriminants.
17223
17224 Set_Has_Discriminants (CW_Type,
17225 Has_Discriminants (T) and then not Is_Constrained (T));
17226
17227 Set_Has_Unknown_Discriminants (CW_Type, True);
17228 Set_Class_Wide_Type (T, CW_Type);
17229 Set_Equivalent_Type (CW_Type, Empty);
17230
17231 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17232
17233 Set_Class_Wide_Type (CW_Type, CW_Type);
17234 end Make_Class_Wide_Type;
17235
17236 ----------------
17237 -- Make_Index --
17238 ----------------
17239
17240 procedure Make_Index
17241 (N : Node_Id;
17242 Related_Nod : Node_Id;
17243 Related_Id : Entity_Id := Empty;
17244 Suffix_Index : Nat := 1;
17245 In_Iter_Schm : Boolean := False)
17246 is
17247 R : Node_Id;
17248 T : Entity_Id;
17249 Def_Id : Entity_Id := Empty;
17250 Found : Boolean := False;
17251
17252 begin
17253 -- For a discrete range used in a constrained array definition and
17254 -- defined by a range, an implicit conversion to the predefined type
17255 -- INTEGER is assumed if each bound is either a numeric literal, a named
17256 -- number, or an attribute, and the type of both bounds (prior to the
17257 -- implicit conversion) is the type universal_integer. Otherwise, both
17258 -- bounds must be of the same discrete type, other than universal
17259 -- integer; this type must be determinable independently of the
17260 -- context, but using the fact that the type must be discrete and that
17261 -- both bounds must have the same type.
17262
17263 -- Character literals also have a universal type in the absence of
17264 -- of additional context, and are resolved to Standard_Character.
17265
17266 if Nkind (N) = N_Range then
17267
17268 -- The index is given by a range constraint. The bounds are known
17269 -- to be of a consistent type.
17270
17271 if not Is_Overloaded (N) then
17272 T := Etype (N);
17273
17274 -- For universal bounds, choose the specific predefined type
17275
17276 if T = Universal_Integer then
17277 T := Standard_Integer;
17278
17279 elsif T = Any_Character then
17280 Ambiguous_Character (Low_Bound (N));
17281
17282 T := Standard_Character;
17283 end if;
17284
17285 -- The node may be overloaded because some user-defined operators
17286 -- are available, but if a universal interpretation exists it is
17287 -- also the selected one.
17288
17289 elsif Universal_Interpretation (N) = Universal_Integer then
17290 T := Standard_Integer;
17291
17292 else
17293 T := Any_Type;
17294
17295 declare
17296 Ind : Interp_Index;
17297 It : Interp;
17298
17299 begin
17300 Get_First_Interp (N, Ind, It);
17301 while Present (It.Typ) loop
17302 if Is_Discrete_Type (It.Typ) then
17303
17304 if Found
17305 and then not Covers (It.Typ, T)
17306 and then not Covers (T, It.Typ)
17307 then
17308 Error_Msg_N ("ambiguous bounds in discrete range", N);
17309 exit;
17310 else
17311 T := It.Typ;
17312 Found := True;
17313 end if;
17314 end if;
17315
17316 Get_Next_Interp (Ind, It);
17317 end loop;
17318
17319 if T = Any_Type then
17320 Error_Msg_N ("discrete type required for range", N);
17321 Set_Etype (N, Any_Type);
17322 return;
17323
17324 elsif T = Universal_Integer then
17325 T := Standard_Integer;
17326 end if;
17327 end;
17328 end if;
17329
17330 if not Is_Discrete_Type (T) then
17331 Error_Msg_N ("discrete type required for range", N);
17332 Set_Etype (N, Any_Type);
17333 return;
17334 end if;
17335
17336 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17337 and then Attribute_Name (Low_Bound (N)) = Name_First
17338 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17339 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17340 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17341 then
17342 -- The type of the index will be the type of the prefix, as long
17343 -- as the upper bound is 'Last of the same type.
17344
17345 Def_Id := Entity (Prefix (Low_Bound (N)));
17346
17347 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17348 or else Attribute_Name (High_Bound (N)) /= Name_Last
17349 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17350 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17351 then
17352 Def_Id := Empty;
17353 end if;
17354 end if;
17355
17356 R := N;
17357 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17358
17359 elsif Nkind (N) = N_Subtype_Indication then
17360
17361 -- The index is given by a subtype with a range constraint
17362
17363 T := Base_Type (Entity (Subtype_Mark (N)));
17364
17365 if not Is_Discrete_Type (T) then
17366 Error_Msg_N ("discrete type required for range", N);
17367 Set_Etype (N, Any_Type);
17368 return;
17369 end if;
17370
17371 R := Range_Expression (Constraint (N));
17372
17373 Resolve (R, T);
17374 Process_Range_Expr_In_Decl
17375 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17376
17377 elsif Nkind (N) = N_Attribute_Reference then
17378
17379 -- Catch beginner's error (use of attribute other than 'Range)
17380
17381 if Attribute_Name (N) /= Name_Range then
17382 Error_Msg_N ("expect attribute ''Range", N);
17383 Set_Etype (N, Any_Type);
17384 return;
17385 end if;
17386
17387 -- If the node denotes the range of a type mark, that is also the
17388 -- resulting type, and we do not need to create an Itype for it.
17389
17390 if Is_Entity_Name (Prefix (N))
17391 and then Comes_From_Source (N)
17392 and then Is_Type (Entity (Prefix (N)))
17393 and then Is_Discrete_Type (Entity (Prefix (N)))
17394 then
17395 Def_Id := Entity (Prefix (N));
17396 end if;
17397
17398 Analyze_And_Resolve (N);
17399 T := Etype (N);
17400 R := N;
17401
17402 -- If none of the above, must be a subtype. We convert this to a
17403 -- range attribute reference because in the case of declared first
17404 -- named subtypes, the types in the range reference can be different
17405 -- from the type of the entity. A range attribute normalizes the
17406 -- reference and obtains the correct types for the bounds.
17407
17408 -- This transformation is in the nature of an expansion, is only
17409 -- done if expansion is active. In particular, it is not done on
17410 -- formal generic types, because we need to retain the name of the
17411 -- original index for instantiation purposes.
17412
17413 else
17414 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17415 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17416 Set_Etype (N, Any_Integer);
17417 return;
17418
17419 else
17420 -- The type mark may be that of an incomplete type. It is only
17421 -- now that we can get the full view, previous analysis does
17422 -- not look specifically for a type mark.
17423
17424 Set_Entity (N, Get_Full_View (Entity (N)));
17425 Set_Etype (N, Entity (N));
17426 Def_Id := Entity (N);
17427
17428 if not Is_Discrete_Type (Def_Id) then
17429 Error_Msg_N ("discrete type required for index", N);
17430 Set_Etype (N, Any_Type);
17431 return;
17432 end if;
17433 end if;
17434
17435 if Expander_Active then
17436 Rewrite (N,
17437 Make_Attribute_Reference (Sloc (N),
17438 Attribute_Name => Name_Range,
17439 Prefix => Relocate_Node (N)));
17440
17441 -- The original was a subtype mark that does not freeze. This
17442 -- means that the rewritten version must not freeze either.
17443
17444 Set_Must_Not_Freeze (N);
17445 Set_Must_Not_Freeze (Prefix (N));
17446 Analyze_And_Resolve (N);
17447 T := Etype (N);
17448 R := N;
17449
17450 -- If expander is inactive, type is legal, nothing else to construct
17451
17452 else
17453 return;
17454 end if;
17455 end if;
17456
17457 if not Is_Discrete_Type (T) then
17458 Error_Msg_N ("discrete type required for range", N);
17459 Set_Etype (N, Any_Type);
17460 return;
17461
17462 elsif T = Any_Type then
17463 Set_Etype (N, Any_Type);
17464 return;
17465 end if;
17466
17467 -- We will now create the appropriate Itype to describe the range, but
17468 -- first a check. If we originally had a subtype, then we just label
17469 -- the range with this subtype. Not only is there no need to construct
17470 -- a new subtype, but it is wrong to do so for two reasons:
17471
17472 -- 1. A legality concern, if we have a subtype, it must not freeze,
17473 -- and the Itype would cause freezing incorrectly
17474
17475 -- 2. An efficiency concern, if we created an Itype, it would not be
17476 -- recognized as the same type for the purposes of eliminating
17477 -- checks in some circumstances.
17478
17479 -- We signal this case by setting the subtype entity in Def_Id
17480
17481 if No (Def_Id) then
17482 Def_Id :=
17483 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17484 Set_Etype (Def_Id, Base_Type (T));
17485
17486 if Is_Signed_Integer_Type (T) then
17487 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17488
17489 elsif Is_Modular_Integer_Type (T) then
17490 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17491
17492 else
17493 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17494 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17495 Set_First_Literal (Def_Id, First_Literal (T));
17496 end if;
17497
17498 Set_Size_Info (Def_Id, (T));
17499 Set_RM_Size (Def_Id, RM_Size (T));
17500 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17501
17502 Set_Scalar_Range (Def_Id, R);
17503 Conditional_Delay (Def_Id, T);
17504
17505 if Nkind (N) = N_Subtype_Indication then
17506 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17507 end if;
17508
17509 -- In the subtype indication case, if the immediate parent of the
17510 -- new subtype is non-static, then the subtype we create is non-
17511 -- static, even if its bounds are static.
17512
17513 if Nkind (N) = N_Subtype_Indication
17514 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17515 then
17516 Set_Is_Non_Static_Subtype (Def_Id);
17517 end if;
17518 end if;
17519
17520 -- Final step is to label the index with this constructed type
17521
17522 Set_Etype (N, Def_Id);
17523 end Make_Index;
17524
17525 ------------------------------
17526 -- Modular_Type_Declaration --
17527 ------------------------------
17528
17529 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17530 Mod_Expr : constant Node_Id := Expression (Def);
17531 M_Val : Uint;
17532
17533 procedure Set_Modular_Size (Bits : Int);
17534 -- Sets RM_Size to Bits, and Esize to normal word size above this
17535
17536 ----------------------
17537 -- Set_Modular_Size --
17538 ----------------------
17539
17540 procedure Set_Modular_Size (Bits : Int) is
17541 begin
17542 Set_RM_Size (T, UI_From_Int (Bits));
17543
17544 if Bits <= 8 then
17545 Init_Esize (T, 8);
17546
17547 elsif Bits <= 16 then
17548 Init_Esize (T, 16);
17549
17550 elsif Bits <= 32 then
17551 Init_Esize (T, 32);
17552
17553 else
17554 Init_Esize (T, System_Max_Binary_Modulus_Power);
17555 end if;
17556
17557 if not Non_Binary_Modulus (T)
17558 and then Esize (T) = RM_Size (T)
17559 then
17560 Set_Is_Known_Valid (T);
17561 end if;
17562 end Set_Modular_Size;
17563
17564 -- Start of processing for Modular_Type_Declaration
17565
17566 begin
17567 -- If the mod expression is (exactly) 2 * literal, where literal is
17568 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17569
17570 if Warn_On_Suspicious_Modulus_Value
17571 and then Nkind (Mod_Expr) = N_Op_Multiply
17572 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17573 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17574 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17575 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17576 then
17577 Error_Msg_N
17578 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17579 end if;
17580
17581 -- Proceed with analysis of mod expression
17582
17583 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17584 Set_Etype (T, T);
17585 Set_Ekind (T, E_Modular_Integer_Type);
17586 Init_Alignment (T);
17587 Set_Is_Constrained (T);
17588
17589 if not Is_OK_Static_Expression (Mod_Expr) then
17590 Flag_Non_Static_Expr
17591 ("non-static expression used for modular type bound!", Mod_Expr);
17592 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17593 else
17594 M_Val := Expr_Value (Mod_Expr);
17595 end if;
17596
17597 if M_Val < 1 then
17598 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17599 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17600 end if;
17601
17602 if M_Val > 2 ** Standard_Long_Integer_Size then
17603 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17604 end if;
17605
17606 Set_Modulus (T, M_Val);
17607
17608 -- Create bounds for the modular type based on the modulus given in
17609 -- the type declaration and then analyze and resolve those bounds.
17610
17611 Set_Scalar_Range (T,
17612 Make_Range (Sloc (Mod_Expr),
17613 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17614 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17615
17616 -- Properly analyze the literals for the range. We do this manually
17617 -- because we can't go calling Resolve, since we are resolving these
17618 -- bounds with the type, and this type is certainly not complete yet.
17619
17620 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17621 Set_Etype (High_Bound (Scalar_Range (T)), T);
17622 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17623 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17624
17625 -- Loop through powers of two to find number of bits required
17626
17627 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17628
17629 -- Binary case
17630
17631 if M_Val = 2 ** Bits then
17632 Set_Modular_Size (Bits);
17633 return;
17634
17635 -- Non-binary case
17636
17637 elsif M_Val < 2 ** Bits then
17638 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
17639 Set_Non_Binary_Modulus (T);
17640
17641 if Bits > System_Max_Nonbinary_Modulus_Power then
17642 Error_Msg_Uint_1 :=
17643 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17644 Error_Msg_F
17645 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17646 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17647 return;
17648
17649 else
17650 -- In the non-binary case, set size as per RM 13.3(55)
17651
17652 Set_Modular_Size (Bits);
17653 return;
17654 end if;
17655 end if;
17656
17657 end loop;
17658
17659 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17660 -- so we just signal an error and set the maximum size.
17661
17662 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17663 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17664
17665 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17666 Init_Alignment (T);
17667
17668 end Modular_Type_Declaration;
17669
17670 --------------------------
17671 -- New_Concatenation_Op --
17672 --------------------------
17673
17674 procedure New_Concatenation_Op (Typ : Entity_Id) is
17675 Loc : constant Source_Ptr := Sloc (Typ);
17676 Op : Entity_Id;
17677
17678 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17679 -- Create abbreviated declaration for the formal of a predefined
17680 -- Operator 'Op' of type 'Typ'
17681
17682 --------------------
17683 -- Make_Op_Formal --
17684 --------------------
17685
17686 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17687 Formal : Entity_Id;
17688 begin
17689 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17690 Set_Etype (Formal, Typ);
17691 Set_Mechanism (Formal, Default_Mechanism);
17692 return Formal;
17693 end Make_Op_Formal;
17694
17695 -- Start of processing for New_Concatenation_Op
17696
17697 begin
17698 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17699
17700 Set_Ekind (Op, E_Operator);
17701 Set_Scope (Op, Current_Scope);
17702 Set_Etype (Op, Typ);
17703 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17704 Set_Is_Immediately_Visible (Op);
17705 Set_Is_Intrinsic_Subprogram (Op);
17706 Set_Has_Completion (Op);
17707 Append_Entity (Op, Current_Scope);
17708
17709 Set_Name_Entity_Id (Name_Op_Concat, Op);
17710
17711 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17712 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17713 end New_Concatenation_Op;
17714
17715 -------------------------
17716 -- OK_For_Limited_Init --
17717 -------------------------
17718
17719 -- ???Check all calls of this, and compare the conditions under which it's
17720 -- called.
17721
17722 function OK_For_Limited_Init
17723 (Typ : Entity_Id;
17724 Exp : Node_Id) return Boolean
17725 is
17726 begin
17727 return Is_CPP_Constructor_Call (Exp)
17728 or else (Ada_Version >= Ada_2005
17729 and then not Debug_Flag_Dot_L
17730 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17731 end OK_For_Limited_Init;
17732
17733 -------------------------------
17734 -- OK_For_Limited_Init_In_05 --
17735 -------------------------------
17736
17737 function OK_For_Limited_Init_In_05
17738 (Typ : Entity_Id;
17739 Exp : Node_Id) return Boolean
17740 is
17741 begin
17742 -- An object of a limited interface type can be initialized with any
17743 -- expression of a nonlimited descendant type.
17744
17745 if Is_Class_Wide_Type (Typ)
17746 and then Is_Limited_Interface (Typ)
17747 and then not Is_Limited_Type (Etype (Exp))
17748 then
17749 return True;
17750 end if;
17751
17752 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17753 -- case of limited aggregates (including extension aggregates), and
17754 -- function calls. The function call may have been given in prefixed
17755 -- notation, in which case the original node is an indexed component.
17756 -- If the function is parameterless, the original node was an explicit
17757 -- dereference. The function may also be parameterless, in which case
17758 -- the source node is just an identifier.
17759
17760 case Nkind (Original_Node (Exp)) is
17761 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17762 return True;
17763
17764 when N_Identifier =>
17765 return Present (Entity (Original_Node (Exp)))
17766 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17767
17768 when N_Qualified_Expression =>
17769 return
17770 OK_For_Limited_Init_In_05
17771 (Typ, Expression (Original_Node (Exp)));
17772
17773 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17774 -- with a function call, the expander has rewritten the call into an
17775 -- N_Type_Conversion node to force displacement of the pointer to
17776 -- reference the component containing the secondary dispatch table.
17777 -- Otherwise a type conversion is not a legal context.
17778 -- A return statement for a build-in-place function returning a
17779 -- synchronized type also introduces an unchecked conversion.
17780
17781 when N_Type_Conversion |
17782 N_Unchecked_Type_Conversion =>
17783 return not Comes_From_Source (Exp)
17784 and then
17785 OK_For_Limited_Init_In_05
17786 (Typ, Expression (Original_Node (Exp)));
17787
17788 when N_Indexed_Component |
17789 N_Selected_Component |
17790 N_Explicit_Dereference =>
17791 return Nkind (Exp) = N_Function_Call;
17792
17793 -- A use of 'Input is a function call, hence allowed. Normally the
17794 -- attribute will be changed to a call, but the attribute by itself
17795 -- can occur with -gnatc.
17796
17797 when N_Attribute_Reference =>
17798 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17799
17800 -- For a case expression, all dependent expressions must be legal
17801
17802 when N_Case_Expression =>
17803 declare
17804 Alt : Node_Id;
17805
17806 begin
17807 Alt := First (Alternatives (Original_Node (Exp)));
17808 while Present (Alt) loop
17809 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17810 return False;
17811 end if;
17812
17813 Next (Alt);
17814 end loop;
17815
17816 return True;
17817 end;
17818
17819 -- For an if expression, all dependent expressions must be legal
17820
17821 when N_If_Expression =>
17822 declare
17823 Then_Expr : constant Node_Id :=
17824 Next (First (Expressions (Original_Node (Exp))));
17825 Else_Expr : constant Node_Id := Next (Then_Expr);
17826 begin
17827 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17828 and then
17829 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17830 end;
17831
17832 when others =>
17833 return False;
17834 end case;
17835 end OK_For_Limited_Init_In_05;
17836
17837 -------------------------------------------
17838 -- Ordinary_Fixed_Point_Type_Declaration --
17839 -------------------------------------------
17840
17841 procedure Ordinary_Fixed_Point_Type_Declaration
17842 (T : Entity_Id;
17843 Def : Node_Id)
17844 is
17845 Loc : constant Source_Ptr := Sloc (Def);
17846 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17847 RRS : constant Node_Id := Real_Range_Specification (Def);
17848 Implicit_Base : Entity_Id;
17849 Delta_Val : Ureal;
17850 Small_Val : Ureal;
17851 Low_Val : Ureal;
17852 High_Val : Ureal;
17853
17854 begin
17855 Check_Restriction (No_Fixed_Point, Def);
17856
17857 -- Create implicit base type
17858
17859 Implicit_Base :=
17860 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17861 Set_Etype (Implicit_Base, Implicit_Base);
17862
17863 -- Analyze and process delta expression
17864
17865 Analyze_And_Resolve (Delta_Expr, Any_Real);
17866
17867 Check_Delta_Expression (Delta_Expr);
17868 Delta_Val := Expr_Value_R (Delta_Expr);
17869
17870 Set_Delta_Value (Implicit_Base, Delta_Val);
17871
17872 -- Compute default small from given delta, which is the largest power
17873 -- of two that does not exceed the given delta value.
17874
17875 declare
17876 Tmp : Ureal;
17877 Scale : Int;
17878
17879 begin
17880 Tmp := Ureal_1;
17881 Scale := 0;
17882
17883 if Delta_Val < Ureal_1 then
17884 while Delta_Val < Tmp loop
17885 Tmp := Tmp / Ureal_2;
17886 Scale := Scale + 1;
17887 end loop;
17888
17889 else
17890 loop
17891 Tmp := Tmp * Ureal_2;
17892 exit when Tmp > Delta_Val;
17893 Scale := Scale - 1;
17894 end loop;
17895 end if;
17896
17897 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17898 end;
17899
17900 Set_Small_Value (Implicit_Base, Small_Val);
17901
17902 -- If no range was given, set a dummy range
17903
17904 if RRS <= Empty_Or_Error then
17905 Low_Val := -Small_Val;
17906 High_Val := Small_Val;
17907
17908 -- Otherwise analyze and process given range
17909
17910 else
17911 declare
17912 Low : constant Node_Id := Low_Bound (RRS);
17913 High : constant Node_Id := High_Bound (RRS);
17914
17915 begin
17916 Analyze_And_Resolve (Low, Any_Real);
17917 Analyze_And_Resolve (High, Any_Real);
17918 Check_Real_Bound (Low);
17919 Check_Real_Bound (High);
17920
17921 -- Obtain and set the range
17922
17923 Low_Val := Expr_Value_R (Low);
17924 High_Val := Expr_Value_R (High);
17925
17926 if Low_Val > High_Val then
17927 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17928 end if;
17929 end;
17930 end if;
17931
17932 -- The range for both the implicit base and the declared first subtype
17933 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17934 -- set a temporary range in place. Note that the bounds of the base
17935 -- type will be widened to be symmetrical and to fill the available
17936 -- bits when the type is frozen.
17937
17938 -- We could do this with all discrete types, and probably should, but
17939 -- we absolutely have to do it for fixed-point, since the end-points
17940 -- of the range and the size are determined by the small value, which
17941 -- could be reset before the freeze point.
17942
17943 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17944 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17945
17946 -- Complete definition of first subtype
17947
17948 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17949 Set_Etype (T, Implicit_Base);
17950 Init_Size_Align (T);
17951 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17952 Set_Small_Value (T, Small_Val);
17953 Set_Delta_Value (T, Delta_Val);
17954 Set_Is_Constrained (T);
17955
17956 end Ordinary_Fixed_Point_Type_Declaration;
17957
17958 ----------------------------------------
17959 -- Prepare_Private_Subtype_Completion --
17960 ----------------------------------------
17961
17962 procedure Prepare_Private_Subtype_Completion
17963 (Id : Entity_Id;
17964 Related_Nod : Node_Id)
17965 is
17966 Id_B : constant Entity_Id := Base_Type (Id);
17967 Full_B : Entity_Id := Full_View (Id_B);
17968 Full : Entity_Id;
17969
17970 begin
17971 if Present (Full_B) then
17972
17973 -- Get to the underlying full view if necessary
17974
17975 if Is_Private_Type (Full_B)
17976 and then Present (Underlying_Full_View (Full_B))
17977 then
17978 Full_B := Underlying_Full_View (Full_B);
17979 end if;
17980
17981 -- The Base_Type is already completed, we can complete the subtype
17982 -- now. We have to create a new entity with the same name, Thus we
17983 -- can't use Create_Itype.
17984
17985 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17986 Set_Is_Itype (Full);
17987 Set_Associated_Node_For_Itype (Full, Related_Nod);
17988 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17989 end if;
17990
17991 -- The parent subtype may be private, but the base might not, in some
17992 -- nested instances. In that case, the subtype does not need to be
17993 -- exchanged. It would still be nice to make private subtypes and their
17994 -- bases consistent at all times ???
17995
17996 if Is_Private_Type (Id_B) then
17997 Append_Elmt (Id, Private_Dependents (Id_B));
17998 end if;
17999 end Prepare_Private_Subtype_Completion;
18000
18001 ---------------------------
18002 -- Process_Discriminants --
18003 ---------------------------
18004
18005 procedure Process_Discriminants
18006 (N : Node_Id;
18007 Prev : Entity_Id := Empty)
18008 is
18009 Elist : constant Elist_Id := New_Elmt_List;
18010 Id : Node_Id;
18011 Discr : Node_Id;
18012 Discr_Number : Uint;
18013 Discr_Type : Entity_Id;
18014 Default_Present : Boolean := False;
18015 Default_Not_Present : Boolean := False;
18016
18017 begin
18018 -- A composite type other than an array type can have discriminants.
18019 -- On entry, the current scope is the composite type.
18020
18021 -- The discriminants are initially entered into the scope of the type
18022 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18023 -- use, as explained at the end of this procedure.
18024
18025 Discr := First (Discriminant_Specifications (N));
18026 while Present (Discr) loop
18027 Enter_Name (Defining_Identifier (Discr));
18028
18029 -- For navigation purposes we add a reference to the discriminant
18030 -- in the entity for the type. If the current declaration is a
18031 -- completion, place references on the partial view. Otherwise the
18032 -- type is the current scope.
18033
18034 if Present (Prev) then
18035
18036 -- The references go on the partial view, if present. If the
18037 -- partial view has discriminants, the references have been
18038 -- generated already.
18039
18040 if not Has_Discriminants (Prev) then
18041 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18042 end if;
18043 else
18044 Generate_Reference
18045 (Current_Scope, Defining_Identifier (Discr), 'd');
18046 end if;
18047
18048 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18049 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18050
18051 -- Ada 2005 (AI-254)
18052
18053 if Present (Access_To_Subprogram_Definition
18054 (Discriminant_Type (Discr)))
18055 and then Protected_Present (Access_To_Subprogram_Definition
18056 (Discriminant_Type (Discr)))
18057 then
18058 Discr_Type :=
18059 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18060 end if;
18061
18062 else
18063 Find_Type (Discriminant_Type (Discr));
18064 Discr_Type := Etype (Discriminant_Type (Discr));
18065
18066 if Error_Posted (Discriminant_Type (Discr)) then
18067 Discr_Type := Any_Type;
18068 end if;
18069 end if;
18070
18071 -- Handling of discriminants that are access types
18072
18073 if Is_Access_Type (Discr_Type) then
18074
18075 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18076 -- limited record types
18077
18078 if Ada_Version < Ada_2005 then
18079 Check_Access_Discriminant_Requires_Limited
18080 (Discr, Discriminant_Type (Discr));
18081 end if;
18082
18083 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18084 Error_Msg_N
18085 ("(Ada 83) access discriminant not allowed", Discr);
18086 end if;
18087
18088 -- If not access type, must be a discrete type
18089
18090 elsif not Is_Discrete_Type (Discr_Type) then
18091 Error_Msg_N
18092 ("discriminants must have a discrete or access type",
18093 Discriminant_Type (Discr));
18094 end if;
18095
18096 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18097
18098 -- If a discriminant specification includes the assignment compound
18099 -- delimiter followed by an expression, the expression is the default
18100 -- expression of the discriminant; the default expression must be of
18101 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18102 -- a default expression, we do the special preanalysis, since this
18103 -- expression does not freeze (see section "Handling of Default and
18104 -- Per-Object Expressions" in spec of package Sem).
18105
18106 if Present (Expression (Discr)) then
18107 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18108
18109 -- Legaity checks
18110
18111 if Nkind (N) = N_Formal_Type_Declaration then
18112 Error_Msg_N
18113 ("discriminant defaults not allowed for formal type",
18114 Expression (Discr));
18115
18116 -- Flag an error for a tagged type with defaulted discriminants,
18117 -- excluding limited tagged types when compiling for Ada 2012
18118 -- (see AI05-0214).
18119
18120 elsif Is_Tagged_Type (Current_Scope)
18121 and then (not Is_Limited_Type (Current_Scope)
18122 or else Ada_Version < Ada_2012)
18123 and then Comes_From_Source (N)
18124 then
18125 -- Note: see similar test in Check_Or_Process_Discriminants, to
18126 -- handle the (illegal) case of the completion of an untagged
18127 -- view with discriminants with defaults by a tagged full view.
18128 -- We skip the check if Discr does not come from source, to
18129 -- account for the case of an untagged derived type providing
18130 -- defaults for a renamed discriminant from a private untagged
18131 -- ancestor with a tagged full view (ACATS B460006).
18132
18133 if Ada_Version >= Ada_2012 then
18134 Error_Msg_N
18135 ("discriminants of nonlimited tagged type cannot have"
18136 & " defaults",
18137 Expression (Discr));
18138 else
18139 Error_Msg_N
18140 ("discriminants of tagged type cannot have defaults",
18141 Expression (Discr));
18142 end if;
18143
18144 else
18145 Default_Present := True;
18146 Append_Elmt (Expression (Discr), Elist);
18147
18148 -- Tag the defining identifiers for the discriminants with
18149 -- their corresponding default expressions from the tree.
18150
18151 Set_Discriminant_Default_Value
18152 (Defining_Identifier (Discr), Expression (Discr));
18153 end if;
18154
18155 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18156 -- gets set unless we can be sure that no range check is required.
18157
18158 if (GNATprove_Mode or not Expander_Active)
18159 and then not
18160 Is_In_Range
18161 (Expression (Discr), Discr_Type, Assume_Valid => True)
18162 then
18163 Set_Do_Range_Check (Expression (Discr));
18164 end if;
18165
18166 -- No default discriminant value given
18167
18168 else
18169 Default_Not_Present := True;
18170 end if;
18171
18172 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18173 -- Discr_Type but with the null-exclusion attribute
18174
18175 if Ada_Version >= Ada_2005 then
18176
18177 -- Ada 2005 (AI-231): Static checks
18178
18179 if Can_Never_Be_Null (Discr_Type) then
18180 Null_Exclusion_Static_Checks (Discr);
18181
18182 elsif Is_Access_Type (Discr_Type)
18183 and then Null_Exclusion_Present (Discr)
18184
18185 -- No need to check itypes because in their case this check
18186 -- was done at their point of creation
18187
18188 and then not Is_Itype (Discr_Type)
18189 then
18190 if Can_Never_Be_Null (Discr_Type) then
18191 Error_Msg_NE
18192 ("`NOT NULL` not allowed (& already excludes null)",
18193 Discr,
18194 Discr_Type);
18195 end if;
18196
18197 Set_Etype (Defining_Identifier (Discr),
18198 Create_Null_Excluding_Itype
18199 (T => Discr_Type,
18200 Related_Nod => Discr));
18201
18202 -- Check for improper null exclusion if the type is otherwise
18203 -- legal for a discriminant.
18204
18205 elsif Null_Exclusion_Present (Discr)
18206 and then Is_Discrete_Type (Discr_Type)
18207 then
18208 Error_Msg_N
18209 ("null exclusion can only apply to an access type", Discr);
18210 end if;
18211
18212 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18213 -- can't have defaults. Synchronized types, or types that are
18214 -- explicitly limited are fine, but special tests apply to derived
18215 -- types in generics: in a generic body we have to assume the
18216 -- worst, and therefore defaults are not allowed if the parent is
18217 -- a generic formal private type (see ACATS B370001).
18218
18219 if Is_Access_Type (Discr_Type) and then Default_Present then
18220 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18221 or else Is_Limited_Record (Current_Scope)
18222 or else Is_Concurrent_Type (Current_Scope)
18223 or else Is_Concurrent_Record_Type (Current_Scope)
18224 or else Ekind (Current_Scope) = E_Limited_Private_Type
18225 then
18226 if not Is_Derived_Type (Current_Scope)
18227 or else not Is_Generic_Type (Etype (Current_Scope))
18228 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18229 or else Limited_Present
18230 (Type_Definition (Parent (Current_Scope)))
18231 then
18232 null;
18233
18234 else
18235 Error_Msg_N ("access discriminants of nonlimited types",
18236 Expression (Discr));
18237 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18238 end if;
18239
18240 elsif Present (Expression (Discr)) then
18241 Error_Msg_N
18242 ("(Ada 2005) access discriminants of nonlimited types",
18243 Expression (Discr));
18244 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18245 end if;
18246 end if;
18247 end if;
18248
18249 -- A discriminant cannot be effectively volatile. This check is only
18250 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18251 -- rule (SPARK RM 7.1.3(6)).
18252
18253 if SPARK_Mode = On
18254 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18255 then
18256 Error_Msg_N ("discriminant cannot be volatile", Discr);
18257 end if;
18258
18259 Next (Discr);
18260 end loop;
18261
18262 -- An element list consisting of the default expressions of the
18263 -- discriminants is constructed in the above loop and used to set
18264 -- the Discriminant_Constraint attribute for the type. If an object
18265 -- is declared of this (record or task) type without any explicit
18266 -- discriminant constraint given, this element list will form the
18267 -- actual parameters for the corresponding initialization procedure
18268 -- for the type.
18269
18270 Set_Discriminant_Constraint (Current_Scope, Elist);
18271 Set_Stored_Constraint (Current_Scope, No_Elist);
18272
18273 -- Default expressions must be provided either for all or for none
18274 -- of the discriminants of a discriminant part. (RM 3.7.1)
18275
18276 if Default_Present and then Default_Not_Present then
18277 Error_Msg_N
18278 ("incomplete specification of defaults for discriminants", N);
18279 end if;
18280
18281 -- The use of the name of a discriminant is not allowed in default
18282 -- expressions of a discriminant part if the specification of the
18283 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18284
18285 -- To detect this, the discriminant names are entered initially with an
18286 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18287 -- attempt to use a void entity (for example in an expression that is
18288 -- type-checked) produces the error message: premature usage. Now after
18289 -- completing the semantic analysis of the discriminant part, we can set
18290 -- the Ekind of all the discriminants appropriately.
18291
18292 Discr := First (Discriminant_Specifications (N));
18293 Discr_Number := Uint_1;
18294 while Present (Discr) loop
18295 Id := Defining_Identifier (Discr);
18296 Set_Ekind (Id, E_Discriminant);
18297 Init_Component_Location (Id);
18298 Init_Esize (Id);
18299 Set_Discriminant_Number (Id, Discr_Number);
18300
18301 -- Make sure this is always set, even in illegal programs
18302
18303 Set_Corresponding_Discriminant (Id, Empty);
18304
18305 -- Initialize the Original_Record_Component to the entity itself.
18306 -- Inherit_Components will propagate the right value to
18307 -- discriminants in derived record types.
18308
18309 Set_Original_Record_Component (Id, Id);
18310
18311 -- Create the discriminal for the discriminant
18312
18313 Build_Discriminal (Id);
18314
18315 Next (Discr);
18316 Discr_Number := Discr_Number + 1;
18317 end loop;
18318
18319 Set_Has_Discriminants (Current_Scope);
18320 end Process_Discriminants;
18321
18322 -----------------------
18323 -- Process_Full_View --
18324 -----------------------
18325
18326 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18327 Priv_Parent : Entity_Id;
18328 Full_Parent : Entity_Id;
18329 Full_Indic : Node_Id;
18330
18331 procedure Collect_Implemented_Interfaces
18332 (Typ : Entity_Id;
18333 Ifaces : Elist_Id);
18334 -- Ada 2005: Gather all the interfaces that Typ directly or
18335 -- inherently implements. Duplicate entries are not added to
18336 -- the list Ifaces.
18337
18338 ------------------------------------
18339 -- Collect_Implemented_Interfaces --
18340 ------------------------------------
18341
18342 procedure Collect_Implemented_Interfaces
18343 (Typ : Entity_Id;
18344 Ifaces : Elist_Id)
18345 is
18346 Iface : Entity_Id;
18347 Iface_Elmt : Elmt_Id;
18348
18349 begin
18350 -- Abstract interfaces are only associated with tagged record types
18351
18352 if not Is_Tagged_Type (Typ)
18353 or else not Is_Record_Type (Typ)
18354 then
18355 return;
18356 end if;
18357
18358 -- Recursively climb to the ancestors
18359
18360 if Etype (Typ) /= Typ
18361
18362 -- Protect the frontend against wrong cyclic declarations like:
18363
18364 -- type B is new A with private;
18365 -- type C is new A with private;
18366 -- private
18367 -- type B is new C with null record;
18368 -- type C is new B with null record;
18369
18370 and then Etype (Typ) /= Priv_T
18371 and then Etype (Typ) /= Full_T
18372 then
18373 -- Keep separate the management of private type declarations
18374
18375 if Ekind (Typ) = E_Record_Type_With_Private then
18376
18377 -- Handle the following illegal usage:
18378 -- type Private_Type is tagged private;
18379 -- private
18380 -- type Private_Type is new Type_Implementing_Iface;
18381
18382 if Present (Full_View (Typ))
18383 and then Etype (Typ) /= Full_View (Typ)
18384 then
18385 if Is_Interface (Etype (Typ)) then
18386 Append_Unique_Elmt (Etype (Typ), Ifaces);
18387 end if;
18388
18389 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18390 end if;
18391
18392 -- Non-private types
18393
18394 else
18395 if Is_Interface (Etype (Typ)) then
18396 Append_Unique_Elmt (Etype (Typ), Ifaces);
18397 end if;
18398
18399 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18400 end if;
18401 end if;
18402
18403 -- Handle entities in the list of abstract interfaces
18404
18405 if Present (Interfaces (Typ)) then
18406 Iface_Elmt := First_Elmt (Interfaces (Typ));
18407 while Present (Iface_Elmt) loop
18408 Iface := Node (Iface_Elmt);
18409
18410 pragma Assert (Is_Interface (Iface));
18411
18412 if not Contain_Interface (Iface, Ifaces) then
18413 Append_Elmt (Iface, Ifaces);
18414 Collect_Implemented_Interfaces (Iface, Ifaces);
18415 end if;
18416
18417 Next_Elmt (Iface_Elmt);
18418 end loop;
18419 end if;
18420 end Collect_Implemented_Interfaces;
18421
18422 -- Start of processing for Process_Full_View
18423
18424 begin
18425 -- First some sanity checks that must be done after semantic
18426 -- decoration of the full view and thus cannot be placed with other
18427 -- similar checks in Find_Type_Name
18428
18429 if not Is_Limited_Type (Priv_T)
18430 and then (Is_Limited_Type (Full_T)
18431 or else Is_Limited_Composite (Full_T))
18432 then
18433 if In_Instance then
18434 null;
18435 else
18436 Error_Msg_N
18437 ("completion of nonlimited type cannot be limited", Full_T);
18438 Explain_Limited_Type (Full_T, Full_T);
18439 end if;
18440
18441 elsif Is_Abstract_Type (Full_T)
18442 and then not Is_Abstract_Type (Priv_T)
18443 then
18444 Error_Msg_N
18445 ("completion of nonabstract type cannot be abstract", Full_T);
18446
18447 elsif Is_Tagged_Type (Priv_T)
18448 and then Is_Limited_Type (Priv_T)
18449 and then not Is_Limited_Type (Full_T)
18450 then
18451 -- If pragma CPP_Class was applied to the private declaration
18452 -- propagate the limitedness to the full-view
18453
18454 if Is_CPP_Class (Priv_T) then
18455 Set_Is_Limited_Record (Full_T);
18456
18457 -- GNAT allow its own definition of Limited_Controlled to disobey
18458 -- this rule in order in ease the implementation. This test is safe
18459 -- because Root_Controlled is defined in a child of System that
18460 -- normal programs are not supposed to use.
18461
18462 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18463 Set_Is_Limited_Composite (Full_T);
18464 else
18465 Error_Msg_N
18466 ("completion of limited tagged type must be limited", Full_T);
18467 end if;
18468
18469 elsif Is_Generic_Type (Priv_T) then
18470 Error_Msg_N ("generic type cannot have a completion", Full_T);
18471 end if;
18472
18473 -- Check that ancestor interfaces of private and full views are
18474 -- consistent. We omit this check for synchronized types because
18475 -- they are performed on the corresponding record type when frozen.
18476
18477 if Ada_Version >= Ada_2005
18478 and then Is_Tagged_Type (Priv_T)
18479 and then Is_Tagged_Type (Full_T)
18480 and then not Is_Concurrent_Type (Full_T)
18481 then
18482 declare
18483 Iface : Entity_Id;
18484 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18485 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18486
18487 begin
18488 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18489 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18490
18491 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18492 -- an interface type if and only if the full type is descendant
18493 -- of the interface type (AARM 7.3 (7.3/2)).
18494
18495 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18496
18497 if Present (Iface) then
18498 Error_Msg_NE
18499 ("interface in partial view& not implemented by full type "
18500 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18501 end if;
18502
18503 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18504
18505 if Present (Iface) then
18506 Error_Msg_NE
18507 ("interface & not implemented by partial view "
18508 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18509 end if;
18510 end;
18511 end if;
18512
18513 if Is_Tagged_Type (Priv_T)
18514 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18515 and then Is_Derived_Type (Full_T)
18516 then
18517 Priv_Parent := Etype (Priv_T);
18518
18519 -- The full view of a private extension may have been transformed
18520 -- into an unconstrained derived type declaration and a subtype
18521 -- declaration (see build_derived_record_type for details).
18522
18523 if Nkind (N) = N_Subtype_Declaration then
18524 Full_Indic := Subtype_Indication (N);
18525 Full_Parent := Etype (Base_Type (Full_T));
18526 else
18527 Full_Indic := Subtype_Indication (Type_Definition (N));
18528 Full_Parent := Etype (Full_T);
18529 end if;
18530
18531 -- Check that the parent type of the full type is a descendant of
18532 -- the ancestor subtype given in the private extension. If either
18533 -- entity has an Etype equal to Any_Type then we had some previous
18534 -- error situation [7.3(8)].
18535
18536 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18537 return;
18538
18539 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18540 -- any order. Therefore we don't have to check that its parent must
18541 -- be a descendant of the parent of the private type declaration.
18542
18543 elsif Is_Interface (Priv_Parent)
18544 and then Is_Interface (Full_Parent)
18545 then
18546 null;
18547
18548 -- Ada 2005 (AI-251): If the parent of the private type declaration
18549 -- is an interface there is no need to check that it is an ancestor
18550 -- of the associated full type declaration. The required tests for
18551 -- this case are performed by Build_Derived_Record_Type.
18552
18553 elsif not Is_Interface (Base_Type (Priv_Parent))
18554 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18555 then
18556 Error_Msg_N
18557 ("parent of full type must descend from parent"
18558 & " of private extension", Full_Indic);
18559
18560 -- First check a formal restriction, and then proceed with checking
18561 -- Ada rules. Since the formal restriction is not a serious error, we
18562 -- don't prevent further error detection for this check, hence the
18563 -- ELSE.
18564
18565 else
18566
18567 -- In formal mode, when completing a private extension the type
18568 -- named in the private part must be exactly the same as that
18569 -- named in the visible part.
18570
18571 if Priv_Parent /= Full_Parent then
18572 Error_Msg_Name_1 := Chars (Priv_Parent);
18573 Check_SPARK_05_Restriction ("% expected", Full_Indic);
18574 end if;
18575
18576 -- Check the rules of 7.3(10): if the private extension inherits
18577 -- known discriminants, then the full type must also inherit those
18578 -- discriminants from the same (ancestor) type, and the parent
18579 -- subtype of the full type must be constrained if and only if
18580 -- the ancestor subtype of the private extension is constrained.
18581
18582 if No (Discriminant_Specifications (Parent (Priv_T)))
18583 and then not Has_Unknown_Discriminants (Priv_T)
18584 and then Has_Discriminants (Base_Type (Priv_Parent))
18585 then
18586 declare
18587 Priv_Indic : constant Node_Id :=
18588 Subtype_Indication (Parent (Priv_T));
18589
18590 Priv_Constr : constant Boolean :=
18591 Is_Constrained (Priv_Parent)
18592 or else
18593 Nkind (Priv_Indic) = N_Subtype_Indication
18594 or else
18595 Is_Constrained (Entity (Priv_Indic));
18596
18597 Full_Constr : constant Boolean :=
18598 Is_Constrained (Full_Parent)
18599 or else
18600 Nkind (Full_Indic) = N_Subtype_Indication
18601 or else
18602 Is_Constrained (Entity (Full_Indic));
18603
18604 Priv_Discr : Entity_Id;
18605 Full_Discr : Entity_Id;
18606
18607 begin
18608 Priv_Discr := First_Discriminant (Priv_Parent);
18609 Full_Discr := First_Discriminant (Full_Parent);
18610 while Present (Priv_Discr) and then Present (Full_Discr) loop
18611 if Original_Record_Component (Priv_Discr) =
18612 Original_Record_Component (Full_Discr)
18613 or else
18614 Corresponding_Discriminant (Priv_Discr) =
18615 Corresponding_Discriminant (Full_Discr)
18616 then
18617 null;
18618 else
18619 exit;
18620 end if;
18621
18622 Next_Discriminant (Priv_Discr);
18623 Next_Discriminant (Full_Discr);
18624 end loop;
18625
18626 if Present (Priv_Discr) or else Present (Full_Discr) then
18627 Error_Msg_N
18628 ("full view must inherit discriminants of the parent"
18629 & " type used in the private extension", Full_Indic);
18630
18631 elsif Priv_Constr and then not Full_Constr then
18632 Error_Msg_N
18633 ("parent subtype of full type must be constrained",
18634 Full_Indic);
18635
18636 elsif Full_Constr and then not Priv_Constr then
18637 Error_Msg_N
18638 ("parent subtype of full type must be unconstrained",
18639 Full_Indic);
18640 end if;
18641 end;
18642
18643 -- Check the rules of 7.3(12): if a partial view has neither
18644 -- known or unknown discriminants, then the full type
18645 -- declaration shall define a definite subtype.
18646
18647 elsif not Has_Unknown_Discriminants (Priv_T)
18648 and then not Has_Discriminants (Priv_T)
18649 and then not Is_Constrained (Full_T)
18650 then
18651 Error_Msg_N
18652 ("full view must define a constrained type if partial view"
18653 & " has no discriminants", Full_T);
18654 end if;
18655
18656 -- ??????? Do we implement the following properly ?????
18657 -- If the ancestor subtype of a private extension has constrained
18658 -- discriminants, then the parent subtype of the full view shall
18659 -- impose a statically matching constraint on those discriminants
18660 -- [7.3(13)].
18661 end if;
18662
18663 else
18664 -- For untagged types, verify that a type without discriminants is
18665 -- not completed with an unconstrained type. A separate error message
18666 -- is produced if the full type has defaulted discriminants.
18667
18668 if not Is_Indefinite_Subtype (Priv_T)
18669 and then Is_Indefinite_Subtype (Full_T)
18670 then
18671 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18672 Error_Msg_NE
18673 ("full view of& not compatible with declaration#",
18674 Full_T, Priv_T);
18675
18676 if not Is_Tagged_Type (Full_T) then
18677 Error_Msg_N
18678 ("\one is constrained, the other unconstrained", Full_T);
18679 end if;
18680 end if;
18681 end if;
18682
18683 -- AI-419: verify that the use of "limited" is consistent
18684
18685 declare
18686 Orig_Decl : constant Node_Id := Original_Node (N);
18687
18688 begin
18689 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18690 and then not Limited_Present (Parent (Priv_T))
18691 and then not Synchronized_Present (Parent (Priv_T))
18692 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18693 and then Nkind
18694 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18695 and then Limited_Present (Type_Definition (Orig_Decl))
18696 then
18697 Error_Msg_N
18698 ("full view of non-limited extension cannot be limited", N);
18699 end if;
18700 end;
18701
18702 -- Ada 2005 (AI-443): A synchronized private extension must be
18703 -- completed by a task or protected type.
18704
18705 if Ada_Version >= Ada_2005
18706 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18707 and then Synchronized_Present (Parent (Priv_T))
18708 and then not Is_Concurrent_Type (Full_T)
18709 then
18710 Error_Msg_N ("full view of synchronized extension must " &
18711 "be synchronized type", N);
18712 end if;
18713
18714 -- Ada 2005 AI-363: if the full view has discriminants with
18715 -- defaults, it is illegal to declare constrained access subtypes
18716 -- whose designated type is the current type. This allows objects
18717 -- of the type that are declared in the heap to be unconstrained.
18718
18719 if not Has_Unknown_Discriminants (Priv_T)
18720 and then not Has_Discriminants (Priv_T)
18721 and then Has_Discriminants (Full_T)
18722 and then
18723 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18724 then
18725 Set_Has_Constrained_Partial_View (Full_T);
18726 Set_Has_Constrained_Partial_View (Priv_T);
18727 end if;
18728
18729 -- Create a full declaration for all its subtypes recorded in
18730 -- Private_Dependents and swap them similarly to the base type. These
18731 -- are subtypes that have been define before the full declaration of
18732 -- the private type. We also swap the entry in Private_Dependents list
18733 -- so we can properly restore the private view on exit from the scope.
18734
18735 declare
18736 Priv_Elmt : Elmt_Id;
18737 Priv_Scop : Entity_Id;
18738 Priv : Entity_Id;
18739 Full : Entity_Id;
18740
18741 begin
18742 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18743 while Present (Priv_Elmt) loop
18744 Priv := Node (Priv_Elmt);
18745 Priv_Scop := Scope (Priv);
18746
18747 if Ekind_In (Priv, E_Private_Subtype,
18748 E_Limited_Private_Subtype,
18749 E_Record_Subtype_With_Private)
18750 then
18751 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18752 Set_Is_Itype (Full);
18753 Set_Parent (Full, Parent (Priv));
18754 Set_Associated_Node_For_Itype (Full, N);
18755
18756 -- Now we need to complete the private subtype, but since the
18757 -- base type has already been swapped, we must also swap the
18758 -- subtypes (and thus, reverse the arguments in the call to
18759 -- Complete_Private_Subtype). Also note that we may need to
18760 -- re-establish the scope of the private subtype.
18761
18762 Copy_And_Swap (Priv, Full);
18763
18764 if not In_Open_Scopes (Priv_Scop) then
18765 Push_Scope (Priv_Scop);
18766
18767 else
18768 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18769
18770 Priv_Scop := Empty;
18771 end if;
18772
18773 Complete_Private_Subtype (Full, Priv, Full_T, N);
18774
18775 if Present (Priv_Scop) then
18776 Pop_Scope;
18777 end if;
18778
18779 Replace_Elmt (Priv_Elmt, Full);
18780 end if;
18781
18782 Next_Elmt (Priv_Elmt);
18783 end loop;
18784 end;
18785
18786 -- If the private view was tagged, copy the new primitive operations
18787 -- from the private view to the full view.
18788
18789 if Is_Tagged_Type (Full_T) then
18790 declare
18791 Disp_Typ : Entity_Id;
18792 Full_List : Elist_Id;
18793 Prim : Entity_Id;
18794 Prim_Elmt : Elmt_Id;
18795 Priv_List : Elist_Id;
18796
18797 function Contains
18798 (E : Entity_Id;
18799 L : Elist_Id) return Boolean;
18800 -- Determine whether list L contains element E
18801
18802 --------------
18803 -- Contains --
18804 --------------
18805
18806 function Contains
18807 (E : Entity_Id;
18808 L : Elist_Id) return Boolean
18809 is
18810 List_Elmt : Elmt_Id;
18811
18812 begin
18813 List_Elmt := First_Elmt (L);
18814 while Present (List_Elmt) loop
18815 if Node (List_Elmt) = E then
18816 return True;
18817 end if;
18818
18819 Next_Elmt (List_Elmt);
18820 end loop;
18821
18822 return False;
18823 end Contains;
18824
18825 -- Start of processing
18826
18827 begin
18828 if Is_Tagged_Type (Priv_T) then
18829 Priv_List := Primitive_Operations (Priv_T);
18830 Prim_Elmt := First_Elmt (Priv_List);
18831
18832 -- In the case of a concurrent type completing a private tagged
18833 -- type, primitives may have been declared in between the two
18834 -- views. These subprograms need to be wrapped the same way
18835 -- entries and protected procedures are handled because they
18836 -- cannot be directly shared by the two views.
18837
18838 if Is_Concurrent_Type (Full_T) then
18839 declare
18840 Conc_Typ : constant Entity_Id :=
18841 Corresponding_Record_Type (Full_T);
18842 Curr_Nod : Node_Id := Parent (Conc_Typ);
18843 Wrap_Spec : Node_Id;
18844
18845 begin
18846 while Present (Prim_Elmt) loop
18847 Prim := Node (Prim_Elmt);
18848
18849 if Comes_From_Source (Prim)
18850 and then not Is_Abstract_Subprogram (Prim)
18851 then
18852 Wrap_Spec :=
18853 Make_Subprogram_Declaration (Sloc (Prim),
18854 Specification =>
18855 Build_Wrapper_Spec
18856 (Subp_Id => Prim,
18857 Obj_Typ => Conc_Typ,
18858 Formals =>
18859 Parameter_Specifications (
18860 Parent (Prim))));
18861
18862 Insert_After (Curr_Nod, Wrap_Spec);
18863 Curr_Nod := Wrap_Spec;
18864
18865 Analyze (Wrap_Spec);
18866 end if;
18867
18868 Next_Elmt (Prim_Elmt);
18869 end loop;
18870
18871 return;
18872 end;
18873
18874 -- For non-concurrent types, transfer explicit primitives, but
18875 -- omit those inherited from the parent of the private view
18876 -- since they will be re-inherited later on.
18877
18878 else
18879 Full_List := Primitive_Operations (Full_T);
18880
18881 while Present (Prim_Elmt) loop
18882 Prim := Node (Prim_Elmt);
18883
18884 if Comes_From_Source (Prim)
18885 and then not Contains (Prim, Full_List)
18886 then
18887 Append_Elmt (Prim, Full_List);
18888 end if;
18889
18890 Next_Elmt (Prim_Elmt);
18891 end loop;
18892 end if;
18893
18894 -- Untagged private view
18895
18896 else
18897 Full_List := Primitive_Operations (Full_T);
18898
18899 -- In this case the partial view is untagged, so here we locate
18900 -- all of the earlier primitives that need to be treated as
18901 -- dispatching (those that appear between the two views). Note
18902 -- that these additional operations must all be new operations
18903 -- (any earlier operations that override inherited operations
18904 -- of the full view will already have been inserted in the
18905 -- primitives list, marked by Check_Operation_From_Private_View
18906 -- as dispatching. Note that implicit "/=" operators are
18907 -- excluded from being added to the primitives list since they
18908 -- shouldn't be treated as dispatching (tagged "/=" is handled
18909 -- specially).
18910
18911 Prim := Next_Entity (Full_T);
18912 while Present (Prim) and then Prim /= Priv_T loop
18913 if Ekind_In (Prim, E_Procedure, E_Function) then
18914 Disp_Typ := Find_Dispatching_Type (Prim);
18915
18916 if Disp_Typ = Full_T
18917 and then (Chars (Prim) /= Name_Op_Ne
18918 or else Comes_From_Source (Prim))
18919 then
18920 Check_Controlling_Formals (Full_T, Prim);
18921
18922 if not Is_Dispatching_Operation (Prim) then
18923 Append_Elmt (Prim, Full_List);
18924 Set_Is_Dispatching_Operation (Prim, True);
18925 Set_DT_Position (Prim, No_Uint);
18926 end if;
18927
18928 elsif Is_Dispatching_Operation (Prim)
18929 and then Disp_Typ /= Full_T
18930 then
18931
18932 -- Verify that it is not otherwise controlled by a
18933 -- formal or a return value of type T.
18934
18935 Check_Controlling_Formals (Disp_Typ, Prim);
18936 end if;
18937 end if;
18938
18939 Next_Entity (Prim);
18940 end loop;
18941 end if;
18942
18943 -- For the tagged case, the two views can share the same primitive
18944 -- operations list and the same class-wide type. Update attributes
18945 -- of the class-wide type which depend on the full declaration.
18946
18947 if Is_Tagged_Type (Priv_T) then
18948 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18949 Set_Class_Wide_Type
18950 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18951
18952 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18953 Set_Has_Protected
18954 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18955 end if;
18956 end;
18957 end if;
18958
18959 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18960
18961 if Known_To_Have_Preelab_Init (Priv_T) then
18962
18963 -- Case where there is a pragma Preelaborable_Initialization. We
18964 -- always allow this in predefined units, which is cheating a bit,
18965 -- but it means we don't have to struggle to meet the requirements in
18966 -- the RM for having Preelaborable Initialization. Otherwise we
18967 -- require that the type meets the RM rules. But we can't check that
18968 -- yet, because of the rule about overriding Initialize, so we simply
18969 -- set a flag that will be checked at freeze time.
18970
18971 if not In_Predefined_Unit (Full_T) then
18972 Set_Must_Have_Preelab_Init (Full_T);
18973 end if;
18974 end if;
18975
18976 -- If pragma CPP_Class was applied to the private type declaration,
18977 -- propagate it now to the full type declaration.
18978
18979 if Is_CPP_Class (Priv_T) then
18980 Set_Is_CPP_Class (Full_T);
18981 Set_Convention (Full_T, Convention_CPP);
18982
18983 -- Check that components of imported CPP types do not have default
18984 -- expressions.
18985
18986 Check_CPP_Type_Has_No_Defaults (Full_T);
18987 end if;
18988
18989 -- If the private view has user specified stream attributes, then so has
18990 -- the full view.
18991
18992 -- Why the test, how could these flags be already set in Full_T ???
18993
18994 if Has_Specified_Stream_Read (Priv_T) then
18995 Set_Has_Specified_Stream_Read (Full_T);
18996 end if;
18997
18998 if Has_Specified_Stream_Write (Priv_T) then
18999 Set_Has_Specified_Stream_Write (Full_T);
19000 end if;
19001
19002 if Has_Specified_Stream_Input (Priv_T) then
19003 Set_Has_Specified_Stream_Input (Full_T);
19004 end if;
19005
19006 if Has_Specified_Stream_Output (Priv_T) then
19007 Set_Has_Specified_Stream_Output (Full_T);
19008 end if;
19009
19010 -- Propagate the attributes related to pragma Default_Initial_Condition
19011 -- from the private to the full view. Note that both flags are mutually
19012 -- exclusive.
19013
19014 if Has_Inherited_Default_Init_Cond (Priv_T) then
19015 Set_Has_Inherited_Default_Init_Cond (Full_T);
19016 Set_Default_Init_Cond_Procedure
19017 (Full_T, Default_Init_Cond_Procedure (Priv_T));
19018
19019 elsif Has_Default_Init_Cond (Priv_T) then
19020 Set_Has_Default_Init_Cond (Full_T);
19021 Set_Default_Init_Cond_Procedure
19022 (Full_T, Default_Init_Cond_Procedure (Priv_T));
19023 end if;
19024
19025 -- Propagate invariants to full type
19026
19027 if Has_Invariants (Priv_T) then
19028 Set_Has_Invariants (Full_T);
19029 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19030 end if;
19031
19032 if Has_Inheritable_Invariants (Priv_T) then
19033 Set_Has_Inheritable_Invariants (Full_T);
19034 end if;
19035
19036 -- Propagate predicates to full type, and predicate function if already
19037 -- defined. It is not clear that this can actually happen? the partial
19038 -- view cannot be frozen yet, and the predicate function has not been
19039 -- built. Still it is a cheap check and seems safer to make it.
19040
19041 if Has_Predicates (Priv_T) then
19042 if Present (Predicate_Function (Priv_T)) then
19043 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19044 end if;
19045
19046 Set_Has_Predicates (Full_T);
19047 end if;
19048 end Process_Full_View;
19049
19050 -----------------------------------
19051 -- Process_Incomplete_Dependents --
19052 -----------------------------------
19053
19054 procedure Process_Incomplete_Dependents
19055 (N : Node_Id;
19056 Full_T : Entity_Id;
19057 Inc_T : Entity_Id)
19058 is
19059 Inc_Elmt : Elmt_Id;
19060 Priv_Dep : Entity_Id;
19061 New_Subt : Entity_Id;
19062
19063 Disc_Constraint : Elist_Id;
19064
19065 begin
19066 if No (Private_Dependents (Inc_T)) then
19067 return;
19068 end if;
19069
19070 -- Itypes that may be generated by the completion of an incomplete
19071 -- subtype are not used by the back-end and not attached to the tree.
19072 -- They are created only for constraint-checking purposes.
19073
19074 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19075 while Present (Inc_Elmt) loop
19076 Priv_Dep := Node (Inc_Elmt);
19077
19078 if Ekind (Priv_Dep) = E_Subprogram_Type then
19079
19080 -- An Access_To_Subprogram type may have a return type or a
19081 -- parameter type that is incomplete. Replace with the full view.
19082
19083 if Etype (Priv_Dep) = Inc_T then
19084 Set_Etype (Priv_Dep, Full_T);
19085 end if;
19086
19087 declare
19088 Formal : Entity_Id;
19089
19090 begin
19091 Formal := First_Formal (Priv_Dep);
19092 while Present (Formal) loop
19093 if Etype (Formal) = Inc_T then
19094 Set_Etype (Formal, Full_T);
19095 end if;
19096
19097 Next_Formal (Formal);
19098 end loop;
19099 end;
19100
19101 elsif Is_Overloadable (Priv_Dep) then
19102
19103 -- If a subprogram in the incomplete dependents list is primitive
19104 -- for a tagged full type then mark it as a dispatching operation,
19105 -- check whether it overrides an inherited subprogram, and check
19106 -- restrictions on its controlling formals. Note that a protected
19107 -- operation is never dispatching: only its wrapper operation
19108 -- (which has convention Ada) is.
19109
19110 if Is_Tagged_Type (Full_T)
19111 and then Is_Primitive (Priv_Dep)
19112 and then Convention (Priv_Dep) /= Convention_Protected
19113 then
19114 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19115 Set_Is_Dispatching_Operation (Priv_Dep);
19116 Check_Controlling_Formals (Full_T, Priv_Dep);
19117 end if;
19118
19119 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19120
19121 -- Can happen during processing of a body before the completion
19122 -- of a TA type. Ignore, because spec is also on dependent list.
19123
19124 return;
19125
19126 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19127 -- corresponding subtype of the full view.
19128
19129 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19130 Set_Subtype_Indication
19131 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19132 Set_Etype (Priv_Dep, Full_T);
19133 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19134 Set_Analyzed (Parent (Priv_Dep), False);
19135
19136 -- Reanalyze the declaration, suppressing the call to
19137 -- Enter_Name to avoid duplicate names.
19138
19139 Analyze_Subtype_Declaration
19140 (N => Parent (Priv_Dep),
19141 Skip => True);
19142
19143 -- Dependent is a subtype
19144
19145 else
19146 -- We build a new subtype indication using the full view of the
19147 -- incomplete parent. The discriminant constraints have been
19148 -- elaborated already at the point of the subtype declaration.
19149
19150 New_Subt := Create_Itype (E_Void, N);
19151
19152 if Has_Discriminants (Full_T) then
19153 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19154 else
19155 Disc_Constraint := No_Elist;
19156 end if;
19157
19158 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19159 Set_Full_View (Priv_Dep, New_Subt);
19160 end if;
19161
19162 Next_Elmt (Inc_Elmt);
19163 end loop;
19164 end Process_Incomplete_Dependents;
19165
19166 --------------------------------
19167 -- Process_Range_Expr_In_Decl --
19168 --------------------------------
19169
19170 procedure Process_Range_Expr_In_Decl
19171 (R : Node_Id;
19172 T : Entity_Id;
19173 Subtyp : Entity_Id := Empty;
19174 Check_List : List_Id := Empty_List;
19175 R_Check_Off : Boolean := False;
19176 In_Iter_Schm : Boolean := False)
19177 is
19178 Lo, Hi : Node_Id;
19179 R_Checks : Check_Result;
19180 Insert_Node : Node_Id;
19181 Def_Id : Entity_Id;
19182
19183 begin
19184 Analyze_And_Resolve (R, Base_Type (T));
19185
19186 if Nkind (R) = N_Range then
19187
19188 -- In SPARK, all ranges should be static, with the exception of the
19189 -- discrete type definition of a loop parameter specification.
19190
19191 if not In_Iter_Schm
19192 and then not Is_OK_Static_Range (R)
19193 then
19194 Check_SPARK_05_Restriction ("range should be static", R);
19195 end if;
19196
19197 Lo := Low_Bound (R);
19198 Hi := High_Bound (R);
19199
19200 -- We need to ensure validity of the bounds here, because if we
19201 -- go ahead and do the expansion, then the expanded code will get
19202 -- analyzed with range checks suppressed and we miss the check.
19203 -- Validity checks on the range of a quantified expression are
19204 -- delayed until the construct is transformed into a loop.
19205
19206 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19207 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19208 then
19209 Validity_Check_Range (R);
19210 end if;
19211
19212 -- If there were errors in the declaration, try and patch up some
19213 -- common mistakes in the bounds. The cases handled are literals
19214 -- which are Integer where the expected type is Real and vice versa.
19215 -- These corrections allow the compilation process to proceed further
19216 -- along since some basic assumptions of the format of the bounds
19217 -- are guaranteed.
19218
19219 if Etype (R) = Any_Type then
19220 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19221 Rewrite (Lo,
19222 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19223
19224 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19225 Rewrite (Hi,
19226 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19227
19228 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19229 Rewrite (Lo,
19230 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19231
19232 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19233 Rewrite (Hi,
19234 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19235 end if;
19236
19237 Set_Etype (Lo, T);
19238 Set_Etype (Hi, T);
19239 end if;
19240
19241 -- If the bounds of the range have been mistakenly given as string
19242 -- literals (perhaps in place of character literals), then an error
19243 -- has already been reported, but we rewrite the string literal as a
19244 -- bound of the range's type to avoid blowups in later processing
19245 -- that looks at static values.
19246
19247 if Nkind (Lo) = N_String_Literal then
19248 Rewrite (Lo,
19249 Make_Attribute_Reference (Sloc (Lo),
19250 Attribute_Name => Name_First,
19251 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19252 Analyze_And_Resolve (Lo);
19253 end if;
19254
19255 if Nkind (Hi) = N_String_Literal then
19256 Rewrite (Hi,
19257 Make_Attribute_Reference (Sloc (Hi),
19258 Attribute_Name => Name_First,
19259 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19260 Analyze_And_Resolve (Hi);
19261 end if;
19262
19263 -- If bounds aren't scalar at this point then exit, avoiding
19264 -- problems with further processing of the range in this procedure.
19265
19266 if not Is_Scalar_Type (Etype (Lo)) then
19267 return;
19268 end if;
19269
19270 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19271 -- then range of the base type. Here we check whether the bounds
19272 -- are in the range of the subtype itself. Note that if the bounds
19273 -- represent the null range the Constraint_Error exception should
19274 -- not be raised.
19275
19276 -- ??? The following code should be cleaned up as follows
19277
19278 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19279 -- is done in the call to Range_Check (R, T); below
19280
19281 -- 2. The use of R_Check_Off should be investigated and possibly
19282 -- removed, this would clean up things a bit.
19283
19284 if Is_Null_Range (Lo, Hi) then
19285 null;
19286
19287 else
19288 -- Capture values of bounds and generate temporaries for them
19289 -- if needed, before applying checks, since checks may cause
19290 -- duplication of the expression without forcing evaluation.
19291
19292 -- The forced evaluation removes side effects from expressions,
19293 -- which should occur also in GNATprove mode. Otherwise, we end up
19294 -- with unexpected insertions of actions at places where this is
19295 -- not supposed to occur, e.g. on default parameters of a call.
19296
19297 if Expander_Active or GNATprove_Mode then
19298
19299 -- If no subtype name, then just call Force_Evaluation to
19300 -- create declarations as needed to deal with side effects.
19301 -- Also ignore calls from within a record type, where we
19302 -- have possible scoping issues.
19303
19304 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19305 Force_Evaluation (Lo);
19306 Force_Evaluation (Hi);
19307
19308 -- If a subtype is given, then we capture the bounds if they
19309 -- are not known at compile time, using constant identifiers
19310 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19311
19312 -- Note: we do this transformation even if expansion is not
19313 -- active, and in particular we do it in GNATprove_Mode since
19314 -- the transformation is in general required to ensure that the
19315 -- resulting tree has proper Ada semantics.
19316
19317 -- Historical note: We used to just do Force_Evaluation calls
19318 -- in all cases, but it is better to capture the bounds with
19319 -- proper non-serialized names, since these will be accessed
19320 -- from other units, and hence may be public, and also we can
19321 -- then expand 'First and 'Last references to be references to
19322 -- these special names.
19323
19324 else
19325 if not Compile_Time_Known_Value (Lo)
19326
19327 -- No need to capture bounds if they already are
19328 -- references to constants.
19329
19330 and then not (Is_Entity_Name (Lo)
19331 and then Is_Constant_Object (Entity (Lo)))
19332 then
19333 declare
19334 Loc : constant Source_Ptr := Sloc (Lo);
19335 Lov : constant Entity_Id :=
19336 Make_Defining_Identifier (Loc,
19337 Chars =>
19338 New_External_Name (Chars (Subtyp), "_FIRST"));
19339 begin
19340 Insert_Action (R,
19341 Make_Object_Declaration (Loc,
19342 Defining_Identifier => Lov,
19343 Object_Definition =>
19344 New_Occurrence_Of (Base_Type (T), Loc),
19345 Constant_Present => True,
19346 Expression => Relocate_Node (Lo)));
19347 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19348 end;
19349 end if;
19350
19351 if not Compile_Time_Known_Value (Hi)
19352 and then not (Is_Entity_Name (Hi)
19353 and then Is_Constant_Object (Entity (Hi)))
19354 then
19355 declare
19356 Loc : constant Source_Ptr := Sloc (Hi);
19357 Hiv : constant Entity_Id :=
19358 Make_Defining_Identifier (Loc,
19359 Chars =>
19360 New_External_Name (Chars (Subtyp), "_LAST"));
19361 begin
19362 Insert_Action (R,
19363 Make_Object_Declaration (Loc,
19364 Defining_Identifier => Hiv,
19365 Object_Definition =>
19366 New_Occurrence_Of (Base_Type (T), Loc),
19367 Constant_Present => True,
19368 Expression => Relocate_Node (Hi)));
19369 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19370 end;
19371 end if;
19372 end if;
19373 end if;
19374
19375 -- We use a flag here instead of suppressing checks on the
19376 -- type because the type we check against isn't necessarily
19377 -- the place where we put the check.
19378
19379 if not R_Check_Off then
19380 R_Checks := Get_Range_Checks (R, T);
19381
19382 -- Look up tree to find an appropriate insertion point. We
19383 -- can't just use insert_actions because later processing
19384 -- depends on the insertion node. Prior to Ada 2012 the
19385 -- insertion point could only be a declaration or a loop, but
19386 -- quantified expressions can appear within any context in an
19387 -- expression, and the insertion point can be any statement,
19388 -- pragma, or declaration.
19389
19390 Insert_Node := Parent (R);
19391 while Present (Insert_Node) loop
19392 exit when
19393 Nkind (Insert_Node) in N_Declaration
19394 and then
19395 not Nkind_In
19396 (Insert_Node, N_Component_Declaration,
19397 N_Loop_Parameter_Specification,
19398 N_Function_Specification,
19399 N_Procedure_Specification);
19400
19401 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19402 or else Nkind (Insert_Node) in
19403 N_Statement_Other_Than_Procedure_Call
19404 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19405 N_Pragma);
19406
19407 Insert_Node := Parent (Insert_Node);
19408 end loop;
19409
19410 -- Why would Type_Decl not be present??? Without this test,
19411 -- short regression tests fail.
19412
19413 if Present (Insert_Node) then
19414
19415 -- Case of loop statement. Verify that the range is part
19416 -- of the subtype indication of the iteration scheme.
19417
19418 if Nkind (Insert_Node) = N_Loop_Statement then
19419 declare
19420 Indic : Node_Id;
19421
19422 begin
19423 Indic := Parent (R);
19424 while Present (Indic)
19425 and then Nkind (Indic) /= N_Subtype_Indication
19426 loop
19427 Indic := Parent (Indic);
19428 end loop;
19429
19430 if Present (Indic) then
19431 Def_Id := Etype (Subtype_Mark (Indic));
19432
19433 Insert_Range_Checks
19434 (R_Checks,
19435 Insert_Node,
19436 Def_Id,
19437 Sloc (Insert_Node),
19438 R,
19439 Do_Before => True);
19440 end if;
19441 end;
19442
19443 -- Insertion before a declaration. If the declaration
19444 -- includes discriminants, the list of applicable checks
19445 -- is given by the caller.
19446
19447 elsif Nkind (Insert_Node) in N_Declaration then
19448 Def_Id := Defining_Identifier (Insert_Node);
19449
19450 if (Ekind (Def_Id) = E_Record_Type
19451 and then Depends_On_Discriminant (R))
19452 or else
19453 (Ekind (Def_Id) = E_Protected_Type
19454 and then Has_Discriminants (Def_Id))
19455 then
19456 Append_Range_Checks
19457 (R_Checks,
19458 Check_List, Def_Id, Sloc (Insert_Node), R);
19459
19460 else
19461 Insert_Range_Checks
19462 (R_Checks,
19463 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19464
19465 end if;
19466
19467 -- Insertion before a statement. Range appears in the
19468 -- context of a quantified expression. Insertion will
19469 -- take place when expression is expanded.
19470
19471 else
19472 null;
19473 end if;
19474 end if;
19475 end if;
19476 end if;
19477
19478 -- Case of other than an explicit N_Range node
19479
19480 -- The forced evaluation removes side effects from expressions, which
19481 -- should occur also in GNATprove mode. Otherwise, we end up with
19482 -- unexpected insertions of actions at places where this is not
19483 -- supposed to occur, e.g. on default parameters of a call.
19484
19485 elsif Expander_Active or GNATprove_Mode then
19486 Get_Index_Bounds (R, Lo, Hi);
19487 Force_Evaluation (Lo);
19488 Force_Evaluation (Hi);
19489 end if;
19490 end Process_Range_Expr_In_Decl;
19491
19492 --------------------------------------
19493 -- Process_Real_Range_Specification --
19494 --------------------------------------
19495
19496 procedure Process_Real_Range_Specification (Def : Node_Id) is
19497 Spec : constant Node_Id := Real_Range_Specification (Def);
19498 Lo : Node_Id;
19499 Hi : Node_Id;
19500 Err : Boolean := False;
19501
19502 procedure Analyze_Bound (N : Node_Id);
19503 -- Analyze and check one bound
19504
19505 -------------------
19506 -- Analyze_Bound --
19507 -------------------
19508
19509 procedure Analyze_Bound (N : Node_Id) is
19510 begin
19511 Analyze_And_Resolve (N, Any_Real);
19512
19513 if not Is_OK_Static_Expression (N) then
19514 Flag_Non_Static_Expr
19515 ("bound in real type definition is not static!", N);
19516 Err := True;
19517 end if;
19518 end Analyze_Bound;
19519
19520 -- Start of processing for Process_Real_Range_Specification
19521
19522 begin
19523 if Present (Spec) then
19524 Lo := Low_Bound (Spec);
19525 Hi := High_Bound (Spec);
19526 Analyze_Bound (Lo);
19527 Analyze_Bound (Hi);
19528
19529 -- If error, clear away junk range specification
19530
19531 if Err then
19532 Set_Real_Range_Specification (Def, Empty);
19533 end if;
19534 end if;
19535 end Process_Real_Range_Specification;
19536
19537 ---------------------
19538 -- Process_Subtype --
19539 ---------------------
19540
19541 function Process_Subtype
19542 (S : Node_Id;
19543 Related_Nod : Node_Id;
19544 Related_Id : Entity_Id := Empty;
19545 Suffix : Character := ' ') return Entity_Id
19546 is
19547 P : Node_Id;
19548 Def_Id : Entity_Id;
19549 Error_Node : Node_Id;
19550 Full_View_Id : Entity_Id;
19551 Subtype_Mark_Id : Entity_Id;
19552
19553 May_Have_Null_Exclusion : Boolean;
19554
19555 procedure Check_Incomplete (T : Entity_Id);
19556 -- Called to verify that an incomplete type is not used prematurely
19557
19558 ----------------------
19559 -- Check_Incomplete --
19560 ----------------------
19561
19562 procedure Check_Incomplete (T : Entity_Id) is
19563 begin
19564 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19565
19566 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19567 and then
19568 not (Ada_Version >= Ada_2005
19569 and then
19570 (Nkind (Parent (T)) = N_Subtype_Declaration
19571 or else
19572 (Nkind (Parent (T)) = N_Subtype_Indication
19573 and then Nkind (Parent (Parent (T))) =
19574 N_Subtype_Declaration)))
19575 then
19576 Error_Msg_N ("invalid use of type before its full declaration", T);
19577 end if;
19578 end Check_Incomplete;
19579
19580 -- Start of processing for Process_Subtype
19581
19582 begin
19583 -- Case of no constraints present
19584
19585 if Nkind (S) /= N_Subtype_Indication then
19586 Find_Type (S);
19587 Check_Incomplete (S);
19588 P := Parent (S);
19589
19590 -- Ada 2005 (AI-231): Static check
19591
19592 if Ada_Version >= Ada_2005
19593 and then Present (P)
19594 and then Null_Exclusion_Present (P)
19595 and then Nkind (P) /= N_Access_To_Object_Definition
19596 and then not Is_Access_Type (Entity (S))
19597 then
19598 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19599 end if;
19600
19601 -- The following is ugly, can't we have a range or even a flag???
19602
19603 May_Have_Null_Exclusion :=
19604 Nkind_In (P, N_Access_Definition,
19605 N_Access_Function_Definition,
19606 N_Access_Procedure_Definition,
19607 N_Access_To_Object_Definition,
19608 N_Allocator,
19609 N_Component_Definition)
19610 or else
19611 Nkind_In (P, N_Derived_Type_Definition,
19612 N_Discriminant_Specification,
19613 N_Formal_Object_Declaration,
19614 N_Object_Declaration,
19615 N_Object_Renaming_Declaration,
19616 N_Parameter_Specification,
19617 N_Subtype_Declaration);
19618
19619 -- Create an Itype that is a duplicate of Entity (S) but with the
19620 -- null-exclusion attribute.
19621
19622 if May_Have_Null_Exclusion
19623 and then Is_Access_Type (Entity (S))
19624 and then Null_Exclusion_Present (P)
19625
19626 -- No need to check the case of an access to object definition.
19627 -- It is correct to define double not-null pointers.
19628
19629 -- Example:
19630 -- type Not_Null_Int_Ptr is not null access Integer;
19631 -- type Acc is not null access Not_Null_Int_Ptr;
19632
19633 and then Nkind (P) /= N_Access_To_Object_Definition
19634 then
19635 if Can_Never_Be_Null (Entity (S)) then
19636 case Nkind (Related_Nod) is
19637 when N_Full_Type_Declaration =>
19638 if Nkind (Type_Definition (Related_Nod))
19639 in N_Array_Type_Definition
19640 then
19641 Error_Node :=
19642 Subtype_Indication
19643 (Component_Definition
19644 (Type_Definition (Related_Nod)));
19645 else
19646 Error_Node :=
19647 Subtype_Indication (Type_Definition (Related_Nod));
19648 end if;
19649
19650 when N_Subtype_Declaration =>
19651 Error_Node := Subtype_Indication (Related_Nod);
19652
19653 when N_Object_Declaration =>
19654 Error_Node := Object_Definition (Related_Nod);
19655
19656 when N_Component_Declaration =>
19657 Error_Node :=
19658 Subtype_Indication (Component_Definition (Related_Nod));
19659
19660 when N_Allocator =>
19661 Error_Node := Expression (Related_Nod);
19662
19663 when others =>
19664 pragma Assert (False);
19665 Error_Node := Related_Nod;
19666 end case;
19667
19668 Error_Msg_NE
19669 ("`NOT NULL` not allowed (& already excludes null)",
19670 Error_Node,
19671 Entity (S));
19672 end if;
19673
19674 Set_Etype (S,
19675 Create_Null_Excluding_Itype
19676 (T => Entity (S),
19677 Related_Nod => P));
19678 Set_Entity (S, Etype (S));
19679 end if;
19680
19681 return Entity (S);
19682
19683 -- Case of constraint present, so that we have an N_Subtype_Indication
19684 -- node (this node is created only if constraints are present).
19685
19686 else
19687 Find_Type (Subtype_Mark (S));
19688
19689 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19690 and then not
19691 (Nkind (Parent (S)) = N_Subtype_Declaration
19692 and then Is_Itype (Defining_Identifier (Parent (S))))
19693 then
19694 Check_Incomplete (Subtype_Mark (S));
19695 end if;
19696
19697 P := Parent (S);
19698 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19699
19700 -- Explicit subtype declaration case
19701
19702 if Nkind (P) = N_Subtype_Declaration then
19703 Def_Id := Defining_Identifier (P);
19704
19705 -- Explicit derived type definition case
19706
19707 elsif Nkind (P) = N_Derived_Type_Definition then
19708 Def_Id := Defining_Identifier (Parent (P));
19709
19710 -- Implicit case, the Def_Id must be created as an implicit type.
19711 -- The one exception arises in the case of concurrent types, array
19712 -- and access types, where other subsidiary implicit types may be
19713 -- created and must appear before the main implicit type. In these
19714 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19715 -- has not yet been called to create Def_Id.
19716
19717 else
19718 if Is_Array_Type (Subtype_Mark_Id)
19719 or else Is_Concurrent_Type (Subtype_Mark_Id)
19720 or else Is_Access_Type (Subtype_Mark_Id)
19721 then
19722 Def_Id := Empty;
19723
19724 -- For the other cases, we create a new unattached Itype,
19725 -- and set the indication to ensure it gets attached later.
19726
19727 else
19728 Def_Id :=
19729 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19730 end if;
19731 end if;
19732
19733 -- If the kind of constraint is invalid for this kind of type,
19734 -- then give an error, and then pretend no constraint was given.
19735
19736 if not Is_Valid_Constraint_Kind
19737 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19738 then
19739 Error_Msg_N
19740 ("incorrect constraint for this kind of type", Constraint (S));
19741
19742 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19743
19744 -- Set Ekind of orphan itype, to prevent cascaded errors
19745
19746 if Present (Def_Id) then
19747 Set_Ekind (Def_Id, Ekind (Any_Type));
19748 end if;
19749
19750 -- Make recursive call, having got rid of the bogus constraint
19751
19752 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19753 end if;
19754
19755 -- Remaining processing depends on type. Select on Base_Type kind to
19756 -- ensure getting to the concrete type kind in the case of a private
19757 -- subtype (needed when only doing semantic analysis).
19758
19759 case Ekind (Base_Type (Subtype_Mark_Id)) is
19760 when Access_Kind =>
19761
19762 -- If this is a constraint on a class-wide type, discard it.
19763 -- There is currently no way to express a partial discriminant
19764 -- constraint on a type with unknown discriminants. This is
19765 -- a pathology that the ACATS wisely decides not to test.
19766
19767 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19768 if Comes_From_Source (S) then
19769 Error_Msg_N
19770 ("constraint on class-wide type ignored??",
19771 Constraint (S));
19772 end if;
19773
19774 if Nkind (P) = N_Subtype_Declaration then
19775 Set_Subtype_Indication (P,
19776 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19777 end if;
19778
19779 return Subtype_Mark_Id;
19780 end if;
19781
19782 Constrain_Access (Def_Id, S, Related_Nod);
19783
19784 if Expander_Active
19785 and then Is_Itype (Designated_Type (Def_Id))
19786 and then Nkind (Related_Nod) = N_Subtype_Declaration
19787 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19788 then
19789 Build_Itype_Reference
19790 (Designated_Type (Def_Id), Related_Nod);
19791 end if;
19792
19793 when Array_Kind =>
19794 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19795
19796 when Decimal_Fixed_Point_Kind =>
19797 Constrain_Decimal (Def_Id, S);
19798
19799 when Enumeration_Kind =>
19800 Constrain_Enumeration (Def_Id, S);
19801 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19802
19803 when Ordinary_Fixed_Point_Kind =>
19804 Constrain_Ordinary_Fixed (Def_Id, S);
19805
19806 when Float_Kind =>
19807 Constrain_Float (Def_Id, S);
19808
19809 when Integer_Kind =>
19810 Constrain_Integer (Def_Id, S);
19811 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19812
19813 when E_Record_Type |
19814 E_Record_Subtype |
19815 Class_Wide_Kind |
19816 E_Incomplete_Type =>
19817 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19818
19819 if Ekind (Def_Id) = E_Incomplete_Type then
19820 Set_Private_Dependents (Def_Id, New_Elmt_List);
19821 end if;
19822
19823 when Private_Kind =>
19824 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19825 Set_Private_Dependents (Def_Id, New_Elmt_List);
19826
19827 -- In case of an invalid constraint prevent further processing
19828 -- since the type constructed is missing expected fields.
19829
19830 if Etype (Def_Id) = Any_Type then
19831 return Def_Id;
19832 end if;
19833
19834 -- If the full view is that of a task with discriminants,
19835 -- we must constrain both the concurrent type and its
19836 -- corresponding record type. Otherwise we will just propagate
19837 -- the constraint to the full view, if available.
19838
19839 if Present (Full_View (Subtype_Mark_Id))
19840 and then Has_Discriminants (Subtype_Mark_Id)
19841 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19842 then
19843 Full_View_Id :=
19844 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19845
19846 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19847 Constrain_Concurrent (Full_View_Id, S,
19848 Related_Nod, Related_Id, Suffix);
19849 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19850 Set_Full_View (Def_Id, Full_View_Id);
19851
19852 -- Introduce an explicit reference to the private subtype,
19853 -- to prevent scope anomalies in gigi if first use appears
19854 -- in a nested context, e.g. a later function body.
19855 -- Should this be generated in other contexts than a full
19856 -- type declaration?
19857
19858 if Is_Itype (Def_Id)
19859 and then
19860 Nkind (Parent (P)) = N_Full_Type_Declaration
19861 then
19862 Build_Itype_Reference (Def_Id, Parent (P));
19863 end if;
19864
19865 else
19866 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19867 end if;
19868
19869 when Concurrent_Kind =>
19870 Constrain_Concurrent (Def_Id, S,
19871 Related_Nod, Related_Id, Suffix);
19872
19873 when others =>
19874 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19875 end case;
19876
19877 -- Size and Convention are always inherited from the base type
19878
19879 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19880 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19881
19882 return Def_Id;
19883 end if;
19884 end Process_Subtype;
19885
19886 ---------------------------------------
19887 -- Check_Anonymous_Access_Components --
19888 ---------------------------------------
19889
19890 procedure Check_Anonymous_Access_Components
19891 (Typ_Decl : Node_Id;
19892 Typ : Entity_Id;
19893 Prev : Entity_Id;
19894 Comp_List : Node_Id)
19895 is
19896 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19897 Anon_Access : Entity_Id;
19898 Acc_Def : Node_Id;
19899 Comp : Node_Id;
19900 Comp_Def : Node_Id;
19901 Decl : Node_Id;
19902 Type_Def : Node_Id;
19903
19904 procedure Build_Incomplete_Type_Declaration;
19905 -- If the record type contains components that include an access to the
19906 -- current record, then create an incomplete type declaration for the
19907 -- record, to be used as the designated type of the anonymous access.
19908 -- This is done only once, and only if there is no previous partial
19909 -- view of the type.
19910
19911 function Designates_T (Subt : Node_Id) return Boolean;
19912 -- Check whether a node designates the enclosing record type, or 'Class
19913 -- of that type
19914
19915 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19916 -- Check whether an access definition includes a reference to
19917 -- the enclosing record type. The reference can be a subtype mark
19918 -- in the access definition itself, a 'Class attribute reference, or
19919 -- recursively a reference appearing in a parameter specification
19920 -- or result definition of an access_to_subprogram definition.
19921
19922 --------------------------------------
19923 -- Build_Incomplete_Type_Declaration --
19924 --------------------------------------
19925
19926 procedure Build_Incomplete_Type_Declaration is
19927 Decl : Node_Id;
19928 Inc_T : Entity_Id;
19929 H : Entity_Id;
19930
19931 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19932 -- it's "is new ... with record" or else "is tagged record ...".
19933
19934 Is_Tagged : constant Boolean :=
19935 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19936 and then
19937 Present
19938 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19939 or else
19940 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19941 and then Tagged_Present (Type_Definition (Typ_Decl)));
19942
19943 begin
19944 -- If there is a previous partial view, no need to create a new one
19945 -- If the partial view, given by Prev, is incomplete, If Prev is
19946 -- a private declaration, full declaration is flagged accordingly.
19947
19948 if Prev /= Typ then
19949 if Is_Tagged then
19950 Make_Class_Wide_Type (Prev);
19951 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19952 Set_Etype (Class_Wide_Type (Typ), Typ);
19953 end if;
19954
19955 return;
19956
19957 elsif Has_Private_Declaration (Typ) then
19958
19959 -- If we refer to T'Class inside T, and T is the completion of a
19960 -- private type, then we need to make sure the class-wide type
19961 -- exists.
19962
19963 if Is_Tagged then
19964 Make_Class_Wide_Type (Typ);
19965 end if;
19966
19967 return;
19968
19969 -- If there was a previous anonymous access type, the incomplete
19970 -- type declaration will have been created already.
19971
19972 elsif Present (Current_Entity (Typ))
19973 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19974 and then Full_View (Current_Entity (Typ)) = Typ
19975 then
19976 if Is_Tagged
19977 and then Comes_From_Source (Current_Entity (Typ))
19978 and then not Is_Tagged_Type (Current_Entity (Typ))
19979 then
19980 Make_Class_Wide_Type (Typ);
19981 Error_Msg_N
19982 ("incomplete view of tagged type should be declared tagged??",
19983 Parent (Current_Entity (Typ)));
19984 end if;
19985 return;
19986
19987 else
19988 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19989 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19990
19991 -- Type has already been inserted into the current scope. Remove
19992 -- it, and add incomplete declaration for type, so that subsequent
19993 -- anonymous access types can use it. The entity is unchained from
19994 -- the homonym list and from immediate visibility. After analysis,
19995 -- the entity in the incomplete declaration becomes immediately
19996 -- visible in the record declaration that follows.
19997
19998 H := Current_Entity (Typ);
19999
20000 if H = Typ then
20001 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
20002 else
20003 while Present (H)
20004 and then Homonym (H) /= Typ
20005 loop
20006 H := Homonym (Typ);
20007 end loop;
20008
20009 Set_Homonym (H, Homonym (Typ));
20010 end if;
20011
20012 Insert_Before (Typ_Decl, Decl);
20013 Analyze (Decl);
20014 Set_Full_View (Inc_T, Typ);
20015
20016 if Is_Tagged then
20017
20018 -- Create a common class-wide type for both views, and set the
20019 -- Etype of the class-wide type to the full view.
20020
20021 Make_Class_Wide_Type (Inc_T);
20022 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
20023 Set_Etype (Class_Wide_Type (Typ), Typ);
20024 end if;
20025 end if;
20026 end Build_Incomplete_Type_Declaration;
20027
20028 ------------------
20029 -- Designates_T --
20030 ------------------
20031
20032 function Designates_T (Subt : Node_Id) return Boolean is
20033 Type_Id : constant Name_Id := Chars (Typ);
20034
20035 function Names_T (Nam : Node_Id) return Boolean;
20036 -- The record type has not been introduced in the current scope
20037 -- yet, so we must examine the name of the type itself, either
20038 -- an identifier T, or an expanded name of the form P.T, where
20039 -- P denotes the current scope.
20040
20041 -------------
20042 -- Names_T --
20043 -------------
20044
20045 function Names_T (Nam : Node_Id) return Boolean is
20046 begin
20047 if Nkind (Nam) = N_Identifier then
20048 return Chars (Nam) = Type_Id;
20049
20050 elsif Nkind (Nam) = N_Selected_Component then
20051 if Chars (Selector_Name (Nam)) = Type_Id then
20052 if Nkind (Prefix (Nam)) = N_Identifier then
20053 return Chars (Prefix (Nam)) = Chars (Current_Scope);
20054
20055 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
20056 return Chars (Selector_Name (Prefix (Nam))) =
20057 Chars (Current_Scope);
20058 else
20059 return False;
20060 end if;
20061
20062 else
20063 return False;
20064 end if;
20065
20066 else
20067 return False;
20068 end if;
20069 end Names_T;
20070
20071 -- Start of processing for Designates_T
20072
20073 begin
20074 if Nkind (Subt) = N_Identifier then
20075 return Chars (Subt) = Type_Id;
20076
20077 -- Reference can be through an expanded name which has not been
20078 -- analyzed yet, and which designates enclosing scopes.
20079
20080 elsif Nkind (Subt) = N_Selected_Component then
20081 if Names_T (Subt) then
20082 return True;
20083
20084 -- Otherwise it must denote an entity that is already visible.
20085 -- The access definition may name a subtype of the enclosing
20086 -- type, if there is a previous incomplete declaration for it.
20087
20088 else
20089 Find_Selected_Component (Subt);
20090 return
20091 Is_Entity_Name (Subt)
20092 and then Scope (Entity (Subt)) = Current_Scope
20093 and then
20094 (Chars (Base_Type (Entity (Subt))) = Type_Id
20095 or else
20096 (Is_Class_Wide_Type (Entity (Subt))
20097 and then
20098 Chars (Etype (Base_Type (Entity (Subt)))) =
20099 Type_Id));
20100 end if;
20101
20102 -- A reference to the current type may appear as the prefix of
20103 -- a 'Class attribute.
20104
20105 elsif Nkind (Subt) = N_Attribute_Reference
20106 and then Attribute_Name (Subt) = Name_Class
20107 then
20108 return Names_T (Prefix (Subt));
20109
20110 else
20111 return False;
20112 end if;
20113 end Designates_T;
20114
20115 ----------------
20116 -- Mentions_T --
20117 ----------------
20118
20119 function Mentions_T (Acc_Def : Node_Id) return Boolean is
20120 Param_Spec : Node_Id;
20121
20122 Acc_Subprg : constant Node_Id :=
20123 Access_To_Subprogram_Definition (Acc_Def);
20124
20125 begin
20126 if No (Acc_Subprg) then
20127 return Designates_T (Subtype_Mark (Acc_Def));
20128 end if;
20129
20130 -- Component is an access_to_subprogram: examine its formals,
20131 -- and result definition in the case of an access_to_function.
20132
20133 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20134 while Present (Param_Spec) loop
20135 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20136 and then Mentions_T (Parameter_Type (Param_Spec))
20137 then
20138 return True;
20139
20140 elsif Designates_T (Parameter_Type (Param_Spec)) then
20141 return True;
20142 end if;
20143
20144 Next (Param_Spec);
20145 end loop;
20146
20147 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20148 if Nkind (Result_Definition (Acc_Subprg)) =
20149 N_Access_Definition
20150 then
20151 return Mentions_T (Result_Definition (Acc_Subprg));
20152 else
20153 return Designates_T (Result_Definition (Acc_Subprg));
20154 end if;
20155 end if;
20156
20157 return False;
20158 end Mentions_T;
20159
20160 -- Start of processing for Check_Anonymous_Access_Components
20161
20162 begin
20163 if No (Comp_List) then
20164 return;
20165 end if;
20166
20167 Comp := First (Component_Items (Comp_List));
20168 while Present (Comp) loop
20169 if Nkind (Comp) = N_Component_Declaration
20170 and then Present
20171 (Access_Definition (Component_Definition (Comp)))
20172 and then
20173 Mentions_T (Access_Definition (Component_Definition (Comp)))
20174 then
20175 Comp_Def := Component_Definition (Comp);
20176 Acc_Def :=
20177 Access_To_Subprogram_Definition
20178 (Access_Definition (Comp_Def));
20179
20180 Build_Incomplete_Type_Declaration;
20181 Anon_Access := Make_Temporary (Loc, 'S');
20182
20183 -- Create a declaration for the anonymous access type: either
20184 -- an access_to_object or an access_to_subprogram.
20185
20186 if Present (Acc_Def) then
20187 if Nkind (Acc_Def) = N_Access_Function_Definition then
20188 Type_Def :=
20189 Make_Access_Function_Definition (Loc,
20190 Parameter_Specifications =>
20191 Parameter_Specifications (Acc_Def),
20192 Result_Definition => Result_Definition (Acc_Def));
20193 else
20194 Type_Def :=
20195 Make_Access_Procedure_Definition (Loc,
20196 Parameter_Specifications =>
20197 Parameter_Specifications (Acc_Def));
20198 end if;
20199
20200 else
20201 Type_Def :=
20202 Make_Access_To_Object_Definition (Loc,
20203 Subtype_Indication =>
20204 Relocate_Node
20205 (Subtype_Mark
20206 (Access_Definition (Comp_Def))));
20207
20208 Set_Constant_Present
20209 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20210 Set_All_Present
20211 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20212 end if;
20213
20214 Set_Null_Exclusion_Present
20215 (Type_Def,
20216 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20217
20218 Decl :=
20219 Make_Full_Type_Declaration (Loc,
20220 Defining_Identifier => Anon_Access,
20221 Type_Definition => Type_Def);
20222
20223 Insert_Before (Typ_Decl, Decl);
20224 Analyze (Decl);
20225
20226 -- If an access to subprogram, create the extra formals
20227
20228 if Present (Acc_Def) then
20229 Create_Extra_Formals (Designated_Type (Anon_Access));
20230
20231 -- If an access to object, preserve entity of designated type,
20232 -- for ASIS use, before rewriting the component definition.
20233
20234 else
20235 declare
20236 Desig : Entity_Id;
20237
20238 begin
20239 Desig := Entity (Subtype_Indication (Type_Def));
20240
20241 -- If the access definition is to the current record,
20242 -- the visible entity at this point is an incomplete
20243 -- type. Retrieve the full view to simplify ASIS queries
20244
20245 if Ekind (Desig) = E_Incomplete_Type then
20246 Desig := Full_View (Desig);
20247 end if;
20248
20249 Set_Entity
20250 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20251 end;
20252 end if;
20253
20254 Rewrite (Comp_Def,
20255 Make_Component_Definition (Loc,
20256 Subtype_Indication =>
20257 New_Occurrence_Of (Anon_Access, Loc)));
20258
20259 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20260 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20261 else
20262 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20263 end if;
20264
20265 Set_Is_Local_Anonymous_Access (Anon_Access);
20266 end if;
20267
20268 Next (Comp);
20269 end loop;
20270
20271 if Present (Variant_Part (Comp_List)) then
20272 declare
20273 V : Node_Id;
20274 begin
20275 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20276 while Present (V) loop
20277 Check_Anonymous_Access_Components
20278 (Typ_Decl, Typ, Prev, Component_List (V));
20279 Next_Non_Pragma (V);
20280 end loop;
20281 end;
20282 end if;
20283 end Check_Anonymous_Access_Components;
20284
20285 ----------------------------------
20286 -- Preanalyze_Assert_Expression --
20287 ----------------------------------
20288
20289 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20290 begin
20291 In_Assertion_Expr := In_Assertion_Expr + 1;
20292 Preanalyze_Spec_Expression (N, T);
20293 In_Assertion_Expr := In_Assertion_Expr - 1;
20294 end Preanalyze_Assert_Expression;
20295
20296 -----------------------------------
20297 -- Preanalyze_Default_Expression --
20298 -----------------------------------
20299
20300 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
20301 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
20302 begin
20303 In_Default_Expr := True;
20304 Preanalyze_Spec_Expression (N, T);
20305 In_Default_Expr := Save_In_Default_Expr;
20306 end Preanalyze_Default_Expression;
20307
20308 --------------------------------
20309 -- Preanalyze_Spec_Expression --
20310 --------------------------------
20311
20312 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20313 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20314 begin
20315 In_Spec_Expression := True;
20316 Preanalyze_And_Resolve (N, T);
20317 In_Spec_Expression := Save_In_Spec_Expression;
20318 end Preanalyze_Spec_Expression;
20319
20320 -----------------------------
20321 -- Record_Type_Declaration --
20322 -----------------------------
20323
20324 procedure Record_Type_Declaration
20325 (T : Entity_Id;
20326 N : Node_Id;
20327 Prev : Entity_Id)
20328 is
20329 Def : constant Node_Id := Type_Definition (N);
20330 Is_Tagged : Boolean;
20331 Tag_Comp : Entity_Id;
20332
20333 begin
20334 -- These flags must be initialized before calling Process_Discriminants
20335 -- because this routine makes use of them.
20336
20337 Set_Ekind (T, E_Record_Type);
20338 Set_Etype (T, T);
20339 Init_Size_Align (T);
20340 Set_Interfaces (T, No_Elist);
20341 Set_Stored_Constraint (T, No_Elist);
20342 Set_Default_SSO (T);
20343
20344 -- Normal case
20345
20346 if Ada_Version < Ada_2005
20347 or else not Interface_Present (Def)
20348 then
20349 if Limited_Present (Def) then
20350 Check_SPARK_05_Restriction ("limited is not allowed", N);
20351 end if;
20352
20353 if Abstract_Present (Def) then
20354 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20355 end if;
20356
20357 -- The flag Is_Tagged_Type might have already been set by
20358 -- Find_Type_Name if it detected an error for declaration T. This
20359 -- arises in the case of private tagged types where the full view
20360 -- omits the word tagged.
20361
20362 Is_Tagged :=
20363 Tagged_Present (Def)
20364 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20365
20366 Set_Is_Tagged_Type (T, Is_Tagged);
20367 Set_Is_Limited_Record (T, Limited_Present (Def));
20368
20369 -- Type is abstract if full declaration carries keyword, or if
20370 -- previous partial view did.
20371
20372 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20373 or else Abstract_Present (Def));
20374
20375 else
20376 Check_SPARK_05_Restriction ("interface is not allowed", N);
20377
20378 Is_Tagged := True;
20379 Analyze_Interface_Declaration (T, Def);
20380
20381 if Present (Discriminant_Specifications (N)) then
20382 Error_Msg_N
20383 ("interface types cannot have discriminants",
20384 Defining_Identifier
20385 (First (Discriminant_Specifications (N))));
20386 end if;
20387 end if;
20388
20389 -- First pass: if there are self-referential access components,
20390 -- create the required anonymous access type declarations, and if
20391 -- need be an incomplete type declaration for T itself.
20392
20393 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20394
20395 if Ada_Version >= Ada_2005
20396 and then Present (Interface_List (Def))
20397 then
20398 Check_Interfaces (N, Def);
20399
20400 declare
20401 Ifaces_List : Elist_Id;
20402
20403 begin
20404 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20405 -- already in the parents.
20406
20407 Collect_Interfaces
20408 (T => T,
20409 Ifaces_List => Ifaces_List,
20410 Exclude_Parents => True);
20411
20412 Set_Interfaces (T, Ifaces_List);
20413 end;
20414 end if;
20415
20416 -- Records constitute a scope for the component declarations within.
20417 -- The scope is created prior to the processing of these declarations.
20418 -- Discriminants are processed first, so that they are visible when
20419 -- processing the other components. The Ekind of the record type itself
20420 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20421
20422 -- Enter record scope
20423
20424 Push_Scope (T);
20425
20426 -- If an incomplete or private type declaration was already given for
20427 -- the type, then this scope already exists, and the discriminants have
20428 -- been declared within. We must verify that the full declaration
20429 -- matches the incomplete one.
20430
20431 Check_Or_Process_Discriminants (N, T, Prev);
20432
20433 Set_Is_Constrained (T, not Has_Discriminants (T));
20434 Set_Has_Delayed_Freeze (T, True);
20435
20436 -- For tagged types add a manually analyzed component corresponding
20437 -- to the component _tag, the corresponding piece of tree will be
20438 -- expanded as part of the freezing actions if it is not a CPP_Class.
20439
20440 if Is_Tagged then
20441
20442 -- Do not add the tag unless we are in expansion mode
20443
20444 if Expander_Active then
20445 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20446 Enter_Name (Tag_Comp);
20447
20448 Set_Ekind (Tag_Comp, E_Component);
20449 Set_Is_Tag (Tag_Comp);
20450 Set_Is_Aliased (Tag_Comp);
20451 Set_Etype (Tag_Comp, RTE (RE_Tag));
20452 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20453 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20454 Init_Component_Location (Tag_Comp);
20455
20456 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20457 -- implemented interfaces.
20458
20459 if Has_Interfaces (T) then
20460 Add_Interface_Tag_Components (N, T);
20461 end if;
20462 end if;
20463
20464 Make_Class_Wide_Type (T);
20465 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20466 end if;
20467
20468 -- We must suppress range checks when processing record components in
20469 -- the presence of discriminants, since we don't want spurious checks to
20470 -- be generated during their analysis, but Suppress_Range_Checks flags
20471 -- must be reset the after processing the record definition.
20472
20473 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20474 -- couldn't we just use the normal range check suppression method here.
20475 -- That would seem cleaner ???
20476
20477 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20478 Set_Kill_Range_Checks (T, True);
20479 Record_Type_Definition (Def, Prev);
20480 Set_Kill_Range_Checks (T, False);
20481 else
20482 Record_Type_Definition (Def, Prev);
20483 end if;
20484
20485 -- Exit from record scope
20486
20487 End_Scope;
20488
20489 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20490 -- the implemented interfaces and associate them an aliased entity.
20491
20492 if Is_Tagged
20493 and then not Is_Empty_List (Interface_List (Def))
20494 then
20495 Derive_Progenitor_Subprograms (T, T);
20496 end if;
20497
20498 Check_Function_Writable_Actuals (N);
20499 end Record_Type_Declaration;
20500
20501 ----------------------------
20502 -- Record_Type_Definition --
20503 ----------------------------
20504
20505 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20506 Component : Entity_Id;
20507 Ctrl_Components : Boolean := False;
20508 Final_Storage_Only : Boolean;
20509 T : Entity_Id;
20510
20511 begin
20512 if Ekind (Prev_T) = E_Incomplete_Type then
20513 T := Full_View (Prev_T);
20514 else
20515 T := Prev_T;
20516 end if;
20517
20518 -- In SPARK, tagged types and type extensions may only be declared in
20519 -- the specification of library unit packages.
20520
20521 if Present (Def) and then Is_Tagged_Type (T) then
20522 declare
20523 Typ : Node_Id;
20524 Ctxt : Node_Id;
20525
20526 begin
20527 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20528 Typ := Parent (Def);
20529 else
20530 pragma Assert
20531 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20532 Typ := Parent (Parent (Def));
20533 end if;
20534
20535 Ctxt := Parent (Typ);
20536
20537 if Nkind (Ctxt) = N_Package_Body
20538 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20539 then
20540 Check_SPARK_05_Restriction
20541 ("type should be defined in package specification", Typ);
20542
20543 elsif Nkind (Ctxt) /= N_Package_Specification
20544 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20545 then
20546 Check_SPARK_05_Restriction
20547 ("type should be defined in library unit package", Typ);
20548 end if;
20549 end;
20550 end if;
20551
20552 Final_Storage_Only := not Is_Controlled (T);
20553
20554 -- Ada 2005: Check whether an explicit Limited is present in a derived
20555 -- type declaration.
20556
20557 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20558 and then Limited_Present (Parent (Def))
20559 then
20560 Set_Is_Limited_Record (T);
20561 end if;
20562
20563 -- If the component list of a record type is defined by the reserved
20564 -- word null and there is no discriminant part, then the record type has
20565 -- no components and all records of the type are null records (RM 3.7)
20566 -- This procedure is also called to process the extension part of a
20567 -- record extension, in which case the current scope may have inherited
20568 -- components.
20569
20570 if No (Def)
20571 or else No (Component_List (Def))
20572 or else Null_Present (Component_List (Def))
20573 then
20574 if not Is_Tagged_Type (T) then
20575 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20576 end if;
20577
20578 else
20579 Analyze_Declarations (Component_Items (Component_List (Def)));
20580
20581 if Present (Variant_Part (Component_List (Def))) then
20582 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20583 Analyze (Variant_Part (Component_List (Def)));
20584 end if;
20585 end if;
20586
20587 -- After completing the semantic analysis of the record definition,
20588 -- record components, both new and inherited, are accessible. Set their
20589 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20590 -- whose Ekind may be void.
20591
20592 Component := First_Entity (Current_Scope);
20593 while Present (Component) loop
20594 if Ekind (Component) = E_Void
20595 and then not Is_Itype (Component)
20596 then
20597 Set_Ekind (Component, E_Component);
20598 Init_Component_Location (Component);
20599 end if;
20600
20601 if Has_Task (Etype (Component)) then
20602 Set_Has_Task (T);
20603 end if;
20604
20605 if Has_Protected (Etype (Component)) then
20606 Set_Has_Protected (T);
20607 end if;
20608
20609 if Ekind (Component) /= E_Component then
20610 null;
20611
20612 -- Do not set Has_Controlled_Component on a class-wide equivalent
20613 -- type. See Make_CW_Equivalent_Type.
20614
20615 elsif not Is_Class_Wide_Equivalent_Type (T)
20616 and then (Has_Controlled_Component (Etype (Component))
20617 or else (Chars (Component) /= Name_uParent
20618 and then Is_Controlled (Etype (Component))))
20619 then
20620 Set_Has_Controlled_Component (T, True);
20621 Final_Storage_Only :=
20622 Final_Storage_Only
20623 and then Finalize_Storage_Only (Etype (Component));
20624 Ctrl_Components := True;
20625 end if;
20626
20627 Next_Entity (Component);
20628 end loop;
20629
20630 -- A Type is Finalize_Storage_Only only if all its controlled components
20631 -- are also.
20632
20633 if Ctrl_Components then
20634 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20635 end if;
20636
20637 -- Place reference to end record on the proper entity, which may
20638 -- be a partial view.
20639
20640 if Present (Def) then
20641 Process_End_Label (Def, 'e', Prev_T);
20642 end if;
20643 end Record_Type_Definition;
20644
20645 ------------------------
20646 -- Replace_Components --
20647 ------------------------
20648
20649 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20650 function Process (N : Node_Id) return Traverse_Result;
20651
20652 -------------
20653 -- Process --
20654 -------------
20655
20656 function Process (N : Node_Id) return Traverse_Result is
20657 Comp : Entity_Id;
20658
20659 begin
20660 if Nkind (N) = N_Discriminant_Specification then
20661 Comp := First_Discriminant (Typ);
20662 while Present (Comp) loop
20663 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20664 Set_Defining_Identifier (N, Comp);
20665 exit;
20666 end if;
20667
20668 Next_Discriminant (Comp);
20669 end loop;
20670
20671 elsif Nkind (N) = N_Component_Declaration then
20672 Comp := First_Component (Typ);
20673 while Present (Comp) loop
20674 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20675 Set_Defining_Identifier (N, Comp);
20676 exit;
20677 end if;
20678
20679 Next_Component (Comp);
20680 end loop;
20681 end if;
20682
20683 return OK;
20684 end Process;
20685
20686 procedure Replace is new Traverse_Proc (Process);
20687
20688 -- Start of processing for Replace_Components
20689
20690 begin
20691 Replace (Decl);
20692 end Replace_Components;
20693
20694 -------------------------------
20695 -- Set_Completion_Referenced --
20696 -------------------------------
20697
20698 procedure Set_Completion_Referenced (E : Entity_Id) is
20699 begin
20700 -- If in main unit, mark entity that is a completion as referenced,
20701 -- warnings go on the partial view when needed.
20702
20703 if In_Extended_Main_Source_Unit (E) then
20704 Set_Referenced (E);
20705 end if;
20706 end Set_Completion_Referenced;
20707
20708 ---------------------
20709 -- Set_Default_SSO --
20710 ---------------------
20711
20712 procedure Set_Default_SSO (T : Entity_Id) is
20713 begin
20714 case Opt.Default_SSO is
20715 when ' ' =>
20716 null;
20717 when 'L' =>
20718 Set_SSO_Set_Low_By_Default (T, True);
20719 when 'H' =>
20720 Set_SSO_Set_High_By_Default (T, True);
20721 when others =>
20722 raise Program_Error;
20723 end case;
20724 end Set_Default_SSO;
20725
20726 ---------------------
20727 -- Set_Fixed_Range --
20728 ---------------------
20729
20730 -- The range for fixed-point types is complicated by the fact that we
20731 -- do not know the exact end points at the time of the declaration. This
20732 -- is true for three reasons:
20733
20734 -- A size clause may affect the fudging of the end-points.
20735 -- A small clause may affect the values of the end-points.
20736 -- We try to include the end-points if it does not affect the size.
20737
20738 -- This means that the actual end-points must be established at the
20739 -- point when the type is frozen. Meanwhile, we first narrow the range
20740 -- as permitted (so that it will fit if necessary in a small specified
20741 -- size), and then build a range subtree with these narrowed bounds.
20742 -- Set_Fixed_Range constructs the range from real literal values, and
20743 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20744
20745 -- The parent of this range is set to point to the entity so that it is
20746 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20747 -- other scalar types, which are just pointers to the range in the
20748 -- original tree, this would otherwise be an orphan).
20749
20750 -- The tree is left unanalyzed. When the type is frozen, the processing
20751 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20752 -- analyzed, and uses this as an indication that it should complete
20753 -- work on the range (it will know the final small and size values).
20754
20755 procedure Set_Fixed_Range
20756 (E : Entity_Id;
20757 Loc : Source_Ptr;
20758 Lo : Ureal;
20759 Hi : Ureal)
20760 is
20761 S : constant Node_Id :=
20762 Make_Range (Loc,
20763 Low_Bound => Make_Real_Literal (Loc, Lo),
20764 High_Bound => Make_Real_Literal (Loc, Hi));
20765 begin
20766 Set_Scalar_Range (E, S);
20767 Set_Parent (S, E);
20768
20769 -- Before the freeze point, the bounds of a fixed point are universal
20770 -- and carry the corresponding type.
20771
20772 Set_Etype (Low_Bound (S), Universal_Real);
20773 Set_Etype (High_Bound (S), Universal_Real);
20774 end Set_Fixed_Range;
20775
20776 ----------------------------------
20777 -- Set_Scalar_Range_For_Subtype --
20778 ----------------------------------
20779
20780 procedure Set_Scalar_Range_For_Subtype
20781 (Def_Id : Entity_Id;
20782 R : Node_Id;
20783 Subt : Entity_Id)
20784 is
20785 Kind : constant Entity_Kind := Ekind (Def_Id);
20786
20787 begin
20788 -- Defend against previous error
20789
20790 if Nkind (R) = N_Error then
20791 return;
20792 end if;
20793
20794 Set_Scalar_Range (Def_Id, R);
20795
20796 -- We need to link the range into the tree before resolving it so
20797 -- that types that are referenced, including importantly the subtype
20798 -- itself, are properly frozen (Freeze_Expression requires that the
20799 -- expression be properly linked into the tree). Of course if it is
20800 -- already linked in, then we do not disturb the current link.
20801
20802 if No (Parent (R)) then
20803 Set_Parent (R, Def_Id);
20804 end if;
20805
20806 -- Reset the kind of the subtype during analysis of the range, to
20807 -- catch possible premature use in the bounds themselves.
20808
20809 Set_Ekind (Def_Id, E_Void);
20810 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20811 Set_Ekind (Def_Id, Kind);
20812 end Set_Scalar_Range_For_Subtype;
20813
20814 --------------------------------------------------------
20815 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20816 --------------------------------------------------------
20817
20818 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20819 (E : Entity_Id)
20820 is
20821 begin
20822 -- Make sure set if encountered during Expand_To_Stored_Constraint
20823
20824 Set_Stored_Constraint (E, No_Elist);
20825
20826 -- Give it the right value
20827
20828 if Is_Constrained (E) and then Has_Discriminants (E) then
20829 Set_Stored_Constraint (E,
20830 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20831 end if;
20832 end Set_Stored_Constraint_From_Discriminant_Constraint;
20833
20834 -------------------------------------
20835 -- Signed_Integer_Type_Declaration --
20836 -------------------------------------
20837
20838 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20839 Implicit_Base : Entity_Id;
20840 Base_Typ : Entity_Id;
20841 Lo_Val : Uint;
20842 Hi_Val : Uint;
20843 Errs : Boolean := False;
20844 Lo : Node_Id;
20845 Hi : Node_Id;
20846
20847 function Can_Derive_From (E : Entity_Id) return Boolean;
20848 -- Determine whether given bounds allow derivation from specified type
20849
20850 procedure Check_Bound (Expr : Node_Id);
20851 -- Check bound to make sure it is integral and static. If not, post
20852 -- appropriate error message and set Errs flag
20853
20854 ---------------------
20855 -- Can_Derive_From --
20856 ---------------------
20857
20858 -- Note we check both bounds against both end values, to deal with
20859 -- strange types like ones with a range of 0 .. -12341234.
20860
20861 function Can_Derive_From (E : Entity_Id) return Boolean is
20862 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20863 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20864 begin
20865 return Lo <= Lo_Val and then Lo_Val <= Hi
20866 and then
20867 Lo <= Hi_Val and then Hi_Val <= Hi;
20868 end Can_Derive_From;
20869
20870 -----------------
20871 -- Check_Bound --
20872 -----------------
20873
20874 procedure Check_Bound (Expr : Node_Id) is
20875 begin
20876 -- If a range constraint is used as an integer type definition, each
20877 -- bound of the range must be defined by a static expression of some
20878 -- integer type, but the two bounds need not have the same integer
20879 -- type (Negative bounds are allowed.) (RM 3.5.4)
20880
20881 if not Is_Integer_Type (Etype (Expr)) then
20882 Error_Msg_N
20883 ("integer type definition bounds must be of integer type", Expr);
20884 Errs := True;
20885
20886 elsif not Is_OK_Static_Expression (Expr) then
20887 Flag_Non_Static_Expr
20888 ("non-static expression used for integer type bound!", Expr);
20889 Errs := True;
20890
20891 -- The bounds are folded into literals, and we set their type to be
20892 -- universal, to avoid typing difficulties: we cannot set the type
20893 -- of the literal to the new type, because this would be a forward
20894 -- reference for the back end, and if the original type is user-
20895 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20896
20897 else
20898 if Is_Entity_Name (Expr) then
20899 Fold_Uint (Expr, Expr_Value (Expr), True);
20900 end if;
20901
20902 Set_Etype (Expr, Universal_Integer);
20903 end if;
20904 end Check_Bound;
20905
20906 -- Start of processing for Signed_Integer_Type_Declaration
20907
20908 begin
20909 -- Create an anonymous base type
20910
20911 Implicit_Base :=
20912 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20913
20914 -- Analyze and check the bounds, they can be of any integer type
20915
20916 Lo := Low_Bound (Def);
20917 Hi := High_Bound (Def);
20918
20919 -- Arbitrarily use Integer as the type if either bound had an error
20920
20921 if Hi = Error or else Lo = Error then
20922 Base_Typ := Any_Integer;
20923 Set_Error_Posted (T, True);
20924
20925 -- Here both bounds are OK expressions
20926
20927 else
20928 Analyze_And_Resolve (Lo, Any_Integer);
20929 Analyze_And_Resolve (Hi, Any_Integer);
20930
20931 Check_Bound (Lo);
20932 Check_Bound (Hi);
20933
20934 if Errs then
20935 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20936 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20937 end if;
20938
20939 -- Find type to derive from
20940
20941 Lo_Val := Expr_Value (Lo);
20942 Hi_Val := Expr_Value (Hi);
20943
20944 if Can_Derive_From (Standard_Short_Short_Integer) then
20945 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20946
20947 elsif Can_Derive_From (Standard_Short_Integer) then
20948 Base_Typ := Base_Type (Standard_Short_Integer);
20949
20950 elsif Can_Derive_From (Standard_Integer) then
20951 Base_Typ := Base_Type (Standard_Integer);
20952
20953 elsif Can_Derive_From (Standard_Long_Integer) then
20954 Base_Typ := Base_Type (Standard_Long_Integer);
20955
20956 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20957 Check_Restriction (No_Long_Long_Integers, Def);
20958 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20959
20960 else
20961 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20962 Error_Msg_N ("integer type definition bounds out of range", Def);
20963 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20964 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20965 end if;
20966 end if;
20967
20968 -- Complete both implicit base and declared first subtype entities
20969
20970 Set_Etype (Implicit_Base, Base_Typ);
20971 Set_Size_Info (Implicit_Base, (Base_Typ));
20972 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20973 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20974
20975 Set_Ekind (T, E_Signed_Integer_Subtype);
20976 Set_Etype (T, Implicit_Base);
20977
20978 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20979
20980 Set_Size_Info (T, (Implicit_Base));
20981 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20982 Set_Scalar_Range (T, Def);
20983 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20984 Set_Is_Constrained (T);
20985 end Signed_Integer_Type_Declaration;
20986
20987 end Sem_Ch3;