[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
866
867 return Anon_Type;
868 end if;
869
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
872
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
875
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
879
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
883
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
887
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
893
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
897
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
899
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
901
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
903
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
911
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
919
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
925
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
931
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
934
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
941
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
947
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
959
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
962
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
975
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
980
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
984
985 return Anon_Type;
986 end Access_Definition;
987
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
991
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
995 is
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1000
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1004
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1007
1008 begin
1009 -- Check for a subtype mark
1010
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1016
1017 -- If this is not a subtype, then this is an access_definition
1018
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1026
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1029
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1038
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1044
1045 -- Local variables
1046
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052
1053 -- Start of processing for Access_Subprogram_Declaration
1054
1055 begin
1056 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1057
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1061
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1066
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1074
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1086
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1101
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1106
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1116
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1123
1124 else
1125 Analyze (Result_Definition (T_Def));
1126
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1134
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1143
1144 else
1145 if From_Limited_With (Typ) then
1146
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1149
1150 if Ada_Version >= Ada_2012 then
1151 null;
1152
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1158
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1172
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1177
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1183
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1187
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1190
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1194
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1197
1198 declare
1199 F : Node_Id;
1200
1201 begin
1202 F := First (Formals);
1203
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1209
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1219
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1224
1225 Next (F);
1226 end loop;
1227 end;
1228
1229 Process_Formals (Formals, Parent (T_Def));
1230
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1234
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1239
1240 -- Check for premature usage of the type being defined
1241
1242 Check_For_Premature_Usage (T_Def);
1243
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1249
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1261
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1268
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1272
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1275
1276 May_Need_Actuals (Desig_Type);
1277
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1281
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1289
1290 Check_Delayed_Subprogram (Desig_Type);
1291
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1298
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304
1305 Generate_Reference_To_Formals (T_Name);
1306
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1313
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1317
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1321
1322 Full_Desig : Entity_Id;
1323
1324 begin
1325 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1326
1327 -- Check for permissible use of incomplete type
1328
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1331
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334
1335 -- If the designated type is a limited view, we cannot tell if
1336 -- the full view contains tasks, and there is no way to handle
1337 -- that full view in a client. We create a master entity for the
1338 -- scope, which will be used when a client determines that one
1339 -- is needed.
1340
1341 if From_Limited_With (Entity (S))
1342 and then not Is_Class_Wide_Type (Entity (S))
1343 then
1344 Set_Ekind (T, E_Access_Type);
1345 Build_Master_Entity (T);
1346 Build_Master_Renaming (T);
1347 end if;
1348
1349 else
1350 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1351 end if;
1352
1353 -- If the access definition is of the form: ACCESS NOT NULL ..
1354 -- the subtype indication must be of an access type. Create
1355 -- a null-excluding subtype of it.
1356
1357 if Null_Excluding_Subtype (Def) then
1358 if not Is_Access_Type (Entity (S)) then
1359 Error_Msg_N ("null exclusion must apply to access type", Def);
1360
1361 else
1362 declare
1363 Loc : constant Source_Ptr := Sloc (S);
1364 Decl : Node_Id;
1365 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1366
1367 begin
1368 Decl :=
1369 Make_Subtype_Declaration (Loc,
1370 Defining_Identifier => Nam,
1371 Subtype_Indication =>
1372 New_Occurrence_Of (Entity (S), Loc));
1373 Set_Null_Exclusion_Present (Decl);
1374 Insert_Before (Parent (Def), Decl);
1375 Analyze (Decl);
1376 Set_Entity (S, Nam);
1377 end;
1378 end if;
1379 end if;
1380
1381 else
1382 Set_Directly_Designated_Type (T,
1383 Process_Subtype (S, P, T, 'P'));
1384 end if;
1385
1386 if All_Present (Def) or Constant_Present (Def) then
1387 Set_Ekind (T, E_General_Access_Type);
1388 else
1389 Set_Ekind (T, E_Access_Type);
1390 end if;
1391
1392 Full_Desig := Designated_Type (T);
1393
1394 if Base_Type (Full_Desig) = T then
1395 Error_Msg_N ("access type cannot designate itself", S);
1396
1397 -- In Ada 2005, the type may have a limited view through some unit in
1398 -- its own context, allowing the following circularity that cannot be
1399 -- detected earlier.
1400
1401 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1402 then
1403 Error_Msg_N
1404 ("access type cannot designate its own classwide type", S);
1405
1406 -- Clean up indication of tagged status to prevent cascaded errors
1407
1408 Set_Is_Tagged_Type (T, False);
1409 end if;
1410
1411 Set_Etype (T, T);
1412
1413 -- If the type has appeared already in a with_type clause, it is frozen
1414 -- and the pointer size is already set. Else, initialize.
1415
1416 if not From_Limited_With (T) then
1417 Init_Size_Align (T);
1418 end if;
1419
1420 -- Note that Has_Task is always false, since the access type itself
1421 -- is not a task type. See Einfo for more description on this point.
1422 -- Exactly the same consideration applies to Has_Controlled_Component
1423 -- and to Has_Protected.
1424
1425 Set_Has_Task (T, False);
1426 Set_Has_Controlled_Component (T, False);
1427 Set_Has_Protected (T, False);
1428
1429 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1430 -- problems where an incomplete view of this entity has been previously
1431 -- established by a limited with and an overlaid version of this field
1432 -- (Stored_Constraint) was initialized for the incomplete view.
1433
1434 -- This reset is performed in most cases except where the access type
1435 -- has been created for the purposes of allocating or deallocating a
1436 -- build-in-place object. Such access types have explicitly set pools
1437 -- and finalization masters.
1438
1439 if No (Associated_Storage_Pool (T)) then
1440 Set_Finalization_Master (T, Empty);
1441 end if;
1442
1443 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1444 -- attributes
1445
1446 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1447 Set_Is_Access_Constant (T, Constant_Present (Def));
1448 end Access_Type_Declaration;
1449
1450 ----------------------------------
1451 -- Add_Interface_Tag_Components --
1452 ----------------------------------
1453
1454 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1455 Loc : constant Source_Ptr := Sloc (N);
1456 L : List_Id;
1457 Last_Tag : Node_Id;
1458
1459 procedure Add_Tag (Iface : Entity_Id);
1460 -- Add tag for one of the progenitor interfaces
1461
1462 -------------
1463 -- Add_Tag --
1464 -------------
1465
1466 procedure Add_Tag (Iface : Entity_Id) is
1467 Decl : Node_Id;
1468 Def : Node_Id;
1469 Tag : Entity_Id;
1470 Offset : Entity_Id;
1471
1472 begin
1473 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1474
1475 -- This is a reasonable place to propagate predicates
1476
1477 if Has_Predicates (Iface) then
1478 Set_Has_Predicates (Typ);
1479 end if;
1480
1481 Def :=
1482 Make_Component_Definition (Loc,
1483 Aliased_Present => True,
1484 Subtype_Indication =>
1485 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1486
1487 Tag := Make_Temporary (Loc, 'V');
1488
1489 Decl :=
1490 Make_Component_Declaration (Loc,
1491 Defining_Identifier => Tag,
1492 Component_Definition => Def);
1493
1494 Analyze_Component_Declaration (Decl);
1495
1496 Set_Analyzed (Decl);
1497 Set_Ekind (Tag, E_Component);
1498 Set_Is_Tag (Tag);
1499 Set_Is_Aliased (Tag);
1500 Set_Related_Type (Tag, Iface);
1501 Init_Component_Location (Tag);
1502
1503 pragma Assert (Is_Frozen (Iface));
1504
1505 Set_DT_Entry_Count (Tag,
1506 DT_Entry_Count (First_Entity (Iface)));
1507
1508 if No (Last_Tag) then
1509 Prepend (Decl, L);
1510 else
1511 Insert_After (Last_Tag, Decl);
1512 end if;
1513
1514 Last_Tag := Decl;
1515
1516 -- If the ancestor has discriminants we need to give special support
1517 -- to store the offset_to_top value of the secondary dispatch tables.
1518 -- For this purpose we add a supplementary component just after the
1519 -- field that contains the tag associated with each secondary DT.
1520
1521 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1522 Def :=
1523 Make_Component_Definition (Loc,
1524 Subtype_Indication =>
1525 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1526
1527 Offset := Make_Temporary (Loc, 'V');
1528
1529 Decl :=
1530 Make_Component_Declaration (Loc,
1531 Defining_Identifier => Offset,
1532 Component_Definition => Def);
1533
1534 Analyze_Component_Declaration (Decl);
1535
1536 Set_Analyzed (Decl);
1537 Set_Ekind (Offset, E_Component);
1538 Set_Is_Aliased (Offset);
1539 Set_Related_Type (Offset, Iface);
1540 Init_Component_Location (Offset);
1541 Insert_After (Last_Tag, Decl);
1542 Last_Tag := Decl;
1543 end if;
1544 end Add_Tag;
1545
1546 -- Local variables
1547
1548 Elmt : Elmt_Id;
1549 Ext : Node_Id;
1550 Comp : Node_Id;
1551
1552 -- Start of processing for Add_Interface_Tag_Components
1553
1554 begin
1555 if not RTE_Available (RE_Interface_Tag) then
1556 Error_Msg
1557 ("(Ada 2005) interface types not supported by this run-time!",
1558 Sloc (N));
1559 return;
1560 end if;
1561
1562 if Ekind (Typ) /= E_Record_Type
1563 or else (Is_Concurrent_Record_Type (Typ)
1564 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1565 or else (not Is_Concurrent_Record_Type (Typ)
1566 and then No (Interfaces (Typ))
1567 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1568 then
1569 return;
1570 end if;
1571
1572 -- Find the current last tag
1573
1574 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1575 Ext := Record_Extension_Part (Type_Definition (N));
1576 else
1577 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1578 Ext := Type_Definition (N);
1579 end if;
1580
1581 Last_Tag := Empty;
1582
1583 if not (Present (Component_List (Ext))) then
1584 Set_Null_Present (Ext, False);
1585 L := New_List;
1586 Set_Component_List (Ext,
1587 Make_Component_List (Loc,
1588 Component_Items => L,
1589 Null_Present => False));
1590 else
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 L := Component_Items
1593 (Component_List
1594 (Record_Extension_Part
1595 (Type_Definition (N))));
1596 else
1597 L := Component_Items
1598 (Component_List
1599 (Type_Definition (N)));
1600 end if;
1601
1602 -- Find the last tag component
1603
1604 Comp := First (L);
1605 while Present (Comp) loop
1606 if Nkind (Comp) = N_Component_Declaration
1607 and then Is_Tag (Defining_Identifier (Comp))
1608 then
1609 Last_Tag := Comp;
1610 end if;
1611
1612 Next (Comp);
1613 end loop;
1614 end if;
1615
1616 -- At this point L references the list of components and Last_Tag
1617 -- references the current last tag (if any). Now we add the tag
1618 -- corresponding with all the interfaces that are not implemented
1619 -- by the parent.
1620
1621 if Present (Interfaces (Typ)) then
1622 Elmt := First_Elmt (Interfaces (Typ));
1623 while Present (Elmt) loop
1624 Add_Tag (Node (Elmt));
1625 Next_Elmt (Elmt);
1626 end loop;
1627 end if;
1628 end Add_Interface_Tag_Components;
1629
1630 -------------------------------------
1631 -- Add_Internal_Interface_Entities --
1632 -------------------------------------
1633
1634 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1635 Elmt : Elmt_Id;
1636 Iface : Entity_Id;
1637 Iface_Elmt : Elmt_Id;
1638 Iface_Prim : Entity_Id;
1639 Ifaces_List : Elist_Id;
1640 New_Subp : Entity_Id := Empty;
1641 Prim : Entity_Id;
1642 Restore_Scope : Boolean := False;
1643
1644 begin
1645 pragma Assert (Ada_Version >= Ada_2005
1646 and then Is_Record_Type (Tagged_Type)
1647 and then Is_Tagged_Type (Tagged_Type)
1648 and then Has_Interfaces (Tagged_Type)
1649 and then not Is_Interface (Tagged_Type));
1650
1651 -- Ensure that the internal entities are added to the scope of the type
1652
1653 if Scope (Tagged_Type) /= Current_Scope then
1654 Push_Scope (Scope (Tagged_Type));
1655 Restore_Scope := True;
1656 end if;
1657
1658 Collect_Interfaces (Tagged_Type, Ifaces_List);
1659
1660 Iface_Elmt := First_Elmt (Ifaces_List);
1661 while Present (Iface_Elmt) loop
1662 Iface := Node (Iface_Elmt);
1663
1664 -- Originally we excluded here from this processing interfaces that
1665 -- are parents of Tagged_Type because their primitives are located
1666 -- in the primary dispatch table (and hence no auxiliary internal
1667 -- entities are required to handle secondary dispatch tables in such
1668 -- case). However, these auxiliary entities are also required to
1669 -- handle derivations of interfaces in formals of generics (see
1670 -- Derive_Subprograms).
1671
1672 Elmt := First_Elmt (Primitive_Operations (Iface));
1673 while Present (Elmt) loop
1674 Iface_Prim := Node (Elmt);
1675
1676 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1677 Prim :=
1678 Find_Primitive_Covering_Interface
1679 (Tagged_Type => Tagged_Type,
1680 Iface_Prim => Iface_Prim);
1681
1682 if No (Prim) and then Serious_Errors_Detected > 0 then
1683 goto Continue;
1684 end if;
1685
1686 pragma Assert (Present (Prim));
1687
1688 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1689 -- differs from the name of the interface primitive then it is
1690 -- a private primitive inherited from a parent type. In such
1691 -- case, given that Tagged_Type covers the interface, the
1692 -- inherited private primitive becomes visible. For such
1693 -- purpose we add a new entity that renames the inherited
1694 -- private primitive.
1695
1696 if Chars (Prim) /= Chars (Iface_Prim) then
1697 pragma Assert (Has_Suffix (Prim, 'P'));
1698 Derive_Subprogram
1699 (New_Subp => New_Subp,
1700 Parent_Subp => Iface_Prim,
1701 Derived_Type => Tagged_Type,
1702 Parent_Type => Iface);
1703 Set_Alias (New_Subp, Prim);
1704 Set_Is_Abstract_Subprogram
1705 (New_Subp, Is_Abstract_Subprogram (Prim));
1706 end if;
1707
1708 Derive_Subprogram
1709 (New_Subp => New_Subp,
1710 Parent_Subp => Iface_Prim,
1711 Derived_Type => Tagged_Type,
1712 Parent_Type => Iface);
1713
1714 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1715 -- associated with interface types. These entities are
1716 -- only registered in the list of primitives of its
1717 -- corresponding tagged type because they are only used
1718 -- to fill the contents of the secondary dispatch tables.
1719 -- Therefore they are removed from the homonym chains.
1720
1721 Set_Is_Hidden (New_Subp);
1722 Set_Is_Internal (New_Subp);
1723 Set_Alias (New_Subp, Prim);
1724 Set_Is_Abstract_Subprogram
1725 (New_Subp, Is_Abstract_Subprogram (Prim));
1726 Set_Interface_Alias (New_Subp, Iface_Prim);
1727
1728 -- If the returned type is an interface then propagate it to
1729 -- the returned type. Needed by the thunk to generate the code
1730 -- which displaces "this" to reference the corresponding
1731 -- secondary dispatch table in the returned object.
1732
1733 if Is_Interface (Etype (Iface_Prim)) then
1734 Set_Etype (New_Subp, Etype (Iface_Prim));
1735 end if;
1736
1737 -- Internal entities associated with interface types are
1738 -- only registered in the list of primitives of the tagged
1739 -- type. They are only used to fill the contents of the
1740 -- secondary dispatch tables. Therefore they are not needed
1741 -- in the homonym chains.
1742
1743 Remove_Homonym (New_Subp);
1744
1745 -- Hidden entities associated with interfaces must have set
1746 -- the Has_Delay_Freeze attribute to ensure that, in case of
1747 -- locally defined tagged types (or compiling with static
1748 -- dispatch tables generation disabled) the corresponding
1749 -- entry of the secondary dispatch table is filled when
1750 -- such an entity is frozen.
1751
1752 Set_Has_Delayed_Freeze (New_Subp);
1753 end if;
1754
1755 <<Continue>>
1756 Next_Elmt (Elmt);
1757 end loop;
1758
1759 Next_Elmt (Iface_Elmt);
1760 end loop;
1761
1762 if Restore_Scope then
1763 Pop_Scope;
1764 end if;
1765 end Add_Internal_Interface_Entities;
1766
1767 -----------------------------------
1768 -- Analyze_Component_Declaration --
1769 -----------------------------------
1770
1771 procedure Analyze_Component_Declaration (N : Node_Id) is
1772 Id : constant Entity_Id := Defining_Identifier (N);
1773 E : constant Node_Id := Expression (N);
1774 Typ : constant Node_Id :=
1775 Subtype_Indication (Component_Definition (N));
1776 T : Entity_Id;
1777 P : Entity_Id;
1778
1779 function Contains_POC (Constr : Node_Id) return Boolean;
1780 -- Determines whether a constraint uses the discriminant of a record
1781 -- type thus becoming a per-object constraint (POC).
1782
1783 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1784 -- Typ is the type of the current component, check whether this type is
1785 -- a limited type. Used to validate declaration against that of
1786 -- enclosing record.
1787
1788 ------------------
1789 -- Contains_POC --
1790 ------------------
1791
1792 function Contains_POC (Constr : Node_Id) return Boolean is
1793 begin
1794 -- Prevent cascaded errors
1795
1796 if Error_Posted (Constr) then
1797 return False;
1798 end if;
1799
1800 case Nkind (Constr) is
1801 when N_Attribute_Reference =>
1802 return Attribute_Name (Constr) = Name_Access
1803 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1804
1805 when N_Discriminant_Association =>
1806 return Denotes_Discriminant (Expression (Constr));
1807
1808 when N_Identifier =>
1809 return Denotes_Discriminant (Constr);
1810
1811 when N_Index_Or_Discriminant_Constraint =>
1812 declare
1813 IDC : Node_Id;
1814
1815 begin
1816 IDC := First (Constraints (Constr));
1817 while Present (IDC) loop
1818
1819 -- One per-object constraint is sufficient
1820
1821 if Contains_POC (IDC) then
1822 return True;
1823 end if;
1824
1825 Next (IDC);
1826 end loop;
1827
1828 return False;
1829 end;
1830
1831 when N_Range =>
1832 return Denotes_Discriminant (Low_Bound (Constr))
1833 or else
1834 Denotes_Discriminant (High_Bound (Constr));
1835
1836 when N_Range_Constraint =>
1837 return Denotes_Discriminant (Range_Expression (Constr));
1838
1839 when others =>
1840 return False;
1841
1842 end case;
1843 end Contains_POC;
1844
1845 ----------------------
1846 -- Is_Known_Limited --
1847 ----------------------
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1850 P : constant Entity_Id := Etype (Typ);
1851 R : constant Entity_Id := Root_Type (Typ);
1852
1853 begin
1854 if Is_Limited_Record (Typ) then
1855 return True;
1856
1857 -- If the root type is limited (and not a limited interface)
1858 -- so is the current type
1859
1860 elsif Is_Limited_Record (R)
1861 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1862 then
1863 return True;
1864
1865 -- Else the type may have a limited interface progenitor, but a
1866 -- limited record parent.
1867
1868 elsif R /= P and then Is_Limited_Record (P) then
1869 return True;
1870
1871 else
1872 return False;
1873 end if;
1874 end Is_Known_Limited;
1875
1876 -- Start of processing for Analyze_Component_Declaration
1877
1878 begin
1879 Generate_Definition (Id);
1880 Enter_Name (Id);
1881
1882 if Present (Typ) then
1883 T := Find_Type_Of_Object
1884 (Subtype_Indication (Component_Definition (N)), N);
1885
1886 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1887 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1888 end if;
1889
1890 -- Ada 2005 (AI-230): Access Definition case
1891
1892 else
1893 pragma Assert (Present
1894 (Access_Definition (Component_Definition (N))));
1895
1896 T := Access_Definition
1897 (Related_Nod => N,
1898 N => Access_Definition (Component_Definition (N)));
1899 Set_Is_Local_Anonymous_Access (T);
1900
1901 -- Ada 2005 (AI-254)
1902
1903 if Present (Access_To_Subprogram_Definition
1904 (Access_Definition (Component_Definition (N))))
1905 and then Protected_Present (Access_To_Subprogram_Definition
1906 (Access_Definition
1907 (Component_Definition (N))))
1908 then
1909 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1910 end if;
1911 end if;
1912
1913 -- If the subtype is a constrained subtype of the enclosing record,
1914 -- (which must have a partial view) the back-end does not properly
1915 -- handle the recursion. Rewrite the component declaration with an
1916 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1917 -- the tree directly because side effects have already been removed from
1918 -- discriminant constraints.
1919
1920 if Ekind (T) = E_Access_Subtype
1921 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1922 and then Comes_From_Source (T)
1923 and then Nkind (Parent (T)) = N_Subtype_Declaration
1924 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1925 then
1926 Rewrite
1927 (Subtype_Indication (Component_Definition (N)),
1928 New_Copy_Tree (Subtype_Indication (Parent (T))));
1929 T := Find_Type_Of_Object
1930 (Subtype_Indication (Component_Definition (N)), N);
1931 end if;
1932
1933 -- If the component declaration includes a default expression, then we
1934 -- check that the component is not of a limited type (RM 3.7(5)),
1935 -- and do the special preanalysis of the expression (see section on
1936 -- "Handling of Default and Per-Object Expressions" in the spec of
1937 -- package Sem).
1938
1939 if Present (E) then
1940 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1941 Preanalyze_Default_Expression (E, T);
1942 Check_Initialization (T, E);
1943
1944 if Ada_Version >= Ada_2005
1945 and then Ekind (T) = E_Anonymous_Access_Type
1946 and then Etype (E) /= Any_Type
1947 then
1948 -- Check RM 3.9.2(9): "if the expected type for an expression is
1949 -- an anonymous access-to-specific tagged type, then the object
1950 -- designated by the expression shall not be dynamically tagged
1951 -- unless it is a controlling operand in a call on a dispatching
1952 -- operation"
1953
1954 if Is_Tagged_Type (Directly_Designated_Type (T))
1955 and then
1956 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1957 and then
1958 Ekind (Directly_Designated_Type (Etype (E))) =
1959 E_Class_Wide_Type
1960 then
1961 Error_Msg_N
1962 ("access to specific tagged type required (RM 3.9.2(9))", E);
1963 end if;
1964
1965 -- (Ada 2005: AI-230): Accessibility check for anonymous
1966 -- components
1967
1968 if Type_Access_Level (Etype (E)) >
1969 Deepest_Type_Access_Level (T)
1970 then
1971 Error_Msg_N
1972 ("expression has deeper access level than component " &
1973 "(RM 3.10.2 (12.2))", E);
1974 end if;
1975
1976 -- The initialization expression is a reference to an access
1977 -- discriminant. The type of the discriminant is always deeper
1978 -- than any access type.
1979
1980 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1981 and then Is_Entity_Name (E)
1982 and then Ekind (Entity (E)) = E_In_Parameter
1983 and then Present (Discriminal_Link (Entity (E)))
1984 then
1985 Error_Msg_N
1986 ("discriminant has deeper accessibility level than target",
1987 E);
1988 end if;
1989 end if;
1990 end if;
1991
1992 -- The parent type may be a private view with unknown discriminants,
1993 -- and thus unconstrained. Regular components must be constrained.
1994
1995 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1996 if Is_Class_Wide_Type (T) then
1997 Error_Msg_N
1998 ("class-wide subtype with unknown discriminants" &
1999 " in component declaration",
2000 Subtype_Indication (Component_Definition (N)));
2001 else
2002 Error_Msg_N
2003 ("unconstrained subtype in component declaration",
2004 Subtype_Indication (Component_Definition (N)));
2005 end if;
2006
2007 -- Components cannot be abstract, except for the special case of
2008 -- the _Parent field (case of extending an abstract tagged type)
2009
2010 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2011 Error_Msg_N ("type of a component cannot be abstract", N);
2012 end if;
2013
2014 Set_Etype (Id, T);
2015 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2016
2017 -- The component declaration may have a per-object constraint, set
2018 -- the appropriate flag in the defining identifier of the subtype.
2019
2020 if Present (Subtype_Indication (Component_Definition (N))) then
2021 declare
2022 Sindic : constant Node_Id :=
2023 Subtype_Indication (Component_Definition (N));
2024 begin
2025 if Nkind (Sindic) = N_Subtype_Indication
2026 and then Present (Constraint (Sindic))
2027 and then Contains_POC (Constraint (Sindic))
2028 then
2029 Set_Has_Per_Object_Constraint (Id);
2030 end if;
2031 end;
2032 end if;
2033
2034 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2035 -- out some static checks.
2036
2037 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2038 Null_Exclusion_Static_Checks (N);
2039 end if;
2040
2041 -- If this component is private (or depends on a private type), flag the
2042 -- record type to indicate that some operations are not available.
2043
2044 P := Private_Component (T);
2045
2046 if Present (P) then
2047
2048 -- Check for circular definitions
2049
2050 if P = Any_Type then
2051 Set_Etype (Id, Any_Type);
2052
2053 -- There is a gap in the visibility of operations only if the
2054 -- component type is not defined in the scope of the record type.
2055
2056 elsif Scope (P) = Scope (Current_Scope) then
2057 null;
2058
2059 elsif Is_Limited_Type (P) then
2060 Set_Is_Limited_Composite (Current_Scope);
2061
2062 else
2063 Set_Is_Private_Composite (Current_Scope);
2064 end if;
2065 end if;
2066
2067 if P /= Any_Type
2068 and then Is_Limited_Type (T)
2069 and then Chars (Id) /= Name_uParent
2070 and then Is_Tagged_Type (Current_Scope)
2071 then
2072 if Is_Derived_Type (Current_Scope)
2073 and then not Is_Known_Limited (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("extension of nonlimited type cannot have limited components",
2077 N);
2078
2079 if Is_Interface (Root_Type (Current_Scope)) then
2080 Error_Msg_N
2081 ("\limitedness is not inherited from limited interface", N);
2082 Error_Msg_N ("\add LIMITED to type indication", N);
2083 end if;
2084
2085 Explain_Limited_Type (T, N);
2086 Set_Etype (Id, Any_Type);
2087 Set_Is_Limited_Composite (Current_Scope, False);
2088
2089 elsif not Is_Derived_Type (Current_Scope)
2090 and then not Is_Limited_Record (Current_Scope)
2091 and then not Is_Concurrent_Type (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("nonlimited tagged type cannot have limited components", N);
2095 Explain_Limited_Type (T, N);
2096 Set_Etype (Id, Any_Type);
2097 Set_Is_Limited_Composite (Current_Scope, False);
2098 end if;
2099 end if;
2100
2101 Set_Original_Record_Component (Id, Id);
2102
2103 if Has_Aspects (N) then
2104 Analyze_Aspect_Specifications (N, Id);
2105 end if;
2106
2107 Analyze_Dimension (N);
2108 end Analyze_Component_Declaration;
2109
2110 --------------------------
2111 -- Analyze_Declarations --
2112 --------------------------
2113
2114 procedure Analyze_Declarations (L : List_Id) is
2115 Decl : Node_Id;
2116
2117 procedure Adjust_Decl;
2118 -- Adjust Decl not to include implicit label declarations, since these
2119 -- have strange Sloc values that result in elaboration check problems.
2120 -- (They have the sloc of the label as found in the source, and that
2121 -- is ahead of the current declarative part).
2122
2123 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2124 -- Determine whether Body_Decl denotes the body of a late controlled
2125 -- primitive (either Initialize, Adjust or Finalize). If this is the
2126 -- case, add a proper spec if the body lacks one. The spec is inserted
2127 -- before Body_Decl and immedately analyzed.
2128
2129 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2130 -- Spec_Id is the entity of a package that may define abstract states.
2131 -- If the states have visible refinement, remove the visibility of each
2132 -- constituent at the end of the package body declarations.
2133
2134 -----------------
2135 -- Adjust_Decl --
2136 -----------------
2137
2138 procedure Adjust_Decl is
2139 begin
2140 while Present (Prev (Decl))
2141 and then Nkind (Decl) = N_Implicit_Label_Declaration
2142 loop
2143 Prev (Decl);
2144 end loop;
2145 end Adjust_Decl;
2146
2147 --------------------------------------
2148 -- Handle_Late_Controlled_Primitive --
2149 --------------------------------------
2150
2151 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2152 Body_Spec : constant Node_Id := Specification (Body_Decl);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154 Loc : constant Source_Ptr := Sloc (Body_Id);
2155 Params : constant List_Id :=
2156 Parameter_Specifications (Body_Spec);
2157 Spec : Node_Id;
2158 Spec_Id : Entity_Id;
2159
2160 Dummy : Entity_Id;
2161 -- A dummy variable used to capture the unused result of subprogram
2162 -- spec analysis.
2163
2164 begin
2165 -- Consider only procedure bodies whose name matches one of the three
2166 -- controlled primitives.
2167
2168 if Nkind (Body_Spec) /= N_Procedure_Specification
2169 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2170 Name_Finalize,
2171 Name_Initialize)
2172 then
2173 return;
2174
2175 -- A controlled primitive must have exactly one formal
2176
2177 elsif List_Length (Params) /= 1 then
2178 return;
2179 end if;
2180
2181 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2182
2183 -- The type of the formal must be derived from [Limited_]Controlled
2184
2185 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2186 return;
2187 end if;
2188
2189 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2190
2191 -- The body has a matching spec, therefore it cannot be a late
2192 -- primitive.
2193
2194 if Present (Spec_Id) then
2195 return;
2196 end if;
2197
2198 -- At this point the body is known to be a late controlled primitive.
2199 -- Generate a matching spec and insert it before the body. Note the
2200 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2201 -- tree in this case.
2202
2203 Spec := Copy_Separate_Tree (Body_Spec);
2204
2205 -- Ensure that the subprogram declaration does not inherit the null
2206 -- indicator from the body as we now have a proper spec/body pair.
2207
2208 Set_Null_Present (Spec, False);
2209
2210 Insert_Before_And_Analyze (Body_Decl,
2211 Make_Subprogram_Declaration (Loc,
2212 Specification => Spec));
2213 end Handle_Late_Controlled_Primitive;
2214
2215 --------------------------------
2216 -- Remove_Visible_Refinements --
2217 --------------------------------
2218
2219 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2220 State_Elmt : Elmt_Id;
2221 begin
2222 if Present (Abstract_States (Spec_Id)) then
2223 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2224 while Present (State_Elmt) loop
2225 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2226 Next_Elmt (State_Elmt);
2227 end loop;
2228 end if;
2229 end Remove_Visible_Refinements;
2230
2231 -- Local variables
2232
2233 Context : Node_Id;
2234 Freeze_From : Entity_Id := Empty;
2235 Next_Decl : Node_Id;
2236 Spec_Id : Entity_Id;
2237
2238 Body_Seen : Boolean := False;
2239 -- Flag set when the first body [stub] is encountered
2240
2241 In_Package_Body : Boolean := False;
2242 -- Flag set when the current declaration list belongs to a package body
2243
2244 -- Start of processing for Analyze_Declarations
2245
2246 begin
2247 if Restriction_Check_Required (SPARK_05) then
2248 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2249 end if;
2250
2251 Decl := First (L);
2252 while Present (Decl) loop
2253
2254 -- Package spec cannot contain a package declaration in SPARK
2255
2256 if Nkind (Decl) = N_Package_Declaration
2257 and then Nkind (Parent (L)) = N_Package_Specification
2258 then
2259 Check_SPARK_05_Restriction
2260 ("package specification cannot contain a package declaration",
2261 Decl);
2262 end if;
2263
2264 -- Complete analysis of declaration
2265
2266 Analyze (Decl);
2267 Next_Decl := Next (Decl);
2268
2269 if No (Freeze_From) then
2270 Freeze_From := First_Entity (Current_Scope);
2271 end if;
2272
2273 -- At the end of a declarative part, freeze remaining entities
2274 -- declared in it. The end of the visible declarations of package
2275 -- specification is not the end of a declarative part if private
2276 -- declarations are present. The end of a package declaration is a
2277 -- freezing point only if it a library package. A task definition or
2278 -- protected type definition is not a freeze point either. Finally,
2279 -- we do not freeze entities in generic scopes, because there is no
2280 -- code generated for them and freeze nodes will be generated for
2281 -- the instance.
2282
2283 -- The end of a package instantiation is not a freeze point, but
2284 -- for now we make it one, because the generic body is inserted
2285 -- (currently) immediately after. Generic instantiations will not
2286 -- be a freeze point once delayed freezing of bodies is implemented.
2287 -- (This is needed in any case for early instantiations ???).
2288
2289 if No (Next_Decl) then
2290 if Nkind_In (Parent (L), N_Component_List,
2291 N_Task_Definition,
2292 N_Protected_Definition)
2293 then
2294 null;
2295
2296 elsif Nkind (Parent (L)) /= N_Package_Specification then
2297 if Nkind (Parent (L)) = N_Package_Body then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- There may have been several freezing points previously,
2302 -- for example object declarations or subprogram bodies, but
2303 -- at the end of a declarative part we check freezing from
2304 -- the beginning, even though entities may already be frozen,
2305 -- in order to perform visibility checks on delayed aspects.
2306
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310
2311 elsif Scope (Current_Scope) /= Standard_Standard
2312 and then not Is_Child_Unit (Current_Scope)
2313 and then No (Generic_Parent (Parent (L)))
2314 then
2315 null;
2316
2317 elsif L /= Visible_Declarations (Parent (L))
2318 or else No (Private_Declarations (Parent (L)))
2319 or else Is_Empty_List (Private_Declarations (Parent (L)))
2320 then
2321 Adjust_Decl;
2322 Freeze_All (First_Entity (Current_Scope), Decl);
2323 Freeze_From := Last_Entity (Current_Scope);
2324 end if;
2325
2326 -- If next node is a body then freeze all types before the body.
2327 -- An exception occurs for some expander-generated bodies. If these
2328 -- are generated at places where in general language rules would not
2329 -- allow a freeze point, then we assume that the expander has
2330 -- explicitly checked that all required types are properly frozen,
2331 -- and we do not cause general freezing here. This special circuit
2332 -- is used when the encountered body is marked as having already
2333 -- been analyzed.
2334
2335 -- In all other cases (bodies that come from source, and expander
2336 -- generated bodies that have not been analyzed yet), freeze all
2337 -- types now. Note that in the latter case, the expander must take
2338 -- care to attach the bodies at a proper place in the tree so as to
2339 -- not cause unwanted freezing at that point.
2340
2341 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2342
2343 -- When a controlled type is frozen, the expander generates stream
2344 -- and controlled type support routines. If the freeze is caused
2345 -- by the stand alone body of Initialize, Adjust and Finalize, the
2346 -- expander will end up using the wrong version of these routines
2347 -- as the body has not been processed yet. To remedy this, detect
2348 -- a late controlled primitive and create a proper spec for it.
2349 -- This ensures that the primitive will override its inherited
2350 -- counterpart before the freeze takes place.
2351
2352 -- If the declaration we just processed is a body, do not attempt
2353 -- to examine Next_Decl as the late primitive idiom can only apply
2354 -- to the first encountered body.
2355
2356 -- The spec of the late primitive is not generated in ASIS mode to
2357 -- ensure a consistent list of primitives that indicates the true
2358 -- semantic structure of the program (which is not relevant when
2359 -- generating executable code.
2360
2361 -- ??? a cleaner approach may be possible and/or this solution
2362 -- could be extended to general-purpose late primitives, TBD.
2363
2364 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2365 then
2366 Body_Seen := True;
2367
2368 if Nkind (Next_Decl) = N_Subprogram_Body then
2369 Handle_Late_Controlled_Primitive (Next_Decl);
2370 end if;
2371 end if;
2372
2373 Adjust_Decl;
2374 Freeze_All (Freeze_From, Decl);
2375 Freeze_From := Last_Entity (Current_Scope);
2376 end if;
2377
2378 Decl := Next_Decl;
2379 end loop;
2380
2381 -- Analyze the contracts of packages and their bodies
2382
2383 if Present (L) then
2384 Context := Parent (L);
2385
2386 if Nkind (Context) = N_Package_Specification then
2387
2388 -- When a package has private declarations, its contract must be
2389 -- analyzed at the end of the said declarations. This way both the
2390 -- analysis and freeze actions are properly synchronized in case
2391 -- of private type use within the contract.
2392
2393 if L = Private_Declarations (Context) then
2394 Analyze_Package_Contract (Defining_Entity (Context));
2395
2396 -- Otherwise the contract is analyzed at the end of the visible
2397 -- declarations.
2398
2399 elsif L = Visible_Declarations (Context)
2400 and then No (Private_Declarations (Context))
2401 then
2402 Analyze_Package_Contract (Defining_Entity (Context));
2403 end if;
2404
2405 elsif Nkind (Context) = N_Package_Body then
2406 In_Package_Body := True;
2407 Spec_Id := Corresponding_Spec (Context);
2408
2409 Analyze_Package_Body_Contract (Defining_Entity (Context));
2410 end if;
2411 end if;
2412
2413 -- Analyze the contracts of subprogram declarations, subprogram bodies
2414 -- and variables now due to the delayed visibility requirements of their
2415 -- aspects.
2416
2417 Decl := First (L);
2418 while Present (Decl) loop
2419 if Nkind (Decl) = N_Object_Declaration then
2420 Analyze_Object_Contract (Defining_Entity (Decl));
2421
2422 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2423 N_Subprogram_Declaration)
2424 then
2425 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2426
2427 elsif Nkind (Decl) = N_Subprogram_Body then
2428 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2429
2430 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2431 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2432 end if;
2433
2434 Next (Decl);
2435 end loop;
2436
2437 -- State refinements are visible upto the end the of the package body
2438 -- declarations. Hide the refinements from visibility to restore the
2439 -- original state conditions.
2440
2441 if In_Package_Body then
2442 Remove_Visible_Refinements (Spec_Id);
2443 end if;
2444 end Analyze_Declarations;
2445
2446 -----------------------------------
2447 -- Analyze_Full_Type_Declaration --
2448 -----------------------------------
2449
2450 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2451 Def : constant Node_Id := Type_Definition (N);
2452 Def_Id : constant Entity_Id := Defining_Identifier (N);
2453 T : Entity_Id;
2454 Prev : Entity_Id;
2455
2456 Is_Remote : constant Boolean :=
2457 (Is_Remote_Types (Current_Scope)
2458 or else Is_Remote_Call_Interface (Current_Scope))
2459 and then not (In_Private_Part (Current_Scope)
2460 or else In_Package_Body (Current_Scope));
2461
2462 procedure Check_Ops_From_Incomplete_Type;
2463 -- If there is a tagged incomplete partial view of the type, traverse
2464 -- the primitives of the incomplete view and change the type of any
2465 -- controlling formals and result to indicate the full view. The
2466 -- primitives will be added to the full type's primitive operations
2467 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2468 -- is called from Process_Incomplete_Dependents).
2469
2470 ------------------------------------
2471 -- Check_Ops_From_Incomplete_Type --
2472 ------------------------------------
2473
2474 procedure Check_Ops_From_Incomplete_Type is
2475 Elmt : Elmt_Id;
2476 Formal : Entity_Id;
2477 Op : Entity_Id;
2478
2479 begin
2480 if Prev /= T
2481 and then Ekind (Prev) = E_Incomplete_Type
2482 and then Is_Tagged_Type (Prev)
2483 and then Is_Tagged_Type (T)
2484 then
2485 Elmt := First_Elmt (Primitive_Operations (Prev));
2486 while Present (Elmt) loop
2487 Op := Node (Elmt);
2488
2489 Formal := First_Formal (Op);
2490 while Present (Formal) loop
2491 if Etype (Formal) = Prev then
2492 Set_Etype (Formal, T);
2493 end if;
2494
2495 Next_Formal (Formal);
2496 end loop;
2497
2498 if Etype (Op) = Prev then
2499 Set_Etype (Op, T);
2500 end if;
2501
2502 Next_Elmt (Elmt);
2503 end loop;
2504 end if;
2505 end Check_Ops_From_Incomplete_Type;
2506
2507 -- Start of processing for Analyze_Full_Type_Declaration
2508
2509 begin
2510 Prev := Find_Type_Name (N);
2511
2512 -- The full view, if present, now points to the current type
2513 -- If there is an incomplete partial view, set a link to it, to
2514 -- simplify the retrieval of primitive operations of the type.
2515
2516 -- Ada 2005 (AI-50217): If the type was previously decorated when
2517 -- imported through a LIMITED WITH clause, it appears as incomplete
2518 -- but has no full view.
2519
2520 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2521 then
2522 T := Full_View (Prev);
2523 Set_Incomplete_View (N, Parent (Prev));
2524 else
2525 T := Prev;
2526 end if;
2527
2528 Set_Is_Pure (T, Is_Pure (Current_Scope));
2529
2530 -- We set the flag Is_First_Subtype here. It is needed to set the
2531 -- corresponding flag for the Implicit class-wide-type created
2532 -- during tagged types processing.
2533
2534 Set_Is_First_Subtype (T, True);
2535
2536 -- Only composite types other than array types are allowed to have
2537 -- discriminants.
2538
2539 case Nkind (Def) is
2540
2541 -- For derived types, the rule will be checked once we've figured
2542 -- out the parent type.
2543
2544 when N_Derived_Type_Definition =>
2545 null;
2546
2547 -- For record types, discriminants are allowed, unless we are in
2548 -- SPARK.
2549
2550 when N_Record_Definition =>
2551 if Present (Discriminant_Specifications (N)) then
2552 Check_SPARK_05_Restriction
2553 ("discriminant type is not allowed",
2554 Defining_Identifier
2555 (First (Discriminant_Specifications (N))));
2556 end if;
2557
2558 when others =>
2559 if Present (Discriminant_Specifications (N)) then
2560 Error_Msg_N
2561 ("elementary or array type cannot have discriminants",
2562 Defining_Identifier
2563 (First (Discriminant_Specifications (N))));
2564 end if;
2565 end case;
2566
2567 -- Elaborate the type definition according to kind, and generate
2568 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2569 -- already done (this happens during the reanalysis that follows a call
2570 -- to the high level optimizer).
2571
2572 if not Analyzed (T) then
2573 Set_Analyzed (T);
2574
2575 case Nkind (Def) is
2576
2577 when N_Access_To_Subprogram_Definition =>
2578 Access_Subprogram_Declaration (T, Def);
2579
2580 -- If this is a remote access to subprogram, we must create the
2581 -- equivalent fat pointer type, and related subprograms.
2582
2583 if Is_Remote then
2584 Process_Remote_AST_Declaration (N);
2585 end if;
2586
2587 -- Validate categorization rule against access type declaration
2588 -- usually a violation in Pure unit, Shared_Passive unit.
2589
2590 Validate_Access_Type_Declaration (T, N);
2591
2592 when N_Access_To_Object_Definition =>
2593 Access_Type_Declaration (T, Def);
2594
2595 -- Validate categorization rule against access type declaration
2596 -- usually a violation in Pure unit, Shared_Passive unit.
2597
2598 Validate_Access_Type_Declaration (T, N);
2599
2600 -- If we are in a Remote_Call_Interface package and define a
2601 -- RACW, then calling stubs and specific stream attributes
2602 -- must be added.
2603
2604 if Is_Remote
2605 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2606 then
2607 Add_RACW_Features (Def_Id);
2608 end if;
2609
2610 -- Set no strict aliasing flag if config pragma seen
2611
2612 if Opt.No_Strict_Aliasing then
2613 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2614 end if;
2615
2616 when N_Array_Type_Definition =>
2617 Array_Type_Declaration (T, Def);
2618
2619 when N_Derived_Type_Definition =>
2620 Derived_Type_Declaration (T, N, T /= Def_Id);
2621
2622 when N_Enumeration_Type_Definition =>
2623 Enumeration_Type_Declaration (T, Def);
2624
2625 when N_Floating_Point_Definition =>
2626 Floating_Point_Type_Declaration (T, Def);
2627
2628 when N_Decimal_Fixed_Point_Definition =>
2629 Decimal_Fixed_Point_Type_Declaration (T, Def);
2630
2631 when N_Ordinary_Fixed_Point_Definition =>
2632 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2633
2634 when N_Signed_Integer_Type_Definition =>
2635 Signed_Integer_Type_Declaration (T, Def);
2636
2637 when N_Modular_Type_Definition =>
2638 Modular_Type_Declaration (T, Def);
2639
2640 when N_Record_Definition =>
2641 Record_Type_Declaration (T, N, Prev);
2642
2643 -- If declaration has a parse error, nothing to elaborate.
2644
2645 when N_Error =>
2646 null;
2647
2648 when others =>
2649 raise Program_Error;
2650
2651 end case;
2652 end if;
2653
2654 if Etype (T) = Any_Type then
2655 return;
2656 end if;
2657
2658 -- Controlled type is not allowed in SPARK
2659
2660 if Is_Visibly_Controlled (T) then
2661 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2662 end if;
2663
2664 -- Some common processing for all types
2665
2666 Set_Depends_On_Private (T, Has_Private_Component (T));
2667 Check_Ops_From_Incomplete_Type;
2668
2669 -- Both the declared entity, and its anonymous base type if one
2670 -- was created, need freeze nodes allocated.
2671
2672 declare
2673 B : constant Entity_Id := Base_Type (T);
2674
2675 begin
2676 -- In the case where the base type differs from the first subtype, we
2677 -- pre-allocate a freeze node, and set the proper link to the first
2678 -- subtype. Freeze_Entity will use this preallocated freeze node when
2679 -- it freezes the entity.
2680
2681 -- This does not apply if the base type is a generic type, whose
2682 -- declaration is independent of the current derived definition.
2683
2684 if B /= T and then not Is_Generic_Type (B) then
2685 Ensure_Freeze_Node (B);
2686 Set_First_Subtype_Link (Freeze_Node (B), T);
2687 end if;
2688
2689 -- A type that is imported through a limited_with clause cannot
2690 -- generate any code, and thus need not be frozen. However, an access
2691 -- type with an imported designated type needs a finalization list,
2692 -- which may be referenced in some other package that has non-limited
2693 -- visibility on the designated type. Thus we must create the
2694 -- finalization list at the point the access type is frozen, to
2695 -- prevent unsatisfied references at link time.
2696
2697 if not From_Limited_With (T) or else Is_Access_Type (T) then
2698 Set_Has_Delayed_Freeze (T);
2699 end if;
2700 end;
2701
2702 -- Case where T is the full declaration of some private type which has
2703 -- been swapped in Defining_Identifier (N).
2704
2705 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2706 Process_Full_View (N, T, Def_Id);
2707
2708 -- Record the reference. The form of this is a little strange, since
2709 -- the full declaration has been swapped in. So the first parameter
2710 -- here represents the entity to which a reference is made which is
2711 -- the "real" entity, i.e. the one swapped in, and the second
2712 -- parameter provides the reference location.
2713
2714 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2715 -- since we don't want a complaint about the full type being an
2716 -- unwanted reference to the private type
2717
2718 declare
2719 B : constant Boolean := Has_Pragma_Unreferenced (T);
2720 begin
2721 Set_Has_Pragma_Unreferenced (T, False);
2722 Generate_Reference (T, T, 'c');
2723 Set_Has_Pragma_Unreferenced (T, B);
2724 end;
2725
2726 Set_Completion_Referenced (Def_Id);
2727
2728 -- For completion of incomplete type, process incomplete dependents
2729 -- and always mark the full type as referenced (it is the incomplete
2730 -- type that we get for any real reference).
2731
2732 elsif Ekind (Prev) = E_Incomplete_Type then
2733 Process_Incomplete_Dependents (N, T, Prev);
2734 Generate_Reference (Prev, Def_Id, 'c');
2735 Set_Completion_Referenced (Def_Id);
2736
2737 -- If not private type or incomplete type completion, this is a real
2738 -- definition of a new entity, so record it.
2739
2740 else
2741 Generate_Definition (Def_Id);
2742 end if;
2743
2744 if Chars (Scope (Def_Id)) = Name_System
2745 and then Chars (Def_Id) = Name_Address
2746 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2747 then
2748 Set_Is_Descendent_Of_Address (Def_Id);
2749 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2750 Set_Is_Descendent_Of_Address (Prev);
2751 end if;
2752
2753 Set_Optimize_Alignment_Flags (Def_Id);
2754 Check_Eliminated (Def_Id);
2755
2756 -- If the declaration is a completion and aspects are present, apply
2757 -- them to the entity for the type which is currently the partial
2758 -- view, but which is the one that will be frozen.
2759
2760 if Has_Aspects (N) then
2761 if Prev /= Def_Id then
2762 Analyze_Aspect_Specifications (N, Prev);
2763 else
2764 Analyze_Aspect_Specifications (N, Def_Id);
2765 end if;
2766 end if;
2767 end Analyze_Full_Type_Declaration;
2768
2769 ----------------------------------
2770 -- Analyze_Incomplete_Type_Decl --
2771 ----------------------------------
2772
2773 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2774 F : constant Boolean := Is_Pure (Current_Scope);
2775 T : Entity_Id;
2776
2777 begin
2778 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2779
2780 Generate_Definition (Defining_Identifier (N));
2781
2782 -- Process an incomplete declaration. The identifier must not have been
2783 -- declared already in the scope. However, an incomplete declaration may
2784 -- appear in the private part of a package, for a private type that has
2785 -- already been declared.
2786
2787 -- In this case, the discriminants (if any) must match
2788
2789 T := Find_Type_Name (N);
2790
2791 Set_Ekind (T, E_Incomplete_Type);
2792 Init_Size_Align (T);
2793 Set_Is_First_Subtype (T, True);
2794 Set_Etype (T, T);
2795
2796 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2797 -- incomplete types.
2798
2799 if Tagged_Present (N) then
2800 Set_Is_Tagged_Type (T);
2801 Make_Class_Wide_Type (T);
2802 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2803 end if;
2804
2805 Push_Scope (T);
2806
2807 Set_Stored_Constraint (T, No_Elist);
2808
2809 if Present (Discriminant_Specifications (N)) then
2810 Process_Discriminants (N);
2811 end if;
2812
2813 End_Scope;
2814
2815 -- If the type has discriminants, non-trivial subtypes may be
2816 -- declared before the full view of the type. The full views of those
2817 -- subtypes will be built after the full view of the type.
2818
2819 Set_Private_Dependents (T, New_Elmt_List);
2820 Set_Is_Pure (T, F);
2821 end Analyze_Incomplete_Type_Decl;
2822
2823 -----------------------------------
2824 -- Analyze_Interface_Declaration --
2825 -----------------------------------
2826
2827 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2828 CW : constant Entity_Id := Class_Wide_Type (T);
2829
2830 begin
2831 Set_Is_Tagged_Type (T);
2832
2833 Set_Is_Limited_Record (T, Limited_Present (Def)
2834 or else Task_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def));
2837
2838 -- Type is abstract if full declaration carries keyword, or if previous
2839 -- partial view did.
2840
2841 Set_Is_Abstract_Type (T);
2842 Set_Is_Interface (T);
2843
2844 -- Type is a limited interface if it includes the keyword limited, task,
2845 -- protected, or synchronized.
2846
2847 Set_Is_Limited_Interface
2848 (T, Limited_Present (Def)
2849 or else Protected_Present (Def)
2850 or else Synchronized_Present (Def)
2851 or else Task_Present (Def));
2852
2853 Set_Interfaces (T, New_Elmt_List);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2855
2856 -- Complete the decoration of the class-wide entity if it was already
2857 -- built (i.e. during the creation of the limited view)
2858
2859 if Present (CW) then
2860 Set_Is_Interface (CW);
2861 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2862 end if;
2863
2864 -- Check runtime support for synchronized interfaces
2865
2866 if VM_Target = No_VM
2867 and then (Is_Task_Interface (T)
2868 or else Is_Protected_Interface (T)
2869 or else Is_Synchronized_Interface (T))
2870 and then not RTE_Available (RE_Select_Specific_Data)
2871 then
2872 Error_Msg_CRT ("synchronized interfaces", T);
2873 end if;
2874 end Analyze_Interface_Declaration;
2875
2876 -----------------------------
2877 -- Analyze_Itype_Reference --
2878 -----------------------------
2879
2880 -- Nothing to do. This node is placed in the tree only for the benefit of
2881 -- back end processing, and has no effect on the semantic processing.
2882
2883 procedure Analyze_Itype_Reference (N : Node_Id) is
2884 begin
2885 pragma Assert (Is_Itype (Itype (N)));
2886 null;
2887 end Analyze_Itype_Reference;
2888
2889 --------------------------------
2890 -- Analyze_Number_Declaration --
2891 --------------------------------
2892
2893 procedure Analyze_Number_Declaration (N : Node_Id) is
2894 Id : constant Entity_Id := Defining_Identifier (N);
2895 E : constant Node_Id := Expression (N);
2896 T : Entity_Id;
2897 Index : Interp_Index;
2898 It : Interp;
2899
2900 begin
2901 Generate_Definition (Id);
2902 Enter_Name (Id);
2903
2904 -- This is an optimization of a common case of an integer literal
2905
2906 if Nkind (E) = N_Integer_Literal then
2907 Set_Is_Static_Expression (E, True);
2908 Set_Etype (E, Universal_Integer);
2909
2910 Set_Etype (Id, Universal_Integer);
2911 Set_Ekind (Id, E_Named_Integer);
2912 Set_Is_Frozen (Id, True);
2913 return;
2914 end if;
2915
2916 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2917
2918 -- Process expression, replacing error by integer zero, to avoid
2919 -- cascaded errors or aborts further along in the processing
2920
2921 -- Replace Error by integer zero, which seems least likely to cause
2922 -- cascaded errors.
2923
2924 if E = Error then
2925 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2926 Set_Error_Posted (E);
2927 end if;
2928
2929 Analyze (E);
2930
2931 -- Verify that the expression is static and numeric. If
2932 -- the expression is overloaded, we apply the preference
2933 -- rule that favors root numeric types.
2934
2935 if not Is_Overloaded (E) then
2936 T := Etype (E);
2937 if Has_Dynamic_Predicate_Aspect (T) then
2938 Error_Msg_N
2939 ("subtype has dynamic predicate, "
2940 & "not allowed in number declaration", N);
2941 end if;
2942
2943 else
2944 T := Any_Type;
2945
2946 Get_First_Interp (E, Index, It);
2947 while Present (It.Typ) loop
2948 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2949 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2950 then
2951 if T = Any_Type then
2952 T := It.Typ;
2953
2954 elsif It.Typ = Universal_Real
2955 or else It.Typ = Universal_Integer
2956 then
2957 -- Choose universal interpretation over any other
2958
2959 T := It.Typ;
2960 exit;
2961 end if;
2962 end if;
2963
2964 Get_Next_Interp (Index, It);
2965 end loop;
2966 end if;
2967
2968 if Is_Integer_Type (T) then
2969 Resolve (E, T);
2970 Set_Etype (Id, Universal_Integer);
2971 Set_Ekind (Id, E_Named_Integer);
2972
2973 elsif Is_Real_Type (T) then
2974
2975 -- Because the real value is converted to universal_real, this is a
2976 -- legal context for a universal fixed expression.
2977
2978 if T = Universal_Fixed then
2979 declare
2980 Loc : constant Source_Ptr := Sloc (N);
2981 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2982 Subtype_Mark =>
2983 New_Occurrence_Of (Universal_Real, Loc),
2984 Expression => Relocate_Node (E));
2985
2986 begin
2987 Rewrite (E, Conv);
2988 Analyze (E);
2989 end;
2990
2991 elsif T = Any_Fixed then
2992 Error_Msg_N ("illegal context for mixed mode operation", E);
2993
2994 -- Expression is of the form : universal_fixed * integer. Try to
2995 -- resolve as universal_real.
2996
2997 T := Universal_Real;
2998 Set_Etype (E, T);
2999 end if;
3000
3001 Resolve (E, T);
3002 Set_Etype (Id, Universal_Real);
3003 Set_Ekind (Id, E_Named_Real);
3004
3005 else
3006 Wrong_Type (E, Any_Numeric);
3007 Resolve (E, T);
3008
3009 Set_Etype (Id, T);
3010 Set_Ekind (Id, E_Constant);
3011 Set_Never_Set_In_Source (Id, True);
3012 Set_Is_True_Constant (Id, True);
3013 return;
3014 end if;
3015
3016 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3017 Set_Etype (E, Etype (Id));
3018 end if;
3019
3020 if not Is_OK_Static_Expression (E) then
3021 Flag_Non_Static_Expr
3022 ("non-static expression used in number declaration!", E);
3023 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3024 Set_Etype (E, Any_Type);
3025 end if;
3026 end Analyze_Number_Declaration;
3027
3028 -----------------------------
3029 -- Analyze_Object_Contract --
3030 -----------------------------
3031
3032 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3033 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3034 AR_Val : Boolean := False;
3035 AW_Val : Boolean := False;
3036 ER_Val : Boolean := False;
3037 EW_Val : Boolean := False;
3038 Prag : Node_Id;
3039 Seen : Boolean := False;
3040
3041 begin
3042 if Ekind (Obj_Id) = E_Constant then
3043
3044 -- A constant cannot be effectively volatile. This check is only
3045 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3046 -- rule. Do not flag internally-generated constants that map generic
3047 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3048
3049 if SPARK_Mode = On
3050 and then Is_Effectively_Volatile (Obj_Id)
3051 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3052 then
3053 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3054 end if;
3055
3056 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3057
3058 -- The following checks are only relevant when SPARK_Mode is on as
3059 -- they are not standard Ada legality rules. Internally generated
3060 -- temporaries are ignored.
3061
3062 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3063 if Is_Effectively_Volatile (Obj_Id) then
3064
3065 -- The declaration of an effectively volatile object must
3066 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3067
3068 if not Is_Library_Level_Entity (Obj_Id) then
3069 Error_Msg_N
3070 ("volatile variable & must be declared at library level",
3071 Obj_Id);
3072
3073 -- An object of a discriminated type cannot be effectively
3074 -- volatile (SPARK RM C.6(4)).
3075
3076 elsif Has_Discriminants (Obj_Typ) then
3077 Error_Msg_N
3078 ("discriminated object & cannot be volatile", Obj_Id);
3079
3080 -- An object of a tagged type cannot be effectively volatile
3081 -- (SPARK RM C.6(5)).
3082
3083 elsif Is_Tagged_Type (Obj_Typ) then
3084 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3085 end if;
3086
3087 -- The object is not effectively volatile
3088
3089 else
3090 -- A non-effectively volatile object cannot have effectively
3091 -- volatile components (SPARK RM 7.1.3(7)).
3092
3093 if not Is_Effectively_Volatile (Obj_Id)
3094 and then Has_Volatile_Component (Obj_Typ)
3095 then
3096 Error_Msg_N
3097 ("non-volatile object & cannot have volatile components",
3098 Obj_Id);
3099 end if;
3100 end if;
3101 end if;
3102
3103 -- Analyze all external properties
3104
3105 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3106
3107 if Present (Prag) then
3108 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3109 Seen := True;
3110 end if;
3111
3112 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3113
3114 if Present (Prag) then
3115 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3116 Seen := True;
3117 end if;
3118
3119 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3120
3121 if Present (Prag) then
3122 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3123 Seen := True;
3124 end if;
3125
3126 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3127
3128 if Present (Prag) then
3129 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3130 Seen := True;
3131 end if;
3132
3133 -- Verify the mutual interaction of the various external properties
3134
3135 if Seen then
3136 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3137 end if;
3138
3139 -- Check whether the lack of indicator Part_Of agrees with the
3140 -- placement of the variable with respect to the state space.
3141
3142 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3143
3144 if No (Prag) then
3145 Check_Missing_Part_Of (Obj_Id);
3146 end if;
3147 end if;
3148 end Analyze_Object_Contract;
3149
3150 --------------------------------
3151 -- Analyze_Object_Declaration --
3152 --------------------------------
3153
3154 procedure Analyze_Object_Declaration (N : Node_Id) is
3155 Loc : constant Source_Ptr := Sloc (N);
3156 Id : constant Entity_Id := Defining_Identifier (N);
3157 T : Entity_Id;
3158 Act_T : Entity_Id;
3159
3160 E : Node_Id := Expression (N);
3161 -- E is set to Expression (N) throughout this routine. When
3162 -- Expression (N) is modified, E is changed accordingly.
3163
3164 Prev_Entity : Entity_Id := Empty;
3165
3166 function Count_Tasks (T : Entity_Id) return Uint;
3167 -- This function is called when a non-generic library level object of a
3168 -- task type is declared. Its function is to count the static number of
3169 -- tasks declared within the type (it is only called if Has_Tasks is set
3170 -- for T). As a side effect, if an array of tasks with non-static bounds
3171 -- or a variant record type is encountered, Check_Restrictions is called
3172 -- indicating the count is unknown.
3173
3174 -----------------
3175 -- Count_Tasks --
3176 -----------------
3177
3178 function Count_Tasks (T : Entity_Id) return Uint is
3179 C : Entity_Id;
3180 X : Node_Id;
3181 V : Uint;
3182
3183 begin
3184 if Is_Task_Type (T) then
3185 return Uint_1;
3186
3187 elsif Is_Record_Type (T) then
3188 if Has_Discriminants (T) then
3189 Check_Restriction (Max_Tasks, N);
3190 return Uint_0;
3191
3192 else
3193 V := Uint_0;
3194 C := First_Component (T);
3195 while Present (C) loop
3196 V := V + Count_Tasks (Etype (C));
3197 Next_Component (C);
3198 end loop;
3199
3200 return V;
3201 end if;
3202
3203 elsif Is_Array_Type (T) then
3204 X := First_Index (T);
3205 V := Count_Tasks (Component_Type (T));
3206 while Present (X) loop
3207 C := Etype (X);
3208
3209 if not Is_OK_Static_Subtype (C) then
3210 Check_Restriction (Max_Tasks, N);
3211 return Uint_0;
3212 else
3213 V := V * (UI_Max (Uint_0,
3214 Expr_Value (Type_High_Bound (C)) -
3215 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3216 end if;
3217
3218 Next_Index (X);
3219 end loop;
3220
3221 return V;
3222
3223 else
3224 return Uint_0;
3225 end if;
3226 end Count_Tasks;
3227
3228 -- Start of processing for Analyze_Object_Declaration
3229
3230 begin
3231 -- There are three kinds of implicit types generated by an
3232 -- object declaration:
3233
3234 -- 1. Those generated by the original Object Definition
3235
3236 -- 2. Those generated by the Expression
3237
3238 -- 3. Those used to constrain the Object Definition with the
3239 -- expression constraints when the definition is unconstrained.
3240
3241 -- They must be generated in this order to avoid order of elaboration
3242 -- issues. Thus the first step (after entering the name) is to analyze
3243 -- the object definition.
3244
3245 if Constant_Present (N) then
3246 Prev_Entity := Current_Entity_In_Scope (Id);
3247
3248 if Present (Prev_Entity)
3249 and then
3250 -- If the homograph is an implicit subprogram, it is overridden
3251 -- by the current declaration.
3252
3253 ((Is_Overloadable (Prev_Entity)
3254 and then Is_Inherited_Operation (Prev_Entity))
3255
3256 -- The current object is a discriminal generated for an entry
3257 -- family index. Even though the index is a constant, in this
3258 -- particular context there is no true constant redeclaration.
3259 -- Enter_Name will handle the visibility.
3260
3261 or else
3262 (Is_Discriminal (Id)
3263 and then Ekind (Discriminal_Link (Id)) =
3264 E_Entry_Index_Parameter)
3265
3266 -- The current object is the renaming for a generic declared
3267 -- within the instance.
3268
3269 or else
3270 (Ekind (Prev_Entity) = E_Package
3271 and then Nkind (Parent (Prev_Entity)) =
3272 N_Package_Renaming_Declaration
3273 and then not Comes_From_Source (Prev_Entity)
3274 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3275 then
3276 Prev_Entity := Empty;
3277 end if;
3278 end if;
3279
3280 if Present (Prev_Entity) then
3281 Constant_Redeclaration (Id, N, T);
3282
3283 Generate_Reference (Prev_Entity, Id, 'c');
3284 Set_Completion_Referenced (Id);
3285
3286 if Error_Posted (N) then
3287
3288 -- Type mismatch or illegal redeclaration, Do not analyze
3289 -- expression to avoid cascaded errors.
3290
3291 T := Find_Type_Of_Object (Object_Definition (N), N);
3292 Set_Etype (Id, T);
3293 Set_Ekind (Id, E_Variable);
3294 goto Leave;
3295 end if;
3296
3297 -- In the normal case, enter identifier at the start to catch premature
3298 -- usage in the initialization expression.
3299
3300 else
3301 Generate_Definition (Id);
3302 Enter_Name (Id);
3303
3304 Mark_Coextensions (N, Object_Definition (N));
3305
3306 T := Find_Type_Of_Object (Object_Definition (N), N);
3307
3308 if Nkind (Object_Definition (N)) = N_Access_Definition
3309 and then Present
3310 (Access_To_Subprogram_Definition (Object_Definition (N)))
3311 and then Protected_Present
3312 (Access_To_Subprogram_Definition (Object_Definition (N)))
3313 then
3314 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3315 end if;
3316
3317 if Error_Posted (Id) then
3318 Set_Etype (Id, T);
3319 Set_Ekind (Id, E_Variable);
3320 goto Leave;
3321 end if;
3322 end if;
3323
3324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3325 -- out some static checks
3326
3327 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3328
3329 -- In case of aggregates we must also take care of the correct
3330 -- initialization of nested aggregates bug this is done at the
3331 -- point of the analysis of the aggregate (see sem_aggr.adb).
3332
3333 if Present (Expression (N))
3334 and then Nkind (Expression (N)) = N_Aggregate
3335 then
3336 null;
3337
3338 else
3339 declare
3340 Save_Typ : constant Entity_Id := Etype (Id);
3341 begin
3342 Set_Etype (Id, T); -- Temp. decoration for static checks
3343 Null_Exclusion_Static_Checks (N);
3344 Set_Etype (Id, Save_Typ);
3345 end;
3346 end if;
3347 end if;
3348
3349 -- Object is marked pure if it is in a pure scope
3350
3351 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3352
3353 -- If deferred constant, make sure context is appropriate. We detect
3354 -- a deferred constant as a constant declaration with no expression.
3355 -- A deferred constant can appear in a package body if its completion
3356 -- is by means of an interface pragma.
3357
3358 if Constant_Present (N) and then No (E) then
3359
3360 -- A deferred constant may appear in the declarative part of the
3361 -- following constructs:
3362
3363 -- blocks
3364 -- entry bodies
3365 -- extended return statements
3366 -- package specs
3367 -- package bodies
3368 -- subprogram bodies
3369 -- task bodies
3370
3371 -- When declared inside a package spec, a deferred constant must be
3372 -- completed by a full constant declaration or pragma Import. In all
3373 -- other cases, the only proper completion is pragma Import. Extended
3374 -- return statements are flagged as invalid contexts because they do
3375 -- not have a declarative part and so cannot accommodate the pragma.
3376
3377 if Ekind (Current_Scope) = E_Return_Statement then
3378 Error_Msg_N
3379 ("invalid context for deferred constant declaration (RM 7.4)",
3380 N);
3381 Error_Msg_N
3382 ("\declaration requires an initialization expression",
3383 N);
3384 Set_Constant_Present (N, False);
3385
3386 -- In Ada 83, deferred constant must be of private type
3387
3388 elsif not Is_Private_Type (T) then
3389 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3390 Error_Msg_N
3391 ("(Ada 83) deferred constant must be private type", N);
3392 end if;
3393 end if;
3394
3395 -- If not a deferred constant, then object declaration freezes its type
3396
3397 else
3398 Check_Fully_Declared (T, N);
3399 Freeze_Before (N, T);
3400 end if;
3401
3402 -- If the object was created by a constrained array definition, then
3403 -- set the link in both the anonymous base type and anonymous subtype
3404 -- that are built to represent the array type to point to the object.
3405
3406 if Nkind (Object_Definition (Declaration_Node (Id))) =
3407 N_Constrained_Array_Definition
3408 then
3409 Set_Related_Array_Object (T, Id);
3410 Set_Related_Array_Object (Base_Type (T), Id);
3411 end if;
3412
3413 -- Special checks for protected objects not at library level
3414
3415 if Is_Protected_Type (T)
3416 and then not Is_Library_Level_Entity (Id)
3417 then
3418 Check_Restriction (No_Local_Protected_Objects, Id);
3419
3420 -- Protected objects with interrupt handlers must be at library level
3421
3422 -- Ada 2005: This test is not needed (and the corresponding clause
3423 -- in the RM is removed) because accessibility checks are sufficient
3424 -- to make handlers not at the library level illegal.
3425
3426 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3427 -- applies to the '95 version of the language as well.
3428
3429 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3430 Error_Msg_N
3431 ("interrupt object can only be declared at library level", Id);
3432 end if;
3433 end if;
3434
3435 -- The actual subtype of the object is the nominal subtype, unless
3436 -- the nominal one is unconstrained and obtained from the expression.
3437
3438 Act_T := T;
3439
3440 -- These checks should be performed before the initialization expression
3441 -- is considered, so that the Object_Definition node is still the same
3442 -- as in source code.
3443
3444 -- In SPARK, the nominal subtype is always given by a subtype mark
3445 -- and must not be unconstrained. (The only exception to this is the
3446 -- acceptance of declarations of constants of type String.)
3447
3448 if not
3449 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3450 then
3451 Check_SPARK_05_Restriction
3452 ("subtype mark required", Object_Definition (N));
3453
3454 elsif Is_Array_Type (T)
3455 and then not Is_Constrained (T)
3456 and then T /= Standard_String
3457 then
3458 Check_SPARK_05_Restriction
3459 ("subtype mark of constrained type expected",
3460 Object_Definition (N));
3461 end if;
3462
3463 -- There are no aliased objects in SPARK
3464
3465 if Aliased_Present (N) then
3466 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3467 end if;
3468
3469 -- Process initialization expression if present and not in error
3470
3471 if Present (E) and then E /= Error then
3472
3473 -- Generate an error in case of CPP class-wide object initialization.
3474 -- Required because otherwise the expansion of the class-wide
3475 -- assignment would try to use 'size to initialize the object
3476 -- (primitive that is not available in CPP tagged types).
3477
3478 if Is_Class_Wide_Type (Act_T)
3479 and then
3480 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3481 or else
3482 (Present (Full_View (Root_Type (Etype (Act_T))))
3483 and then
3484 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3485 then
3486 Error_Msg_N
3487 ("predefined assignment not available for 'C'P'P tagged types",
3488 E);
3489 end if;
3490
3491 Mark_Coextensions (N, E);
3492 Analyze (E);
3493
3494 -- In case of errors detected in the analysis of the expression,
3495 -- decorate it with the expected type to avoid cascaded errors
3496
3497 if No (Etype (E)) then
3498 Set_Etype (E, T);
3499 end if;
3500
3501 -- If an initialization expression is present, then we set the
3502 -- Is_True_Constant flag. It will be reset if this is a variable
3503 -- and it is indeed modified.
3504
3505 Set_Is_True_Constant (Id, True);
3506
3507 -- If we are analyzing a constant declaration, set its completion
3508 -- flag after analyzing and resolving the expression.
3509
3510 if Constant_Present (N) then
3511 Set_Has_Completion (Id);
3512 end if;
3513
3514 -- Set type and resolve (type may be overridden later on). Note:
3515 -- Ekind (Id) must still be E_Void at this point so that incorrect
3516 -- early usage within E is properly diagnosed.
3517
3518 Set_Etype (Id, T);
3519
3520 -- If the expression is an aggregate we must look ahead to detect
3521 -- the possible presence of an address clause, and defer resolution
3522 -- and expansion of the aggregate to the freeze point of the entity.
3523
3524 if Comes_From_Source (N)
3525 and then Expander_Active
3526 and then Has_Following_Address_Clause (N)
3527 and then Nkind (E) = N_Aggregate
3528 then
3529 Set_Etype (E, T);
3530
3531 else
3532 Resolve (E, T);
3533 end if;
3534
3535 -- No further action needed if E is a call to an inlined function
3536 -- which returns an unconstrained type and it has been expanded into
3537 -- a procedure call. In that case N has been replaced by an object
3538 -- declaration without initializing expression and it has been
3539 -- analyzed (see Expand_Inlined_Call).
3540
3541 if Back_End_Inlining
3542 and then Expander_Active
3543 and then Nkind (E) = N_Function_Call
3544 and then Nkind (Name (E)) in N_Has_Entity
3545 and then Is_Inlined (Entity (Name (E)))
3546 and then not Is_Constrained (Etype (E))
3547 and then Analyzed (N)
3548 and then No (Expression (N))
3549 then
3550 return;
3551 end if;
3552
3553 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3554 -- node (which was marked already-analyzed), we need to set the type
3555 -- to something other than Any_Access in order to keep gigi happy.
3556
3557 if Etype (E) = Any_Access then
3558 Set_Etype (E, T);
3559 end if;
3560
3561 -- If the object is an access to variable, the initialization
3562 -- expression cannot be an access to constant.
3563
3564 if Is_Access_Type (T)
3565 and then not Is_Access_Constant (T)
3566 and then Is_Access_Type (Etype (E))
3567 and then Is_Access_Constant (Etype (E))
3568 then
3569 Error_Msg_N
3570 ("access to variable cannot be initialized "
3571 & "with an access-to-constant expression", E);
3572 end if;
3573
3574 if not Assignment_OK (N) then
3575 Check_Initialization (T, E);
3576 end if;
3577
3578 Check_Unset_Reference (E);
3579
3580 -- If this is a variable, then set current value. If this is a
3581 -- declared constant of a scalar type with a static expression,
3582 -- indicate that it is always valid.
3583
3584 if not Constant_Present (N) then
3585 if Compile_Time_Known_Value (E) then
3586 Set_Current_Value (Id, E);
3587 end if;
3588
3589 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3590 Set_Is_Known_Valid (Id);
3591 end if;
3592
3593 -- Deal with setting of null flags
3594
3595 if Is_Access_Type (T) then
3596 if Known_Non_Null (E) then
3597 Set_Is_Known_Non_Null (Id, True);
3598 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3599 Set_Is_Known_Null (Id, True);
3600 end if;
3601 end if;
3602
3603 -- Check incorrect use of dynamically tagged expressions
3604
3605 if Is_Tagged_Type (T) then
3606 Check_Dynamically_Tagged_Expression
3607 (Expr => E,
3608 Typ => T,
3609 Related_Nod => N);
3610 end if;
3611
3612 Apply_Scalar_Range_Check (E, T);
3613 Apply_Static_Length_Check (E, T);
3614
3615 if Nkind (Original_Node (N)) = N_Object_Declaration
3616 and then Comes_From_Source (Original_Node (N))
3617
3618 -- Only call test if needed
3619
3620 and then Restriction_Check_Required (SPARK_05)
3621 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3622 then
3623 Check_SPARK_05_Restriction
3624 ("initialization expression is not appropriate", E);
3625 end if;
3626 end if;
3627
3628 -- If the No_Streams restriction is set, check that the type of the
3629 -- object is not, and does not contain, any subtype derived from
3630 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3631 -- Has_Stream just for efficiency reasons. There is no point in
3632 -- spending time on a Has_Stream check if the restriction is not set.
3633
3634 if Restriction_Check_Required (No_Streams) then
3635 if Has_Stream (T) then
3636 Check_Restriction (No_Streams, N);
3637 end if;
3638 end if;
3639
3640 -- Deal with predicate check before we start to do major rewriting. It
3641 -- is OK to initialize and then check the initialized value, since the
3642 -- object goes out of scope if we get a predicate failure. Note that we
3643 -- do this in the analyzer and not the expander because the analyzer
3644 -- does some substantial rewriting in some cases.
3645
3646 -- We need a predicate check if the type has predicates, and if either
3647 -- there is an initializing expression, or for default initialization
3648 -- when we have at least one case of an explicit default initial value
3649 -- and then this is not an internal declaration whose initialization
3650 -- comes later (as for an aggregate expansion).
3651
3652 if not Suppress_Assignment_Checks (N)
3653 and then Present (Predicate_Function (T))
3654 and then not No_Initialization (N)
3655 and then
3656 (Present (E)
3657 or else
3658 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3659 then
3660 -- If the type has a static predicate and the expression is known at
3661 -- compile time, see if the expression satisfies the predicate.
3662
3663 if Present (E) then
3664 Check_Expression_Against_Static_Predicate (E, T);
3665 end if;
3666
3667 Insert_After (N,
3668 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3669 end if;
3670
3671 -- Case of unconstrained type
3672
3673 if Is_Indefinite_Subtype (T) then
3674
3675 -- In SPARK, a declaration of unconstrained type is allowed
3676 -- only for constants of type string.
3677
3678 if Is_String_Type (T) and then not Constant_Present (N) then
3679 Check_SPARK_05_Restriction
3680 ("declaration of object of unconstrained type not allowed", N);
3681 end if;
3682
3683 -- Nothing to do in deferred constant case
3684
3685 if Constant_Present (N) and then No (E) then
3686 null;
3687
3688 -- Case of no initialization present
3689
3690 elsif No (E) then
3691 if No_Initialization (N) then
3692 null;
3693
3694 elsif Is_Class_Wide_Type (T) then
3695 Error_Msg_N
3696 ("initialization required in class-wide declaration ", N);
3697
3698 else
3699 Error_Msg_N
3700 ("unconstrained subtype not allowed (need initialization)",
3701 Object_Definition (N));
3702
3703 if Is_Record_Type (T) and then Has_Discriminants (T) then
3704 Error_Msg_N
3705 ("\provide initial value or explicit discriminant values",
3706 Object_Definition (N));
3707
3708 Error_Msg_NE
3709 ("\or give default discriminant values for type&",
3710 Object_Definition (N), T);
3711
3712 elsif Is_Array_Type (T) then
3713 Error_Msg_N
3714 ("\provide initial value or explicit array bounds",
3715 Object_Definition (N));
3716 end if;
3717 end if;
3718
3719 -- Case of initialization present but in error. Set initial
3720 -- expression as absent (but do not make above complaints)
3721
3722 elsif E = Error then
3723 Set_Expression (N, Empty);
3724 E := Empty;
3725
3726 -- Case of initialization present
3727
3728 else
3729 -- Check restrictions in Ada 83
3730
3731 if not Constant_Present (N) then
3732
3733 -- Unconstrained variables not allowed in Ada 83 mode
3734
3735 if Ada_Version = Ada_83
3736 and then Comes_From_Source (Object_Definition (N))
3737 then
3738 Error_Msg_N
3739 ("(Ada 83) unconstrained variable not allowed",
3740 Object_Definition (N));
3741 end if;
3742 end if;
3743
3744 -- Now we constrain the variable from the initializing expression
3745
3746 -- If the expression is an aggregate, it has been expanded into
3747 -- individual assignments. Retrieve the actual type from the
3748 -- expanded construct.
3749
3750 if Is_Array_Type (T)
3751 and then No_Initialization (N)
3752 and then Nkind (Original_Node (E)) = N_Aggregate
3753 then
3754 Act_T := Etype (E);
3755
3756 -- In case of class-wide interface object declarations we delay
3757 -- the generation of the equivalent record type declarations until
3758 -- its expansion because there are cases in they are not required.
3759
3760 elsif Is_Interface (T) then
3761 null;
3762
3763 else
3764 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3765 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3766 end if;
3767
3768 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3769
3770 if Aliased_Present (N) then
3771 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3772 end if;
3773
3774 Freeze_Before (N, Act_T);
3775 Freeze_Before (N, T);
3776 end if;
3777
3778 elsif Is_Array_Type (T)
3779 and then No_Initialization (N)
3780 and then Nkind (Original_Node (E)) = N_Aggregate
3781 then
3782 if not Is_Entity_Name (Object_Definition (N)) then
3783 Act_T := Etype (E);
3784 Check_Compile_Time_Size (Act_T);
3785
3786 if Aliased_Present (N) then
3787 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3788 end if;
3789 end if;
3790
3791 -- When the given object definition and the aggregate are specified
3792 -- independently, and their lengths might differ do a length check.
3793 -- This cannot happen if the aggregate is of the form (others =>...)
3794
3795 if not Is_Constrained (T) then
3796 null;
3797
3798 elsif Nkind (E) = N_Raise_Constraint_Error then
3799
3800 -- Aggregate is statically illegal. Place back in declaration
3801
3802 Set_Expression (N, E);
3803 Set_No_Initialization (N, False);
3804
3805 elsif T = Etype (E) then
3806 null;
3807
3808 elsif Nkind (E) = N_Aggregate
3809 and then Present (Component_Associations (E))
3810 and then Present (Choices (First (Component_Associations (E))))
3811 and then Nkind (First
3812 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3813 then
3814 null;
3815
3816 else
3817 Apply_Length_Check (E, T);
3818 end if;
3819
3820 -- If the type is limited unconstrained with defaulted discriminants and
3821 -- there is no expression, then the object is constrained by the
3822 -- defaults, so it is worthwhile building the corresponding subtype.
3823
3824 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3825 and then not Is_Constrained (T)
3826 and then Has_Discriminants (T)
3827 then
3828 if No (E) then
3829 Act_T := Build_Default_Subtype (T, N);
3830 else
3831 -- Ada 2005: A limited object may be initialized by means of an
3832 -- aggregate. If the type has default discriminants it has an
3833 -- unconstrained nominal type, Its actual subtype will be obtained
3834 -- from the aggregate, and not from the default discriminants.
3835
3836 Act_T := Etype (E);
3837 end if;
3838
3839 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3840
3841 elsif Nkind (E) = N_Function_Call
3842 and then Constant_Present (N)
3843 and then Has_Unconstrained_Elements (Etype (E))
3844 then
3845 -- The back-end has problems with constants of a discriminated type
3846 -- with defaults, if the initial value is a function call. We
3847 -- generate an intermediate temporary that will receive a reference
3848 -- to the result of the call. The initialization expression then
3849 -- becomes a dereference of that temporary.
3850
3851 Remove_Side_Effects (E);
3852
3853 -- If this is a constant declaration of an unconstrained type and
3854 -- the initialization is an aggregate, we can use the subtype of the
3855 -- aggregate for the declared entity because it is immutable.
3856
3857 elsif not Is_Constrained (T)
3858 and then Has_Discriminants (T)
3859 and then Constant_Present (N)
3860 and then not Has_Unchecked_Union (T)
3861 and then Nkind (E) = N_Aggregate
3862 then
3863 Act_T := Etype (E);
3864 end if;
3865
3866 -- Check No_Wide_Characters restriction
3867
3868 Check_Wide_Character_Restriction (T, Object_Definition (N));
3869
3870 -- Indicate this is not set in source. Certainly true for constants, and
3871 -- true for variables so far (will be reset for a variable if and when
3872 -- we encounter a modification in the source).
3873
3874 Set_Never_Set_In_Source (Id, True);
3875
3876 -- Now establish the proper kind and type of the object
3877
3878 if Constant_Present (N) then
3879 Set_Ekind (Id, E_Constant);
3880 Set_Is_True_Constant (Id);
3881
3882 else
3883 Set_Ekind (Id, E_Variable);
3884
3885 -- A variable is set as shared passive if it appears in a shared
3886 -- passive package, and is at the outer level. This is not done for
3887 -- entities generated during expansion, because those are always
3888 -- manipulated locally.
3889
3890 if Is_Shared_Passive (Current_Scope)
3891 and then Is_Library_Level_Entity (Id)
3892 and then Comes_From_Source (Id)
3893 then
3894 Set_Is_Shared_Passive (Id);
3895 Check_Shared_Var (Id, T, N);
3896 end if;
3897
3898 -- Set Has_Initial_Value if initializing expression present. Note
3899 -- that if there is no initializing expression, we leave the state
3900 -- of this flag unchanged (usually it will be False, but notably in
3901 -- the case of exception choice variables, it will already be true).
3902
3903 if Present (E) then
3904 Set_Has_Initial_Value (Id, True);
3905 end if;
3906
3907 Set_Contract (Id, Make_Contract (Sloc (Id)));
3908 end if;
3909
3910 -- Initialize alignment and size and capture alignment setting
3911
3912 Init_Alignment (Id);
3913 Init_Esize (Id);
3914 Set_Optimize_Alignment_Flags (Id);
3915
3916 -- Deal with aliased case
3917
3918 if Aliased_Present (N) then
3919 Set_Is_Aliased (Id);
3920
3921 -- If the object is aliased and the type is unconstrained with
3922 -- defaulted discriminants and there is no expression, then the
3923 -- object is constrained by the defaults, so it is worthwhile
3924 -- building the corresponding subtype.
3925
3926 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3927 -- unconstrained, then only establish an actual subtype if the
3928 -- nominal subtype is indefinite. In definite cases the object is
3929 -- unconstrained in Ada 2005.
3930
3931 if No (E)
3932 and then Is_Record_Type (T)
3933 and then not Is_Constrained (T)
3934 and then Has_Discriminants (T)
3935 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3936 then
3937 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3938 end if;
3939 end if;
3940
3941 -- Now we can set the type of the object
3942
3943 Set_Etype (Id, Act_T);
3944
3945 -- Non-constant object is marked to be treated as volatile if type is
3946 -- volatile and we clear the Current_Value setting that may have been
3947 -- set above. Doing so for constants isn't required and might interfere
3948 -- with possible uses of the object as a static expression in contexts
3949 -- incompatible with volatility (e.g. as a case-statement alternative).
3950
3951 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3952 Set_Treat_As_Volatile (Id);
3953 Set_Current_Value (Id, Empty);
3954 end if;
3955
3956 -- Deal with controlled types
3957
3958 if Has_Controlled_Component (Etype (Id))
3959 or else Is_Controlled (Etype (Id))
3960 then
3961 if not Is_Library_Level_Entity (Id) then
3962 Check_Restriction (No_Nested_Finalization, N);
3963 else
3964 Validate_Controlled_Object (Id);
3965 end if;
3966 end if;
3967
3968 if Has_Task (Etype (Id)) then
3969 Check_Restriction (No_Tasking, N);
3970
3971 -- Deal with counting max tasks
3972
3973 -- Nothing to do if inside a generic
3974
3975 if Inside_A_Generic then
3976 null;
3977
3978 -- If library level entity, then count tasks
3979
3980 elsif Is_Library_Level_Entity (Id) then
3981 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3982
3983 -- If not library level entity, then indicate we don't know max
3984 -- tasks and also check task hierarchy restriction and blocking
3985 -- operation (since starting a task is definitely blocking).
3986
3987 else
3988 Check_Restriction (Max_Tasks, N);
3989 Check_Restriction (No_Task_Hierarchy, N);
3990 Check_Potentially_Blocking_Operation (N);
3991 end if;
3992
3993 -- A rather specialized test. If we see two tasks being declared
3994 -- of the same type in the same object declaration, and the task
3995 -- has an entry with an address clause, we know that program error
3996 -- will be raised at run time since we can't have two tasks with
3997 -- entries at the same address.
3998
3999 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4000 declare
4001 E : Entity_Id;
4002
4003 begin
4004 E := First_Entity (Etype (Id));
4005 while Present (E) loop
4006 if Ekind (E) = E_Entry
4007 and then Present (Get_Attribute_Definition_Clause
4008 (E, Attribute_Address))
4009 then
4010 Error_Msg_Warn := SPARK_Mode /= On;
4011 Error_Msg_N
4012 ("more than one task with same entry address<<", N);
4013 Error_Msg_N ("\Program_Error [<<", N);
4014 Insert_Action (N,
4015 Make_Raise_Program_Error (Loc,
4016 Reason => PE_Duplicated_Entry_Address));
4017 exit;
4018 end if;
4019
4020 Next_Entity (E);
4021 end loop;
4022 end;
4023 end if;
4024 end if;
4025
4026 -- Some simple constant-propagation: if the expression is a constant
4027 -- string initialized with a literal, share the literal. This avoids
4028 -- a run-time copy.
4029
4030 if Present (E)
4031 and then Is_Entity_Name (E)
4032 and then Ekind (Entity (E)) = E_Constant
4033 and then Base_Type (Etype (E)) = Standard_String
4034 then
4035 declare
4036 Val : constant Node_Id := Constant_Value (Entity (E));
4037 begin
4038 if Present (Val) and then Nkind (Val) = N_String_Literal then
4039 Rewrite (E, New_Copy (Val));
4040 end if;
4041 end;
4042 end if;
4043
4044 -- Another optimization: if the nominal subtype is unconstrained and
4045 -- the expression is a function call that returns an unconstrained
4046 -- type, rewrite the declaration as a renaming of the result of the
4047 -- call. The exceptions below are cases where the copy is expected,
4048 -- either by the back end (Aliased case) or by the semantics, as for
4049 -- initializing controlled types or copying tags for classwide types.
4050
4051 if Present (E)
4052 and then Nkind (E) = N_Explicit_Dereference
4053 and then Nkind (Original_Node (E)) = N_Function_Call
4054 and then not Is_Library_Level_Entity (Id)
4055 and then not Is_Constrained (Underlying_Type (T))
4056 and then not Is_Aliased (Id)
4057 and then not Is_Class_Wide_Type (T)
4058 and then not Is_Controlled (T)
4059 and then not Has_Controlled_Component (Base_Type (T))
4060 and then Expander_Active
4061 then
4062 Rewrite (N,
4063 Make_Object_Renaming_Declaration (Loc,
4064 Defining_Identifier => Id,
4065 Access_Definition => Empty,
4066 Subtype_Mark => New_Occurrence_Of
4067 (Base_Type (Etype (Id)), Loc),
4068 Name => E));
4069
4070 Set_Renamed_Object (Id, E);
4071
4072 -- Force generation of debugging information for the constant and for
4073 -- the renamed function call.
4074
4075 Set_Debug_Info_Needed (Id);
4076 Set_Debug_Info_Needed (Entity (Prefix (E)));
4077 end if;
4078
4079 if Present (Prev_Entity)
4080 and then Is_Frozen (Prev_Entity)
4081 and then not Error_Posted (Id)
4082 then
4083 Error_Msg_N ("full constant declaration appears too late", N);
4084 end if;
4085
4086 Check_Eliminated (Id);
4087
4088 -- Deal with setting In_Private_Part flag if in private part
4089
4090 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4091 then
4092 Set_In_Private_Part (Id);
4093 end if;
4094
4095 -- Check for violation of No_Local_Timing_Events
4096
4097 if Restriction_Check_Required (No_Local_Timing_Events)
4098 and then not Is_Library_Level_Entity (Id)
4099 and then Is_RTE (Etype (Id), RE_Timing_Event)
4100 then
4101 Check_Restriction (No_Local_Timing_Events, N);
4102 end if;
4103
4104 <<Leave>>
4105 -- Initialize the refined state of a variable here because this is a
4106 -- common destination for legal and illegal object declarations.
4107
4108 if Ekind (Id) = E_Variable then
4109 Set_Encapsulating_State (Id, Empty);
4110 end if;
4111
4112 if Has_Aspects (N) then
4113 Analyze_Aspect_Specifications (N, Id);
4114 end if;
4115
4116 Analyze_Dimension (N);
4117
4118 -- Verify whether the object declaration introduces an illegal hidden
4119 -- state within a package subject to a null abstract state.
4120
4121 if Ekind (Id) = E_Variable then
4122 Check_No_Hidden_State (Id);
4123 end if;
4124 end Analyze_Object_Declaration;
4125
4126 ---------------------------
4127 -- Analyze_Others_Choice --
4128 ---------------------------
4129
4130 -- Nothing to do for the others choice node itself, the semantic analysis
4131 -- of the others choice will occur as part of the processing of the parent
4132
4133 procedure Analyze_Others_Choice (N : Node_Id) is
4134 pragma Warnings (Off, N);
4135 begin
4136 null;
4137 end Analyze_Others_Choice;
4138
4139 -------------------------------------------
4140 -- Analyze_Private_Extension_Declaration --
4141 -------------------------------------------
4142
4143 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4144 T : constant Entity_Id := Defining_Identifier (N);
4145 Indic : constant Node_Id := Subtype_Indication (N);
4146 Parent_Type : Entity_Id;
4147 Parent_Base : Entity_Id;
4148
4149 begin
4150 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4151
4152 if Is_Non_Empty_List (Interface_List (N)) then
4153 declare
4154 Intf : Node_Id;
4155 T : Entity_Id;
4156
4157 begin
4158 Intf := First (Interface_List (N));
4159 while Present (Intf) loop
4160 T := Find_Type_Of_Subtype_Indic (Intf);
4161
4162 Diagnose_Interface (Intf, T);
4163 Next (Intf);
4164 end loop;
4165 end;
4166 end if;
4167
4168 Generate_Definition (T);
4169
4170 -- For other than Ada 2012, just enter the name in the current scope
4171
4172 if Ada_Version < Ada_2012 then
4173 Enter_Name (T);
4174
4175 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4176 -- case of private type that completes an incomplete type.
4177
4178 else
4179 declare
4180 Prev : Entity_Id;
4181
4182 begin
4183 Prev := Find_Type_Name (N);
4184
4185 pragma Assert (Prev = T
4186 or else (Ekind (Prev) = E_Incomplete_Type
4187 and then Present (Full_View (Prev))
4188 and then Full_View (Prev) = T));
4189 end;
4190 end if;
4191
4192 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4193 Parent_Base := Base_Type (Parent_Type);
4194
4195 if Parent_Type = Any_Type
4196 or else Etype (Parent_Type) = Any_Type
4197 then
4198 Set_Ekind (T, Ekind (Parent_Type));
4199 Set_Etype (T, Any_Type);
4200 goto Leave;
4201
4202 elsif not Is_Tagged_Type (Parent_Type) then
4203 Error_Msg_N
4204 ("parent of type extension must be a tagged type ", Indic);
4205 goto Leave;
4206
4207 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4208 Error_Msg_N ("premature derivation of incomplete type", Indic);
4209 goto Leave;
4210
4211 elsif Is_Concurrent_Type (Parent_Type) then
4212 Error_Msg_N
4213 ("parent type of a private extension cannot be "
4214 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4215
4216 Set_Etype (T, Any_Type);
4217 Set_Ekind (T, E_Limited_Private_Type);
4218 Set_Private_Dependents (T, New_Elmt_List);
4219 Set_Error_Posted (T);
4220 goto Leave;
4221 end if;
4222
4223 -- Perhaps the parent type should be changed to the class-wide type's
4224 -- specific type in this case to prevent cascading errors ???
4225
4226 if Is_Class_Wide_Type (Parent_Type) then
4227 Error_Msg_N
4228 ("parent of type extension must not be a class-wide type", Indic);
4229 goto Leave;
4230 end if;
4231
4232 if (not Is_Package_Or_Generic_Package (Current_Scope)
4233 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4234 or else In_Private_Part (Current_Scope)
4235
4236 then
4237 Error_Msg_N ("invalid context for private extension", N);
4238 end if;
4239
4240 -- Set common attributes
4241
4242 Set_Is_Pure (T, Is_Pure (Current_Scope));
4243 Set_Scope (T, Current_Scope);
4244 Set_Ekind (T, E_Record_Type_With_Private);
4245 Init_Size_Align (T);
4246 Set_Default_SSO (T);
4247
4248 Set_Etype (T, Parent_Base);
4249 Set_Has_Task (T, Has_Task (Parent_Base));
4250 Set_Has_Protected (T, Has_Task (Parent_Base));
4251
4252 Set_Convention (T, Convention (Parent_Type));
4253 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4254 Set_Is_First_Subtype (T);
4255 Make_Class_Wide_Type (T);
4256
4257 if Unknown_Discriminants_Present (N) then
4258 Set_Discriminant_Constraint (T, No_Elist);
4259 end if;
4260
4261 Build_Derived_Record_Type (N, Parent_Type, T);
4262
4263 -- Propagate inherited invariant information. The new type has
4264 -- invariants, if the parent type has inheritable invariants,
4265 -- and these invariants can in turn be inherited.
4266
4267 if Has_Inheritable_Invariants (Parent_Type) then
4268 Set_Has_Inheritable_Invariants (T);
4269 Set_Has_Invariants (T);
4270 end if;
4271
4272 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4273 -- synchronized formal derived type.
4274
4275 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4276 Set_Is_Limited_Record (T);
4277
4278 -- Formal derived type case
4279
4280 if Is_Generic_Type (T) then
4281
4282 -- The parent must be a tagged limited type or a synchronized
4283 -- interface.
4284
4285 if (not Is_Tagged_Type (Parent_Type)
4286 or else not Is_Limited_Type (Parent_Type))
4287 and then
4288 (not Is_Interface (Parent_Type)
4289 or else not Is_Synchronized_Interface (Parent_Type))
4290 then
4291 Error_Msg_NE ("parent type of & must be tagged limited " &
4292 "or synchronized", N, T);
4293 end if;
4294
4295 -- The progenitors (if any) must be limited or synchronized
4296 -- interfaces.
4297
4298 if Present (Interfaces (T)) then
4299 declare
4300 Iface : Entity_Id;
4301 Iface_Elmt : Elmt_Id;
4302
4303 begin
4304 Iface_Elmt := First_Elmt (Interfaces (T));
4305 while Present (Iface_Elmt) loop
4306 Iface := Node (Iface_Elmt);
4307
4308 if not Is_Limited_Interface (Iface)
4309 and then not Is_Synchronized_Interface (Iface)
4310 then
4311 Error_Msg_NE ("progenitor & must be limited " &
4312 "or synchronized", N, Iface);
4313 end if;
4314
4315 Next_Elmt (Iface_Elmt);
4316 end loop;
4317 end;
4318 end if;
4319
4320 -- Regular derived extension, the parent must be a limited or
4321 -- synchronized interface.
4322
4323 else
4324 if not Is_Interface (Parent_Type)
4325 or else (not Is_Limited_Interface (Parent_Type)
4326 and then not Is_Synchronized_Interface (Parent_Type))
4327 then
4328 Error_Msg_NE
4329 ("parent type of & must be limited interface", N, T);
4330 end if;
4331 end if;
4332
4333 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4334 -- extension with a synchronized parent must be explicitly declared
4335 -- synchronized, because the full view will be a synchronized type.
4336 -- This must be checked before the check for limited types below,
4337 -- to ensure that types declared limited are not allowed to extend
4338 -- synchronized interfaces.
4339
4340 elsif Is_Interface (Parent_Type)
4341 and then Is_Synchronized_Interface (Parent_Type)
4342 and then not Synchronized_Present (N)
4343 then
4344 Error_Msg_NE
4345 ("private extension of& must be explicitly synchronized",
4346 N, Parent_Type);
4347
4348 elsif Limited_Present (N) then
4349 Set_Is_Limited_Record (T);
4350
4351 if not Is_Limited_Type (Parent_Type)
4352 and then
4353 (not Is_Interface (Parent_Type)
4354 or else not Is_Limited_Interface (Parent_Type))
4355 then
4356 Error_Msg_NE ("parent type& of limited extension must be limited",
4357 N, Parent_Type);
4358 end if;
4359 end if;
4360
4361 <<Leave>>
4362 if Has_Aspects (N) then
4363 Analyze_Aspect_Specifications (N, T);
4364 end if;
4365 end Analyze_Private_Extension_Declaration;
4366
4367 ---------------------------------
4368 -- Analyze_Subtype_Declaration --
4369 ---------------------------------
4370
4371 procedure Analyze_Subtype_Declaration
4372 (N : Node_Id;
4373 Skip : Boolean := False)
4374 is
4375 Id : constant Entity_Id := Defining_Identifier (N);
4376 T : Entity_Id;
4377 R_Checks : Check_Result;
4378
4379 begin
4380 Generate_Definition (Id);
4381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4382 Init_Size_Align (Id);
4383
4384 -- The following guard condition on Enter_Name is to handle cases where
4385 -- the defining identifier has already been entered into the scope but
4386 -- the declaration as a whole needs to be analyzed.
4387
4388 -- This case in particular happens for derived enumeration types. The
4389 -- derived enumeration type is processed as an inserted enumeration type
4390 -- declaration followed by a rewritten subtype declaration. The defining
4391 -- identifier, however, is entered into the name scope very early in the
4392 -- processing of the original type declaration and therefore needs to be
4393 -- avoided here, when the created subtype declaration is analyzed. (See
4394 -- Build_Derived_Types)
4395
4396 -- This also happens when the full view of a private type is derived
4397 -- type with constraints. In this case the entity has been introduced
4398 -- in the private declaration.
4399
4400 -- Finally this happens in some complex cases when validity checks are
4401 -- enabled, where the same subtype declaration may be analyzed twice.
4402 -- This can happen if the subtype is created by the pre-analysis of
4403 -- an attribute tht gives the range of a loop statement, and the loop
4404 -- itself appears within an if_statement that will be rewritten during
4405 -- expansion.
4406
4407 if Skip
4408 or else (Present (Etype (Id))
4409 and then (Is_Private_Type (Etype (Id))
4410 or else Is_Task_Type (Etype (Id))
4411 or else Is_Rewrite_Substitution (N)))
4412 then
4413 null;
4414
4415 elsif Current_Entity (Id) = Id then
4416 null;
4417
4418 else
4419 Enter_Name (Id);
4420 end if;
4421
4422 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4423
4424 -- Class-wide equivalent types of records with unknown discriminants
4425 -- involve the generation of an itype which serves as the private view
4426 -- of a constrained record subtype. In such cases the base type of the
4427 -- current subtype we are processing is the private itype. Use the full
4428 -- of the private itype when decorating various attributes.
4429
4430 if Is_Itype (T)
4431 and then Is_Private_Type (T)
4432 and then Present (Full_View (T))
4433 then
4434 T := Full_View (T);
4435 end if;
4436
4437 -- Inherit common attributes
4438
4439 Set_Is_Volatile (Id, Is_Volatile (T));
4440 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4441 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4442 Set_Convention (Id, Convention (T));
4443
4444 -- If ancestor has predicates then so does the subtype, and in addition
4445 -- we must delay the freeze to properly arrange predicate inheritance.
4446
4447 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4448 -- in which T = ID, so the above tests and assignments do nothing???
4449
4450 if Has_Predicates (T)
4451 or else (Present (Ancestor_Subtype (T))
4452 and then Has_Predicates (Ancestor_Subtype (T)))
4453 then
4454 Set_Has_Predicates (Id);
4455 Set_Has_Delayed_Freeze (Id);
4456 end if;
4457
4458 -- Subtype of Boolean cannot have a constraint in SPARK
4459
4460 if Is_Boolean_Type (T)
4461 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4462 then
4463 Check_SPARK_05_Restriction
4464 ("subtype of Boolean cannot have constraint", N);
4465 end if;
4466
4467 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4468 declare
4469 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4470 One_Cstr : Node_Id;
4471 Low : Node_Id;
4472 High : Node_Id;
4473
4474 begin
4475 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4476 One_Cstr := First (Constraints (Cstr));
4477 while Present (One_Cstr) loop
4478
4479 -- Index or discriminant constraint in SPARK must be a
4480 -- subtype mark.
4481
4482 if not
4483 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4484 then
4485 Check_SPARK_05_Restriction
4486 ("subtype mark required", One_Cstr);
4487
4488 -- String subtype must have a lower bound of 1 in SPARK.
4489 -- Note that we do not need to test for the non-static case
4490 -- here, since that was already taken care of in
4491 -- Process_Range_Expr_In_Decl.
4492
4493 elsif Base_Type (T) = Standard_String then
4494 Get_Index_Bounds (One_Cstr, Low, High);
4495
4496 if Is_OK_Static_Expression (Low)
4497 and then Expr_Value (Low) /= 1
4498 then
4499 Check_SPARK_05_Restriction
4500 ("String subtype must have lower bound of 1", N);
4501 end if;
4502 end if;
4503
4504 Next (One_Cstr);
4505 end loop;
4506 end if;
4507 end;
4508 end if;
4509
4510 -- In the case where there is no constraint given in the subtype
4511 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4512 -- semantic attributes must be established here.
4513
4514 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4515 Set_Etype (Id, Base_Type (T));
4516
4517 -- Subtype of unconstrained array without constraint is not allowed
4518 -- in SPARK.
4519
4520 if Is_Array_Type (T) and then not Is_Constrained (T) then
4521 Check_SPARK_05_Restriction
4522 ("subtype of unconstrained array must have constraint", N);
4523 end if;
4524
4525 case Ekind (T) is
4526 when Array_Kind =>
4527 Set_Ekind (Id, E_Array_Subtype);
4528 Copy_Array_Subtype_Attributes (Id, T);
4529
4530 when Decimal_Fixed_Point_Kind =>
4531 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4532 Set_Digits_Value (Id, Digits_Value (T));
4533 Set_Delta_Value (Id, Delta_Value (T));
4534 Set_Scale_Value (Id, Scale_Value (T));
4535 Set_Small_Value (Id, Small_Value (T));
4536 Set_Scalar_Range (Id, Scalar_Range (T));
4537 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4538 Set_Is_Constrained (Id, Is_Constrained (T));
4539 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4540 Set_RM_Size (Id, RM_Size (T));
4541
4542 when Enumeration_Kind =>
4543 Set_Ekind (Id, E_Enumeration_Subtype);
4544 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4545 Set_Scalar_Range (Id, Scalar_Range (T));
4546 Set_Is_Character_Type (Id, Is_Character_Type (T));
4547 Set_Is_Constrained (Id, Is_Constrained (T));
4548 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4549 Set_RM_Size (Id, RM_Size (T));
4550 Inherit_Predicate_Flags (Id, T);
4551
4552 when Ordinary_Fixed_Point_Kind =>
4553 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4554 Set_Scalar_Range (Id, Scalar_Range (T));
4555 Set_Small_Value (Id, Small_Value (T));
4556 Set_Delta_Value (Id, Delta_Value (T));
4557 Set_Is_Constrained (Id, Is_Constrained (T));
4558 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4559 Set_RM_Size (Id, RM_Size (T));
4560
4561 when Float_Kind =>
4562 Set_Ekind (Id, E_Floating_Point_Subtype);
4563 Set_Scalar_Range (Id, Scalar_Range (T));
4564 Set_Digits_Value (Id, Digits_Value (T));
4565 Set_Is_Constrained (Id, Is_Constrained (T));
4566
4567 when Signed_Integer_Kind =>
4568 Set_Ekind (Id, E_Signed_Integer_Subtype);
4569 Set_Scalar_Range (Id, Scalar_Range (T));
4570 Set_Is_Constrained (Id, Is_Constrained (T));
4571 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4572 Set_RM_Size (Id, RM_Size (T));
4573 Inherit_Predicate_Flags (Id, T);
4574
4575 when Modular_Integer_Kind =>
4576 Set_Ekind (Id, E_Modular_Integer_Subtype);
4577 Set_Scalar_Range (Id, Scalar_Range (T));
4578 Set_Is_Constrained (Id, Is_Constrained (T));
4579 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4580 Set_RM_Size (Id, RM_Size (T));
4581 Inherit_Predicate_Flags (Id, T);
4582
4583 when Class_Wide_Kind =>
4584 Set_Ekind (Id, E_Class_Wide_Subtype);
4585 Set_First_Entity (Id, First_Entity (T));
4586 Set_Last_Entity (Id, Last_Entity (T));
4587 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4588 Set_Cloned_Subtype (Id, T);
4589 Set_Is_Tagged_Type (Id, True);
4590 Set_Has_Unknown_Discriminants
4591 (Id, True);
4592
4593 if Ekind (T) = E_Class_Wide_Subtype then
4594 Set_Equivalent_Type (Id, Equivalent_Type (T));
4595 end if;
4596
4597 when E_Record_Type | E_Record_Subtype =>
4598 Set_Ekind (Id, E_Record_Subtype);
4599
4600 if Ekind (T) = E_Record_Subtype
4601 and then Present (Cloned_Subtype (T))
4602 then
4603 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4604 else
4605 Set_Cloned_Subtype (Id, T);
4606 end if;
4607
4608 Set_First_Entity (Id, First_Entity (T));
4609 Set_Last_Entity (Id, Last_Entity (T));
4610 Set_Has_Discriminants (Id, Has_Discriminants (T));
4611 Set_Is_Constrained (Id, Is_Constrained (T));
4612 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4613 Set_Has_Implicit_Dereference
4614 (Id, Has_Implicit_Dereference (T));
4615 Set_Has_Unknown_Discriminants
4616 (Id, Has_Unknown_Discriminants (T));
4617
4618 if Has_Discriminants (T) then
4619 Set_Discriminant_Constraint
4620 (Id, Discriminant_Constraint (T));
4621 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4622
4623 elsif Has_Unknown_Discriminants (Id) then
4624 Set_Discriminant_Constraint (Id, No_Elist);
4625 end if;
4626
4627 if Is_Tagged_Type (T) then
4628 Set_Is_Tagged_Type (Id);
4629 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4630 Set_Direct_Primitive_Operations
4631 (Id, Direct_Primitive_Operations (T));
4632 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4633
4634 if Is_Interface (T) then
4635 Set_Is_Interface (Id);
4636 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4637 end if;
4638 end if;
4639
4640 when Private_Kind =>
4641 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4642 Set_Has_Discriminants (Id, Has_Discriminants (T));
4643 Set_Is_Constrained (Id, Is_Constrained (T));
4644 Set_First_Entity (Id, First_Entity (T));
4645 Set_Last_Entity (Id, Last_Entity (T));
4646 Set_Private_Dependents (Id, New_Elmt_List);
4647 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4648 Set_Has_Implicit_Dereference
4649 (Id, Has_Implicit_Dereference (T));
4650 Set_Has_Unknown_Discriminants
4651 (Id, Has_Unknown_Discriminants (T));
4652 Set_Known_To_Have_Preelab_Init
4653 (Id, Known_To_Have_Preelab_Init (T));
4654
4655 if Is_Tagged_Type (T) then
4656 Set_Is_Tagged_Type (Id);
4657 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4658 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4659 Set_Direct_Primitive_Operations (Id,
4660 Direct_Primitive_Operations (T));
4661 end if;
4662
4663 -- In general the attributes of the subtype of a private type
4664 -- are the attributes of the partial view of parent. However,
4665 -- the full view may be a discriminated type, and the subtype
4666 -- must share the discriminant constraint to generate correct
4667 -- calls to initialization procedures.
4668
4669 if Has_Discriminants (T) then
4670 Set_Discriminant_Constraint
4671 (Id, Discriminant_Constraint (T));
4672 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4673
4674 elsif Present (Full_View (T))
4675 and then Has_Discriminants (Full_View (T))
4676 then
4677 Set_Discriminant_Constraint
4678 (Id, Discriminant_Constraint (Full_View (T)));
4679 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4680
4681 -- This would seem semantically correct, but apparently
4682 -- generates spurious errors about missing components ???
4683
4684 -- Set_Has_Discriminants (Id);
4685 end if;
4686
4687 Prepare_Private_Subtype_Completion (Id, N);
4688
4689 -- If this is the subtype of a constrained private type with
4690 -- discriminants that has got a full view and we also have
4691 -- built a completion just above, show that the completion
4692 -- is a clone of the full view to the back-end.
4693
4694 if Has_Discriminants (T)
4695 and then not Has_Unknown_Discriminants (T)
4696 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4697 and then Present (Full_View (T))
4698 and then Present (Full_View (Id))
4699 then
4700 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4701 end if;
4702
4703 when Access_Kind =>
4704 Set_Ekind (Id, E_Access_Subtype);
4705 Set_Is_Constrained (Id, Is_Constrained (T));
4706 Set_Is_Access_Constant
4707 (Id, Is_Access_Constant (T));
4708 Set_Directly_Designated_Type
4709 (Id, Designated_Type (T));
4710 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4711
4712 -- A Pure library_item must not contain the declaration of a
4713 -- named access type, except within a subprogram, generic
4714 -- subprogram, task unit, or protected unit, or if it has
4715 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4716
4717 if Comes_From_Source (Id)
4718 and then In_Pure_Unit
4719 and then not In_Subprogram_Task_Protected_Unit
4720 and then not No_Pool_Assigned (Id)
4721 then
4722 Error_Msg_N
4723 ("named access types not allowed in pure unit", N);
4724 end if;
4725
4726 when Concurrent_Kind =>
4727 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4728 Set_Corresponding_Record_Type (Id,
4729 Corresponding_Record_Type (T));
4730 Set_First_Entity (Id, First_Entity (T));
4731 Set_First_Private_Entity (Id, First_Private_Entity (T));
4732 Set_Has_Discriminants (Id, Has_Discriminants (T));
4733 Set_Is_Constrained (Id, Is_Constrained (T));
4734 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4735 Set_Last_Entity (Id, Last_Entity (T));
4736
4737 if Has_Discriminants (T) then
4738 Set_Discriminant_Constraint (Id,
4739 Discriminant_Constraint (T));
4740 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4741 end if;
4742
4743 when E_Incomplete_Type =>
4744 if Ada_Version >= Ada_2005 then
4745
4746 -- In Ada 2005 an incomplete type can be explicitly tagged:
4747 -- propagate indication.
4748
4749 Set_Ekind (Id, E_Incomplete_Subtype);
4750 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4752
4753 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4754 -- incomplete type visible through a limited with clause.
4755
4756 if From_Limited_With (T)
4757 and then Present (Non_Limited_View (T))
4758 then
4759 Set_From_Limited_With (Id);
4760 Set_Non_Limited_View (Id, Non_Limited_View (T));
4761
4762 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4763 -- to the private dependents of the original incomplete
4764 -- type for future transformation.
4765
4766 else
4767 Append_Elmt (Id, Private_Dependents (T));
4768 end if;
4769
4770 -- If the subtype name denotes an incomplete type an error
4771 -- was already reported by Process_Subtype.
4772
4773 else
4774 Set_Etype (Id, Any_Type);
4775 end if;
4776
4777 when others =>
4778 raise Program_Error;
4779 end case;
4780 end if;
4781
4782 if Etype (Id) = Any_Type then
4783 goto Leave;
4784 end if;
4785
4786 -- Some common processing on all types
4787
4788 Set_Size_Info (Id, T);
4789 Set_First_Rep_Item (Id, First_Rep_Item (T));
4790
4791 -- If the parent type is a generic actual, so is the subtype. This may
4792 -- happen in a nested instance. Why Comes_From_Source test???
4793
4794 if not Comes_From_Source (N) then
4795 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4796 end if;
4797
4798 T := Etype (Id);
4799
4800 Set_Is_Immediately_Visible (Id, True);
4801 Set_Depends_On_Private (Id, Has_Private_Component (T));
4802 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4803
4804 if Is_Interface (T) then
4805 Set_Is_Interface (Id);
4806 end if;
4807
4808 if Present (Generic_Parent_Type (N))
4809 and then
4810 (Nkind (Parent (Generic_Parent_Type (N))) /=
4811 N_Formal_Type_Declaration
4812 or else Nkind
4813 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4814 N_Formal_Private_Type_Definition)
4815 then
4816 if Is_Tagged_Type (Id) then
4817
4818 -- If this is a generic actual subtype for a synchronized type,
4819 -- the primitive operations are those of the corresponding record
4820 -- for which there is a separate subtype declaration.
4821
4822 if Is_Concurrent_Type (Id) then
4823 null;
4824 elsif Is_Class_Wide_Type (Id) then
4825 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4826 else
4827 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4828 end if;
4829
4830 elsif Scope (Etype (Id)) /= Standard_Standard then
4831 Derive_Subprograms (Generic_Parent_Type (N), Id);
4832 end if;
4833 end if;
4834
4835 if Is_Private_Type (T) and then Present (Full_View (T)) then
4836 Conditional_Delay (Id, Full_View (T));
4837
4838 -- The subtypes of components or subcomponents of protected types
4839 -- do not need freeze nodes, which would otherwise appear in the
4840 -- wrong scope (before the freeze node for the protected type). The
4841 -- proper subtypes are those of the subcomponents of the corresponding
4842 -- record.
4843
4844 elsif Ekind (Scope (Id)) /= E_Protected_Type
4845 and then Present (Scope (Scope (Id))) -- error defense
4846 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4847 then
4848 Conditional_Delay (Id, T);
4849 end if;
4850
4851 -- Check that Constraint_Error is raised for a scalar subtype indication
4852 -- when the lower or upper bound of a non-null range lies outside the
4853 -- range of the type mark.
4854
4855 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4856 if Is_Scalar_Type (Etype (Id))
4857 and then Scalar_Range (Id) /=
4858 Scalar_Range (Etype (Subtype_Mark
4859 (Subtype_Indication (N))))
4860 then
4861 Apply_Range_Check
4862 (Scalar_Range (Id),
4863 Etype (Subtype_Mark (Subtype_Indication (N))));
4864
4865 -- In the array case, check compatibility for each index
4866
4867 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4868 then
4869 -- This really should be a subprogram that finds the indications
4870 -- to check???
4871
4872 declare
4873 Subt_Index : Node_Id := First_Index (Id);
4874 Target_Index : Node_Id :=
4875 First_Index (Etype
4876 (Subtype_Mark (Subtype_Indication (N))));
4877 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4878
4879 begin
4880 while Present (Subt_Index) loop
4881 if ((Nkind (Subt_Index) = N_Identifier
4882 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4883 or else Nkind (Subt_Index) = N_Subtype_Indication)
4884 and then
4885 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4886 then
4887 declare
4888 Target_Typ : constant Entity_Id :=
4889 Etype (Target_Index);
4890 begin
4891 R_Checks :=
4892 Get_Range_Checks
4893 (Scalar_Range (Etype (Subt_Index)),
4894 Target_Typ,
4895 Etype (Subt_Index),
4896 Defining_Identifier (N));
4897
4898 -- Reset Has_Dynamic_Range_Check on the subtype to
4899 -- prevent elision of the index check due to a dynamic
4900 -- check generated for a preceding index (needed since
4901 -- Insert_Range_Checks tries to avoid generating
4902 -- redundant checks on a given declaration).
4903
4904 Set_Has_Dynamic_Range_Check (N, False);
4905
4906 Insert_Range_Checks
4907 (R_Checks,
4908 N,
4909 Target_Typ,
4910 Sloc (Defining_Identifier (N)));
4911
4912 -- Record whether this index involved a dynamic check
4913
4914 Has_Dyn_Chk :=
4915 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4916 end;
4917 end if;
4918
4919 Next_Index (Subt_Index);
4920 Next_Index (Target_Index);
4921 end loop;
4922
4923 -- Finally, mark whether the subtype involves dynamic checks
4924
4925 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4926 end;
4927 end if;
4928 end if;
4929
4930 -- Make sure that generic actual types are properly frozen. The subtype
4931 -- is marked as a generic actual type when the enclosing instance is
4932 -- analyzed, so here we identify the subtype from the tree structure.
4933
4934 if Expander_Active
4935 and then Is_Generic_Actual_Type (Id)
4936 and then In_Instance
4937 and then not Comes_From_Source (N)
4938 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4939 and then Is_Frozen (T)
4940 then
4941 Freeze_Before (N, Id);
4942 end if;
4943
4944 Set_Optimize_Alignment_Flags (Id);
4945 Check_Eliminated (Id);
4946
4947 <<Leave>>
4948 if Has_Aspects (N) then
4949 Analyze_Aspect_Specifications (N, Id);
4950 end if;
4951
4952 Analyze_Dimension (N);
4953 end Analyze_Subtype_Declaration;
4954
4955 --------------------------------
4956 -- Analyze_Subtype_Indication --
4957 --------------------------------
4958
4959 procedure Analyze_Subtype_Indication (N : Node_Id) is
4960 T : constant Entity_Id := Subtype_Mark (N);
4961 R : constant Node_Id := Range_Expression (Constraint (N));
4962
4963 begin
4964 Analyze (T);
4965
4966 if R /= Error then
4967 Analyze (R);
4968 Set_Etype (N, Etype (R));
4969 Resolve (R, Entity (T));
4970 else
4971 Set_Error_Posted (R);
4972 Set_Error_Posted (T);
4973 end if;
4974 end Analyze_Subtype_Indication;
4975
4976 --------------------------
4977 -- Analyze_Variant_Part --
4978 --------------------------
4979
4980 procedure Analyze_Variant_Part (N : Node_Id) is
4981 Discr_Name : Node_Id;
4982 Discr_Type : Entity_Id;
4983
4984 procedure Process_Variant (A : Node_Id);
4985 -- Analyze declarations for a single variant
4986
4987 package Analyze_Variant_Choices is
4988 new Generic_Analyze_Choices (Process_Variant);
4989 use Analyze_Variant_Choices;
4990
4991 ---------------------
4992 -- Process_Variant --
4993 ---------------------
4994
4995 procedure Process_Variant (A : Node_Id) is
4996 CL : constant Node_Id := Component_List (A);
4997 begin
4998 if not Null_Present (CL) then
4999 Analyze_Declarations (Component_Items (CL));
5000
5001 if Present (Variant_Part (CL)) then
5002 Analyze (Variant_Part (CL));
5003 end if;
5004 end if;
5005 end Process_Variant;
5006
5007 -- Start of processing for Analyze_Variant_Part
5008
5009 begin
5010 Discr_Name := Name (N);
5011 Analyze (Discr_Name);
5012
5013 -- If Discr_Name bad, get out (prevent cascaded errors)
5014
5015 if Etype (Discr_Name) = Any_Type then
5016 return;
5017 end if;
5018
5019 -- Check invalid discriminant in variant part
5020
5021 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5022 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5023 end if;
5024
5025 Discr_Type := Etype (Entity (Discr_Name));
5026
5027 if not Is_Discrete_Type (Discr_Type) then
5028 Error_Msg_N
5029 ("discriminant in a variant part must be of a discrete type",
5030 Name (N));
5031 return;
5032 end if;
5033
5034 -- Now analyze the choices, which also analyzes the declarations that
5035 -- are associated with each choice.
5036
5037 Analyze_Choices (Variants (N), Discr_Type);
5038
5039 -- Note: we used to instantiate and call Check_Choices here to check
5040 -- that the choices covered the discriminant, but it's too early to do
5041 -- that because of statically predicated subtypes, whose analysis may
5042 -- be deferred to their freeze point which may be as late as the freeze
5043 -- point of the containing record. So this call is now to be found in
5044 -- Freeze_Record_Declaration.
5045
5046 end Analyze_Variant_Part;
5047
5048 ----------------------------
5049 -- Array_Type_Declaration --
5050 ----------------------------
5051
5052 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5053 Component_Def : constant Node_Id := Component_Definition (Def);
5054 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5055 Element_Type : Entity_Id;
5056 Implicit_Base : Entity_Id;
5057 Index : Node_Id;
5058 Related_Id : Entity_Id := Empty;
5059 Nb_Index : Nat;
5060 P : constant Node_Id := Parent (Def);
5061 Priv : Entity_Id;
5062
5063 begin
5064 if Nkind (Def) = N_Constrained_Array_Definition then
5065 Index := First (Discrete_Subtype_Definitions (Def));
5066 else
5067 Index := First (Subtype_Marks (Def));
5068 end if;
5069
5070 -- Find proper names for the implicit types which may be public. In case
5071 -- of anonymous arrays we use the name of the first object of that type
5072 -- as prefix.
5073
5074 if No (T) then
5075 Related_Id := Defining_Identifier (P);
5076 else
5077 Related_Id := T;
5078 end if;
5079
5080 Nb_Index := 1;
5081 while Present (Index) loop
5082 Analyze (Index);
5083
5084 -- Test for odd case of trying to index a type by the type itself
5085
5086 if Is_Entity_Name (Index) and then Entity (Index) = T then
5087 Error_Msg_N ("type& cannot be indexed by itself", Index);
5088 Set_Entity (Index, Standard_Boolean);
5089 Set_Etype (Index, Standard_Boolean);
5090 end if;
5091
5092 -- Check SPARK restriction requiring a subtype mark
5093
5094 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5095 Check_SPARK_05_Restriction ("subtype mark required", Index);
5096 end if;
5097
5098 -- Add a subtype declaration for each index of private array type
5099 -- declaration whose etype is also private. For example:
5100
5101 -- package Pkg is
5102 -- type Index is private;
5103 -- private
5104 -- type Table is array (Index) of ...
5105 -- end;
5106
5107 -- This is currently required by the expander for the internally
5108 -- generated equality subprogram of records with variant parts in
5109 -- which the etype of some component is such private type.
5110
5111 if Ekind (Current_Scope) = E_Package
5112 and then In_Private_Part (Current_Scope)
5113 and then Has_Private_Declaration (Etype (Index))
5114 then
5115 declare
5116 Loc : constant Source_Ptr := Sloc (Def);
5117 New_E : Entity_Id;
5118 Decl : Entity_Id;
5119
5120 begin
5121 New_E := Make_Temporary (Loc, 'T');
5122 Set_Is_Internal (New_E);
5123
5124 Decl :=
5125 Make_Subtype_Declaration (Loc,
5126 Defining_Identifier => New_E,
5127 Subtype_Indication =>
5128 New_Occurrence_Of (Etype (Index), Loc));
5129
5130 Insert_Before (Parent (Def), Decl);
5131 Analyze (Decl);
5132 Set_Etype (Index, New_E);
5133
5134 -- If the index is a range the Entity attribute is not
5135 -- available. Example:
5136
5137 -- package Pkg is
5138 -- type T is private;
5139 -- private
5140 -- type T is new Natural;
5141 -- Table : array (T(1) .. T(10)) of Boolean;
5142 -- end Pkg;
5143
5144 if Nkind (Index) /= N_Range then
5145 Set_Entity (Index, New_E);
5146 end if;
5147 end;
5148 end if;
5149
5150 Make_Index (Index, P, Related_Id, Nb_Index);
5151
5152 -- Check error of subtype with predicate for index type
5153
5154 Bad_Predicated_Subtype_Use
5155 ("subtype& has predicate, not allowed as index subtype",
5156 Index, Etype (Index));
5157
5158 -- Move to next index
5159
5160 Next_Index (Index);
5161 Nb_Index := Nb_Index + 1;
5162 end loop;
5163
5164 -- Process subtype indication if one is present
5165
5166 if Present (Component_Typ) then
5167 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5168
5169 Set_Etype (Component_Typ, Element_Type);
5170
5171 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5172 Check_SPARK_05_Restriction
5173 ("subtype mark required", Component_Typ);
5174 end if;
5175
5176 -- Ada 2005 (AI-230): Access Definition case
5177
5178 else pragma Assert (Present (Access_Definition (Component_Def)));
5179
5180 -- Indicate that the anonymous access type is created by the
5181 -- array type declaration.
5182
5183 Element_Type := Access_Definition
5184 (Related_Nod => P,
5185 N => Access_Definition (Component_Def));
5186 Set_Is_Local_Anonymous_Access (Element_Type);
5187
5188 -- Propagate the parent. This field is needed if we have to generate
5189 -- the master_id associated with an anonymous access to task type
5190 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5191
5192 Set_Parent (Element_Type, Parent (T));
5193
5194 -- Ada 2005 (AI-230): In case of components that are anonymous access
5195 -- types the level of accessibility depends on the enclosing type
5196 -- declaration
5197
5198 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5199
5200 -- Ada 2005 (AI-254)
5201
5202 declare
5203 CD : constant Node_Id :=
5204 Access_To_Subprogram_Definition
5205 (Access_Definition (Component_Def));
5206 begin
5207 if Present (CD) and then Protected_Present (CD) then
5208 Element_Type :=
5209 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5210 end if;
5211 end;
5212 end if;
5213
5214 -- Constrained array case
5215
5216 if No (T) then
5217 T := Create_Itype (E_Void, P, Related_Id, 'T');
5218 end if;
5219
5220 if Nkind (Def) = N_Constrained_Array_Definition then
5221
5222 -- Establish Implicit_Base as unconstrained base type
5223
5224 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5225
5226 Set_Etype (Implicit_Base, Implicit_Base);
5227 Set_Scope (Implicit_Base, Current_Scope);
5228 Set_Has_Delayed_Freeze (Implicit_Base);
5229 Set_Default_SSO (Implicit_Base);
5230
5231 -- The constrained array type is a subtype of the unconstrained one
5232
5233 Set_Ekind (T, E_Array_Subtype);
5234 Init_Size_Align (T);
5235 Set_Etype (T, Implicit_Base);
5236 Set_Scope (T, Current_Scope);
5237 Set_Is_Constrained (T, True);
5238 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5239 Set_Has_Delayed_Freeze (T);
5240
5241 -- Complete setup of implicit base type
5242
5243 Set_First_Index (Implicit_Base, First_Index (T));
5244 Set_Component_Type (Implicit_Base, Element_Type);
5245 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5246 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5247 Set_Component_Size (Implicit_Base, Uint_0);
5248 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5249 Set_Has_Controlled_Component
5250 (Implicit_Base, Has_Controlled_Component
5251 (Element_Type)
5252 or else Is_Controlled
5253 (Element_Type));
5254 Set_Finalize_Storage_Only
5255 (Implicit_Base, Finalize_Storage_Only
5256 (Element_Type));
5257
5258 -- Unconstrained array case
5259
5260 else
5261 Set_Ekind (T, E_Array_Type);
5262 Init_Size_Align (T);
5263 Set_Etype (T, T);
5264 Set_Scope (T, Current_Scope);
5265 Set_Component_Size (T, Uint_0);
5266 Set_Is_Constrained (T, False);
5267 Set_First_Index (T, First (Subtype_Marks (Def)));
5268 Set_Has_Delayed_Freeze (T, True);
5269 Set_Has_Task (T, Has_Task (Element_Type));
5270 Set_Has_Protected (T, Has_Protected (Element_Type));
5271 Set_Has_Controlled_Component (T, Has_Controlled_Component
5272 (Element_Type)
5273 or else
5274 Is_Controlled (Element_Type));
5275 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5276 (Element_Type));
5277 Set_Default_SSO (T);
5278 end if;
5279
5280 -- Common attributes for both cases
5281
5282 Set_Component_Type (Base_Type (T), Element_Type);
5283 Set_Packed_Array_Impl_Type (T, Empty);
5284
5285 if Aliased_Present (Component_Definition (Def)) then
5286 Check_SPARK_05_Restriction
5287 ("aliased is not allowed", Component_Definition (Def));
5288 Set_Has_Aliased_Components (Etype (T));
5289 end if;
5290
5291 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5292 -- array type to ensure that objects of this type are initialized.
5293
5294 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5295 Set_Can_Never_Be_Null (T);
5296
5297 if Null_Exclusion_Present (Component_Definition (Def))
5298
5299 -- No need to check itypes because in their case this check was
5300 -- done at their point of creation
5301
5302 and then not Is_Itype (Element_Type)
5303 then
5304 Error_Msg_N
5305 ("`NOT NULL` not allowed (null already excluded)",
5306 Subtype_Indication (Component_Definition (Def)));
5307 end if;
5308 end if;
5309
5310 Priv := Private_Component (Element_Type);
5311
5312 if Present (Priv) then
5313
5314 -- Check for circular definitions
5315
5316 if Priv = Any_Type then
5317 Set_Component_Type (Etype (T), Any_Type);
5318
5319 -- There is a gap in the visibility of operations on the composite
5320 -- type only if the component type is defined in a different scope.
5321
5322 elsif Scope (Priv) = Current_Scope then
5323 null;
5324
5325 elsif Is_Limited_Type (Priv) then
5326 Set_Is_Limited_Composite (Etype (T));
5327 Set_Is_Limited_Composite (T);
5328 else
5329 Set_Is_Private_Composite (Etype (T));
5330 Set_Is_Private_Composite (T);
5331 end if;
5332 end if;
5333
5334 -- A syntax error in the declaration itself may lead to an empty index
5335 -- list, in which case do a minimal patch.
5336
5337 if No (First_Index (T)) then
5338 Error_Msg_N ("missing index definition in array type declaration", T);
5339
5340 declare
5341 Indexes : constant List_Id :=
5342 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5343 begin
5344 Set_Discrete_Subtype_Definitions (Def, Indexes);
5345 Set_First_Index (T, First (Indexes));
5346 return;
5347 end;
5348 end if;
5349
5350 -- Create a concatenation operator for the new type. Internal array
5351 -- types created for packed entities do not need such, they are
5352 -- compatible with the user-defined type.
5353
5354 if Number_Dimensions (T) = 1
5355 and then not Is_Packed_Array_Impl_Type (T)
5356 then
5357 New_Concatenation_Op (T);
5358 end if;
5359
5360 -- In the case of an unconstrained array the parser has already verified
5361 -- that all the indexes are unconstrained but we still need to make sure
5362 -- that the element type is constrained.
5363
5364 if Is_Indefinite_Subtype (Element_Type) then
5365 Error_Msg_N
5366 ("unconstrained element type in array declaration",
5367 Subtype_Indication (Component_Def));
5368
5369 elsif Is_Abstract_Type (Element_Type) then
5370 Error_Msg_N
5371 ("the type of a component cannot be abstract",
5372 Subtype_Indication (Component_Def));
5373 end if;
5374
5375 -- There may be an invariant declared for the component type, but
5376 -- the construction of the component invariant checking procedure
5377 -- takes place during expansion.
5378 end Array_Type_Declaration;
5379
5380 ------------------------------------------------------
5381 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5382 ------------------------------------------------------
5383
5384 function Replace_Anonymous_Access_To_Protected_Subprogram
5385 (N : Node_Id) return Entity_Id
5386 is
5387 Loc : constant Source_Ptr := Sloc (N);
5388
5389 Curr_Scope : constant Scope_Stack_Entry :=
5390 Scope_Stack.Table (Scope_Stack.Last);
5391
5392 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5393
5394 Acc : Node_Id;
5395 -- Access definition in declaration
5396
5397 Comp : Node_Id;
5398 -- Object definition or formal definition with an access definition
5399
5400 Decl : Node_Id;
5401 -- Declaration of anonymous access to subprogram type
5402
5403 Spec : Node_Id;
5404 -- Original specification in access to subprogram
5405
5406 P : Node_Id;
5407
5408 begin
5409 Set_Is_Internal (Anon);
5410
5411 case Nkind (N) is
5412 when N_Component_Declaration |
5413 N_Unconstrained_Array_Definition |
5414 N_Constrained_Array_Definition =>
5415 Comp := Component_Definition (N);
5416 Acc := Access_Definition (Comp);
5417
5418 when N_Discriminant_Specification =>
5419 Comp := Discriminant_Type (N);
5420 Acc := Comp;
5421
5422 when N_Parameter_Specification =>
5423 Comp := Parameter_Type (N);
5424 Acc := Comp;
5425
5426 when N_Access_Function_Definition =>
5427 Comp := Result_Definition (N);
5428 Acc := Comp;
5429
5430 when N_Object_Declaration =>
5431 Comp := Object_Definition (N);
5432 Acc := Comp;
5433
5434 when N_Function_Specification =>
5435 Comp := Result_Definition (N);
5436 Acc := Comp;
5437
5438 when others =>
5439 raise Program_Error;
5440 end case;
5441
5442 Spec := Access_To_Subprogram_Definition (Acc);
5443
5444 Decl :=
5445 Make_Full_Type_Declaration (Loc,
5446 Defining_Identifier => Anon,
5447 Type_Definition => Copy_Separate_Tree (Spec));
5448
5449 Mark_Rewrite_Insertion (Decl);
5450
5451 -- In ASIS mode, analyze the profile on the original node, because
5452 -- the separate copy does not provide enough links to recover the
5453 -- original tree. Analysis is limited to type annotations, within
5454 -- a temporary scope that serves as an anonymous subprogram to collect
5455 -- otherwise useless temporaries and itypes.
5456
5457 if ASIS_Mode then
5458 declare
5459 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5460
5461 begin
5462 if Nkind (Spec) = N_Access_Function_Definition then
5463 Set_Ekind (Typ, E_Function);
5464 else
5465 Set_Ekind (Typ, E_Procedure);
5466 end if;
5467
5468 Set_Parent (Typ, N);
5469 Set_Scope (Typ, Current_Scope);
5470 Push_Scope (Typ);
5471
5472 Process_Formals (Parameter_Specifications (Spec), Spec);
5473
5474 if Nkind (Spec) = N_Access_Function_Definition then
5475 declare
5476 Def : constant Node_Id := Result_Definition (Spec);
5477
5478 begin
5479 -- The result might itself be an anonymous access type, so
5480 -- have to recurse.
5481
5482 if Nkind (Def) = N_Access_Definition then
5483 if Present (Access_To_Subprogram_Definition (Def)) then
5484 Set_Etype
5485 (Def,
5486 Replace_Anonymous_Access_To_Protected_Subprogram
5487 (Spec));
5488 else
5489 Find_Type (Subtype_Mark (Def));
5490 end if;
5491
5492 else
5493 Find_Type (Def);
5494 end if;
5495 end;
5496 end if;
5497
5498 End_Scope;
5499 end;
5500 end if;
5501
5502 -- Insert the new declaration in the nearest enclosing scope. If the
5503 -- node is a body and N is its return type, the declaration belongs in
5504 -- the enclosing scope.
5505
5506 P := Parent (N);
5507
5508 if Nkind (P) = N_Subprogram_Body
5509 and then Nkind (N) = N_Function_Specification
5510 then
5511 P := Parent (P);
5512 end if;
5513
5514 while Present (P) and then not Has_Declarations (P) loop
5515 P := Parent (P);
5516 end loop;
5517
5518 pragma Assert (Present (P));
5519
5520 if Nkind (P) = N_Package_Specification then
5521 Prepend (Decl, Visible_Declarations (P));
5522 else
5523 Prepend (Decl, Declarations (P));
5524 end if;
5525
5526 -- Replace the anonymous type with an occurrence of the new declaration.
5527 -- In all cases the rewritten node does not have the null-exclusion
5528 -- attribute because (if present) it was already inherited by the
5529 -- anonymous entity (Anon). Thus, in case of components we do not
5530 -- inherit this attribute.
5531
5532 if Nkind (N) = N_Parameter_Specification then
5533 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5534 Set_Etype (Defining_Identifier (N), Anon);
5535 Set_Null_Exclusion_Present (N, False);
5536
5537 elsif Nkind (N) = N_Object_Declaration then
5538 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5539 Set_Etype (Defining_Identifier (N), Anon);
5540
5541 elsif Nkind (N) = N_Access_Function_Definition then
5542 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5543
5544 elsif Nkind (N) = N_Function_Specification then
5545 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5546 Set_Etype (Defining_Unit_Name (N), Anon);
5547
5548 else
5549 Rewrite (Comp,
5550 Make_Component_Definition (Loc,
5551 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5552 end if;
5553
5554 Mark_Rewrite_Insertion (Comp);
5555
5556 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5557 Analyze (Decl);
5558
5559 else
5560 -- Temporarily remove the current scope (record or subprogram) from
5561 -- the stack to add the new declarations to the enclosing scope.
5562
5563 Scope_Stack.Decrement_Last;
5564 Analyze (Decl);
5565 Set_Is_Itype (Anon);
5566 Scope_Stack.Append (Curr_Scope);
5567 end if;
5568
5569 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5570 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5571 return Anon;
5572 end Replace_Anonymous_Access_To_Protected_Subprogram;
5573
5574 -------------------------------
5575 -- Build_Derived_Access_Type --
5576 -------------------------------
5577
5578 procedure Build_Derived_Access_Type
5579 (N : Node_Id;
5580 Parent_Type : Entity_Id;
5581 Derived_Type : Entity_Id)
5582 is
5583 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5584
5585 Desig_Type : Entity_Id;
5586 Discr : Entity_Id;
5587 Discr_Con_Elist : Elist_Id;
5588 Discr_Con_El : Elmt_Id;
5589 Subt : Entity_Id;
5590
5591 begin
5592 -- Set the designated type so it is available in case this is an access
5593 -- to a self-referential type, e.g. a standard list type with a next
5594 -- pointer. Will be reset after subtype is built.
5595
5596 Set_Directly_Designated_Type
5597 (Derived_Type, Designated_Type (Parent_Type));
5598
5599 Subt := Process_Subtype (S, N);
5600
5601 if Nkind (S) /= N_Subtype_Indication
5602 and then Subt /= Base_Type (Subt)
5603 then
5604 Set_Ekind (Derived_Type, E_Access_Subtype);
5605 end if;
5606
5607 if Ekind (Derived_Type) = E_Access_Subtype then
5608 declare
5609 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5610 Ibase : constant Entity_Id :=
5611 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5612 Svg_Chars : constant Name_Id := Chars (Ibase);
5613 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5614
5615 begin
5616 Copy_Node (Pbase, Ibase);
5617
5618 Set_Chars (Ibase, Svg_Chars);
5619 Set_Next_Entity (Ibase, Svg_Next_E);
5620 Set_Sloc (Ibase, Sloc (Derived_Type));
5621 Set_Scope (Ibase, Scope (Derived_Type));
5622 Set_Freeze_Node (Ibase, Empty);
5623 Set_Is_Frozen (Ibase, False);
5624 Set_Comes_From_Source (Ibase, False);
5625 Set_Is_First_Subtype (Ibase, False);
5626
5627 Set_Etype (Ibase, Pbase);
5628 Set_Etype (Derived_Type, Ibase);
5629 end;
5630 end if;
5631
5632 Set_Directly_Designated_Type
5633 (Derived_Type, Designated_Type (Subt));
5634
5635 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5636 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5637 Set_Size_Info (Derived_Type, Parent_Type);
5638 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5639 Set_Depends_On_Private (Derived_Type,
5640 Has_Private_Component (Derived_Type));
5641 Conditional_Delay (Derived_Type, Subt);
5642
5643 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5644 -- that it is not redundant.
5645
5646 if Null_Exclusion_Present (Type_Definition (N)) then
5647 Set_Can_Never_Be_Null (Derived_Type);
5648
5649 -- What is with the "AND THEN FALSE" here ???
5650
5651 if Can_Never_Be_Null (Parent_Type)
5652 and then False
5653 then
5654 Error_Msg_NE
5655 ("`NOT NULL` not allowed (& already excludes null)",
5656 N, Parent_Type);
5657 end if;
5658
5659 elsif Can_Never_Be_Null (Parent_Type) then
5660 Set_Can_Never_Be_Null (Derived_Type);
5661 end if;
5662
5663 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5664 -- the root type for this information.
5665
5666 -- Apply range checks to discriminants for derived record case
5667 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5668
5669 Desig_Type := Designated_Type (Derived_Type);
5670 if Is_Composite_Type (Desig_Type)
5671 and then (not Is_Array_Type (Desig_Type))
5672 and then Has_Discriminants (Desig_Type)
5673 and then Base_Type (Desig_Type) /= Desig_Type
5674 then
5675 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5676 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5677
5678 Discr := First_Discriminant (Base_Type (Desig_Type));
5679 while Present (Discr_Con_El) loop
5680 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5681 Next_Elmt (Discr_Con_El);
5682 Next_Discriminant (Discr);
5683 end loop;
5684 end if;
5685 end Build_Derived_Access_Type;
5686
5687 ------------------------------
5688 -- Build_Derived_Array_Type --
5689 ------------------------------
5690
5691 procedure Build_Derived_Array_Type
5692 (N : Node_Id;
5693 Parent_Type : Entity_Id;
5694 Derived_Type : Entity_Id)
5695 is
5696 Loc : constant Source_Ptr := Sloc (N);
5697 Tdef : constant Node_Id := Type_Definition (N);
5698 Indic : constant Node_Id := Subtype_Indication (Tdef);
5699 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5700 Implicit_Base : Entity_Id;
5701 New_Indic : Node_Id;
5702
5703 procedure Make_Implicit_Base;
5704 -- If the parent subtype is constrained, the derived type is a subtype
5705 -- of an implicit base type derived from the parent base.
5706
5707 ------------------------
5708 -- Make_Implicit_Base --
5709 ------------------------
5710
5711 procedure Make_Implicit_Base is
5712 begin
5713 Implicit_Base :=
5714 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5715
5716 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5717 Set_Etype (Implicit_Base, Parent_Base);
5718
5719 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5720 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5721
5722 Set_Has_Delayed_Freeze (Implicit_Base, True);
5723 end Make_Implicit_Base;
5724
5725 -- Start of processing for Build_Derived_Array_Type
5726
5727 begin
5728 if not Is_Constrained (Parent_Type) then
5729 if Nkind (Indic) /= N_Subtype_Indication then
5730 Set_Ekind (Derived_Type, E_Array_Type);
5731
5732 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5733 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5734
5735 Set_Has_Delayed_Freeze (Derived_Type, True);
5736
5737 else
5738 Make_Implicit_Base;
5739 Set_Etype (Derived_Type, Implicit_Base);
5740
5741 New_Indic :=
5742 Make_Subtype_Declaration (Loc,
5743 Defining_Identifier => Derived_Type,
5744 Subtype_Indication =>
5745 Make_Subtype_Indication (Loc,
5746 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5747 Constraint => Constraint (Indic)));
5748
5749 Rewrite (N, New_Indic);
5750 Analyze (N);
5751 end if;
5752
5753 else
5754 if Nkind (Indic) /= N_Subtype_Indication then
5755 Make_Implicit_Base;
5756
5757 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5758 Set_Etype (Derived_Type, Implicit_Base);
5759 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5760
5761 else
5762 Error_Msg_N ("illegal constraint on constrained type", Indic);
5763 end if;
5764 end if;
5765
5766 -- If parent type is not a derived type itself, and is declared in
5767 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5768 -- the new type's concatenation operator since Derive_Subprograms
5769 -- will not inherit the parent's operator. If the parent type is
5770 -- unconstrained, the operator is of the unconstrained base type.
5771
5772 if Number_Dimensions (Parent_Type) = 1
5773 and then not Is_Limited_Type (Parent_Type)
5774 and then not Is_Derived_Type (Parent_Type)
5775 and then not Is_Package_Or_Generic_Package
5776 (Scope (Base_Type (Parent_Type)))
5777 then
5778 if not Is_Constrained (Parent_Type)
5779 and then Is_Constrained (Derived_Type)
5780 then
5781 New_Concatenation_Op (Implicit_Base);
5782 else
5783 New_Concatenation_Op (Derived_Type);
5784 end if;
5785 end if;
5786 end Build_Derived_Array_Type;
5787
5788 -----------------------------------
5789 -- Build_Derived_Concurrent_Type --
5790 -----------------------------------
5791
5792 procedure Build_Derived_Concurrent_Type
5793 (N : Node_Id;
5794 Parent_Type : Entity_Id;
5795 Derived_Type : Entity_Id)
5796 is
5797 Loc : constant Source_Ptr := Sloc (N);
5798
5799 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5800 Corr_Decl : Node_Id;
5801 Corr_Decl_Needed : Boolean;
5802 -- If the derived type has fewer discriminants than its parent, the
5803 -- corresponding record is also a derived type, in order to account for
5804 -- the bound discriminants. We create a full type declaration for it in
5805 -- this case.
5806
5807 Constraint_Present : constant Boolean :=
5808 Nkind (Subtype_Indication (Type_Definition (N))) =
5809 N_Subtype_Indication;
5810
5811 D_Constraint : Node_Id;
5812 New_Constraint : Elist_Id;
5813 Old_Disc : Entity_Id;
5814 New_Disc : Entity_Id;
5815 New_N : Node_Id;
5816
5817 begin
5818 Set_Stored_Constraint (Derived_Type, No_Elist);
5819 Corr_Decl_Needed := False;
5820 Old_Disc := Empty;
5821
5822 if Present (Discriminant_Specifications (N))
5823 and then Constraint_Present
5824 then
5825 Old_Disc := First_Discriminant (Parent_Type);
5826 New_Disc := First (Discriminant_Specifications (N));
5827 while Present (New_Disc) and then Present (Old_Disc) loop
5828 Next_Discriminant (Old_Disc);
5829 Next (New_Disc);
5830 end loop;
5831 end if;
5832
5833 if Present (Old_Disc) and then Expander_Active then
5834
5835 -- The new type has fewer discriminants, so we need to create a new
5836 -- corresponding record, which is derived from the corresponding
5837 -- record of the parent, and has a stored constraint that captures
5838 -- the values of the discriminant constraints. The corresponding
5839 -- record is needed only if expander is active and code generation is
5840 -- enabled.
5841
5842 -- The type declaration for the derived corresponding record has the
5843 -- same discriminant part and constraints as the current declaration.
5844 -- Copy the unanalyzed tree to build declaration.
5845
5846 Corr_Decl_Needed := True;
5847 New_N := Copy_Separate_Tree (N);
5848
5849 Corr_Decl :=
5850 Make_Full_Type_Declaration (Loc,
5851 Defining_Identifier => Corr_Record,
5852 Discriminant_Specifications =>
5853 Discriminant_Specifications (New_N),
5854 Type_Definition =>
5855 Make_Derived_Type_Definition (Loc,
5856 Subtype_Indication =>
5857 Make_Subtype_Indication (Loc,
5858 Subtype_Mark =>
5859 New_Occurrence_Of
5860 (Corresponding_Record_Type (Parent_Type), Loc),
5861 Constraint =>
5862 Constraint
5863 (Subtype_Indication (Type_Definition (New_N))))));
5864 end if;
5865
5866 -- Copy Storage_Size and Relative_Deadline variables if task case
5867
5868 if Is_Task_Type (Parent_Type) then
5869 Set_Storage_Size_Variable (Derived_Type,
5870 Storage_Size_Variable (Parent_Type));
5871 Set_Relative_Deadline_Variable (Derived_Type,
5872 Relative_Deadline_Variable (Parent_Type));
5873 end if;
5874
5875 if Present (Discriminant_Specifications (N)) then
5876 Push_Scope (Derived_Type);
5877 Check_Or_Process_Discriminants (N, Derived_Type);
5878
5879 if Constraint_Present then
5880 New_Constraint :=
5881 Expand_To_Stored_Constraint
5882 (Parent_Type,
5883 Build_Discriminant_Constraints
5884 (Parent_Type,
5885 Subtype_Indication (Type_Definition (N)), True));
5886 end if;
5887
5888 End_Scope;
5889
5890 elsif Constraint_Present then
5891
5892 -- Build constrained subtype, copying the constraint, and derive
5893 -- from it to create a derived constrained type.
5894
5895 declare
5896 Loc : constant Source_Ptr := Sloc (N);
5897 Anon : constant Entity_Id :=
5898 Make_Defining_Identifier (Loc,
5899 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5900 Decl : Node_Id;
5901
5902 begin
5903 Decl :=
5904 Make_Subtype_Declaration (Loc,
5905 Defining_Identifier => Anon,
5906 Subtype_Indication =>
5907 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5908 Insert_Before (N, Decl);
5909 Analyze (Decl);
5910
5911 Rewrite (Subtype_Indication (Type_Definition (N)),
5912 New_Occurrence_Of (Anon, Loc));
5913 Set_Analyzed (Derived_Type, False);
5914 Analyze (N);
5915 return;
5916 end;
5917 end if;
5918
5919 -- By default, operations and private data are inherited from parent.
5920 -- However, in the presence of bound discriminants, a new corresponding
5921 -- record will be created, see below.
5922
5923 Set_Has_Discriminants
5924 (Derived_Type, Has_Discriminants (Parent_Type));
5925 Set_Corresponding_Record_Type
5926 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5927
5928 -- Is_Constrained is set according the parent subtype, but is set to
5929 -- False if the derived type is declared with new discriminants.
5930
5931 Set_Is_Constrained
5932 (Derived_Type,
5933 (Is_Constrained (Parent_Type) or else Constraint_Present)
5934 and then not Present (Discriminant_Specifications (N)));
5935
5936 if Constraint_Present then
5937 if not Has_Discriminants (Parent_Type) then
5938 Error_Msg_N ("untagged parent must have discriminants", N);
5939
5940 elsif Present (Discriminant_Specifications (N)) then
5941
5942 -- Verify that new discriminants are used to constrain old ones
5943
5944 D_Constraint :=
5945 First
5946 (Constraints
5947 (Constraint (Subtype_Indication (Type_Definition (N)))));
5948
5949 Old_Disc := First_Discriminant (Parent_Type);
5950
5951 while Present (D_Constraint) loop
5952 if Nkind (D_Constraint) /= N_Discriminant_Association then
5953
5954 -- Positional constraint. If it is a reference to a new
5955 -- discriminant, it constrains the corresponding old one.
5956
5957 if Nkind (D_Constraint) = N_Identifier then
5958 New_Disc := First_Discriminant (Derived_Type);
5959 while Present (New_Disc) loop
5960 exit when Chars (New_Disc) = Chars (D_Constraint);
5961 Next_Discriminant (New_Disc);
5962 end loop;
5963
5964 if Present (New_Disc) then
5965 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5966 end if;
5967 end if;
5968
5969 Next_Discriminant (Old_Disc);
5970
5971 -- if this is a named constraint, search by name for the old
5972 -- discriminants constrained by the new one.
5973
5974 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5975
5976 -- Find new discriminant with that name
5977
5978 New_Disc := First_Discriminant (Derived_Type);
5979 while Present (New_Disc) loop
5980 exit when
5981 Chars (New_Disc) = Chars (Expression (D_Constraint));
5982 Next_Discriminant (New_Disc);
5983 end loop;
5984
5985 if Present (New_Disc) then
5986
5987 -- Verify that new discriminant renames some discriminant
5988 -- of the parent type, and associate the new discriminant
5989 -- with one or more old ones that it renames.
5990
5991 declare
5992 Selector : Node_Id;
5993
5994 begin
5995 Selector := First (Selector_Names (D_Constraint));
5996 while Present (Selector) loop
5997 Old_Disc := First_Discriminant (Parent_Type);
5998 while Present (Old_Disc) loop
5999 exit when Chars (Old_Disc) = Chars (Selector);
6000 Next_Discriminant (Old_Disc);
6001 end loop;
6002
6003 if Present (Old_Disc) then
6004 Set_Corresponding_Discriminant
6005 (New_Disc, Old_Disc);
6006 end if;
6007
6008 Next (Selector);
6009 end loop;
6010 end;
6011 end if;
6012 end if;
6013
6014 Next (D_Constraint);
6015 end loop;
6016
6017 New_Disc := First_Discriminant (Derived_Type);
6018 while Present (New_Disc) loop
6019 if No (Corresponding_Discriminant (New_Disc)) then
6020 Error_Msg_NE
6021 ("new discriminant& must constrain old one", N, New_Disc);
6022
6023 elsif not
6024 Subtypes_Statically_Compatible
6025 (Etype (New_Disc),
6026 Etype (Corresponding_Discriminant (New_Disc)))
6027 then
6028 Error_Msg_NE
6029 ("& not statically compatible with parent discriminant",
6030 N, New_Disc);
6031 end if;
6032
6033 Next_Discriminant (New_Disc);
6034 end loop;
6035 end if;
6036
6037 elsif Present (Discriminant_Specifications (N)) then
6038 Error_Msg_N
6039 ("missing discriminant constraint in untagged derivation", N);
6040 end if;
6041
6042 -- The entity chain of the derived type includes the new discriminants
6043 -- but shares operations with the parent.
6044
6045 if Present (Discriminant_Specifications (N)) then
6046 Old_Disc := First_Discriminant (Parent_Type);
6047 while Present (Old_Disc) loop
6048 if No (Next_Entity (Old_Disc))
6049 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6050 then
6051 Set_Next_Entity
6052 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6053 exit;
6054 end if;
6055
6056 Next_Discriminant (Old_Disc);
6057 end loop;
6058
6059 else
6060 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6061 if Has_Discriminants (Parent_Type) then
6062 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6063 Set_Discriminant_Constraint (
6064 Derived_Type, Discriminant_Constraint (Parent_Type));
6065 end if;
6066 end if;
6067
6068 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6069
6070 Set_Has_Completion (Derived_Type);
6071
6072 if Corr_Decl_Needed then
6073 Set_Stored_Constraint (Derived_Type, New_Constraint);
6074 Insert_After (N, Corr_Decl);
6075 Analyze (Corr_Decl);
6076 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6077 end if;
6078 end Build_Derived_Concurrent_Type;
6079
6080 ------------------------------------
6081 -- Build_Derived_Enumeration_Type --
6082 ------------------------------------
6083
6084 procedure Build_Derived_Enumeration_Type
6085 (N : Node_Id;
6086 Parent_Type : Entity_Id;
6087 Derived_Type : Entity_Id)
6088 is
6089 Loc : constant Source_Ptr := Sloc (N);
6090 Def : constant Node_Id := Type_Definition (N);
6091 Indic : constant Node_Id := Subtype_Indication (Def);
6092 Implicit_Base : Entity_Id;
6093 Literal : Entity_Id;
6094 New_Lit : Entity_Id;
6095 Literals_List : List_Id;
6096 Type_Decl : Node_Id;
6097 Hi, Lo : Node_Id;
6098 Rang_Expr : Node_Id;
6099
6100 begin
6101 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6102 -- not have explicit literals lists we need to process types derived
6103 -- from them specially. This is handled by Derived_Standard_Character.
6104 -- If the parent type is a generic type, there are no literals either,
6105 -- and we construct the same skeletal representation as for the generic
6106 -- parent type.
6107
6108 if Is_Standard_Character_Type (Parent_Type) then
6109 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6110
6111 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6112 declare
6113 Lo : Node_Id;
6114 Hi : Node_Id;
6115
6116 begin
6117 if Nkind (Indic) /= N_Subtype_Indication then
6118 Lo :=
6119 Make_Attribute_Reference (Loc,
6120 Attribute_Name => Name_First,
6121 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6122 Set_Etype (Lo, Derived_Type);
6123
6124 Hi :=
6125 Make_Attribute_Reference (Loc,
6126 Attribute_Name => Name_Last,
6127 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6128 Set_Etype (Hi, Derived_Type);
6129
6130 Set_Scalar_Range (Derived_Type,
6131 Make_Range (Loc,
6132 Low_Bound => Lo,
6133 High_Bound => Hi));
6134 else
6135
6136 -- Analyze subtype indication and verify compatibility
6137 -- with parent type.
6138
6139 if Base_Type (Process_Subtype (Indic, N)) /=
6140 Base_Type (Parent_Type)
6141 then
6142 Error_Msg_N
6143 ("illegal constraint for formal discrete type", N);
6144 end if;
6145 end if;
6146 end;
6147
6148 else
6149 -- If a constraint is present, analyze the bounds to catch
6150 -- premature usage of the derived literals.
6151
6152 if Nkind (Indic) = N_Subtype_Indication
6153 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6154 then
6155 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6156 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6157 end if;
6158
6159 -- Introduce an implicit base type for the derived type even if there
6160 -- is no constraint attached to it, since this seems closer to the
6161 -- Ada semantics. Build a full type declaration tree for the derived
6162 -- type using the implicit base type as the defining identifier. The
6163 -- build a subtype declaration tree which applies the constraint (if
6164 -- any) have it replace the derived type declaration.
6165
6166 Literal := First_Literal (Parent_Type);
6167 Literals_List := New_List;
6168 while Present (Literal)
6169 and then Ekind (Literal) = E_Enumeration_Literal
6170 loop
6171 -- Literals of the derived type have the same representation as
6172 -- those of the parent type, but this representation can be
6173 -- overridden by an explicit representation clause. Indicate
6174 -- that there is no explicit representation given yet. These
6175 -- derived literals are implicit operations of the new type,
6176 -- and can be overridden by explicit ones.
6177
6178 if Nkind (Literal) = N_Defining_Character_Literal then
6179 New_Lit :=
6180 Make_Defining_Character_Literal (Loc, Chars (Literal));
6181 else
6182 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6183 end if;
6184
6185 Set_Ekind (New_Lit, E_Enumeration_Literal);
6186 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6187 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6188 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6189 Set_Alias (New_Lit, Literal);
6190 Set_Is_Known_Valid (New_Lit, True);
6191
6192 Append (New_Lit, Literals_List);
6193 Next_Literal (Literal);
6194 end loop;
6195
6196 Implicit_Base :=
6197 Make_Defining_Identifier (Sloc (Derived_Type),
6198 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6199
6200 -- Indicate the proper nature of the derived type. This must be done
6201 -- before analysis of the literals, to recognize cases when a literal
6202 -- may be hidden by a previous explicit function definition (cf.
6203 -- c83031a).
6204
6205 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6206 Set_Etype (Derived_Type, Implicit_Base);
6207
6208 Type_Decl :=
6209 Make_Full_Type_Declaration (Loc,
6210 Defining_Identifier => Implicit_Base,
6211 Discriminant_Specifications => No_List,
6212 Type_Definition =>
6213 Make_Enumeration_Type_Definition (Loc, Literals_List));
6214
6215 Mark_Rewrite_Insertion (Type_Decl);
6216 Insert_Before (N, Type_Decl);
6217 Analyze (Type_Decl);
6218
6219 -- After the implicit base is analyzed its Etype needs to be changed
6220 -- to reflect the fact that it is derived from the parent type which
6221 -- was ignored during analysis. We also set the size at this point.
6222
6223 Set_Etype (Implicit_Base, Parent_Type);
6224
6225 Set_Size_Info (Implicit_Base, Parent_Type);
6226 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6227 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6228
6229 -- Copy other flags from parent type
6230
6231 Set_Has_Non_Standard_Rep
6232 (Implicit_Base, Has_Non_Standard_Rep
6233 (Parent_Type));
6234 Set_Has_Pragma_Ordered
6235 (Implicit_Base, Has_Pragma_Ordered
6236 (Parent_Type));
6237 Set_Has_Delayed_Freeze (Implicit_Base);
6238
6239 -- Process the subtype indication including a validation check on the
6240 -- constraint, if any. If a constraint is given, its bounds must be
6241 -- implicitly converted to the new type.
6242
6243 if Nkind (Indic) = N_Subtype_Indication then
6244 declare
6245 R : constant Node_Id :=
6246 Range_Expression (Constraint (Indic));
6247
6248 begin
6249 if Nkind (R) = N_Range then
6250 Hi := Build_Scalar_Bound
6251 (High_Bound (R), Parent_Type, Implicit_Base);
6252 Lo := Build_Scalar_Bound
6253 (Low_Bound (R), Parent_Type, Implicit_Base);
6254
6255 else
6256 -- Constraint is a Range attribute. Replace with explicit
6257 -- mention of the bounds of the prefix, which must be a
6258 -- subtype.
6259
6260 Analyze (Prefix (R));
6261 Hi :=
6262 Convert_To (Implicit_Base,
6263 Make_Attribute_Reference (Loc,
6264 Attribute_Name => Name_Last,
6265 Prefix =>
6266 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6267
6268 Lo :=
6269 Convert_To (Implicit_Base,
6270 Make_Attribute_Reference (Loc,
6271 Attribute_Name => Name_First,
6272 Prefix =>
6273 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6274 end if;
6275 end;
6276
6277 else
6278 Hi :=
6279 Build_Scalar_Bound
6280 (Type_High_Bound (Parent_Type),
6281 Parent_Type, Implicit_Base);
6282 Lo :=
6283 Build_Scalar_Bound
6284 (Type_Low_Bound (Parent_Type),
6285 Parent_Type, Implicit_Base);
6286 end if;
6287
6288 Rang_Expr :=
6289 Make_Range (Loc,
6290 Low_Bound => Lo,
6291 High_Bound => Hi);
6292
6293 -- If we constructed a default range for the case where no range
6294 -- was given, then the expressions in the range must not freeze
6295 -- since they do not correspond to expressions in the source.
6296
6297 if Nkind (Indic) /= N_Subtype_Indication then
6298 Set_Must_Not_Freeze (Lo);
6299 Set_Must_Not_Freeze (Hi);
6300 Set_Must_Not_Freeze (Rang_Expr);
6301 end if;
6302
6303 Rewrite (N,
6304 Make_Subtype_Declaration (Loc,
6305 Defining_Identifier => Derived_Type,
6306 Subtype_Indication =>
6307 Make_Subtype_Indication (Loc,
6308 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6309 Constraint =>
6310 Make_Range_Constraint (Loc,
6311 Range_Expression => Rang_Expr))));
6312
6313 Analyze (N);
6314
6315 -- Apply a range check. Since this range expression doesn't have an
6316 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6317 -- this right???
6318
6319 if Nkind (Indic) = N_Subtype_Indication then
6320 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6321 Parent_Type,
6322 Source_Typ => Entity (Subtype_Mark (Indic)));
6323 end if;
6324 end if;
6325 end Build_Derived_Enumeration_Type;
6326
6327 --------------------------------
6328 -- Build_Derived_Numeric_Type --
6329 --------------------------------
6330
6331 procedure Build_Derived_Numeric_Type
6332 (N : Node_Id;
6333 Parent_Type : Entity_Id;
6334 Derived_Type : Entity_Id)
6335 is
6336 Loc : constant Source_Ptr := Sloc (N);
6337 Tdef : constant Node_Id := Type_Definition (N);
6338 Indic : constant Node_Id := Subtype_Indication (Tdef);
6339 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6340 No_Constraint : constant Boolean := Nkind (Indic) /=
6341 N_Subtype_Indication;
6342 Implicit_Base : Entity_Id;
6343
6344 Lo : Node_Id;
6345 Hi : Node_Id;
6346
6347 begin
6348 -- Process the subtype indication including a validation check on
6349 -- the constraint if any.
6350
6351 Discard_Node (Process_Subtype (Indic, N));
6352
6353 -- Introduce an implicit base type for the derived type even if there
6354 -- is no constraint attached to it, since this seems closer to the Ada
6355 -- semantics.
6356
6357 Implicit_Base :=
6358 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6359
6360 Set_Etype (Implicit_Base, Parent_Base);
6361 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6362 Set_Size_Info (Implicit_Base, Parent_Base);
6363 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6364 Set_Parent (Implicit_Base, Parent (Derived_Type));
6365 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6366
6367 -- Set RM Size for discrete type or decimal fixed-point type
6368 -- Ordinary fixed-point is excluded, why???
6369
6370 if Is_Discrete_Type (Parent_Base)
6371 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6372 then
6373 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6374 end if;
6375
6376 Set_Has_Delayed_Freeze (Implicit_Base);
6377
6378 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6379 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6380
6381 Set_Scalar_Range (Implicit_Base,
6382 Make_Range (Loc,
6383 Low_Bound => Lo,
6384 High_Bound => Hi));
6385
6386 if Has_Infinities (Parent_Base) then
6387 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6388 end if;
6389
6390 -- The Derived_Type, which is the entity of the declaration, is a
6391 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6392 -- absence of an explicit constraint.
6393
6394 Set_Etype (Derived_Type, Implicit_Base);
6395
6396 -- If we did not have a constraint, then the Ekind is set from the
6397 -- parent type (otherwise Process_Subtype has set the bounds)
6398
6399 if No_Constraint then
6400 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6401 end if;
6402
6403 -- If we did not have a range constraint, then set the range from the
6404 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6405
6406 if No_Constraint
6407 or else not Has_Range_Constraint (Indic)
6408 then
6409 Set_Scalar_Range (Derived_Type,
6410 Make_Range (Loc,
6411 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6412 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6413 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6414
6415 if Has_Infinities (Parent_Type) then
6416 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6417 end if;
6418
6419 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6420 end if;
6421
6422 Set_Is_Descendent_Of_Address (Derived_Type,
6423 Is_Descendent_Of_Address (Parent_Type));
6424 Set_Is_Descendent_Of_Address (Implicit_Base,
6425 Is_Descendent_Of_Address (Parent_Type));
6426
6427 -- Set remaining type-specific fields, depending on numeric type
6428
6429 if Is_Modular_Integer_Type (Parent_Type) then
6430 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6431
6432 Set_Non_Binary_Modulus
6433 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6434
6435 Set_Is_Known_Valid
6436 (Implicit_Base, Is_Known_Valid (Parent_Base));
6437
6438 elsif Is_Floating_Point_Type (Parent_Type) then
6439
6440 -- Digits of base type is always copied from the digits value of
6441 -- the parent base type, but the digits of the derived type will
6442 -- already have been set if there was a constraint present.
6443
6444 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6445 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6446
6447 if No_Constraint then
6448 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6449 end if;
6450
6451 elsif Is_Fixed_Point_Type (Parent_Type) then
6452
6453 -- Small of base type and derived type are always copied from the
6454 -- parent base type, since smalls never change. The delta of the
6455 -- base type is also copied from the parent base type. However the
6456 -- delta of the derived type will have been set already if a
6457 -- constraint was present.
6458
6459 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6460 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6461 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6462
6463 if No_Constraint then
6464 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6465 end if;
6466
6467 -- The scale and machine radix in the decimal case are always
6468 -- copied from the parent base type.
6469
6470 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6471 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6472 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6473
6474 Set_Machine_Radix_10
6475 (Derived_Type, Machine_Radix_10 (Parent_Base));
6476 Set_Machine_Radix_10
6477 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6478
6479 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6480
6481 if No_Constraint then
6482 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6483
6484 else
6485 -- the analysis of the subtype_indication sets the
6486 -- digits value of the derived type.
6487
6488 null;
6489 end if;
6490 end if;
6491 end if;
6492
6493 if Is_Integer_Type (Parent_Type) then
6494 Set_Has_Shift_Operator
6495 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6496 end if;
6497
6498 -- The type of the bounds is that of the parent type, and they
6499 -- must be converted to the derived type.
6500
6501 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6502
6503 -- The implicit_base should be frozen when the derived type is frozen,
6504 -- but note that it is used in the conversions of the bounds. For fixed
6505 -- types we delay the determination of the bounds until the proper
6506 -- freezing point. For other numeric types this is rejected by GCC, for
6507 -- reasons that are currently unclear (???), so we choose to freeze the
6508 -- implicit base now. In the case of integers and floating point types
6509 -- this is harmless because subsequent representation clauses cannot
6510 -- affect anything, but it is still baffling that we cannot use the
6511 -- same mechanism for all derived numeric types.
6512
6513 -- There is a further complication: actually some representation
6514 -- clauses can affect the implicit base type. For example, attribute
6515 -- definition clauses for stream-oriented attributes need to set the
6516 -- corresponding TSS entries on the base type, and this normally
6517 -- cannot be done after the base type is frozen, so the circuitry in
6518 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6519 -- and not use Set_TSS in this case.
6520
6521 -- There are also consequences for the case of delayed representation
6522 -- aspects for some cases. For example, a Size aspect is delayed and
6523 -- should not be evaluated to the freeze point. This early freezing
6524 -- means that the size attribute evaluation happens too early???
6525
6526 if Is_Fixed_Point_Type (Parent_Type) then
6527 Conditional_Delay (Implicit_Base, Parent_Type);
6528 else
6529 Freeze_Before (N, Implicit_Base);
6530 end if;
6531 end Build_Derived_Numeric_Type;
6532
6533 --------------------------------
6534 -- Build_Derived_Private_Type --
6535 --------------------------------
6536
6537 procedure Build_Derived_Private_Type
6538 (N : Node_Id;
6539 Parent_Type : Entity_Id;
6540 Derived_Type : Entity_Id;
6541 Is_Completion : Boolean;
6542 Derive_Subps : Boolean := True)
6543 is
6544 Loc : constant Source_Ptr := Sloc (N);
6545 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6546 Par_Scope : constant Entity_Id := Scope (Par_Base);
6547 Der_Base : Entity_Id;
6548 Discr : Entity_Id;
6549 Full_Der : Entity_Id;
6550 Full_P : Entity_Id;
6551 Last_Discr : Entity_Id;
6552
6553 procedure Build_Full_Derivation;
6554 -- Build full derivation, i.e. derive from the full view
6555
6556 procedure Copy_And_Build;
6557 -- Copy derived type declaration, replace parent with its full view,
6558 -- and build derivation
6559
6560 ---------------------------
6561 -- Build_Full_Derivation --
6562 ---------------------------
6563
6564 procedure Build_Full_Derivation is
6565 begin
6566 -- If parent scope is not open, install the declarations
6567
6568 if not In_Open_Scopes (Par_Scope) then
6569 Install_Private_Declarations (Par_Scope);
6570 Install_Visible_Declarations (Par_Scope);
6571 Copy_And_Build;
6572 Uninstall_Declarations (Par_Scope);
6573
6574 -- If parent scope is open and in another unit, and parent has a
6575 -- completion, then the derivation is taking place in the visible
6576 -- part of a child unit. In that case retrieve the full view of
6577 -- the parent momentarily.
6578
6579 elsif not In_Same_Source_Unit (N, Parent_Type) then
6580 Full_P := Full_View (Parent_Type);
6581 Exchange_Declarations (Parent_Type);
6582 Copy_And_Build;
6583 Exchange_Declarations (Full_P);
6584
6585 -- Otherwise it is a local derivation
6586
6587 else
6588 Copy_And_Build;
6589 end if;
6590 end Build_Full_Derivation;
6591
6592 --------------------
6593 -- Copy_And_Build --
6594 --------------------
6595
6596 procedure Copy_And_Build is
6597 Full_N : Node_Id;
6598 Full_Parent : Entity_Id := Parent_Type;
6599
6600 begin
6601 -- If the parent is itself derived from another private type,
6602 -- installing the private declarations has not affected its
6603 -- privacy status, so use its own full view explicitly.
6604
6605 if Is_Private_Type (Full_Parent)
6606 and then Present (Full_View (Full_Parent))
6607 then
6608 Full_Parent := Full_View (Full_Parent);
6609 end if;
6610
6611 -- And its underlying full view if necessary
6612
6613 if Is_Private_Type (Full_Parent)
6614 and then Present (Underlying_Full_View (Full_Parent))
6615 then
6616 Full_Parent := Underlying_Full_View (Full_Parent);
6617 end if;
6618
6619 -- For record, access and most enumeration types, derivation from
6620 -- the full view requires a fully-fledged declaration. In the other
6621 -- cases, just use an itype.
6622
6623 if Ekind (Full_Parent) in Record_Kind
6624 or else Ekind (Full_Parent) in Access_Kind
6625 or else
6626 (Ekind (Full_Parent) in Enumeration_Kind
6627 and then not Is_Standard_Character_Type (Full_Parent)
6628 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6629 then
6630 -- Copy and adjust declaration to provide a completion for what
6631 -- is originally a private declaration. Indicate that full view
6632 -- is internally generated.
6633
6634 Full_N := New_Copy_Tree (N);
6635 Full_Der := New_Copy (Derived_Type);
6636 Set_Comes_From_Source (Full_N, False);
6637 Set_Comes_From_Source (Full_Der, False);
6638 Set_Parent (Full_Der, Full_N);
6639 Set_Defining_Identifier (Full_N, Full_Der);
6640
6641 -- If there are no constraints, adjust the subtype mark
6642
6643 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6644 N_Subtype_Indication
6645 then
6646 Set_Subtype_Indication
6647 (Type_Definition (Full_N),
6648 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6649 end if;
6650
6651 Insert_After (N, Full_N);
6652
6653 -- Build full view of derived type from full view of parent which
6654 -- is now installed. Subprograms have been derived on the partial
6655 -- view, the completion does not derive them anew.
6656
6657 if Ekind (Full_Parent) in Record_Kind then
6658
6659 -- If parent type is tagged, the completion inherits the proper
6660 -- primitive operations.
6661
6662 if Is_Tagged_Type (Parent_Type) then
6663 Build_Derived_Record_Type
6664 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6665 else
6666 Build_Derived_Record_Type
6667 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6668 end if;
6669
6670 else
6671 Build_Derived_Type
6672 (Full_N, Full_Parent, Full_Der, True, Derive_Subps => False);
6673 end if;
6674
6675 -- The full declaration has been introduced into the tree and
6676 -- processed in the step above. It should not be analyzed again
6677 -- (when encountered later in the current list of declarations)
6678 -- to prevent spurious name conflicts. The full entity remains
6679 -- invisible.
6680
6681 Set_Analyzed (Full_N);
6682
6683 else
6684 Full_Der :=
6685 Make_Defining_Identifier (Sloc (Derived_Type),
6686 Chars => Chars (Derived_Type));
6687 Set_Is_Itype (Full_Der);
6688 Set_Associated_Node_For_Itype (Full_Der, N);
6689 Set_Parent (Full_Der, N);
6690 Build_Derived_Type
6691 (N, Full_Parent, Full_Der, True, Derive_Subps => False);
6692 end if;
6693
6694 Set_Has_Private_Declaration (Full_Der);
6695 Set_Has_Private_Declaration (Derived_Type);
6696
6697 Set_Scope (Full_Der, Scope (Derived_Type));
6698 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6699 Set_Has_Size_Clause (Full_Der, False);
6700 Set_Has_Alignment_Clause (Full_Der, False);
6701 Set_Has_Delayed_Freeze (Full_Der);
6702 Set_Is_Frozen (Full_Der, False);
6703 Set_Freeze_Node (Full_Der, Empty);
6704 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6705 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6706
6707 -- The convention on the base type may be set in the private part
6708 -- and not propagated to the subtype until later, so we obtain the
6709 -- convention from the base type of the parent.
6710
6711 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6712 end Copy_And_Build;
6713
6714 -- Start of processing for Build_Derived_Private_Type
6715
6716 begin
6717 if Is_Tagged_Type (Parent_Type) then
6718 Full_P := Full_View (Parent_Type);
6719
6720 -- A type extension of a type with unknown discriminants is an
6721 -- indefinite type that the back-end cannot handle directly.
6722 -- We treat it as a private type, and build a completion that is
6723 -- derived from the full view of the parent, and hopefully has
6724 -- known discriminants.
6725
6726 -- If the full view of the parent type has an underlying record view,
6727 -- use it to generate the underlying record view of this derived type
6728 -- (required for chains of derivations with unknown discriminants).
6729
6730 -- Minor optimization: we avoid the generation of useless underlying
6731 -- record view entities if the private type declaration has unknown
6732 -- discriminants but its corresponding full view has no
6733 -- discriminants.
6734
6735 if Has_Unknown_Discriminants (Parent_Type)
6736 and then Present (Full_P)
6737 and then (Has_Discriminants (Full_P)
6738 or else Present (Underlying_Record_View (Full_P)))
6739 and then not In_Open_Scopes (Par_Scope)
6740 and then Expander_Active
6741 then
6742 declare
6743 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6744 New_Ext : constant Node_Id :=
6745 Copy_Separate_Tree
6746 (Record_Extension_Part (Type_Definition (N)));
6747 Decl : Node_Id;
6748
6749 begin
6750 Build_Derived_Record_Type
6751 (N, Parent_Type, Derived_Type, Derive_Subps);
6752
6753 -- Build anonymous completion, as a derivation from the full
6754 -- view of the parent. This is not a completion in the usual
6755 -- sense, because the current type is not private.
6756
6757 Decl :=
6758 Make_Full_Type_Declaration (Loc,
6759 Defining_Identifier => Full_Der,
6760 Type_Definition =>
6761 Make_Derived_Type_Definition (Loc,
6762 Subtype_Indication =>
6763 New_Copy_Tree
6764 (Subtype_Indication (Type_Definition (N))),
6765 Record_Extension_Part => New_Ext));
6766
6767 -- If the parent type has an underlying record view, use it
6768 -- here to build the new underlying record view.
6769
6770 if Present (Underlying_Record_View (Full_P)) then
6771 pragma Assert
6772 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6773 = N_Identifier);
6774 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6775 Underlying_Record_View (Full_P));
6776 end if;
6777
6778 Install_Private_Declarations (Par_Scope);
6779 Install_Visible_Declarations (Par_Scope);
6780 Insert_Before (N, Decl);
6781
6782 -- Mark entity as an underlying record view before analysis,
6783 -- to avoid generating the list of its primitive operations
6784 -- (which is not really required for this entity) and thus
6785 -- prevent spurious errors associated with missing overriding
6786 -- of abstract primitives (overridden only for Derived_Type).
6787
6788 Set_Ekind (Full_Der, E_Record_Type);
6789 Set_Is_Underlying_Record_View (Full_Der);
6790 Set_Default_SSO (Full_Der);
6791
6792 Analyze (Decl);
6793
6794 pragma Assert (Has_Discriminants (Full_Der)
6795 and then not Has_Unknown_Discriminants (Full_Der));
6796
6797 Uninstall_Declarations (Par_Scope);
6798
6799 -- Freeze the underlying record view, to prevent generation of
6800 -- useless dispatching information, which is simply shared with
6801 -- the real derived type.
6802
6803 Set_Is_Frozen (Full_Der);
6804
6805 -- Set up links between real entity and underlying record view
6806
6807 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6808 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6809 end;
6810
6811 -- If discriminants are known, build derived record
6812
6813 else
6814 Build_Derived_Record_Type
6815 (N, Parent_Type, Derived_Type, Derive_Subps);
6816 end if;
6817
6818 return;
6819
6820 elsif Has_Discriminants (Parent_Type) then
6821 if Present (Full_View (Parent_Type)) then
6822 if not Is_Completion then
6823 -- If this is not a completion, construct the implicit full
6824 -- view by deriving from the full view of the parent type.
6825
6826 Build_Full_Derivation;
6827
6828 else
6829 -- If this is a completion, the full view being built is itself
6830 -- private. We build a subtype of the parent with the same
6831 -- constraints as this full view, to convey to the back end the
6832 -- constrained components and the size of this subtype. If the
6833 -- parent is constrained, its full view can serve as the
6834 -- underlying full view of the derived type.
6835
6836 if No (Discriminant_Specifications (N)) then
6837 if Nkind (Subtype_Indication (Type_Definition (N))) =
6838 N_Subtype_Indication
6839 then
6840 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6841
6842 elsif Is_Constrained (Full_View (Parent_Type)) then
6843 Set_Underlying_Full_View
6844 (Derived_Type, Full_View (Parent_Type));
6845 end if;
6846
6847 else
6848 -- If there are new discriminants, the parent subtype is
6849 -- constrained by them, but it is not clear how to build
6850 -- the Underlying_Full_View in this case???
6851
6852 null;
6853 end if;
6854 end if;
6855 end if;
6856
6857 -- Build partial view of derived type from partial view of parent
6858
6859 Build_Derived_Record_Type
6860 (N, Parent_Type, Derived_Type, Derive_Subps);
6861
6862 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6863 -- Install full view in derived type (base type and subtype)
6864
6865 Der_Base := Base_Type (Derived_Type);
6866 Set_Full_View (Derived_Type, Full_Der);
6867 Set_Full_View (Der_Base, Base_Type (Full_Der));
6868
6869 -- Copy the discriminant list from full view to the partial views
6870 -- (base type and its subtype). Gigi requires that the partial and
6871 -- full views have the same discriminants.
6872
6873 -- Note that since the partial view is pointing to discriminants
6874 -- in the full view, their scope will be that of the full view.
6875 -- This might cause some front end problems and need adjustment???
6876
6877 Discr := First_Discriminant (Base_Type (Full_Der));
6878 Set_First_Entity (Der_Base, Discr);
6879
6880 loop
6881 Last_Discr := Discr;
6882 Next_Discriminant (Discr);
6883 exit when No (Discr);
6884 end loop;
6885
6886 Set_Last_Entity (Der_Base, Last_Discr);
6887
6888 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6889 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6890 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6891 end if;
6892
6893 elsif Present (Full_View (Parent_Type))
6894 and then Has_Discriminants (Full_View (Parent_Type))
6895 then
6896 if Has_Unknown_Discriminants (Parent_Type)
6897 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6898 N_Subtype_Indication
6899 then
6900 Error_Msg_N
6901 ("cannot constrain type with unknown discriminants",
6902 Subtype_Indication (Type_Definition (N)));
6903 return;
6904 end if;
6905
6906 -- If this is not a completion, construct the implicit full view by
6907 -- deriving from the full view of the parent type. But if this is a
6908 -- completion, the derived private type being built is a full view
6909 -- and the full derivation can only be its underlying full view.
6910
6911 Build_Full_Derivation;
6912
6913 if not Is_Completion then
6914 Set_Full_View (Derived_Type, Full_Der);
6915 else
6916 Set_Underlying_Full_View (Derived_Type, Full_Der);
6917 end if;
6918
6919 -- In any case, the primitive operations are inherited from the
6920 -- parent type, not from the internal full view.
6921
6922 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6923
6924 if Derive_Subps then
6925 Derive_Subprograms (Parent_Type, Derived_Type);
6926 end if;
6927
6928 Set_Stored_Constraint (Derived_Type, No_Elist);
6929 Set_Is_Constrained
6930 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
6931
6932 else
6933 -- Untagged type, No discriminants on either view
6934
6935 if Nkind (Subtype_Indication (Type_Definition (N))) =
6936 N_Subtype_Indication
6937 then
6938 Error_Msg_N
6939 ("illegal constraint on type without discriminants", N);
6940 end if;
6941
6942 if Present (Discriminant_Specifications (N))
6943 and then Present (Full_View (Parent_Type))
6944 and then not Is_Tagged_Type (Full_View (Parent_Type))
6945 then
6946 Error_Msg_N ("cannot add discriminants to untagged type", N);
6947 end if;
6948
6949 Set_Stored_Constraint (Derived_Type, No_Elist);
6950 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6951 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6952 Set_Has_Controlled_Component
6953 (Derived_Type, Has_Controlled_Component
6954 (Parent_Type));
6955
6956 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6957
6958 if not Is_Controlled (Parent_Type) then
6959 Set_Finalize_Storage_Only
6960 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6961 end if;
6962
6963 -- If this is not a completion, construct the implicit full view by
6964 -- deriving from the full view of the parent type.
6965
6966 -- ??? If the parent is untagged private and its completion is
6967 -- tagged, this mechanism will not work because we cannot derive from
6968 -- the tagged full view unless we have an extension.
6969
6970 if Present (Full_View (Parent_Type))
6971 and then not Is_Tagged_Type (Full_View (Parent_Type))
6972 and then not Is_Completion
6973 then
6974 Build_Full_Derivation;
6975 Set_Full_View (Derived_Type, Full_Der);
6976 end if;
6977 end if;
6978
6979 Set_Has_Unknown_Discriminants (Derived_Type,
6980 Has_Unknown_Discriminants (Parent_Type));
6981
6982 if Is_Private_Type (Derived_Type) then
6983 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6984 end if;
6985
6986 -- If the parent base type is in scope, add the derived type to its
6987 -- list of private dependents, because its full view may become
6988 -- visible subsequently (in a nested private part, a body, or in a
6989 -- further child unit).
6990
6991 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
6992 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6993
6994 -- Check for unusual case where a type completed by a private
6995 -- derivation occurs within a package nested in a child unit, and
6996 -- the parent is declared in an ancestor.
6997
6998 if Is_Child_Unit (Scope (Current_Scope))
6999 and then Is_Completion
7000 and then In_Private_Part (Current_Scope)
7001 and then Scope (Parent_Type) /= Current_Scope
7002
7003 -- Note that if the parent has a completion in the private part,
7004 -- (which is itself a derivation from some other private type)
7005 -- it is that completion that is visible, there is no full view
7006 -- available, and no special processing is needed.
7007
7008 and then Present (Full_View (Parent_Type))
7009 then
7010 -- In this case, the full view of the parent type will become
7011 -- visible in the body of the enclosing child, and only then will
7012 -- the current type be possibly non-private. Build an underlying
7013 -- full view that will be installed when the enclosing child body
7014 -- is compiled.
7015
7016 if Present (Underlying_Full_View (Derived_Type)) then
7017 Full_Der := Underlying_Full_View (Derived_Type);
7018 else
7019 Build_Full_Derivation;
7020 Set_Underlying_Full_View (Derived_Type, Full_Der);
7021 end if;
7022
7023 -- The full view will be used to swap entities on entry/exit to
7024 -- the body, and must appear in the entity list for the package.
7025
7026 Append_Entity (Full_Der, Scope (Derived_Type));
7027 end if;
7028 end if;
7029 end Build_Derived_Private_Type;
7030
7031 -------------------------------
7032 -- Build_Derived_Record_Type --
7033 -------------------------------
7034
7035 -- 1. INTRODUCTION
7036
7037 -- Ideally we would like to use the same model of type derivation for
7038 -- tagged and untagged record types. Unfortunately this is not quite
7039 -- possible because the semantics of representation clauses is different
7040 -- for tagged and untagged records under inheritance. Consider the
7041 -- following:
7042
7043 -- type R (...) is [tagged] record ... end record;
7044 -- type T (...) is new R (...) [with ...];
7045
7046 -- The representation clauses for T can specify a completely different
7047 -- record layout from R's. Hence the same component can be placed in two
7048 -- very different positions in objects of type T and R. If R and T are
7049 -- tagged types, representation clauses for T can only specify the layout
7050 -- of non inherited components, thus components that are common in R and T
7051 -- have the same position in objects of type R and T.
7052
7053 -- This has two implications. The first is that the entire tree for R's
7054 -- declaration needs to be copied for T in the untagged case, so that T
7055 -- can be viewed as a record type of its own with its own representation
7056 -- clauses. The second implication is the way we handle discriminants.
7057 -- Specifically, in the untagged case we need a way to communicate to Gigi
7058 -- what are the real discriminants in the record, while for the semantics
7059 -- we need to consider those introduced by the user to rename the
7060 -- discriminants in the parent type. This is handled by introducing the
7061 -- notion of stored discriminants. See below for more.
7062
7063 -- Fortunately the way regular components are inherited can be handled in
7064 -- the same way in tagged and untagged types.
7065
7066 -- To complicate things a bit more the private view of a private extension
7067 -- cannot be handled in the same way as the full view (for one thing the
7068 -- semantic rules are somewhat different). We will explain what differs
7069 -- below.
7070
7071 -- 2. DISCRIMINANTS UNDER INHERITANCE
7072
7073 -- The semantic rules governing the discriminants of derived types are
7074 -- quite subtle.
7075
7076 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7077 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7078
7079 -- If parent type has discriminants, then the discriminants that are
7080 -- declared in the derived type are [3.4 (11)]:
7081
7082 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7083 -- there is one;
7084
7085 -- o Otherwise, each discriminant of the parent type (implicitly declared
7086 -- in the same order with the same specifications). In this case, the
7087 -- discriminants are said to be "inherited", or if unknown in the parent
7088 -- are also unknown in the derived type.
7089
7090 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7091
7092 -- o The parent subtype must be constrained;
7093
7094 -- o If the parent type is not a tagged type, then each discriminant of
7095 -- the derived type must be used in the constraint defining a parent
7096 -- subtype. [Implementation note: This ensures that the new discriminant
7097 -- can share storage with an existing discriminant.]
7098
7099 -- For the derived type each discriminant of the parent type is either
7100 -- inherited, constrained to equal some new discriminant of the derived
7101 -- type, or constrained to the value of an expression.
7102
7103 -- When inherited or constrained to equal some new discriminant, the
7104 -- parent discriminant and the discriminant of the derived type are said
7105 -- to "correspond".
7106
7107 -- If a discriminant of the parent type is constrained to a specific value
7108 -- in the derived type definition, then the discriminant is said to be
7109 -- "specified" by that derived type definition.
7110
7111 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7112
7113 -- We have spoken about stored discriminants in point 1 (introduction)
7114 -- above. There are two sort of stored discriminants: implicit and
7115 -- explicit. As long as the derived type inherits the same discriminants as
7116 -- the root record type, stored discriminants are the same as regular
7117 -- discriminants, and are said to be implicit. However, if any discriminant
7118 -- in the root type was renamed in the derived type, then the derived
7119 -- type will contain explicit stored discriminants. Explicit stored
7120 -- discriminants are discriminants in addition to the semantically visible
7121 -- discriminants defined for the derived type. Stored discriminants are
7122 -- used by Gigi to figure out what are the physical discriminants in
7123 -- objects of the derived type (see precise definition in einfo.ads).
7124 -- As an example, consider the following:
7125
7126 -- type R (D1, D2, D3 : Int) is record ... end record;
7127 -- type T1 is new R;
7128 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7129 -- type T3 is new T2;
7130 -- type T4 (Y : Int) is new T3 (Y, 99);
7131
7132 -- The following table summarizes the discriminants and stored
7133 -- discriminants in R and T1 through T4.
7134
7135 -- Type Discrim Stored Discrim Comment
7136 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7137 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7138 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7139 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7140 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7141
7142 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7143 -- find the corresponding discriminant in the parent type, while
7144 -- Original_Record_Component (abbreviated ORC below), the actual physical
7145 -- component that is renamed. Finally the field Is_Completely_Hidden
7146 -- (abbreviated ICH below) is set for all explicit stored discriminants
7147 -- (see einfo.ads for more info). For the above example this gives:
7148
7149 -- Discrim CD ORC ICH
7150 -- ^^^^^^^ ^^ ^^^ ^^^
7151 -- D1 in R empty itself no
7152 -- D2 in R empty itself no
7153 -- D3 in R empty itself no
7154
7155 -- D1 in T1 D1 in R itself no
7156 -- D2 in T1 D2 in R itself no
7157 -- D3 in T1 D3 in R itself no
7158
7159 -- X1 in T2 D3 in T1 D3 in T2 no
7160 -- X2 in T2 D1 in T1 D1 in T2 no
7161 -- D1 in T2 empty itself yes
7162 -- D2 in T2 empty itself yes
7163 -- D3 in T2 empty itself yes
7164
7165 -- X1 in T3 X1 in T2 D3 in T3 no
7166 -- X2 in T3 X2 in T2 D1 in T3 no
7167 -- D1 in T3 empty itself yes
7168 -- D2 in T3 empty itself yes
7169 -- D3 in T3 empty itself yes
7170
7171 -- Y in T4 X1 in T3 D3 in T3 no
7172 -- D1 in T3 empty itself yes
7173 -- D2 in T3 empty itself yes
7174 -- D3 in T3 empty itself yes
7175
7176 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7177
7178 -- Type derivation for tagged types is fairly straightforward. If no
7179 -- discriminants are specified by the derived type, these are inherited
7180 -- from the parent. No explicit stored discriminants are ever necessary.
7181 -- The only manipulation that is done to the tree is that of adding a
7182 -- _parent field with parent type and constrained to the same constraint
7183 -- specified for the parent in the derived type definition. For instance:
7184
7185 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7186 -- type T1 is new R with null record;
7187 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7188
7189 -- are changed into:
7190
7191 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7192 -- _parent : R (D1, D2, D3);
7193 -- end record;
7194
7195 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7196 -- _parent : T1 (X2, 88, X1);
7197 -- end record;
7198
7199 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7200 -- ORC and ICH fields are:
7201
7202 -- Discrim CD ORC ICH
7203 -- ^^^^^^^ ^^ ^^^ ^^^
7204 -- D1 in R empty itself no
7205 -- D2 in R empty itself no
7206 -- D3 in R empty itself no
7207
7208 -- D1 in T1 D1 in R D1 in R no
7209 -- D2 in T1 D2 in R D2 in R no
7210 -- D3 in T1 D3 in R D3 in R no
7211
7212 -- X1 in T2 D3 in T1 D3 in R no
7213 -- X2 in T2 D1 in T1 D1 in R no
7214
7215 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7216 --
7217 -- Regardless of whether we dealing with a tagged or untagged type
7218 -- we will transform all derived type declarations of the form
7219 --
7220 -- type T is new R (...) [with ...];
7221 -- or
7222 -- subtype S is R (...);
7223 -- type T is new S [with ...];
7224 -- into
7225 -- type BT is new R [with ...];
7226 -- subtype T is BT (...);
7227 --
7228 -- That is, the base derived type is constrained only if it has no
7229 -- discriminants. The reason for doing this is that GNAT's semantic model
7230 -- assumes that a base type with discriminants is unconstrained.
7231 --
7232 -- Note that, strictly speaking, the above transformation is not always
7233 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7234 --
7235 -- procedure B34011A is
7236 -- type REC (D : integer := 0) is record
7237 -- I : Integer;
7238 -- end record;
7239
7240 -- package P is
7241 -- type T6 is new Rec;
7242 -- function F return T6;
7243 -- end P;
7244
7245 -- use P;
7246 -- package Q6 is
7247 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7248 -- end Q6;
7249 --
7250 -- The definition of Q6.U is illegal. However transforming Q6.U into
7251
7252 -- type BaseU is new T6;
7253 -- subtype U is BaseU (Q6.F.I)
7254
7255 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7256 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7257 -- the transformation described above.
7258
7259 -- There is another instance where the above transformation is incorrect.
7260 -- Consider:
7261
7262 -- package Pack is
7263 -- type Base (D : Integer) is tagged null record;
7264 -- procedure P (X : Base);
7265
7266 -- type Der is new Base (2) with null record;
7267 -- procedure P (X : Der);
7268 -- end Pack;
7269
7270 -- Then the above transformation turns this into
7271
7272 -- type Der_Base is new Base with null record;
7273 -- -- procedure P (X : Base) is implicitly inherited here
7274 -- -- as procedure P (X : Der_Base).
7275
7276 -- subtype Der is Der_Base (2);
7277 -- procedure P (X : Der);
7278 -- -- The overriding of P (X : Der_Base) is illegal since we
7279 -- -- have a parameter conformance problem.
7280
7281 -- To get around this problem, after having semantically processed Der_Base
7282 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7283 -- Discriminant_Constraint from Der so that when parameter conformance is
7284 -- checked when P is overridden, no semantic errors are flagged.
7285
7286 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7287
7288 -- Regardless of whether we are dealing with a tagged or untagged type
7289 -- we will transform all derived type declarations of the form
7290
7291 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7292 -- type T is new R [with ...];
7293 -- into
7294 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7295
7296 -- The reason for such transformation is that it allows us to implement a
7297 -- very clean form of component inheritance as explained below.
7298
7299 -- Note that this transformation is not achieved by direct tree rewriting
7300 -- and manipulation, but rather by redoing the semantic actions that the
7301 -- above transformation will entail. This is done directly in routine
7302 -- Inherit_Components.
7303
7304 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7305
7306 -- In both tagged and untagged derived types, regular non discriminant
7307 -- components are inherited in the derived type from the parent type. In
7308 -- the absence of discriminants component, inheritance is straightforward
7309 -- as components can simply be copied from the parent.
7310
7311 -- If the parent has discriminants, inheriting components constrained with
7312 -- these discriminants requires caution. Consider the following example:
7313
7314 -- type R (D1, D2 : Positive) is [tagged] record
7315 -- S : String (D1 .. D2);
7316 -- end record;
7317
7318 -- type T1 is new R [with null record];
7319 -- type T2 (X : positive) is new R (1, X) [with null record];
7320
7321 -- As explained in 6. above, T1 is rewritten as
7322 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7323 -- which makes the treatment for T1 and T2 identical.
7324
7325 -- What we want when inheriting S, is that references to D1 and D2 in R are
7326 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7327 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7328 -- with either discriminant references in the derived type or expressions.
7329 -- This replacement is achieved as follows: before inheriting R's
7330 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7331 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7332 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7333 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7334 -- by String (1 .. X).
7335
7336 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7337
7338 -- We explain here the rules governing private type extensions relevant to
7339 -- type derivation. These rules are explained on the following example:
7340
7341 -- type D [(...)] is new A [(...)] with private; <-- partial view
7342 -- type D [(...)] is new P [(...)] with null record; <-- full view
7343
7344 -- Type A is called the ancestor subtype of the private extension.
7345 -- Type P is the parent type of the full view of the private extension. It
7346 -- must be A or a type derived from A.
7347
7348 -- The rules concerning the discriminants of private type extensions are
7349 -- [7.3(10-13)]:
7350
7351 -- o If a private extension inherits known discriminants from the ancestor
7352 -- subtype, then the full view must also inherit its discriminants from
7353 -- the ancestor subtype and the parent subtype of the full view must be
7354 -- constrained if and only if the ancestor subtype is constrained.
7355
7356 -- o If a partial view has unknown discriminants, then the full view may
7357 -- define a definite or an indefinite subtype, with or without
7358 -- discriminants.
7359
7360 -- o If a partial view has neither known nor unknown discriminants, then
7361 -- the full view must define a definite subtype.
7362
7363 -- o If the ancestor subtype of a private extension has constrained
7364 -- discriminants, then the parent subtype of the full view must impose a
7365 -- statically matching constraint on those discriminants.
7366
7367 -- This means that only the following forms of private extensions are
7368 -- allowed:
7369
7370 -- type D is new A with private; <-- partial view
7371 -- type D is new P with null record; <-- full view
7372
7373 -- If A has no discriminants than P has no discriminants, otherwise P must
7374 -- inherit A's discriminants.
7375
7376 -- type D is new A (...) with private; <-- partial view
7377 -- type D is new P (:::) with null record; <-- full view
7378
7379 -- P must inherit A's discriminants and (...) and (:::) must statically
7380 -- match.
7381
7382 -- subtype A is R (...);
7383 -- type D is new A with private; <-- partial view
7384 -- type D is new P with null record; <-- full view
7385
7386 -- P must have inherited R's discriminants and must be derived from A or
7387 -- any of its subtypes.
7388
7389 -- type D (..) is new A with private; <-- partial view
7390 -- type D (..) is new P [(:::)] with null record; <-- full view
7391
7392 -- No specific constraints on P's discriminants or constraint (:::).
7393 -- Note that A can be unconstrained, but the parent subtype P must either
7394 -- be constrained or (:::) must be present.
7395
7396 -- type D (..) is new A [(...)] with private; <-- partial view
7397 -- type D (..) is new P [(:::)] with null record; <-- full view
7398
7399 -- P's constraints on A's discriminants must statically match those
7400 -- imposed by (...).
7401
7402 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7403
7404 -- The full view of a private extension is handled exactly as described
7405 -- above. The model chose for the private view of a private extension is
7406 -- the same for what concerns discriminants (i.e. they receive the same
7407 -- treatment as in the tagged case). However, the private view of the
7408 -- private extension always inherits the components of the parent base,
7409 -- without replacing any discriminant reference. Strictly speaking this is
7410 -- incorrect. However, Gigi never uses this view to generate code so this
7411 -- is a purely semantic issue. In theory, a set of transformations similar
7412 -- to those given in 5. and 6. above could be applied to private views of
7413 -- private extensions to have the same model of component inheritance as
7414 -- for non private extensions. However, this is not done because it would
7415 -- further complicate private type processing. Semantically speaking, this
7416 -- leaves us in an uncomfortable situation. As an example consider:
7417
7418 -- package Pack is
7419 -- type R (D : integer) is tagged record
7420 -- S : String (1 .. D);
7421 -- end record;
7422 -- procedure P (X : R);
7423 -- type T is new R (1) with private;
7424 -- private
7425 -- type T is new R (1) with null record;
7426 -- end;
7427
7428 -- This is transformed into:
7429
7430 -- package Pack is
7431 -- type R (D : integer) is tagged record
7432 -- S : String (1 .. D);
7433 -- end record;
7434 -- procedure P (X : R);
7435 -- type T is new R (1) with private;
7436 -- private
7437 -- type BaseT is new R with null record;
7438 -- subtype T is BaseT (1);
7439 -- end;
7440
7441 -- (strictly speaking the above is incorrect Ada)
7442
7443 -- From the semantic standpoint the private view of private extension T
7444 -- should be flagged as constrained since one can clearly have
7445 --
7446 -- Obj : T;
7447 --
7448 -- in a unit withing Pack. However, when deriving subprograms for the
7449 -- private view of private extension T, T must be seen as unconstrained
7450 -- since T has discriminants (this is a constraint of the current
7451 -- subprogram derivation model). Thus, when processing the private view of
7452 -- a private extension such as T, we first mark T as unconstrained, we
7453 -- process it, we perform program derivation and just before returning from
7454 -- Build_Derived_Record_Type we mark T as constrained.
7455
7456 -- ??? Are there are other uncomfortable cases that we will have to
7457 -- deal with.
7458
7459 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7460
7461 -- Types that are derived from a visible record type and have a private
7462 -- extension present other peculiarities. They behave mostly like private
7463 -- types, but if they have primitive operations defined, these will not
7464 -- have the proper signatures for further inheritance, because other
7465 -- primitive operations will use the implicit base that we define for
7466 -- private derivations below. This affect subprogram inheritance (see
7467 -- Derive_Subprograms for details). We also derive the implicit base from
7468 -- the base type of the full view, so that the implicit base is a record
7469 -- type and not another private type, This avoids infinite loops.
7470
7471 procedure Build_Derived_Record_Type
7472 (N : Node_Id;
7473 Parent_Type : Entity_Id;
7474 Derived_Type : Entity_Id;
7475 Derive_Subps : Boolean := True)
7476 is
7477 Discriminant_Specs : constant Boolean :=
7478 Present (Discriminant_Specifications (N));
7479 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7480 Loc : constant Source_Ptr := Sloc (N);
7481 Private_Extension : constant Boolean :=
7482 Nkind (N) = N_Private_Extension_Declaration;
7483 Assoc_List : Elist_Id;
7484 Constraint_Present : Boolean;
7485 Constrs : Elist_Id;
7486 Discrim : Entity_Id;
7487 Indic : Node_Id;
7488 Inherit_Discrims : Boolean := False;
7489 Last_Discrim : Entity_Id;
7490 New_Base : Entity_Id;
7491 New_Decl : Node_Id;
7492 New_Discrs : Elist_Id;
7493 New_Indic : Node_Id;
7494 Parent_Base : Entity_Id;
7495 Save_Etype : Entity_Id;
7496 Save_Discr_Constr : Elist_Id;
7497 Save_Next_Entity : Entity_Id;
7498 Type_Def : Node_Id;
7499
7500 Discs : Elist_Id := New_Elmt_List;
7501 -- An empty Discs list means that there were no constraints in the
7502 -- subtype indication or that there was an error processing it.
7503
7504 begin
7505 if Ekind (Parent_Type) = E_Record_Type_With_Private
7506 and then Present (Full_View (Parent_Type))
7507 and then Has_Discriminants (Parent_Type)
7508 then
7509 Parent_Base := Base_Type (Full_View (Parent_Type));
7510 else
7511 Parent_Base := Base_Type (Parent_Type);
7512 end if;
7513
7514 -- AI05-0115 : if this is a derivation from a private type in some
7515 -- other scope that may lead to invisible components for the derived
7516 -- type, mark it accordingly.
7517
7518 if Is_Private_Type (Parent_Type) then
7519 if Scope (Parent_Type) = Scope (Derived_Type) then
7520 null;
7521
7522 elsif In_Open_Scopes (Scope (Parent_Type))
7523 and then In_Private_Part (Scope (Parent_Type))
7524 then
7525 null;
7526
7527 else
7528 Set_Has_Private_Ancestor (Derived_Type);
7529 end if;
7530
7531 else
7532 Set_Has_Private_Ancestor
7533 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7534 end if;
7535
7536 -- Before we start the previously documented transformations, here is
7537 -- little fix for size and alignment of tagged types. Normally when we
7538 -- derive type D from type P, we copy the size and alignment of P as the
7539 -- default for D, and in the absence of explicit representation clauses
7540 -- for D, the size and alignment are indeed the same as the parent.
7541
7542 -- But this is wrong for tagged types, since fields may be added, and
7543 -- the default size may need to be larger, and the default alignment may
7544 -- need to be larger.
7545
7546 -- We therefore reset the size and alignment fields in the tagged case.
7547 -- Note that the size and alignment will in any case be at least as
7548 -- large as the parent type (since the derived type has a copy of the
7549 -- parent type in the _parent field)
7550
7551 -- The type is also marked as being tagged here, which is needed when
7552 -- processing components with a self-referential anonymous access type
7553 -- in the call to Check_Anonymous_Access_Components below. Note that
7554 -- this flag is also set later on for completeness.
7555
7556 if Is_Tagged then
7557 Set_Is_Tagged_Type (Derived_Type);
7558 Init_Size_Align (Derived_Type);
7559 end if;
7560
7561 -- STEP 0a: figure out what kind of derived type declaration we have
7562
7563 if Private_Extension then
7564 Type_Def := N;
7565 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7566 Set_Default_SSO (Derived_Type);
7567
7568 else
7569 Type_Def := Type_Definition (N);
7570
7571 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7572 -- Parent_Base can be a private type or private extension. However,
7573 -- for tagged types with an extension the newly added fields are
7574 -- visible and hence the Derived_Type is always an E_Record_Type.
7575 -- (except that the parent may have its own private fields).
7576 -- For untagged types we preserve the Ekind of the Parent_Base.
7577
7578 if Present (Record_Extension_Part (Type_Def)) then
7579 Set_Ekind (Derived_Type, E_Record_Type);
7580 Set_Default_SSO (Derived_Type);
7581
7582 -- Create internal access types for components with anonymous
7583 -- access types.
7584
7585 if Ada_Version >= Ada_2005 then
7586 Check_Anonymous_Access_Components
7587 (N, Derived_Type, Derived_Type,
7588 Component_List (Record_Extension_Part (Type_Def)));
7589 end if;
7590
7591 else
7592 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7593 end if;
7594 end if;
7595
7596 -- Indic can either be an N_Identifier if the subtype indication
7597 -- contains no constraint or an N_Subtype_Indication if the subtype
7598 -- indication has a constraint.
7599
7600 Indic := Subtype_Indication (Type_Def);
7601 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7602
7603 -- Check that the type has visible discriminants. The type may be
7604 -- a private type with unknown discriminants whose full view has
7605 -- discriminants which are invisible.
7606
7607 if Constraint_Present then
7608 if not Has_Discriminants (Parent_Base)
7609 or else
7610 (Has_Unknown_Discriminants (Parent_Base)
7611 and then Is_Private_Type (Parent_Base))
7612 then
7613 Error_Msg_N
7614 ("invalid constraint: type has no discriminant",
7615 Constraint (Indic));
7616
7617 Constraint_Present := False;
7618 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7619
7620 elsif Is_Constrained (Parent_Type) then
7621 Error_Msg_N
7622 ("invalid constraint: parent type is already constrained",
7623 Constraint (Indic));
7624
7625 Constraint_Present := False;
7626 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7627 end if;
7628 end if;
7629
7630 -- STEP 0b: If needed, apply transformation given in point 5. above
7631
7632 if not Private_Extension
7633 and then Has_Discriminants (Parent_Type)
7634 and then not Discriminant_Specs
7635 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7636 then
7637 -- First, we must analyze the constraint (see comment in point 5.)
7638 -- The constraint may come from the subtype indication of the full
7639 -- declaration.
7640
7641 if Constraint_Present then
7642 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7643
7644 -- If there is no explicit constraint, there might be one that is
7645 -- inherited from a constrained parent type. In that case verify that
7646 -- it conforms to the constraint in the partial view. In perverse
7647 -- cases the parent subtypes of the partial and full view can have
7648 -- different constraints.
7649
7650 elsif Present (Stored_Constraint (Parent_Type)) then
7651 New_Discrs := Stored_Constraint (Parent_Type);
7652
7653 else
7654 New_Discrs := No_Elist;
7655 end if;
7656
7657 if Has_Discriminants (Derived_Type)
7658 and then Has_Private_Declaration (Derived_Type)
7659 and then Present (Discriminant_Constraint (Derived_Type))
7660 and then Present (New_Discrs)
7661 then
7662 -- Verify that constraints of the full view statically match
7663 -- those given in the partial view.
7664
7665 declare
7666 C1, C2 : Elmt_Id;
7667
7668 begin
7669 C1 := First_Elmt (New_Discrs);
7670 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7671 while Present (C1) and then Present (C2) loop
7672 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7673 or else
7674 (Is_OK_Static_Expression (Node (C1))
7675 and then Is_OK_Static_Expression (Node (C2))
7676 and then
7677 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7678 then
7679 null;
7680
7681 else
7682 if Constraint_Present then
7683 Error_Msg_N
7684 ("constraint not conformant to previous declaration",
7685 Node (C1));
7686 else
7687 Error_Msg_N
7688 ("constraint of full view is incompatible "
7689 & "with partial view", N);
7690 end if;
7691 end if;
7692
7693 Next_Elmt (C1);
7694 Next_Elmt (C2);
7695 end loop;
7696 end;
7697 end if;
7698
7699 -- Insert and analyze the declaration for the unconstrained base type
7700
7701 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7702
7703 New_Decl :=
7704 Make_Full_Type_Declaration (Loc,
7705 Defining_Identifier => New_Base,
7706 Type_Definition =>
7707 Make_Derived_Type_Definition (Loc,
7708 Abstract_Present => Abstract_Present (Type_Def),
7709 Limited_Present => Limited_Present (Type_Def),
7710 Subtype_Indication =>
7711 New_Occurrence_Of (Parent_Base, Loc),
7712 Record_Extension_Part =>
7713 Relocate_Node (Record_Extension_Part (Type_Def)),
7714 Interface_List => Interface_List (Type_Def)));
7715
7716 Set_Parent (New_Decl, Parent (N));
7717 Mark_Rewrite_Insertion (New_Decl);
7718 Insert_Before (N, New_Decl);
7719
7720 -- In the extension case, make sure ancestor is frozen appropriately
7721 -- (see also non-discriminated case below).
7722
7723 if Present (Record_Extension_Part (Type_Def))
7724 or else Is_Interface (Parent_Base)
7725 then
7726 Freeze_Before (New_Decl, Parent_Type);
7727 end if;
7728
7729 -- Note that this call passes False for the Derive_Subps parameter
7730 -- because subprogram derivation is deferred until after creating
7731 -- the subtype (see below).
7732
7733 Build_Derived_Type
7734 (New_Decl, Parent_Base, New_Base,
7735 Is_Completion => True, Derive_Subps => False);
7736
7737 -- ??? This needs re-examination to determine whether the
7738 -- above call can simply be replaced by a call to Analyze.
7739
7740 Set_Analyzed (New_Decl);
7741
7742 -- Insert and analyze the declaration for the constrained subtype
7743
7744 if Constraint_Present then
7745 New_Indic :=
7746 Make_Subtype_Indication (Loc,
7747 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7748 Constraint => Relocate_Node (Constraint (Indic)));
7749
7750 else
7751 declare
7752 Constr_List : constant List_Id := New_List;
7753 C : Elmt_Id;
7754 Expr : Node_Id;
7755
7756 begin
7757 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7758 while Present (C) loop
7759 Expr := Node (C);
7760
7761 -- It is safe here to call New_Copy_Tree since
7762 -- Force_Evaluation was called on each constraint in
7763 -- Build_Discriminant_Constraints.
7764
7765 Append (New_Copy_Tree (Expr), To => Constr_List);
7766
7767 Next_Elmt (C);
7768 end loop;
7769
7770 New_Indic :=
7771 Make_Subtype_Indication (Loc,
7772 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7773 Constraint =>
7774 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7775 end;
7776 end if;
7777
7778 Rewrite (N,
7779 Make_Subtype_Declaration (Loc,
7780 Defining_Identifier => Derived_Type,
7781 Subtype_Indication => New_Indic));
7782
7783 Analyze (N);
7784
7785 -- Derivation of subprograms must be delayed until the full subtype
7786 -- has been established, to ensure proper overriding of subprograms
7787 -- inherited by full types. If the derivations occurred as part of
7788 -- the call to Build_Derived_Type above, then the check for type
7789 -- conformance would fail because earlier primitive subprograms
7790 -- could still refer to the full type prior the change to the new
7791 -- subtype and hence would not match the new base type created here.
7792 -- Subprograms are not derived, however, when Derive_Subps is False
7793 -- (since otherwise there could be redundant derivations).
7794
7795 if Derive_Subps then
7796 Derive_Subprograms (Parent_Type, Derived_Type);
7797 end if;
7798
7799 -- For tagged types the Discriminant_Constraint of the new base itype
7800 -- is inherited from the first subtype so that no subtype conformance
7801 -- problem arise when the first subtype overrides primitive
7802 -- operations inherited by the implicit base type.
7803
7804 if Is_Tagged then
7805 Set_Discriminant_Constraint
7806 (New_Base, Discriminant_Constraint (Derived_Type));
7807 end if;
7808
7809 return;
7810 end if;
7811
7812 -- If we get here Derived_Type will have no discriminants or it will be
7813 -- a discriminated unconstrained base type.
7814
7815 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7816
7817 if Is_Tagged then
7818
7819 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7820 -- The declaration of a specific descendant of an interface type
7821 -- freezes the interface type (RM 13.14).
7822
7823 if not Private_Extension or else Is_Interface (Parent_Base) then
7824 Freeze_Before (N, Parent_Type);
7825 end if;
7826
7827 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7828 -- cannot be declared at a deeper level than its parent type is
7829 -- removed. The check on derivation within a generic body is also
7830 -- relaxed, but there's a restriction that a derived tagged type
7831 -- cannot be declared in a generic body if it's derived directly
7832 -- or indirectly from a formal type of that generic.
7833
7834 if Ada_Version >= Ada_2005 then
7835 if Present (Enclosing_Generic_Body (Derived_Type)) then
7836 declare
7837 Ancestor_Type : Entity_Id;
7838
7839 begin
7840 -- Check to see if any ancestor of the derived type is a
7841 -- formal type.
7842
7843 Ancestor_Type := Parent_Type;
7844 while not Is_Generic_Type (Ancestor_Type)
7845 and then Etype (Ancestor_Type) /= Ancestor_Type
7846 loop
7847 Ancestor_Type := Etype (Ancestor_Type);
7848 end loop;
7849
7850 -- If the derived type does have a formal type as an
7851 -- ancestor, then it's an error if the derived type is
7852 -- declared within the body of the generic unit that
7853 -- declares the formal type in its generic formal part. It's
7854 -- sufficient to check whether the ancestor type is declared
7855 -- inside the same generic body as the derived type (such as
7856 -- within a nested generic spec), in which case the
7857 -- derivation is legal. If the formal type is declared
7858 -- outside of that generic body, then it's guaranteed that
7859 -- the derived type is declared within the generic body of
7860 -- the generic unit declaring the formal type.
7861
7862 if Is_Generic_Type (Ancestor_Type)
7863 and then Enclosing_Generic_Body (Ancestor_Type) /=
7864 Enclosing_Generic_Body (Derived_Type)
7865 then
7866 Error_Msg_NE
7867 ("parent type of& must not be descendant of formal type"
7868 & " of an enclosing generic body",
7869 Indic, Derived_Type);
7870 end if;
7871 end;
7872 end if;
7873
7874 elsif Type_Access_Level (Derived_Type) /=
7875 Type_Access_Level (Parent_Type)
7876 and then not Is_Generic_Type (Derived_Type)
7877 then
7878 if Is_Controlled (Parent_Type) then
7879 Error_Msg_N
7880 ("controlled type must be declared at the library level",
7881 Indic);
7882 else
7883 Error_Msg_N
7884 ("type extension at deeper accessibility level than parent",
7885 Indic);
7886 end if;
7887
7888 else
7889 declare
7890 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7891 begin
7892 if Present (GB)
7893 and then GB /= Enclosing_Generic_Body (Parent_Base)
7894 then
7895 Error_Msg_NE
7896 ("parent type of& must not be outside generic body"
7897 & " (RM 3.9.1(4))",
7898 Indic, Derived_Type);
7899 end if;
7900 end;
7901 end if;
7902 end if;
7903
7904 -- Ada 2005 (AI-251)
7905
7906 if Ada_Version >= Ada_2005 and then Is_Tagged then
7907
7908 -- "The declaration of a specific descendant of an interface type
7909 -- freezes the interface type" (RM 13.14).
7910
7911 declare
7912 Iface : Node_Id;
7913 begin
7914 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7915 Iface := First (Interface_List (Type_Def));
7916 while Present (Iface) loop
7917 Freeze_Before (N, Etype (Iface));
7918 Next (Iface);
7919 end loop;
7920 end if;
7921 end;
7922 end if;
7923
7924 -- STEP 1b : preliminary cleanup of the full view of private types
7925
7926 -- If the type is already marked as having discriminants, then it's the
7927 -- completion of a private type or private extension and we need to
7928 -- retain the discriminants from the partial view if the current
7929 -- declaration has Discriminant_Specifications so that we can verify
7930 -- conformance. However, we must remove any existing components that
7931 -- were inherited from the parent (and attached in Copy_And_Swap)
7932 -- because the full type inherits all appropriate components anyway, and
7933 -- we do not want the partial view's components interfering.
7934
7935 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7936 Discrim := First_Discriminant (Derived_Type);
7937 loop
7938 Last_Discrim := Discrim;
7939 Next_Discriminant (Discrim);
7940 exit when No (Discrim);
7941 end loop;
7942
7943 Set_Last_Entity (Derived_Type, Last_Discrim);
7944
7945 -- In all other cases wipe out the list of inherited components (even
7946 -- inherited discriminants), it will be properly rebuilt here.
7947
7948 else
7949 Set_First_Entity (Derived_Type, Empty);
7950 Set_Last_Entity (Derived_Type, Empty);
7951 end if;
7952
7953 -- STEP 1c: Initialize some flags for the Derived_Type
7954
7955 -- The following flags must be initialized here so that
7956 -- Process_Discriminants can check that discriminants of tagged types do
7957 -- not have a default initial value and that access discriminants are
7958 -- only specified for limited records. For completeness, these flags are
7959 -- also initialized along with all the other flags below.
7960
7961 -- AI-419: Limitedness is not inherited from an interface parent, so to
7962 -- be limited in that case the type must be explicitly declared as
7963 -- limited. However, task and protected interfaces are always limited.
7964
7965 if Limited_Present (Type_Def) then
7966 Set_Is_Limited_Record (Derived_Type);
7967
7968 elsif Is_Limited_Record (Parent_Type)
7969 or else (Present (Full_View (Parent_Type))
7970 and then Is_Limited_Record (Full_View (Parent_Type)))
7971 then
7972 if not Is_Interface (Parent_Type)
7973 or else Is_Synchronized_Interface (Parent_Type)
7974 or else Is_Protected_Interface (Parent_Type)
7975 or else Is_Task_Interface (Parent_Type)
7976 then
7977 Set_Is_Limited_Record (Derived_Type);
7978 end if;
7979 end if;
7980
7981 -- STEP 2a: process discriminants of derived type if any
7982
7983 Push_Scope (Derived_Type);
7984
7985 if Discriminant_Specs then
7986 Set_Has_Unknown_Discriminants (Derived_Type, False);
7987
7988 -- The following call initializes fields Has_Discriminants and
7989 -- Discriminant_Constraint, unless we are processing the completion
7990 -- of a private type declaration.
7991
7992 Check_Or_Process_Discriminants (N, Derived_Type);
7993
7994 -- For untagged types, the constraint on the Parent_Type must be
7995 -- present and is used to rename the discriminants.
7996
7997 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7998 Error_Msg_N ("untagged parent must have discriminants", Indic);
7999
8000 elsif not Is_Tagged and then not Constraint_Present then
8001 Error_Msg_N
8002 ("discriminant constraint needed for derived untagged records",
8003 Indic);
8004
8005 -- Otherwise the parent subtype must be constrained unless we have a
8006 -- private extension.
8007
8008 elsif not Constraint_Present
8009 and then not Private_Extension
8010 and then not Is_Constrained (Parent_Type)
8011 then
8012 Error_Msg_N
8013 ("unconstrained type not allowed in this context", Indic);
8014
8015 elsif Constraint_Present then
8016 -- The following call sets the field Corresponding_Discriminant
8017 -- for the discriminants in the Derived_Type.
8018
8019 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8020
8021 -- For untagged types all new discriminants must rename
8022 -- discriminants in the parent. For private extensions new
8023 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8024
8025 Discrim := First_Discriminant (Derived_Type);
8026 while Present (Discrim) loop
8027 if not Is_Tagged
8028 and then No (Corresponding_Discriminant (Discrim))
8029 then
8030 Error_Msg_N
8031 ("new discriminants must constrain old ones", Discrim);
8032
8033 elsif Private_Extension
8034 and then Present (Corresponding_Discriminant (Discrim))
8035 then
8036 Error_Msg_N
8037 ("only static constraints allowed for parent"
8038 & " discriminants in the partial view", Indic);
8039 exit;
8040 end if;
8041
8042 -- If a new discriminant is used in the constraint, then its
8043 -- subtype must be statically compatible with the parent
8044 -- discriminant's subtype (3.7(15)).
8045
8046 -- However, if the record contains an array constrained by
8047 -- the discriminant but with some different bound, the compiler
8048 -- attemps to create a smaller range for the discriminant type.
8049 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8050 -- the discriminant type is a scalar type, the check must use
8051 -- the original discriminant type in the parent declaration.
8052
8053 declare
8054 Corr_Disc : constant Entity_Id :=
8055 Corresponding_Discriminant (Discrim);
8056 Disc_Type : constant Entity_Id := Etype (Discrim);
8057 Corr_Type : Entity_Id;
8058
8059 begin
8060 if Present (Corr_Disc) then
8061 if Is_Scalar_Type (Disc_Type) then
8062 Corr_Type :=
8063 Entity (Discriminant_Type (Parent (Corr_Disc)));
8064 else
8065 Corr_Type := Etype (Corr_Disc);
8066 end if;
8067
8068 if not
8069 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8070 then
8071 Error_Msg_N
8072 ("subtype must be compatible "
8073 & "with parent discriminant",
8074 Discrim);
8075 end if;
8076 end if;
8077 end;
8078
8079 Next_Discriminant (Discrim);
8080 end loop;
8081
8082 -- Check whether the constraints of the full view statically
8083 -- match those imposed by the parent subtype [7.3(13)].
8084
8085 if Present (Stored_Constraint (Derived_Type)) then
8086 declare
8087 C1, C2 : Elmt_Id;
8088
8089 begin
8090 C1 := First_Elmt (Discs);
8091 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8092 while Present (C1) and then Present (C2) loop
8093 if not
8094 Fully_Conformant_Expressions (Node (C1), Node (C2))
8095 then
8096 Error_Msg_N
8097 ("not conformant with previous declaration",
8098 Node (C1));
8099 end if;
8100
8101 Next_Elmt (C1);
8102 Next_Elmt (C2);
8103 end loop;
8104 end;
8105 end if;
8106 end if;
8107
8108 -- STEP 2b: No new discriminants, inherit discriminants if any
8109
8110 else
8111 if Private_Extension then
8112 Set_Has_Unknown_Discriminants
8113 (Derived_Type,
8114 Has_Unknown_Discriminants (Parent_Type)
8115 or else Unknown_Discriminants_Present (N));
8116
8117 -- The partial view of the parent may have unknown discriminants,
8118 -- but if the full view has discriminants and the parent type is
8119 -- in scope they must be inherited.
8120
8121 elsif Has_Unknown_Discriminants (Parent_Type)
8122 and then
8123 (not Has_Discriminants (Parent_Type)
8124 or else not In_Open_Scopes (Scope (Parent_Type)))
8125 then
8126 Set_Has_Unknown_Discriminants (Derived_Type);
8127 end if;
8128
8129 if not Has_Unknown_Discriminants (Derived_Type)
8130 and then not Has_Unknown_Discriminants (Parent_Base)
8131 and then Has_Discriminants (Parent_Type)
8132 then
8133 Inherit_Discrims := True;
8134 Set_Has_Discriminants
8135 (Derived_Type, True);
8136 Set_Discriminant_Constraint
8137 (Derived_Type, Discriminant_Constraint (Parent_Base));
8138 end if;
8139
8140 -- The following test is true for private types (remember
8141 -- transformation 5. is not applied to those) and in an error
8142 -- situation.
8143
8144 if Constraint_Present then
8145 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8146 end if;
8147
8148 -- For now mark a new derived type as constrained only if it has no
8149 -- discriminants. At the end of Build_Derived_Record_Type we properly
8150 -- set this flag in the case of private extensions. See comments in
8151 -- point 9. just before body of Build_Derived_Record_Type.
8152
8153 Set_Is_Constrained
8154 (Derived_Type,
8155 not (Inherit_Discrims
8156 or else Has_Unknown_Discriminants (Derived_Type)));
8157 end if;
8158
8159 -- STEP 3: initialize fields of derived type
8160
8161 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8162 Set_Stored_Constraint (Derived_Type, No_Elist);
8163
8164 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8165 -- but cannot be interfaces
8166
8167 if not Private_Extension
8168 and then Ekind (Derived_Type) /= E_Private_Type
8169 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8170 then
8171 if Interface_Present (Type_Def) then
8172 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8173 end if;
8174
8175 Set_Interfaces (Derived_Type, No_Elist);
8176 end if;
8177
8178 -- Fields inherited from the Parent_Type
8179
8180 Set_Has_Specified_Layout
8181 (Derived_Type, Has_Specified_Layout (Parent_Type));
8182 Set_Is_Limited_Composite
8183 (Derived_Type, Is_Limited_Composite (Parent_Type));
8184 Set_Is_Private_Composite
8185 (Derived_Type, Is_Private_Composite (Parent_Type));
8186
8187 -- Fields inherited from the Parent_Base
8188
8189 Set_Has_Controlled_Component
8190 (Derived_Type, Has_Controlled_Component (Parent_Base));
8191 Set_Has_Non_Standard_Rep
8192 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8193 Set_Has_Primitive_Operations
8194 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8195
8196 -- Fields inherited from the Parent_Base in the non-private case
8197
8198 if Ekind (Derived_Type) = E_Record_Type then
8199 Set_Has_Complex_Representation
8200 (Derived_Type, Has_Complex_Representation (Parent_Base));
8201 end if;
8202
8203 -- Fields inherited from the Parent_Base for record types
8204
8205 if Is_Record_Type (Derived_Type) then
8206
8207 declare
8208 Parent_Full : Entity_Id;
8209
8210 begin
8211 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8212 -- Parent_Base can be a private type or private extension. Go
8213 -- to the full view here to get the E_Record_Type specific flags.
8214
8215 if Present (Full_View (Parent_Base)) then
8216 Parent_Full := Full_View (Parent_Base);
8217 else
8218 Parent_Full := Parent_Base;
8219 end if;
8220
8221 Set_OK_To_Reorder_Components
8222 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8223 end;
8224 end if;
8225
8226 -- Set fields for private derived types
8227
8228 if Is_Private_Type (Derived_Type) then
8229 Set_Depends_On_Private (Derived_Type, True);
8230 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8231
8232 -- Inherit fields from non private record types. If this is the
8233 -- completion of a derivation from a private type, the parent itself
8234 -- is private, and the attributes come from its full view, which must
8235 -- be present.
8236
8237 else
8238 if Is_Private_Type (Parent_Base)
8239 and then not Is_Record_Type (Parent_Base)
8240 then
8241 Set_Component_Alignment
8242 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8243 Set_C_Pass_By_Copy
8244 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8245 else
8246 Set_Component_Alignment
8247 (Derived_Type, Component_Alignment (Parent_Base));
8248 Set_C_Pass_By_Copy
8249 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8250 end if;
8251 end if;
8252
8253 -- Set fields for tagged types
8254
8255 if Is_Tagged then
8256 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8257
8258 -- All tagged types defined in Ada.Finalization are controlled
8259
8260 if Chars (Scope (Derived_Type)) = Name_Finalization
8261 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8262 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8263 then
8264 Set_Is_Controlled (Derived_Type);
8265 else
8266 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8267 end if;
8268
8269 -- Minor optimization: there is no need to generate the class-wide
8270 -- entity associated with an underlying record view.
8271
8272 if not Is_Underlying_Record_View (Derived_Type) then
8273 Make_Class_Wide_Type (Derived_Type);
8274 end if;
8275
8276 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8277
8278 if Has_Discriminants (Derived_Type)
8279 and then Constraint_Present
8280 then
8281 Set_Stored_Constraint
8282 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8283 end if;
8284
8285 if Ada_Version >= Ada_2005 then
8286 declare
8287 Ifaces_List : Elist_Id;
8288
8289 begin
8290 -- Checks rules 3.9.4 (13/2 and 14/2)
8291
8292 if Comes_From_Source (Derived_Type)
8293 and then not Is_Private_Type (Derived_Type)
8294 and then Is_Interface (Parent_Type)
8295 and then not Is_Interface (Derived_Type)
8296 then
8297 if Is_Task_Interface (Parent_Type) then
8298 Error_Msg_N
8299 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8300 Derived_Type);
8301
8302 elsif Is_Protected_Interface (Parent_Type) then
8303 Error_Msg_N
8304 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8305 Derived_Type);
8306 end if;
8307 end if;
8308
8309 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8310
8311 Check_Interfaces (N, Type_Def);
8312
8313 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8314 -- not already in the parents.
8315
8316 Collect_Interfaces
8317 (T => Derived_Type,
8318 Ifaces_List => Ifaces_List,
8319 Exclude_Parents => True);
8320
8321 Set_Interfaces (Derived_Type, Ifaces_List);
8322
8323 -- If the derived type is the anonymous type created for
8324 -- a declaration whose parent has a constraint, propagate
8325 -- the interface list to the source type. This must be done
8326 -- prior to the completion of the analysis of the source type
8327 -- because the components in the extension may contain current
8328 -- instances whose legality depends on some ancestor.
8329
8330 if Is_Itype (Derived_Type) then
8331 declare
8332 Def : constant Node_Id :=
8333 Associated_Node_For_Itype (Derived_Type);
8334 begin
8335 if Present (Def)
8336 and then Nkind (Def) = N_Full_Type_Declaration
8337 then
8338 Set_Interfaces
8339 (Defining_Identifier (Def), Ifaces_List);
8340 end if;
8341 end;
8342 end if;
8343 end;
8344 end if;
8345
8346 else
8347 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8348 Set_Has_Non_Standard_Rep
8349 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8350 end if;
8351
8352 -- STEP 4: Inherit components from the parent base and constrain them.
8353 -- Apply the second transformation described in point 6. above.
8354
8355 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8356 or else not Has_Discriminants (Parent_Type)
8357 or else not Is_Constrained (Parent_Type)
8358 then
8359 Constrs := Discs;
8360 else
8361 Constrs := Discriminant_Constraint (Parent_Type);
8362 end if;
8363
8364 Assoc_List :=
8365 Inherit_Components
8366 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8367
8368 -- STEP 5a: Copy the parent record declaration for untagged types
8369
8370 if not Is_Tagged then
8371
8372 -- Discriminant_Constraint (Derived_Type) has been properly
8373 -- constructed. Save it and temporarily set it to Empty because we
8374 -- do not want the call to New_Copy_Tree below to mess this list.
8375
8376 if Has_Discriminants (Derived_Type) then
8377 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8378 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8379 else
8380 Save_Discr_Constr := No_Elist;
8381 end if;
8382
8383 -- Save the Etype field of Derived_Type. It is correctly set now,
8384 -- but the call to New_Copy tree may remap it to point to itself,
8385 -- which is not what we want. Ditto for the Next_Entity field.
8386
8387 Save_Etype := Etype (Derived_Type);
8388 Save_Next_Entity := Next_Entity (Derived_Type);
8389
8390 -- Assoc_List maps all stored discriminants in the Parent_Base to
8391 -- stored discriminants in the Derived_Type. It is fundamental that
8392 -- no types or itypes with discriminants other than the stored
8393 -- discriminants appear in the entities declared inside
8394 -- Derived_Type, since the back end cannot deal with it.
8395
8396 New_Decl :=
8397 New_Copy_Tree
8398 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8399
8400 -- Restore the fields saved prior to the New_Copy_Tree call
8401 -- and compute the stored constraint.
8402
8403 Set_Etype (Derived_Type, Save_Etype);
8404 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8405
8406 if Has_Discriminants (Derived_Type) then
8407 Set_Discriminant_Constraint
8408 (Derived_Type, Save_Discr_Constr);
8409 Set_Stored_Constraint
8410 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8411 Replace_Components (Derived_Type, New_Decl);
8412 Set_Has_Implicit_Dereference
8413 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8414 end if;
8415
8416 -- Insert the new derived type declaration
8417
8418 Rewrite (N, New_Decl);
8419
8420 -- STEP 5b: Complete the processing for record extensions in generics
8421
8422 -- There is no completion for record extensions declared in the
8423 -- parameter part of a generic, so we need to complete processing for
8424 -- these generic record extensions here. The Record_Type_Definition call
8425 -- will change the Ekind of the components from E_Void to E_Component.
8426
8427 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8428 Record_Type_Definition (Empty, Derived_Type);
8429
8430 -- STEP 5c: Process the record extension for non private tagged types
8431
8432 elsif not Private_Extension then
8433 Expand_Record_Extension (Derived_Type, Type_Def);
8434
8435 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8436 -- derived type to propagate some semantic information. This led
8437 -- to other ASIS failures and has been removed.
8438
8439 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8440 -- implemented interfaces if we are in expansion mode
8441
8442 if Expander_Active
8443 and then Has_Interfaces (Derived_Type)
8444 then
8445 Add_Interface_Tag_Components (N, Derived_Type);
8446 end if;
8447
8448 -- Analyze the record extension
8449
8450 Record_Type_Definition
8451 (Record_Extension_Part (Type_Def), Derived_Type);
8452 end if;
8453
8454 End_Scope;
8455
8456 -- Nothing else to do if there is an error in the derivation.
8457 -- An unusual case: the full view may be derived from a type in an
8458 -- instance, when the partial view was used illegally as an actual
8459 -- in that instance, leading to a circular definition.
8460
8461 if Etype (Derived_Type) = Any_Type
8462 or else Etype (Parent_Type) = Derived_Type
8463 then
8464 return;
8465 end if;
8466
8467 -- Set delayed freeze and then derive subprograms, we need to do
8468 -- this in this order so that derived subprograms inherit the
8469 -- derived freeze if necessary.
8470
8471 Set_Has_Delayed_Freeze (Derived_Type);
8472
8473 if Derive_Subps then
8474 Derive_Subprograms (Parent_Type, Derived_Type);
8475 end if;
8476
8477 -- If we have a private extension which defines a constrained derived
8478 -- type mark as constrained here after we have derived subprograms. See
8479 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8480
8481 if Private_Extension and then Inherit_Discrims then
8482 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8483 Set_Is_Constrained (Derived_Type, True);
8484 Set_Discriminant_Constraint (Derived_Type, Discs);
8485
8486 elsif Is_Constrained (Parent_Type) then
8487 Set_Is_Constrained
8488 (Derived_Type, True);
8489 Set_Discriminant_Constraint
8490 (Derived_Type, Discriminant_Constraint (Parent_Type));
8491 end if;
8492 end if;
8493
8494 -- Update the class-wide type, which shares the now-completed entity
8495 -- list with its specific type. In case of underlying record views,
8496 -- we do not generate the corresponding class wide entity.
8497
8498 if Is_Tagged
8499 and then not Is_Underlying_Record_View (Derived_Type)
8500 then
8501 Set_First_Entity
8502 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8503 Set_Last_Entity
8504 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8505 end if;
8506
8507 Check_Function_Writable_Actuals (N);
8508
8509 -- Propagate the attributes related to pragma Default_Initial_Condition
8510 -- from the parent type to the private extension. A derived type always
8511 -- inherits the default initial condition flag from the parent type. If
8512 -- the derived type carries its own Default_Initial_Condition pragma,
8513 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8514 -- mutually exclusive.
8515
8516 if Has_Inherited_Default_Init_Cond (Parent_Type)
8517 or else Present (Get_Pragma
8518 (Parent_Type, Pragma_Default_Initial_Condition))
8519 then
8520 Set_Has_Inherited_Default_Init_Cond (Derived_Type);
8521
8522 elsif Has_Default_Init_Cond (Parent_Type) then
8523 Set_Has_Default_Init_Cond (Derived_Type);
8524 end if;
8525 end Build_Derived_Record_Type;
8526
8527 ------------------------
8528 -- Build_Derived_Type --
8529 ------------------------
8530
8531 procedure Build_Derived_Type
8532 (N : Node_Id;
8533 Parent_Type : Entity_Id;
8534 Derived_Type : Entity_Id;
8535 Is_Completion : Boolean;
8536 Derive_Subps : Boolean := True)
8537 is
8538 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8539
8540 begin
8541 -- Set common attributes
8542
8543 Set_Scope (Derived_Type, Current_Scope);
8544
8545 Set_Etype (Derived_Type, Parent_Base);
8546 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8547 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8548 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8549
8550 Set_Size_Info (Derived_Type, Parent_Type);
8551 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8552 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8553 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8554
8555 -- If the parent has primitive routines, set the derived type link
8556
8557 if Has_Primitive_Operations (Parent_Type) then
8558 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8559 end if;
8560
8561 -- If the parent type is a private subtype, the convention on the base
8562 -- type may be set in the private part, and not propagated to the
8563 -- subtype until later, so we obtain the convention from the base type.
8564
8565 Set_Convention (Derived_Type, Convention (Parent_Base));
8566
8567 -- Set SSO default for record or array type
8568
8569 if (Is_Array_Type (Derived_Type)
8570 or else Is_Record_Type (Derived_Type))
8571 and then Is_Base_Type (Derived_Type)
8572 then
8573 Set_Default_SSO (Derived_Type);
8574 end if;
8575
8576 -- Propagate invariant information. The new type has invariants if
8577 -- they are inherited from the parent type, and these invariants can
8578 -- be further inherited, so both flags are set.
8579
8580 -- We similarly inherit predicates
8581
8582 if Has_Predicates (Parent_Type) then
8583 Set_Has_Predicates (Derived_Type);
8584 end if;
8585
8586 -- The derived type inherits the representation clauses of the parent.
8587 -- However, for a private type that is completed by a derivation, there
8588 -- may be operation attributes that have been specified already (stream
8589 -- attributes and External_Tag) and those must be provided. Finally, if
8590 -- the partial view is a private extension, the representation items of
8591 -- the parent have been inherited already, and should not be chained
8592 -- twice to the derived type.
8593
8594 -- Historic note: The guard below used to check whether the parent type
8595 -- is tagged. This is no longer needed because an untagged derived type
8596 -- may carry rep items of its own as a result of certain SPARK pragmas.
8597 -- With the old guard in place, the rep items of the derived type were
8598 -- clobbered.
8599
8600 if Present (First_Rep_Item (Derived_Type)) then
8601 declare
8602 Par_Item : constant Node_Id := First_Rep_Item (Parent_Type);
8603 Inherited : Boolean := False;
8604 Item : Node_Id;
8605 Last_Item : Node_Id;
8606
8607 begin
8608 -- Inspect the rep item chain of the derived type and perform the
8609 -- following two functions:
8610 -- 1) Determine whether the derived type already inherited the
8611 -- rep items of the parent type.
8612 -- 2) Find the last rep item of the derived type
8613
8614 Item := First_Rep_Item (Derived_Type);
8615 Last_Item := Item;
8616 while Present (Item) loop
8617 if Item = Par_Item then
8618 Inherited := True;
8619 exit;
8620 end if;
8621
8622 Last_Item := Item;
8623 Item := Next_Rep_Item (Item);
8624 end loop;
8625
8626 -- Nothing to do if the derived type already inherited the rep
8627 -- items from the parent type, otherwise append the parent rep
8628 -- item chain to that of the derived type.
8629
8630 if not Inherited then
8631 Set_Next_Rep_Item (Last_Item, Par_Item);
8632 end if;
8633 end;
8634
8635 -- Otherwise the derived type lacks rep items and directly inherits the
8636 -- rep items of the parent type.
8637
8638 else
8639 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8640 end if;
8641
8642 -- If the parent type has delayed rep aspects, then mark the derived
8643 -- type as possibly inheriting a delayed rep aspect.
8644
8645 if Has_Delayed_Rep_Aspects (Parent_Type) then
8646 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8647 end if;
8648
8649 -- Type dependent processing
8650
8651 case Ekind (Parent_Type) is
8652 when Numeric_Kind =>
8653 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8654
8655 when Array_Kind =>
8656 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8657
8658 when E_Record_Type
8659 | E_Record_Subtype
8660 | Class_Wide_Kind =>
8661 Build_Derived_Record_Type
8662 (N, Parent_Type, Derived_Type, Derive_Subps);
8663 return;
8664
8665 when Enumeration_Kind =>
8666 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8667
8668 when Access_Kind =>
8669 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8670
8671 when Incomplete_Or_Private_Kind =>
8672 Build_Derived_Private_Type
8673 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8674
8675 -- For discriminated types, the derivation includes deriving
8676 -- primitive operations. For others it is done below.
8677
8678 if Is_Tagged_Type (Parent_Type)
8679 or else Has_Discriminants (Parent_Type)
8680 or else (Present (Full_View (Parent_Type))
8681 and then Has_Discriminants (Full_View (Parent_Type)))
8682 then
8683 return;
8684 end if;
8685
8686 when Concurrent_Kind =>
8687 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8688
8689 when others =>
8690 raise Program_Error;
8691 end case;
8692
8693 -- Nothing more to do if some error occurred
8694
8695 if Etype (Derived_Type) = Any_Type then
8696 return;
8697 end if;
8698
8699 -- Set delayed freeze and then derive subprograms, we need to do this
8700 -- in this order so that derived subprograms inherit the derived freeze
8701 -- if necessary.
8702
8703 Set_Has_Delayed_Freeze (Derived_Type);
8704
8705 if Derive_Subps then
8706 Derive_Subprograms (Parent_Type, Derived_Type);
8707 end if;
8708
8709 Set_Has_Primitive_Operations
8710 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8711 end Build_Derived_Type;
8712
8713 -----------------------
8714 -- Build_Discriminal --
8715 -----------------------
8716
8717 procedure Build_Discriminal (Discrim : Entity_Id) is
8718 D_Minal : Entity_Id;
8719 CR_Disc : Entity_Id;
8720
8721 begin
8722 -- A discriminal has the same name as the discriminant
8723
8724 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8725
8726 Set_Ekind (D_Minal, E_In_Parameter);
8727 Set_Mechanism (D_Minal, Default_Mechanism);
8728 Set_Etype (D_Minal, Etype (Discrim));
8729 Set_Scope (D_Minal, Current_Scope);
8730
8731 Set_Discriminal (Discrim, D_Minal);
8732 Set_Discriminal_Link (D_Minal, Discrim);
8733
8734 -- For task types, build at once the discriminants of the corresponding
8735 -- record, which are needed if discriminants are used in entry defaults
8736 -- and in family bounds.
8737
8738 if Is_Concurrent_Type (Current_Scope)
8739 or else Is_Limited_Type (Current_Scope)
8740 then
8741 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8742
8743 Set_Ekind (CR_Disc, E_In_Parameter);
8744 Set_Mechanism (CR_Disc, Default_Mechanism);
8745 Set_Etype (CR_Disc, Etype (Discrim));
8746 Set_Scope (CR_Disc, Current_Scope);
8747 Set_Discriminal_Link (CR_Disc, Discrim);
8748 Set_CR_Discriminant (Discrim, CR_Disc);
8749 end if;
8750 end Build_Discriminal;
8751
8752 ------------------------------------
8753 -- Build_Discriminant_Constraints --
8754 ------------------------------------
8755
8756 function Build_Discriminant_Constraints
8757 (T : Entity_Id;
8758 Def : Node_Id;
8759 Derived_Def : Boolean := False) return Elist_Id
8760 is
8761 C : constant Node_Id := Constraint (Def);
8762 Nb_Discr : constant Nat := Number_Discriminants (T);
8763
8764 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8765 -- Saves the expression corresponding to a given discriminant in T
8766
8767 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8768 -- Return the Position number within array Discr_Expr of a discriminant
8769 -- D within the discriminant list of the discriminated type T.
8770
8771 procedure Process_Discriminant_Expression
8772 (Expr : Node_Id;
8773 D : Entity_Id);
8774 -- If this is a discriminant constraint on a partial view, do not
8775 -- generate an overflow check on the discriminant expression. The check
8776 -- will be generated when constraining the full view. Otherwise the
8777 -- backend creates duplicate symbols for the temporaries corresponding
8778 -- to the expressions to be checked, causing spurious assembler errors.
8779
8780 ------------------
8781 -- Pos_Of_Discr --
8782 ------------------
8783
8784 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8785 Disc : Entity_Id;
8786
8787 begin
8788 Disc := First_Discriminant (T);
8789 for J in Discr_Expr'Range loop
8790 if Disc = D then
8791 return J;
8792 end if;
8793
8794 Next_Discriminant (Disc);
8795 end loop;
8796
8797 -- Note: Since this function is called on discriminants that are
8798 -- known to belong to the discriminated type, falling through the
8799 -- loop with no match signals an internal compiler error.
8800
8801 raise Program_Error;
8802 end Pos_Of_Discr;
8803
8804 -------------------------------------
8805 -- Process_Discriminant_Expression --
8806 -------------------------------------
8807
8808 procedure Process_Discriminant_Expression
8809 (Expr : Node_Id;
8810 D : Entity_Id)
8811 is
8812 BDT : constant Entity_Id := Base_Type (Etype (D));
8813
8814 begin
8815 -- If this is a discriminant constraint on a partial view, do
8816 -- not generate an overflow on the discriminant expression. The
8817 -- check will be generated when constraining the full view.
8818
8819 if Is_Private_Type (T)
8820 and then Present (Full_View (T))
8821 then
8822 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8823 else
8824 Analyze_And_Resolve (Expr, BDT);
8825 end if;
8826 end Process_Discriminant_Expression;
8827
8828 -- Declarations local to Build_Discriminant_Constraints
8829
8830 Discr : Entity_Id;
8831 E : Entity_Id;
8832 Elist : constant Elist_Id := New_Elmt_List;
8833
8834 Constr : Node_Id;
8835 Expr : Node_Id;
8836 Id : Node_Id;
8837 Position : Nat;
8838 Found : Boolean;
8839
8840 Discrim_Present : Boolean := False;
8841
8842 -- Start of processing for Build_Discriminant_Constraints
8843
8844 begin
8845 -- The following loop will process positional associations only.
8846 -- For a positional association, the (single) discriminant is
8847 -- implicitly specified by position, in textual order (RM 3.7.2).
8848
8849 Discr := First_Discriminant (T);
8850 Constr := First (Constraints (C));
8851 for D in Discr_Expr'Range loop
8852 exit when Nkind (Constr) = N_Discriminant_Association;
8853
8854 if No (Constr) then
8855 Error_Msg_N ("too few discriminants given in constraint", C);
8856 return New_Elmt_List;
8857
8858 elsif Nkind (Constr) = N_Range
8859 or else (Nkind (Constr) = N_Attribute_Reference
8860 and then
8861 Attribute_Name (Constr) = Name_Range)
8862 then
8863 Error_Msg_N
8864 ("a range is not a valid discriminant constraint", Constr);
8865 Discr_Expr (D) := Error;
8866
8867 else
8868 Process_Discriminant_Expression (Constr, Discr);
8869 Discr_Expr (D) := Constr;
8870 end if;
8871
8872 Next_Discriminant (Discr);
8873 Next (Constr);
8874 end loop;
8875
8876 if No (Discr) and then Present (Constr) then
8877 Error_Msg_N ("too many discriminants given in constraint", Constr);
8878 return New_Elmt_List;
8879 end if;
8880
8881 -- Named associations can be given in any order, but if both positional
8882 -- and named associations are used in the same discriminant constraint,
8883 -- then positional associations must occur first, at their normal
8884 -- position. Hence once a named association is used, the rest of the
8885 -- discriminant constraint must use only named associations.
8886
8887 while Present (Constr) loop
8888
8889 -- Positional association forbidden after a named association
8890
8891 if Nkind (Constr) /= N_Discriminant_Association then
8892 Error_Msg_N ("positional association follows named one", Constr);
8893 return New_Elmt_List;
8894
8895 -- Otherwise it is a named association
8896
8897 else
8898 -- E records the type of the discriminants in the named
8899 -- association. All the discriminants specified in the same name
8900 -- association must have the same type.
8901
8902 E := Empty;
8903
8904 -- Search the list of discriminants in T to see if the simple name
8905 -- given in the constraint matches any of them.
8906
8907 Id := First (Selector_Names (Constr));
8908 while Present (Id) loop
8909 Found := False;
8910
8911 -- If Original_Discriminant is present, we are processing a
8912 -- generic instantiation and this is an instance node. We need
8913 -- to find the name of the corresponding discriminant in the
8914 -- actual record type T and not the name of the discriminant in
8915 -- the generic formal. Example:
8916
8917 -- generic
8918 -- type G (D : int) is private;
8919 -- package P is
8920 -- subtype W is G (D => 1);
8921 -- end package;
8922 -- type Rec (X : int) is record ... end record;
8923 -- package Q is new P (G => Rec);
8924
8925 -- At the point of the instantiation, formal type G is Rec
8926 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8927 -- which really looks like "subtype W is Rec (D => 1);" at
8928 -- the point of instantiation, we want to find the discriminant
8929 -- that corresponds to D in Rec, i.e. X.
8930
8931 if Present (Original_Discriminant (Id))
8932 and then In_Instance
8933 then
8934 Discr := Find_Corresponding_Discriminant (Id, T);
8935 Found := True;
8936
8937 else
8938 Discr := First_Discriminant (T);
8939 while Present (Discr) loop
8940 if Chars (Discr) = Chars (Id) then
8941 Found := True;
8942 exit;
8943 end if;
8944
8945 Next_Discriminant (Discr);
8946 end loop;
8947
8948 if not Found then
8949 Error_Msg_N ("& does not match any discriminant", Id);
8950 return New_Elmt_List;
8951
8952 -- If the parent type is a generic formal, preserve the
8953 -- name of the discriminant for subsequent instances.
8954 -- see comment at the beginning of this if statement.
8955
8956 elsif Is_Generic_Type (Root_Type (T)) then
8957 Set_Original_Discriminant (Id, Discr);
8958 end if;
8959 end if;
8960
8961 Position := Pos_Of_Discr (T, Discr);
8962
8963 if Present (Discr_Expr (Position)) then
8964 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8965
8966 else
8967 -- Each discriminant specified in the same named association
8968 -- must be associated with a separate copy of the
8969 -- corresponding expression.
8970
8971 if Present (Next (Id)) then
8972 Expr := New_Copy_Tree (Expression (Constr));
8973 Set_Parent (Expr, Parent (Expression (Constr)));
8974 else
8975 Expr := Expression (Constr);
8976 end if;
8977
8978 Discr_Expr (Position) := Expr;
8979 Process_Discriminant_Expression (Expr, Discr);
8980 end if;
8981
8982 -- A discriminant association with more than one discriminant
8983 -- name is only allowed if the named discriminants are all of
8984 -- the same type (RM 3.7.1(8)).
8985
8986 if E = Empty then
8987 E := Base_Type (Etype (Discr));
8988
8989 elsif Base_Type (Etype (Discr)) /= E then
8990 Error_Msg_N
8991 ("all discriminants in an association " &
8992 "must have the same type", Id);
8993 end if;
8994
8995 Next (Id);
8996 end loop;
8997 end if;
8998
8999 Next (Constr);
9000 end loop;
9001
9002 -- A discriminant constraint must provide exactly one value for each
9003 -- discriminant of the type (RM 3.7.1(8)).
9004
9005 for J in Discr_Expr'Range loop
9006 if No (Discr_Expr (J)) then
9007 Error_Msg_N ("too few discriminants given in constraint", C);
9008 return New_Elmt_List;
9009 end if;
9010 end loop;
9011
9012 -- Determine if there are discriminant expressions in the constraint
9013
9014 for J in Discr_Expr'Range loop
9015 if Denotes_Discriminant
9016 (Discr_Expr (J), Check_Concurrent => True)
9017 then
9018 Discrim_Present := True;
9019 end if;
9020 end loop;
9021
9022 -- Build an element list consisting of the expressions given in the
9023 -- discriminant constraint and apply the appropriate checks. The list
9024 -- is constructed after resolving any named discriminant associations
9025 -- and therefore the expressions appear in the textual order of the
9026 -- discriminants.
9027
9028 Discr := First_Discriminant (T);
9029 for J in Discr_Expr'Range loop
9030 if Discr_Expr (J) /= Error then
9031 Append_Elmt (Discr_Expr (J), Elist);
9032
9033 -- If any of the discriminant constraints is given by a
9034 -- discriminant and we are in a derived type declaration we
9035 -- have a discriminant renaming. Establish link between new
9036 -- and old discriminant.
9037
9038 if Denotes_Discriminant (Discr_Expr (J)) then
9039 if Derived_Def then
9040 Set_Corresponding_Discriminant
9041 (Entity (Discr_Expr (J)), Discr);
9042 end if;
9043
9044 -- Force the evaluation of non-discriminant expressions.
9045 -- If we have found a discriminant in the constraint 3.4(26)
9046 -- and 3.8(18) demand that no range checks are performed are
9047 -- after evaluation. If the constraint is for a component
9048 -- definition that has a per-object constraint, expressions are
9049 -- evaluated but not checked either. In all other cases perform
9050 -- a range check.
9051
9052 else
9053 if Discrim_Present then
9054 null;
9055
9056 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9057 and then
9058 Has_Per_Object_Constraint
9059 (Defining_Identifier (Parent (Parent (Def))))
9060 then
9061 null;
9062
9063 elsif Is_Access_Type (Etype (Discr)) then
9064 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9065
9066 else
9067 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9068 end if;
9069
9070 Force_Evaluation (Discr_Expr (J));
9071 end if;
9072
9073 -- Check that the designated type of an access discriminant's
9074 -- expression is not a class-wide type unless the discriminant's
9075 -- designated type is also class-wide.
9076
9077 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9078 and then not Is_Class_Wide_Type
9079 (Designated_Type (Etype (Discr)))
9080 and then Etype (Discr_Expr (J)) /= Any_Type
9081 and then Is_Class_Wide_Type
9082 (Designated_Type (Etype (Discr_Expr (J))))
9083 then
9084 Wrong_Type (Discr_Expr (J), Etype (Discr));
9085
9086 elsif Is_Access_Type (Etype (Discr))
9087 and then not Is_Access_Constant (Etype (Discr))
9088 and then Is_Access_Type (Etype (Discr_Expr (J)))
9089 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9090 then
9091 Error_Msg_NE
9092 ("constraint for discriminant& must be access to variable",
9093 Def, Discr);
9094 end if;
9095 end if;
9096
9097 Next_Discriminant (Discr);
9098 end loop;
9099
9100 return Elist;
9101 end Build_Discriminant_Constraints;
9102
9103 ---------------------------------
9104 -- Build_Discriminated_Subtype --
9105 ---------------------------------
9106
9107 procedure Build_Discriminated_Subtype
9108 (T : Entity_Id;
9109 Def_Id : Entity_Id;
9110 Elist : Elist_Id;
9111 Related_Nod : Node_Id;
9112 For_Access : Boolean := False)
9113 is
9114 Has_Discrs : constant Boolean := Has_Discriminants (T);
9115 Constrained : constant Boolean :=
9116 (Has_Discrs
9117 and then not Is_Empty_Elmt_List (Elist)
9118 and then not Is_Class_Wide_Type (T))
9119 or else Is_Constrained (T);
9120
9121 begin
9122 if Ekind (T) = E_Record_Type then
9123 if For_Access then
9124 Set_Ekind (Def_Id, E_Private_Subtype);
9125 Set_Is_For_Access_Subtype (Def_Id, True);
9126 else
9127 Set_Ekind (Def_Id, E_Record_Subtype);
9128 end if;
9129
9130 -- Inherit preelaboration flag from base, for types for which it
9131 -- may have been set: records, private types, protected types.
9132
9133 Set_Known_To_Have_Preelab_Init
9134 (Def_Id, Known_To_Have_Preelab_Init (T));
9135
9136 elsif Ekind (T) = E_Task_Type then
9137 Set_Ekind (Def_Id, E_Task_Subtype);
9138
9139 elsif Ekind (T) = E_Protected_Type then
9140 Set_Ekind (Def_Id, E_Protected_Subtype);
9141 Set_Known_To_Have_Preelab_Init
9142 (Def_Id, Known_To_Have_Preelab_Init (T));
9143
9144 elsif Is_Private_Type (T) then
9145 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9146 Set_Known_To_Have_Preelab_Init
9147 (Def_Id, Known_To_Have_Preelab_Init (T));
9148
9149 -- Private subtypes may have private dependents
9150
9151 Set_Private_Dependents (Def_Id, New_Elmt_List);
9152
9153 elsif Is_Class_Wide_Type (T) then
9154 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9155
9156 else
9157 -- Incomplete type. Attach subtype to list of dependents, to be
9158 -- completed with full view of parent type, unless is it the
9159 -- designated subtype of a record component within an init_proc.
9160 -- This last case arises for a component of an access type whose
9161 -- designated type is incomplete (e.g. a Taft Amendment type).
9162 -- The designated subtype is within an inner scope, and needs no
9163 -- elaboration, because only the access type is needed in the
9164 -- initialization procedure.
9165
9166 Set_Ekind (Def_Id, Ekind (T));
9167
9168 if For_Access and then Within_Init_Proc then
9169 null;
9170 else
9171 Append_Elmt (Def_Id, Private_Dependents (T));
9172 end if;
9173 end if;
9174
9175 Set_Etype (Def_Id, T);
9176 Init_Size_Align (Def_Id);
9177 Set_Has_Discriminants (Def_Id, Has_Discrs);
9178 Set_Is_Constrained (Def_Id, Constrained);
9179
9180 Set_First_Entity (Def_Id, First_Entity (T));
9181 Set_Last_Entity (Def_Id, Last_Entity (T));
9182 Set_Has_Implicit_Dereference
9183 (Def_Id, Has_Implicit_Dereference (T));
9184
9185 -- If the subtype is the completion of a private declaration, there may
9186 -- have been representation clauses for the partial view, and they must
9187 -- be preserved. Build_Derived_Type chains the inherited clauses with
9188 -- the ones appearing on the extension. If this comes from a subtype
9189 -- declaration, all clauses are inherited.
9190
9191 if No (First_Rep_Item (Def_Id)) then
9192 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9193 end if;
9194
9195 if Is_Tagged_Type (T) then
9196 Set_Is_Tagged_Type (Def_Id);
9197 Make_Class_Wide_Type (Def_Id);
9198 end if;
9199
9200 Set_Stored_Constraint (Def_Id, No_Elist);
9201
9202 if Has_Discrs then
9203 Set_Discriminant_Constraint (Def_Id, Elist);
9204 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9205 end if;
9206
9207 if Is_Tagged_Type (T) then
9208
9209 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9210 -- concurrent record type (which has the list of primitive
9211 -- operations).
9212
9213 if Ada_Version >= Ada_2005
9214 and then Is_Concurrent_Type (T)
9215 then
9216 Set_Corresponding_Record_Type (Def_Id,
9217 Corresponding_Record_Type (T));
9218 else
9219 Set_Direct_Primitive_Operations (Def_Id,
9220 Direct_Primitive_Operations (T));
9221 end if;
9222
9223 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9224 end if;
9225
9226 -- Subtypes introduced by component declarations do not need to be
9227 -- marked as delayed, and do not get freeze nodes, because the semantics
9228 -- verifies that the parents of the subtypes are frozen before the
9229 -- enclosing record is frozen.
9230
9231 if not Is_Type (Scope (Def_Id)) then
9232 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9233
9234 if Is_Private_Type (T)
9235 and then Present (Full_View (T))
9236 then
9237 Conditional_Delay (Def_Id, Full_View (T));
9238 else
9239 Conditional_Delay (Def_Id, T);
9240 end if;
9241 end if;
9242
9243 if Is_Record_Type (T) then
9244 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9245
9246 if Has_Discrs
9247 and then not Is_Empty_Elmt_List (Elist)
9248 and then not For_Access
9249 then
9250 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9251 elsif not For_Access then
9252 Set_Cloned_Subtype (Def_Id, T);
9253 end if;
9254 end if;
9255 end Build_Discriminated_Subtype;
9256
9257 ---------------------------
9258 -- Build_Itype_Reference --
9259 ---------------------------
9260
9261 procedure Build_Itype_Reference
9262 (Ityp : Entity_Id;
9263 Nod : Node_Id)
9264 is
9265 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9266 begin
9267
9268 -- Itype references are only created for use by the back-end
9269
9270 if Inside_A_Generic then
9271 return;
9272 else
9273 Set_Itype (IR, Ityp);
9274 Insert_After (Nod, IR);
9275 end if;
9276 end Build_Itype_Reference;
9277
9278 ------------------------
9279 -- Build_Scalar_Bound --
9280 ------------------------
9281
9282 function Build_Scalar_Bound
9283 (Bound : Node_Id;
9284 Par_T : Entity_Id;
9285 Der_T : Entity_Id) return Node_Id
9286 is
9287 New_Bound : Entity_Id;
9288
9289 begin
9290 -- Note: not clear why this is needed, how can the original bound
9291 -- be unanalyzed at this point? and if it is, what business do we
9292 -- have messing around with it? and why is the base type of the
9293 -- parent type the right type for the resolution. It probably is
9294 -- not. It is OK for the new bound we are creating, but not for
9295 -- the old one??? Still if it never happens, no problem.
9296
9297 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9298
9299 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9300 New_Bound := New_Copy (Bound);
9301 Set_Etype (New_Bound, Der_T);
9302 Set_Analyzed (New_Bound);
9303
9304 elsif Is_Entity_Name (Bound) then
9305 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9306
9307 -- The following is almost certainly wrong. What business do we have
9308 -- relocating a node (Bound) that is presumably still attached to
9309 -- the tree elsewhere???
9310
9311 else
9312 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9313 end if;
9314
9315 Set_Etype (New_Bound, Der_T);
9316 return New_Bound;
9317 end Build_Scalar_Bound;
9318
9319 --------------------------------
9320 -- Build_Underlying_Full_View --
9321 --------------------------------
9322
9323 procedure Build_Underlying_Full_View
9324 (N : Node_Id;
9325 Typ : Entity_Id;
9326 Par : Entity_Id)
9327 is
9328 Loc : constant Source_Ptr := Sloc (N);
9329 Subt : constant Entity_Id :=
9330 Make_Defining_Identifier
9331 (Loc, New_External_Name (Chars (Typ), 'S'));
9332
9333 Constr : Node_Id;
9334 Indic : Node_Id;
9335 C : Node_Id;
9336 Id : Node_Id;
9337
9338 procedure Set_Discriminant_Name (Id : Node_Id);
9339 -- If the derived type has discriminants, they may rename discriminants
9340 -- of the parent. When building the full view of the parent, we need to
9341 -- recover the names of the original discriminants if the constraint is
9342 -- given by named associations.
9343
9344 ---------------------------
9345 -- Set_Discriminant_Name --
9346 ---------------------------
9347
9348 procedure Set_Discriminant_Name (Id : Node_Id) is
9349 Disc : Entity_Id;
9350
9351 begin
9352 Set_Original_Discriminant (Id, Empty);
9353
9354 if Has_Discriminants (Typ) then
9355 Disc := First_Discriminant (Typ);
9356 while Present (Disc) loop
9357 if Chars (Disc) = Chars (Id)
9358 and then Present (Corresponding_Discriminant (Disc))
9359 then
9360 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9361 end if;
9362 Next_Discriminant (Disc);
9363 end loop;
9364 end if;
9365 end Set_Discriminant_Name;
9366
9367 -- Start of processing for Build_Underlying_Full_View
9368
9369 begin
9370 if Nkind (N) = N_Full_Type_Declaration then
9371 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9372
9373 elsif Nkind (N) = N_Subtype_Declaration then
9374 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9375
9376 elsif Nkind (N) = N_Component_Declaration then
9377 Constr :=
9378 New_Copy_Tree
9379 (Constraint (Subtype_Indication (Component_Definition (N))));
9380
9381 else
9382 raise Program_Error;
9383 end if;
9384
9385 C := First (Constraints (Constr));
9386 while Present (C) loop
9387 if Nkind (C) = N_Discriminant_Association then
9388 Id := First (Selector_Names (C));
9389 while Present (Id) loop
9390 Set_Discriminant_Name (Id);
9391 Next (Id);
9392 end loop;
9393 end if;
9394
9395 Next (C);
9396 end loop;
9397
9398 Indic :=
9399 Make_Subtype_Declaration (Loc,
9400 Defining_Identifier => Subt,
9401 Subtype_Indication =>
9402 Make_Subtype_Indication (Loc,
9403 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9404 Constraint => New_Copy_Tree (Constr)));
9405
9406 -- If this is a component subtype for an outer itype, it is not
9407 -- a list member, so simply set the parent link for analysis: if
9408 -- the enclosing type does not need to be in a declarative list,
9409 -- neither do the components.
9410
9411 if Is_List_Member (N)
9412 and then Nkind (N) /= N_Component_Declaration
9413 then
9414 Insert_Before (N, Indic);
9415 else
9416 Set_Parent (Indic, Parent (N));
9417 end if;
9418
9419 Analyze (Indic);
9420 Set_Underlying_Full_View (Typ, Full_View (Subt));
9421 end Build_Underlying_Full_View;
9422
9423 -------------------------------
9424 -- Check_Abstract_Overriding --
9425 -------------------------------
9426
9427 procedure Check_Abstract_Overriding (T : Entity_Id) is
9428 Alias_Subp : Entity_Id;
9429 Elmt : Elmt_Id;
9430 Op_List : Elist_Id;
9431 Subp : Entity_Id;
9432 Type_Def : Node_Id;
9433
9434 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9435 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9436 -- which has pragma Implemented already set. Check whether Subp's entity
9437 -- kind conforms to the implementation kind of the overridden routine.
9438
9439 procedure Check_Pragma_Implemented
9440 (Subp : Entity_Id;
9441 Iface_Subp : Entity_Id);
9442 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9443 -- Iface_Subp and both entities have pragma Implemented already set on
9444 -- them. Check whether the two implementation kinds are conforming.
9445
9446 procedure Inherit_Pragma_Implemented
9447 (Subp : Entity_Id;
9448 Iface_Subp : Entity_Id);
9449 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9450 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9451 -- Propagate the implementation kind of Iface_Subp to Subp.
9452
9453 ------------------------------
9454 -- Check_Pragma_Implemented --
9455 ------------------------------
9456
9457 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9458 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9459 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9460 Subp_Alias : constant Entity_Id := Alias (Subp);
9461 Contr_Typ : Entity_Id;
9462 Impl_Subp : Entity_Id;
9463
9464 begin
9465 -- Subp must have an alias since it is a hidden entity used to link
9466 -- an interface subprogram to its overriding counterpart.
9467
9468 pragma Assert (Present (Subp_Alias));
9469
9470 -- Handle aliases to synchronized wrappers
9471
9472 Impl_Subp := Subp_Alias;
9473
9474 if Is_Primitive_Wrapper (Impl_Subp) then
9475 Impl_Subp := Wrapped_Entity (Impl_Subp);
9476 end if;
9477
9478 -- Extract the type of the controlling formal
9479
9480 Contr_Typ := Etype (First_Formal (Subp_Alias));
9481
9482 if Is_Concurrent_Record_Type (Contr_Typ) then
9483 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9484 end if;
9485
9486 -- An interface subprogram whose implementation kind is By_Entry must
9487 -- be implemented by an entry.
9488
9489 if Impl_Kind = Name_By_Entry
9490 and then Ekind (Impl_Subp) /= E_Entry
9491 then
9492 Error_Msg_Node_2 := Iface_Alias;
9493 Error_Msg_NE
9494 ("type & must implement abstract subprogram & with an entry",
9495 Subp_Alias, Contr_Typ);
9496
9497 elsif Impl_Kind = Name_By_Protected_Procedure then
9498
9499 -- An interface subprogram whose implementation kind is By_
9500 -- Protected_Procedure cannot be implemented by a primitive
9501 -- procedure of a task type.
9502
9503 if Ekind (Contr_Typ) /= E_Protected_Type then
9504 Error_Msg_Node_2 := Contr_Typ;
9505 Error_Msg_NE
9506 ("interface subprogram & cannot be implemented by a " &
9507 "primitive procedure of task type &", Subp_Alias,
9508 Iface_Alias);
9509
9510 -- An interface subprogram whose implementation kind is By_
9511 -- Protected_Procedure must be implemented by a procedure.
9512
9513 elsif Ekind (Impl_Subp) /= E_Procedure then
9514 Error_Msg_Node_2 := Iface_Alias;
9515 Error_Msg_NE
9516 ("type & must implement abstract subprogram & with a " &
9517 "procedure", Subp_Alias, Contr_Typ);
9518
9519 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9520 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9521 then
9522 Error_Msg_Name_1 := Impl_Kind;
9523 Error_Msg_N
9524 ("overriding operation& must have synchronization%",
9525 Subp_Alias);
9526 end if;
9527
9528 -- If primitive has Optional synchronization, overriding operation
9529 -- must match if it has an explicit synchronization..
9530
9531 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9532 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9533 then
9534 Error_Msg_Name_1 := Impl_Kind;
9535 Error_Msg_N
9536 ("overriding operation& must have syncrhonization%",
9537 Subp_Alias);
9538 end if;
9539 end Check_Pragma_Implemented;
9540
9541 ------------------------------
9542 -- Check_Pragma_Implemented --
9543 ------------------------------
9544
9545 procedure Check_Pragma_Implemented
9546 (Subp : Entity_Id;
9547 Iface_Subp : Entity_Id)
9548 is
9549 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9550 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9551
9552 begin
9553 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9554 -- and overriding subprogram are different. In general this is an
9555 -- error except when the implementation kind of the overridden
9556 -- subprograms is By_Any or Optional.
9557
9558 if Iface_Kind /= Subp_Kind
9559 and then Iface_Kind /= Name_By_Any
9560 and then Iface_Kind /= Name_Optional
9561 then
9562 if Iface_Kind = Name_By_Entry then
9563 Error_Msg_N
9564 ("incompatible implementation kind, overridden subprogram " &
9565 "is marked By_Entry", Subp);
9566 else
9567 Error_Msg_N
9568 ("incompatible implementation kind, overridden subprogram " &
9569 "is marked By_Protected_Procedure", Subp);
9570 end if;
9571 end if;
9572 end Check_Pragma_Implemented;
9573
9574 --------------------------------
9575 -- Inherit_Pragma_Implemented --
9576 --------------------------------
9577
9578 procedure Inherit_Pragma_Implemented
9579 (Subp : Entity_Id;
9580 Iface_Subp : Entity_Id)
9581 is
9582 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9583 Loc : constant Source_Ptr := Sloc (Subp);
9584 Impl_Prag : Node_Id;
9585
9586 begin
9587 -- Since the implementation kind is stored as a representation item
9588 -- rather than a flag, create a pragma node.
9589
9590 Impl_Prag :=
9591 Make_Pragma (Loc,
9592 Chars => Name_Implemented,
9593 Pragma_Argument_Associations => New_List (
9594 Make_Pragma_Argument_Association (Loc,
9595 Expression => New_Occurrence_Of (Subp, Loc)),
9596
9597 Make_Pragma_Argument_Association (Loc,
9598 Expression => Make_Identifier (Loc, Iface_Kind))));
9599
9600 -- The pragma doesn't need to be analyzed because it is internally
9601 -- built. It is safe to directly register it as a rep item since we
9602 -- are only interested in the characters of the implementation kind.
9603
9604 Record_Rep_Item (Subp, Impl_Prag);
9605 end Inherit_Pragma_Implemented;
9606
9607 -- Start of processing for Check_Abstract_Overriding
9608
9609 begin
9610 Op_List := Primitive_Operations (T);
9611
9612 -- Loop to check primitive operations
9613
9614 Elmt := First_Elmt (Op_List);
9615 while Present (Elmt) loop
9616 Subp := Node (Elmt);
9617 Alias_Subp := Alias (Subp);
9618
9619 -- Inherited subprograms are identified by the fact that they do not
9620 -- come from source, and the associated source location is the
9621 -- location of the first subtype of the derived type.
9622
9623 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9624 -- subprograms that "require overriding".
9625
9626 -- Special exception, do not complain about failure to override the
9627 -- stream routines _Input and _Output, as well as the primitive
9628 -- operations used in dispatching selects since we always provide
9629 -- automatic overridings for these subprograms.
9630
9631 -- Also ignore this rule for convention CIL since .NET libraries
9632 -- do bizarre things with interfaces???
9633
9634 -- The partial view of T may have been a private extension, for
9635 -- which inherited functions dispatching on result are abstract.
9636 -- If the full view is a null extension, there is no need for
9637 -- overriding in Ada 2005, but wrappers need to be built for them
9638 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9639
9640 if Is_Null_Extension (T)
9641 and then Has_Controlling_Result (Subp)
9642 and then Ada_Version >= Ada_2005
9643 and then Present (Alias_Subp)
9644 and then not Comes_From_Source (Subp)
9645 and then not Is_Abstract_Subprogram (Alias_Subp)
9646 and then not Is_Access_Type (Etype (Subp))
9647 then
9648 null;
9649
9650 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9651 -- processing because this check is done with the aliased
9652 -- entity
9653
9654 elsif Present (Interface_Alias (Subp)) then
9655 null;
9656
9657 elsif (Is_Abstract_Subprogram (Subp)
9658 or else Requires_Overriding (Subp)
9659 or else
9660 (Has_Controlling_Result (Subp)
9661 and then Present (Alias_Subp)
9662 and then not Comes_From_Source (Subp)
9663 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9664 and then not Is_TSS (Subp, TSS_Stream_Input)
9665 and then not Is_TSS (Subp, TSS_Stream_Output)
9666 and then not Is_Abstract_Type (T)
9667 and then Convention (T) /= Convention_CIL
9668 and then not Is_Predefined_Interface_Primitive (Subp)
9669
9670 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9671 -- with abstract interface types because the check will be done
9672 -- with the aliased entity (otherwise we generate a duplicated
9673 -- error message).
9674
9675 and then not Present (Interface_Alias (Subp))
9676 then
9677 if Present (Alias_Subp) then
9678
9679 -- Only perform the check for a derived subprogram when the
9680 -- type has an explicit record extension. This avoids incorrect
9681 -- flagging of abstract subprograms for the case of a type
9682 -- without an extension that is derived from a formal type
9683 -- with a tagged actual (can occur within a private part).
9684
9685 -- Ada 2005 (AI-391): In the case of an inherited function with
9686 -- a controlling result of the type, the rule does not apply if
9687 -- the type is a null extension (unless the parent function
9688 -- itself is abstract, in which case the function must still be
9689 -- be overridden). The expander will generate an overriding
9690 -- wrapper function calling the parent subprogram (see
9691 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9692
9693 Type_Def := Type_Definition (Parent (T));
9694
9695 if Nkind (Type_Def) = N_Derived_Type_Definition
9696 and then Present (Record_Extension_Part (Type_Def))
9697 and then
9698 (Ada_Version < Ada_2005
9699 or else not Is_Null_Extension (T)
9700 or else Ekind (Subp) = E_Procedure
9701 or else not Has_Controlling_Result (Subp)
9702 or else Is_Abstract_Subprogram (Alias_Subp)
9703 or else Requires_Overriding (Subp)
9704 or else Is_Access_Type (Etype (Subp)))
9705 then
9706 -- Avoid reporting error in case of abstract predefined
9707 -- primitive inherited from interface type because the
9708 -- body of internally generated predefined primitives
9709 -- of tagged types are generated later by Freeze_Type
9710
9711 if Is_Interface (Root_Type (T))
9712 and then Is_Abstract_Subprogram (Subp)
9713 and then Is_Predefined_Dispatching_Operation (Subp)
9714 and then not Comes_From_Source (Ultimate_Alias (Subp))
9715 then
9716 null;
9717
9718 else
9719 Error_Msg_NE
9720 ("type must be declared abstract or & overridden",
9721 T, Subp);
9722
9723 -- Traverse the whole chain of aliased subprograms to
9724 -- complete the error notification. This is especially
9725 -- useful for traceability of the chain of entities when
9726 -- the subprogram corresponds with an interface
9727 -- subprogram (which may be defined in another package).
9728
9729 if Present (Alias_Subp) then
9730 declare
9731 E : Entity_Id;
9732
9733 begin
9734 E := Subp;
9735 while Present (Alias (E)) loop
9736
9737 -- Avoid reporting redundant errors on entities
9738 -- inherited from interfaces
9739
9740 if Sloc (E) /= Sloc (T) then
9741 Error_Msg_Sloc := Sloc (E);
9742 Error_Msg_NE
9743 ("\& has been inherited #", T, Subp);
9744 end if;
9745
9746 E := Alias (E);
9747 end loop;
9748
9749 Error_Msg_Sloc := Sloc (E);
9750
9751 -- AI05-0068: report if there is an overriding
9752 -- non-abstract subprogram that is invisible.
9753
9754 if Is_Hidden (E)
9755 and then not Is_Abstract_Subprogram (E)
9756 then
9757 Error_Msg_NE
9758 ("\& subprogram# is not visible",
9759 T, Subp);
9760
9761 else
9762 Error_Msg_NE
9763 ("\& has been inherited from subprogram #",
9764 T, Subp);
9765 end if;
9766 end;
9767 end if;
9768 end if;
9769
9770 -- Ada 2005 (AI-345): Protected or task type implementing
9771 -- abstract interfaces.
9772
9773 elsif Is_Concurrent_Record_Type (T)
9774 and then Present (Interfaces (T))
9775 then
9776 -- If an inherited subprogram is implemented by a protected
9777 -- procedure or an entry, then the first parameter of the
9778 -- inherited subprogram shall be of mode OUT or IN OUT, or
9779 -- an access-to-variable parameter (RM 9.4(11.9/3))
9780
9781 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9782 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9783 and then Ekind (Subp) /= E_Function
9784 and then not Is_Predefined_Dispatching_Operation (Subp)
9785 then
9786 Error_Msg_PT (T, Subp);
9787
9788 -- Some other kind of overriding failure
9789
9790 else
9791 Error_Msg_NE
9792 ("interface subprogram & must be overridden",
9793 T, Subp);
9794
9795 -- Examine primitive operations of synchronized type,
9796 -- to find homonyms that have the wrong profile.
9797
9798 declare
9799 Prim : Entity_Id;
9800
9801 begin
9802 Prim :=
9803 First_Entity (Corresponding_Concurrent_Type (T));
9804 while Present (Prim) loop
9805 if Chars (Prim) = Chars (Subp) then
9806 Error_Msg_NE
9807 ("profile is not type conformant with "
9808 & "prefixed view profile of "
9809 & "inherited operation&", Prim, Subp);
9810 end if;
9811
9812 Next_Entity (Prim);
9813 end loop;
9814 end;
9815 end if;
9816 end if;
9817
9818 else
9819 Error_Msg_Node_2 := T;
9820 Error_Msg_N
9821 ("abstract subprogram& not allowed for type&", Subp);
9822
9823 -- Also post unconditional warning on the type (unconditional
9824 -- so that if there are more than one of these cases, we get
9825 -- them all, and not just the first one).
9826
9827 Error_Msg_Node_2 := Subp;
9828 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9829 end if;
9830 end if;
9831
9832 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9833
9834 -- Subp is an expander-generated procedure which maps an interface
9835 -- alias to a protected wrapper. The interface alias is flagged by
9836 -- pragma Implemented. Ensure that Subp is a procedure when the
9837 -- implementation kind is By_Protected_Procedure or an entry when
9838 -- By_Entry.
9839
9840 if Ada_Version >= Ada_2012
9841 and then Is_Hidden (Subp)
9842 and then Present (Interface_Alias (Subp))
9843 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9844 then
9845 Check_Pragma_Implemented (Subp);
9846 end if;
9847
9848 -- Subp is an interface primitive which overrides another interface
9849 -- primitive marked with pragma Implemented.
9850
9851 if Ada_Version >= Ada_2012
9852 and then Present (Overridden_Operation (Subp))
9853 and then Has_Rep_Pragma
9854 (Overridden_Operation (Subp), Name_Implemented)
9855 then
9856 -- If the overriding routine is also marked by Implemented, check
9857 -- that the two implementation kinds are conforming.
9858
9859 if Has_Rep_Pragma (Subp, Name_Implemented) then
9860 Check_Pragma_Implemented
9861 (Subp => Subp,
9862 Iface_Subp => Overridden_Operation (Subp));
9863
9864 -- Otherwise the overriding routine inherits the implementation
9865 -- kind from the overridden subprogram.
9866
9867 else
9868 Inherit_Pragma_Implemented
9869 (Subp => Subp,
9870 Iface_Subp => Overridden_Operation (Subp));
9871 end if;
9872 end if;
9873
9874 -- If the operation is a wrapper for a synchronized primitive, it
9875 -- may be called indirectly through a dispatching select. We assume
9876 -- that it will be referenced elsewhere indirectly, and suppress
9877 -- warnings about an unused entity.
9878
9879 if Is_Primitive_Wrapper (Subp)
9880 and then Present (Wrapped_Entity (Subp))
9881 then
9882 Set_Referenced (Wrapped_Entity (Subp));
9883 end if;
9884
9885 Next_Elmt (Elmt);
9886 end loop;
9887 end Check_Abstract_Overriding;
9888
9889 ------------------------------------------------
9890 -- Check_Access_Discriminant_Requires_Limited --
9891 ------------------------------------------------
9892
9893 procedure Check_Access_Discriminant_Requires_Limited
9894 (D : Node_Id;
9895 Loc : Node_Id)
9896 is
9897 begin
9898 -- A discriminant_specification for an access discriminant shall appear
9899 -- only in the declaration for a task or protected type, or for a type
9900 -- with the reserved word 'limited' in its definition or in one of its
9901 -- ancestors (RM 3.7(10)).
9902
9903 -- AI-0063: The proper condition is that type must be immutably limited,
9904 -- or else be a partial view.
9905
9906 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9907 if Is_Limited_View (Current_Scope)
9908 or else
9909 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9910 and then Limited_Present (Parent (Current_Scope)))
9911 then
9912 null;
9913
9914 else
9915 Error_Msg_N
9916 ("access discriminants allowed only for limited types", Loc);
9917 end if;
9918 end if;
9919 end Check_Access_Discriminant_Requires_Limited;
9920
9921 -----------------------------------
9922 -- Check_Aliased_Component_Types --
9923 -----------------------------------
9924
9925 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9926 C : Entity_Id;
9927
9928 begin
9929 -- ??? Also need to check components of record extensions, but not
9930 -- components of protected types (which are always limited).
9931
9932 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9933 -- types to be unconstrained. This is safe because it is illegal to
9934 -- create access subtypes to such types with explicit discriminant
9935 -- constraints.
9936
9937 if not Is_Limited_Type (T) then
9938 if Ekind (T) = E_Record_Type then
9939 C := First_Component (T);
9940 while Present (C) loop
9941 if Is_Aliased (C)
9942 and then Has_Discriminants (Etype (C))
9943 and then not Is_Constrained (Etype (C))
9944 and then not In_Instance_Body
9945 and then Ada_Version < Ada_2005
9946 then
9947 Error_Msg_N
9948 ("aliased component must be constrained (RM 3.6(11))",
9949 C);
9950 end if;
9951
9952 Next_Component (C);
9953 end loop;
9954
9955 elsif Ekind (T) = E_Array_Type then
9956 if Has_Aliased_Components (T)
9957 and then Has_Discriminants (Component_Type (T))
9958 and then not Is_Constrained (Component_Type (T))
9959 and then not In_Instance_Body
9960 and then Ada_Version < Ada_2005
9961 then
9962 Error_Msg_N
9963 ("aliased component type must be constrained (RM 3.6(11))",
9964 T);
9965 end if;
9966 end if;
9967 end if;
9968 end Check_Aliased_Component_Types;
9969
9970 ----------------------
9971 -- Check_Completion --
9972 ----------------------
9973
9974 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9975 E : Entity_Id;
9976
9977 procedure Post_Error;
9978 -- Post error message for lack of completion for entity E
9979
9980 ----------------
9981 -- Post_Error --
9982 ----------------
9983
9984 procedure Post_Error is
9985
9986 procedure Missing_Body;
9987 -- Output missing body message
9988
9989 ------------------
9990 -- Missing_Body --
9991 ------------------
9992
9993 procedure Missing_Body is
9994 begin
9995 -- Spec is in same unit, so we can post on spec
9996
9997 if In_Same_Source_Unit (Body_Id, E) then
9998 Error_Msg_N ("missing body for &", E);
9999
10000 -- Spec is in a separate unit, so we have to post on the body
10001
10002 else
10003 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10004 end if;
10005 end Missing_Body;
10006
10007 -- Start of processing for Post_Error
10008
10009 begin
10010 if not Comes_From_Source (E) then
10011
10012 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10013 -- It may be an anonymous protected type created for a
10014 -- single variable. Post error on variable, if present.
10015
10016 declare
10017 Var : Entity_Id;
10018
10019 begin
10020 Var := First_Entity (Current_Scope);
10021 while Present (Var) loop
10022 exit when Etype (Var) = E
10023 and then Comes_From_Source (Var);
10024
10025 Next_Entity (Var);
10026 end loop;
10027
10028 if Present (Var) then
10029 E := Var;
10030 end if;
10031 end;
10032 end if;
10033 end if;
10034
10035 -- If a generated entity has no completion, then either previous
10036 -- semantic errors have disabled the expansion phase, or else we had
10037 -- missing subunits, or else we are compiling without expansion,
10038 -- or else something is very wrong.
10039
10040 if not Comes_From_Source (E) then
10041 pragma Assert
10042 (Serious_Errors_Detected > 0
10043 or else Configurable_Run_Time_Violations > 0
10044 or else Subunits_Missing
10045 or else not Expander_Active);
10046 return;
10047
10048 -- Here for source entity
10049
10050 else
10051 -- Here if no body to post the error message, so we post the error
10052 -- on the declaration that has no completion. This is not really
10053 -- the right place to post it, think about this later ???
10054
10055 if No (Body_Id) then
10056 if Is_Type (E) then
10057 Error_Msg_NE
10058 ("missing full declaration for }", Parent (E), E);
10059 else
10060 Error_Msg_NE ("missing body for &", Parent (E), E);
10061 end if;
10062
10063 -- Package body has no completion for a declaration that appears
10064 -- in the corresponding spec. Post error on the body, with a
10065 -- reference to the non-completed declaration.
10066
10067 else
10068 Error_Msg_Sloc := Sloc (E);
10069
10070 if Is_Type (E) then
10071 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10072
10073 elsif Is_Overloadable (E)
10074 and then Current_Entity_In_Scope (E) /= E
10075 then
10076 -- It may be that the completion is mistyped and appears as
10077 -- a distinct overloading of the entity.
10078
10079 declare
10080 Candidate : constant Entity_Id :=
10081 Current_Entity_In_Scope (E);
10082 Decl : constant Node_Id :=
10083 Unit_Declaration_Node (Candidate);
10084
10085 begin
10086 if Is_Overloadable (Candidate)
10087 and then Ekind (Candidate) = Ekind (E)
10088 and then Nkind (Decl) = N_Subprogram_Body
10089 and then Acts_As_Spec (Decl)
10090 then
10091 Check_Type_Conformant (Candidate, E);
10092
10093 else
10094 Missing_Body;
10095 end if;
10096 end;
10097
10098 else
10099 Missing_Body;
10100 end if;
10101 end if;
10102 end if;
10103 end Post_Error;
10104
10105 -- Start of processing for Check_Completion
10106
10107 begin
10108 E := First_Entity (Current_Scope);
10109 while Present (E) loop
10110 if Is_Intrinsic_Subprogram (E) then
10111 null;
10112
10113 -- The following situation requires special handling: a child unit
10114 -- that appears in the context clause of the body of its parent:
10115
10116 -- procedure Parent.Child (...);
10117
10118 -- with Parent.Child;
10119 -- package body Parent is
10120
10121 -- Here Parent.Child appears as a local entity, but should not be
10122 -- flagged as requiring completion, because it is a compilation
10123 -- unit.
10124
10125 -- Ignore missing completion for a subprogram that does not come from
10126 -- source (including the _Call primitive operation of RAS types,
10127 -- which has to have the flag Comes_From_Source for other purposes):
10128 -- we assume that the expander will provide the missing completion.
10129 -- In case of previous errors, other expansion actions that provide
10130 -- bodies for null procedures with not be invoked, so inhibit message
10131 -- in those cases.
10132
10133 -- Note that E_Operator is not in the list that follows, because
10134 -- this kind is reserved for predefined operators, that are
10135 -- intrinsic and do not need completion.
10136
10137 elsif Ekind (E) = E_Function
10138 or else Ekind (E) = E_Procedure
10139 or else Ekind (E) = E_Generic_Function
10140 or else Ekind (E) = E_Generic_Procedure
10141 then
10142 if Has_Completion (E) then
10143 null;
10144
10145 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10146 null;
10147
10148 elsif Is_Subprogram (E)
10149 and then (not Comes_From_Source (E)
10150 or else Chars (E) = Name_uCall)
10151 then
10152 null;
10153
10154 elsif
10155 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10156 then
10157 null;
10158
10159 elsif Nkind (Parent (E)) = N_Procedure_Specification
10160 and then Null_Present (Parent (E))
10161 and then Serious_Errors_Detected > 0
10162 then
10163 null;
10164
10165 else
10166 Post_Error;
10167 end if;
10168
10169 elsif Is_Entry (E) then
10170 if not Has_Completion (E) and then
10171 (Ekind (Scope (E)) = E_Protected_Object
10172 or else Ekind (Scope (E)) = E_Protected_Type)
10173 then
10174 Post_Error;
10175 end if;
10176
10177 elsif Is_Package_Or_Generic_Package (E) then
10178 if Unit_Requires_Body (E) then
10179 if not Has_Completion (E)
10180 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10181 N_Compilation_Unit
10182 then
10183 Post_Error;
10184 end if;
10185
10186 elsif not Is_Child_Unit (E) then
10187 May_Need_Implicit_Body (E);
10188 end if;
10189
10190 -- A formal incomplete type (Ada 2012) does not require a completion;
10191 -- other incomplete type declarations do.
10192
10193 elsif Ekind (E) = E_Incomplete_Type
10194 and then No (Underlying_Type (E))
10195 and then not Is_Generic_Type (E)
10196 then
10197 Post_Error;
10198
10199 elsif (Ekind (E) = E_Task_Type or else
10200 Ekind (E) = E_Protected_Type)
10201 and then not Has_Completion (E)
10202 then
10203 Post_Error;
10204
10205 -- A single task declared in the current scope is a constant, verify
10206 -- that the body of its anonymous type is in the same scope. If the
10207 -- task is defined elsewhere, this may be a renaming declaration for
10208 -- which no completion is needed.
10209
10210 elsif Ekind (E) = E_Constant
10211 and then Ekind (Etype (E)) = E_Task_Type
10212 and then not Has_Completion (Etype (E))
10213 and then Scope (Etype (E)) = Current_Scope
10214 then
10215 Post_Error;
10216
10217 elsif Ekind (E) = E_Protected_Object
10218 and then not Has_Completion (Etype (E))
10219 then
10220 Post_Error;
10221
10222 elsif Ekind (E) = E_Record_Type then
10223 if Is_Tagged_Type (E) then
10224 Check_Abstract_Overriding (E);
10225 Check_Conventions (E);
10226 end if;
10227
10228 Check_Aliased_Component_Types (E);
10229
10230 elsif Ekind (E) = E_Array_Type then
10231 Check_Aliased_Component_Types (E);
10232
10233 end if;
10234
10235 Next_Entity (E);
10236 end loop;
10237 end Check_Completion;
10238
10239 ------------------------------------
10240 -- Check_CPP_Type_Has_No_Defaults --
10241 ------------------------------------
10242
10243 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10244 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10245 Clist : Node_Id;
10246 Comp : Node_Id;
10247
10248 begin
10249 -- Obtain the component list
10250
10251 if Nkind (Tdef) = N_Record_Definition then
10252 Clist := Component_List (Tdef);
10253 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10254 Clist := Component_List (Record_Extension_Part (Tdef));
10255 end if;
10256
10257 -- Check all components to ensure no default expressions
10258
10259 if Present (Clist) then
10260 Comp := First (Component_Items (Clist));
10261 while Present (Comp) loop
10262 if Present (Expression (Comp)) then
10263 Error_Msg_N
10264 ("component of imported 'C'P'P type cannot have "
10265 & "default expression", Expression (Comp));
10266 end if;
10267
10268 Next (Comp);
10269 end loop;
10270 end if;
10271 end Check_CPP_Type_Has_No_Defaults;
10272
10273 ----------------------------
10274 -- Check_Delta_Expression --
10275 ----------------------------
10276
10277 procedure Check_Delta_Expression (E : Node_Id) is
10278 begin
10279 if not (Is_Real_Type (Etype (E))) then
10280 Wrong_Type (E, Any_Real);
10281
10282 elsif not Is_OK_Static_Expression (E) then
10283 Flag_Non_Static_Expr
10284 ("non-static expression used for delta value!", E);
10285
10286 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10287 Error_Msg_N ("delta expression must be positive", E);
10288
10289 else
10290 return;
10291 end if;
10292
10293 -- If any of above errors occurred, then replace the incorrect
10294 -- expression by the real 0.1, which should prevent further errors.
10295
10296 Rewrite (E,
10297 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10298 Analyze_And_Resolve (E, Standard_Float);
10299 end Check_Delta_Expression;
10300
10301 -----------------------------
10302 -- Check_Digits_Expression --
10303 -----------------------------
10304
10305 procedure Check_Digits_Expression (E : Node_Id) is
10306 begin
10307 if not (Is_Integer_Type (Etype (E))) then
10308 Wrong_Type (E, Any_Integer);
10309
10310 elsif not Is_OK_Static_Expression (E) then
10311 Flag_Non_Static_Expr
10312 ("non-static expression used for digits value!", E);
10313
10314 elsif Expr_Value (E) <= 0 then
10315 Error_Msg_N ("digits value must be greater than zero", E);
10316
10317 else
10318 return;
10319 end if;
10320
10321 -- If any of above errors occurred, then replace the incorrect
10322 -- expression by the integer 1, which should prevent further errors.
10323
10324 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10325 Analyze_And_Resolve (E, Standard_Integer);
10326
10327 end Check_Digits_Expression;
10328
10329 --------------------------
10330 -- Check_Initialization --
10331 --------------------------
10332
10333 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10334 begin
10335 -- Special processing for limited types
10336
10337 if Is_Limited_Type (T)
10338 and then not In_Instance
10339 and then not In_Inlined_Body
10340 then
10341 if not OK_For_Limited_Init (T, Exp) then
10342
10343 -- In GNAT mode, this is just a warning, to allow it to be evilly
10344 -- turned off. Otherwise it is a real error.
10345
10346 if GNAT_Mode then
10347 Error_Msg_N
10348 ("??cannot initialize entities of limited type!", Exp);
10349
10350 elsif Ada_Version < Ada_2005 then
10351
10352 -- The side effect removal machinery may generate illegal Ada
10353 -- code to avoid the usage of access types and 'reference in
10354 -- SPARK mode. Since this is legal code with respect to theorem
10355 -- proving, do not emit the error.
10356
10357 if GNATprove_Mode
10358 and then Nkind (Exp) = N_Function_Call
10359 and then Nkind (Parent (Exp)) = N_Object_Declaration
10360 and then not Comes_From_Source
10361 (Defining_Identifier (Parent (Exp)))
10362 then
10363 null;
10364
10365 else
10366 Error_Msg_N
10367 ("cannot initialize entities of limited type", Exp);
10368 Explain_Limited_Type (T, Exp);
10369 end if;
10370
10371 else
10372 -- Specialize error message according to kind of illegal
10373 -- initial expression.
10374
10375 if Nkind (Exp) = N_Type_Conversion
10376 and then Nkind (Expression (Exp)) = N_Function_Call
10377 then
10378 Error_Msg_N
10379 ("illegal context for call"
10380 & " to function with limited result", Exp);
10381
10382 else
10383 Error_Msg_N
10384 ("initialization of limited object requires aggregate "
10385 & "or function call", Exp);
10386 end if;
10387 end if;
10388 end if;
10389 end if;
10390
10391 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10392 -- set unless we can be sure that no range check is required.
10393
10394 if (GNATprove_Mode or not Expander_Active)
10395 and then Is_Scalar_Type (T)
10396 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10397 then
10398 Set_Do_Range_Check (Exp);
10399 end if;
10400 end Check_Initialization;
10401
10402 ----------------------
10403 -- Check_Interfaces --
10404 ----------------------
10405
10406 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10407 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10408
10409 Iface : Node_Id;
10410 Iface_Def : Node_Id;
10411 Iface_Typ : Entity_Id;
10412 Parent_Node : Node_Id;
10413
10414 Is_Task : Boolean := False;
10415 -- Set True if parent type or any progenitor is a task interface
10416
10417 Is_Protected : Boolean := False;
10418 -- Set True if parent type or any progenitor is a protected interface
10419
10420 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10421 -- Check that a progenitor is compatible with declaration.
10422 -- Error is posted on Error_Node.
10423
10424 ------------------
10425 -- Check_Ifaces --
10426 ------------------
10427
10428 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10429 Iface_Id : constant Entity_Id :=
10430 Defining_Identifier (Parent (Iface_Def));
10431 Type_Def : Node_Id;
10432
10433 begin
10434 if Nkind (N) = N_Private_Extension_Declaration then
10435 Type_Def := N;
10436 else
10437 Type_Def := Type_Definition (N);
10438 end if;
10439
10440 if Is_Task_Interface (Iface_Id) then
10441 Is_Task := True;
10442
10443 elsif Is_Protected_Interface (Iface_Id) then
10444 Is_Protected := True;
10445 end if;
10446
10447 if Is_Synchronized_Interface (Iface_Id) then
10448
10449 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10450 -- extension derived from a synchronized interface must explicitly
10451 -- be declared synchronized, because the full view will be a
10452 -- synchronized type.
10453
10454 if Nkind (N) = N_Private_Extension_Declaration then
10455 if not Synchronized_Present (N) then
10456 Error_Msg_NE
10457 ("private extension of& must be explicitly synchronized",
10458 N, Iface_Id);
10459 end if;
10460
10461 -- However, by 3.9.4(16/2), a full type that is a record extension
10462 -- is never allowed to derive from a synchronized interface (note
10463 -- that interfaces must be excluded from this check, because those
10464 -- are represented by derived type definitions in some cases).
10465
10466 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10467 and then not Interface_Present (Type_Definition (N))
10468 then
10469 Error_Msg_N ("record extension cannot derive from synchronized"
10470 & " interface", Error_Node);
10471 end if;
10472 end if;
10473
10474 -- Check that the characteristics of the progenitor are compatible
10475 -- with the explicit qualifier in the declaration.
10476 -- The check only applies to qualifiers that come from source.
10477 -- Limited_Present also appears in the declaration of corresponding
10478 -- records, and the check does not apply to them.
10479
10480 if Limited_Present (Type_Def)
10481 and then not
10482 Is_Concurrent_Record_Type (Defining_Identifier (N))
10483 then
10484 if Is_Limited_Interface (Parent_Type)
10485 and then not Is_Limited_Interface (Iface_Id)
10486 then
10487 Error_Msg_NE
10488 ("progenitor& must be limited interface",
10489 Error_Node, Iface_Id);
10490
10491 elsif
10492 (Task_Present (Iface_Def)
10493 or else Protected_Present (Iface_Def)
10494 or else Synchronized_Present (Iface_Def))
10495 and then Nkind (N) /= N_Private_Extension_Declaration
10496 and then not Error_Posted (N)
10497 then
10498 Error_Msg_NE
10499 ("progenitor& must be limited interface",
10500 Error_Node, Iface_Id);
10501 end if;
10502
10503 -- Protected interfaces can only inherit from limited, synchronized
10504 -- or protected interfaces.
10505
10506 elsif Nkind (N) = N_Full_Type_Declaration
10507 and then Protected_Present (Type_Def)
10508 then
10509 if Limited_Present (Iface_Def)
10510 or else Synchronized_Present (Iface_Def)
10511 or else Protected_Present (Iface_Def)
10512 then
10513 null;
10514
10515 elsif Task_Present (Iface_Def) then
10516 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10517 & " from task interface", Error_Node);
10518
10519 else
10520 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10521 & " from non-limited interface", Error_Node);
10522 end if;
10523
10524 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10525 -- limited and synchronized.
10526
10527 elsif Synchronized_Present (Type_Def) then
10528 if Limited_Present (Iface_Def)
10529 or else Synchronized_Present (Iface_Def)
10530 then
10531 null;
10532
10533 elsif Protected_Present (Iface_Def)
10534 and then Nkind (N) /= N_Private_Extension_Declaration
10535 then
10536 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10537 & " from protected interface", Error_Node);
10538
10539 elsif Task_Present (Iface_Def)
10540 and then Nkind (N) /= N_Private_Extension_Declaration
10541 then
10542 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10543 & " from task interface", Error_Node);
10544
10545 elsif not Is_Limited_Interface (Iface_Id) then
10546 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10547 & " from non-limited interface", Error_Node);
10548 end if;
10549
10550 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10551 -- synchronized or task interfaces.
10552
10553 elsif Nkind (N) = N_Full_Type_Declaration
10554 and then Task_Present (Type_Def)
10555 then
10556 if Limited_Present (Iface_Def)
10557 or else Synchronized_Present (Iface_Def)
10558 or else Task_Present (Iface_Def)
10559 then
10560 null;
10561
10562 elsif Protected_Present (Iface_Def) then
10563 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10564 & " protected interface", Error_Node);
10565
10566 else
10567 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10568 & " non-limited interface", Error_Node);
10569 end if;
10570 end if;
10571 end Check_Ifaces;
10572
10573 -- Start of processing for Check_Interfaces
10574
10575 begin
10576 if Is_Interface (Parent_Type) then
10577 if Is_Task_Interface (Parent_Type) then
10578 Is_Task := True;
10579
10580 elsif Is_Protected_Interface (Parent_Type) then
10581 Is_Protected := True;
10582 end if;
10583 end if;
10584
10585 if Nkind (N) = N_Private_Extension_Declaration then
10586
10587 -- Check that progenitors are compatible with declaration
10588
10589 Iface := First (Interface_List (Def));
10590 while Present (Iface) loop
10591 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10592
10593 Parent_Node := Parent (Base_Type (Iface_Typ));
10594 Iface_Def := Type_Definition (Parent_Node);
10595
10596 if not Is_Interface (Iface_Typ) then
10597 Diagnose_Interface (Iface, Iface_Typ);
10598
10599 else
10600 Check_Ifaces (Iface_Def, Iface);
10601 end if;
10602
10603 Next (Iface);
10604 end loop;
10605
10606 if Is_Task and Is_Protected then
10607 Error_Msg_N
10608 ("type cannot derive from task and protected interface", N);
10609 end if;
10610
10611 return;
10612 end if;
10613
10614 -- Full type declaration of derived type.
10615 -- Check compatibility with parent if it is interface type
10616
10617 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10618 and then Is_Interface (Parent_Type)
10619 then
10620 Parent_Node := Parent (Parent_Type);
10621
10622 -- More detailed checks for interface varieties
10623
10624 Check_Ifaces
10625 (Iface_Def => Type_Definition (Parent_Node),
10626 Error_Node => Subtype_Indication (Type_Definition (N)));
10627 end if;
10628
10629 Iface := First (Interface_List (Def));
10630 while Present (Iface) loop
10631 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10632
10633 Parent_Node := Parent (Base_Type (Iface_Typ));
10634 Iface_Def := Type_Definition (Parent_Node);
10635
10636 if not Is_Interface (Iface_Typ) then
10637 Diagnose_Interface (Iface, Iface_Typ);
10638
10639 else
10640 -- "The declaration of a specific descendant of an interface
10641 -- type freezes the interface type" RM 13.14
10642
10643 Freeze_Before (N, Iface_Typ);
10644 Check_Ifaces (Iface_Def, Error_Node => Iface);
10645 end if;
10646
10647 Next (Iface);
10648 end loop;
10649
10650 if Is_Task and Is_Protected then
10651 Error_Msg_N
10652 ("type cannot derive from task and protected interface", N);
10653 end if;
10654 end Check_Interfaces;
10655
10656 ------------------------------------
10657 -- Check_Or_Process_Discriminants --
10658 ------------------------------------
10659
10660 -- If an incomplete or private type declaration was already given for the
10661 -- type, the discriminants may have already been processed if they were
10662 -- present on the incomplete declaration. In this case a full conformance
10663 -- check has been performed in Find_Type_Name, and we then recheck here
10664 -- some properties that can't be checked on the partial view alone.
10665 -- Otherwise we call Process_Discriminants.
10666
10667 procedure Check_Or_Process_Discriminants
10668 (N : Node_Id;
10669 T : Entity_Id;
10670 Prev : Entity_Id := Empty)
10671 is
10672 begin
10673 if Has_Discriminants (T) then
10674
10675 -- Discriminants are already set on T if they were already present
10676 -- on the partial view. Make them visible to component declarations.
10677
10678 declare
10679 D : Entity_Id;
10680 -- Discriminant on T (full view) referencing expr on partial view
10681
10682 Prev_D : Entity_Id;
10683 -- Entity of corresponding discriminant on partial view
10684
10685 New_D : Node_Id;
10686 -- Discriminant specification for full view, expression is the
10687 -- syntactic copy on full view (which has been checked for
10688 -- conformance with partial view), only used here to post error
10689 -- message.
10690
10691 begin
10692 D := First_Discriminant (T);
10693 New_D := First (Discriminant_Specifications (N));
10694 while Present (D) loop
10695 Prev_D := Current_Entity (D);
10696 Set_Current_Entity (D);
10697 Set_Is_Immediately_Visible (D);
10698 Set_Homonym (D, Prev_D);
10699
10700 -- Handle the case where there is an untagged partial view and
10701 -- the full view is tagged: must disallow discriminants with
10702 -- defaults, unless compiling for Ada 2012, which allows a
10703 -- limited tagged type to have defaulted discriminants (see
10704 -- AI05-0214). However, suppress error here if it was already
10705 -- reported on the default expression of the partial view.
10706
10707 if Is_Tagged_Type (T)
10708 and then Present (Expression (Parent (D)))
10709 and then (not Is_Limited_Type (Current_Scope)
10710 or else Ada_Version < Ada_2012)
10711 and then not Error_Posted (Expression (Parent (D)))
10712 then
10713 if Ada_Version >= Ada_2012 then
10714 Error_Msg_N
10715 ("discriminants of nonlimited tagged type cannot have"
10716 & " defaults",
10717 Expression (New_D));
10718 else
10719 Error_Msg_N
10720 ("discriminants of tagged type cannot have defaults",
10721 Expression (New_D));
10722 end if;
10723 end if;
10724
10725 -- Ada 2005 (AI-230): Access discriminant allowed in
10726 -- non-limited record types.
10727
10728 if Ada_Version < Ada_2005 then
10729
10730 -- This restriction gets applied to the full type here. It
10731 -- has already been applied earlier to the partial view.
10732
10733 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10734 end if;
10735
10736 Next_Discriminant (D);
10737 Next (New_D);
10738 end loop;
10739 end;
10740
10741 elsif Present (Discriminant_Specifications (N)) then
10742 Process_Discriminants (N, Prev);
10743 end if;
10744 end Check_Or_Process_Discriminants;
10745
10746 ----------------------
10747 -- Check_Real_Bound --
10748 ----------------------
10749
10750 procedure Check_Real_Bound (Bound : Node_Id) is
10751 begin
10752 if not Is_Real_Type (Etype (Bound)) then
10753 Error_Msg_N
10754 ("bound in real type definition must be of real type", Bound);
10755
10756 elsif not Is_OK_Static_Expression (Bound) then
10757 Flag_Non_Static_Expr
10758 ("non-static expression used for real type bound!", Bound);
10759
10760 else
10761 return;
10762 end if;
10763
10764 Rewrite
10765 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10766 Analyze (Bound);
10767 Resolve (Bound, Standard_Float);
10768 end Check_Real_Bound;
10769
10770 ------------------------------
10771 -- Complete_Private_Subtype --
10772 ------------------------------
10773
10774 procedure Complete_Private_Subtype
10775 (Priv : Entity_Id;
10776 Full : Entity_Id;
10777 Full_Base : Entity_Id;
10778 Related_Nod : Node_Id)
10779 is
10780 Save_Next_Entity : Entity_Id;
10781 Save_Homonym : Entity_Id;
10782
10783 begin
10784 -- Set semantic attributes for (implicit) private subtype completion.
10785 -- If the full type has no discriminants, then it is a copy of the full
10786 -- view of the base. Otherwise, it is a subtype of the base with a
10787 -- possible discriminant constraint. Save and restore the original
10788 -- Next_Entity field of full to ensure that the calls to Copy_Node
10789 -- do not corrupt the entity chain.
10790
10791 -- Note that the type of the full view is the same entity as the type of
10792 -- the partial view. In this fashion, the subtype has access to the
10793 -- correct view of the parent.
10794
10795 Save_Next_Entity := Next_Entity (Full);
10796 Save_Homonym := Homonym (Priv);
10797
10798 case Ekind (Full_Base) is
10799 when E_Record_Type |
10800 E_Record_Subtype |
10801 Class_Wide_Kind |
10802 Private_Kind |
10803 Task_Kind |
10804 Protected_Kind =>
10805 Copy_Node (Priv, Full);
10806
10807 Set_Has_Discriminants
10808 (Full, Has_Discriminants (Full_Base));
10809 Set_Has_Unknown_Discriminants
10810 (Full, Has_Unknown_Discriminants (Full_Base));
10811 Set_First_Entity (Full, First_Entity (Full_Base));
10812 Set_Last_Entity (Full, Last_Entity (Full_Base));
10813
10814 -- If the underlying base type is constrained, we know that the
10815 -- full view of the subtype is constrained as well (the converse
10816 -- is not necessarily true).
10817
10818 if Is_Constrained (Full_Base) then
10819 Set_Is_Constrained (Full);
10820 end if;
10821
10822 when others =>
10823 Copy_Node (Full_Base, Full);
10824
10825 Set_Chars (Full, Chars (Priv));
10826 Conditional_Delay (Full, Priv);
10827 Set_Sloc (Full, Sloc (Priv));
10828 end case;
10829
10830 Set_Next_Entity (Full, Save_Next_Entity);
10831 Set_Homonym (Full, Save_Homonym);
10832 Set_Associated_Node_For_Itype (Full, Related_Nod);
10833
10834 -- Set common attributes for all subtypes: kind, convention, etc.
10835
10836 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10837 Set_Convention (Full, Convention (Full_Base));
10838
10839 -- The Etype of the full view is inconsistent. Gigi needs to see the
10840 -- structural full view, which is what the current scheme gives:
10841 -- the Etype of the full view is the etype of the full base. However,
10842 -- if the full base is a derived type, the full view then looks like
10843 -- a subtype of the parent, not a subtype of the full base. If instead
10844 -- we write:
10845
10846 -- Set_Etype (Full, Full_Base);
10847
10848 -- then we get inconsistencies in the front-end (confusion between
10849 -- views). Several outstanding bugs are related to this ???
10850
10851 Set_Is_First_Subtype (Full, False);
10852 Set_Scope (Full, Scope (Priv));
10853 Set_Size_Info (Full, Full_Base);
10854 Set_RM_Size (Full, RM_Size (Full_Base));
10855 Set_Is_Itype (Full);
10856
10857 -- A subtype of a private-type-without-discriminants, whose full-view
10858 -- has discriminants with default expressions, is not constrained.
10859
10860 if not Has_Discriminants (Priv) then
10861 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10862
10863 if Has_Discriminants (Full_Base) then
10864 Set_Discriminant_Constraint
10865 (Full, Discriminant_Constraint (Full_Base));
10866
10867 -- The partial view may have been indefinite, the full view
10868 -- might not be.
10869
10870 Set_Has_Unknown_Discriminants
10871 (Full, Has_Unknown_Discriminants (Full_Base));
10872 end if;
10873 end if;
10874
10875 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10876 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10877
10878 -- Freeze the private subtype entity if its parent is delayed, and not
10879 -- already frozen. We skip this processing if the type is an anonymous
10880 -- subtype of a record component, or is the corresponding record of a
10881 -- protected type, since ???
10882
10883 if not Is_Type (Scope (Full)) then
10884 Set_Has_Delayed_Freeze (Full,
10885 Has_Delayed_Freeze (Full_Base)
10886 and then (not Is_Frozen (Full_Base)));
10887 end if;
10888
10889 Set_Freeze_Node (Full, Empty);
10890 Set_Is_Frozen (Full, False);
10891 Set_Full_View (Priv, Full);
10892
10893 if Has_Discriminants (Full) then
10894 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10895 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10896
10897 if Has_Unknown_Discriminants (Full) then
10898 Set_Discriminant_Constraint (Full, No_Elist);
10899 end if;
10900 end if;
10901
10902 if Ekind (Full_Base) = E_Record_Type
10903 and then Has_Discriminants (Full_Base)
10904 and then Has_Discriminants (Priv) -- might not, if errors
10905 and then not Has_Unknown_Discriminants (Priv)
10906 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10907 then
10908 Create_Constrained_Components
10909 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10910
10911 -- If the full base is itself derived from private, build a congruent
10912 -- subtype of its underlying type, for use by the back end. For a
10913 -- constrained record component, the declaration cannot be placed on
10914 -- the component list, but it must nevertheless be built an analyzed, to
10915 -- supply enough information for Gigi to compute the size of component.
10916
10917 elsif Ekind (Full_Base) in Private_Kind
10918 and then Is_Derived_Type (Full_Base)
10919 and then Has_Discriminants (Full_Base)
10920 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10921 then
10922 if not Is_Itype (Priv)
10923 and then
10924 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10925 then
10926 Build_Underlying_Full_View
10927 (Parent (Priv), Full, Etype (Full_Base));
10928
10929 elsif Nkind (Related_Nod) = N_Component_Declaration then
10930 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10931 end if;
10932
10933 elsif Is_Record_Type (Full_Base) then
10934
10935 -- Show Full is simply a renaming of Full_Base
10936
10937 Set_Cloned_Subtype (Full, Full_Base);
10938 end if;
10939
10940 -- It is unsafe to share the bounds of a scalar type, because the Itype
10941 -- is elaborated on demand, and if a bound is non-static then different
10942 -- orders of elaboration in different units will lead to different
10943 -- external symbols.
10944
10945 if Is_Scalar_Type (Full_Base) then
10946 Set_Scalar_Range (Full,
10947 Make_Range (Sloc (Related_Nod),
10948 Low_Bound =>
10949 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10950 High_Bound =>
10951 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10952
10953 -- This completion inherits the bounds of the full parent, but if
10954 -- the parent is an unconstrained floating point type, so is the
10955 -- completion.
10956
10957 if Is_Floating_Point_Type (Full_Base) then
10958 Set_Includes_Infinities
10959 (Scalar_Range (Full), Has_Infinities (Full_Base));
10960 end if;
10961 end if;
10962
10963 -- ??? It seems that a lot of fields are missing that should be copied
10964 -- from Full_Base to Full. Here are some that are introduced in a
10965 -- non-disruptive way but a cleanup is necessary.
10966
10967 if Is_Tagged_Type (Full_Base) then
10968 Set_Is_Tagged_Type (Full);
10969 Set_Direct_Primitive_Operations (Full,
10970 Direct_Primitive_Operations (Full_Base));
10971
10972 -- Inherit class_wide type of full_base in case the partial view was
10973 -- not tagged. Otherwise it has already been created when the private
10974 -- subtype was analyzed.
10975
10976 if No (Class_Wide_Type (Full)) then
10977 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10978 end if;
10979
10980 -- If this is a subtype of a protected or task type, constrain its
10981 -- corresponding record, unless this is a subtype without constraints,
10982 -- i.e. a simple renaming as with an actual subtype in an instance.
10983
10984 elsif Is_Concurrent_Type (Full_Base) then
10985 if Has_Discriminants (Full)
10986 and then Present (Corresponding_Record_Type (Full_Base))
10987 and then
10988 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10989 then
10990 Set_Corresponding_Record_Type (Full,
10991 Constrain_Corresponding_Record
10992 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10993
10994 else
10995 Set_Corresponding_Record_Type (Full,
10996 Corresponding_Record_Type (Full_Base));
10997 end if;
10998 end if;
10999
11000 -- Link rep item chain, and also setting of Has_Predicates from private
11001 -- subtype to full subtype, since we will need these on the full subtype
11002 -- to create the predicate function. Note that the full subtype may
11003 -- already have rep items, inherited from the full view of the base
11004 -- type, so we must be sure not to overwrite these entries.
11005
11006 declare
11007 Append : Boolean;
11008 Item : Node_Id;
11009 Next_Item : Node_Id;
11010
11011 begin
11012 Item := First_Rep_Item (Full);
11013
11014 -- If no existing rep items on full type, we can just link directly
11015 -- to the list of items on the private type.
11016
11017 if No (Item) then
11018 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11019
11020 -- Otherwise, search to the end of items currently linked to the full
11021 -- subtype and append the private items to the end. However, if Priv
11022 -- and Full already have the same list of rep items, then the append
11023 -- is not done, as that would create a circularity.
11024
11025 elsif Item /= First_Rep_Item (Priv) then
11026 Append := True;
11027
11028 loop
11029 Next_Item := Next_Rep_Item (Item);
11030 exit when No (Next_Item);
11031 Item := Next_Item;
11032
11033 -- If the private view has aspect specifications, the full view
11034 -- inherits them. Since these aspects may already have been
11035 -- attached to the full view during derivation, do not append
11036 -- them if already present.
11037
11038 if Item = First_Rep_Item (Priv) then
11039 Append := False;
11040 exit;
11041 end if;
11042 end loop;
11043
11044 -- And link the private type items at the end of the chain
11045
11046 if Append then
11047 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11048 end if;
11049 end if;
11050 end;
11051
11052 -- Make sure Has_Predicates is set on full type if it is set on the
11053 -- private type. Note that it may already be set on the full type and
11054 -- if so, we don't want to unset it.
11055
11056 if Has_Predicates (Priv) then
11057 Set_Has_Predicates (Full);
11058 end if;
11059 end Complete_Private_Subtype;
11060
11061 ----------------------------
11062 -- Constant_Redeclaration --
11063 ----------------------------
11064
11065 procedure Constant_Redeclaration
11066 (Id : Entity_Id;
11067 N : Node_Id;
11068 T : out Entity_Id)
11069 is
11070 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11071 Obj_Def : constant Node_Id := Object_Definition (N);
11072 New_T : Entity_Id;
11073
11074 procedure Check_Possible_Deferred_Completion
11075 (Prev_Id : Entity_Id;
11076 Prev_Obj_Def : Node_Id;
11077 Curr_Obj_Def : Node_Id);
11078 -- Determine whether the two object definitions describe the partial
11079 -- and the full view of a constrained deferred constant. Generate
11080 -- a subtype for the full view and verify that it statically matches
11081 -- the subtype of the partial view.
11082
11083 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11084 -- If deferred constant is an access type initialized with an allocator,
11085 -- check whether there is an illegal recursion in the definition,
11086 -- through a default value of some record subcomponent. This is normally
11087 -- detected when generating init procs, but requires this additional
11088 -- mechanism when expansion is disabled.
11089
11090 ----------------------------------------
11091 -- Check_Possible_Deferred_Completion --
11092 ----------------------------------------
11093
11094 procedure Check_Possible_Deferred_Completion
11095 (Prev_Id : Entity_Id;
11096 Prev_Obj_Def : Node_Id;
11097 Curr_Obj_Def : Node_Id)
11098 is
11099 begin
11100 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11101 and then Present (Constraint (Prev_Obj_Def))
11102 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11103 and then Present (Constraint (Curr_Obj_Def))
11104 then
11105 declare
11106 Loc : constant Source_Ptr := Sloc (N);
11107 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11108 Decl : constant Node_Id :=
11109 Make_Subtype_Declaration (Loc,
11110 Defining_Identifier => Def_Id,
11111 Subtype_Indication =>
11112 Relocate_Node (Curr_Obj_Def));
11113
11114 begin
11115 Insert_Before_And_Analyze (N, Decl);
11116 Set_Etype (Id, Def_Id);
11117
11118 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11119 Error_Msg_Sloc := Sloc (Prev_Id);
11120 Error_Msg_N ("subtype does not statically match deferred " &
11121 "declaration#", N);
11122 end if;
11123 end;
11124 end if;
11125 end Check_Possible_Deferred_Completion;
11126
11127 ---------------------------------
11128 -- Check_Recursive_Declaration --
11129 ---------------------------------
11130
11131 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11132 Comp : Entity_Id;
11133
11134 begin
11135 if Is_Record_Type (Typ) then
11136 Comp := First_Component (Typ);
11137 while Present (Comp) loop
11138 if Comes_From_Source (Comp) then
11139 if Present (Expression (Parent (Comp)))
11140 and then Is_Entity_Name (Expression (Parent (Comp)))
11141 and then Entity (Expression (Parent (Comp))) = Prev
11142 then
11143 Error_Msg_Sloc := Sloc (Parent (Comp));
11144 Error_Msg_NE
11145 ("illegal circularity with declaration for&#",
11146 N, Comp);
11147 return;
11148
11149 elsif Is_Record_Type (Etype (Comp)) then
11150 Check_Recursive_Declaration (Etype (Comp));
11151 end if;
11152 end if;
11153
11154 Next_Component (Comp);
11155 end loop;
11156 end if;
11157 end Check_Recursive_Declaration;
11158
11159 -- Start of processing for Constant_Redeclaration
11160
11161 begin
11162 if Nkind (Parent (Prev)) = N_Object_Declaration then
11163 if Nkind (Object_Definition
11164 (Parent (Prev))) = N_Subtype_Indication
11165 then
11166 -- Find type of new declaration. The constraints of the two
11167 -- views must match statically, but there is no point in
11168 -- creating an itype for the full view.
11169
11170 if Nkind (Obj_Def) = N_Subtype_Indication then
11171 Find_Type (Subtype_Mark (Obj_Def));
11172 New_T := Entity (Subtype_Mark (Obj_Def));
11173
11174 else
11175 Find_Type (Obj_Def);
11176 New_T := Entity (Obj_Def);
11177 end if;
11178
11179 T := Etype (Prev);
11180
11181 else
11182 -- The full view may impose a constraint, even if the partial
11183 -- view does not, so construct the subtype.
11184
11185 New_T := Find_Type_Of_Object (Obj_Def, N);
11186 T := New_T;
11187 end if;
11188
11189 else
11190 -- Current declaration is illegal, diagnosed below in Enter_Name
11191
11192 T := Empty;
11193 New_T := Any_Type;
11194 end if;
11195
11196 -- If previous full declaration or a renaming declaration exists, or if
11197 -- a homograph is present, let Enter_Name handle it, either with an
11198 -- error or with the removal of an overridden implicit subprogram.
11199 -- The previous one is a full declaration if it has an expression
11200 -- (which in the case of an aggregate is indicated by the Init flag).
11201
11202 if Ekind (Prev) /= E_Constant
11203 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11204 or else Present (Expression (Parent (Prev)))
11205 or else Has_Init_Expression (Parent (Prev))
11206 or else Present (Full_View (Prev))
11207 then
11208 Enter_Name (Id);
11209
11210 -- Verify that types of both declarations match, or else that both types
11211 -- are anonymous access types whose designated subtypes statically match
11212 -- (as allowed in Ada 2005 by AI-385).
11213
11214 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11215 and then
11216 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11217 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11218 or else Is_Access_Constant (Etype (New_T)) /=
11219 Is_Access_Constant (Etype (Prev))
11220 or else Can_Never_Be_Null (Etype (New_T)) /=
11221 Can_Never_Be_Null (Etype (Prev))
11222 or else Null_Exclusion_Present (Parent (Prev)) /=
11223 Null_Exclusion_Present (Parent (Id))
11224 or else not Subtypes_Statically_Match
11225 (Designated_Type (Etype (Prev)),
11226 Designated_Type (Etype (New_T))))
11227 then
11228 Error_Msg_Sloc := Sloc (Prev);
11229 Error_Msg_N ("type does not match declaration#", N);
11230 Set_Full_View (Prev, Id);
11231 Set_Etype (Id, Any_Type);
11232
11233 elsif
11234 Null_Exclusion_Present (Parent (Prev))
11235 and then not Null_Exclusion_Present (N)
11236 then
11237 Error_Msg_Sloc := Sloc (Prev);
11238 Error_Msg_N ("null-exclusion does not match declaration#", N);
11239 Set_Full_View (Prev, Id);
11240 Set_Etype (Id, Any_Type);
11241
11242 -- If so, process the full constant declaration
11243
11244 else
11245 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11246 -- the deferred declaration is constrained, then the subtype defined
11247 -- by the subtype_indication in the full declaration shall match it
11248 -- statically.
11249
11250 Check_Possible_Deferred_Completion
11251 (Prev_Id => Prev,
11252 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11253 Curr_Obj_Def => Obj_Def);
11254
11255 Set_Full_View (Prev, Id);
11256 Set_Is_Public (Id, Is_Public (Prev));
11257 Set_Is_Internal (Id);
11258 Append_Entity (Id, Current_Scope);
11259
11260 -- Check ALIASED present if present before (RM 7.4(7))
11261
11262 if Is_Aliased (Prev)
11263 and then not Aliased_Present (N)
11264 then
11265 Error_Msg_Sloc := Sloc (Prev);
11266 Error_Msg_N ("ALIASED required (see declaration#)", N);
11267 end if;
11268
11269 -- Check that placement is in private part and that the incomplete
11270 -- declaration appeared in the visible part.
11271
11272 if Ekind (Current_Scope) = E_Package
11273 and then not In_Private_Part (Current_Scope)
11274 then
11275 Error_Msg_Sloc := Sloc (Prev);
11276 Error_Msg_N
11277 ("full constant for declaration#"
11278 & " must be in private part", N);
11279
11280 elsif Ekind (Current_Scope) = E_Package
11281 and then
11282 List_Containing (Parent (Prev)) /=
11283 Visible_Declarations (Package_Specification (Current_Scope))
11284 then
11285 Error_Msg_N
11286 ("deferred constant must be declared in visible part",
11287 Parent (Prev));
11288 end if;
11289
11290 if Is_Access_Type (T)
11291 and then Nkind (Expression (N)) = N_Allocator
11292 then
11293 Check_Recursive_Declaration (Designated_Type (T));
11294 end if;
11295
11296 -- A deferred constant is a visible entity. If type has invariants,
11297 -- verify that the initial value satisfies them.
11298
11299 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11300 Insert_After (N,
11301 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11302 end if;
11303 end if;
11304 end Constant_Redeclaration;
11305
11306 ----------------------
11307 -- Constrain_Access --
11308 ----------------------
11309
11310 procedure Constrain_Access
11311 (Def_Id : in out Entity_Id;
11312 S : Node_Id;
11313 Related_Nod : Node_Id)
11314 is
11315 T : constant Entity_Id := Entity (Subtype_Mark (S));
11316 Desig_Type : constant Entity_Id := Designated_Type (T);
11317 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11318 Constraint_OK : Boolean := True;
11319
11320 begin
11321 if Is_Array_Type (Desig_Type) then
11322 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11323
11324 elsif (Is_Record_Type (Desig_Type)
11325 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11326 and then not Is_Constrained (Desig_Type)
11327 then
11328 -- ??? The following code is a temporary bypass to ignore a
11329 -- discriminant constraint on access type if it is constraining
11330 -- the current record. Avoid creating the implicit subtype of the
11331 -- record we are currently compiling since right now, we cannot
11332 -- handle these. For now, just return the access type itself.
11333
11334 if Desig_Type = Current_Scope
11335 and then No (Def_Id)
11336 then
11337 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11338 Def_Id := Entity (Subtype_Mark (S));
11339
11340 -- This call added to ensure that the constraint is analyzed
11341 -- (needed for a B test). Note that we still return early from
11342 -- this procedure to avoid recursive processing. ???
11343
11344 Constrain_Discriminated_Type
11345 (Desig_Subtype, S, Related_Nod, For_Access => True);
11346 return;
11347 end if;
11348
11349 -- Enforce rule that the constraint is illegal if there is an
11350 -- unconstrained view of the designated type. This means that the
11351 -- partial view (either a private type declaration or a derivation
11352 -- from a private type) has no discriminants. (Defect Report
11353 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11354
11355 -- Rule updated for Ada 2005: The private type is said to have
11356 -- a constrained partial view, given that objects of the type
11357 -- can be declared. Furthermore, the rule applies to all access
11358 -- types, unlike the rule concerning default discriminants (see
11359 -- RM 3.7.1(7/3))
11360
11361 if (Ekind (T) = E_General_Access_Type
11362 or else Ada_Version >= Ada_2005)
11363 and then Has_Private_Declaration (Desig_Type)
11364 and then In_Open_Scopes (Scope (Desig_Type))
11365 and then Has_Discriminants (Desig_Type)
11366 then
11367 declare
11368 Pack : constant Node_Id :=
11369 Unit_Declaration_Node (Scope (Desig_Type));
11370 Decls : List_Id;
11371 Decl : Node_Id;
11372
11373 begin
11374 if Nkind (Pack) = N_Package_Declaration then
11375 Decls := Visible_Declarations (Specification (Pack));
11376 Decl := First (Decls);
11377 while Present (Decl) loop
11378 if (Nkind (Decl) = N_Private_Type_Declaration
11379 and then
11380 Chars (Defining_Identifier (Decl)) =
11381 Chars (Desig_Type))
11382
11383 or else
11384 (Nkind (Decl) = N_Full_Type_Declaration
11385 and then
11386 Chars (Defining_Identifier (Decl)) =
11387 Chars (Desig_Type)
11388 and then Is_Derived_Type (Desig_Type)
11389 and then
11390 Has_Private_Declaration (Etype (Desig_Type)))
11391 then
11392 if No (Discriminant_Specifications (Decl)) then
11393 Error_Msg_N
11394 ("cannot constrain access type if designated " &
11395 "type has constrained partial view", S);
11396 end if;
11397
11398 exit;
11399 end if;
11400
11401 Next (Decl);
11402 end loop;
11403 end if;
11404 end;
11405 end if;
11406
11407 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11408 For_Access => True);
11409
11410 elsif (Is_Task_Type (Desig_Type)
11411 or else Is_Protected_Type (Desig_Type))
11412 and then not Is_Constrained (Desig_Type)
11413 then
11414 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11415
11416 else
11417 Error_Msg_N ("invalid constraint on access type", S);
11418 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11419 Constraint_OK := False;
11420 end if;
11421
11422 if No (Def_Id) then
11423 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11424 else
11425 Set_Ekind (Def_Id, E_Access_Subtype);
11426 end if;
11427
11428 if Constraint_OK then
11429 Set_Etype (Def_Id, Base_Type (T));
11430
11431 if Is_Private_Type (Desig_Type) then
11432 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11433 end if;
11434 else
11435 Set_Etype (Def_Id, Any_Type);
11436 end if;
11437
11438 Set_Size_Info (Def_Id, T);
11439 Set_Is_Constrained (Def_Id, Constraint_OK);
11440 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11441 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11442 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11443
11444 Conditional_Delay (Def_Id, T);
11445
11446 -- AI-363 : Subtypes of general access types whose designated types have
11447 -- default discriminants are disallowed. In instances, the rule has to
11448 -- be checked against the actual, of which T is the subtype. In a
11449 -- generic body, the rule is checked assuming that the actual type has
11450 -- defaulted discriminants.
11451
11452 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11453 if Ekind (Base_Type (T)) = E_General_Access_Type
11454 and then Has_Defaulted_Discriminants (Desig_Type)
11455 then
11456 if Ada_Version < Ada_2005 then
11457 Error_Msg_N
11458 ("access subtype of general access type would not " &
11459 "be allowed in Ada 2005?y?", S);
11460 else
11461 Error_Msg_N
11462 ("access subtype of general access type not allowed", S);
11463 end if;
11464
11465 Error_Msg_N ("\discriminants have defaults", S);
11466
11467 elsif Is_Access_Type (T)
11468 and then Is_Generic_Type (Desig_Type)
11469 and then Has_Discriminants (Desig_Type)
11470 and then In_Package_Body (Current_Scope)
11471 then
11472 if Ada_Version < Ada_2005 then
11473 Error_Msg_N
11474 ("access subtype would not be allowed in generic body " &
11475 "in Ada 2005?y?", S);
11476 else
11477 Error_Msg_N
11478 ("access subtype not allowed in generic body", S);
11479 end if;
11480
11481 Error_Msg_N
11482 ("\designated type is a discriminated formal", S);
11483 end if;
11484 end if;
11485 end Constrain_Access;
11486
11487 ---------------------
11488 -- Constrain_Array --
11489 ---------------------
11490
11491 procedure Constrain_Array
11492 (Def_Id : in out Entity_Id;
11493 SI : Node_Id;
11494 Related_Nod : Node_Id;
11495 Related_Id : Entity_Id;
11496 Suffix : Character)
11497 is
11498 C : constant Node_Id := Constraint (SI);
11499 Number_Of_Constraints : Nat := 0;
11500 Index : Node_Id;
11501 S, T : Entity_Id;
11502 Constraint_OK : Boolean := True;
11503
11504 begin
11505 T := Entity (Subtype_Mark (SI));
11506
11507 if Is_Access_Type (T) then
11508 T := Designated_Type (T);
11509 end if;
11510
11511 -- If an index constraint follows a subtype mark in a subtype indication
11512 -- then the type or subtype denoted by the subtype mark must not already
11513 -- impose an index constraint. The subtype mark must denote either an
11514 -- unconstrained array type or an access type whose designated type
11515 -- is such an array type... (RM 3.6.1)
11516
11517 if Is_Constrained (T) then
11518 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11519 Constraint_OK := False;
11520
11521 else
11522 S := First (Constraints (C));
11523 while Present (S) loop
11524 Number_Of_Constraints := Number_Of_Constraints + 1;
11525 Next (S);
11526 end loop;
11527
11528 -- In either case, the index constraint must provide a discrete
11529 -- range for each index of the array type and the type of each
11530 -- discrete range must be the same as that of the corresponding
11531 -- index. (RM 3.6.1)
11532
11533 if Number_Of_Constraints /= Number_Dimensions (T) then
11534 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11535 Constraint_OK := False;
11536
11537 else
11538 S := First (Constraints (C));
11539 Index := First_Index (T);
11540 Analyze (Index);
11541
11542 -- Apply constraints to each index type
11543
11544 for J in 1 .. Number_Of_Constraints loop
11545 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11546 Next (Index);
11547 Next (S);
11548 end loop;
11549
11550 end if;
11551 end if;
11552
11553 if No (Def_Id) then
11554 Def_Id :=
11555 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11556 Set_Parent (Def_Id, Related_Nod);
11557
11558 else
11559 Set_Ekind (Def_Id, E_Array_Subtype);
11560 end if;
11561
11562 Set_Size_Info (Def_Id, (T));
11563 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11564 Set_Etype (Def_Id, Base_Type (T));
11565
11566 if Constraint_OK then
11567 Set_First_Index (Def_Id, First (Constraints (C)));
11568 else
11569 Set_First_Index (Def_Id, First_Index (T));
11570 end if;
11571
11572 Set_Is_Constrained (Def_Id, True);
11573 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11574 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11575
11576 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11577 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11578
11579 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11580 -- We need to initialize the attribute because if Def_Id is previously
11581 -- analyzed through a limited_with clause, it will have the attributes
11582 -- of an incomplete type, one of which is an Elist that overlaps the
11583 -- Packed_Array_Impl_Type field.
11584
11585 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11586
11587 -- Build a freeze node if parent still needs one. Also make sure that
11588 -- the Depends_On_Private status is set because the subtype will need
11589 -- reprocessing at the time the base type does, and also we must set a
11590 -- conditional delay.
11591
11592 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11593 Conditional_Delay (Def_Id, T);
11594 end Constrain_Array;
11595
11596 ------------------------------
11597 -- Constrain_Component_Type --
11598 ------------------------------
11599
11600 function Constrain_Component_Type
11601 (Comp : Entity_Id;
11602 Constrained_Typ : Entity_Id;
11603 Related_Node : Node_Id;
11604 Typ : Entity_Id;
11605 Constraints : Elist_Id) return Entity_Id
11606 is
11607 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11608 Compon_Type : constant Entity_Id := Etype (Comp);
11609
11610 function Build_Constrained_Array_Type
11611 (Old_Type : Entity_Id) return Entity_Id;
11612 -- If Old_Type is an array type, one of whose indexes is constrained
11613 -- by a discriminant, build an Itype whose constraint replaces the
11614 -- discriminant with its value in the constraint.
11615
11616 function Build_Constrained_Discriminated_Type
11617 (Old_Type : Entity_Id) return Entity_Id;
11618 -- Ditto for record components
11619
11620 function Build_Constrained_Access_Type
11621 (Old_Type : Entity_Id) return Entity_Id;
11622 -- Ditto for access types. Makes use of previous two functions, to
11623 -- constrain designated type.
11624
11625 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11626 -- T is an array or discriminated type, C is a list of constraints
11627 -- that apply to T. This routine builds the constrained subtype.
11628
11629 function Is_Discriminant (Expr : Node_Id) return Boolean;
11630 -- Returns True if Expr is a discriminant
11631
11632 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11633 -- Find the value of discriminant Discrim in Constraint
11634
11635 -----------------------------------
11636 -- Build_Constrained_Access_Type --
11637 -----------------------------------
11638
11639 function Build_Constrained_Access_Type
11640 (Old_Type : Entity_Id) return Entity_Id
11641 is
11642 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11643 Itype : Entity_Id;
11644 Desig_Subtype : Entity_Id;
11645 Scop : Entity_Id;
11646
11647 begin
11648 -- if the original access type was not embedded in the enclosing
11649 -- type definition, there is no need to produce a new access
11650 -- subtype. In fact every access type with an explicit constraint
11651 -- generates an itype whose scope is the enclosing record.
11652
11653 if not Is_Type (Scope (Old_Type)) then
11654 return Old_Type;
11655
11656 elsif Is_Array_Type (Desig_Type) then
11657 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11658
11659 elsif Has_Discriminants (Desig_Type) then
11660
11661 -- This may be an access type to an enclosing record type for
11662 -- which we are constructing the constrained components. Return
11663 -- the enclosing record subtype. This is not always correct,
11664 -- but avoids infinite recursion. ???
11665
11666 Desig_Subtype := Any_Type;
11667
11668 for J in reverse 0 .. Scope_Stack.Last loop
11669 Scop := Scope_Stack.Table (J).Entity;
11670
11671 if Is_Type (Scop)
11672 and then Base_Type (Scop) = Base_Type (Desig_Type)
11673 then
11674 Desig_Subtype := Scop;
11675 end if;
11676
11677 exit when not Is_Type (Scop);
11678 end loop;
11679
11680 if Desig_Subtype = Any_Type then
11681 Desig_Subtype :=
11682 Build_Constrained_Discriminated_Type (Desig_Type);
11683 end if;
11684
11685 else
11686 return Old_Type;
11687 end if;
11688
11689 if Desig_Subtype /= Desig_Type then
11690
11691 -- The Related_Node better be here or else we won't be able
11692 -- to attach new itypes to a node in the tree.
11693
11694 pragma Assert (Present (Related_Node));
11695
11696 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11697
11698 Set_Etype (Itype, Base_Type (Old_Type));
11699 Set_Size_Info (Itype, (Old_Type));
11700 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11701 Set_Depends_On_Private (Itype, Has_Private_Component
11702 (Old_Type));
11703 Set_Is_Access_Constant (Itype, Is_Access_Constant
11704 (Old_Type));
11705
11706 -- The new itype needs freezing when it depends on a not frozen
11707 -- type and the enclosing subtype needs freezing.
11708
11709 if Has_Delayed_Freeze (Constrained_Typ)
11710 and then not Is_Frozen (Constrained_Typ)
11711 then
11712 Conditional_Delay (Itype, Base_Type (Old_Type));
11713 end if;
11714
11715 return Itype;
11716
11717 else
11718 return Old_Type;
11719 end if;
11720 end Build_Constrained_Access_Type;
11721
11722 ----------------------------------
11723 -- Build_Constrained_Array_Type --
11724 ----------------------------------
11725
11726 function Build_Constrained_Array_Type
11727 (Old_Type : Entity_Id) return Entity_Id
11728 is
11729 Lo_Expr : Node_Id;
11730 Hi_Expr : Node_Id;
11731 Old_Index : Node_Id;
11732 Range_Node : Node_Id;
11733 Constr_List : List_Id;
11734
11735 Need_To_Create_Itype : Boolean := False;
11736
11737 begin
11738 Old_Index := First_Index (Old_Type);
11739 while Present (Old_Index) loop
11740 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11741
11742 if Is_Discriminant (Lo_Expr)
11743 or else Is_Discriminant (Hi_Expr)
11744 then
11745 Need_To_Create_Itype := True;
11746 end if;
11747
11748 Next_Index (Old_Index);
11749 end loop;
11750
11751 if Need_To_Create_Itype then
11752 Constr_List := New_List;
11753
11754 Old_Index := First_Index (Old_Type);
11755 while Present (Old_Index) loop
11756 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11757
11758 if Is_Discriminant (Lo_Expr) then
11759 Lo_Expr := Get_Discr_Value (Lo_Expr);
11760 end if;
11761
11762 if Is_Discriminant (Hi_Expr) then
11763 Hi_Expr := Get_Discr_Value (Hi_Expr);
11764 end if;
11765
11766 Range_Node :=
11767 Make_Range
11768 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11769
11770 Append (Range_Node, To => Constr_List);
11771
11772 Next_Index (Old_Index);
11773 end loop;
11774
11775 return Build_Subtype (Old_Type, Constr_List);
11776
11777 else
11778 return Old_Type;
11779 end if;
11780 end Build_Constrained_Array_Type;
11781
11782 ------------------------------------------
11783 -- Build_Constrained_Discriminated_Type --
11784 ------------------------------------------
11785
11786 function Build_Constrained_Discriminated_Type
11787 (Old_Type : Entity_Id) return Entity_Id
11788 is
11789 Expr : Node_Id;
11790 Constr_List : List_Id;
11791 Old_Constraint : Elmt_Id;
11792
11793 Need_To_Create_Itype : Boolean := False;
11794
11795 begin
11796 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11797 while Present (Old_Constraint) loop
11798 Expr := Node (Old_Constraint);
11799
11800 if Is_Discriminant (Expr) then
11801 Need_To_Create_Itype := True;
11802 end if;
11803
11804 Next_Elmt (Old_Constraint);
11805 end loop;
11806
11807 if Need_To_Create_Itype then
11808 Constr_List := New_List;
11809
11810 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11811 while Present (Old_Constraint) loop
11812 Expr := Node (Old_Constraint);
11813
11814 if Is_Discriminant (Expr) then
11815 Expr := Get_Discr_Value (Expr);
11816 end if;
11817
11818 Append (New_Copy_Tree (Expr), To => Constr_List);
11819
11820 Next_Elmt (Old_Constraint);
11821 end loop;
11822
11823 return Build_Subtype (Old_Type, Constr_List);
11824
11825 else
11826 return Old_Type;
11827 end if;
11828 end Build_Constrained_Discriminated_Type;
11829
11830 -------------------
11831 -- Build_Subtype --
11832 -------------------
11833
11834 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11835 Indic : Node_Id;
11836 Subtyp_Decl : Node_Id;
11837 Def_Id : Entity_Id;
11838 Btyp : Entity_Id := Base_Type (T);
11839
11840 begin
11841 -- The Related_Node better be here or else we won't be able to
11842 -- attach new itypes to a node in the tree.
11843
11844 pragma Assert (Present (Related_Node));
11845
11846 -- If the view of the component's type is incomplete or private
11847 -- with unknown discriminants, then the constraint must be applied
11848 -- to the full type.
11849
11850 if Has_Unknown_Discriminants (Btyp)
11851 and then Present (Underlying_Type (Btyp))
11852 then
11853 Btyp := Underlying_Type (Btyp);
11854 end if;
11855
11856 Indic :=
11857 Make_Subtype_Indication (Loc,
11858 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11859 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11860
11861 Def_Id := Create_Itype (Ekind (T), Related_Node);
11862
11863 Subtyp_Decl :=
11864 Make_Subtype_Declaration (Loc,
11865 Defining_Identifier => Def_Id,
11866 Subtype_Indication => Indic);
11867
11868 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11869
11870 -- Itypes must be analyzed with checks off (see package Itypes)
11871
11872 Analyze (Subtyp_Decl, Suppress => All_Checks);
11873
11874 return Def_Id;
11875 end Build_Subtype;
11876
11877 ---------------------
11878 -- Get_Discr_Value --
11879 ---------------------
11880
11881 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11882 D : Entity_Id;
11883 E : Elmt_Id;
11884
11885 begin
11886 -- The discriminant may be declared for the type, in which case we
11887 -- find it by iterating over the list of discriminants. If the
11888 -- discriminant is inherited from a parent type, it appears as the
11889 -- corresponding discriminant of the current type. This will be the
11890 -- case when constraining an inherited component whose constraint is
11891 -- given by a discriminant of the parent.
11892
11893 D := First_Discriminant (Typ);
11894 E := First_Elmt (Constraints);
11895
11896 while Present (D) loop
11897 if D = Entity (Discrim)
11898 or else D = CR_Discriminant (Entity (Discrim))
11899 or else Corresponding_Discriminant (D) = Entity (Discrim)
11900 then
11901 return Node (E);
11902 end if;
11903
11904 Next_Discriminant (D);
11905 Next_Elmt (E);
11906 end loop;
11907
11908 -- The Corresponding_Discriminant mechanism is incomplete, because
11909 -- the correspondence between new and old discriminants is not one
11910 -- to one: one new discriminant can constrain several old ones. In
11911 -- that case, scan sequentially the stored_constraint, the list of
11912 -- discriminants of the parents, and the constraints.
11913
11914 -- Previous code checked for the present of the Stored_Constraint
11915 -- list for the derived type, but did not use it at all. Should it
11916 -- be present when the component is a discriminated task type?
11917
11918 if Is_Derived_Type (Typ)
11919 and then Scope (Entity (Discrim)) = Etype (Typ)
11920 then
11921 D := First_Discriminant (Etype (Typ));
11922 E := First_Elmt (Constraints);
11923 while Present (D) loop
11924 if D = Entity (Discrim) then
11925 return Node (E);
11926 end if;
11927
11928 Next_Discriminant (D);
11929 Next_Elmt (E);
11930 end loop;
11931 end if;
11932
11933 -- Something is wrong if we did not find the value
11934
11935 raise Program_Error;
11936 end Get_Discr_Value;
11937
11938 ---------------------
11939 -- Is_Discriminant --
11940 ---------------------
11941
11942 function Is_Discriminant (Expr : Node_Id) return Boolean is
11943 Discrim_Scope : Entity_Id;
11944
11945 begin
11946 if Denotes_Discriminant (Expr) then
11947 Discrim_Scope := Scope (Entity (Expr));
11948
11949 -- Either we have a reference to one of Typ's discriminants,
11950
11951 pragma Assert (Discrim_Scope = Typ
11952
11953 -- or to the discriminants of the parent type, in the case
11954 -- of a derivation of a tagged type with variants.
11955
11956 or else Discrim_Scope = Etype (Typ)
11957 or else Full_View (Discrim_Scope) = Etype (Typ)
11958
11959 -- or same as above for the case where the discriminants
11960 -- were declared in Typ's private view.
11961
11962 or else (Is_Private_Type (Discrim_Scope)
11963 and then Chars (Discrim_Scope) = Chars (Typ))
11964
11965 -- or else we are deriving from the full view and the
11966 -- discriminant is declared in the private entity.
11967
11968 or else (Is_Private_Type (Typ)
11969 and then Chars (Discrim_Scope) = Chars (Typ))
11970
11971 -- Or we are constrained the corresponding record of a
11972 -- synchronized type that completes a private declaration.
11973
11974 or else (Is_Concurrent_Record_Type (Typ)
11975 and then
11976 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11977
11978 -- or we have a class-wide type, in which case make sure the
11979 -- discriminant found belongs to the root type.
11980
11981 or else (Is_Class_Wide_Type (Typ)
11982 and then Etype (Typ) = Discrim_Scope));
11983
11984 return True;
11985 end if;
11986
11987 -- In all other cases we have something wrong
11988
11989 return False;
11990 end Is_Discriminant;
11991
11992 -- Start of processing for Constrain_Component_Type
11993
11994 begin
11995 if Nkind (Parent (Comp)) = N_Component_Declaration
11996 and then Comes_From_Source (Parent (Comp))
11997 and then Comes_From_Source
11998 (Subtype_Indication (Component_Definition (Parent (Comp))))
11999 and then
12000 Is_Entity_Name
12001 (Subtype_Indication (Component_Definition (Parent (Comp))))
12002 then
12003 return Compon_Type;
12004
12005 elsif Is_Array_Type (Compon_Type) then
12006 return Build_Constrained_Array_Type (Compon_Type);
12007
12008 elsif Has_Discriminants (Compon_Type) then
12009 return Build_Constrained_Discriminated_Type (Compon_Type);
12010
12011 elsif Is_Access_Type (Compon_Type) then
12012 return Build_Constrained_Access_Type (Compon_Type);
12013
12014 else
12015 return Compon_Type;
12016 end if;
12017 end Constrain_Component_Type;
12018
12019 --------------------------
12020 -- Constrain_Concurrent --
12021 --------------------------
12022
12023 -- For concurrent types, the associated record value type carries the same
12024 -- discriminants, so when we constrain a concurrent type, we must constrain
12025 -- the corresponding record type as well.
12026
12027 procedure Constrain_Concurrent
12028 (Def_Id : in out Entity_Id;
12029 SI : Node_Id;
12030 Related_Nod : Node_Id;
12031 Related_Id : Entity_Id;
12032 Suffix : Character)
12033 is
12034 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12035 -- case of a private subtype (needed when only doing semantic analysis).
12036
12037 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12038 T_Val : Entity_Id;
12039
12040 begin
12041 if Is_Access_Type (T_Ent) then
12042 T_Ent := Designated_Type (T_Ent);
12043 end if;
12044
12045 T_Val := Corresponding_Record_Type (T_Ent);
12046
12047 if Present (T_Val) then
12048
12049 if No (Def_Id) then
12050 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12051 end if;
12052
12053 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12054
12055 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12056 Set_Corresponding_Record_Type (Def_Id,
12057 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12058
12059 else
12060 -- If there is no associated record, expansion is disabled and this
12061 -- is a generic context. Create a subtype in any case, so that
12062 -- semantic analysis can proceed.
12063
12064 if No (Def_Id) then
12065 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12066 end if;
12067
12068 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12069 end if;
12070 end Constrain_Concurrent;
12071
12072 ------------------------------------
12073 -- Constrain_Corresponding_Record --
12074 ------------------------------------
12075
12076 function Constrain_Corresponding_Record
12077 (Prot_Subt : Entity_Id;
12078 Corr_Rec : Entity_Id;
12079 Related_Nod : Node_Id) return Entity_Id
12080 is
12081 T_Sub : constant Entity_Id :=
12082 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12083
12084 begin
12085 Set_Etype (T_Sub, Corr_Rec);
12086 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12087 Set_Is_Constrained (T_Sub, True);
12088 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12089 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12090
12091 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12092 Set_Discriminant_Constraint
12093 (T_Sub, Discriminant_Constraint (Prot_Subt));
12094 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12095 Create_Constrained_Components
12096 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12097 end if;
12098
12099 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12100
12101 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12102 Conditional_Delay (T_Sub, Corr_Rec);
12103
12104 else
12105 -- This is a component subtype: it will be frozen in the context of
12106 -- the enclosing record's init_proc, so that discriminant references
12107 -- are resolved to discriminals. (Note: we used to skip freezing
12108 -- altogether in that case, which caused errors downstream for
12109 -- components of a bit packed array type).
12110
12111 Set_Has_Delayed_Freeze (T_Sub);
12112 end if;
12113
12114 return T_Sub;
12115 end Constrain_Corresponding_Record;
12116
12117 -----------------------
12118 -- Constrain_Decimal --
12119 -----------------------
12120
12121 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12122 T : constant Entity_Id := Entity (Subtype_Mark (S));
12123 C : constant Node_Id := Constraint (S);
12124 Loc : constant Source_Ptr := Sloc (C);
12125 Range_Expr : Node_Id;
12126 Digits_Expr : Node_Id;
12127 Digits_Val : Uint;
12128 Bound_Val : Ureal;
12129
12130 begin
12131 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12132
12133 if Nkind (C) = N_Range_Constraint then
12134 Range_Expr := Range_Expression (C);
12135 Digits_Val := Digits_Value (T);
12136
12137 else
12138 pragma Assert (Nkind (C) = N_Digits_Constraint);
12139
12140 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12141
12142 Digits_Expr := Digits_Expression (C);
12143 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12144
12145 Check_Digits_Expression (Digits_Expr);
12146 Digits_Val := Expr_Value (Digits_Expr);
12147
12148 if Digits_Val > Digits_Value (T) then
12149 Error_Msg_N
12150 ("digits expression is incompatible with subtype", C);
12151 Digits_Val := Digits_Value (T);
12152 end if;
12153
12154 if Present (Range_Constraint (C)) then
12155 Range_Expr := Range_Expression (Range_Constraint (C));
12156 else
12157 Range_Expr := Empty;
12158 end if;
12159 end if;
12160
12161 Set_Etype (Def_Id, Base_Type (T));
12162 Set_Size_Info (Def_Id, (T));
12163 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12164 Set_Delta_Value (Def_Id, Delta_Value (T));
12165 Set_Scale_Value (Def_Id, Scale_Value (T));
12166 Set_Small_Value (Def_Id, Small_Value (T));
12167 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12168 Set_Digits_Value (Def_Id, Digits_Val);
12169
12170 -- Manufacture range from given digits value if no range present
12171
12172 if No (Range_Expr) then
12173 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12174 Range_Expr :=
12175 Make_Range (Loc,
12176 Low_Bound =>
12177 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12178 High_Bound =>
12179 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12180 end if;
12181
12182 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12183 Set_Discrete_RM_Size (Def_Id);
12184
12185 -- Unconditionally delay the freeze, since we cannot set size
12186 -- information in all cases correctly until the freeze point.
12187
12188 Set_Has_Delayed_Freeze (Def_Id);
12189 end Constrain_Decimal;
12190
12191 ----------------------------------
12192 -- Constrain_Discriminated_Type --
12193 ----------------------------------
12194
12195 procedure Constrain_Discriminated_Type
12196 (Def_Id : Entity_Id;
12197 S : Node_Id;
12198 Related_Nod : Node_Id;
12199 For_Access : Boolean := False)
12200 is
12201 E : constant Entity_Id := Entity (Subtype_Mark (S));
12202 T : Entity_Id;
12203 C : Node_Id;
12204 Elist : Elist_Id := New_Elmt_List;
12205
12206 procedure Fixup_Bad_Constraint;
12207 -- This is called after finding a bad constraint, and after having
12208 -- posted an appropriate error message. The mission is to leave the
12209 -- entity T in as reasonable state as possible.
12210
12211 --------------------------
12212 -- Fixup_Bad_Constraint --
12213 --------------------------
12214
12215 procedure Fixup_Bad_Constraint is
12216 begin
12217 -- Set a reasonable Ekind for the entity. For an incomplete type,
12218 -- we can't do much, but for other types, we can set the proper
12219 -- corresponding subtype kind.
12220
12221 if Ekind (T) = E_Incomplete_Type then
12222 Set_Ekind (Def_Id, Ekind (T));
12223 else
12224 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12225 end if;
12226
12227 -- Set Etype to the known type, to reduce chances of cascaded errors
12228
12229 Set_Etype (Def_Id, E);
12230 Set_Error_Posted (Def_Id);
12231 end Fixup_Bad_Constraint;
12232
12233 -- Start of processing for Constrain_Discriminated_Type
12234
12235 begin
12236 C := Constraint (S);
12237
12238 -- A discriminant constraint is only allowed in a subtype indication,
12239 -- after a subtype mark. This subtype mark must denote either a type
12240 -- with discriminants, or an access type whose designated type is a
12241 -- type with discriminants. A discriminant constraint specifies the
12242 -- values of these discriminants (RM 3.7.2(5)).
12243
12244 T := Base_Type (Entity (Subtype_Mark (S)));
12245
12246 if Is_Access_Type (T) then
12247 T := Designated_Type (T);
12248 end if;
12249
12250 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12251 -- Avoid generating an error for access-to-incomplete subtypes.
12252
12253 if Ada_Version >= Ada_2005
12254 and then Ekind (T) = E_Incomplete_Type
12255 and then Nkind (Parent (S)) = N_Subtype_Declaration
12256 and then not Is_Itype (Def_Id)
12257 then
12258 -- A little sanity check, emit an error message if the type
12259 -- has discriminants to begin with. Type T may be a regular
12260 -- incomplete type or imported via a limited with clause.
12261
12262 if Has_Discriminants (T)
12263 or else (From_Limited_With (T)
12264 and then Present (Non_Limited_View (T))
12265 and then Nkind (Parent (Non_Limited_View (T))) =
12266 N_Full_Type_Declaration
12267 and then Present (Discriminant_Specifications
12268 (Parent (Non_Limited_View (T)))))
12269 then
12270 Error_Msg_N
12271 ("(Ada 2005) incomplete subtype may not be constrained", C);
12272 else
12273 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12274 end if;
12275
12276 Fixup_Bad_Constraint;
12277 return;
12278
12279 -- Check that the type has visible discriminants. The type may be
12280 -- a private type with unknown discriminants whose full view has
12281 -- discriminants which are invisible.
12282
12283 elsif not Has_Discriminants (T)
12284 or else
12285 (Has_Unknown_Discriminants (T)
12286 and then Is_Private_Type (T))
12287 then
12288 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12289 Fixup_Bad_Constraint;
12290 return;
12291
12292 elsif Is_Constrained (E)
12293 or else (Ekind (E) = E_Class_Wide_Subtype
12294 and then Present (Discriminant_Constraint (E)))
12295 then
12296 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12297 Fixup_Bad_Constraint;
12298 return;
12299 end if;
12300
12301 -- T may be an unconstrained subtype (e.g. a generic actual).
12302 -- Constraint applies to the base type.
12303
12304 T := Base_Type (T);
12305
12306 Elist := Build_Discriminant_Constraints (T, S);
12307
12308 -- If the list returned was empty we had an error in building the
12309 -- discriminant constraint. We have also already signalled an error
12310 -- in the incomplete type case
12311
12312 if Is_Empty_Elmt_List (Elist) then
12313 Fixup_Bad_Constraint;
12314 return;
12315 end if;
12316
12317 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12318 end Constrain_Discriminated_Type;
12319
12320 ---------------------------
12321 -- Constrain_Enumeration --
12322 ---------------------------
12323
12324 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12325 T : constant Entity_Id := Entity (Subtype_Mark (S));
12326 C : constant Node_Id := Constraint (S);
12327
12328 begin
12329 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12330
12331 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12332
12333 Set_Etype (Def_Id, Base_Type (T));
12334 Set_Size_Info (Def_Id, (T));
12335 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12336 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12337
12338 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12339
12340 Set_Discrete_RM_Size (Def_Id);
12341 end Constrain_Enumeration;
12342
12343 ----------------------
12344 -- Constrain_Float --
12345 ----------------------
12346
12347 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12348 T : constant Entity_Id := Entity (Subtype_Mark (S));
12349 C : Node_Id;
12350 D : Node_Id;
12351 Rais : Node_Id;
12352
12353 begin
12354 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12355
12356 Set_Etype (Def_Id, Base_Type (T));
12357 Set_Size_Info (Def_Id, (T));
12358 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12359
12360 -- Process the constraint
12361
12362 C := Constraint (S);
12363
12364 -- Digits constraint present
12365
12366 if Nkind (C) = N_Digits_Constraint then
12367
12368 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12369 Check_Restriction (No_Obsolescent_Features, C);
12370
12371 if Warn_On_Obsolescent_Feature then
12372 Error_Msg_N
12373 ("subtype digits constraint is an " &
12374 "obsolescent feature (RM J.3(8))?j?", C);
12375 end if;
12376
12377 D := Digits_Expression (C);
12378 Analyze_And_Resolve (D, Any_Integer);
12379 Check_Digits_Expression (D);
12380 Set_Digits_Value (Def_Id, Expr_Value (D));
12381
12382 -- Check that digits value is in range. Obviously we can do this
12383 -- at compile time, but it is strictly a runtime check, and of
12384 -- course there is an ACVC test that checks this.
12385
12386 if Digits_Value (Def_Id) > Digits_Value (T) then
12387 Error_Msg_Uint_1 := Digits_Value (T);
12388 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12389 Rais :=
12390 Make_Raise_Constraint_Error (Sloc (D),
12391 Reason => CE_Range_Check_Failed);
12392 Insert_Action (Declaration_Node (Def_Id), Rais);
12393 end if;
12394
12395 C := Range_Constraint (C);
12396
12397 -- No digits constraint present
12398
12399 else
12400 Set_Digits_Value (Def_Id, Digits_Value (T));
12401 end if;
12402
12403 -- Range constraint present
12404
12405 if Nkind (C) = N_Range_Constraint then
12406 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12407
12408 -- No range constraint present
12409
12410 else
12411 pragma Assert (No (C));
12412 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12413 end if;
12414
12415 Set_Is_Constrained (Def_Id);
12416 end Constrain_Float;
12417
12418 ---------------------
12419 -- Constrain_Index --
12420 ---------------------
12421
12422 procedure Constrain_Index
12423 (Index : Node_Id;
12424 S : Node_Id;
12425 Related_Nod : Node_Id;
12426 Related_Id : Entity_Id;
12427 Suffix : Character;
12428 Suffix_Index : Nat)
12429 is
12430 Def_Id : Entity_Id;
12431 R : Node_Id := Empty;
12432 T : constant Entity_Id := Etype (Index);
12433
12434 begin
12435 if Nkind (S) = N_Range
12436 or else
12437 (Nkind (S) = N_Attribute_Reference
12438 and then Attribute_Name (S) = Name_Range)
12439 then
12440 -- A Range attribute will be transformed into N_Range by Resolve
12441
12442 Analyze (S);
12443 Set_Etype (S, T);
12444 R := S;
12445
12446 Process_Range_Expr_In_Decl (R, T);
12447
12448 if not Error_Posted (S)
12449 and then
12450 (Nkind (S) /= N_Range
12451 or else not Covers (T, (Etype (Low_Bound (S))))
12452 or else not Covers (T, (Etype (High_Bound (S)))))
12453 then
12454 if Base_Type (T) /= Any_Type
12455 and then Etype (Low_Bound (S)) /= Any_Type
12456 and then Etype (High_Bound (S)) /= Any_Type
12457 then
12458 Error_Msg_N ("range expected", S);
12459 end if;
12460 end if;
12461
12462 elsif Nkind (S) = N_Subtype_Indication then
12463
12464 -- The parser has verified that this is a discrete indication
12465
12466 Resolve_Discrete_Subtype_Indication (S, T);
12467 Bad_Predicated_Subtype_Use
12468 ("subtype& has predicate, not allowed in index constraint",
12469 S, Entity (Subtype_Mark (S)));
12470
12471 R := Range_Expression (Constraint (S));
12472
12473 -- Capture values of bounds and generate temporaries for them if
12474 -- needed, since checks may cause duplication of the expressions
12475 -- which must not be reevaluated.
12476
12477 -- The forced evaluation removes side effects from expressions, which
12478 -- should occur also in GNATprove mode. Otherwise, we end up with
12479 -- unexpected insertions of actions at places where this is not
12480 -- supposed to occur, e.g. on default parameters of a call.
12481
12482 if Expander_Active or GNATprove_Mode then
12483 Force_Evaluation (Low_Bound (R));
12484 Force_Evaluation (High_Bound (R));
12485 end if;
12486
12487 elsif Nkind (S) = N_Discriminant_Association then
12488
12489 -- Syntactically valid in subtype indication
12490
12491 Error_Msg_N ("invalid index constraint", S);
12492 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12493 return;
12494
12495 -- Subtype_Mark case, no anonymous subtypes to construct
12496
12497 else
12498 Analyze (S);
12499
12500 if Is_Entity_Name (S) then
12501 if not Is_Type (Entity (S)) then
12502 Error_Msg_N ("expect subtype mark for index constraint", S);
12503
12504 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12505 Wrong_Type (S, Base_Type (T));
12506
12507 -- Check error of subtype with predicate in index constraint
12508
12509 else
12510 Bad_Predicated_Subtype_Use
12511 ("subtype& has predicate, not allowed in index constraint",
12512 S, Entity (S));
12513 end if;
12514
12515 return;
12516
12517 else
12518 Error_Msg_N ("invalid index constraint", S);
12519 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12520 return;
12521 end if;
12522 end if;
12523
12524 Def_Id :=
12525 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12526
12527 Set_Etype (Def_Id, Base_Type (T));
12528
12529 if Is_Modular_Integer_Type (T) then
12530 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12531
12532 elsif Is_Integer_Type (T) then
12533 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12534
12535 else
12536 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12537 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12538 Set_First_Literal (Def_Id, First_Literal (T));
12539 end if;
12540
12541 Set_Size_Info (Def_Id, (T));
12542 Set_RM_Size (Def_Id, RM_Size (T));
12543 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12544
12545 Set_Scalar_Range (Def_Id, R);
12546
12547 Set_Etype (S, Def_Id);
12548 Set_Discrete_RM_Size (Def_Id);
12549 end Constrain_Index;
12550
12551 -----------------------
12552 -- Constrain_Integer --
12553 -----------------------
12554
12555 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12556 T : constant Entity_Id := Entity (Subtype_Mark (S));
12557 C : constant Node_Id := Constraint (S);
12558
12559 begin
12560 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12561
12562 if Is_Modular_Integer_Type (T) then
12563 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12564 else
12565 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12566 end if;
12567
12568 Set_Etype (Def_Id, Base_Type (T));
12569 Set_Size_Info (Def_Id, (T));
12570 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12571 Set_Discrete_RM_Size (Def_Id);
12572 end Constrain_Integer;
12573
12574 ------------------------------
12575 -- Constrain_Ordinary_Fixed --
12576 ------------------------------
12577
12578 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12579 T : constant Entity_Id := Entity (Subtype_Mark (S));
12580 C : Node_Id;
12581 D : Node_Id;
12582 Rais : Node_Id;
12583
12584 begin
12585 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12586 Set_Etype (Def_Id, Base_Type (T));
12587 Set_Size_Info (Def_Id, (T));
12588 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12589 Set_Small_Value (Def_Id, Small_Value (T));
12590
12591 -- Process the constraint
12592
12593 C := Constraint (S);
12594
12595 -- Delta constraint present
12596
12597 if Nkind (C) = N_Delta_Constraint then
12598
12599 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
12600 Check_Restriction (No_Obsolescent_Features, C);
12601
12602 if Warn_On_Obsolescent_Feature then
12603 Error_Msg_S
12604 ("subtype delta constraint is an " &
12605 "obsolescent feature (RM J.3(7))?j?");
12606 end if;
12607
12608 D := Delta_Expression (C);
12609 Analyze_And_Resolve (D, Any_Real);
12610 Check_Delta_Expression (D);
12611 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12612
12613 -- Check that delta value is in range. Obviously we can do this
12614 -- at compile time, but it is strictly a runtime check, and of
12615 -- course there is an ACVC test that checks this.
12616
12617 if Delta_Value (Def_Id) < Delta_Value (T) then
12618 Error_Msg_N ("??delta value is too small", D);
12619 Rais :=
12620 Make_Raise_Constraint_Error (Sloc (D),
12621 Reason => CE_Range_Check_Failed);
12622 Insert_Action (Declaration_Node (Def_Id), Rais);
12623 end if;
12624
12625 C := Range_Constraint (C);
12626
12627 -- No delta constraint present
12628
12629 else
12630 Set_Delta_Value (Def_Id, Delta_Value (T));
12631 end if;
12632
12633 -- Range constraint present
12634
12635 if Nkind (C) = N_Range_Constraint then
12636 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12637
12638 -- No range constraint present
12639
12640 else
12641 pragma Assert (No (C));
12642 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12643
12644 end if;
12645
12646 Set_Discrete_RM_Size (Def_Id);
12647
12648 -- Unconditionally delay the freeze, since we cannot set size
12649 -- information in all cases correctly until the freeze point.
12650
12651 Set_Has_Delayed_Freeze (Def_Id);
12652 end Constrain_Ordinary_Fixed;
12653
12654 -----------------------
12655 -- Contain_Interface --
12656 -----------------------
12657
12658 function Contain_Interface
12659 (Iface : Entity_Id;
12660 Ifaces : Elist_Id) return Boolean
12661 is
12662 Iface_Elmt : Elmt_Id;
12663
12664 begin
12665 if Present (Ifaces) then
12666 Iface_Elmt := First_Elmt (Ifaces);
12667 while Present (Iface_Elmt) loop
12668 if Node (Iface_Elmt) = Iface then
12669 return True;
12670 end if;
12671
12672 Next_Elmt (Iface_Elmt);
12673 end loop;
12674 end if;
12675
12676 return False;
12677 end Contain_Interface;
12678
12679 ---------------------------
12680 -- Convert_Scalar_Bounds --
12681 ---------------------------
12682
12683 procedure Convert_Scalar_Bounds
12684 (N : Node_Id;
12685 Parent_Type : Entity_Id;
12686 Derived_Type : Entity_Id;
12687 Loc : Source_Ptr)
12688 is
12689 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12690
12691 Lo : Node_Id;
12692 Hi : Node_Id;
12693 Rng : Node_Id;
12694
12695 begin
12696 -- Defend against previous errors
12697
12698 if No (Scalar_Range (Derived_Type)) then
12699 Check_Error_Detected;
12700 return;
12701 end if;
12702
12703 Lo := Build_Scalar_Bound
12704 (Type_Low_Bound (Derived_Type),
12705 Parent_Type, Implicit_Base);
12706
12707 Hi := Build_Scalar_Bound
12708 (Type_High_Bound (Derived_Type),
12709 Parent_Type, Implicit_Base);
12710
12711 Rng :=
12712 Make_Range (Loc,
12713 Low_Bound => Lo,
12714 High_Bound => Hi);
12715
12716 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12717
12718 Set_Parent (Rng, N);
12719 Set_Scalar_Range (Derived_Type, Rng);
12720
12721 -- Analyze the bounds
12722
12723 Analyze_And_Resolve (Lo, Implicit_Base);
12724 Analyze_And_Resolve (Hi, Implicit_Base);
12725
12726 -- Analyze the range itself, except that we do not analyze it if
12727 -- the bounds are real literals, and we have a fixed-point type.
12728 -- The reason for this is that we delay setting the bounds in this
12729 -- case till we know the final Small and Size values (see circuit
12730 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12731
12732 if Is_Fixed_Point_Type (Parent_Type)
12733 and then Nkind (Lo) = N_Real_Literal
12734 and then Nkind (Hi) = N_Real_Literal
12735 then
12736 return;
12737
12738 -- Here we do the analysis of the range
12739
12740 -- Note: we do this manually, since if we do a normal Analyze and
12741 -- Resolve call, there are problems with the conversions used for
12742 -- the derived type range.
12743
12744 else
12745 Set_Etype (Rng, Implicit_Base);
12746 Set_Analyzed (Rng, True);
12747 end if;
12748 end Convert_Scalar_Bounds;
12749
12750 -------------------
12751 -- Copy_And_Swap --
12752 -------------------
12753
12754 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12755 begin
12756 -- Initialize new full declaration entity by copying the pertinent
12757 -- fields of the corresponding private declaration entity.
12758
12759 -- We temporarily set Ekind to a value appropriate for a type to
12760 -- avoid assert failures in Einfo from checking for setting type
12761 -- attributes on something that is not a type. Ekind (Priv) is an
12762 -- appropriate choice, since it allowed the attributes to be set
12763 -- in the first place. This Ekind value will be modified later.
12764
12765 Set_Ekind (Full, Ekind (Priv));
12766
12767 -- Also set Etype temporarily to Any_Type, again, in the absence
12768 -- of errors, it will be properly reset, and if there are errors,
12769 -- then we want a value of Any_Type to remain.
12770
12771 Set_Etype (Full, Any_Type);
12772
12773 -- Now start copying attributes
12774
12775 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12776
12777 if Has_Discriminants (Full) then
12778 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12779 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12780 end if;
12781
12782 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12783 Set_Homonym (Full, Homonym (Priv));
12784 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12785 Set_Is_Public (Full, Is_Public (Priv));
12786 Set_Is_Pure (Full, Is_Pure (Priv));
12787 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12788 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12789 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12790 Set_Has_Pragma_Unreferenced_Objects
12791 (Full, Has_Pragma_Unreferenced_Objects
12792 (Priv));
12793
12794 Conditional_Delay (Full, Priv);
12795
12796 if Is_Tagged_Type (Full) then
12797 Set_Direct_Primitive_Operations (Full,
12798 Direct_Primitive_Operations (Priv));
12799
12800 if Is_Base_Type (Priv) then
12801 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12802 end if;
12803 end if;
12804
12805 Set_Is_Volatile (Full, Is_Volatile (Priv));
12806 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12807 Set_Scope (Full, Scope (Priv));
12808 Set_Next_Entity (Full, Next_Entity (Priv));
12809 Set_First_Entity (Full, First_Entity (Priv));
12810 Set_Last_Entity (Full, Last_Entity (Priv));
12811
12812 -- If access types have been recorded for later handling, keep them in
12813 -- the full view so that they get handled when the full view freeze
12814 -- node is expanded.
12815
12816 if Present (Freeze_Node (Priv))
12817 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12818 then
12819 Ensure_Freeze_Node (Full);
12820 Set_Access_Types_To_Process
12821 (Freeze_Node (Full),
12822 Access_Types_To_Process (Freeze_Node (Priv)));
12823 end if;
12824
12825 -- Swap the two entities. Now Private is the full type entity and Full
12826 -- is the private one. They will be swapped back at the end of the
12827 -- private part. This swapping ensures that the entity that is visible
12828 -- in the private part is the full declaration.
12829
12830 Exchange_Entities (Priv, Full);
12831 Append_Entity (Full, Scope (Full));
12832 end Copy_And_Swap;
12833
12834 -------------------------------------
12835 -- Copy_Array_Base_Type_Attributes --
12836 -------------------------------------
12837
12838 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12839 begin
12840 Set_Component_Alignment (T1, Component_Alignment (T2));
12841 Set_Component_Type (T1, Component_Type (T2));
12842 Set_Component_Size (T1, Component_Size (T2));
12843 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12844 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12845 Set_Has_Protected (T1, Has_Protected (T2));
12846 Set_Has_Task (T1, Has_Task (T2));
12847 Set_Is_Packed (T1, Is_Packed (T2));
12848 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12849 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12850 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12851 end Copy_Array_Base_Type_Attributes;
12852
12853 -----------------------------------
12854 -- Copy_Array_Subtype_Attributes --
12855 -----------------------------------
12856
12857 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12858 begin
12859 Set_Size_Info (T1, T2);
12860
12861 Set_First_Index (T1, First_Index (T2));
12862 Set_Is_Aliased (T1, Is_Aliased (T2));
12863 Set_Is_Volatile (T1, Is_Volatile (T2));
12864 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12865 Set_Is_Constrained (T1, Is_Constrained (T2));
12866 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12867 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12868 Set_Convention (T1, Convention (T2));
12869 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12870 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12871 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12872 end Copy_Array_Subtype_Attributes;
12873
12874 -----------------------------------
12875 -- Create_Constrained_Components --
12876 -----------------------------------
12877
12878 procedure Create_Constrained_Components
12879 (Subt : Entity_Id;
12880 Decl_Node : Node_Id;
12881 Typ : Entity_Id;
12882 Constraints : Elist_Id)
12883 is
12884 Loc : constant Source_Ptr := Sloc (Subt);
12885 Comp_List : constant Elist_Id := New_Elmt_List;
12886 Parent_Type : constant Entity_Id := Etype (Typ);
12887 Assoc_List : constant List_Id := New_List;
12888 Discr_Val : Elmt_Id;
12889 Errors : Boolean;
12890 New_C : Entity_Id;
12891 Old_C : Entity_Id;
12892 Is_Static : Boolean := True;
12893
12894 procedure Collect_Fixed_Components (Typ : Entity_Id);
12895 -- Collect parent type components that do not appear in a variant part
12896
12897 procedure Create_All_Components;
12898 -- Iterate over Comp_List to create the components of the subtype
12899
12900 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12901 -- Creates a new component from Old_Compon, copying all the fields from
12902 -- it, including its Etype, inserts the new component in the Subt entity
12903 -- chain and returns the new component.
12904
12905 function Is_Variant_Record (T : Entity_Id) return Boolean;
12906 -- If true, and discriminants are static, collect only components from
12907 -- variants selected by discriminant values.
12908
12909 ------------------------------
12910 -- Collect_Fixed_Components --
12911 ------------------------------
12912
12913 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12914 begin
12915 -- Build association list for discriminants, and find components of the
12916 -- variant part selected by the values of the discriminants.
12917
12918 Old_C := First_Discriminant (Typ);
12919 Discr_Val := First_Elmt (Constraints);
12920 while Present (Old_C) loop
12921 Append_To (Assoc_List,
12922 Make_Component_Association (Loc,
12923 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12924 Expression => New_Copy (Node (Discr_Val))));
12925
12926 Next_Elmt (Discr_Val);
12927 Next_Discriminant (Old_C);
12928 end loop;
12929
12930 -- The tag and the possible parent component are unconditionally in
12931 -- the subtype.
12932
12933 if Is_Tagged_Type (Typ)
12934 or else Has_Controlled_Component (Typ)
12935 then
12936 Old_C := First_Component (Typ);
12937 while Present (Old_C) loop
12938 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12939 Append_Elmt (Old_C, Comp_List);
12940 end if;
12941
12942 Next_Component (Old_C);
12943 end loop;
12944 end if;
12945 end Collect_Fixed_Components;
12946
12947 ---------------------------
12948 -- Create_All_Components --
12949 ---------------------------
12950
12951 procedure Create_All_Components is
12952 Comp : Elmt_Id;
12953
12954 begin
12955 Comp := First_Elmt (Comp_List);
12956 while Present (Comp) loop
12957 Old_C := Node (Comp);
12958 New_C := Create_Component (Old_C);
12959
12960 Set_Etype
12961 (New_C,
12962 Constrain_Component_Type
12963 (Old_C, Subt, Decl_Node, Typ, Constraints));
12964 Set_Is_Public (New_C, Is_Public (Subt));
12965
12966 Next_Elmt (Comp);
12967 end loop;
12968 end Create_All_Components;
12969
12970 ----------------------
12971 -- Create_Component --
12972 ----------------------
12973
12974 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12975 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12976
12977 begin
12978 if Ekind (Old_Compon) = E_Discriminant
12979 and then Is_Completely_Hidden (Old_Compon)
12980 then
12981 -- This is a shadow discriminant created for a discriminant of
12982 -- the parent type, which needs to be present in the subtype.
12983 -- Give the shadow discriminant an internal name that cannot
12984 -- conflict with that of visible components.
12985
12986 Set_Chars (New_Compon, New_Internal_Name ('C'));
12987 end if;
12988
12989 -- Set the parent so we have a proper link for freezing etc. This is
12990 -- not a real parent pointer, since of course our parent does not own
12991 -- up to us and reference us, we are an illegitimate child of the
12992 -- original parent.
12993
12994 Set_Parent (New_Compon, Parent (Old_Compon));
12995
12996 -- If the old component's Esize was already determined and is a
12997 -- static value, then the new component simply inherits it. Otherwise
12998 -- the old component's size may require run-time determination, but
12999 -- the new component's size still might be statically determinable
13000 -- (if, for example it has a static constraint). In that case we want
13001 -- Layout_Type to recompute the component's size, so we reset its
13002 -- size and positional fields.
13003
13004 if Frontend_Layout_On_Target
13005 and then not Known_Static_Esize (Old_Compon)
13006 then
13007 Set_Esize (New_Compon, Uint_0);
13008 Init_Normalized_First_Bit (New_Compon);
13009 Init_Normalized_Position (New_Compon);
13010 Init_Normalized_Position_Max (New_Compon);
13011 end if;
13012
13013 -- We do not want this node marked as Comes_From_Source, since
13014 -- otherwise it would get first class status and a separate cross-
13015 -- reference line would be generated. Illegitimate children do not
13016 -- rate such recognition.
13017
13018 Set_Comes_From_Source (New_Compon, False);
13019
13020 -- But it is a real entity, and a birth certificate must be properly
13021 -- registered by entering it into the entity list.
13022
13023 Enter_Name (New_Compon);
13024
13025 return New_Compon;
13026 end Create_Component;
13027
13028 -----------------------
13029 -- Is_Variant_Record --
13030 -----------------------
13031
13032 function Is_Variant_Record (T : Entity_Id) return Boolean is
13033 begin
13034 return Nkind (Parent (T)) = N_Full_Type_Declaration
13035 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13036 and then Present (Component_List (Type_Definition (Parent (T))))
13037 and then
13038 Present
13039 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13040 end Is_Variant_Record;
13041
13042 -- Start of processing for Create_Constrained_Components
13043
13044 begin
13045 pragma Assert (Subt /= Base_Type (Subt));
13046 pragma Assert (Typ = Base_Type (Typ));
13047
13048 Set_First_Entity (Subt, Empty);
13049 Set_Last_Entity (Subt, Empty);
13050
13051 -- Check whether constraint is fully static, in which case we can
13052 -- optimize the list of components.
13053
13054 Discr_Val := First_Elmt (Constraints);
13055 while Present (Discr_Val) loop
13056 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13057 Is_Static := False;
13058 exit;
13059 end if;
13060
13061 Next_Elmt (Discr_Val);
13062 end loop;
13063
13064 Set_Has_Static_Discriminants (Subt, Is_Static);
13065
13066 Push_Scope (Subt);
13067
13068 -- Inherit the discriminants of the parent type
13069
13070 Add_Discriminants : declare
13071 Num_Disc : Int;
13072 Num_Gird : Int;
13073
13074 begin
13075 Num_Disc := 0;
13076 Old_C := First_Discriminant (Typ);
13077
13078 while Present (Old_C) loop
13079 Num_Disc := Num_Disc + 1;
13080 New_C := Create_Component (Old_C);
13081 Set_Is_Public (New_C, Is_Public (Subt));
13082 Next_Discriminant (Old_C);
13083 end loop;
13084
13085 -- For an untagged derived subtype, the number of discriminants may
13086 -- be smaller than the number of inherited discriminants, because
13087 -- several of them may be renamed by a single new discriminant or
13088 -- constrained. In this case, add the hidden discriminants back into
13089 -- the subtype, because they need to be present if the optimizer of
13090 -- the GCC 4.x back-end decides to break apart assignments between
13091 -- objects using the parent view into member-wise assignments.
13092
13093 Num_Gird := 0;
13094
13095 if Is_Derived_Type (Typ)
13096 and then not Is_Tagged_Type (Typ)
13097 then
13098 Old_C := First_Stored_Discriminant (Typ);
13099
13100 while Present (Old_C) loop
13101 Num_Gird := Num_Gird + 1;
13102 Next_Stored_Discriminant (Old_C);
13103 end loop;
13104 end if;
13105
13106 if Num_Gird > Num_Disc then
13107
13108 -- Find out multiple uses of new discriminants, and add hidden
13109 -- components for the extra renamed discriminants. We recognize
13110 -- multiple uses through the Corresponding_Discriminant of a
13111 -- new discriminant: if it constrains several old discriminants,
13112 -- this field points to the last one in the parent type. The
13113 -- stored discriminants of the derived type have the same name
13114 -- as those of the parent.
13115
13116 declare
13117 Constr : Elmt_Id;
13118 New_Discr : Entity_Id;
13119 Old_Discr : Entity_Id;
13120
13121 begin
13122 Constr := First_Elmt (Stored_Constraint (Typ));
13123 Old_Discr := First_Stored_Discriminant (Typ);
13124 while Present (Constr) loop
13125 if Is_Entity_Name (Node (Constr))
13126 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13127 then
13128 New_Discr := Entity (Node (Constr));
13129
13130 if Chars (Corresponding_Discriminant (New_Discr)) /=
13131 Chars (Old_Discr)
13132 then
13133 -- The new discriminant has been used to rename a
13134 -- subsequent old discriminant. Introduce a shadow
13135 -- component for the current old discriminant.
13136
13137 New_C := Create_Component (Old_Discr);
13138 Set_Original_Record_Component (New_C, Old_Discr);
13139 end if;
13140
13141 else
13142 -- The constraint has eliminated the old discriminant.
13143 -- Introduce a shadow component.
13144
13145 New_C := Create_Component (Old_Discr);
13146 Set_Original_Record_Component (New_C, Old_Discr);
13147 end if;
13148
13149 Next_Elmt (Constr);
13150 Next_Stored_Discriminant (Old_Discr);
13151 end loop;
13152 end;
13153 end if;
13154 end Add_Discriminants;
13155
13156 if Is_Static
13157 and then Is_Variant_Record (Typ)
13158 then
13159 Collect_Fixed_Components (Typ);
13160
13161 Gather_Components (
13162 Typ,
13163 Component_List (Type_Definition (Parent (Typ))),
13164 Governed_By => Assoc_List,
13165 Into => Comp_List,
13166 Report_Errors => Errors);
13167 pragma Assert (not Errors);
13168
13169 Create_All_Components;
13170
13171 -- If the subtype declaration is created for a tagged type derivation
13172 -- with constraints, we retrieve the record definition of the parent
13173 -- type to select the components of the proper variant.
13174
13175 elsif Is_Static
13176 and then Is_Tagged_Type (Typ)
13177 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13178 and then
13179 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13180 and then Is_Variant_Record (Parent_Type)
13181 then
13182 Collect_Fixed_Components (Typ);
13183
13184 Gather_Components (
13185 Typ,
13186 Component_List (Type_Definition (Parent (Parent_Type))),
13187 Governed_By => Assoc_List,
13188 Into => Comp_List,
13189 Report_Errors => Errors);
13190 pragma Assert (not Errors);
13191
13192 -- If the tagged derivation has a type extension, collect all the
13193 -- new components therein.
13194
13195 if Present
13196 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13197 then
13198 Old_C := First_Component (Typ);
13199 while Present (Old_C) loop
13200 if Original_Record_Component (Old_C) = Old_C
13201 and then Chars (Old_C) /= Name_uTag
13202 and then Chars (Old_C) /= Name_uParent
13203 then
13204 Append_Elmt (Old_C, Comp_List);
13205 end if;
13206
13207 Next_Component (Old_C);
13208 end loop;
13209 end if;
13210
13211 Create_All_Components;
13212
13213 else
13214 -- If discriminants are not static, or if this is a multi-level type
13215 -- extension, we have to include all components of the parent type.
13216
13217 Old_C := First_Component (Typ);
13218 while Present (Old_C) loop
13219 New_C := Create_Component (Old_C);
13220
13221 Set_Etype
13222 (New_C,
13223 Constrain_Component_Type
13224 (Old_C, Subt, Decl_Node, Typ, Constraints));
13225 Set_Is_Public (New_C, Is_Public (Subt));
13226
13227 Next_Component (Old_C);
13228 end loop;
13229 end if;
13230
13231 End_Scope;
13232 end Create_Constrained_Components;
13233
13234 ------------------------------------------
13235 -- Decimal_Fixed_Point_Type_Declaration --
13236 ------------------------------------------
13237
13238 procedure Decimal_Fixed_Point_Type_Declaration
13239 (T : Entity_Id;
13240 Def : Node_Id)
13241 is
13242 Loc : constant Source_Ptr := Sloc (Def);
13243 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13244 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13245 Implicit_Base : Entity_Id;
13246 Digs_Val : Uint;
13247 Delta_Val : Ureal;
13248 Scale_Val : Uint;
13249 Bound_Val : Ureal;
13250
13251 begin
13252 Check_SPARK_05_Restriction
13253 ("decimal fixed point type is not allowed", Def);
13254 Check_Restriction (No_Fixed_Point, Def);
13255
13256 -- Create implicit base type
13257
13258 Implicit_Base :=
13259 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13260 Set_Etype (Implicit_Base, Implicit_Base);
13261
13262 -- Analyze and process delta expression
13263
13264 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13265
13266 Check_Delta_Expression (Delta_Expr);
13267 Delta_Val := Expr_Value_R (Delta_Expr);
13268
13269 -- Check delta is power of 10, and determine scale value from it
13270
13271 declare
13272 Val : Ureal;
13273
13274 begin
13275 Scale_Val := Uint_0;
13276 Val := Delta_Val;
13277
13278 if Val < Ureal_1 then
13279 while Val < Ureal_1 loop
13280 Val := Val * Ureal_10;
13281 Scale_Val := Scale_Val + 1;
13282 end loop;
13283
13284 if Scale_Val > 18 then
13285 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13286 Scale_Val := UI_From_Int (+18);
13287 end if;
13288
13289 else
13290 while Val > Ureal_1 loop
13291 Val := Val / Ureal_10;
13292 Scale_Val := Scale_Val - 1;
13293 end loop;
13294
13295 if Scale_Val < -18 then
13296 Error_Msg_N ("scale is less than minimum value of -18", Def);
13297 Scale_Val := UI_From_Int (-18);
13298 end if;
13299 end if;
13300
13301 if Val /= Ureal_1 then
13302 Error_Msg_N ("delta expression must be a power of 10", Def);
13303 Delta_Val := Ureal_10 ** (-Scale_Val);
13304 end if;
13305 end;
13306
13307 -- Set delta, scale and small (small = delta for decimal type)
13308
13309 Set_Delta_Value (Implicit_Base, Delta_Val);
13310 Set_Scale_Value (Implicit_Base, Scale_Val);
13311 Set_Small_Value (Implicit_Base, Delta_Val);
13312
13313 -- Analyze and process digits expression
13314
13315 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13316 Check_Digits_Expression (Digs_Expr);
13317 Digs_Val := Expr_Value (Digs_Expr);
13318
13319 if Digs_Val > 18 then
13320 Digs_Val := UI_From_Int (+18);
13321 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13322 end if;
13323
13324 Set_Digits_Value (Implicit_Base, Digs_Val);
13325 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13326
13327 -- Set range of base type from digits value for now. This will be
13328 -- expanded to represent the true underlying base range by Freeze.
13329
13330 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13331
13332 -- Note: We leave size as zero for now, size will be set at freeze
13333 -- time. We have to do this for ordinary fixed-point, because the size
13334 -- depends on the specified small, and we might as well do the same for
13335 -- decimal fixed-point.
13336
13337 pragma Assert (Esize (Implicit_Base) = Uint_0);
13338
13339 -- If there are bounds given in the declaration use them as the
13340 -- bounds of the first named subtype.
13341
13342 if Present (Real_Range_Specification (Def)) then
13343 declare
13344 RRS : constant Node_Id := Real_Range_Specification (Def);
13345 Low : constant Node_Id := Low_Bound (RRS);
13346 High : constant Node_Id := High_Bound (RRS);
13347 Low_Val : Ureal;
13348 High_Val : Ureal;
13349
13350 begin
13351 Analyze_And_Resolve (Low, Any_Real);
13352 Analyze_And_Resolve (High, Any_Real);
13353 Check_Real_Bound (Low);
13354 Check_Real_Bound (High);
13355 Low_Val := Expr_Value_R (Low);
13356 High_Val := Expr_Value_R (High);
13357
13358 if Low_Val < (-Bound_Val) then
13359 Error_Msg_N
13360 ("range low bound too small for digits value", Low);
13361 Low_Val := -Bound_Val;
13362 end if;
13363
13364 if High_Val > Bound_Val then
13365 Error_Msg_N
13366 ("range high bound too large for digits value", High);
13367 High_Val := Bound_Val;
13368 end if;
13369
13370 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13371 end;
13372
13373 -- If no explicit range, use range that corresponds to given
13374 -- digits value. This will end up as the final range for the
13375 -- first subtype.
13376
13377 else
13378 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13379 end if;
13380
13381 -- Complete entity for first subtype
13382
13383 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13384 Set_Etype (T, Implicit_Base);
13385 Set_Size_Info (T, Implicit_Base);
13386 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13387 Set_Digits_Value (T, Digs_Val);
13388 Set_Delta_Value (T, Delta_Val);
13389 Set_Small_Value (T, Delta_Val);
13390 Set_Scale_Value (T, Scale_Val);
13391 Set_Is_Constrained (T);
13392 end Decimal_Fixed_Point_Type_Declaration;
13393
13394 -----------------------------------
13395 -- Derive_Progenitor_Subprograms --
13396 -----------------------------------
13397
13398 procedure Derive_Progenitor_Subprograms
13399 (Parent_Type : Entity_Id;
13400 Tagged_Type : Entity_Id)
13401 is
13402 E : Entity_Id;
13403 Elmt : Elmt_Id;
13404 Iface : Entity_Id;
13405 Iface_Elmt : Elmt_Id;
13406 Iface_Subp : Entity_Id;
13407 New_Subp : Entity_Id := Empty;
13408 Prim_Elmt : Elmt_Id;
13409 Subp : Entity_Id;
13410 Typ : Entity_Id;
13411
13412 begin
13413 pragma Assert (Ada_Version >= Ada_2005
13414 and then Is_Record_Type (Tagged_Type)
13415 and then Is_Tagged_Type (Tagged_Type)
13416 and then Has_Interfaces (Tagged_Type));
13417
13418 -- Step 1: Transfer to the full-view primitives associated with the
13419 -- partial-view that cover interface primitives. Conceptually this
13420 -- work should be done later by Process_Full_View; done here to
13421 -- simplify its implementation at later stages. It can be safely
13422 -- done here because interfaces must be visible in the partial and
13423 -- private view (RM 7.3(7.3/2)).
13424
13425 -- Small optimization: This work is only required if the parent may
13426 -- have entities whose Alias attribute reference an interface primitive.
13427 -- Such a situation may occur if the parent is an abstract type and the
13428 -- primitive has not been yet overridden or if the parent is a generic
13429 -- formal type covering interfaces.
13430
13431 -- If the tagged type is not abstract, it cannot have abstract
13432 -- primitives (the only entities in the list of primitives of
13433 -- non-abstract tagged types that can reference abstract primitives
13434 -- through its Alias attribute are the internal entities that have
13435 -- attribute Interface_Alias, and these entities are generated later
13436 -- by Add_Internal_Interface_Entities).
13437
13438 if In_Private_Part (Current_Scope)
13439 and then (Is_Abstract_Type (Parent_Type)
13440 or else
13441 Is_Generic_Type (Parent_Type))
13442 then
13443 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13444 while Present (Elmt) loop
13445 Subp := Node (Elmt);
13446
13447 -- At this stage it is not possible to have entities in the list
13448 -- of primitives that have attribute Interface_Alias.
13449
13450 pragma Assert (No (Interface_Alias (Subp)));
13451
13452 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13453
13454 if Is_Interface (Typ) then
13455 E := Find_Primitive_Covering_Interface
13456 (Tagged_Type => Tagged_Type,
13457 Iface_Prim => Subp);
13458
13459 if Present (E)
13460 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13461 then
13462 Replace_Elmt (Elmt, E);
13463 Remove_Homonym (Subp);
13464 end if;
13465 end if;
13466
13467 Next_Elmt (Elmt);
13468 end loop;
13469 end if;
13470
13471 -- Step 2: Add primitives of progenitors that are not implemented by
13472 -- parents of Tagged_Type.
13473
13474 if Present (Interfaces (Base_Type (Tagged_Type))) then
13475 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13476 while Present (Iface_Elmt) loop
13477 Iface := Node (Iface_Elmt);
13478
13479 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13480 while Present (Prim_Elmt) loop
13481 Iface_Subp := Node (Prim_Elmt);
13482
13483 -- Exclude derivation of predefined primitives except those
13484 -- that come from source, or are inherited from one that comes
13485 -- from source. Required to catch declarations of equality
13486 -- operators of interfaces. For example:
13487
13488 -- type Iface is interface;
13489 -- function "=" (Left, Right : Iface) return Boolean;
13490
13491 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13492 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13493 then
13494 E := Find_Primitive_Covering_Interface
13495 (Tagged_Type => Tagged_Type,
13496 Iface_Prim => Iface_Subp);
13497
13498 -- If not found we derive a new primitive leaving its alias
13499 -- attribute referencing the interface primitive.
13500
13501 if No (E) then
13502 Derive_Subprogram
13503 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13504
13505 -- Ada 2012 (AI05-0197): If the covering primitive's name
13506 -- differs from the name of the interface primitive then it
13507 -- is a private primitive inherited from a parent type. In
13508 -- such case, given that Tagged_Type covers the interface,
13509 -- the inherited private primitive becomes visible. For such
13510 -- purpose we add a new entity that renames the inherited
13511 -- private primitive.
13512
13513 elsif Chars (E) /= Chars (Iface_Subp) then
13514 pragma Assert (Has_Suffix (E, 'P'));
13515 Derive_Subprogram
13516 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13517 Set_Alias (New_Subp, E);
13518 Set_Is_Abstract_Subprogram (New_Subp,
13519 Is_Abstract_Subprogram (E));
13520
13521 -- Propagate to the full view interface entities associated
13522 -- with the partial view.
13523
13524 elsif In_Private_Part (Current_Scope)
13525 and then Present (Alias (E))
13526 and then Alias (E) = Iface_Subp
13527 and then
13528 List_Containing (Parent (E)) /=
13529 Private_Declarations
13530 (Specification
13531 (Unit_Declaration_Node (Current_Scope)))
13532 then
13533 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13534 end if;
13535 end if;
13536
13537 Next_Elmt (Prim_Elmt);
13538 end loop;
13539
13540 Next_Elmt (Iface_Elmt);
13541 end loop;
13542 end if;
13543 end Derive_Progenitor_Subprograms;
13544
13545 -----------------------
13546 -- Derive_Subprogram --
13547 -----------------------
13548
13549 procedure Derive_Subprogram
13550 (New_Subp : in out Entity_Id;
13551 Parent_Subp : Entity_Id;
13552 Derived_Type : Entity_Id;
13553 Parent_Type : Entity_Id;
13554 Actual_Subp : Entity_Id := Empty)
13555 is
13556 Formal : Entity_Id;
13557 -- Formal parameter of parent primitive operation
13558
13559 Formal_Of_Actual : Entity_Id;
13560 -- Formal parameter of actual operation, when the derivation is to
13561 -- create a renaming for a primitive operation of an actual in an
13562 -- instantiation.
13563
13564 New_Formal : Entity_Id;
13565 -- Formal of inherited operation
13566
13567 Visible_Subp : Entity_Id := Parent_Subp;
13568
13569 function Is_Private_Overriding return Boolean;
13570 -- If Subp is a private overriding of a visible operation, the inherited
13571 -- operation derives from the overridden op (even though its body is the
13572 -- overriding one) and the inherited operation is visible now. See
13573 -- sem_disp to see the full details of the handling of the overridden
13574 -- subprogram, which is removed from the list of primitive operations of
13575 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13576 -- and used to diagnose abstract operations that need overriding in the
13577 -- derived type.
13578
13579 procedure Replace_Type (Id, New_Id : Entity_Id);
13580 -- When the type is an anonymous access type, create a new access type
13581 -- designating the derived type.
13582
13583 procedure Set_Derived_Name;
13584 -- This procedure sets the appropriate Chars name for New_Subp. This
13585 -- is normally just a copy of the parent name. An exception arises for
13586 -- type support subprograms, where the name is changed to reflect the
13587 -- name of the derived type, e.g. if type foo is derived from type bar,
13588 -- then a procedure barDA is derived with a name fooDA.
13589
13590 ---------------------------
13591 -- Is_Private_Overriding --
13592 ---------------------------
13593
13594 function Is_Private_Overriding return Boolean is
13595 Prev : Entity_Id;
13596
13597 begin
13598 -- If the parent is not a dispatching operation there is no
13599 -- need to investigate overridings
13600
13601 if not Is_Dispatching_Operation (Parent_Subp) then
13602 return False;
13603 end if;
13604
13605 -- The visible operation that is overridden is a homonym of the
13606 -- parent subprogram. We scan the homonym chain to find the one
13607 -- whose alias is the subprogram we are deriving.
13608
13609 Prev := Current_Entity (Parent_Subp);
13610 while Present (Prev) loop
13611 if Ekind (Prev) = Ekind (Parent_Subp)
13612 and then Alias (Prev) = Parent_Subp
13613 and then Scope (Parent_Subp) = Scope (Prev)
13614 and then not Is_Hidden (Prev)
13615 then
13616 Visible_Subp := Prev;
13617 return True;
13618 end if;
13619
13620 Prev := Homonym (Prev);
13621 end loop;
13622
13623 return False;
13624 end Is_Private_Overriding;
13625
13626 ------------------
13627 -- Replace_Type --
13628 ------------------
13629
13630 procedure Replace_Type (Id, New_Id : Entity_Id) is
13631 Id_Type : constant Entity_Id := Etype (Id);
13632 Acc_Type : Entity_Id;
13633 Par : constant Node_Id := Parent (Derived_Type);
13634
13635 begin
13636 -- When the type is an anonymous access type, create a new access
13637 -- type designating the derived type. This itype must be elaborated
13638 -- at the point of the derivation, not on subsequent calls that may
13639 -- be out of the proper scope for Gigi, so we insert a reference to
13640 -- it after the derivation.
13641
13642 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13643 declare
13644 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13645
13646 begin
13647 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13648 and then Present (Full_View (Desig_Typ))
13649 and then not Is_Private_Type (Parent_Type)
13650 then
13651 Desig_Typ := Full_View (Desig_Typ);
13652 end if;
13653
13654 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13655
13656 -- Ada 2005 (AI-251): Handle also derivations of abstract
13657 -- interface primitives.
13658
13659 or else (Is_Interface (Desig_Typ)
13660 and then not Is_Class_Wide_Type (Desig_Typ))
13661 then
13662 Acc_Type := New_Copy (Id_Type);
13663 Set_Etype (Acc_Type, Acc_Type);
13664 Set_Scope (Acc_Type, New_Subp);
13665
13666 -- Set size of anonymous access type. If we have an access
13667 -- to an unconstrained array, this is a fat pointer, so it
13668 -- is sizes at twice addtress size.
13669
13670 if Is_Array_Type (Desig_Typ)
13671 and then not Is_Constrained (Desig_Typ)
13672 then
13673 Init_Size (Acc_Type, 2 * System_Address_Size);
13674
13675 -- Other cases use a thin pointer
13676
13677 else
13678 Init_Size (Acc_Type, System_Address_Size);
13679 end if;
13680
13681 -- Set remaining characterstics of anonymous access type
13682
13683 Init_Alignment (Acc_Type);
13684 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13685
13686 Set_Etype (New_Id, Acc_Type);
13687 Set_Scope (New_Id, New_Subp);
13688
13689 -- Create a reference to it
13690
13691 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13692
13693 else
13694 Set_Etype (New_Id, Id_Type);
13695 end if;
13696 end;
13697
13698 -- In Ada2012, a formal may have an incomplete type but the type
13699 -- derivation that inherits the primitive follows the full view.
13700
13701 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13702 or else
13703 (Ekind (Id_Type) = E_Record_Type_With_Private
13704 and then Present (Full_View (Id_Type))
13705 and then
13706 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13707 or else
13708 (Ada_Version >= Ada_2012
13709 and then Ekind (Id_Type) = E_Incomplete_Type
13710 and then Full_View (Id_Type) = Parent_Type)
13711 then
13712 -- Constraint checks on formals are generated during expansion,
13713 -- based on the signature of the original subprogram. The bounds
13714 -- of the derived type are not relevant, and thus we can use
13715 -- the base type for the formals. However, the return type may be
13716 -- used in a context that requires that the proper static bounds
13717 -- be used (a case statement, for example) and for those cases
13718 -- we must use the derived type (first subtype), not its base.
13719
13720 -- If the derived_type_definition has no constraints, we know that
13721 -- the derived type has the same constraints as the first subtype
13722 -- of the parent, and we can also use it rather than its base,
13723 -- which can lead to more efficient code.
13724
13725 if Etype (Id) = Parent_Type then
13726 if Is_Scalar_Type (Parent_Type)
13727 and then
13728 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13729 then
13730 Set_Etype (New_Id, Derived_Type);
13731
13732 elsif Nkind (Par) = N_Full_Type_Declaration
13733 and then
13734 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13735 and then
13736 Is_Entity_Name
13737 (Subtype_Indication (Type_Definition (Par)))
13738 then
13739 Set_Etype (New_Id, Derived_Type);
13740
13741 else
13742 Set_Etype (New_Id, Base_Type (Derived_Type));
13743 end if;
13744
13745 else
13746 Set_Etype (New_Id, Base_Type (Derived_Type));
13747 end if;
13748
13749 else
13750 Set_Etype (New_Id, Etype (Id));
13751 end if;
13752 end Replace_Type;
13753
13754 ----------------------
13755 -- Set_Derived_Name --
13756 ----------------------
13757
13758 procedure Set_Derived_Name is
13759 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13760 begin
13761 if Nm = TSS_Null then
13762 Set_Chars (New_Subp, Chars (Parent_Subp));
13763 else
13764 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13765 end if;
13766 end Set_Derived_Name;
13767
13768 -- Start of processing for Derive_Subprogram
13769
13770 begin
13771 New_Subp :=
13772 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13773 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13774 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13775
13776 -- Check whether the inherited subprogram is a private operation that
13777 -- should be inherited but not yet made visible. Such subprograms can
13778 -- become visible at a later point (e.g., the private part of a public
13779 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13780 -- following predicate is true, then this is not such a private
13781 -- operation and the subprogram simply inherits the name of the parent
13782 -- subprogram. Note the special check for the names of controlled
13783 -- operations, which are currently exempted from being inherited with
13784 -- a hidden name because they must be findable for generation of
13785 -- implicit run-time calls.
13786
13787 if not Is_Hidden (Parent_Subp)
13788 or else Is_Internal (Parent_Subp)
13789 or else Is_Private_Overriding
13790 or else Is_Internal_Name (Chars (Parent_Subp))
13791 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13792 Name_Adjust,
13793 Name_Finalize)
13794 then
13795 Set_Derived_Name;
13796
13797 -- An inherited dispatching equality will be overridden by an internally
13798 -- generated one, or by an explicit one, so preserve its name and thus
13799 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13800 -- private operation it may become invisible if the full view has
13801 -- progenitors, and the dispatch table will be malformed.
13802 -- We check that the type is limited to handle the anomalous declaration
13803 -- of Limited_Controlled, which is derived from a non-limited type, and
13804 -- which is handled specially elsewhere as well.
13805
13806 elsif Chars (Parent_Subp) = Name_Op_Eq
13807 and then Is_Dispatching_Operation (Parent_Subp)
13808 and then Etype (Parent_Subp) = Standard_Boolean
13809 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13810 and then
13811 Etype (First_Formal (Parent_Subp)) =
13812 Etype (Next_Formal (First_Formal (Parent_Subp)))
13813 then
13814 Set_Derived_Name;
13815
13816 -- If parent is hidden, this can be a regular derivation if the
13817 -- parent is immediately visible in a non-instantiating context,
13818 -- or if we are in the private part of an instance. This test
13819 -- should still be refined ???
13820
13821 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13822 -- operation as a non-visible operation in cases where the parent
13823 -- subprogram might not be visible now, but was visible within the
13824 -- original generic, so it would be wrong to make the inherited
13825 -- subprogram non-visible now. (Not clear if this test is fully
13826 -- correct; are there any cases where we should declare the inherited
13827 -- operation as not visible to avoid it being overridden, e.g., when
13828 -- the parent type is a generic actual with private primitives ???)
13829
13830 -- (they should be treated the same as other private inherited
13831 -- subprograms, but it's not clear how to do this cleanly). ???
13832
13833 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13834 and then Is_Immediately_Visible (Parent_Subp)
13835 and then not In_Instance)
13836 or else In_Instance_Not_Visible
13837 then
13838 Set_Derived_Name;
13839
13840 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13841 -- overrides an interface primitive because interface primitives
13842 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13843
13844 elsif Ada_Version >= Ada_2005
13845 and then Is_Dispatching_Operation (Parent_Subp)
13846 and then Covers_Some_Interface (Parent_Subp)
13847 then
13848 Set_Derived_Name;
13849
13850 -- Otherwise, the type is inheriting a private operation, so enter
13851 -- it with a special name so it can't be overridden.
13852
13853 else
13854 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13855 end if;
13856
13857 Set_Parent (New_Subp, Parent (Derived_Type));
13858
13859 if Present (Actual_Subp) then
13860 Replace_Type (Actual_Subp, New_Subp);
13861 else
13862 Replace_Type (Parent_Subp, New_Subp);
13863 end if;
13864
13865 Conditional_Delay (New_Subp, Parent_Subp);
13866
13867 -- If we are creating a renaming for a primitive operation of an
13868 -- actual of a generic derived type, we must examine the signature
13869 -- of the actual primitive, not that of the generic formal, which for
13870 -- example may be an interface. However the name and initial value
13871 -- of the inherited operation are those of the formal primitive.
13872
13873 Formal := First_Formal (Parent_Subp);
13874
13875 if Present (Actual_Subp) then
13876 Formal_Of_Actual := First_Formal (Actual_Subp);
13877 else
13878 Formal_Of_Actual := Empty;
13879 end if;
13880
13881 while Present (Formal) loop
13882 New_Formal := New_Copy (Formal);
13883
13884 -- Normally we do not go copying parents, but in the case of
13885 -- formals, we need to link up to the declaration (which is the
13886 -- parameter specification), and it is fine to link up to the
13887 -- original formal's parameter specification in this case.
13888
13889 Set_Parent (New_Formal, Parent (Formal));
13890 Append_Entity (New_Formal, New_Subp);
13891
13892 if Present (Formal_Of_Actual) then
13893 Replace_Type (Formal_Of_Actual, New_Formal);
13894 Next_Formal (Formal_Of_Actual);
13895 else
13896 Replace_Type (Formal, New_Formal);
13897 end if;
13898
13899 Next_Formal (Formal);
13900 end loop;
13901
13902 -- If this derivation corresponds to a tagged generic actual, then
13903 -- primitive operations rename those of the actual. Otherwise the
13904 -- primitive operations rename those of the parent type, If the parent
13905 -- renames an intrinsic operator, so does the new subprogram. We except
13906 -- concatenation, which is always properly typed, and does not get
13907 -- expanded as other intrinsic operations.
13908
13909 if No (Actual_Subp) then
13910 if Is_Intrinsic_Subprogram (Parent_Subp) then
13911 Set_Is_Intrinsic_Subprogram (New_Subp);
13912
13913 if Present (Alias (Parent_Subp))
13914 and then Chars (Parent_Subp) /= Name_Op_Concat
13915 then
13916 Set_Alias (New_Subp, Alias (Parent_Subp));
13917 else
13918 Set_Alias (New_Subp, Parent_Subp);
13919 end if;
13920
13921 else
13922 Set_Alias (New_Subp, Parent_Subp);
13923 end if;
13924
13925 else
13926 Set_Alias (New_Subp, Actual_Subp);
13927 end if;
13928
13929 -- Derived subprograms of a tagged type must inherit the convention
13930 -- of the parent subprogram (a requirement of AI-117). Derived
13931 -- subprograms of untagged types simply get convention Ada by default.
13932
13933 -- If the derived type is a tagged generic formal type with unknown
13934 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13935
13936 -- However, if the type is derived from a generic formal, the further
13937 -- inherited subprogram has the convention of the non-generic ancestor.
13938 -- Otherwise there would be no way to override the operation.
13939 -- (This is subject to forthcoming ARG discussions).
13940
13941 if Is_Tagged_Type (Derived_Type) then
13942 if Is_Generic_Type (Derived_Type)
13943 and then Has_Unknown_Discriminants (Derived_Type)
13944 then
13945 Set_Convention (New_Subp, Convention_Intrinsic);
13946
13947 else
13948 if Is_Generic_Type (Parent_Type)
13949 and then Has_Unknown_Discriminants (Parent_Type)
13950 then
13951 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13952 else
13953 Set_Convention (New_Subp, Convention (Parent_Subp));
13954 end if;
13955 end if;
13956 end if;
13957
13958 -- Predefined controlled operations retain their name even if the parent
13959 -- is hidden (see above), but they are not primitive operations if the
13960 -- ancestor is not visible, for example if the parent is a private
13961 -- extension completed with a controlled extension. Note that a full
13962 -- type that is controlled can break privacy: the flag Is_Controlled is
13963 -- set on both views of the type.
13964
13965 if Is_Controlled (Parent_Type)
13966 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13967 Name_Adjust,
13968 Name_Finalize)
13969 and then Is_Hidden (Parent_Subp)
13970 and then not Is_Visibly_Controlled (Parent_Type)
13971 then
13972 Set_Is_Hidden (New_Subp);
13973 end if;
13974
13975 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13976 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13977
13978 if Ekind (Parent_Subp) = E_Procedure then
13979 Set_Is_Valued_Procedure
13980 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13981 else
13982 Set_Has_Controlling_Result
13983 (New_Subp, Has_Controlling_Result (Parent_Subp));
13984 end if;
13985
13986 -- No_Return must be inherited properly. If this is overridden in the
13987 -- case of a dispatching operation, then a check is made in Sem_Disp
13988 -- that the overriding operation is also No_Return (no such check is
13989 -- required for the case of non-dispatching operation.
13990
13991 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13992
13993 -- A derived function with a controlling result is abstract. If the
13994 -- Derived_Type is a nonabstract formal generic derived type, then
13995 -- inherited operations are not abstract: the required check is done at
13996 -- instantiation time. If the derivation is for a generic actual, the
13997 -- function is not abstract unless the actual is.
13998
13999 if Is_Generic_Type (Derived_Type)
14000 and then not Is_Abstract_Type (Derived_Type)
14001 then
14002 null;
14003
14004 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14005 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14006
14007 elsif Ada_Version >= Ada_2005
14008 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14009 or else (Is_Tagged_Type (Derived_Type)
14010 and then Etype (New_Subp) = Derived_Type
14011 and then not Is_Null_Extension (Derived_Type))
14012 or else (Is_Tagged_Type (Derived_Type)
14013 and then Ekind (Etype (New_Subp)) =
14014 E_Anonymous_Access_Type
14015 and then Designated_Type (Etype (New_Subp)) =
14016 Derived_Type
14017 and then not Is_Null_Extension (Derived_Type)))
14018 and then No (Actual_Subp)
14019 then
14020 if not Is_Tagged_Type (Derived_Type)
14021 or else Is_Abstract_Type (Derived_Type)
14022 or else Is_Abstract_Subprogram (Alias (New_Subp))
14023 then
14024 Set_Is_Abstract_Subprogram (New_Subp);
14025 else
14026 Set_Requires_Overriding (New_Subp);
14027 end if;
14028
14029 elsif Ada_Version < Ada_2005
14030 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14031 or else (Is_Tagged_Type (Derived_Type)
14032 and then Etype (New_Subp) = Derived_Type
14033 and then No (Actual_Subp)))
14034 then
14035 Set_Is_Abstract_Subprogram (New_Subp);
14036
14037 -- AI05-0097 : an inherited operation that dispatches on result is
14038 -- abstract if the derived type is abstract, even if the parent type
14039 -- is concrete and the derived type is a null extension.
14040
14041 elsif Has_Controlling_Result (Alias (New_Subp))
14042 and then Is_Abstract_Type (Etype (New_Subp))
14043 then
14044 Set_Is_Abstract_Subprogram (New_Subp);
14045
14046 -- Finally, if the parent type is abstract we must verify that all
14047 -- inherited operations are either non-abstract or overridden, or that
14048 -- the derived type itself is abstract (this check is performed at the
14049 -- end of a package declaration, in Check_Abstract_Overriding). A
14050 -- private overriding in the parent type will not be visible in the
14051 -- derivation if we are not in an inner package or in a child unit of
14052 -- the parent type, in which case the abstractness of the inherited
14053 -- operation is carried to the new subprogram.
14054
14055 elsif Is_Abstract_Type (Parent_Type)
14056 and then not In_Open_Scopes (Scope (Parent_Type))
14057 and then Is_Private_Overriding
14058 and then Is_Abstract_Subprogram (Visible_Subp)
14059 then
14060 if No (Actual_Subp) then
14061 Set_Alias (New_Subp, Visible_Subp);
14062 Set_Is_Abstract_Subprogram (New_Subp, True);
14063
14064 else
14065 -- If this is a derivation for an instance of a formal derived
14066 -- type, abstractness comes from the primitive operation of the
14067 -- actual, not from the operation inherited from the ancestor.
14068
14069 Set_Is_Abstract_Subprogram
14070 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14071 end if;
14072 end if;
14073
14074 New_Overloaded_Entity (New_Subp, Derived_Type);
14075
14076 -- Check for case of a derived subprogram for the instantiation of a
14077 -- formal derived tagged type, if so mark the subprogram as dispatching
14078 -- and inherit the dispatching attributes of the actual subprogram. The
14079 -- derived subprogram is effectively renaming of the actual subprogram,
14080 -- so it needs to have the same attributes as the actual.
14081
14082 if Present (Actual_Subp)
14083 and then Is_Dispatching_Operation (Actual_Subp)
14084 then
14085 Set_Is_Dispatching_Operation (New_Subp);
14086
14087 if Present (DTC_Entity (Actual_Subp)) then
14088 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14089 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14090 end if;
14091 end if;
14092
14093 -- Indicate that a derived subprogram does not require a body and that
14094 -- it does not require processing of default expressions.
14095
14096 Set_Has_Completion (New_Subp);
14097 Set_Default_Expressions_Processed (New_Subp);
14098
14099 if Ekind (New_Subp) = E_Function then
14100 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14101 end if;
14102 end Derive_Subprogram;
14103
14104 ------------------------
14105 -- Derive_Subprograms --
14106 ------------------------
14107
14108 procedure Derive_Subprograms
14109 (Parent_Type : Entity_Id;
14110 Derived_Type : Entity_Id;
14111 Generic_Actual : Entity_Id := Empty)
14112 is
14113 Op_List : constant Elist_Id :=
14114 Collect_Primitive_Operations (Parent_Type);
14115
14116 function Check_Derived_Type return Boolean;
14117 -- Check that all the entities derived from Parent_Type are found in
14118 -- the list of primitives of Derived_Type exactly in the same order.
14119
14120 procedure Derive_Interface_Subprogram
14121 (New_Subp : in out Entity_Id;
14122 Subp : Entity_Id;
14123 Actual_Subp : Entity_Id);
14124 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14125 -- (which is an interface primitive). If Generic_Actual is present then
14126 -- Actual_Subp is the actual subprogram corresponding with the generic
14127 -- subprogram Subp.
14128
14129 function Check_Derived_Type return Boolean is
14130 E : Entity_Id;
14131 Elmt : Elmt_Id;
14132 List : Elist_Id;
14133 New_Subp : Entity_Id;
14134 Op_Elmt : Elmt_Id;
14135 Subp : Entity_Id;
14136
14137 begin
14138 -- Traverse list of entities in the current scope searching for
14139 -- an incomplete type whose full-view is derived type
14140
14141 E := First_Entity (Scope (Derived_Type));
14142 while Present (E) and then E /= Derived_Type loop
14143 if Ekind (E) = E_Incomplete_Type
14144 and then Present (Full_View (E))
14145 and then Full_View (E) = Derived_Type
14146 then
14147 -- Disable this test if Derived_Type completes an incomplete
14148 -- type because in such case more primitives can be added
14149 -- later to the list of primitives of Derived_Type by routine
14150 -- Process_Incomplete_Dependents
14151
14152 return True;
14153 end if;
14154
14155 E := Next_Entity (E);
14156 end loop;
14157
14158 List := Collect_Primitive_Operations (Derived_Type);
14159 Elmt := First_Elmt (List);
14160
14161 Op_Elmt := First_Elmt (Op_List);
14162 while Present (Op_Elmt) loop
14163 Subp := Node (Op_Elmt);
14164 New_Subp := Node (Elmt);
14165
14166 -- At this early stage Derived_Type has no entities with attribute
14167 -- Interface_Alias. In addition, such primitives are always
14168 -- located at the end of the list of primitives of Parent_Type.
14169 -- Therefore, if found we can safely stop processing pending
14170 -- entities.
14171
14172 exit when Present (Interface_Alias (Subp));
14173
14174 -- Handle hidden entities
14175
14176 if not Is_Predefined_Dispatching_Operation (Subp)
14177 and then Is_Hidden (Subp)
14178 then
14179 if Present (New_Subp)
14180 and then Primitive_Names_Match (Subp, New_Subp)
14181 then
14182 Next_Elmt (Elmt);
14183 end if;
14184
14185 else
14186 if not Present (New_Subp)
14187 or else Ekind (Subp) /= Ekind (New_Subp)
14188 or else not Primitive_Names_Match (Subp, New_Subp)
14189 then
14190 return False;
14191 end if;
14192
14193 Next_Elmt (Elmt);
14194 end if;
14195
14196 Next_Elmt (Op_Elmt);
14197 end loop;
14198
14199 return True;
14200 end Check_Derived_Type;
14201
14202 ---------------------------------
14203 -- Derive_Interface_Subprogram --
14204 ---------------------------------
14205
14206 procedure Derive_Interface_Subprogram
14207 (New_Subp : in out Entity_Id;
14208 Subp : Entity_Id;
14209 Actual_Subp : Entity_Id)
14210 is
14211 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14212 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14213
14214 begin
14215 pragma Assert (Is_Interface (Iface_Type));
14216
14217 Derive_Subprogram
14218 (New_Subp => New_Subp,
14219 Parent_Subp => Iface_Subp,
14220 Derived_Type => Derived_Type,
14221 Parent_Type => Iface_Type,
14222 Actual_Subp => Actual_Subp);
14223
14224 -- Given that this new interface entity corresponds with a primitive
14225 -- of the parent that was not overridden we must leave it associated
14226 -- with its parent primitive to ensure that it will share the same
14227 -- dispatch table slot when overridden.
14228
14229 if No (Actual_Subp) then
14230 Set_Alias (New_Subp, Subp);
14231
14232 -- For instantiations this is not needed since the previous call to
14233 -- Derive_Subprogram leaves the entity well decorated.
14234
14235 else
14236 pragma Assert (Alias (New_Subp) = Actual_Subp);
14237 null;
14238 end if;
14239 end Derive_Interface_Subprogram;
14240
14241 -- Local variables
14242
14243 Alias_Subp : Entity_Id;
14244 Act_List : Elist_Id;
14245 Act_Elmt : Elmt_Id;
14246 Act_Subp : Entity_Id := Empty;
14247 Elmt : Elmt_Id;
14248 Need_Search : Boolean := False;
14249 New_Subp : Entity_Id := Empty;
14250 Parent_Base : Entity_Id;
14251 Subp : Entity_Id;
14252
14253 -- Start of processing for Derive_Subprograms
14254
14255 begin
14256 if Ekind (Parent_Type) = E_Record_Type_With_Private
14257 and then Has_Discriminants (Parent_Type)
14258 and then Present (Full_View (Parent_Type))
14259 then
14260 Parent_Base := Full_View (Parent_Type);
14261 else
14262 Parent_Base := Parent_Type;
14263 end if;
14264
14265 if Present (Generic_Actual) then
14266 Act_List := Collect_Primitive_Operations (Generic_Actual);
14267 Act_Elmt := First_Elmt (Act_List);
14268 else
14269 Act_List := No_Elist;
14270 Act_Elmt := No_Elmt;
14271 end if;
14272
14273 -- Derive primitives inherited from the parent. Note that if the generic
14274 -- actual is present, this is not really a type derivation, it is a
14275 -- completion within an instance.
14276
14277 -- Case 1: Derived_Type does not implement interfaces
14278
14279 if not Is_Tagged_Type (Derived_Type)
14280 or else (not Has_Interfaces (Derived_Type)
14281 and then not (Present (Generic_Actual)
14282 and then Has_Interfaces (Generic_Actual)))
14283 then
14284 Elmt := First_Elmt (Op_List);
14285 while Present (Elmt) loop
14286 Subp := Node (Elmt);
14287
14288 -- Literals are derived earlier in the process of building the
14289 -- derived type, and are skipped here.
14290
14291 if Ekind (Subp) = E_Enumeration_Literal then
14292 null;
14293
14294 -- The actual is a direct descendant and the common primitive
14295 -- operations appear in the same order.
14296
14297 -- If the generic parent type is present, the derived type is an
14298 -- instance of a formal derived type, and within the instance its
14299 -- operations are those of the actual. We derive from the formal
14300 -- type but make the inherited operations aliases of the
14301 -- corresponding operations of the actual.
14302
14303 else
14304 pragma Assert (No (Node (Act_Elmt))
14305 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14306 and then
14307 Type_Conformant
14308 (Subp, Node (Act_Elmt),
14309 Skip_Controlling_Formals => True)));
14310
14311 Derive_Subprogram
14312 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14313
14314 if Present (Act_Elmt) then
14315 Next_Elmt (Act_Elmt);
14316 end if;
14317 end if;
14318
14319 Next_Elmt (Elmt);
14320 end loop;
14321
14322 -- Case 2: Derived_Type implements interfaces
14323
14324 else
14325 -- If the parent type has no predefined primitives we remove
14326 -- predefined primitives from the list of primitives of generic
14327 -- actual to simplify the complexity of this algorithm.
14328
14329 if Present (Generic_Actual) then
14330 declare
14331 Has_Predefined_Primitives : Boolean := False;
14332
14333 begin
14334 -- Check if the parent type has predefined primitives
14335
14336 Elmt := First_Elmt (Op_List);
14337 while Present (Elmt) loop
14338 Subp := Node (Elmt);
14339
14340 if Is_Predefined_Dispatching_Operation (Subp)
14341 and then not Comes_From_Source (Ultimate_Alias (Subp))
14342 then
14343 Has_Predefined_Primitives := True;
14344 exit;
14345 end if;
14346
14347 Next_Elmt (Elmt);
14348 end loop;
14349
14350 -- Remove predefined primitives of Generic_Actual. We must use
14351 -- an auxiliary list because in case of tagged types the value
14352 -- returned by Collect_Primitive_Operations is the value stored
14353 -- in its Primitive_Operations attribute (and we don't want to
14354 -- modify its current contents).
14355
14356 if not Has_Predefined_Primitives then
14357 declare
14358 Aux_List : constant Elist_Id := New_Elmt_List;
14359
14360 begin
14361 Elmt := First_Elmt (Act_List);
14362 while Present (Elmt) loop
14363 Subp := Node (Elmt);
14364
14365 if not Is_Predefined_Dispatching_Operation (Subp)
14366 or else Comes_From_Source (Subp)
14367 then
14368 Append_Elmt (Subp, Aux_List);
14369 end if;
14370
14371 Next_Elmt (Elmt);
14372 end loop;
14373
14374 Act_List := Aux_List;
14375 end;
14376 end if;
14377
14378 Act_Elmt := First_Elmt (Act_List);
14379 Act_Subp := Node (Act_Elmt);
14380 end;
14381 end if;
14382
14383 -- Stage 1: If the generic actual is not present we derive the
14384 -- primitives inherited from the parent type. If the generic parent
14385 -- type is present, the derived type is an instance of a formal
14386 -- derived type, and within the instance its operations are those of
14387 -- the actual. We derive from the formal type but make the inherited
14388 -- operations aliases of the corresponding operations of the actual.
14389
14390 Elmt := First_Elmt (Op_List);
14391 while Present (Elmt) loop
14392 Subp := Node (Elmt);
14393 Alias_Subp := Ultimate_Alias (Subp);
14394
14395 -- Do not derive internal entities of the parent that link
14396 -- interface primitives with their covering primitive. These
14397 -- entities will be added to this type when frozen.
14398
14399 if Present (Interface_Alias (Subp)) then
14400 goto Continue;
14401 end if;
14402
14403 -- If the generic actual is present find the corresponding
14404 -- operation in the generic actual. If the parent type is a
14405 -- direct ancestor of the derived type then, even if it is an
14406 -- interface, the operations are inherited from the primary
14407 -- dispatch table and are in the proper order. If we detect here
14408 -- that primitives are not in the same order we traverse the list
14409 -- of primitive operations of the actual to find the one that
14410 -- implements the interface primitive.
14411
14412 if Need_Search
14413 or else
14414 (Present (Generic_Actual)
14415 and then Present (Act_Subp)
14416 and then not
14417 (Primitive_Names_Match (Subp, Act_Subp)
14418 and then
14419 Type_Conformant (Subp, Act_Subp,
14420 Skip_Controlling_Formals => True)))
14421 then
14422 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14423 Use_Full_View => True));
14424
14425 -- Remember that we need searching for all pending primitives
14426
14427 Need_Search := True;
14428
14429 -- Handle entities associated with interface primitives
14430
14431 if Present (Alias_Subp)
14432 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14433 and then not Is_Predefined_Dispatching_Operation (Subp)
14434 then
14435 -- Search for the primitive in the homonym chain
14436
14437 Act_Subp :=
14438 Find_Primitive_Covering_Interface
14439 (Tagged_Type => Generic_Actual,
14440 Iface_Prim => Alias_Subp);
14441
14442 -- Previous search may not locate primitives covering
14443 -- interfaces defined in generics units or instantiations.
14444 -- (it fails if the covering primitive has formals whose
14445 -- type is also defined in generics or instantiations).
14446 -- In such case we search in the list of primitives of the
14447 -- generic actual for the internal entity that links the
14448 -- interface primitive and the covering primitive.
14449
14450 if No (Act_Subp)
14451 and then Is_Generic_Type (Parent_Type)
14452 then
14453 -- This code has been designed to handle only generic
14454 -- formals that implement interfaces that are defined
14455 -- in a generic unit or instantiation. If this code is
14456 -- needed for other cases we must review it because
14457 -- (given that it relies on Original_Location to locate
14458 -- the primitive of Generic_Actual that covers the
14459 -- interface) it could leave linked through attribute
14460 -- Alias entities of unrelated instantiations).
14461
14462 pragma Assert
14463 (Is_Generic_Unit
14464 (Scope (Find_Dispatching_Type (Alias_Subp)))
14465 or else
14466 Instantiation_Depth
14467 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14468
14469 declare
14470 Iface_Prim_Loc : constant Source_Ptr :=
14471 Original_Location (Sloc (Alias_Subp));
14472
14473 Elmt : Elmt_Id;
14474 Prim : Entity_Id;
14475
14476 begin
14477 Elmt :=
14478 First_Elmt (Primitive_Operations (Generic_Actual));
14479
14480 Search : while Present (Elmt) loop
14481 Prim := Node (Elmt);
14482
14483 if Present (Interface_Alias (Prim))
14484 and then Original_Location
14485 (Sloc (Interface_Alias (Prim))) =
14486 Iface_Prim_Loc
14487 then
14488 Act_Subp := Alias (Prim);
14489 exit Search;
14490 end if;
14491
14492 Next_Elmt (Elmt);
14493 end loop Search;
14494 end;
14495 end if;
14496
14497 pragma Assert (Present (Act_Subp)
14498 or else Is_Abstract_Type (Generic_Actual)
14499 or else Serious_Errors_Detected > 0);
14500
14501 -- Handle predefined primitives plus the rest of user-defined
14502 -- primitives
14503
14504 else
14505 Act_Elmt := First_Elmt (Act_List);
14506 while Present (Act_Elmt) loop
14507 Act_Subp := Node (Act_Elmt);
14508
14509 exit when Primitive_Names_Match (Subp, Act_Subp)
14510 and then Type_Conformant
14511 (Subp, Act_Subp,
14512 Skip_Controlling_Formals => True)
14513 and then No (Interface_Alias (Act_Subp));
14514
14515 Next_Elmt (Act_Elmt);
14516 end loop;
14517
14518 if No (Act_Elmt) then
14519 Act_Subp := Empty;
14520 end if;
14521 end if;
14522 end if;
14523
14524 -- Case 1: If the parent is a limited interface then it has the
14525 -- predefined primitives of synchronized interfaces. However, the
14526 -- actual type may be a non-limited type and hence it does not
14527 -- have such primitives.
14528
14529 if Present (Generic_Actual)
14530 and then not Present (Act_Subp)
14531 and then Is_Limited_Interface (Parent_Base)
14532 and then Is_Predefined_Interface_Primitive (Subp)
14533 then
14534 null;
14535
14536 -- Case 2: Inherit entities associated with interfaces that were
14537 -- not covered by the parent type. We exclude here null interface
14538 -- primitives because they do not need special management.
14539
14540 -- We also exclude interface operations that are renamings. If the
14541 -- subprogram is an explicit renaming of an interface primitive,
14542 -- it is a regular primitive operation, and the presence of its
14543 -- alias is not relevant: it has to be derived like any other
14544 -- primitive.
14545
14546 elsif Present (Alias (Subp))
14547 and then Nkind (Unit_Declaration_Node (Subp)) /=
14548 N_Subprogram_Renaming_Declaration
14549 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14550 and then not
14551 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14552 and then Null_Present (Parent (Alias_Subp)))
14553 then
14554 -- If this is an abstract private type then we transfer the
14555 -- derivation of the interface primitive from the partial view
14556 -- to the full view. This is safe because all the interfaces
14557 -- must be visible in the partial view. Done to avoid adding
14558 -- a new interface derivation to the private part of the
14559 -- enclosing package; otherwise this new derivation would be
14560 -- decorated as hidden when the analysis of the enclosing
14561 -- package completes.
14562
14563 if Is_Abstract_Type (Derived_Type)
14564 and then In_Private_Part (Current_Scope)
14565 and then Has_Private_Declaration (Derived_Type)
14566 then
14567 declare
14568 Partial_View : Entity_Id;
14569 Elmt : Elmt_Id;
14570 Ent : Entity_Id;
14571
14572 begin
14573 Partial_View := First_Entity (Current_Scope);
14574 loop
14575 exit when No (Partial_View)
14576 or else (Has_Private_Declaration (Partial_View)
14577 and then
14578 Full_View (Partial_View) = Derived_Type);
14579
14580 Next_Entity (Partial_View);
14581 end loop;
14582
14583 -- If the partial view was not found then the source code
14584 -- has errors and the derivation is not needed.
14585
14586 if Present (Partial_View) then
14587 Elmt :=
14588 First_Elmt (Primitive_Operations (Partial_View));
14589 while Present (Elmt) loop
14590 Ent := Node (Elmt);
14591
14592 if Present (Alias (Ent))
14593 and then Ultimate_Alias (Ent) = Alias (Subp)
14594 then
14595 Append_Elmt
14596 (Ent, Primitive_Operations (Derived_Type));
14597 exit;
14598 end if;
14599
14600 Next_Elmt (Elmt);
14601 end loop;
14602
14603 -- If the interface primitive was not found in the
14604 -- partial view then this interface primitive was
14605 -- overridden. We add a derivation to activate in
14606 -- Derive_Progenitor_Subprograms the machinery to
14607 -- search for it.
14608
14609 if No (Elmt) then
14610 Derive_Interface_Subprogram
14611 (New_Subp => New_Subp,
14612 Subp => Subp,
14613 Actual_Subp => Act_Subp);
14614 end if;
14615 end if;
14616 end;
14617 else
14618 Derive_Interface_Subprogram
14619 (New_Subp => New_Subp,
14620 Subp => Subp,
14621 Actual_Subp => Act_Subp);
14622 end if;
14623
14624 -- Case 3: Common derivation
14625
14626 else
14627 Derive_Subprogram
14628 (New_Subp => New_Subp,
14629 Parent_Subp => Subp,
14630 Derived_Type => Derived_Type,
14631 Parent_Type => Parent_Base,
14632 Actual_Subp => Act_Subp);
14633 end if;
14634
14635 -- No need to update Act_Elm if we must search for the
14636 -- corresponding operation in the generic actual
14637
14638 if not Need_Search
14639 and then Present (Act_Elmt)
14640 then
14641 Next_Elmt (Act_Elmt);
14642 Act_Subp := Node (Act_Elmt);
14643 end if;
14644
14645 <<Continue>>
14646 Next_Elmt (Elmt);
14647 end loop;
14648
14649 -- Inherit additional operations from progenitors. If the derived
14650 -- type is a generic actual, there are not new primitive operations
14651 -- for the type because it has those of the actual, and therefore
14652 -- nothing needs to be done. The renamings generated above are not
14653 -- primitive operations, and their purpose is simply to make the
14654 -- proper operations visible within an instantiation.
14655
14656 if No (Generic_Actual) then
14657 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14658 end if;
14659 end if;
14660
14661 -- Final check: Direct descendants must have their primitives in the
14662 -- same order. We exclude from this test untagged types and instances
14663 -- of formal derived types. We skip this test if we have already
14664 -- reported serious errors in the sources.
14665
14666 pragma Assert (not Is_Tagged_Type (Derived_Type)
14667 or else Present (Generic_Actual)
14668 or else Serious_Errors_Detected > 0
14669 or else Check_Derived_Type);
14670 end Derive_Subprograms;
14671
14672 --------------------------------
14673 -- Derived_Standard_Character --
14674 --------------------------------
14675
14676 procedure Derived_Standard_Character
14677 (N : Node_Id;
14678 Parent_Type : Entity_Id;
14679 Derived_Type : Entity_Id)
14680 is
14681 Loc : constant Source_Ptr := Sloc (N);
14682 Def : constant Node_Id := Type_Definition (N);
14683 Indic : constant Node_Id := Subtype_Indication (Def);
14684 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14685 Implicit_Base : constant Entity_Id :=
14686 Create_Itype
14687 (E_Enumeration_Type, N, Derived_Type, 'B');
14688
14689 Lo : Node_Id;
14690 Hi : Node_Id;
14691
14692 begin
14693 Discard_Node (Process_Subtype (Indic, N));
14694
14695 Set_Etype (Implicit_Base, Parent_Base);
14696 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14697 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14698
14699 Set_Is_Character_Type (Implicit_Base, True);
14700 Set_Has_Delayed_Freeze (Implicit_Base);
14701
14702 -- The bounds of the implicit base are the bounds of the parent base.
14703 -- Note that their type is the parent base.
14704
14705 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14706 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14707
14708 Set_Scalar_Range (Implicit_Base,
14709 Make_Range (Loc,
14710 Low_Bound => Lo,
14711 High_Bound => Hi));
14712
14713 Conditional_Delay (Derived_Type, Parent_Type);
14714
14715 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14716 Set_Etype (Derived_Type, Implicit_Base);
14717 Set_Size_Info (Derived_Type, Parent_Type);
14718
14719 if Unknown_RM_Size (Derived_Type) then
14720 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14721 end if;
14722
14723 Set_Is_Character_Type (Derived_Type, True);
14724
14725 if Nkind (Indic) /= N_Subtype_Indication then
14726
14727 -- If no explicit constraint, the bounds are those
14728 -- of the parent type.
14729
14730 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14731 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14732 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14733 end if;
14734
14735 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14736
14737 -- Because the implicit base is used in the conversion of the bounds, we
14738 -- have to freeze it now. This is similar to what is done for numeric
14739 -- types, and it equally suspicious, but otherwise a non-static bound
14740 -- will have a reference to an unfrozen type, which is rejected by Gigi
14741 -- (???). This requires specific care for definition of stream
14742 -- attributes. For details, see comments at the end of
14743 -- Build_Derived_Numeric_Type.
14744
14745 Freeze_Before (N, Implicit_Base);
14746 end Derived_Standard_Character;
14747
14748 ------------------------------
14749 -- Derived_Type_Declaration --
14750 ------------------------------
14751
14752 procedure Derived_Type_Declaration
14753 (T : Entity_Id;
14754 N : Node_Id;
14755 Is_Completion : Boolean)
14756 is
14757 Parent_Type : Entity_Id;
14758
14759 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14760 -- Check whether the parent type is a generic formal, or derives
14761 -- directly or indirectly from one.
14762
14763 ------------------------
14764 -- Comes_From_Generic --
14765 ------------------------
14766
14767 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14768 begin
14769 if Is_Generic_Type (Typ) then
14770 return True;
14771
14772 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14773 return True;
14774
14775 elsif Is_Private_Type (Typ)
14776 and then Present (Full_View (Typ))
14777 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14778 then
14779 return True;
14780
14781 elsif Is_Generic_Actual_Type (Typ) then
14782 return True;
14783
14784 else
14785 return False;
14786 end if;
14787 end Comes_From_Generic;
14788
14789 -- Local variables
14790
14791 Def : constant Node_Id := Type_Definition (N);
14792 Iface_Def : Node_Id;
14793 Indic : constant Node_Id := Subtype_Indication (Def);
14794 Extension : constant Node_Id := Record_Extension_Part (Def);
14795 Parent_Node : Node_Id;
14796 Taggd : Boolean;
14797
14798 -- Start of processing for Derived_Type_Declaration
14799
14800 begin
14801 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14802
14803 -- Ada 2005 (AI-251): In case of interface derivation check that the
14804 -- parent is also an interface.
14805
14806 if Interface_Present (Def) then
14807 Check_SPARK_05_Restriction ("interface is not allowed", Def);
14808
14809 if not Is_Interface (Parent_Type) then
14810 Diagnose_Interface (Indic, Parent_Type);
14811
14812 else
14813 Parent_Node := Parent (Base_Type (Parent_Type));
14814 Iface_Def := Type_Definition (Parent_Node);
14815
14816 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14817 -- other limited interfaces.
14818
14819 if Limited_Present (Def) then
14820 if Limited_Present (Iface_Def) then
14821 null;
14822
14823 elsif Protected_Present (Iface_Def) then
14824 Error_Msg_NE
14825 ("descendant of& must be declared"
14826 & " as a protected interface",
14827 N, Parent_Type);
14828
14829 elsif Synchronized_Present (Iface_Def) then
14830 Error_Msg_NE
14831 ("descendant of& must be declared"
14832 & " as a synchronized interface",
14833 N, Parent_Type);
14834
14835 elsif Task_Present (Iface_Def) then
14836 Error_Msg_NE
14837 ("descendant of& must be declared as a task interface",
14838 N, Parent_Type);
14839
14840 else
14841 Error_Msg_N
14842 ("(Ada 2005) limited interface cannot "
14843 & "inherit from non-limited interface", Indic);
14844 end if;
14845
14846 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14847 -- from non-limited or limited interfaces.
14848
14849 elsif not Protected_Present (Def)
14850 and then not Synchronized_Present (Def)
14851 and then not Task_Present (Def)
14852 then
14853 if Limited_Present (Iface_Def) then
14854 null;
14855
14856 elsif Protected_Present (Iface_Def) then
14857 Error_Msg_NE
14858 ("descendant of& must be declared"
14859 & " as a protected interface",
14860 N, Parent_Type);
14861
14862 elsif Synchronized_Present (Iface_Def) then
14863 Error_Msg_NE
14864 ("descendant of& must be declared"
14865 & " as a synchronized interface",
14866 N, Parent_Type);
14867
14868 elsif Task_Present (Iface_Def) then
14869 Error_Msg_NE
14870 ("descendant of& must be declared as a task interface",
14871 N, Parent_Type);
14872 else
14873 null;
14874 end if;
14875 end if;
14876 end if;
14877 end if;
14878
14879 if Is_Tagged_Type (Parent_Type)
14880 and then Is_Concurrent_Type (Parent_Type)
14881 and then not Is_Interface (Parent_Type)
14882 then
14883 Error_Msg_N
14884 ("parent type of a record extension cannot be "
14885 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14886 Set_Etype (T, Any_Type);
14887 return;
14888 end if;
14889
14890 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14891 -- interfaces
14892
14893 if Is_Tagged_Type (Parent_Type)
14894 and then Is_Non_Empty_List (Interface_List (Def))
14895 then
14896 declare
14897 Intf : Node_Id;
14898 T : Entity_Id;
14899
14900 begin
14901 Intf := First (Interface_List (Def));
14902 while Present (Intf) loop
14903 T := Find_Type_Of_Subtype_Indic (Intf);
14904
14905 if not Is_Interface (T) then
14906 Diagnose_Interface (Intf, T);
14907
14908 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14909 -- a limited type from having a nonlimited progenitor.
14910
14911 elsif (Limited_Present (Def)
14912 or else (not Is_Interface (Parent_Type)
14913 and then Is_Limited_Type (Parent_Type)))
14914 and then not Is_Limited_Interface (T)
14915 then
14916 Error_Msg_NE
14917 ("progenitor interface& of limited type must be limited",
14918 N, T);
14919 end if;
14920
14921 Next (Intf);
14922 end loop;
14923 end;
14924 end if;
14925
14926 if Parent_Type = Any_Type
14927 or else Etype (Parent_Type) = Any_Type
14928 or else (Is_Class_Wide_Type (Parent_Type)
14929 and then Etype (Parent_Type) = T)
14930 then
14931 -- If Parent_Type is undefined or illegal, make new type into a
14932 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14933 -- errors. If this is a self-definition, emit error now.
14934
14935 if T = Parent_Type
14936 or else T = Etype (Parent_Type)
14937 then
14938 Error_Msg_N ("type cannot be used in its own definition", Indic);
14939 end if;
14940
14941 Set_Ekind (T, Ekind (Parent_Type));
14942 Set_Etype (T, Any_Type);
14943 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14944
14945 if Is_Tagged_Type (T)
14946 and then Is_Record_Type (T)
14947 then
14948 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14949 end if;
14950
14951 return;
14952 end if;
14953
14954 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14955 -- an interface is special because the list of interfaces in the full
14956 -- view can be given in any order. For example:
14957
14958 -- type A is interface;
14959 -- type B is interface and A;
14960 -- type D is new B with private;
14961 -- private
14962 -- type D is new A and B with null record; -- 1 --
14963
14964 -- In this case we perform the following transformation of -1-:
14965
14966 -- type D is new B and A with null record;
14967
14968 -- If the parent of the full-view covers the parent of the partial-view
14969 -- we have two possible cases:
14970
14971 -- 1) They have the same parent
14972 -- 2) The parent of the full-view implements some further interfaces
14973
14974 -- In both cases we do not need to perform the transformation. In the
14975 -- first case the source program is correct and the transformation is
14976 -- not needed; in the second case the source program does not fulfill
14977 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14978 -- later.
14979
14980 -- This transformation not only simplifies the rest of the analysis of
14981 -- this type declaration but also simplifies the correct generation of
14982 -- the object layout to the expander.
14983
14984 if In_Private_Part (Current_Scope)
14985 and then Is_Interface (Parent_Type)
14986 then
14987 declare
14988 Iface : Node_Id;
14989 Partial_View : Entity_Id;
14990 Partial_View_Parent : Entity_Id;
14991 New_Iface : Node_Id;
14992
14993 begin
14994 -- Look for the associated private type declaration
14995
14996 Partial_View := First_Entity (Current_Scope);
14997 loop
14998 exit when No (Partial_View)
14999 or else (Has_Private_Declaration (Partial_View)
15000 and then Full_View (Partial_View) = T);
15001
15002 Next_Entity (Partial_View);
15003 end loop;
15004
15005 -- If the partial view was not found then the source code has
15006 -- errors and the transformation is not needed.
15007
15008 if Present (Partial_View) then
15009 Partial_View_Parent := Etype (Partial_View);
15010
15011 -- If the parent of the full-view covers the parent of the
15012 -- partial-view we have nothing else to do.
15013
15014 if Interface_Present_In_Ancestor
15015 (Parent_Type, Partial_View_Parent)
15016 then
15017 null;
15018
15019 -- Traverse the list of interfaces of the full-view to look
15020 -- for the parent of the partial-view and perform the tree
15021 -- transformation.
15022
15023 else
15024 Iface := First (Interface_List (Def));
15025 while Present (Iface) loop
15026 if Etype (Iface) = Etype (Partial_View) then
15027 Rewrite (Subtype_Indication (Def),
15028 New_Copy (Subtype_Indication
15029 (Parent (Partial_View))));
15030
15031 New_Iface :=
15032 Make_Identifier (Sloc (N), Chars (Parent_Type));
15033 Append (New_Iface, Interface_List (Def));
15034
15035 -- Analyze the transformed code
15036
15037 Derived_Type_Declaration (T, N, Is_Completion);
15038 return;
15039 end if;
15040
15041 Next (Iface);
15042 end loop;
15043 end if;
15044 end if;
15045 end;
15046 end if;
15047
15048 -- Only composite types other than array types are allowed to have
15049 -- discriminants.
15050
15051 if Present (Discriminant_Specifications (N)) then
15052 if (Is_Elementary_Type (Parent_Type)
15053 or else Is_Array_Type (Parent_Type))
15054 and then not Error_Posted (N)
15055 then
15056 Error_Msg_N
15057 ("elementary or array type cannot have discriminants",
15058 Defining_Identifier (First (Discriminant_Specifications (N))));
15059 Set_Has_Discriminants (T, False);
15060
15061 -- The type is allowed to have discriminants
15062
15063 else
15064 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15065 end if;
15066 end if;
15067
15068 -- In Ada 83, a derived type defined in a package specification cannot
15069 -- be used for further derivation until the end of its visible part.
15070 -- Note that derivation in the private part of the package is allowed.
15071
15072 if Ada_Version = Ada_83
15073 and then Is_Derived_Type (Parent_Type)
15074 and then In_Visible_Part (Scope (Parent_Type))
15075 then
15076 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15077 Error_Msg_N
15078 ("(Ada 83): premature use of type for derivation", Indic);
15079 end if;
15080 end if;
15081
15082 -- Check for early use of incomplete or private type
15083
15084 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15085 Error_Msg_N ("premature derivation of incomplete type", Indic);
15086 return;
15087
15088 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15089 and then not Comes_From_Generic (Parent_Type))
15090 or else Has_Private_Component (Parent_Type)
15091 then
15092 -- The ancestor type of a formal type can be incomplete, in which
15093 -- case only the operations of the partial view are available in the
15094 -- generic. Subsequent checks may be required when the full view is
15095 -- analyzed to verify that a derivation from a tagged type has an
15096 -- extension.
15097
15098 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15099 null;
15100
15101 elsif No (Underlying_Type (Parent_Type))
15102 or else Has_Private_Component (Parent_Type)
15103 then
15104 Error_Msg_N
15105 ("premature derivation of derived or private type", Indic);
15106
15107 -- Flag the type itself as being in error, this prevents some
15108 -- nasty problems with subsequent uses of the malformed type.
15109
15110 Set_Error_Posted (T);
15111
15112 -- Check that within the immediate scope of an untagged partial
15113 -- view it's illegal to derive from the partial view if the
15114 -- full view is tagged. (7.3(7))
15115
15116 -- We verify that the Parent_Type is a partial view by checking
15117 -- that it is not a Full_Type_Declaration (i.e. a private type or
15118 -- private extension declaration), to distinguish a partial view
15119 -- from a derivation from a private type which also appears as
15120 -- E_Private_Type. If the parent base type is not declared in an
15121 -- enclosing scope there is no need to check.
15122
15123 elsif Present (Full_View (Parent_Type))
15124 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15125 and then not Is_Tagged_Type (Parent_Type)
15126 and then Is_Tagged_Type (Full_View (Parent_Type))
15127 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15128 then
15129 Error_Msg_N
15130 ("premature derivation from type with tagged full view",
15131 Indic);
15132 end if;
15133 end if;
15134
15135 -- Check that form of derivation is appropriate
15136
15137 Taggd := Is_Tagged_Type (Parent_Type);
15138
15139 -- Perhaps the parent type should be changed to the class-wide type's
15140 -- specific type in this case to prevent cascading errors ???
15141
15142 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15143 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15144 return;
15145 end if;
15146
15147 if Present (Extension) and then not Taggd then
15148 Error_Msg_N
15149 ("type derived from untagged type cannot have extension", Indic);
15150
15151 elsif No (Extension) and then Taggd then
15152
15153 -- If this declaration is within a private part (or body) of a
15154 -- generic instantiation then the derivation is allowed (the parent
15155 -- type can only appear tagged in this case if it's a generic actual
15156 -- type, since it would otherwise have been rejected in the analysis
15157 -- of the generic template).
15158
15159 if not Is_Generic_Actual_Type (Parent_Type)
15160 or else In_Visible_Part (Scope (Parent_Type))
15161 then
15162 if Is_Class_Wide_Type (Parent_Type) then
15163 Error_Msg_N
15164 ("parent type must not be a class-wide type", Indic);
15165
15166 -- Use specific type to prevent cascaded errors.
15167
15168 Parent_Type := Etype (Parent_Type);
15169
15170 else
15171 Error_Msg_N
15172 ("type derived from tagged type must have extension", Indic);
15173 end if;
15174 end if;
15175 end if;
15176
15177 -- AI-443: Synchronized formal derived types require a private
15178 -- extension. There is no point in checking the ancestor type or
15179 -- the progenitors since the construct is wrong to begin with.
15180
15181 if Ada_Version >= Ada_2005
15182 and then Is_Generic_Type (T)
15183 and then Present (Original_Node (N))
15184 then
15185 declare
15186 Decl : constant Node_Id := Original_Node (N);
15187
15188 begin
15189 if Nkind (Decl) = N_Formal_Type_Declaration
15190 and then Nkind (Formal_Type_Definition (Decl)) =
15191 N_Formal_Derived_Type_Definition
15192 and then Synchronized_Present (Formal_Type_Definition (Decl))
15193 and then No (Extension)
15194
15195 -- Avoid emitting a duplicate error message
15196
15197 and then not Error_Posted (Indic)
15198 then
15199 Error_Msg_N
15200 ("synchronized derived type must have extension", N);
15201 end if;
15202 end;
15203 end if;
15204
15205 if Null_Exclusion_Present (Def)
15206 and then not Is_Access_Type (Parent_Type)
15207 then
15208 Error_Msg_N ("null exclusion can only apply to an access type", N);
15209 end if;
15210
15211 -- Avoid deriving parent primitives of underlying record views
15212
15213 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15214 Derive_Subps => not Is_Underlying_Record_View (T));
15215
15216 -- AI-419: The parent type of an explicitly limited derived type must
15217 -- be a limited type or a limited interface.
15218
15219 if Limited_Present (Def) then
15220 Set_Is_Limited_Record (T);
15221
15222 if Is_Interface (T) then
15223 Set_Is_Limited_Interface (T);
15224 end if;
15225
15226 if not Is_Limited_Type (Parent_Type)
15227 and then
15228 (not Is_Interface (Parent_Type)
15229 or else not Is_Limited_Interface (Parent_Type))
15230 then
15231 -- AI05-0096: a derivation in the private part of an instance is
15232 -- legal if the generic formal is untagged limited, and the actual
15233 -- is non-limited.
15234
15235 if Is_Generic_Actual_Type (Parent_Type)
15236 and then In_Private_Part (Current_Scope)
15237 and then
15238 not Is_Tagged_Type
15239 (Generic_Parent_Type (Parent (Parent_Type)))
15240 then
15241 null;
15242
15243 else
15244 Error_Msg_NE
15245 ("parent type& of limited type must be limited",
15246 N, Parent_Type);
15247 end if;
15248 end if;
15249 end if;
15250
15251 -- In SPARK, there are no derived type definitions other than type
15252 -- extensions of tagged record types.
15253
15254 if No (Extension) then
15255 Check_SPARK_05_Restriction
15256 ("derived type is not allowed", Original_Node (N));
15257 end if;
15258 end Derived_Type_Declaration;
15259
15260 ------------------------
15261 -- Diagnose_Interface --
15262 ------------------------
15263
15264 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15265 begin
15266 if not Is_Interface (E)
15267 and then E /= Any_Type
15268 then
15269 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15270 end if;
15271 end Diagnose_Interface;
15272
15273 ----------------------------------
15274 -- Enumeration_Type_Declaration --
15275 ----------------------------------
15276
15277 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15278 Ev : Uint;
15279 L : Node_Id;
15280 R_Node : Node_Id;
15281 B_Node : Node_Id;
15282
15283 begin
15284 -- Create identifier node representing lower bound
15285
15286 B_Node := New_Node (N_Identifier, Sloc (Def));
15287 L := First (Literals (Def));
15288 Set_Chars (B_Node, Chars (L));
15289 Set_Entity (B_Node, L);
15290 Set_Etype (B_Node, T);
15291 Set_Is_Static_Expression (B_Node, True);
15292
15293 R_Node := New_Node (N_Range, Sloc (Def));
15294 Set_Low_Bound (R_Node, B_Node);
15295
15296 Set_Ekind (T, E_Enumeration_Type);
15297 Set_First_Literal (T, L);
15298 Set_Etype (T, T);
15299 Set_Is_Constrained (T);
15300
15301 Ev := Uint_0;
15302
15303 -- Loop through literals of enumeration type setting pos and rep values
15304 -- except that if the Ekind is already set, then it means the literal
15305 -- was already constructed (case of a derived type declaration and we
15306 -- should not disturb the Pos and Rep values.
15307
15308 while Present (L) loop
15309 if Ekind (L) /= E_Enumeration_Literal then
15310 Set_Ekind (L, E_Enumeration_Literal);
15311 Set_Enumeration_Pos (L, Ev);
15312 Set_Enumeration_Rep (L, Ev);
15313 Set_Is_Known_Valid (L, True);
15314 end if;
15315
15316 Set_Etype (L, T);
15317 New_Overloaded_Entity (L);
15318 Generate_Definition (L);
15319 Set_Convention (L, Convention_Intrinsic);
15320
15321 -- Case of character literal
15322
15323 if Nkind (L) = N_Defining_Character_Literal then
15324 Set_Is_Character_Type (T, True);
15325
15326 -- Check violation of No_Wide_Characters
15327
15328 if Restriction_Check_Required (No_Wide_Characters) then
15329 Get_Name_String (Chars (L));
15330
15331 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15332 Check_Restriction (No_Wide_Characters, L);
15333 end if;
15334 end if;
15335 end if;
15336
15337 Ev := Ev + 1;
15338 Next (L);
15339 end loop;
15340
15341 -- Now create a node representing upper bound
15342
15343 B_Node := New_Node (N_Identifier, Sloc (Def));
15344 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15345 Set_Entity (B_Node, Last (Literals (Def)));
15346 Set_Etype (B_Node, T);
15347 Set_Is_Static_Expression (B_Node, True);
15348
15349 Set_High_Bound (R_Node, B_Node);
15350
15351 -- Initialize various fields of the type. Some of this information
15352 -- may be overwritten later through rep.clauses.
15353
15354 Set_Scalar_Range (T, R_Node);
15355 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15356 Set_Enum_Esize (T);
15357 Set_Enum_Pos_To_Rep (T, Empty);
15358
15359 -- Set Discard_Names if configuration pragma set, or if there is
15360 -- a parameterless pragma in the current declarative region
15361
15362 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15363 Set_Discard_Names (T);
15364 end if;
15365
15366 -- Process end label if there is one
15367
15368 if Present (Def) then
15369 Process_End_Label (Def, 'e', T);
15370 end if;
15371 end Enumeration_Type_Declaration;
15372
15373 ---------------------------------
15374 -- Expand_To_Stored_Constraint --
15375 ---------------------------------
15376
15377 function Expand_To_Stored_Constraint
15378 (Typ : Entity_Id;
15379 Constraint : Elist_Id) return Elist_Id
15380 is
15381 Explicitly_Discriminated_Type : Entity_Id;
15382 Expansion : Elist_Id;
15383 Discriminant : Entity_Id;
15384
15385 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15386 -- Find the nearest type that actually specifies discriminants
15387
15388 ---------------------------------
15389 -- Type_With_Explicit_Discrims --
15390 ---------------------------------
15391
15392 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15393 Typ : constant E := Base_Type (Id);
15394
15395 begin
15396 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15397 if Present (Full_View (Typ)) then
15398 return Type_With_Explicit_Discrims (Full_View (Typ));
15399 end if;
15400
15401 else
15402 if Has_Discriminants (Typ) then
15403 return Typ;
15404 end if;
15405 end if;
15406
15407 if Etype (Typ) = Typ then
15408 return Empty;
15409 elsif Has_Discriminants (Typ) then
15410 return Typ;
15411 else
15412 return Type_With_Explicit_Discrims (Etype (Typ));
15413 end if;
15414
15415 end Type_With_Explicit_Discrims;
15416
15417 -- Start of processing for Expand_To_Stored_Constraint
15418
15419 begin
15420 if No (Constraint)
15421 or else Is_Empty_Elmt_List (Constraint)
15422 then
15423 return No_Elist;
15424 end if;
15425
15426 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15427
15428 if No (Explicitly_Discriminated_Type) then
15429 return No_Elist;
15430 end if;
15431
15432 Expansion := New_Elmt_List;
15433
15434 Discriminant :=
15435 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15436 while Present (Discriminant) loop
15437 Append_Elmt
15438 (Get_Discriminant_Value
15439 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15440 To => Expansion);
15441 Next_Stored_Discriminant (Discriminant);
15442 end loop;
15443
15444 return Expansion;
15445 end Expand_To_Stored_Constraint;
15446
15447 ---------------------------
15448 -- Find_Hidden_Interface --
15449 ---------------------------
15450
15451 function Find_Hidden_Interface
15452 (Src : Elist_Id;
15453 Dest : Elist_Id) return Entity_Id
15454 is
15455 Iface : Entity_Id;
15456 Iface_Elmt : Elmt_Id;
15457
15458 begin
15459 if Present (Src) and then Present (Dest) then
15460 Iface_Elmt := First_Elmt (Src);
15461 while Present (Iface_Elmt) loop
15462 Iface := Node (Iface_Elmt);
15463
15464 if Is_Interface (Iface)
15465 and then not Contain_Interface (Iface, Dest)
15466 then
15467 return Iface;
15468 end if;
15469
15470 Next_Elmt (Iface_Elmt);
15471 end loop;
15472 end if;
15473
15474 return Empty;
15475 end Find_Hidden_Interface;
15476
15477 --------------------
15478 -- Find_Type_Name --
15479 --------------------
15480
15481 function Find_Type_Name (N : Node_Id) return Entity_Id is
15482 Id : constant Entity_Id := Defining_Identifier (N);
15483 Prev : Entity_Id;
15484 New_Id : Entity_Id;
15485 Prev_Par : Node_Id;
15486
15487 procedure Check_Duplicate_Aspects;
15488 -- Check that aspects specified in a completion have not been specified
15489 -- already in the partial view. Type_Invariant and others can be
15490 -- specified on either view but never on both.
15491
15492 procedure Tag_Mismatch;
15493 -- Diagnose a tagged partial view whose full view is untagged.
15494 -- We post the message on the full view, with a reference to
15495 -- the previous partial view. The partial view can be private
15496 -- or incomplete, and these are handled in a different manner,
15497 -- so we determine the position of the error message from the
15498 -- respective slocs of both.
15499
15500 -----------------------------
15501 -- Check_Duplicate_Aspects --
15502 -----------------------------
15503 procedure Check_Duplicate_Aspects is
15504 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15505 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15506 F_Spec, P_Spec : Node_Id;
15507
15508 begin
15509 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15510 F_Spec := First (Full_Aspects);
15511 while Present (F_Spec) loop
15512 P_Spec := First (Prev_Aspects);
15513 while Present (P_Spec) loop
15514 if
15515 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15516 then
15517 Error_Msg_N
15518 ("aspect already specified in private declaration",
15519 F_Spec);
15520 Remove (F_Spec);
15521 return;
15522 end if;
15523
15524 Next (P_Spec);
15525 end loop;
15526
15527 Next (F_Spec);
15528 end loop;
15529 end if;
15530 end Check_Duplicate_Aspects;
15531
15532 ------------------
15533 -- Tag_Mismatch --
15534 ------------------
15535
15536 procedure Tag_Mismatch is
15537 begin
15538 if Sloc (Prev) < Sloc (Id) then
15539 if Ada_Version >= Ada_2012
15540 and then Nkind (N) = N_Private_Type_Declaration
15541 then
15542 Error_Msg_NE
15543 ("declaration of private } must be a tagged type ", Id, Prev);
15544 else
15545 Error_Msg_NE
15546 ("full declaration of } must be a tagged type ", Id, Prev);
15547 end if;
15548
15549 else
15550 if Ada_Version >= Ada_2012
15551 and then Nkind (N) = N_Private_Type_Declaration
15552 then
15553 Error_Msg_NE
15554 ("declaration of private } must be a tagged type ", Prev, Id);
15555 else
15556 Error_Msg_NE
15557 ("full declaration of } must be a tagged type ", Prev, Id);
15558 end if;
15559 end if;
15560 end Tag_Mismatch;
15561
15562 -- Start of processing for Find_Type_Name
15563
15564 begin
15565 -- Find incomplete declaration, if one was given
15566
15567 Prev := Current_Entity_In_Scope (Id);
15568
15569 -- New type declaration
15570
15571 if No (Prev) then
15572 Enter_Name (Id);
15573 return Id;
15574
15575 -- Previous declaration exists
15576
15577 else
15578 Prev_Par := Parent (Prev);
15579
15580 -- Error if not incomplete/private case except if previous
15581 -- declaration is implicit, etc. Enter_Name will emit error if
15582 -- appropriate.
15583
15584 if not Is_Incomplete_Or_Private_Type (Prev) then
15585 Enter_Name (Id);
15586 New_Id := Id;
15587
15588 -- Check invalid completion of private or incomplete type
15589
15590 elsif not Nkind_In (N, N_Full_Type_Declaration,
15591 N_Task_Type_Declaration,
15592 N_Protected_Type_Declaration)
15593 and then
15594 (Ada_Version < Ada_2012
15595 or else not Is_Incomplete_Type (Prev)
15596 or else not Nkind_In (N, N_Private_Type_Declaration,
15597 N_Private_Extension_Declaration))
15598 then
15599 -- Completion must be a full type declarations (RM 7.3(4))
15600
15601 Error_Msg_Sloc := Sloc (Prev);
15602 Error_Msg_NE ("invalid completion of }", Id, Prev);
15603
15604 -- Set scope of Id to avoid cascaded errors. Entity is never
15605 -- examined again, except when saving globals in generics.
15606
15607 Set_Scope (Id, Current_Scope);
15608 New_Id := Id;
15609
15610 -- If this is a repeated incomplete declaration, no further
15611 -- checks are possible.
15612
15613 if Nkind (N) = N_Incomplete_Type_Declaration then
15614 return Prev;
15615 end if;
15616
15617 -- Case of full declaration of incomplete type
15618
15619 elsif Ekind (Prev) = E_Incomplete_Type
15620 and then (Ada_Version < Ada_2012
15621 or else No (Full_View (Prev))
15622 or else not Is_Private_Type (Full_View (Prev)))
15623 then
15624 -- Indicate that the incomplete declaration has a matching full
15625 -- declaration. The defining occurrence of the incomplete
15626 -- declaration remains the visible one, and the procedure
15627 -- Get_Full_View dereferences it whenever the type is used.
15628
15629 if Present (Full_View (Prev)) then
15630 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15631 end if;
15632
15633 Set_Full_View (Prev, Id);
15634 Append_Entity (Id, Current_Scope);
15635 Set_Is_Public (Id, Is_Public (Prev));
15636 Set_Is_Internal (Id);
15637 New_Id := Prev;
15638
15639 -- If the incomplete view is tagged, a class_wide type has been
15640 -- created already. Use it for the private type as well, in order
15641 -- to prevent multiple incompatible class-wide types that may be
15642 -- created for self-referential anonymous access components.
15643
15644 if Is_Tagged_Type (Prev)
15645 and then Present (Class_Wide_Type (Prev))
15646 then
15647 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15648 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15649
15650 -- If the incomplete type is completed by a private declaration
15651 -- the class-wide type remains associated with the incomplete
15652 -- type, to prevent order-of-elaboration issues in gigi, else
15653 -- we associate the class-wide type with the known full view.
15654
15655 if Nkind (N) /= N_Private_Type_Declaration then
15656 Set_Etype (Class_Wide_Type (Id), Id);
15657 end if;
15658 end if;
15659
15660 -- Case of full declaration of private type
15661
15662 else
15663 -- If the private type was a completion of an incomplete type then
15664 -- update Prev to reference the private type
15665
15666 if Ada_Version >= Ada_2012
15667 and then Ekind (Prev) = E_Incomplete_Type
15668 and then Present (Full_View (Prev))
15669 and then Is_Private_Type (Full_View (Prev))
15670 then
15671 Prev := Full_View (Prev);
15672 Prev_Par := Parent (Prev);
15673 end if;
15674
15675 if Nkind (N) = N_Full_Type_Declaration
15676 and then Nkind_In
15677 (Type_Definition (N), N_Record_Definition,
15678 N_Derived_Type_Definition)
15679 and then Interface_Present (Type_Definition (N))
15680 then
15681 Error_Msg_N
15682 ("completion of private type cannot be an interface", N);
15683 end if;
15684
15685 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15686 if Etype (Prev) /= Prev then
15687
15688 -- Prev is a private subtype or a derived type, and needs
15689 -- no completion.
15690
15691 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15692 New_Id := Id;
15693
15694 elsif Ekind (Prev) = E_Private_Type
15695 and then Nkind_In (N, N_Task_Type_Declaration,
15696 N_Protected_Type_Declaration)
15697 then
15698 Error_Msg_N
15699 ("completion of nonlimited type cannot be limited", N);
15700
15701 elsif Ekind (Prev) = E_Record_Type_With_Private
15702 and then Nkind_In (N, N_Task_Type_Declaration,
15703 N_Protected_Type_Declaration)
15704 then
15705 if not Is_Limited_Record (Prev) then
15706 Error_Msg_N
15707 ("completion of nonlimited type cannot be limited", N);
15708
15709 elsif No (Interface_List (N)) then
15710 Error_Msg_N
15711 ("completion of tagged private type must be tagged",
15712 N);
15713 end if;
15714 end if;
15715
15716 -- Ada 2005 (AI-251): Private extension declaration of a task
15717 -- type or a protected type. This case arises when covering
15718 -- interface types.
15719
15720 elsif Nkind_In (N, N_Task_Type_Declaration,
15721 N_Protected_Type_Declaration)
15722 then
15723 null;
15724
15725 elsif Nkind (N) /= N_Full_Type_Declaration
15726 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15727 then
15728 Error_Msg_N
15729 ("full view of private extension must be an extension", N);
15730
15731 elsif not (Abstract_Present (Parent (Prev)))
15732 and then Abstract_Present (Type_Definition (N))
15733 then
15734 Error_Msg_N
15735 ("full view of non-abstract extension cannot be abstract", N);
15736 end if;
15737
15738 if not In_Private_Part (Current_Scope) then
15739 Error_Msg_N
15740 ("declaration of full view must appear in private part", N);
15741 end if;
15742
15743 if Ada_Version >= Ada_2012 then
15744 Check_Duplicate_Aspects;
15745 end if;
15746
15747 Copy_And_Swap (Prev, Id);
15748 Set_Has_Private_Declaration (Prev);
15749 Set_Has_Private_Declaration (Id);
15750
15751 -- Preserve aspect and iterator flags that may have been set on
15752 -- the partial view.
15753
15754 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15755 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15756
15757 -- If no error, propagate freeze_node from private to full view.
15758 -- It may have been generated for an early operational item.
15759
15760 if Present (Freeze_Node (Id))
15761 and then Serious_Errors_Detected = 0
15762 and then No (Full_View (Id))
15763 then
15764 Set_Freeze_Node (Prev, Freeze_Node (Id));
15765 Set_Freeze_Node (Id, Empty);
15766 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15767 end if;
15768
15769 Set_Full_View (Id, Prev);
15770 New_Id := Prev;
15771 end if;
15772
15773 -- Verify that full declaration conforms to partial one
15774
15775 if Is_Incomplete_Or_Private_Type (Prev)
15776 and then Present (Discriminant_Specifications (Prev_Par))
15777 then
15778 if Present (Discriminant_Specifications (N)) then
15779 if Ekind (Prev) = E_Incomplete_Type then
15780 Check_Discriminant_Conformance (N, Prev, Prev);
15781 else
15782 Check_Discriminant_Conformance (N, Prev, Id);
15783 end if;
15784
15785 else
15786 Error_Msg_N
15787 ("missing discriminants in full type declaration", N);
15788
15789 -- To avoid cascaded errors on subsequent use, share the
15790 -- discriminants of the partial view.
15791
15792 Set_Discriminant_Specifications (N,
15793 Discriminant_Specifications (Prev_Par));
15794 end if;
15795 end if;
15796
15797 -- A prior untagged partial view can have an associated class-wide
15798 -- type due to use of the class attribute, and in this case the full
15799 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15800 -- of incomplete tagged declarations, but we check for it.
15801
15802 if Is_Type (Prev)
15803 and then (Is_Tagged_Type (Prev)
15804 or else Present (Class_Wide_Type (Prev)))
15805 then
15806 -- Ada 2012 (AI05-0162): A private type may be the completion of
15807 -- an incomplete type.
15808
15809 if Ada_Version >= Ada_2012
15810 and then Is_Incomplete_Type (Prev)
15811 and then Nkind_In (N, N_Private_Type_Declaration,
15812 N_Private_Extension_Declaration)
15813 then
15814 -- No need to check private extensions since they are tagged
15815
15816 if Nkind (N) = N_Private_Type_Declaration
15817 and then not Tagged_Present (N)
15818 then
15819 Tag_Mismatch;
15820 end if;
15821
15822 -- The full declaration is either a tagged type (including
15823 -- a synchronized type that implements interfaces) or a
15824 -- type extension, otherwise this is an error.
15825
15826 elsif Nkind_In (N, N_Task_Type_Declaration,
15827 N_Protected_Type_Declaration)
15828 then
15829 if No (Interface_List (N))
15830 and then not Error_Posted (N)
15831 then
15832 Tag_Mismatch;
15833 end if;
15834
15835 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15836
15837 -- Indicate that the previous declaration (tagged incomplete
15838 -- or private declaration) requires the same on the full one.
15839
15840 if not Tagged_Present (Type_Definition (N)) then
15841 Tag_Mismatch;
15842 Set_Is_Tagged_Type (Id);
15843 end if;
15844
15845 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15846 if No (Record_Extension_Part (Type_Definition (N))) then
15847 Error_Msg_NE
15848 ("full declaration of } must be a record extension",
15849 Prev, Id);
15850
15851 -- Set some attributes to produce a usable full view
15852
15853 Set_Is_Tagged_Type (Id);
15854 end if;
15855
15856 else
15857 Tag_Mismatch;
15858 end if;
15859 end if;
15860
15861 if Present (Prev)
15862 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15863 and then Present (Premature_Use (Parent (Prev)))
15864 then
15865 Error_Msg_Sloc := Sloc (N);
15866 Error_Msg_N
15867 ("\full declaration #", Premature_Use (Parent (Prev)));
15868 end if;
15869
15870 return New_Id;
15871 end if;
15872 end Find_Type_Name;
15873
15874 -------------------------
15875 -- Find_Type_Of_Object --
15876 -------------------------
15877
15878 function Find_Type_Of_Object
15879 (Obj_Def : Node_Id;
15880 Related_Nod : Node_Id) return Entity_Id
15881 is
15882 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15883 P : Node_Id := Parent (Obj_Def);
15884 T : Entity_Id;
15885 Nam : Name_Id;
15886
15887 begin
15888 -- If the parent is a component_definition node we climb to the
15889 -- component_declaration node
15890
15891 if Nkind (P) = N_Component_Definition then
15892 P := Parent (P);
15893 end if;
15894
15895 -- Case of an anonymous array subtype
15896
15897 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15898 N_Unconstrained_Array_Definition)
15899 then
15900 T := Empty;
15901 Array_Type_Declaration (T, Obj_Def);
15902
15903 -- Create an explicit subtype whenever possible
15904
15905 elsif Nkind (P) /= N_Component_Declaration
15906 and then Def_Kind = N_Subtype_Indication
15907 then
15908 -- Base name of subtype on object name, which will be unique in
15909 -- the current scope.
15910
15911 -- If this is a duplicate declaration, return base type, to avoid
15912 -- generating duplicate anonymous types.
15913
15914 if Error_Posted (P) then
15915 Analyze (Subtype_Mark (Obj_Def));
15916 return Entity (Subtype_Mark (Obj_Def));
15917 end if;
15918
15919 Nam :=
15920 New_External_Name
15921 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15922
15923 T := Make_Defining_Identifier (Sloc (P), Nam);
15924
15925 Insert_Action (Obj_Def,
15926 Make_Subtype_Declaration (Sloc (P),
15927 Defining_Identifier => T,
15928 Subtype_Indication => Relocate_Node (Obj_Def)));
15929
15930 -- This subtype may need freezing, and this will not be done
15931 -- automatically if the object declaration is not in declarative
15932 -- part. Since this is an object declaration, the type cannot always
15933 -- be frozen here. Deferred constants do not freeze their type
15934 -- (which often enough will be private).
15935
15936 if Nkind (P) = N_Object_Declaration
15937 and then Constant_Present (P)
15938 and then No (Expression (P))
15939 then
15940 null;
15941
15942 -- Here we freeze the base type of object type to catch premature use
15943 -- of discriminated private type without a full view.
15944
15945 else
15946 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15947 end if;
15948
15949 -- Ada 2005 AI-406: the object definition in an object declaration
15950 -- can be an access definition.
15951
15952 elsif Def_Kind = N_Access_Definition then
15953 T := Access_Definition (Related_Nod, Obj_Def);
15954
15955 Set_Is_Local_Anonymous_Access
15956 (T,
15957 V => (Ada_Version < Ada_2012)
15958 or else (Nkind (P) /= N_Object_Declaration)
15959 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15960
15961 -- Otherwise, the object definition is just a subtype_mark
15962
15963 else
15964 T := Process_Subtype (Obj_Def, Related_Nod);
15965
15966 -- If expansion is disabled an object definition that is an aggregate
15967 -- will not get expanded and may lead to scoping problems in the back
15968 -- end, if the object is referenced in an inner scope. In that case
15969 -- create an itype reference for the object definition now. This
15970 -- may be redundant in some cases, but harmless.
15971
15972 if Is_Itype (T)
15973 and then Nkind (Related_Nod) = N_Object_Declaration
15974 and then ASIS_Mode
15975 then
15976 Build_Itype_Reference (T, Related_Nod);
15977 end if;
15978 end if;
15979
15980 return T;
15981 end Find_Type_Of_Object;
15982
15983 --------------------------------
15984 -- Find_Type_Of_Subtype_Indic --
15985 --------------------------------
15986
15987 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15988 Typ : Entity_Id;
15989
15990 begin
15991 -- Case of subtype mark with a constraint
15992
15993 if Nkind (S) = N_Subtype_Indication then
15994 Find_Type (Subtype_Mark (S));
15995 Typ := Entity (Subtype_Mark (S));
15996
15997 if not
15998 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15999 then
16000 Error_Msg_N
16001 ("incorrect constraint for this kind of type", Constraint (S));
16002 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16003 end if;
16004
16005 -- Otherwise we have a subtype mark without a constraint
16006
16007 elsif Error_Posted (S) then
16008 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16009 return Any_Type;
16010
16011 else
16012 Find_Type (S);
16013 Typ := Entity (S);
16014 end if;
16015
16016 -- Check No_Wide_Characters restriction
16017
16018 Check_Wide_Character_Restriction (Typ, S);
16019
16020 return Typ;
16021 end Find_Type_Of_Subtype_Indic;
16022
16023 -------------------------------------
16024 -- Floating_Point_Type_Declaration --
16025 -------------------------------------
16026
16027 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16028 Digs : constant Node_Id := Digits_Expression (Def);
16029 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16030 Digs_Val : Uint;
16031 Base_Typ : Entity_Id;
16032 Implicit_Base : Entity_Id;
16033 Bound : Node_Id;
16034
16035 function Can_Derive_From (E : Entity_Id) return Boolean;
16036 -- Find if given digits value, and possibly a specified range, allows
16037 -- derivation from specified type
16038
16039 function Find_Base_Type return Entity_Id;
16040 -- Find a predefined base type that Def can derive from, or generate
16041 -- an error and substitute Long_Long_Float if none exists.
16042
16043 ---------------------
16044 -- Can_Derive_From --
16045 ---------------------
16046
16047 function Can_Derive_From (E : Entity_Id) return Boolean is
16048 Spec : constant Entity_Id := Real_Range_Specification (Def);
16049
16050 begin
16051 -- Check specified "digits" constraint
16052
16053 if Digs_Val > Digits_Value (E) then
16054 return False;
16055 end if;
16056
16057 -- Check for matching range, if specified
16058
16059 if Present (Spec) then
16060 if Expr_Value_R (Type_Low_Bound (E)) >
16061 Expr_Value_R (Low_Bound (Spec))
16062 then
16063 return False;
16064 end if;
16065
16066 if Expr_Value_R (Type_High_Bound (E)) <
16067 Expr_Value_R (High_Bound (Spec))
16068 then
16069 return False;
16070 end if;
16071 end if;
16072
16073 return True;
16074 end Can_Derive_From;
16075
16076 --------------------
16077 -- Find_Base_Type --
16078 --------------------
16079
16080 function Find_Base_Type return Entity_Id is
16081 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16082
16083 begin
16084 -- Iterate over the predefined types in order, returning the first
16085 -- one that Def can derive from.
16086
16087 while Present (Choice) loop
16088 if Can_Derive_From (Node (Choice)) then
16089 return Node (Choice);
16090 end if;
16091
16092 Next_Elmt (Choice);
16093 end loop;
16094
16095 -- If we can't derive from any existing type, use Long_Long_Float
16096 -- and give appropriate message explaining the problem.
16097
16098 if Digs_Val > Max_Digs_Val then
16099 -- It might be the case that there is a type with the requested
16100 -- range, just not the combination of digits and range.
16101
16102 Error_Msg_N
16103 ("no predefined type has requested range and precision",
16104 Real_Range_Specification (Def));
16105
16106 else
16107 Error_Msg_N
16108 ("range too large for any predefined type",
16109 Real_Range_Specification (Def));
16110 end if;
16111
16112 return Standard_Long_Long_Float;
16113 end Find_Base_Type;
16114
16115 -- Start of processing for Floating_Point_Type_Declaration
16116
16117 begin
16118 Check_Restriction (No_Floating_Point, Def);
16119
16120 -- Create an implicit base type
16121
16122 Implicit_Base :=
16123 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16124
16125 -- Analyze and verify digits value
16126
16127 Analyze_And_Resolve (Digs, Any_Integer);
16128 Check_Digits_Expression (Digs);
16129 Digs_Val := Expr_Value (Digs);
16130
16131 -- Process possible range spec and find correct type to derive from
16132
16133 Process_Real_Range_Specification (Def);
16134
16135 -- Check that requested number of digits is not too high.
16136
16137 if Digs_Val > Max_Digs_Val then
16138 -- The check for Max_Base_Digits may be somewhat expensive, as it
16139 -- requires reading System, so only do it when necessary.
16140
16141 declare
16142 Max_Base_Digits : constant Uint :=
16143 Expr_Value
16144 (Expression
16145 (Parent (RTE (RE_Max_Base_Digits))));
16146
16147 begin
16148 if Digs_Val > Max_Base_Digits then
16149 Error_Msg_Uint_1 := Max_Base_Digits;
16150 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16151
16152 elsif No (Real_Range_Specification (Def)) then
16153 Error_Msg_Uint_1 := Max_Digs_Val;
16154 Error_Msg_N ("types with more than ^ digits need range spec "
16155 & "(RM 3.5.7(6))", Digs);
16156 end if;
16157 end;
16158 end if;
16159
16160 -- Find a suitable type to derive from or complain and use a substitute
16161
16162 Base_Typ := Find_Base_Type;
16163
16164 -- If there are bounds given in the declaration use them as the bounds
16165 -- of the type, otherwise use the bounds of the predefined base type
16166 -- that was chosen based on the Digits value.
16167
16168 if Present (Real_Range_Specification (Def)) then
16169 Set_Scalar_Range (T, Real_Range_Specification (Def));
16170 Set_Is_Constrained (T);
16171
16172 -- The bounds of this range must be converted to machine numbers
16173 -- in accordance with RM 4.9(38).
16174
16175 Bound := Type_Low_Bound (T);
16176
16177 if Nkind (Bound) = N_Real_Literal then
16178 Set_Realval
16179 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16180 Set_Is_Machine_Number (Bound);
16181 end if;
16182
16183 Bound := Type_High_Bound (T);
16184
16185 if Nkind (Bound) = N_Real_Literal then
16186 Set_Realval
16187 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16188 Set_Is_Machine_Number (Bound);
16189 end if;
16190
16191 else
16192 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16193 end if;
16194
16195 -- Complete definition of implicit base and declared first subtype
16196
16197 Set_Etype (Implicit_Base, Base_Typ);
16198
16199 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16200 Set_Size_Info (Implicit_Base, (Base_Typ));
16201 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16202 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16203 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16204 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16205
16206 Set_Ekind (T, E_Floating_Point_Subtype);
16207 Set_Etype (T, Implicit_Base);
16208
16209 Set_Size_Info (T, (Implicit_Base));
16210 Set_RM_Size (T, RM_Size (Implicit_Base));
16211 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16212 Set_Digits_Value (T, Digs_Val);
16213 end Floating_Point_Type_Declaration;
16214
16215 ----------------------------
16216 -- Get_Discriminant_Value --
16217 ----------------------------
16218
16219 -- This is the situation:
16220
16221 -- There is a non-derived type
16222
16223 -- type T0 (Dx, Dy, Dz...)
16224
16225 -- There are zero or more levels of derivation, with each derivation
16226 -- either purely inheriting the discriminants, or defining its own.
16227
16228 -- type Ti is new Ti-1
16229 -- or
16230 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16231 -- or
16232 -- subtype Ti is ...
16233
16234 -- The subtype issue is avoided by the use of Original_Record_Component,
16235 -- and the fact that derived subtypes also derive the constraints.
16236
16237 -- This chain leads back from
16238
16239 -- Typ_For_Constraint
16240
16241 -- Typ_For_Constraint has discriminants, and the value for each
16242 -- discriminant is given by its corresponding Elmt of Constraints.
16243
16244 -- Discriminant is some discriminant in this hierarchy
16245
16246 -- We need to return its value
16247
16248 -- We do this by recursively searching each level, and looking for
16249 -- Discriminant. Once we get to the bottom, we start backing up
16250 -- returning the value for it which may in turn be a discriminant
16251 -- further up, so on the backup we continue the substitution.
16252
16253 function Get_Discriminant_Value
16254 (Discriminant : Entity_Id;
16255 Typ_For_Constraint : Entity_Id;
16256 Constraint : Elist_Id) return Node_Id
16257 is
16258 function Root_Corresponding_Discriminant
16259 (Discr : Entity_Id) return Entity_Id;
16260 -- Given a discriminant, traverse the chain of inherited discriminants
16261 -- and return the topmost discriminant.
16262
16263 function Search_Derivation_Levels
16264 (Ti : Entity_Id;
16265 Discrim_Values : Elist_Id;
16266 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16267 -- This is the routine that performs the recursive search of levels
16268 -- as described above.
16269
16270 -------------------------------------
16271 -- Root_Corresponding_Discriminant --
16272 -------------------------------------
16273
16274 function Root_Corresponding_Discriminant
16275 (Discr : Entity_Id) return Entity_Id
16276 is
16277 D : Entity_Id;
16278
16279 begin
16280 D := Discr;
16281 while Present (Corresponding_Discriminant (D)) loop
16282 D := Corresponding_Discriminant (D);
16283 end loop;
16284
16285 return D;
16286 end Root_Corresponding_Discriminant;
16287
16288 ------------------------------
16289 -- Search_Derivation_Levels --
16290 ------------------------------
16291
16292 function Search_Derivation_Levels
16293 (Ti : Entity_Id;
16294 Discrim_Values : Elist_Id;
16295 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16296 is
16297 Assoc : Elmt_Id;
16298 Disc : Entity_Id;
16299 Result : Node_Or_Entity_Id;
16300 Result_Entity : Node_Id;
16301
16302 begin
16303 -- If inappropriate type, return Error, this happens only in
16304 -- cascaded error situations, and we want to avoid a blow up.
16305
16306 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16307 return Error;
16308 end if;
16309
16310 -- Look deeper if possible. Use Stored_Constraints only for
16311 -- untagged types. For tagged types use the given constraint.
16312 -- This asymmetry needs explanation???
16313
16314 if not Stored_Discrim_Values
16315 and then Present (Stored_Constraint (Ti))
16316 and then not Is_Tagged_Type (Ti)
16317 then
16318 Result :=
16319 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16320 else
16321 declare
16322 Td : constant Entity_Id := Etype (Ti);
16323
16324 begin
16325 if Td = Ti then
16326 Result := Discriminant;
16327
16328 else
16329 if Present (Stored_Constraint (Ti)) then
16330 Result :=
16331 Search_Derivation_Levels
16332 (Td, Stored_Constraint (Ti), True);
16333 else
16334 Result :=
16335 Search_Derivation_Levels
16336 (Td, Discrim_Values, Stored_Discrim_Values);
16337 end if;
16338 end if;
16339 end;
16340 end if;
16341
16342 -- Extra underlying places to search, if not found above. For
16343 -- concurrent types, the relevant discriminant appears in the
16344 -- corresponding record. For a type derived from a private type
16345 -- without discriminant, the full view inherits the discriminants
16346 -- of the full view of the parent.
16347
16348 if Result = Discriminant then
16349 if Is_Concurrent_Type (Ti)
16350 and then Present (Corresponding_Record_Type (Ti))
16351 then
16352 Result :=
16353 Search_Derivation_Levels (
16354 Corresponding_Record_Type (Ti),
16355 Discrim_Values,
16356 Stored_Discrim_Values);
16357
16358 elsif Is_Private_Type (Ti)
16359 and then not Has_Discriminants (Ti)
16360 and then Present (Full_View (Ti))
16361 and then Etype (Full_View (Ti)) /= Ti
16362 then
16363 Result :=
16364 Search_Derivation_Levels (
16365 Full_View (Ti),
16366 Discrim_Values,
16367 Stored_Discrim_Values);
16368 end if;
16369 end if;
16370
16371 -- If Result is not a (reference to a) discriminant, return it,
16372 -- otherwise set Result_Entity to the discriminant.
16373
16374 if Nkind (Result) = N_Defining_Identifier then
16375 pragma Assert (Result = Discriminant);
16376 Result_Entity := Result;
16377
16378 else
16379 if not Denotes_Discriminant (Result) then
16380 return Result;
16381 end if;
16382
16383 Result_Entity := Entity (Result);
16384 end if;
16385
16386 -- See if this level of derivation actually has discriminants
16387 -- because tagged derivations can add them, hence the lower
16388 -- levels need not have any.
16389
16390 if not Has_Discriminants (Ti) then
16391 return Result;
16392 end if;
16393
16394 -- Scan Ti's discriminants for Result_Entity,
16395 -- and return its corresponding value, if any.
16396
16397 Result_Entity := Original_Record_Component (Result_Entity);
16398
16399 Assoc := First_Elmt (Discrim_Values);
16400
16401 if Stored_Discrim_Values then
16402 Disc := First_Stored_Discriminant (Ti);
16403 else
16404 Disc := First_Discriminant (Ti);
16405 end if;
16406
16407 while Present (Disc) loop
16408 pragma Assert (Present (Assoc));
16409
16410 if Original_Record_Component (Disc) = Result_Entity then
16411 return Node (Assoc);
16412 end if;
16413
16414 Next_Elmt (Assoc);
16415
16416 if Stored_Discrim_Values then
16417 Next_Stored_Discriminant (Disc);
16418 else
16419 Next_Discriminant (Disc);
16420 end if;
16421 end loop;
16422
16423 -- Could not find it
16424 --
16425 return Result;
16426 end Search_Derivation_Levels;
16427
16428 -- Local Variables
16429
16430 Result : Node_Or_Entity_Id;
16431
16432 -- Start of processing for Get_Discriminant_Value
16433
16434 begin
16435 -- ??? This routine is a gigantic mess and will be deleted. For the
16436 -- time being just test for the trivial case before calling recurse.
16437
16438 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16439 declare
16440 D : Entity_Id;
16441 E : Elmt_Id;
16442
16443 begin
16444 D := First_Discriminant (Typ_For_Constraint);
16445 E := First_Elmt (Constraint);
16446 while Present (D) loop
16447 if Chars (D) = Chars (Discriminant) then
16448 return Node (E);
16449 end if;
16450
16451 Next_Discriminant (D);
16452 Next_Elmt (E);
16453 end loop;
16454 end;
16455 end if;
16456
16457 Result := Search_Derivation_Levels
16458 (Typ_For_Constraint, Constraint, False);
16459
16460 -- ??? hack to disappear when this routine is gone
16461
16462 if Nkind (Result) = N_Defining_Identifier then
16463 declare
16464 D : Entity_Id;
16465 E : Elmt_Id;
16466
16467 begin
16468 D := First_Discriminant (Typ_For_Constraint);
16469 E := First_Elmt (Constraint);
16470 while Present (D) loop
16471 if Root_Corresponding_Discriminant (D) = Discriminant then
16472 return Node (E);
16473 end if;
16474
16475 Next_Discriminant (D);
16476 Next_Elmt (E);
16477 end loop;
16478 end;
16479 end if;
16480
16481 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16482 return Result;
16483 end Get_Discriminant_Value;
16484
16485 --------------------------
16486 -- Has_Range_Constraint --
16487 --------------------------
16488
16489 function Has_Range_Constraint (N : Node_Id) return Boolean is
16490 C : constant Node_Id := Constraint (N);
16491
16492 begin
16493 if Nkind (C) = N_Range_Constraint then
16494 return True;
16495
16496 elsif Nkind (C) = N_Digits_Constraint then
16497 return
16498 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16499 or else
16500 Present (Range_Constraint (C));
16501
16502 elsif Nkind (C) = N_Delta_Constraint then
16503 return Present (Range_Constraint (C));
16504
16505 else
16506 return False;
16507 end if;
16508 end Has_Range_Constraint;
16509
16510 ------------------------
16511 -- Inherit_Components --
16512 ------------------------
16513
16514 function Inherit_Components
16515 (N : Node_Id;
16516 Parent_Base : Entity_Id;
16517 Derived_Base : Entity_Id;
16518 Is_Tagged : Boolean;
16519 Inherit_Discr : Boolean;
16520 Discs : Elist_Id) return Elist_Id
16521 is
16522 Assoc_List : constant Elist_Id := New_Elmt_List;
16523
16524 procedure Inherit_Component
16525 (Old_C : Entity_Id;
16526 Plain_Discrim : Boolean := False;
16527 Stored_Discrim : Boolean := False);
16528 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16529 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16530 -- True, Old_C is a stored discriminant. If they are both false then
16531 -- Old_C is a regular component.
16532
16533 -----------------------
16534 -- Inherit_Component --
16535 -----------------------
16536
16537 procedure Inherit_Component
16538 (Old_C : Entity_Id;
16539 Plain_Discrim : Boolean := False;
16540 Stored_Discrim : Boolean := False)
16541 is
16542 procedure Set_Anonymous_Type (Id : Entity_Id);
16543 -- Id denotes the entity of an access discriminant or anonymous
16544 -- access component. Set the type of Id to either the same type of
16545 -- Old_C or create a new one depending on whether the parent and
16546 -- the child types are in the same scope.
16547
16548 ------------------------
16549 -- Set_Anonymous_Type --
16550 ------------------------
16551
16552 procedure Set_Anonymous_Type (Id : Entity_Id) is
16553 Old_Typ : constant Entity_Id := Etype (Old_C);
16554
16555 begin
16556 if Scope (Parent_Base) = Scope (Derived_Base) then
16557 Set_Etype (Id, Old_Typ);
16558
16559 -- The parent and the derived type are in two different scopes.
16560 -- Reuse the type of the original discriminant / component by
16561 -- copying it in order to preserve all attributes.
16562
16563 else
16564 declare
16565 Typ : constant Entity_Id := New_Copy (Old_Typ);
16566
16567 begin
16568 Set_Etype (Id, Typ);
16569
16570 -- Since we do not generate component declarations for
16571 -- inherited components, associate the itype with the
16572 -- derived type.
16573
16574 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16575 Set_Scope (Typ, Derived_Base);
16576 end;
16577 end if;
16578 end Set_Anonymous_Type;
16579
16580 -- Local variables and constants
16581
16582 New_C : constant Entity_Id := New_Copy (Old_C);
16583
16584 Corr_Discrim : Entity_Id;
16585 Discrim : Entity_Id;
16586
16587 -- Start of processing for Inherit_Component
16588
16589 begin
16590 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16591
16592 Set_Parent (New_C, Parent (Old_C));
16593
16594 -- Regular discriminants and components must be inserted in the scope
16595 -- of the Derived_Base. Do it here.
16596
16597 if not Stored_Discrim then
16598 Enter_Name (New_C);
16599 end if;
16600
16601 -- For tagged types the Original_Record_Component must point to
16602 -- whatever this field was pointing to in the parent type. This has
16603 -- already been achieved by the call to New_Copy above.
16604
16605 if not Is_Tagged then
16606 Set_Original_Record_Component (New_C, New_C);
16607 end if;
16608
16609 -- Set the proper type of an access discriminant
16610
16611 if Ekind (New_C) = E_Discriminant
16612 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16613 then
16614 Set_Anonymous_Type (New_C);
16615 end if;
16616
16617 -- If we have inherited a component then see if its Etype contains
16618 -- references to Parent_Base discriminants. In this case, replace
16619 -- these references with the constraints given in Discs. We do not
16620 -- do this for the partial view of private types because this is
16621 -- not needed (only the components of the full view will be used
16622 -- for code generation) and cause problem. We also avoid this
16623 -- transformation in some error situations.
16624
16625 if Ekind (New_C) = E_Component then
16626
16627 -- Set the proper type of an anonymous access component
16628
16629 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16630 Set_Anonymous_Type (New_C);
16631
16632 elsif (Is_Private_Type (Derived_Base)
16633 and then not Is_Generic_Type (Derived_Base))
16634 or else (Is_Empty_Elmt_List (Discs)
16635 and then not Expander_Active)
16636 then
16637 Set_Etype (New_C, Etype (Old_C));
16638
16639 else
16640 -- The current component introduces a circularity of the
16641 -- following kind:
16642
16643 -- limited with Pack_2;
16644 -- package Pack_1 is
16645 -- type T_1 is tagged record
16646 -- Comp : access Pack_2.T_2;
16647 -- ...
16648 -- end record;
16649 -- end Pack_1;
16650
16651 -- with Pack_1;
16652 -- package Pack_2 is
16653 -- type T_2 is new Pack_1.T_1 with ...;
16654 -- end Pack_2;
16655
16656 Set_Etype
16657 (New_C,
16658 Constrain_Component_Type
16659 (Old_C, Derived_Base, N, Parent_Base, Discs));
16660 end if;
16661 end if;
16662
16663 -- In derived tagged types it is illegal to reference a non
16664 -- discriminant component in the parent type. To catch this, mark
16665 -- these components with an Ekind of E_Void. This will be reset in
16666 -- Record_Type_Definition after processing the record extension of
16667 -- the derived type.
16668
16669 -- If the declaration is a private extension, there is no further
16670 -- record extension to process, and the components retain their
16671 -- current kind, because they are visible at this point.
16672
16673 if Is_Tagged and then Ekind (New_C) = E_Component
16674 and then Nkind (N) /= N_Private_Extension_Declaration
16675 then
16676 Set_Ekind (New_C, E_Void);
16677 end if;
16678
16679 if Plain_Discrim then
16680 Set_Corresponding_Discriminant (New_C, Old_C);
16681 Build_Discriminal (New_C);
16682
16683 -- If we are explicitly inheriting a stored discriminant it will be
16684 -- completely hidden.
16685
16686 elsif Stored_Discrim then
16687 Set_Corresponding_Discriminant (New_C, Empty);
16688 Set_Discriminal (New_C, Empty);
16689 Set_Is_Completely_Hidden (New_C);
16690
16691 -- Set the Original_Record_Component of each discriminant in the
16692 -- derived base to point to the corresponding stored that we just
16693 -- created.
16694
16695 Discrim := First_Discriminant (Derived_Base);
16696 while Present (Discrim) loop
16697 Corr_Discrim := Corresponding_Discriminant (Discrim);
16698
16699 -- Corr_Discrim could be missing in an error situation
16700
16701 if Present (Corr_Discrim)
16702 and then Original_Record_Component (Corr_Discrim) = Old_C
16703 then
16704 Set_Original_Record_Component (Discrim, New_C);
16705 end if;
16706
16707 Next_Discriminant (Discrim);
16708 end loop;
16709
16710 Append_Entity (New_C, Derived_Base);
16711 end if;
16712
16713 if not Is_Tagged then
16714 Append_Elmt (Old_C, Assoc_List);
16715 Append_Elmt (New_C, Assoc_List);
16716 end if;
16717 end Inherit_Component;
16718
16719 -- Variables local to Inherit_Component
16720
16721 Loc : constant Source_Ptr := Sloc (N);
16722
16723 Parent_Discrim : Entity_Id;
16724 Stored_Discrim : Entity_Id;
16725 D : Entity_Id;
16726 Component : Entity_Id;
16727
16728 -- Start of processing for Inherit_Components
16729
16730 begin
16731 if not Is_Tagged then
16732 Append_Elmt (Parent_Base, Assoc_List);
16733 Append_Elmt (Derived_Base, Assoc_List);
16734 end if;
16735
16736 -- Inherit parent discriminants if needed
16737
16738 if Inherit_Discr then
16739 Parent_Discrim := First_Discriminant (Parent_Base);
16740 while Present (Parent_Discrim) loop
16741 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16742 Next_Discriminant (Parent_Discrim);
16743 end loop;
16744 end if;
16745
16746 -- Create explicit stored discrims for untagged types when necessary
16747
16748 if not Has_Unknown_Discriminants (Derived_Base)
16749 and then Has_Discriminants (Parent_Base)
16750 and then not Is_Tagged
16751 and then
16752 (not Inherit_Discr
16753 or else First_Discriminant (Parent_Base) /=
16754 First_Stored_Discriminant (Parent_Base))
16755 then
16756 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16757 while Present (Stored_Discrim) loop
16758 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16759 Next_Stored_Discriminant (Stored_Discrim);
16760 end loop;
16761 end if;
16762
16763 -- See if we can apply the second transformation for derived types, as
16764 -- explained in point 6. in the comments above Build_Derived_Record_Type
16765 -- This is achieved by appending Derived_Base discriminants into Discs,
16766 -- which has the side effect of returning a non empty Discs list to the
16767 -- caller of Inherit_Components, which is what we want. This must be
16768 -- done for private derived types if there are explicit stored
16769 -- discriminants, to ensure that we can retrieve the values of the
16770 -- constraints provided in the ancestors.
16771
16772 if Inherit_Discr
16773 and then Is_Empty_Elmt_List (Discs)
16774 and then Present (First_Discriminant (Derived_Base))
16775 and then
16776 (not Is_Private_Type (Derived_Base)
16777 or else Is_Completely_Hidden
16778 (First_Stored_Discriminant (Derived_Base))
16779 or else Is_Generic_Type (Derived_Base))
16780 then
16781 D := First_Discriminant (Derived_Base);
16782 while Present (D) loop
16783 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16784 Next_Discriminant (D);
16785 end loop;
16786 end if;
16787
16788 -- Finally, inherit non-discriminant components unless they are not
16789 -- visible because defined or inherited from the full view of the
16790 -- parent. Don't inherit the _parent field of the parent type.
16791
16792 Component := First_Entity (Parent_Base);
16793 while Present (Component) loop
16794
16795 -- Ada 2005 (AI-251): Do not inherit components associated with
16796 -- secondary tags of the parent.
16797
16798 if Ekind (Component) = E_Component
16799 and then Present (Related_Type (Component))
16800 then
16801 null;
16802
16803 elsif Ekind (Component) /= E_Component
16804 or else Chars (Component) = Name_uParent
16805 then
16806 null;
16807
16808 -- If the derived type is within the parent type's declarative
16809 -- region, then the components can still be inherited even though
16810 -- they aren't visible at this point. This can occur for cases
16811 -- such as within public child units where the components must
16812 -- become visible upon entering the child unit's private part.
16813
16814 elsif not Is_Visible_Component (Component)
16815 and then not In_Open_Scopes (Scope (Parent_Base))
16816 then
16817 null;
16818
16819 elsif Ekind_In (Derived_Base, E_Private_Type,
16820 E_Limited_Private_Type)
16821 then
16822 null;
16823
16824 else
16825 Inherit_Component (Component);
16826 end if;
16827
16828 Next_Entity (Component);
16829 end loop;
16830
16831 -- For tagged derived types, inherited discriminants cannot be used in
16832 -- component declarations of the record extension part. To achieve this
16833 -- we mark the inherited discriminants as not visible.
16834
16835 if Is_Tagged and then Inherit_Discr then
16836 D := First_Discriminant (Derived_Base);
16837 while Present (D) loop
16838 Set_Is_Immediately_Visible (D, False);
16839 Next_Discriminant (D);
16840 end loop;
16841 end if;
16842
16843 return Assoc_List;
16844 end Inherit_Components;
16845
16846 -----------------------------
16847 -- Inherit_Predicate_Flags --
16848 -----------------------------
16849
16850 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16851 begin
16852 Set_Has_Predicates (Subt, Has_Predicates (Par));
16853 Set_Has_Static_Predicate_Aspect
16854 (Subt, Has_Static_Predicate_Aspect (Par));
16855 Set_Has_Dynamic_Predicate_Aspect
16856 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16857 end Inherit_Predicate_Flags;
16858
16859 -----------------------
16860 -- Is_Null_Extension --
16861 -----------------------
16862
16863 function Is_Null_Extension (T : Entity_Id) return Boolean is
16864 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16865 Comp_List : Node_Id;
16866 Comp : Node_Id;
16867
16868 begin
16869 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16870 or else not Is_Tagged_Type (T)
16871 or else Nkind (Type_Definition (Type_Decl)) /=
16872 N_Derived_Type_Definition
16873 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16874 then
16875 return False;
16876 end if;
16877
16878 Comp_List :=
16879 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16880
16881 if Present (Discriminant_Specifications (Type_Decl)) then
16882 return False;
16883
16884 elsif Present (Comp_List)
16885 and then Is_Non_Empty_List (Component_Items (Comp_List))
16886 then
16887 Comp := First (Component_Items (Comp_List));
16888
16889 -- Only user-defined components are relevant. The component list
16890 -- may also contain a parent component and internal components
16891 -- corresponding to secondary tags, but these do not determine
16892 -- whether this is a null extension.
16893
16894 while Present (Comp) loop
16895 if Comes_From_Source (Comp) then
16896 return False;
16897 end if;
16898
16899 Next (Comp);
16900 end loop;
16901
16902 return True;
16903 else
16904 return True;
16905 end if;
16906 end Is_Null_Extension;
16907
16908 ------------------------------
16909 -- Is_Valid_Constraint_Kind --
16910 ------------------------------
16911
16912 function Is_Valid_Constraint_Kind
16913 (T_Kind : Type_Kind;
16914 Constraint_Kind : Node_Kind) return Boolean
16915 is
16916 begin
16917 case T_Kind is
16918 when Enumeration_Kind |
16919 Integer_Kind =>
16920 return Constraint_Kind = N_Range_Constraint;
16921
16922 when Decimal_Fixed_Point_Kind =>
16923 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16924 N_Range_Constraint);
16925
16926 when Ordinary_Fixed_Point_Kind =>
16927 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16928 N_Range_Constraint);
16929
16930 when Float_Kind =>
16931 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16932 N_Range_Constraint);
16933
16934 when Access_Kind |
16935 Array_Kind |
16936 E_Record_Type |
16937 E_Record_Subtype |
16938 Class_Wide_Kind |
16939 E_Incomplete_Type |
16940 Private_Kind |
16941 Concurrent_Kind =>
16942 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16943
16944 when others =>
16945 return True; -- Error will be detected later
16946 end case;
16947 end Is_Valid_Constraint_Kind;
16948
16949 --------------------------
16950 -- Is_Visible_Component --
16951 --------------------------
16952
16953 function Is_Visible_Component
16954 (C : Entity_Id;
16955 N : Node_Id := Empty) return Boolean
16956 is
16957 Original_Comp : Entity_Id := Empty;
16958 Original_Scope : Entity_Id;
16959 Type_Scope : Entity_Id;
16960
16961 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16962 -- Check whether parent type of inherited component is declared locally,
16963 -- possibly within a nested package or instance. The current scope is
16964 -- the derived record itself.
16965
16966 -------------------
16967 -- Is_Local_Type --
16968 -------------------
16969
16970 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16971 Scop : Entity_Id;
16972
16973 begin
16974 Scop := Scope (Typ);
16975 while Present (Scop)
16976 and then Scop /= Standard_Standard
16977 loop
16978 if Scop = Scope (Current_Scope) then
16979 return True;
16980 end if;
16981
16982 Scop := Scope (Scop);
16983 end loop;
16984
16985 return False;
16986 end Is_Local_Type;
16987
16988 -- Start of processing for Is_Visible_Component
16989
16990 begin
16991 if Ekind_In (C, E_Component, E_Discriminant) then
16992 Original_Comp := Original_Record_Component (C);
16993 end if;
16994
16995 if No (Original_Comp) then
16996
16997 -- Premature usage, or previous error
16998
16999 return False;
17000
17001 else
17002 Original_Scope := Scope (Original_Comp);
17003 Type_Scope := Scope (Base_Type (Scope (C)));
17004 end if;
17005
17006 -- This test only concerns tagged types
17007
17008 if not Is_Tagged_Type (Original_Scope) then
17009 return True;
17010
17011 -- If it is _Parent or _Tag, there is no visibility issue
17012
17013 elsif not Comes_From_Source (Original_Comp) then
17014 return True;
17015
17016 -- Discriminants are visible unless the (private) type has unknown
17017 -- discriminants. If the discriminant reference is inserted for a
17018 -- discriminant check on a full view it is also visible.
17019
17020 elsif Ekind (Original_Comp) = E_Discriminant
17021 and then
17022 (not Has_Unknown_Discriminants (Original_Scope)
17023 or else (Present (N)
17024 and then Nkind (N) = N_Selected_Component
17025 and then Nkind (Prefix (N)) = N_Type_Conversion
17026 and then not Comes_From_Source (Prefix (N))))
17027 then
17028 return True;
17029
17030 -- In the body of an instantiation, no need to check for the visibility
17031 -- of a component.
17032
17033 elsif In_Instance_Body then
17034 return True;
17035
17036 -- If the component has been declared in an ancestor which is currently
17037 -- a private type, then it is not visible. The same applies if the
17038 -- component's containing type is not in an open scope and the original
17039 -- component's enclosing type is a visible full view of a private type
17040 -- (which can occur in cases where an attempt is being made to reference
17041 -- a component in a sibling package that is inherited from a visible
17042 -- component of a type in an ancestor package; the component in the
17043 -- sibling package should not be visible even though the component it
17044 -- inherited from is visible). This does not apply however in the case
17045 -- where the scope of the type is a private child unit, or when the
17046 -- parent comes from a local package in which the ancestor is currently
17047 -- visible. The latter suppression of visibility is needed for cases
17048 -- that are tested in B730006.
17049
17050 elsif Is_Private_Type (Original_Scope)
17051 or else
17052 (not Is_Private_Descendant (Type_Scope)
17053 and then not In_Open_Scopes (Type_Scope)
17054 and then Has_Private_Declaration (Original_Scope))
17055 then
17056 -- If the type derives from an entity in a formal package, there
17057 -- are no additional visible components.
17058
17059 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17060 N_Formal_Package_Declaration
17061 then
17062 return False;
17063
17064 -- if we are not in the private part of the current package, there
17065 -- are no additional visible components.
17066
17067 elsif Ekind (Scope (Current_Scope)) = E_Package
17068 and then not In_Private_Part (Scope (Current_Scope))
17069 then
17070 return False;
17071 else
17072 return
17073 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17074 and then In_Open_Scopes (Scope (Original_Scope))
17075 and then Is_Local_Type (Type_Scope);
17076 end if;
17077
17078 -- There is another weird way in which a component may be invisible when
17079 -- the private and the full view are not derived from the same ancestor.
17080 -- Here is an example :
17081
17082 -- type A1 is tagged record F1 : integer; end record;
17083 -- type A2 is new A1 with record F2 : integer; end record;
17084 -- type T is new A1 with private;
17085 -- private
17086 -- type T is new A2 with null record;
17087
17088 -- In this case, the full view of T inherits F1 and F2 but the private
17089 -- view inherits only F1
17090
17091 else
17092 declare
17093 Ancestor : Entity_Id := Scope (C);
17094
17095 begin
17096 loop
17097 if Ancestor = Original_Scope then
17098 return True;
17099 elsif Ancestor = Etype (Ancestor) then
17100 return False;
17101 end if;
17102
17103 Ancestor := Etype (Ancestor);
17104 end loop;
17105 end;
17106 end if;
17107 end Is_Visible_Component;
17108
17109 --------------------------
17110 -- Make_Class_Wide_Type --
17111 --------------------------
17112
17113 procedure Make_Class_Wide_Type (T : Entity_Id) is
17114 CW_Type : Entity_Id;
17115 CW_Name : Name_Id;
17116 Next_E : Entity_Id;
17117
17118 begin
17119 if Present (Class_Wide_Type (T)) then
17120
17121 -- The class-wide type is a partially decorated entity created for a
17122 -- unanalyzed tagged type referenced through a limited with clause.
17123 -- When the tagged type is analyzed, its class-wide type needs to be
17124 -- redecorated. Note that we reuse the entity created by Decorate_
17125 -- Tagged_Type in order to preserve all links.
17126
17127 if Materialize_Entity (Class_Wide_Type (T)) then
17128 CW_Type := Class_Wide_Type (T);
17129 Set_Materialize_Entity (CW_Type, False);
17130
17131 -- The class wide type can have been defined by the partial view, in
17132 -- which case everything is already done.
17133
17134 else
17135 return;
17136 end if;
17137
17138 -- Default case, we need to create a new class-wide type
17139
17140 else
17141 CW_Type :=
17142 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17143 end if;
17144
17145 -- Inherit root type characteristics
17146
17147 CW_Name := Chars (CW_Type);
17148 Next_E := Next_Entity (CW_Type);
17149 Copy_Node (T, CW_Type);
17150 Set_Comes_From_Source (CW_Type, False);
17151 Set_Chars (CW_Type, CW_Name);
17152 Set_Parent (CW_Type, Parent (T));
17153 Set_Next_Entity (CW_Type, Next_E);
17154
17155 -- Ensure we have a new freeze node for the class-wide type. The partial
17156 -- view may have freeze action of its own, requiring a proper freeze
17157 -- node, and the same freeze node cannot be shared between the two
17158 -- types.
17159
17160 Set_Has_Delayed_Freeze (CW_Type);
17161 Set_Freeze_Node (CW_Type, Empty);
17162
17163 -- Customize the class-wide type: It has no prim. op., it cannot be
17164 -- abstract and its Etype points back to the specific root type.
17165
17166 Set_Ekind (CW_Type, E_Class_Wide_Type);
17167 Set_Is_Tagged_Type (CW_Type, True);
17168 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17169 Set_Is_Abstract_Type (CW_Type, False);
17170 Set_Is_Constrained (CW_Type, False);
17171 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17172 Set_Default_SSO (CW_Type);
17173
17174 if Ekind (T) = E_Class_Wide_Subtype then
17175 Set_Etype (CW_Type, Etype (Base_Type (T)));
17176 else
17177 Set_Etype (CW_Type, T);
17178 end if;
17179
17180 -- If this is the class_wide type of a constrained subtype, it does
17181 -- not have discriminants.
17182
17183 Set_Has_Discriminants (CW_Type,
17184 Has_Discriminants (T) and then not Is_Constrained (T));
17185
17186 Set_Has_Unknown_Discriminants (CW_Type, True);
17187 Set_Class_Wide_Type (T, CW_Type);
17188 Set_Equivalent_Type (CW_Type, Empty);
17189
17190 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17191
17192 Set_Class_Wide_Type (CW_Type, CW_Type);
17193 end Make_Class_Wide_Type;
17194
17195 ----------------
17196 -- Make_Index --
17197 ----------------
17198
17199 procedure Make_Index
17200 (N : Node_Id;
17201 Related_Nod : Node_Id;
17202 Related_Id : Entity_Id := Empty;
17203 Suffix_Index : Nat := 1;
17204 In_Iter_Schm : Boolean := False)
17205 is
17206 R : Node_Id;
17207 T : Entity_Id;
17208 Def_Id : Entity_Id := Empty;
17209 Found : Boolean := False;
17210
17211 begin
17212 -- For a discrete range used in a constrained array definition and
17213 -- defined by a range, an implicit conversion to the predefined type
17214 -- INTEGER is assumed if each bound is either a numeric literal, a named
17215 -- number, or an attribute, and the type of both bounds (prior to the
17216 -- implicit conversion) is the type universal_integer. Otherwise, both
17217 -- bounds must be of the same discrete type, other than universal
17218 -- integer; this type must be determinable independently of the
17219 -- context, but using the fact that the type must be discrete and that
17220 -- both bounds must have the same type.
17221
17222 -- Character literals also have a universal type in the absence of
17223 -- of additional context, and are resolved to Standard_Character.
17224
17225 if Nkind (N) = N_Range then
17226
17227 -- The index is given by a range constraint. The bounds are known
17228 -- to be of a consistent type.
17229
17230 if not Is_Overloaded (N) then
17231 T := Etype (N);
17232
17233 -- For universal bounds, choose the specific predefined type
17234
17235 if T = Universal_Integer then
17236 T := Standard_Integer;
17237
17238 elsif T = Any_Character then
17239 Ambiguous_Character (Low_Bound (N));
17240
17241 T := Standard_Character;
17242 end if;
17243
17244 -- The node may be overloaded because some user-defined operators
17245 -- are available, but if a universal interpretation exists it is
17246 -- also the selected one.
17247
17248 elsif Universal_Interpretation (N) = Universal_Integer then
17249 T := Standard_Integer;
17250
17251 else
17252 T := Any_Type;
17253
17254 declare
17255 Ind : Interp_Index;
17256 It : Interp;
17257
17258 begin
17259 Get_First_Interp (N, Ind, It);
17260 while Present (It.Typ) loop
17261 if Is_Discrete_Type (It.Typ) then
17262
17263 if Found
17264 and then not Covers (It.Typ, T)
17265 and then not Covers (T, It.Typ)
17266 then
17267 Error_Msg_N ("ambiguous bounds in discrete range", N);
17268 exit;
17269 else
17270 T := It.Typ;
17271 Found := True;
17272 end if;
17273 end if;
17274
17275 Get_Next_Interp (Ind, It);
17276 end loop;
17277
17278 if T = Any_Type then
17279 Error_Msg_N ("discrete type required for range", N);
17280 Set_Etype (N, Any_Type);
17281 return;
17282
17283 elsif T = Universal_Integer then
17284 T := Standard_Integer;
17285 end if;
17286 end;
17287 end if;
17288
17289 if not Is_Discrete_Type (T) then
17290 Error_Msg_N ("discrete type required for range", N);
17291 Set_Etype (N, Any_Type);
17292 return;
17293 end if;
17294
17295 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17296 and then Attribute_Name (Low_Bound (N)) = Name_First
17297 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17298 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17299 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17300 then
17301 -- The type of the index will be the type of the prefix, as long
17302 -- as the upper bound is 'Last of the same type.
17303
17304 Def_Id := Entity (Prefix (Low_Bound (N)));
17305
17306 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17307 or else Attribute_Name (High_Bound (N)) /= Name_Last
17308 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17309 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17310 then
17311 Def_Id := Empty;
17312 end if;
17313 end if;
17314
17315 R := N;
17316 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17317
17318 elsif Nkind (N) = N_Subtype_Indication then
17319
17320 -- The index is given by a subtype with a range constraint
17321
17322 T := Base_Type (Entity (Subtype_Mark (N)));
17323
17324 if not Is_Discrete_Type (T) then
17325 Error_Msg_N ("discrete type required for range", N);
17326 Set_Etype (N, Any_Type);
17327 return;
17328 end if;
17329
17330 R := Range_Expression (Constraint (N));
17331
17332 Resolve (R, T);
17333 Process_Range_Expr_In_Decl
17334 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17335
17336 elsif Nkind (N) = N_Attribute_Reference then
17337
17338 -- Catch beginner's error (use of attribute other than 'Range)
17339
17340 if Attribute_Name (N) /= Name_Range then
17341 Error_Msg_N ("expect attribute ''Range", N);
17342 Set_Etype (N, Any_Type);
17343 return;
17344 end if;
17345
17346 -- If the node denotes the range of a type mark, that is also the
17347 -- resulting type, and we do not need to create an Itype for it.
17348
17349 if Is_Entity_Name (Prefix (N))
17350 and then Comes_From_Source (N)
17351 and then Is_Type (Entity (Prefix (N)))
17352 and then Is_Discrete_Type (Entity (Prefix (N)))
17353 then
17354 Def_Id := Entity (Prefix (N));
17355 end if;
17356
17357 Analyze_And_Resolve (N);
17358 T := Etype (N);
17359 R := N;
17360
17361 -- If none of the above, must be a subtype. We convert this to a
17362 -- range attribute reference because in the case of declared first
17363 -- named subtypes, the types in the range reference can be different
17364 -- from the type of the entity. A range attribute normalizes the
17365 -- reference and obtains the correct types for the bounds.
17366
17367 -- This transformation is in the nature of an expansion, is only
17368 -- done if expansion is active. In particular, it is not done on
17369 -- formal generic types, because we need to retain the name of the
17370 -- original index for instantiation purposes.
17371
17372 else
17373 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17374 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17375 Set_Etype (N, Any_Integer);
17376 return;
17377
17378 else
17379 -- The type mark may be that of an incomplete type. It is only
17380 -- now that we can get the full view, previous analysis does
17381 -- not look specifically for a type mark.
17382
17383 Set_Entity (N, Get_Full_View (Entity (N)));
17384 Set_Etype (N, Entity (N));
17385 Def_Id := Entity (N);
17386
17387 if not Is_Discrete_Type (Def_Id) then
17388 Error_Msg_N ("discrete type required for index", N);
17389 Set_Etype (N, Any_Type);
17390 return;
17391 end if;
17392 end if;
17393
17394 if Expander_Active then
17395 Rewrite (N,
17396 Make_Attribute_Reference (Sloc (N),
17397 Attribute_Name => Name_Range,
17398 Prefix => Relocate_Node (N)));
17399
17400 -- The original was a subtype mark that does not freeze. This
17401 -- means that the rewritten version must not freeze either.
17402
17403 Set_Must_Not_Freeze (N);
17404 Set_Must_Not_Freeze (Prefix (N));
17405 Analyze_And_Resolve (N);
17406 T := Etype (N);
17407 R := N;
17408
17409 -- If expander is inactive, type is legal, nothing else to construct
17410
17411 else
17412 return;
17413 end if;
17414 end if;
17415
17416 if not Is_Discrete_Type (T) then
17417 Error_Msg_N ("discrete type required for range", N);
17418 Set_Etype (N, Any_Type);
17419 return;
17420
17421 elsif T = Any_Type then
17422 Set_Etype (N, Any_Type);
17423 return;
17424 end if;
17425
17426 -- We will now create the appropriate Itype to describe the range, but
17427 -- first a check. If we originally had a subtype, then we just label
17428 -- the range with this subtype. Not only is there no need to construct
17429 -- a new subtype, but it is wrong to do so for two reasons:
17430
17431 -- 1. A legality concern, if we have a subtype, it must not freeze,
17432 -- and the Itype would cause freezing incorrectly
17433
17434 -- 2. An efficiency concern, if we created an Itype, it would not be
17435 -- recognized as the same type for the purposes of eliminating
17436 -- checks in some circumstances.
17437
17438 -- We signal this case by setting the subtype entity in Def_Id
17439
17440 if No (Def_Id) then
17441 Def_Id :=
17442 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17443 Set_Etype (Def_Id, Base_Type (T));
17444
17445 if Is_Signed_Integer_Type (T) then
17446 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17447
17448 elsif Is_Modular_Integer_Type (T) then
17449 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17450
17451 else
17452 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17453 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17454 Set_First_Literal (Def_Id, First_Literal (T));
17455 end if;
17456
17457 Set_Size_Info (Def_Id, (T));
17458 Set_RM_Size (Def_Id, RM_Size (T));
17459 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17460
17461 Set_Scalar_Range (Def_Id, R);
17462 Conditional_Delay (Def_Id, T);
17463
17464 if Nkind (N) = N_Subtype_Indication then
17465 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17466 end if;
17467
17468 -- In the subtype indication case, if the immediate parent of the
17469 -- new subtype is non-static, then the subtype we create is non-
17470 -- static, even if its bounds are static.
17471
17472 if Nkind (N) = N_Subtype_Indication
17473 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17474 then
17475 Set_Is_Non_Static_Subtype (Def_Id);
17476 end if;
17477 end if;
17478
17479 -- Final step is to label the index with this constructed type
17480
17481 Set_Etype (N, Def_Id);
17482 end Make_Index;
17483
17484 ------------------------------
17485 -- Modular_Type_Declaration --
17486 ------------------------------
17487
17488 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17489 Mod_Expr : constant Node_Id := Expression (Def);
17490 M_Val : Uint;
17491
17492 procedure Set_Modular_Size (Bits : Int);
17493 -- Sets RM_Size to Bits, and Esize to normal word size above this
17494
17495 ----------------------
17496 -- Set_Modular_Size --
17497 ----------------------
17498
17499 procedure Set_Modular_Size (Bits : Int) is
17500 begin
17501 Set_RM_Size (T, UI_From_Int (Bits));
17502
17503 if Bits <= 8 then
17504 Init_Esize (T, 8);
17505
17506 elsif Bits <= 16 then
17507 Init_Esize (T, 16);
17508
17509 elsif Bits <= 32 then
17510 Init_Esize (T, 32);
17511
17512 else
17513 Init_Esize (T, System_Max_Binary_Modulus_Power);
17514 end if;
17515
17516 if not Non_Binary_Modulus (T)
17517 and then Esize (T) = RM_Size (T)
17518 then
17519 Set_Is_Known_Valid (T);
17520 end if;
17521 end Set_Modular_Size;
17522
17523 -- Start of processing for Modular_Type_Declaration
17524
17525 begin
17526 -- If the mod expression is (exactly) 2 * literal, where literal is
17527 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17528
17529 if Warn_On_Suspicious_Modulus_Value
17530 and then Nkind (Mod_Expr) = N_Op_Multiply
17531 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17532 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17533 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17534 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17535 then
17536 Error_Msg_N
17537 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17538 end if;
17539
17540 -- Proceed with analysis of mod expression
17541
17542 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17543 Set_Etype (T, T);
17544 Set_Ekind (T, E_Modular_Integer_Type);
17545 Init_Alignment (T);
17546 Set_Is_Constrained (T);
17547
17548 if not Is_OK_Static_Expression (Mod_Expr) then
17549 Flag_Non_Static_Expr
17550 ("non-static expression used for modular type bound!", Mod_Expr);
17551 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17552 else
17553 M_Val := Expr_Value (Mod_Expr);
17554 end if;
17555
17556 if M_Val < 1 then
17557 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17558 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17559 end if;
17560
17561 if M_Val > 2 ** Standard_Long_Integer_Size then
17562 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17563 end if;
17564
17565 Set_Modulus (T, M_Val);
17566
17567 -- Create bounds for the modular type based on the modulus given in
17568 -- the type declaration and then analyze and resolve those bounds.
17569
17570 Set_Scalar_Range (T,
17571 Make_Range (Sloc (Mod_Expr),
17572 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17573 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17574
17575 -- Properly analyze the literals for the range. We do this manually
17576 -- because we can't go calling Resolve, since we are resolving these
17577 -- bounds with the type, and this type is certainly not complete yet.
17578
17579 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17580 Set_Etype (High_Bound (Scalar_Range (T)), T);
17581 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17582 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17583
17584 -- Loop through powers of two to find number of bits required
17585
17586 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17587
17588 -- Binary case
17589
17590 if M_Val = 2 ** Bits then
17591 Set_Modular_Size (Bits);
17592 return;
17593
17594 -- Non-binary case
17595
17596 elsif M_Val < 2 ** Bits then
17597 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
17598 Set_Non_Binary_Modulus (T);
17599
17600 if Bits > System_Max_Nonbinary_Modulus_Power then
17601 Error_Msg_Uint_1 :=
17602 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17603 Error_Msg_F
17604 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17605 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17606 return;
17607
17608 else
17609 -- In the non-binary case, set size as per RM 13.3(55)
17610
17611 Set_Modular_Size (Bits);
17612 return;
17613 end if;
17614 end if;
17615
17616 end loop;
17617
17618 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17619 -- so we just signal an error and set the maximum size.
17620
17621 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17622 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17623
17624 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17625 Init_Alignment (T);
17626
17627 end Modular_Type_Declaration;
17628
17629 --------------------------
17630 -- New_Concatenation_Op --
17631 --------------------------
17632
17633 procedure New_Concatenation_Op (Typ : Entity_Id) is
17634 Loc : constant Source_Ptr := Sloc (Typ);
17635 Op : Entity_Id;
17636
17637 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17638 -- Create abbreviated declaration for the formal of a predefined
17639 -- Operator 'Op' of type 'Typ'
17640
17641 --------------------
17642 -- Make_Op_Formal --
17643 --------------------
17644
17645 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17646 Formal : Entity_Id;
17647 begin
17648 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17649 Set_Etype (Formal, Typ);
17650 Set_Mechanism (Formal, Default_Mechanism);
17651 return Formal;
17652 end Make_Op_Formal;
17653
17654 -- Start of processing for New_Concatenation_Op
17655
17656 begin
17657 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17658
17659 Set_Ekind (Op, E_Operator);
17660 Set_Scope (Op, Current_Scope);
17661 Set_Etype (Op, Typ);
17662 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17663 Set_Is_Immediately_Visible (Op);
17664 Set_Is_Intrinsic_Subprogram (Op);
17665 Set_Has_Completion (Op);
17666 Append_Entity (Op, Current_Scope);
17667
17668 Set_Name_Entity_Id (Name_Op_Concat, Op);
17669
17670 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17671 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17672 end New_Concatenation_Op;
17673
17674 -------------------------
17675 -- OK_For_Limited_Init --
17676 -------------------------
17677
17678 -- ???Check all calls of this, and compare the conditions under which it's
17679 -- called.
17680
17681 function OK_For_Limited_Init
17682 (Typ : Entity_Id;
17683 Exp : Node_Id) return Boolean
17684 is
17685 begin
17686 return Is_CPP_Constructor_Call (Exp)
17687 or else (Ada_Version >= Ada_2005
17688 and then not Debug_Flag_Dot_L
17689 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17690 end OK_For_Limited_Init;
17691
17692 -------------------------------
17693 -- OK_For_Limited_Init_In_05 --
17694 -------------------------------
17695
17696 function OK_For_Limited_Init_In_05
17697 (Typ : Entity_Id;
17698 Exp : Node_Id) return Boolean
17699 is
17700 begin
17701 -- An object of a limited interface type can be initialized with any
17702 -- expression of a nonlimited descendant type.
17703
17704 if Is_Class_Wide_Type (Typ)
17705 and then Is_Limited_Interface (Typ)
17706 and then not Is_Limited_Type (Etype (Exp))
17707 then
17708 return True;
17709 end if;
17710
17711 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17712 -- case of limited aggregates (including extension aggregates), and
17713 -- function calls. The function call may have been given in prefixed
17714 -- notation, in which case the original node is an indexed component.
17715 -- If the function is parameterless, the original node was an explicit
17716 -- dereference. The function may also be parameterless, in which case
17717 -- the source node is just an identifier.
17718
17719 case Nkind (Original_Node (Exp)) is
17720 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17721 return True;
17722
17723 when N_Identifier =>
17724 return Present (Entity (Original_Node (Exp)))
17725 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17726
17727 when N_Qualified_Expression =>
17728 return
17729 OK_For_Limited_Init_In_05
17730 (Typ, Expression (Original_Node (Exp)));
17731
17732 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17733 -- with a function call, the expander has rewritten the call into an
17734 -- N_Type_Conversion node to force displacement of the pointer to
17735 -- reference the component containing the secondary dispatch table.
17736 -- Otherwise a type conversion is not a legal context.
17737 -- A return statement for a build-in-place function returning a
17738 -- synchronized type also introduces an unchecked conversion.
17739
17740 when N_Type_Conversion |
17741 N_Unchecked_Type_Conversion =>
17742 return not Comes_From_Source (Exp)
17743 and then
17744 OK_For_Limited_Init_In_05
17745 (Typ, Expression (Original_Node (Exp)));
17746
17747 when N_Indexed_Component |
17748 N_Selected_Component |
17749 N_Explicit_Dereference =>
17750 return Nkind (Exp) = N_Function_Call;
17751
17752 -- A use of 'Input is a function call, hence allowed. Normally the
17753 -- attribute will be changed to a call, but the attribute by itself
17754 -- can occur with -gnatc.
17755
17756 when N_Attribute_Reference =>
17757 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17758
17759 -- For a case expression, all dependent expressions must be legal
17760
17761 when N_Case_Expression =>
17762 declare
17763 Alt : Node_Id;
17764
17765 begin
17766 Alt := First (Alternatives (Original_Node (Exp)));
17767 while Present (Alt) loop
17768 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17769 return False;
17770 end if;
17771
17772 Next (Alt);
17773 end loop;
17774
17775 return True;
17776 end;
17777
17778 -- For an if expression, all dependent expressions must be legal
17779
17780 when N_If_Expression =>
17781 declare
17782 Then_Expr : constant Node_Id :=
17783 Next (First (Expressions (Original_Node (Exp))));
17784 Else_Expr : constant Node_Id := Next (Then_Expr);
17785 begin
17786 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17787 and then
17788 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17789 end;
17790
17791 when others =>
17792 return False;
17793 end case;
17794 end OK_For_Limited_Init_In_05;
17795
17796 -------------------------------------------
17797 -- Ordinary_Fixed_Point_Type_Declaration --
17798 -------------------------------------------
17799
17800 procedure Ordinary_Fixed_Point_Type_Declaration
17801 (T : Entity_Id;
17802 Def : Node_Id)
17803 is
17804 Loc : constant Source_Ptr := Sloc (Def);
17805 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17806 RRS : constant Node_Id := Real_Range_Specification (Def);
17807 Implicit_Base : Entity_Id;
17808 Delta_Val : Ureal;
17809 Small_Val : Ureal;
17810 Low_Val : Ureal;
17811 High_Val : Ureal;
17812
17813 begin
17814 Check_Restriction (No_Fixed_Point, Def);
17815
17816 -- Create implicit base type
17817
17818 Implicit_Base :=
17819 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17820 Set_Etype (Implicit_Base, Implicit_Base);
17821
17822 -- Analyze and process delta expression
17823
17824 Analyze_And_Resolve (Delta_Expr, Any_Real);
17825
17826 Check_Delta_Expression (Delta_Expr);
17827 Delta_Val := Expr_Value_R (Delta_Expr);
17828
17829 Set_Delta_Value (Implicit_Base, Delta_Val);
17830
17831 -- Compute default small from given delta, which is the largest power
17832 -- of two that does not exceed the given delta value.
17833
17834 declare
17835 Tmp : Ureal;
17836 Scale : Int;
17837
17838 begin
17839 Tmp := Ureal_1;
17840 Scale := 0;
17841
17842 if Delta_Val < Ureal_1 then
17843 while Delta_Val < Tmp loop
17844 Tmp := Tmp / Ureal_2;
17845 Scale := Scale + 1;
17846 end loop;
17847
17848 else
17849 loop
17850 Tmp := Tmp * Ureal_2;
17851 exit when Tmp > Delta_Val;
17852 Scale := Scale - 1;
17853 end loop;
17854 end if;
17855
17856 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17857 end;
17858
17859 Set_Small_Value (Implicit_Base, Small_Val);
17860
17861 -- If no range was given, set a dummy range
17862
17863 if RRS <= Empty_Or_Error then
17864 Low_Val := -Small_Val;
17865 High_Val := Small_Val;
17866
17867 -- Otherwise analyze and process given range
17868
17869 else
17870 declare
17871 Low : constant Node_Id := Low_Bound (RRS);
17872 High : constant Node_Id := High_Bound (RRS);
17873
17874 begin
17875 Analyze_And_Resolve (Low, Any_Real);
17876 Analyze_And_Resolve (High, Any_Real);
17877 Check_Real_Bound (Low);
17878 Check_Real_Bound (High);
17879
17880 -- Obtain and set the range
17881
17882 Low_Val := Expr_Value_R (Low);
17883 High_Val := Expr_Value_R (High);
17884
17885 if Low_Val > High_Val then
17886 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17887 end if;
17888 end;
17889 end if;
17890
17891 -- The range for both the implicit base and the declared first subtype
17892 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17893 -- set a temporary range in place. Note that the bounds of the base
17894 -- type will be widened to be symmetrical and to fill the available
17895 -- bits when the type is frozen.
17896
17897 -- We could do this with all discrete types, and probably should, but
17898 -- we absolutely have to do it for fixed-point, since the end-points
17899 -- of the range and the size are determined by the small value, which
17900 -- could be reset before the freeze point.
17901
17902 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17903 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17904
17905 -- Complete definition of first subtype
17906
17907 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17908 Set_Etype (T, Implicit_Base);
17909 Init_Size_Align (T);
17910 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17911 Set_Small_Value (T, Small_Val);
17912 Set_Delta_Value (T, Delta_Val);
17913 Set_Is_Constrained (T);
17914
17915 end Ordinary_Fixed_Point_Type_Declaration;
17916
17917 ----------------------------------------
17918 -- Prepare_Private_Subtype_Completion --
17919 ----------------------------------------
17920
17921 procedure Prepare_Private_Subtype_Completion
17922 (Id : Entity_Id;
17923 Related_Nod : Node_Id)
17924 is
17925 Id_B : constant Entity_Id := Base_Type (Id);
17926 Full_B : Entity_Id := Full_View (Id_B);
17927 Full : Entity_Id;
17928
17929 begin
17930 if Present (Full_B) then
17931
17932 -- Get to the underlying full view if necessary
17933
17934 if Is_Private_Type (Full_B)
17935 and then Present (Underlying_Full_View (Full_B))
17936 then
17937 Full_B := Underlying_Full_View (Full_B);
17938 end if;
17939
17940 -- The Base_Type is already completed, we can complete the subtype
17941 -- now. We have to create a new entity with the same name, Thus we
17942 -- can't use Create_Itype.
17943
17944 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17945 Set_Is_Itype (Full);
17946 Set_Associated_Node_For_Itype (Full, Related_Nod);
17947 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17948 end if;
17949
17950 -- The parent subtype may be private, but the base might not, in some
17951 -- nested instances. In that case, the subtype does not need to be
17952 -- exchanged. It would still be nice to make private subtypes and their
17953 -- bases consistent at all times ???
17954
17955 if Is_Private_Type (Id_B) then
17956 Append_Elmt (Id, Private_Dependents (Id_B));
17957 end if;
17958 end Prepare_Private_Subtype_Completion;
17959
17960 ---------------------------
17961 -- Process_Discriminants --
17962 ---------------------------
17963
17964 procedure Process_Discriminants
17965 (N : Node_Id;
17966 Prev : Entity_Id := Empty)
17967 is
17968 Elist : constant Elist_Id := New_Elmt_List;
17969 Id : Node_Id;
17970 Discr : Node_Id;
17971 Discr_Number : Uint;
17972 Discr_Type : Entity_Id;
17973 Default_Present : Boolean := False;
17974 Default_Not_Present : Boolean := False;
17975
17976 begin
17977 -- A composite type other than an array type can have discriminants.
17978 -- On entry, the current scope is the composite type.
17979
17980 -- The discriminants are initially entered into the scope of the type
17981 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17982 -- use, as explained at the end of this procedure.
17983
17984 Discr := First (Discriminant_Specifications (N));
17985 while Present (Discr) loop
17986 Enter_Name (Defining_Identifier (Discr));
17987
17988 -- For navigation purposes we add a reference to the discriminant
17989 -- in the entity for the type. If the current declaration is a
17990 -- completion, place references on the partial view. Otherwise the
17991 -- type is the current scope.
17992
17993 if Present (Prev) then
17994
17995 -- The references go on the partial view, if present. If the
17996 -- partial view has discriminants, the references have been
17997 -- generated already.
17998
17999 if not Has_Discriminants (Prev) then
18000 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18001 end if;
18002 else
18003 Generate_Reference
18004 (Current_Scope, Defining_Identifier (Discr), 'd');
18005 end if;
18006
18007 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18008 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18009
18010 -- Ada 2005 (AI-254)
18011
18012 if Present (Access_To_Subprogram_Definition
18013 (Discriminant_Type (Discr)))
18014 and then Protected_Present (Access_To_Subprogram_Definition
18015 (Discriminant_Type (Discr)))
18016 then
18017 Discr_Type :=
18018 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18019 end if;
18020
18021 else
18022 Find_Type (Discriminant_Type (Discr));
18023 Discr_Type := Etype (Discriminant_Type (Discr));
18024
18025 if Error_Posted (Discriminant_Type (Discr)) then
18026 Discr_Type := Any_Type;
18027 end if;
18028 end if;
18029
18030 -- Handling of discriminants that are access types
18031
18032 if Is_Access_Type (Discr_Type) then
18033
18034 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18035 -- limited record types
18036
18037 if Ada_Version < Ada_2005 then
18038 Check_Access_Discriminant_Requires_Limited
18039 (Discr, Discriminant_Type (Discr));
18040 end if;
18041
18042 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18043 Error_Msg_N
18044 ("(Ada 83) access discriminant not allowed", Discr);
18045 end if;
18046
18047 -- If not access type, must be a discrete type
18048
18049 elsif not Is_Discrete_Type (Discr_Type) then
18050 Error_Msg_N
18051 ("discriminants must have a discrete or access type",
18052 Discriminant_Type (Discr));
18053 end if;
18054
18055 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18056
18057 -- If a discriminant specification includes the assignment compound
18058 -- delimiter followed by an expression, the expression is the default
18059 -- expression of the discriminant; the default expression must be of
18060 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18061 -- a default expression, we do the special preanalysis, since this
18062 -- expression does not freeze (see section "Handling of Default and
18063 -- Per-Object Expressions" in spec of package Sem).
18064
18065 if Present (Expression (Discr)) then
18066 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18067
18068 -- Legaity checks
18069
18070 if Nkind (N) = N_Formal_Type_Declaration then
18071 Error_Msg_N
18072 ("discriminant defaults not allowed for formal type",
18073 Expression (Discr));
18074
18075 -- Flag an error for a tagged type with defaulted discriminants,
18076 -- excluding limited tagged types when compiling for Ada 2012
18077 -- (see AI05-0214).
18078
18079 elsif Is_Tagged_Type (Current_Scope)
18080 and then (not Is_Limited_Type (Current_Scope)
18081 or else Ada_Version < Ada_2012)
18082 and then Comes_From_Source (N)
18083 then
18084 -- Note: see similar test in Check_Or_Process_Discriminants, to
18085 -- handle the (illegal) case of the completion of an untagged
18086 -- view with discriminants with defaults by a tagged full view.
18087 -- We skip the check if Discr does not come from source, to
18088 -- account for the case of an untagged derived type providing
18089 -- defaults for a renamed discriminant from a private untagged
18090 -- ancestor with a tagged full view (ACATS B460006).
18091
18092 if Ada_Version >= Ada_2012 then
18093 Error_Msg_N
18094 ("discriminants of nonlimited tagged type cannot have"
18095 & " defaults",
18096 Expression (Discr));
18097 else
18098 Error_Msg_N
18099 ("discriminants of tagged type cannot have defaults",
18100 Expression (Discr));
18101 end if;
18102
18103 else
18104 Default_Present := True;
18105 Append_Elmt (Expression (Discr), Elist);
18106
18107 -- Tag the defining identifiers for the discriminants with
18108 -- their corresponding default expressions from the tree.
18109
18110 Set_Discriminant_Default_Value
18111 (Defining_Identifier (Discr), Expression (Discr));
18112 end if;
18113
18114 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18115 -- gets set unless we can be sure that no range check is required.
18116
18117 if (GNATprove_Mode or not Expander_Active)
18118 and then not
18119 Is_In_Range
18120 (Expression (Discr), Discr_Type, Assume_Valid => True)
18121 then
18122 Set_Do_Range_Check (Expression (Discr));
18123 end if;
18124
18125 -- No default discriminant value given
18126
18127 else
18128 Default_Not_Present := True;
18129 end if;
18130
18131 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18132 -- Discr_Type but with the null-exclusion attribute
18133
18134 if Ada_Version >= Ada_2005 then
18135
18136 -- Ada 2005 (AI-231): Static checks
18137
18138 if Can_Never_Be_Null (Discr_Type) then
18139 Null_Exclusion_Static_Checks (Discr);
18140
18141 elsif Is_Access_Type (Discr_Type)
18142 and then Null_Exclusion_Present (Discr)
18143
18144 -- No need to check itypes because in their case this check
18145 -- was done at their point of creation
18146
18147 and then not Is_Itype (Discr_Type)
18148 then
18149 if Can_Never_Be_Null (Discr_Type) then
18150 Error_Msg_NE
18151 ("`NOT NULL` not allowed (& already excludes null)",
18152 Discr,
18153 Discr_Type);
18154 end if;
18155
18156 Set_Etype (Defining_Identifier (Discr),
18157 Create_Null_Excluding_Itype
18158 (T => Discr_Type,
18159 Related_Nod => Discr));
18160
18161 -- Check for improper null exclusion if the type is otherwise
18162 -- legal for a discriminant.
18163
18164 elsif Null_Exclusion_Present (Discr)
18165 and then Is_Discrete_Type (Discr_Type)
18166 then
18167 Error_Msg_N
18168 ("null exclusion can only apply to an access type", Discr);
18169 end if;
18170
18171 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18172 -- can't have defaults. Synchronized types, or types that are
18173 -- explicitly limited are fine, but special tests apply to derived
18174 -- types in generics: in a generic body we have to assume the
18175 -- worst, and therefore defaults are not allowed if the parent is
18176 -- a generic formal private type (see ACATS B370001).
18177
18178 if Is_Access_Type (Discr_Type) and then Default_Present then
18179 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18180 or else Is_Limited_Record (Current_Scope)
18181 or else Is_Concurrent_Type (Current_Scope)
18182 or else Is_Concurrent_Record_Type (Current_Scope)
18183 or else Ekind (Current_Scope) = E_Limited_Private_Type
18184 then
18185 if not Is_Derived_Type (Current_Scope)
18186 or else not Is_Generic_Type (Etype (Current_Scope))
18187 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18188 or else Limited_Present
18189 (Type_Definition (Parent (Current_Scope)))
18190 then
18191 null;
18192
18193 else
18194 Error_Msg_N ("access discriminants of nonlimited types",
18195 Expression (Discr));
18196 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18197 end if;
18198
18199 elsif Present (Expression (Discr)) then
18200 Error_Msg_N
18201 ("(Ada 2005) access discriminants of nonlimited types",
18202 Expression (Discr));
18203 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18204 end if;
18205 end if;
18206 end if;
18207
18208 -- A discriminant cannot be effectively volatile. This check is only
18209 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18210 -- rule (SPARK RM 7.1.3(6)).
18211
18212 if SPARK_Mode = On
18213 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18214 then
18215 Error_Msg_N ("discriminant cannot be volatile", Discr);
18216 end if;
18217
18218 Next (Discr);
18219 end loop;
18220
18221 -- An element list consisting of the default expressions of the
18222 -- discriminants is constructed in the above loop and used to set
18223 -- the Discriminant_Constraint attribute for the type. If an object
18224 -- is declared of this (record or task) type without any explicit
18225 -- discriminant constraint given, this element list will form the
18226 -- actual parameters for the corresponding initialization procedure
18227 -- for the type.
18228
18229 Set_Discriminant_Constraint (Current_Scope, Elist);
18230 Set_Stored_Constraint (Current_Scope, No_Elist);
18231
18232 -- Default expressions must be provided either for all or for none
18233 -- of the discriminants of a discriminant part. (RM 3.7.1)
18234
18235 if Default_Present and then Default_Not_Present then
18236 Error_Msg_N
18237 ("incomplete specification of defaults for discriminants", N);
18238 end if;
18239
18240 -- The use of the name of a discriminant is not allowed in default
18241 -- expressions of a discriminant part if the specification of the
18242 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18243
18244 -- To detect this, the discriminant names are entered initially with an
18245 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18246 -- attempt to use a void entity (for example in an expression that is
18247 -- type-checked) produces the error message: premature usage. Now after
18248 -- completing the semantic analysis of the discriminant part, we can set
18249 -- the Ekind of all the discriminants appropriately.
18250
18251 Discr := First (Discriminant_Specifications (N));
18252 Discr_Number := Uint_1;
18253 while Present (Discr) loop
18254 Id := Defining_Identifier (Discr);
18255 Set_Ekind (Id, E_Discriminant);
18256 Init_Component_Location (Id);
18257 Init_Esize (Id);
18258 Set_Discriminant_Number (Id, Discr_Number);
18259
18260 -- Make sure this is always set, even in illegal programs
18261
18262 Set_Corresponding_Discriminant (Id, Empty);
18263
18264 -- Initialize the Original_Record_Component to the entity itself.
18265 -- Inherit_Components will propagate the right value to
18266 -- discriminants in derived record types.
18267
18268 Set_Original_Record_Component (Id, Id);
18269
18270 -- Create the discriminal for the discriminant
18271
18272 Build_Discriminal (Id);
18273
18274 Next (Discr);
18275 Discr_Number := Discr_Number + 1;
18276 end loop;
18277
18278 Set_Has_Discriminants (Current_Scope);
18279 end Process_Discriminants;
18280
18281 -----------------------
18282 -- Process_Full_View --
18283 -----------------------
18284
18285 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18286 Priv_Parent : Entity_Id;
18287 Full_Parent : Entity_Id;
18288 Full_Indic : Node_Id;
18289
18290 procedure Collect_Implemented_Interfaces
18291 (Typ : Entity_Id;
18292 Ifaces : Elist_Id);
18293 -- Ada 2005: Gather all the interfaces that Typ directly or
18294 -- inherently implements. Duplicate entries are not added to
18295 -- the list Ifaces.
18296
18297 ------------------------------------
18298 -- Collect_Implemented_Interfaces --
18299 ------------------------------------
18300
18301 procedure Collect_Implemented_Interfaces
18302 (Typ : Entity_Id;
18303 Ifaces : Elist_Id)
18304 is
18305 Iface : Entity_Id;
18306 Iface_Elmt : Elmt_Id;
18307
18308 begin
18309 -- Abstract interfaces are only associated with tagged record types
18310
18311 if not Is_Tagged_Type (Typ)
18312 or else not Is_Record_Type (Typ)
18313 then
18314 return;
18315 end if;
18316
18317 -- Recursively climb to the ancestors
18318
18319 if Etype (Typ) /= Typ
18320
18321 -- Protect the frontend against wrong cyclic declarations like:
18322
18323 -- type B is new A with private;
18324 -- type C is new A with private;
18325 -- private
18326 -- type B is new C with null record;
18327 -- type C is new B with null record;
18328
18329 and then Etype (Typ) /= Priv_T
18330 and then Etype (Typ) /= Full_T
18331 then
18332 -- Keep separate the management of private type declarations
18333
18334 if Ekind (Typ) = E_Record_Type_With_Private then
18335
18336 -- Handle the following illegal usage:
18337 -- type Private_Type is tagged private;
18338 -- private
18339 -- type Private_Type is new Type_Implementing_Iface;
18340
18341 if Present (Full_View (Typ))
18342 and then Etype (Typ) /= Full_View (Typ)
18343 then
18344 if Is_Interface (Etype (Typ)) then
18345 Append_Unique_Elmt (Etype (Typ), Ifaces);
18346 end if;
18347
18348 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18349 end if;
18350
18351 -- Non-private types
18352
18353 else
18354 if Is_Interface (Etype (Typ)) then
18355 Append_Unique_Elmt (Etype (Typ), Ifaces);
18356 end if;
18357
18358 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18359 end if;
18360 end if;
18361
18362 -- Handle entities in the list of abstract interfaces
18363
18364 if Present (Interfaces (Typ)) then
18365 Iface_Elmt := First_Elmt (Interfaces (Typ));
18366 while Present (Iface_Elmt) loop
18367 Iface := Node (Iface_Elmt);
18368
18369 pragma Assert (Is_Interface (Iface));
18370
18371 if not Contain_Interface (Iface, Ifaces) then
18372 Append_Elmt (Iface, Ifaces);
18373 Collect_Implemented_Interfaces (Iface, Ifaces);
18374 end if;
18375
18376 Next_Elmt (Iface_Elmt);
18377 end loop;
18378 end if;
18379 end Collect_Implemented_Interfaces;
18380
18381 -- Start of processing for Process_Full_View
18382
18383 begin
18384 -- First some sanity checks that must be done after semantic
18385 -- decoration of the full view and thus cannot be placed with other
18386 -- similar checks in Find_Type_Name
18387
18388 if not Is_Limited_Type (Priv_T)
18389 and then (Is_Limited_Type (Full_T)
18390 or else Is_Limited_Composite (Full_T))
18391 then
18392 if In_Instance then
18393 null;
18394 else
18395 Error_Msg_N
18396 ("completion of nonlimited type cannot be limited", Full_T);
18397 Explain_Limited_Type (Full_T, Full_T);
18398 end if;
18399
18400 elsif Is_Abstract_Type (Full_T)
18401 and then not Is_Abstract_Type (Priv_T)
18402 then
18403 Error_Msg_N
18404 ("completion of nonabstract type cannot be abstract", Full_T);
18405
18406 elsif Is_Tagged_Type (Priv_T)
18407 and then Is_Limited_Type (Priv_T)
18408 and then not Is_Limited_Type (Full_T)
18409 then
18410 -- If pragma CPP_Class was applied to the private declaration
18411 -- propagate the limitedness to the full-view
18412
18413 if Is_CPP_Class (Priv_T) then
18414 Set_Is_Limited_Record (Full_T);
18415
18416 -- GNAT allow its own definition of Limited_Controlled to disobey
18417 -- this rule in order in ease the implementation. This test is safe
18418 -- because Root_Controlled is defined in a child of System that
18419 -- normal programs are not supposed to use.
18420
18421 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18422 Set_Is_Limited_Composite (Full_T);
18423 else
18424 Error_Msg_N
18425 ("completion of limited tagged type must be limited", Full_T);
18426 end if;
18427
18428 elsif Is_Generic_Type (Priv_T) then
18429 Error_Msg_N ("generic type cannot have a completion", Full_T);
18430 end if;
18431
18432 -- Check that ancestor interfaces of private and full views are
18433 -- consistent. We omit this check for synchronized types because
18434 -- they are performed on the corresponding record type when frozen.
18435
18436 if Ada_Version >= Ada_2005
18437 and then Is_Tagged_Type (Priv_T)
18438 and then Is_Tagged_Type (Full_T)
18439 and then not Is_Concurrent_Type (Full_T)
18440 then
18441 declare
18442 Iface : Entity_Id;
18443 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18444 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18445
18446 begin
18447 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18448 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18449
18450 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18451 -- an interface type if and only if the full type is descendant
18452 -- of the interface type (AARM 7.3 (7.3/2)).
18453
18454 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18455
18456 if Present (Iface) then
18457 Error_Msg_NE
18458 ("interface in partial view& not implemented by full type "
18459 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18460 end if;
18461
18462 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18463
18464 if Present (Iface) then
18465 Error_Msg_NE
18466 ("interface & not implemented by partial view "
18467 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18468 end if;
18469 end;
18470 end if;
18471
18472 if Is_Tagged_Type (Priv_T)
18473 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18474 and then Is_Derived_Type (Full_T)
18475 then
18476 Priv_Parent := Etype (Priv_T);
18477
18478 -- The full view of a private extension may have been transformed
18479 -- into an unconstrained derived type declaration and a subtype
18480 -- declaration (see build_derived_record_type for details).
18481
18482 if Nkind (N) = N_Subtype_Declaration then
18483 Full_Indic := Subtype_Indication (N);
18484 Full_Parent := Etype (Base_Type (Full_T));
18485 else
18486 Full_Indic := Subtype_Indication (Type_Definition (N));
18487 Full_Parent := Etype (Full_T);
18488 end if;
18489
18490 -- Check that the parent type of the full type is a descendant of
18491 -- the ancestor subtype given in the private extension. If either
18492 -- entity has an Etype equal to Any_Type then we had some previous
18493 -- error situation [7.3(8)].
18494
18495 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18496 return;
18497
18498 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18499 -- any order. Therefore we don't have to check that its parent must
18500 -- be a descendant of the parent of the private type declaration.
18501
18502 elsif Is_Interface (Priv_Parent)
18503 and then Is_Interface (Full_Parent)
18504 then
18505 null;
18506
18507 -- Ada 2005 (AI-251): If the parent of the private type declaration
18508 -- is an interface there is no need to check that it is an ancestor
18509 -- of the associated full type declaration. The required tests for
18510 -- this case are performed by Build_Derived_Record_Type.
18511
18512 elsif not Is_Interface (Base_Type (Priv_Parent))
18513 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18514 then
18515 Error_Msg_N
18516 ("parent of full type must descend from parent"
18517 & " of private extension", Full_Indic);
18518
18519 -- First check a formal restriction, and then proceed with checking
18520 -- Ada rules. Since the formal restriction is not a serious error, we
18521 -- don't prevent further error detection for this check, hence the
18522 -- ELSE.
18523
18524 else
18525
18526 -- In formal mode, when completing a private extension the type
18527 -- named in the private part must be exactly the same as that
18528 -- named in the visible part.
18529
18530 if Priv_Parent /= Full_Parent then
18531 Error_Msg_Name_1 := Chars (Priv_Parent);
18532 Check_SPARK_05_Restriction ("% expected", Full_Indic);
18533 end if;
18534
18535 -- Check the rules of 7.3(10): if the private extension inherits
18536 -- known discriminants, then the full type must also inherit those
18537 -- discriminants from the same (ancestor) type, and the parent
18538 -- subtype of the full type must be constrained if and only if
18539 -- the ancestor subtype of the private extension is constrained.
18540
18541 if No (Discriminant_Specifications (Parent (Priv_T)))
18542 and then not Has_Unknown_Discriminants (Priv_T)
18543 and then Has_Discriminants (Base_Type (Priv_Parent))
18544 then
18545 declare
18546 Priv_Indic : constant Node_Id :=
18547 Subtype_Indication (Parent (Priv_T));
18548
18549 Priv_Constr : constant Boolean :=
18550 Is_Constrained (Priv_Parent)
18551 or else
18552 Nkind (Priv_Indic) = N_Subtype_Indication
18553 or else
18554 Is_Constrained (Entity (Priv_Indic));
18555
18556 Full_Constr : constant Boolean :=
18557 Is_Constrained (Full_Parent)
18558 or else
18559 Nkind (Full_Indic) = N_Subtype_Indication
18560 or else
18561 Is_Constrained (Entity (Full_Indic));
18562
18563 Priv_Discr : Entity_Id;
18564 Full_Discr : Entity_Id;
18565
18566 begin
18567 Priv_Discr := First_Discriminant (Priv_Parent);
18568 Full_Discr := First_Discriminant (Full_Parent);
18569 while Present (Priv_Discr) and then Present (Full_Discr) loop
18570 if Original_Record_Component (Priv_Discr) =
18571 Original_Record_Component (Full_Discr)
18572 or else
18573 Corresponding_Discriminant (Priv_Discr) =
18574 Corresponding_Discriminant (Full_Discr)
18575 then
18576 null;
18577 else
18578 exit;
18579 end if;
18580
18581 Next_Discriminant (Priv_Discr);
18582 Next_Discriminant (Full_Discr);
18583 end loop;
18584
18585 if Present (Priv_Discr) or else Present (Full_Discr) then
18586 Error_Msg_N
18587 ("full view must inherit discriminants of the parent"
18588 & " type used in the private extension", Full_Indic);
18589
18590 elsif Priv_Constr and then not Full_Constr then
18591 Error_Msg_N
18592 ("parent subtype of full type must be constrained",
18593 Full_Indic);
18594
18595 elsif Full_Constr and then not Priv_Constr then
18596 Error_Msg_N
18597 ("parent subtype of full type must be unconstrained",
18598 Full_Indic);
18599 end if;
18600 end;
18601
18602 -- Check the rules of 7.3(12): if a partial view has neither
18603 -- known or unknown discriminants, then the full type
18604 -- declaration shall define a definite subtype.
18605
18606 elsif not Has_Unknown_Discriminants (Priv_T)
18607 and then not Has_Discriminants (Priv_T)
18608 and then not Is_Constrained (Full_T)
18609 then
18610 Error_Msg_N
18611 ("full view must define a constrained type if partial view"
18612 & " has no discriminants", Full_T);
18613 end if;
18614
18615 -- ??????? Do we implement the following properly ?????
18616 -- If the ancestor subtype of a private extension has constrained
18617 -- discriminants, then the parent subtype of the full view shall
18618 -- impose a statically matching constraint on those discriminants
18619 -- [7.3(13)].
18620 end if;
18621
18622 else
18623 -- For untagged types, verify that a type without discriminants is
18624 -- not completed with an unconstrained type. A separate error message
18625 -- is produced if the full type has defaulted discriminants.
18626
18627 if not Is_Indefinite_Subtype (Priv_T)
18628 and then Is_Indefinite_Subtype (Full_T)
18629 then
18630 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18631 Error_Msg_NE
18632 ("full view of& not compatible with declaration#",
18633 Full_T, Priv_T);
18634
18635 if not Is_Tagged_Type (Full_T) then
18636 Error_Msg_N
18637 ("\one is constrained, the other unconstrained", Full_T);
18638 end if;
18639 end if;
18640 end if;
18641
18642 -- AI-419: verify that the use of "limited" is consistent
18643
18644 declare
18645 Orig_Decl : constant Node_Id := Original_Node (N);
18646
18647 begin
18648 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18649 and then not Limited_Present (Parent (Priv_T))
18650 and then not Synchronized_Present (Parent (Priv_T))
18651 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18652 and then Nkind
18653 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18654 and then Limited_Present (Type_Definition (Orig_Decl))
18655 then
18656 Error_Msg_N
18657 ("full view of non-limited extension cannot be limited", N);
18658 end if;
18659 end;
18660
18661 -- Ada 2005 (AI-443): A synchronized private extension must be
18662 -- completed by a task or protected type.
18663
18664 if Ada_Version >= Ada_2005
18665 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18666 and then Synchronized_Present (Parent (Priv_T))
18667 and then not Is_Concurrent_Type (Full_T)
18668 then
18669 Error_Msg_N ("full view of synchronized extension must " &
18670 "be synchronized type", N);
18671 end if;
18672
18673 -- Ada 2005 AI-363: if the full view has discriminants with
18674 -- defaults, it is illegal to declare constrained access subtypes
18675 -- whose designated type is the current type. This allows objects
18676 -- of the type that are declared in the heap to be unconstrained.
18677
18678 if not Has_Unknown_Discriminants (Priv_T)
18679 and then not Has_Discriminants (Priv_T)
18680 and then Has_Discriminants (Full_T)
18681 and then
18682 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18683 then
18684 Set_Has_Constrained_Partial_View (Full_T);
18685 Set_Has_Constrained_Partial_View (Priv_T);
18686 end if;
18687
18688 -- Create a full declaration for all its subtypes recorded in
18689 -- Private_Dependents and swap them similarly to the base type. These
18690 -- are subtypes that have been define before the full declaration of
18691 -- the private type. We also swap the entry in Private_Dependents list
18692 -- so we can properly restore the private view on exit from the scope.
18693
18694 declare
18695 Priv_Elmt : Elmt_Id;
18696 Priv_Scop : Entity_Id;
18697 Priv : Entity_Id;
18698 Full : Entity_Id;
18699
18700 begin
18701 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18702 while Present (Priv_Elmt) loop
18703 Priv := Node (Priv_Elmt);
18704 Priv_Scop := Scope (Priv);
18705
18706 if Ekind_In (Priv, E_Private_Subtype,
18707 E_Limited_Private_Subtype,
18708 E_Record_Subtype_With_Private)
18709 then
18710 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18711 Set_Is_Itype (Full);
18712 Set_Parent (Full, Parent (Priv));
18713 Set_Associated_Node_For_Itype (Full, N);
18714
18715 -- Now we need to complete the private subtype, but since the
18716 -- base type has already been swapped, we must also swap the
18717 -- subtypes (and thus, reverse the arguments in the call to
18718 -- Complete_Private_Subtype). Also note that we may need to
18719 -- re-establish the scope of the private subtype.
18720
18721 Copy_And_Swap (Priv, Full);
18722
18723 if not In_Open_Scopes (Priv_Scop) then
18724 Push_Scope (Priv_Scop);
18725
18726 else
18727 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18728
18729 Priv_Scop := Empty;
18730 end if;
18731
18732 Complete_Private_Subtype (Full, Priv, Full_T, N);
18733
18734 if Present (Priv_Scop) then
18735 Pop_Scope;
18736 end if;
18737
18738 Replace_Elmt (Priv_Elmt, Full);
18739 end if;
18740
18741 Next_Elmt (Priv_Elmt);
18742 end loop;
18743 end;
18744
18745 -- If the private view was tagged, copy the new primitive operations
18746 -- from the private view to the full view.
18747
18748 if Is_Tagged_Type (Full_T) then
18749 declare
18750 Disp_Typ : Entity_Id;
18751 Full_List : Elist_Id;
18752 Prim : Entity_Id;
18753 Prim_Elmt : Elmt_Id;
18754 Priv_List : Elist_Id;
18755
18756 function Contains
18757 (E : Entity_Id;
18758 L : Elist_Id) return Boolean;
18759 -- Determine whether list L contains element E
18760
18761 --------------
18762 -- Contains --
18763 --------------
18764
18765 function Contains
18766 (E : Entity_Id;
18767 L : Elist_Id) return Boolean
18768 is
18769 List_Elmt : Elmt_Id;
18770
18771 begin
18772 List_Elmt := First_Elmt (L);
18773 while Present (List_Elmt) loop
18774 if Node (List_Elmt) = E then
18775 return True;
18776 end if;
18777
18778 Next_Elmt (List_Elmt);
18779 end loop;
18780
18781 return False;
18782 end Contains;
18783
18784 -- Start of processing
18785
18786 begin
18787 if Is_Tagged_Type (Priv_T) then
18788 Priv_List := Primitive_Operations (Priv_T);
18789 Prim_Elmt := First_Elmt (Priv_List);
18790
18791 -- In the case of a concurrent type completing a private tagged
18792 -- type, primitives may have been declared in between the two
18793 -- views. These subprograms need to be wrapped the same way
18794 -- entries and protected procedures are handled because they
18795 -- cannot be directly shared by the two views.
18796
18797 if Is_Concurrent_Type (Full_T) then
18798 declare
18799 Conc_Typ : constant Entity_Id :=
18800 Corresponding_Record_Type (Full_T);
18801 Curr_Nod : Node_Id := Parent (Conc_Typ);
18802 Wrap_Spec : Node_Id;
18803
18804 begin
18805 while Present (Prim_Elmt) loop
18806 Prim := Node (Prim_Elmt);
18807
18808 if Comes_From_Source (Prim)
18809 and then not Is_Abstract_Subprogram (Prim)
18810 then
18811 Wrap_Spec :=
18812 Make_Subprogram_Declaration (Sloc (Prim),
18813 Specification =>
18814 Build_Wrapper_Spec
18815 (Subp_Id => Prim,
18816 Obj_Typ => Conc_Typ,
18817 Formals =>
18818 Parameter_Specifications (
18819 Parent (Prim))));
18820
18821 Insert_After (Curr_Nod, Wrap_Spec);
18822 Curr_Nod := Wrap_Spec;
18823
18824 Analyze (Wrap_Spec);
18825 end if;
18826
18827 Next_Elmt (Prim_Elmt);
18828 end loop;
18829
18830 return;
18831 end;
18832
18833 -- For non-concurrent types, transfer explicit primitives, but
18834 -- omit those inherited from the parent of the private view
18835 -- since they will be re-inherited later on.
18836
18837 else
18838 Full_List := Primitive_Operations (Full_T);
18839
18840 while Present (Prim_Elmt) loop
18841 Prim := Node (Prim_Elmt);
18842
18843 if Comes_From_Source (Prim)
18844 and then not Contains (Prim, Full_List)
18845 then
18846 Append_Elmt (Prim, Full_List);
18847 end if;
18848
18849 Next_Elmt (Prim_Elmt);
18850 end loop;
18851 end if;
18852
18853 -- Untagged private view
18854
18855 else
18856 Full_List := Primitive_Operations (Full_T);
18857
18858 -- In this case the partial view is untagged, so here we locate
18859 -- all of the earlier primitives that need to be treated as
18860 -- dispatching (those that appear between the two views). Note
18861 -- that these additional operations must all be new operations
18862 -- (any earlier operations that override inherited operations
18863 -- of the full view will already have been inserted in the
18864 -- primitives list, marked by Check_Operation_From_Private_View
18865 -- as dispatching. Note that implicit "/=" operators are
18866 -- excluded from being added to the primitives list since they
18867 -- shouldn't be treated as dispatching (tagged "/=" is handled
18868 -- specially).
18869
18870 Prim := Next_Entity (Full_T);
18871 while Present (Prim) and then Prim /= Priv_T loop
18872 if Ekind_In (Prim, E_Procedure, E_Function) then
18873 Disp_Typ := Find_Dispatching_Type (Prim);
18874
18875 if Disp_Typ = Full_T
18876 and then (Chars (Prim) /= Name_Op_Ne
18877 or else Comes_From_Source (Prim))
18878 then
18879 Check_Controlling_Formals (Full_T, Prim);
18880
18881 if not Is_Dispatching_Operation (Prim) then
18882 Append_Elmt (Prim, Full_List);
18883 Set_Is_Dispatching_Operation (Prim, True);
18884 Set_DT_Position (Prim, No_Uint);
18885 end if;
18886
18887 elsif Is_Dispatching_Operation (Prim)
18888 and then Disp_Typ /= Full_T
18889 then
18890
18891 -- Verify that it is not otherwise controlled by a
18892 -- formal or a return value of type T.
18893
18894 Check_Controlling_Formals (Disp_Typ, Prim);
18895 end if;
18896 end if;
18897
18898 Next_Entity (Prim);
18899 end loop;
18900 end if;
18901
18902 -- For the tagged case, the two views can share the same primitive
18903 -- operations list and the same class-wide type. Update attributes
18904 -- of the class-wide type which depend on the full declaration.
18905
18906 if Is_Tagged_Type (Priv_T) then
18907 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18908 Set_Class_Wide_Type
18909 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18910
18911 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18912 Set_Has_Protected
18913 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18914 end if;
18915 end;
18916 end if;
18917
18918 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18919
18920 if Known_To_Have_Preelab_Init (Priv_T) then
18921
18922 -- Case where there is a pragma Preelaborable_Initialization. We
18923 -- always allow this in predefined units, which is cheating a bit,
18924 -- but it means we don't have to struggle to meet the requirements in
18925 -- the RM for having Preelaborable Initialization. Otherwise we
18926 -- require that the type meets the RM rules. But we can't check that
18927 -- yet, because of the rule about overriding Initialize, so we simply
18928 -- set a flag that will be checked at freeze time.
18929
18930 if not In_Predefined_Unit (Full_T) then
18931 Set_Must_Have_Preelab_Init (Full_T);
18932 end if;
18933 end if;
18934
18935 -- If pragma CPP_Class was applied to the private type declaration,
18936 -- propagate it now to the full type declaration.
18937
18938 if Is_CPP_Class (Priv_T) then
18939 Set_Is_CPP_Class (Full_T);
18940 Set_Convention (Full_T, Convention_CPP);
18941
18942 -- Check that components of imported CPP types do not have default
18943 -- expressions.
18944
18945 Check_CPP_Type_Has_No_Defaults (Full_T);
18946 end if;
18947
18948 -- If the private view has user specified stream attributes, then so has
18949 -- the full view.
18950
18951 -- Why the test, how could these flags be already set in Full_T ???
18952
18953 if Has_Specified_Stream_Read (Priv_T) then
18954 Set_Has_Specified_Stream_Read (Full_T);
18955 end if;
18956
18957 if Has_Specified_Stream_Write (Priv_T) then
18958 Set_Has_Specified_Stream_Write (Full_T);
18959 end if;
18960
18961 if Has_Specified_Stream_Input (Priv_T) then
18962 Set_Has_Specified_Stream_Input (Full_T);
18963 end if;
18964
18965 if Has_Specified_Stream_Output (Priv_T) then
18966 Set_Has_Specified_Stream_Output (Full_T);
18967 end if;
18968
18969 -- Propagate the attributes related to pragma Default_Initial_Condition
18970 -- from the private to the full view. Note that both flags are mutually
18971 -- exclusive.
18972
18973 if Has_Inherited_Default_Init_Cond (Priv_T) then
18974 Set_Has_Inherited_Default_Init_Cond (Full_T);
18975 Set_Default_Init_Cond_Procedure
18976 (Full_T, Default_Init_Cond_Procedure (Priv_T));
18977
18978 elsif Has_Default_Init_Cond (Priv_T) then
18979 Set_Has_Default_Init_Cond (Full_T);
18980 Set_Default_Init_Cond_Procedure
18981 (Full_T, Default_Init_Cond_Procedure (Priv_T));
18982 end if;
18983
18984 -- Propagate invariants to full type
18985
18986 if Has_Invariants (Priv_T) then
18987 Set_Has_Invariants (Full_T);
18988 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18989 end if;
18990
18991 if Has_Inheritable_Invariants (Priv_T) then
18992 Set_Has_Inheritable_Invariants (Full_T);
18993 end if;
18994
18995 -- Propagate predicates to full type, and predicate function if already
18996 -- defined. It is not clear that this can actually happen? the partial
18997 -- view cannot be frozen yet, and the predicate function has not been
18998 -- built. Still it is a cheap check and seems safer to make it.
18999
19000 if Has_Predicates (Priv_T) then
19001 if Present (Predicate_Function (Priv_T)) then
19002 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19003 end if;
19004
19005 Set_Has_Predicates (Full_T);
19006 end if;
19007 end Process_Full_View;
19008
19009 -----------------------------------
19010 -- Process_Incomplete_Dependents --
19011 -----------------------------------
19012
19013 procedure Process_Incomplete_Dependents
19014 (N : Node_Id;
19015 Full_T : Entity_Id;
19016 Inc_T : Entity_Id)
19017 is
19018 Inc_Elmt : Elmt_Id;
19019 Priv_Dep : Entity_Id;
19020 New_Subt : Entity_Id;
19021
19022 Disc_Constraint : Elist_Id;
19023
19024 begin
19025 if No (Private_Dependents (Inc_T)) then
19026 return;
19027 end if;
19028
19029 -- Itypes that may be generated by the completion of an incomplete
19030 -- subtype are not used by the back-end and not attached to the tree.
19031 -- They are created only for constraint-checking purposes.
19032
19033 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19034 while Present (Inc_Elmt) loop
19035 Priv_Dep := Node (Inc_Elmt);
19036
19037 if Ekind (Priv_Dep) = E_Subprogram_Type then
19038
19039 -- An Access_To_Subprogram type may have a return type or a
19040 -- parameter type that is incomplete. Replace with the full view.
19041
19042 if Etype (Priv_Dep) = Inc_T then
19043 Set_Etype (Priv_Dep, Full_T);
19044 end if;
19045
19046 declare
19047 Formal : Entity_Id;
19048
19049 begin
19050 Formal := First_Formal (Priv_Dep);
19051 while Present (Formal) loop
19052 if Etype (Formal) = Inc_T then
19053 Set_Etype (Formal, Full_T);
19054 end if;
19055
19056 Next_Formal (Formal);
19057 end loop;
19058 end;
19059
19060 elsif Is_Overloadable (Priv_Dep) then
19061
19062 -- If a subprogram in the incomplete dependents list is primitive
19063 -- for a tagged full type then mark it as a dispatching operation,
19064 -- check whether it overrides an inherited subprogram, and check
19065 -- restrictions on its controlling formals. Note that a protected
19066 -- operation is never dispatching: only its wrapper operation
19067 -- (which has convention Ada) is.
19068
19069 if Is_Tagged_Type (Full_T)
19070 and then Is_Primitive (Priv_Dep)
19071 and then Convention (Priv_Dep) /= Convention_Protected
19072 then
19073 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19074 Set_Is_Dispatching_Operation (Priv_Dep);
19075 Check_Controlling_Formals (Full_T, Priv_Dep);
19076 end if;
19077
19078 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19079
19080 -- Can happen during processing of a body before the completion
19081 -- of a TA type. Ignore, because spec is also on dependent list.
19082
19083 return;
19084
19085 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19086 -- corresponding subtype of the full view.
19087
19088 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19089 Set_Subtype_Indication
19090 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19091 Set_Etype (Priv_Dep, Full_T);
19092 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19093 Set_Analyzed (Parent (Priv_Dep), False);
19094
19095 -- Reanalyze the declaration, suppressing the call to
19096 -- Enter_Name to avoid duplicate names.
19097
19098 Analyze_Subtype_Declaration
19099 (N => Parent (Priv_Dep),
19100 Skip => True);
19101
19102 -- Dependent is a subtype
19103
19104 else
19105 -- We build a new subtype indication using the full view of the
19106 -- incomplete parent. The discriminant constraints have been
19107 -- elaborated already at the point of the subtype declaration.
19108
19109 New_Subt := Create_Itype (E_Void, N);
19110
19111 if Has_Discriminants (Full_T) then
19112 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19113 else
19114 Disc_Constraint := No_Elist;
19115 end if;
19116
19117 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19118 Set_Full_View (Priv_Dep, New_Subt);
19119 end if;
19120
19121 Next_Elmt (Inc_Elmt);
19122 end loop;
19123 end Process_Incomplete_Dependents;
19124
19125 --------------------------------
19126 -- Process_Range_Expr_In_Decl --
19127 --------------------------------
19128
19129 procedure Process_Range_Expr_In_Decl
19130 (R : Node_Id;
19131 T : Entity_Id;
19132 Subtyp : Entity_Id := Empty;
19133 Check_List : List_Id := Empty_List;
19134 R_Check_Off : Boolean := False;
19135 In_Iter_Schm : Boolean := False)
19136 is
19137 Lo, Hi : Node_Id;
19138 R_Checks : Check_Result;
19139 Insert_Node : Node_Id;
19140 Def_Id : Entity_Id;
19141
19142 begin
19143 Analyze_And_Resolve (R, Base_Type (T));
19144
19145 if Nkind (R) = N_Range then
19146
19147 -- In SPARK, all ranges should be static, with the exception of the
19148 -- discrete type definition of a loop parameter specification.
19149
19150 if not In_Iter_Schm
19151 and then not Is_OK_Static_Range (R)
19152 then
19153 Check_SPARK_05_Restriction ("range should be static", R);
19154 end if;
19155
19156 Lo := Low_Bound (R);
19157 Hi := High_Bound (R);
19158
19159 -- We need to ensure validity of the bounds here, because if we
19160 -- go ahead and do the expansion, then the expanded code will get
19161 -- analyzed with range checks suppressed and we miss the check.
19162 -- Validity checks on the range of a quantified expression are
19163 -- delayed until the construct is transformed into a loop.
19164
19165 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19166 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19167 then
19168 Validity_Check_Range (R);
19169 end if;
19170
19171 -- If there were errors in the declaration, try and patch up some
19172 -- common mistakes in the bounds. The cases handled are literals
19173 -- which are Integer where the expected type is Real and vice versa.
19174 -- These corrections allow the compilation process to proceed further
19175 -- along since some basic assumptions of the format of the bounds
19176 -- are guaranteed.
19177
19178 if Etype (R) = Any_Type then
19179 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19180 Rewrite (Lo,
19181 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19182
19183 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19184 Rewrite (Hi,
19185 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19186
19187 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19188 Rewrite (Lo,
19189 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19190
19191 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19192 Rewrite (Hi,
19193 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19194 end if;
19195
19196 Set_Etype (Lo, T);
19197 Set_Etype (Hi, T);
19198 end if;
19199
19200 -- If the bounds of the range have been mistakenly given as string
19201 -- literals (perhaps in place of character literals), then an error
19202 -- has already been reported, but we rewrite the string literal as a
19203 -- bound of the range's type to avoid blowups in later processing
19204 -- that looks at static values.
19205
19206 if Nkind (Lo) = N_String_Literal then
19207 Rewrite (Lo,
19208 Make_Attribute_Reference (Sloc (Lo),
19209 Attribute_Name => Name_First,
19210 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19211 Analyze_And_Resolve (Lo);
19212 end if;
19213
19214 if Nkind (Hi) = N_String_Literal then
19215 Rewrite (Hi,
19216 Make_Attribute_Reference (Sloc (Hi),
19217 Attribute_Name => Name_First,
19218 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19219 Analyze_And_Resolve (Hi);
19220 end if;
19221
19222 -- If bounds aren't scalar at this point then exit, avoiding
19223 -- problems with further processing of the range in this procedure.
19224
19225 if not Is_Scalar_Type (Etype (Lo)) then
19226 return;
19227 end if;
19228
19229 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19230 -- then range of the base type. Here we check whether the bounds
19231 -- are in the range of the subtype itself. Note that if the bounds
19232 -- represent the null range the Constraint_Error exception should
19233 -- not be raised.
19234
19235 -- ??? The following code should be cleaned up as follows
19236
19237 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19238 -- is done in the call to Range_Check (R, T); below
19239
19240 -- 2. The use of R_Check_Off should be investigated and possibly
19241 -- removed, this would clean up things a bit.
19242
19243 if Is_Null_Range (Lo, Hi) then
19244 null;
19245
19246 else
19247 -- Capture values of bounds and generate temporaries for them
19248 -- if needed, before applying checks, since checks may cause
19249 -- duplication of the expression without forcing evaluation.
19250
19251 -- The forced evaluation removes side effects from expressions,
19252 -- which should occur also in GNATprove mode. Otherwise, we end up
19253 -- with unexpected insertions of actions at places where this is
19254 -- not supposed to occur, e.g. on default parameters of a call.
19255
19256 if Expander_Active or GNATprove_Mode then
19257
19258 -- If no subtype name, then just call Force_Evaluation to
19259 -- create declarations as needed to deal with side effects.
19260 -- Also ignore calls from within a record type, where we
19261 -- have possible scoping issues.
19262
19263 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19264 Force_Evaluation (Lo);
19265 Force_Evaluation (Hi);
19266
19267 -- If a subtype is given, then we capture the bounds if they
19268 -- are not known at compile time, using constant identifiers
19269 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19270
19271 -- Note: we do this transformation even if expansion is not
19272 -- active, and in particular we do it in GNATprove_Mode since
19273 -- the transformation is in general required to ensure that the
19274 -- resulting tree has proper Ada semantics.
19275
19276 -- Historical note: We used to just do Force_Evaluation calls
19277 -- in all cases, but it is better to capture the bounds with
19278 -- proper non-serialized names, since these will be accessed
19279 -- from other units, and hence may be public, and also we can
19280 -- then expand 'First and 'Last references to be references to
19281 -- these special names.
19282
19283 else
19284 if not Compile_Time_Known_Value (Lo)
19285
19286 -- No need to capture bounds if they already are
19287 -- references to constants.
19288
19289 and then not (Is_Entity_Name (Lo)
19290 and then Is_Constant_Object (Entity (Lo)))
19291 then
19292 declare
19293 Loc : constant Source_Ptr := Sloc (Lo);
19294 Lov : constant Entity_Id :=
19295 Make_Defining_Identifier (Loc,
19296 Chars =>
19297 New_External_Name (Chars (Subtyp), "_FIRST"));
19298 begin
19299 Insert_Action (R,
19300 Make_Object_Declaration (Loc,
19301 Defining_Identifier => Lov,
19302 Object_Definition =>
19303 New_Occurrence_Of (Base_Type (T), Loc),
19304 Constant_Present => True,
19305 Expression => Relocate_Node (Lo)));
19306 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19307 end;
19308 end if;
19309
19310 if not Compile_Time_Known_Value (Hi)
19311 and then not (Is_Entity_Name (Hi)
19312 and then Is_Constant_Object (Entity (Hi)))
19313 then
19314 declare
19315 Loc : constant Source_Ptr := Sloc (Hi);
19316 Hiv : constant Entity_Id :=
19317 Make_Defining_Identifier (Loc,
19318 Chars =>
19319 New_External_Name (Chars (Subtyp), "_LAST"));
19320 begin
19321 Insert_Action (R,
19322 Make_Object_Declaration (Loc,
19323 Defining_Identifier => Hiv,
19324 Object_Definition =>
19325 New_Occurrence_Of (Base_Type (T), Loc),
19326 Constant_Present => True,
19327 Expression => Relocate_Node (Hi)));
19328 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19329 end;
19330 end if;
19331 end if;
19332 end if;
19333
19334 -- We use a flag here instead of suppressing checks on the
19335 -- type because the type we check against isn't necessarily
19336 -- the place where we put the check.
19337
19338 if not R_Check_Off then
19339 R_Checks := Get_Range_Checks (R, T);
19340
19341 -- Look up tree to find an appropriate insertion point. We
19342 -- can't just use insert_actions because later processing
19343 -- depends on the insertion node. Prior to Ada 2012 the
19344 -- insertion point could only be a declaration or a loop, but
19345 -- quantified expressions can appear within any context in an
19346 -- expression, and the insertion point can be any statement,
19347 -- pragma, or declaration.
19348
19349 Insert_Node := Parent (R);
19350 while Present (Insert_Node) loop
19351 exit when
19352 Nkind (Insert_Node) in N_Declaration
19353 and then
19354 not Nkind_In
19355 (Insert_Node, N_Component_Declaration,
19356 N_Loop_Parameter_Specification,
19357 N_Function_Specification,
19358 N_Procedure_Specification);
19359
19360 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19361 or else Nkind (Insert_Node) in
19362 N_Statement_Other_Than_Procedure_Call
19363 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19364 N_Pragma);
19365
19366 Insert_Node := Parent (Insert_Node);
19367 end loop;
19368
19369 -- Why would Type_Decl not be present??? Without this test,
19370 -- short regression tests fail.
19371
19372 if Present (Insert_Node) then
19373
19374 -- Case of loop statement. Verify that the range is part
19375 -- of the subtype indication of the iteration scheme.
19376
19377 if Nkind (Insert_Node) = N_Loop_Statement then
19378 declare
19379 Indic : Node_Id;
19380
19381 begin
19382 Indic := Parent (R);
19383 while Present (Indic)
19384 and then Nkind (Indic) /= N_Subtype_Indication
19385 loop
19386 Indic := Parent (Indic);
19387 end loop;
19388
19389 if Present (Indic) then
19390 Def_Id := Etype (Subtype_Mark (Indic));
19391
19392 Insert_Range_Checks
19393 (R_Checks,
19394 Insert_Node,
19395 Def_Id,
19396 Sloc (Insert_Node),
19397 R,
19398 Do_Before => True);
19399 end if;
19400 end;
19401
19402 -- Insertion before a declaration. If the declaration
19403 -- includes discriminants, the list of applicable checks
19404 -- is given by the caller.
19405
19406 elsif Nkind (Insert_Node) in N_Declaration then
19407 Def_Id := Defining_Identifier (Insert_Node);
19408
19409 if (Ekind (Def_Id) = E_Record_Type
19410 and then Depends_On_Discriminant (R))
19411 or else
19412 (Ekind (Def_Id) = E_Protected_Type
19413 and then Has_Discriminants (Def_Id))
19414 then
19415 Append_Range_Checks
19416 (R_Checks,
19417 Check_List, Def_Id, Sloc (Insert_Node), R);
19418
19419 else
19420 Insert_Range_Checks
19421 (R_Checks,
19422 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19423
19424 end if;
19425
19426 -- Insertion before a statement. Range appears in the
19427 -- context of a quantified expression. Insertion will
19428 -- take place when expression is expanded.
19429
19430 else
19431 null;
19432 end if;
19433 end if;
19434 end if;
19435 end if;
19436
19437 -- Case of other than an explicit N_Range node
19438
19439 -- The forced evaluation removes side effects from expressions, which
19440 -- should occur also in GNATprove mode. Otherwise, we end up with
19441 -- unexpected insertions of actions at places where this is not
19442 -- supposed to occur, e.g. on default parameters of a call.
19443
19444 elsif Expander_Active or GNATprove_Mode then
19445 Get_Index_Bounds (R, Lo, Hi);
19446 Force_Evaluation (Lo);
19447 Force_Evaluation (Hi);
19448 end if;
19449 end Process_Range_Expr_In_Decl;
19450
19451 --------------------------------------
19452 -- Process_Real_Range_Specification --
19453 --------------------------------------
19454
19455 procedure Process_Real_Range_Specification (Def : Node_Id) is
19456 Spec : constant Node_Id := Real_Range_Specification (Def);
19457 Lo : Node_Id;
19458 Hi : Node_Id;
19459 Err : Boolean := False;
19460
19461 procedure Analyze_Bound (N : Node_Id);
19462 -- Analyze and check one bound
19463
19464 -------------------
19465 -- Analyze_Bound --
19466 -------------------
19467
19468 procedure Analyze_Bound (N : Node_Id) is
19469 begin
19470 Analyze_And_Resolve (N, Any_Real);
19471
19472 if not Is_OK_Static_Expression (N) then
19473 Flag_Non_Static_Expr
19474 ("bound in real type definition is not static!", N);
19475 Err := True;
19476 end if;
19477 end Analyze_Bound;
19478
19479 -- Start of processing for Process_Real_Range_Specification
19480
19481 begin
19482 if Present (Spec) then
19483 Lo := Low_Bound (Spec);
19484 Hi := High_Bound (Spec);
19485 Analyze_Bound (Lo);
19486 Analyze_Bound (Hi);
19487
19488 -- If error, clear away junk range specification
19489
19490 if Err then
19491 Set_Real_Range_Specification (Def, Empty);
19492 end if;
19493 end if;
19494 end Process_Real_Range_Specification;
19495
19496 ---------------------
19497 -- Process_Subtype --
19498 ---------------------
19499
19500 function Process_Subtype
19501 (S : Node_Id;
19502 Related_Nod : Node_Id;
19503 Related_Id : Entity_Id := Empty;
19504 Suffix : Character := ' ') return Entity_Id
19505 is
19506 P : Node_Id;
19507 Def_Id : Entity_Id;
19508 Error_Node : Node_Id;
19509 Full_View_Id : Entity_Id;
19510 Subtype_Mark_Id : Entity_Id;
19511
19512 May_Have_Null_Exclusion : Boolean;
19513
19514 procedure Check_Incomplete (T : Entity_Id);
19515 -- Called to verify that an incomplete type is not used prematurely
19516
19517 ----------------------
19518 -- Check_Incomplete --
19519 ----------------------
19520
19521 procedure Check_Incomplete (T : Entity_Id) is
19522 begin
19523 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19524
19525 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19526 and then
19527 not (Ada_Version >= Ada_2005
19528 and then
19529 (Nkind (Parent (T)) = N_Subtype_Declaration
19530 or else
19531 (Nkind (Parent (T)) = N_Subtype_Indication
19532 and then Nkind (Parent (Parent (T))) =
19533 N_Subtype_Declaration)))
19534 then
19535 Error_Msg_N ("invalid use of type before its full declaration", T);
19536 end if;
19537 end Check_Incomplete;
19538
19539 -- Start of processing for Process_Subtype
19540
19541 begin
19542 -- Case of no constraints present
19543
19544 if Nkind (S) /= N_Subtype_Indication then
19545 Find_Type (S);
19546 Check_Incomplete (S);
19547 P := Parent (S);
19548
19549 -- Ada 2005 (AI-231): Static check
19550
19551 if Ada_Version >= Ada_2005
19552 and then Present (P)
19553 and then Null_Exclusion_Present (P)
19554 and then Nkind (P) /= N_Access_To_Object_Definition
19555 and then not Is_Access_Type (Entity (S))
19556 then
19557 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19558 end if;
19559
19560 -- The following is ugly, can't we have a range or even a flag???
19561
19562 May_Have_Null_Exclusion :=
19563 Nkind_In (P, N_Access_Definition,
19564 N_Access_Function_Definition,
19565 N_Access_Procedure_Definition,
19566 N_Access_To_Object_Definition,
19567 N_Allocator,
19568 N_Component_Definition)
19569 or else
19570 Nkind_In (P, N_Derived_Type_Definition,
19571 N_Discriminant_Specification,
19572 N_Formal_Object_Declaration,
19573 N_Object_Declaration,
19574 N_Object_Renaming_Declaration,
19575 N_Parameter_Specification,
19576 N_Subtype_Declaration);
19577
19578 -- Create an Itype that is a duplicate of Entity (S) but with the
19579 -- null-exclusion attribute.
19580
19581 if May_Have_Null_Exclusion
19582 and then Is_Access_Type (Entity (S))
19583 and then Null_Exclusion_Present (P)
19584
19585 -- No need to check the case of an access to object definition.
19586 -- It is correct to define double not-null pointers.
19587
19588 -- Example:
19589 -- type Not_Null_Int_Ptr is not null access Integer;
19590 -- type Acc is not null access Not_Null_Int_Ptr;
19591
19592 and then Nkind (P) /= N_Access_To_Object_Definition
19593 then
19594 if Can_Never_Be_Null (Entity (S)) then
19595 case Nkind (Related_Nod) is
19596 when N_Full_Type_Declaration =>
19597 if Nkind (Type_Definition (Related_Nod))
19598 in N_Array_Type_Definition
19599 then
19600 Error_Node :=
19601 Subtype_Indication
19602 (Component_Definition
19603 (Type_Definition (Related_Nod)));
19604 else
19605 Error_Node :=
19606 Subtype_Indication (Type_Definition (Related_Nod));
19607 end if;
19608
19609 when N_Subtype_Declaration =>
19610 Error_Node := Subtype_Indication (Related_Nod);
19611
19612 when N_Object_Declaration =>
19613 Error_Node := Object_Definition (Related_Nod);
19614
19615 when N_Component_Declaration =>
19616 Error_Node :=
19617 Subtype_Indication (Component_Definition (Related_Nod));
19618
19619 when N_Allocator =>
19620 Error_Node := Expression (Related_Nod);
19621
19622 when others =>
19623 pragma Assert (False);
19624 Error_Node := Related_Nod;
19625 end case;
19626
19627 Error_Msg_NE
19628 ("`NOT NULL` not allowed (& already excludes null)",
19629 Error_Node,
19630 Entity (S));
19631 end if;
19632
19633 Set_Etype (S,
19634 Create_Null_Excluding_Itype
19635 (T => Entity (S),
19636 Related_Nod => P));
19637 Set_Entity (S, Etype (S));
19638 end if;
19639
19640 return Entity (S);
19641
19642 -- Case of constraint present, so that we have an N_Subtype_Indication
19643 -- node (this node is created only if constraints are present).
19644
19645 else
19646 Find_Type (Subtype_Mark (S));
19647
19648 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19649 and then not
19650 (Nkind (Parent (S)) = N_Subtype_Declaration
19651 and then Is_Itype (Defining_Identifier (Parent (S))))
19652 then
19653 Check_Incomplete (Subtype_Mark (S));
19654 end if;
19655
19656 P := Parent (S);
19657 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19658
19659 -- Explicit subtype declaration case
19660
19661 if Nkind (P) = N_Subtype_Declaration then
19662 Def_Id := Defining_Identifier (P);
19663
19664 -- Explicit derived type definition case
19665
19666 elsif Nkind (P) = N_Derived_Type_Definition then
19667 Def_Id := Defining_Identifier (Parent (P));
19668
19669 -- Implicit case, the Def_Id must be created as an implicit type.
19670 -- The one exception arises in the case of concurrent types, array
19671 -- and access types, where other subsidiary implicit types may be
19672 -- created and must appear before the main implicit type. In these
19673 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19674 -- has not yet been called to create Def_Id.
19675
19676 else
19677 if Is_Array_Type (Subtype_Mark_Id)
19678 or else Is_Concurrent_Type (Subtype_Mark_Id)
19679 or else Is_Access_Type (Subtype_Mark_Id)
19680 then
19681 Def_Id := Empty;
19682
19683 -- For the other cases, we create a new unattached Itype,
19684 -- and set the indication to ensure it gets attached later.
19685
19686 else
19687 Def_Id :=
19688 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19689 end if;
19690 end if;
19691
19692 -- If the kind of constraint is invalid for this kind of type,
19693 -- then give an error, and then pretend no constraint was given.
19694
19695 if not Is_Valid_Constraint_Kind
19696 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19697 then
19698 Error_Msg_N
19699 ("incorrect constraint for this kind of type", Constraint (S));
19700
19701 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19702
19703 -- Set Ekind of orphan itype, to prevent cascaded errors
19704
19705 if Present (Def_Id) then
19706 Set_Ekind (Def_Id, Ekind (Any_Type));
19707 end if;
19708
19709 -- Make recursive call, having got rid of the bogus constraint
19710
19711 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19712 end if;
19713
19714 -- Remaining processing depends on type. Select on Base_Type kind to
19715 -- ensure getting to the concrete type kind in the case of a private
19716 -- subtype (needed when only doing semantic analysis).
19717
19718 case Ekind (Base_Type (Subtype_Mark_Id)) is
19719 when Access_Kind =>
19720
19721 -- If this is a constraint on a class-wide type, discard it.
19722 -- There is currently no way to express a partial discriminant
19723 -- constraint on a type with unknown discriminants. This is
19724 -- a pathology that the ACATS wisely decides not to test.
19725
19726 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19727 if Comes_From_Source (S) then
19728 Error_Msg_N
19729 ("constraint on class-wide type ignored??",
19730 Constraint (S));
19731 end if;
19732
19733 if Nkind (P) = N_Subtype_Declaration then
19734 Set_Subtype_Indication (P,
19735 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19736 end if;
19737
19738 return Subtype_Mark_Id;
19739 end if;
19740
19741 Constrain_Access (Def_Id, S, Related_Nod);
19742
19743 if Expander_Active
19744 and then Is_Itype (Designated_Type (Def_Id))
19745 and then Nkind (Related_Nod) = N_Subtype_Declaration
19746 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19747 then
19748 Build_Itype_Reference
19749 (Designated_Type (Def_Id), Related_Nod);
19750 end if;
19751
19752 when Array_Kind =>
19753 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19754
19755 when Decimal_Fixed_Point_Kind =>
19756 Constrain_Decimal (Def_Id, S);
19757
19758 when Enumeration_Kind =>
19759 Constrain_Enumeration (Def_Id, S);
19760 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19761
19762 when Ordinary_Fixed_Point_Kind =>
19763 Constrain_Ordinary_Fixed (Def_Id, S);
19764
19765 when Float_Kind =>
19766 Constrain_Float (Def_Id, S);
19767
19768 when Integer_Kind =>
19769 Constrain_Integer (Def_Id, S);
19770 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19771
19772 when E_Record_Type |
19773 E_Record_Subtype |
19774 Class_Wide_Kind |
19775 E_Incomplete_Type =>
19776 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19777
19778 if Ekind (Def_Id) = E_Incomplete_Type then
19779 Set_Private_Dependents (Def_Id, New_Elmt_List);
19780 end if;
19781
19782 when Private_Kind =>
19783 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19784 Set_Private_Dependents (Def_Id, New_Elmt_List);
19785
19786 -- In case of an invalid constraint prevent further processing
19787 -- since the type constructed is missing expected fields.
19788
19789 if Etype (Def_Id) = Any_Type then
19790 return Def_Id;
19791 end if;
19792
19793 -- If the full view is that of a task with discriminants,
19794 -- we must constrain both the concurrent type and its
19795 -- corresponding record type. Otherwise we will just propagate
19796 -- the constraint to the full view, if available.
19797
19798 if Present (Full_View (Subtype_Mark_Id))
19799 and then Has_Discriminants (Subtype_Mark_Id)
19800 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19801 then
19802 Full_View_Id :=
19803 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19804
19805 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19806 Constrain_Concurrent (Full_View_Id, S,
19807 Related_Nod, Related_Id, Suffix);
19808 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19809 Set_Full_View (Def_Id, Full_View_Id);
19810
19811 -- Introduce an explicit reference to the private subtype,
19812 -- to prevent scope anomalies in gigi if first use appears
19813 -- in a nested context, e.g. a later function body.
19814 -- Should this be generated in other contexts than a full
19815 -- type declaration?
19816
19817 if Is_Itype (Def_Id)
19818 and then
19819 Nkind (Parent (P)) = N_Full_Type_Declaration
19820 then
19821 Build_Itype_Reference (Def_Id, Parent (P));
19822 end if;
19823
19824 else
19825 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19826 end if;
19827
19828 when Concurrent_Kind =>
19829 Constrain_Concurrent (Def_Id, S,
19830 Related_Nod, Related_Id, Suffix);
19831
19832 when others =>
19833 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19834 end case;
19835
19836 -- Size and Convention are always inherited from the base type
19837
19838 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19839 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19840
19841 return Def_Id;
19842 end if;
19843 end Process_Subtype;
19844
19845 ---------------------------------------
19846 -- Check_Anonymous_Access_Components --
19847 ---------------------------------------
19848
19849 procedure Check_Anonymous_Access_Components
19850 (Typ_Decl : Node_Id;
19851 Typ : Entity_Id;
19852 Prev : Entity_Id;
19853 Comp_List : Node_Id)
19854 is
19855 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19856 Anon_Access : Entity_Id;
19857 Acc_Def : Node_Id;
19858 Comp : Node_Id;
19859 Comp_Def : Node_Id;
19860 Decl : Node_Id;
19861 Type_Def : Node_Id;
19862
19863 procedure Build_Incomplete_Type_Declaration;
19864 -- If the record type contains components that include an access to the
19865 -- current record, then create an incomplete type declaration for the
19866 -- record, to be used as the designated type of the anonymous access.
19867 -- This is done only once, and only if there is no previous partial
19868 -- view of the type.
19869
19870 function Designates_T (Subt : Node_Id) return Boolean;
19871 -- Check whether a node designates the enclosing record type, or 'Class
19872 -- of that type
19873
19874 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19875 -- Check whether an access definition includes a reference to
19876 -- the enclosing record type. The reference can be a subtype mark
19877 -- in the access definition itself, a 'Class attribute reference, or
19878 -- recursively a reference appearing in a parameter specification
19879 -- or result definition of an access_to_subprogram definition.
19880
19881 --------------------------------------
19882 -- Build_Incomplete_Type_Declaration --
19883 --------------------------------------
19884
19885 procedure Build_Incomplete_Type_Declaration is
19886 Decl : Node_Id;
19887 Inc_T : Entity_Id;
19888 H : Entity_Id;
19889
19890 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19891 -- it's "is new ... with record" or else "is tagged record ...".
19892
19893 Is_Tagged : constant Boolean :=
19894 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19895 and then
19896 Present
19897 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19898 or else
19899 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19900 and then Tagged_Present (Type_Definition (Typ_Decl)));
19901
19902 begin
19903 -- If there is a previous partial view, no need to create a new one
19904 -- If the partial view, given by Prev, is incomplete, If Prev is
19905 -- a private declaration, full declaration is flagged accordingly.
19906
19907 if Prev /= Typ then
19908 if Is_Tagged then
19909 Make_Class_Wide_Type (Prev);
19910 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19911 Set_Etype (Class_Wide_Type (Typ), Typ);
19912 end if;
19913
19914 return;
19915
19916 elsif Has_Private_Declaration (Typ) then
19917
19918 -- If we refer to T'Class inside T, and T is the completion of a
19919 -- private type, then we need to make sure the class-wide type
19920 -- exists.
19921
19922 if Is_Tagged then
19923 Make_Class_Wide_Type (Typ);
19924 end if;
19925
19926 return;
19927
19928 -- If there was a previous anonymous access type, the incomplete
19929 -- type declaration will have been created already.
19930
19931 elsif Present (Current_Entity (Typ))
19932 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19933 and then Full_View (Current_Entity (Typ)) = Typ
19934 then
19935 if Is_Tagged
19936 and then Comes_From_Source (Current_Entity (Typ))
19937 and then not Is_Tagged_Type (Current_Entity (Typ))
19938 then
19939 Make_Class_Wide_Type (Typ);
19940 Error_Msg_N
19941 ("incomplete view of tagged type should be declared tagged??",
19942 Parent (Current_Entity (Typ)));
19943 end if;
19944 return;
19945
19946 else
19947 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19948 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19949
19950 -- Type has already been inserted into the current scope. Remove
19951 -- it, and add incomplete declaration for type, so that subsequent
19952 -- anonymous access types can use it. The entity is unchained from
19953 -- the homonym list and from immediate visibility. After analysis,
19954 -- the entity in the incomplete declaration becomes immediately
19955 -- visible in the record declaration that follows.
19956
19957 H := Current_Entity (Typ);
19958
19959 if H = Typ then
19960 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19961 else
19962 while Present (H)
19963 and then Homonym (H) /= Typ
19964 loop
19965 H := Homonym (Typ);
19966 end loop;
19967
19968 Set_Homonym (H, Homonym (Typ));
19969 end if;
19970
19971 Insert_Before (Typ_Decl, Decl);
19972 Analyze (Decl);
19973 Set_Full_View (Inc_T, Typ);
19974
19975 if Is_Tagged then
19976
19977 -- Create a common class-wide type for both views, and set the
19978 -- Etype of the class-wide type to the full view.
19979
19980 Make_Class_Wide_Type (Inc_T);
19981 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19982 Set_Etype (Class_Wide_Type (Typ), Typ);
19983 end if;
19984 end if;
19985 end Build_Incomplete_Type_Declaration;
19986
19987 ------------------
19988 -- Designates_T --
19989 ------------------
19990
19991 function Designates_T (Subt : Node_Id) return Boolean is
19992 Type_Id : constant Name_Id := Chars (Typ);
19993
19994 function Names_T (Nam : Node_Id) return Boolean;
19995 -- The record type has not been introduced in the current scope
19996 -- yet, so we must examine the name of the type itself, either
19997 -- an identifier T, or an expanded name of the form P.T, where
19998 -- P denotes the current scope.
19999
20000 -------------
20001 -- Names_T --
20002 -------------
20003
20004 function Names_T (Nam : Node_Id) return Boolean is
20005 begin
20006 if Nkind (Nam) = N_Identifier then
20007 return Chars (Nam) = Type_Id;
20008
20009 elsif Nkind (Nam) = N_Selected_Component then
20010 if Chars (Selector_Name (Nam)) = Type_Id then
20011 if Nkind (Prefix (Nam)) = N_Identifier then
20012 return Chars (Prefix (Nam)) = Chars (Current_Scope);
20013
20014 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
20015 return Chars (Selector_Name (Prefix (Nam))) =
20016 Chars (Current_Scope);
20017 else
20018 return False;
20019 end if;
20020
20021 else
20022 return False;
20023 end if;
20024
20025 else
20026 return False;
20027 end if;
20028 end Names_T;
20029
20030 -- Start of processing for Designates_T
20031
20032 begin
20033 if Nkind (Subt) = N_Identifier then
20034 return Chars (Subt) = Type_Id;
20035
20036 -- Reference can be through an expanded name which has not been
20037 -- analyzed yet, and which designates enclosing scopes.
20038
20039 elsif Nkind (Subt) = N_Selected_Component then
20040 if Names_T (Subt) then
20041 return True;
20042
20043 -- Otherwise it must denote an entity that is already visible.
20044 -- The access definition may name a subtype of the enclosing
20045 -- type, if there is a previous incomplete declaration for it.
20046
20047 else
20048 Find_Selected_Component (Subt);
20049 return
20050 Is_Entity_Name (Subt)
20051 and then Scope (Entity (Subt)) = Current_Scope
20052 and then
20053 (Chars (Base_Type (Entity (Subt))) = Type_Id
20054 or else
20055 (Is_Class_Wide_Type (Entity (Subt))
20056 and then
20057 Chars (Etype (Base_Type (Entity (Subt)))) =
20058 Type_Id));
20059 end if;
20060
20061 -- A reference to the current type may appear as the prefix of
20062 -- a 'Class attribute.
20063
20064 elsif Nkind (Subt) = N_Attribute_Reference
20065 and then Attribute_Name (Subt) = Name_Class
20066 then
20067 return Names_T (Prefix (Subt));
20068
20069 else
20070 return False;
20071 end if;
20072 end Designates_T;
20073
20074 ----------------
20075 -- Mentions_T --
20076 ----------------
20077
20078 function Mentions_T (Acc_Def : Node_Id) return Boolean is
20079 Param_Spec : Node_Id;
20080
20081 Acc_Subprg : constant Node_Id :=
20082 Access_To_Subprogram_Definition (Acc_Def);
20083
20084 begin
20085 if No (Acc_Subprg) then
20086 return Designates_T (Subtype_Mark (Acc_Def));
20087 end if;
20088
20089 -- Component is an access_to_subprogram: examine its formals,
20090 -- and result definition in the case of an access_to_function.
20091
20092 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20093 while Present (Param_Spec) loop
20094 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20095 and then Mentions_T (Parameter_Type (Param_Spec))
20096 then
20097 return True;
20098
20099 elsif Designates_T (Parameter_Type (Param_Spec)) then
20100 return True;
20101 end if;
20102
20103 Next (Param_Spec);
20104 end loop;
20105
20106 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20107 if Nkind (Result_Definition (Acc_Subprg)) =
20108 N_Access_Definition
20109 then
20110 return Mentions_T (Result_Definition (Acc_Subprg));
20111 else
20112 return Designates_T (Result_Definition (Acc_Subprg));
20113 end if;
20114 end if;
20115
20116 return False;
20117 end Mentions_T;
20118
20119 -- Start of processing for Check_Anonymous_Access_Components
20120
20121 begin
20122 if No (Comp_List) then
20123 return;
20124 end if;
20125
20126 Comp := First (Component_Items (Comp_List));
20127 while Present (Comp) loop
20128 if Nkind (Comp) = N_Component_Declaration
20129 and then Present
20130 (Access_Definition (Component_Definition (Comp)))
20131 and then
20132 Mentions_T (Access_Definition (Component_Definition (Comp)))
20133 then
20134 Comp_Def := Component_Definition (Comp);
20135 Acc_Def :=
20136 Access_To_Subprogram_Definition
20137 (Access_Definition (Comp_Def));
20138
20139 Build_Incomplete_Type_Declaration;
20140 Anon_Access := Make_Temporary (Loc, 'S');
20141
20142 -- Create a declaration for the anonymous access type: either
20143 -- an access_to_object or an access_to_subprogram.
20144
20145 if Present (Acc_Def) then
20146 if Nkind (Acc_Def) = N_Access_Function_Definition then
20147 Type_Def :=
20148 Make_Access_Function_Definition (Loc,
20149 Parameter_Specifications =>
20150 Parameter_Specifications (Acc_Def),
20151 Result_Definition => Result_Definition (Acc_Def));
20152 else
20153 Type_Def :=
20154 Make_Access_Procedure_Definition (Loc,
20155 Parameter_Specifications =>
20156 Parameter_Specifications (Acc_Def));
20157 end if;
20158
20159 else
20160 Type_Def :=
20161 Make_Access_To_Object_Definition (Loc,
20162 Subtype_Indication =>
20163 Relocate_Node
20164 (Subtype_Mark
20165 (Access_Definition (Comp_Def))));
20166
20167 Set_Constant_Present
20168 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20169 Set_All_Present
20170 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20171 end if;
20172
20173 Set_Null_Exclusion_Present
20174 (Type_Def,
20175 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20176
20177 Decl :=
20178 Make_Full_Type_Declaration (Loc,
20179 Defining_Identifier => Anon_Access,
20180 Type_Definition => Type_Def);
20181
20182 Insert_Before (Typ_Decl, Decl);
20183 Analyze (Decl);
20184
20185 -- If an access to subprogram, create the extra formals
20186
20187 if Present (Acc_Def) then
20188 Create_Extra_Formals (Designated_Type (Anon_Access));
20189
20190 -- If an access to object, preserve entity of designated type,
20191 -- for ASIS use, before rewriting the component definition.
20192
20193 else
20194 declare
20195 Desig : Entity_Id;
20196
20197 begin
20198 Desig := Entity (Subtype_Indication (Type_Def));
20199
20200 -- If the access definition is to the current record,
20201 -- the visible entity at this point is an incomplete
20202 -- type. Retrieve the full view to simplify ASIS queries
20203
20204 if Ekind (Desig) = E_Incomplete_Type then
20205 Desig := Full_View (Desig);
20206 end if;
20207
20208 Set_Entity
20209 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20210 end;
20211 end if;
20212
20213 Rewrite (Comp_Def,
20214 Make_Component_Definition (Loc,
20215 Subtype_Indication =>
20216 New_Occurrence_Of (Anon_Access, Loc)));
20217
20218 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20219 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20220 else
20221 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20222 end if;
20223
20224 Set_Is_Local_Anonymous_Access (Anon_Access);
20225 end if;
20226
20227 Next (Comp);
20228 end loop;
20229
20230 if Present (Variant_Part (Comp_List)) then
20231 declare
20232 V : Node_Id;
20233 begin
20234 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20235 while Present (V) loop
20236 Check_Anonymous_Access_Components
20237 (Typ_Decl, Typ, Prev, Component_List (V));
20238 Next_Non_Pragma (V);
20239 end loop;
20240 end;
20241 end if;
20242 end Check_Anonymous_Access_Components;
20243
20244 ----------------------------------
20245 -- Preanalyze_Assert_Expression --
20246 ----------------------------------
20247
20248 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20249 begin
20250 In_Assertion_Expr := In_Assertion_Expr + 1;
20251 Preanalyze_Spec_Expression (N, T);
20252 In_Assertion_Expr := In_Assertion_Expr - 1;
20253 end Preanalyze_Assert_Expression;
20254
20255 -----------------------------------
20256 -- Preanalyze_Default_Expression --
20257 -----------------------------------
20258
20259 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
20260 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
20261 begin
20262 In_Default_Expr := True;
20263 Preanalyze_Spec_Expression (N, T);
20264 In_Default_Expr := Save_In_Default_Expr;
20265 end Preanalyze_Default_Expression;
20266
20267 --------------------------------
20268 -- Preanalyze_Spec_Expression --
20269 --------------------------------
20270
20271 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20272 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20273 begin
20274 In_Spec_Expression := True;
20275 Preanalyze_And_Resolve (N, T);
20276 In_Spec_Expression := Save_In_Spec_Expression;
20277 end Preanalyze_Spec_Expression;
20278
20279 -----------------------------
20280 -- Record_Type_Declaration --
20281 -----------------------------
20282
20283 procedure Record_Type_Declaration
20284 (T : Entity_Id;
20285 N : Node_Id;
20286 Prev : Entity_Id)
20287 is
20288 Def : constant Node_Id := Type_Definition (N);
20289 Is_Tagged : Boolean;
20290 Tag_Comp : Entity_Id;
20291
20292 begin
20293 -- These flags must be initialized before calling Process_Discriminants
20294 -- because this routine makes use of them.
20295
20296 Set_Ekind (T, E_Record_Type);
20297 Set_Etype (T, T);
20298 Init_Size_Align (T);
20299 Set_Interfaces (T, No_Elist);
20300 Set_Stored_Constraint (T, No_Elist);
20301 Set_Default_SSO (T);
20302
20303 -- Normal case
20304
20305 if Ada_Version < Ada_2005
20306 or else not Interface_Present (Def)
20307 then
20308 if Limited_Present (Def) then
20309 Check_SPARK_05_Restriction ("limited is not allowed", N);
20310 end if;
20311
20312 if Abstract_Present (Def) then
20313 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20314 end if;
20315
20316 -- The flag Is_Tagged_Type might have already been set by
20317 -- Find_Type_Name if it detected an error for declaration T. This
20318 -- arises in the case of private tagged types where the full view
20319 -- omits the word tagged.
20320
20321 Is_Tagged :=
20322 Tagged_Present (Def)
20323 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20324
20325 Set_Is_Tagged_Type (T, Is_Tagged);
20326 Set_Is_Limited_Record (T, Limited_Present (Def));
20327
20328 -- Type is abstract if full declaration carries keyword, or if
20329 -- previous partial view did.
20330
20331 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20332 or else Abstract_Present (Def));
20333
20334 else
20335 Check_SPARK_05_Restriction ("interface is not allowed", N);
20336
20337 Is_Tagged := True;
20338 Analyze_Interface_Declaration (T, Def);
20339
20340 if Present (Discriminant_Specifications (N)) then
20341 Error_Msg_N
20342 ("interface types cannot have discriminants",
20343 Defining_Identifier
20344 (First (Discriminant_Specifications (N))));
20345 end if;
20346 end if;
20347
20348 -- First pass: if there are self-referential access components,
20349 -- create the required anonymous access type declarations, and if
20350 -- need be an incomplete type declaration for T itself.
20351
20352 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20353
20354 if Ada_Version >= Ada_2005
20355 and then Present (Interface_List (Def))
20356 then
20357 Check_Interfaces (N, Def);
20358
20359 declare
20360 Ifaces_List : Elist_Id;
20361
20362 begin
20363 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20364 -- already in the parents.
20365
20366 Collect_Interfaces
20367 (T => T,
20368 Ifaces_List => Ifaces_List,
20369 Exclude_Parents => True);
20370
20371 Set_Interfaces (T, Ifaces_List);
20372 end;
20373 end if;
20374
20375 -- Records constitute a scope for the component declarations within.
20376 -- The scope is created prior to the processing of these declarations.
20377 -- Discriminants are processed first, so that they are visible when
20378 -- processing the other components. The Ekind of the record type itself
20379 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20380
20381 -- Enter record scope
20382
20383 Push_Scope (T);
20384
20385 -- If an incomplete or private type declaration was already given for
20386 -- the type, then this scope already exists, and the discriminants have
20387 -- been declared within. We must verify that the full declaration
20388 -- matches the incomplete one.
20389
20390 Check_Or_Process_Discriminants (N, T, Prev);
20391
20392 Set_Is_Constrained (T, not Has_Discriminants (T));
20393 Set_Has_Delayed_Freeze (T, True);
20394
20395 -- For tagged types add a manually analyzed component corresponding
20396 -- to the component _tag, the corresponding piece of tree will be
20397 -- expanded as part of the freezing actions if it is not a CPP_Class.
20398
20399 if Is_Tagged then
20400
20401 -- Do not add the tag unless we are in expansion mode
20402
20403 if Expander_Active then
20404 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20405 Enter_Name (Tag_Comp);
20406
20407 Set_Ekind (Tag_Comp, E_Component);
20408 Set_Is_Tag (Tag_Comp);
20409 Set_Is_Aliased (Tag_Comp);
20410 Set_Etype (Tag_Comp, RTE (RE_Tag));
20411 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20412 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20413 Init_Component_Location (Tag_Comp);
20414
20415 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20416 -- implemented interfaces.
20417
20418 if Has_Interfaces (T) then
20419 Add_Interface_Tag_Components (N, T);
20420 end if;
20421 end if;
20422
20423 Make_Class_Wide_Type (T);
20424 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20425 end if;
20426
20427 -- We must suppress range checks when processing record components in
20428 -- the presence of discriminants, since we don't want spurious checks to
20429 -- be generated during their analysis, but Suppress_Range_Checks flags
20430 -- must be reset the after processing the record definition.
20431
20432 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20433 -- couldn't we just use the normal range check suppression method here.
20434 -- That would seem cleaner ???
20435
20436 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20437 Set_Kill_Range_Checks (T, True);
20438 Record_Type_Definition (Def, Prev);
20439 Set_Kill_Range_Checks (T, False);
20440 else
20441 Record_Type_Definition (Def, Prev);
20442 end if;
20443
20444 -- Exit from record scope
20445
20446 End_Scope;
20447
20448 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20449 -- the implemented interfaces and associate them an aliased entity.
20450
20451 if Is_Tagged
20452 and then not Is_Empty_List (Interface_List (Def))
20453 then
20454 Derive_Progenitor_Subprograms (T, T);
20455 end if;
20456
20457 Check_Function_Writable_Actuals (N);
20458 end Record_Type_Declaration;
20459
20460 ----------------------------
20461 -- Record_Type_Definition --
20462 ----------------------------
20463
20464 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20465 Component : Entity_Id;
20466 Ctrl_Components : Boolean := False;
20467 Final_Storage_Only : Boolean;
20468 T : Entity_Id;
20469
20470 begin
20471 if Ekind (Prev_T) = E_Incomplete_Type then
20472 T := Full_View (Prev_T);
20473 else
20474 T := Prev_T;
20475 end if;
20476
20477 -- In SPARK, tagged types and type extensions may only be declared in
20478 -- the specification of library unit packages.
20479
20480 if Present (Def) and then Is_Tagged_Type (T) then
20481 declare
20482 Typ : Node_Id;
20483 Ctxt : Node_Id;
20484
20485 begin
20486 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20487 Typ := Parent (Def);
20488 else
20489 pragma Assert
20490 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20491 Typ := Parent (Parent (Def));
20492 end if;
20493
20494 Ctxt := Parent (Typ);
20495
20496 if Nkind (Ctxt) = N_Package_Body
20497 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20498 then
20499 Check_SPARK_05_Restriction
20500 ("type should be defined in package specification", Typ);
20501
20502 elsif Nkind (Ctxt) /= N_Package_Specification
20503 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20504 then
20505 Check_SPARK_05_Restriction
20506 ("type should be defined in library unit package", Typ);
20507 end if;
20508 end;
20509 end if;
20510
20511 Final_Storage_Only := not Is_Controlled (T);
20512
20513 -- Ada 2005: Check whether an explicit Limited is present in a derived
20514 -- type declaration.
20515
20516 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20517 and then Limited_Present (Parent (Def))
20518 then
20519 Set_Is_Limited_Record (T);
20520 end if;
20521
20522 -- If the component list of a record type is defined by the reserved
20523 -- word null and there is no discriminant part, then the record type has
20524 -- no components and all records of the type are null records (RM 3.7)
20525 -- This procedure is also called to process the extension part of a
20526 -- record extension, in which case the current scope may have inherited
20527 -- components.
20528
20529 if No (Def)
20530 or else No (Component_List (Def))
20531 or else Null_Present (Component_List (Def))
20532 then
20533 if not Is_Tagged_Type (T) then
20534 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20535 end if;
20536
20537 else
20538 Analyze_Declarations (Component_Items (Component_List (Def)));
20539
20540 if Present (Variant_Part (Component_List (Def))) then
20541 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20542 Analyze (Variant_Part (Component_List (Def)));
20543 end if;
20544 end if;
20545
20546 -- After completing the semantic analysis of the record definition,
20547 -- record components, both new and inherited, are accessible. Set their
20548 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20549 -- whose Ekind may be void.
20550
20551 Component := First_Entity (Current_Scope);
20552 while Present (Component) loop
20553 if Ekind (Component) = E_Void
20554 and then not Is_Itype (Component)
20555 then
20556 Set_Ekind (Component, E_Component);
20557 Init_Component_Location (Component);
20558 end if;
20559
20560 if Has_Task (Etype (Component)) then
20561 Set_Has_Task (T);
20562 end if;
20563
20564 if Has_Protected (Etype (Component)) then
20565 Set_Has_Protected (T);
20566 end if;
20567
20568 if Ekind (Component) /= E_Component then
20569 null;
20570
20571 -- Do not set Has_Controlled_Component on a class-wide equivalent
20572 -- type. See Make_CW_Equivalent_Type.
20573
20574 elsif not Is_Class_Wide_Equivalent_Type (T)
20575 and then (Has_Controlled_Component (Etype (Component))
20576 or else (Chars (Component) /= Name_uParent
20577 and then Is_Controlled (Etype (Component))))
20578 then
20579 Set_Has_Controlled_Component (T, True);
20580 Final_Storage_Only :=
20581 Final_Storage_Only
20582 and then Finalize_Storage_Only (Etype (Component));
20583 Ctrl_Components := True;
20584 end if;
20585
20586 Next_Entity (Component);
20587 end loop;
20588
20589 -- A Type is Finalize_Storage_Only only if all its controlled components
20590 -- are also.
20591
20592 if Ctrl_Components then
20593 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20594 end if;
20595
20596 -- Place reference to end record on the proper entity, which may
20597 -- be a partial view.
20598
20599 if Present (Def) then
20600 Process_End_Label (Def, 'e', Prev_T);
20601 end if;
20602 end Record_Type_Definition;
20603
20604 ------------------------
20605 -- Replace_Components --
20606 ------------------------
20607
20608 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20609 function Process (N : Node_Id) return Traverse_Result;
20610
20611 -------------
20612 -- Process --
20613 -------------
20614
20615 function Process (N : Node_Id) return Traverse_Result is
20616 Comp : Entity_Id;
20617
20618 begin
20619 if Nkind (N) = N_Discriminant_Specification then
20620 Comp := First_Discriminant (Typ);
20621 while Present (Comp) loop
20622 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20623 Set_Defining_Identifier (N, Comp);
20624 exit;
20625 end if;
20626
20627 Next_Discriminant (Comp);
20628 end loop;
20629
20630 elsif Nkind (N) = N_Component_Declaration then
20631 Comp := First_Component (Typ);
20632 while Present (Comp) loop
20633 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20634 Set_Defining_Identifier (N, Comp);
20635 exit;
20636 end if;
20637
20638 Next_Component (Comp);
20639 end loop;
20640 end if;
20641
20642 return OK;
20643 end Process;
20644
20645 procedure Replace is new Traverse_Proc (Process);
20646
20647 -- Start of processing for Replace_Components
20648
20649 begin
20650 Replace (Decl);
20651 end Replace_Components;
20652
20653 -------------------------------
20654 -- Set_Completion_Referenced --
20655 -------------------------------
20656
20657 procedure Set_Completion_Referenced (E : Entity_Id) is
20658 begin
20659 -- If in main unit, mark entity that is a completion as referenced,
20660 -- warnings go on the partial view when needed.
20661
20662 if In_Extended_Main_Source_Unit (E) then
20663 Set_Referenced (E);
20664 end if;
20665 end Set_Completion_Referenced;
20666
20667 ---------------------
20668 -- Set_Default_SSO --
20669 ---------------------
20670
20671 procedure Set_Default_SSO (T : Entity_Id) is
20672 begin
20673 case Opt.Default_SSO is
20674 when ' ' =>
20675 null;
20676 when 'L' =>
20677 Set_SSO_Set_Low_By_Default (T, True);
20678 when 'H' =>
20679 Set_SSO_Set_High_By_Default (T, True);
20680 when others =>
20681 raise Program_Error;
20682 end case;
20683 end Set_Default_SSO;
20684
20685 ---------------------
20686 -- Set_Fixed_Range --
20687 ---------------------
20688
20689 -- The range for fixed-point types is complicated by the fact that we
20690 -- do not know the exact end points at the time of the declaration. This
20691 -- is true for three reasons:
20692
20693 -- A size clause may affect the fudging of the end-points.
20694 -- A small clause may affect the values of the end-points.
20695 -- We try to include the end-points if it does not affect the size.
20696
20697 -- This means that the actual end-points must be established at the
20698 -- point when the type is frozen. Meanwhile, we first narrow the range
20699 -- as permitted (so that it will fit if necessary in a small specified
20700 -- size), and then build a range subtree with these narrowed bounds.
20701 -- Set_Fixed_Range constructs the range from real literal values, and
20702 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20703
20704 -- The parent of this range is set to point to the entity so that it is
20705 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20706 -- other scalar types, which are just pointers to the range in the
20707 -- original tree, this would otherwise be an orphan).
20708
20709 -- The tree is left unanalyzed. When the type is frozen, the processing
20710 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20711 -- analyzed, and uses this as an indication that it should complete
20712 -- work on the range (it will know the final small and size values).
20713
20714 procedure Set_Fixed_Range
20715 (E : Entity_Id;
20716 Loc : Source_Ptr;
20717 Lo : Ureal;
20718 Hi : Ureal)
20719 is
20720 S : constant Node_Id :=
20721 Make_Range (Loc,
20722 Low_Bound => Make_Real_Literal (Loc, Lo),
20723 High_Bound => Make_Real_Literal (Loc, Hi));
20724 begin
20725 Set_Scalar_Range (E, S);
20726 Set_Parent (S, E);
20727
20728 -- Before the freeze point, the bounds of a fixed point are universal
20729 -- and carry the corresponding type.
20730
20731 Set_Etype (Low_Bound (S), Universal_Real);
20732 Set_Etype (High_Bound (S), Universal_Real);
20733 end Set_Fixed_Range;
20734
20735 ----------------------------------
20736 -- Set_Scalar_Range_For_Subtype --
20737 ----------------------------------
20738
20739 procedure Set_Scalar_Range_For_Subtype
20740 (Def_Id : Entity_Id;
20741 R : Node_Id;
20742 Subt : Entity_Id)
20743 is
20744 Kind : constant Entity_Kind := Ekind (Def_Id);
20745
20746 begin
20747 -- Defend against previous error
20748
20749 if Nkind (R) = N_Error then
20750 return;
20751 end if;
20752
20753 Set_Scalar_Range (Def_Id, R);
20754
20755 -- We need to link the range into the tree before resolving it so
20756 -- that types that are referenced, including importantly the subtype
20757 -- itself, are properly frozen (Freeze_Expression requires that the
20758 -- expression be properly linked into the tree). Of course if it is
20759 -- already linked in, then we do not disturb the current link.
20760
20761 if No (Parent (R)) then
20762 Set_Parent (R, Def_Id);
20763 end if;
20764
20765 -- Reset the kind of the subtype during analysis of the range, to
20766 -- catch possible premature use in the bounds themselves.
20767
20768 Set_Ekind (Def_Id, E_Void);
20769 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20770 Set_Ekind (Def_Id, Kind);
20771 end Set_Scalar_Range_For_Subtype;
20772
20773 --------------------------------------------------------
20774 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20775 --------------------------------------------------------
20776
20777 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20778 (E : Entity_Id)
20779 is
20780 begin
20781 -- Make sure set if encountered during Expand_To_Stored_Constraint
20782
20783 Set_Stored_Constraint (E, No_Elist);
20784
20785 -- Give it the right value
20786
20787 if Is_Constrained (E) and then Has_Discriminants (E) then
20788 Set_Stored_Constraint (E,
20789 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20790 end if;
20791 end Set_Stored_Constraint_From_Discriminant_Constraint;
20792
20793 -------------------------------------
20794 -- Signed_Integer_Type_Declaration --
20795 -------------------------------------
20796
20797 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20798 Implicit_Base : Entity_Id;
20799 Base_Typ : Entity_Id;
20800 Lo_Val : Uint;
20801 Hi_Val : Uint;
20802 Errs : Boolean := False;
20803 Lo : Node_Id;
20804 Hi : Node_Id;
20805
20806 function Can_Derive_From (E : Entity_Id) return Boolean;
20807 -- Determine whether given bounds allow derivation from specified type
20808
20809 procedure Check_Bound (Expr : Node_Id);
20810 -- Check bound to make sure it is integral and static. If not, post
20811 -- appropriate error message and set Errs flag
20812
20813 ---------------------
20814 -- Can_Derive_From --
20815 ---------------------
20816
20817 -- Note we check both bounds against both end values, to deal with
20818 -- strange types like ones with a range of 0 .. -12341234.
20819
20820 function Can_Derive_From (E : Entity_Id) return Boolean is
20821 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20822 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20823 begin
20824 return Lo <= Lo_Val and then Lo_Val <= Hi
20825 and then
20826 Lo <= Hi_Val and then Hi_Val <= Hi;
20827 end Can_Derive_From;
20828
20829 -----------------
20830 -- Check_Bound --
20831 -----------------
20832
20833 procedure Check_Bound (Expr : Node_Id) is
20834 begin
20835 -- If a range constraint is used as an integer type definition, each
20836 -- bound of the range must be defined by a static expression of some
20837 -- integer type, but the two bounds need not have the same integer
20838 -- type (Negative bounds are allowed.) (RM 3.5.4)
20839
20840 if not Is_Integer_Type (Etype (Expr)) then
20841 Error_Msg_N
20842 ("integer type definition bounds must be of integer type", Expr);
20843 Errs := True;
20844
20845 elsif not Is_OK_Static_Expression (Expr) then
20846 Flag_Non_Static_Expr
20847 ("non-static expression used for integer type bound!", Expr);
20848 Errs := True;
20849
20850 -- The bounds are folded into literals, and we set their type to be
20851 -- universal, to avoid typing difficulties: we cannot set the type
20852 -- of the literal to the new type, because this would be a forward
20853 -- reference for the back end, and if the original type is user-
20854 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20855
20856 else
20857 if Is_Entity_Name (Expr) then
20858 Fold_Uint (Expr, Expr_Value (Expr), True);
20859 end if;
20860
20861 Set_Etype (Expr, Universal_Integer);
20862 end if;
20863 end Check_Bound;
20864
20865 -- Start of processing for Signed_Integer_Type_Declaration
20866
20867 begin
20868 -- Create an anonymous base type
20869
20870 Implicit_Base :=
20871 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20872
20873 -- Analyze and check the bounds, they can be of any integer type
20874
20875 Lo := Low_Bound (Def);
20876 Hi := High_Bound (Def);
20877
20878 -- Arbitrarily use Integer as the type if either bound had an error
20879
20880 if Hi = Error or else Lo = Error then
20881 Base_Typ := Any_Integer;
20882 Set_Error_Posted (T, True);
20883
20884 -- Here both bounds are OK expressions
20885
20886 else
20887 Analyze_And_Resolve (Lo, Any_Integer);
20888 Analyze_And_Resolve (Hi, Any_Integer);
20889
20890 Check_Bound (Lo);
20891 Check_Bound (Hi);
20892
20893 if Errs then
20894 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20895 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20896 end if;
20897
20898 -- Find type to derive from
20899
20900 Lo_Val := Expr_Value (Lo);
20901 Hi_Val := Expr_Value (Hi);
20902
20903 if Can_Derive_From (Standard_Short_Short_Integer) then
20904 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20905
20906 elsif Can_Derive_From (Standard_Short_Integer) then
20907 Base_Typ := Base_Type (Standard_Short_Integer);
20908
20909 elsif Can_Derive_From (Standard_Integer) then
20910 Base_Typ := Base_Type (Standard_Integer);
20911
20912 elsif Can_Derive_From (Standard_Long_Integer) then
20913 Base_Typ := Base_Type (Standard_Long_Integer);
20914
20915 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20916 Check_Restriction (No_Long_Long_Integers, Def);
20917 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20918
20919 else
20920 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20921 Error_Msg_N ("integer type definition bounds out of range", Def);
20922 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20923 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20924 end if;
20925 end if;
20926
20927 -- Complete both implicit base and declared first subtype entities
20928
20929 Set_Etype (Implicit_Base, Base_Typ);
20930 Set_Size_Info (Implicit_Base, (Base_Typ));
20931 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20932 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20933
20934 Set_Ekind (T, E_Signed_Integer_Subtype);
20935 Set_Etype (T, Implicit_Base);
20936
20937 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20938
20939 Set_Size_Info (T, (Implicit_Base));
20940 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20941 Set_Scalar_Range (T, Def);
20942 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20943 Set_Is_Constrained (T);
20944 end Signed_Integer_Type_Declaration;
20945
20946 end Sem_Ch3;