[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83
84 package body Sem_Ch3 is
85
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
89
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
94
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
104
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
126 --
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
129
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
137
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
145
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
153
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
161
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
168
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
178
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
193
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
201
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
215
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
224 --
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
227 --
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 --
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
238
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
247
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
259
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
266
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
280
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
284
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
288
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
292
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
305
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
309
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
317
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
335
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
339
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
343
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
357
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
371
372 procedure Constrain_Access
373 (Def_Id : in out Entity_Id;
374 S : Node_Id;
375 Related_Nod : Node_Id);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
379
380 procedure Constrain_Array
381 (Def_Id : in out Entity_Id;
382 SI : Node_Id;
383 Related_Nod : Node_Id;
384 Related_Id : Entity_Id;
385 Suffix : Character);
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
396
397 procedure Constrain_Concurrent
398 (Def_Id : in out Entity_Id;
399 SI : Node_Id;
400 Related_Nod : Node_Id;
401 Related_Id : Entity_Id;
402 Suffix : Character);
403 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- type.
405 --
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
408 --
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
414 --
415 -- Related_Nod gives the place where this type has to be inserted
416 -- in the tree.
417 --
418 -- The last two arguments are used to create its external name if needed.
419
420 function Constrain_Corresponding_Record
421 (Prot_Subt : Entity_Id;
422 Corr_Rec : Entity_Id;
423 Related_Nod : Node_Id) return Entity_Id;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
426
427 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430
431 procedure Constrain_Discriminated_Type
432 (Def_Id : Entity_Id;
433 S : Node_Id;
434 Related_Nod : Node_Id;
435 For_Access : Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
441 -- of For_Access.
442
443 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446
447 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450
451 procedure Constrain_Index
452 (Index : Node_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 Related_Id : Entity_Id;
456 Suffix : Character;
457 Suffix_Index : Nat);
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
463
464 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
465 -- Build subtype of a signed or modular integer type
466
467 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470
471 procedure Copy_And_Swap (Priv, Full : Entity_Id);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
475
476 procedure Decimal_Fixed_Point_Type_Declaration
477 (T : Entity_Id;
478 Def : Node_Id);
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
481
482 procedure Complete_Private_Subtype
483 (Priv : Entity_Id;
484 Full : Entity_Id;
485 Full_Base : Entity_Id;
486 Related_Nod : Node_Id);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
490
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type : Entity_Id;
493 Tagged_Type : Entity_Id);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
501
502 procedure Derived_Standard_Character
503 (N : Node_Id;
504 Parent_Type : Entity_Id;
505 Derived_Type : Entity_Id);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
508
509 procedure Derived_Type_Declaration
510 (T : Entity_Id;
511 N : Node_Id;
512 Is_Completion : Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
518
519 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
525
526 function Expand_To_Stored_Constraint
527 (Typ : Entity_Id;
528 Constraint : Elist_Id) return Elist_Id;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
532
533 function Find_Type_Of_Object
534 (Obj_Def : Node_Id;
535 Related_Nod : Node_Id) return Entity_Id;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
538
539 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
540 -- Create a new float and apply the constraint to obtain subtype of it
541
542 function Has_Range_Constraint (N : Node_Id) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
547
548 function Inherit_Components
549 (N : Node_Id;
550 Parent_Base : Entity_Id;
551 Derived_Base : Entity_Id;
552 Is_Tagged : Boolean;
553 Inherit_Discr : Boolean;
554 Discs : Elist_Id) return Elist_Id;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
559 --
560 -- N is the original derived type declaration
561 --
562 -- Is_Tagged is set if we are dealing with tagged types
563 --
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
566 --
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
570 --
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
573 --
574 -- which gets treated as
575 --
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 --
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
581 --
582 -- (Old_Component => New_Component),
583 --
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
589
590 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
593
594 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
599
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
605
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
608
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
612
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
618
619 procedure Prepare_Private_Subtype_Completion
620 (Id : Entity_Id;
621 Related_Nod : Node_Id);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
626
627 procedure Process_Incomplete_Dependents
628 (N : Node_Id;
629 Full_T : Entity_Id;
630 Inc_T : Entity_Id);
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
634 -- incomplete type.
635
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
638 --
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 --
641 -- Full_T is N's defining identifier.
642 --
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
648 -- full type.
649 --
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
653
654 procedure Process_Real_Range_Specification (Def : Node_Id);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
659
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ : Entity_Id;
662 To_Typ : Entity_Id;
663 Parent_To_Derivation : Boolean := False;
664 Private_To_Full_View : Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
670
671 procedure Record_Type_Declaration
672 (T : Entity_Id;
673 N : Node_Id;
674 Prev : Entity_Id);
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
681
682 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
690 -- the record type.
691
692 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
700
701 procedure Set_Fixed_Range
702 (E : Entity_Id;
703 Loc : Source_Ptr;
704 Lo : Ureal;
705 Hi : Ureal);
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
709
710 procedure Set_Scalar_Range_For_Subtype
711 (Def_Id : Entity_Id;
712 R : Node_Id;
713 Subt : Entity_Id);
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
718
719 procedure Set_Default_SSO (T : Entity_Id);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
723
724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
727
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 (E : Entity_Id);
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
732
733 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
736
737 -----------------------
738 -- Access_Definition --
739 -----------------------
740
741 function Access_Definition
742 (Related_Nod : Node_Id;
743 N : Node_Id) return Entity_Id
744 is
745 Anon_Type : Entity_Id;
746 Anon_Scope : Entity_Id;
747 Desig_Type : Entity_Id;
748 Enclosing_Prot_Type : Entity_Id := Empty;
749
750 begin
751 Check_SPARK_05_Restriction ("access type is not allowed", N);
752
753 if Is_Entry (Current_Scope)
754 and then Is_Task_Type (Etype (Scope (Current_Scope)))
755 then
756 Error_Msg_N ("task entries cannot have access parameters", N);
757 return Empty;
758 end if;
759
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
762
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
766
767 if Nkind_In (Related_Nod, N_Object_Declaration,
768 N_Access_Function_Definition)
769 then
770 Anon_Scope := Current_Scope;
771
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
775
776 declare
777 Par : Node_Id;
778
779 begin
780 Par := Related_Nod;
781 while Nkind_In (Par, N_Access_Function_Definition,
782 N_Access_Definition)
783 loop
784 Par := Parent (Par);
785 end loop;
786
787 if Nkind (Par) = N_Function_Specification then
788 Anon_Scope := Scope (Defining_Entity (Par));
789 end if;
790 end;
791
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
799
800 elsif Nkind (Related_Nod) = N_Function_Specification
801 and then Nkind (Parent (N)) /= N_Parameter_Specification
802 then
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
807
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
812
813 if Ekind (Current_Scope) = E_Protected_Type then
814 Enclosing_Prot_Type := Current_Scope;
815
816 elsif Ekind (Current_Scope) = E_Function
817 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
818 then
819 Enclosing_Prot_Type := Scope (Current_Scope);
820 end if;
821
822 if Present (Enclosing_Prot_Type) then
823 Anon_Scope := Scope (Enclosing_Prot_Type);
824
825 else
826 Anon_Scope := Scope (Defining_Entity (Related_Nod));
827 end if;
828
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
831
832 elsif Is_Compilation_Unit (Current_Scope) then
833 Anon_Scope := Current_Scope;
834
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
837
838 else
839 Anon_Scope := Scope (Current_Scope);
840 end if;
841
842 Anon_Type :=
843 Create_Itype
844 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845
846 if All_Present (N)
847 and then Ada_Version >= Ada_2005
848 then
849 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
850 end if;
851
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
854
855 if Present (Access_To_Subprogram_Definition (N)) then
856
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
860
861 Check_Compiler_Unit ("anonymous access to subprogram", N);
862
863 Access_Subprogram_Declaration
864 (T_Name => Anon_Type,
865 T_Def => Access_To_Subprogram_Definition (N));
866
867 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
868 Set_Ekind
869 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
870 else
871 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
872 end if;
873
874 Set_Can_Use_Internal_Rep
875 (Anon_Type, not Always_Compatible_Rep_On_Target);
876
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
880
881 -- If the anonymous access itself is protected, a full type
882 -- declaratiton will be created for it, so that the equivalent
883 -- record type can be constructed. For further details, see
884 -- Replace_Anonymous_Access_To_Protected-Subprogram.
885
886 if Ekind (Current_Scope) = E_Protected_Type
887 and then not Protected_Present (Access_To_Subprogram_Definition (N))
888 then
889 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
890 end if;
891
892 return Anon_Type;
893 end if;
894
895 Find_Type (Subtype_Mark (N));
896 Desig_Type := Entity (Subtype_Mark (N));
897
898 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
899 Set_Etype (Anon_Type, Anon_Type);
900
901 -- Make sure the anonymous access type has size and alignment fields
902 -- set, as required by gigi. This is necessary in the case of the
903 -- Task_Body_Procedure.
904
905 if not Has_Private_Component (Desig_Type) then
906 Layout_Type (Anon_Type);
907 end if;
908
909 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
910 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
911 -- the null value is allowed. In Ada 95 the null value is never allowed.
912
913 if Ada_Version >= Ada_2005 then
914 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
915 else
916 Set_Can_Never_Be_Null (Anon_Type, True);
917 end if;
918
919 -- The anonymous access type is as public as the discriminated type or
920 -- subprogram that defines it. It is imported (for back-end purposes)
921 -- if the designated type is.
922
923 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
924
925 -- Ada 2005 (AI-231): Propagate the access-constant attribute
926
927 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
928
929 -- The context is either a subprogram declaration, object declaration,
930 -- or an access discriminant, in a private or a full type declaration.
931 -- In the case of a subprogram, if the designated type is incomplete,
932 -- the operation will be a primitive operation of the full type, to be
933 -- updated subsequently. If the type is imported through a limited_with
934 -- clause, the subprogram is not a primitive operation of the type
935 -- (which is declared elsewhere in some other scope).
936
937 if Ekind (Desig_Type) = E_Incomplete_Type
938 and then not From_Limited_With (Desig_Type)
939 and then Is_Overloadable (Current_Scope)
940 then
941 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
942 Set_Has_Delayed_Freeze (Current_Scope);
943 end if;
944
945 -- Ada 2005: If the designated type is an interface that may contain
946 -- tasks, create a Master entity for the declaration. This must be done
947 -- before expansion of the full declaration, because the declaration may
948 -- include an expression that is an allocator, whose expansion needs the
949 -- proper Master for the created tasks.
950
951 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
952 then
953 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
954 then
955 Build_Class_Wide_Master (Anon_Type);
956
957 -- Similarly, if the type is an anonymous access that designates
958 -- tasks, create a master entity for it in the current context.
959
960 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
961 then
962 Build_Master_Entity (Defining_Identifier (Related_Nod));
963 Build_Master_Renaming (Anon_Type);
964 end if;
965 end if;
966
967 -- For a private component of a protected type, it is imperative that
968 -- the back-end elaborate the type immediately after the protected
969 -- declaration, because this type will be used in the declarations
970 -- created for the component within each protected body, so we must
971 -- create an itype reference for it now.
972
973 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
974 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
975
976 -- Similarly, if the access definition is the return result of a
977 -- function, create an itype reference for it because it will be used
978 -- within the function body. For a regular function that is not a
979 -- compilation unit, insert reference after the declaration. For a
980 -- protected operation, insert it after the enclosing protected type
981 -- declaration. In either case, do not create a reference for a type
982 -- obtained through a limited_with clause, because this would introduce
983 -- semantic dependencies.
984
985 -- Similarly, do not create a reference if the designated type is a
986 -- generic formal, because no use of it will reach the backend.
987
988 elsif Nkind (Related_Nod) = N_Function_Specification
989 and then not From_Limited_With (Desig_Type)
990 and then not Is_Generic_Type (Desig_Type)
991 then
992 if Present (Enclosing_Prot_Type) then
993 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
994
995 elsif Is_List_Member (Parent (Related_Nod))
996 and then Nkind (Parent (N)) /= N_Parameter_Specification
997 then
998 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
999 end if;
1000
1001 -- Finally, create an itype reference for an object declaration of an
1002 -- anonymous access type. This is strictly necessary only for deferred
1003 -- constants, but in any case will avoid out-of-scope problems in the
1004 -- back-end.
1005
1006 elsif Nkind (Related_Nod) = N_Object_Declaration then
1007 Build_Itype_Reference (Anon_Type, Related_Nod);
1008 end if;
1009
1010 return Anon_Type;
1011 end Access_Definition;
1012
1013 -----------------------------------
1014 -- Access_Subprogram_Declaration --
1015 -----------------------------------
1016
1017 procedure Access_Subprogram_Declaration
1018 (T_Name : Entity_Id;
1019 T_Def : Node_Id)
1020 is
1021 procedure Check_For_Premature_Usage (Def : Node_Id);
1022 -- Check that type T_Name is not used, directly or recursively, as a
1023 -- parameter or a return type in Def. Def is either a subtype, an
1024 -- access_definition, or an access_to_subprogram_definition.
1025
1026 -------------------------------
1027 -- Check_For_Premature_Usage --
1028 -------------------------------
1029
1030 procedure Check_For_Premature_Usage (Def : Node_Id) is
1031 Param : Node_Id;
1032
1033 begin
1034 -- Check for a subtype mark
1035
1036 if Nkind (Def) in N_Has_Etype then
1037 if Etype (Def) = T_Name then
1038 Error_Msg_N
1039 ("type& cannot be used before end of its declaration", Def);
1040 end if;
1041
1042 -- If this is not a subtype, then this is an access_definition
1043
1044 elsif Nkind (Def) = N_Access_Definition then
1045 if Present (Access_To_Subprogram_Definition (Def)) then
1046 Check_For_Premature_Usage
1047 (Access_To_Subprogram_Definition (Def));
1048 else
1049 Check_For_Premature_Usage (Subtype_Mark (Def));
1050 end if;
1051
1052 -- The only cases left are N_Access_Function_Definition and
1053 -- N_Access_Procedure_Definition.
1054
1055 else
1056 if Present (Parameter_Specifications (Def)) then
1057 Param := First (Parameter_Specifications (Def));
1058 while Present (Param) loop
1059 Check_For_Premature_Usage (Parameter_Type (Param));
1060 Param := Next (Param);
1061 end loop;
1062 end if;
1063
1064 if Nkind (Def) = N_Access_Function_Definition then
1065 Check_For_Premature_Usage (Result_Definition (Def));
1066 end if;
1067 end if;
1068 end Check_For_Premature_Usage;
1069
1070 -- Local variables
1071
1072 Formals : constant List_Id := Parameter_Specifications (T_Def);
1073 Formal : Entity_Id;
1074 D_Ityp : Node_Id;
1075 Desig_Type : constant Entity_Id :=
1076 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1077
1078 -- Start of processing for Access_Subprogram_Declaration
1079
1080 begin
1081 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1082
1083 -- Associate the Itype node with the inner full-type declaration or
1084 -- subprogram spec or entry body. This is required to handle nested
1085 -- anonymous declarations. For example:
1086
1087 -- procedure P
1088 -- (X : access procedure
1089 -- (Y : access procedure
1090 -- (Z : access T)))
1091
1092 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1093 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Private_Type_Declaration,
1095 N_Private_Extension_Declaration,
1096 N_Procedure_Specification,
1097 N_Function_Specification,
1098 N_Entry_Body)
1099
1100 or else
1101 Nkind_In (D_Ityp, N_Object_Declaration,
1102 N_Object_Renaming_Declaration,
1103 N_Formal_Object_Declaration,
1104 N_Formal_Type_Declaration,
1105 N_Task_Type_Declaration,
1106 N_Protected_Type_Declaration))
1107 loop
1108 D_Ityp := Parent (D_Ityp);
1109 pragma Assert (D_Ityp /= Empty);
1110 end loop;
1111
1112 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1113
1114 if Nkind_In (D_Ityp, N_Procedure_Specification,
1115 N_Function_Specification)
1116 then
1117 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1118
1119 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1120 N_Object_Declaration,
1121 N_Object_Renaming_Declaration,
1122 N_Formal_Type_Declaration)
1123 then
1124 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1125 end if;
1126
1127 if Nkind (T_Def) = N_Access_Function_Definition then
1128 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1129 declare
1130 Acc : constant Node_Id := Result_Definition (T_Def);
1131
1132 begin
1133 if Present (Access_To_Subprogram_Definition (Acc))
1134 and then
1135 Protected_Present (Access_To_Subprogram_Definition (Acc))
1136 then
1137 Set_Etype
1138 (Desig_Type,
1139 Replace_Anonymous_Access_To_Protected_Subprogram
1140 (T_Def));
1141
1142 else
1143 Set_Etype
1144 (Desig_Type,
1145 Access_Definition (T_Def, Result_Definition (T_Def)));
1146 end if;
1147 end;
1148
1149 else
1150 Analyze (Result_Definition (T_Def));
1151
1152 declare
1153 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1154
1155 begin
1156 -- If a null exclusion is imposed on the result type, then
1157 -- create a null-excluding itype (an access subtype) and use
1158 -- it as the function's Etype.
1159
1160 if Is_Access_Type (Typ)
1161 and then Null_Exclusion_In_Return_Present (T_Def)
1162 then
1163 Set_Etype (Desig_Type,
1164 Create_Null_Excluding_Itype
1165 (T => Typ,
1166 Related_Nod => T_Def,
1167 Scope_Id => Current_Scope));
1168
1169 else
1170 if From_Limited_With (Typ) then
1171
1172 -- AI05-151: Incomplete types are allowed in all basic
1173 -- declarations, including access to subprograms.
1174
1175 if Ada_Version >= Ada_2012 then
1176 null;
1177
1178 else
1179 Error_Msg_NE
1180 ("illegal use of incomplete type&",
1181 Result_Definition (T_Def), Typ);
1182 end if;
1183
1184 elsif Ekind (Current_Scope) = E_Package
1185 and then In_Private_Part (Current_Scope)
1186 then
1187 if Ekind (Typ) = E_Incomplete_Type then
1188 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1189
1190 elsif Is_Class_Wide_Type (Typ)
1191 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1192 then
1193 Append_Elmt
1194 (Desig_Type, Private_Dependents (Etype (Typ)));
1195 end if;
1196 end if;
1197
1198 Set_Etype (Desig_Type, Typ);
1199 end if;
1200 end;
1201 end if;
1202
1203 if not (Is_Type (Etype (Desig_Type))) then
1204 Error_Msg_N
1205 ("expect type in function specification",
1206 Result_Definition (T_Def));
1207 end if;
1208
1209 else
1210 Set_Etype (Desig_Type, Standard_Void_Type);
1211 end if;
1212
1213 if Present (Formals) then
1214 Push_Scope (Desig_Type);
1215
1216 -- Some special tests here. These special tests can be removed
1217 -- if and when Itypes always have proper parent pointers to their
1218 -- declarations???
1219
1220 -- Special test 1) Link defining_identifier of formals. Required by
1221 -- First_Formal to provide its functionality.
1222
1223 declare
1224 F : Node_Id;
1225
1226 begin
1227 F := First (Formals);
1228
1229 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1230 -- when it is part of an unconstrained type and subtype expansion
1231 -- is disabled. To avoid back-end problems with shared profiles,
1232 -- use previous subprogram type as the designated type, and then
1233 -- remove scope added above.
1234
1235 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1236 then
1237 Set_Etype (T_Name, T_Name);
1238 Init_Size_Align (T_Name);
1239 Set_Directly_Designated_Type (T_Name,
1240 Scope (Defining_Identifier (F)));
1241 End_Scope;
1242 return;
1243 end if;
1244
1245 while Present (F) loop
1246 if No (Parent (Defining_Identifier (F))) then
1247 Set_Parent (Defining_Identifier (F), F);
1248 end if;
1249
1250 Next (F);
1251 end loop;
1252 end;
1253
1254 Process_Formals (Formals, Parent (T_Def));
1255
1256 -- Special test 2) End_Scope requires that the parent pointer be set
1257 -- to something reasonable, but Itypes don't have parent pointers. So
1258 -- we set it and then unset it ???
1259
1260 Set_Parent (Desig_Type, T_Name);
1261 End_Scope;
1262 Set_Parent (Desig_Type, Empty);
1263 end if;
1264
1265 -- Check for premature usage of the type being defined
1266
1267 Check_For_Premature_Usage (T_Def);
1268
1269 -- The return type and/or any parameter type may be incomplete. Mark the
1270 -- subprogram_type as depending on the incomplete type, so that it can
1271 -- be updated when the full type declaration is seen. This only applies
1272 -- to incomplete types declared in some enclosing scope, not to limited
1273 -- views from other packages.
1274
1275 -- Prior to Ada 2012, access to functions can only have in_parameters.
1276
1277 if Present (Formals) then
1278 Formal := First_Formal (Desig_Type);
1279 while Present (Formal) loop
1280 if Ekind (Formal) /= E_In_Parameter
1281 and then Nkind (T_Def) = N_Access_Function_Definition
1282 and then Ada_Version < Ada_2012
1283 then
1284 Error_Msg_N ("functions can only have IN parameters", Formal);
1285 end if;
1286
1287 if Ekind (Etype (Formal)) = E_Incomplete_Type
1288 and then In_Open_Scopes (Scope (Etype (Formal)))
1289 then
1290 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1291 Set_Has_Delayed_Freeze (Desig_Type);
1292 end if;
1293
1294 Next_Formal (Formal);
1295 end loop;
1296 end if;
1297
1298 -- Check whether an indirect call without actuals may be possible. This
1299 -- is used when resolving calls whose result is then indexed.
1300
1301 May_Need_Actuals (Desig_Type);
1302
1303 -- If the return type is incomplete, this is legal as long as the type
1304 -- is declared in the current scope and will be completed in it (rather
1305 -- than being part of limited view).
1306
1307 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1308 and then not Has_Delayed_Freeze (Desig_Type)
1309 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1310 then
1311 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1312 Set_Has_Delayed_Freeze (Desig_Type);
1313 end if;
1314
1315 Check_Delayed_Subprogram (Desig_Type);
1316
1317 if Protected_Present (T_Def) then
1318 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1319 Set_Convention (Desig_Type, Convention_Protected);
1320 else
1321 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1322 end if;
1323
1324 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1325
1326 Set_Etype (T_Name, T_Name);
1327 Init_Size_Align (T_Name);
1328 Set_Directly_Designated_Type (T_Name, Desig_Type);
1329
1330 Generate_Reference_To_Formals (T_Name);
1331
1332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1333
1334 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1335
1336 Check_Restriction (No_Access_Subprograms, T_Def);
1337 end Access_Subprogram_Declaration;
1338
1339 ----------------------------
1340 -- Access_Type_Declaration --
1341 ----------------------------
1342
1343 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1344 P : constant Node_Id := Parent (Def);
1345 S : constant Node_Id := Subtype_Indication (Def);
1346
1347 Full_Desig : Entity_Id;
1348
1349 begin
1350 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1351
1352 -- Check for permissible use of incomplete type
1353
1354 if Nkind (S) /= N_Subtype_Indication then
1355 Analyze (S);
1356
1357 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1358 Set_Directly_Designated_Type (T, Entity (S));
1359
1360 -- If the designated type is a limited view, we cannot tell if
1361 -- the full view contains tasks, and there is no way to handle
1362 -- that full view in a client. We create a master entity for the
1363 -- scope, which will be used when a client determines that one
1364 -- is needed.
1365
1366 if From_Limited_With (Entity (S))
1367 and then not Is_Class_Wide_Type (Entity (S))
1368 then
1369 Set_Ekind (T, E_Access_Type);
1370 Build_Master_Entity (T);
1371 Build_Master_Renaming (T);
1372 end if;
1373
1374 else
1375 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1376 end if;
1377
1378 -- If the access definition is of the form: ACCESS NOT NULL ..
1379 -- the subtype indication must be of an access type. Create
1380 -- a null-excluding subtype of it.
1381
1382 if Null_Excluding_Subtype (Def) then
1383 if not Is_Access_Type (Entity (S)) then
1384 Error_Msg_N ("null exclusion must apply to access type", Def);
1385
1386 else
1387 declare
1388 Loc : constant Source_Ptr := Sloc (S);
1389 Decl : Node_Id;
1390 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1391
1392 begin
1393 Decl :=
1394 Make_Subtype_Declaration (Loc,
1395 Defining_Identifier => Nam,
1396 Subtype_Indication =>
1397 New_Occurrence_Of (Entity (S), Loc));
1398 Set_Null_Exclusion_Present (Decl);
1399 Insert_Before (Parent (Def), Decl);
1400 Analyze (Decl);
1401 Set_Entity (S, Nam);
1402 end;
1403 end if;
1404 end if;
1405
1406 else
1407 Set_Directly_Designated_Type (T,
1408 Process_Subtype (S, P, T, 'P'));
1409 end if;
1410
1411 if All_Present (Def) or Constant_Present (Def) then
1412 Set_Ekind (T, E_General_Access_Type);
1413 else
1414 Set_Ekind (T, E_Access_Type);
1415 end if;
1416
1417 Full_Desig := Designated_Type (T);
1418
1419 if Base_Type (Full_Desig) = T then
1420 Error_Msg_N ("access type cannot designate itself", S);
1421
1422 -- In Ada 2005, the type may have a limited view through some unit in
1423 -- its own context, allowing the following circularity that cannot be
1424 -- detected earlier.
1425
1426 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1427 then
1428 Error_Msg_N
1429 ("access type cannot designate its own classwide type", S);
1430
1431 -- Clean up indication of tagged status to prevent cascaded errors
1432
1433 Set_Is_Tagged_Type (T, False);
1434 end if;
1435
1436 Set_Etype (T, T);
1437
1438 -- If the type has appeared already in a with_type clause, it is frozen
1439 -- and the pointer size is already set. Else, initialize.
1440
1441 if not From_Limited_With (T) then
1442 Init_Size_Align (T);
1443 end if;
1444
1445 -- Note that Has_Task is always false, since the access type itself
1446 -- is not a task type. See Einfo for more description on this point.
1447 -- Exactly the same consideration applies to Has_Controlled_Component
1448 -- and to Has_Protected.
1449
1450 Set_Has_Task (T, False);
1451 Set_Has_Controlled_Component (T, False);
1452 Set_Has_Protected (T, False);
1453
1454 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1455 -- problems where an incomplete view of this entity has been previously
1456 -- established by a limited with and an overlaid version of this field
1457 -- (Stored_Constraint) was initialized for the incomplete view.
1458
1459 -- This reset is performed in most cases except where the access type
1460 -- has been created for the purposes of allocating or deallocating a
1461 -- build-in-place object. Such access types have explicitly set pools
1462 -- and finalization masters.
1463
1464 if No (Associated_Storage_Pool (T)) then
1465 Set_Finalization_Master (T, Empty);
1466 end if;
1467
1468 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1469 -- attributes
1470
1471 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1472 Set_Is_Access_Constant (T, Constant_Present (Def));
1473 end Access_Type_Declaration;
1474
1475 ----------------------------------
1476 -- Add_Interface_Tag_Components --
1477 ----------------------------------
1478
1479 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 L : List_Id;
1482 Last_Tag : Node_Id;
1483
1484 procedure Add_Tag (Iface : Entity_Id);
1485 -- Add tag for one of the progenitor interfaces
1486
1487 -------------
1488 -- Add_Tag --
1489 -------------
1490
1491 procedure Add_Tag (Iface : Entity_Id) is
1492 Decl : Node_Id;
1493 Def : Node_Id;
1494 Tag : Entity_Id;
1495 Offset : Entity_Id;
1496
1497 begin
1498 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1499
1500 -- This is a reasonable place to propagate predicates
1501
1502 if Has_Predicates (Iface) then
1503 Set_Has_Predicates (Typ);
1504 end if;
1505
1506 Def :=
1507 Make_Component_Definition (Loc,
1508 Aliased_Present => True,
1509 Subtype_Indication =>
1510 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1511
1512 Tag := Make_Temporary (Loc, 'V');
1513
1514 Decl :=
1515 Make_Component_Declaration (Loc,
1516 Defining_Identifier => Tag,
1517 Component_Definition => Def);
1518
1519 Analyze_Component_Declaration (Decl);
1520
1521 Set_Analyzed (Decl);
1522 Set_Ekind (Tag, E_Component);
1523 Set_Is_Tag (Tag);
1524 Set_Is_Aliased (Tag);
1525 Set_Related_Type (Tag, Iface);
1526 Init_Component_Location (Tag);
1527
1528 pragma Assert (Is_Frozen (Iface));
1529
1530 Set_DT_Entry_Count (Tag,
1531 DT_Entry_Count (First_Entity (Iface)));
1532
1533 if No (Last_Tag) then
1534 Prepend (Decl, L);
1535 else
1536 Insert_After (Last_Tag, Decl);
1537 end if;
1538
1539 Last_Tag := Decl;
1540
1541 -- If the ancestor has discriminants we need to give special support
1542 -- to store the offset_to_top value of the secondary dispatch tables.
1543 -- For this purpose we add a supplementary component just after the
1544 -- field that contains the tag associated with each secondary DT.
1545
1546 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1547 Def :=
1548 Make_Component_Definition (Loc,
1549 Subtype_Indication =>
1550 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1551
1552 Offset := Make_Temporary (Loc, 'V');
1553
1554 Decl :=
1555 Make_Component_Declaration (Loc,
1556 Defining_Identifier => Offset,
1557 Component_Definition => Def);
1558
1559 Analyze_Component_Declaration (Decl);
1560
1561 Set_Analyzed (Decl);
1562 Set_Ekind (Offset, E_Component);
1563 Set_Is_Aliased (Offset);
1564 Set_Related_Type (Offset, Iface);
1565 Init_Component_Location (Offset);
1566 Insert_After (Last_Tag, Decl);
1567 Last_Tag := Decl;
1568 end if;
1569 end Add_Tag;
1570
1571 -- Local variables
1572
1573 Elmt : Elmt_Id;
1574 Ext : Node_Id;
1575 Comp : Node_Id;
1576
1577 -- Start of processing for Add_Interface_Tag_Components
1578
1579 begin
1580 if not RTE_Available (RE_Interface_Tag) then
1581 Error_Msg
1582 ("(Ada 2005) interface types not supported by this run-time!",
1583 Sloc (N));
1584 return;
1585 end if;
1586
1587 if Ekind (Typ) /= E_Record_Type
1588 or else (Is_Concurrent_Record_Type (Typ)
1589 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1590 or else (not Is_Concurrent_Record_Type (Typ)
1591 and then No (Interfaces (Typ))
1592 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1593 then
1594 return;
1595 end if;
1596
1597 -- Find the current last tag
1598
1599 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1600 Ext := Record_Extension_Part (Type_Definition (N));
1601 else
1602 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1603 Ext := Type_Definition (N);
1604 end if;
1605
1606 Last_Tag := Empty;
1607
1608 if not (Present (Component_List (Ext))) then
1609 Set_Null_Present (Ext, False);
1610 L := New_List;
1611 Set_Component_List (Ext,
1612 Make_Component_List (Loc,
1613 Component_Items => L,
1614 Null_Present => False));
1615 else
1616 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1617 L := Component_Items
1618 (Component_List
1619 (Record_Extension_Part
1620 (Type_Definition (N))));
1621 else
1622 L := Component_Items
1623 (Component_List
1624 (Type_Definition (N)));
1625 end if;
1626
1627 -- Find the last tag component
1628
1629 Comp := First (L);
1630 while Present (Comp) loop
1631 if Nkind (Comp) = N_Component_Declaration
1632 and then Is_Tag (Defining_Identifier (Comp))
1633 then
1634 Last_Tag := Comp;
1635 end if;
1636
1637 Next (Comp);
1638 end loop;
1639 end if;
1640
1641 -- At this point L references the list of components and Last_Tag
1642 -- references the current last tag (if any). Now we add the tag
1643 -- corresponding with all the interfaces that are not implemented
1644 -- by the parent.
1645
1646 if Present (Interfaces (Typ)) then
1647 Elmt := First_Elmt (Interfaces (Typ));
1648 while Present (Elmt) loop
1649 Add_Tag (Node (Elmt));
1650 Next_Elmt (Elmt);
1651 end loop;
1652 end if;
1653 end Add_Interface_Tag_Components;
1654
1655 -------------------------------------
1656 -- Add_Internal_Interface_Entities --
1657 -------------------------------------
1658
1659 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1660 Elmt : Elmt_Id;
1661 Iface : Entity_Id;
1662 Iface_Elmt : Elmt_Id;
1663 Iface_Prim : Entity_Id;
1664 Ifaces_List : Elist_Id;
1665 New_Subp : Entity_Id := Empty;
1666 Prim : Entity_Id;
1667 Restore_Scope : Boolean := False;
1668
1669 begin
1670 pragma Assert (Ada_Version >= Ada_2005
1671 and then Is_Record_Type (Tagged_Type)
1672 and then Is_Tagged_Type (Tagged_Type)
1673 and then Has_Interfaces (Tagged_Type)
1674 and then not Is_Interface (Tagged_Type));
1675
1676 -- Ensure that the internal entities are added to the scope of the type
1677
1678 if Scope (Tagged_Type) /= Current_Scope then
1679 Push_Scope (Scope (Tagged_Type));
1680 Restore_Scope := True;
1681 end if;
1682
1683 Collect_Interfaces (Tagged_Type, Ifaces_List);
1684
1685 Iface_Elmt := First_Elmt (Ifaces_List);
1686 while Present (Iface_Elmt) loop
1687 Iface := Node (Iface_Elmt);
1688
1689 -- Originally we excluded here from this processing interfaces that
1690 -- are parents of Tagged_Type because their primitives are located
1691 -- in the primary dispatch table (and hence no auxiliary internal
1692 -- entities are required to handle secondary dispatch tables in such
1693 -- case). However, these auxiliary entities are also required to
1694 -- handle derivations of interfaces in formals of generics (see
1695 -- Derive_Subprograms).
1696
1697 Elmt := First_Elmt (Primitive_Operations (Iface));
1698 while Present (Elmt) loop
1699 Iface_Prim := Node (Elmt);
1700
1701 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1702 Prim :=
1703 Find_Primitive_Covering_Interface
1704 (Tagged_Type => Tagged_Type,
1705 Iface_Prim => Iface_Prim);
1706
1707 if No (Prim) and then Serious_Errors_Detected > 0 then
1708 goto Continue;
1709 end if;
1710
1711 pragma Assert (Present (Prim));
1712
1713 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1714 -- differs from the name of the interface primitive then it is
1715 -- a private primitive inherited from a parent type. In such
1716 -- case, given that Tagged_Type covers the interface, the
1717 -- inherited private primitive becomes visible. For such
1718 -- purpose we add a new entity that renames the inherited
1719 -- private primitive.
1720
1721 if Chars (Prim) /= Chars (Iface_Prim) then
1722 pragma Assert (Has_Suffix (Prim, 'P'));
1723 Derive_Subprogram
1724 (New_Subp => New_Subp,
1725 Parent_Subp => Iface_Prim,
1726 Derived_Type => Tagged_Type,
1727 Parent_Type => Iface);
1728 Set_Alias (New_Subp, Prim);
1729 Set_Is_Abstract_Subprogram
1730 (New_Subp, Is_Abstract_Subprogram (Prim));
1731 end if;
1732
1733 Derive_Subprogram
1734 (New_Subp => New_Subp,
1735 Parent_Subp => Iface_Prim,
1736 Derived_Type => Tagged_Type,
1737 Parent_Type => Iface);
1738
1739 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1740 -- associated with interface types. These entities are
1741 -- only registered in the list of primitives of its
1742 -- corresponding tagged type because they are only used
1743 -- to fill the contents of the secondary dispatch tables.
1744 -- Therefore they are removed from the homonym chains.
1745
1746 Set_Is_Hidden (New_Subp);
1747 Set_Is_Internal (New_Subp);
1748 Set_Alias (New_Subp, Prim);
1749 Set_Is_Abstract_Subprogram
1750 (New_Subp, Is_Abstract_Subprogram (Prim));
1751 Set_Interface_Alias (New_Subp, Iface_Prim);
1752
1753 -- If the returned type is an interface then propagate it to
1754 -- the returned type. Needed by the thunk to generate the code
1755 -- which displaces "this" to reference the corresponding
1756 -- secondary dispatch table in the returned object.
1757
1758 if Is_Interface (Etype (Iface_Prim)) then
1759 Set_Etype (New_Subp, Etype (Iface_Prim));
1760 end if;
1761
1762 -- Internal entities associated with interface types are
1763 -- only registered in the list of primitives of the tagged
1764 -- type. They are only used to fill the contents of the
1765 -- secondary dispatch tables. Therefore they are not needed
1766 -- in the homonym chains.
1767
1768 Remove_Homonym (New_Subp);
1769
1770 -- Hidden entities associated with interfaces must have set
1771 -- the Has_Delay_Freeze attribute to ensure that, in case of
1772 -- locally defined tagged types (or compiling with static
1773 -- dispatch tables generation disabled) the corresponding
1774 -- entry of the secondary dispatch table is filled when
1775 -- such an entity is frozen.
1776
1777 Set_Has_Delayed_Freeze (New_Subp);
1778 end if;
1779
1780 <<Continue>>
1781 Next_Elmt (Elmt);
1782 end loop;
1783
1784 Next_Elmt (Iface_Elmt);
1785 end loop;
1786
1787 if Restore_Scope then
1788 Pop_Scope;
1789 end if;
1790 end Add_Internal_Interface_Entities;
1791
1792 -----------------------------------
1793 -- Analyze_Component_Declaration --
1794 -----------------------------------
1795
1796 procedure Analyze_Component_Declaration (N : Node_Id) is
1797 Id : constant Entity_Id := Defining_Identifier (N);
1798 E : constant Node_Id := Expression (N);
1799 Typ : constant Node_Id :=
1800 Subtype_Indication (Component_Definition (N));
1801 T : Entity_Id;
1802 P : Entity_Id;
1803
1804 function Contains_POC (Constr : Node_Id) return Boolean;
1805 -- Determines whether a constraint uses the discriminant of a record
1806 -- type thus becoming a per-object constraint (POC).
1807
1808 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1809 -- Typ is the type of the current component, check whether this type is
1810 -- a limited type. Used to validate declaration against that of
1811 -- enclosing record.
1812
1813 ------------------
1814 -- Contains_POC --
1815 ------------------
1816
1817 function Contains_POC (Constr : Node_Id) return Boolean is
1818 begin
1819 -- Prevent cascaded errors
1820
1821 if Error_Posted (Constr) then
1822 return False;
1823 end if;
1824
1825 case Nkind (Constr) is
1826 when N_Attribute_Reference =>
1827 return Attribute_Name (Constr) = Name_Access
1828 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1829
1830 when N_Discriminant_Association =>
1831 return Denotes_Discriminant (Expression (Constr));
1832
1833 when N_Identifier =>
1834 return Denotes_Discriminant (Constr);
1835
1836 when N_Index_Or_Discriminant_Constraint =>
1837 declare
1838 IDC : Node_Id;
1839
1840 begin
1841 IDC := First (Constraints (Constr));
1842 while Present (IDC) loop
1843
1844 -- One per-object constraint is sufficient
1845
1846 if Contains_POC (IDC) then
1847 return True;
1848 end if;
1849
1850 Next (IDC);
1851 end loop;
1852
1853 return False;
1854 end;
1855
1856 when N_Range =>
1857 return Denotes_Discriminant (Low_Bound (Constr))
1858 or else
1859 Denotes_Discriminant (High_Bound (Constr));
1860
1861 when N_Range_Constraint =>
1862 return Denotes_Discriminant (Range_Expression (Constr));
1863
1864 when others =>
1865 return False;
1866
1867 end case;
1868 end Contains_POC;
1869
1870 ----------------------
1871 -- Is_Known_Limited --
1872 ----------------------
1873
1874 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1875 P : constant Entity_Id := Etype (Typ);
1876 R : constant Entity_Id := Root_Type (Typ);
1877
1878 begin
1879 if Is_Limited_Record (Typ) then
1880 return True;
1881
1882 -- If the root type is limited (and not a limited interface)
1883 -- so is the current type
1884
1885 elsif Is_Limited_Record (R)
1886 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1887 then
1888 return True;
1889
1890 -- Else the type may have a limited interface progenitor, but a
1891 -- limited record parent.
1892
1893 elsif R /= P and then Is_Limited_Record (P) then
1894 return True;
1895
1896 else
1897 return False;
1898 end if;
1899 end Is_Known_Limited;
1900
1901 -- Start of processing for Analyze_Component_Declaration
1902
1903 begin
1904 Generate_Definition (Id);
1905 Enter_Name (Id);
1906
1907 if Present (Typ) then
1908 T := Find_Type_Of_Object
1909 (Subtype_Indication (Component_Definition (N)), N);
1910
1911 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1912 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1913 end if;
1914
1915 -- Ada 2005 (AI-230): Access Definition case
1916
1917 else
1918 pragma Assert (Present
1919 (Access_Definition (Component_Definition (N))));
1920
1921 T := Access_Definition
1922 (Related_Nod => N,
1923 N => Access_Definition (Component_Definition (N)));
1924 Set_Is_Local_Anonymous_Access (T);
1925
1926 -- Ada 2005 (AI-254)
1927
1928 if Present (Access_To_Subprogram_Definition
1929 (Access_Definition (Component_Definition (N))))
1930 and then Protected_Present (Access_To_Subprogram_Definition
1931 (Access_Definition
1932 (Component_Definition (N))))
1933 then
1934 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1935 end if;
1936 end if;
1937
1938 -- If the subtype is a constrained subtype of the enclosing record,
1939 -- (which must have a partial view) the back-end does not properly
1940 -- handle the recursion. Rewrite the component declaration with an
1941 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1942 -- the tree directly because side effects have already been removed from
1943 -- discriminant constraints.
1944
1945 if Ekind (T) = E_Access_Subtype
1946 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1947 and then Comes_From_Source (T)
1948 and then Nkind (Parent (T)) = N_Subtype_Declaration
1949 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1950 then
1951 Rewrite
1952 (Subtype_Indication (Component_Definition (N)),
1953 New_Copy_Tree (Subtype_Indication (Parent (T))));
1954 T := Find_Type_Of_Object
1955 (Subtype_Indication (Component_Definition (N)), N);
1956 end if;
1957
1958 -- If the component declaration includes a default expression, then we
1959 -- check that the component is not of a limited type (RM 3.7(5)),
1960 -- and do the special preanalysis of the expression (see section on
1961 -- "Handling of Default and Per-Object Expressions" in the spec of
1962 -- package Sem).
1963
1964 if Present (E) then
1965 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1966 Preanalyze_Default_Expression (E, T);
1967 Check_Initialization (T, E);
1968
1969 if Ada_Version >= Ada_2005
1970 and then Ekind (T) = E_Anonymous_Access_Type
1971 and then Etype (E) /= Any_Type
1972 then
1973 -- Check RM 3.9.2(9): "if the expected type for an expression is
1974 -- an anonymous access-to-specific tagged type, then the object
1975 -- designated by the expression shall not be dynamically tagged
1976 -- unless it is a controlling operand in a call on a dispatching
1977 -- operation"
1978
1979 if Is_Tagged_Type (Directly_Designated_Type (T))
1980 and then
1981 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1982 and then
1983 Ekind (Directly_Designated_Type (Etype (E))) =
1984 E_Class_Wide_Type
1985 then
1986 Error_Msg_N
1987 ("access to specific tagged type required (RM 3.9.2(9))", E);
1988 end if;
1989
1990 -- (Ada 2005: AI-230): Accessibility check for anonymous
1991 -- components
1992
1993 if Type_Access_Level (Etype (E)) >
1994 Deepest_Type_Access_Level (T)
1995 then
1996 Error_Msg_N
1997 ("expression has deeper access level than component " &
1998 "(RM 3.10.2 (12.2))", E);
1999 end if;
2000
2001 -- The initialization expression is a reference to an access
2002 -- discriminant. The type of the discriminant is always deeper
2003 -- than any access type.
2004
2005 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2006 and then Is_Entity_Name (E)
2007 and then Ekind (Entity (E)) = E_In_Parameter
2008 and then Present (Discriminal_Link (Entity (E)))
2009 then
2010 Error_Msg_N
2011 ("discriminant has deeper accessibility level than target",
2012 E);
2013 end if;
2014 end if;
2015 end if;
2016
2017 -- The parent type may be a private view with unknown discriminants,
2018 -- and thus unconstrained. Regular components must be constrained.
2019
2020 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2021 if Is_Class_Wide_Type (T) then
2022 Error_Msg_N
2023 ("class-wide subtype with unknown discriminants" &
2024 " in component declaration",
2025 Subtype_Indication (Component_Definition (N)));
2026 else
2027 Error_Msg_N
2028 ("unconstrained subtype in component declaration",
2029 Subtype_Indication (Component_Definition (N)));
2030 end if;
2031
2032 -- Components cannot be abstract, except for the special case of
2033 -- the _Parent field (case of extending an abstract tagged type)
2034
2035 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2036 Error_Msg_N ("type of a component cannot be abstract", N);
2037 end if;
2038
2039 Set_Etype (Id, T);
2040 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2041
2042 -- The component declaration may have a per-object constraint, set
2043 -- the appropriate flag in the defining identifier of the subtype.
2044
2045 if Present (Subtype_Indication (Component_Definition (N))) then
2046 declare
2047 Sindic : constant Node_Id :=
2048 Subtype_Indication (Component_Definition (N));
2049 begin
2050 if Nkind (Sindic) = N_Subtype_Indication
2051 and then Present (Constraint (Sindic))
2052 and then Contains_POC (Constraint (Sindic))
2053 then
2054 Set_Has_Per_Object_Constraint (Id);
2055 end if;
2056 end;
2057 end if;
2058
2059 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2060 -- out some static checks.
2061
2062 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2063 Null_Exclusion_Static_Checks (N);
2064 end if;
2065
2066 -- If this component is private (or depends on a private type), flag the
2067 -- record type to indicate that some operations are not available.
2068
2069 P := Private_Component (T);
2070
2071 if Present (P) then
2072
2073 -- Check for circular definitions
2074
2075 if P = Any_Type then
2076 Set_Etype (Id, Any_Type);
2077
2078 -- There is a gap in the visibility of operations only if the
2079 -- component type is not defined in the scope of the record type.
2080
2081 elsif Scope (P) = Scope (Current_Scope) then
2082 null;
2083
2084 elsif Is_Limited_Type (P) then
2085 Set_Is_Limited_Composite (Current_Scope);
2086
2087 else
2088 Set_Is_Private_Composite (Current_Scope);
2089 end if;
2090 end if;
2091
2092 if P /= Any_Type
2093 and then Is_Limited_Type (T)
2094 and then Chars (Id) /= Name_uParent
2095 and then Is_Tagged_Type (Current_Scope)
2096 then
2097 if Is_Derived_Type (Current_Scope)
2098 and then not Is_Known_Limited (Current_Scope)
2099 then
2100 Error_Msg_N
2101 ("extension of nonlimited type cannot have limited components",
2102 N);
2103
2104 if Is_Interface (Root_Type (Current_Scope)) then
2105 Error_Msg_N
2106 ("\limitedness is not inherited from limited interface", N);
2107 Error_Msg_N ("\add LIMITED to type indication", N);
2108 end if;
2109
2110 Explain_Limited_Type (T, N);
2111 Set_Etype (Id, Any_Type);
2112 Set_Is_Limited_Composite (Current_Scope, False);
2113
2114 elsif not Is_Derived_Type (Current_Scope)
2115 and then not Is_Limited_Record (Current_Scope)
2116 and then not Is_Concurrent_Type (Current_Scope)
2117 then
2118 Error_Msg_N
2119 ("nonlimited tagged type cannot have limited components", N);
2120 Explain_Limited_Type (T, N);
2121 Set_Etype (Id, Any_Type);
2122 Set_Is_Limited_Composite (Current_Scope, False);
2123 end if;
2124 end if;
2125
2126 Set_Original_Record_Component (Id, Id);
2127
2128 if Has_Aspects (N) then
2129 Analyze_Aspect_Specifications (N, Id);
2130 end if;
2131
2132 Analyze_Dimension (N);
2133 end Analyze_Component_Declaration;
2134
2135 --------------------------
2136 -- Analyze_Declarations --
2137 --------------------------
2138
2139 procedure Analyze_Declarations (L : List_Id) is
2140 Decl : Node_Id;
2141
2142 procedure Adjust_Decl;
2143 -- Adjust Decl not to include implicit label declarations, since these
2144 -- have strange Sloc values that result in elaboration check problems.
2145 -- (They have the sloc of the label as found in the source, and that
2146 -- is ahead of the current declarative part).
2147
2148 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2149 -- Determine whether Body_Decl denotes the body of a late controlled
2150 -- primitive (either Initialize, Adjust or Finalize). If this is the
2151 -- case, add a proper spec if the body lacks one. The spec is inserted
2152 -- before Body_Decl and immedately analyzed.
2153
2154 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2155 -- Spec_Id is the entity of a package that may define abstract states.
2156 -- If the states have visible refinement, remove the visibility of each
2157 -- constituent at the end of the package body declarations.
2158
2159 -----------------
2160 -- Adjust_Decl --
2161 -----------------
2162
2163 procedure Adjust_Decl is
2164 begin
2165 while Present (Prev (Decl))
2166 and then Nkind (Decl) = N_Implicit_Label_Declaration
2167 loop
2168 Prev (Decl);
2169 end loop;
2170 end Adjust_Decl;
2171
2172 --------------------------------------
2173 -- Handle_Late_Controlled_Primitive --
2174 --------------------------------------
2175
2176 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2177 Body_Spec : constant Node_Id := Specification (Body_Decl);
2178 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2179 Loc : constant Source_Ptr := Sloc (Body_Id);
2180 Params : constant List_Id :=
2181 Parameter_Specifications (Body_Spec);
2182 Spec : Node_Id;
2183 Spec_Id : Entity_Id;
2184 Typ : Node_Id;
2185
2186 begin
2187 -- Consider only procedure bodies whose name matches one of the three
2188 -- controlled primitives.
2189
2190 if Nkind (Body_Spec) /= N_Procedure_Specification
2191 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2192 Name_Finalize,
2193 Name_Initialize)
2194 then
2195 return;
2196
2197 -- A controlled primitive must have exactly one formal which is not
2198 -- an anonymous access type.
2199
2200 elsif List_Length (Params) /= 1 then
2201 return;
2202 end if;
2203
2204 Typ := Parameter_Type (First (Params));
2205
2206 if Nkind (Typ) = N_Access_Definition then
2207 return;
2208 end if;
2209
2210 Find_Type (Typ);
2211
2212 -- The type of the formal must be derived from [Limited_]Controlled
2213
2214 if not Is_Controlled (Entity (Typ)) then
2215 return;
2216 end if;
2217
2218 -- Check whether a specification exists for this body. We do not
2219 -- analyze the spec of the body in full, because it will be analyzed
2220 -- again when the body is properly analyzed, and we cannot create
2221 -- duplicate entries in the formals chain. We look for an explicit
2222 -- specification because the body may be an overriding operation and
2223 -- an inherited spec may be present.
2224
2225 Spec_Id := Current_Entity (Body_Id);
2226
2227 while Present (Spec_Id) loop
2228 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2229 and then Scope (Spec_Id) = Current_Scope
2230 and then Present (First_Formal (Spec_Id))
2231 and then No (Next_Formal (First_Formal (Spec_Id)))
2232 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2233 and then Comes_From_Source (Spec_Id)
2234 then
2235 return;
2236 end if;
2237
2238 Spec_Id := Homonym (Spec_Id);
2239 end loop;
2240
2241 -- At this point the body is known to be a late controlled primitive.
2242 -- Generate a matching spec and insert it before the body. Note the
2243 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2244 -- tree in this case.
2245
2246 Spec := Copy_Separate_Tree (Body_Spec);
2247
2248 -- Ensure that the subprogram declaration does not inherit the null
2249 -- indicator from the body as we now have a proper spec/body pair.
2250
2251 Set_Null_Present (Spec, False);
2252
2253 Insert_Before_And_Analyze (Body_Decl,
2254 Make_Subprogram_Declaration (Loc, Specification => Spec));
2255 end Handle_Late_Controlled_Primitive;
2256
2257 --------------------------------
2258 -- Remove_Visible_Refinements --
2259 --------------------------------
2260
2261 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2262 State_Elmt : Elmt_Id;
2263 begin
2264 if Present (Abstract_States (Spec_Id)) then
2265 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2266 while Present (State_Elmt) loop
2267 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2268 Next_Elmt (State_Elmt);
2269 end loop;
2270 end if;
2271 end Remove_Visible_Refinements;
2272
2273 -- Local variables
2274
2275 Context : Node_Id;
2276 Freeze_From : Entity_Id := Empty;
2277 Next_Decl : Node_Id;
2278 Spec_Id : Entity_Id;
2279
2280 Body_Seen : Boolean := False;
2281 -- Flag set when the first body [stub] is encountered
2282
2283 In_Package_Body : Boolean := False;
2284 -- Flag set when the current declaration list belongs to a package body
2285
2286 -- Start of processing for Analyze_Declarations
2287
2288 begin
2289 if Restriction_Check_Required (SPARK_05) then
2290 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2291 end if;
2292
2293 Decl := First (L);
2294 while Present (Decl) loop
2295
2296 -- Package spec cannot contain a package declaration in SPARK
2297
2298 if Nkind (Decl) = N_Package_Declaration
2299 and then Nkind (Parent (L)) = N_Package_Specification
2300 then
2301 Check_SPARK_05_Restriction
2302 ("package specification cannot contain a package declaration",
2303 Decl);
2304 end if;
2305
2306 -- Complete analysis of declaration
2307
2308 Analyze (Decl);
2309 Next_Decl := Next (Decl);
2310
2311 if No (Freeze_From) then
2312 Freeze_From := First_Entity (Current_Scope);
2313 end if;
2314
2315 -- At the end of a declarative part, freeze remaining entities
2316 -- declared in it. The end of the visible declarations of package
2317 -- specification is not the end of a declarative part if private
2318 -- declarations are present. The end of a package declaration is a
2319 -- freezing point only if it a library package. A task definition or
2320 -- protected type definition is not a freeze point either. Finally,
2321 -- we do not freeze entities in generic scopes, because there is no
2322 -- code generated for them and freeze nodes will be generated for
2323 -- the instance.
2324
2325 -- The end of a package instantiation is not a freeze point, but
2326 -- for now we make it one, because the generic body is inserted
2327 -- (currently) immediately after. Generic instantiations will not
2328 -- be a freeze point once delayed freezing of bodies is implemented.
2329 -- (This is needed in any case for early instantiations ???).
2330
2331 if No (Next_Decl) then
2332 if Nkind_In (Parent (L), N_Component_List,
2333 N_Task_Definition,
2334 N_Protected_Definition)
2335 then
2336 null;
2337
2338 elsif Nkind (Parent (L)) /= N_Package_Specification then
2339 if Nkind (Parent (L)) = N_Package_Body then
2340 Freeze_From := First_Entity (Current_Scope);
2341 end if;
2342
2343 -- There may have been several freezing points previously,
2344 -- for example object declarations or subprogram bodies, but
2345 -- at the end of a declarative part we check freezing from
2346 -- the beginning, even though entities may already be frozen,
2347 -- in order to perform visibility checks on delayed aspects.
2348
2349 Adjust_Decl;
2350 Freeze_All (First_Entity (Current_Scope), Decl);
2351 Freeze_From := Last_Entity (Current_Scope);
2352
2353 elsif Scope (Current_Scope) /= Standard_Standard
2354 and then not Is_Child_Unit (Current_Scope)
2355 and then No (Generic_Parent (Parent (L)))
2356 then
2357 null;
2358
2359 elsif L /= Visible_Declarations (Parent (L))
2360 or else No (Private_Declarations (Parent (L)))
2361 or else Is_Empty_List (Private_Declarations (Parent (L)))
2362 then
2363 Adjust_Decl;
2364 Freeze_All (First_Entity (Current_Scope), Decl);
2365 Freeze_From := Last_Entity (Current_Scope);
2366 end if;
2367
2368 -- If next node is a body then freeze all types before the body.
2369 -- An exception occurs for some expander-generated bodies. If these
2370 -- are generated at places where in general language rules would not
2371 -- allow a freeze point, then we assume that the expander has
2372 -- explicitly checked that all required types are properly frozen,
2373 -- and we do not cause general freezing here. This special circuit
2374 -- is used when the encountered body is marked as having already
2375 -- been analyzed.
2376
2377 -- In all other cases (bodies that come from source, and expander
2378 -- generated bodies that have not been analyzed yet), freeze all
2379 -- types now. Note that in the latter case, the expander must take
2380 -- care to attach the bodies at a proper place in the tree so as to
2381 -- not cause unwanted freezing at that point.
2382
2383 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2384
2385 -- When a controlled type is frozen, the expander generates stream
2386 -- and controlled type support routines. If the freeze is caused
2387 -- by the stand alone body of Initialize, Adjust and Finalize, the
2388 -- expander will end up using the wrong version of these routines
2389 -- as the body has not been processed yet. To remedy this, detect
2390 -- a late controlled primitive and create a proper spec for it.
2391 -- This ensures that the primitive will override its inherited
2392 -- counterpart before the freeze takes place.
2393
2394 -- If the declaration we just processed is a body, do not attempt
2395 -- to examine Next_Decl as the late primitive idiom can only apply
2396 -- to the first encountered body.
2397
2398 -- The spec of the late primitive is not generated in ASIS mode to
2399 -- ensure a consistent list of primitives that indicates the true
2400 -- semantic structure of the program (which is not relevant when
2401 -- generating executable code.
2402
2403 -- ??? a cleaner approach may be possible and/or this solution
2404 -- could be extended to general-purpose late primitives, TBD.
2405
2406 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2407 then
2408 Body_Seen := True;
2409
2410 if Nkind (Next_Decl) = N_Subprogram_Body then
2411 Handle_Late_Controlled_Primitive (Next_Decl);
2412 end if;
2413 end if;
2414
2415 Adjust_Decl;
2416 Freeze_All (Freeze_From, Decl);
2417 Freeze_From := Last_Entity (Current_Scope);
2418 end if;
2419
2420 Decl := Next_Decl;
2421 end loop;
2422
2423 -- Analyze the contracts of packages and their bodies
2424
2425 if Present (L) then
2426 Context := Parent (L);
2427
2428 if Nkind (Context) = N_Package_Specification then
2429
2430 -- When a package has private declarations, its contract must be
2431 -- analyzed at the end of the said declarations. This way both the
2432 -- analysis and freeze actions are properly synchronized in case
2433 -- of private type use within the contract.
2434
2435 if L = Private_Declarations (Context) then
2436 Analyze_Package_Contract (Defining_Entity (Context));
2437
2438 -- Build the bodies of the default initial condition procedures
2439 -- for all types subject to pragma Default_Initial_Condition.
2440 -- From a purely Ada stand point, this is a freezing activity,
2441 -- however freezing is not available under GNATprove_Mode. To
2442 -- accomodate both scenarios, the bodies are build at the end
2443 -- of private declaration analysis.
2444
2445 Build_Default_Init_Cond_Procedure_Bodies (L);
2446
2447 -- Otherwise the contract is analyzed at the end of the visible
2448 -- declarations.
2449
2450 elsif L = Visible_Declarations (Context)
2451 and then No (Private_Declarations (Context))
2452 then
2453 Analyze_Package_Contract (Defining_Entity (Context));
2454 end if;
2455
2456 elsif Nkind (Context) = N_Package_Body then
2457 In_Package_Body := True;
2458 Spec_Id := Corresponding_Spec (Context);
2459
2460 Analyze_Package_Body_Contract (Defining_Entity (Context));
2461 end if;
2462 end if;
2463
2464 -- Analyze the contracts of subprogram declarations, subprogram bodies
2465 -- and variables now due to the delayed visibility requirements of their
2466 -- aspects.
2467
2468 Decl := First (L);
2469 while Present (Decl) loop
2470 if Nkind (Decl) = N_Object_Declaration then
2471 Analyze_Object_Contract (Defining_Entity (Decl));
2472
2473 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2474 N_Generic_Subprogram_Declaration,
2475 N_Subprogram_Declaration)
2476 then
2477 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2478
2479 elsif Nkind (Decl) = N_Subprogram_Body then
2480 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2481
2482 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2483 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2484 end if;
2485
2486 Next (Decl);
2487 end loop;
2488
2489 -- State refinements are visible upto the end the of the package body
2490 -- declarations. Hide the refinements from visibility to restore the
2491 -- original state conditions.
2492
2493 if In_Package_Body then
2494 Remove_Visible_Refinements (Spec_Id);
2495 end if;
2496 end Analyze_Declarations;
2497
2498 -----------------------------------
2499 -- Analyze_Full_Type_Declaration --
2500 -----------------------------------
2501
2502 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2503 Def : constant Node_Id := Type_Definition (N);
2504 Def_Id : constant Entity_Id := Defining_Identifier (N);
2505 T : Entity_Id;
2506 Prev : Entity_Id;
2507
2508 Is_Remote : constant Boolean :=
2509 (Is_Remote_Types (Current_Scope)
2510 or else Is_Remote_Call_Interface (Current_Scope))
2511 and then not (In_Private_Part (Current_Scope)
2512 or else In_Package_Body (Current_Scope));
2513
2514 procedure Check_Ops_From_Incomplete_Type;
2515 -- If there is a tagged incomplete partial view of the type, traverse
2516 -- the primitives of the incomplete view and change the type of any
2517 -- controlling formals and result to indicate the full view. The
2518 -- primitives will be added to the full type's primitive operations
2519 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2520 -- is called from Process_Incomplete_Dependents).
2521
2522 ------------------------------------
2523 -- Check_Ops_From_Incomplete_Type --
2524 ------------------------------------
2525
2526 procedure Check_Ops_From_Incomplete_Type is
2527 Elmt : Elmt_Id;
2528 Formal : Entity_Id;
2529 Op : Entity_Id;
2530
2531 begin
2532 if Prev /= T
2533 and then Ekind (Prev) = E_Incomplete_Type
2534 and then Is_Tagged_Type (Prev)
2535 and then Is_Tagged_Type (T)
2536 then
2537 Elmt := First_Elmt (Primitive_Operations (Prev));
2538 while Present (Elmt) loop
2539 Op := Node (Elmt);
2540
2541 Formal := First_Formal (Op);
2542 while Present (Formal) loop
2543 if Etype (Formal) = Prev then
2544 Set_Etype (Formal, T);
2545 end if;
2546
2547 Next_Formal (Formal);
2548 end loop;
2549
2550 if Etype (Op) = Prev then
2551 Set_Etype (Op, T);
2552 end if;
2553
2554 Next_Elmt (Elmt);
2555 end loop;
2556 end if;
2557 end Check_Ops_From_Incomplete_Type;
2558
2559 -- Start of processing for Analyze_Full_Type_Declaration
2560
2561 begin
2562 Prev := Find_Type_Name (N);
2563
2564 -- The type declaration may be subject to pragma Ghost with policy
2565 -- Ignore. Set the mode now to ensure that any nodes generated during
2566 -- analysis and expansion are properly flagged as ignored Ghost.
2567
2568 Set_Ghost_Mode (N, Prev);
2569
2570 -- The full view, if present, now points to the current type. If there
2571 -- is an incomplete partial view, set a link to it, to simplify the
2572 -- retrieval of primitive operations of the type.
2573
2574 -- Ada 2005 (AI-50217): If the type was previously decorated when
2575 -- imported through a LIMITED WITH clause, it appears as incomplete
2576 -- but has no full view.
2577
2578 if Ekind (Prev) = E_Incomplete_Type
2579 and then Present (Full_View (Prev))
2580 then
2581 T := Full_View (Prev);
2582 Set_Incomplete_View (N, Parent (Prev));
2583 else
2584 T := Prev;
2585 end if;
2586
2587 Set_Is_Pure (T, Is_Pure (Current_Scope));
2588
2589 -- We set the flag Is_First_Subtype here. It is needed to set the
2590 -- corresponding flag for the Implicit class-wide-type created
2591 -- during tagged types processing.
2592
2593 Set_Is_First_Subtype (T, True);
2594
2595 -- Only composite types other than array types are allowed to have
2596 -- discriminants.
2597
2598 case Nkind (Def) is
2599
2600 -- For derived types, the rule will be checked once we've figured
2601 -- out the parent type.
2602
2603 when N_Derived_Type_Definition =>
2604 null;
2605
2606 -- For record types, discriminants are allowed, unless we are in
2607 -- SPARK.
2608
2609 when N_Record_Definition =>
2610 if Present (Discriminant_Specifications (N)) then
2611 Check_SPARK_05_Restriction
2612 ("discriminant type is not allowed",
2613 Defining_Identifier
2614 (First (Discriminant_Specifications (N))));
2615 end if;
2616
2617 when others =>
2618 if Present (Discriminant_Specifications (N)) then
2619 Error_Msg_N
2620 ("elementary or array type cannot have discriminants",
2621 Defining_Identifier
2622 (First (Discriminant_Specifications (N))));
2623 end if;
2624 end case;
2625
2626 -- Elaborate the type definition according to kind, and generate
2627 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2628 -- already done (this happens during the reanalysis that follows a call
2629 -- to the high level optimizer).
2630
2631 if not Analyzed (T) then
2632 Set_Analyzed (T);
2633
2634 case Nkind (Def) is
2635 when N_Access_To_Subprogram_Definition =>
2636 Access_Subprogram_Declaration (T, Def);
2637
2638 -- If this is a remote access to subprogram, we must create the
2639 -- equivalent fat pointer type, and related subprograms.
2640
2641 if Is_Remote then
2642 Process_Remote_AST_Declaration (N);
2643 end if;
2644
2645 -- Validate categorization rule against access type declaration
2646 -- usually a violation in Pure unit, Shared_Passive unit.
2647
2648 Validate_Access_Type_Declaration (T, N);
2649
2650 when N_Access_To_Object_Definition =>
2651 Access_Type_Declaration (T, Def);
2652
2653 -- Validate categorization rule against access type declaration
2654 -- usually a violation in Pure unit, Shared_Passive unit.
2655
2656 Validate_Access_Type_Declaration (T, N);
2657
2658 -- If we are in a Remote_Call_Interface package and define a
2659 -- RACW, then calling stubs and specific stream attributes
2660 -- must be added.
2661
2662 if Is_Remote
2663 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2664 then
2665 Add_RACW_Features (Def_Id);
2666 end if;
2667
2668 when N_Array_Type_Definition =>
2669 Array_Type_Declaration (T, Def);
2670
2671 when N_Derived_Type_Definition =>
2672 Derived_Type_Declaration (T, N, T /= Def_Id);
2673
2674 when N_Enumeration_Type_Definition =>
2675 Enumeration_Type_Declaration (T, Def);
2676
2677 when N_Floating_Point_Definition =>
2678 Floating_Point_Type_Declaration (T, Def);
2679
2680 when N_Decimal_Fixed_Point_Definition =>
2681 Decimal_Fixed_Point_Type_Declaration (T, Def);
2682
2683 when N_Ordinary_Fixed_Point_Definition =>
2684 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2685
2686 when N_Signed_Integer_Type_Definition =>
2687 Signed_Integer_Type_Declaration (T, Def);
2688
2689 when N_Modular_Type_Definition =>
2690 Modular_Type_Declaration (T, Def);
2691
2692 when N_Record_Definition =>
2693 Record_Type_Declaration (T, N, Prev);
2694
2695 -- If declaration has a parse error, nothing to elaborate.
2696
2697 when N_Error =>
2698 null;
2699
2700 when others =>
2701 raise Program_Error;
2702
2703 end case;
2704 end if;
2705
2706 if Etype (T) = Any_Type then
2707 return;
2708 end if;
2709
2710 -- Controlled type is not allowed in SPARK
2711
2712 if Is_Visibly_Controlled (T) then
2713 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2714 end if;
2715
2716 -- A type declared within a Ghost region is automatically Ghost
2717 -- (SPARK RM 6.9(2)).
2718
2719 if Comes_From_Source (T) and then Ghost_Mode > None then
2720 Set_Is_Ghost_Entity (T);
2721 end if;
2722
2723 -- Some common processing for all types
2724
2725 Set_Depends_On_Private (T, Has_Private_Component (T));
2726 Check_Ops_From_Incomplete_Type;
2727
2728 -- Both the declared entity, and its anonymous base type if one was
2729 -- created, need freeze nodes allocated.
2730
2731 declare
2732 B : constant Entity_Id := Base_Type (T);
2733
2734 begin
2735 -- In the case where the base type differs from the first subtype, we
2736 -- pre-allocate a freeze node, and set the proper link to the first
2737 -- subtype. Freeze_Entity will use this preallocated freeze node when
2738 -- it freezes the entity.
2739
2740 -- This does not apply if the base type is a generic type, whose
2741 -- declaration is independent of the current derived definition.
2742
2743 if B /= T and then not Is_Generic_Type (B) then
2744 Ensure_Freeze_Node (B);
2745 Set_First_Subtype_Link (Freeze_Node (B), T);
2746 end if;
2747
2748 -- A type that is imported through a limited_with clause cannot
2749 -- generate any code, and thus need not be frozen. However, an access
2750 -- type with an imported designated type needs a finalization list,
2751 -- which may be referenced in some other package that has non-limited
2752 -- visibility on the designated type. Thus we must create the
2753 -- finalization list at the point the access type is frozen, to
2754 -- prevent unsatisfied references at link time.
2755
2756 if not From_Limited_With (T) or else Is_Access_Type (T) then
2757 Set_Has_Delayed_Freeze (T);
2758 end if;
2759 end;
2760
2761 -- Case where T is the full declaration of some private type which has
2762 -- been swapped in Defining_Identifier (N).
2763
2764 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2765 Process_Full_View (N, T, Def_Id);
2766
2767 -- Record the reference. The form of this is a little strange, since
2768 -- the full declaration has been swapped in. So the first parameter
2769 -- here represents the entity to which a reference is made which is
2770 -- the "real" entity, i.e. the one swapped in, and the second
2771 -- parameter provides the reference location.
2772
2773 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2774 -- since we don't want a complaint about the full type being an
2775 -- unwanted reference to the private type
2776
2777 declare
2778 B : constant Boolean := Has_Pragma_Unreferenced (T);
2779 begin
2780 Set_Has_Pragma_Unreferenced (T, False);
2781 Generate_Reference (T, T, 'c');
2782 Set_Has_Pragma_Unreferenced (T, B);
2783 end;
2784
2785 Set_Completion_Referenced (Def_Id);
2786
2787 -- For completion of incomplete type, process incomplete dependents
2788 -- and always mark the full type as referenced (it is the incomplete
2789 -- type that we get for any real reference).
2790
2791 elsif Ekind (Prev) = E_Incomplete_Type then
2792 Process_Incomplete_Dependents (N, T, Prev);
2793 Generate_Reference (Prev, Def_Id, 'c');
2794 Set_Completion_Referenced (Def_Id);
2795
2796 -- If not private type or incomplete type completion, this is a real
2797 -- definition of a new entity, so record it.
2798
2799 else
2800 Generate_Definition (Def_Id);
2801 end if;
2802
2803 -- Propagate any pending access types whose finalization masters need to
2804 -- be fully initialized from the partial to the full view. Guard against
2805 -- an illegal full view that remains unanalyzed.
2806
2807 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2808 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2809 end if;
2810
2811 if Chars (Scope (Def_Id)) = Name_System
2812 and then Chars (Def_Id) = Name_Address
2813 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2814 then
2815 Set_Is_Descendent_Of_Address (Def_Id);
2816 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2817 Set_Is_Descendent_Of_Address (Prev);
2818 end if;
2819
2820 Set_Optimize_Alignment_Flags (Def_Id);
2821 Check_Eliminated (Def_Id);
2822
2823 -- If the declaration is a completion and aspects are present, apply
2824 -- them to the entity for the type which is currently the partial
2825 -- view, but which is the one that will be frozen.
2826
2827 if Has_Aspects (N) then
2828
2829 -- In most cases the partial view is a private type, and both views
2830 -- appear in different declarative parts. In the unusual case where
2831 -- the partial view is incomplete, perform the analysis on the
2832 -- full view, to prevent freezing anomalies with the corresponding
2833 -- class-wide type, which otherwise might be frozen before the
2834 -- dispatch table is built.
2835
2836 if Prev /= Def_Id
2837 and then Ekind (Prev) /= E_Incomplete_Type
2838 then
2839 Analyze_Aspect_Specifications (N, Prev);
2840
2841 -- Normal case
2842
2843 else
2844 Analyze_Aspect_Specifications (N, Def_Id);
2845 end if;
2846 end if;
2847 end Analyze_Full_Type_Declaration;
2848
2849 ----------------------------------
2850 -- Analyze_Incomplete_Type_Decl --
2851 ----------------------------------
2852
2853 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2854 F : constant Boolean := Is_Pure (Current_Scope);
2855 T : Entity_Id;
2856
2857 begin
2858 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2859
2860 Generate_Definition (Defining_Identifier (N));
2861
2862 -- Process an incomplete declaration. The identifier must not have been
2863 -- declared already in the scope. However, an incomplete declaration may
2864 -- appear in the private part of a package, for a private type that has
2865 -- already been declared.
2866
2867 -- In this case, the discriminants (if any) must match
2868
2869 T := Find_Type_Name (N);
2870
2871 Set_Ekind (T, E_Incomplete_Type);
2872 Init_Size_Align (T);
2873 Set_Is_First_Subtype (T, True);
2874 Set_Etype (T, T);
2875
2876 -- An incomplete type declared within a Ghost region is automatically
2877 -- Ghost (SPARK RM 6.9(2)).
2878
2879 if Ghost_Mode > None then
2880 Set_Is_Ghost_Entity (T);
2881 end if;
2882
2883 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2884 -- incomplete types.
2885
2886 if Tagged_Present (N) then
2887 Set_Is_Tagged_Type (T, True);
2888 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2889 Make_Class_Wide_Type (T);
2890 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2891 end if;
2892
2893 Push_Scope (T);
2894
2895 Set_Stored_Constraint (T, No_Elist);
2896
2897 if Present (Discriminant_Specifications (N)) then
2898 Process_Discriminants (N);
2899 end if;
2900
2901 End_Scope;
2902
2903 -- If the type has discriminants, non-trivial subtypes may be
2904 -- declared before the full view of the type. The full views of those
2905 -- subtypes will be built after the full view of the type.
2906
2907 Set_Private_Dependents (T, New_Elmt_List);
2908 Set_Is_Pure (T, F);
2909 end Analyze_Incomplete_Type_Decl;
2910
2911 -----------------------------------
2912 -- Analyze_Interface_Declaration --
2913 -----------------------------------
2914
2915 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2916 CW : constant Entity_Id := Class_Wide_Type (T);
2917
2918 begin
2919 Set_Is_Tagged_Type (T);
2920 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2921
2922 Set_Is_Limited_Record (T, Limited_Present (Def)
2923 or else Task_Present (Def)
2924 or else Protected_Present (Def)
2925 or else Synchronized_Present (Def));
2926
2927 -- Type is abstract if full declaration carries keyword, or if previous
2928 -- partial view did.
2929
2930 Set_Is_Abstract_Type (T);
2931 Set_Is_Interface (T);
2932
2933 -- Type is a limited interface if it includes the keyword limited, task,
2934 -- protected, or synchronized.
2935
2936 Set_Is_Limited_Interface
2937 (T, Limited_Present (Def)
2938 or else Protected_Present (Def)
2939 or else Synchronized_Present (Def)
2940 or else Task_Present (Def));
2941
2942 Set_Interfaces (T, New_Elmt_List);
2943 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2944
2945 -- Complete the decoration of the class-wide entity if it was already
2946 -- built (i.e. during the creation of the limited view)
2947
2948 if Present (CW) then
2949 Set_Is_Interface (CW);
2950 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2951 end if;
2952
2953 -- Check runtime support for synchronized interfaces
2954
2955 if VM_Target = No_VM
2956 and then (Is_Task_Interface (T)
2957 or else Is_Protected_Interface (T)
2958 or else Is_Synchronized_Interface (T))
2959 and then not RTE_Available (RE_Select_Specific_Data)
2960 then
2961 Error_Msg_CRT ("synchronized interfaces", T);
2962 end if;
2963 end Analyze_Interface_Declaration;
2964
2965 -----------------------------
2966 -- Analyze_Itype_Reference --
2967 -----------------------------
2968
2969 -- Nothing to do. This node is placed in the tree only for the benefit of
2970 -- back end processing, and has no effect on the semantic processing.
2971
2972 procedure Analyze_Itype_Reference (N : Node_Id) is
2973 begin
2974 pragma Assert (Is_Itype (Itype (N)));
2975 null;
2976 end Analyze_Itype_Reference;
2977
2978 --------------------------------
2979 -- Analyze_Number_Declaration --
2980 --------------------------------
2981
2982 procedure Analyze_Number_Declaration (N : Node_Id) is
2983 Id : constant Entity_Id := Defining_Identifier (N);
2984 E : constant Node_Id := Expression (N);
2985 T : Entity_Id;
2986 Index : Interp_Index;
2987 It : Interp;
2988
2989 begin
2990 -- The number declaration may be subject to pragma Ghost with policy
2991 -- Ignore. Set the mode now to ensure that any nodes generated during
2992 -- analysis and expansion are properly flagged as ignored Ghost.
2993
2994 Set_Ghost_Mode (N);
2995
2996 Generate_Definition (Id);
2997 Enter_Name (Id);
2998
2999 -- A number declared within a Ghost region is automatically Ghost
3000 -- (SPARK RM 6.9(2)).
3001
3002 if Ghost_Mode > None then
3003 Set_Is_Ghost_Entity (Id);
3004 end if;
3005
3006 -- This is an optimization of a common case of an integer literal
3007
3008 if Nkind (E) = N_Integer_Literal then
3009 Set_Is_Static_Expression (E, True);
3010 Set_Etype (E, Universal_Integer);
3011
3012 Set_Etype (Id, Universal_Integer);
3013 Set_Ekind (Id, E_Named_Integer);
3014 Set_Is_Frozen (Id, True);
3015 return;
3016 end if;
3017
3018 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3019
3020 -- Process expression, replacing error by integer zero, to avoid
3021 -- cascaded errors or aborts further along in the processing
3022
3023 -- Replace Error by integer zero, which seems least likely to cause
3024 -- cascaded errors.
3025
3026 if E = Error then
3027 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3028 Set_Error_Posted (E);
3029 end if;
3030
3031 Analyze (E);
3032
3033 -- Verify that the expression is static and numeric. If
3034 -- the expression is overloaded, we apply the preference
3035 -- rule that favors root numeric types.
3036
3037 if not Is_Overloaded (E) then
3038 T := Etype (E);
3039 if Has_Dynamic_Predicate_Aspect (T) then
3040 Error_Msg_N
3041 ("subtype has dynamic predicate, "
3042 & "not allowed in number declaration", N);
3043 end if;
3044
3045 else
3046 T := Any_Type;
3047
3048 Get_First_Interp (E, Index, It);
3049 while Present (It.Typ) loop
3050 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3051 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3052 then
3053 if T = Any_Type then
3054 T := It.Typ;
3055
3056 elsif It.Typ = Universal_Real
3057 or else
3058 It.Typ = Universal_Integer
3059 then
3060 -- Choose universal interpretation over any other
3061
3062 T := It.Typ;
3063 exit;
3064 end if;
3065 end if;
3066
3067 Get_Next_Interp (Index, It);
3068 end loop;
3069 end if;
3070
3071 if Is_Integer_Type (T) then
3072 Resolve (E, T);
3073 Set_Etype (Id, Universal_Integer);
3074 Set_Ekind (Id, E_Named_Integer);
3075
3076 elsif Is_Real_Type (T) then
3077
3078 -- Because the real value is converted to universal_real, this is a
3079 -- legal context for a universal fixed expression.
3080
3081 if T = Universal_Fixed then
3082 declare
3083 Loc : constant Source_Ptr := Sloc (N);
3084 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3085 Subtype_Mark =>
3086 New_Occurrence_Of (Universal_Real, Loc),
3087 Expression => Relocate_Node (E));
3088
3089 begin
3090 Rewrite (E, Conv);
3091 Analyze (E);
3092 end;
3093
3094 elsif T = Any_Fixed then
3095 Error_Msg_N ("illegal context for mixed mode operation", E);
3096
3097 -- Expression is of the form : universal_fixed * integer. Try to
3098 -- resolve as universal_real.
3099
3100 T := Universal_Real;
3101 Set_Etype (E, T);
3102 end if;
3103
3104 Resolve (E, T);
3105 Set_Etype (Id, Universal_Real);
3106 Set_Ekind (Id, E_Named_Real);
3107
3108 else
3109 Wrong_Type (E, Any_Numeric);
3110 Resolve (E, T);
3111
3112 Set_Etype (Id, T);
3113 Set_Ekind (Id, E_Constant);
3114 Set_Never_Set_In_Source (Id, True);
3115 Set_Is_True_Constant (Id, True);
3116 return;
3117 end if;
3118
3119 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3120 Set_Etype (E, Etype (Id));
3121 end if;
3122
3123 if not Is_OK_Static_Expression (E) then
3124 Flag_Non_Static_Expr
3125 ("non-static expression used in number declaration!", E);
3126 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3127 Set_Etype (E, Any_Type);
3128 end if;
3129 end Analyze_Number_Declaration;
3130
3131 -----------------------------
3132 -- Analyze_Object_Contract --
3133 -----------------------------
3134
3135 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3136 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3137 AR_Val : Boolean := False;
3138 AW_Val : Boolean := False;
3139 ER_Val : Boolean := False;
3140 EW_Val : Boolean := False;
3141 Prag : Node_Id;
3142 Seen : Boolean := False;
3143
3144 begin
3145 -- The loop parameter in an element iterator over a formal container
3146 -- is declared with an object declaration but no contracts apply.
3147
3148 if Ekind (Obj_Id) = E_Loop_Parameter then
3149 return;
3150 end if;
3151
3152 if Ekind (Obj_Id) = E_Constant then
3153
3154 -- A constant cannot be effectively volatile. This check is only
3155 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3156 -- rule. Do not flag internally-generated constants that map generic
3157 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3158
3159 if SPARK_Mode = On
3160 and then Is_Effectively_Volatile (Obj_Id)
3161 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3162
3163 -- Don't give this for internally generated entities (such as the
3164 -- FIRST and LAST temporaries generated for bounds.
3165
3166 and then Comes_From_Source (Obj_Id)
3167 then
3168 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3169 end if;
3170
3171 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3172
3173 -- The following checks are only relevant when SPARK_Mode is on as
3174 -- they are not standard Ada legality rules. Internally generated
3175 -- temporaries are ignored.
3176
3177 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3178 if Is_Effectively_Volatile (Obj_Id) then
3179
3180 -- The declaration of an effectively volatile object must
3181 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3182
3183 if not Is_Library_Level_Entity (Obj_Id) then
3184 Error_Msg_N
3185 ("volatile variable & must be declared at library level",
3186 Obj_Id);
3187
3188 -- An object of a discriminated type cannot be effectively
3189 -- volatile (SPARK RM C.6(4)).
3190
3191 elsif Has_Discriminants (Obj_Typ) then
3192 Error_Msg_N
3193 ("discriminated object & cannot be volatile", Obj_Id);
3194
3195 -- An object of a tagged type cannot be effectively volatile
3196 -- (SPARK RM C.6(5)).
3197
3198 elsif Is_Tagged_Type (Obj_Typ) then
3199 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3200 end if;
3201
3202 -- The object is not effectively volatile
3203
3204 else
3205 -- A non-effectively volatile object cannot have effectively
3206 -- volatile components (SPARK RM 7.1.3(7)).
3207
3208 if not Is_Effectively_Volatile (Obj_Id)
3209 and then Has_Volatile_Component (Obj_Typ)
3210 then
3211 Error_Msg_N
3212 ("non-volatile object & cannot have volatile components",
3213 Obj_Id);
3214 end if;
3215 end if;
3216 end if;
3217
3218 if Is_Ghost_Entity (Obj_Id) then
3219
3220 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3221
3222 if Is_Effectively_Volatile (Obj_Id) then
3223 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3224
3225 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3226
3227 elsif Is_Imported (Obj_Id) then
3228 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3229
3230 elsif Is_Exported (Obj_Id) then
3231 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3232 end if;
3233 end if;
3234
3235 -- Analyze all external properties
3236
3237 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3238
3239 if Present (Prag) then
3240 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3241 Seen := True;
3242 end if;
3243
3244 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3245
3246 if Present (Prag) then
3247 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3248 Seen := True;
3249 end if;
3250
3251 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3252
3253 if Present (Prag) then
3254 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3255 Seen := True;
3256 end if;
3257
3258 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3259
3260 if Present (Prag) then
3261 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3262 Seen := True;
3263 end if;
3264
3265 -- Verify the mutual interaction of the various external properties
3266
3267 if Seen then
3268 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3269 end if;
3270
3271 -- Check whether the lack of indicator Part_Of agrees with the
3272 -- placement of the variable with respect to the state space.
3273
3274 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3275
3276 if No (Prag) then
3277 Check_Missing_Part_Of (Obj_Id);
3278 end if;
3279 end if;
3280
3281 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3282
3283 if Is_Ghost_Entity (Obj_Id) then
3284 if Is_Exported (Obj_Id) then
3285 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3286
3287 elsif Is_Imported (Obj_Id) then
3288 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3289 end if;
3290 end if;
3291 end Analyze_Object_Contract;
3292
3293 --------------------------------
3294 -- Analyze_Object_Declaration --
3295 --------------------------------
3296
3297 procedure Analyze_Object_Declaration (N : Node_Id) is
3298 Loc : constant Source_Ptr := Sloc (N);
3299 Id : constant Entity_Id := Defining_Identifier (N);
3300 T : Entity_Id;
3301 Act_T : Entity_Id;
3302
3303 E : Node_Id := Expression (N);
3304 -- E is set to Expression (N) throughout this routine. When
3305 -- Expression (N) is modified, E is changed accordingly.
3306
3307 Prev_Entity : Entity_Id := Empty;
3308
3309 function Count_Tasks (T : Entity_Id) return Uint;
3310 -- This function is called when a non-generic library level object of a
3311 -- task type is declared. Its function is to count the static number of
3312 -- tasks declared within the type (it is only called if Has_Tasks is set
3313 -- for T). As a side effect, if an array of tasks with non-static bounds
3314 -- or a variant record type is encountered, Check_Restrictions is called
3315 -- indicating the count is unknown.
3316
3317 -----------------
3318 -- Count_Tasks --
3319 -----------------
3320
3321 function Count_Tasks (T : Entity_Id) return Uint is
3322 C : Entity_Id;
3323 X : Node_Id;
3324 V : Uint;
3325
3326 begin
3327 if Is_Task_Type (T) then
3328 return Uint_1;
3329
3330 elsif Is_Record_Type (T) then
3331 if Has_Discriminants (T) then
3332 Check_Restriction (Max_Tasks, N);
3333 return Uint_0;
3334
3335 else
3336 V := Uint_0;
3337 C := First_Component (T);
3338 while Present (C) loop
3339 V := V + Count_Tasks (Etype (C));
3340 Next_Component (C);
3341 end loop;
3342
3343 return V;
3344 end if;
3345
3346 elsif Is_Array_Type (T) then
3347 X := First_Index (T);
3348 V := Count_Tasks (Component_Type (T));
3349 while Present (X) loop
3350 C := Etype (X);
3351
3352 if not Is_OK_Static_Subtype (C) then
3353 Check_Restriction (Max_Tasks, N);
3354 return Uint_0;
3355 else
3356 V := V * (UI_Max (Uint_0,
3357 Expr_Value (Type_High_Bound (C)) -
3358 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3359 end if;
3360
3361 Next_Index (X);
3362 end loop;
3363
3364 return V;
3365
3366 else
3367 return Uint_0;
3368 end if;
3369 end Count_Tasks;
3370
3371 -- Start of processing for Analyze_Object_Declaration
3372
3373 begin
3374 -- There are three kinds of implicit types generated by an
3375 -- object declaration:
3376
3377 -- 1. Those generated by the original Object Definition
3378
3379 -- 2. Those generated by the Expression
3380
3381 -- 3. Those used to constrain the Object Definition with the
3382 -- expression constraints when the definition is unconstrained.
3383
3384 -- They must be generated in this order to avoid order of elaboration
3385 -- issues. Thus the first step (after entering the name) is to analyze
3386 -- the object definition.
3387
3388 if Constant_Present (N) then
3389 Prev_Entity := Current_Entity_In_Scope (Id);
3390
3391 if Present (Prev_Entity)
3392 and then
3393 -- If the homograph is an implicit subprogram, it is overridden
3394 -- by the current declaration.
3395
3396 ((Is_Overloadable (Prev_Entity)
3397 and then Is_Inherited_Operation (Prev_Entity))
3398
3399 -- The current object is a discriminal generated for an entry
3400 -- family index. Even though the index is a constant, in this
3401 -- particular context there is no true constant redeclaration.
3402 -- Enter_Name will handle the visibility.
3403
3404 or else
3405 (Is_Discriminal (Id)
3406 and then Ekind (Discriminal_Link (Id)) =
3407 E_Entry_Index_Parameter)
3408
3409 -- The current object is the renaming for a generic declared
3410 -- within the instance.
3411
3412 or else
3413 (Ekind (Prev_Entity) = E_Package
3414 and then Nkind (Parent (Prev_Entity)) =
3415 N_Package_Renaming_Declaration
3416 and then not Comes_From_Source (Prev_Entity)
3417 and then
3418 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3419 then
3420 Prev_Entity := Empty;
3421 end if;
3422 end if;
3423
3424 -- The object declaration may be subject to pragma Ghost with policy
3425 -- Ignore. Set the mode now to ensure that any nodes generated during
3426 -- analysis and expansion are properly flagged as ignored Ghost.
3427
3428 Set_Ghost_Mode (N, Prev_Entity);
3429
3430 if Present (Prev_Entity) then
3431 Constant_Redeclaration (Id, N, T);
3432
3433 Generate_Reference (Prev_Entity, Id, 'c');
3434 Set_Completion_Referenced (Id);
3435
3436 if Error_Posted (N) then
3437
3438 -- Type mismatch or illegal redeclaration, Do not analyze
3439 -- expression to avoid cascaded errors.
3440
3441 T := Find_Type_Of_Object (Object_Definition (N), N);
3442 Set_Etype (Id, T);
3443 Set_Ekind (Id, E_Variable);
3444 goto Leave;
3445 end if;
3446
3447 -- In the normal case, enter identifier at the start to catch premature
3448 -- usage in the initialization expression.
3449
3450 else
3451 Generate_Definition (Id);
3452 Enter_Name (Id);
3453
3454 Mark_Coextensions (N, Object_Definition (N));
3455
3456 T := Find_Type_Of_Object (Object_Definition (N), N);
3457
3458 if Nkind (Object_Definition (N)) = N_Access_Definition
3459 and then Present
3460 (Access_To_Subprogram_Definition (Object_Definition (N)))
3461 and then Protected_Present
3462 (Access_To_Subprogram_Definition (Object_Definition (N)))
3463 then
3464 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3465 end if;
3466
3467 if Error_Posted (Id) then
3468 Set_Etype (Id, T);
3469 Set_Ekind (Id, E_Variable);
3470 goto Leave;
3471 end if;
3472 end if;
3473
3474 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3475 -- out some static checks
3476
3477 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3478
3479 -- In case of aggregates we must also take care of the correct
3480 -- initialization of nested aggregates bug this is done at the
3481 -- point of the analysis of the aggregate (see sem_aggr.adb).
3482
3483 if Present (Expression (N))
3484 and then Nkind (Expression (N)) = N_Aggregate
3485 then
3486 null;
3487
3488 else
3489 declare
3490 Save_Typ : constant Entity_Id := Etype (Id);
3491 begin
3492 Set_Etype (Id, T); -- Temp. decoration for static checks
3493 Null_Exclusion_Static_Checks (N);
3494 Set_Etype (Id, Save_Typ);
3495 end;
3496 end if;
3497 end if;
3498
3499 -- Object is marked pure if it is in a pure scope
3500
3501 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3502
3503 -- If deferred constant, make sure context is appropriate. We detect
3504 -- a deferred constant as a constant declaration with no expression.
3505 -- A deferred constant can appear in a package body if its completion
3506 -- is by means of an interface pragma.
3507
3508 if Constant_Present (N) and then No (E) then
3509
3510 -- A deferred constant may appear in the declarative part of the
3511 -- following constructs:
3512
3513 -- blocks
3514 -- entry bodies
3515 -- extended return statements
3516 -- package specs
3517 -- package bodies
3518 -- subprogram bodies
3519 -- task bodies
3520
3521 -- When declared inside a package spec, a deferred constant must be
3522 -- completed by a full constant declaration or pragma Import. In all
3523 -- other cases, the only proper completion is pragma Import. Extended
3524 -- return statements are flagged as invalid contexts because they do
3525 -- not have a declarative part and so cannot accommodate the pragma.
3526
3527 if Ekind (Current_Scope) = E_Return_Statement then
3528 Error_Msg_N
3529 ("invalid context for deferred constant declaration (RM 7.4)",
3530 N);
3531 Error_Msg_N
3532 ("\declaration requires an initialization expression",
3533 N);
3534 Set_Constant_Present (N, False);
3535
3536 -- In Ada 83, deferred constant must be of private type
3537
3538 elsif not Is_Private_Type (T) then
3539 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3540 Error_Msg_N
3541 ("(Ada 83) deferred constant must be private type", N);
3542 end if;
3543 end if;
3544
3545 -- If not a deferred constant, then the object declaration freezes
3546 -- its type, unless the object is of an anonymous type and has delayed
3547 -- aspects. In that case the type is frozen when the object itself is.
3548
3549 else
3550 Check_Fully_Declared (T, N);
3551
3552 if Has_Delayed_Aspects (Id)
3553 and then Is_Array_Type (T)
3554 and then Is_Itype (T)
3555 then
3556 Set_Has_Delayed_Freeze (T);
3557 else
3558 Freeze_Before (N, T);
3559 end if;
3560 end if;
3561
3562 -- If the object was created by a constrained array definition, then
3563 -- set the link in both the anonymous base type and anonymous subtype
3564 -- that are built to represent the array type to point to the object.
3565
3566 if Nkind (Object_Definition (Declaration_Node (Id))) =
3567 N_Constrained_Array_Definition
3568 then
3569 Set_Related_Array_Object (T, Id);
3570 Set_Related_Array_Object (Base_Type (T), Id);
3571 end if;
3572
3573 -- Special checks for protected objects not at library level
3574
3575 if Is_Protected_Type (T)
3576 and then not Is_Library_Level_Entity (Id)
3577 then
3578 Check_Restriction (No_Local_Protected_Objects, Id);
3579
3580 -- Protected objects with interrupt handlers must be at library level
3581
3582 -- Ada 2005: This test is not needed (and the corresponding clause
3583 -- in the RM is removed) because accessibility checks are sufficient
3584 -- to make handlers not at the library level illegal.
3585
3586 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3587 -- applies to the '95 version of the language as well.
3588
3589 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3590 Error_Msg_N
3591 ("interrupt object can only be declared at library level", Id);
3592 end if;
3593 end if;
3594
3595 -- The actual subtype of the object is the nominal subtype, unless
3596 -- the nominal one is unconstrained and obtained from the expression.
3597
3598 Act_T := T;
3599
3600 -- These checks should be performed before the initialization expression
3601 -- is considered, so that the Object_Definition node is still the same
3602 -- as in source code.
3603
3604 -- In SPARK, the nominal subtype is always given by a subtype mark
3605 -- and must not be unconstrained. (The only exception to this is the
3606 -- acceptance of declarations of constants of type String.)
3607
3608 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3609 then
3610 Check_SPARK_05_Restriction
3611 ("subtype mark required", Object_Definition (N));
3612
3613 elsif Is_Array_Type (T)
3614 and then not Is_Constrained (T)
3615 and then T /= Standard_String
3616 then
3617 Check_SPARK_05_Restriction
3618 ("subtype mark of constrained type expected",
3619 Object_Definition (N));
3620 end if;
3621
3622 -- There are no aliased objects in SPARK
3623
3624 if Aliased_Present (N) then
3625 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3626 end if;
3627
3628 -- Process initialization expression if present and not in error
3629
3630 if Present (E) and then E /= Error then
3631
3632 -- Generate an error in case of CPP class-wide object initialization.
3633 -- Required because otherwise the expansion of the class-wide
3634 -- assignment would try to use 'size to initialize the object
3635 -- (primitive that is not available in CPP tagged types).
3636
3637 if Is_Class_Wide_Type (Act_T)
3638 and then
3639 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3640 or else
3641 (Present (Full_View (Root_Type (Etype (Act_T))))
3642 and then
3643 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3644 then
3645 Error_Msg_N
3646 ("predefined assignment not available for 'C'P'P tagged types",
3647 E);
3648 end if;
3649
3650 Mark_Coextensions (N, E);
3651 Analyze (E);
3652
3653 -- In case of errors detected in the analysis of the expression,
3654 -- decorate it with the expected type to avoid cascaded errors
3655
3656 if No (Etype (E)) then
3657 Set_Etype (E, T);
3658 end if;
3659
3660 -- If an initialization expression is present, then we set the
3661 -- Is_True_Constant flag. It will be reset if this is a variable
3662 -- and it is indeed modified.
3663
3664 Set_Is_True_Constant (Id, True);
3665
3666 -- If we are analyzing a constant declaration, set its completion
3667 -- flag after analyzing and resolving the expression.
3668
3669 if Constant_Present (N) then
3670 Set_Has_Completion (Id);
3671 end if;
3672
3673 -- Set type and resolve (type may be overridden later on). Note:
3674 -- Ekind (Id) must still be E_Void at this point so that incorrect
3675 -- early usage within E is properly diagnosed.
3676
3677 Set_Etype (Id, T);
3678
3679 -- If the expression is an aggregate we must look ahead to detect
3680 -- the possible presence of an address clause, and defer resolution
3681 -- and expansion of the aggregate to the freeze point of the entity.
3682
3683 if Comes_From_Source (N)
3684 and then Expander_Active
3685 and then Nkind (E) = N_Aggregate
3686 and then Present (Following_Address_Clause (N))
3687 then
3688 Set_Etype (E, T);
3689
3690 else
3691 Resolve (E, T);
3692 end if;
3693
3694 -- No further action needed if E is a call to an inlined function
3695 -- which returns an unconstrained type and it has been expanded into
3696 -- a procedure call. In that case N has been replaced by an object
3697 -- declaration without initializing expression and it has been
3698 -- analyzed (see Expand_Inlined_Call).
3699
3700 if Back_End_Inlining
3701 and then Expander_Active
3702 and then Nkind (E) = N_Function_Call
3703 and then Nkind (Name (E)) in N_Has_Entity
3704 and then Is_Inlined (Entity (Name (E)))
3705 and then not Is_Constrained (Etype (E))
3706 and then Analyzed (N)
3707 and then No (Expression (N))
3708 then
3709 return;
3710 end if;
3711
3712 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3713 -- node (which was marked already-analyzed), we need to set the type
3714 -- to something other than Any_Access in order to keep gigi happy.
3715
3716 if Etype (E) = Any_Access then
3717 Set_Etype (E, T);
3718 end if;
3719
3720 -- If the object is an access to variable, the initialization
3721 -- expression cannot be an access to constant.
3722
3723 if Is_Access_Type (T)
3724 and then not Is_Access_Constant (T)
3725 and then Is_Access_Type (Etype (E))
3726 and then Is_Access_Constant (Etype (E))
3727 then
3728 Error_Msg_N
3729 ("access to variable cannot be initialized with an "
3730 & "access-to-constant expression", E);
3731 end if;
3732
3733 if not Assignment_OK (N) then
3734 Check_Initialization (T, E);
3735 end if;
3736
3737 Check_Unset_Reference (E);
3738
3739 -- If this is a variable, then set current value. If this is a
3740 -- declared constant of a scalar type with a static expression,
3741 -- indicate that it is always valid.
3742
3743 if not Constant_Present (N) then
3744 if Compile_Time_Known_Value (E) then
3745 Set_Current_Value (Id, E);
3746 end if;
3747
3748 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3749 Set_Is_Known_Valid (Id);
3750 end if;
3751
3752 -- Deal with setting of null flags
3753
3754 if Is_Access_Type (T) then
3755 if Known_Non_Null (E) then
3756 Set_Is_Known_Non_Null (Id, True);
3757 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3758 Set_Is_Known_Null (Id, True);
3759 end if;
3760 end if;
3761
3762 -- Check incorrect use of dynamically tagged expressions
3763
3764 if Is_Tagged_Type (T) then
3765 Check_Dynamically_Tagged_Expression
3766 (Expr => E,
3767 Typ => T,
3768 Related_Nod => N);
3769 end if;
3770
3771 Apply_Scalar_Range_Check (E, T);
3772 Apply_Static_Length_Check (E, T);
3773
3774 if Nkind (Original_Node (N)) = N_Object_Declaration
3775 and then Comes_From_Source (Original_Node (N))
3776
3777 -- Only call test if needed
3778
3779 and then Restriction_Check_Required (SPARK_05)
3780 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3781 then
3782 Check_SPARK_05_Restriction
3783 ("initialization expression is not appropriate", E);
3784 end if;
3785
3786 -- A formal parameter of a specific tagged type whose related
3787 -- subprogram is subject to pragma Extensions_Visible with value
3788 -- "False" cannot be implicitly converted to a class-wide type by
3789 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3790
3791 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3792 Error_Msg_N
3793 ("formal parameter with Extensions_Visible False cannot be "
3794 & "implicitly converted to class-wide type", E);
3795 end if;
3796 end if;
3797
3798 -- If the No_Streams restriction is set, check that the type of the
3799 -- object is not, and does not contain, any subtype derived from
3800 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3801 -- Has_Stream just for efficiency reasons. There is no point in
3802 -- spending time on a Has_Stream check if the restriction is not set.
3803
3804 if Restriction_Check_Required (No_Streams) then
3805 if Has_Stream (T) then
3806 Check_Restriction (No_Streams, N);
3807 end if;
3808 end if;
3809
3810 -- Deal with predicate check before we start to do major rewriting. It
3811 -- is OK to initialize and then check the initialized value, since the
3812 -- object goes out of scope if we get a predicate failure. Note that we
3813 -- do this in the analyzer and not the expander because the analyzer
3814 -- does some substantial rewriting in some cases.
3815
3816 -- We need a predicate check if the type has predicates, and if either
3817 -- there is an initializing expression, or for default initialization
3818 -- when we have at least one case of an explicit default initial value
3819 -- and then this is not an internal declaration whose initialization
3820 -- comes later (as for an aggregate expansion).
3821
3822 if not Suppress_Assignment_Checks (N)
3823 and then Present (Predicate_Function (T))
3824 and then not No_Initialization (N)
3825 and then
3826 (Present (E)
3827 or else
3828 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3829 then
3830 -- If the type has a static predicate and the expression is known at
3831 -- compile time, see if the expression satisfies the predicate.
3832
3833 if Present (E) then
3834 Check_Expression_Against_Static_Predicate (E, T);
3835 end if;
3836
3837 Insert_After (N,
3838 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3839 end if;
3840
3841 -- Case of unconstrained type
3842
3843 if Is_Indefinite_Subtype (T) then
3844
3845 -- In SPARK, a declaration of unconstrained type is allowed
3846 -- only for constants of type string.
3847
3848 if Is_String_Type (T) and then not Constant_Present (N) then
3849 Check_SPARK_05_Restriction
3850 ("declaration of object of unconstrained type not allowed", N);
3851 end if;
3852
3853 -- Nothing to do in deferred constant case
3854
3855 if Constant_Present (N) and then No (E) then
3856 null;
3857
3858 -- Case of no initialization present
3859
3860 elsif No (E) then
3861 if No_Initialization (N) then
3862 null;
3863
3864 elsif Is_Class_Wide_Type (T) then
3865 Error_Msg_N
3866 ("initialization required in class-wide declaration ", N);
3867
3868 else
3869 Error_Msg_N
3870 ("unconstrained subtype not allowed (need initialization)",
3871 Object_Definition (N));
3872
3873 if Is_Record_Type (T) and then Has_Discriminants (T) then
3874 Error_Msg_N
3875 ("\provide initial value or explicit discriminant values",
3876 Object_Definition (N));
3877
3878 Error_Msg_NE
3879 ("\or give default discriminant values for type&",
3880 Object_Definition (N), T);
3881
3882 elsif Is_Array_Type (T) then
3883 Error_Msg_N
3884 ("\provide initial value or explicit array bounds",
3885 Object_Definition (N));
3886 end if;
3887 end if;
3888
3889 -- Case of initialization present but in error. Set initial
3890 -- expression as absent (but do not make above complaints)
3891
3892 elsif E = Error then
3893 Set_Expression (N, Empty);
3894 E := Empty;
3895
3896 -- Case of initialization present
3897
3898 else
3899 -- Check restrictions in Ada 83
3900
3901 if not Constant_Present (N) then
3902
3903 -- Unconstrained variables not allowed in Ada 83 mode
3904
3905 if Ada_Version = Ada_83
3906 and then Comes_From_Source (Object_Definition (N))
3907 then
3908 Error_Msg_N
3909 ("(Ada 83) unconstrained variable not allowed",
3910 Object_Definition (N));
3911 end if;
3912 end if;
3913
3914 -- Now we constrain the variable from the initializing expression
3915
3916 -- If the expression is an aggregate, it has been expanded into
3917 -- individual assignments. Retrieve the actual type from the
3918 -- expanded construct.
3919
3920 if Is_Array_Type (T)
3921 and then No_Initialization (N)
3922 and then Nkind (Original_Node (E)) = N_Aggregate
3923 then
3924 Act_T := Etype (E);
3925
3926 -- In case of class-wide interface object declarations we delay
3927 -- the generation of the equivalent record type declarations until
3928 -- its expansion because there are cases in they are not required.
3929
3930 elsif Is_Interface (T) then
3931 null;
3932
3933 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3934 -- we should prevent the generation of another Itype with the
3935 -- same name as the one already generated, or we end up with
3936 -- two identical types in GNATprove.
3937
3938 elsif GNATprove_Mode then
3939 null;
3940
3941 -- If the type is an unchecked union, no subtype can be built from
3942 -- the expression. Rewrite declaration as a renaming, which the
3943 -- back-end can handle properly. This is a rather unusual case,
3944 -- because most unchecked_union declarations have default values
3945 -- for discriminants and are thus not indefinite.
3946
3947 elsif Is_Unchecked_Union (T) then
3948 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3949 Set_Ekind (Id, E_Constant);
3950 else
3951 Set_Ekind (Id, E_Variable);
3952 end if;
3953
3954 -- An object declared within a Ghost region is automatically
3955 -- Ghost (SPARK RM 6.9(2)).
3956
3957 if Comes_From_Source (Id) and then Ghost_Mode > None then
3958 Set_Is_Ghost_Entity (Id);
3959
3960 -- The Ghost policy in effect at the point of declaration
3961 -- and at the point of completion must match
3962 -- (SPARK RM 6.9(15)).
3963
3964 if Present (Prev_Entity)
3965 and then Is_Ghost_Entity (Prev_Entity)
3966 then
3967 Check_Ghost_Completion (Prev_Entity, Id);
3968 end if;
3969 end if;
3970
3971 Rewrite (N,
3972 Make_Object_Renaming_Declaration (Loc,
3973 Defining_Identifier => Id,
3974 Subtype_Mark => New_Occurrence_Of (T, Loc),
3975 Name => E));
3976
3977 Set_Renamed_Object (Id, E);
3978 Freeze_Before (N, T);
3979 Set_Is_Frozen (Id);
3980 return;
3981
3982 else
3983 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3984 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3985 end if;
3986
3987 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3988
3989 if Aliased_Present (N) then
3990 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3991 end if;
3992
3993 Freeze_Before (N, Act_T);
3994 Freeze_Before (N, T);
3995 end if;
3996
3997 elsif Is_Array_Type (T)
3998 and then No_Initialization (N)
3999 and then Nkind (Original_Node (E)) = N_Aggregate
4000 then
4001 if not Is_Entity_Name (Object_Definition (N)) then
4002 Act_T := Etype (E);
4003 Check_Compile_Time_Size (Act_T);
4004
4005 if Aliased_Present (N) then
4006 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4007 end if;
4008 end if;
4009
4010 -- When the given object definition and the aggregate are specified
4011 -- independently, and their lengths might differ do a length check.
4012 -- This cannot happen if the aggregate is of the form (others =>...)
4013
4014 if not Is_Constrained (T) then
4015 null;
4016
4017 elsif Nkind (E) = N_Raise_Constraint_Error then
4018
4019 -- Aggregate is statically illegal. Place back in declaration
4020
4021 Set_Expression (N, E);
4022 Set_No_Initialization (N, False);
4023
4024 elsif T = Etype (E) then
4025 null;
4026
4027 elsif Nkind (E) = N_Aggregate
4028 and then Present (Component_Associations (E))
4029 and then Present (Choices (First (Component_Associations (E))))
4030 and then Nkind (First
4031 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4032 then
4033 null;
4034
4035 else
4036 Apply_Length_Check (E, T);
4037 end if;
4038
4039 -- If the type is limited unconstrained with defaulted discriminants and
4040 -- there is no expression, then the object is constrained by the
4041 -- defaults, so it is worthwhile building the corresponding subtype.
4042
4043 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4044 and then not Is_Constrained (T)
4045 and then Has_Discriminants (T)
4046 then
4047 if No (E) then
4048 Act_T := Build_Default_Subtype (T, N);
4049 else
4050 -- Ada 2005: A limited object may be initialized by means of an
4051 -- aggregate. If the type has default discriminants it has an
4052 -- unconstrained nominal type, Its actual subtype will be obtained
4053 -- from the aggregate, and not from the default discriminants.
4054
4055 Act_T := Etype (E);
4056 end if;
4057
4058 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4059
4060 elsif Nkind (E) = N_Function_Call
4061 and then Constant_Present (N)
4062 and then Has_Unconstrained_Elements (Etype (E))
4063 then
4064 -- The back-end has problems with constants of a discriminated type
4065 -- with defaults, if the initial value is a function call. We
4066 -- generate an intermediate temporary that will receive a reference
4067 -- to the result of the call. The initialization expression then
4068 -- becomes a dereference of that temporary.
4069
4070 Remove_Side_Effects (E);
4071
4072 -- If this is a constant declaration of an unconstrained type and
4073 -- the initialization is an aggregate, we can use the subtype of the
4074 -- aggregate for the declared entity because it is immutable.
4075
4076 elsif not Is_Constrained (T)
4077 and then Has_Discriminants (T)
4078 and then Constant_Present (N)
4079 and then not Has_Unchecked_Union (T)
4080 and then Nkind (E) = N_Aggregate
4081 then
4082 Act_T := Etype (E);
4083 end if;
4084
4085 -- Check No_Wide_Characters restriction
4086
4087 Check_Wide_Character_Restriction (T, Object_Definition (N));
4088
4089 -- Indicate this is not set in source. Certainly true for constants, and
4090 -- true for variables so far (will be reset for a variable if and when
4091 -- we encounter a modification in the source).
4092
4093 Set_Never_Set_In_Source (Id);
4094
4095 -- Now establish the proper kind and type of the object
4096
4097 if Constant_Present (N) then
4098 Set_Ekind (Id, E_Constant);
4099 Set_Is_True_Constant (Id);
4100
4101 else
4102 Set_Ekind (Id, E_Variable);
4103
4104 -- A variable is set as shared passive if it appears in a shared
4105 -- passive package, and is at the outer level. This is not done for
4106 -- entities generated during expansion, because those are always
4107 -- manipulated locally.
4108
4109 if Is_Shared_Passive (Current_Scope)
4110 and then Is_Library_Level_Entity (Id)
4111 and then Comes_From_Source (Id)
4112 then
4113 Set_Is_Shared_Passive (Id);
4114 Check_Shared_Var (Id, T, N);
4115 end if;
4116
4117 -- Set Has_Initial_Value if initializing expression present. Note
4118 -- that if there is no initializing expression, we leave the state
4119 -- of this flag unchanged (usually it will be False, but notably in
4120 -- the case of exception choice variables, it will already be true).
4121
4122 if Present (E) then
4123 Set_Has_Initial_Value (Id);
4124 end if;
4125 end if;
4126
4127 -- Initialize alignment and size and capture alignment setting
4128
4129 Init_Alignment (Id);
4130 Init_Esize (Id);
4131 Set_Optimize_Alignment_Flags (Id);
4132
4133 -- An object declared within a Ghost region is automatically Ghost
4134 -- (SPARK RM 6.9(2)).
4135
4136 if Comes_From_Source (Id)
4137 and then (Ghost_Mode > None
4138 or else (Present (Prev_Entity)
4139 and then Is_Ghost_Entity (Prev_Entity)))
4140 then
4141 Set_Is_Ghost_Entity (Id);
4142
4143 -- The Ghost policy in effect at the point of declaration and at the
4144 -- point of completion must match (SPARK RM 6.9(16)).
4145
4146 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4147 Check_Ghost_Completion (Prev_Entity, Id);
4148 end if;
4149 end if;
4150
4151 -- Deal with aliased case
4152
4153 if Aliased_Present (N) then
4154 Set_Is_Aliased (Id);
4155
4156 -- If the object is aliased and the type is unconstrained with
4157 -- defaulted discriminants and there is no expression, then the
4158 -- object is constrained by the defaults, so it is worthwhile
4159 -- building the corresponding subtype.
4160
4161 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4162 -- unconstrained, then only establish an actual subtype if the
4163 -- nominal subtype is indefinite. In definite cases the object is
4164 -- unconstrained in Ada 2005.
4165
4166 if No (E)
4167 and then Is_Record_Type (T)
4168 and then not Is_Constrained (T)
4169 and then Has_Discriminants (T)
4170 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4171 then
4172 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4173 end if;
4174 end if;
4175
4176 -- Now we can set the type of the object
4177
4178 Set_Etype (Id, Act_T);
4179
4180 -- Non-constant object is marked to be treated as volatile if type is
4181 -- volatile and we clear the Current_Value setting that may have been
4182 -- set above. Doing so for constants isn't required and might interfere
4183 -- with possible uses of the object as a static expression in contexts
4184 -- incompatible with volatility (e.g. as a case-statement alternative).
4185
4186 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4187 Set_Treat_As_Volatile (Id);
4188 Set_Current_Value (Id, Empty);
4189 end if;
4190
4191 -- Deal with controlled types
4192
4193 if Has_Controlled_Component (Etype (Id))
4194 or else Is_Controlled (Etype (Id))
4195 then
4196 if not Is_Library_Level_Entity (Id) then
4197 Check_Restriction (No_Nested_Finalization, N);
4198 else
4199 Validate_Controlled_Object (Id);
4200 end if;
4201 end if;
4202
4203 if Has_Task (Etype (Id)) then
4204 Check_Restriction (No_Tasking, N);
4205
4206 -- Deal with counting max tasks
4207
4208 -- Nothing to do if inside a generic
4209
4210 if Inside_A_Generic then
4211 null;
4212
4213 -- If library level entity, then count tasks
4214
4215 elsif Is_Library_Level_Entity (Id) then
4216 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4217
4218 -- If not library level entity, then indicate we don't know max
4219 -- tasks and also check task hierarchy restriction and blocking
4220 -- operation (since starting a task is definitely blocking).
4221
4222 else
4223 Check_Restriction (Max_Tasks, N);
4224 Check_Restriction (No_Task_Hierarchy, N);
4225 Check_Potentially_Blocking_Operation (N);
4226 end if;
4227
4228 -- A rather specialized test. If we see two tasks being declared
4229 -- of the same type in the same object declaration, and the task
4230 -- has an entry with an address clause, we know that program error
4231 -- will be raised at run time since we can't have two tasks with
4232 -- entries at the same address.
4233
4234 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4235 declare
4236 E : Entity_Id;
4237
4238 begin
4239 E := First_Entity (Etype (Id));
4240 while Present (E) loop
4241 if Ekind (E) = E_Entry
4242 and then Present (Get_Attribute_Definition_Clause
4243 (E, Attribute_Address))
4244 then
4245 Error_Msg_Warn := SPARK_Mode /= On;
4246 Error_Msg_N
4247 ("more than one task with same entry address<<", N);
4248 Error_Msg_N ("\Program_Error [<<", N);
4249 Insert_Action (N,
4250 Make_Raise_Program_Error (Loc,
4251 Reason => PE_Duplicated_Entry_Address));
4252 exit;
4253 end if;
4254
4255 Next_Entity (E);
4256 end loop;
4257 end;
4258 end if;
4259 end if;
4260
4261 -- Some simple constant-propagation: if the expression is a constant
4262 -- string initialized with a literal, share the literal. This avoids
4263 -- a run-time copy.
4264
4265 if Present (E)
4266 and then Is_Entity_Name (E)
4267 and then Ekind (Entity (E)) = E_Constant
4268 and then Base_Type (Etype (E)) = Standard_String
4269 then
4270 declare
4271 Val : constant Node_Id := Constant_Value (Entity (E));
4272 begin
4273 if Present (Val) and then Nkind (Val) = N_String_Literal then
4274 Rewrite (E, New_Copy (Val));
4275 end if;
4276 end;
4277 end if;
4278
4279 -- Another optimization: if the nominal subtype is unconstrained and
4280 -- the expression is a function call that returns an unconstrained
4281 -- type, rewrite the declaration as a renaming of the result of the
4282 -- call. The exceptions below are cases where the copy is expected,
4283 -- either by the back end (Aliased case) or by the semantics, as for
4284 -- initializing controlled types or copying tags for classwide types.
4285
4286 if Present (E)
4287 and then Nkind (E) = N_Explicit_Dereference
4288 and then Nkind (Original_Node (E)) = N_Function_Call
4289 and then not Is_Library_Level_Entity (Id)
4290 and then not Is_Constrained (Underlying_Type (T))
4291 and then not Is_Aliased (Id)
4292 and then not Is_Class_Wide_Type (T)
4293 and then not Is_Controlled (T)
4294 and then not Has_Controlled_Component (Base_Type (T))
4295 and then Expander_Active
4296 then
4297 Rewrite (N,
4298 Make_Object_Renaming_Declaration (Loc,
4299 Defining_Identifier => Id,
4300 Access_Definition => Empty,
4301 Subtype_Mark => New_Occurrence_Of
4302 (Base_Type (Etype (Id)), Loc),
4303 Name => E));
4304
4305 Set_Renamed_Object (Id, E);
4306
4307 -- Force generation of debugging information for the constant and for
4308 -- the renamed function call.
4309
4310 Set_Debug_Info_Needed (Id);
4311 Set_Debug_Info_Needed (Entity (Prefix (E)));
4312 end if;
4313
4314 if Present (Prev_Entity)
4315 and then Is_Frozen (Prev_Entity)
4316 and then not Error_Posted (Id)
4317 then
4318 Error_Msg_N ("full constant declaration appears too late", N);
4319 end if;
4320
4321 Check_Eliminated (Id);
4322
4323 -- Deal with setting In_Private_Part flag if in private part
4324
4325 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4326 then
4327 Set_In_Private_Part (Id);
4328 end if;
4329
4330 -- Check for violation of No_Local_Timing_Events
4331
4332 if Restriction_Check_Required (No_Local_Timing_Events)
4333 and then not Is_Library_Level_Entity (Id)
4334 and then Is_RTE (Etype (Id), RE_Timing_Event)
4335 then
4336 Check_Restriction (No_Local_Timing_Events, N);
4337 end if;
4338
4339 <<Leave>>
4340 -- Initialize the refined state of a variable here because this is a
4341 -- common destination for legal and illegal object declarations.
4342
4343 if Ekind (Id) = E_Variable then
4344 Set_Encapsulating_State (Id, Empty);
4345 end if;
4346
4347 if Has_Aspects (N) then
4348 Analyze_Aspect_Specifications (N, Id);
4349 end if;
4350
4351 Analyze_Dimension (N);
4352
4353 -- Verify whether the object declaration introduces an illegal hidden
4354 -- state within a package subject to a null abstract state.
4355
4356 if Ekind (Id) = E_Variable then
4357 Check_No_Hidden_State (Id);
4358 end if;
4359 end Analyze_Object_Declaration;
4360
4361 ---------------------------
4362 -- Analyze_Others_Choice --
4363 ---------------------------
4364
4365 -- Nothing to do for the others choice node itself, the semantic analysis
4366 -- of the others choice will occur as part of the processing of the parent
4367
4368 procedure Analyze_Others_Choice (N : Node_Id) is
4369 pragma Warnings (Off, N);
4370 begin
4371 null;
4372 end Analyze_Others_Choice;
4373
4374 -------------------------------------------
4375 -- Analyze_Private_Extension_Declaration --
4376 -------------------------------------------
4377
4378 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4379 T : constant Entity_Id := Defining_Identifier (N);
4380 Indic : constant Node_Id := Subtype_Indication (N);
4381 Parent_Type : Entity_Id;
4382 Parent_Base : Entity_Id;
4383
4384 begin
4385 -- The private extension declaration may be subject to pragma Ghost with
4386 -- policy Ignore. Set the mode now to ensure that any nodes generated
4387 -- during analysis and expansion are properly flagged as ignored Ghost.
4388
4389 Set_Ghost_Mode (N);
4390
4391 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4392
4393 if Is_Non_Empty_List (Interface_List (N)) then
4394 declare
4395 Intf : Node_Id;
4396 T : Entity_Id;
4397
4398 begin
4399 Intf := First (Interface_List (N));
4400 while Present (Intf) loop
4401 T := Find_Type_Of_Subtype_Indic (Intf);
4402
4403 Diagnose_Interface (Intf, T);
4404 Next (Intf);
4405 end loop;
4406 end;
4407 end if;
4408
4409 Generate_Definition (T);
4410
4411 -- For other than Ada 2012, just enter the name in the current scope
4412
4413 if Ada_Version < Ada_2012 then
4414 Enter_Name (T);
4415
4416 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4417 -- case of private type that completes an incomplete type.
4418
4419 else
4420 declare
4421 Prev : Entity_Id;
4422
4423 begin
4424 Prev := Find_Type_Name (N);
4425
4426 pragma Assert (Prev = T
4427 or else (Ekind (Prev) = E_Incomplete_Type
4428 and then Present (Full_View (Prev))
4429 and then Full_View (Prev) = T));
4430 end;
4431 end if;
4432
4433 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4434 Parent_Base := Base_Type (Parent_Type);
4435
4436 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4437 Set_Ekind (T, Ekind (Parent_Type));
4438 Set_Etype (T, Any_Type);
4439 goto Leave;
4440
4441 elsif not Is_Tagged_Type (Parent_Type) then
4442 Error_Msg_N
4443 ("parent of type extension must be a tagged type ", Indic);
4444 goto Leave;
4445
4446 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4447 Error_Msg_N ("premature derivation of incomplete type", Indic);
4448 goto Leave;
4449
4450 elsif Is_Concurrent_Type (Parent_Type) then
4451 Error_Msg_N
4452 ("parent type of a private extension cannot be "
4453 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4454
4455 Set_Etype (T, Any_Type);
4456 Set_Ekind (T, E_Limited_Private_Type);
4457 Set_Private_Dependents (T, New_Elmt_List);
4458 Set_Error_Posted (T);
4459 goto Leave;
4460 end if;
4461
4462 -- Perhaps the parent type should be changed to the class-wide type's
4463 -- specific type in this case to prevent cascading errors ???
4464
4465 if Is_Class_Wide_Type (Parent_Type) then
4466 Error_Msg_N
4467 ("parent of type extension must not be a class-wide type", Indic);
4468 goto Leave;
4469 end if;
4470
4471 if (not Is_Package_Or_Generic_Package (Current_Scope)
4472 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4473 or else In_Private_Part (Current_Scope)
4474
4475 then
4476 Error_Msg_N ("invalid context for private extension", N);
4477 end if;
4478
4479 -- Set common attributes
4480
4481 Set_Is_Pure (T, Is_Pure (Current_Scope));
4482 Set_Scope (T, Current_Scope);
4483 Set_Ekind (T, E_Record_Type_With_Private);
4484 Init_Size_Align (T);
4485 Set_Default_SSO (T);
4486
4487 Set_Etype (T, Parent_Base);
4488 Set_Has_Task (T, Has_Task (Parent_Base));
4489 Set_Has_Protected (T, Has_Task (Parent_Base));
4490
4491 Set_Convention (T, Convention (Parent_Type));
4492 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4493 Set_Is_First_Subtype (T);
4494 Make_Class_Wide_Type (T);
4495
4496 if Unknown_Discriminants_Present (N) then
4497 Set_Discriminant_Constraint (T, No_Elist);
4498 end if;
4499
4500 Build_Derived_Record_Type (N, Parent_Type, T);
4501
4502 -- Propagate inherited invariant information. The new type has
4503 -- invariants, if the parent type has inheritable invariants,
4504 -- and these invariants can in turn be inherited.
4505
4506 if Has_Inheritable_Invariants (Parent_Type) then
4507 Set_Has_Inheritable_Invariants (T);
4508 Set_Has_Invariants (T);
4509 end if;
4510
4511 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4512 -- synchronized formal derived type.
4513
4514 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4515 Set_Is_Limited_Record (T);
4516
4517 -- Formal derived type case
4518
4519 if Is_Generic_Type (T) then
4520
4521 -- The parent must be a tagged limited type or a synchronized
4522 -- interface.
4523
4524 if (not Is_Tagged_Type (Parent_Type)
4525 or else not Is_Limited_Type (Parent_Type))
4526 and then
4527 (not Is_Interface (Parent_Type)
4528 or else not Is_Synchronized_Interface (Parent_Type))
4529 then
4530 Error_Msg_NE ("parent type of & must be tagged limited " &
4531 "or synchronized", N, T);
4532 end if;
4533
4534 -- The progenitors (if any) must be limited or synchronized
4535 -- interfaces.
4536
4537 if Present (Interfaces (T)) then
4538 declare
4539 Iface : Entity_Id;
4540 Iface_Elmt : Elmt_Id;
4541
4542 begin
4543 Iface_Elmt := First_Elmt (Interfaces (T));
4544 while Present (Iface_Elmt) loop
4545 Iface := Node (Iface_Elmt);
4546
4547 if not Is_Limited_Interface (Iface)
4548 and then not Is_Synchronized_Interface (Iface)
4549 then
4550 Error_Msg_NE ("progenitor & must be limited " &
4551 "or synchronized", N, Iface);
4552 end if;
4553
4554 Next_Elmt (Iface_Elmt);
4555 end loop;
4556 end;
4557 end if;
4558
4559 -- Regular derived extension, the parent must be a limited or
4560 -- synchronized interface.
4561
4562 else
4563 if not Is_Interface (Parent_Type)
4564 or else (not Is_Limited_Interface (Parent_Type)
4565 and then not Is_Synchronized_Interface (Parent_Type))
4566 then
4567 Error_Msg_NE
4568 ("parent type of & must be limited interface", N, T);
4569 end if;
4570 end if;
4571
4572 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4573 -- extension with a synchronized parent must be explicitly declared
4574 -- synchronized, because the full view will be a synchronized type.
4575 -- This must be checked before the check for limited types below,
4576 -- to ensure that types declared limited are not allowed to extend
4577 -- synchronized interfaces.
4578
4579 elsif Is_Interface (Parent_Type)
4580 and then Is_Synchronized_Interface (Parent_Type)
4581 and then not Synchronized_Present (N)
4582 then
4583 Error_Msg_NE
4584 ("private extension of& must be explicitly synchronized",
4585 N, Parent_Type);
4586
4587 elsif Limited_Present (N) then
4588 Set_Is_Limited_Record (T);
4589
4590 if not Is_Limited_Type (Parent_Type)
4591 and then
4592 (not Is_Interface (Parent_Type)
4593 or else not Is_Limited_Interface (Parent_Type))
4594 then
4595 Error_Msg_NE ("parent type& of limited extension must be limited",
4596 N, Parent_Type);
4597 end if;
4598 end if;
4599
4600 <<Leave>>
4601 if Has_Aspects (N) then
4602 Analyze_Aspect_Specifications (N, T);
4603 end if;
4604 end Analyze_Private_Extension_Declaration;
4605
4606 ---------------------------------
4607 -- Analyze_Subtype_Declaration --
4608 ---------------------------------
4609
4610 procedure Analyze_Subtype_Declaration
4611 (N : Node_Id;
4612 Skip : Boolean := False)
4613 is
4614 Id : constant Entity_Id := Defining_Identifier (N);
4615 T : Entity_Id;
4616 R_Checks : Check_Result;
4617
4618 begin
4619 -- The subtype declaration may be subject to pragma Ghost with policy
4620 -- Ignore. Set the mode now to ensure that any nodes generated during
4621 -- analysis and expansion are properly flagged as ignored Ghost.
4622
4623 Set_Ghost_Mode (N);
4624
4625 Generate_Definition (Id);
4626 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4627 Init_Size_Align (Id);
4628
4629 -- The following guard condition on Enter_Name is to handle cases where
4630 -- the defining identifier has already been entered into the scope but
4631 -- the declaration as a whole needs to be analyzed.
4632
4633 -- This case in particular happens for derived enumeration types. The
4634 -- derived enumeration type is processed as an inserted enumeration type
4635 -- declaration followed by a rewritten subtype declaration. The defining
4636 -- identifier, however, is entered into the name scope very early in the
4637 -- processing of the original type declaration and therefore needs to be
4638 -- avoided here, when the created subtype declaration is analyzed. (See
4639 -- Build_Derived_Types)
4640
4641 -- This also happens when the full view of a private type is derived
4642 -- type with constraints. In this case the entity has been introduced
4643 -- in the private declaration.
4644
4645 -- Finally this happens in some complex cases when validity checks are
4646 -- enabled, where the same subtype declaration may be analyzed twice.
4647 -- This can happen if the subtype is created by the pre-analysis of
4648 -- an attribute tht gives the range of a loop statement, and the loop
4649 -- itself appears within an if_statement that will be rewritten during
4650 -- expansion.
4651
4652 if Skip
4653 or else (Present (Etype (Id))
4654 and then (Is_Private_Type (Etype (Id))
4655 or else Is_Task_Type (Etype (Id))
4656 or else Is_Rewrite_Substitution (N)))
4657 then
4658 null;
4659
4660 elsif Current_Entity (Id) = Id then
4661 null;
4662
4663 else
4664 Enter_Name (Id);
4665 end if;
4666
4667 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4668
4669 -- Class-wide equivalent types of records with unknown discriminants
4670 -- involve the generation of an itype which serves as the private view
4671 -- of a constrained record subtype. In such cases the base type of the
4672 -- current subtype we are processing is the private itype. Use the full
4673 -- of the private itype when decorating various attributes.
4674
4675 if Is_Itype (T)
4676 and then Is_Private_Type (T)
4677 and then Present (Full_View (T))
4678 then
4679 T := Full_View (T);
4680 end if;
4681
4682 -- Inherit common attributes
4683
4684 Set_Is_Volatile (Id, Is_Volatile (T));
4685 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4686 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4687 Set_Convention (Id, Convention (T));
4688
4689 -- If ancestor has predicates then so does the subtype, and in addition
4690 -- we must delay the freeze to properly arrange predicate inheritance.
4691
4692 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4693 -- in which T = ID, so the above tests and assignments do nothing???
4694
4695 if Has_Predicates (T)
4696 or else (Present (Ancestor_Subtype (T))
4697 and then Has_Predicates (Ancestor_Subtype (T)))
4698 then
4699 Set_Has_Predicates (Id);
4700 Set_Has_Delayed_Freeze (Id);
4701 end if;
4702
4703 -- Subtype of Boolean cannot have a constraint in SPARK
4704
4705 if Is_Boolean_Type (T)
4706 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4707 then
4708 Check_SPARK_05_Restriction
4709 ("subtype of Boolean cannot have constraint", N);
4710 end if;
4711
4712 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4713 declare
4714 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4715 One_Cstr : Node_Id;
4716 Low : Node_Id;
4717 High : Node_Id;
4718
4719 begin
4720 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4721 One_Cstr := First (Constraints (Cstr));
4722 while Present (One_Cstr) loop
4723
4724 -- Index or discriminant constraint in SPARK must be a
4725 -- subtype mark.
4726
4727 if not
4728 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4729 then
4730 Check_SPARK_05_Restriction
4731 ("subtype mark required", One_Cstr);
4732
4733 -- String subtype must have a lower bound of 1 in SPARK.
4734 -- Note that we do not need to test for the non-static case
4735 -- here, since that was already taken care of in
4736 -- Process_Range_Expr_In_Decl.
4737
4738 elsif Base_Type (T) = Standard_String then
4739 Get_Index_Bounds (One_Cstr, Low, High);
4740
4741 if Is_OK_Static_Expression (Low)
4742 and then Expr_Value (Low) /= 1
4743 then
4744 Check_SPARK_05_Restriction
4745 ("String subtype must have lower bound of 1", N);
4746 end if;
4747 end if;
4748
4749 Next (One_Cstr);
4750 end loop;
4751 end if;
4752 end;
4753 end if;
4754
4755 -- In the case where there is no constraint given in the subtype
4756 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4757 -- semantic attributes must be established here.
4758
4759 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4760 Set_Etype (Id, Base_Type (T));
4761
4762 -- Subtype of unconstrained array without constraint is not allowed
4763 -- in SPARK.
4764
4765 if Is_Array_Type (T) and then not Is_Constrained (T) then
4766 Check_SPARK_05_Restriction
4767 ("subtype of unconstrained array must have constraint", N);
4768 end if;
4769
4770 case Ekind (T) is
4771 when Array_Kind =>
4772 Set_Ekind (Id, E_Array_Subtype);
4773 Copy_Array_Subtype_Attributes (Id, T);
4774
4775 when Decimal_Fixed_Point_Kind =>
4776 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4777 Set_Digits_Value (Id, Digits_Value (T));
4778 Set_Delta_Value (Id, Delta_Value (T));
4779 Set_Scale_Value (Id, Scale_Value (T));
4780 Set_Small_Value (Id, Small_Value (T));
4781 Set_Scalar_Range (Id, Scalar_Range (T));
4782 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4783 Set_Is_Constrained (Id, Is_Constrained (T));
4784 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4785 Set_RM_Size (Id, RM_Size (T));
4786
4787 when Enumeration_Kind =>
4788 Set_Ekind (Id, E_Enumeration_Subtype);
4789 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4790 Set_Scalar_Range (Id, Scalar_Range (T));
4791 Set_Is_Character_Type (Id, Is_Character_Type (T));
4792 Set_Is_Constrained (Id, Is_Constrained (T));
4793 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4794 Set_RM_Size (Id, RM_Size (T));
4795 Inherit_Predicate_Flags (Id, T);
4796
4797 when Ordinary_Fixed_Point_Kind =>
4798 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4799 Set_Scalar_Range (Id, Scalar_Range (T));
4800 Set_Small_Value (Id, Small_Value (T));
4801 Set_Delta_Value (Id, Delta_Value (T));
4802 Set_Is_Constrained (Id, Is_Constrained (T));
4803 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4804 Set_RM_Size (Id, RM_Size (T));
4805
4806 when Float_Kind =>
4807 Set_Ekind (Id, E_Floating_Point_Subtype);
4808 Set_Scalar_Range (Id, Scalar_Range (T));
4809 Set_Digits_Value (Id, Digits_Value (T));
4810 Set_Is_Constrained (Id, Is_Constrained (T));
4811
4812 when Signed_Integer_Kind =>
4813 Set_Ekind (Id, E_Signed_Integer_Subtype);
4814 Set_Scalar_Range (Id, Scalar_Range (T));
4815 Set_Is_Constrained (Id, Is_Constrained (T));
4816 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4817 Set_RM_Size (Id, RM_Size (T));
4818 Inherit_Predicate_Flags (Id, T);
4819
4820 when Modular_Integer_Kind =>
4821 Set_Ekind (Id, E_Modular_Integer_Subtype);
4822 Set_Scalar_Range (Id, Scalar_Range (T));
4823 Set_Is_Constrained (Id, Is_Constrained (T));
4824 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4825 Set_RM_Size (Id, RM_Size (T));
4826 Inherit_Predicate_Flags (Id, T);
4827
4828 when Class_Wide_Kind =>
4829 Set_Ekind (Id, E_Class_Wide_Subtype);
4830 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4831 Set_Cloned_Subtype (Id, T);
4832 Set_Is_Tagged_Type (Id, True);
4833 Set_Has_Unknown_Discriminants
4834 (Id, True);
4835 Set_No_Tagged_Streams_Pragma
4836 (Id, No_Tagged_Streams_Pragma (T));
4837
4838 if Ekind (T) = E_Class_Wide_Subtype then
4839 Set_Equivalent_Type (Id, Equivalent_Type (T));
4840 end if;
4841
4842 when E_Record_Type | E_Record_Subtype =>
4843 Set_Ekind (Id, E_Record_Subtype);
4844
4845 if Ekind (T) = E_Record_Subtype
4846 and then Present (Cloned_Subtype (T))
4847 then
4848 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4849 else
4850 Set_Cloned_Subtype (Id, T);
4851 end if;
4852
4853 Set_First_Entity (Id, First_Entity (T));
4854 Set_Last_Entity (Id, Last_Entity (T));
4855 Set_Has_Discriminants (Id, Has_Discriminants (T));
4856 Set_Is_Constrained (Id, Is_Constrained (T));
4857 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4858 Set_Has_Implicit_Dereference
4859 (Id, Has_Implicit_Dereference (T));
4860 Set_Has_Unknown_Discriminants
4861 (Id, Has_Unknown_Discriminants (T));
4862
4863 if Has_Discriminants (T) then
4864 Set_Discriminant_Constraint
4865 (Id, Discriminant_Constraint (T));
4866 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4867
4868 elsif Has_Unknown_Discriminants (Id) then
4869 Set_Discriminant_Constraint (Id, No_Elist);
4870 end if;
4871
4872 if Is_Tagged_Type (T) then
4873 Set_Is_Tagged_Type (Id, True);
4874 Set_No_Tagged_Streams_Pragma
4875 (Id, No_Tagged_Streams_Pragma (T));
4876 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4877 Set_Direct_Primitive_Operations
4878 (Id, Direct_Primitive_Operations (T));
4879 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4880
4881 if Is_Interface (T) then
4882 Set_Is_Interface (Id);
4883 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4884 end if;
4885 end if;
4886
4887 when Private_Kind =>
4888 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4889 Set_Has_Discriminants (Id, Has_Discriminants (T));
4890 Set_Is_Constrained (Id, Is_Constrained (T));
4891 Set_First_Entity (Id, First_Entity (T));
4892 Set_Last_Entity (Id, Last_Entity (T));
4893 Set_Private_Dependents (Id, New_Elmt_List);
4894 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4895 Set_Has_Implicit_Dereference
4896 (Id, Has_Implicit_Dereference (T));
4897 Set_Has_Unknown_Discriminants
4898 (Id, Has_Unknown_Discriminants (T));
4899 Set_Known_To_Have_Preelab_Init
4900 (Id, Known_To_Have_Preelab_Init (T));
4901
4902 if Is_Tagged_Type (T) then
4903 Set_Is_Tagged_Type (Id);
4904 Set_No_Tagged_Streams_Pragma (Id,
4905 No_Tagged_Streams_Pragma (T));
4906 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4907 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4908 Set_Direct_Primitive_Operations (Id,
4909 Direct_Primitive_Operations (T));
4910 end if;
4911
4912 -- In general the attributes of the subtype of a private type
4913 -- are the attributes of the partial view of parent. However,
4914 -- the full view may be a discriminated type, and the subtype
4915 -- must share the discriminant constraint to generate correct
4916 -- calls to initialization procedures.
4917
4918 if Has_Discriminants (T) then
4919 Set_Discriminant_Constraint
4920 (Id, Discriminant_Constraint (T));
4921 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4922
4923 elsif Present (Full_View (T))
4924 and then Has_Discriminants (Full_View (T))
4925 then
4926 Set_Discriminant_Constraint
4927 (Id, Discriminant_Constraint (Full_View (T)));
4928 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4929
4930 -- This would seem semantically correct, but apparently
4931 -- generates spurious errors about missing components ???
4932
4933 -- Set_Has_Discriminants (Id);
4934 end if;
4935
4936 Prepare_Private_Subtype_Completion (Id, N);
4937
4938 -- If this is the subtype of a constrained private type with
4939 -- discriminants that has got a full view and we also have
4940 -- built a completion just above, show that the completion
4941 -- is a clone of the full view to the back-end.
4942
4943 if Has_Discriminants (T)
4944 and then not Has_Unknown_Discriminants (T)
4945 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4946 and then Present (Full_View (T))
4947 and then Present (Full_View (Id))
4948 then
4949 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4950 end if;
4951
4952 when Access_Kind =>
4953 Set_Ekind (Id, E_Access_Subtype);
4954 Set_Is_Constrained (Id, Is_Constrained (T));
4955 Set_Is_Access_Constant
4956 (Id, Is_Access_Constant (T));
4957 Set_Directly_Designated_Type
4958 (Id, Designated_Type (T));
4959 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4960
4961 -- A Pure library_item must not contain the declaration of a
4962 -- named access type, except within a subprogram, generic
4963 -- subprogram, task unit, or protected unit, or if it has
4964 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4965
4966 if Comes_From_Source (Id)
4967 and then In_Pure_Unit
4968 and then not In_Subprogram_Task_Protected_Unit
4969 and then not No_Pool_Assigned (Id)
4970 then
4971 Error_Msg_N
4972 ("named access types not allowed in pure unit", N);
4973 end if;
4974
4975 when Concurrent_Kind =>
4976 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4977 Set_Corresponding_Record_Type (Id,
4978 Corresponding_Record_Type (T));
4979 Set_First_Entity (Id, First_Entity (T));
4980 Set_First_Private_Entity (Id, First_Private_Entity (T));
4981 Set_Has_Discriminants (Id, Has_Discriminants (T));
4982 Set_Is_Constrained (Id, Is_Constrained (T));
4983 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4984 Set_Last_Entity (Id, Last_Entity (T));
4985
4986 if Is_Tagged_Type (T) then
4987 Set_No_Tagged_Streams_Pragma
4988 (Id, No_Tagged_Streams_Pragma (T));
4989 end if;
4990
4991 if Has_Discriminants (T) then
4992 Set_Discriminant_Constraint
4993 (Id, Discriminant_Constraint (T));
4994 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4995 end if;
4996
4997 when Incomplete_Kind =>
4998 if Ada_Version >= Ada_2005 then
4999
5000 -- In Ada 2005 an incomplete type can be explicitly tagged:
5001 -- propagate indication. Note that we also have to include
5002 -- subtypes for Ada 2012 extended use of incomplete types.
5003
5004 Set_Ekind (Id, E_Incomplete_Subtype);
5005 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5006 Set_Private_Dependents (Id, New_Elmt_List);
5007
5008 if Is_Tagged_Type (Id) then
5009 Set_No_Tagged_Streams_Pragma
5010 (Id, No_Tagged_Streams_Pragma (T));
5011 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5012 end if;
5013
5014 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5015 -- incomplete type visible through a limited with clause.
5016
5017 if From_Limited_With (T)
5018 and then Present (Non_Limited_View (T))
5019 then
5020 Set_From_Limited_With (Id);
5021 Set_Non_Limited_View (Id, Non_Limited_View (T));
5022
5023 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5024 -- to the private dependents of the original incomplete
5025 -- type for future transformation.
5026
5027 else
5028 Append_Elmt (Id, Private_Dependents (T));
5029 end if;
5030
5031 -- If the subtype name denotes an incomplete type an error
5032 -- was already reported by Process_Subtype.
5033
5034 else
5035 Set_Etype (Id, Any_Type);
5036 end if;
5037
5038 when others =>
5039 raise Program_Error;
5040 end case;
5041 end if;
5042
5043 if Etype (Id) = Any_Type then
5044 goto Leave;
5045 end if;
5046
5047 -- Some common processing on all types
5048
5049 Set_Size_Info (Id, T);
5050 Set_First_Rep_Item (Id, First_Rep_Item (T));
5051
5052 -- If the parent type is a generic actual, so is the subtype. This may
5053 -- happen in a nested instance. Why Comes_From_Source test???
5054
5055 if not Comes_From_Source (N) then
5056 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5057 end if;
5058
5059 T := Etype (Id);
5060
5061 Set_Is_Immediately_Visible (Id, True);
5062 Set_Depends_On_Private (Id, Has_Private_Component (T));
5063 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5064
5065 if Is_Interface (T) then
5066 Set_Is_Interface (Id);
5067 end if;
5068
5069 if Present (Generic_Parent_Type (N))
5070 and then
5071 (Nkind (Parent (Generic_Parent_Type (N))) /=
5072 N_Formal_Type_Declaration
5073 or else Nkind (Formal_Type_Definition
5074 (Parent (Generic_Parent_Type (N)))) /=
5075 N_Formal_Private_Type_Definition)
5076 then
5077 if Is_Tagged_Type (Id) then
5078
5079 -- If this is a generic actual subtype for a synchronized type,
5080 -- the primitive operations are those of the corresponding record
5081 -- for which there is a separate subtype declaration.
5082
5083 if Is_Concurrent_Type (Id) then
5084 null;
5085 elsif Is_Class_Wide_Type (Id) then
5086 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5087 else
5088 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5089 end if;
5090
5091 elsif Scope (Etype (Id)) /= Standard_Standard then
5092 Derive_Subprograms (Generic_Parent_Type (N), Id);
5093 end if;
5094 end if;
5095
5096 if Is_Private_Type (T) and then Present (Full_View (T)) then
5097 Conditional_Delay (Id, Full_View (T));
5098
5099 -- The subtypes of components or subcomponents of protected types
5100 -- do not need freeze nodes, which would otherwise appear in the
5101 -- wrong scope (before the freeze node for the protected type). The
5102 -- proper subtypes are those of the subcomponents of the corresponding
5103 -- record.
5104
5105 elsif Ekind (Scope (Id)) /= E_Protected_Type
5106 and then Present (Scope (Scope (Id))) -- error defense
5107 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5108 then
5109 Conditional_Delay (Id, T);
5110 end if;
5111
5112 -- Check that Constraint_Error is raised for a scalar subtype indication
5113 -- when the lower or upper bound of a non-null range lies outside the
5114 -- range of the type mark.
5115
5116 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5117 if Is_Scalar_Type (Etype (Id))
5118 and then Scalar_Range (Id) /=
5119 Scalar_Range (Etype (Subtype_Mark
5120 (Subtype_Indication (N))))
5121 then
5122 Apply_Range_Check
5123 (Scalar_Range (Id),
5124 Etype (Subtype_Mark (Subtype_Indication (N))));
5125
5126 -- In the array case, check compatibility for each index
5127
5128 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5129 then
5130 -- This really should be a subprogram that finds the indications
5131 -- to check???
5132
5133 declare
5134 Subt_Index : Node_Id := First_Index (Id);
5135 Target_Index : Node_Id :=
5136 First_Index (Etype
5137 (Subtype_Mark (Subtype_Indication (N))));
5138 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5139
5140 begin
5141 while Present (Subt_Index) loop
5142 if ((Nkind (Subt_Index) = N_Identifier
5143 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5144 or else Nkind (Subt_Index) = N_Subtype_Indication)
5145 and then
5146 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5147 then
5148 declare
5149 Target_Typ : constant Entity_Id :=
5150 Etype (Target_Index);
5151 begin
5152 R_Checks :=
5153 Get_Range_Checks
5154 (Scalar_Range (Etype (Subt_Index)),
5155 Target_Typ,
5156 Etype (Subt_Index),
5157 Defining_Identifier (N));
5158
5159 -- Reset Has_Dynamic_Range_Check on the subtype to
5160 -- prevent elision of the index check due to a dynamic
5161 -- check generated for a preceding index (needed since
5162 -- Insert_Range_Checks tries to avoid generating
5163 -- redundant checks on a given declaration).
5164
5165 Set_Has_Dynamic_Range_Check (N, False);
5166
5167 Insert_Range_Checks
5168 (R_Checks,
5169 N,
5170 Target_Typ,
5171 Sloc (Defining_Identifier (N)));
5172
5173 -- Record whether this index involved a dynamic check
5174
5175 Has_Dyn_Chk :=
5176 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5177 end;
5178 end if;
5179
5180 Next_Index (Subt_Index);
5181 Next_Index (Target_Index);
5182 end loop;
5183
5184 -- Finally, mark whether the subtype involves dynamic checks
5185
5186 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5187 end;
5188 end if;
5189 end if;
5190
5191 -- A type invariant applies to any subtype in its scope, in particular
5192 -- to a generic actual.
5193
5194 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5195 Set_Has_Invariants (Id);
5196 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5197 end if;
5198
5199 -- Make sure that generic actual types are properly frozen. The subtype
5200 -- is marked as a generic actual type when the enclosing instance is
5201 -- analyzed, so here we identify the subtype from the tree structure.
5202
5203 if Expander_Active
5204 and then Is_Generic_Actual_Type (Id)
5205 and then In_Instance
5206 and then not Comes_From_Source (N)
5207 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5208 and then Is_Frozen (T)
5209 then
5210 Freeze_Before (N, Id);
5211 end if;
5212
5213 Set_Optimize_Alignment_Flags (Id);
5214 Check_Eliminated (Id);
5215
5216 <<Leave>>
5217 if Has_Aspects (N) then
5218 Analyze_Aspect_Specifications (N, Id);
5219 end if;
5220
5221 Analyze_Dimension (N);
5222 end Analyze_Subtype_Declaration;
5223
5224 --------------------------------
5225 -- Analyze_Subtype_Indication --
5226 --------------------------------
5227
5228 procedure Analyze_Subtype_Indication (N : Node_Id) is
5229 T : constant Entity_Id := Subtype_Mark (N);
5230 R : constant Node_Id := Range_Expression (Constraint (N));
5231
5232 begin
5233 Analyze (T);
5234
5235 if R /= Error then
5236 Analyze (R);
5237 Set_Etype (N, Etype (R));
5238 Resolve (R, Entity (T));
5239 else
5240 Set_Error_Posted (R);
5241 Set_Error_Posted (T);
5242 end if;
5243 end Analyze_Subtype_Indication;
5244
5245 --------------------------
5246 -- Analyze_Variant_Part --
5247 --------------------------
5248
5249 procedure Analyze_Variant_Part (N : Node_Id) is
5250 Discr_Name : Node_Id;
5251 Discr_Type : Entity_Id;
5252
5253 procedure Process_Variant (A : Node_Id);
5254 -- Analyze declarations for a single variant
5255
5256 package Analyze_Variant_Choices is
5257 new Generic_Analyze_Choices (Process_Variant);
5258 use Analyze_Variant_Choices;
5259
5260 ---------------------
5261 -- Process_Variant --
5262 ---------------------
5263
5264 procedure Process_Variant (A : Node_Id) is
5265 CL : constant Node_Id := Component_List (A);
5266 begin
5267 if not Null_Present (CL) then
5268 Analyze_Declarations (Component_Items (CL));
5269
5270 if Present (Variant_Part (CL)) then
5271 Analyze (Variant_Part (CL));
5272 end if;
5273 end if;
5274 end Process_Variant;
5275
5276 -- Start of processing for Analyze_Variant_Part
5277
5278 begin
5279 Discr_Name := Name (N);
5280 Analyze (Discr_Name);
5281
5282 -- If Discr_Name bad, get out (prevent cascaded errors)
5283
5284 if Etype (Discr_Name) = Any_Type then
5285 return;
5286 end if;
5287
5288 -- Check invalid discriminant in variant part
5289
5290 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5291 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5292 end if;
5293
5294 Discr_Type := Etype (Entity (Discr_Name));
5295
5296 if not Is_Discrete_Type (Discr_Type) then
5297 Error_Msg_N
5298 ("discriminant in a variant part must be of a discrete type",
5299 Name (N));
5300 return;
5301 end if;
5302
5303 -- Now analyze the choices, which also analyzes the declarations that
5304 -- are associated with each choice.
5305
5306 Analyze_Choices (Variants (N), Discr_Type);
5307
5308 -- Note: we used to instantiate and call Check_Choices here to check
5309 -- that the choices covered the discriminant, but it's too early to do
5310 -- that because of statically predicated subtypes, whose analysis may
5311 -- be deferred to their freeze point which may be as late as the freeze
5312 -- point of the containing record. So this call is now to be found in
5313 -- Freeze_Record_Declaration.
5314
5315 end Analyze_Variant_Part;
5316
5317 ----------------------------
5318 -- Array_Type_Declaration --
5319 ----------------------------
5320
5321 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5322 Component_Def : constant Node_Id := Component_Definition (Def);
5323 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5324 Element_Type : Entity_Id;
5325 Implicit_Base : Entity_Id;
5326 Index : Node_Id;
5327 Related_Id : Entity_Id := Empty;
5328 Nb_Index : Nat;
5329 P : constant Node_Id := Parent (Def);
5330 Priv : Entity_Id;
5331
5332 begin
5333 if Nkind (Def) = N_Constrained_Array_Definition then
5334 Index := First (Discrete_Subtype_Definitions (Def));
5335 else
5336 Index := First (Subtype_Marks (Def));
5337 end if;
5338
5339 -- Find proper names for the implicit types which may be public. In case
5340 -- of anonymous arrays we use the name of the first object of that type
5341 -- as prefix.
5342
5343 if No (T) then
5344 Related_Id := Defining_Identifier (P);
5345 else
5346 Related_Id := T;
5347 end if;
5348
5349 Nb_Index := 1;
5350 while Present (Index) loop
5351 Analyze (Index);
5352
5353 -- Test for odd case of trying to index a type by the type itself
5354
5355 if Is_Entity_Name (Index) and then Entity (Index) = T then
5356 Error_Msg_N ("type& cannot be indexed by itself", Index);
5357 Set_Entity (Index, Standard_Boolean);
5358 Set_Etype (Index, Standard_Boolean);
5359 end if;
5360
5361 -- Check SPARK restriction requiring a subtype mark
5362
5363 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5364 Check_SPARK_05_Restriction ("subtype mark required", Index);
5365 end if;
5366
5367 -- Add a subtype declaration for each index of private array type
5368 -- declaration whose etype is also private. For example:
5369
5370 -- package Pkg is
5371 -- type Index is private;
5372 -- private
5373 -- type Table is array (Index) of ...
5374 -- end;
5375
5376 -- This is currently required by the expander for the internally
5377 -- generated equality subprogram of records with variant parts in
5378 -- which the etype of some component is such private type.
5379
5380 if Ekind (Current_Scope) = E_Package
5381 and then In_Private_Part (Current_Scope)
5382 and then Has_Private_Declaration (Etype (Index))
5383 then
5384 declare
5385 Loc : constant Source_Ptr := Sloc (Def);
5386 New_E : Entity_Id;
5387 Decl : Entity_Id;
5388
5389 begin
5390 New_E := Make_Temporary (Loc, 'T');
5391 Set_Is_Internal (New_E);
5392
5393 Decl :=
5394 Make_Subtype_Declaration (Loc,
5395 Defining_Identifier => New_E,
5396 Subtype_Indication =>
5397 New_Occurrence_Of (Etype (Index), Loc));
5398
5399 Insert_Before (Parent (Def), Decl);
5400 Analyze (Decl);
5401 Set_Etype (Index, New_E);
5402
5403 -- If the index is a range the Entity attribute is not
5404 -- available. Example:
5405
5406 -- package Pkg is
5407 -- type T is private;
5408 -- private
5409 -- type T is new Natural;
5410 -- Table : array (T(1) .. T(10)) of Boolean;
5411 -- end Pkg;
5412
5413 if Nkind (Index) /= N_Range then
5414 Set_Entity (Index, New_E);
5415 end if;
5416 end;
5417 end if;
5418
5419 Make_Index (Index, P, Related_Id, Nb_Index);
5420
5421 -- Check error of subtype with predicate for index type
5422
5423 Bad_Predicated_Subtype_Use
5424 ("subtype& has predicate, not allowed as index subtype",
5425 Index, Etype (Index));
5426
5427 -- Move to next index
5428
5429 Next_Index (Index);
5430 Nb_Index := Nb_Index + 1;
5431 end loop;
5432
5433 -- Process subtype indication if one is present
5434
5435 if Present (Component_Typ) then
5436 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5437
5438 Set_Etype (Component_Typ, Element_Type);
5439
5440 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5441 Check_SPARK_05_Restriction
5442 ("subtype mark required", Component_Typ);
5443 end if;
5444
5445 -- Ada 2005 (AI-230): Access Definition case
5446
5447 else pragma Assert (Present (Access_Definition (Component_Def)));
5448
5449 -- Indicate that the anonymous access type is created by the
5450 -- array type declaration.
5451
5452 Element_Type := Access_Definition
5453 (Related_Nod => P,
5454 N => Access_Definition (Component_Def));
5455 Set_Is_Local_Anonymous_Access (Element_Type);
5456
5457 -- Propagate the parent. This field is needed if we have to generate
5458 -- the master_id associated with an anonymous access to task type
5459 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5460
5461 Set_Parent (Element_Type, Parent (T));
5462
5463 -- Ada 2005 (AI-230): In case of components that are anonymous access
5464 -- types the level of accessibility depends on the enclosing type
5465 -- declaration
5466
5467 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5468
5469 -- Ada 2005 (AI-254)
5470
5471 declare
5472 CD : constant Node_Id :=
5473 Access_To_Subprogram_Definition
5474 (Access_Definition (Component_Def));
5475 begin
5476 if Present (CD) and then Protected_Present (CD) then
5477 Element_Type :=
5478 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5479 end if;
5480 end;
5481 end if;
5482
5483 -- Constrained array case
5484
5485 if No (T) then
5486 T := Create_Itype (E_Void, P, Related_Id, 'T');
5487 end if;
5488
5489 if Nkind (Def) = N_Constrained_Array_Definition then
5490
5491 -- Establish Implicit_Base as unconstrained base type
5492
5493 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5494
5495 Set_Etype (Implicit_Base, Implicit_Base);
5496 Set_Scope (Implicit_Base, Current_Scope);
5497 Set_Has_Delayed_Freeze (Implicit_Base);
5498 Set_Default_SSO (Implicit_Base);
5499
5500 -- The constrained array type is a subtype of the unconstrained one
5501
5502 Set_Ekind (T, E_Array_Subtype);
5503 Init_Size_Align (T);
5504 Set_Etype (T, Implicit_Base);
5505 Set_Scope (T, Current_Scope);
5506 Set_Is_Constrained (T);
5507 Set_First_Index (T,
5508 First (Discrete_Subtype_Definitions (Def)));
5509 Set_Has_Delayed_Freeze (T);
5510
5511 -- Complete setup of implicit base type
5512
5513 Set_First_Index (Implicit_Base, First_Index (T));
5514 Set_Component_Type (Implicit_Base, Element_Type);
5515 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5516 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5517 Set_Component_Size (Implicit_Base, Uint_0);
5518 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5519 Set_Has_Controlled_Component (Implicit_Base,
5520 Has_Controlled_Component (Element_Type)
5521 or else Is_Controlled (Element_Type));
5522 Set_Finalize_Storage_Only (Implicit_Base,
5523 Finalize_Storage_Only (Element_Type));
5524
5525 -- Inherit the "ghostness" from the constrained array type
5526
5527 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5528 Set_Is_Ghost_Entity (Implicit_Base);
5529 end if;
5530
5531 -- Unconstrained array case
5532
5533 else
5534 Set_Ekind (T, E_Array_Type);
5535 Init_Size_Align (T);
5536 Set_Etype (T, T);
5537 Set_Scope (T, Current_Scope);
5538 Set_Component_Size (T, Uint_0);
5539 Set_Is_Constrained (T, False);
5540 Set_First_Index (T, First (Subtype_Marks (Def)));
5541 Set_Has_Delayed_Freeze (T, True);
5542 Set_Has_Task (T, Has_Task (Element_Type));
5543 Set_Has_Protected (T, Has_Protected (Element_Type));
5544 Set_Has_Controlled_Component (T, Has_Controlled_Component
5545 (Element_Type)
5546 or else
5547 Is_Controlled (Element_Type));
5548 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5549 (Element_Type));
5550 Set_Default_SSO (T);
5551 end if;
5552
5553 -- Common attributes for both cases
5554
5555 Set_Component_Type (Base_Type (T), Element_Type);
5556 Set_Packed_Array_Impl_Type (T, Empty);
5557
5558 if Aliased_Present (Component_Definition (Def)) then
5559 Check_SPARK_05_Restriction
5560 ("aliased is not allowed", Component_Definition (Def));
5561 Set_Has_Aliased_Components (Etype (T));
5562 end if;
5563
5564 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5565 -- array type to ensure that objects of this type are initialized.
5566
5567 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5568 Set_Can_Never_Be_Null (T);
5569
5570 if Null_Exclusion_Present (Component_Definition (Def))
5571
5572 -- No need to check itypes because in their case this check was
5573 -- done at their point of creation
5574
5575 and then not Is_Itype (Element_Type)
5576 then
5577 Error_Msg_N
5578 ("`NOT NULL` not allowed (null already excluded)",
5579 Subtype_Indication (Component_Definition (Def)));
5580 end if;
5581 end if;
5582
5583 Priv := Private_Component (Element_Type);
5584
5585 if Present (Priv) then
5586
5587 -- Check for circular definitions
5588
5589 if Priv = Any_Type then
5590 Set_Component_Type (Etype (T), Any_Type);
5591
5592 -- There is a gap in the visibility of operations on the composite
5593 -- type only if the component type is defined in a different scope.
5594
5595 elsif Scope (Priv) = Current_Scope then
5596 null;
5597
5598 elsif Is_Limited_Type (Priv) then
5599 Set_Is_Limited_Composite (Etype (T));
5600 Set_Is_Limited_Composite (T);
5601 else
5602 Set_Is_Private_Composite (Etype (T));
5603 Set_Is_Private_Composite (T);
5604 end if;
5605 end if;
5606
5607 -- A syntax error in the declaration itself may lead to an empty index
5608 -- list, in which case do a minimal patch.
5609
5610 if No (First_Index (T)) then
5611 Error_Msg_N ("missing index definition in array type declaration", T);
5612
5613 declare
5614 Indexes : constant List_Id :=
5615 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5616 begin
5617 Set_Discrete_Subtype_Definitions (Def, Indexes);
5618 Set_First_Index (T, First (Indexes));
5619 return;
5620 end;
5621 end if;
5622
5623 -- Create a concatenation operator for the new type. Internal array
5624 -- types created for packed entities do not need such, they are
5625 -- compatible with the user-defined type.
5626
5627 if Number_Dimensions (T) = 1
5628 and then not Is_Packed_Array_Impl_Type (T)
5629 then
5630 New_Concatenation_Op (T);
5631 end if;
5632
5633 -- In the case of an unconstrained array the parser has already verified
5634 -- that all the indexes are unconstrained but we still need to make sure
5635 -- that the element type is constrained.
5636
5637 if Is_Indefinite_Subtype (Element_Type) then
5638 Error_Msg_N
5639 ("unconstrained element type in array declaration",
5640 Subtype_Indication (Component_Def));
5641
5642 elsif Is_Abstract_Type (Element_Type) then
5643 Error_Msg_N
5644 ("the type of a component cannot be abstract",
5645 Subtype_Indication (Component_Def));
5646 end if;
5647
5648 -- There may be an invariant declared for the component type, but
5649 -- the construction of the component invariant checking procedure
5650 -- takes place during expansion.
5651 end Array_Type_Declaration;
5652
5653 ------------------------------------------------------
5654 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5655 ------------------------------------------------------
5656
5657 function Replace_Anonymous_Access_To_Protected_Subprogram
5658 (N : Node_Id) return Entity_Id
5659 is
5660 Loc : constant Source_Ptr := Sloc (N);
5661
5662 Curr_Scope : constant Scope_Stack_Entry :=
5663 Scope_Stack.Table (Scope_Stack.Last);
5664
5665 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5666
5667 Acc : Node_Id;
5668 -- Access definition in declaration
5669
5670 Comp : Node_Id;
5671 -- Object definition or formal definition with an access definition
5672
5673 Decl : Node_Id;
5674 -- Declaration of anonymous access to subprogram type
5675
5676 Spec : Node_Id;
5677 -- Original specification in access to subprogram
5678
5679 P : Node_Id;
5680
5681 begin
5682 Set_Is_Internal (Anon);
5683
5684 case Nkind (N) is
5685 when N_Component_Declaration |
5686 N_Unconstrained_Array_Definition |
5687 N_Constrained_Array_Definition =>
5688 Comp := Component_Definition (N);
5689 Acc := Access_Definition (Comp);
5690
5691 when N_Discriminant_Specification =>
5692 Comp := Discriminant_Type (N);
5693 Acc := Comp;
5694
5695 when N_Parameter_Specification =>
5696 Comp := Parameter_Type (N);
5697 Acc := Comp;
5698
5699 when N_Access_Function_Definition =>
5700 Comp := Result_Definition (N);
5701 Acc := Comp;
5702
5703 when N_Object_Declaration =>
5704 Comp := Object_Definition (N);
5705 Acc := Comp;
5706
5707 when N_Function_Specification =>
5708 Comp := Result_Definition (N);
5709 Acc := Comp;
5710
5711 when others =>
5712 raise Program_Error;
5713 end case;
5714
5715 Spec := Access_To_Subprogram_Definition (Acc);
5716
5717 Decl :=
5718 Make_Full_Type_Declaration (Loc,
5719 Defining_Identifier => Anon,
5720 Type_Definition => Copy_Separate_Tree (Spec));
5721
5722 Mark_Rewrite_Insertion (Decl);
5723
5724 -- In ASIS mode, analyze the profile on the original node, because
5725 -- the separate copy does not provide enough links to recover the
5726 -- original tree. Analysis is limited to type annotations, within
5727 -- a temporary scope that serves as an anonymous subprogram to collect
5728 -- otherwise useless temporaries and itypes.
5729
5730 if ASIS_Mode then
5731 declare
5732 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5733
5734 begin
5735 if Nkind (Spec) = N_Access_Function_Definition then
5736 Set_Ekind (Typ, E_Function);
5737 else
5738 Set_Ekind (Typ, E_Procedure);
5739 end if;
5740
5741 Set_Parent (Typ, N);
5742 Set_Scope (Typ, Current_Scope);
5743 Push_Scope (Typ);
5744
5745 Process_Formals (Parameter_Specifications (Spec), Spec);
5746
5747 if Nkind (Spec) = N_Access_Function_Definition then
5748 declare
5749 Def : constant Node_Id := Result_Definition (Spec);
5750
5751 begin
5752 -- The result might itself be an anonymous access type, so
5753 -- have to recurse.
5754
5755 if Nkind (Def) = N_Access_Definition then
5756 if Present (Access_To_Subprogram_Definition (Def)) then
5757 Set_Etype
5758 (Def,
5759 Replace_Anonymous_Access_To_Protected_Subprogram
5760 (Spec));
5761 else
5762 Find_Type (Subtype_Mark (Def));
5763 end if;
5764
5765 else
5766 Find_Type (Def);
5767 end if;
5768 end;
5769 end if;
5770
5771 End_Scope;
5772 end;
5773 end if;
5774
5775 -- Insert the new declaration in the nearest enclosing scope. If the
5776 -- node is a body and N is its return type, the declaration belongs in
5777 -- the enclosing scope.
5778
5779 P := Parent (N);
5780
5781 if Nkind (P) = N_Subprogram_Body
5782 and then Nkind (N) = N_Function_Specification
5783 then
5784 P := Parent (P);
5785 end if;
5786
5787 while Present (P) and then not Has_Declarations (P) loop
5788 P := Parent (P);
5789 end loop;
5790
5791 pragma Assert (Present (P));
5792
5793 if Nkind (P) = N_Package_Specification then
5794 Prepend (Decl, Visible_Declarations (P));
5795 else
5796 Prepend (Decl, Declarations (P));
5797 end if;
5798
5799 -- Replace the anonymous type with an occurrence of the new declaration.
5800 -- In all cases the rewritten node does not have the null-exclusion
5801 -- attribute because (if present) it was already inherited by the
5802 -- anonymous entity (Anon). Thus, in case of components we do not
5803 -- inherit this attribute.
5804
5805 if Nkind (N) = N_Parameter_Specification then
5806 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5807 Set_Etype (Defining_Identifier (N), Anon);
5808 Set_Null_Exclusion_Present (N, False);
5809
5810 elsif Nkind (N) = N_Object_Declaration then
5811 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5812 Set_Etype (Defining_Identifier (N), Anon);
5813
5814 elsif Nkind (N) = N_Access_Function_Definition then
5815 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5816
5817 elsif Nkind (N) = N_Function_Specification then
5818 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5819 Set_Etype (Defining_Unit_Name (N), Anon);
5820
5821 else
5822 Rewrite (Comp,
5823 Make_Component_Definition (Loc,
5824 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5825 end if;
5826
5827 Mark_Rewrite_Insertion (Comp);
5828
5829 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5830 Analyze (Decl);
5831
5832 else
5833 -- Temporarily remove the current scope (record or subprogram) from
5834 -- the stack to add the new declarations to the enclosing scope.
5835
5836 Scope_Stack.Decrement_Last;
5837 Analyze (Decl);
5838 Set_Is_Itype (Anon);
5839 Scope_Stack.Append (Curr_Scope);
5840 end if;
5841
5842 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5843 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5844 return Anon;
5845 end Replace_Anonymous_Access_To_Protected_Subprogram;
5846
5847 -------------------------------
5848 -- Build_Derived_Access_Type --
5849 -------------------------------
5850
5851 procedure Build_Derived_Access_Type
5852 (N : Node_Id;
5853 Parent_Type : Entity_Id;
5854 Derived_Type : Entity_Id)
5855 is
5856 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5857
5858 Desig_Type : Entity_Id;
5859 Discr : Entity_Id;
5860 Discr_Con_Elist : Elist_Id;
5861 Discr_Con_El : Elmt_Id;
5862 Subt : Entity_Id;
5863
5864 begin
5865 -- Set the designated type so it is available in case this is an access
5866 -- to a self-referential type, e.g. a standard list type with a next
5867 -- pointer. Will be reset after subtype is built.
5868
5869 Set_Directly_Designated_Type
5870 (Derived_Type, Designated_Type (Parent_Type));
5871
5872 Subt := Process_Subtype (S, N);
5873
5874 if Nkind (S) /= N_Subtype_Indication
5875 and then Subt /= Base_Type (Subt)
5876 then
5877 Set_Ekind (Derived_Type, E_Access_Subtype);
5878 end if;
5879
5880 if Ekind (Derived_Type) = E_Access_Subtype then
5881 declare
5882 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5883 Ibase : constant Entity_Id :=
5884 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5885 Svg_Chars : constant Name_Id := Chars (Ibase);
5886 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5887
5888 begin
5889 Copy_Node (Pbase, Ibase);
5890
5891 Set_Chars (Ibase, Svg_Chars);
5892 Set_Next_Entity (Ibase, Svg_Next_E);
5893 Set_Sloc (Ibase, Sloc (Derived_Type));
5894 Set_Scope (Ibase, Scope (Derived_Type));
5895 Set_Freeze_Node (Ibase, Empty);
5896 Set_Is_Frozen (Ibase, False);
5897 Set_Comes_From_Source (Ibase, False);
5898 Set_Is_First_Subtype (Ibase, False);
5899
5900 Set_Etype (Ibase, Pbase);
5901 Set_Etype (Derived_Type, Ibase);
5902 end;
5903 end if;
5904
5905 Set_Directly_Designated_Type
5906 (Derived_Type, Designated_Type (Subt));
5907
5908 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5909 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5910 Set_Size_Info (Derived_Type, Parent_Type);
5911 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5912 Set_Depends_On_Private (Derived_Type,
5913 Has_Private_Component (Derived_Type));
5914 Conditional_Delay (Derived_Type, Subt);
5915
5916 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5917 -- that it is not redundant.
5918
5919 if Null_Exclusion_Present (Type_Definition (N)) then
5920 Set_Can_Never_Be_Null (Derived_Type);
5921
5922 -- What is with the "AND THEN FALSE" here ???
5923
5924 if Can_Never_Be_Null (Parent_Type)
5925 and then False
5926 then
5927 Error_Msg_NE
5928 ("`NOT NULL` not allowed (& already excludes null)",
5929 N, Parent_Type);
5930 end if;
5931
5932 elsif Can_Never_Be_Null (Parent_Type) then
5933 Set_Can_Never_Be_Null (Derived_Type);
5934 end if;
5935
5936 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5937 -- the root type for this information.
5938
5939 -- Apply range checks to discriminants for derived record case
5940 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5941
5942 Desig_Type := Designated_Type (Derived_Type);
5943 if Is_Composite_Type (Desig_Type)
5944 and then (not Is_Array_Type (Desig_Type))
5945 and then Has_Discriminants (Desig_Type)
5946 and then Base_Type (Desig_Type) /= Desig_Type
5947 then
5948 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5949 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5950
5951 Discr := First_Discriminant (Base_Type (Desig_Type));
5952 while Present (Discr_Con_El) loop
5953 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5954 Next_Elmt (Discr_Con_El);
5955 Next_Discriminant (Discr);
5956 end loop;
5957 end if;
5958 end Build_Derived_Access_Type;
5959
5960 ------------------------------
5961 -- Build_Derived_Array_Type --
5962 ------------------------------
5963
5964 procedure Build_Derived_Array_Type
5965 (N : Node_Id;
5966 Parent_Type : Entity_Id;
5967 Derived_Type : Entity_Id)
5968 is
5969 Loc : constant Source_Ptr := Sloc (N);
5970 Tdef : constant Node_Id := Type_Definition (N);
5971 Indic : constant Node_Id := Subtype_Indication (Tdef);
5972 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5973 Implicit_Base : Entity_Id;
5974 New_Indic : Node_Id;
5975
5976 procedure Make_Implicit_Base;
5977 -- If the parent subtype is constrained, the derived type is a subtype
5978 -- of an implicit base type derived from the parent base.
5979
5980 ------------------------
5981 -- Make_Implicit_Base --
5982 ------------------------
5983
5984 procedure Make_Implicit_Base is
5985 begin
5986 Implicit_Base :=
5987 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5988
5989 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5990 Set_Etype (Implicit_Base, Parent_Base);
5991
5992 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5993 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5994
5995 Set_Has_Delayed_Freeze (Implicit_Base, True);
5996
5997 -- Inherit the "ghostness" from the parent base type
5998
5999 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
6000 Set_Is_Ghost_Entity (Implicit_Base);
6001 end if;
6002 end Make_Implicit_Base;
6003
6004 -- Start of processing for Build_Derived_Array_Type
6005
6006 begin
6007 if not Is_Constrained (Parent_Type) then
6008 if Nkind (Indic) /= N_Subtype_Indication then
6009 Set_Ekind (Derived_Type, E_Array_Type);
6010
6011 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6012 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6013
6014 Set_Has_Delayed_Freeze (Derived_Type, True);
6015
6016 else
6017 Make_Implicit_Base;
6018 Set_Etype (Derived_Type, Implicit_Base);
6019
6020 New_Indic :=
6021 Make_Subtype_Declaration (Loc,
6022 Defining_Identifier => Derived_Type,
6023 Subtype_Indication =>
6024 Make_Subtype_Indication (Loc,
6025 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6026 Constraint => Constraint (Indic)));
6027
6028 Rewrite (N, New_Indic);
6029 Analyze (N);
6030 end if;
6031
6032 else
6033 if Nkind (Indic) /= N_Subtype_Indication then
6034 Make_Implicit_Base;
6035
6036 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6037 Set_Etype (Derived_Type, Implicit_Base);
6038 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6039
6040 else
6041 Error_Msg_N ("illegal constraint on constrained type", Indic);
6042 end if;
6043 end if;
6044
6045 -- If parent type is not a derived type itself, and is declared in
6046 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6047 -- the new type's concatenation operator since Derive_Subprograms
6048 -- will not inherit the parent's operator. If the parent type is
6049 -- unconstrained, the operator is of the unconstrained base type.
6050
6051 if Number_Dimensions (Parent_Type) = 1
6052 and then not Is_Limited_Type (Parent_Type)
6053 and then not Is_Derived_Type (Parent_Type)
6054 and then not Is_Package_Or_Generic_Package
6055 (Scope (Base_Type (Parent_Type)))
6056 then
6057 if not Is_Constrained (Parent_Type)
6058 and then Is_Constrained (Derived_Type)
6059 then
6060 New_Concatenation_Op (Implicit_Base);
6061 else
6062 New_Concatenation_Op (Derived_Type);
6063 end if;
6064 end if;
6065 end Build_Derived_Array_Type;
6066
6067 -----------------------------------
6068 -- Build_Derived_Concurrent_Type --
6069 -----------------------------------
6070
6071 procedure Build_Derived_Concurrent_Type
6072 (N : Node_Id;
6073 Parent_Type : Entity_Id;
6074 Derived_Type : Entity_Id)
6075 is
6076 Loc : constant Source_Ptr := Sloc (N);
6077
6078 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6079 Corr_Decl : Node_Id;
6080 Corr_Decl_Needed : Boolean;
6081 -- If the derived type has fewer discriminants than its parent, the
6082 -- corresponding record is also a derived type, in order to account for
6083 -- the bound discriminants. We create a full type declaration for it in
6084 -- this case.
6085
6086 Constraint_Present : constant Boolean :=
6087 Nkind (Subtype_Indication (Type_Definition (N))) =
6088 N_Subtype_Indication;
6089
6090 D_Constraint : Node_Id;
6091 New_Constraint : Elist_Id;
6092 Old_Disc : Entity_Id;
6093 New_Disc : Entity_Id;
6094 New_N : Node_Id;
6095
6096 begin
6097 Set_Stored_Constraint (Derived_Type, No_Elist);
6098 Corr_Decl_Needed := False;
6099 Old_Disc := Empty;
6100
6101 if Present (Discriminant_Specifications (N))
6102 and then Constraint_Present
6103 then
6104 Old_Disc := First_Discriminant (Parent_Type);
6105 New_Disc := First (Discriminant_Specifications (N));
6106 while Present (New_Disc) and then Present (Old_Disc) loop
6107 Next_Discriminant (Old_Disc);
6108 Next (New_Disc);
6109 end loop;
6110 end if;
6111
6112 if Present (Old_Disc) and then Expander_Active then
6113
6114 -- The new type has fewer discriminants, so we need to create a new
6115 -- corresponding record, which is derived from the corresponding
6116 -- record of the parent, and has a stored constraint that captures
6117 -- the values of the discriminant constraints. The corresponding
6118 -- record is needed only if expander is active and code generation is
6119 -- enabled.
6120
6121 -- The type declaration for the derived corresponding record has the
6122 -- same discriminant part and constraints as the current declaration.
6123 -- Copy the unanalyzed tree to build declaration.
6124
6125 Corr_Decl_Needed := True;
6126 New_N := Copy_Separate_Tree (N);
6127
6128 Corr_Decl :=
6129 Make_Full_Type_Declaration (Loc,
6130 Defining_Identifier => Corr_Record,
6131 Discriminant_Specifications =>
6132 Discriminant_Specifications (New_N),
6133 Type_Definition =>
6134 Make_Derived_Type_Definition (Loc,
6135 Subtype_Indication =>
6136 Make_Subtype_Indication (Loc,
6137 Subtype_Mark =>
6138 New_Occurrence_Of
6139 (Corresponding_Record_Type (Parent_Type), Loc),
6140 Constraint =>
6141 Constraint
6142 (Subtype_Indication (Type_Definition (New_N))))));
6143 end if;
6144
6145 -- Copy Storage_Size and Relative_Deadline variables if task case
6146
6147 if Is_Task_Type (Parent_Type) then
6148 Set_Storage_Size_Variable (Derived_Type,
6149 Storage_Size_Variable (Parent_Type));
6150 Set_Relative_Deadline_Variable (Derived_Type,
6151 Relative_Deadline_Variable (Parent_Type));
6152 end if;
6153
6154 if Present (Discriminant_Specifications (N)) then
6155 Push_Scope (Derived_Type);
6156 Check_Or_Process_Discriminants (N, Derived_Type);
6157
6158 if Constraint_Present then
6159 New_Constraint :=
6160 Expand_To_Stored_Constraint
6161 (Parent_Type,
6162 Build_Discriminant_Constraints
6163 (Parent_Type,
6164 Subtype_Indication (Type_Definition (N)), True));
6165 end if;
6166
6167 End_Scope;
6168
6169 elsif Constraint_Present then
6170
6171 -- Build constrained subtype, copying the constraint, and derive
6172 -- from it to create a derived constrained type.
6173
6174 declare
6175 Loc : constant Source_Ptr := Sloc (N);
6176 Anon : constant Entity_Id :=
6177 Make_Defining_Identifier (Loc,
6178 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6179 Decl : Node_Id;
6180
6181 begin
6182 Decl :=
6183 Make_Subtype_Declaration (Loc,
6184 Defining_Identifier => Anon,
6185 Subtype_Indication =>
6186 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6187 Insert_Before (N, Decl);
6188 Analyze (Decl);
6189
6190 Rewrite (Subtype_Indication (Type_Definition (N)),
6191 New_Occurrence_Of (Anon, Loc));
6192 Set_Analyzed (Derived_Type, False);
6193 Analyze (N);
6194 return;
6195 end;
6196 end if;
6197
6198 -- By default, operations and private data are inherited from parent.
6199 -- However, in the presence of bound discriminants, a new corresponding
6200 -- record will be created, see below.
6201
6202 Set_Has_Discriminants
6203 (Derived_Type, Has_Discriminants (Parent_Type));
6204 Set_Corresponding_Record_Type
6205 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6206
6207 -- Is_Constrained is set according the parent subtype, but is set to
6208 -- False if the derived type is declared with new discriminants.
6209
6210 Set_Is_Constrained
6211 (Derived_Type,
6212 (Is_Constrained (Parent_Type) or else Constraint_Present)
6213 and then not Present (Discriminant_Specifications (N)));
6214
6215 if Constraint_Present then
6216 if not Has_Discriminants (Parent_Type) then
6217 Error_Msg_N ("untagged parent must have discriminants", N);
6218
6219 elsif Present (Discriminant_Specifications (N)) then
6220
6221 -- Verify that new discriminants are used to constrain old ones
6222
6223 D_Constraint :=
6224 First
6225 (Constraints
6226 (Constraint (Subtype_Indication (Type_Definition (N)))));
6227
6228 Old_Disc := First_Discriminant (Parent_Type);
6229
6230 while Present (D_Constraint) loop
6231 if Nkind (D_Constraint) /= N_Discriminant_Association then
6232
6233 -- Positional constraint. If it is a reference to a new
6234 -- discriminant, it constrains the corresponding old one.
6235
6236 if Nkind (D_Constraint) = N_Identifier then
6237 New_Disc := First_Discriminant (Derived_Type);
6238 while Present (New_Disc) loop
6239 exit when Chars (New_Disc) = Chars (D_Constraint);
6240 Next_Discriminant (New_Disc);
6241 end loop;
6242
6243 if Present (New_Disc) then
6244 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6245 end if;
6246 end if;
6247
6248 Next_Discriminant (Old_Disc);
6249
6250 -- if this is a named constraint, search by name for the old
6251 -- discriminants constrained by the new one.
6252
6253 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6254
6255 -- Find new discriminant with that name
6256
6257 New_Disc := First_Discriminant (Derived_Type);
6258 while Present (New_Disc) loop
6259 exit when
6260 Chars (New_Disc) = Chars (Expression (D_Constraint));
6261 Next_Discriminant (New_Disc);
6262 end loop;
6263
6264 if Present (New_Disc) then
6265
6266 -- Verify that new discriminant renames some discriminant
6267 -- of the parent type, and associate the new discriminant
6268 -- with one or more old ones that it renames.
6269
6270 declare
6271 Selector : Node_Id;
6272
6273 begin
6274 Selector := First (Selector_Names (D_Constraint));
6275 while Present (Selector) loop
6276 Old_Disc := First_Discriminant (Parent_Type);
6277 while Present (Old_Disc) loop
6278 exit when Chars (Old_Disc) = Chars (Selector);
6279 Next_Discriminant (Old_Disc);
6280 end loop;
6281
6282 if Present (Old_Disc) then
6283 Set_Corresponding_Discriminant
6284 (New_Disc, Old_Disc);
6285 end if;
6286
6287 Next (Selector);
6288 end loop;
6289 end;
6290 end if;
6291 end if;
6292
6293 Next (D_Constraint);
6294 end loop;
6295
6296 New_Disc := First_Discriminant (Derived_Type);
6297 while Present (New_Disc) loop
6298 if No (Corresponding_Discriminant (New_Disc)) then
6299 Error_Msg_NE
6300 ("new discriminant& must constrain old one", N, New_Disc);
6301
6302 elsif not
6303 Subtypes_Statically_Compatible
6304 (Etype (New_Disc),
6305 Etype (Corresponding_Discriminant (New_Disc)))
6306 then
6307 Error_Msg_NE
6308 ("& not statically compatible with parent discriminant",
6309 N, New_Disc);
6310 end if;
6311
6312 Next_Discriminant (New_Disc);
6313 end loop;
6314 end if;
6315
6316 elsif Present (Discriminant_Specifications (N)) then
6317 Error_Msg_N
6318 ("missing discriminant constraint in untagged derivation", N);
6319 end if;
6320
6321 -- The entity chain of the derived type includes the new discriminants
6322 -- but shares operations with the parent.
6323
6324 if Present (Discriminant_Specifications (N)) then
6325 Old_Disc := First_Discriminant (Parent_Type);
6326 while Present (Old_Disc) loop
6327 if No (Next_Entity (Old_Disc))
6328 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6329 then
6330 Set_Next_Entity
6331 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6332 exit;
6333 end if;
6334
6335 Next_Discriminant (Old_Disc);
6336 end loop;
6337
6338 else
6339 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6340 if Has_Discriminants (Parent_Type) then
6341 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6342 Set_Discriminant_Constraint (
6343 Derived_Type, Discriminant_Constraint (Parent_Type));
6344 end if;
6345 end if;
6346
6347 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6348
6349 Set_Has_Completion (Derived_Type);
6350
6351 if Corr_Decl_Needed then
6352 Set_Stored_Constraint (Derived_Type, New_Constraint);
6353 Insert_After (N, Corr_Decl);
6354 Analyze (Corr_Decl);
6355 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6356 end if;
6357 end Build_Derived_Concurrent_Type;
6358
6359 ------------------------------------
6360 -- Build_Derived_Enumeration_Type --
6361 ------------------------------------
6362
6363 procedure Build_Derived_Enumeration_Type
6364 (N : Node_Id;
6365 Parent_Type : Entity_Id;
6366 Derived_Type : Entity_Id)
6367 is
6368 Loc : constant Source_Ptr := Sloc (N);
6369 Def : constant Node_Id := Type_Definition (N);
6370 Indic : constant Node_Id := Subtype_Indication (Def);
6371 Implicit_Base : Entity_Id;
6372 Literal : Entity_Id;
6373 New_Lit : Entity_Id;
6374 Literals_List : List_Id;
6375 Type_Decl : Node_Id;
6376 Hi, Lo : Node_Id;
6377 Rang_Expr : Node_Id;
6378
6379 begin
6380 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6381 -- not have explicit literals lists we need to process types derived
6382 -- from them specially. This is handled by Derived_Standard_Character.
6383 -- If the parent type is a generic type, there are no literals either,
6384 -- and we construct the same skeletal representation as for the generic
6385 -- parent type.
6386
6387 if Is_Standard_Character_Type (Parent_Type) then
6388 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6389
6390 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6391 declare
6392 Lo : Node_Id;
6393 Hi : Node_Id;
6394
6395 begin
6396 if Nkind (Indic) /= N_Subtype_Indication then
6397 Lo :=
6398 Make_Attribute_Reference (Loc,
6399 Attribute_Name => Name_First,
6400 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6401 Set_Etype (Lo, Derived_Type);
6402
6403 Hi :=
6404 Make_Attribute_Reference (Loc,
6405 Attribute_Name => Name_Last,
6406 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6407 Set_Etype (Hi, Derived_Type);
6408
6409 Set_Scalar_Range (Derived_Type,
6410 Make_Range (Loc,
6411 Low_Bound => Lo,
6412 High_Bound => Hi));
6413 else
6414
6415 -- Analyze subtype indication and verify compatibility
6416 -- with parent type.
6417
6418 if Base_Type (Process_Subtype (Indic, N)) /=
6419 Base_Type (Parent_Type)
6420 then
6421 Error_Msg_N
6422 ("illegal constraint for formal discrete type", N);
6423 end if;
6424 end if;
6425 end;
6426
6427 else
6428 -- If a constraint is present, analyze the bounds to catch
6429 -- premature usage of the derived literals.
6430
6431 if Nkind (Indic) = N_Subtype_Indication
6432 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6433 then
6434 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6435 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6436 end if;
6437
6438 -- Introduce an implicit base type for the derived type even if there
6439 -- is no constraint attached to it, since this seems closer to the
6440 -- Ada semantics. Build a full type declaration tree for the derived
6441 -- type using the implicit base type as the defining identifier. The
6442 -- build a subtype declaration tree which applies the constraint (if
6443 -- any) have it replace the derived type declaration.
6444
6445 Literal := First_Literal (Parent_Type);
6446 Literals_List := New_List;
6447 while Present (Literal)
6448 and then Ekind (Literal) = E_Enumeration_Literal
6449 loop
6450 -- Literals of the derived type have the same representation as
6451 -- those of the parent type, but this representation can be
6452 -- overridden by an explicit representation clause. Indicate
6453 -- that there is no explicit representation given yet. These
6454 -- derived literals are implicit operations of the new type,
6455 -- and can be overridden by explicit ones.
6456
6457 if Nkind (Literal) = N_Defining_Character_Literal then
6458 New_Lit :=
6459 Make_Defining_Character_Literal (Loc, Chars (Literal));
6460 else
6461 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6462 end if;
6463
6464 Set_Ekind (New_Lit, E_Enumeration_Literal);
6465 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6466 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6467 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6468 Set_Alias (New_Lit, Literal);
6469 Set_Is_Known_Valid (New_Lit, True);
6470
6471 Append (New_Lit, Literals_List);
6472 Next_Literal (Literal);
6473 end loop;
6474
6475 Implicit_Base :=
6476 Make_Defining_Identifier (Sloc (Derived_Type),
6477 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6478
6479 -- Indicate the proper nature of the derived type. This must be done
6480 -- before analysis of the literals, to recognize cases when a literal
6481 -- may be hidden by a previous explicit function definition (cf.
6482 -- c83031a).
6483
6484 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6485 Set_Etype (Derived_Type, Implicit_Base);
6486
6487 Type_Decl :=
6488 Make_Full_Type_Declaration (Loc,
6489 Defining_Identifier => Implicit_Base,
6490 Discriminant_Specifications => No_List,
6491 Type_Definition =>
6492 Make_Enumeration_Type_Definition (Loc, Literals_List));
6493
6494 Mark_Rewrite_Insertion (Type_Decl);
6495 Insert_Before (N, Type_Decl);
6496 Analyze (Type_Decl);
6497
6498 -- After the implicit base is analyzed its Etype needs to be changed
6499 -- to reflect the fact that it is derived from the parent type which
6500 -- was ignored during analysis. We also set the size at this point.
6501
6502 Set_Etype (Implicit_Base, Parent_Type);
6503
6504 Set_Size_Info (Implicit_Base, Parent_Type);
6505 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6506 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6507
6508 -- Copy other flags from parent type
6509
6510 Set_Has_Non_Standard_Rep
6511 (Implicit_Base, Has_Non_Standard_Rep
6512 (Parent_Type));
6513 Set_Has_Pragma_Ordered
6514 (Implicit_Base, Has_Pragma_Ordered
6515 (Parent_Type));
6516 Set_Has_Delayed_Freeze (Implicit_Base);
6517
6518 -- Process the subtype indication including a validation check on the
6519 -- constraint, if any. If a constraint is given, its bounds must be
6520 -- implicitly converted to the new type.
6521
6522 if Nkind (Indic) = N_Subtype_Indication then
6523 declare
6524 R : constant Node_Id :=
6525 Range_Expression (Constraint (Indic));
6526
6527 begin
6528 if Nkind (R) = N_Range then
6529 Hi := Build_Scalar_Bound
6530 (High_Bound (R), Parent_Type, Implicit_Base);
6531 Lo := Build_Scalar_Bound
6532 (Low_Bound (R), Parent_Type, Implicit_Base);
6533
6534 else
6535 -- Constraint is a Range attribute. Replace with explicit
6536 -- mention of the bounds of the prefix, which must be a
6537 -- subtype.
6538
6539 Analyze (Prefix (R));
6540 Hi :=
6541 Convert_To (Implicit_Base,
6542 Make_Attribute_Reference (Loc,
6543 Attribute_Name => Name_Last,
6544 Prefix =>
6545 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6546
6547 Lo :=
6548 Convert_To (Implicit_Base,
6549 Make_Attribute_Reference (Loc,
6550 Attribute_Name => Name_First,
6551 Prefix =>
6552 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6553 end if;
6554 end;
6555
6556 else
6557 Hi :=
6558 Build_Scalar_Bound
6559 (Type_High_Bound (Parent_Type),
6560 Parent_Type, Implicit_Base);
6561 Lo :=
6562 Build_Scalar_Bound
6563 (Type_Low_Bound (Parent_Type),
6564 Parent_Type, Implicit_Base);
6565 end if;
6566
6567 Rang_Expr :=
6568 Make_Range (Loc,
6569 Low_Bound => Lo,
6570 High_Bound => Hi);
6571
6572 -- If we constructed a default range for the case where no range
6573 -- was given, then the expressions in the range must not freeze
6574 -- since they do not correspond to expressions in the source.
6575
6576 if Nkind (Indic) /= N_Subtype_Indication then
6577 Set_Must_Not_Freeze (Lo);
6578 Set_Must_Not_Freeze (Hi);
6579 Set_Must_Not_Freeze (Rang_Expr);
6580 end if;
6581
6582 Rewrite (N,
6583 Make_Subtype_Declaration (Loc,
6584 Defining_Identifier => Derived_Type,
6585 Subtype_Indication =>
6586 Make_Subtype_Indication (Loc,
6587 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6588 Constraint =>
6589 Make_Range_Constraint (Loc,
6590 Range_Expression => Rang_Expr))));
6591
6592 Analyze (N);
6593
6594 -- Propagate the aspects from the original type declaration to the
6595 -- declaration of the implicit base.
6596
6597 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6598
6599 -- Apply a range check. Since this range expression doesn't have an
6600 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6601 -- this right???
6602
6603 if Nkind (Indic) = N_Subtype_Indication then
6604 Apply_Range_Check
6605 (Range_Expression (Constraint (Indic)), Parent_Type,
6606 Source_Typ => Entity (Subtype_Mark (Indic)));
6607 end if;
6608 end if;
6609 end Build_Derived_Enumeration_Type;
6610
6611 --------------------------------
6612 -- Build_Derived_Numeric_Type --
6613 --------------------------------
6614
6615 procedure Build_Derived_Numeric_Type
6616 (N : Node_Id;
6617 Parent_Type : Entity_Id;
6618 Derived_Type : Entity_Id)
6619 is
6620 Loc : constant Source_Ptr := Sloc (N);
6621 Tdef : constant Node_Id := Type_Definition (N);
6622 Indic : constant Node_Id := Subtype_Indication (Tdef);
6623 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6624 No_Constraint : constant Boolean := Nkind (Indic) /=
6625 N_Subtype_Indication;
6626 Implicit_Base : Entity_Id;
6627
6628 Lo : Node_Id;
6629 Hi : Node_Id;
6630
6631 begin
6632 -- Process the subtype indication including a validation check on
6633 -- the constraint if any.
6634
6635 Discard_Node (Process_Subtype (Indic, N));
6636
6637 -- Introduce an implicit base type for the derived type even if there
6638 -- is no constraint attached to it, since this seems closer to the Ada
6639 -- semantics.
6640
6641 Implicit_Base :=
6642 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6643
6644 Set_Etype (Implicit_Base, Parent_Base);
6645 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6646 Set_Size_Info (Implicit_Base, Parent_Base);
6647 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6648 Set_Parent (Implicit_Base, Parent (Derived_Type));
6649 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6650
6651 -- Set RM Size for discrete type or decimal fixed-point type
6652 -- Ordinary fixed-point is excluded, why???
6653
6654 if Is_Discrete_Type (Parent_Base)
6655 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6656 then
6657 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6658 end if;
6659
6660 Set_Has_Delayed_Freeze (Implicit_Base);
6661
6662 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6663 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6664
6665 Set_Scalar_Range (Implicit_Base,
6666 Make_Range (Loc,
6667 Low_Bound => Lo,
6668 High_Bound => Hi));
6669
6670 if Has_Infinities (Parent_Base) then
6671 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6672 end if;
6673
6674 -- The Derived_Type, which is the entity of the declaration, is a
6675 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6676 -- absence of an explicit constraint.
6677
6678 Set_Etype (Derived_Type, Implicit_Base);
6679
6680 -- If we did not have a constraint, then the Ekind is set from the
6681 -- parent type (otherwise Process_Subtype has set the bounds)
6682
6683 if No_Constraint then
6684 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6685 end if;
6686
6687 -- If we did not have a range constraint, then set the range from the
6688 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6689
6690 if No_Constraint or else not Has_Range_Constraint (Indic) then
6691 Set_Scalar_Range (Derived_Type,
6692 Make_Range (Loc,
6693 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6694 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6695 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6696
6697 if Has_Infinities (Parent_Type) then
6698 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6699 end if;
6700
6701 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6702 end if;
6703
6704 Set_Is_Descendent_Of_Address (Derived_Type,
6705 Is_Descendent_Of_Address (Parent_Type));
6706 Set_Is_Descendent_Of_Address (Implicit_Base,
6707 Is_Descendent_Of_Address (Parent_Type));
6708
6709 -- Set remaining type-specific fields, depending on numeric type
6710
6711 if Is_Modular_Integer_Type (Parent_Type) then
6712 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6713
6714 Set_Non_Binary_Modulus
6715 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6716
6717 Set_Is_Known_Valid
6718 (Implicit_Base, Is_Known_Valid (Parent_Base));
6719
6720 elsif Is_Floating_Point_Type (Parent_Type) then
6721
6722 -- Digits of base type is always copied from the digits value of
6723 -- the parent base type, but the digits of the derived type will
6724 -- already have been set if there was a constraint present.
6725
6726 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6727 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6728
6729 if No_Constraint then
6730 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6731 end if;
6732
6733 elsif Is_Fixed_Point_Type (Parent_Type) then
6734
6735 -- Small of base type and derived type are always copied from the
6736 -- parent base type, since smalls never change. The delta of the
6737 -- base type is also copied from the parent base type. However the
6738 -- delta of the derived type will have been set already if a
6739 -- constraint was present.
6740
6741 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6742 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6743 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6744
6745 if No_Constraint then
6746 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6747 end if;
6748
6749 -- The scale and machine radix in the decimal case are always
6750 -- copied from the parent base type.
6751
6752 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6753 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6754 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6755
6756 Set_Machine_Radix_10
6757 (Derived_Type, Machine_Radix_10 (Parent_Base));
6758 Set_Machine_Radix_10
6759 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6760
6761 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6762
6763 if No_Constraint then
6764 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6765
6766 else
6767 -- the analysis of the subtype_indication sets the
6768 -- digits value of the derived type.
6769
6770 null;
6771 end if;
6772 end if;
6773 end if;
6774
6775 if Is_Integer_Type (Parent_Type) then
6776 Set_Has_Shift_Operator
6777 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6778 end if;
6779
6780 -- The type of the bounds is that of the parent type, and they
6781 -- must be converted to the derived type.
6782
6783 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6784
6785 -- The implicit_base should be frozen when the derived type is frozen,
6786 -- but note that it is used in the conversions of the bounds. For fixed
6787 -- types we delay the determination of the bounds until the proper
6788 -- freezing point. For other numeric types this is rejected by GCC, for
6789 -- reasons that are currently unclear (???), so we choose to freeze the
6790 -- implicit base now. In the case of integers and floating point types
6791 -- this is harmless because subsequent representation clauses cannot
6792 -- affect anything, but it is still baffling that we cannot use the
6793 -- same mechanism for all derived numeric types.
6794
6795 -- There is a further complication: actually some representation
6796 -- clauses can affect the implicit base type. For example, attribute
6797 -- definition clauses for stream-oriented attributes need to set the
6798 -- corresponding TSS entries on the base type, and this normally
6799 -- cannot be done after the base type is frozen, so the circuitry in
6800 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6801 -- and not use Set_TSS in this case.
6802
6803 -- There are also consequences for the case of delayed representation
6804 -- aspects for some cases. For example, a Size aspect is delayed and
6805 -- should not be evaluated to the freeze point. This early freezing
6806 -- means that the size attribute evaluation happens too early???
6807
6808 if Is_Fixed_Point_Type (Parent_Type) then
6809 Conditional_Delay (Implicit_Base, Parent_Type);
6810 else
6811 Freeze_Before (N, Implicit_Base);
6812 end if;
6813 end Build_Derived_Numeric_Type;
6814
6815 --------------------------------
6816 -- Build_Derived_Private_Type --
6817 --------------------------------
6818
6819 procedure Build_Derived_Private_Type
6820 (N : Node_Id;
6821 Parent_Type : Entity_Id;
6822 Derived_Type : Entity_Id;
6823 Is_Completion : Boolean;
6824 Derive_Subps : Boolean := True)
6825 is
6826 Loc : constant Source_Ptr := Sloc (N);
6827 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6828 Par_Scope : constant Entity_Id := Scope (Par_Base);
6829 Full_N : constant Node_Id := New_Copy_Tree (N);
6830 Full_Der : Entity_Id := New_Copy (Derived_Type);
6831 Full_P : Entity_Id;
6832
6833 procedure Build_Full_Derivation;
6834 -- Build full derivation, i.e. derive from the full view
6835
6836 procedure Copy_And_Build;
6837 -- Copy derived type declaration, replace parent with its full view,
6838 -- and build derivation
6839
6840 ---------------------------
6841 -- Build_Full_Derivation --
6842 ---------------------------
6843
6844 procedure Build_Full_Derivation is
6845 begin
6846 -- If parent scope is not open, install the declarations
6847
6848 if not In_Open_Scopes (Par_Scope) then
6849 Install_Private_Declarations (Par_Scope);
6850 Install_Visible_Declarations (Par_Scope);
6851 Copy_And_Build;
6852 Uninstall_Declarations (Par_Scope);
6853
6854 -- If parent scope is open and in another unit, and parent has a
6855 -- completion, then the derivation is taking place in the visible
6856 -- part of a child unit. In that case retrieve the full view of
6857 -- the parent momentarily.
6858
6859 elsif not In_Same_Source_Unit (N, Parent_Type) then
6860 Full_P := Full_View (Parent_Type);
6861 Exchange_Declarations (Parent_Type);
6862 Copy_And_Build;
6863 Exchange_Declarations (Full_P);
6864
6865 -- Otherwise it is a local derivation
6866
6867 else
6868 Copy_And_Build;
6869 end if;
6870 end Build_Full_Derivation;
6871
6872 --------------------
6873 -- Copy_And_Build --
6874 --------------------
6875
6876 procedure Copy_And_Build is
6877 Full_Parent : Entity_Id := Parent_Type;
6878
6879 begin
6880 -- If the parent is itself derived from another private type,
6881 -- installing the private declarations has not affected its
6882 -- privacy status, so use its own full view explicitly.
6883
6884 if Is_Private_Type (Full_Parent)
6885 and then Present (Full_View (Full_Parent))
6886 then
6887 Full_Parent := Full_View (Full_Parent);
6888 end if;
6889
6890 -- And its underlying full view if necessary
6891
6892 if Is_Private_Type (Full_Parent)
6893 and then Present (Underlying_Full_View (Full_Parent))
6894 then
6895 Full_Parent := Underlying_Full_View (Full_Parent);
6896 end if;
6897
6898 -- For record, access and most enumeration types, derivation from
6899 -- the full view requires a fully-fledged declaration. In the other
6900 -- cases, just use an itype.
6901
6902 if Ekind (Full_Parent) in Record_Kind
6903 or else Ekind (Full_Parent) in Access_Kind
6904 or else
6905 (Ekind (Full_Parent) in Enumeration_Kind
6906 and then not Is_Standard_Character_Type (Full_Parent)
6907 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6908 then
6909 -- Copy and adjust declaration to provide a completion for what
6910 -- is originally a private declaration. Indicate that full view
6911 -- is internally generated.
6912
6913 Set_Comes_From_Source (Full_N, False);
6914 Set_Comes_From_Source (Full_Der, False);
6915 Set_Parent (Full_Der, Full_N);
6916 Set_Defining_Identifier (Full_N, Full_Der);
6917
6918 -- If there are no constraints, adjust the subtype mark
6919
6920 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6921 N_Subtype_Indication
6922 then
6923 Set_Subtype_Indication
6924 (Type_Definition (Full_N),
6925 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6926 end if;
6927
6928 Insert_After (N, Full_N);
6929
6930 -- Build full view of derived type from full view of parent which
6931 -- is now installed. Subprograms have been derived on the partial
6932 -- view, the completion does not derive them anew.
6933
6934 if Ekind (Full_Parent) in Record_Kind then
6935
6936 -- If parent type is tagged, the completion inherits the proper
6937 -- primitive operations.
6938
6939 if Is_Tagged_Type (Parent_Type) then
6940 Build_Derived_Record_Type
6941 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6942 else
6943 Build_Derived_Record_Type
6944 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6945 end if;
6946
6947 else
6948 Build_Derived_Type
6949 (Full_N, Full_Parent, Full_Der,
6950 Is_Completion => False, Derive_Subps => False);
6951 end if;
6952
6953 -- The full declaration has been introduced into the tree and
6954 -- processed in the step above. It should not be analyzed again
6955 -- (when encountered later in the current list of declarations)
6956 -- to prevent spurious name conflicts. The full entity remains
6957 -- invisible.
6958
6959 Set_Analyzed (Full_N);
6960
6961 else
6962 Full_Der :=
6963 Make_Defining_Identifier (Sloc (Derived_Type),
6964 Chars => Chars (Derived_Type));
6965 Set_Is_Itype (Full_Der);
6966 Set_Associated_Node_For_Itype (Full_Der, N);
6967 Set_Parent (Full_Der, N);
6968 Build_Derived_Type
6969 (N, Full_Parent, Full_Der,
6970 Is_Completion => False, Derive_Subps => False);
6971 end if;
6972
6973 Set_Has_Private_Declaration (Full_Der);
6974 Set_Has_Private_Declaration (Derived_Type);
6975
6976 Set_Scope (Full_Der, Scope (Derived_Type));
6977 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6978 Set_Has_Size_Clause (Full_Der, False);
6979 Set_Has_Alignment_Clause (Full_Der, False);
6980 Set_Has_Delayed_Freeze (Full_Der);
6981 Set_Is_Frozen (Full_Der, False);
6982 Set_Freeze_Node (Full_Der, Empty);
6983 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6984 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6985
6986 -- The convention on the base type may be set in the private part
6987 -- and not propagated to the subtype until later, so we obtain the
6988 -- convention from the base type of the parent.
6989
6990 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6991 end Copy_And_Build;
6992
6993 -- Start of processing for Build_Derived_Private_Type
6994
6995 begin
6996 if Is_Tagged_Type (Parent_Type) then
6997 Full_P := Full_View (Parent_Type);
6998
6999 -- A type extension of a type with unknown discriminants is an
7000 -- indefinite type that the back-end cannot handle directly.
7001 -- We treat it as a private type, and build a completion that is
7002 -- derived from the full view of the parent, and hopefully has
7003 -- known discriminants.
7004
7005 -- If the full view of the parent type has an underlying record view,
7006 -- use it to generate the underlying record view of this derived type
7007 -- (required for chains of derivations with unknown discriminants).
7008
7009 -- Minor optimization: we avoid the generation of useless underlying
7010 -- record view entities if the private type declaration has unknown
7011 -- discriminants but its corresponding full view has no
7012 -- discriminants.
7013
7014 if Has_Unknown_Discriminants (Parent_Type)
7015 and then Present (Full_P)
7016 and then (Has_Discriminants (Full_P)
7017 or else Present (Underlying_Record_View (Full_P)))
7018 and then not In_Open_Scopes (Par_Scope)
7019 and then Expander_Active
7020 then
7021 declare
7022 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7023 New_Ext : constant Node_Id :=
7024 Copy_Separate_Tree
7025 (Record_Extension_Part (Type_Definition (N)));
7026 Decl : Node_Id;
7027
7028 begin
7029 Build_Derived_Record_Type
7030 (N, Parent_Type, Derived_Type, Derive_Subps);
7031
7032 -- Build anonymous completion, as a derivation from the full
7033 -- view of the parent. This is not a completion in the usual
7034 -- sense, because the current type is not private.
7035
7036 Decl :=
7037 Make_Full_Type_Declaration (Loc,
7038 Defining_Identifier => Full_Der,
7039 Type_Definition =>
7040 Make_Derived_Type_Definition (Loc,
7041 Subtype_Indication =>
7042 New_Copy_Tree
7043 (Subtype_Indication (Type_Definition (N))),
7044 Record_Extension_Part => New_Ext));
7045
7046 -- If the parent type has an underlying record view, use it
7047 -- here to build the new underlying record view.
7048
7049 if Present (Underlying_Record_View (Full_P)) then
7050 pragma Assert
7051 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7052 = N_Identifier);
7053 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7054 Underlying_Record_View (Full_P));
7055 end if;
7056
7057 Install_Private_Declarations (Par_Scope);
7058 Install_Visible_Declarations (Par_Scope);
7059 Insert_Before (N, Decl);
7060
7061 -- Mark entity as an underlying record view before analysis,
7062 -- to avoid generating the list of its primitive operations
7063 -- (which is not really required for this entity) and thus
7064 -- prevent spurious errors associated with missing overriding
7065 -- of abstract primitives (overridden only for Derived_Type).
7066
7067 Set_Ekind (Full_Der, E_Record_Type);
7068 Set_Is_Underlying_Record_View (Full_Der);
7069 Set_Default_SSO (Full_Der);
7070
7071 Analyze (Decl);
7072
7073 pragma Assert (Has_Discriminants (Full_Der)
7074 and then not Has_Unknown_Discriminants (Full_Der));
7075
7076 Uninstall_Declarations (Par_Scope);
7077
7078 -- Freeze the underlying record view, to prevent generation of
7079 -- useless dispatching information, which is simply shared with
7080 -- the real derived type.
7081
7082 Set_Is_Frozen (Full_Der);
7083
7084 -- If the derived type has access discriminants, create
7085 -- references to their anonymous types now, to prevent
7086 -- back-end problems when their first use is in generated
7087 -- bodies of primitives.
7088
7089 declare
7090 E : Entity_Id;
7091
7092 begin
7093 E := First_Entity (Full_Der);
7094
7095 while Present (E) loop
7096 if Ekind (E) = E_Discriminant
7097 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7098 then
7099 Build_Itype_Reference (Etype (E), Decl);
7100 end if;
7101
7102 Next_Entity (E);
7103 end loop;
7104 end;
7105
7106 -- Set up links between real entity and underlying record view
7107
7108 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7109 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7110 end;
7111
7112 -- If discriminants are known, build derived record
7113
7114 else
7115 Build_Derived_Record_Type
7116 (N, Parent_Type, Derived_Type, Derive_Subps);
7117 end if;
7118
7119 return;
7120
7121 elsif Has_Discriminants (Parent_Type) then
7122
7123 -- Build partial view of derived type from partial view of parent.
7124 -- This must be done before building the full derivation because the
7125 -- second derivation will modify the discriminants of the first and
7126 -- the discriminants are chained with the rest of the components in
7127 -- the full derivation.
7128
7129 Build_Derived_Record_Type
7130 (N, Parent_Type, Derived_Type, Derive_Subps);
7131
7132 -- Build the full derivation if this is not the anonymous derived
7133 -- base type created by Build_Derived_Record_Type in the constrained
7134 -- case (see point 5. of its head comment) since we build it for the
7135 -- derived subtype. And skip it for protected types altogether, as
7136 -- gigi does not use these types directly.
7137
7138 if Present (Full_View (Parent_Type))
7139 and then not Is_Itype (Derived_Type)
7140 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7141 then
7142 declare
7143 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7144 Discr : Entity_Id;
7145 Last_Discr : Entity_Id;
7146
7147 begin
7148 -- If this is not a completion, construct the implicit full
7149 -- view by deriving from the full view of the parent type.
7150 -- But if this is a completion, the derived private type
7151 -- being built is a full view and the full derivation can
7152 -- only be its underlying full view.
7153
7154 Build_Full_Derivation;
7155
7156 if not Is_Completion then
7157 Set_Full_View (Derived_Type, Full_Der);
7158 else
7159 Set_Underlying_Full_View (Derived_Type, Full_Der);
7160 end if;
7161
7162 if not Is_Base_Type (Derived_Type) then
7163 Set_Full_View (Der_Base, Base_Type (Full_Der));
7164 end if;
7165
7166 -- Copy the discriminant list from full view to the partial
7167 -- view (base type and its subtype). Gigi requires that the
7168 -- partial and full views have the same discriminants.
7169
7170 -- Note that since the partial view points to discriminants
7171 -- in the full view, their scope will be that of the full
7172 -- view. This might cause some front end problems and need
7173 -- adjustment???
7174
7175 Discr := First_Discriminant (Base_Type (Full_Der));
7176 Set_First_Entity (Der_Base, Discr);
7177
7178 loop
7179 Last_Discr := Discr;
7180 Next_Discriminant (Discr);
7181 exit when No (Discr);
7182 end loop;
7183
7184 Set_Last_Entity (Der_Base, Last_Discr);
7185 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7186 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7187
7188 Set_Stored_Constraint
7189 (Full_Der, Stored_Constraint (Derived_Type));
7190 end;
7191 end if;
7192
7193 elsif Present (Full_View (Parent_Type))
7194 and then Has_Discriminants (Full_View (Parent_Type))
7195 then
7196 if Has_Unknown_Discriminants (Parent_Type)
7197 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7198 N_Subtype_Indication
7199 then
7200 Error_Msg_N
7201 ("cannot constrain type with unknown discriminants",
7202 Subtype_Indication (Type_Definition (N)));
7203 return;
7204 end if;
7205
7206 -- If this is not a completion, construct the implicit full view by
7207 -- deriving from the full view of the parent type. But if this is a
7208 -- completion, the derived private type being built is a full view
7209 -- and the full derivation can only be its underlying full view.
7210
7211 Build_Full_Derivation;
7212
7213 if not Is_Completion then
7214 Set_Full_View (Derived_Type, Full_Der);
7215 else
7216 Set_Underlying_Full_View (Derived_Type, Full_Der);
7217 end if;
7218
7219 -- In any case, the primitive operations are inherited from the
7220 -- parent type, not from the internal full view.
7221
7222 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7223
7224 if Derive_Subps then
7225 Derive_Subprograms (Parent_Type, Derived_Type);
7226 end if;
7227
7228 Set_Stored_Constraint (Derived_Type, No_Elist);
7229 Set_Is_Constrained
7230 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7231
7232 else
7233 -- Untagged type, No discriminants on either view
7234
7235 if Nkind (Subtype_Indication (Type_Definition (N))) =
7236 N_Subtype_Indication
7237 then
7238 Error_Msg_N
7239 ("illegal constraint on type without discriminants", N);
7240 end if;
7241
7242 if Present (Discriminant_Specifications (N))
7243 and then Present (Full_View (Parent_Type))
7244 and then not Is_Tagged_Type (Full_View (Parent_Type))
7245 then
7246 Error_Msg_N ("cannot add discriminants to untagged type", N);
7247 end if;
7248
7249 Set_Stored_Constraint (Derived_Type, No_Elist);
7250 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7251 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7252 Set_Has_Controlled_Component
7253 (Derived_Type, Has_Controlled_Component
7254 (Parent_Type));
7255
7256 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7257
7258 if not Is_Controlled (Parent_Type) then
7259 Set_Finalize_Storage_Only
7260 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7261 end if;
7262
7263 -- If this is not a completion, construct the implicit full view by
7264 -- deriving from the full view of the parent type.
7265
7266 -- ??? If the parent is untagged private and its completion is
7267 -- tagged, this mechanism will not work because we cannot derive from
7268 -- the tagged full view unless we have an extension.
7269
7270 if Present (Full_View (Parent_Type))
7271 and then not Is_Tagged_Type (Full_View (Parent_Type))
7272 and then not Is_Completion
7273 then
7274 Build_Full_Derivation;
7275 Set_Full_View (Derived_Type, Full_Der);
7276 end if;
7277 end if;
7278
7279 Set_Has_Unknown_Discriminants (Derived_Type,
7280 Has_Unknown_Discriminants (Parent_Type));
7281
7282 if Is_Private_Type (Derived_Type) then
7283 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7284 end if;
7285
7286 -- If the parent base type is in scope, add the derived type to its
7287 -- list of private dependents, because its full view may become
7288 -- visible subsequently (in a nested private part, a body, or in a
7289 -- further child unit).
7290
7291 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7292 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7293
7294 -- Check for unusual case where a type completed by a private
7295 -- derivation occurs within a package nested in a child unit, and
7296 -- the parent is declared in an ancestor.
7297
7298 if Is_Child_Unit (Scope (Current_Scope))
7299 and then Is_Completion
7300 and then In_Private_Part (Current_Scope)
7301 and then Scope (Parent_Type) /= Current_Scope
7302
7303 -- Note that if the parent has a completion in the private part,
7304 -- (which is itself a derivation from some other private type)
7305 -- it is that completion that is visible, there is no full view
7306 -- available, and no special processing is needed.
7307
7308 and then Present (Full_View (Parent_Type))
7309 then
7310 -- In this case, the full view of the parent type will become
7311 -- visible in the body of the enclosing child, and only then will
7312 -- the current type be possibly non-private. Build an underlying
7313 -- full view that will be installed when the enclosing child body
7314 -- is compiled.
7315
7316 if Present (Underlying_Full_View (Derived_Type)) then
7317 Full_Der := Underlying_Full_View (Derived_Type);
7318 else
7319 Build_Full_Derivation;
7320 Set_Underlying_Full_View (Derived_Type, Full_Der);
7321 end if;
7322
7323 -- The full view will be used to swap entities on entry/exit to
7324 -- the body, and must appear in the entity list for the package.
7325
7326 Append_Entity (Full_Der, Scope (Derived_Type));
7327 end if;
7328 end if;
7329 end Build_Derived_Private_Type;
7330
7331 -------------------------------
7332 -- Build_Derived_Record_Type --
7333 -------------------------------
7334
7335 -- 1. INTRODUCTION
7336
7337 -- Ideally we would like to use the same model of type derivation for
7338 -- tagged and untagged record types. Unfortunately this is not quite
7339 -- possible because the semantics of representation clauses is different
7340 -- for tagged and untagged records under inheritance. Consider the
7341 -- following:
7342
7343 -- type R (...) is [tagged] record ... end record;
7344 -- type T (...) is new R (...) [with ...];
7345
7346 -- The representation clauses for T can specify a completely different
7347 -- record layout from R's. Hence the same component can be placed in two
7348 -- very different positions in objects of type T and R. If R and T are
7349 -- tagged types, representation clauses for T can only specify the layout
7350 -- of non inherited components, thus components that are common in R and T
7351 -- have the same position in objects of type R and T.
7352
7353 -- This has two implications. The first is that the entire tree for R's
7354 -- declaration needs to be copied for T in the untagged case, so that T
7355 -- can be viewed as a record type of its own with its own representation
7356 -- clauses. The second implication is the way we handle discriminants.
7357 -- Specifically, in the untagged case we need a way to communicate to Gigi
7358 -- what are the real discriminants in the record, while for the semantics
7359 -- we need to consider those introduced by the user to rename the
7360 -- discriminants in the parent type. This is handled by introducing the
7361 -- notion of stored discriminants. See below for more.
7362
7363 -- Fortunately the way regular components are inherited can be handled in
7364 -- the same way in tagged and untagged types.
7365
7366 -- To complicate things a bit more the private view of a private extension
7367 -- cannot be handled in the same way as the full view (for one thing the
7368 -- semantic rules are somewhat different). We will explain what differs
7369 -- below.
7370
7371 -- 2. DISCRIMINANTS UNDER INHERITANCE
7372
7373 -- The semantic rules governing the discriminants of derived types are
7374 -- quite subtle.
7375
7376 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7377 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7378
7379 -- If parent type has discriminants, then the discriminants that are
7380 -- declared in the derived type are [3.4 (11)]:
7381
7382 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7383 -- there is one;
7384
7385 -- o Otherwise, each discriminant of the parent type (implicitly declared
7386 -- in the same order with the same specifications). In this case, the
7387 -- discriminants are said to be "inherited", or if unknown in the parent
7388 -- are also unknown in the derived type.
7389
7390 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7391
7392 -- o The parent subtype must be constrained;
7393
7394 -- o If the parent type is not a tagged type, then each discriminant of
7395 -- the derived type must be used in the constraint defining a parent
7396 -- subtype. [Implementation note: This ensures that the new discriminant
7397 -- can share storage with an existing discriminant.]
7398
7399 -- For the derived type each discriminant of the parent type is either
7400 -- inherited, constrained to equal some new discriminant of the derived
7401 -- type, or constrained to the value of an expression.
7402
7403 -- When inherited or constrained to equal some new discriminant, the
7404 -- parent discriminant and the discriminant of the derived type are said
7405 -- to "correspond".
7406
7407 -- If a discriminant of the parent type is constrained to a specific value
7408 -- in the derived type definition, then the discriminant is said to be
7409 -- "specified" by that derived type definition.
7410
7411 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7412
7413 -- We have spoken about stored discriminants in point 1 (introduction)
7414 -- above. There are two sort of stored discriminants: implicit and
7415 -- explicit. As long as the derived type inherits the same discriminants as
7416 -- the root record type, stored discriminants are the same as regular
7417 -- discriminants, and are said to be implicit. However, if any discriminant
7418 -- in the root type was renamed in the derived type, then the derived
7419 -- type will contain explicit stored discriminants. Explicit stored
7420 -- discriminants are discriminants in addition to the semantically visible
7421 -- discriminants defined for the derived type. Stored discriminants are
7422 -- used by Gigi to figure out what are the physical discriminants in
7423 -- objects of the derived type (see precise definition in einfo.ads).
7424 -- As an example, consider the following:
7425
7426 -- type R (D1, D2, D3 : Int) is record ... end record;
7427 -- type T1 is new R;
7428 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7429 -- type T3 is new T2;
7430 -- type T4 (Y : Int) is new T3 (Y, 99);
7431
7432 -- The following table summarizes the discriminants and stored
7433 -- discriminants in R and T1 through T4.
7434
7435 -- Type Discrim Stored Discrim Comment
7436 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7437 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7438 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7439 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7440 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7441
7442 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7443 -- find the corresponding discriminant in the parent type, while
7444 -- Original_Record_Component (abbreviated ORC below), the actual physical
7445 -- component that is renamed. Finally the field Is_Completely_Hidden
7446 -- (abbreviated ICH below) is set for all explicit stored discriminants
7447 -- (see einfo.ads for more info). For the above example this gives:
7448
7449 -- Discrim CD ORC ICH
7450 -- ^^^^^^^ ^^ ^^^ ^^^
7451 -- D1 in R empty itself no
7452 -- D2 in R empty itself no
7453 -- D3 in R empty itself no
7454
7455 -- D1 in T1 D1 in R itself no
7456 -- D2 in T1 D2 in R itself no
7457 -- D3 in T1 D3 in R itself no
7458
7459 -- X1 in T2 D3 in T1 D3 in T2 no
7460 -- X2 in T2 D1 in T1 D1 in T2 no
7461 -- D1 in T2 empty itself yes
7462 -- D2 in T2 empty itself yes
7463 -- D3 in T2 empty itself yes
7464
7465 -- X1 in T3 X1 in T2 D3 in T3 no
7466 -- X2 in T3 X2 in T2 D1 in T3 no
7467 -- D1 in T3 empty itself yes
7468 -- D2 in T3 empty itself yes
7469 -- D3 in T3 empty itself yes
7470
7471 -- Y in T4 X1 in T3 D3 in T3 no
7472 -- D1 in T3 empty itself yes
7473 -- D2 in T3 empty itself yes
7474 -- D3 in T3 empty itself yes
7475
7476 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7477
7478 -- Type derivation for tagged types is fairly straightforward. If no
7479 -- discriminants are specified by the derived type, these are inherited
7480 -- from the parent. No explicit stored discriminants are ever necessary.
7481 -- The only manipulation that is done to the tree is that of adding a
7482 -- _parent field with parent type and constrained to the same constraint
7483 -- specified for the parent in the derived type definition. For instance:
7484
7485 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7486 -- type T1 is new R with null record;
7487 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7488
7489 -- are changed into:
7490
7491 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7492 -- _parent : R (D1, D2, D3);
7493 -- end record;
7494
7495 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7496 -- _parent : T1 (X2, 88, X1);
7497 -- end record;
7498
7499 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7500 -- ORC and ICH fields are:
7501
7502 -- Discrim CD ORC ICH
7503 -- ^^^^^^^ ^^ ^^^ ^^^
7504 -- D1 in R empty itself no
7505 -- D2 in R empty itself no
7506 -- D3 in R empty itself no
7507
7508 -- D1 in T1 D1 in R D1 in R no
7509 -- D2 in T1 D2 in R D2 in R no
7510 -- D3 in T1 D3 in R D3 in R no
7511
7512 -- X1 in T2 D3 in T1 D3 in R no
7513 -- X2 in T2 D1 in T1 D1 in R no
7514
7515 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7516 --
7517 -- Regardless of whether we dealing with a tagged or untagged type
7518 -- we will transform all derived type declarations of the form
7519 --
7520 -- type T is new R (...) [with ...];
7521 -- or
7522 -- subtype S is R (...);
7523 -- type T is new S [with ...];
7524 -- into
7525 -- type BT is new R [with ...];
7526 -- subtype T is BT (...);
7527 --
7528 -- That is, the base derived type is constrained only if it has no
7529 -- discriminants. The reason for doing this is that GNAT's semantic model
7530 -- assumes that a base type with discriminants is unconstrained.
7531 --
7532 -- Note that, strictly speaking, the above transformation is not always
7533 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7534 --
7535 -- procedure B34011A is
7536 -- type REC (D : integer := 0) is record
7537 -- I : Integer;
7538 -- end record;
7539
7540 -- package P is
7541 -- type T6 is new Rec;
7542 -- function F return T6;
7543 -- end P;
7544
7545 -- use P;
7546 -- package Q6 is
7547 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7548 -- end Q6;
7549 --
7550 -- The definition of Q6.U is illegal. However transforming Q6.U into
7551
7552 -- type BaseU is new T6;
7553 -- subtype U is BaseU (Q6.F.I)
7554
7555 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7556 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7557 -- the transformation described above.
7558
7559 -- There is another instance where the above transformation is incorrect.
7560 -- Consider:
7561
7562 -- package Pack is
7563 -- type Base (D : Integer) is tagged null record;
7564 -- procedure P (X : Base);
7565
7566 -- type Der is new Base (2) with null record;
7567 -- procedure P (X : Der);
7568 -- end Pack;
7569
7570 -- Then the above transformation turns this into
7571
7572 -- type Der_Base is new Base with null record;
7573 -- -- procedure P (X : Base) is implicitly inherited here
7574 -- -- as procedure P (X : Der_Base).
7575
7576 -- subtype Der is Der_Base (2);
7577 -- procedure P (X : Der);
7578 -- -- The overriding of P (X : Der_Base) is illegal since we
7579 -- -- have a parameter conformance problem.
7580
7581 -- To get around this problem, after having semantically processed Der_Base
7582 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7583 -- Discriminant_Constraint from Der so that when parameter conformance is
7584 -- checked when P is overridden, no semantic errors are flagged.
7585
7586 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7587
7588 -- Regardless of whether we are dealing with a tagged or untagged type
7589 -- we will transform all derived type declarations of the form
7590
7591 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7592 -- type T is new R [with ...];
7593 -- into
7594 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7595
7596 -- The reason for such transformation is that it allows us to implement a
7597 -- very clean form of component inheritance as explained below.
7598
7599 -- Note that this transformation is not achieved by direct tree rewriting
7600 -- and manipulation, but rather by redoing the semantic actions that the
7601 -- above transformation will entail. This is done directly in routine
7602 -- Inherit_Components.
7603
7604 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7605
7606 -- In both tagged and untagged derived types, regular non discriminant
7607 -- components are inherited in the derived type from the parent type. In
7608 -- the absence of discriminants component, inheritance is straightforward
7609 -- as components can simply be copied from the parent.
7610
7611 -- If the parent has discriminants, inheriting components constrained with
7612 -- these discriminants requires caution. Consider the following example:
7613
7614 -- type R (D1, D2 : Positive) is [tagged] record
7615 -- S : String (D1 .. D2);
7616 -- end record;
7617
7618 -- type T1 is new R [with null record];
7619 -- type T2 (X : positive) is new R (1, X) [with null record];
7620
7621 -- As explained in 6. above, T1 is rewritten as
7622 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7623 -- which makes the treatment for T1 and T2 identical.
7624
7625 -- What we want when inheriting S, is that references to D1 and D2 in R are
7626 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7627 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7628 -- with either discriminant references in the derived type or expressions.
7629 -- This replacement is achieved as follows: before inheriting R's
7630 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7631 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7632 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7633 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7634 -- by String (1 .. X).
7635
7636 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7637
7638 -- We explain here the rules governing private type extensions relevant to
7639 -- type derivation. These rules are explained on the following example:
7640
7641 -- type D [(...)] is new A [(...)] with private; <-- partial view
7642 -- type D [(...)] is new P [(...)] with null record; <-- full view
7643
7644 -- Type A is called the ancestor subtype of the private extension.
7645 -- Type P is the parent type of the full view of the private extension. It
7646 -- must be A or a type derived from A.
7647
7648 -- The rules concerning the discriminants of private type extensions are
7649 -- [7.3(10-13)]:
7650
7651 -- o If a private extension inherits known discriminants from the ancestor
7652 -- subtype, then the full view must also inherit its discriminants from
7653 -- the ancestor subtype and the parent subtype of the full view must be
7654 -- constrained if and only if the ancestor subtype is constrained.
7655
7656 -- o If a partial view has unknown discriminants, then the full view may
7657 -- define a definite or an indefinite subtype, with or without
7658 -- discriminants.
7659
7660 -- o If a partial view has neither known nor unknown discriminants, then
7661 -- the full view must define a definite subtype.
7662
7663 -- o If the ancestor subtype of a private extension has constrained
7664 -- discriminants, then the parent subtype of the full view must impose a
7665 -- statically matching constraint on those discriminants.
7666
7667 -- This means that only the following forms of private extensions are
7668 -- allowed:
7669
7670 -- type D is new A with private; <-- partial view
7671 -- type D is new P with null record; <-- full view
7672
7673 -- If A has no discriminants than P has no discriminants, otherwise P must
7674 -- inherit A's discriminants.
7675
7676 -- type D is new A (...) with private; <-- partial view
7677 -- type D is new P (:::) with null record; <-- full view
7678
7679 -- P must inherit A's discriminants and (...) and (:::) must statically
7680 -- match.
7681
7682 -- subtype A is R (...);
7683 -- type D is new A with private; <-- partial view
7684 -- type D is new P with null record; <-- full view
7685
7686 -- P must have inherited R's discriminants and must be derived from A or
7687 -- any of its subtypes.
7688
7689 -- type D (..) is new A with private; <-- partial view
7690 -- type D (..) is new P [(:::)] with null record; <-- full view
7691
7692 -- No specific constraints on P's discriminants or constraint (:::).
7693 -- Note that A can be unconstrained, but the parent subtype P must either
7694 -- be constrained or (:::) must be present.
7695
7696 -- type D (..) is new A [(...)] with private; <-- partial view
7697 -- type D (..) is new P [(:::)] with null record; <-- full view
7698
7699 -- P's constraints on A's discriminants must statically match those
7700 -- imposed by (...).
7701
7702 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7703
7704 -- The full view of a private extension is handled exactly as described
7705 -- above. The model chose for the private view of a private extension is
7706 -- the same for what concerns discriminants (i.e. they receive the same
7707 -- treatment as in the tagged case). However, the private view of the
7708 -- private extension always inherits the components of the parent base,
7709 -- without replacing any discriminant reference. Strictly speaking this is
7710 -- incorrect. However, Gigi never uses this view to generate code so this
7711 -- is a purely semantic issue. In theory, a set of transformations similar
7712 -- to those given in 5. and 6. above could be applied to private views of
7713 -- private extensions to have the same model of component inheritance as
7714 -- for non private extensions. However, this is not done because it would
7715 -- further complicate private type processing. Semantically speaking, this
7716 -- leaves us in an uncomfortable situation. As an example consider:
7717
7718 -- package Pack is
7719 -- type R (D : integer) is tagged record
7720 -- S : String (1 .. D);
7721 -- end record;
7722 -- procedure P (X : R);
7723 -- type T is new R (1) with private;
7724 -- private
7725 -- type T is new R (1) with null record;
7726 -- end;
7727
7728 -- This is transformed into:
7729
7730 -- package Pack is
7731 -- type R (D : integer) is tagged record
7732 -- S : String (1 .. D);
7733 -- end record;
7734 -- procedure P (X : R);
7735 -- type T is new R (1) with private;
7736 -- private
7737 -- type BaseT is new R with null record;
7738 -- subtype T is BaseT (1);
7739 -- end;
7740
7741 -- (strictly speaking the above is incorrect Ada)
7742
7743 -- From the semantic standpoint the private view of private extension T
7744 -- should be flagged as constrained since one can clearly have
7745 --
7746 -- Obj : T;
7747 --
7748 -- in a unit withing Pack. However, when deriving subprograms for the
7749 -- private view of private extension T, T must be seen as unconstrained
7750 -- since T has discriminants (this is a constraint of the current
7751 -- subprogram derivation model). Thus, when processing the private view of
7752 -- a private extension such as T, we first mark T as unconstrained, we
7753 -- process it, we perform program derivation and just before returning from
7754 -- Build_Derived_Record_Type we mark T as constrained.
7755
7756 -- ??? Are there are other uncomfortable cases that we will have to
7757 -- deal with.
7758
7759 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7760
7761 -- Types that are derived from a visible record type and have a private
7762 -- extension present other peculiarities. They behave mostly like private
7763 -- types, but if they have primitive operations defined, these will not
7764 -- have the proper signatures for further inheritance, because other
7765 -- primitive operations will use the implicit base that we define for
7766 -- private derivations below. This affect subprogram inheritance (see
7767 -- Derive_Subprograms for details). We also derive the implicit base from
7768 -- the base type of the full view, so that the implicit base is a record
7769 -- type and not another private type, This avoids infinite loops.
7770
7771 procedure Build_Derived_Record_Type
7772 (N : Node_Id;
7773 Parent_Type : Entity_Id;
7774 Derived_Type : Entity_Id;
7775 Derive_Subps : Boolean := True)
7776 is
7777 Discriminant_Specs : constant Boolean :=
7778 Present (Discriminant_Specifications (N));
7779 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7780 Loc : constant Source_Ptr := Sloc (N);
7781 Private_Extension : constant Boolean :=
7782 Nkind (N) = N_Private_Extension_Declaration;
7783 Assoc_List : Elist_Id;
7784 Constraint_Present : Boolean;
7785 Constrs : Elist_Id;
7786 Discrim : Entity_Id;
7787 Indic : Node_Id;
7788 Inherit_Discrims : Boolean := False;
7789 Last_Discrim : Entity_Id;
7790 New_Base : Entity_Id;
7791 New_Decl : Node_Id;
7792 New_Discrs : Elist_Id;
7793 New_Indic : Node_Id;
7794 Parent_Base : Entity_Id;
7795 Save_Etype : Entity_Id;
7796 Save_Discr_Constr : Elist_Id;
7797 Save_Next_Entity : Entity_Id;
7798 Type_Def : Node_Id;
7799
7800 Discs : Elist_Id := New_Elmt_List;
7801 -- An empty Discs list means that there were no constraints in the
7802 -- subtype indication or that there was an error processing it.
7803
7804 begin
7805 if Ekind (Parent_Type) = E_Record_Type_With_Private
7806 and then Present (Full_View (Parent_Type))
7807 and then Has_Discriminants (Parent_Type)
7808 then
7809 Parent_Base := Base_Type (Full_View (Parent_Type));
7810 else
7811 Parent_Base := Base_Type (Parent_Type);
7812 end if;
7813
7814 -- AI05-0115 : if this is a derivation from a private type in some
7815 -- other scope that may lead to invisible components for the derived
7816 -- type, mark it accordingly.
7817
7818 if Is_Private_Type (Parent_Type) then
7819 if Scope (Parent_Type) = Scope (Derived_Type) then
7820 null;
7821
7822 elsif In_Open_Scopes (Scope (Parent_Type))
7823 and then In_Private_Part (Scope (Parent_Type))
7824 then
7825 null;
7826
7827 else
7828 Set_Has_Private_Ancestor (Derived_Type);
7829 end if;
7830
7831 else
7832 Set_Has_Private_Ancestor
7833 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7834 end if;
7835
7836 -- Before we start the previously documented transformations, here is
7837 -- little fix for size and alignment of tagged types. Normally when we
7838 -- derive type D from type P, we copy the size and alignment of P as the
7839 -- default for D, and in the absence of explicit representation clauses
7840 -- for D, the size and alignment are indeed the same as the parent.
7841
7842 -- But this is wrong for tagged types, since fields may be added, and
7843 -- the default size may need to be larger, and the default alignment may
7844 -- need to be larger.
7845
7846 -- We therefore reset the size and alignment fields in the tagged case.
7847 -- Note that the size and alignment will in any case be at least as
7848 -- large as the parent type (since the derived type has a copy of the
7849 -- parent type in the _parent field)
7850
7851 -- The type is also marked as being tagged here, which is needed when
7852 -- processing components with a self-referential anonymous access type
7853 -- in the call to Check_Anonymous_Access_Components below. Note that
7854 -- this flag is also set later on for completeness.
7855
7856 if Is_Tagged then
7857 Set_Is_Tagged_Type (Derived_Type);
7858 Init_Size_Align (Derived_Type);
7859 end if;
7860
7861 -- STEP 0a: figure out what kind of derived type declaration we have
7862
7863 if Private_Extension then
7864 Type_Def := N;
7865 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7866 Set_Default_SSO (Derived_Type);
7867
7868 else
7869 Type_Def := Type_Definition (N);
7870
7871 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7872 -- Parent_Base can be a private type or private extension. However,
7873 -- for tagged types with an extension the newly added fields are
7874 -- visible and hence the Derived_Type is always an E_Record_Type.
7875 -- (except that the parent may have its own private fields).
7876 -- For untagged types we preserve the Ekind of the Parent_Base.
7877
7878 if Present (Record_Extension_Part (Type_Def)) then
7879 Set_Ekind (Derived_Type, E_Record_Type);
7880 Set_Default_SSO (Derived_Type);
7881
7882 -- Create internal access types for components with anonymous
7883 -- access types.
7884
7885 if Ada_Version >= Ada_2005 then
7886 Check_Anonymous_Access_Components
7887 (N, Derived_Type, Derived_Type,
7888 Component_List (Record_Extension_Part (Type_Def)));
7889 end if;
7890
7891 else
7892 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7893 end if;
7894 end if;
7895
7896 -- Indic can either be an N_Identifier if the subtype indication
7897 -- contains no constraint or an N_Subtype_Indication if the subtype
7898 -- indication has a constraint.
7899
7900 Indic := Subtype_Indication (Type_Def);
7901 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7902
7903 -- Check that the type has visible discriminants. The type may be
7904 -- a private type with unknown discriminants whose full view has
7905 -- discriminants which are invisible.
7906
7907 if Constraint_Present then
7908 if not Has_Discriminants (Parent_Base)
7909 or else
7910 (Has_Unknown_Discriminants (Parent_Base)
7911 and then Is_Private_Type (Parent_Base))
7912 then
7913 Error_Msg_N
7914 ("invalid constraint: type has no discriminant",
7915 Constraint (Indic));
7916
7917 Constraint_Present := False;
7918 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7919
7920 elsif Is_Constrained (Parent_Type) then
7921 Error_Msg_N
7922 ("invalid constraint: parent type is already constrained",
7923 Constraint (Indic));
7924
7925 Constraint_Present := False;
7926 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7927 end if;
7928 end if;
7929
7930 -- STEP 0b: If needed, apply transformation given in point 5. above
7931
7932 if not Private_Extension
7933 and then Has_Discriminants (Parent_Type)
7934 and then not Discriminant_Specs
7935 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7936 then
7937 -- First, we must analyze the constraint (see comment in point 5.)
7938 -- The constraint may come from the subtype indication of the full
7939 -- declaration.
7940
7941 if Constraint_Present then
7942 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7943
7944 -- If there is no explicit constraint, there might be one that is
7945 -- inherited from a constrained parent type. In that case verify that
7946 -- it conforms to the constraint in the partial view. In perverse
7947 -- cases the parent subtypes of the partial and full view can have
7948 -- different constraints.
7949
7950 elsif Present (Stored_Constraint (Parent_Type)) then
7951 New_Discrs := Stored_Constraint (Parent_Type);
7952
7953 else
7954 New_Discrs := No_Elist;
7955 end if;
7956
7957 if Has_Discriminants (Derived_Type)
7958 and then Has_Private_Declaration (Derived_Type)
7959 and then Present (Discriminant_Constraint (Derived_Type))
7960 and then Present (New_Discrs)
7961 then
7962 -- Verify that constraints of the full view statically match
7963 -- those given in the partial view.
7964
7965 declare
7966 C1, C2 : Elmt_Id;
7967
7968 begin
7969 C1 := First_Elmt (New_Discrs);
7970 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7971 while Present (C1) and then Present (C2) loop
7972 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7973 or else
7974 (Is_OK_Static_Expression (Node (C1))
7975 and then Is_OK_Static_Expression (Node (C2))
7976 and then
7977 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7978 then
7979 null;
7980
7981 else
7982 if Constraint_Present then
7983 Error_Msg_N
7984 ("constraint not conformant to previous declaration",
7985 Node (C1));
7986 else
7987 Error_Msg_N
7988 ("constraint of full view is incompatible "
7989 & "with partial view", N);
7990 end if;
7991 end if;
7992
7993 Next_Elmt (C1);
7994 Next_Elmt (C2);
7995 end loop;
7996 end;
7997 end if;
7998
7999 -- Insert and analyze the declaration for the unconstrained base type
8000
8001 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8002
8003 New_Decl :=
8004 Make_Full_Type_Declaration (Loc,
8005 Defining_Identifier => New_Base,
8006 Type_Definition =>
8007 Make_Derived_Type_Definition (Loc,
8008 Abstract_Present => Abstract_Present (Type_Def),
8009 Limited_Present => Limited_Present (Type_Def),
8010 Subtype_Indication =>
8011 New_Occurrence_Of (Parent_Base, Loc),
8012 Record_Extension_Part =>
8013 Relocate_Node (Record_Extension_Part (Type_Def)),
8014 Interface_List => Interface_List (Type_Def)));
8015
8016 Set_Parent (New_Decl, Parent (N));
8017 Mark_Rewrite_Insertion (New_Decl);
8018 Insert_Before (N, New_Decl);
8019
8020 -- In the extension case, make sure ancestor is frozen appropriately
8021 -- (see also non-discriminated case below).
8022
8023 if Present (Record_Extension_Part (Type_Def))
8024 or else Is_Interface (Parent_Base)
8025 then
8026 Freeze_Before (New_Decl, Parent_Type);
8027 end if;
8028
8029 -- Note that this call passes False for the Derive_Subps parameter
8030 -- because subprogram derivation is deferred until after creating
8031 -- the subtype (see below).
8032
8033 Build_Derived_Type
8034 (New_Decl, Parent_Base, New_Base,
8035 Is_Completion => False, Derive_Subps => False);
8036
8037 -- ??? This needs re-examination to determine whether the
8038 -- above call can simply be replaced by a call to Analyze.
8039
8040 Set_Analyzed (New_Decl);
8041
8042 -- Insert and analyze the declaration for the constrained subtype
8043
8044 if Constraint_Present then
8045 New_Indic :=
8046 Make_Subtype_Indication (Loc,
8047 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8048 Constraint => Relocate_Node (Constraint (Indic)));
8049
8050 else
8051 declare
8052 Constr_List : constant List_Id := New_List;
8053 C : Elmt_Id;
8054 Expr : Node_Id;
8055
8056 begin
8057 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8058 while Present (C) loop
8059 Expr := Node (C);
8060
8061 -- It is safe here to call New_Copy_Tree since we called
8062 -- Force_Evaluation on each constraint previously
8063 -- in Build_Discriminant_Constraints.
8064
8065 Append (New_Copy_Tree (Expr), To => Constr_List);
8066
8067 Next_Elmt (C);
8068 end loop;
8069
8070 New_Indic :=
8071 Make_Subtype_Indication (Loc,
8072 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8073 Constraint =>
8074 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8075 end;
8076 end if;
8077
8078 Rewrite (N,
8079 Make_Subtype_Declaration (Loc,
8080 Defining_Identifier => Derived_Type,
8081 Subtype_Indication => New_Indic));
8082
8083 Analyze (N);
8084
8085 -- Derivation of subprograms must be delayed until the full subtype
8086 -- has been established, to ensure proper overriding of subprograms
8087 -- inherited by full types. If the derivations occurred as part of
8088 -- the call to Build_Derived_Type above, then the check for type
8089 -- conformance would fail because earlier primitive subprograms
8090 -- could still refer to the full type prior the change to the new
8091 -- subtype and hence would not match the new base type created here.
8092 -- Subprograms are not derived, however, when Derive_Subps is False
8093 -- (since otherwise there could be redundant derivations).
8094
8095 if Derive_Subps then
8096 Derive_Subprograms (Parent_Type, Derived_Type);
8097 end if;
8098
8099 -- For tagged types the Discriminant_Constraint of the new base itype
8100 -- is inherited from the first subtype so that no subtype conformance
8101 -- problem arise when the first subtype overrides primitive
8102 -- operations inherited by the implicit base type.
8103
8104 if Is_Tagged then
8105 Set_Discriminant_Constraint
8106 (New_Base, Discriminant_Constraint (Derived_Type));
8107 end if;
8108
8109 return;
8110 end if;
8111
8112 -- If we get here Derived_Type will have no discriminants or it will be
8113 -- a discriminated unconstrained base type.
8114
8115 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8116
8117 if Is_Tagged then
8118
8119 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8120 -- The declaration of a specific descendant of an interface type
8121 -- freezes the interface type (RM 13.14).
8122
8123 if not Private_Extension or else Is_Interface (Parent_Base) then
8124 Freeze_Before (N, Parent_Type);
8125 end if;
8126
8127 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8128 -- cannot be declared at a deeper level than its parent type is
8129 -- removed. The check on derivation within a generic body is also
8130 -- relaxed, but there's a restriction that a derived tagged type
8131 -- cannot be declared in a generic body if it's derived directly
8132 -- or indirectly from a formal type of that generic.
8133
8134 if Ada_Version >= Ada_2005 then
8135 if Present (Enclosing_Generic_Body (Derived_Type)) then
8136 declare
8137 Ancestor_Type : Entity_Id;
8138
8139 begin
8140 -- Check to see if any ancestor of the derived type is a
8141 -- formal type.
8142
8143 Ancestor_Type := Parent_Type;
8144 while not Is_Generic_Type (Ancestor_Type)
8145 and then Etype (Ancestor_Type) /= Ancestor_Type
8146 loop
8147 Ancestor_Type := Etype (Ancestor_Type);
8148 end loop;
8149
8150 -- If the derived type does have a formal type as an
8151 -- ancestor, then it's an error if the derived type is
8152 -- declared within the body of the generic unit that
8153 -- declares the formal type in its generic formal part. It's
8154 -- sufficient to check whether the ancestor type is declared
8155 -- inside the same generic body as the derived type (such as
8156 -- within a nested generic spec), in which case the
8157 -- derivation is legal. If the formal type is declared
8158 -- outside of that generic body, then it's guaranteed that
8159 -- the derived type is declared within the generic body of
8160 -- the generic unit declaring the formal type.
8161
8162 if Is_Generic_Type (Ancestor_Type)
8163 and then Enclosing_Generic_Body (Ancestor_Type) /=
8164 Enclosing_Generic_Body (Derived_Type)
8165 then
8166 Error_Msg_NE
8167 ("parent type of& must not be descendant of formal type"
8168 & " of an enclosing generic body",
8169 Indic, Derived_Type);
8170 end if;
8171 end;
8172 end if;
8173
8174 elsif Type_Access_Level (Derived_Type) /=
8175 Type_Access_Level (Parent_Type)
8176 and then not Is_Generic_Type (Derived_Type)
8177 then
8178 if Is_Controlled (Parent_Type) then
8179 Error_Msg_N
8180 ("controlled type must be declared at the library level",
8181 Indic);
8182 else
8183 Error_Msg_N
8184 ("type extension at deeper accessibility level than parent",
8185 Indic);
8186 end if;
8187
8188 else
8189 declare
8190 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8191 begin
8192 if Present (GB)
8193 and then GB /= Enclosing_Generic_Body (Parent_Base)
8194 then
8195 Error_Msg_NE
8196 ("parent type of& must not be outside generic body"
8197 & " (RM 3.9.1(4))",
8198 Indic, Derived_Type);
8199 end if;
8200 end;
8201 end if;
8202 end if;
8203
8204 -- Ada 2005 (AI-251)
8205
8206 if Ada_Version >= Ada_2005 and then Is_Tagged then
8207
8208 -- "The declaration of a specific descendant of an interface type
8209 -- freezes the interface type" (RM 13.14).
8210
8211 declare
8212 Iface : Node_Id;
8213 begin
8214 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8215 Iface := First (Interface_List (Type_Def));
8216 while Present (Iface) loop
8217 Freeze_Before (N, Etype (Iface));
8218 Next (Iface);
8219 end loop;
8220 end if;
8221 end;
8222 end if;
8223
8224 -- STEP 1b : preliminary cleanup of the full view of private types
8225
8226 -- If the type is already marked as having discriminants, then it's the
8227 -- completion of a private type or private extension and we need to
8228 -- retain the discriminants from the partial view if the current
8229 -- declaration has Discriminant_Specifications so that we can verify
8230 -- conformance. However, we must remove any existing components that
8231 -- were inherited from the parent (and attached in Copy_And_Swap)
8232 -- because the full type inherits all appropriate components anyway, and
8233 -- we do not want the partial view's components interfering.
8234
8235 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8236 Discrim := First_Discriminant (Derived_Type);
8237 loop
8238 Last_Discrim := Discrim;
8239 Next_Discriminant (Discrim);
8240 exit when No (Discrim);
8241 end loop;
8242
8243 Set_Last_Entity (Derived_Type, Last_Discrim);
8244
8245 -- In all other cases wipe out the list of inherited components (even
8246 -- inherited discriminants), it will be properly rebuilt here.
8247
8248 else
8249 Set_First_Entity (Derived_Type, Empty);
8250 Set_Last_Entity (Derived_Type, Empty);
8251 end if;
8252
8253 -- STEP 1c: Initialize some flags for the Derived_Type
8254
8255 -- The following flags must be initialized here so that
8256 -- Process_Discriminants can check that discriminants of tagged types do
8257 -- not have a default initial value and that access discriminants are
8258 -- only specified for limited records. For completeness, these flags are
8259 -- also initialized along with all the other flags below.
8260
8261 -- AI-419: Limitedness is not inherited from an interface parent, so to
8262 -- be limited in that case the type must be explicitly declared as
8263 -- limited. However, task and protected interfaces are always limited.
8264
8265 if Limited_Present (Type_Def) then
8266 Set_Is_Limited_Record (Derived_Type);
8267
8268 elsif Is_Limited_Record (Parent_Type)
8269 or else (Present (Full_View (Parent_Type))
8270 and then Is_Limited_Record (Full_View (Parent_Type)))
8271 then
8272 if not Is_Interface (Parent_Type)
8273 or else Is_Synchronized_Interface (Parent_Type)
8274 or else Is_Protected_Interface (Parent_Type)
8275 or else Is_Task_Interface (Parent_Type)
8276 then
8277 Set_Is_Limited_Record (Derived_Type);
8278 end if;
8279 end if;
8280
8281 -- STEP 2a: process discriminants of derived type if any
8282
8283 Push_Scope (Derived_Type);
8284
8285 if Discriminant_Specs then
8286 Set_Has_Unknown_Discriminants (Derived_Type, False);
8287
8288 -- The following call initializes fields Has_Discriminants and
8289 -- Discriminant_Constraint, unless we are processing the completion
8290 -- of a private type declaration.
8291
8292 Check_Or_Process_Discriminants (N, Derived_Type);
8293
8294 -- For untagged types, the constraint on the Parent_Type must be
8295 -- present and is used to rename the discriminants.
8296
8297 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8298 Error_Msg_N ("untagged parent must have discriminants", Indic);
8299
8300 elsif not Is_Tagged and then not Constraint_Present then
8301 Error_Msg_N
8302 ("discriminant constraint needed for derived untagged records",
8303 Indic);
8304
8305 -- Otherwise the parent subtype must be constrained unless we have a
8306 -- private extension.
8307
8308 elsif not Constraint_Present
8309 and then not Private_Extension
8310 and then not Is_Constrained (Parent_Type)
8311 then
8312 Error_Msg_N
8313 ("unconstrained type not allowed in this context", Indic);
8314
8315 elsif Constraint_Present then
8316 -- The following call sets the field Corresponding_Discriminant
8317 -- for the discriminants in the Derived_Type.
8318
8319 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8320
8321 -- For untagged types all new discriminants must rename
8322 -- discriminants in the parent. For private extensions new
8323 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8324
8325 Discrim := First_Discriminant (Derived_Type);
8326 while Present (Discrim) loop
8327 if not Is_Tagged
8328 and then No (Corresponding_Discriminant (Discrim))
8329 then
8330 Error_Msg_N
8331 ("new discriminants must constrain old ones", Discrim);
8332
8333 elsif Private_Extension
8334 and then Present (Corresponding_Discriminant (Discrim))
8335 then
8336 Error_Msg_N
8337 ("only static constraints allowed for parent"
8338 & " discriminants in the partial view", Indic);
8339 exit;
8340 end if;
8341
8342 -- If a new discriminant is used in the constraint, then its
8343 -- subtype must be statically compatible with the parent
8344 -- discriminant's subtype (3.7(15)).
8345
8346 -- However, if the record contains an array constrained by
8347 -- the discriminant but with some different bound, the compiler
8348 -- attemps to create a smaller range for the discriminant type.
8349 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8350 -- the discriminant type is a scalar type, the check must use
8351 -- the original discriminant type in the parent declaration.
8352
8353 declare
8354 Corr_Disc : constant Entity_Id :=
8355 Corresponding_Discriminant (Discrim);
8356 Disc_Type : constant Entity_Id := Etype (Discrim);
8357 Corr_Type : Entity_Id;
8358
8359 begin
8360 if Present (Corr_Disc) then
8361 if Is_Scalar_Type (Disc_Type) then
8362 Corr_Type :=
8363 Entity (Discriminant_Type (Parent (Corr_Disc)));
8364 else
8365 Corr_Type := Etype (Corr_Disc);
8366 end if;
8367
8368 if not
8369 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8370 then
8371 Error_Msg_N
8372 ("subtype must be compatible "
8373 & "with parent discriminant",
8374 Discrim);
8375 end if;
8376 end if;
8377 end;
8378
8379 Next_Discriminant (Discrim);
8380 end loop;
8381
8382 -- Check whether the constraints of the full view statically
8383 -- match those imposed by the parent subtype [7.3(13)].
8384
8385 if Present (Stored_Constraint (Derived_Type)) then
8386 declare
8387 C1, C2 : Elmt_Id;
8388
8389 begin
8390 C1 := First_Elmt (Discs);
8391 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8392 while Present (C1) and then Present (C2) loop
8393 if not
8394 Fully_Conformant_Expressions (Node (C1), Node (C2))
8395 then
8396 Error_Msg_N
8397 ("not conformant with previous declaration",
8398 Node (C1));
8399 end if;
8400
8401 Next_Elmt (C1);
8402 Next_Elmt (C2);
8403 end loop;
8404 end;
8405 end if;
8406 end if;
8407
8408 -- STEP 2b: No new discriminants, inherit discriminants if any
8409
8410 else
8411 if Private_Extension then
8412 Set_Has_Unknown_Discriminants
8413 (Derived_Type,
8414 Has_Unknown_Discriminants (Parent_Type)
8415 or else Unknown_Discriminants_Present (N));
8416
8417 -- The partial view of the parent may have unknown discriminants,
8418 -- but if the full view has discriminants and the parent type is
8419 -- in scope they must be inherited.
8420
8421 elsif Has_Unknown_Discriminants (Parent_Type)
8422 and then
8423 (not Has_Discriminants (Parent_Type)
8424 or else not In_Open_Scopes (Scope (Parent_Type)))
8425 then
8426 Set_Has_Unknown_Discriminants (Derived_Type);
8427 end if;
8428
8429 if not Has_Unknown_Discriminants (Derived_Type)
8430 and then not Has_Unknown_Discriminants (Parent_Base)
8431 and then Has_Discriminants (Parent_Type)
8432 then
8433 Inherit_Discrims := True;
8434 Set_Has_Discriminants
8435 (Derived_Type, True);
8436 Set_Discriminant_Constraint
8437 (Derived_Type, Discriminant_Constraint (Parent_Base));
8438 end if;
8439
8440 -- The following test is true for private types (remember
8441 -- transformation 5. is not applied to those) and in an error
8442 -- situation.
8443
8444 if Constraint_Present then
8445 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8446 end if;
8447
8448 -- For now mark a new derived type as constrained only if it has no
8449 -- discriminants. At the end of Build_Derived_Record_Type we properly
8450 -- set this flag in the case of private extensions. See comments in
8451 -- point 9. just before body of Build_Derived_Record_Type.
8452
8453 Set_Is_Constrained
8454 (Derived_Type,
8455 not (Inherit_Discrims
8456 or else Has_Unknown_Discriminants (Derived_Type)));
8457 end if;
8458
8459 -- STEP 3: initialize fields of derived type
8460
8461 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8462 Set_Stored_Constraint (Derived_Type, No_Elist);
8463
8464 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8465 -- but cannot be interfaces
8466
8467 if not Private_Extension
8468 and then Ekind (Derived_Type) /= E_Private_Type
8469 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8470 then
8471 if Interface_Present (Type_Def) then
8472 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8473 end if;
8474
8475 Set_Interfaces (Derived_Type, No_Elist);
8476 end if;
8477
8478 -- Fields inherited from the Parent_Type
8479
8480 Set_Has_Specified_Layout
8481 (Derived_Type, Has_Specified_Layout (Parent_Type));
8482 Set_Is_Limited_Composite
8483 (Derived_Type, Is_Limited_Composite (Parent_Type));
8484 Set_Is_Private_Composite
8485 (Derived_Type, Is_Private_Composite (Parent_Type));
8486
8487 if Is_Tagged_Type (Parent_Type) then
8488 Set_No_Tagged_Streams_Pragma
8489 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8490 end if;
8491
8492 -- Fields inherited from the Parent_Base
8493
8494 Set_Has_Controlled_Component
8495 (Derived_Type, Has_Controlled_Component (Parent_Base));
8496 Set_Has_Non_Standard_Rep
8497 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8498 Set_Has_Primitive_Operations
8499 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8500
8501 -- Fields inherited from the Parent_Base in the non-private case
8502
8503 if Ekind (Derived_Type) = E_Record_Type then
8504 Set_Has_Complex_Representation
8505 (Derived_Type, Has_Complex_Representation (Parent_Base));
8506 end if;
8507
8508 -- Fields inherited from the Parent_Base for record types
8509
8510 if Is_Record_Type (Derived_Type) then
8511 declare
8512 Parent_Full : Entity_Id;
8513
8514 begin
8515 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8516 -- Parent_Base can be a private type or private extension. Go
8517 -- to the full view here to get the E_Record_Type specific flags.
8518
8519 if Present (Full_View (Parent_Base)) then
8520 Parent_Full := Full_View (Parent_Base);
8521 else
8522 Parent_Full := Parent_Base;
8523 end if;
8524
8525 Set_OK_To_Reorder_Components
8526 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8527 end;
8528 end if;
8529
8530 -- Set fields for private derived types
8531
8532 if Is_Private_Type (Derived_Type) then
8533 Set_Depends_On_Private (Derived_Type, True);
8534 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8535
8536 -- Inherit fields from non private record types. If this is the
8537 -- completion of a derivation from a private type, the parent itself
8538 -- is private, and the attributes come from its full view, which must
8539 -- be present.
8540
8541 else
8542 if Is_Private_Type (Parent_Base)
8543 and then not Is_Record_Type (Parent_Base)
8544 then
8545 Set_Component_Alignment
8546 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8547 Set_C_Pass_By_Copy
8548 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8549 else
8550 Set_Component_Alignment
8551 (Derived_Type, Component_Alignment (Parent_Base));
8552 Set_C_Pass_By_Copy
8553 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8554 end if;
8555 end if;
8556
8557 -- Set fields for tagged types
8558
8559 if Is_Tagged then
8560 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8561
8562 -- All tagged types defined in Ada.Finalization are controlled
8563
8564 if Chars (Scope (Derived_Type)) = Name_Finalization
8565 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8566 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8567 then
8568 Set_Is_Controlled (Derived_Type);
8569 else
8570 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8571 end if;
8572
8573 -- Minor optimization: there is no need to generate the class-wide
8574 -- entity associated with an underlying record view.
8575
8576 if not Is_Underlying_Record_View (Derived_Type) then
8577 Make_Class_Wide_Type (Derived_Type);
8578 end if;
8579
8580 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8581
8582 if Has_Discriminants (Derived_Type)
8583 and then Constraint_Present
8584 then
8585 Set_Stored_Constraint
8586 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8587 end if;
8588
8589 if Ada_Version >= Ada_2005 then
8590 declare
8591 Ifaces_List : Elist_Id;
8592
8593 begin
8594 -- Checks rules 3.9.4 (13/2 and 14/2)
8595
8596 if Comes_From_Source (Derived_Type)
8597 and then not Is_Private_Type (Derived_Type)
8598 and then Is_Interface (Parent_Type)
8599 and then not Is_Interface (Derived_Type)
8600 then
8601 if Is_Task_Interface (Parent_Type) then
8602 Error_Msg_N
8603 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8604 Derived_Type);
8605
8606 elsif Is_Protected_Interface (Parent_Type) then
8607 Error_Msg_N
8608 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8609 Derived_Type);
8610 end if;
8611 end if;
8612
8613 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8614
8615 Check_Interfaces (N, Type_Def);
8616
8617 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8618 -- not already in the parents.
8619
8620 Collect_Interfaces
8621 (T => Derived_Type,
8622 Ifaces_List => Ifaces_List,
8623 Exclude_Parents => True);
8624
8625 Set_Interfaces (Derived_Type, Ifaces_List);
8626
8627 -- If the derived type is the anonymous type created for
8628 -- a declaration whose parent has a constraint, propagate
8629 -- the interface list to the source type. This must be done
8630 -- prior to the completion of the analysis of the source type
8631 -- because the components in the extension may contain current
8632 -- instances whose legality depends on some ancestor.
8633
8634 if Is_Itype (Derived_Type) then
8635 declare
8636 Def : constant Node_Id :=
8637 Associated_Node_For_Itype (Derived_Type);
8638 begin
8639 if Present (Def)
8640 and then Nkind (Def) = N_Full_Type_Declaration
8641 then
8642 Set_Interfaces
8643 (Defining_Identifier (Def), Ifaces_List);
8644 end if;
8645 end;
8646 end if;
8647
8648 -- Propagate inherited invariant information of parents
8649 -- and progenitors
8650
8651 if Ada_Version >= Ada_2012
8652 and then not Is_Interface (Derived_Type)
8653 then
8654 if Has_Inheritable_Invariants (Parent_Type) then
8655 Set_Has_Invariants (Derived_Type);
8656 Set_Has_Inheritable_Invariants (Derived_Type);
8657
8658 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8659 declare
8660 AI : Elmt_Id;
8661
8662 begin
8663 AI := First_Elmt (Ifaces_List);
8664 while Present (AI) loop
8665 if Has_Inheritable_Invariants (Node (AI)) then
8666 Set_Has_Invariants (Derived_Type);
8667 Set_Has_Inheritable_Invariants (Derived_Type);
8668
8669 exit;
8670 end if;
8671
8672 Next_Elmt (AI);
8673 end loop;
8674 end;
8675 end if;
8676 end if;
8677
8678 -- A type extension is automatically Ghost when one of its
8679 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8680 -- also inherited when the parent type is Ghost, but this is
8681 -- done in Build_Derived_Type as the mechanism also handles
8682 -- untagged derivations.
8683
8684 if Implements_Ghost_Interface (Derived_Type) then
8685 Set_Is_Ghost_Entity (Derived_Type);
8686 end if;
8687 end;
8688 end if;
8689
8690 else
8691 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8692 Set_Has_Non_Standard_Rep
8693 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8694 end if;
8695
8696 -- STEP 4: Inherit components from the parent base and constrain them.
8697 -- Apply the second transformation described in point 6. above.
8698
8699 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8700 or else not Has_Discriminants (Parent_Type)
8701 or else not Is_Constrained (Parent_Type)
8702 then
8703 Constrs := Discs;
8704 else
8705 Constrs := Discriminant_Constraint (Parent_Type);
8706 end if;
8707
8708 Assoc_List :=
8709 Inherit_Components
8710 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8711
8712 -- STEP 5a: Copy the parent record declaration for untagged types
8713
8714 if not Is_Tagged then
8715
8716 -- Discriminant_Constraint (Derived_Type) has been properly
8717 -- constructed. Save it and temporarily set it to Empty because we
8718 -- do not want the call to New_Copy_Tree below to mess this list.
8719
8720 if Has_Discriminants (Derived_Type) then
8721 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8722 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8723 else
8724 Save_Discr_Constr := No_Elist;
8725 end if;
8726
8727 -- Save the Etype field of Derived_Type. It is correctly set now,
8728 -- but the call to New_Copy tree may remap it to point to itself,
8729 -- which is not what we want. Ditto for the Next_Entity field.
8730
8731 Save_Etype := Etype (Derived_Type);
8732 Save_Next_Entity := Next_Entity (Derived_Type);
8733
8734 -- Assoc_List maps all stored discriminants in the Parent_Base to
8735 -- stored discriminants in the Derived_Type. It is fundamental that
8736 -- no types or itypes with discriminants other than the stored
8737 -- discriminants appear in the entities declared inside
8738 -- Derived_Type, since the back end cannot deal with it.
8739
8740 New_Decl :=
8741 New_Copy_Tree
8742 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8743
8744 -- Restore the fields saved prior to the New_Copy_Tree call
8745 -- and compute the stored constraint.
8746
8747 Set_Etype (Derived_Type, Save_Etype);
8748 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8749
8750 if Has_Discriminants (Derived_Type) then
8751 Set_Discriminant_Constraint
8752 (Derived_Type, Save_Discr_Constr);
8753 Set_Stored_Constraint
8754 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8755 Replace_Components (Derived_Type, New_Decl);
8756 Set_Has_Implicit_Dereference
8757 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8758 end if;
8759
8760 -- Insert the new derived type declaration
8761
8762 Rewrite (N, New_Decl);
8763
8764 -- STEP 5b: Complete the processing for record extensions in generics
8765
8766 -- There is no completion for record extensions declared in the
8767 -- parameter part of a generic, so we need to complete processing for
8768 -- these generic record extensions here. The Record_Type_Definition call
8769 -- will change the Ekind of the components from E_Void to E_Component.
8770
8771 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8772 Record_Type_Definition (Empty, Derived_Type);
8773
8774 -- STEP 5c: Process the record extension for non private tagged types
8775
8776 elsif not Private_Extension then
8777 Expand_Record_Extension (Derived_Type, Type_Def);
8778
8779 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8780 -- derived type to propagate some semantic information. This led
8781 -- to other ASIS failures and has been removed.
8782
8783 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8784 -- implemented interfaces if we are in expansion mode
8785
8786 if Expander_Active
8787 and then Has_Interfaces (Derived_Type)
8788 then
8789 Add_Interface_Tag_Components (N, Derived_Type);
8790 end if;
8791
8792 -- Analyze the record extension
8793
8794 Record_Type_Definition
8795 (Record_Extension_Part (Type_Def), Derived_Type);
8796 end if;
8797
8798 End_Scope;
8799
8800 -- Nothing else to do if there is an error in the derivation.
8801 -- An unusual case: the full view may be derived from a type in an
8802 -- instance, when the partial view was used illegally as an actual
8803 -- in that instance, leading to a circular definition.
8804
8805 if Etype (Derived_Type) = Any_Type
8806 or else Etype (Parent_Type) = Derived_Type
8807 then
8808 return;
8809 end if;
8810
8811 -- Set delayed freeze and then derive subprograms, we need to do
8812 -- this in this order so that derived subprograms inherit the
8813 -- derived freeze if necessary.
8814
8815 Set_Has_Delayed_Freeze (Derived_Type);
8816
8817 if Derive_Subps then
8818 Derive_Subprograms (Parent_Type, Derived_Type);
8819 end if;
8820
8821 -- If we have a private extension which defines a constrained derived
8822 -- type mark as constrained here after we have derived subprograms. See
8823 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8824
8825 if Private_Extension and then Inherit_Discrims then
8826 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8827 Set_Is_Constrained (Derived_Type, True);
8828 Set_Discriminant_Constraint (Derived_Type, Discs);
8829
8830 elsif Is_Constrained (Parent_Type) then
8831 Set_Is_Constrained
8832 (Derived_Type, True);
8833 Set_Discriminant_Constraint
8834 (Derived_Type, Discriminant_Constraint (Parent_Type));
8835 end if;
8836 end if;
8837
8838 -- Update the class-wide type, which shares the now-completed entity
8839 -- list with its specific type. In case of underlying record views,
8840 -- we do not generate the corresponding class wide entity.
8841
8842 if Is_Tagged
8843 and then not Is_Underlying_Record_View (Derived_Type)
8844 then
8845 Set_First_Entity
8846 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8847 Set_Last_Entity
8848 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8849 end if;
8850
8851 Check_Function_Writable_Actuals (N);
8852 end Build_Derived_Record_Type;
8853
8854 ------------------------
8855 -- Build_Derived_Type --
8856 ------------------------
8857
8858 procedure Build_Derived_Type
8859 (N : Node_Id;
8860 Parent_Type : Entity_Id;
8861 Derived_Type : Entity_Id;
8862 Is_Completion : Boolean;
8863 Derive_Subps : Boolean := True)
8864 is
8865 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8866
8867 begin
8868 -- Set common attributes
8869
8870 Set_Scope (Derived_Type, Current_Scope);
8871
8872 Set_Etype (Derived_Type, Parent_Base);
8873 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8874 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8875 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8876
8877 Set_Size_Info (Derived_Type, Parent_Type);
8878 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8879 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8880 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8881 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8882
8883 if Is_Tagged_Type (Derived_Type) then
8884 Set_No_Tagged_Streams_Pragma
8885 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8886 end if;
8887
8888 -- If the parent has primitive routines, set the derived type link
8889
8890 if Has_Primitive_Operations (Parent_Type) then
8891 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8892 end if;
8893
8894 -- If the parent type is a private subtype, the convention on the base
8895 -- type may be set in the private part, and not propagated to the
8896 -- subtype until later, so we obtain the convention from the base type.
8897
8898 Set_Convention (Derived_Type, Convention (Parent_Base));
8899
8900 -- Set SSO default for record or array type
8901
8902 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8903 and then Is_Base_Type (Derived_Type)
8904 then
8905 Set_Default_SSO (Derived_Type);
8906 end if;
8907
8908 -- Propagate invariant information. The new type has invariants if
8909 -- they are inherited from the parent type, and these invariants can
8910 -- be further inherited, so both flags are set.
8911
8912 -- We similarly inherit predicates
8913
8914 if Has_Predicates (Parent_Type) then
8915 Set_Has_Predicates (Derived_Type);
8916 end if;
8917
8918 -- The derived type inherits the representation clauses of the parent
8919
8920 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8921
8922 -- Propagate the attributes related to pragma Default_Initial_Condition
8923 -- from the parent type to the private extension. A derived type always
8924 -- inherits the default initial condition flag from the parent type. If
8925 -- the derived type carries its own Default_Initial_Condition pragma,
8926 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8927 -- mutually exclusive.
8928
8929 Propagate_Default_Init_Cond_Attributes
8930 (From_Typ => Parent_Type,
8931 To_Typ => Derived_Type,
8932 Parent_To_Derivation => True);
8933
8934 -- If the parent type has delayed rep aspects, then mark the derived
8935 -- type as possibly inheriting a delayed rep aspect.
8936
8937 if Has_Delayed_Rep_Aspects (Parent_Type) then
8938 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8939 end if;
8940
8941 -- Propagate the attributes related to pragma Ghost from the parent type
8942 -- to the derived type or type extension (SPARK RM 6.9(9)).
8943
8944 if Is_Ghost_Entity (Parent_Type) then
8945 Set_Is_Ghost_Entity (Derived_Type);
8946 end if;
8947
8948 -- Type dependent processing
8949
8950 case Ekind (Parent_Type) is
8951 when Numeric_Kind =>
8952 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8953
8954 when Array_Kind =>
8955 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8956
8957 when E_Record_Type
8958 | E_Record_Subtype
8959 | Class_Wide_Kind =>
8960 Build_Derived_Record_Type
8961 (N, Parent_Type, Derived_Type, Derive_Subps);
8962 return;
8963
8964 when Enumeration_Kind =>
8965 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8966
8967 when Access_Kind =>
8968 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8969
8970 when Incomplete_Or_Private_Kind =>
8971 Build_Derived_Private_Type
8972 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8973
8974 -- For discriminated types, the derivation includes deriving
8975 -- primitive operations. For others it is done below.
8976
8977 if Is_Tagged_Type (Parent_Type)
8978 or else Has_Discriminants (Parent_Type)
8979 or else (Present (Full_View (Parent_Type))
8980 and then Has_Discriminants (Full_View (Parent_Type)))
8981 then
8982 return;
8983 end if;
8984
8985 when Concurrent_Kind =>
8986 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8987
8988 when others =>
8989 raise Program_Error;
8990 end case;
8991
8992 -- Nothing more to do if some error occurred
8993
8994 if Etype (Derived_Type) = Any_Type then
8995 return;
8996 end if;
8997
8998 -- Set delayed freeze and then derive subprograms, we need to do this
8999 -- in this order so that derived subprograms inherit the derived freeze
9000 -- if necessary.
9001
9002 Set_Has_Delayed_Freeze (Derived_Type);
9003
9004 if Derive_Subps then
9005 Derive_Subprograms (Parent_Type, Derived_Type);
9006 end if;
9007
9008 Set_Has_Primitive_Operations
9009 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9010 end Build_Derived_Type;
9011
9012 -----------------------
9013 -- Build_Discriminal --
9014 -----------------------
9015
9016 procedure Build_Discriminal (Discrim : Entity_Id) is
9017 D_Minal : Entity_Id;
9018 CR_Disc : Entity_Id;
9019
9020 begin
9021 -- A discriminal has the same name as the discriminant
9022
9023 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9024
9025 Set_Ekind (D_Minal, E_In_Parameter);
9026 Set_Mechanism (D_Minal, Default_Mechanism);
9027 Set_Etype (D_Minal, Etype (Discrim));
9028 Set_Scope (D_Minal, Current_Scope);
9029
9030 Set_Discriminal (Discrim, D_Minal);
9031 Set_Discriminal_Link (D_Minal, Discrim);
9032
9033 -- For task types, build at once the discriminants of the corresponding
9034 -- record, which are needed if discriminants are used in entry defaults
9035 -- and in family bounds.
9036
9037 if Is_Concurrent_Type (Current_Scope)
9038 or else
9039 Is_Limited_Type (Current_Scope)
9040 then
9041 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9042
9043 Set_Ekind (CR_Disc, E_In_Parameter);
9044 Set_Mechanism (CR_Disc, Default_Mechanism);
9045 Set_Etype (CR_Disc, Etype (Discrim));
9046 Set_Scope (CR_Disc, Current_Scope);
9047 Set_Discriminal_Link (CR_Disc, Discrim);
9048 Set_CR_Discriminant (Discrim, CR_Disc);
9049 end if;
9050 end Build_Discriminal;
9051
9052 ------------------------------------
9053 -- Build_Discriminant_Constraints --
9054 ------------------------------------
9055
9056 function Build_Discriminant_Constraints
9057 (T : Entity_Id;
9058 Def : Node_Id;
9059 Derived_Def : Boolean := False) return Elist_Id
9060 is
9061 C : constant Node_Id := Constraint (Def);
9062 Nb_Discr : constant Nat := Number_Discriminants (T);
9063
9064 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9065 -- Saves the expression corresponding to a given discriminant in T
9066
9067 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9068 -- Return the Position number within array Discr_Expr of a discriminant
9069 -- D within the discriminant list of the discriminated type T.
9070
9071 procedure Process_Discriminant_Expression
9072 (Expr : Node_Id;
9073 D : Entity_Id);
9074 -- If this is a discriminant constraint on a partial view, do not
9075 -- generate an overflow check on the discriminant expression. The check
9076 -- will be generated when constraining the full view. Otherwise the
9077 -- backend creates duplicate symbols for the temporaries corresponding
9078 -- to the expressions to be checked, causing spurious assembler errors.
9079
9080 ------------------
9081 -- Pos_Of_Discr --
9082 ------------------
9083
9084 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9085 Disc : Entity_Id;
9086
9087 begin
9088 Disc := First_Discriminant (T);
9089 for J in Discr_Expr'Range loop
9090 if Disc = D then
9091 return J;
9092 end if;
9093
9094 Next_Discriminant (Disc);
9095 end loop;
9096
9097 -- Note: Since this function is called on discriminants that are
9098 -- known to belong to the discriminated type, falling through the
9099 -- loop with no match signals an internal compiler error.
9100
9101 raise Program_Error;
9102 end Pos_Of_Discr;
9103
9104 -------------------------------------
9105 -- Process_Discriminant_Expression --
9106 -------------------------------------
9107
9108 procedure Process_Discriminant_Expression
9109 (Expr : Node_Id;
9110 D : Entity_Id)
9111 is
9112 BDT : constant Entity_Id := Base_Type (Etype (D));
9113
9114 begin
9115 -- If this is a discriminant constraint on a partial view, do
9116 -- not generate an overflow on the discriminant expression. The
9117 -- check will be generated when constraining the full view.
9118
9119 if Is_Private_Type (T)
9120 and then Present (Full_View (T))
9121 then
9122 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9123 else
9124 Analyze_And_Resolve (Expr, BDT);
9125 end if;
9126 end Process_Discriminant_Expression;
9127
9128 -- Declarations local to Build_Discriminant_Constraints
9129
9130 Discr : Entity_Id;
9131 E : Entity_Id;
9132 Elist : constant Elist_Id := New_Elmt_List;
9133
9134 Constr : Node_Id;
9135 Expr : Node_Id;
9136 Id : Node_Id;
9137 Position : Nat;
9138 Found : Boolean;
9139
9140 Discrim_Present : Boolean := False;
9141
9142 -- Start of processing for Build_Discriminant_Constraints
9143
9144 begin
9145 -- The following loop will process positional associations only.
9146 -- For a positional association, the (single) discriminant is
9147 -- implicitly specified by position, in textual order (RM 3.7.2).
9148
9149 Discr := First_Discriminant (T);
9150 Constr := First (Constraints (C));
9151 for D in Discr_Expr'Range loop
9152 exit when Nkind (Constr) = N_Discriminant_Association;
9153
9154 if No (Constr) then
9155 Error_Msg_N ("too few discriminants given in constraint", C);
9156 return New_Elmt_List;
9157
9158 elsif Nkind (Constr) = N_Range
9159 or else (Nkind (Constr) = N_Attribute_Reference
9160 and then Attribute_Name (Constr) = Name_Range)
9161 then
9162 Error_Msg_N
9163 ("a range is not a valid discriminant constraint", Constr);
9164 Discr_Expr (D) := Error;
9165
9166 else
9167 Process_Discriminant_Expression (Constr, Discr);
9168 Discr_Expr (D) := Constr;
9169 end if;
9170
9171 Next_Discriminant (Discr);
9172 Next (Constr);
9173 end loop;
9174
9175 if No (Discr) and then Present (Constr) then
9176 Error_Msg_N ("too many discriminants given in constraint", Constr);
9177 return New_Elmt_List;
9178 end if;
9179
9180 -- Named associations can be given in any order, but if both positional
9181 -- and named associations are used in the same discriminant constraint,
9182 -- then positional associations must occur first, at their normal
9183 -- position. Hence once a named association is used, the rest of the
9184 -- discriminant constraint must use only named associations.
9185
9186 while Present (Constr) loop
9187
9188 -- Positional association forbidden after a named association
9189
9190 if Nkind (Constr) /= N_Discriminant_Association then
9191 Error_Msg_N ("positional association follows named one", Constr);
9192 return New_Elmt_List;
9193
9194 -- Otherwise it is a named association
9195
9196 else
9197 -- E records the type of the discriminants in the named
9198 -- association. All the discriminants specified in the same name
9199 -- association must have the same type.
9200
9201 E := Empty;
9202
9203 -- Search the list of discriminants in T to see if the simple name
9204 -- given in the constraint matches any of them.
9205
9206 Id := First (Selector_Names (Constr));
9207 while Present (Id) loop
9208 Found := False;
9209
9210 -- If Original_Discriminant is present, we are processing a
9211 -- generic instantiation and this is an instance node. We need
9212 -- to find the name of the corresponding discriminant in the
9213 -- actual record type T and not the name of the discriminant in
9214 -- the generic formal. Example:
9215
9216 -- generic
9217 -- type G (D : int) is private;
9218 -- package P is
9219 -- subtype W is G (D => 1);
9220 -- end package;
9221 -- type Rec (X : int) is record ... end record;
9222 -- package Q is new P (G => Rec);
9223
9224 -- At the point of the instantiation, formal type G is Rec
9225 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9226 -- which really looks like "subtype W is Rec (D => 1);" at
9227 -- the point of instantiation, we want to find the discriminant
9228 -- that corresponds to D in Rec, i.e. X.
9229
9230 if Present (Original_Discriminant (Id))
9231 and then In_Instance
9232 then
9233 Discr := Find_Corresponding_Discriminant (Id, T);
9234 Found := True;
9235
9236 else
9237 Discr := First_Discriminant (T);
9238 while Present (Discr) loop
9239 if Chars (Discr) = Chars (Id) then
9240 Found := True;
9241 exit;
9242 end if;
9243
9244 Next_Discriminant (Discr);
9245 end loop;
9246
9247 if not Found then
9248 Error_Msg_N ("& does not match any discriminant", Id);
9249 return New_Elmt_List;
9250
9251 -- If the parent type is a generic formal, preserve the
9252 -- name of the discriminant for subsequent instances.
9253 -- see comment at the beginning of this if statement.
9254
9255 elsif Is_Generic_Type (Root_Type (T)) then
9256 Set_Original_Discriminant (Id, Discr);
9257 end if;
9258 end if;
9259
9260 Position := Pos_Of_Discr (T, Discr);
9261
9262 if Present (Discr_Expr (Position)) then
9263 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9264
9265 else
9266 -- Each discriminant specified in the same named association
9267 -- must be associated with a separate copy of the
9268 -- corresponding expression.
9269
9270 if Present (Next (Id)) then
9271 Expr := New_Copy_Tree (Expression (Constr));
9272 Set_Parent (Expr, Parent (Expression (Constr)));
9273 else
9274 Expr := Expression (Constr);
9275 end if;
9276
9277 Discr_Expr (Position) := Expr;
9278 Process_Discriminant_Expression (Expr, Discr);
9279 end if;
9280
9281 -- A discriminant association with more than one discriminant
9282 -- name is only allowed if the named discriminants are all of
9283 -- the same type (RM 3.7.1(8)).
9284
9285 if E = Empty then
9286 E := Base_Type (Etype (Discr));
9287
9288 elsif Base_Type (Etype (Discr)) /= E then
9289 Error_Msg_N
9290 ("all discriminants in an association " &
9291 "must have the same type", Id);
9292 end if;
9293
9294 Next (Id);
9295 end loop;
9296 end if;
9297
9298 Next (Constr);
9299 end loop;
9300
9301 -- A discriminant constraint must provide exactly one value for each
9302 -- discriminant of the type (RM 3.7.1(8)).
9303
9304 for J in Discr_Expr'Range loop
9305 if No (Discr_Expr (J)) then
9306 Error_Msg_N ("too few discriminants given in constraint", C);
9307 return New_Elmt_List;
9308 end if;
9309 end loop;
9310
9311 -- Determine if there are discriminant expressions in the constraint
9312
9313 for J in Discr_Expr'Range loop
9314 if Denotes_Discriminant
9315 (Discr_Expr (J), Check_Concurrent => True)
9316 then
9317 Discrim_Present := True;
9318 end if;
9319 end loop;
9320
9321 -- Build an element list consisting of the expressions given in the
9322 -- discriminant constraint and apply the appropriate checks. The list
9323 -- is constructed after resolving any named discriminant associations
9324 -- and therefore the expressions appear in the textual order of the
9325 -- discriminants.
9326
9327 Discr := First_Discriminant (T);
9328 for J in Discr_Expr'Range loop
9329 if Discr_Expr (J) /= Error then
9330 Append_Elmt (Discr_Expr (J), Elist);
9331
9332 -- If any of the discriminant constraints is given by a
9333 -- discriminant and we are in a derived type declaration we
9334 -- have a discriminant renaming. Establish link between new
9335 -- and old discriminant.
9336
9337 if Denotes_Discriminant (Discr_Expr (J)) then
9338 if Derived_Def then
9339 Set_Corresponding_Discriminant
9340 (Entity (Discr_Expr (J)), Discr);
9341 end if;
9342
9343 -- Force the evaluation of non-discriminant expressions.
9344 -- If we have found a discriminant in the constraint 3.4(26)
9345 -- and 3.8(18) demand that no range checks are performed are
9346 -- after evaluation. If the constraint is for a component
9347 -- definition that has a per-object constraint, expressions are
9348 -- evaluated but not checked either. In all other cases perform
9349 -- a range check.
9350
9351 else
9352 if Discrim_Present then
9353 null;
9354
9355 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9356 and then
9357 Has_Per_Object_Constraint
9358 (Defining_Identifier (Parent (Parent (Def))))
9359 then
9360 null;
9361
9362 elsif Is_Access_Type (Etype (Discr)) then
9363 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9364
9365 else
9366 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9367 end if;
9368
9369 Force_Evaluation (Discr_Expr (J));
9370 end if;
9371
9372 -- Check that the designated type of an access discriminant's
9373 -- expression is not a class-wide type unless the discriminant's
9374 -- designated type is also class-wide.
9375
9376 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9377 and then not Is_Class_Wide_Type
9378 (Designated_Type (Etype (Discr)))
9379 and then Etype (Discr_Expr (J)) /= Any_Type
9380 and then Is_Class_Wide_Type
9381 (Designated_Type (Etype (Discr_Expr (J))))
9382 then
9383 Wrong_Type (Discr_Expr (J), Etype (Discr));
9384
9385 elsif Is_Access_Type (Etype (Discr))
9386 and then not Is_Access_Constant (Etype (Discr))
9387 and then Is_Access_Type (Etype (Discr_Expr (J)))
9388 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9389 then
9390 Error_Msg_NE
9391 ("constraint for discriminant& must be access to variable",
9392 Def, Discr);
9393 end if;
9394 end if;
9395
9396 Next_Discriminant (Discr);
9397 end loop;
9398
9399 return Elist;
9400 end Build_Discriminant_Constraints;
9401
9402 ---------------------------------
9403 -- Build_Discriminated_Subtype --
9404 ---------------------------------
9405
9406 procedure Build_Discriminated_Subtype
9407 (T : Entity_Id;
9408 Def_Id : Entity_Id;
9409 Elist : Elist_Id;
9410 Related_Nod : Node_Id;
9411 For_Access : Boolean := False)
9412 is
9413 Has_Discrs : constant Boolean := Has_Discriminants (T);
9414 Constrained : constant Boolean :=
9415 (Has_Discrs
9416 and then not Is_Empty_Elmt_List (Elist)
9417 and then not Is_Class_Wide_Type (T))
9418 or else Is_Constrained (T);
9419
9420 begin
9421 if Ekind (T) = E_Record_Type then
9422 if For_Access then
9423 Set_Ekind (Def_Id, E_Private_Subtype);
9424 Set_Is_For_Access_Subtype (Def_Id, True);
9425 else
9426 Set_Ekind (Def_Id, E_Record_Subtype);
9427 end if;
9428
9429 -- Inherit preelaboration flag from base, for types for which it
9430 -- may have been set: records, private types, protected types.
9431
9432 Set_Known_To_Have_Preelab_Init
9433 (Def_Id, Known_To_Have_Preelab_Init (T));
9434
9435 elsif Ekind (T) = E_Task_Type then
9436 Set_Ekind (Def_Id, E_Task_Subtype);
9437
9438 elsif Ekind (T) = E_Protected_Type then
9439 Set_Ekind (Def_Id, E_Protected_Subtype);
9440 Set_Known_To_Have_Preelab_Init
9441 (Def_Id, Known_To_Have_Preelab_Init (T));
9442
9443 elsif Is_Private_Type (T) then
9444 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9445 Set_Known_To_Have_Preelab_Init
9446 (Def_Id, Known_To_Have_Preelab_Init (T));
9447
9448 -- Private subtypes may have private dependents
9449
9450 Set_Private_Dependents (Def_Id, New_Elmt_List);
9451
9452 elsif Is_Class_Wide_Type (T) then
9453 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9454
9455 else
9456 -- Incomplete type. Attach subtype to list of dependents, to be
9457 -- completed with full view of parent type, unless is it the
9458 -- designated subtype of a record component within an init_proc.
9459 -- This last case arises for a component of an access type whose
9460 -- designated type is incomplete (e.g. a Taft Amendment type).
9461 -- The designated subtype is within an inner scope, and needs no
9462 -- elaboration, because only the access type is needed in the
9463 -- initialization procedure.
9464
9465 Set_Ekind (Def_Id, Ekind (T));
9466
9467 if For_Access and then Within_Init_Proc then
9468 null;
9469 else
9470 Append_Elmt (Def_Id, Private_Dependents (T));
9471 end if;
9472 end if;
9473
9474 Set_Etype (Def_Id, T);
9475 Init_Size_Align (Def_Id);
9476 Set_Has_Discriminants (Def_Id, Has_Discrs);
9477 Set_Is_Constrained (Def_Id, Constrained);
9478
9479 Set_First_Entity (Def_Id, First_Entity (T));
9480 Set_Last_Entity (Def_Id, Last_Entity (T));
9481 Set_Has_Implicit_Dereference
9482 (Def_Id, Has_Implicit_Dereference (T));
9483
9484 -- If the subtype is the completion of a private declaration, there may
9485 -- have been representation clauses for the partial view, and they must
9486 -- be preserved. Build_Derived_Type chains the inherited clauses with
9487 -- the ones appearing on the extension. If this comes from a subtype
9488 -- declaration, all clauses are inherited.
9489
9490 if No (First_Rep_Item (Def_Id)) then
9491 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9492 end if;
9493
9494 if Is_Tagged_Type (T) then
9495 Set_Is_Tagged_Type (Def_Id);
9496 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9497 Make_Class_Wide_Type (Def_Id);
9498 end if;
9499
9500 Set_Stored_Constraint (Def_Id, No_Elist);
9501
9502 if Has_Discrs then
9503 Set_Discriminant_Constraint (Def_Id, Elist);
9504 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9505 end if;
9506
9507 if Is_Tagged_Type (T) then
9508
9509 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9510 -- concurrent record type (which has the list of primitive
9511 -- operations).
9512
9513 if Ada_Version >= Ada_2005
9514 and then Is_Concurrent_Type (T)
9515 then
9516 Set_Corresponding_Record_Type (Def_Id,
9517 Corresponding_Record_Type (T));
9518 else
9519 Set_Direct_Primitive_Operations (Def_Id,
9520 Direct_Primitive_Operations (T));
9521 end if;
9522
9523 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9524 end if;
9525
9526 -- Subtypes introduced by component declarations do not need to be
9527 -- marked as delayed, and do not get freeze nodes, because the semantics
9528 -- verifies that the parents of the subtypes are frozen before the
9529 -- enclosing record is frozen.
9530
9531 if not Is_Type (Scope (Def_Id)) then
9532 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9533
9534 if Is_Private_Type (T)
9535 and then Present (Full_View (T))
9536 then
9537 Conditional_Delay (Def_Id, Full_View (T));
9538 else
9539 Conditional_Delay (Def_Id, T);
9540 end if;
9541 end if;
9542
9543 if Is_Record_Type (T) then
9544 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9545
9546 if Has_Discrs
9547 and then not Is_Empty_Elmt_List (Elist)
9548 and then not For_Access
9549 then
9550 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9551 elsif not For_Access then
9552 Set_Cloned_Subtype (Def_Id, T);
9553 end if;
9554 end if;
9555 end Build_Discriminated_Subtype;
9556
9557 ---------------------------
9558 -- Build_Itype_Reference --
9559 ---------------------------
9560
9561 procedure Build_Itype_Reference
9562 (Ityp : Entity_Id;
9563 Nod : Node_Id)
9564 is
9565 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9566 begin
9567
9568 -- Itype references are only created for use by the back-end
9569
9570 if Inside_A_Generic then
9571 return;
9572 else
9573 Set_Itype (IR, Ityp);
9574 Insert_After (Nod, IR);
9575 end if;
9576 end Build_Itype_Reference;
9577
9578 ------------------------
9579 -- Build_Scalar_Bound --
9580 ------------------------
9581
9582 function Build_Scalar_Bound
9583 (Bound : Node_Id;
9584 Par_T : Entity_Id;
9585 Der_T : Entity_Id) return Node_Id
9586 is
9587 New_Bound : Entity_Id;
9588
9589 begin
9590 -- Note: not clear why this is needed, how can the original bound
9591 -- be unanalyzed at this point? and if it is, what business do we
9592 -- have messing around with it? and why is the base type of the
9593 -- parent type the right type for the resolution. It probably is
9594 -- not. It is OK for the new bound we are creating, but not for
9595 -- the old one??? Still if it never happens, no problem.
9596
9597 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9598
9599 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9600 New_Bound := New_Copy (Bound);
9601 Set_Etype (New_Bound, Der_T);
9602 Set_Analyzed (New_Bound);
9603
9604 elsif Is_Entity_Name (Bound) then
9605 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9606
9607 -- The following is almost certainly wrong. What business do we have
9608 -- relocating a node (Bound) that is presumably still attached to
9609 -- the tree elsewhere???
9610
9611 else
9612 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9613 end if;
9614
9615 Set_Etype (New_Bound, Der_T);
9616 return New_Bound;
9617 end Build_Scalar_Bound;
9618
9619 --------------------------------
9620 -- Build_Underlying_Full_View --
9621 --------------------------------
9622
9623 procedure Build_Underlying_Full_View
9624 (N : Node_Id;
9625 Typ : Entity_Id;
9626 Par : Entity_Id)
9627 is
9628 Loc : constant Source_Ptr := Sloc (N);
9629 Subt : constant Entity_Id :=
9630 Make_Defining_Identifier
9631 (Loc, New_External_Name (Chars (Typ), 'S'));
9632
9633 Constr : Node_Id;
9634 Indic : Node_Id;
9635 C : Node_Id;
9636 Id : Node_Id;
9637
9638 procedure Set_Discriminant_Name (Id : Node_Id);
9639 -- If the derived type has discriminants, they may rename discriminants
9640 -- of the parent. When building the full view of the parent, we need to
9641 -- recover the names of the original discriminants if the constraint is
9642 -- given by named associations.
9643
9644 ---------------------------
9645 -- Set_Discriminant_Name --
9646 ---------------------------
9647
9648 procedure Set_Discriminant_Name (Id : Node_Id) is
9649 Disc : Entity_Id;
9650
9651 begin
9652 Set_Original_Discriminant (Id, Empty);
9653
9654 if Has_Discriminants (Typ) then
9655 Disc := First_Discriminant (Typ);
9656 while Present (Disc) loop
9657 if Chars (Disc) = Chars (Id)
9658 and then Present (Corresponding_Discriminant (Disc))
9659 then
9660 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9661 end if;
9662 Next_Discriminant (Disc);
9663 end loop;
9664 end if;
9665 end Set_Discriminant_Name;
9666
9667 -- Start of processing for Build_Underlying_Full_View
9668
9669 begin
9670 if Nkind (N) = N_Full_Type_Declaration then
9671 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9672
9673 elsif Nkind (N) = N_Subtype_Declaration then
9674 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9675
9676 elsif Nkind (N) = N_Component_Declaration then
9677 Constr :=
9678 New_Copy_Tree
9679 (Constraint (Subtype_Indication (Component_Definition (N))));
9680
9681 else
9682 raise Program_Error;
9683 end if;
9684
9685 C := First (Constraints (Constr));
9686 while Present (C) loop
9687 if Nkind (C) = N_Discriminant_Association then
9688 Id := First (Selector_Names (C));
9689 while Present (Id) loop
9690 Set_Discriminant_Name (Id);
9691 Next (Id);
9692 end loop;
9693 end if;
9694
9695 Next (C);
9696 end loop;
9697
9698 Indic :=
9699 Make_Subtype_Declaration (Loc,
9700 Defining_Identifier => Subt,
9701 Subtype_Indication =>
9702 Make_Subtype_Indication (Loc,
9703 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9704 Constraint => New_Copy_Tree (Constr)));
9705
9706 -- If this is a component subtype for an outer itype, it is not
9707 -- a list member, so simply set the parent link for analysis: if
9708 -- the enclosing type does not need to be in a declarative list,
9709 -- neither do the components.
9710
9711 if Is_List_Member (N)
9712 and then Nkind (N) /= N_Component_Declaration
9713 then
9714 Insert_Before (N, Indic);
9715 else
9716 Set_Parent (Indic, Parent (N));
9717 end if;
9718
9719 Analyze (Indic);
9720 Set_Underlying_Full_View (Typ, Full_View (Subt));
9721 end Build_Underlying_Full_View;
9722
9723 -------------------------------
9724 -- Check_Abstract_Overriding --
9725 -------------------------------
9726
9727 procedure Check_Abstract_Overriding (T : Entity_Id) is
9728 Alias_Subp : Entity_Id;
9729 Elmt : Elmt_Id;
9730 Op_List : Elist_Id;
9731 Subp : Entity_Id;
9732 Type_Def : Node_Id;
9733
9734 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9735 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9736 -- which has pragma Implemented already set. Check whether Subp's entity
9737 -- kind conforms to the implementation kind of the overridden routine.
9738
9739 procedure Check_Pragma_Implemented
9740 (Subp : Entity_Id;
9741 Iface_Subp : Entity_Id);
9742 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9743 -- Iface_Subp and both entities have pragma Implemented already set on
9744 -- them. Check whether the two implementation kinds are conforming.
9745
9746 procedure Inherit_Pragma_Implemented
9747 (Subp : Entity_Id;
9748 Iface_Subp : Entity_Id);
9749 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9750 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9751 -- Propagate the implementation kind of Iface_Subp to Subp.
9752
9753 ------------------------------
9754 -- Check_Pragma_Implemented --
9755 ------------------------------
9756
9757 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9758 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9759 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9760 Subp_Alias : constant Entity_Id := Alias (Subp);
9761 Contr_Typ : Entity_Id;
9762 Impl_Subp : Entity_Id;
9763
9764 begin
9765 -- Subp must have an alias since it is a hidden entity used to link
9766 -- an interface subprogram to its overriding counterpart.
9767
9768 pragma Assert (Present (Subp_Alias));
9769
9770 -- Handle aliases to synchronized wrappers
9771
9772 Impl_Subp := Subp_Alias;
9773
9774 if Is_Primitive_Wrapper (Impl_Subp) then
9775 Impl_Subp := Wrapped_Entity (Impl_Subp);
9776 end if;
9777
9778 -- Extract the type of the controlling formal
9779
9780 Contr_Typ := Etype (First_Formal (Subp_Alias));
9781
9782 if Is_Concurrent_Record_Type (Contr_Typ) then
9783 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9784 end if;
9785
9786 -- An interface subprogram whose implementation kind is By_Entry must
9787 -- be implemented by an entry.
9788
9789 if Impl_Kind = Name_By_Entry
9790 and then Ekind (Impl_Subp) /= E_Entry
9791 then
9792 Error_Msg_Node_2 := Iface_Alias;
9793 Error_Msg_NE
9794 ("type & must implement abstract subprogram & with an entry",
9795 Subp_Alias, Contr_Typ);
9796
9797 elsif Impl_Kind = Name_By_Protected_Procedure then
9798
9799 -- An interface subprogram whose implementation kind is By_
9800 -- Protected_Procedure cannot be implemented by a primitive
9801 -- procedure of a task type.
9802
9803 if Ekind (Contr_Typ) /= E_Protected_Type then
9804 Error_Msg_Node_2 := Contr_Typ;
9805 Error_Msg_NE
9806 ("interface subprogram & cannot be implemented by a " &
9807 "primitive procedure of task type &", Subp_Alias,
9808 Iface_Alias);
9809
9810 -- An interface subprogram whose implementation kind is By_
9811 -- Protected_Procedure must be implemented by a procedure.
9812
9813 elsif Ekind (Impl_Subp) /= E_Procedure then
9814 Error_Msg_Node_2 := Iface_Alias;
9815 Error_Msg_NE
9816 ("type & must implement abstract subprogram & with a " &
9817 "procedure", Subp_Alias, Contr_Typ);
9818
9819 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9820 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9821 then
9822 Error_Msg_Name_1 := Impl_Kind;
9823 Error_Msg_N
9824 ("overriding operation& must have synchronization%",
9825 Subp_Alias);
9826 end if;
9827
9828 -- If primitive has Optional synchronization, overriding operation
9829 -- must match if it has an explicit synchronization..
9830
9831 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9832 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9833 then
9834 Error_Msg_Name_1 := Impl_Kind;
9835 Error_Msg_N
9836 ("overriding operation& must have syncrhonization%",
9837 Subp_Alias);
9838 end if;
9839 end Check_Pragma_Implemented;
9840
9841 ------------------------------
9842 -- Check_Pragma_Implemented --
9843 ------------------------------
9844
9845 procedure Check_Pragma_Implemented
9846 (Subp : Entity_Id;
9847 Iface_Subp : Entity_Id)
9848 is
9849 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9850 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9851
9852 begin
9853 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9854 -- and overriding subprogram are different. In general this is an
9855 -- error except when the implementation kind of the overridden
9856 -- subprograms is By_Any or Optional.
9857
9858 if Iface_Kind /= Subp_Kind
9859 and then Iface_Kind /= Name_By_Any
9860 and then Iface_Kind /= Name_Optional
9861 then
9862 if Iface_Kind = Name_By_Entry then
9863 Error_Msg_N
9864 ("incompatible implementation kind, overridden subprogram " &
9865 "is marked By_Entry", Subp);
9866 else
9867 Error_Msg_N
9868 ("incompatible implementation kind, overridden subprogram " &
9869 "is marked By_Protected_Procedure", Subp);
9870 end if;
9871 end if;
9872 end Check_Pragma_Implemented;
9873
9874 --------------------------------
9875 -- Inherit_Pragma_Implemented --
9876 --------------------------------
9877
9878 procedure Inherit_Pragma_Implemented
9879 (Subp : Entity_Id;
9880 Iface_Subp : Entity_Id)
9881 is
9882 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9883 Loc : constant Source_Ptr := Sloc (Subp);
9884 Impl_Prag : Node_Id;
9885
9886 begin
9887 -- Since the implementation kind is stored as a representation item
9888 -- rather than a flag, create a pragma node.
9889
9890 Impl_Prag :=
9891 Make_Pragma (Loc,
9892 Chars => Name_Implemented,
9893 Pragma_Argument_Associations => New_List (
9894 Make_Pragma_Argument_Association (Loc,
9895 Expression => New_Occurrence_Of (Subp, Loc)),
9896
9897 Make_Pragma_Argument_Association (Loc,
9898 Expression => Make_Identifier (Loc, Iface_Kind))));
9899
9900 -- The pragma doesn't need to be analyzed because it is internally
9901 -- built. It is safe to directly register it as a rep item since we
9902 -- are only interested in the characters of the implementation kind.
9903
9904 Record_Rep_Item (Subp, Impl_Prag);
9905 end Inherit_Pragma_Implemented;
9906
9907 -- Start of processing for Check_Abstract_Overriding
9908
9909 begin
9910 Op_List := Primitive_Operations (T);
9911
9912 -- Loop to check primitive operations
9913
9914 Elmt := First_Elmt (Op_List);
9915 while Present (Elmt) loop
9916 Subp := Node (Elmt);
9917 Alias_Subp := Alias (Subp);
9918
9919 -- Inherited subprograms are identified by the fact that they do not
9920 -- come from source, and the associated source location is the
9921 -- location of the first subtype of the derived type.
9922
9923 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9924 -- subprograms that "require overriding".
9925
9926 -- Special exception, do not complain about failure to override the
9927 -- stream routines _Input and _Output, as well as the primitive
9928 -- operations used in dispatching selects since we always provide
9929 -- automatic overridings for these subprograms.
9930
9931 -- Also ignore this rule for convention CIL since .NET libraries
9932 -- do bizarre things with interfaces???
9933
9934 -- The partial view of T may have been a private extension, for
9935 -- which inherited functions dispatching on result are abstract.
9936 -- If the full view is a null extension, there is no need for
9937 -- overriding in Ada 2005, but wrappers need to be built for them
9938 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9939
9940 if Is_Null_Extension (T)
9941 and then Has_Controlling_Result (Subp)
9942 and then Ada_Version >= Ada_2005
9943 and then Present (Alias_Subp)
9944 and then not Comes_From_Source (Subp)
9945 and then not Is_Abstract_Subprogram (Alias_Subp)
9946 and then not Is_Access_Type (Etype (Subp))
9947 then
9948 null;
9949
9950 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9951 -- processing because this check is done with the aliased
9952 -- entity
9953
9954 elsif Present (Interface_Alias (Subp)) then
9955 null;
9956
9957 elsif (Is_Abstract_Subprogram (Subp)
9958 or else Requires_Overriding (Subp)
9959 or else
9960 (Has_Controlling_Result (Subp)
9961 and then Present (Alias_Subp)
9962 and then not Comes_From_Source (Subp)
9963 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9964 and then not Is_TSS (Subp, TSS_Stream_Input)
9965 and then not Is_TSS (Subp, TSS_Stream_Output)
9966 and then not Is_Abstract_Type (T)
9967 and then Convention (T) /= Convention_CIL
9968 and then not Is_Predefined_Interface_Primitive (Subp)
9969
9970 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9971 -- with abstract interface types because the check will be done
9972 -- with the aliased entity (otherwise we generate a duplicated
9973 -- error message).
9974
9975 and then not Present (Interface_Alias (Subp))
9976 then
9977 if Present (Alias_Subp) then
9978
9979 -- Only perform the check for a derived subprogram when the
9980 -- type has an explicit record extension. This avoids incorrect
9981 -- flagging of abstract subprograms for the case of a type
9982 -- without an extension that is derived from a formal type
9983 -- with a tagged actual (can occur within a private part).
9984
9985 -- Ada 2005 (AI-391): In the case of an inherited function with
9986 -- a controlling result of the type, the rule does not apply if
9987 -- the type is a null extension (unless the parent function
9988 -- itself is abstract, in which case the function must still be
9989 -- be overridden). The expander will generate an overriding
9990 -- wrapper function calling the parent subprogram (see
9991 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9992
9993 Type_Def := Type_Definition (Parent (T));
9994
9995 if Nkind (Type_Def) = N_Derived_Type_Definition
9996 and then Present (Record_Extension_Part (Type_Def))
9997 and then
9998 (Ada_Version < Ada_2005
9999 or else not Is_Null_Extension (T)
10000 or else Ekind (Subp) = E_Procedure
10001 or else not Has_Controlling_Result (Subp)
10002 or else Is_Abstract_Subprogram (Alias_Subp)
10003 or else Requires_Overriding (Subp)
10004 or else Is_Access_Type (Etype (Subp)))
10005 then
10006 -- Avoid reporting error in case of abstract predefined
10007 -- primitive inherited from interface type because the
10008 -- body of internally generated predefined primitives
10009 -- of tagged types are generated later by Freeze_Type
10010
10011 if Is_Interface (Root_Type (T))
10012 and then Is_Abstract_Subprogram (Subp)
10013 and then Is_Predefined_Dispatching_Operation (Subp)
10014 and then not Comes_From_Source (Ultimate_Alias (Subp))
10015 then
10016 null;
10017
10018 -- A null extension is not obliged to override an inherited
10019 -- procedure subject to pragma Extensions_Visible with value
10020 -- False and at least one controlling OUT parameter
10021 -- (SPARK RM 6.1.7(6)).
10022
10023 elsif Is_Null_Extension (T)
10024 and then Is_EVF_Procedure (Subp)
10025 then
10026 null;
10027
10028 else
10029 Error_Msg_NE
10030 ("type must be declared abstract or & overridden",
10031 T, Subp);
10032
10033 -- Traverse the whole chain of aliased subprograms to
10034 -- complete the error notification. This is especially
10035 -- useful for traceability of the chain of entities when
10036 -- the subprogram corresponds with an interface
10037 -- subprogram (which may be defined in another package).
10038
10039 if Present (Alias_Subp) then
10040 declare
10041 E : Entity_Id;
10042
10043 begin
10044 E := Subp;
10045 while Present (Alias (E)) loop
10046
10047 -- Avoid reporting redundant errors on entities
10048 -- inherited from interfaces
10049
10050 if Sloc (E) /= Sloc (T) then
10051 Error_Msg_Sloc := Sloc (E);
10052 Error_Msg_NE
10053 ("\& has been inherited #", T, Subp);
10054 end if;
10055
10056 E := Alias (E);
10057 end loop;
10058
10059 Error_Msg_Sloc := Sloc (E);
10060
10061 -- AI05-0068: report if there is an overriding
10062 -- non-abstract subprogram that is invisible.
10063
10064 if Is_Hidden (E)
10065 and then not Is_Abstract_Subprogram (E)
10066 then
10067 Error_Msg_NE
10068 ("\& subprogram# is not visible",
10069 T, Subp);
10070
10071 -- Clarify the case where a non-null extension must
10072 -- override inherited procedure subject to pragma
10073 -- Extensions_Visible with value False and at least
10074 -- one controlling OUT param.
10075
10076 elsif Is_EVF_Procedure (E) then
10077 Error_Msg_NE
10078 ("\& # is subject to Extensions_Visible False",
10079 T, Subp);
10080
10081 else
10082 Error_Msg_NE
10083 ("\& has been inherited from subprogram #",
10084 T, Subp);
10085 end if;
10086 end;
10087 end if;
10088 end if;
10089
10090 -- Ada 2005 (AI-345): Protected or task type implementing
10091 -- abstract interfaces.
10092
10093 elsif Is_Concurrent_Record_Type (T)
10094 and then Present (Interfaces (T))
10095 then
10096 -- There is no need to check here RM 9.4(11.9/3) since we
10097 -- are processing the corresponding record type and the
10098 -- mode of the overriding subprograms was verified by
10099 -- Check_Conformance when the corresponding concurrent
10100 -- type declaration was analyzed.
10101
10102 Error_Msg_NE
10103 ("interface subprogram & must be overridden", T, Subp);
10104
10105 -- Examine primitive operations of synchronized type to find
10106 -- homonyms that have the wrong profile.
10107
10108 declare
10109 Prim : Entity_Id;
10110
10111 begin
10112 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10113 while Present (Prim) loop
10114 if Chars (Prim) = Chars (Subp) then
10115 Error_Msg_NE
10116 ("profile is not type conformant with prefixed "
10117 & "view profile of inherited operation&",
10118 Prim, Subp);
10119 end if;
10120
10121 Next_Entity (Prim);
10122 end loop;
10123 end;
10124 end if;
10125
10126 else
10127 Error_Msg_Node_2 := T;
10128 Error_Msg_N
10129 ("abstract subprogram& not allowed for type&", Subp);
10130
10131 -- Also post unconditional warning on the type (unconditional
10132 -- so that if there are more than one of these cases, we get
10133 -- them all, and not just the first one).
10134
10135 Error_Msg_Node_2 := Subp;
10136 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10137 end if;
10138
10139 -- A subprogram subject to pragma Extensions_Visible with value
10140 -- "True" cannot override a subprogram subject to the same pragma
10141 -- with value "False" (SPARK RM 6.1.7(5)).
10142
10143 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10144 and then Present (Overridden_Operation (Subp))
10145 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10146 Extensions_Visible_False
10147 then
10148 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10149 Error_Msg_N
10150 ("subprogram & with Extensions_Visible True cannot override "
10151 & "subprogram # with Extensions_Visible False", Subp);
10152 end if;
10153
10154 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10155
10156 -- Subp is an expander-generated procedure which maps an interface
10157 -- alias to a protected wrapper. The interface alias is flagged by
10158 -- pragma Implemented. Ensure that Subp is a procedure when the
10159 -- implementation kind is By_Protected_Procedure or an entry when
10160 -- By_Entry.
10161
10162 if Ada_Version >= Ada_2012
10163 and then Is_Hidden (Subp)
10164 and then Present (Interface_Alias (Subp))
10165 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10166 then
10167 Check_Pragma_Implemented (Subp);
10168 end if;
10169
10170 -- Subp is an interface primitive which overrides another interface
10171 -- primitive marked with pragma Implemented.
10172
10173 if Ada_Version >= Ada_2012
10174 and then Present (Overridden_Operation (Subp))
10175 and then Has_Rep_Pragma
10176 (Overridden_Operation (Subp), Name_Implemented)
10177 then
10178 -- If the overriding routine is also marked by Implemented, check
10179 -- that the two implementation kinds are conforming.
10180
10181 if Has_Rep_Pragma (Subp, Name_Implemented) then
10182 Check_Pragma_Implemented
10183 (Subp => Subp,
10184 Iface_Subp => Overridden_Operation (Subp));
10185
10186 -- Otherwise the overriding routine inherits the implementation
10187 -- kind from the overridden subprogram.
10188
10189 else
10190 Inherit_Pragma_Implemented
10191 (Subp => Subp,
10192 Iface_Subp => Overridden_Operation (Subp));
10193 end if;
10194 end if;
10195
10196 -- If the operation is a wrapper for a synchronized primitive, it
10197 -- may be called indirectly through a dispatching select. We assume
10198 -- that it will be referenced elsewhere indirectly, and suppress
10199 -- warnings about an unused entity.
10200
10201 if Is_Primitive_Wrapper (Subp)
10202 and then Present (Wrapped_Entity (Subp))
10203 then
10204 Set_Referenced (Wrapped_Entity (Subp));
10205 end if;
10206
10207 Next_Elmt (Elmt);
10208 end loop;
10209 end Check_Abstract_Overriding;
10210
10211 ------------------------------------------------
10212 -- Check_Access_Discriminant_Requires_Limited --
10213 ------------------------------------------------
10214
10215 procedure Check_Access_Discriminant_Requires_Limited
10216 (D : Node_Id;
10217 Loc : Node_Id)
10218 is
10219 begin
10220 -- A discriminant_specification for an access discriminant shall appear
10221 -- only in the declaration for a task or protected type, or for a type
10222 -- with the reserved word 'limited' in its definition or in one of its
10223 -- ancestors (RM 3.7(10)).
10224
10225 -- AI-0063: The proper condition is that type must be immutably limited,
10226 -- or else be a partial view.
10227
10228 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10229 if Is_Limited_View (Current_Scope)
10230 or else
10231 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10232 and then Limited_Present (Parent (Current_Scope)))
10233 then
10234 null;
10235
10236 else
10237 Error_Msg_N
10238 ("access discriminants allowed only for limited types", Loc);
10239 end if;
10240 end if;
10241 end Check_Access_Discriminant_Requires_Limited;
10242
10243 -----------------------------------
10244 -- Check_Aliased_Component_Types --
10245 -----------------------------------
10246
10247 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10248 C : Entity_Id;
10249
10250 begin
10251 -- ??? Also need to check components of record extensions, but not
10252 -- components of protected types (which are always limited).
10253
10254 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10255 -- types to be unconstrained. This is safe because it is illegal to
10256 -- create access subtypes to such types with explicit discriminant
10257 -- constraints.
10258
10259 if not Is_Limited_Type (T) then
10260 if Ekind (T) = E_Record_Type then
10261 C := First_Component (T);
10262 while Present (C) loop
10263 if Is_Aliased (C)
10264 and then Has_Discriminants (Etype (C))
10265 and then not Is_Constrained (Etype (C))
10266 and then not In_Instance_Body
10267 and then Ada_Version < Ada_2005
10268 then
10269 Error_Msg_N
10270 ("aliased component must be constrained (RM 3.6(11))",
10271 C);
10272 end if;
10273
10274 Next_Component (C);
10275 end loop;
10276
10277 elsif Ekind (T) = E_Array_Type then
10278 if Has_Aliased_Components (T)
10279 and then Has_Discriminants (Component_Type (T))
10280 and then not Is_Constrained (Component_Type (T))
10281 and then not In_Instance_Body
10282 and then Ada_Version < Ada_2005
10283 then
10284 Error_Msg_N
10285 ("aliased component type must be constrained (RM 3.6(11))",
10286 T);
10287 end if;
10288 end if;
10289 end if;
10290 end Check_Aliased_Component_Types;
10291
10292 ---------------------------------------
10293 -- Check_Anonymous_Access_Components --
10294 ---------------------------------------
10295
10296 procedure Check_Anonymous_Access_Components
10297 (Typ_Decl : Node_Id;
10298 Typ : Entity_Id;
10299 Prev : Entity_Id;
10300 Comp_List : Node_Id)
10301 is
10302 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10303 Anon_Access : Entity_Id;
10304 Acc_Def : Node_Id;
10305 Comp : Node_Id;
10306 Comp_Def : Node_Id;
10307 Decl : Node_Id;
10308 Type_Def : Node_Id;
10309
10310 procedure Build_Incomplete_Type_Declaration;
10311 -- If the record type contains components that include an access to the
10312 -- current record, then create an incomplete type declaration for the
10313 -- record, to be used as the designated type of the anonymous access.
10314 -- This is done only once, and only if there is no previous partial
10315 -- view of the type.
10316
10317 function Designates_T (Subt : Node_Id) return Boolean;
10318 -- Check whether a node designates the enclosing record type, or 'Class
10319 -- of that type
10320
10321 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10322 -- Check whether an access definition includes a reference to
10323 -- the enclosing record type. The reference can be a subtype mark
10324 -- in the access definition itself, a 'Class attribute reference, or
10325 -- recursively a reference appearing in a parameter specification
10326 -- or result definition of an access_to_subprogram definition.
10327
10328 --------------------------------------
10329 -- Build_Incomplete_Type_Declaration --
10330 --------------------------------------
10331
10332 procedure Build_Incomplete_Type_Declaration is
10333 Decl : Node_Id;
10334 Inc_T : Entity_Id;
10335 H : Entity_Id;
10336
10337 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10338 -- it's "is new ... with record" or else "is tagged record ...".
10339
10340 Is_Tagged : constant Boolean :=
10341 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10342 and then
10343 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10344 or else
10345 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10346 and then Tagged_Present (Type_Definition (Typ_Decl)));
10347
10348 begin
10349 -- If there is a previous partial view, no need to create a new one
10350 -- If the partial view, given by Prev, is incomplete, If Prev is
10351 -- a private declaration, full declaration is flagged accordingly.
10352
10353 if Prev /= Typ then
10354 if Is_Tagged then
10355 Make_Class_Wide_Type (Prev);
10356 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10357 Set_Etype (Class_Wide_Type (Typ), Typ);
10358 end if;
10359
10360 return;
10361
10362 elsif Has_Private_Declaration (Typ) then
10363
10364 -- If we refer to T'Class inside T, and T is the completion of a
10365 -- private type, then make sure the class-wide type exists.
10366
10367 if Is_Tagged then
10368 Make_Class_Wide_Type (Typ);
10369 end if;
10370
10371 return;
10372
10373 -- If there was a previous anonymous access type, the incomplete
10374 -- type declaration will have been created already.
10375
10376 elsif Present (Current_Entity (Typ))
10377 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10378 and then Full_View (Current_Entity (Typ)) = Typ
10379 then
10380 if Is_Tagged
10381 and then Comes_From_Source (Current_Entity (Typ))
10382 and then not Is_Tagged_Type (Current_Entity (Typ))
10383 then
10384 Make_Class_Wide_Type (Typ);
10385 Error_Msg_N
10386 ("incomplete view of tagged type should be declared tagged??",
10387 Parent (Current_Entity (Typ)));
10388 end if;
10389 return;
10390
10391 else
10392 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10393 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10394
10395 -- Type has already been inserted into the current scope. Remove
10396 -- it, and add incomplete declaration for type, so that subsequent
10397 -- anonymous access types can use it. The entity is unchained from
10398 -- the homonym list and from immediate visibility. After analysis,
10399 -- the entity in the incomplete declaration becomes immediately
10400 -- visible in the record declaration that follows.
10401
10402 H := Current_Entity (Typ);
10403
10404 if H = Typ then
10405 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10406 else
10407 while Present (H)
10408 and then Homonym (H) /= Typ
10409 loop
10410 H := Homonym (Typ);
10411 end loop;
10412
10413 Set_Homonym (H, Homonym (Typ));
10414 end if;
10415
10416 Insert_Before (Typ_Decl, Decl);
10417 Analyze (Decl);
10418 Set_Full_View (Inc_T, Typ);
10419
10420 if Is_Tagged then
10421
10422 -- Create a common class-wide type for both views, and set the
10423 -- Etype of the class-wide type to the full view.
10424
10425 Make_Class_Wide_Type (Inc_T);
10426 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10427 Set_Etype (Class_Wide_Type (Typ), Typ);
10428 end if;
10429 end if;
10430 end Build_Incomplete_Type_Declaration;
10431
10432 ------------------
10433 -- Designates_T --
10434 ------------------
10435
10436 function Designates_T (Subt : Node_Id) return Boolean is
10437 Type_Id : constant Name_Id := Chars (Typ);
10438
10439 function Names_T (Nam : Node_Id) return Boolean;
10440 -- The record type has not been introduced in the current scope
10441 -- yet, so we must examine the name of the type itself, either
10442 -- an identifier T, or an expanded name of the form P.T, where
10443 -- P denotes the current scope.
10444
10445 -------------
10446 -- Names_T --
10447 -------------
10448
10449 function Names_T (Nam : Node_Id) return Boolean is
10450 begin
10451 if Nkind (Nam) = N_Identifier then
10452 return Chars (Nam) = Type_Id;
10453
10454 elsif Nkind (Nam) = N_Selected_Component then
10455 if Chars (Selector_Name (Nam)) = Type_Id then
10456 if Nkind (Prefix (Nam)) = N_Identifier then
10457 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10458
10459 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10460 return Chars (Selector_Name (Prefix (Nam))) =
10461 Chars (Current_Scope);
10462 else
10463 return False;
10464 end if;
10465
10466 else
10467 return False;
10468 end if;
10469
10470 else
10471 return False;
10472 end if;
10473 end Names_T;
10474
10475 -- Start of processing for Designates_T
10476
10477 begin
10478 if Nkind (Subt) = N_Identifier then
10479 return Chars (Subt) = Type_Id;
10480
10481 -- Reference can be through an expanded name which has not been
10482 -- analyzed yet, and which designates enclosing scopes.
10483
10484 elsif Nkind (Subt) = N_Selected_Component then
10485 if Names_T (Subt) then
10486 return True;
10487
10488 -- Otherwise it must denote an entity that is already visible.
10489 -- The access definition may name a subtype of the enclosing
10490 -- type, if there is a previous incomplete declaration for it.
10491
10492 else
10493 Find_Selected_Component (Subt);
10494 return
10495 Is_Entity_Name (Subt)
10496 and then Scope (Entity (Subt)) = Current_Scope
10497 and then
10498 (Chars (Base_Type (Entity (Subt))) = Type_Id
10499 or else
10500 (Is_Class_Wide_Type (Entity (Subt))
10501 and then
10502 Chars (Etype (Base_Type (Entity (Subt)))) =
10503 Type_Id));
10504 end if;
10505
10506 -- A reference to the current type may appear as the prefix of
10507 -- a 'Class attribute.
10508
10509 elsif Nkind (Subt) = N_Attribute_Reference
10510 and then Attribute_Name (Subt) = Name_Class
10511 then
10512 return Names_T (Prefix (Subt));
10513
10514 else
10515 return False;
10516 end if;
10517 end Designates_T;
10518
10519 ----------------
10520 -- Mentions_T --
10521 ----------------
10522
10523 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10524 Param_Spec : Node_Id;
10525
10526 Acc_Subprg : constant Node_Id :=
10527 Access_To_Subprogram_Definition (Acc_Def);
10528
10529 begin
10530 if No (Acc_Subprg) then
10531 return Designates_T (Subtype_Mark (Acc_Def));
10532 end if;
10533
10534 -- Component is an access_to_subprogram: examine its formals,
10535 -- and result definition in the case of an access_to_function.
10536
10537 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10538 while Present (Param_Spec) loop
10539 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10540 and then Mentions_T (Parameter_Type (Param_Spec))
10541 then
10542 return True;
10543
10544 elsif Designates_T (Parameter_Type (Param_Spec)) then
10545 return True;
10546 end if;
10547
10548 Next (Param_Spec);
10549 end loop;
10550
10551 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10552 if Nkind (Result_Definition (Acc_Subprg)) =
10553 N_Access_Definition
10554 then
10555 return Mentions_T (Result_Definition (Acc_Subprg));
10556 else
10557 return Designates_T (Result_Definition (Acc_Subprg));
10558 end if;
10559 end if;
10560
10561 return False;
10562 end Mentions_T;
10563
10564 -- Start of processing for Check_Anonymous_Access_Components
10565
10566 begin
10567 if No (Comp_List) then
10568 return;
10569 end if;
10570
10571 Comp := First (Component_Items (Comp_List));
10572 while Present (Comp) loop
10573 if Nkind (Comp) = N_Component_Declaration
10574 and then Present
10575 (Access_Definition (Component_Definition (Comp)))
10576 and then
10577 Mentions_T (Access_Definition (Component_Definition (Comp)))
10578 then
10579 Comp_Def := Component_Definition (Comp);
10580 Acc_Def :=
10581 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10582
10583 Build_Incomplete_Type_Declaration;
10584 Anon_Access := Make_Temporary (Loc, 'S');
10585
10586 -- Create a declaration for the anonymous access type: either
10587 -- an access_to_object or an access_to_subprogram.
10588
10589 if Present (Acc_Def) then
10590 if Nkind (Acc_Def) = N_Access_Function_Definition then
10591 Type_Def :=
10592 Make_Access_Function_Definition (Loc,
10593 Parameter_Specifications =>
10594 Parameter_Specifications (Acc_Def),
10595 Result_Definition => Result_Definition (Acc_Def));
10596 else
10597 Type_Def :=
10598 Make_Access_Procedure_Definition (Loc,
10599 Parameter_Specifications =>
10600 Parameter_Specifications (Acc_Def));
10601 end if;
10602
10603 else
10604 Type_Def :=
10605 Make_Access_To_Object_Definition (Loc,
10606 Subtype_Indication =>
10607 Relocate_Node
10608 (Subtype_Mark (Access_Definition (Comp_Def))));
10609
10610 Set_Constant_Present
10611 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10612 Set_All_Present
10613 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10614 end if;
10615
10616 Set_Null_Exclusion_Present
10617 (Type_Def,
10618 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10619
10620 Decl :=
10621 Make_Full_Type_Declaration (Loc,
10622 Defining_Identifier => Anon_Access,
10623 Type_Definition => Type_Def);
10624
10625 Insert_Before (Typ_Decl, Decl);
10626 Analyze (Decl);
10627
10628 -- If an access to subprogram, create the extra formals
10629
10630 if Present (Acc_Def) then
10631 Create_Extra_Formals (Designated_Type (Anon_Access));
10632
10633 -- If an access to object, preserve entity of designated type,
10634 -- for ASIS use, before rewriting the component definition.
10635
10636 else
10637 declare
10638 Desig : Entity_Id;
10639
10640 begin
10641 Desig := Entity (Subtype_Indication (Type_Def));
10642
10643 -- If the access definition is to the current record,
10644 -- the visible entity at this point is an incomplete
10645 -- type. Retrieve the full view to simplify ASIS queries
10646
10647 if Ekind (Desig) = E_Incomplete_Type then
10648 Desig := Full_View (Desig);
10649 end if;
10650
10651 Set_Entity
10652 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10653 end;
10654 end if;
10655
10656 Rewrite (Comp_Def,
10657 Make_Component_Definition (Loc,
10658 Subtype_Indication =>
10659 New_Occurrence_Of (Anon_Access, Loc)));
10660
10661 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10662 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10663 else
10664 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10665 end if;
10666
10667 Set_Is_Local_Anonymous_Access (Anon_Access);
10668 end if;
10669
10670 Next (Comp);
10671 end loop;
10672
10673 if Present (Variant_Part (Comp_List)) then
10674 declare
10675 V : Node_Id;
10676 begin
10677 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10678 while Present (V) loop
10679 Check_Anonymous_Access_Components
10680 (Typ_Decl, Typ, Prev, Component_List (V));
10681 Next_Non_Pragma (V);
10682 end loop;
10683 end;
10684 end if;
10685 end Check_Anonymous_Access_Components;
10686
10687 ----------------------
10688 -- Check_Completion --
10689 ----------------------
10690
10691 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10692 E : Entity_Id;
10693
10694 procedure Post_Error;
10695 -- Post error message for lack of completion for entity E
10696
10697 ----------------
10698 -- Post_Error --
10699 ----------------
10700
10701 procedure Post_Error is
10702
10703 procedure Missing_Body;
10704 -- Output missing body message
10705
10706 ------------------
10707 -- Missing_Body --
10708 ------------------
10709
10710 procedure Missing_Body is
10711 begin
10712 -- Spec is in same unit, so we can post on spec
10713
10714 if In_Same_Source_Unit (Body_Id, E) then
10715 Error_Msg_N ("missing body for &", E);
10716
10717 -- Spec is in a separate unit, so we have to post on the body
10718
10719 else
10720 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10721 end if;
10722 end Missing_Body;
10723
10724 -- Start of processing for Post_Error
10725
10726 begin
10727 if not Comes_From_Source (E) then
10728
10729 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10730
10731 -- It may be an anonymous protected type created for a
10732 -- single variable. Post error on variable, if present.
10733
10734 declare
10735 Var : Entity_Id;
10736
10737 begin
10738 Var := First_Entity (Current_Scope);
10739 while Present (Var) loop
10740 exit when Etype (Var) = E
10741 and then Comes_From_Source (Var);
10742
10743 Next_Entity (Var);
10744 end loop;
10745
10746 if Present (Var) then
10747 E := Var;
10748 end if;
10749 end;
10750 end if;
10751 end if;
10752
10753 -- If a generated entity has no completion, then either previous
10754 -- semantic errors have disabled the expansion phase, or else we had
10755 -- missing subunits, or else we are compiling without expansion,
10756 -- or else something is very wrong.
10757
10758 if not Comes_From_Source (E) then
10759 pragma Assert
10760 (Serious_Errors_Detected > 0
10761 or else Configurable_Run_Time_Violations > 0
10762 or else Subunits_Missing
10763 or else not Expander_Active);
10764 return;
10765
10766 -- Here for source entity
10767
10768 else
10769 -- Here if no body to post the error message, so we post the error
10770 -- on the declaration that has no completion. This is not really
10771 -- the right place to post it, think about this later ???
10772
10773 if No (Body_Id) then
10774 if Is_Type (E) then
10775 Error_Msg_NE
10776 ("missing full declaration for }", Parent (E), E);
10777 else
10778 Error_Msg_NE ("missing body for &", Parent (E), E);
10779 end if;
10780
10781 -- Package body has no completion for a declaration that appears
10782 -- in the corresponding spec. Post error on the body, with a
10783 -- reference to the non-completed declaration.
10784
10785 else
10786 Error_Msg_Sloc := Sloc (E);
10787
10788 if Is_Type (E) then
10789 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10790
10791 elsif Is_Overloadable (E)
10792 and then Current_Entity_In_Scope (E) /= E
10793 then
10794 -- It may be that the completion is mistyped and appears as
10795 -- a distinct overloading of the entity.
10796
10797 declare
10798 Candidate : constant Entity_Id :=
10799 Current_Entity_In_Scope (E);
10800 Decl : constant Node_Id :=
10801 Unit_Declaration_Node (Candidate);
10802
10803 begin
10804 if Is_Overloadable (Candidate)
10805 and then Ekind (Candidate) = Ekind (E)
10806 and then Nkind (Decl) = N_Subprogram_Body
10807 and then Acts_As_Spec (Decl)
10808 then
10809 Check_Type_Conformant (Candidate, E);
10810
10811 else
10812 Missing_Body;
10813 end if;
10814 end;
10815
10816 else
10817 Missing_Body;
10818 end if;
10819 end if;
10820 end if;
10821 end Post_Error;
10822
10823 -- Local variables
10824
10825 Pack_Id : constant Entity_Id := Current_Scope;
10826
10827 -- Start of processing for Check_Completion
10828
10829 begin
10830 E := First_Entity (Pack_Id);
10831 while Present (E) loop
10832 if Is_Intrinsic_Subprogram (E) then
10833 null;
10834
10835 -- A Ghost entity declared in a non-Ghost package does not force the
10836 -- need for a body (SPARK RM 6.9(11)).
10837
10838 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10839 null;
10840
10841 -- The following situation requires special handling: a child unit
10842 -- that appears in the context clause of the body of its parent:
10843
10844 -- procedure Parent.Child (...);
10845
10846 -- with Parent.Child;
10847 -- package body Parent is
10848
10849 -- Here Parent.Child appears as a local entity, but should not be
10850 -- flagged as requiring completion, because it is a compilation
10851 -- unit.
10852
10853 -- Ignore missing completion for a subprogram that does not come from
10854 -- source (including the _Call primitive operation of RAS types,
10855 -- which has to have the flag Comes_From_Source for other purposes):
10856 -- we assume that the expander will provide the missing completion.
10857 -- In case of previous errors, other expansion actions that provide
10858 -- bodies for null procedures with not be invoked, so inhibit message
10859 -- in those cases.
10860
10861 -- Note that E_Operator is not in the list that follows, because
10862 -- this kind is reserved for predefined operators, that are
10863 -- intrinsic and do not need completion.
10864
10865 elsif Ekind_In (E, E_Function,
10866 E_Procedure,
10867 E_Generic_Function,
10868 E_Generic_Procedure)
10869 then
10870 if Has_Completion (E) then
10871 null;
10872
10873 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10874 null;
10875
10876 elsif Is_Subprogram (E)
10877 and then (not Comes_From_Source (E)
10878 or else Chars (E) = Name_uCall)
10879 then
10880 null;
10881
10882 elsif
10883 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10884 then
10885 null;
10886
10887 elsif Nkind (Parent (E)) = N_Procedure_Specification
10888 and then Null_Present (Parent (E))
10889 and then Serious_Errors_Detected > 0
10890 then
10891 null;
10892
10893 else
10894 Post_Error;
10895 end if;
10896
10897 elsif Is_Entry (E) then
10898 if not Has_Completion (E) and then
10899 (Ekind (Scope (E)) = E_Protected_Object
10900 or else Ekind (Scope (E)) = E_Protected_Type)
10901 then
10902 Post_Error;
10903 end if;
10904
10905 elsif Is_Package_Or_Generic_Package (E) then
10906 if Unit_Requires_Body (E) then
10907 if not Has_Completion (E)
10908 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10909 N_Compilation_Unit
10910 then
10911 Post_Error;
10912 end if;
10913
10914 elsif not Is_Child_Unit (E) then
10915 May_Need_Implicit_Body (E);
10916 end if;
10917
10918 -- A formal incomplete type (Ada 2012) does not require a completion;
10919 -- other incomplete type declarations do.
10920
10921 elsif Ekind (E) = E_Incomplete_Type
10922 and then No (Underlying_Type (E))
10923 and then not Is_Generic_Type (E)
10924 then
10925 Post_Error;
10926
10927 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10928 and then not Has_Completion (E)
10929 then
10930 Post_Error;
10931
10932 -- A single task declared in the current scope is a constant, verify
10933 -- that the body of its anonymous type is in the same scope. If the
10934 -- task is defined elsewhere, this may be a renaming declaration for
10935 -- which no completion is needed.
10936
10937 elsif Ekind (E) = E_Constant
10938 and then Ekind (Etype (E)) = E_Task_Type
10939 and then not Has_Completion (Etype (E))
10940 and then Scope (Etype (E)) = Current_Scope
10941 then
10942 Post_Error;
10943
10944 elsif Ekind (E) = E_Protected_Object
10945 and then not Has_Completion (Etype (E))
10946 then
10947 Post_Error;
10948
10949 elsif Ekind (E) = E_Record_Type then
10950 if Is_Tagged_Type (E) then
10951 Check_Abstract_Overriding (E);
10952 Check_Conventions (E);
10953 end if;
10954
10955 Check_Aliased_Component_Types (E);
10956
10957 elsif Ekind (E) = E_Array_Type then
10958 Check_Aliased_Component_Types (E);
10959
10960 end if;
10961
10962 Next_Entity (E);
10963 end loop;
10964 end Check_Completion;
10965
10966 ------------------------------------
10967 -- Check_CPP_Type_Has_No_Defaults --
10968 ------------------------------------
10969
10970 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10971 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10972 Clist : Node_Id;
10973 Comp : Node_Id;
10974
10975 begin
10976 -- Obtain the component list
10977
10978 if Nkind (Tdef) = N_Record_Definition then
10979 Clist := Component_List (Tdef);
10980 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10981 Clist := Component_List (Record_Extension_Part (Tdef));
10982 end if;
10983
10984 -- Check all components to ensure no default expressions
10985
10986 if Present (Clist) then
10987 Comp := First (Component_Items (Clist));
10988 while Present (Comp) loop
10989 if Present (Expression (Comp)) then
10990 Error_Msg_N
10991 ("component of imported 'C'P'P type cannot have "
10992 & "default expression", Expression (Comp));
10993 end if;
10994
10995 Next (Comp);
10996 end loop;
10997 end if;
10998 end Check_CPP_Type_Has_No_Defaults;
10999
11000 ----------------------------
11001 -- Check_Delta_Expression --
11002 ----------------------------
11003
11004 procedure Check_Delta_Expression (E : Node_Id) is
11005 begin
11006 if not (Is_Real_Type (Etype (E))) then
11007 Wrong_Type (E, Any_Real);
11008
11009 elsif not Is_OK_Static_Expression (E) then
11010 Flag_Non_Static_Expr
11011 ("non-static expression used for delta value!", E);
11012
11013 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11014 Error_Msg_N ("delta expression must be positive", E);
11015
11016 else
11017 return;
11018 end if;
11019
11020 -- If any of above errors occurred, then replace the incorrect
11021 -- expression by the real 0.1, which should prevent further errors.
11022
11023 Rewrite (E,
11024 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11025 Analyze_And_Resolve (E, Standard_Float);
11026 end Check_Delta_Expression;
11027
11028 -----------------------------
11029 -- Check_Digits_Expression --
11030 -----------------------------
11031
11032 procedure Check_Digits_Expression (E : Node_Id) is
11033 begin
11034 if not (Is_Integer_Type (Etype (E))) then
11035 Wrong_Type (E, Any_Integer);
11036
11037 elsif not Is_OK_Static_Expression (E) then
11038 Flag_Non_Static_Expr
11039 ("non-static expression used for digits value!", E);
11040
11041 elsif Expr_Value (E) <= 0 then
11042 Error_Msg_N ("digits value must be greater than zero", E);
11043
11044 else
11045 return;
11046 end if;
11047
11048 -- If any of above errors occurred, then replace the incorrect
11049 -- expression by the integer 1, which should prevent further errors.
11050
11051 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11052 Analyze_And_Resolve (E, Standard_Integer);
11053
11054 end Check_Digits_Expression;
11055
11056 --------------------------
11057 -- Check_Initialization --
11058 --------------------------
11059
11060 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11061 begin
11062 -- Special processing for limited types
11063
11064 if Is_Limited_Type (T)
11065 and then not In_Instance
11066 and then not In_Inlined_Body
11067 then
11068 if not OK_For_Limited_Init (T, Exp) then
11069
11070 -- In GNAT mode, this is just a warning, to allow it to be evilly
11071 -- turned off. Otherwise it is a real error.
11072
11073 if GNAT_Mode then
11074 Error_Msg_N
11075 ("??cannot initialize entities of limited type!", Exp);
11076
11077 elsif Ada_Version < Ada_2005 then
11078
11079 -- The side effect removal machinery may generate illegal Ada
11080 -- code to avoid the usage of access types and 'reference in
11081 -- SPARK mode. Since this is legal code with respect to theorem
11082 -- proving, do not emit the error.
11083
11084 if GNATprove_Mode
11085 and then Nkind (Exp) = N_Function_Call
11086 and then Nkind (Parent (Exp)) = N_Object_Declaration
11087 and then not Comes_From_Source
11088 (Defining_Identifier (Parent (Exp)))
11089 then
11090 null;
11091
11092 else
11093 Error_Msg_N
11094 ("cannot initialize entities of limited type", Exp);
11095 Explain_Limited_Type (T, Exp);
11096 end if;
11097
11098 else
11099 -- Specialize error message according to kind of illegal
11100 -- initial expression.
11101
11102 if Nkind (Exp) = N_Type_Conversion
11103 and then Nkind (Expression (Exp)) = N_Function_Call
11104 then
11105 Error_Msg_N
11106 ("illegal context for call"
11107 & " to function with limited result", Exp);
11108
11109 else
11110 Error_Msg_N
11111 ("initialization of limited object requires aggregate "
11112 & "or function call", Exp);
11113 end if;
11114 end if;
11115 end if;
11116 end if;
11117
11118 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11119 -- set unless we can be sure that no range check is required.
11120
11121 if (GNATprove_Mode or not Expander_Active)
11122 and then Is_Scalar_Type (T)
11123 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11124 then
11125 Set_Do_Range_Check (Exp);
11126 end if;
11127 end Check_Initialization;
11128
11129 ----------------------
11130 -- Check_Interfaces --
11131 ----------------------
11132
11133 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11134 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11135
11136 Iface : Node_Id;
11137 Iface_Def : Node_Id;
11138 Iface_Typ : Entity_Id;
11139 Parent_Node : Node_Id;
11140
11141 Is_Task : Boolean := False;
11142 -- Set True if parent type or any progenitor is a task interface
11143
11144 Is_Protected : Boolean := False;
11145 -- Set True if parent type or any progenitor is a protected interface
11146
11147 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11148 -- Check that a progenitor is compatible with declaration. If an error
11149 -- message is output, it is posted on Error_Node.
11150
11151 ------------------
11152 -- Check_Ifaces --
11153 ------------------
11154
11155 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11156 Iface_Id : constant Entity_Id :=
11157 Defining_Identifier (Parent (Iface_Def));
11158 Type_Def : Node_Id;
11159
11160 begin
11161 if Nkind (N) = N_Private_Extension_Declaration then
11162 Type_Def := N;
11163 else
11164 Type_Def := Type_Definition (N);
11165 end if;
11166
11167 if Is_Task_Interface (Iface_Id) then
11168 Is_Task := True;
11169
11170 elsif Is_Protected_Interface (Iface_Id) then
11171 Is_Protected := True;
11172 end if;
11173
11174 if Is_Synchronized_Interface (Iface_Id) then
11175
11176 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11177 -- extension derived from a synchronized interface must explicitly
11178 -- be declared synchronized, because the full view will be a
11179 -- synchronized type.
11180
11181 if Nkind (N) = N_Private_Extension_Declaration then
11182 if not Synchronized_Present (N) then
11183 Error_Msg_NE
11184 ("private extension of& must be explicitly synchronized",
11185 N, Iface_Id);
11186 end if;
11187
11188 -- However, by 3.9.4(16/2), a full type that is a record extension
11189 -- is never allowed to derive from a synchronized interface (note
11190 -- that interfaces must be excluded from this check, because those
11191 -- are represented by derived type definitions in some cases).
11192
11193 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11194 and then not Interface_Present (Type_Definition (N))
11195 then
11196 Error_Msg_N ("record extension cannot derive from synchronized "
11197 & "interface", Error_Node);
11198 end if;
11199 end if;
11200
11201 -- Check that the characteristics of the progenitor are compatible
11202 -- with the explicit qualifier in the declaration.
11203 -- The check only applies to qualifiers that come from source.
11204 -- Limited_Present also appears in the declaration of corresponding
11205 -- records, and the check does not apply to them.
11206
11207 if Limited_Present (Type_Def)
11208 and then not
11209 Is_Concurrent_Record_Type (Defining_Identifier (N))
11210 then
11211 if Is_Limited_Interface (Parent_Type)
11212 and then not Is_Limited_Interface (Iface_Id)
11213 then
11214 Error_Msg_NE
11215 ("progenitor & must be limited interface",
11216 Error_Node, Iface_Id);
11217
11218 elsif
11219 (Task_Present (Iface_Def)
11220 or else Protected_Present (Iface_Def)
11221 or else Synchronized_Present (Iface_Def))
11222 and then Nkind (N) /= N_Private_Extension_Declaration
11223 and then not Error_Posted (N)
11224 then
11225 Error_Msg_NE
11226 ("progenitor & must be limited interface",
11227 Error_Node, Iface_Id);
11228 end if;
11229
11230 -- Protected interfaces can only inherit from limited, synchronized
11231 -- or protected interfaces.
11232
11233 elsif Nkind (N) = N_Full_Type_Declaration
11234 and then Protected_Present (Type_Def)
11235 then
11236 if Limited_Present (Iface_Def)
11237 or else Synchronized_Present (Iface_Def)
11238 or else Protected_Present (Iface_Def)
11239 then
11240 null;
11241
11242 elsif Task_Present (Iface_Def) then
11243 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11244 & "from task interface", Error_Node);
11245
11246 else
11247 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11248 & "from non-limited interface", Error_Node);
11249 end if;
11250
11251 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11252 -- limited and synchronized.
11253
11254 elsif Synchronized_Present (Type_Def) then
11255 if Limited_Present (Iface_Def)
11256 or else Synchronized_Present (Iface_Def)
11257 then
11258 null;
11259
11260 elsif Protected_Present (Iface_Def)
11261 and then Nkind (N) /= N_Private_Extension_Declaration
11262 then
11263 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11264 & "from protected interface", Error_Node);
11265
11266 elsif Task_Present (Iface_Def)
11267 and then Nkind (N) /= N_Private_Extension_Declaration
11268 then
11269 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11270 & "from task interface", Error_Node);
11271
11272 elsif not Is_Limited_Interface (Iface_Id) then
11273 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11274 & "from non-limited interface", Error_Node);
11275 end if;
11276
11277 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11278 -- synchronized or task interfaces.
11279
11280 elsif Nkind (N) = N_Full_Type_Declaration
11281 and then Task_Present (Type_Def)
11282 then
11283 if Limited_Present (Iface_Def)
11284 or else Synchronized_Present (Iface_Def)
11285 or else Task_Present (Iface_Def)
11286 then
11287 null;
11288
11289 elsif Protected_Present (Iface_Def) then
11290 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11291 & "protected interface", Error_Node);
11292
11293 else
11294 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11295 & "non-limited interface", Error_Node);
11296 end if;
11297 end if;
11298 end Check_Ifaces;
11299
11300 -- Start of processing for Check_Interfaces
11301
11302 begin
11303 if Is_Interface (Parent_Type) then
11304 if Is_Task_Interface (Parent_Type) then
11305 Is_Task := True;
11306
11307 elsif Is_Protected_Interface (Parent_Type) then
11308 Is_Protected := True;
11309 end if;
11310 end if;
11311
11312 if Nkind (N) = N_Private_Extension_Declaration then
11313
11314 -- Check that progenitors are compatible with declaration
11315
11316 Iface := First (Interface_List (Def));
11317 while Present (Iface) loop
11318 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11319
11320 Parent_Node := Parent (Base_Type (Iface_Typ));
11321 Iface_Def := Type_Definition (Parent_Node);
11322
11323 if not Is_Interface (Iface_Typ) then
11324 Diagnose_Interface (Iface, Iface_Typ);
11325 else
11326 Check_Ifaces (Iface_Def, Iface);
11327 end if;
11328
11329 Next (Iface);
11330 end loop;
11331
11332 if Is_Task and Is_Protected then
11333 Error_Msg_N
11334 ("type cannot derive from task and protected interface", N);
11335 end if;
11336
11337 return;
11338 end if;
11339
11340 -- Full type declaration of derived type.
11341 -- Check compatibility with parent if it is interface type
11342
11343 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11344 and then Is_Interface (Parent_Type)
11345 then
11346 Parent_Node := Parent (Parent_Type);
11347
11348 -- More detailed checks for interface varieties
11349
11350 Check_Ifaces
11351 (Iface_Def => Type_Definition (Parent_Node),
11352 Error_Node => Subtype_Indication (Type_Definition (N)));
11353 end if;
11354
11355 Iface := First (Interface_List (Def));
11356 while Present (Iface) loop
11357 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11358
11359 Parent_Node := Parent (Base_Type (Iface_Typ));
11360 Iface_Def := Type_Definition (Parent_Node);
11361
11362 if not Is_Interface (Iface_Typ) then
11363 Diagnose_Interface (Iface, Iface_Typ);
11364
11365 else
11366 -- "The declaration of a specific descendant of an interface
11367 -- type freezes the interface type" RM 13.14
11368
11369 Freeze_Before (N, Iface_Typ);
11370 Check_Ifaces (Iface_Def, Error_Node => Iface);
11371 end if;
11372
11373 Next (Iface);
11374 end loop;
11375
11376 if Is_Task and Is_Protected then
11377 Error_Msg_N
11378 ("type cannot derive from task and protected interface", N);
11379 end if;
11380 end Check_Interfaces;
11381
11382 ------------------------------------
11383 -- Check_Or_Process_Discriminants --
11384 ------------------------------------
11385
11386 -- If an incomplete or private type declaration was already given for the
11387 -- type, the discriminants may have already been processed if they were
11388 -- present on the incomplete declaration. In this case a full conformance
11389 -- check has been performed in Find_Type_Name, and we then recheck here
11390 -- some properties that can't be checked on the partial view alone.
11391 -- Otherwise we call Process_Discriminants.
11392
11393 procedure Check_Or_Process_Discriminants
11394 (N : Node_Id;
11395 T : Entity_Id;
11396 Prev : Entity_Id := Empty)
11397 is
11398 begin
11399 if Has_Discriminants (T) then
11400
11401 -- Discriminants are already set on T if they were already present
11402 -- on the partial view. Make them visible to component declarations.
11403
11404 declare
11405 D : Entity_Id;
11406 -- Discriminant on T (full view) referencing expr on partial view
11407
11408 Prev_D : Entity_Id;
11409 -- Entity of corresponding discriminant on partial view
11410
11411 New_D : Node_Id;
11412 -- Discriminant specification for full view, expression is
11413 -- the syntactic copy on full view (which has been checked for
11414 -- conformance with partial view), only used here to post error
11415 -- message.
11416
11417 begin
11418 D := First_Discriminant (T);
11419 New_D := First (Discriminant_Specifications (N));
11420 while Present (D) loop
11421 Prev_D := Current_Entity (D);
11422 Set_Current_Entity (D);
11423 Set_Is_Immediately_Visible (D);
11424 Set_Homonym (D, Prev_D);
11425
11426 -- Handle the case where there is an untagged partial view and
11427 -- the full view is tagged: must disallow discriminants with
11428 -- defaults, unless compiling for Ada 2012, which allows a
11429 -- limited tagged type to have defaulted discriminants (see
11430 -- AI05-0214). However, suppress error here if it was already
11431 -- reported on the default expression of the partial view.
11432
11433 if Is_Tagged_Type (T)
11434 and then Present (Expression (Parent (D)))
11435 and then (not Is_Limited_Type (Current_Scope)
11436 or else Ada_Version < Ada_2012)
11437 and then not Error_Posted (Expression (Parent (D)))
11438 then
11439 if Ada_Version >= Ada_2012 then
11440 Error_Msg_N
11441 ("discriminants of nonlimited tagged type cannot have "
11442 & "defaults",
11443 Expression (New_D));
11444 else
11445 Error_Msg_N
11446 ("discriminants of tagged type cannot have defaults",
11447 Expression (New_D));
11448 end if;
11449 end if;
11450
11451 -- Ada 2005 (AI-230): Access discriminant allowed in
11452 -- non-limited record types.
11453
11454 if Ada_Version < Ada_2005 then
11455
11456 -- This restriction gets applied to the full type here. It
11457 -- has already been applied earlier to the partial view.
11458
11459 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11460 end if;
11461
11462 Next_Discriminant (D);
11463 Next (New_D);
11464 end loop;
11465 end;
11466
11467 elsif Present (Discriminant_Specifications (N)) then
11468 Process_Discriminants (N, Prev);
11469 end if;
11470 end Check_Or_Process_Discriminants;
11471
11472 ----------------------
11473 -- Check_Real_Bound --
11474 ----------------------
11475
11476 procedure Check_Real_Bound (Bound : Node_Id) is
11477 begin
11478 if not Is_Real_Type (Etype (Bound)) then
11479 Error_Msg_N
11480 ("bound in real type definition must be of real type", Bound);
11481
11482 elsif not Is_OK_Static_Expression (Bound) then
11483 Flag_Non_Static_Expr
11484 ("non-static expression used for real type bound!", Bound);
11485
11486 else
11487 return;
11488 end if;
11489
11490 Rewrite
11491 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11492 Analyze (Bound);
11493 Resolve (Bound, Standard_Float);
11494 end Check_Real_Bound;
11495
11496 ------------------------------
11497 -- Complete_Private_Subtype --
11498 ------------------------------
11499
11500 procedure Complete_Private_Subtype
11501 (Priv : Entity_Id;
11502 Full : Entity_Id;
11503 Full_Base : Entity_Id;
11504 Related_Nod : Node_Id)
11505 is
11506 Save_Next_Entity : Entity_Id;
11507 Save_Homonym : Entity_Id;
11508
11509 begin
11510 -- Set semantic attributes for (implicit) private subtype completion.
11511 -- If the full type has no discriminants, then it is a copy of the
11512 -- full view of the base. Otherwise, it is a subtype of the base with
11513 -- a possible discriminant constraint. Save and restore the original
11514 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11515 -- not corrupt the entity chain.
11516
11517 -- Note that the type of the full view is the same entity as the type
11518 -- of the partial view. In this fashion, the subtype has access to the
11519 -- correct view of the parent.
11520
11521 Save_Next_Entity := Next_Entity (Full);
11522 Save_Homonym := Homonym (Priv);
11523
11524 case Ekind (Full_Base) is
11525 when E_Record_Type |
11526 E_Record_Subtype |
11527 Class_Wide_Kind |
11528 Private_Kind |
11529 Task_Kind |
11530 Protected_Kind =>
11531 Copy_Node (Priv, Full);
11532
11533 Set_Has_Discriminants
11534 (Full, Has_Discriminants (Full_Base));
11535 Set_Has_Unknown_Discriminants
11536 (Full, Has_Unknown_Discriminants (Full_Base));
11537 Set_First_Entity (Full, First_Entity (Full_Base));
11538 Set_Last_Entity (Full, Last_Entity (Full_Base));
11539
11540 -- If the underlying base type is constrained, we know that the
11541 -- full view of the subtype is constrained as well (the converse
11542 -- is not necessarily true).
11543
11544 if Is_Constrained (Full_Base) then
11545 Set_Is_Constrained (Full);
11546 end if;
11547
11548 when others =>
11549 Copy_Node (Full_Base, Full);
11550
11551 Set_Chars (Full, Chars (Priv));
11552 Conditional_Delay (Full, Priv);
11553 Set_Sloc (Full, Sloc (Priv));
11554 end case;
11555
11556 Set_Next_Entity (Full, Save_Next_Entity);
11557 Set_Homonym (Full, Save_Homonym);
11558 Set_Associated_Node_For_Itype (Full, Related_Nod);
11559
11560 -- Set common attributes for all subtypes: kind, convention, etc.
11561
11562 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11563 Set_Convention (Full, Convention (Full_Base));
11564
11565 -- The Etype of the full view is inconsistent. Gigi needs to see the
11566 -- structural full view, which is what the current scheme gives: the
11567 -- Etype of the full view is the etype of the full base. However, if the
11568 -- full base is a derived type, the full view then looks like a subtype
11569 -- of the parent, not a subtype of the full base. If instead we write:
11570
11571 -- Set_Etype (Full, Full_Base);
11572
11573 -- then we get inconsistencies in the front-end (confusion between
11574 -- views). Several outstanding bugs are related to this ???
11575
11576 Set_Is_First_Subtype (Full, False);
11577 Set_Scope (Full, Scope (Priv));
11578 Set_Size_Info (Full, Full_Base);
11579 Set_RM_Size (Full, RM_Size (Full_Base));
11580 Set_Is_Itype (Full);
11581
11582 -- A subtype of a private-type-without-discriminants, whose full-view
11583 -- has discriminants with default expressions, is not constrained.
11584
11585 if not Has_Discriminants (Priv) then
11586 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11587
11588 if Has_Discriminants (Full_Base) then
11589 Set_Discriminant_Constraint
11590 (Full, Discriminant_Constraint (Full_Base));
11591
11592 -- The partial view may have been indefinite, the full view
11593 -- might not be.
11594
11595 Set_Has_Unknown_Discriminants
11596 (Full, Has_Unknown_Discriminants (Full_Base));
11597 end if;
11598 end if;
11599
11600 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11601 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11602
11603 -- Freeze the private subtype entity if its parent is delayed, and not
11604 -- already frozen. We skip this processing if the type is an anonymous
11605 -- subtype of a record component, or is the corresponding record of a
11606 -- protected type, since ???
11607
11608 if not Is_Type (Scope (Full)) then
11609 Set_Has_Delayed_Freeze (Full,
11610 Has_Delayed_Freeze (Full_Base)
11611 and then (not Is_Frozen (Full_Base)));
11612 end if;
11613
11614 Set_Freeze_Node (Full, Empty);
11615 Set_Is_Frozen (Full, False);
11616 Set_Full_View (Priv, Full);
11617
11618 if Has_Discriminants (Full) then
11619 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11620 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11621
11622 if Has_Unknown_Discriminants (Full) then
11623 Set_Discriminant_Constraint (Full, No_Elist);
11624 end if;
11625 end if;
11626
11627 if Ekind (Full_Base) = E_Record_Type
11628 and then Has_Discriminants (Full_Base)
11629 and then Has_Discriminants (Priv) -- might not, if errors
11630 and then not Has_Unknown_Discriminants (Priv)
11631 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11632 then
11633 Create_Constrained_Components
11634 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11635
11636 -- If the full base is itself derived from private, build a congruent
11637 -- subtype of its underlying type, for use by the back end. For a
11638 -- constrained record component, the declaration cannot be placed on
11639 -- the component list, but it must nevertheless be built an analyzed, to
11640 -- supply enough information for Gigi to compute the size of component.
11641
11642 elsif Ekind (Full_Base) in Private_Kind
11643 and then Is_Derived_Type (Full_Base)
11644 and then Has_Discriminants (Full_Base)
11645 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11646 then
11647 if not Is_Itype (Priv)
11648 and then
11649 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11650 then
11651 Build_Underlying_Full_View
11652 (Parent (Priv), Full, Etype (Full_Base));
11653
11654 elsif Nkind (Related_Nod) = N_Component_Declaration then
11655 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11656 end if;
11657
11658 elsif Is_Record_Type (Full_Base) then
11659
11660 -- Show Full is simply a renaming of Full_Base
11661
11662 Set_Cloned_Subtype (Full, Full_Base);
11663 end if;
11664
11665 -- It is unsafe to share the bounds of a scalar type, because the Itype
11666 -- is elaborated on demand, and if a bound is non-static then different
11667 -- orders of elaboration in different units will lead to different
11668 -- external symbols.
11669
11670 if Is_Scalar_Type (Full_Base) then
11671 Set_Scalar_Range (Full,
11672 Make_Range (Sloc (Related_Nod),
11673 Low_Bound =>
11674 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11675 High_Bound =>
11676 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11677
11678 -- This completion inherits the bounds of the full parent, but if
11679 -- the parent is an unconstrained floating point type, so is the
11680 -- completion.
11681
11682 if Is_Floating_Point_Type (Full_Base) then
11683 Set_Includes_Infinities
11684 (Scalar_Range (Full), Has_Infinities (Full_Base));
11685 end if;
11686 end if;
11687
11688 -- ??? It seems that a lot of fields are missing that should be copied
11689 -- from Full_Base to Full. Here are some that are introduced in a
11690 -- non-disruptive way but a cleanup is necessary.
11691
11692 if Is_Tagged_Type (Full_Base) then
11693 Set_Is_Tagged_Type (Full);
11694 Set_Direct_Primitive_Operations
11695 (Full, Direct_Primitive_Operations (Full_Base));
11696 Set_No_Tagged_Streams_Pragma
11697 (Full, No_Tagged_Streams_Pragma (Full_Base));
11698
11699 -- Inherit class_wide type of full_base in case the partial view was
11700 -- not tagged. Otherwise it has already been created when the private
11701 -- subtype was analyzed.
11702
11703 if No (Class_Wide_Type (Full)) then
11704 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11705 end if;
11706
11707 -- If this is a subtype of a protected or task type, constrain its
11708 -- corresponding record, unless this is a subtype without constraints,
11709 -- i.e. a simple renaming as with an actual subtype in an instance.
11710
11711 elsif Is_Concurrent_Type (Full_Base) then
11712 if Has_Discriminants (Full)
11713 and then Present (Corresponding_Record_Type (Full_Base))
11714 and then
11715 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11716 then
11717 Set_Corresponding_Record_Type (Full,
11718 Constrain_Corresponding_Record
11719 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11720
11721 else
11722 Set_Corresponding_Record_Type (Full,
11723 Corresponding_Record_Type (Full_Base));
11724 end if;
11725 end if;
11726
11727 -- Link rep item chain, and also setting of Has_Predicates from private
11728 -- subtype to full subtype, since we will need these on the full subtype
11729 -- to create the predicate function. Note that the full subtype may
11730 -- already have rep items, inherited from the full view of the base
11731 -- type, so we must be sure not to overwrite these entries.
11732
11733 declare
11734 Append : Boolean;
11735 Item : Node_Id;
11736 Next_Item : Node_Id;
11737
11738 begin
11739 Item := First_Rep_Item (Full);
11740
11741 -- If no existing rep items on full type, we can just link directly
11742 -- to the list of items on the private type, if any exist.. Same if
11743 -- the rep items are only those inherited from the base
11744
11745 if (No (Item)
11746 or else Nkind (Item) /= N_Aspect_Specification
11747 or else Entity (Item) = Full_Base)
11748 and then Present (First_Rep_Item (Priv))
11749 then
11750 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11751
11752 -- Otherwise, search to the end of items currently linked to the full
11753 -- subtype and append the private items to the end. However, if Priv
11754 -- and Full already have the same list of rep items, then the append
11755 -- is not done, as that would create a circularity.
11756
11757 elsif Item /= First_Rep_Item (Priv) then
11758 Append := True;
11759 loop
11760 Next_Item := Next_Rep_Item (Item);
11761 exit when No (Next_Item);
11762 Item := Next_Item;
11763
11764 -- If the private view has aspect specifications, the full view
11765 -- inherits them. Since these aspects may already have been
11766 -- attached to the full view during derivation, do not append
11767 -- them if already present.
11768
11769 if Item = First_Rep_Item (Priv) then
11770 Append := False;
11771 exit;
11772 end if;
11773 end loop;
11774
11775 -- And link the private type items at the end of the chain
11776
11777 if Append then
11778 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11779 end if;
11780 end if;
11781 end;
11782
11783 -- Make sure Has_Predicates is set on full type if it is set on the
11784 -- private type. Note that it may already be set on the full type and
11785 -- if so, we don't want to unset it.
11786
11787 if Has_Predicates (Priv) then
11788 Set_Has_Predicates (Full);
11789 end if;
11790 end Complete_Private_Subtype;
11791
11792 ----------------------------
11793 -- Constant_Redeclaration --
11794 ----------------------------
11795
11796 procedure Constant_Redeclaration
11797 (Id : Entity_Id;
11798 N : Node_Id;
11799 T : out Entity_Id)
11800 is
11801 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11802 Obj_Def : constant Node_Id := Object_Definition (N);
11803 New_T : Entity_Id;
11804
11805 procedure Check_Possible_Deferred_Completion
11806 (Prev_Id : Entity_Id;
11807 Prev_Obj_Def : Node_Id;
11808 Curr_Obj_Def : Node_Id);
11809 -- Determine whether the two object definitions describe the partial
11810 -- and the full view of a constrained deferred constant. Generate
11811 -- a subtype for the full view and verify that it statically matches
11812 -- the subtype of the partial view.
11813
11814 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11815 -- If deferred constant is an access type initialized with an allocator,
11816 -- check whether there is an illegal recursion in the definition,
11817 -- through a default value of some record subcomponent. This is normally
11818 -- detected when generating init procs, but requires this additional
11819 -- mechanism when expansion is disabled.
11820
11821 ----------------------------------------
11822 -- Check_Possible_Deferred_Completion --
11823 ----------------------------------------
11824
11825 procedure Check_Possible_Deferred_Completion
11826 (Prev_Id : Entity_Id;
11827 Prev_Obj_Def : Node_Id;
11828 Curr_Obj_Def : Node_Id)
11829 is
11830 begin
11831 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11832 and then Present (Constraint (Prev_Obj_Def))
11833 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11834 and then Present (Constraint (Curr_Obj_Def))
11835 then
11836 declare
11837 Loc : constant Source_Ptr := Sloc (N);
11838 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11839 Decl : constant Node_Id :=
11840 Make_Subtype_Declaration (Loc,
11841 Defining_Identifier => Def_Id,
11842 Subtype_Indication =>
11843 Relocate_Node (Curr_Obj_Def));
11844
11845 begin
11846 Insert_Before_And_Analyze (N, Decl);
11847 Set_Etype (Id, Def_Id);
11848
11849 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11850 Error_Msg_Sloc := Sloc (Prev_Id);
11851 Error_Msg_N ("subtype does not statically match deferred "
11852 & "declaration #", N);
11853 end if;
11854 end;
11855 end if;
11856 end Check_Possible_Deferred_Completion;
11857
11858 ---------------------------------
11859 -- Check_Recursive_Declaration --
11860 ---------------------------------
11861
11862 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11863 Comp : Entity_Id;
11864
11865 begin
11866 if Is_Record_Type (Typ) then
11867 Comp := First_Component (Typ);
11868 while Present (Comp) loop
11869 if Comes_From_Source (Comp) then
11870 if Present (Expression (Parent (Comp)))
11871 and then Is_Entity_Name (Expression (Parent (Comp)))
11872 and then Entity (Expression (Parent (Comp))) = Prev
11873 then
11874 Error_Msg_Sloc := Sloc (Parent (Comp));
11875 Error_Msg_NE
11876 ("illegal circularity with declaration for & #",
11877 N, Comp);
11878 return;
11879
11880 elsif Is_Record_Type (Etype (Comp)) then
11881 Check_Recursive_Declaration (Etype (Comp));
11882 end if;
11883 end if;
11884
11885 Next_Component (Comp);
11886 end loop;
11887 end if;
11888 end Check_Recursive_Declaration;
11889
11890 -- Start of processing for Constant_Redeclaration
11891
11892 begin
11893 if Nkind (Parent (Prev)) = N_Object_Declaration then
11894 if Nkind (Object_Definition
11895 (Parent (Prev))) = N_Subtype_Indication
11896 then
11897 -- Find type of new declaration. The constraints of the two
11898 -- views must match statically, but there is no point in
11899 -- creating an itype for the full view.
11900
11901 if Nkind (Obj_Def) = N_Subtype_Indication then
11902 Find_Type (Subtype_Mark (Obj_Def));
11903 New_T := Entity (Subtype_Mark (Obj_Def));
11904
11905 else
11906 Find_Type (Obj_Def);
11907 New_T := Entity (Obj_Def);
11908 end if;
11909
11910 T := Etype (Prev);
11911
11912 else
11913 -- The full view may impose a constraint, even if the partial
11914 -- view does not, so construct the subtype.
11915
11916 New_T := Find_Type_Of_Object (Obj_Def, N);
11917 T := New_T;
11918 end if;
11919
11920 else
11921 -- Current declaration is illegal, diagnosed below in Enter_Name
11922
11923 T := Empty;
11924 New_T := Any_Type;
11925 end if;
11926
11927 -- If previous full declaration or a renaming declaration exists, or if
11928 -- a homograph is present, let Enter_Name handle it, either with an
11929 -- error or with the removal of an overridden implicit subprogram.
11930 -- The previous one is a full declaration if it has an expression
11931 -- (which in the case of an aggregate is indicated by the Init flag).
11932
11933 if Ekind (Prev) /= E_Constant
11934 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11935 or else Present (Expression (Parent (Prev)))
11936 or else Has_Init_Expression (Parent (Prev))
11937 or else Present (Full_View (Prev))
11938 then
11939 Enter_Name (Id);
11940
11941 -- Verify that types of both declarations match, or else that both types
11942 -- are anonymous access types whose designated subtypes statically match
11943 -- (as allowed in Ada 2005 by AI-385).
11944
11945 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11946 and then
11947 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11948 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11949 or else Is_Access_Constant (Etype (New_T)) /=
11950 Is_Access_Constant (Etype (Prev))
11951 or else Can_Never_Be_Null (Etype (New_T)) /=
11952 Can_Never_Be_Null (Etype (Prev))
11953 or else Null_Exclusion_Present (Parent (Prev)) /=
11954 Null_Exclusion_Present (Parent (Id))
11955 or else not Subtypes_Statically_Match
11956 (Designated_Type (Etype (Prev)),
11957 Designated_Type (Etype (New_T))))
11958 then
11959 Error_Msg_Sloc := Sloc (Prev);
11960 Error_Msg_N ("type does not match declaration#", N);
11961 Set_Full_View (Prev, Id);
11962 Set_Etype (Id, Any_Type);
11963
11964 -- A deferred constant whose type is an anonymous array is always
11965 -- illegal (unless imported). A detailed error message might be
11966 -- helpful for Ada beginners.
11967
11968 if Nkind (Object_Definition (Parent (Prev)))
11969 = N_Constrained_Array_Definition
11970 and then Nkind (Object_Definition (N))
11971 = N_Constrained_Array_Definition
11972 then
11973 Error_Msg_N ("\each anonymous array is a distinct type", N);
11974 Error_Msg_N ("a deferred constant must have a named type",
11975 Object_Definition (Parent (Prev)));
11976 end if;
11977
11978 elsif
11979 Null_Exclusion_Present (Parent (Prev))
11980 and then not Null_Exclusion_Present (N)
11981 then
11982 Error_Msg_Sloc := Sloc (Prev);
11983 Error_Msg_N ("null-exclusion does not match declaration#", N);
11984 Set_Full_View (Prev, Id);
11985 Set_Etype (Id, Any_Type);
11986
11987 -- If so, process the full constant declaration
11988
11989 else
11990 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11991 -- the deferred declaration is constrained, then the subtype defined
11992 -- by the subtype_indication in the full declaration shall match it
11993 -- statically.
11994
11995 Check_Possible_Deferred_Completion
11996 (Prev_Id => Prev,
11997 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11998 Curr_Obj_Def => Obj_Def);
11999
12000 Set_Full_View (Prev, Id);
12001 Set_Is_Public (Id, Is_Public (Prev));
12002 Set_Is_Internal (Id);
12003 Append_Entity (Id, Current_Scope);
12004
12005 -- Check ALIASED present if present before (RM 7.4(7))
12006
12007 if Is_Aliased (Prev)
12008 and then not Aliased_Present (N)
12009 then
12010 Error_Msg_Sloc := Sloc (Prev);
12011 Error_Msg_N ("ALIASED required (see declaration #)", N);
12012 end if;
12013
12014 -- Check that placement is in private part and that the incomplete
12015 -- declaration appeared in the visible part.
12016
12017 if Ekind (Current_Scope) = E_Package
12018 and then not In_Private_Part (Current_Scope)
12019 then
12020 Error_Msg_Sloc := Sloc (Prev);
12021 Error_Msg_N
12022 ("full constant for declaration # must be in private part", N);
12023
12024 elsif Ekind (Current_Scope) = E_Package
12025 and then
12026 List_Containing (Parent (Prev)) /=
12027 Visible_Declarations (Package_Specification (Current_Scope))
12028 then
12029 Error_Msg_N
12030 ("deferred constant must be declared in visible part",
12031 Parent (Prev));
12032 end if;
12033
12034 if Is_Access_Type (T)
12035 and then Nkind (Expression (N)) = N_Allocator
12036 then
12037 Check_Recursive_Declaration (Designated_Type (T));
12038 end if;
12039
12040 -- A deferred constant is a visible entity. If type has invariants,
12041 -- verify that the initial value satisfies them.
12042
12043 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12044 Insert_After (N,
12045 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12046 end if;
12047 end if;
12048 end Constant_Redeclaration;
12049
12050 ----------------------
12051 -- Constrain_Access --
12052 ----------------------
12053
12054 procedure Constrain_Access
12055 (Def_Id : in out Entity_Id;
12056 S : Node_Id;
12057 Related_Nod : Node_Id)
12058 is
12059 T : constant Entity_Id := Entity (Subtype_Mark (S));
12060 Desig_Type : constant Entity_Id := Designated_Type (T);
12061 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12062 Constraint_OK : Boolean := True;
12063
12064 begin
12065 if Is_Array_Type (Desig_Type) then
12066 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12067
12068 elsif (Is_Record_Type (Desig_Type)
12069 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12070 and then not Is_Constrained (Desig_Type)
12071 then
12072 -- ??? The following code is a temporary bypass to ignore a
12073 -- discriminant constraint on access type if it is constraining
12074 -- the current record. Avoid creating the implicit subtype of the
12075 -- record we are currently compiling since right now, we cannot
12076 -- handle these. For now, just return the access type itself.
12077
12078 if Desig_Type = Current_Scope
12079 and then No (Def_Id)
12080 then
12081 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12082 Def_Id := Entity (Subtype_Mark (S));
12083
12084 -- This call added to ensure that the constraint is analyzed
12085 -- (needed for a B test). Note that we still return early from
12086 -- this procedure to avoid recursive processing. ???
12087
12088 Constrain_Discriminated_Type
12089 (Desig_Subtype, S, Related_Nod, For_Access => True);
12090 return;
12091 end if;
12092
12093 -- Enforce rule that the constraint is illegal if there is an
12094 -- unconstrained view of the designated type. This means that the
12095 -- partial view (either a private type declaration or a derivation
12096 -- from a private type) has no discriminants. (Defect Report
12097 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12098
12099 -- Rule updated for Ada 2005: The private type is said to have
12100 -- a constrained partial view, given that objects of the type
12101 -- can be declared. Furthermore, the rule applies to all access
12102 -- types, unlike the rule concerning default discriminants (see
12103 -- RM 3.7.1(7/3))
12104
12105 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12106 and then Has_Private_Declaration (Desig_Type)
12107 and then In_Open_Scopes (Scope (Desig_Type))
12108 and then Has_Discriminants (Desig_Type)
12109 then
12110 declare
12111 Pack : constant Node_Id :=
12112 Unit_Declaration_Node (Scope (Desig_Type));
12113 Decls : List_Id;
12114 Decl : Node_Id;
12115
12116 begin
12117 if Nkind (Pack) = N_Package_Declaration then
12118 Decls := Visible_Declarations (Specification (Pack));
12119 Decl := First (Decls);
12120 while Present (Decl) loop
12121 if (Nkind (Decl) = N_Private_Type_Declaration
12122 and then Chars (Defining_Identifier (Decl)) =
12123 Chars (Desig_Type))
12124
12125 or else
12126 (Nkind (Decl) = N_Full_Type_Declaration
12127 and then
12128 Chars (Defining_Identifier (Decl)) =
12129 Chars (Desig_Type)
12130 and then Is_Derived_Type (Desig_Type)
12131 and then
12132 Has_Private_Declaration (Etype (Desig_Type)))
12133 then
12134 if No (Discriminant_Specifications (Decl)) then
12135 Error_Msg_N
12136 ("cannot constrain access type if designated "
12137 & "type has constrained partial view", S);
12138 end if;
12139
12140 exit;
12141 end if;
12142
12143 Next (Decl);
12144 end loop;
12145 end if;
12146 end;
12147 end if;
12148
12149 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12150 For_Access => True);
12151
12152 elsif Is_Concurrent_Type (Desig_Type)
12153 and then not Is_Constrained (Desig_Type)
12154 then
12155 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12156
12157 else
12158 Error_Msg_N ("invalid constraint on access type", S);
12159
12160 -- We simply ignore an invalid constraint
12161
12162 Desig_Subtype := Desig_Type;
12163 Constraint_OK := False;
12164 end if;
12165
12166 if No (Def_Id) then
12167 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12168 else
12169 Set_Ekind (Def_Id, E_Access_Subtype);
12170 end if;
12171
12172 if Constraint_OK then
12173 Set_Etype (Def_Id, Base_Type (T));
12174
12175 if Is_Private_Type (Desig_Type) then
12176 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12177 end if;
12178 else
12179 Set_Etype (Def_Id, Any_Type);
12180 end if;
12181
12182 Set_Size_Info (Def_Id, T);
12183 Set_Is_Constrained (Def_Id, Constraint_OK);
12184 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12185 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12186 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12187
12188 Conditional_Delay (Def_Id, T);
12189
12190 -- AI-363 : Subtypes of general access types whose designated types have
12191 -- default discriminants are disallowed. In instances, the rule has to
12192 -- be checked against the actual, of which T is the subtype. In a
12193 -- generic body, the rule is checked assuming that the actual type has
12194 -- defaulted discriminants.
12195
12196 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12197 if Ekind (Base_Type (T)) = E_General_Access_Type
12198 and then Has_Defaulted_Discriminants (Desig_Type)
12199 then
12200 if Ada_Version < Ada_2005 then
12201 Error_Msg_N
12202 ("access subtype of general access type would not " &
12203 "be allowed in Ada 2005?y?", S);
12204 else
12205 Error_Msg_N
12206 ("access subtype of general access type not allowed", S);
12207 end if;
12208
12209 Error_Msg_N ("\discriminants have defaults", S);
12210
12211 elsif Is_Access_Type (T)
12212 and then Is_Generic_Type (Desig_Type)
12213 and then Has_Discriminants (Desig_Type)
12214 and then In_Package_Body (Current_Scope)
12215 then
12216 if Ada_Version < Ada_2005 then
12217 Error_Msg_N
12218 ("access subtype would not be allowed in generic body "
12219 & "in Ada 2005?y?", S);
12220 else
12221 Error_Msg_N
12222 ("access subtype not allowed in generic body", S);
12223 end if;
12224
12225 Error_Msg_N
12226 ("\designated type is a discriminated formal", S);
12227 end if;
12228 end if;
12229 end Constrain_Access;
12230
12231 ---------------------
12232 -- Constrain_Array --
12233 ---------------------
12234
12235 procedure Constrain_Array
12236 (Def_Id : in out Entity_Id;
12237 SI : Node_Id;
12238 Related_Nod : Node_Id;
12239 Related_Id : Entity_Id;
12240 Suffix : Character)
12241 is
12242 C : constant Node_Id := Constraint (SI);
12243 Number_Of_Constraints : Nat := 0;
12244 Index : Node_Id;
12245 S, T : Entity_Id;
12246 Constraint_OK : Boolean := True;
12247
12248 begin
12249 T := Entity (Subtype_Mark (SI));
12250
12251 if Is_Access_Type (T) then
12252 T := Designated_Type (T);
12253 end if;
12254
12255 -- If an index constraint follows a subtype mark in a subtype indication
12256 -- then the type or subtype denoted by the subtype mark must not already
12257 -- impose an index constraint. The subtype mark must denote either an
12258 -- unconstrained array type or an access type whose designated type
12259 -- is such an array type... (RM 3.6.1)
12260
12261 if Is_Constrained (T) then
12262 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12263 Constraint_OK := False;
12264
12265 else
12266 S := First (Constraints (C));
12267 while Present (S) loop
12268 Number_Of_Constraints := Number_Of_Constraints + 1;
12269 Next (S);
12270 end loop;
12271
12272 -- In either case, the index constraint must provide a discrete
12273 -- range for each index of the array type and the type of each
12274 -- discrete range must be the same as that of the corresponding
12275 -- index. (RM 3.6.1)
12276
12277 if Number_Of_Constraints /= Number_Dimensions (T) then
12278 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12279 Constraint_OK := False;
12280
12281 else
12282 S := First (Constraints (C));
12283 Index := First_Index (T);
12284 Analyze (Index);
12285
12286 -- Apply constraints to each index type
12287
12288 for J in 1 .. Number_Of_Constraints loop
12289 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12290 Next (Index);
12291 Next (S);
12292 end loop;
12293
12294 end if;
12295 end if;
12296
12297 if No (Def_Id) then
12298 Def_Id :=
12299 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12300 Set_Parent (Def_Id, Related_Nod);
12301
12302 else
12303 Set_Ekind (Def_Id, E_Array_Subtype);
12304 end if;
12305
12306 Set_Size_Info (Def_Id, (T));
12307 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12308 Set_Etype (Def_Id, Base_Type (T));
12309
12310 if Constraint_OK then
12311 Set_First_Index (Def_Id, First (Constraints (C)));
12312 else
12313 Set_First_Index (Def_Id, First_Index (T));
12314 end if;
12315
12316 Set_Is_Constrained (Def_Id, True);
12317 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12318 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12319
12320 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12321 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12322
12323 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12324 -- We need to initialize the attribute because if Def_Id is previously
12325 -- analyzed through a limited_with clause, it will have the attributes
12326 -- of an incomplete type, one of which is an Elist that overlaps the
12327 -- Packed_Array_Impl_Type field.
12328
12329 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12330
12331 -- Build a freeze node if parent still needs one. Also make sure that
12332 -- the Depends_On_Private status is set because the subtype will need
12333 -- reprocessing at the time the base type does, and also we must set a
12334 -- conditional delay.
12335
12336 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12337 Conditional_Delay (Def_Id, T);
12338 end Constrain_Array;
12339
12340 ------------------------------
12341 -- Constrain_Component_Type --
12342 ------------------------------
12343
12344 function Constrain_Component_Type
12345 (Comp : Entity_Id;
12346 Constrained_Typ : Entity_Id;
12347 Related_Node : Node_Id;
12348 Typ : Entity_Id;
12349 Constraints : Elist_Id) return Entity_Id
12350 is
12351 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12352 Compon_Type : constant Entity_Id := Etype (Comp);
12353
12354 function Build_Constrained_Array_Type
12355 (Old_Type : Entity_Id) return Entity_Id;
12356 -- If Old_Type is an array type, one of whose indexes is constrained
12357 -- by a discriminant, build an Itype whose constraint replaces the
12358 -- discriminant with its value in the constraint.
12359
12360 function Build_Constrained_Discriminated_Type
12361 (Old_Type : Entity_Id) return Entity_Id;
12362 -- Ditto for record components
12363
12364 function Build_Constrained_Access_Type
12365 (Old_Type : Entity_Id) return Entity_Id;
12366 -- Ditto for access types. Makes use of previous two functions, to
12367 -- constrain designated type.
12368
12369 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12370 -- T is an array or discriminated type, C is a list of constraints
12371 -- that apply to T. This routine builds the constrained subtype.
12372
12373 function Is_Discriminant (Expr : Node_Id) return Boolean;
12374 -- Returns True if Expr is a discriminant
12375
12376 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12377 -- Find the value of discriminant Discrim in Constraint
12378
12379 -----------------------------------
12380 -- Build_Constrained_Access_Type --
12381 -----------------------------------
12382
12383 function Build_Constrained_Access_Type
12384 (Old_Type : Entity_Id) return Entity_Id
12385 is
12386 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12387 Itype : Entity_Id;
12388 Desig_Subtype : Entity_Id;
12389 Scop : Entity_Id;
12390
12391 begin
12392 -- if the original access type was not embedded in the enclosing
12393 -- type definition, there is no need to produce a new access
12394 -- subtype. In fact every access type with an explicit constraint
12395 -- generates an itype whose scope is the enclosing record.
12396
12397 if not Is_Type (Scope (Old_Type)) then
12398 return Old_Type;
12399
12400 elsif Is_Array_Type (Desig_Type) then
12401 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12402
12403 elsif Has_Discriminants (Desig_Type) then
12404
12405 -- This may be an access type to an enclosing record type for
12406 -- which we are constructing the constrained components. Return
12407 -- the enclosing record subtype. This is not always correct,
12408 -- but avoids infinite recursion. ???
12409
12410 Desig_Subtype := Any_Type;
12411
12412 for J in reverse 0 .. Scope_Stack.Last loop
12413 Scop := Scope_Stack.Table (J).Entity;
12414
12415 if Is_Type (Scop)
12416 and then Base_Type (Scop) = Base_Type (Desig_Type)
12417 then
12418 Desig_Subtype := Scop;
12419 end if;
12420
12421 exit when not Is_Type (Scop);
12422 end loop;
12423
12424 if Desig_Subtype = Any_Type then
12425 Desig_Subtype :=
12426 Build_Constrained_Discriminated_Type (Desig_Type);
12427 end if;
12428
12429 else
12430 return Old_Type;
12431 end if;
12432
12433 if Desig_Subtype /= Desig_Type then
12434
12435 -- The Related_Node better be here or else we won't be able
12436 -- to attach new itypes to a node in the tree.
12437
12438 pragma Assert (Present (Related_Node));
12439
12440 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12441
12442 Set_Etype (Itype, Base_Type (Old_Type));
12443 Set_Size_Info (Itype, (Old_Type));
12444 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12445 Set_Depends_On_Private (Itype, Has_Private_Component
12446 (Old_Type));
12447 Set_Is_Access_Constant (Itype, Is_Access_Constant
12448 (Old_Type));
12449
12450 -- The new itype needs freezing when it depends on a not frozen
12451 -- type and the enclosing subtype needs freezing.
12452
12453 if Has_Delayed_Freeze (Constrained_Typ)
12454 and then not Is_Frozen (Constrained_Typ)
12455 then
12456 Conditional_Delay (Itype, Base_Type (Old_Type));
12457 end if;
12458
12459 return Itype;
12460
12461 else
12462 return Old_Type;
12463 end if;
12464 end Build_Constrained_Access_Type;
12465
12466 ----------------------------------
12467 -- Build_Constrained_Array_Type --
12468 ----------------------------------
12469
12470 function Build_Constrained_Array_Type
12471 (Old_Type : Entity_Id) return Entity_Id
12472 is
12473 Lo_Expr : Node_Id;
12474 Hi_Expr : Node_Id;
12475 Old_Index : Node_Id;
12476 Range_Node : Node_Id;
12477 Constr_List : List_Id;
12478
12479 Need_To_Create_Itype : Boolean := False;
12480
12481 begin
12482 Old_Index := First_Index (Old_Type);
12483 while Present (Old_Index) loop
12484 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12485
12486 if Is_Discriminant (Lo_Expr)
12487 or else
12488 Is_Discriminant (Hi_Expr)
12489 then
12490 Need_To_Create_Itype := True;
12491 end if;
12492
12493 Next_Index (Old_Index);
12494 end loop;
12495
12496 if Need_To_Create_Itype then
12497 Constr_List := New_List;
12498
12499 Old_Index := First_Index (Old_Type);
12500 while Present (Old_Index) loop
12501 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12502
12503 if Is_Discriminant (Lo_Expr) then
12504 Lo_Expr := Get_Discr_Value (Lo_Expr);
12505 end if;
12506
12507 if Is_Discriminant (Hi_Expr) then
12508 Hi_Expr := Get_Discr_Value (Hi_Expr);
12509 end if;
12510
12511 Range_Node :=
12512 Make_Range
12513 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12514
12515 Append (Range_Node, To => Constr_List);
12516
12517 Next_Index (Old_Index);
12518 end loop;
12519
12520 return Build_Subtype (Old_Type, Constr_List);
12521
12522 else
12523 return Old_Type;
12524 end if;
12525 end Build_Constrained_Array_Type;
12526
12527 ------------------------------------------
12528 -- Build_Constrained_Discriminated_Type --
12529 ------------------------------------------
12530
12531 function Build_Constrained_Discriminated_Type
12532 (Old_Type : Entity_Id) return Entity_Id
12533 is
12534 Expr : Node_Id;
12535 Constr_List : List_Id;
12536 Old_Constraint : Elmt_Id;
12537
12538 Need_To_Create_Itype : Boolean := False;
12539
12540 begin
12541 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12542 while Present (Old_Constraint) loop
12543 Expr := Node (Old_Constraint);
12544
12545 if Is_Discriminant (Expr) then
12546 Need_To_Create_Itype := True;
12547 end if;
12548
12549 Next_Elmt (Old_Constraint);
12550 end loop;
12551
12552 if Need_To_Create_Itype then
12553 Constr_List := New_List;
12554
12555 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12556 while Present (Old_Constraint) loop
12557 Expr := Node (Old_Constraint);
12558
12559 if Is_Discriminant (Expr) then
12560 Expr := Get_Discr_Value (Expr);
12561 end if;
12562
12563 Append (New_Copy_Tree (Expr), To => Constr_List);
12564
12565 Next_Elmt (Old_Constraint);
12566 end loop;
12567
12568 return Build_Subtype (Old_Type, Constr_List);
12569
12570 else
12571 return Old_Type;
12572 end if;
12573 end Build_Constrained_Discriminated_Type;
12574
12575 -------------------
12576 -- Build_Subtype --
12577 -------------------
12578
12579 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12580 Indic : Node_Id;
12581 Subtyp_Decl : Node_Id;
12582 Def_Id : Entity_Id;
12583 Btyp : Entity_Id := Base_Type (T);
12584
12585 begin
12586 -- The Related_Node better be here or else we won't be able to
12587 -- attach new itypes to a node in the tree.
12588
12589 pragma Assert (Present (Related_Node));
12590
12591 -- If the view of the component's type is incomplete or private
12592 -- with unknown discriminants, then the constraint must be applied
12593 -- to the full type.
12594
12595 if Has_Unknown_Discriminants (Btyp)
12596 and then Present (Underlying_Type (Btyp))
12597 then
12598 Btyp := Underlying_Type (Btyp);
12599 end if;
12600
12601 Indic :=
12602 Make_Subtype_Indication (Loc,
12603 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12604 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12605
12606 Def_Id := Create_Itype (Ekind (T), Related_Node);
12607
12608 Subtyp_Decl :=
12609 Make_Subtype_Declaration (Loc,
12610 Defining_Identifier => Def_Id,
12611 Subtype_Indication => Indic);
12612
12613 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12614
12615 -- Itypes must be analyzed with checks off (see package Itypes)
12616
12617 Analyze (Subtyp_Decl, Suppress => All_Checks);
12618
12619 return Def_Id;
12620 end Build_Subtype;
12621
12622 ---------------------
12623 -- Get_Discr_Value --
12624 ---------------------
12625
12626 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12627 D : Entity_Id;
12628 E : Elmt_Id;
12629
12630 begin
12631 -- The discriminant may be declared for the type, in which case we
12632 -- find it by iterating over the list of discriminants. If the
12633 -- discriminant is inherited from a parent type, it appears as the
12634 -- corresponding discriminant of the current type. This will be the
12635 -- case when constraining an inherited component whose constraint is
12636 -- given by a discriminant of the parent.
12637
12638 D := First_Discriminant (Typ);
12639 E := First_Elmt (Constraints);
12640
12641 while Present (D) loop
12642 if D = Entity (Discrim)
12643 or else D = CR_Discriminant (Entity (Discrim))
12644 or else Corresponding_Discriminant (D) = Entity (Discrim)
12645 then
12646 return Node (E);
12647 end if;
12648
12649 Next_Discriminant (D);
12650 Next_Elmt (E);
12651 end loop;
12652
12653 -- The Corresponding_Discriminant mechanism is incomplete, because
12654 -- the correspondence between new and old discriminants is not one
12655 -- to one: one new discriminant can constrain several old ones. In
12656 -- that case, scan sequentially the stored_constraint, the list of
12657 -- discriminants of the parents, and the constraints.
12658
12659 -- Previous code checked for the present of the Stored_Constraint
12660 -- list for the derived type, but did not use it at all. Should it
12661 -- be present when the component is a discriminated task type?
12662
12663 if Is_Derived_Type (Typ)
12664 and then Scope (Entity (Discrim)) = Etype (Typ)
12665 then
12666 D := First_Discriminant (Etype (Typ));
12667 E := First_Elmt (Constraints);
12668 while Present (D) loop
12669 if D = Entity (Discrim) then
12670 return Node (E);
12671 end if;
12672
12673 Next_Discriminant (D);
12674 Next_Elmt (E);
12675 end loop;
12676 end if;
12677
12678 -- Something is wrong if we did not find the value
12679
12680 raise Program_Error;
12681 end Get_Discr_Value;
12682
12683 ---------------------
12684 -- Is_Discriminant --
12685 ---------------------
12686
12687 function Is_Discriminant (Expr : Node_Id) return Boolean is
12688 Discrim_Scope : Entity_Id;
12689
12690 begin
12691 if Denotes_Discriminant (Expr) then
12692 Discrim_Scope := Scope (Entity (Expr));
12693
12694 -- Either we have a reference to one of Typ's discriminants,
12695
12696 pragma Assert (Discrim_Scope = Typ
12697
12698 -- or to the discriminants of the parent type, in the case
12699 -- of a derivation of a tagged type with variants.
12700
12701 or else Discrim_Scope = Etype (Typ)
12702 or else Full_View (Discrim_Scope) = Etype (Typ)
12703
12704 -- or same as above for the case where the discriminants
12705 -- were declared in Typ's private view.
12706
12707 or else (Is_Private_Type (Discrim_Scope)
12708 and then Chars (Discrim_Scope) = Chars (Typ))
12709
12710 -- or else we are deriving from the full view and the
12711 -- discriminant is declared in the private entity.
12712
12713 or else (Is_Private_Type (Typ)
12714 and then Chars (Discrim_Scope) = Chars (Typ))
12715
12716 -- Or we are constrained the corresponding record of a
12717 -- synchronized type that completes a private declaration.
12718
12719 or else (Is_Concurrent_Record_Type (Typ)
12720 and then
12721 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12722
12723 -- or we have a class-wide type, in which case make sure the
12724 -- discriminant found belongs to the root type.
12725
12726 or else (Is_Class_Wide_Type (Typ)
12727 and then Etype (Typ) = Discrim_Scope));
12728
12729 return True;
12730 end if;
12731
12732 -- In all other cases we have something wrong
12733
12734 return False;
12735 end Is_Discriminant;
12736
12737 -- Start of processing for Constrain_Component_Type
12738
12739 begin
12740 if Nkind (Parent (Comp)) = N_Component_Declaration
12741 and then Comes_From_Source (Parent (Comp))
12742 and then Comes_From_Source
12743 (Subtype_Indication (Component_Definition (Parent (Comp))))
12744 and then
12745 Is_Entity_Name
12746 (Subtype_Indication (Component_Definition (Parent (Comp))))
12747 then
12748 return Compon_Type;
12749
12750 elsif Is_Array_Type (Compon_Type) then
12751 return Build_Constrained_Array_Type (Compon_Type);
12752
12753 elsif Has_Discriminants (Compon_Type) then
12754 return Build_Constrained_Discriminated_Type (Compon_Type);
12755
12756 elsif Is_Access_Type (Compon_Type) then
12757 return Build_Constrained_Access_Type (Compon_Type);
12758
12759 else
12760 return Compon_Type;
12761 end if;
12762 end Constrain_Component_Type;
12763
12764 --------------------------
12765 -- Constrain_Concurrent --
12766 --------------------------
12767
12768 -- For concurrent types, the associated record value type carries the same
12769 -- discriminants, so when we constrain a concurrent type, we must constrain
12770 -- the corresponding record type as well.
12771
12772 procedure Constrain_Concurrent
12773 (Def_Id : in out Entity_Id;
12774 SI : Node_Id;
12775 Related_Nod : Node_Id;
12776 Related_Id : Entity_Id;
12777 Suffix : Character)
12778 is
12779 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12780 -- case of a private subtype (needed when only doing semantic analysis).
12781
12782 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12783 T_Val : Entity_Id;
12784
12785 begin
12786 if Is_Access_Type (T_Ent) then
12787 T_Ent := Designated_Type (T_Ent);
12788 end if;
12789
12790 T_Val := Corresponding_Record_Type (T_Ent);
12791
12792 if Present (T_Val) then
12793
12794 if No (Def_Id) then
12795 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12796 end if;
12797
12798 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12799
12800 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12801 Set_Corresponding_Record_Type (Def_Id,
12802 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12803
12804 else
12805 -- If there is no associated record, expansion is disabled and this
12806 -- is a generic context. Create a subtype in any case, so that
12807 -- semantic analysis can proceed.
12808
12809 if No (Def_Id) then
12810 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12811 end if;
12812
12813 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12814 end if;
12815 end Constrain_Concurrent;
12816
12817 ------------------------------------
12818 -- Constrain_Corresponding_Record --
12819 ------------------------------------
12820
12821 function Constrain_Corresponding_Record
12822 (Prot_Subt : Entity_Id;
12823 Corr_Rec : Entity_Id;
12824 Related_Nod : Node_Id) return Entity_Id
12825 is
12826 T_Sub : constant Entity_Id :=
12827 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12828
12829 begin
12830 Set_Etype (T_Sub, Corr_Rec);
12831 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12832 Set_Is_Constrained (T_Sub, True);
12833 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12834 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12835
12836 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12837 Set_Discriminant_Constraint
12838 (T_Sub, Discriminant_Constraint (Prot_Subt));
12839 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12840 Create_Constrained_Components
12841 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12842 end if;
12843
12844 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12845
12846 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12847 Conditional_Delay (T_Sub, Corr_Rec);
12848
12849 else
12850 -- This is a component subtype: it will be frozen in the context of
12851 -- the enclosing record's init_proc, so that discriminant references
12852 -- are resolved to discriminals. (Note: we used to skip freezing
12853 -- altogether in that case, which caused errors downstream for
12854 -- components of a bit packed array type).
12855
12856 Set_Has_Delayed_Freeze (T_Sub);
12857 end if;
12858
12859 return T_Sub;
12860 end Constrain_Corresponding_Record;
12861
12862 -----------------------
12863 -- Constrain_Decimal --
12864 -----------------------
12865
12866 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12867 T : constant Entity_Id := Entity (Subtype_Mark (S));
12868 C : constant Node_Id := Constraint (S);
12869 Loc : constant Source_Ptr := Sloc (C);
12870 Range_Expr : Node_Id;
12871 Digits_Expr : Node_Id;
12872 Digits_Val : Uint;
12873 Bound_Val : Ureal;
12874
12875 begin
12876 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12877
12878 if Nkind (C) = N_Range_Constraint then
12879 Range_Expr := Range_Expression (C);
12880 Digits_Val := Digits_Value (T);
12881
12882 else
12883 pragma Assert (Nkind (C) = N_Digits_Constraint);
12884
12885 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12886
12887 Digits_Expr := Digits_Expression (C);
12888 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12889
12890 Check_Digits_Expression (Digits_Expr);
12891 Digits_Val := Expr_Value (Digits_Expr);
12892
12893 if Digits_Val > Digits_Value (T) then
12894 Error_Msg_N
12895 ("digits expression is incompatible with subtype", C);
12896 Digits_Val := Digits_Value (T);
12897 end if;
12898
12899 if Present (Range_Constraint (C)) then
12900 Range_Expr := Range_Expression (Range_Constraint (C));
12901 else
12902 Range_Expr := Empty;
12903 end if;
12904 end if;
12905
12906 Set_Etype (Def_Id, Base_Type (T));
12907 Set_Size_Info (Def_Id, (T));
12908 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12909 Set_Delta_Value (Def_Id, Delta_Value (T));
12910 Set_Scale_Value (Def_Id, Scale_Value (T));
12911 Set_Small_Value (Def_Id, Small_Value (T));
12912 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12913 Set_Digits_Value (Def_Id, Digits_Val);
12914
12915 -- Manufacture range from given digits value if no range present
12916
12917 if No (Range_Expr) then
12918 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12919 Range_Expr :=
12920 Make_Range (Loc,
12921 Low_Bound =>
12922 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12923 High_Bound =>
12924 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12925 end if;
12926
12927 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12928 Set_Discrete_RM_Size (Def_Id);
12929
12930 -- Unconditionally delay the freeze, since we cannot set size
12931 -- information in all cases correctly until the freeze point.
12932
12933 Set_Has_Delayed_Freeze (Def_Id);
12934 end Constrain_Decimal;
12935
12936 ----------------------------------
12937 -- Constrain_Discriminated_Type --
12938 ----------------------------------
12939
12940 procedure Constrain_Discriminated_Type
12941 (Def_Id : Entity_Id;
12942 S : Node_Id;
12943 Related_Nod : Node_Id;
12944 For_Access : Boolean := False)
12945 is
12946 E : constant Entity_Id := Entity (Subtype_Mark (S));
12947 T : Entity_Id;
12948 C : Node_Id;
12949 Elist : Elist_Id := New_Elmt_List;
12950
12951 procedure Fixup_Bad_Constraint;
12952 -- This is called after finding a bad constraint, and after having
12953 -- posted an appropriate error message. The mission is to leave the
12954 -- entity T in as reasonable state as possible.
12955
12956 --------------------------
12957 -- Fixup_Bad_Constraint --
12958 --------------------------
12959
12960 procedure Fixup_Bad_Constraint is
12961 begin
12962 -- Set a reasonable Ekind for the entity. For an incomplete type,
12963 -- we can't do much, but for other types, we can set the proper
12964 -- corresponding subtype kind.
12965
12966 if Ekind (T) = E_Incomplete_Type then
12967 Set_Ekind (Def_Id, Ekind (T));
12968 else
12969 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12970 end if;
12971
12972 -- Set Etype to the known type, to reduce chances of cascaded errors
12973
12974 Set_Etype (Def_Id, E);
12975 Set_Error_Posted (Def_Id);
12976 end Fixup_Bad_Constraint;
12977
12978 -- Start of processing for Constrain_Discriminated_Type
12979
12980 begin
12981 C := Constraint (S);
12982
12983 -- A discriminant constraint is only allowed in a subtype indication,
12984 -- after a subtype mark. This subtype mark must denote either a type
12985 -- with discriminants, or an access type whose designated type is a
12986 -- type with discriminants. A discriminant constraint specifies the
12987 -- values of these discriminants (RM 3.7.2(5)).
12988
12989 T := Base_Type (Entity (Subtype_Mark (S)));
12990
12991 if Is_Access_Type (T) then
12992 T := Designated_Type (T);
12993 end if;
12994
12995 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12996 -- Avoid generating an error for access-to-incomplete subtypes.
12997
12998 if Ada_Version >= Ada_2005
12999 and then Ekind (T) = E_Incomplete_Type
13000 and then Nkind (Parent (S)) = N_Subtype_Declaration
13001 and then not Is_Itype (Def_Id)
13002 then
13003 -- A little sanity check, emit an error message if the type
13004 -- has discriminants to begin with. Type T may be a regular
13005 -- incomplete type or imported via a limited with clause.
13006
13007 if Has_Discriminants (T)
13008 or else (From_Limited_With (T)
13009 and then Present (Non_Limited_View (T))
13010 and then Nkind (Parent (Non_Limited_View (T))) =
13011 N_Full_Type_Declaration
13012 and then Present (Discriminant_Specifications
13013 (Parent (Non_Limited_View (T)))))
13014 then
13015 Error_Msg_N
13016 ("(Ada 2005) incomplete subtype may not be constrained", C);
13017 else
13018 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13019 end if;
13020
13021 Fixup_Bad_Constraint;
13022 return;
13023
13024 -- Check that the type has visible discriminants. The type may be
13025 -- a private type with unknown discriminants whose full view has
13026 -- discriminants which are invisible.
13027
13028 elsif not Has_Discriminants (T)
13029 or else
13030 (Has_Unknown_Discriminants (T)
13031 and then Is_Private_Type (T))
13032 then
13033 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13034 Fixup_Bad_Constraint;
13035 return;
13036
13037 elsif Is_Constrained (E)
13038 or else (Ekind (E) = E_Class_Wide_Subtype
13039 and then Present (Discriminant_Constraint (E)))
13040 then
13041 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13042 Fixup_Bad_Constraint;
13043 return;
13044 end if;
13045
13046 -- T may be an unconstrained subtype (e.g. a generic actual).
13047 -- Constraint applies to the base type.
13048
13049 T := Base_Type (T);
13050
13051 Elist := Build_Discriminant_Constraints (T, S);
13052
13053 -- If the list returned was empty we had an error in building the
13054 -- discriminant constraint. We have also already signalled an error
13055 -- in the incomplete type case
13056
13057 if Is_Empty_Elmt_List (Elist) then
13058 Fixup_Bad_Constraint;
13059 return;
13060 end if;
13061
13062 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13063 end Constrain_Discriminated_Type;
13064
13065 ---------------------------
13066 -- Constrain_Enumeration --
13067 ---------------------------
13068
13069 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13070 T : constant Entity_Id := Entity (Subtype_Mark (S));
13071 C : constant Node_Id := Constraint (S);
13072
13073 begin
13074 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13075
13076 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13077
13078 Set_Etype (Def_Id, Base_Type (T));
13079 Set_Size_Info (Def_Id, (T));
13080 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13081 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13082
13083 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13084
13085 Set_Discrete_RM_Size (Def_Id);
13086 end Constrain_Enumeration;
13087
13088 ----------------------
13089 -- Constrain_Float --
13090 ----------------------
13091
13092 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13093 T : constant Entity_Id := Entity (Subtype_Mark (S));
13094 C : Node_Id;
13095 D : Node_Id;
13096 Rais : Node_Id;
13097
13098 begin
13099 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13100
13101 Set_Etype (Def_Id, Base_Type (T));
13102 Set_Size_Info (Def_Id, (T));
13103 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13104
13105 -- Process the constraint
13106
13107 C := Constraint (S);
13108
13109 -- Digits constraint present
13110
13111 if Nkind (C) = N_Digits_Constraint then
13112
13113 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13114 Check_Restriction (No_Obsolescent_Features, C);
13115
13116 if Warn_On_Obsolescent_Feature then
13117 Error_Msg_N
13118 ("subtype digits constraint is an " &
13119 "obsolescent feature (RM J.3(8))?j?", C);
13120 end if;
13121
13122 D := Digits_Expression (C);
13123 Analyze_And_Resolve (D, Any_Integer);
13124 Check_Digits_Expression (D);
13125 Set_Digits_Value (Def_Id, Expr_Value (D));
13126
13127 -- Check that digits value is in range. Obviously we can do this
13128 -- at compile time, but it is strictly a runtime check, and of
13129 -- course there is an ACVC test that checks this.
13130
13131 if Digits_Value (Def_Id) > Digits_Value (T) then
13132 Error_Msg_Uint_1 := Digits_Value (T);
13133 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13134 Rais :=
13135 Make_Raise_Constraint_Error (Sloc (D),
13136 Reason => CE_Range_Check_Failed);
13137 Insert_Action (Declaration_Node (Def_Id), Rais);
13138 end if;
13139
13140 C := Range_Constraint (C);
13141
13142 -- No digits constraint present
13143
13144 else
13145 Set_Digits_Value (Def_Id, Digits_Value (T));
13146 end if;
13147
13148 -- Range constraint present
13149
13150 if Nkind (C) = N_Range_Constraint then
13151 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13152
13153 -- No range constraint present
13154
13155 else
13156 pragma Assert (No (C));
13157 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13158 end if;
13159
13160 Set_Is_Constrained (Def_Id);
13161 end Constrain_Float;
13162
13163 ---------------------
13164 -- Constrain_Index --
13165 ---------------------
13166
13167 procedure Constrain_Index
13168 (Index : Node_Id;
13169 S : Node_Id;
13170 Related_Nod : Node_Id;
13171 Related_Id : Entity_Id;
13172 Suffix : Character;
13173 Suffix_Index : Nat)
13174 is
13175 Def_Id : Entity_Id;
13176 R : Node_Id := Empty;
13177 T : constant Entity_Id := Etype (Index);
13178
13179 begin
13180 Def_Id :=
13181 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13182 Set_Etype (Def_Id, Base_Type (T));
13183
13184 if Nkind (S) = N_Range
13185 or else
13186 (Nkind (S) = N_Attribute_Reference
13187 and then Attribute_Name (S) = Name_Range)
13188 then
13189 -- A Range attribute will be transformed into N_Range by Resolve
13190
13191 Analyze (S);
13192 Set_Etype (S, T);
13193 R := S;
13194
13195 Process_Range_Expr_In_Decl (R, T);
13196
13197 if not Error_Posted (S)
13198 and then
13199 (Nkind (S) /= N_Range
13200 or else not Covers (T, (Etype (Low_Bound (S))))
13201 or else not Covers (T, (Etype (High_Bound (S)))))
13202 then
13203 if Base_Type (T) /= Any_Type
13204 and then Etype (Low_Bound (S)) /= Any_Type
13205 and then Etype (High_Bound (S)) /= Any_Type
13206 then
13207 Error_Msg_N ("range expected", S);
13208 end if;
13209 end if;
13210
13211 elsif Nkind (S) = N_Subtype_Indication then
13212
13213 -- The parser has verified that this is a discrete indication
13214
13215 Resolve_Discrete_Subtype_Indication (S, T);
13216 Bad_Predicated_Subtype_Use
13217 ("subtype& has predicate, not allowed in index constraint",
13218 S, Entity (Subtype_Mark (S)));
13219
13220 R := Range_Expression (Constraint (S));
13221
13222 -- Capture values of bounds and generate temporaries for them if
13223 -- needed, since checks may cause duplication of the expressions
13224 -- which must not be reevaluated.
13225
13226 -- The forced evaluation removes side effects from expressions, which
13227 -- should occur also in GNATprove mode. Otherwise, we end up with
13228 -- unexpected insertions of actions at places where this is not
13229 -- supposed to occur, e.g. on default parameters of a call.
13230
13231 if Expander_Active or GNATprove_Mode then
13232 Force_Evaluation
13233 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13234 Force_Evaluation
13235 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13236 end if;
13237
13238 elsif Nkind (S) = N_Discriminant_Association then
13239
13240 -- Syntactically valid in subtype indication
13241
13242 Error_Msg_N ("invalid index constraint", S);
13243 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13244 return;
13245
13246 -- Subtype_Mark case, no anonymous subtypes to construct
13247
13248 else
13249 Analyze (S);
13250
13251 if Is_Entity_Name (S) then
13252 if not Is_Type (Entity (S)) then
13253 Error_Msg_N ("expect subtype mark for index constraint", S);
13254
13255 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13256 Wrong_Type (S, Base_Type (T));
13257
13258 -- Check error of subtype with predicate in index constraint
13259
13260 else
13261 Bad_Predicated_Subtype_Use
13262 ("subtype& has predicate, not allowed in index constraint",
13263 S, Entity (S));
13264 end if;
13265
13266 return;
13267
13268 else
13269 Error_Msg_N ("invalid index constraint", S);
13270 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13271 return;
13272 end if;
13273 end if;
13274
13275 -- Complete construction of the Itype
13276
13277 if Is_Modular_Integer_Type (T) then
13278 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13279
13280 elsif Is_Integer_Type (T) then
13281 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13282
13283 else
13284 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13285 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13286 Set_First_Literal (Def_Id, First_Literal (T));
13287 end if;
13288
13289 Set_Size_Info (Def_Id, (T));
13290 Set_RM_Size (Def_Id, RM_Size (T));
13291 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13292
13293 Set_Scalar_Range (Def_Id, R);
13294
13295 Set_Etype (S, Def_Id);
13296 Set_Discrete_RM_Size (Def_Id);
13297 end Constrain_Index;
13298
13299 -----------------------
13300 -- Constrain_Integer --
13301 -----------------------
13302
13303 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13304 T : constant Entity_Id := Entity (Subtype_Mark (S));
13305 C : constant Node_Id := Constraint (S);
13306
13307 begin
13308 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13309
13310 if Is_Modular_Integer_Type (T) then
13311 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13312 else
13313 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13314 end if;
13315
13316 Set_Etype (Def_Id, Base_Type (T));
13317 Set_Size_Info (Def_Id, (T));
13318 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13319 Set_Discrete_RM_Size (Def_Id);
13320 end Constrain_Integer;
13321
13322 ------------------------------
13323 -- Constrain_Ordinary_Fixed --
13324 ------------------------------
13325
13326 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13327 T : constant Entity_Id := Entity (Subtype_Mark (S));
13328 C : Node_Id;
13329 D : Node_Id;
13330 Rais : Node_Id;
13331
13332 begin
13333 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13334 Set_Etype (Def_Id, Base_Type (T));
13335 Set_Size_Info (Def_Id, (T));
13336 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13337 Set_Small_Value (Def_Id, Small_Value (T));
13338
13339 -- Process the constraint
13340
13341 C := Constraint (S);
13342
13343 -- Delta constraint present
13344
13345 if Nkind (C) = N_Delta_Constraint then
13346
13347 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13348 Check_Restriction (No_Obsolescent_Features, C);
13349
13350 if Warn_On_Obsolescent_Feature then
13351 Error_Msg_S
13352 ("subtype delta constraint is an " &
13353 "obsolescent feature (RM J.3(7))?j?");
13354 end if;
13355
13356 D := Delta_Expression (C);
13357 Analyze_And_Resolve (D, Any_Real);
13358 Check_Delta_Expression (D);
13359 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13360
13361 -- Check that delta value is in range. Obviously we can do this
13362 -- at compile time, but it is strictly a runtime check, and of
13363 -- course there is an ACVC test that checks this.
13364
13365 if Delta_Value (Def_Id) < Delta_Value (T) then
13366 Error_Msg_N ("??delta value is too small", D);
13367 Rais :=
13368 Make_Raise_Constraint_Error (Sloc (D),
13369 Reason => CE_Range_Check_Failed);
13370 Insert_Action (Declaration_Node (Def_Id), Rais);
13371 end if;
13372
13373 C := Range_Constraint (C);
13374
13375 -- No delta constraint present
13376
13377 else
13378 Set_Delta_Value (Def_Id, Delta_Value (T));
13379 end if;
13380
13381 -- Range constraint present
13382
13383 if Nkind (C) = N_Range_Constraint then
13384 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13385
13386 -- No range constraint present
13387
13388 else
13389 pragma Assert (No (C));
13390 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13391 end if;
13392
13393 Set_Discrete_RM_Size (Def_Id);
13394
13395 -- Unconditionally delay the freeze, since we cannot set size
13396 -- information in all cases correctly until the freeze point.
13397
13398 Set_Has_Delayed_Freeze (Def_Id);
13399 end Constrain_Ordinary_Fixed;
13400
13401 -----------------------
13402 -- Contain_Interface --
13403 -----------------------
13404
13405 function Contain_Interface
13406 (Iface : Entity_Id;
13407 Ifaces : Elist_Id) return Boolean
13408 is
13409 Iface_Elmt : Elmt_Id;
13410
13411 begin
13412 if Present (Ifaces) then
13413 Iface_Elmt := First_Elmt (Ifaces);
13414 while Present (Iface_Elmt) loop
13415 if Node (Iface_Elmt) = Iface then
13416 return True;
13417 end if;
13418
13419 Next_Elmt (Iface_Elmt);
13420 end loop;
13421 end if;
13422
13423 return False;
13424 end Contain_Interface;
13425
13426 ---------------------------
13427 -- Convert_Scalar_Bounds --
13428 ---------------------------
13429
13430 procedure Convert_Scalar_Bounds
13431 (N : Node_Id;
13432 Parent_Type : Entity_Id;
13433 Derived_Type : Entity_Id;
13434 Loc : Source_Ptr)
13435 is
13436 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13437
13438 Lo : Node_Id;
13439 Hi : Node_Id;
13440 Rng : Node_Id;
13441
13442 begin
13443 -- Defend against previous errors
13444
13445 if No (Scalar_Range (Derived_Type)) then
13446 Check_Error_Detected;
13447 return;
13448 end if;
13449
13450 Lo := Build_Scalar_Bound
13451 (Type_Low_Bound (Derived_Type),
13452 Parent_Type, Implicit_Base);
13453
13454 Hi := Build_Scalar_Bound
13455 (Type_High_Bound (Derived_Type),
13456 Parent_Type, Implicit_Base);
13457
13458 Rng :=
13459 Make_Range (Loc,
13460 Low_Bound => Lo,
13461 High_Bound => Hi);
13462
13463 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13464
13465 Set_Parent (Rng, N);
13466 Set_Scalar_Range (Derived_Type, Rng);
13467
13468 -- Analyze the bounds
13469
13470 Analyze_And_Resolve (Lo, Implicit_Base);
13471 Analyze_And_Resolve (Hi, Implicit_Base);
13472
13473 -- Analyze the range itself, except that we do not analyze it if
13474 -- the bounds are real literals, and we have a fixed-point type.
13475 -- The reason for this is that we delay setting the bounds in this
13476 -- case till we know the final Small and Size values (see circuit
13477 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13478
13479 if Is_Fixed_Point_Type (Parent_Type)
13480 and then Nkind (Lo) = N_Real_Literal
13481 and then Nkind (Hi) = N_Real_Literal
13482 then
13483 return;
13484
13485 -- Here we do the analysis of the range
13486
13487 -- Note: we do this manually, since if we do a normal Analyze and
13488 -- Resolve call, there are problems with the conversions used for
13489 -- the derived type range.
13490
13491 else
13492 Set_Etype (Rng, Implicit_Base);
13493 Set_Analyzed (Rng, True);
13494 end if;
13495 end Convert_Scalar_Bounds;
13496
13497 -------------------
13498 -- Copy_And_Swap --
13499 -------------------
13500
13501 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13502 begin
13503 -- Initialize new full declaration entity by copying the pertinent
13504 -- fields of the corresponding private declaration entity.
13505
13506 -- We temporarily set Ekind to a value appropriate for a type to
13507 -- avoid assert failures in Einfo from checking for setting type
13508 -- attributes on something that is not a type. Ekind (Priv) is an
13509 -- appropriate choice, since it allowed the attributes to be set
13510 -- in the first place. This Ekind value will be modified later.
13511
13512 Set_Ekind (Full, Ekind (Priv));
13513
13514 -- Also set Etype temporarily to Any_Type, again, in the absence
13515 -- of errors, it will be properly reset, and if there are errors,
13516 -- then we want a value of Any_Type to remain.
13517
13518 Set_Etype (Full, Any_Type);
13519
13520 -- Now start copying attributes
13521
13522 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13523
13524 if Has_Discriminants (Full) then
13525 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13526 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13527 end if;
13528
13529 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13530 Set_Homonym (Full, Homonym (Priv));
13531 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13532 Set_Is_Public (Full, Is_Public (Priv));
13533 Set_Is_Pure (Full, Is_Pure (Priv));
13534 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13535 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13536 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13537 Set_Has_Pragma_Unreferenced_Objects
13538 (Full, Has_Pragma_Unreferenced_Objects
13539 (Priv));
13540
13541 Conditional_Delay (Full, Priv);
13542
13543 if Is_Tagged_Type (Full) then
13544 Set_Direct_Primitive_Operations
13545 (Full, Direct_Primitive_Operations (Priv));
13546 Set_No_Tagged_Streams_Pragma
13547 (Full, No_Tagged_Streams_Pragma (Priv));
13548
13549 if Is_Base_Type (Priv) then
13550 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13551 end if;
13552 end if;
13553
13554 Set_Is_Volatile (Full, Is_Volatile (Priv));
13555 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13556 Set_Scope (Full, Scope (Priv));
13557 Set_Next_Entity (Full, Next_Entity (Priv));
13558 Set_First_Entity (Full, First_Entity (Priv));
13559 Set_Last_Entity (Full, Last_Entity (Priv));
13560
13561 -- If access types have been recorded for later handling, keep them in
13562 -- the full view so that they get handled when the full view freeze
13563 -- node is expanded.
13564
13565 if Present (Freeze_Node (Priv))
13566 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13567 then
13568 Ensure_Freeze_Node (Full);
13569 Set_Access_Types_To_Process
13570 (Freeze_Node (Full),
13571 Access_Types_To_Process (Freeze_Node (Priv)));
13572 end if;
13573
13574 -- Swap the two entities. Now Private is the full type entity and Full
13575 -- is the private one. They will be swapped back at the end of the
13576 -- private part. This swapping ensures that the entity that is visible
13577 -- in the private part is the full declaration.
13578
13579 Exchange_Entities (Priv, Full);
13580 Append_Entity (Full, Scope (Full));
13581 end Copy_And_Swap;
13582
13583 -------------------------------------
13584 -- Copy_Array_Base_Type_Attributes --
13585 -------------------------------------
13586
13587 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13588 begin
13589 Set_Component_Alignment (T1, Component_Alignment (T2));
13590 Set_Component_Type (T1, Component_Type (T2));
13591 Set_Component_Size (T1, Component_Size (T2));
13592 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13593 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13594 Set_Has_Protected (T1, Has_Protected (T2));
13595 Set_Has_Task (T1, Has_Task (T2));
13596 Set_Is_Packed (T1, Is_Packed (T2));
13597 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13598 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13599 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13600 end Copy_Array_Base_Type_Attributes;
13601
13602 -----------------------------------
13603 -- Copy_Array_Subtype_Attributes --
13604 -----------------------------------
13605
13606 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13607 begin
13608 Set_Size_Info (T1, T2);
13609
13610 Set_First_Index (T1, First_Index (T2));
13611 Set_Is_Aliased (T1, Is_Aliased (T2));
13612 Set_Is_Volatile (T1, Is_Volatile (T2));
13613 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13614 Set_Is_Constrained (T1, Is_Constrained (T2));
13615 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13616 Inherit_Rep_Item_Chain (T1, T2);
13617 Set_Convention (T1, Convention (T2));
13618 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13619 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13620 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13621 end Copy_Array_Subtype_Attributes;
13622
13623 -----------------------------------
13624 -- Create_Constrained_Components --
13625 -----------------------------------
13626
13627 procedure Create_Constrained_Components
13628 (Subt : Entity_Id;
13629 Decl_Node : Node_Id;
13630 Typ : Entity_Id;
13631 Constraints : Elist_Id)
13632 is
13633 Loc : constant Source_Ptr := Sloc (Subt);
13634 Comp_List : constant Elist_Id := New_Elmt_List;
13635 Parent_Type : constant Entity_Id := Etype (Typ);
13636 Assoc_List : constant List_Id := New_List;
13637 Discr_Val : Elmt_Id;
13638 Errors : Boolean;
13639 New_C : Entity_Id;
13640 Old_C : Entity_Id;
13641 Is_Static : Boolean := True;
13642
13643 procedure Collect_Fixed_Components (Typ : Entity_Id);
13644 -- Collect parent type components that do not appear in a variant part
13645
13646 procedure Create_All_Components;
13647 -- Iterate over Comp_List to create the components of the subtype
13648
13649 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13650 -- Creates a new component from Old_Compon, copying all the fields from
13651 -- it, including its Etype, inserts the new component in the Subt entity
13652 -- chain and returns the new component.
13653
13654 function Is_Variant_Record (T : Entity_Id) return Boolean;
13655 -- If true, and discriminants are static, collect only components from
13656 -- variants selected by discriminant values.
13657
13658 ------------------------------
13659 -- Collect_Fixed_Components --
13660 ------------------------------
13661
13662 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13663 begin
13664 -- Build association list for discriminants, and find components of the
13665 -- variant part selected by the values of the discriminants.
13666
13667 Old_C := First_Discriminant (Typ);
13668 Discr_Val := First_Elmt (Constraints);
13669 while Present (Old_C) loop
13670 Append_To (Assoc_List,
13671 Make_Component_Association (Loc,
13672 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13673 Expression => New_Copy (Node (Discr_Val))));
13674
13675 Next_Elmt (Discr_Val);
13676 Next_Discriminant (Old_C);
13677 end loop;
13678
13679 -- The tag and the possible parent component are unconditionally in
13680 -- the subtype.
13681
13682 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13683 Old_C := First_Component (Typ);
13684 while Present (Old_C) loop
13685 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13686 Append_Elmt (Old_C, Comp_List);
13687 end if;
13688
13689 Next_Component (Old_C);
13690 end loop;
13691 end if;
13692 end Collect_Fixed_Components;
13693
13694 ---------------------------
13695 -- Create_All_Components --
13696 ---------------------------
13697
13698 procedure Create_All_Components is
13699 Comp : Elmt_Id;
13700
13701 begin
13702 Comp := First_Elmt (Comp_List);
13703 while Present (Comp) loop
13704 Old_C := Node (Comp);
13705 New_C := Create_Component (Old_C);
13706
13707 Set_Etype
13708 (New_C,
13709 Constrain_Component_Type
13710 (Old_C, Subt, Decl_Node, Typ, Constraints));
13711 Set_Is_Public (New_C, Is_Public (Subt));
13712
13713 Next_Elmt (Comp);
13714 end loop;
13715 end Create_All_Components;
13716
13717 ----------------------
13718 -- Create_Component --
13719 ----------------------
13720
13721 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13722 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13723
13724 begin
13725 if Ekind (Old_Compon) = E_Discriminant
13726 and then Is_Completely_Hidden (Old_Compon)
13727 then
13728 -- This is a shadow discriminant created for a discriminant of
13729 -- the parent type, which needs to be present in the subtype.
13730 -- Give the shadow discriminant an internal name that cannot
13731 -- conflict with that of visible components.
13732
13733 Set_Chars (New_Compon, New_Internal_Name ('C'));
13734 end if;
13735
13736 -- Set the parent so we have a proper link for freezing etc. This is
13737 -- not a real parent pointer, since of course our parent does not own
13738 -- up to us and reference us, we are an illegitimate child of the
13739 -- original parent.
13740
13741 Set_Parent (New_Compon, Parent (Old_Compon));
13742
13743 -- If the old component's Esize was already determined and is a
13744 -- static value, then the new component simply inherits it. Otherwise
13745 -- the old component's size may require run-time determination, but
13746 -- the new component's size still might be statically determinable
13747 -- (if, for example it has a static constraint). In that case we want
13748 -- Layout_Type to recompute the component's size, so we reset its
13749 -- size and positional fields.
13750
13751 if Frontend_Layout_On_Target
13752 and then not Known_Static_Esize (Old_Compon)
13753 then
13754 Set_Esize (New_Compon, Uint_0);
13755 Init_Normalized_First_Bit (New_Compon);
13756 Init_Normalized_Position (New_Compon);
13757 Init_Normalized_Position_Max (New_Compon);
13758 end if;
13759
13760 -- We do not want this node marked as Comes_From_Source, since
13761 -- otherwise it would get first class status and a separate cross-
13762 -- reference line would be generated. Illegitimate children do not
13763 -- rate such recognition.
13764
13765 Set_Comes_From_Source (New_Compon, False);
13766
13767 -- But it is a real entity, and a birth certificate must be properly
13768 -- registered by entering it into the entity list.
13769
13770 Enter_Name (New_Compon);
13771
13772 return New_Compon;
13773 end Create_Component;
13774
13775 -----------------------
13776 -- Is_Variant_Record --
13777 -----------------------
13778
13779 function Is_Variant_Record (T : Entity_Id) return Boolean is
13780 begin
13781 return Nkind (Parent (T)) = N_Full_Type_Declaration
13782 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13783 and then Present (Component_List (Type_Definition (Parent (T))))
13784 and then
13785 Present
13786 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13787 end Is_Variant_Record;
13788
13789 -- Start of processing for Create_Constrained_Components
13790
13791 begin
13792 pragma Assert (Subt /= Base_Type (Subt));
13793 pragma Assert (Typ = Base_Type (Typ));
13794
13795 Set_First_Entity (Subt, Empty);
13796 Set_Last_Entity (Subt, Empty);
13797
13798 -- Check whether constraint is fully static, in which case we can
13799 -- optimize the list of components.
13800
13801 Discr_Val := First_Elmt (Constraints);
13802 while Present (Discr_Val) loop
13803 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13804 Is_Static := False;
13805 exit;
13806 end if;
13807
13808 Next_Elmt (Discr_Val);
13809 end loop;
13810
13811 Set_Has_Static_Discriminants (Subt, Is_Static);
13812
13813 Push_Scope (Subt);
13814
13815 -- Inherit the discriminants of the parent type
13816
13817 Add_Discriminants : declare
13818 Num_Disc : Int;
13819 Num_Gird : Int;
13820
13821 begin
13822 Num_Disc := 0;
13823 Old_C := First_Discriminant (Typ);
13824
13825 while Present (Old_C) loop
13826 Num_Disc := Num_Disc + 1;
13827 New_C := Create_Component (Old_C);
13828 Set_Is_Public (New_C, Is_Public (Subt));
13829 Next_Discriminant (Old_C);
13830 end loop;
13831
13832 -- For an untagged derived subtype, the number of discriminants may
13833 -- be smaller than the number of inherited discriminants, because
13834 -- several of them may be renamed by a single new discriminant or
13835 -- constrained. In this case, add the hidden discriminants back into
13836 -- the subtype, because they need to be present if the optimizer of
13837 -- the GCC 4.x back-end decides to break apart assignments between
13838 -- objects using the parent view into member-wise assignments.
13839
13840 Num_Gird := 0;
13841
13842 if Is_Derived_Type (Typ)
13843 and then not Is_Tagged_Type (Typ)
13844 then
13845 Old_C := First_Stored_Discriminant (Typ);
13846
13847 while Present (Old_C) loop
13848 Num_Gird := Num_Gird + 1;
13849 Next_Stored_Discriminant (Old_C);
13850 end loop;
13851 end if;
13852
13853 if Num_Gird > Num_Disc then
13854
13855 -- Find out multiple uses of new discriminants, and add hidden
13856 -- components for the extra renamed discriminants. We recognize
13857 -- multiple uses through the Corresponding_Discriminant of a
13858 -- new discriminant: if it constrains several old discriminants,
13859 -- this field points to the last one in the parent type. The
13860 -- stored discriminants of the derived type have the same name
13861 -- as those of the parent.
13862
13863 declare
13864 Constr : Elmt_Id;
13865 New_Discr : Entity_Id;
13866 Old_Discr : Entity_Id;
13867
13868 begin
13869 Constr := First_Elmt (Stored_Constraint (Typ));
13870 Old_Discr := First_Stored_Discriminant (Typ);
13871 while Present (Constr) loop
13872 if Is_Entity_Name (Node (Constr))
13873 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13874 then
13875 New_Discr := Entity (Node (Constr));
13876
13877 if Chars (Corresponding_Discriminant (New_Discr)) /=
13878 Chars (Old_Discr)
13879 then
13880 -- The new discriminant has been used to rename a
13881 -- subsequent old discriminant. Introduce a shadow
13882 -- component for the current old discriminant.
13883
13884 New_C := Create_Component (Old_Discr);
13885 Set_Original_Record_Component (New_C, Old_Discr);
13886 end if;
13887
13888 else
13889 -- The constraint has eliminated the old discriminant.
13890 -- Introduce a shadow component.
13891
13892 New_C := Create_Component (Old_Discr);
13893 Set_Original_Record_Component (New_C, Old_Discr);
13894 end if;
13895
13896 Next_Elmt (Constr);
13897 Next_Stored_Discriminant (Old_Discr);
13898 end loop;
13899 end;
13900 end if;
13901 end Add_Discriminants;
13902
13903 if Is_Static
13904 and then Is_Variant_Record (Typ)
13905 then
13906 Collect_Fixed_Components (Typ);
13907
13908 Gather_Components (
13909 Typ,
13910 Component_List (Type_Definition (Parent (Typ))),
13911 Governed_By => Assoc_List,
13912 Into => Comp_List,
13913 Report_Errors => Errors);
13914 pragma Assert (not Errors);
13915
13916 Create_All_Components;
13917
13918 -- If the subtype declaration is created for a tagged type derivation
13919 -- with constraints, we retrieve the record definition of the parent
13920 -- type to select the components of the proper variant.
13921
13922 elsif Is_Static
13923 and then Is_Tagged_Type (Typ)
13924 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13925 and then
13926 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13927 and then Is_Variant_Record (Parent_Type)
13928 then
13929 Collect_Fixed_Components (Typ);
13930
13931 Gather_Components
13932 (Typ,
13933 Component_List (Type_Definition (Parent (Parent_Type))),
13934 Governed_By => Assoc_List,
13935 Into => Comp_List,
13936 Report_Errors => Errors);
13937
13938 -- Note: previously there was a check at this point that no errors
13939 -- were detected. As a consequence of AI05-220 there may be an error
13940 -- if an inherited discriminant that controls a variant has a non-
13941 -- static constraint.
13942
13943 -- If the tagged derivation has a type extension, collect all the
13944 -- new components therein.
13945
13946 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
13947 then
13948 Old_C := First_Component (Typ);
13949 while Present (Old_C) loop
13950 if Original_Record_Component (Old_C) = Old_C
13951 and then Chars (Old_C) /= Name_uTag
13952 and then Chars (Old_C) /= Name_uParent
13953 then
13954 Append_Elmt (Old_C, Comp_List);
13955 end if;
13956
13957 Next_Component (Old_C);
13958 end loop;
13959 end if;
13960
13961 Create_All_Components;
13962
13963 else
13964 -- If discriminants are not static, or if this is a multi-level type
13965 -- extension, we have to include all components of the parent type.
13966
13967 Old_C := First_Component (Typ);
13968 while Present (Old_C) loop
13969 New_C := Create_Component (Old_C);
13970
13971 Set_Etype
13972 (New_C,
13973 Constrain_Component_Type
13974 (Old_C, Subt, Decl_Node, Typ, Constraints));
13975 Set_Is_Public (New_C, Is_Public (Subt));
13976
13977 Next_Component (Old_C);
13978 end loop;
13979 end if;
13980
13981 End_Scope;
13982 end Create_Constrained_Components;
13983
13984 ------------------------------------------
13985 -- Decimal_Fixed_Point_Type_Declaration --
13986 ------------------------------------------
13987
13988 procedure Decimal_Fixed_Point_Type_Declaration
13989 (T : Entity_Id;
13990 Def : Node_Id)
13991 is
13992 Loc : constant Source_Ptr := Sloc (Def);
13993 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13994 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13995 Implicit_Base : Entity_Id;
13996 Digs_Val : Uint;
13997 Delta_Val : Ureal;
13998 Scale_Val : Uint;
13999 Bound_Val : Ureal;
14000
14001 begin
14002 Check_SPARK_05_Restriction
14003 ("decimal fixed point type is not allowed", Def);
14004 Check_Restriction (No_Fixed_Point, Def);
14005
14006 -- Create implicit base type
14007
14008 Implicit_Base :=
14009 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14010 Set_Etype (Implicit_Base, Implicit_Base);
14011
14012 -- Analyze and process delta expression
14013
14014 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14015
14016 Check_Delta_Expression (Delta_Expr);
14017 Delta_Val := Expr_Value_R (Delta_Expr);
14018
14019 -- Check delta is power of 10, and determine scale value from it
14020
14021 declare
14022 Val : Ureal;
14023
14024 begin
14025 Scale_Val := Uint_0;
14026 Val := Delta_Val;
14027
14028 if Val < Ureal_1 then
14029 while Val < Ureal_1 loop
14030 Val := Val * Ureal_10;
14031 Scale_Val := Scale_Val + 1;
14032 end loop;
14033
14034 if Scale_Val > 18 then
14035 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14036 Scale_Val := UI_From_Int (+18);
14037 end if;
14038
14039 else
14040 while Val > Ureal_1 loop
14041 Val := Val / Ureal_10;
14042 Scale_Val := Scale_Val - 1;
14043 end loop;
14044
14045 if Scale_Val < -18 then
14046 Error_Msg_N ("scale is less than minimum value of -18", Def);
14047 Scale_Val := UI_From_Int (-18);
14048 end if;
14049 end if;
14050
14051 if Val /= Ureal_1 then
14052 Error_Msg_N ("delta expression must be a power of 10", Def);
14053 Delta_Val := Ureal_10 ** (-Scale_Val);
14054 end if;
14055 end;
14056
14057 -- Set delta, scale and small (small = delta for decimal type)
14058
14059 Set_Delta_Value (Implicit_Base, Delta_Val);
14060 Set_Scale_Value (Implicit_Base, Scale_Val);
14061 Set_Small_Value (Implicit_Base, Delta_Val);
14062
14063 -- Analyze and process digits expression
14064
14065 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14066 Check_Digits_Expression (Digs_Expr);
14067 Digs_Val := Expr_Value (Digs_Expr);
14068
14069 if Digs_Val > 18 then
14070 Digs_Val := UI_From_Int (+18);
14071 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14072 end if;
14073
14074 Set_Digits_Value (Implicit_Base, Digs_Val);
14075 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14076
14077 -- Set range of base type from digits value for now. This will be
14078 -- expanded to represent the true underlying base range by Freeze.
14079
14080 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14081
14082 -- Note: We leave size as zero for now, size will be set at freeze
14083 -- time. We have to do this for ordinary fixed-point, because the size
14084 -- depends on the specified small, and we might as well do the same for
14085 -- decimal fixed-point.
14086
14087 pragma Assert (Esize (Implicit_Base) = Uint_0);
14088
14089 -- If there are bounds given in the declaration use them as the
14090 -- bounds of the first named subtype.
14091
14092 if Present (Real_Range_Specification (Def)) then
14093 declare
14094 RRS : constant Node_Id := Real_Range_Specification (Def);
14095 Low : constant Node_Id := Low_Bound (RRS);
14096 High : constant Node_Id := High_Bound (RRS);
14097 Low_Val : Ureal;
14098 High_Val : Ureal;
14099
14100 begin
14101 Analyze_And_Resolve (Low, Any_Real);
14102 Analyze_And_Resolve (High, Any_Real);
14103 Check_Real_Bound (Low);
14104 Check_Real_Bound (High);
14105 Low_Val := Expr_Value_R (Low);
14106 High_Val := Expr_Value_R (High);
14107
14108 if Low_Val < (-Bound_Val) then
14109 Error_Msg_N
14110 ("range low bound too small for digits value", Low);
14111 Low_Val := -Bound_Val;
14112 end if;
14113
14114 if High_Val > Bound_Val then
14115 Error_Msg_N
14116 ("range high bound too large for digits value", High);
14117 High_Val := Bound_Val;
14118 end if;
14119
14120 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14121 end;
14122
14123 -- If no explicit range, use range that corresponds to given
14124 -- digits value. This will end up as the final range for the
14125 -- first subtype.
14126
14127 else
14128 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14129 end if;
14130
14131 -- Complete entity for first subtype. The inheritance of the rep item
14132 -- chain ensures that SPARK-related pragmas are not clobbered when the
14133 -- decimal fixed point type acts as a full view of a private type.
14134
14135 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14136 Set_Etype (T, Implicit_Base);
14137 Set_Size_Info (T, Implicit_Base);
14138 Inherit_Rep_Item_Chain (T, Implicit_Base);
14139 Set_Digits_Value (T, Digs_Val);
14140 Set_Delta_Value (T, Delta_Val);
14141 Set_Small_Value (T, Delta_Val);
14142 Set_Scale_Value (T, Scale_Val);
14143 Set_Is_Constrained (T);
14144 end Decimal_Fixed_Point_Type_Declaration;
14145
14146 -----------------------------------
14147 -- Derive_Progenitor_Subprograms --
14148 -----------------------------------
14149
14150 procedure Derive_Progenitor_Subprograms
14151 (Parent_Type : Entity_Id;
14152 Tagged_Type : Entity_Id)
14153 is
14154 E : Entity_Id;
14155 Elmt : Elmt_Id;
14156 Iface : Entity_Id;
14157 Iface_Elmt : Elmt_Id;
14158 Iface_Subp : Entity_Id;
14159 New_Subp : Entity_Id := Empty;
14160 Prim_Elmt : Elmt_Id;
14161 Subp : Entity_Id;
14162 Typ : Entity_Id;
14163
14164 begin
14165 pragma Assert (Ada_Version >= Ada_2005
14166 and then Is_Record_Type (Tagged_Type)
14167 and then Is_Tagged_Type (Tagged_Type)
14168 and then Has_Interfaces (Tagged_Type));
14169
14170 -- Step 1: Transfer to the full-view primitives associated with the
14171 -- partial-view that cover interface primitives. Conceptually this
14172 -- work should be done later by Process_Full_View; done here to
14173 -- simplify its implementation at later stages. It can be safely
14174 -- done here because interfaces must be visible in the partial and
14175 -- private view (RM 7.3(7.3/2)).
14176
14177 -- Small optimization: This work is only required if the parent may
14178 -- have entities whose Alias attribute reference an interface primitive.
14179 -- Such a situation may occur if the parent is an abstract type and the
14180 -- primitive has not been yet overridden or if the parent is a generic
14181 -- formal type covering interfaces.
14182
14183 -- If the tagged type is not abstract, it cannot have abstract
14184 -- primitives (the only entities in the list of primitives of
14185 -- non-abstract tagged types that can reference abstract primitives
14186 -- through its Alias attribute are the internal entities that have
14187 -- attribute Interface_Alias, and these entities are generated later
14188 -- by Add_Internal_Interface_Entities).
14189
14190 if In_Private_Part (Current_Scope)
14191 and then (Is_Abstract_Type (Parent_Type)
14192 or else
14193 Is_Generic_Type (Parent_Type))
14194 then
14195 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14196 while Present (Elmt) loop
14197 Subp := Node (Elmt);
14198
14199 -- At this stage it is not possible to have entities in the list
14200 -- of primitives that have attribute Interface_Alias.
14201
14202 pragma Assert (No (Interface_Alias (Subp)));
14203
14204 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14205
14206 if Is_Interface (Typ) then
14207 E := Find_Primitive_Covering_Interface
14208 (Tagged_Type => Tagged_Type,
14209 Iface_Prim => Subp);
14210
14211 if Present (E)
14212 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14213 then
14214 Replace_Elmt (Elmt, E);
14215 Remove_Homonym (Subp);
14216 end if;
14217 end if;
14218
14219 Next_Elmt (Elmt);
14220 end loop;
14221 end if;
14222
14223 -- Step 2: Add primitives of progenitors that are not implemented by
14224 -- parents of Tagged_Type.
14225
14226 if Present (Interfaces (Base_Type (Tagged_Type))) then
14227 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14228 while Present (Iface_Elmt) loop
14229 Iface := Node (Iface_Elmt);
14230
14231 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14232 while Present (Prim_Elmt) loop
14233 Iface_Subp := Node (Prim_Elmt);
14234
14235 -- Exclude derivation of predefined primitives except those
14236 -- that come from source, or are inherited from one that comes
14237 -- from source. Required to catch declarations of equality
14238 -- operators of interfaces. For example:
14239
14240 -- type Iface is interface;
14241 -- function "=" (Left, Right : Iface) return Boolean;
14242
14243 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14244 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14245 then
14246 E := Find_Primitive_Covering_Interface
14247 (Tagged_Type => Tagged_Type,
14248 Iface_Prim => Iface_Subp);
14249
14250 -- If not found we derive a new primitive leaving its alias
14251 -- attribute referencing the interface primitive.
14252
14253 if No (E) then
14254 Derive_Subprogram
14255 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14256
14257 -- Ada 2012 (AI05-0197): If the covering primitive's name
14258 -- differs from the name of the interface primitive then it
14259 -- is a private primitive inherited from a parent type. In
14260 -- such case, given that Tagged_Type covers the interface,
14261 -- the inherited private primitive becomes visible. For such
14262 -- purpose we add a new entity that renames the inherited
14263 -- private primitive.
14264
14265 elsif Chars (E) /= Chars (Iface_Subp) then
14266 pragma Assert (Has_Suffix (E, 'P'));
14267 Derive_Subprogram
14268 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14269 Set_Alias (New_Subp, E);
14270 Set_Is_Abstract_Subprogram (New_Subp,
14271 Is_Abstract_Subprogram (E));
14272
14273 -- Propagate to the full view interface entities associated
14274 -- with the partial view.
14275
14276 elsif In_Private_Part (Current_Scope)
14277 and then Present (Alias (E))
14278 and then Alias (E) = Iface_Subp
14279 and then
14280 List_Containing (Parent (E)) /=
14281 Private_Declarations
14282 (Specification
14283 (Unit_Declaration_Node (Current_Scope)))
14284 then
14285 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14286 end if;
14287 end if;
14288
14289 Next_Elmt (Prim_Elmt);
14290 end loop;
14291
14292 Next_Elmt (Iface_Elmt);
14293 end loop;
14294 end if;
14295 end Derive_Progenitor_Subprograms;
14296
14297 -----------------------
14298 -- Derive_Subprogram --
14299 -----------------------
14300
14301 procedure Derive_Subprogram
14302 (New_Subp : in out Entity_Id;
14303 Parent_Subp : Entity_Id;
14304 Derived_Type : Entity_Id;
14305 Parent_Type : Entity_Id;
14306 Actual_Subp : Entity_Id := Empty)
14307 is
14308 Formal : Entity_Id;
14309 -- Formal parameter of parent primitive operation
14310
14311 Formal_Of_Actual : Entity_Id;
14312 -- Formal parameter of actual operation, when the derivation is to
14313 -- create a renaming for a primitive operation of an actual in an
14314 -- instantiation.
14315
14316 New_Formal : Entity_Id;
14317 -- Formal of inherited operation
14318
14319 Visible_Subp : Entity_Id := Parent_Subp;
14320
14321 function Is_Private_Overriding return Boolean;
14322 -- If Subp is a private overriding of a visible operation, the inherited
14323 -- operation derives from the overridden op (even though its body is the
14324 -- overriding one) and the inherited operation is visible now. See
14325 -- sem_disp to see the full details of the handling of the overridden
14326 -- subprogram, which is removed from the list of primitive operations of
14327 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14328 -- and used to diagnose abstract operations that need overriding in the
14329 -- derived type.
14330
14331 procedure Replace_Type (Id, New_Id : Entity_Id);
14332 -- When the type is an anonymous access type, create a new access type
14333 -- designating the derived type.
14334
14335 procedure Set_Derived_Name;
14336 -- This procedure sets the appropriate Chars name for New_Subp. This
14337 -- is normally just a copy of the parent name. An exception arises for
14338 -- type support subprograms, where the name is changed to reflect the
14339 -- name of the derived type, e.g. if type foo is derived from type bar,
14340 -- then a procedure barDA is derived with a name fooDA.
14341
14342 ---------------------------
14343 -- Is_Private_Overriding --
14344 ---------------------------
14345
14346 function Is_Private_Overriding return Boolean is
14347 Prev : Entity_Id;
14348
14349 begin
14350 -- If the parent is not a dispatching operation there is no
14351 -- need to investigate overridings
14352
14353 if not Is_Dispatching_Operation (Parent_Subp) then
14354 return False;
14355 end if;
14356
14357 -- The visible operation that is overridden is a homonym of the
14358 -- parent subprogram. We scan the homonym chain to find the one
14359 -- whose alias is the subprogram we are deriving.
14360
14361 Prev := Current_Entity (Parent_Subp);
14362 while Present (Prev) loop
14363 if Ekind (Prev) = Ekind (Parent_Subp)
14364 and then Alias (Prev) = Parent_Subp
14365 and then Scope (Parent_Subp) = Scope (Prev)
14366 and then not Is_Hidden (Prev)
14367 then
14368 Visible_Subp := Prev;
14369 return True;
14370 end if;
14371
14372 Prev := Homonym (Prev);
14373 end loop;
14374
14375 return False;
14376 end Is_Private_Overriding;
14377
14378 ------------------
14379 -- Replace_Type --
14380 ------------------
14381
14382 procedure Replace_Type (Id, New_Id : Entity_Id) is
14383 Id_Type : constant Entity_Id := Etype (Id);
14384 Acc_Type : Entity_Id;
14385 Par : constant Node_Id := Parent (Derived_Type);
14386
14387 begin
14388 -- When the type is an anonymous access type, create a new access
14389 -- type designating the derived type. This itype must be elaborated
14390 -- at the point of the derivation, not on subsequent calls that may
14391 -- be out of the proper scope for Gigi, so we insert a reference to
14392 -- it after the derivation.
14393
14394 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14395 declare
14396 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14397
14398 begin
14399 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14400 and then Present (Full_View (Desig_Typ))
14401 and then not Is_Private_Type (Parent_Type)
14402 then
14403 Desig_Typ := Full_View (Desig_Typ);
14404 end if;
14405
14406 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14407
14408 -- Ada 2005 (AI-251): Handle also derivations of abstract
14409 -- interface primitives.
14410
14411 or else (Is_Interface (Desig_Typ)
14412 and then not Is_Class_Wide_Type (Desig_Typ))
14413 then
14414 Acc_Type := New_Copy (Id_Type);
14415 Set_Etype (Acc_Type, Acc_Type);
14416 Set_Scope (Acc_Type, New_Subp);
14417
14418 -- Set size of anonymous access type. If we have an access
14419 -- to an unconstrained array, this is a fat pointer, so it
14420 -- is sizes at twice addtress size.
14421
14422 if Is_Array_Type (Desig_Typ)
14423 and then not Is_Constrained (Desig_Typ)
14424 then
14425 Init_Size (Acc_Type, 2 * System_Address_Size);
14426
14427 -- Other cases use a thin pointer
14428
14429 else
14430 Init_Size (Acc_Type, System_Address_Size);
14431 end if;
14432
14433 -- Set remaining characterstics of anonymous access type
14434
14435 Init_Alignment (Acc_Type);
14436 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14437
14438 Set_Etype (New_Id, Acc_Type);
14439 Set_Scope (New_Id, New_Subp);
14440
14441 -- Create a reference to it
14442
14443 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14444
14445 else
14446 Set_Etype (New_Id, Id_Type);
14447 end if;
14448 end;
14449
14450 -- In Ada2012, a formal may have an incomplete type but the type
14451 -- derivation that inherits the primitive follows the full view.
14452
14453 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14454 or else
14455 (Ekind (Id_Type) = E_Record_Type_With_Private
14456 and then Present (Full_View (Id_Type))
14457 and then
14458 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14459 or else
14460 (Ada_Version >= Ada_2012
14461 and then Ekind (Id_Type) = E_Incomplete_Type
14462 and then Full_View (Id_Type) = Parent_Type)
14463 then
14464 -- Constraint checks on formals are generated during expansion,
14465 -- based on the signature of the original subprogram. The bounds
14466 -- of the derived type are not relevant, and thus we can use
14467 -- the base type for the formals. However, the return type may be
14468 -- used in a context that requires that the proper static bounds
14469 -- be used (a case statement, for example) and for those cases
14470 -- we must use the derived type (first subtype), not its base.
14471
14472 -- If the derived_type_definition has no constraints, we know that
14473 -- the derived type has the same constraints as the first subtype
14474 -- of the parent, and we can also use it rather than its base,
14475 -- which can lead to more efficient code.
14476
14477 if Etype (Id) = Parent_Type then
14478 if Is_Scalar_Type (Parent_Type)
14479 and then
14480 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14481 then
14482 Set_Etype (New_Id, Derived_Type);
14483
14484 elsif Nkind (Par) = N_Full_Type_Declaration
14485 and then
14486 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14487 and then
14488 Is_Entity_Name
14489 (Subtype_Indication (Type_Definition (Par)))
14490 then
14491 Set_Etype (New_Id, Derived_Type);
14492
14493 else
14494 Set_Etype (New_Id, Base_Type (Derived_Type));
14495 end if;
14496
14497 else
14498 Set_Etype (New_Id, Base_Type (Derived_Type));
14499 end if;
14500
14501 else
14502 Set_Etype (New_Id, Etype (Id));
14503 end if;
14504 end Replace_Type;
14505
14506 ----------------------
14507 -- Set_Derived_Name --
14508 ----------------------
14509
14510 procedure Set_Derived_Name is
14511 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14512 begin
14513 if Nm = TSS_Null then
14514 Set_Chars (New_Subp, Chars (Parent_Subp));
14515 else
14516 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14517 end if;
14518 end Set_Derived_Name;
14519
14520 -- Start of processing for Derive_Subprogram
14521
14522 begin
14523 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14524 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14525
14526 -- Check whether the inherited subprogram is a private operation that
14527 -- should be inherited but not yet made visible. Such subprograms can
14528 -- become visible at a later point (e.g., the private part of a public
14529 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14530 -- following predicate is true, then this is not such a private
14531 -- operation and the subprogram simply inherits the name of the parent
14532 -- subprogram. Note the special check for the names of controlled
14533 -- operations, which are currently exempted from being inherited with
14534 -- a hidden name because they must be findable for generation of
14535 -- implicit run-time calls.
14536
14537 if not Is_Hidden (Parent_Subp)
14538 or else Is_Internal (Parent_Subp)
14539 or else Is_Private_Overriding
14540 or else Is_Internal_Name (Chars (Parent_Subp))
14541 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14542 Name_Adjust,
14543 Name_Finalize)
14544 then
14545 Set_Derived_Name;
14546
14547 -- An inherited dispatching equality will be overridden by an internally
14548 -- generated one, or by an explicit one, so preserve its name and thus
14549 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14550 -- private operation it may become invisible if the full view has
14551 -- progenitors, and the dispatch table will be malformed.
14552 -- We check that the type is limited to handle the anomalous declaration
14553 -- of Limited_Controlled, which is derived from a non-limited type, and
14554 -- which is handled specially elsewhere as well.
14555
14556 elsif Chars (Parent_Subp) = Name_Op_Eq
14557 and then Is_Dispatching_Operation (Parent_Subp)
14558 and then Etype (Parent_Subp) = Standard_Boolean
14559 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14560 and then
14561 Etype (First_Formal (Parent_Subp)) =
14562 Etype (Next_Formal (First_Formal (Parent_Subp)))
14563 then
14564 Set_Derived_Name;
14565
14566 -- If parent is hidden, this can be a regular derivation if the
14567 -- parent is immediately visible in a non-instantiating context,
14568 -- or if we are in the private part of an instance. This test
14569 -- should still be refined ???
14570
14571 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14572 -- operation as a non-visible operation in cases where the parent
14573 -- subprogram might not be visible now, but was visible within the
14574 -- original generic, so it would be wrong to make the inherited
14575 -- subprogram non-visible now. (Not clear if this test is fully
14576 -- correct; are there any cases where we should declare the inherited
14577 -- operation as not visible to avoid it being overridden, e.g., when
14578 -- the parent type is a generic actual with private primitives ???)
14579
14580 -- (they should be treated the same as other private inherited
14581 -- subprograms, but it's not clear how to do this cleanly). ???
14582
14583 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14584 and then Is_Immediately_Visible (Parent_Subp)
14585 and then not In_Instance)
14586 or else In_Instance_Not_Visible
14587 then
14588 Set_Derived_Name;
14589
14590 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14591 -- overrides an interface primitive because interface primitives
14592 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14593
14594 elsif Ada_Version >= Ada_2005
14595 and then Is_Dispatching_Operation (Parent_Subp)
14596 and then Covers_Some_Interface (Parent_Subp)
14597 then
14598 Set_Derived_Name;
14599
14600 -- Otherwise, the type is inheriting a private operation, so enter
14601 -- it with a special name so it can't be overridden.
14602
14603 else
14604 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14605 end if;
14606
14607 Set_Parent (New_Subp, Parent (Derived_Type));
14608
14609 if Present (Actual_Subp) then
14610 Replace_Type (Actual_Subp, New_Subp);
14611 else
14612 Replace_Type (Parent_Subp, New_Subp);
14613 end if;
14614
14615 Conditional_Delay (New_Subp, Parent_Subp);
14616
14617 -- If we are creating a renaming for a primitive operation of an
14618 -- actual of a generic derived type, we must examine the signature
14619 -- of the actual primitive, not that of the generic formal, which for
14620 -- example may be an interface. However the name and initial value
14621 -- of the inherited operation are those of the formal primitive.
14622
14623 Formal := First_Formal (Parent_Subp);
14624
14625 if Present (Actual_Subp) then
14626 Formal_Of_Actual := First_Formal (Actual_Subp);
14627 else
14628 Formal_Of_Actual := Empty;
14629 end if;
14630
14631 while Present (Formal) loop
14632 New_Formal := New_Copy (Formal);
14633
14634 -- Normally we do not go copying parents, but in the case of
14635 -- formals, we need to link up to the declaration (which is the
14636 -- parameter specification), and it is fine to link up to the
14637 -- original formal's parameter specification in this case.
14638
14639 Set_Parent (New_Formal, Parent (Formal));
14640 Append_Entity (New_Formal, New_Subp);
14641
14642 if Present (Formal_Of_Actual) then
14643 Replace_Type (Formal_Of_Actual, New_Formal);
14644 Next_Formal (Formal_Of_Actual);
14645 else
14646 Replace_Type (Formal, New_Formal);
14647 end if;
14648
14649 Next_Formal (Formal);
14650 end loop;
14651
14652 -- If this derivation corresponds to a tagged generic actual, then
14653 -- primitive operations rename those of the actual. Otherwise the
14654 -- primitive operations rename those of the parent type, If the parent
14655 -- renames an intrinsic operator, so does the new subprogram. We except
14656 -- concatenation, which is always properly typed, and does not get
14657 -- expanded as other intrinsic operations.
14658
14659 if No (Actual_Subp) then
14660 if Is_Intrinsic_Subprogram (Parent_Subp) then
14661 Set_Is_Intrinsic_Subprogram (New_Subp);
14662
14663 if Present (Alias (Parent_Subp))
14664 and then Chars (Parent_Subp) /= Name_Op_Concat
14665 then
14666 Set_Alias (New_Subp, Alias (Parent_Subp));
14667 else
14668 Set_Alias (New_Subp, Parent_Subp);
14669 end if;
14670
14671 else
14672 Set_Alias (New_Subp, Parent_Subp);
14673 end if;
14674
14675 else
14676 Set_Alias (New_Subp, Actual_Subp);
14677 end if;
14678
14679 -- Inherit the "ghostness" from the parent subprogram
14680
14681 if Is_Ghost_Entity (Alias (New_Subp)) then
14682 Set_Is_Ghost_Entity (New_Subp);
14683 end if;
14684
14685 -- Derived subprograms of a tagged type must inherit the convention
14686 -- of the parent subprogram (a requirement of AI-117). Derived
14687 -- subprograms of untagged types simply get convention Ada by default.
14688
14689 -- If the derived type is a tagged generic formal type with unknown
14690 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14691
14692 -- However, if the type is derived from a generic formal, the further
14693 -- inherited subprogram has the convention of the non-generic ancestor.
14694 -- Otherwise there would be no way to override the operation.
14695 -- (This is subject to forthcoming ARG discussions).
14696
14697 if Is_Tagged_Type (Derived_Type) then
14698 if Is_Generic_Type (Derived_Type)
14699 and then Has_Unknown_Discriminants (Derived_Type)
14700 then
14701 Set_Convention (New_Subp, Convention_Intrinsic);
14702
14703 else
14704 if Is_Generic_Type (Parent_Type)
14705 and then Has_Unknown_Discriminants (Parent_Type)
14706 then
14707 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14708 else
14709 Set_Convention (New_Subp, Convention (Parent_Subp));
14710 end if;
14711 end if;
14712 end if;
14713
14714 -- Predefined controlled operations retain their name even if the parent
14715 -- is hidden (see above), but they are not primitive operations if the
14716 -- ancestor is not visible, for example if the parent is a private
14717 -- extension completed with a controlled extension. Note that a full
14718 -- type that is controlled can break privacy: the flag Is_Controlled is
14719 -- set on both views of the type.
14720
14721 if Is_Controlled (Parent_Type)
14722 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14723 Name_Adjust,
14724 Name_Finalize)
14725 and then Is_Hidden (Parent_Subp)
14726 and then not Is_Visibly_Controlled (Parent_Type)
14727 then
14728 Set_Is_Hidden (New_Subp);
14729 end if;
14730
14731 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14732 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14733
14734 if Ekind (Parent_Subp) = E_Procedure then
14735 Set_Is_Valued_Procedure
14736 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14737 else
14738 Set_Has_Controlling_Result
14739 (New_Subp, Has_Controlling_Result (Parent_Subp));
14740 end if;
14741
14742 -- No_Return must be inherited properly. If this is overridden in the
14743 -- case of a dispatching operation, then a check is made in Sem_Disp
14744 -- that the overriding operation is also No_Return (no such check is
14745 -- required for the case of non-dispatching operation.
14746
14747 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14748
14749 -- A derived function with a controlling result is abstract. If the
14750 -- Derived_Type is a nonabstract formal generic derived type, then
14751 -- inherited operations are not abstract: the required check is done at
14752 -- instantiation time. If the derivation is for a generic actual, the
14753 -- function is not abstract unless the actual is.
14754
14755 if Is_Generic_Type (Derived_Type)
14756 and then not Is_Abstract_Type (Derived_Type)
14757 then
14758 null;
14759
14760 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14761 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14762
14763 -- A subprogram subject to pragma Extensions_Visible with value False
14764 -- requires overriding if the subprogram has at least one controlling
14765 -- OUT parameter (SPARK RM 6.1.7(6)).
14766
14767 elsif Ada_Version >= Ada_2005
14768 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14769 or else (Is_Tagged_Type (Derived_Type)
14770 and then Etype (New_Subp) = Derived_Type
14771 and then not Is_Null_Extension (Derived_Type))
14772 or else (Is_Tagged_Type (Derived_Type)
14773 and then Ekind (Etype (New_Subp)) =
14774 E_Anonymous_Access_Type
14775 and then Designated_Type (Etype (New_Subp)) =
14776 Derived_Type
14777 and then not Is_Null_Extension (Derived_Type))
14778 or else (Comes_From_Source (Alias (New_Subp))
14779 and then Is_EVF_Procedure (Alias (New_Subp))))
14780 and then No (Actual_Subp)
14781 then
14782 if not Is_Tagged_Type (Derived_Type)
14783 or else Is_Abstract_Type (Derived_Type)
14784 or else Is_Abstract_Subprogram (Alias (New_Subp))
14785 then
14786 Set_Is_Abstract_Subprogram (New_Subp);
14787 else
14788 Set_Requires_Overriding (New_Subp);
14789 end if;
14790
14791 elsif Ada_Version < Ada_2005
14792 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14793 or else (Is_Tagged_Type (Derived_Type)
14794 and then Etype (New_Subp) = Derived_Type
14795 and then No (Actual_Subp)))
14796 then
14797 Set_Is_Abstract_Subprogram (New_Subp);
14798
14799 -- AI05-0097 : an inherited operation that dispatches on result is
14800 -- abstract if the derived type is abstract, even if the parent type
14801 -- is concrete and the derived type is a null extension.
14802
14803 elsif Has_Controlling_Result (Alias (New_Subp))
14804 and then Is_Abstract_Type (Etype (New_Subp))
14805 then
14806 Set_Is_Abstract_Subprogram (New_Subp);
14807
14808 -- Finally, if the parent type is abstract we must verify that all
14809 -- inherited operations are either non-abstract or overridden, or that
14810 -- the derived type itself is abstract (this check is performed at the
14811 -- end of a package declaration, in Check_Abstract_Overriding). A
14812 -- private overriding in the parent type will not be visible in the
14813 -- derivation if we are not in an inner package or in a child unit of
14814 -- the parent type, in which case the abstractness of the inherited
14815 -- operation is carried to the new subprogram.
14816
14817 elsif Is_Abstract_Type (Parent_Type)
14818 and then not In_Open_Scopes (Scope (Parent_Type))
14819 and then Is_Private_Overriding
14820 and then Is_Abstract_Subprogram (Visible_Subp)
14821 then
14822 if No (Actual_Subp) then
14823 Set_Alias (New_Subp, Visible_Subp);
14824 Set_Is_Abstract_Subprogram (New_Subp, True);
14825
14826 else
14827 -- If this is a derivation for an instance of a formal derived
14828 -- type, abstractness comes from the primitive operation of the
14829 -- actual, not from the operation inherited from the ancestor.
14830
14831 Set_Is_Abstract_Subprogram
14832 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14833 end if;
14834 end if;
14835
14836 New_Overloaded_Entity (New_Subp, Derived_Type);
14837
14838 -- Check for case of a derived subprogram for the instantiation of a
14839 -- formal derived tagged type, if so mark the subprogram as dispatching
14840 -- and inherit the dispatching attributes of the actual subprogram. The
14841 -- derived subprogram is effectively renaming of the actual subprogram,
14842 -- so it needs to have the same attributes as the actual.
14843
14844 if Present (Actual_Subp)
14845 and then Is_Dispatching_Operation (Actual_Subp)
14846 then
14847 Set_Is_Dispatching_Operation (New_Subp);
14848
14849 if Present (DTC_Entity (Actual_Subp)) then
14850 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14851 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14852 end if;
14853 end if;
14854
14855 -- Indicate that a derived subprogram does not require a body and that
14856 -- it does not require processing of default expressions.
14857
14858 Set_Has_Completion (New_Subp);
14859 Set_Default_Expressions_Processed (New_Subp);
14860
14861 if Ekind (New_Subp) = E_Function then
14862 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14863 end if;
14864 end Derive_Subprogram;
14865
14866 ------------------------
14867 -- Derive_Subprograms --
14868 ------------------------
14869
14870 procedure Derive_Subprograms
14871 (Parent_Type : Entity_Id;
14872 Derived_Type : Entity_Id;
14873 Generic_Actual : Entity_Id := Empty)
14874 is
14875 Op_List : constant Elist_Id :=
14876 Collect_Primitive_Operations (Parent_Type);
14877
14878 function Check_Derived_Type return Boolean;
14879 -- Check that all the entities derived from Parent_Type are found in
14880 -- the list of primitives of Derived_Type exactly in the same order.
14881
14882 procedure Derive_Interface_Subprogram
14883 (New_Subp : in out Entity_Id;
14884 Subp : Entity_Id;
14885 Actual_Subp : Entity_Id);
14886 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14887 -- (which is an interface primitive). If Generic_Actual is present then
14888 -- Actual_Subp is the actual subprogram corresponding with the generic
14889 -- subprogram Subp.
14890
14891 function Check_Derived_Type return Boolean is
14892 E : Entity_Id;
14893 Elmt : Elmt_Id;
14894 List : Elist_Id;
14895 New_Subp : Entity_Id;
14896 Op_Elmt : Elmt_Id;
14897 Subp : Entity_Id;
14898
14899 begin
14900 -- Traverse list of entities in the current scope searching for
14901 -- an incomplete type whose full-view is derived type
14902
14903 E := First_Entity (Scope (Derived_Type));
14904 while Present (E) and then E /= Derived_Type loop
14905 if Ekind (E) = E_Incomplete_Type
14906 and then Present (Full_View (E))
14907 and then Full_View (E) = Derived_Type
14908 then
14909 -- Disable this test if Derived_Type completes an incomplete
14910 -- type because in such case more primitives can be added
14911 -- later to the list of primitives of Derived_Type by routine
14912 -- Process_Incomplete_Dependents
14913
14914 return True;
14915 end if;
14916
14917 E := Next_Entity (E);
14918 end loop;
14919
14920 List := Collect_Primitive_Operations (Derived_Type);
14921 Elmt := First_Elmt (List);
14922
14923 Op_Elmt := First_Elmt (Op_List);
14924 while Present (Op_Elmt) loop
14925 Subp := Node (Op_Elmt);
14926 New_Subp := Node (Elmt);
14927
14928 -- At this early stage Derived_Type has no entities with attribute
14929 -- Interface_Alias. In addition, such primitives are always
14930 -- located at the end of the list of primitives of Parent_Type.
14931 -- Therefore, if found we can safely stop processing pending
14932 -- entities.
14933
14934 exit when Present (Interface_Alias (Subp));
14935
14936 -- Handle hidden entities
14937
14938 if not Is_Predefined_Dispatching_Operation (Subp)
14939 and then Is_Hidden (Subp)
14940 then
14941 if Present (New_Subp)
14942 and then Primitive_Names_Match (Subp, New_Subp)
14943 then
14944 Next_Elmt (Elmt);
14945 end if;
14946
14947 else
14948 if not Present (New_Subp)
14949 or else Ekind (Subp) /= Ekind (New_Subp)
14950 or else not Primitive_Names_Match (Subp, New_Subp)
14951 then
14952 return False;
14953 end if;
14954
14955 Next_Elmt (Elmt);
14956 end if;
14957
14958 Next_Elmt (Op_Elmt);
14959 end loop;
14960
14961 return True;
14962 end Check_Derived_Type;
14963
14964 ---------------------------------
14965 -- Derive_Interface_Subprogram --
14966 ---------------------------------
14967
14968 procedure Derive_Interface_Subprogram
14969 (New_Subp : in out Entity_Id;
14970 Subp : Entity_Id;
14971 Actual_Subp : Entity_Id)
14972 is
14973 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14974 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14975
14976 begin
14977 pragma Assert (Is_Interface (Iface_Type));
14978
14979 Derive_Subprogram
14980 (New_Subp => New_Subp,
14981 Parent_Subp => Iface_Subp,
14982 Derived_Type => Derived_Type,
14983 Parent_Type => Iface_Type,
14984 Actual_Subp => Actual_Subp);
14985
14986 -- Given that this new interface entity corresponds with a primitive
14987 -- of the parent that was not overridden we must leave it associated
14988 -- with its parent primitive to ensure that it will share the same
14989 -- dispatch table slot when overridden.
14990
14991 if No (Actual_Subp) then
14992 Set_Alias (New_Subp, Subp);
14993
14994 -- For instantiations this is not needed since the previous call to
14995 -- Derive_Subprogram leaves the entity well decorated.
14996
14997 else
14998 pragma Assert (Alias (New_Subp) = Actual_Subp);
14999 null;
15000 end if;
15001 end Derive_Interface_Subprogram;
15002
15003 -- Local variables
15004
15005 Alias_Subp : Entity_Id;
15006 Act_List : Elist_Id;
15007 Act_Elmt : Elmt_Id;
15008 Act_Subp : Entity_Id := Empty;
15009 Elmt : Elmt_Id;
15010 Need_Search : Boolean := False;
15011 New_Subp : Entity_Id := Empty;
15012 Parent_Base : Entity_Id;
15013 Subp : Entity_Id;
15014
15015 -- Start of processing for Derive_Subprograms
15016
15017 begin
15018 if Ekind (Parent_Type) = E_Record_Type_With_Private
15019 and then Has_Discriminants (Parent_Type)
15020 and then Present (Full_View (Parent_Type))
15021 then
15022 Parent_Base := Full_View (Parent_Type);
15023 else
15024 Parent_Base := Parent_Type;
15025 end if;
15026
15027 if Present (Generic_Actual) then
15028 Act_List := Collect_Primitive_Operations (Generic_Actual);
15029 Act_Elmt := First_Elmt (Act_List);
15030 else
15031 Act_List := No_Elist;
15032 Act_Elmt := No_Elmt;
15033 end if;
15034
15035 -- Derive primitives inherited from the parent. Note that if the generic
15036 -- actual is present, this is not really a type derivation, it is a
15037 -- completion within an instance.
15038
15039 -- Case 1: Derived_Type does not implement interfaces
15040
15041 if not Is_Tagged_Type (Derived_Type)
15042 or else (not Has_Interfaces (Derived_Type)
15043 and then not (Present (Generic_Actual)
15044 and then Has_Interfaces (Generic_Actual)))
15045 then
15046 Elmt := First_Elmt (Op_List);
15047 while Present (Elmt) loop
15048 Subp := Node (Elmt);
15049
15050 -- Literals are derived earlier in the process of building the
15051 -- derived type, and are skipped here.
15052
15053 if Ekind (Subp) = E_Enumeration_Literal then
15054 null;
15055
15056 -- The actual is a direct descendant and the common primitive
15057 -- operations appear in the same order.
15058
15059 -- If the generic parent type is present, the derived type is an
15060 -- instance of a formal derived type, and within the instance its
15061 -- operations are those of the actual. We derive from the formal
15062 -- type but make the inherited operations aliases of the
15063 -- corresponding operations of the actual.
15064
15065 else
15066 pragma Assert (No (Node (Act_Elmt))
15067 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15068 and then
15069 Type_Conformant
15070 (Subp, Node (Act_Elmt),
15071 Skip_Controlling_Formals => True)));
15072
15073 Derive_Subprogram
15074 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15075
15076 if Present (Act_Elmt) then
15077 Next_Elmt (Act_Elmt);
15078 end if;
15079 end if;
15080
15081 Next_Elmt (Elmt);
15082 end loop;
15083
15084 -- Case 2: Derived_Type implements interfaces
15085
15086 else
15087 -- If the parent type has no predefined primitives we remove
15088 -- predefined primitives from the list of primitives of generic
15089 -- actual to simplify the complexity of this algorithm.
15090
15091 if Present (Generic_Actual) then
15092 declare
15093 Has_Predefined_Primitives : Boolean := False;
15094
15095 begin
15096 -- Check if the parent type has predefined primitives
15097
15098 Elmt := First_Elmt (Op_List);
15099 while Present (Elmt) loop
15100 Subp := Node (Elmt);
15101
15102 if Is_Predefined_Dispatching_Operation (Subp)
15103 and then not Comes_From_Source (Ultimate_Alias (Subp))
15104 then
15105 Has_Predefined_Primitives := True;
15106 exit;
15107 end if;
15108
15109 Next_Elmt (Elmt);
15110 end loop;
15111
15112 -- Remove predefined primitives of Generic_Actual. We must use
15113 -- an auxiliary list because in case of tagged types the value
15114 -- returned by Collect_Primitive_Operations is the value stored
15115 -- in its Primitive_Operations attribute (and we don't want to
15116 -- modify its current contents).
15117
15118 if not Has_Predefined_Primitives then
15119 declare
15120 Aux_List : constant Elist_Id := New_Elmt_List;
15121
15122 begin
15123 Elmt := First_Elmt (Act_List);
15124 while Present (Elmt) loop
15125 Subp := Node (Elmt);
15126
15127 if not Is_Predefined_Dispatching_Operation (Subp)
15128 or else Comes_From_Source (Subp)
15129 then
15130 Append_Elmt (Subp, Aux_List);
15131 end if;
15132
15133 Next_Elmt (Elmt);
15134 end loop;
15135
15136 Act_List := Aux_List;
15137 end;
15138 end if;
15139
15140 Act_Elmt := First_Elmt (Act_List);
15141 Act_Subp := Node (Act_Elmt);
15142 end;
15143 end if;
15144
15145 -- Stage 1: If the generic actual is not present we derive the
15146 -- primitives inherited from the parent type. If the generic parent
15147 -- type is present, the derived type is an instance of a formal
15148 -- derived type, and within the instance its operations are those of
15149 -- the actual. We derive from the formal type but make the inherited
15150 -- operations aliases of the corresponding operations of the actual.
15151
15152 Elmt := First_Elmt (Op_List);
15153 while Present (Elmt) loop
15154 Subp := Node (Elmt);
15155 Alias_Subp := Ultimate_Alias (Subp);
15156
15157 -- Do not derive internal entities of the parent that link
15158 -- interface primitives with their covering primitive. These
15159 -- entities will be added to this type when frozen.
15160
15161 if Present (Interface_Alias (Subp)) then
15162 goto Continue;
15163 end if;
15164
15165 -- If the generic actual is present find the corresponding
15166 -- operation in the generic actual. If the parent type is a
15167 -- direct ancestor of the derived type then, even if it is an
15168 -- interface, the operations are inherited from the primary
15169 -- dispatch table and are in the proper order. If we detect here
15170 -- that primitives are not in the same order we traverse the list
15171 -- of primitive operations of the actual to find the one that
15172 -- implements the interface primitive.
15173
15174 if Need_Search
15175 or else
15176 (Present (Generic_Actual)
15177 and then Present (Act_Subp)
15178 and then not
15179 (Primitive_Names_Match (Subp, Act_Subp)
15180 and then
15181 Type_Conformant (Subp, Act_Subp,
15182 Skip_Controlling_Formals => True)))
15183 then
15184 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15185 Use_Full_View => True));
15186
15187 -- Remember that we need searching for all pending primitives
15188
15189 Need_Search := True;
15190
15191 -- Handle entities associated with interface primitives
15192
15193 if Present (Alias_Subp)
15194 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15195 and then not Is_Predefined_Dispatching_Operation (Subp)
15196 then
15197 -- Search for the primitive in the homonym chain
15198
15199 Act_Subp :=
15200 Find_Primitive_Covering_Interface
15201 (Tagged_Type => Generic_Actual,
15202 Iface_Prim => Alias_Subp);
15203
15204 -- Previous search may not locate primitives covering
15205 -- interfaces defined in generics units or instantiations.
15206 -- (it fails if the covering primitive has formals whose
15207 -- type is also defined in generics or instantiations).
15208 -- In such case we search in the list of primitives of the
15209 -- generic actual for the internal entity that links the
15210 -- interface primitive and the covering primitive.
15211
15212 if No (Act_Subp)
15213 and then Is_Generic_Type (Parent_Type)
15214 then
15215 -- This code has been designed to handle only generic
15216 -- formals that implement interfaces that are defined
15217 -- in a generic unit or instantiation. If this code is
15218 -- needed for other cases we must review it because
15219 -- (given that it relies on Original_Location to locate
15220 -- the primitive of Generic_Actual that covers the
15221 -- interface) it could leave linked through attribute
15222 -- Alias entities of unrelated instantiations).
15223
15224 pragma Assert
15225 (Is_Generic_Unit
15226 (Scope (Find_Dispatching_Type (Alias_Subp)))
15227 or else
15228 Instantiation_Depth
15229 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15230
15231 declare
15232 Iface_Prim_Loc : constant Source_Ptr :=
15233 Original_Location (Sloc (Alias_Subp));
15234
15235 Elmt : Elmt_Id;
15236 Prim : Entity_Id;
15237
15238 begin
15239 Elmt :=
15240 First_Elmt (Primitive_Operations (Generic_Actual));
15241
15242 Search : while Present (Elmt) loop
15243 Prim := Node (Elmt);
15244
15245 if Present (Interface_Alias (Prim))
15246 and then Original_Location
15247 (Sloc (Interface_Alias (Prim))) =
15248 Iface_Prim_Loc
15249 then
15250 Act_Subp := Alias (Prim);
15251 exit Search;
15252 end if;
15253
15254 Next_Elmt (Elmt);
15255 end loop Search;
15256 end;
15257 end if;
15258
15259 pragma Assert (Present (Act_Subp)
15260 or else Is_Abstract_Type (Generic_Actual)
15261 or else Serious_Errors_Detected > 0);
15262
15263 -- Handle predefined primitives plus the rest of user-defined
15264 -- primitives
15265
15266 else
15267 Act_Elmt := First_Elmt (Act_List);
15268 while Present (Act_Elmt) loop
15269 Act_Subp := Node (Act_Elmt);
15270
15271 exit when Primitive_Names_Match (Subp, Act_Subp)
15272 and then Type_Conformant
15273 (Subp, Act_Subp,
15274 Skip_Controlling_Formals => True)
15275 and then No (Interface_Alias (Act_Subp));
15276
15277 Next_Elmt (Act_Elmt);
15278 end loop;
15279
15280 if No (Act_Elmt) then
15281 Act_Subp := Empty;
15282 end if;
15283 end if;
15284 end if;
15285
15286 -- Case 1: If the parent is a limited interface then it has the
15287 -- predefined primitives of synchronized interfaces. However, the
15288 -- actual type may be a non-limited type and hence it does not
15289 -- have such primitives.
15290
15291 if Present (Generic_Actual)
15292 and then not Present (Act_Subp)
15293 and then Is_Limited_Interface (Parent_Base)
15294 and then Is_Predefined_Interface_Primitive (Subp)
15295 then
15296 null;
15297
15298 -- Case 2: Inherit entities associated with interfaces that were
15299 -- not covered by the parent type. We exclude here null interface
15300 -- primitives because they do not need special management.
15301
15302 -- We also exclude interface operations that are renamings. If the
15303 -- subprogram is an explicit renaming of an interface primitive,
15304 -- it is a regular primitive operation, and the presence of its
15305 -- alias is not relevant: it has to be derived like any other
15306 -- primitive.
15307
15308 elsif Present (Alias (Subp))
15309 and then Nkind (Unit_Declaration_Node (Subp)) /=
15310 N_Subprogram_Renaming_Declaration
15311 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15312 and then not
15313 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15314 and then Null_Present (Parent (Alias_Subp)))
15315 then
15316 -- If this is an abstract private type then we transfer the
15317 -- derivation of the interface primitive from the partial view
15318 -- to the full view. This is safe because all the interfaces
15319 -- must be visible in the partial view. Done to avoid adding
15320 -- a new interface derivation to the private part of the
15321 -- enclosing package; otherwise this new derivation would be
15322 -- decorated as hidden when the analysis of the enclosing
15323 -- package completes.
15324
15325 if Is_Abstract_Type (Derived_Type)
15326 and then In_Private_Part (Current_Scope)
15327 and then Has_Private_Declaration (Derived_Type)
15328 then
15329 declare
15330 Partial_View : Entity_Id;
15331 Elmt : Elmt_Id;
15332 Ent : Entity_Id;
15333
15334 begin
15335 Partial_View := First_Entity (Current_Scope);
15336 loop
15337 exit when No (Partial_View)
15338 or else (Has_Private_Declaration (Partial_View)
15339 and then
15340 Full_View (Partial_View) = Derived_Type);
15341
15342 Next_Entity (Partial_View);
15343 end loop;
15344
15345 -- If the partial view was not found then the source code
15346 -- has errors and the derivation is not needed.
15347
15348 if Present (Partial_View) then
15349 Elmt :=
15350 First_Elmt (Primitive_Operations (Partial_View));
15351 while Present (Elmt) loop
15352 Ent := Node (Elmt);
15353
15354 if Present (Alias (Ent))
15355 and then Ultimate_Alias (Ent) = Alias (Subp)
15356 then
15357 Append_Elmt
15358 (Ent, Primitive_Operations (Derived_Type));
15359 exit;
15360 end if;
15361
15362 Next_Elmt (Elmt);
15363 end loop;
15364
15365 -- If the interface primitive was not found in the
15366 -- partial view then this interface primitive was
15367 -- overridden. We add a derivation to activate in
15368 -- Derive_Progenitor_Subprograms the machinery to
15369 -- search for it.
15370
15371 if No (Elmt) then
15372 Derive_Interface_Subprogram
15373 (New_Subp => New_Subp,
15374 Subp => Subp,
15375 Actual_Subp => Act_Subp);
15376 end if;
15377 end if;
15378 end;
15379 else
15380 Derive_Interface_Subprogram
15381 (New_Subp => New_Subp,
15382 Subp => Subp,
15383 Actual_Subp => Act_Subp);
15384 end if;
15385
15386 -- Case 3: Common derivation
15387
15388 else
15389 Derive_Subprogram
15390 (New_Subp => New_Subp,
15391 Parent_Subp => Subp,
15392 Derived_Type => Derived_Type,
15393 Parent_Type => Parent_Base,
15394 Actual_Subp => Act_Subp);
15395 end if;
15396
15397 -- No need to update Act_Elm if we must search for the
15398 -- corresponding operation in the generic actual
15399
15400 if not Need_Search
15401 and then Present (Act_Elmt)
15402 then
15403 Next_Elmt (Act_Elmt);
15404 Act_Subp := Node (Act_Elmt);
15405 end if;
15406
15407 <<Continue>>
15408 Next_Elmt (Elmt);
15409 end loop;
15410
15411 -- Inherit additional operations from progenitors. If the derived
15412 -- type is a generic actual, there are not new primitive operations
15413 -- for the type because it has those of the actual, and therefore
15414 -- nothing needs to be done. The renamings generated above are not
15415 -- primitive operations, and their purpose is simply to make the
15416 -- proper operations visible within an instantiation.
15417
15418 if No (Generic_Actual) then
15419 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15420 end if;
15421 end if;
15422
15423 -- Final check: Direct descendants must have their primitives in the
15424 -- same order. We exclude from this test untagged types and instances
15425 -- of formal derived types. We skip this test if we have already
15426 -- reported serious errors in the sources.
15427
15428 pragma Assert (not Is_Tagged_Type (Derived_Type)
15429 or else Present (Generic_Actual)
15430 or else Serious_Errors_Detected > 0
15431 or else Check_Derived_Type);
15432 end Derive_Subprograms;
15433
15434 --------------------------------
15435 -- Derived_Standard_Character --
15436 --------------------------------
15437
15438 procedure Derived_Standard_Character
15439 (N : Node_Id;
15440 Parent_Type : Entity_Id;
15441 Derived_Type : Entity_Id)
15442 is
15443 Loc : constant Source_Ptr := Sloc (N);
15444 Def : constant Node_Id := Type_Definition (N);
15445 Indic : constant Node_Id := Subtype_Indication (Def);
15446 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15447 Implicit_Base : constant Entity_Id :=
15448 Create_Itype
15449 (E_Enumeration_Type, N, Derived_Type, 'B');
15450
15451 Lo : Node_Id;
15452 Hi : Node_Id;
15453
15454 begin
15455 Discard_Node (Process_Subtype (Indic, N));
15456
15457 Set_Etype (Implicit_Base, Parent_Base);
15458 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15459 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15460
15461 Set_Is_Character_Type (Implicit_Base, True);
15462 Set_Has_Delayed_Freeze (Implicit_Base);
15463
15464 -- The bounds of the implicit base are the bounds of the parent base.
15465 -- Note that their type is the parent base.
15466
15467 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15468 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15469
15470 Set_Scalar_Range (Implicit_Base,
15471 Make_Range (Loc,
15472 Low_Bound => Lo,
15473 High_Bound => Hi));
15474
15475 Conditional_Delay (Derived_Type, Parent_Type);
15476
15477 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15478 Set_Etype (Derived_Type, Implicit_Base);
15479 Set_Size_Info (Derived_Type, Parent_Type);
15480
15481 if Unknown_RM_Size (Derived_Type) then
15482 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15483 end if;
15484
15485 Set_Is_Character_Type (Derived_Type, True);
15486
15487 if Nkind (Indic) /= N_Subtype_Indication then
15488
15489 -- If no explicit constraint, the bounds are those
15490 -- of the parent type.
15491
15492 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15493 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15494 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15495 end if;
15496
15497 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15498
15499 -- Because the implicit base is used in the conversion of the bounds, we
15500 -- have to freeze it now. This is similar to what is done for numeric
15501 -- types, and it equally suspicious, but otherwise a non-static bound
15502 -- will have a reference to an unfrozen type, which is rejected by Gigi
15503 -- (???). This requires specific care for definition of stream
15504 -- attributes. For details, see comments at the end of
15505 -- Build_Derived_Numeric_Type.
15506
15507 Freeze_Before (N, Implicit_Base);
15508 end Derived_Standard_Character;
15509
15510 ------------------------------
15511 -- Derived_Type_Declaration --
15512 ------------------------------
15513
15514 procedure Derived_Type_Declaration
15515 (T : Entity_Id;
15516 N : Node_Id;
15517 Is_Completion : Boolean)
15518 is
15519 Parent_Type : Entity_Id;
15520
15521 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15522 -- Check whether the parent type is a generic formal, or derives
15523 -- directly or indirectly from one.
15524
15525 ------------------------
15526 -- Comes_From_Generic --
15527 ------------------------
15528
15529 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15530 begin
15531 if Is_Generic_Type (Typ) then
15532 return True;
15533
15534 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15535 return True;
15536
15537 elsif Is_Private_Type (Typ)
15538 and then Present (Full_View (Typ))
15539 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15540 then
15541 return True;
15542
15543 elsif Is_Generic_Actual_Type (Typ) then
15544 return True;
15545
15546 else
15547 return False;
15548 end if;
15549 end Comes_From_Generic;
15550
15551 -- Local variables
15552
15553 Def : constant Node_Id := Type_Definition (N);
15554 Iface_Def : Node_Id;
15555 Indic : constant Node_Id := Subtype_Indication (Def);
15556 Extension : constant Node_Id := Record_Extension_Part (Def);
15557 Parent_Node : Node_Id;
15558 Taggd : Boolean;
15559
15560 -- Start of processing for Derived_Type_Declaration
15561
15562 begin
15563 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15564
15565 -- Ada 2005 (AI-251): In case of interface derivation check that the
15566 -- parent is also an interface.
15567
15568 if Interface_Present (Def) then
15569 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15570
15571 if not Is_Interface (Parent_Type) then
15572 Diagnose_Interface (Indic, Parent_Type);
15573
15574 else
15575 Parent_Node := Parent (Base_Type (Parent_Type));
15576 Iface_Def := Type_Definition (Parent_Node);
15577
15578 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15579 -- other limited interfaces.
15580
15581 if Limited_Present (Def) then
15582 if Limited_Present (Iface_Def) then
15583 null;
15584
15585 elsif Protected_Present (Iface_Def) then
15586 Error_Msg_NE
15587 ("descendant of& must be declared"
15588 & " as a protected interface",
15589 N, Parent_Type);
15590
15591 elsif Synchronized_Present (Iface_Def) then
15592 Error_Msg_NE
15593 ("descendant of& must be declared"
15594 & " as a synchronized interface",
15595 N, Parent_Type);
15596
15597 elsif Task_Present (Iface_Def) then
15598 Error_Msg_NE
15599 ("descendant of& must be declared as a task interface",
15600 N, Parent_Type);
15601
15602 else
15603 Error_Msg_N
15604 ("(Ada 2005) limited interface cannot "
15605 & "inherit from non-limited interface", Indic);
15606 end if;
15607
15608 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15609 -- from non-limited or limited interfaces.
15610
15611 elsif not Protected_Present (Def)
15612 and then not Synchronized_Present (Def)
15613 and then not Task_Present (Def)
15614 then
15615 if Limited_Present (Iface_Def) then
15616 null;
15617
15618 elsif Protected_Present (Iface_Def) then
15619 Error_Msg_NE
15620 ("descendant of& must be declared"
15621 & " as a protected interface",
15622 N, Parent_Type);
15623
15624 elsif Synchronized_Present (Iface_Def) then
15625 Error_Msg_NE
15626 ("descendant of& must be declared"
15627 & " as a synchronized interface",
15628 N, Parent_Type);
15629
15630 elsif Task_Present (Iface_Def) then
15631 Error_Msg_NE
15632 ("descendant of& must be declared as a task interface",
15633 N, Parent_Type);
15634 else
15635 null;
15636 end if;
15637 end if;
15638 end if;
15639 end if;
15640
15641 if Is_Tagged_Type (Parent_Type)
15642 and then Is_Concurrent_Type (Parent_Type)
15643 and then not Is_Interface (Parent_Type)
15644 then
15645 Error_Msg_N
15646 ("parent type of a record extension cannot be "
15647 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15648 Set_Etype (T, Any_Type);
15649 return;
15650 end if;
15651
15652 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15653 -- interfaces
15654
15655 if Is_Tagged_Type (Parent_Type)
15656 and then Is_Non_Empty_List (Interface_List (Def))
15657 then
15658 declare
15659 Intf : Node_Id;
15660 T : Entity_Id;
15661
15662 begin
15663 Intf := First (Interface_List (Def));
15664 while Present (Intf) loop
15665 T := Find_Type_Of_Subtype_Indic (Intf);
15666
15667 if not Is_Interface (T) then
15668 Diagnose_Interface (Intf, T);
15669
15670 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15671 -- a limited type from having a nonlimited progenitor.
15672
15673 elsif (Limited_Present (Def)
15674 or else (not Is_Interface (Parent_Type)
15675 and then Is_Limited_Type (Parent_Type)))
15676 and then not Is_Limited_Interface (T)
15677 then
15678 Error_Msg_NE
15679 ("progenitor interface& of limited type must be limited",
15680 N, T);
15681 end if;
15682
15683 Next (Intf);
15684 end loop;
15685 end;
15686 end if;
15687
15688 if Parent_Type = Any_Type
15689 or else Etype (Parent_Type) = Any_Type
15690 or else (Is_Class_Wide_Type (Parent_Type)
15691 and then Etype (Parent_Type) = T)
15692 then
15693 -- If Parent_Type is undefined or illegal, make new type into a
15694 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15695 -- errors. If this is a self-definition, emit error now.
15696
15697 if T = Parent_Type or else T = Etype (Parent_Type) then
15698 Error_Msg_N ("type cannot be used in its own definition", Indic);
15699 end if;
15700
15701 Set_Ekind (T, Ekind (Parent_Type));
15702 Set_Etype (T, Any_Type);
15703 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15704
15705 if Is_Tagged_Type (T)
15706 and then Is_Record_Type (T)
15707 then
15708 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15709 end if;
15710
15711 return;
15712 end if;
15713
15714 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15715 -- an interface is special because the list of interfaces in the full
15716 -- view can be given in any order. For example:
15717
15718 -- type A is interface;
15719 -- type B is interface and A;
15720 -- type D is new B with private;
15721 -- private
15722 -- type D is new A and B with null record; -- 1 --
15723
15724 -- In this case we perform the following transformation of -1-:
15725
15726 -- type D is new B and A with null record;
15727
15728 -- If the parent of the full-view covers the parent of the partial-view
15729 -- we have two possible cases:
15730
15731 -- 1) They have the same parent
15732 -- 2) The parent of the full-view implements some further interfaces
15733
15734 -- In both cases we do not need to perform the transformation. In the
15735 -- first case the source program is correct and the transformation is
15736 -- not needed; in the second case the source program does not fulfill
15737 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15738 -- later.
15739
15740 -- This transformation not only simplifies the rest of the analysis of
15741 -- this type declaration but also simplifies the correct generation of
15742 -- the object layout to the expander.
15743
15744 if In_Private_Part (Current_Scope)
15745 and then Is_Interface (Parent_Type)
15746 then
15747 declare
15748 Iface : Node_Id;
15749 Partial_View : Entity_Id;
15750 Partial_View_Parent : Entity_Id;
15751 New_Iface : Node_Id;
15752
15753 begin
15754 -- Look for the associated private type declaration
15755
15756 Partial_View := First_Entity (Current_Scope);
15757 loop
15758 exit when No (Partial_View)
15759 or else (Has_Private_Declaration (Partial_View)
15760 and then Full_View (Partial_View) = T);
15761
15762 Next_Entity (Partial_View);
15763 end loop;
15764
15765 -- If the partial view was not found then the source code has
15766 -- errors and the transformation is not needed.
15767
15768 if Present (Partial_View) then
15769 Partial_View_Parent := Etype (Partial_View);
15770
15771 -- If the parent of the full-view covers the parent of the
15772 -- partial-view we have nothing else to do.
15773
15774 if Interface_Present_In_Ancestor
15775 (Parent_Type, Partial_View_Parent)
15776 then
15777 null;
15778
15779 -- Traverse the list of interfaces of the full-view to look
15780 -- for the parent of the partial-view and perform the tree
15781 -- transformation.
15782
15783 else
15784 Iface := First (Interface_List (Def));
15785 while Present (Iface) loop
15786 if Etype (Iface) = Etype (Partial_View) then
15787 Rewrite (Subtype_Indication (Def),
15788 New_Copy (Subtype_Indication
15789 (Parent (Partial_View))));
15790
15791 New_Iface :=
15792 Make_Identifier (Sloc (N), Chars (Parent_Type));
15793 Append (New_Iface, Interface_List (Def));
15794
15795 -- Analyze the transformed code
15796
15797 Derived_Type_Declaration (T, N, Is_Completion);
15798 return;
15799 end if;
15800
15801 Next (Iface);
15802 end loop;
15803 end if;
15804 end if;
15805 end;
15806 end if;
15807
15808 -- Only composite types other than array types are allowed to have
15809 -- discriminants.
15810
15811 if Present (Discriminant_Specifications (N)) then
15812 if (Is_Elementary_Type (Parent_Type)
15813 or else
15814 Is_Array_Type (Parent_Type))
15815 and then not Error_Posted (N)
15816 then
15817 Error_Msg_N
15818 ("elementary or array type cannot have discriminants",
15819 Defining_Identifier (First (Discriminant_Specifications (N))));
15820 Set_Has_Discriminants (T, False);
15821
15822 -- The type is allowed to have discriminants
15823
15824 else
15825 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15826 end if;
15827 end if;
15828
15829 -- In Ada 83, a derived type defined in a package specification cannot
15830 -- be used for further derivation until the end of its visible part.
15831 -- Note that derivation in the private part of the package is allowed.
15832
15833 if Ada_Version = Ada_83
15834 and then Is_Derived_Type (Parent_Type)
15835 and then In_Visible_Part (Scope (Parent_Type))
15836 then
15837 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15838 Error_Msg_N
15839 ("(Ada 83): premature use of type for derivation", Indic);
15840 end if;
15841 end if;
15842
15843 -- Check for early use of incomplete or private type
15844
15845 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15846 Error_Msg_N ("premature derivation of incomplete type", Indic);
15847 return;
15848
15849 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15850 and then not Comes_From_Generic (Parent_Type))
15851 or else Has_Private_Component (Parent_Type)
15852 then
15853 -- The ancestor type of a formal type can be incomplete, in which
15854 -- case only the operations of the partial view are available in the
15855 -- generic. Subsequent checks may be required when the full view is
15856 -- analyzed to verify that a derivation from a tagged type has an
15857 -- extension.
15858
15859 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15860 null;
15861
15862 elsif No (Underlying_Type (Parent_Type))
15863 or else Has_Private_Component (Parent_Type)
15864 then
15865 Error_Msg_N
15866 ("premature derivation of derived or private type", Indic);
15867
15868 -- Flag the type itself as being in error, this prevents some
15869 -- nasty problems with subsequent uses of the malformed type.
15870
15871 Set_Error_Posted (T);
15872
15873 -- Check that within the immediate scope of an untagged partial
15874 -- view it's illegal to derive from the partial view if the
15875 -- full view is tagged. (7.3(7))
15876
15877 -- We verify that the Parent_Type is a partial view by checking
15878 -- that it is not a Full_Type_Declaration (i.e. a private type or
15879 -- private extension declaration), to distinguish a partial view
15880 -- from a derivation from a private type which also appears as
15881 -- E_Private_Type. If the parent base type is not declared in an
15882 -- enclosing scope there is no need to check.
15883
15884 elsif Present (Full_View (Parent_Type))
15885 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15886 and then not Is_Tagged_Type (Parent_Type)
15887 and then Is_Tagged_Type (Full_View (Parent_Type))
15888 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15889 then
15890 Error_Msg_N
15891 ("premature derivation from type with tagged full view",
15892 Indic);
15893 end if;
15894 end if;
15895
15896 -- Check that form of derivation is appropriate
15897
15898 Taggd := Is_Tagged_Type (Parent_Type);
15899
15900 -- Set the parent type to the class-wide type's specific type in this
15901 -- case to prevent cascading errors
15902
15903 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15904 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15905 Set_Etype (T, Etype (Parent_Type));
15906 return;
15907 end if;
15908
15909 if Present (Extension) and then not Taggd then
15910 Error_Msg_N
15911 ("type derived from untagged type cannot have extension", Indic);
15912
15913 elsif No (Extension) and then Taggd then
15914
15915 -- If this declaration is within a private part (or body) of a
15916 -- generic instantiation then the derivation is allowed (the parent
15917 -- type can only appear tagged in this case if it's a generic actual
15918 -- type, since it would otherwise have been rejected in the analysis
15919 -- of the generic template).
15920
15921 if not Is_Generic_Actual_Type (Parent_Type)
15922 or else In_Visible_Part (Scope (Parent_Type))
15923 then
15924 if Is_Class_Wide_Type (Parent_Type) then
15925 Error_Msg_N
15926 ("parent type must not be a class-wide type", Indic);
15927
15928 -- Use specific type to prevent cascaded errors.
15929
15930 Parent_Type := Etype (Parent_Type);
15931
15932 else
15933 Error_Msg_N
15934 ("type derived from tagged type must have extension", Indic);
15935 end if;
15936 end if;
15937 end if;
15938
15939 -- AI-443: Synchronized formal derived types require a private
15940 -- extension. There is no point in checking the ancestor type or
15941 -- the progenitors since the construct is wrong to begin with.
15942
15943 if Ada_Version >= Ada_2005
15944 and then Is_Generic_Type (T)
15945 and then Present (Original_Node (N))
15946 then
15947 declare
15948 Decl : constant Node_Id := Original_Node (N);
15949
15950 begin
15951 if Nkind (Decl) = N_Formal_Type_Declaration
15952 and then Nkind (Formal_Type_Definition (Decl)) =
15953 N_Formal_Derived_Type_Definition
15954 and then Synchronized_Present (Formal_Type_Definition (Decl))
15955 and then No (Extension)
15956
15957 -- Avoid emitting a duplicate error message
15958
15959 and then not Error_Posted (Indic)
15960 then
15961 Error_Msg_N
15962 ("synchronized derived type must have extension", N);
15963 end if;
15964 end;
15965 end if;
15966
15967 if Null_Exclusion_Present (Def)
15968 and then not Is_Access_Type (Parent_Type)
15969 then
15970 Error_Msg_N ("null exclusion can only apply to an access type", N);
15971 end if;
15972
15973 -- Avoid deriving parent primitives of underlying record views
15974
15975 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15976 Derive_Subps => not Is_Underlying_Record_View (T));
15977
15978 -- AI-419: The parent type of an explicitly limited derived type must
15979 -- be a limited type or a limited interface.
15980
15981 if Limited_Present (Def) then
15982 Set_Is_Limited_Record (T);
15983
15984 if Is_Interface (T) then
15985 Set_Is_Limited_Interface (T);
15986 end if;
15987
15988 if not Is_Limited_Type (Parent_Type)
15989 and then
15990 (not Is_Interface (Parent_Type)
15991 or else not Is_Limited_Interface (Parent_Type))
15992 then
15993 -- AI05-0096: a derivation in the private part of an instance is
15994 -- legal if the generic formal is untagged limited, and the actual
15995 -- is non-limited.
15996
15997 if Is_Generic_Actual_Type (Parent_Type)
15998 and then In_Private_Part (Current_Scope)
15999 and then
16000 not Is_Tagged_Type
16001 (Generic_Parent_Type (Parent (Parent_Type)))
16002 then
16003 null;
16004
16005 else
16006 Error_Msg_NE
16007 ("parent type& of limited type must be limited",
16008 N, Parent_Type);
16009 end if;
16010 end if;
16011 end if;
16012
16013 -- In SPARK, there are no derived type definitions other than type
16014 -- extensions of tagged record types.
16015
16016 if No (Extension) then
16017 Check_SPARK_05_Restriction
16018 ("derived type is not allowed", Original_Node (N));
16019 end if;
16020 end Derived_Type_Declaration;
16021
16022 ------------------------
16023 -- Diagnose_Interface --
16024 ------------------------
16025
16026 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16027 begin
16028 if not Is_Interface (E) and then E /= Any_Type then
16029 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16030 end if;
16031 end Diagnose_Interface;
16032
16033 ----------------------------------
16034 -- Enumeration_Type_Declaration --
16035 ----------------------------------
16036
16037 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16038 Ev : Uint;
16039 L : Node_Id;
16040 R_Node : Node_Id;
16041 B_Node : Node_Id;
16042
16043 begin
16044 -- Create identifier node representing lower bound
16045
16046 B_Node := New_Node (N_Identifier, Sloc (Def));
16047 L := First (Literals (Def));
16048 Set_Chars (B_Node, Chars (L));
16049 Set_Entity (B_Node, L);
16050 Set_Etype (B_Node, T);
16051 Set_Is_Static_Expression (B_Node, True);
16052
16053 R_Node := New_Node (N_Range, Sloc (Def));
16054 Set_Low_Bound (R_Node, B_Node);
16055
16056 Set_Ekind (T, E_Enumeration_Type);
16057 Set_First_Literal (T, L);
16058 Set_Etype (T, T);
16059 Set_Is_Constrained (T);
16060
16061 Ev := Uint_0;
16062
16063 -- Loop through literals of enumeration type setting pos and rep values
16064 -- except that if the Ekind is already set, then it means the literal
16065 -- was already constructed (case of a derived type declaration and we
16066 -- should not disturb the Pos and Rep values.
16067
16068 while Present (L) loop
16069 if Ekind (L) /= E_Enumeration_Literal then
16070 Set_Ekind (L, E_Enumeration_Literal);
16071 Set_Enumeration_Pos (L, Ev);
16072 Set_Enumeration_Rep (L, Ev);
16073 Set_Is_Known_Valid (L, True);
16074 end if;
16075
16076 Set_Etype (L, T);
16077 New_Overloaded_Entity (L);
16078 Generate_Definition (L);
16079 Set_Convention (L, Convention_Intrinsic);
16080
16081 -- Case of character literal
16082
16083 if Nkind (L) = N_Defining_Character_Literal then
16084 Set_Is_Character_Type (T, True);
16085
16086 -- Check violation of No_Wide_Characters
16087
16088 if Restriction_Check_Required (No_Wide_Characters) then
16089 Get_Name_String (Chars (L));
16090
16091 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16092 Check_Restriction (No_Wide_Characters, L);
16093 end if;
16094 end if;
16095 end if;
16096
16097 Ev := Ev + 1;
16098 Next (L);
16099 end loop;
16100
16101 -- Now create a node representing upper bound
16102
16103 B_Node := New_Node (N_Identifier, Sloc (Def));
16104 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16105 Set_Entity (B_Node, Last (Literals (Def)));
16106 Set_Etype (B_Node, T);
16107 Set_Is_Static_Expression (B_Node, True);
16108
16109 Set_High_Bound (R_Node, B_Node);
16110
16111 -- Initialize various fields of the type. Some of this information
16112 -- may be overwritten later through rep.clauses.
16113
16114 Set_Scalar_Range (T, R_Node);
16115 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16116 Set_Enum_Esize (T);
16117 Set_Enum_Pos_To_Rep (T, Empty);
16118
16119 -- Set Discard_Names if configuration pragma set, or if there is
16120 -- a parameterless pragma in the current declarative region
16121
16122 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16123 Set_Discard_Names (T);
16124 end if;
16125
16126 -- Process end label if there is one
16127
16128 if Present (Def) then
16129 Process_End_Label (Def, 'e', T);
16130 end if;
16131 end Enumeration_Type_Declaration;
16132
16133 ---------------------------------
16134 -- Expand_To_Stored_Constraint --
16135 ---------------------------------
16136
16137 function Expand_To_Stored_Constraint
16138 (Typ : Entity_Id;
16139 Constraint : Elist_Id) return Elist_Id
16140 is
16141 Explicitly_Discriminated_Type : Entity_Id;
16142 Expansion : Elist_Id;
16143 Discriminant : Entity_Id;
16144
16145 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16146 -- Find the nearest type that actually specifies discriminants
16147
16148 ---------------------------------
16149 -- Type_With_Explicit_Discrims --
16150 ---------------------------------
16151
16152 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16153 Typ : constant E := Base_Type (Id);
16154
16155 begin
16156 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16157 if Present (Full_View (Typ)) then
16158 return Type_With_Explicit_Discrims (Full_View (Typ));
16159 end if;
16160
16161 else
16162 if Has_Discriminants (Typ) then
16163 return Typ;
16164 end if;
16165 end if;
16166
16167 if Etype (Typ) = Typ then
16168 return Empty;
16169 elsif Has_Discriminants (Typ) then
16170 return Typ;
16171 else
16172 return Type_With_Explicit_Discrims (Etype (Typ));
16173 end if;
16174
16175 end Type_With_Explicit_Discrims;
16176
16177 -- Start of processing for Expand_To_Stored_Constraint
16178
16179 begin
16180 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16181 return No_Elist;
16182 end if;
16183
16184 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16185
16186 if No (Explicitly_Discriminated_Type) then
16187 return No_Elist;
16188 end if;
16189
16190 Expansion := New_Elmt_List;
16191
16192 Discriminant :=
16193 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16194 while Present (Discriminant) loop
16195 Append_Elmt
16196 (Get_Discriminant_Value
16197 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16198 To => Expansion);
16199 Next_Stored_Discriminant (Discriminant);
16200 end loop;
16201
16202 return Expansion;
16203 end Expand_To_Stored_Constraint;
16204
16205 ---------------------------
16206 -- Find_Hidden_Interface --
16207 ---------------------------
16208
16209 function Find_Hidden_Interface
16210 (Src : Elist_Id;
16211 Dest : Elist_Id) return Entity_Id
16212 is
16213 Iface : Entity_Id;
16214 Iface_Elmt : Elmt_Id;
16215
16216 begin
16217 if Present (Src) and then Present (Dest) then
16218 Iface_Elmt := First_Elmt (Src);
16219 while Present (Iface_Elmt) loop
16220 Iface := Node (Iface_Elmt);
16221
16222 if Is_Interface (Iface)
16223 and then not Contain_Interface (Iface, Dest)
16224 then
16225 return Iface;
16226 end if;
16227
16228 Next_Elmt (Iface_Elmt);
16229 end loop;
16230 end if;
16231
16232 return Empty;
16233 end Find_Hidden_Interface;
16234
16235 --------------------
16236 -- Find_Type_Name --
16237 --------------------
16238
16239 function Find_Type_Name (N : Node_Id) return Entity_Id is
16240 Id : constant Entity_Id := Defining_Identifier (N);
16241 Prev : Entity_Id;
16242 New_Id : Entity_Id;
16243 Prev_Par : Node_Id;
16244
16245 procedure Check_Duplicate_Aspects;
16246 -- Check that aspects specified in a completion have not been specified
16247 -- already in the partial view. Type_Invariant and others can be
16248 -- specified on either view but never on both.
16249
16250 procedure Tag_Mismatch;
16251 -- Diagnose a tagged partial view whose full view is untagged.
16252 -- We post the message on the full view, with a reference to
16253 -- the previous partial view. The partial view can be private
16254 -- or incomplete, and these are handled in a different manner,
16255 -- so we determine the position of the error message from the
16256 -- respective slocs of both.
16257
16258 -----------------------------
16259 -- Check_Duplicate_Aspects --
16260 -----------------------------
16261 procedure Check_Duplicate_Aspects is
16262 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16263 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16264 F_Spec, P_Spec : Node_Id;
16265
16266 begin
16267 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16268 F_Spec := First (Full_Aspects);
16269 while Present (F_Spec) loop
16270 P_Spec := First (Prev_Aspects);
16271 while Present (P_Spec) loop
16272 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16273 then
16274 Error_Msg_N
16275 ("aspect already specified in private declaration",
16276 F_Spec);
16277 Remove (F_Spec);
16278 return;
16279 end if;
16280
16281 Next (P_Spec);
16282 end loop;
16283
16284 Next (F_Spec);
16285 end loop;
16286 end if;
16287 end Check_Duplicate_Aspects;
16288
16289 ------------------
16290 -- Tag_Mismatch --
16291 ------------------
16292
16293 procedure Tag_Mismatch is
16294 begin
16295 if Sloc (Prev) < Sloc (Id) then
16296 if Ada_Version >= Ada_2012
16297 and then Nkind (N) = N_Private_Type_Declaration
16298 then
16299 Error_Msg_NE
16300 ("declaration of private } must be a tagged type ", Id, Prev);
16301 else
16302 Error_Msg_NE
16303 ("full declaration of } must be a tagged type ", Id, Prev);
16304 end if;
16305
16306 else
16307 if Ada_Version >= Ada_2012
16308 and then Nkind (N) = N_Private_Type_Declaration
16309 then
16310 Error_Msg_NE
16311 ("declaration of private } must be a tagged type ", Prev, Id);
16312 else
16313 Error_Msg_NE
16314 ("full declaration of } must be a tagged type ", Prev, Id);
16315 end if;
16316 end if;
16317 end Tag_Mismatch;
16318
16319 -- Start of processing for Find_Type_Name
16320
16321 begin
16322 -- Find incomplete declaration, if one was given
16323
16324 Prev := Current_Entity_In_Scope (Id);
16325
16326 -- New type declaration
16327
16328 if No (Prev) then
16329 Enter_Name (Id);
16330 return Id;
16331
16332 -- Previous declaration exists
16333
16334 else
16335 Prev_Par := Parent (Prev);
16336
16337 -- Error if not incomplete/private case except if previous
16338 -- declaration is implicit, etc. Enter_Name will emit error if
16339 -- appropriate.
16340
16341 if not Is_Incomplete_Or_Private_Type (Prev) then
16342 Enter_Name (Id);
16343 New_Id := Id;
16344
16345 -- Check invalid completion of private or incomplete type
16346
16347 elsif not Nkind_In (N, N_Full_Type_Declaration,
16348 N_Task_Type_Declaration,
16349 N_Protected_Type_Declaration)
16350 and then
16351 (Ada_Version < Ada_2012
16352 or else not Is_Incomplete_Type (Prev)
16353 or else not Nkind_In (N, N_Private_Type_Declaration,
16354 N_Private_Extension_Declaration))
16355 then
16356 -- Completion must be a full type declarations (RM 7.3(4))
16357
16358 Error_Msg_Sloc := Sloc (Prev);
16359 Error_Msg_NE ("invalid completion of }", Id, Prev);
16360
16361 -- Set scope of Id to avoid cascaded errors. Entity is never
16362 -- examined again, except when saving globals in generics.
16363
16364 Set_Scope (Id, Current_Scope);
16365 New_Id := Id;
16366
16367 -- If this is a repeated incomplete declaration, no further
16368 -- checks are possible.
16369
16370 if Nkind (N) = N_Incomplete_Type_Declaration then
16371 return Prev;
16372 end if;
16373
16374 -- Case of full declaration of incomplete type
16375
16376 elsif Ekind (Prev) = E_Incomplete_Type
16377 and then (Ada_Version < Ada_2012
16378 or else No (Full_View (Prev))
16379 or else not Is_Private_Type (Full_View (Prev)))
16380 then
16381 -- Indicate that the incomplete declaration has a matching full
16382 -- declaration. The defining occurrence of the incomplete
16383 -- declaration remains the visible one, and the procedure
16384 -- Get_Full_View dereferences it whenever the type is used.
16385
16386 if Present (Full_View (Prev)) then
16387 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16388 end if;
16389
16390 Set_Full_View (Prev, Id);
16391 Append_Entity (Id, Current_Scope);
16392 Set_Is_Public (Id, Is_Public (Prev));
16393 Set_Is_Internal (Id);
16394 New_Id := Prev;
16395
16396 -- If the incomplete view is tagged, a class_wide type has been
16397 -- created already. Use it for the private type as well, in order
16398 -- to prevent multiple incompatible class-wide types that may be
16399 -- created for self-referential anonymous access components.
16400
16401 if Is_Tagged_Type (Prev)
16402 and then Present (Class_Wide_Type (Prev))
16403 then
16404 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16405 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16406
16407 -- The type of the classwide type is the current Id. Previously
16408 -- this was not done for private declarations because of order-
16409 -- of elaboration issues in the back-end, but gigi now handles
16410 -- this properly.
16411
16412 Set_Etype (Class_Wide_Type (Id), Id);
16413 end if;
16414
16415 -- Case of full declaration of private type
16416
16417 else
16418 -- If the private type was a completion of an incomplete type then
16419 -- update Prev to reference the private type
16420
16421 if Ada_Version >= Ada_2012
16422 and then Ekind (Prev) = E_Incomplete_Type
16423 and then Present (Full_View (Prev))
16424 and then Is_Private_Type (Full_View (Prev))
16425 then
16426 Prev := Full_View (Prev);
16427 Prev_Par := Parent (Prev);
16428 end if;
16429
16430 if Nkind (N) = N_Full_Type_Declaration
16431 and then Nkind_In
16432 (Type_Definition (N), N_Record_Definition,
16433 N_Derived_Type_Definition)
16434 and then Interface_Present (Type_Definition (N))
16435 then
16436 Error_Msg_N
16437 ("completion of private type cannot be an interface", N);
16438 end if;
16439
16440 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16441 if Etype (Prev) /= Prev then
16442
16443 -- Prev is a private subtype or a derived type, and needs
16444 -- no completion.
16445
16446 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16447 New_Id := Id;
16448
16449 elsif Ekind (Prev) = E_Private_Type
16450 and then Nkind_In (N, N_Task_Type_Declaration,
16451 N_Protected_Type_Declaration)
16452 then
16453 Error_Msg_N
16454 ("completion of nonlimited type cannot be limited", N);
16455
16456 elsif Ekind (Prev) = E_Record_Type_With_Private
16457 and then Nkind_In (N, N_Task_Type_Declaration,
16458 N_Protected_Type_Declaration)
16459 then
16460 if not Is_Limited_Record (Prev) then
16461 Error_Msg_N
16462 ("completion of nonlimited type cannot be limited", N);
16463
16464 elsif No (Interface_List (N)) then
16465 Error_Msg_N
16466 ("completion of tagged private type must be tagged",
16467 N);
16468 end if;
16469 end if;
16470
16471 -- Ada 2005 (AI-251): Private extension declaration of a task
16472 -- type or a protected type. This case arises when covering
16473 -- interface types.
16474
16475 elsif Nkind_In (N, N_Task_Type_Declaration,
16476 N_Protected_Type_Declaration)
16477 then
16478 null;
16479
16480 elsif Nkind (N) /= N_Full_Type_Declaration
16481 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16482 then
16483 Error_Msg_N
16484 ("full view of private extension must be an extension", N);
16485
16486 elsif not (Abstract_Present (Parent (Prev)))
16487 and then Abstract_Present (Type_Definition (N))
16488 then
16489 Error_Msg_N
16490 ("full view of non-abstract extension cannot be abstract", N);
16491 end if;
16492
16493 if not In_Private_Part (Current_Scope) then
16494 Error_Msg_N
16495 ("declaration of full view must appear in private part", N);
16496 end if;
16497
16498 if Ada_Version >= Ada_2012 then
16499 Check_Duplicate_Aspects;
16500 end if;
16501
16502 Copy_And_Swap (Prev, Id);
16503 Set_Has_Private_Declaration (Prev);
16504 Set_Has_Private_Declaration (Id);
16505
16506 -- AI12-0133: Indicate whether we have a partial view with
16507 -- unknown discriminants, in which case initialization of objects
16508 -- of the type do not receive an invariant check.
16509
16510 Set_Partial_View_Has_Unknown_Discr
16511 (Prev, Has_Unknown_Discriminants (Id));
16512
16513 -- Preserve aspect and iterator flags that may have been set on
16514 -- the partial view.
16515
16516 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16517 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16518
16519 -- If no error, propagate freeze_node from private to full view.
16520 -- It may have been generated for an early operational item.
16521
16522 if Present (Freeze_Node (Id))
16523 and then Serious_Errors_Detected = 0
16524 and then No (Full_View (Id))
16525 then
16526 Set_Freeze_Node (Prev, Freeze_Node (Id));
16527 Set_Freeze_Node (Id, Empty);
16528 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16529 end if;
16530
16531 Set_Full_View (Id, Prev);
16532 New_Id := Prev;
16533 end if;
16534
16535 -- Verify that full declaration conforms to partial one
16536
16537 if Is_Incomplete_Or_Private_Type (Prev)
16538 and then Present (Discriminant_Specifications (Prev_Par))
16539 then
16540 if Present (Discriminant_Specifications (N)) then
16541 if Ekind (Prev) = E_Incomplete_Type then
16542 Check_Discriminant_Conformance (N, Prev, Prev);
16543 else
16544 Check_Discriminant_Conformance (N, Prev, Id);
16545 end if;
16546
16547 else
16548 Error_Msg_N
16549 ("missing discriminants in full type declaration", N);
16550
16551 -- To avoid cascaded errors on subsequent use, share the
16552 -- discriminants of the partial view.
16553
16554 Set_Discriminant_Specifications (N,
16555 Discriminant_Specifications (Prev_Par));
16556 end if;
16557 end if;
16558
16559 -- A prior untagged partial view can have an associated class-wide
16560 -- type due to use of the class attribute, and in this case the full
16561 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16562 -- of incomplete tagged declarations, but we check for it.
16563
16564 if Is_Type (Prev)
16565 and then (Is_Tagged_Type (Prev)
16566 or else Present (Class_Wide_Type (Prev)))
16567 then
16568 -- Ada 2012 (AI05-0162): A private type may be the completion of
16569 -- an incomplete type.
16570
16571 if Ada_Version >= Ada_2012
16572 and then Is_Incomplete_Type (Prev)
16573 and then Nkind_In (N, N_Private_Type_Declaration,
16574 N_Private_Extension_Declaration)
16575 then
16576 -- No need to check private extensions since they are tagged
16577
16578 if Nkind (N) = N_Private_Type_Declaration
16579 and then not Tagged_Present (N)
16580 then
16581 Tag_Mismatch;
16582 end if;
16583
16584 -- The full declaration is either a tagged type (including
16585 -- a synchronized type that implements interfaces) or a
16586 -- type extension, otherwise this is an error.
16587
16588 elsif Nkind_In (N, N_Task_Type_Declaration,
16589 N_Protected_Type_Declaration)
16590 then
16591 if No (Interface_List (N)) and then not Error_Posted (N) then
16592 Tag_Mismatch;
16593 end if;
16594
16595 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16596
16597 -- Indicate that the previous declaration (tagged incomplete
16598 -- or private declaration) requires the same on the full one.
16599
16600 if not Tagged_Present (Type_Definition (N)) then
16601 Tag_Mismatch;
16602 Set_Is_Tagged_Type (Id);
16603 end if;
16604
16605 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16606 if No (Record_Extension_Part (Type_Definition (N))) then
16607 Error_Msg_NE
16608 ("full declaration of } must be a record extension",
16609 Prev, Id);
16610
16611 -- Set some attributes to produce a usable full view
16612
16613 Set_Is_Tagged_Type (Id);
16614 end if;
16615
16616 else
16617 Tag_Mismatch;
16618 end if;
16619 end if;
16620
16621 if Present (Prev)
16622 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16623 and then Present (Premature_Use (Parent (Prev)))
16624 then
16625 Error_Msg_Sloc := Sloc (N);
16626 Error_Msg_N
16627 ("\full declaration #", Premature_Use (Parent (Prev)));
16628 end if;
16629
16630 return New_Id;
16631 end if;
16632 end Find_Type_Name;
16633
16634 -------------------------
16635 -- Find_Type_Of_Object --
16636 -------------------------
16637
16638 function Find_Type_Of_Object
16639 (Obj_Def : Node_Id;
16640 Related_Nod : Node_Id) return Entity_Id
16641 is
16642 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16643 P : Node_Id := Parent (Obj_Def);
16644 T : Entity_Id;
16645 Nam : Name_Id;
16646
16647 begin
16648 -- If the parent is a component_definition node we climb to the
16649 -- component_declaration node
16650
16651 if Nkind (P) = N_Component_Definition then
16652 P := Parent (P);
16653 end if;
16654
16655 -- Case of an anonymous array subtype
16656
16657 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16658 N_Unconstrained_Array_Definition)
16659 then
16660 T := Empty;
16661 Array_Type_Declaration (T, Obj_Def);
16662
16663 -- Create an explicit subtype whenever possible
16664
16665 elsif Nkind (P) /= N_Component_Declaration
16666 and then Def_Kind = N_Subtype_Indication
16667 then
16668 -- Base name of subtype on object name, which will be unique in
16669 -- the current scope.
16670
16671 -- If this is a duplicate declaration, return base type, to avoid
16672 -- generating duplicate anonymous types.
16673
16674 if Error_Posted (P) then
16675 Analyze (Subtype_Mark (Obj_Def));
16676 return Entity (Subtype_Mark (Obj_Def));
16677 end if;
16678
16679 Nam :=
16680 New_External_Name
16681 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16682
16683 T := Make_Defining_Identifier (Sloc (P), Nam);
16684
16685 Insert_Action (Obj_Def,
16686 Make_Subtype_Declaration (Sloc (P),
16687 Defining_Identifier => T,
16688 Subtype_Indication => Relocate_Node (Obj_Def)));
16689
16690 -- This subtype may need freezing, and this will not be done
16691 -- automatically if the object declaration is not in declarative
16692 -- part. Since this is an object declaration, the type cannot always
16693 -- be frozen here. Deferred constants do not freeze their type
16694 -- (which often enough will be private).
16695
16696 if Nkind (P) = N_Object_Declaration
16697 and then Constant_Present (P)
16698 and then No (Expression (P))
16699 then
16700 null;
16701
16702 -- Here we freeze the base type of object type to catch premature use
16703 -- of discriminated private type without a full view.
16704
16705 else
16706 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16707 end if;
16708
16709 -- Ada 2005 AI-406: the object definition in an object declaration
16710 -- can be an access definition.
16711
16712 elsif Def_Kind = N_Access_Definition then
16713 T := Access_Definition (Related_Nod, Obj_Def);
16714
16715 Set_Is_Local_Anonymous_Access
16716 (T,
16717 V => (Ada_Version < Ada_2012)
16718 or else (Nkind (P) /= N_Object_Declaration)
16719 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16720
16721 -- Otherwise, the object definition is just a subtype_mark
16722
16723 else
16724 T := Process_Subtype (Obj_Def, Related_Nod);
16725
16726 -- If expansion is disabled an object definition that is an aggregate
16727 -- will not get expanded and may lead to scoping problems in the back
16728 -- end, if the object is referenced in an inner scope. In that case
16729 -- create an itype reference for the object definition now. This
16730 -- may be redundant in some cases, but harmless.
16731
16732 if Is_Itype (T)
16733 and then Nkind (Related_Nod) = N_Object_Declaration
16734 and then ASIS_Mode
16735 then
16736 Build_Itype_Reference (T, Related_Nod);
16737 end if;
16738 end if;
16739
16740 return T;
16741 end Find_Type_Of_Object;
16742
16743 --------------------------------
16744 -- Find_Type_Of_Subtype_Indic --
16745 --------------------------------
16746
16747 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16748 Typ : Entity_Id;
16749
16750 begin
16751 -- Case of subtype mark with a constraint
16752
16753 if Nkind (S) = N_Subtype_Indication then
16754 Find_Type (Subtype_Mark (S));
16755 Typ := Entity (Subtype_Mark (S));
16756
16757 if not
16758 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16759 then
16760 Error_Msg_N
16761 ("incorrect constraint for this kind of type", Constraint (S));
16762 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16763 end if;
16764
16765 -- Otherwise we have a subtype mark without a constraint
16766
16767 elsif Error_Posted (S) then
16768 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16769 return Any_Type;
16770
16771 else
16772 Find_Type (S);
16773 Typ := Entity (S);
16774 end if;
16775
16776 -- Check No_Wide_Characters restriction
16777
16778 Check_Wide_Character_Restriction (Typ, S);
16779
16780 return Typ;
16781 end Find_Type_Of_Subtype_Indic;
16782
16783 -------------------------------------
16784 -- Floating_Point_Type_Declaration --
16785 -------------------------------------
16786
16787 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16788 Digs : constant Node_Id := Digits_Expression (Def);
16789 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16790 Digs_Val : Uint;
16791 Base_Typ : Entity_Id;
16792 Implicit_Base : Entity_Id;
16793 Bound : Node_Id;
16794
16795 function Can_Derive_From (E : Entity_Id) return Boolean;
16796 -- Find if given digits value, and possibly a specified range, allows
16797 -- derivation from specified type
16798
16799 function Find_Base_Type return Entity_Id;
16800 -- Find a predefined base type that Def can derive from, or generate
16801 -- an error and substitute Long_Long_Float if none exists.
16802
16803 ---------------------
16804 -- Can_Derive_From --
16805 ---------------------
16806
16807 function Can_Derive_From (E : Entity_Id) return Boolean is
16808 Spec : constant Entity_Id := Real_Range_Specification (Def);
16809
16810 begin
16811 -- Check specified "digits" constraint
16812
16813 if Digs_Val > Digits_Value (E) then
16814 return False;
16815 end if;
16816
16817 -- Check for matching range, if specified
16818
16819 if Present (Spec) then
16820 if Expr_Value_R (Type_Low_Bound (E)) >
16821 Expr_Value_R (Low_Bound (Spec))
16822 then
16823 return False;
16824 end if;
16825
16826 if Expr_Value_R (Type_High_Bound (E)) <
16827 Expr_Value_R (High_Bound (Spec))
16828 then
16829 return False;
16830 end if;
16831 end if;
16832
16833 return True;
16834 end Can_Derive_From;
16835
16836 --------------------
16837 -- Find_Base_Type --
16838 --------------------
16839
16840 function Find_Base_Type return Entity_Id is
16841 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16842
16843 begin
16844 -- Iterate over the predefined types in order, returning the first
16845 -- one that Def can derive from.
16846
16847 while Present (Choice) loop
16848 if Can_Derive_From (Node (Choice)) then
16849 return Node (Choice);
16850 end if;
16851
16852 Next_Elmt (Choice);
16853 end loop;
16854
16855 -- If we can't derive from any existing type, use Long_Long_Float
16856 -- and give appropriate message explaining the problem.
16857
16858 if Digs_Val > Max_Digs_Val then
16859 -- It might be the case that there is a type with the requested
16860 -- range, just not the combination of digits and range.
16861
16862 Error_Msg_N
16863 ("no predefined type has requested range and precision",
16864 Real_Range_Specification (Def));
16865
16866 else
16867 Error_Msg_N
16868 ("range too large for any predefined type",
16869 Real_Range_Specification (Def));
16870 end if;
16871
16872 return Standard_Long_Long_Float;
16873 end Find_Base_Type;
16874
16875 -- Start of processing for Floating_Point_Type_Declaration
16876
16877 begin
16878 Check_Restriction (No_Floating_Point, Def);
16879
16880 -- Create an implicit base type
16881
16882 Implicit_Base :=
16883 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16884
16885 -- Analyze and verify digits value
16886
16887 Analyze_And_Resolve (Digs, Any_Integer);
16888 Check_Digits_Expression (Digs);
16889 Digs_Val := Expr_Value (Digs);
16890
16891 -- Process possible range spec and find correct type to derive from
16892
16893 Process_Real_Range_Specification (Def);
16894
16895 -- Check that requested number of digits is not too high.
16896
16897 if Digs_Val > Max_Digs_Val then
16898
16899 -- The check for Max_Base_Digits may be somewhat expensive, as it
16900 -- requires reading System, so only do it when necessary.
16901
16902 declare
16903 Max_Base_Digits : constant Uint :=
16904 Expr_Value
16905 (Expression
16906 (Parent (RTE (RE_Max_Base_Digits))));
16907
16908 begin
16909 if Digs_Val > Max_Base_Digits then
16910 Error_Msg_Uint_1 := Max_Base_Digits;
16911 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16912
16913 elsif No (Real_Range_Specification (Def)) then
16914 Error_Msg_Uint_1 := Max_Digs_Val;
16915 Error_Msg_N ("types with more than ^ digits need range spec "
16916 & "(RM 3.5.7(6))", Digs);
16917 end if;
16918 end;
16919 end if;
16920
16921 -- Find a suitable type to derive from or complain and use a substitute
16922
16923 Base_Typ := Find_Base_Type;
16924
16925 -- If there are bounds given in the declaration use them as the bounds
16926 -- of the type, otherwise use the bounds of the predefined base type
16927 -- that was chosen based on the Digits value.
16928
16929 if Present (Real_Range_Specification (Def)) then
16930 Set_Scalar_Range (T, Real_Range_Specification (Def));
16931 Set_Is_Constrained (T);
16932
16933 -- The bounds of this range must be converted to machine numbers
16934 -- in accordance with RM 4.9(38).
16935
16936 Bound := Type_Low_Bound (T);
16937
16938 if Nkind (Bound) = N_Real_Literal then
16939 Set_Realval
16940 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16941 Set_Is_Machine_Number (Bound);
16942 end if;
16943
16944 Bound := Type_High_Bound (T);
16945
16946 if Nkind (Bound) = N_Real_Literal then
16947 Set_Realval
16948 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16949 Set_Is_Machine_Number (Bound);
16950 end if;
16951
16952 else
16953 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16954 end if;
16955
16956 -- Complete definition of implicit base and declared first subtype. The
16957 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16958 -- are not clobbered when the floating point type acts as a full view of
16959 -- a private type.
16960
16961 Set_Etype (Implicit_Base, Base_Typ);
16962 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16963 Set_Size_Info (Implicit_Base, Base_Typ);
16964 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16965 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16966 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16967 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16968
16969 Set_Ekind (T, E_Floating_Point_Subtype);
16970 Set_Etype (T, Implicit_Base);
16971 Set_Size_Info (T, Implicit_Base);
16972 Set_RM_Size (T, RM_Size (Implicit_Base));
16973 Inherit_Rep_Item_Chain (T, Implicit_Base);
16974 Set_Digits_Value (T, Digs_Val);
16975 end Floating_Point_Type_Declaration;
16976
16977 ----------------------------
16978 -- Get_Discriminant_Value --
16979 ----------------------------
16980
16981 -- This is the situation:
16982
16983 -- There is a non-derived type
16984
16985 -- type T0 (Dx, Dy, Dz...)
16986
16987 -- There are zero or more levels of derivation, with each derivation
16988 -- either purely inheriting the discriminants, or defining its own.
16989
16990 -- type Ti is new Ti-1
16991 -- or
16992 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16993 -- or
16994 -- subtype Ti is ...
16995
16996 -- The subtype issue is avoided by the use of Original_Record_Component,
16997 -- and the fact that derived subtypes also derive the constraints.
16998
16999 -- This chain leads back from
17000
17001 -- Typ_For_Constraint
17002
17003 -- Typ_For_Constraint has discriminants, and the value for each
17004 -- discriminant is given by its corresponding Elmt of Constraints.
17005
17006 -- Discriminant is some discriminant in this hierarchy
17007
17008 -- We need to return its value
17009
17010 -- We do this by recursively searching each level, and looking for
17011 -- Discriminant. Once we get to the bottom, we start backing up
17012 -- returning the value for it which may in turn be a discriminant
17013 -- further up, so on the backup we continue the substitution.
17014
17015 function Get_Discriminant_Value
17016 (Discriminant : Entity_Id;
17017 Typ_For_Constraint : Entity_Id;
17018 Constraint : Elist_Id) return Node_Id
17019 is
17020 function Root_Corresponding_Discriminant
17021 (Discr : Entity_Id) return Entity_Id;
17022 -- Given a discriminant, traverse the chain of inherited discriminants
17023 -- and return the topmost discriminant.
17024
17025 function Search_Derivation_Levels
17026 (Ti : Entity_Id;
17027 Discrim_Values : Elist_Id;
17028 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17029 -- This is the routine that performs the recursive search of levels
17030 -- as described above.
17031
17032 -------------------------------------
17033 -- Root_Corresponding_Discriminant --
17034 -------------------------------------
17035
17036 function Root_Corresponding_Discriminant
17037 (Discr : Entity_Id) return Entity_Id
17038 is
17039 D : Entity_Id;
17040
17041 begin
17042 D := Discr;
17043 while Present (Corresponding_Discriminant (D)) loop
17044 D := Corresponding_Discriminant (D);
17045 end loop;
17046
17047 return D;
17048 end Root_Corresponding_Discriminant;
17049
17050 ------------------------------
17051 -- Search_Derivation_Levels --
17052 ------------------------------
17053
17054 function Search_Derivation_Levels
17055 (Ti : Entity_Id;
17056 Discrim_Values : Elist_Id;
17057 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17058 is
17059 Assoc : Elmt_Id;
17060 Disc : Entity_Id;
17061 Result : Node_Or_Entity_Id;
17062 Result_Entity : Node_Id;
17063
17064 begin
17065 -- If inappropriate type, return Error, this happens only in
17066 -- cascaded error situations, and we want to avoid a blow up.
17067
17068 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17069 return Error;
17070 end if;
17071
17072 -- Look deeper if possible. Use Stored_Constraints only for
17073 -- untagged types. For tagged types use the given constraint.
17074 -- This asymmetry needs explanation???
17075
17076 if not Stored_Discrim_Values
17077 and then Present (Stored_Constraint (Ti))
17078 and then not Is_Tagged_Type (Ti)
17079 then
17080 Result :=
17081 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17082 else
17083 declare
17084 Td : constant Entity_Id := Etype (Ti);
17085
17086 begin
17087 if Td = Ti then
17088 Result := Discriminant;
17089
17090 else
17091 if Present (Stored_Constraint (Ti)) then
17092 Result :=
17093 Search_Derivation_Levels
17094 (Td, Stored_Constraint (Ti), True);
17095 else
17096 Result :=
17097 Search_Derivation_Levels
17098 (Td, Discrim_Values, Stored_Discrim_Values);
17099 end if;
17100 end if;
17101 end;
17102 end if;
17103
17104 -- Extra underlying places to search, if not found above. For
17105 -- concurrent types, the relevant discriminant appears in the
17106 -- corresponding record. For a type derived from a private type
17107 -- without discriminant, the full view inherits the discriminants
17108 -- of the full view of the parent.
17109
17110 if Result = Discriminant then
17111 if Is_Concurrent_Type (Ti)
17112 and then Present (Corresponding_Record_Type (Ti))
17113 then
17114 Result :=
17115 Search_Derivation_Levels (
17116 Corresponding_Record_Type (Ti),
17117 Discrim_Values,
17118 Stored_Discrim_Values);
17119
17120 elsif Is_Private_Type (Ti)
17121 and then not Has_Discriminants (Ti)
17122 and then Present (Full_View (Ti))
17123 and then Etype (Full_View (Ti)) /= Ti
17124 then
17125 Result :=
17126 Search_Derivation_Levels (
17127 Full_View (Ti),
17128 Discrim_Values,
17129 Stored_Discrim_Values);
17130 end if;
17131 end if;
17132
17133 -- If Result is not a (reference to a) discriminant, return it,
17134 -- otherwise set Result_Entity to the discriminant.
17135
17136 if Nkind (Result) = N_Defining_Identifier then
17137 pragma Assert (Result = Discriminant);
17138 Result_Entity := Result;
17139
17140 else
17141 if not Denotes_Discriminant (Result) then
17142 return Result;
17143 end if;
17144
17145 Result_Entity := Entity (Result);
17146 end if;
17147
17148 -- See if this level of derivation actually has discriminants because
17149 -- tagged derivations can add them, hence the lower levels need not
17150 -- have any.
17151
17152 if not Has_Discriminants (Ti) then
17153 return Result;
17154 end if;
17155
17156 -- Scan Ti's discriminants for Result_Entity, and return its
17157 -- corresponding value, if any.
17158
17159 Result_Entity := Original_Record_Component (Result_Entity);
17160
17161 Assoc := First_Elmt (Discrim_Values);
17162
17163 if Stored_Discrim_Values then
17164 Disc := First_Stored_Discriminant (Ti);
17165 else
17166 Disc := First_Discriminant (Ti);
17167 end if;
17168
17169 while Present (Disc) loop
17170 pragma Assert (Present (Assoc));
17171
17172 if Original_Record_Component (Disc) = Result_Entity then
17173 return Node (Assoc);
17174 end if;
17175
17176 Next_Elmt (Assoc);
17177
17178 if Stored_Discrim_Values then
17179 Next_Stored_Discriminant (Disc);
17180 else
17181 Next_Discriminant (Disc);
17182 end if;
17183 end loop;
17184
17185 -- Could not find it
17186
17187 return Result;
17188 end Search_Derivation_Levels;
17189
17190 -- Local Variables
17191
17192 Result : Node_Or_Entity_Id;
17193
17194 -- Start of processing for Get_Discriminant_Value
17195
17196 begin
17197 -- ??? This routine is a gigantic mess and will be deleted. For the
17198 -- time being just test for the trivial case before calling recurse.
17199
17200 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17201 declare
17202 D : Entity_Id;
17203 E : Elmt_Id;
17204
17205 begin
17206 D := First_Discriminant (Typ_For_Constraint);
17207 E := First_Elmt (Constraint);
17208 while Present (D) loop
17209 if Chars (D) = Chars (Discriminant) then
17210 return Node (E);
17211 end if;
17212
17213 Next_Discriminant (D);
17214 Next_Elmt (E);
17215 end loop;
17216 end;
17217 end if;
17218
17219 Result := Search_Derivation_Levels
17220 (Typ_For_Constraint, Constraint, False);
17221
17222 -- ??? hack to disappear when this routine is gone
17223
17224 if Nkind (Result) = N_Defining_Identifier then
17225 declare
17226 D : Entity_Id;
17227 E : Elmt_Id;
17228
17229 begin
17230 D := First_Discriminant (Typ_For_Constraint);
17231 E := First_Elmt (Constraint);
17232 while Present (D) loop
17233 if Root_Corresponding_Discriminant (D) = Discriminant then
17234 return Node (E);
17235 end if;
17236
17237 Next_Discriminant (D);
17238 Next_Elmt (E);
17239 end loop;
17240 end;
17241 end if;
17242
17243 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17244 return Result;
17245 end Get_Discriminant_Value;
17246
17247 --------------------------
17248 -- Has_Range_Constraint --
17249 --------------------------
17250
17251 function Has_Range_Constraint (N : Node_Id) return Boolean is
17252 C : constant Node_Id := Constraint (N);
17253
17254 begin
17255 if Nkind (C) = N_Range_Constraint then
17256 return True;
17257
17258 elsif Nkind (C) = N_Digits_Constraint then
17259 return
17260 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17261 or else Present (Range_Constraint (C));
17262
17263 elsif Nkind (C) = N_Delta_Constraint then
17264 return Present (Range_Constraint (C));
17265
17266 else
17267 return False;
17268 end if;
17269 end Has_Range_Constraint;
17270
17271 ------------------------
17272 -- Inherit_Components --
17273 ------------------------
17274
17275 function Inherit_Components
17276 (N : Node_Id;
17277 Parent_Base : Entity_Id;
17278 Derived_Base : Entity_Id;
17279 Is_Tagged : Boolean;
17280 Inherit_Discr : Boolean;
17281 Discs : Elist_Id) return Elist_Id
17282 is
17283 Assoc_List : constant Elist_Id := New_Elmt_List;
17284
17285 procedure Inherit_Component
17286 (Old_C : Entity_Id;
17287 Plain_Discrim : Boolean := False;
17288 Stored_Discrim : Boolean := False);
17289 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17290 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17291 -- True, Old_C is a stored discriminant. If they are both false then
17292 -- Old_C is a regular component.
17293
17294 -----------------------
17295 -- Inherit_Component --
17296 -----------------------
17297
17298 procedure Inherit_Component
17299 (Old_C : Entity_Id;
17300 Plain_Discrim : Boolean := False;
17301 Stored_Discrim : Boolean := False)
17302 is
17303 procedure Set_Anonymous_Type (Id : Entity_Id);
17304 -- Id denotes the entity of an access discriminant or anonymous
17305 -- access component. Set the type of Id to either the same type of
17306 -- Old_C or create a new one depending on whether the parent and
17307 -- the child types are in the same scope.
17308
17309 ------------------------
17310 -- Set_Anonymous_Type --
17311 ------------------------
17312
17313 procedure Set_Anonymous_Type (Id : Entity_Id) is
17314 Old_Typ : constant Entity_Id := Etype (Old_C);
17315
17316 begin
17317 if Scope (Parent_Base) = Scope (Derived_Base) then
17318 Set_Etype (Id, Old_Typ);
17319
17320 -- The parent and the derived type are in two different scopes.
17321 -- Reuse the type of the original discriminant / component by
17322 -- copying it in order to preserve all attributes.
17323
17324 else
17325 declare
17326 Typ : constant Entity_Id := New_Copy (Old_Typ);
17327
17328 begin
17329 Set_Etype (Id, Typ);
17330
17331 -- Since we do not generate component declarations for
17332 -- inherited components, associate the itype with the
17333 -- derived type.
17334
17335 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17336 Set_Scope (Typ, Derived_Base);
17337 end;
17338 end if;
17339 end Set_Anonymous_Type;
17340
17341 -- Local variables and constants
17342
17343 New_C : constant Entity_Id := New_Copy (Old_C);
17344
17345 Corr_Discrim : Entity_Id;
17346 Discrim : Entity_Id;
17347
17348 -- Start of processing for Inherit_Component
17349
17350 begin
17351 pragma Assert (not Is_Tagged or not Stored_Discrim);
17352
17353 Set_Parent (New_C, Parent (Old_C));
17354
17355 -- Regular discriminants and components must be inserted in the scope
17356 -- of the Derived_Base. Do it here.
17357
17358 if not Stored_Discrim then
17359 Enter_Name (New_C);
17360 end if;
17361
17362 -- For tagged types the Original_Record_Component must point to
17363 -- whatever this field was pointing to in the parent type. This has
17364 -- already been achieved by the call to New_Copy above.
17365
17366 if not Is_Tagged then
17367 Set_Original_Record_Component (New_C, New_C);
17368 end if;
17369
17370 -- Set the proper type of an access discriminant
17371
17372 if Ekind (New_C) = E_Discriminant
17373 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17374 then
17375 Set_Anonymous_Type (New_C);
17376 end if;
17377
17378 -- If we have inherited a component then see if its Etype contains
17379 -- references to Parent_Base discriminants. In this case, replace
17380 -- these references with the constraints given in Discs. We do not
17381 -- do this for the partial view of private types because this is
17382 -- not needed (only the components of the full view will be used
17383 -- for code generation) and cause problem. We also avoid this
17384 -- transformation in some error situations.
17385
17386 if Ekind (New_C) = E_Component then
17387
17388 -- Set the proper type of an anonymous access component
17389
17390 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17391 Set_Anonymous_Type (New_C);
17392
17393 elsif (Is_Private_Type (Derived_Base)
17394 and then not Is_Generic_Type (Derived_Base))
17395 or else (Is_Empty_Elmt_List (Discs)
17396 and then not Expander_Active)
17397 then
17398 Set_Etype (New_C, Etype (Old_C));
17399
17400 else
17401 -- The current component introduces a circularity of the
17402 -- following kind:
17403
17404 -- limited with Pack_2;
17405 -- package Pack_1 is
17406 -- type T_1 is tagged record
17407 -- Comp : access Pack_2.T_2;
17408 -- ...
17409 -- end record;
17410 -- end Pack_1;
17411
17412 -- with Pack_1;
17413 -- package Pack_2 is
17414 -- type T_2 is new Pack_1.T_1 with ...;
17415 -- end Pack_2;
17416
17417 Set_Etype
17418 (New_C,
17419 Constrain_Component_Type
17420 (Old_C, Derived_Base, N, Parent_Base, Discs));
17421 end if;
17422 end if;
17423
17424 -- In derived tagged types it is illegal to reference a non
17425 -- discriminant component in the parent type. To catch this, mark
17426 -- these components with an Ekind of E_Void. This will be reset in
17427 -- Record_Type_Definition after processing the record extension of
17428 -- the derived type.
17429
17430 -- If the declaration is a private extension, there is no further
17431 -- record extension to process, and the components retain their
17432 -- current kind, because they are visible at this point.
17433
17434 if Is_Tagged and then Ekind (New_C) = E_Component
17435 and then Nkind (N) /= N_Private_Extension_Declaration
17436 then
17437 Set_Ekind (New_C, E_Void);
17438 end if;
17439
17440 if Plain_Discrim then
17441 Set_Corresponding_Discriminant (New_C, Old_C);
17442 Build_Discriminal (New_C);
17443
17444 -- If we are explicitly inheriting a stored discriminant it will be
17445 -- completely hidden.
17446
17447 elsif Stored_Discrim then
17448 Set_Corresponding_Discriminant (New_C, Empty);
17449 Set_Discriminal (New_C, Empty);
17450 Set_Is_Completely_Hidden (New_C);
17451
17452 -- Set the Original_Record_Component of each discriminant in the
17453 -- derived base to point to the corresponding stored that we just
17454 -- created.
17455
17456 Discrim := First_Discriminant (Derived_Base);
17457 while Present (Discrim) loop
17458 Corr_Discrim := Corresponding_Discriminant (Discrim);
17459
17460 -- Corr_Discrim could be missing in an error situation
17461
17462 if Present (Corr_Discrim)
17463 and then Original_Record_Component (Corr_Discrim) = Old_C
17464 then
17465 Set_Original_Record_Component (Discrim, New_C);
17466 end if;
17467
17468 Next_Discriminant (Discrim);
17469 end loop;
17470
17471 Append_Entity (New_C, Derived_Base);
17472 end if;
17473
17474 if not Is_Tagged then
17475 Append_Elmt (Old_C, Assoc_List);
17476 Append_Elmt (New_C, Assoc_List);
17477 end if;
17478 end Inherit_Component;
17479
17480 -- Variables local to Inherit_Component
17481
17482 Loc : constant Source_Ptr := Sloc (N);
17483
17484 Parent_Discrim : Entity_Id;
17485 Stored_Discrim : Entity_Id;
17486 D : Entity_Id;
17487 Component : Entity_Id;
17488
17489 -- Start of processing for Inherit_Components
17490
17491 begin
17492 if not Is_Tagged then
17493 Append_Elmt (Parent_Base, Assoc_List);
17494 Append_Elmt (Derived_Base, Assoc_List);
17495 end if;
17496
17497 -- Inherit parent discriminants if needed
17498
17499 if Inherit_Discr then
17500 Parent_Discrim := First_Discriminant (Parent_Base);
17501 while Present (Parent_Discrim) loop
17502 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17503 Next_Discriminant (Parent_Discrim);
17504 end loop;
17505 end if;
17506
17507 -- Create explicit stored discrims for untagged types when necessary
17508
17509 if not Has_Unknown_Discriminants (Derived_Base)
17510 and then Has_Discriminants (Parent_Base)
17511 and then not Is_Tagged
17512 and then
17513 (not Inherit_Discr
17514 or else First_Discriminant (Parent_Base) /=
17515 First_Stored_Discriminant (Parent_Base))
17516 then
17517 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17518 while Present (Stored_Discrim) loop
17519 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17520 Next_Stored_Discriminant (Stored_Discrim);
17521 end loop;
17522 end if;
17523
17524 -- See if we can apply the second transformation for derived types, as
17525 -- explained in point 6. in the comments above Build_Derived_Record_Type
17526 -- This is achieved by appending Derived_Base discriminants into Discs,
17527 -- which has the side effect of returning a non empty Discs list to the
17528 -- caller of Inherit_Components, which is what we want. This must be
17529 -- done for private derived types if there are explicit stored
17530 -- discriminants, to ensure that we can retrieve the values of the
17531 -- constraints provided in the ancestors.
17532
17533 if Inherit_Discr
17534 and then Is_Empty_Elmt_List (Discs)
17535 and then Present (First_Discriminant (Derived_Base))
17536 and then
17537 (not Is_Private_Type (Derived_Base)
17538 or else Is_Completely_Hidden
17539 (First_Stored_Discriminant (Derived_Base))
17540 or else Is_Generic_Type (Derived_Base))
17541 then
17542 D := First_Discriminant (Derived_Base);
17543 while Present (D) loop
17544 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17545 Next_Discriminant (D);
17546 end loop;
17547 end if;
17548
17549 -- Finally, inherit non-discriminant components unless they are not
17550 -- visible because defined or inherited from the full view of the
17551 -- parent. Don't inherit the _parent field of the parent type.
17552
17553 Component := First_Entity (Parent_Base);
17554 while Present (Component) loop
17555
17556 -- Ada 2005 (AI-251): Do not inherit components associated with
17557 -- secondary tags of the parent.
17558
17559 if Ekind (Component) = E_Component
17560 and then Present (Related_Type (Component))
17561 then
17562 null;
17563
17564 elsif Ekind (Component) /= E_Component
17565 or else Chars (Component) = Name_uParent
17566 then
17567 null;
17568
17569 -- If the derived type is within the parent type's declarative
17570 -- region, then the components can still be inherited even though
17571 -- they aren't visible at this point. This can occur for cases
17572 -- such as within public child units where the components must
17573 -- become visible upon entering the child unit's private part.
17574
17575 elsif not Is_Visible_Component (Component)
17576 and then not In_Open_Scopes (Scope (Parent_Base))
17577 then
17578 null;
17579
17580 elsif Ekind_In (Derived_Base, E_Private_Type,
17581 E_Limited_Private_Type)
17582 then
17583 null;
17584
17585 else
17586 Inherit_Component (Component);
17587 end if;
17588
17589 Next_Entity (Component);
17590 end loop;
17591
17592 -- For tagged derived types, inherited discriminants cannot be used in
17593 -- component declarations of the record extension part. To achieve this
17594 -- we mark the inherited discriminants as not visible.
17595
17596 if Is_Tagged and then Inherit_Discr then
17597 D := First_Discriminant (Derived_Base);
17598 while Present (D) loop
17599 Set_Is_Immediately_Visible (D, False);
17600 Next_Discriminant (D);
17601 end loop;
17602 end if;
17603
17604 return Assoc_List;
17605 end Inherit_Components;
17606
17607 -----------------------------
17608 -- Inherit_Predicate_Flags --
17609 -----------------------------
17610
17611 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17612 begin
17613 Set_Has_Predicates (Subt, Has_Predicates (Par));
17614 Set_Has_Static_Predicate_Aspect
17615 (Subt, Has_Static_Predicate_Aspect (Par));
17616 Set_Has_Dynamic_Predicate_Aspect
17617 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17618 end Inherit_Predicate_Flags;
17619
17620 ----------------------
17621 -- Is_EVF_Procedure --
17622 ----------------------
17623
17624 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17625 Formal : Entity_Id;
17626
17627 begin
17628 -- Examine the formals of an Extensions_Visible False procedure looking
17629 -- for a controlling OUT parameter.
17630
17631 if Ekind (Subp) = E_Procedure
17632 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17633 then
17634 Formal := First_Formal (Subp);
17635 while Present (Formal) loop
17636 if Ekind (Formal) = E_Out_Parameter
17637 and then Is_Controlling_Formal (Formal)
17638 then
17639 return True;
17640 end if;
17641
17642 Next_Formal (Formal);
17643 end loop;
17644 end if;
17645
17646 return False;
17647 end Is_EVF_Procedure;
17648
17649 -----------------------
17650 -- Is_Null_Extension --
17651 -----------------------
17652
17653 function Is_Null_Extension (T : Entity_Id) return Boolean is
17654 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17655 Comp_List : Node_Id;
17656 Comp : Node_Id;
17657
17658 begin
17659 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17660 or else not Is_Tagged_Type (T)
17661 or else Nkind (Type_Definition (Type_Decl)) /=
17662 N_Derived_Type_Definition
17663 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17664 then
17665 return False;
17666 end if;
17667
17668 Comp_List :=
17669 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17670
17671 if Present (Discriminant_Specifications (Type_Decl)) then
17672 return False;
17673
17674 elsif Present (Comp_List)
17675 and then Is_Non_Empty_List (Component_Items (Comp_List))
17676 then
17677 Comp := First (Component_Items (Comp_List));
17678
17679 -- Only user-defined components are relevant. The component list
17680 -- may also contain a parent component and internal components
17681 -- corresponding to secondary tags, but these do not determine
17682 -- whether this is a null extension.
17683
17684 while Present (Comp) loop
17685 if Comes_From_Source (Comp) then
17686 return False;
17687 end if;
17688
17689 Next (Comp);
17690 end loop;
17691
17692 return True;
17693
17694 else
17695 return True;
17696 end if;
17697 end Is_Null_Extension;
17698
17699 ------------------------------
17700 -- Is_Valid_Constraint_Kind --
17701 ------------------------------
17702
17703 function Is_Valid_Constraint_Kind
17704 (T_Kind : Type_Kind;
17705 Constraint_Kind : Node_Kind) return Boolean
17706 is
17707 begin
17708 case T_Kind is
17709 when Enumeration_Kind |
17710 Integer_Kind =>
17711 return Constraint_Kind = N_Range_Constraint;
17712
17713 when Decimal_Fixed_Point_Kind =>
17714 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17715 N_Range_Constraint);
17716
17717 when Ordinary_Fixed_Point_Kind =>
17718 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17719 N_Range_Constraint);
17720
17721 when Float_Kind =>
17722 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17723 N_Range_Constraint);
17724
17725 when Access_Kind |
17726 Array_Kind |
17727 E_Record_Type |
17728 E_Record_Subtype |
17729 Class_Wide_Kind |
17730 E_Incomplete_Type |
17731 Private_Kind |
17732 Concurrent_Kind =>
17733 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17734
17735 when others =>
17736 return True; -- Error will be detected later
17737 end case;
17738 end Is_Valid_Constraint_Kind;
17739
17740 --------------------------
17741 -- Is_Visible_Component --
17742 --------------------------
17743
17744 function Is_Visible_Component
17745 (C : Entity_Id;
17746 N : Node_Id := Empty) return Boolean
17747 is
17748 Original_Comp : Entity_Id := Empty;
17749 Original_Scope : Entity_Id;
17750 Type_Scope : Entity_Id;
17751
17752 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17753 -- Check whether parent type of inherited component is declared locally,
17754 -- possibly within a nested package or instance. The current scope is
17755 -- the derived record itself.
17756
17757 -------------------
17758 -- Is_Local_Type --
17759 -------------------
17760
17761 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17762 Scop : Entity_Id;
17763
17764 begin
17765 Scop := Scope (Typ);
17766 while Present (Scop)
17767 and then Scop /= Standard_Standard
17768 loop
17769 if Scop = Scope (Current_Scope) then
17770 return True;
17771 end if;
17772
17773 Scop := Scope (Scop);
17774 end loop;
17775
17776 return False;
17777 end Is_Local_Type;
17778
17779 -- Start of processing for Is_Visible_Component
17780
17781 begin
17782 if Ekind_In (C, E_Component, E_Discriminant) then
17783 Original_Comp := Original_Record_Component (C);
17784 end if;
17785
17786 if No (Original_Comp) then
17787
17788 -- Premature usage, or previous error
17789
17790 return False;
17791
17792 else
17793 Original_Scope := Scope (Original_Comp);
17794 Type_Scope := Scope (Base_Type (Scope (C)));
17795 end if;
17796
17797 -- This test only concerns tagged types
17798
17799 if not Is_Tagged_Type (Original_Scope) then
17800 return True;
17801
17802 -- If it is _Parent or _Tag, there is no visibility issue
17803
17804 elsif not Comes_From_Source (Original_Comp) then
17805 return True;
17806
17807 -- Discriminants are visible unless the (private) type has unknown
17808 -- discriminants. If the discriminant reference is inserted for a
17809 -- discriminant check on a full view it is also visible.
17810
17811 elsif Ekind (Original_Comp) = E_Discriminant
17812 and then
17813 (not Has_Unknown_Discriminants (Original_Scope)
17814 or else (Present (N)
17815 and then Nkind (N) = N_Selected_Component
17816 and then Nkind (Prefix (N)) = N_Type_Conversion
17817 and then not Comes_From_Source (Prefix (N))))
17818 then
17819 return True;
17820
17821 -- In the body of an instantiation, no need to check for the visibility
17822 -- of a component.
17823
17824 elsif In_Instance_Body then
17825 return True;
17826
17827 -- If the component has been declared in an ancestor which is currently
17828 -- a private type, then it is not visible. The same applies if the
17829 -- component's containing type is not in an open scope and the original
17830 -- component's enclosing type is a visible full view of a private type
17831 -- (which can occur in cases where an attempt is being made to reference
17832 -- a component in a sibling package that is inherited from a visible
17833 -- component of a type in an ancestor package; the component in the
17834 -- sibling package should not be visible even though the component it
17835 -- inherited from is visible). This does not apply however in the case
17836 -- where the scope of the type is a private child unit, or when the
17837 -- parent comes from a local package in which the ancestor is currently
17838 -- visible. The latter suppression of visibility is needed for cases
17839 -- that are tested in B730006.
17840
17841 elsif Is_Private_Type (Original_Scope)
17842 or else
17843 (not Is_Private_Descendant (Type_Scope)
17844 and then not In_Open_Scopes (Type_Scope)
17845 and then Has_Private_Declaration (Original_Scope))
17846 then
17847 -- If the type derives from an entity in a formal package, there
17848 -- are no additional visible components.
17849
17850 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17851 N_Formal_Package_Declaration
17852 then
17853 return False;
17854
17855 -- if we are not in the private part of the current package, there
17856 -- are no additional visible components.
17857
17858 elsif Ekind (Scope (Current_Scope)) = E_Package
17859 and then not In_Private_Part (Scope (Current_Scope))
17860 then
17861 return False;
17862 else
17863 return
17864 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17865 and then In_Open_Scopes (Scope (Original_Scope))
17866 and then Is_Local_Type (Type_Scope);
17867 end if;
17868
17869 -- There is another weird way in which a component may be invisible when
17870 -- the private and the full view are not derived from the same ancestor.
17871 -- Here is an example :
17872
17873 -- type A1 is tagged record F1 : integer; end record;
17874 -- type A2 is new A1 with record F2 : integer; end record;
17875 -- type T is new A1 with private;
17876 -- private
17877 -- type T is new A2 with null record;
17878
17879 -- In this case, the full view of T inherits F1 and F2 but the private
17880 -- view inherits only F1
17881
17882 else
17883 declare
17884 Ancestor : Entity_Id := Scope (C);
17885
17886 begin
17887 loop
17888 if Ancestor = Original_Scope then
17889 return True;
17890 elsif Ancestor = Etype (Ancestor) then
17891 return False;
17892 end if;
17893
17894 Ancestor := Etype (Ancestor);
17895 end loop;
17896 end;
17897 end if;
17898 end Is_Visible_Component;
17899
17900 --------------------------
17901 -- Make_Class_Wide_Type --
17902 --------------------------
17903
17904 procedure Make_Class_Wide_Type (T : Entity_Id) is
17905 CW_Type : Entity_Id;
17906 CW_Name : Name_Id;
17907 Next_E : Entity_Id;
17908
17909 begin
17910 if Present (Class_Wide_Type (T)) then
17911
17912 -- The class-wide type is a partially decorated entity created for a
17913 -- unanalyzed tagged type referenced through a limited with clause.
17914 -- When the tagged type is analyzed, its class-wide type needs to be
17915 -- redecorated. Note that we reuse the entity created by Decorate_
17916 -- Tagged_Type in order to preserve all links.
17917
17918 if Materialize_Entity (Class_Wide_Type (T)) then
17919 CW_Type := Class_Wide_Type (T);
17920 Set_Materialize_Entity (CW_Type, False);
17921
17922 -- The class wide type can have been defined by the partial view, in
17923 -- which case everything is already done.
17924
17925 else
17926 return;
17927 end if;
17928
17929 -- Default case, we need to create a new class-wide type
17930
17931 else
17932 CW_Type :=
17933 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17934 end if;
17935
17936 -- Inherit root type characteristics
17937
17938 CW_Name := Chars (CW_Type);
17939 Next_E := Next_Entity (CW_Type);
17940 Copy_Node (T, CW_Type);
17941 Set_Comes_From_Source (CW_Type, False);
17942 Set_Chars (CW_Type, CW_Name);
17943 Set_Parent (CW_Type, Parent (T));
17944 Set_Next_Entity (CW_Type, Next_E);
17945
17946 -- Ensure we have a new freeze node for the class-wide type. The partial
17947 -- view may have freeze action of its own, requiring a proper freeze
17948 -- node, and the same freeze node cannot be shared between the two
17949 -- types.
17950
17951 Set_Has_Delayed_Freeze (CW_Type);
17952 Set_Freeze_Node (CW_Type, Empty);
17953
17954 -- Customize the class-wide type: It has no prim. op., it cannot be
17955 -- abstract and its Etype points back to the specific root type.
17956
17957 Set_Ekind (CW_Type, E_Class_Wide_Type);
17958 Set_Is_Tagged_Type (CW_Type, True);
17959 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17960 Set_Is_Abstract_Type (CW_Type, False);
17961 Set_Is_Constrained (CW_Type, False);
17962 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17963 Set_Default_SSO (CW_Type);
17964
17965 if Ekind (T) = E_Class_Wide_Subtype then
17966 Set_Etype (CW_Type, Etype (Base_Type (T)));
17967 else
17968 Set_Etype (CW_Type, T);
17969 end if;
17970
17971 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17972
17973 -- If this is the class_wide type of a constrained subtype, it does
17974 -- not have discriminants.
17975
17976 Set_Has_Discriminants (CW_Type,
17977 Has_Discriminants (T) and then not Is_Constrained (T));
17978
17979 Set_Has_Unknown_Discriminants (CW_Type, True);
17980 Set_Class_Wide_Type (T, CW_Type);
17981 Set_Equivalent_Type (CW_Type, Empty);
17982
17983 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17984
17985 Set_Class_Wide_Type (CW_Type, CW_Type);
17986 end Make_Class_Wide_Type;
17987
17988 ----------------
17989 -- Make_Index --
17990 ----------------
17991
17992 procedure Make_Index
17993 (N : Node_Id;
17994 Related_Nod : Node_Id;
17995 Related_Id : Entity_Id := Empty;
17996 Suffix_Index : Nat := 1;
17997 In_Iter_Schm : Boolean := False)
17998 is
17999 R : Node_Id;
18000 T : Entity_Id;
18001 Def_Id : Entity_Id := Empty;
18002 Found : Boolean := False;
18003
18004 begin
18005 -- For a discrete range used in a constrained array definition and
18006 -- defined by a range, an implicit conversion to the predefined type
18007 -- INTEGER is assumed if each bound is either a numeric literal, a named
18008 -- number, or an attribute, and the type of both bounds (prior to the
18009 -- implicit conversion) is the type universal_integer. Otherwise, both
18010 -- bounds must be of the same discrete type, other than universal
18011 -- integer; this type must be determinable independently of the
18012 -- context, but using the fact that the type must be discrete and that
18013 -- both bounds must have the same type.
18014
18015 -- Character literals also have a universal type in the absence of
18016 -- of additional context, and are resolved to Standard_Character.
18017
18018 if Nkind (N) = N_Range then
18019
18020 -- The index is given by a range constraint. The bounds are known
18021 -- to be of a consistent type.
18022
18023 if not Is_Overloaded (N) then
18024 T := Etype (N);
18025
18026 -- For universal bounds, choose the specific predefined type
18027
18028 if T = Universal_Integer then
18029 T := Standard_Integer;
18030
18031 elsif T = Any_Character then
18032 Ambiguous_Character (Low_Bound (N));
18033
18034 T := Standard_Character;
18035 end if;
18036
18037 -- The node may be overloaded because some user-defined operators
18038 -- are available, but if a universal interpretation exists it is
18039 -- also the selected one.
18040
18041 elsif Universal_Interpretation (N) = Universal_Integer then
18042 T := Standard_Integer;
18043
18044 else
18045 T := Any_Type;
18046
18047 declare
18048 Ind : Interp_Index;
18049 It : Interp;
18050
18051 begin
18052 Get_First_Interp (N, Ind, It);
18053 while Present (It.Typ) loop
18054 if Is_Discrete_Type (It.Typ) then
18055
18056 if Found
18057 and then not Covers (It.Typ, T)
18058 and then not Covers (T, It.Typ)
18059 then
18060 Error_Msg_N ("ambiguous bounds in discrete range", N);
18061 exit;
18062 else
18063 T := It.Typ;
18064 Found := True;
18065 end if;
18066 end if;
18067
18068 Get_Next_Interp (Ind, It);
18069 end loop;
18070
18071 if T = Any_Type then
18072 Error_Msg_N ("discrete type required for range", N);
18073 Set_Etype (N, Any_Type);
18074 return;
18075
18076 elsif T = Universal_Integer then
18077 T := Standard_Integer;
18078 end if;
18079 end;
18080 end if;
18081
18082 if not Is_Discrete_Type (T) then
18083 Error_Msg_N ("discrete type required for range", N);
18084 Set_Etype (N, Any_Type);
18085 return;
18086 end if;
18087
18088 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18089 and then Attribute_Name (Low_Bound (N)) = Name_First
18090 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18091 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18092 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18093 then
18094 -- The type of the index will be the type of the prefix, as long
18095 -- as the upper bound is 'Last of the same type.
18096
18097 Def_Id := Entity (Prefix (Low_Bound (N)));
18098
18099 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18100 or else Attribute_Name (High_Bound (N)) /= Name_Last
18101 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18102 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18103 then
18104 Def_Id := Empty;
18105 end if;
18106 end if;
18107
18108 R := N;
18109 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18110
18111 elsif Nkind (N) = N_Subtype_Indication then
18112
18113 -- The index is given by a subtype with a range constraint
18114
18115 T := Base_Type (Entity (Subtype_Mark (N)));
18116
18117 if not Is_Discrete_Type (T) then
18118 Error_Msg_N ("discrete type required for range", N);
18119 Set_Etype (N, Any_Type);
18120 return;
18121 end if;
18122
18123 R := Range_Expression (Constraint (N));
18124
18125 Resolve (R, T);
18126 Process_Range_Expr_In_Decl
18127 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18128
18129 elsif Nkind (N) = N_Attribute_Reference then
18130
18131 -- Catch beginner's error (use of attribute other than 'Range)
18132
18133 if Attribute_Name (N) /= Name_Range then
18134 Error_Msg_N ("expect attribute ''Range", N);
18135 Set_Etype (N, Any_Type);
18136 return;
18137 end if;
18138
18139 -- If the node denotes the range of a type mark, that is also the
18140 -- resulting type, and we do not need to create an Itype for it.
18141
18142 if Is_Entity_Name (Prefix (N))
18143 and then Comes_From_Source (N)
18144 and then Is_Type (Entity (Prefix (N)))
18145 and then Is_Discrete_Type (Entity (Prefix (N)))
18146 then
18147 Def_Id := Entity (Prefix (N));
18148 end if;
18149
18150 Analyze_And_Resolve (N);
18151 T := Etype (N);
18152 R := N;
18153
18154 -- If none of the above, must be a subtype. We convert this to a
18155 -- range attribute reference because in the case of declared first
18156 -- named subtypes, the types in the range reference can be different
18157 -- from the type of the entity. A range attribute normalizes the
18158 -- reference and obtains the correct types for the bounds.
18159
18160 -- This transformation is in the nature of an expansion, is only
18161 -- done if expansion is active. In particular, it is not done on
18162 -- formal generic types, because we need to retain the name of the
18163 -- original index for instantiation purposes.
18164
18165 else
18166 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18167 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18168 Set_Etype (N, Any_Integer);
18169 return;
18170
18171 else
18172 -- The type mark may be that of an incomplete type. It is only
18173 -- now that we can get the full view, previous analysis does
18174 -- not look specifically for a type mark.
18175
18176 Set_Entity (N, Get_Full_View (Entity (N)));
18177 Set_Etype (N, Entity (N));
18178 Def_Id := Entity (N);
18179
18180 if not Is_Discrete_Type (Def_Id) then
18181 Error_Msg_N ("discrete type required for index", N);
18182 Set_Etype (N, Any_Type);
18183 return;
18184 end if;
18185 end if;
18186
18187 if Expander_Active then
18188 Rewrite (N,
18189 Make_Attribute_Reference (Sloc (N),
18190 Attribute_Name => Name_Range,
18191 Prefix => Relocate_Node (N)));
18192
18193 -- The original was a subtype mark that does not freeze. This
18194 -- means that the rewritten version must not freeze either.
18195
18196 Set_Must_Not_Freeze (N);
18197 Set_Must_Not_Freeze (Prefix (N));
18198 Analyze_And_Resolve (N);
18199 T := Etype (N);
18200 R := N;
18201
18202 -- If expander is inactive, type is legal, nothing else to construct
18203
18204 else
18205 return;
18206 end if;
18207 end if;
18208
18209 if not Is_Discrete_Type (T) then
18210 Error_Msg_N ("discrete type required for range", N);
18211 Set_Etype (N, Any_Type);
18212 return;
18213
18214 elsif T = Any_Type then
18215 Set_Etype (N, Any_Type);
18216 return;
18217 end if;
18218
18219 -- We will now create the appropriate Itype to describe the range, but
18220 -- first a check. If we originally had a subtype, then we just label
18221 -- the range with this subtype. Not only is there no need to construct
18222 -- a new subtype, but it is wrong to do so for two reasons:
18223
18224 -- 1. A legality concern, if we have a subtype, it must not freeze,
18225 -- and the Itype would cause freezing incorrectly
18226
18227 -- 2. An efficiency concern, if we created an Itype, it would not be
18228 -- recognized as the same type for the purposes of eliminating
18229 -- checks in some circumstances.
18230
18231 -- We signal this case by setting the subtype entity in Def_Id
18232
18233 if No (Def_Id) then
18234 Def_Id :=
18235 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18236 Set_Etype (Def_Id, Base_Type (T));
18237
18238 if Is_Signed_Integer_Type (T) then
18239 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18240
18241 elsif Is_Modular_Integer_Type (T) then
18242 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18243
18244 else
18245 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18246 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18247 Set_First_Literal (Def_Id, First_Literal (T));
18248 end if;
18249
18250 Set_Size_Info (Def_Id, (T));
18251 Set_RM_Size (Def_Id, RM_Size (T));
18252 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18253
18254 Set_Scalar_Range (Def_Id, R);
18255 Conditional_Delay (Def_Id, T);
18256
18257 if Nkind (N) = N_Subtype_Indication then
18258 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18259 end if;
18260
18261 -- In the subtype indication case, if the immediate parent of the
18262 -- new subtype is non-static, then the subtype we create is non-
18263 -- static, even if its bounds are static.
18264
18265 if Nkind (N) = N_Subtype_Indication
18266 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18267 then
18268 Set_Is_Non_Static_Subtype (Def_Id);
18269 end if;
18270 end if;
18271
18272 -- Final step is to label the index with this constructed type
18273
18274 Set_Etype (N, Def_Id);
18275 end Make_Index;
18276
18277 ------------------------------
18278 -- Modular_Type_Declaration --
18279 ------------------------------
18280
18281 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18282 Mod_Expr : constant Node_Id := Expression (Def);
18283 M_Val : Uint;
18284
18285 procedure Set_Modular_Size (Bits : Int);
18286 -- Sets RM_Size to Bits, and Esize to normal word size above this
18287
18288 ----------------------
18289 -- Set_Modular_Size --
18290 ----------------------
18291
18292 procedure Set_Modular_Size (Bits : Int) is
18293 begin
18294 Set_RM_Size (T, UI_From_Int (Bits));
18295
18296 if Bits <= 8 then
18297 Init_Esize (T, 8);
18298
18299 elsif Bits <= 16 then
18300 Init_Esize (T, 16);
18301
18302 elsif Bits <= 32 then
18303 Init_Esize (T, 32);
18304
18305 else
18306 Init_Esize (T, System_Max_Binary_Modulus_Power);
18307 end if;
18308
18309 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18310 Set_Is_Known_Valid (T);
18311 end if;
18312 end Set_Modular_Size;
18313
18314 -- Start of processing for Modular_Type_Declaration
18315
18316 begin
18317 -- If the mod expression is (exactly) 2 * literal, where literal is
18318 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18319
18320 if Warn_On_Suspicious_Modulus_Value
18321 and then Nkind (Mod_Expr) = N_Op_Multiply
18322 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18323 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18324 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18325 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18326 then
18327 Error_Msg_N
18328 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18329 end if;
18330
18331 -- Proceed with analysis of mod expression
18332
18333 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18334 Set_Etype (T, T);
18335 Set_Ekind (T, E_Modular_Integer_Type);
18336 Init_Alignment (T);
18337 Set_Is_Constrained (T);
18338
18339 if not Is_OK_Static_Expression (Mod_Expr) then
18340 Flag_Non_Static_Expr
18341 ("non-static expression used for modular type bound!", Mod_Expr);
18342 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18343 else
18344 M_Val := Expr_Value (Mod_Expr);
18345 end if;
18346
18347 if M_Val < 1 then
18348 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18349 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18350 end if;
18351
18352 if M_Val > 2 ** Standard_Long_Integer_Size then
18353 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18354 end if;
18355
18356 Set_Modulus (T, M_Val);
18357
18358 -- Create bounds for the modular type based on the modulus given in
18359 -- the type declaration and then analyze and resolve those bounds.
18360
18361 Set_Scalar_Range (T,
18362 Make_Range (Sloc (Mod_Expr),
18363 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18364 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18365
18366 -- Properly analyze the literals for the range. We do this manually
18367 -- because we can't go calling Resolve, since we are resolving these
18368 -- bounds with the type, and this type is certainly not complete yet.
18369
18370 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18371 Set_Etype (High_Bound (Scalar_Range (T)), T);
18372 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18373 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18374
18375 -- Loop through powers of two to find number of bits required
18376
18377 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18378
18379 -- Binary case
18380
18381 if M_Val = 2 ** Bits then
18382 Set_Modular_Size (Bits);
18383 return;
18384
18385 -- Non-binary case
18386
18387 elsif M_Val < 2 ** Bits then
18388 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18389 Set_Non_Binary_Modulus (T);
18390
18391 if Bits > System_Max_Nonbinary_Modulus_Power then
18392 Error_Msg_Uint_1 :=
18393 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18394 Error_Msg_F
18395 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18396 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18397 return;
18398
18399 else
18400 -- In the non-binary case, set size as per RM 13.3(55)
18401
18402 Set_Modular_Size (Bits);
18403 return;
18404 end if;
18405 end if;
18406
18407 end loop;
18408
18409 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18410 -- so we just signal an error and set the maximum size.
18411
18412 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18413 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18414
18415 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18416 Init_Alignment (T);
18417
18418 end Modular_Type_Declaration;
18419
18420 --------------------------
18421 -- New_Concatenation_Op --
18422 --------------------------
18423
18424 procedure New_Concatenation_Op (Typ : Entity_Id) is
18425 Loc : constant Source_Ptr := Sloc (Typ);
18426 Op : Entity_Id;
18427
18428 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18429 -- Create abbreviated declaration for the formal of a predefined
18430 -- Operator 'Op' of type 'Typ'
18431
18432 --------------------
18433 -- Make_Op_Formal --
18434 --------------------
18435
18436 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18437 Formal : Entity_Id;
18438 begin
18439 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18440 Set_Etype (Formal, Typ);
18441 Set_Mechanism (Formal, Default_Mechanism);
18442 return Formal;
18443 end Make_Op_Formal;
18444
18445 -- Start of processing for New_Concatenation_Op
18446
18447 begin
18448 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18449
18450 Set_Ekind (Op, E_Operator);
18451 Set_Scope (Op, Current_Scope);
18452 Set_Etype (Op, Typ);
18453 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18454 Set_Is_Immediately_Visible (Op);
18455 Set_Is_Intrinsic_Subprogram (Op);
18456 Set_Has_Completion (Op);
18457 Append_Entity (Op, Current_Scope);
18458
18459 Set_Name_Entity_Id (Name_Op_Concat, Op);
18460
18461 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18462 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18463 end New_Concatenation_Op;
18464
18465 -------------------------
18466 -- OK_For_Limited_Init --
18467 -------------------------
18468
18469 -- ???Check all calls of this, and compare the conditions under which it's
18470 -- called.
18471
18472 function OK_For_Limited_Init
18473 (Typ : Entity_Id;
18474 Exp : Node_Id) return Boolean
18475 is
18476 begin
18477 return Is_CPP_Constructor_Call (Exp)
18478 or else (Ada_Version >= Ada_2005
18479 and then not Debug_Flag_Dot_L
18480 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18481 end OK_For_Limited_Init;
18482
18483 -------------------------------
18484 -- OK_For_Limited_Init_In_05 --
18485 -------------------------------
18486
18487 function OK_For_Limited_Init_In_05
18488 (Typ : Entity_Id;
18489 Exp : Node_Id) return Boolean
18490 is
18491 begin
18492 -- An object of a limited interface type can be initialized with any
18493 -- expression of a nonlimited descendant type.
18494
18495 if Is_Class_Wide_Type (Typ)
18496 and then Is_Limited_Interface (Typ)
18497 and then not Is_Limited_Type (Etype (Exp))
18498 then
18499 return True;
18500 end if;
18501
18502 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18503 -- case of limited aggregates (including extension aggregates), and
18504 -- function calls. The function call may have been given in prefixed
18505 -- notation, in which case the original node is an indexed component.
18506 -- If the function is parameterless, the original node was an explicit
18507 -- dereference. The function may also be parameterless, in which case
18508 -- the source node is just an identifier.
18509
18510 case Nkind (Original_Node (Exp)) is
18511 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18512 return True;
18513
18514 when N_Identifier =>
18515 return Present (Entity (Original_Node (Exp)))
18516 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18517
18518 when N_Qualified_Expression =>
18519 return
18520 OK_For_Limited_Init_In_05
18521 (Typ, Expression (Original_Node (Exp)));
18522
18523 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18524 -- with a function call, the expander has rewritten the call into an
18525 -- N_Type_Conversion node to force displacement of the pointer to
18526 -- reference the component containing the secondary dispatch table.
18527 -- Otherwise a type conversion is not a legal context.
18528 -- A return statement for a build-in-place function returning a
18529 -- synchronized type also introduces an unchecked conversion.
18530
18531 when N_Type_Conversion |
18532 N_Unchecked_Type_Conversion =>
18533 return not Comes_From_Source (Exp)
18534 and then
18535 OK_For_Limited_Init_In_05
18536 (Typ, Expression (Original_Node (Exp)));
18537
18538 when N_Indexed_Component |
18539 N_Selected_Component |
18540 N_Explicit_Dereference =>
18541 return Nkind (Exp) = N_Function_Call;
18542
18543 -- A use of 'Input is a function call, hence allowed. Normally the
18544 -- attribute will be changed to a call, but the attribute by itself
18545 -- can occur with -gnatc.
18546
18547 when N_Attribute_Reference =>
18548 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18549
18550 -- For a case expression, all dependent expressions must be legal
18551
18552 when N_Case_Expression =>
18553 declare
18554 Alt : Node_Id;
18555
18556 begin
18557 Alt := First (Alternatives (Original_Node (Exp)));
18558 while Present (Alt) loop
18559 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18560 return False;
18561 end if;
18562
18563 Next (Alt);
18564 end loop;
18565
18566 return True;
18567 end;
18568
18569 -- For an if expression, all dependent expressions must be legal
18570
18571 when N_If_Expression =>
18572 declare
18573 Then_Expr : constant Node_Id :=
18574 Next (First (Expressions (Original_Node (Exp))));
18575 Else_Expr : constant Node_Id := Next (Then_Expr);
18576 begin
18577 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18578 and then
18579 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18580 end;
18581
18582 when others =>
18583 return False;
18584 end case;
18585 end OK_For_Limited_Init_In_05;
18586
18587 -------------------------------------------
18588 -- Ordinary_Fixed_Point_Type_Declaration --
18589 -------------------------------------------
18590
18591 procedure Ordinary_Fixed_Point_Type_Declaration
18592 (T : Entity_Id;
18593 Def : Node_Id)
18594 is
18595 Loc : constant Source_Ptr := Sloc (Def);
18596 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18597 RRS : constant Node_Id := Real_Range_Specification (Def);
18598 Implicit_Base : Entity_Id;
18599 Delta_Val : Ureal;
18600 Small_Val : Ureal;
18601 Low_Val : Ureal;
18602 High_Val : Ureal;
18603
18604 begin
18605 Check_Restriction (No_Fixed_Point, Def);
18606
18607 -- Create implicit base type
18608
18609 Implicit_Base :=
18610 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18611 Set_Etype (Implicit_Base, Implicit_Base);
18612
18613 -- Analyze and process delta expression
18614
18615 Analyze_And_Resolve (Delta_Expr, Any_Real);
18616
18617 Check_Delta_Expression (Delta_Expr);
18618 Delta_Val := Expr_Value_R (Delta_Expr);
18619
18620 Set_Delta_Value (Implicit_Base, Delta_Val);
18621
18622 -- Compute default small from given delta, which is the largest power
18623 -- of two that does not exceed the given delta value.
18624
18625 declare
18626 Tmp : Ureal;
18627 Scale : Int;
18628
18629 begin
18630 Tmp := Ureal_1;
18631 Scale := 0;
18632
18633 if Delta_Val < Ureal_1 then
18634 while Delta_Val < Tmp loop
18635 Tmp := Tmp / Ureal_2;
18636 Scale := Scale + 1;
18637 end loop;
18638
18639 else
18640 loop
18641 Tmp := Tmp * Ureal_2;
18642 exit when Tmp > Delta_Val;
18643 Scale := Scale - 1;
18644 end loop;
18645 end if;
18646
18647 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18648 end;
18649
18650 Set_Small_Value (Implicit_Base, Small_Val);
18651
18652 -- If no range was given, set a dummy range
18653
18654 if RRS <= Empty_Or_Error then
18655 Low_Val := -Small_Val;
18656 High_Val := Small_Val;
18657
18658 -- Otherwise analyze and process given range
18659
18660 else
18661 declare
18662 Low : constant Node_Id := Low_Bound (RRS);
18663 High : constant Node_Id := High_Bound (RRS);
18664
18665 begin
18666 Analyze_And_Resolve (Low, Any_Real);
18667 Analyze_And_Resolve (High, Any_Real);
18668 Check_Real_Bound (Low);
18669 Check_Real_Bound (High);
18670
18671 -- Obtain and set the range
18672
18673 Low_Val := Expr_Value_R (Low);
18674 High_Val := Expr_Value_R (High);
18675
18676 if Low_Val > High_Val then
18677 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18678 end if;
18679 end;
18680 end if;
18681
18682 -- The range for both the implicit base and the declared first subtype
18683 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18684 -- set a temporary range in place. Note that the bounds of the base
18685 -- type will be widened to be symmetrical and to fill the available
18686 -- bits when the type is frozen.
18687
18688 -- We could do this with all discrete types, and probably should, but
18689 -- we absolutely have to do it for fixed-point, since the end-points
18690 -- of the range and the size are determined by the small value, which
18691 -- could be reset before the freeze point.
18692
18693 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18694 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18695
18696 -- Complete definition of first subtype. The inheritance of the rep item
18697 -- chain ensures that SPARK-related pragmas are not clobbered when the
18698 -- ordinary fixed point type acts as a full view of a private type.
18699
18700 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18701 Set_Etype (T, Implicit_Base);
18702 Init_Size_Align (T);
18703 Inherit_Rep_Item_Chain (T, Implicit_Base);
18704 Set_Small_Value (T, Small_Val);
18705 Set_Delta_Value (T, Delta_Val);
18706 Set_Is_Constrained (T);
18707 end Ordinary_Fixed_Point_Type_Declaration;
18708
18709 ----------------------------------
18710 -- Preanalyze_Assert_Expression --
18711 ----------------------------------
18712
18713 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18714 begin
18715 In_Assertion_Expr := In_Assertion_Expr + 1;
18716 Preanalyze_Spec_Expression (N, T);
18717 In_Assertion_Expr := In_Assertion_Expr - 1;
18718 end Preanalyze_Assert_Expression;
18719
18720 -----------------------------------
18721 -- Preanalyze_Default_Expression --
18722 -----------------------------------
18723
18724 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18725 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18726 begin
18727 In_Default_Expr := True;
18728 Preanalyze_Spec_Expression (N, T);
18729 In_Default_Expr := Save_In_Default_Expr;
18730 end Preanalyze_Default_Expression;
18731
18732 --------------------------------
18733 -- Preanalyze_Spec_Expression --
18734 --------------------------------
18735
18736 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18737 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18738 begin
18739 In_Spec_Expression := True;
18740 Preanalyze_And_Resolve (N, T);
18741 In_Spec_Expression := Save_In_Spec_Expression;
18742 end Preanalyze_Spec_Expression;
18743
18744 ----------------------------------------
18745 -- Prepare_Private_Subtype_Completion --
18746 ----------------------------------------
18747
18748 procedure Prepare_Private_Subtype_Completion
18749 (Id : Entity_Id;
18750 Related_Nod : Node_Id)
18751 is
18752 Id_B : constant Entity_Id := Base_Type (Id);
18753 Full_B : Entity_Id := Full_View (Id_B);
18754 Full : Entity_Id;
18755
18756 begin
18757 if Present (Full_B) then
18758
18759 -- Get to the underlying full view if necessary
18760
18761 if Is_Private_Type (Full_B)
18762 and then Present (Underlying_Full_View (Full_B))
18763 then
18764 Full_B := Underlying_Full_View (Full_B);
18765 end if;
18766
18767 -- The Base_Type is already completed, we can complete the subtype
18768 -- now. We have to create a new entity with the same name, Thus we
18769 -- can't use Create_Itype.
18770
18771 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18772 Set_Is_Itype (Full);
18773 Set_Associated_Node_For_Itype (Full, Related_Nod);
18774 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18775 end if;
18776
18777 -- The parent subtype may be private, but the base might not, in some
18778 -- nested instances. In that case, the subtype does not need to be
18779 -- exchanged. It would still be nice to make private subtypes and their
18780 -- bases consistent at all times ???
18781
18782 if Is_Private_Type (Id_B) then
18783 Append_Elmt (Id, Private_Dependents (Id_B));
18784 end if;
18785 end Prepare_Private_Subtype_Completion;
18786
18787 ---------------------------
18788 -- Process_Discriminants --
18789 ---------------------------
18790
18791 procedure Process_Discriminants
18792 (N : Node_Id;
18793 Prev : Entity_Id := Empty)
18794 is
18795 Elist : constant Elist_Id := New_Elmt_List;
18796 Id : Node_Id;
18797 Discr : Node_Id;
18798 Discr_Number : Uint;
18799 Discr_Type : Entity_Id;
18800 Default_Present : Boolean := False;
18801 Default_Not_Present : Boolean := False;
18802
18803 begin
18804 -- A composite type other than an array type can have discriminants.
18805 -- On entry, the current scope is the composite type.
18806
18807 -- The discriminants are initially entered into the scope of the type
18808 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18809 -- use, as explained at the end of this procedure.
18810
18811 Discr := First (Discriminant_Specifications (N));
18812 while Present (Discr) loop
18813 Enter_Name (Defining_Identifier (Discr));
18814
18815 -- For navigation purposes we add a reference to the discriminant
18816 -- in the entity for the type. If the current declaration is a
18817 -- completion, place references on the partial view. Otherwise the
18818 -- type is the current scope.
18819
18820 if Present (Prev) then
18821
18822 -- The references go on the partial view, if present. If the
18823 -- partial view has discriminants, the references have been
18824 -- generated already.
18825
18826 if not Has_Discriminants (Prev) then
18827 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18828 end if;
18829 else
18830 Generate_Reference
18831 (Current_Scope, Defining_Identifier (Discr), 'd');
18832 end if;
18833
18834 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18835 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18836
18837 -- Ada 2005 (AI-254)
18838
18839 if Present (Access_To_Subprogram_Definition
18840 (Discriminant_Type (Discr)))
18841 and then Protected_Present (Access_To_Subprogram_Definition
18842 (Discriminant_Type (Discr)))
18843 then
18844 Discr_Type :=
18845 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18846 end if;
18847
18848 else
18849 Find_Type (Discriminant_Type (Discr));
18850 Discr_Type := Etype (Discriminant_Type (Discr));
18851
18852 if Error_Posted (Discriminant_Type (Discr)) then
18853 Discr_Type := Any_Type;
18854 end if;
18855 end if;
18856
18857 -- Handling of discriminants that are access types
18858
18859 if Is_Access_Type (Discr_Type) then
18860
18861 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18862 -- limited record types
18863
18864 if Ada_Version < Ada_2005 then
18865 Check_Access_Discriminant_Requires_Limited
18866 (Discr, Discriminant_Type (Discr));
18867 end if;
18868
18869 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18870 Error_Msg_N
18871 ("(Ada 83) access discriminant not allowed", Discr);
18872 end if;
18873
18874 -- If not access type, must be a discrete type
18875
18876 elsif not Is_Discrete_Type (Discr_Type) then
18877 Error_Msg_N
18878 ("discriminants must have a discrete or access type",
18879 Discriminant_Type (Discr));
18880 end if;
18881
18882 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18883
18884 -- If a discriminant specification includes the assignment compound
18885 -- delimiter followed by an expression, the expression is the default
18886 -- expression of the discriminant; the default expression must be of
18887 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18888 -- a default expression, we do the special preanalysis, since this
18889 -- expression does not freeze (see section "Handling of Default and
18890 -- Per-Object Expressions" in spec of package Sem).
18891
18892 if Present (Expression (Discr)) then
18893 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18894
18895 -- Legaity checks
18896
18897 if Nkind (N) = N_Formal_Type_Declaration then
18898 Error_Msg_N
18899 ("discriminant defaults not allowed for formal type",
18900 Expression (Discr));
18901
18902 -- Flag an error for a tagged type with defaulted discriminants,
18903 -- excluding limited tagged types when compiling for Ada 2012
18904 -- (see AI05-0214).
18905
18906 elsif Is_Tagged_Type (Current_Scope)
18907 and then (not Is_Limited_Type (Current_Scope)
18908 or else Ada_Version < Ada_2012)
18909 and then Comes_From_Source (N)
18910 then
18911 -- Note: see similar test in Check_Or_Process_Discriminants, to
18912 -- handle the (illegal) case of the completion of an untagged
18913 -- view with discriminants with defaults by a tagged full view.
18914 -- We skip the check if Discr does not come from source, to
18915 -- account for the case of an untagged derived type providing
18916 -- defaults for a renamed discriminant from a private untagged
18917 -- ancestor with a tagged full view (ACATS B460006).
18918
18919 if Ada_Version >= Ada_2012 then
18920 Error_Msg_N
18921 ("discriminants of nonlimited tagged type cannot have"
18922 & " defaults",
18923 Expression (Discr));
18924 else
18925 Error_Msg_N
18926 ("discriminants of tagged type cannot have defaults",
18927 Expression (Discr));
18928 end if;
18929
18930 else
18931 Default_Present := True;
18932 Append_Elmt (Expression (Discr), Elist);
18933
18934 -- Tag the defining identifiers for the discriminants with
18935 -- their corresponding default expressions from the tree.
18936
18937 Set_Discriminant_Default_Value
18938 (Defining_Identifier (Discr), Expression (Discr));
18939 end if;
18940
18941 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18942 -- gets set unless we can be sure that no range check is required.
18943
18944 if (GNATprove_Mode or not Expander_Active)
18945 and then not
18946 Is_In_Range
18947 (Expression (Discr), Discr_Type, Assume_Valid => True)
18948 then
18949 Set_Do_Range_Check (Expression (Discr));
18950 end if;
18951
18952 -- No default discriminant value given
18953
18954 else
18955 Default_Not_Present := True;
18956 end if;
18957
18958 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18959 -- Discr_Type but with the null-exclusion attribute
18960
18961 if Ada_Version >= Ada_2005 then
18962
18963 -- Ada 2005 (AI-231): Static checks
18964
18965 if Can_Never_Be_Null (Discr_Type) then
18966 Null_Exclusion_Static_Checks (Discr);
18967
18968 elsif Is_Access_Type (Discr_Type)
18969 and then Null_Exclusion_Present (Discr)
18970
18971 -- No need to check itypes because in their case this check
18972 -- was done at their point of creation
18973
18974 and then not Is_Itype (Discr_Type)
18975 then
18976 if Can_Never_Be_Null (Discr_Type) then
18977 Error_Msg_NE
18978 ("`NOT NULL` not allowed (& already excludes null)",
18979 Discr,
18980 Discr_Type);
18981 end if;
18982
18983 Set_Etype (Defining_Identifier (Discr),
18984 Create_Null_Excluding_Itype
18985 (T => Discr_Type,
18986 Related_Nod => Discr));
18987
18988 -- Check for improper null exclusion if the type is otherwise
18989 -- legal for a discriminant.
18990
18991 elsif Null_Exclusion_Present (Discr)
18992 and then Is_Discrete_Type (Discr_Type)
18993 then
18994 Error_Msg_N
18995 ("null exclusion can only apply to an access type", Discr);
18996 end if;
18997
18998 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18999 -- can't have defaults. Synchronized types, or types that are
19000 -- explicitly limited are fine, but special tests apply to derived
19001 -- types in generics: in a generic body we have to assume the
19002 -- worst, and therefore defaults are not allowed if the parent is
19003 -- a generic formal private type (see ACATS B370001).
19004
19005 if Is_Access_Type (Discr_Type) and then Default_Present then
19006 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19007 or else Is_Limited_Record (Current_Scope)
19008 or else Is_Concurrent_Type (Current_Scope)
19009 or else Is_Concurrent_Record_Type (Current_Scope)
19010 or else Ekind (Current_Scope) = E_Limited_Private_Type
19011 then
19012 if not Is_Derived_Type (Current_Scope)
19013 or else not Is_Generic_Type (Etype (Current_Scope))
19014 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19015 or else Limited_Present
19016 (Type_Definition (Parent (Current_Scope)))
19017 then
19018 null;
19019
19020 else
19021 Error_Msg_N
19022 ("access discriminants of nonlimited types cannot "
19023 & "have defaults", Expression (Discr));
19024 end if;
19025
19026 elsif Present (Expression (Discr)) then
19027 Error_Msg_N
19028 ("(Ada 2005) access discriminants of nonlimited types "
19029 & "cannot have defaults", Expression (Discr));
19030 end if;
19031 end if;
19032 end if;
19033
19034 -- A discriminant cannot be effectively volatile. This check is only
19035 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19036 -- rule (SPARK RM 7.1.3(6)).
19037
19038 if SPARK_Mode = On
19039 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19040 then
19041 Error_Msg_N ("discriminant cannot be volatile", Discr);
19042 end if;
19043
19044 Next (Discr);
19045 end loop;
19046
19047 -- An element list consisting of the default expressions of the
19048 -- discriminants is constructed in the above loop and used to set
19049 -- the Discriminant_Constraint attribute for the type. If an object
19050 -- is declared of this (record or task) type without any explicit
19051 -- discriminant constraint given, this element list will form the
19052 -- actual parameters for the corresponding initialization procedure
19053 -- for the type.
19054
19055 Set_Discriminant_Constraint (Current_Scope, Elist);
19056 Set_Stored_Constraint (Current_Scope, No_Elist);
19057
19058 -- Default expressions must be provided either for all or for none
19059 -- of the discriminants of a discriminant part. (RM 3.7.1)
19060
19061 if Default_Present and then Default_Not_Present then
19062 Error_Msg_N
19063 ("incomplete specification of defaults for discriminants", N);
19064 end if;
19065
19066 -- The use of the name of a discriminant is not allowed in default
19067 -- expressions of a discriminant part if the specification of the
19068 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19069
19070 -- To detect this, the discriminant names are entered initially with an
19071 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19072 -- attempt to use a void entity (for example in an expression that is
19073 -- type-checked) produces the error message: premature usage. Now after
19074 -- completing the semantic analysis of the discriminant part, we can set
19075 -- the Ekind of all the discriminants appropriately.
19076
19077 Discr := First (Discriminant_Specifications (N));
19078 Discr_Number := Uint_1;
19079 while Present (Discr) loop
19080 Id := Defining_Identifier (Discr);
19081 Set_Ekind (Id, E_Discriminant);
19082 Init_Component_Location (Id);
19083 Init_Esize (Id);
19084 Set_Discriminant_Number (Id, Discr_Number);
19085
19086 -- Make sure this is always set, even in illegal programs
19087
19088 Set_Corresponding_Discriminant (Id, Empty);
19089
19090 -- Initialize the Original_Record_Component to the entity itself.
19091 -- Inherit_Components will propagate the right value to
19092 -- discriminants in derived record types.
19093
19094 Set_Original_Record_Component (Id, Id);
19095
19096 -- Create the discriminal for the discriminant
19097
19098 Build_Discriminal (Id);
19099
19100 Next (Discr);
19101 Discr_Number := Discr_Number + 1;
19102 end loop;
19103
19104 Set_Has_Discriminants (Current_Scope);
19105 end Process_Discriminants;
19106
19107 -----------------------
19108 -- Process_Full_View --
19109 -----------------------
19110
19111 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19112 procedure Collect_Implemented_Interfaces
19113 (Typ : Entity_Id;
19114 Ifaces : Elist_Id);
19115 -- Ada 2005: Gather all the interfaces that Typ directly or
19116 -- inherently implements. Duplicate entries are not added to
19117 -- the list Ifaces.
19118
19119 ------------------------------------
19120 -- Collect_Implemented_Interfaces --
19121 ------------------------------------
19122
19123 procedure Collect_Implemented_Interfaces
19124 (Typ : Entity_Id;
19125 Ifaces : Elist_Id)
19126 is
19127 Iface : Entity_Id;
19128 Iface_Elmt : Elmt_Id;
19129
19130 begin
19131 -- Abstract interfaces are only associated with tagged record types
19132
19133 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19134 return;
19135 end if;
19136
19137 -- Recursively climb to the ancestors
19138
19139 if Etype (Typ) /= Typ
19140
19141 -- Protect the frontend against wrong cyclic declarations like:
19142
19143 -- type B is new A with private;
19144 -- type C is new A with private;
19145 -- private
19146 -- type B is new C with null record;
19147 -- type C is new B with null record;
19148
19149 and then Etype (Typ) /= Priv_T
19150 and then Etype (Typ) /= Full_T
19151 then
19152 -- Keep separate the management of private type declarations
19153
19154 if Ekind (Typ) = E_Record_Type_With_Private then
19155
19156 -- Handle the following illegal usage:
19157 -- type Private_Type is tagged private;
19158 -- private
19159 -- type Private_Type is new Type_Implementing_Iface;
19160
19161 if Present (Full_View (Typ))
19162 and then Etype (Typ) /= Full_View (Typ)
19163 then
19164 if Is_Interface (Etype (Typ)) then
19165 Append_Unique_Elmt (Etype (Typ), Ifaces);
19166 end if;
19167
19168 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19169 end if;
19170
19171 -- Non-private types
19172
19173 else
19174 if Is_Interface (Etype (Typ)) then
19175 Append_Unique_Elmt (Etype (Typ), Ifaces);
19176 end if;
19177
19178 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19179 end if;
19180 end if;
19181
19182 -- Handle entities in the list of abstract interfaces
19183
19184 if Present (Interfaces (Typ)) then
19185 Iface_Elmt := First_Elmt (Interfaces (Typ));
19186 while Present (Iface_Elmt) loop
19187 Iface := Node (Iface_Elmt);
19188
19189 pragma Assert (Is_Interface (Iface));
19190
19191 if not Contain_Interface (Iface, Ifaces) then
19192 Append_Elmt (Iface, Ifaces);
19193 Collect_Implemented_Interfaces (Iface, Ifaces);
19194 end if;
19195
19196 Next_Elmt (Iface_Elmt);
19197 end loop;
19198 end if;
19199 end Collect_Implemented_Interfaces;
19200
19201 -- Local variables
19202
19203 Full_Indic : Node_Id;
19204 Full_Parent : Entity_Id;
19205 Priv_Parent : Entity_Id;
19206
19207 -- Start of processing for Process_Full_View
19208
19209 begin
19210 -- First some sanity checks that must be done after semantic
19211 -- decoration of the full view and thus cannot be placed with other
19212 -- similar checks in Find_Type_Name
19213
19214 if not Is_Limited_Type (Priv_T)
19215 and then (Is_Limited_Type (Full_T)
19216 or else Is_Limited_Composite (Full_T))
19217 then
19218 if In_Instance then
19219 null;
19220 else
19221 Error_Msg_N
19222 ("completion of nonlimited type cannot be limited", Full_T);
19223 Explain_Limited_Type (Full_T, Full_T);
19224 end if;
19225
19226 elsif Is_Abstract_Type (Full_T)
19227 and then not Is_Abstract_Type (Priv_T)
19228 then
19229 Error_Msg_N
19230 ("completion of nonabstract type cannot be abstract", Full_T);
19231
19232 elsif Is_Tagged_Type (Priv_T)
19233 and then Is_Limited_Type (Priv_T)
19234 and then not Is_Limited_Type (Full_T)
19235 then
19236 -- If pragma CPP_Class was applied to the private declaration
19237 -- propagate the limitedness to the full-view
19238
19239 if Is_CPP_Class (Priv_T) then
19240 Set_Is_Limited_Record (Full_T);
19241
19242 -- GNAT allow its own definition of Limited_Controlled to disobey
19243 -- this rule in order in ease the implementation. This test is safe
19244 -- because Root_Controlled is defined in a child of System that
19245 -- normal programs are not supposed to use.
19246
19247 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19248 Set_Is_Limited_Composite (Full_T);
19249 else
19250 Error_Msg_N
19251 ("completion of limited tagged type must be limited", Full_T);
19252 end if;
19253
19254 elsif Is_Generic_Type (Priv_T) then
19255 Error_Msg_N ("generic type cannot have a completion", Full_T);
19256 end if;
19257
19258 -- Check that ancestor interfaces of private and full views are
19259 -- consistent. We omit this check for synchronized types because
19260 -- they are performed on the corresponding record type when frozen.
19261
19262 if Ada_Version >= Ada_2005
19263 and then Is_Tagged_Type (Priv_T)
19264 and then Is_Tagged_Type (Full_T)
19265 and then not Is_Concurrent_Type (Full_T)
19266 then
19267 declare
19268 Iface : Entity_Id;
19269 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19270 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19271
19272 begin
19273 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19274 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19275
19276 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19277 -- an interface type if and only if the full type is descendant
19278 -- of the interface type (AARM 7.3 (7.3/2)).
19279
19280 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19281
19282 if Present (Iface) then
19283 Error_Msg_NE
19284 ("interface in partial view& not implemented by full type "
19285 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19286 end if;
19287
19288 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19289
19290 if Present (Iface) then
19291 Error_Msg_NE
19292 ("interface & not implemented by partial view "
19293 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19294 end if;
19295 end;
19296 end if;
19297
19298 if Is_Tagged_Type (Priv_T)
19299 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19300 and then Is_Derived_Type (Full_T)
19301 then
19302 Priv_Parent := Etype (Priv_T);
19303
19304 -- The full view of a private extension may have been transformed
19305 -- into an unconstrained derived type declaration and a subtype
19306 -- declaration (see build_derived_record_type for details).
19307
19308 if Nkind (N) = N_Subtype_Declaration then
19309 Full_Indic := Subtype_Indication (N);
19310 Full_Parent := Etype (Base_Type (Full_T));
19311 else
19312 Full_Indic := Subtype_Indication (Type_Definition (N));
19313 Full_Parent := Etype (Full_T);
19314 end if;
19315
19316 -- Check that the parent type of the full type is a descendant of
19317 -- the ancestor subtype given in the private extension. If either
19318 -- entity has an Etype equal to Any_Type then we had some previous
19319 -- error situation [7.3(8)].
19320
19321 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19322 return;
19323
19324 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19325 -- any order. Therefore we don't have to check that its parent must
19326 -- be a descendant of the parent of the private type declaration.
19327
19328 elsif Is_Interface (Priv_Parent)
19329 and then Is_Interface (Full_Parent)
19330 then
19331 null;
19332
19333 -- Ada 2005 (AI-251): If the parent of the private type declaration
19334 -- is an interface there is no need to check that it is an ancestor
19335 -- of the associated full type declaration. The required tests for
19336 -- this case are performed by Build_Derived_Record_Type.
19337
19338 elsif not Is_Interface (Base_Type (Priv_Parent))
19339 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19340 then
19341 Error_Msg_N
19342 ("parent of full type must descend from parent"
19343 & " of private extension", Full_Indic);
19344
19345 -- First check a formal restriction, and then proceed with checking
19346 -- Ada rules. Since the formal restriction is not a serious error, we
19347 -- don't prevent further error detection for this check, hence the
19348 -- ELSE.
19349
19350 else
19351 -- In formal mode, when completing a private extension the type
19352 -- named in the private part must be exactly the same as that
19353 -- named in the visible part.
19354
19355 if Priv_Parent /= Full_Parent then
19356 Error_Msg_Name_1 := Chars (Priv_Parent);
19357 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19358 end if;
19359
19360 -- Check the rules of 7.3(10): if the private extension inherits
19361 -- known discriminants, then the full type must also inherit those
19362 -- discriminants from the same (ancestor) type, and the parent
19363 -- subtype of the full type must be constrained if and only if
19364 -- the ancestor subtype of the private extension is constrained.
19365
19366 if No (Discriminant_Specifications (Parent (Priv_T)))
19367 and then not Has_Unknown_Discriminants (Priv_T)
19368 and then Has_Discriminants (Base_Type (Priv_Parent))
19369 then
19370 declare
19371 Priv_Indic : constant Node_Id :=
19372 Subtype_Indication (Parent (Priv_T));
19373
19374 Priv_Constr : constant Boolean :=
19375 Is_Constrained (Priv_Parent)
19376 or else
19377 Nkind (Priv_Indic) = N_Subtype_Indication
19378 or else
19379 Is_Constrained (Entity (Priv_Indic));
19380
19381 Full_Constr : constant Boolean :=
19382 Is_Constrained (Full_Parent)
19383 or else
19384 Nkind (Full_Indic) = N_Subtype_Indication
19385 or else
19386 Is_Constrained (Entity (Full_Indic));
19387
19388 Priv_Discr : Entity_Id;
19389 Full_Discr : Entity_Id;
19390
19391 begin
19392 Priv_Discr := First_Discriminant (Priv_Parent);
19393 Full_Discr := First_Discriminant (Full_Parent);
19394 while Present (Priv_Discr) and then Present (Full_Discr) loop
19395 if Original_Record_Component (Priv_Discr) =
19396 Original_Record_Component (Full_Discr)
19397 or else
19398 Corresponding_Discriminant (Priv_Discr) =
19399 Corresponding_Discriminant (Full_Discr)
19400 then
19401 null;
19402 else
19403 exit;
19404 end if;
19405
19406 Next_Discriminant (Priv_Discr);
19407 Next_Discriminant (Full_Discr);
19408 end loop;
19409
19410 if Present (Priv_Discr) or else Present (Full_Discr) then
19411 Error_Msg_N
19412 ("full view must inherit discriminants of the parent"
19413 & " type used in the private extension", Full_Indic);
19414
19415 elsif Priv_Constr and then not Full_Constr then
19416 Error_Msg_N
19417 ("parent subtype of full type must be constrained",
19418 Full_Indic);
19419
19420 elsif Full_Constr and then not Priv_Constr then
19421 Error_Msg_N
19422 ("parent subtype of full type must be unconstrained",
19423 Full_Indic);
19424 end if;
19425 end;
19426
19427 -- Check the rules of 7.3(12): if a partial view has neither
19428 -- known or unknown discriminants, then the full type
19429 -- declaration shall define a definite subtype.
19430
19431 elsif not Has_Unknown_Discriminants (Priv_T)
19432 and then not Has_Discriminants (Priv_T)
19433 and then not Is_Constrained (Full_T)
19434 then
19435 Error_Msg_N
19436 ("full view must define a constrained type if partial view"
19437 & " has no discriminants", Full_T);
19438 end if;
19439
19440 -- ??????? Do we implement the following properly ?????
19441 -- If the ancestor subtype of a private extension has constrained
19442 -- discriminants, then the parent subtype of the full view shall
19443 -- impose a statically matching constraint on those discriminants
19444 -- [7.3(13)].
19445 end if;
19446
19447 else
19448 -- For untagged types, verify that a type without discriminants is
19449 -- not completed with an unconstrained type. A separate error message
19450 -- is produced if the full type has defaulted discriminants.
19451
19452 if not Is_Indefinite_Subtype (Priv_T)
19453 and then Is_Indefinite_Subtype (Full_T)
19454 then
19455 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19456 Error_Msg_NE
19457 ("full view of& not compatible with declaration#",
19458 Full_T, Priv_T);
19459
19460 if not Is_Tagged_Type (Full_T) then
19461 Error_Msg_N
19462 ("\one is constrained, the other unconstrained", Full_T);
19463 end if;
19464 end if;
19465 end if;
19466
19467 -- AI-419: verify that the use of "limited" is consistent
19468
19469 declare
19470 Orig_Decl : constant Node_Id := Original_Node (N);
19471
19472 begin
19473 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19474 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19475 and then Nkind
19476 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19477 then
19478 if not Limited_Present (Parent (Priv_T))
19479 and then not Synchronized_Present (Parent (Priv_T))
19480 and then Limited_Present (Type_Definition (Orig_Decl))
19481 then
19482 Error_Msg_N
19483 ("full view of non-limited extension cannot be limited", N);
19484
19485 -- Conversely, if the partial view carries the limited keyword,
19486 -- the full view must as well, even if it may be redundant.
19487
19488 elsif Limited_Present (Parent (Priv_T))
19489 and then not Limited_Present (Type_Definition (Orig_Decl))
19490 then
19491 Error_Msg_N
19492 ("full view of limited extension must be explicitly limited",
19493 N);
19494 end if;
19495 end if;
19496 end;
19497
19498 -- Ada 2005 (AI-443): A synchronized private extension must be
19499 -- completed by a task or protected type.
19500
19501 if Ada_Version >= Ada_2005
19502 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19503 and then Synchronized_Present (Parent (Priv_T))
19504 and then not Is_Concurrent_Type (Full_T)
19505 then
19506 Error_Msg_N ("full view of synchronized extension must " &
19507 "be synchronized type", N);
19508 end if;
19509
19510 -- Ada 2005 AI-363: if the full view has discriminants with
19511 -- defaults, it is illegal to declare constrained access subtypes
19512 -- whose designated type is the current type. This allows objects
19513 -- of the type that are declared in the heap to be unconstrained.
19514
19515 if not Has_Unknown_Discriminants (Priv_T)
19516 and then not Has_Discriminants (Priv_T)
19517 and then Has_Discriminants (Full_T)
19518 and then
19519 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19520 then
19521 Set_Has_Constrained_Partial_View (Full_T);
19522 Set_Has_Constrained_Partial_View (Priv_T);
19523 end if;
19524
19525 -- Create a full declaration for all its subtypes recorded in
19526 -- Private_Dependents and swap them similarly to the base type. These
19527 -- are subtypes that have been define before the full declaration of
19528 -- the private type. We also swap the entry in Private_Dependents list
19529 -- so we can properly restore the private view on exit from the scope.
19530
19531 declare
19532 Priv_Elmt : Elmt_Id;
19533 Priv_Scop : Entity_Id;
19534 Priv : Entity_Id;
19535 Full : Entity_Id;
19536
19537 begin
19538 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19539 while Present (Priv_Elmt) loop
19540 Priv := Node (Priv_Elmt);
19541 Priv_Scop := Scope (Priv);
19542
19543 if Ekind_In (Priv, E_Private_Subtype,
19544 E_Limited_Private_Subtype,
19545 E_Record_Subtype_With_Private)
19546 then
19547 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19548 Set_Is_Itype (Full);
19549 Set_Parent (Full, Parent (Priv));
19550 Set_Associated_Node_For_Itype (Full, N);
19551
19552 -- Now we need to complete the private subtype, but since the
19553 -- base type has already been swapped, we must also swap the
19554 -- subtypes (and thus, reverse the arguments in the call to
19555 -- Complete_Private_Subtype). Also note that we may need to
19556 -- re-establish the scope of the private subtype.
19557
19558 Copy_And_Swap (Priv, Full);
19559
19560 if not In_Open_Scopes (Priv_Scop) then
19561 Push_Scope (Priv_Scop);
19562
19563 else
19564 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19565
19566 Priv_Scop := Empty;
19567 end if;
19568
19569 Complete_Private_Subtype (Full, Priv, Full_T, N);
19570
19571 if Present (Priv_Scop) then
19572 Pop_Scope;
19573 end if;
19574
19575 Replace_Elmt (Priv_Elmt, Full);
19576 end if;
19577
19578 Next_Elmt (Priv_Elmt);
19579 end loop;
19580 end;
19581
19582 -- If the private view was tagged, copy the new primitive operations
19583 -- from the private view to the full view.
19584
19585 if Is_Tagged_Type (Full_T) then
19586 declare
19587 Disp_Typ : Entity_Id;
19588 Full_List : Elist_Id;
19589 Prim : Entity_Id;
19590 Prim_Elmt : Elmt_Id;
19591 Priv_List : Elist_Id;
19592
19593 function Contains
19594 (E : Entity_Id;
19595 L : Elist_Id) return Boolean;
19596 -- Determine whether list L contains element E
19597
19598 --------------
19599 -- Contains --
19600 --------------
19601
19602 function Contains
19603 (E : Entity_Id;
19604 L : Elist_Id) return Boolean
19605 is
19606 List_Elmt : Elmt_Id;
19607
19608 begin
19609 List_Elmt := First_Elmt (L);
19610 while Present (List_Elmt) loop
19611 if Node (List_Elmt) = E then
19612 return True;
19613 end if;
19614
19615 Next_Elmt (List_Elmt);
19616 end loop;
19617
19618 return False;
19619 end Contains;
19620
19621 -- Start of processing
19622
19623 begin
19624 if Is_Tagged_Type (Priv_T) then
19625 Priv_List := Primitive_Operations (Priv_T);
19626 Prim_Elmt := First_Elmt (Priv_List);
19627
19628 -- In the case of a concurrent type completing a private tagged
19629 -- type, primitives may have been declared in between the two
19630 -- views. These subprograms need to be wrapped the same way
19631 -- entries and protected procedures are handled because they
19632 -- cannot be directly shared by the two views.
19633
19634 if Is_Concurrent_Type (Full_T) then
19635 declare
19636 Conc_Typ : constant Entity_Id :=
19637 Corresponding_Record_Type (Full_T);
19638 Curr_Nod : Node_Id := Parent (Conc_Typ);
19639 Wrap_Spec : Node_Id;
19640
19641 begin
19642 while Present (Prim_Elmt) loop
19643 Prim := Node (Prim_Elmt);
19644
19645 if Comes_From_Source (Prim)
19646 and then not Is_Abstract_Subprogram (Prim)
19647 then
19648 Wrap_Spec :=
19649 Make_Subprogram_Declaration (Sloc (Prim),
19650 Specification =>
19651 Build_Wrapper_Spec
19652 (Subp_Id => Prim,
19653 Obj_Typ => Conc_Typ,
19654 Formals =>
19655 Parameter_Specifications (
19656 Parent (Prim))));
19657
19658 Insert_After (Curr_Nod, Wrap_Spec);
19659 Curr_Nod := Wrap_Spec;
19660
19661 Analyze (Wrap_Spec);
19662 end if;
19663
19664 Next_Elmt (Prim_Elmt);
19665 end loop;
19666
19667 return;
19668 end;
19669
19670 -- For non-concurrent types, transfer explicit primitives, but
19671 -- omit those inherited from the parent of the private view
19672 -- since they will be re-inherited later on.
19673
19674 else
19675 Full_List := Primitive_Operations (Full_T);
19676
19677 while Present (Prim_Elmt) loop
19678 Prim := Node (Prim_Elmt);
19679
19680 if Comes_From_Source (Prim)
19681 and then not Contains (Prim, Full_List)
19682 then
19683 Append_Elmt (Prim, Full_List);
19684 end if;
19685
19686 Next_Elmt (Prim_Elmt);
19687 end loop;
19688 end if;
19689
19690 -- Untagged private view
19691
19692 else
19693 Full_List := Primitive_Operations (Full_T);
19694
19695 -- In this case the partial view is untagged, so here we locate
19696 -- all of the earlier primitives that need to be treated as
19697 -- dispatching (those that appear between the two views). Note
19698 -- that these additional operations must all be new operations
19699 -- (any earlier operations that override inherited operations
19700 -- of the full view will already have been inserted in the
19701 -- primitives list, marked by Check_Operation_From_Private_View
19702 -- as dispatching. Note that implicit "/=" operators are
19703 -- excluded from being added to the primitives list since they
19704 -- shouldn't be treated as dispatching (tagged "/=" is handled
19705 -- specially).
19706
19707 Prim := Next_Entity (Full_T);
19708 while Present (Prim) and then Prim /= Priv_T loop
19709 if Ekind_In (Prim, E_Procedure, E_Function) then
19710 Disp_Typ := Find_Dispatching_Type (Prim);
19711
19712 if Disp_Typ = Full_T
19713 and then (Chars (Prim) /= Name_Op_Ne
19714 or else Comes_From_Source (Prim))
19715 then
19716 Check_Controlling_Formals (Full_T, Prim);
19717
19718 if not Is_Dispatching_Operation (Prim) then
19719 Append_Elmt (Prim, Full_List);
19720 Set_Is_Dispatching_Operation (Prim, True);
19721 Set_DT_Position_Value (Prim, No_Uint);
19722 end if;
19723
19724 elsif Is_Dispatching_Operation (Prim)
19725 and then Disp_Typ /= Full_T
19726 then
19727
19728 -- Verify that it is not otherwise controlled by a
19729 -- formal or a return value of type T.
19730
19731 Check_Controlling_Formals (Disp_Typ, Prim);
19732 end if;
19733 end if;
19734
19735 Next_Entity (Prim);
19736 end loop;
19737 end if;
19738
19739 -- For the tagged case, the two views can share the same primitive
19740 -- operations list and the same class-wide type. Update attributes
19741 -- of the class-wide type which depend on the full declaration.
19742
19743 if Is_Tagged_Type (Priv_T) then
19744 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19745 Set_Class_Wide_Type
19746 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19747
19748 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19749 Set_Has_Protected
19750 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19751 end if;
19752 end;
19753 end if;
19754
19755 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19756
19757 if Known_To_Have_Preelab_Init (Priv_T) then
19758
19759 -- Case where there is a pragma Preelaborable_Initialization. We
19760 -- always allow this in predefined units, which is cheating a bit,
19761 -- but it means we don't have to struggle to meet the requirements in
19762 -- the RM for having Preelaborable Initialization. Otherwise we
19763 -- require that the type meets the RM rules. But we can't check that
19764 -- yet, because of the rule about overriding Initialize, so we simply
19765 -- set a flag that will be checked at freeze time.
19766
19767 if not In_Predefined_Unit (Full_T) then
19768 Set_Must_Have_Preelab_Init (Full_T);
19769 end if;
19770 end if;
19771
19772 -- If pragma CPP_Class was applied to the private type declaration,
19773 -- propagate it now to the full type declaration.
19774
19775 if Is_CPP_Class (Priv_T) then
19776 Set_Is_CPP_Class (Full_T);
19777 Set_Convention (Full_T, Convention_CPP);
19778
19779 -- Check that components of imported CPP types do not have default
19780 -- expressions.
19781
19782 Check_CPP_Type_Has_No_Defaults (Full_T);
19783 end if;
19784
19785 -- If the private view has user specified stream attributes, then so has
19786 -- the full view.
19787
19788 -- Why the test, how could these flags be already set in Full_T ???
19789
19790 if Has_Specified_Stream_Read (Priv_T) then
19791 Set_Has_Specified_Stream_Read (Full_T);
19792 end if;
19793
19794 if Has_Specified_Stream_Write (Priv_T) then
19795 Set_Has_Specified_Stream_Write (Full_T);
19796 end if;
19797
19798 if Has_Specified_Stream_Input (Priv_T) then
19799 Set_Has_Specified_Stream_Input (Full_T);
19800 end if;
19801
19802 if Has_Specified_Stream_Output (Priv_T) then
19803 Set_Has_Specified_Stream_Output (Full_T);
19804 end if;
19805
19806 -- Propagate the attributes related to pragma Default_Initial_Condition
19807 -- from the private to the full view. Note that both flags are mutually
19808 -- exclusive.
19809
19810 if Has_Default_Init_Cond (Priv_T)
19811 or else Has_Inherited_Default_Init_Cond (Priv_T)
19812 then
19813 Propagate_Default_Init_Cond_Attributes
19814 (From_Typ => Priv_T,
19815 To_Typ => Full_T,
19816 Private_To_Full_View => True);
19817
19818 -- In the case where the full view is derived from another private type,
19819 -- the attributes related to pragma Default_Initial_Condition must be
19820 -- propagated from the full to the private view to maintain consistency
19821 -- of views.
19822
19823 -- package Pack is
19824 -- type Parent_Typ is private
19825 -- with Default_Initial_Condition ...;
19826 -- private
19827 -- type Parent_Typ is ...;
19828 -- end Pack;
19829
19830 -- with Pack; use Pack;
19831 -- package Pack_2 is
19832 -- type Deriv_Typ is private; -- must inherit
19833 -- private
19834 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19835 -- end Pack_2;
19836
19837 elsif Has_Default_Init_Cond (Full_T)
19838 or else Has_Inherited_Default_Init_Cond (Full_T)
19839 then
19840 Propagate_Default_Init_Cond_Attributes
19841 (From_Typ => Full_T,
19842 To_Typ => Priv_T,
19843 Private_To_Full_View => True);
19844 end if;
19845
19846 -- Propagate the attributes related to pragma Ghost from the private to
19847 -- the full view.
19848
19849 if Is_Ghost_Entity (Priv_T) then
19850 Set_Is_Ghost_Entity (Full_T);
19851
19852 -- The Ghost policy in effect at the point of declaration and at the
19853 -- point of completion must match (SPARK RM 6.9(15)).
19854
19855 Check_Ghost_Completion (Priv_T, Full_T);
19856
19857 -- In the case where the private view of a tagged type lacks a parent
19858 -- type and is subject to pragma Ghost, ensure that the parent type
19859 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19860
19861 if Is_Derived_Type (Full_T) then
19862 Check_Ghost_Derivation (Full_T);
19863 end if;
19864 end if;
19865
19866 -- Propagate invariants to full type
19867
19868 if Has_Invariants (Priv_T) then
19869 Set_Has_Invariants (Full_T);
19870 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19871 end if;
19872
19873 if Has_Inheritable_Invariants (Priv_T) then
19874 Set_Has_Inheritable_Invariants (Full_T);
19875 end if;
19876
19877 -- Check hidden inheritance of class-wide type invariants
19878
19879 if Ada_Version >= Ada_2012
19880 and then not Has_Inheritable_Invariants (Full_T)
19881 and then In_Private_Part (Current_Scope)
19882 and then Has_Interfaces (Full_T)
19883 then
19884 declare
19885 Ifaces : Elist_Id;
19886 AI : Elmt_Id;
19887
19888 begin
19889 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19890
19891 AI := First_Elmt (Ifaces);
19892 while Present (AI) loop
19893 if Has_Inheritable_Invariants (Node (AI)) then
19894 Error_Msg_N
19895 ("hidden inheritance of class-wide type invariants " &
19896 "not allowed", N);
19897 exit;
19898 end if;
19899
19900 Next_Elmt (AI);
19901 end loop;
19902 end;
19903 end if;
19904
19905 -- Propagate predicates to full type, and predicate function if already
19906 -- defined. It is not clear that this can actually happen? the partial
19907 -- view cannot be frozen yet, and the predicate function has not been
19908 -- built. Still it is a cheap check and seems safer to make it.
19909
19910 if Has_Predicates (Priv_T) then
19911 if Present (Predicate_Function (Priv_T)) then
19912 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19913 end if;
19914
19915 Set_Has_Predicates (Full_T);
19916 end if;
19917 end Process_Full_View;
19918
19919 -----------------------------------
19920 -- Process_Incomplete_Dependents --
19921 -----------------------------------
19922
19923 procedure Process_Incomplete_Dependents
19924 (N : Node_Id;
19925 Full_T : Entity_Id;
19926 Inc_T : Entity_Id)
19927 is
19928 Inc_Elmt : Elmt_Id;
19929 Priv_Dep : Entity_Id;
19930 New_Subt : Entity_Id;
19931
19932 Disc_Constraint : Elist_Id;
19933
19934 begin
19935 if No (Private_Dependents (Inc_T)) then
19936 return;
19937 end if;
19938
19939 -- Itypes that may be generated by the completion of an incomplete
19940 -- subtype are not used by the back-end and not attached to the tree.
19941 -- They are created only for constraint-checking purposes.
19942
19943 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19944 while Present (Inc_Elmt) loop
19945 Priv_Dep := Node (Inc_Elmt);
19946
19947 if Ekind (Priv_Dep) = E_Subprogram_Type then
19948
19949 -- An Access_To_Subprogram type may have a return type or a
19950 -- parameter type that is incomplete. Replace with the full view.
19951
19952 if Etype (Priv_Dep) = Inc_T then
19953 Set_Etype (Priv_Dep, Full_T);
19954 end if;
19955
19956 declare
19957 Formal : Entity_Id;
19958
19959 begin
19960 Formal := First_Formal (Priv_Dep);
19961 while Present (Formal) loop
19962 if Etype (Formal) = Inc_T then
19963 Set_Etype (Formal, Full_T);
19964 end if;
19965
19966 Next_Formal (Formal);
19967 end loop;
19968 end;
19969
19970 elsif Is_Overloadable (Priv_Dep) then
19971
19972 -- If a subprogram in the incomplete dependents list is primitive
19973 -- for a tagged full type then mark it as a dispatching operation,
19974 -- check whether it overrides an inherited subprogram, and check
19975 -- restrictions on its controlling formals. Note that a protected
19976 -- operation is never dispatching: only its wrapper operation
19977 -- (which has convention Ada) is.
19978
19979 if Is_Tagged_Type (Full_T)
19980 and then Is_Primitive (Priv_Dep)
19981 and then Convention (Priv_Dep) /= Convention_Protected
19982 then
19983 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19984 Set_Is_Dispatching_Operation (Priv_Dep);
19985 Check_Controlling_Formals (Full_T, Priv_Dep);
19986 end if;
19987
19988 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19989
19990 -- Can happen during processing of a body before the completion
19991 -- of a TA type. Ignore, because spec is also on dependent list.
19992
19993 return;
19994
19995 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19996 -- corresponding subtype of the full view.
19997
19998 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19999 Set_Subtype_Indication
20000 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20001 Set_Etype (Priv_Dep, Full_T);
20002 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20003 Set_Analyzed (Parent (Priv_Dep), False);
20004
20005 -- Reanalyze the declaration, suppressing the call to
20006 -- Enter_Name to avoid duplicate names.
20007
20008 Analyze_Subtype_Declaration
20009 (N => Parent (Priv_Dep),
20010 Skip => True);
20011
20012 -- Dependent is a subtype
20013
20014 else
20015 -- We build a new subtype indication using the full view of the
20016 -- incomplete parent. The discriminant constraints have been
20017 -- elaborated already at the point of the subtype declaration.
20018
20019 New_Subt := Create_Itype (E_Void, N);
20020
20021 if Has_Discriminants (Full_T) then
20022 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20023 else
20024 Disc_Constraint := No_Elist;
20025 end if;
20026
20027 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20028 Set_Full_View (Priv_Dep, New_Subt);
20029 end if;
20030
20031 Next_Elmt (Inc_Elmt);
20032 end loop;
20033 end Process_Incomplete_Dependents;
20034
20035 --------------------------------
20036 -- Process_Range_Expr_In_Decl --
20037 --------------------------------
20038
20039 procedure Process_Range_Expr_In_Decl
20040 (R : Node_Id;
20041 T : Entity_Id;
20042 Subtyp : Entity_Id := Empty;
20043 Check_List : List_Id := Empty_List;
20044 R_Check_Off : Boolean := False;
20045 In_Iter_Schm : Boolean := False)
20046 is
20047 Lo, Hi : Node_Id;
20048 R_Checks : Check_Result;
20049 Insert_Node : Node_Id;
20050 Def_Id : Entity_Id;
20051
20052 begin
20053 Analyze_And_Resolve (R, Base_Type (T));
20054
20055 if Nkind (R) = N_Range then
20056
20057 -- In SPARK, all ranges should be static, with the exception of the
20058 -- discrete type definition of a loop parameter specification.
20059
20060 if not In_Iter_Schm
20061 and then not Is_OK_Static_Range (R)
20062 then
20063 Check_SPARK_05_Restriction ("range should be static", R);
20064 end if;
20065
20066 Lo := Low_Bound (R);
20067 Hi := High_Bound (R);
20068
20069 -- Validity checks on the range of a quantified expression are
20070 -- delayed until the construct is transformed into a loop.
20071
20072 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20073 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20074 then
20075 null;
20076
20077 -- We need to ensure validity of the bounds here, because if we
20078 -- go ahead and do the expansion, then the expanded code will get
20079 -- analyzed with range checks suppressed and we miss the check.
20080
20081 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20082 -- the temporaries generated by routine Remove_Side_Effects by means
20083 -- of validity checks must use the same names. When a range appears
20084 -- in the parent of a generic, the range is processed with checks
20085 -- disabled as part of the generic context and with checks enabled
20086 -- for code generation purposes. This leads to link issues as the
20087 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20088 -- template sees the temporaries generated by Remove_Side_Effects.
20089
20090 else
20091 Validity_Check_Range (R, Subtyp);
20092 end if;
20093
20094 -- If there were errors in the declaration, try and patch up some
20095 -- common mistakes in the bounds. The cases handled are literals
20096 -- which are Integer where the expected type is Real and vice versa.
20097 -- These corrections allow the compilation process to proceed further
20098 -- along since some basic assumptions of the format of the bounds
20099 -- are guaranteed.
20100
20101 if Etype (R) = Any_Type then
20102 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20103 Rewrite (Lo,
20104 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20105
20106 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20107 Rewrite (Hi,
20108 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20109
20110 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20111 Rewrite (Lo,
20112 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20113
20114 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20115 Rewrite (Hi,
20116 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20117 end if;
20118
20119 Set_Etype (Lo, T);
20120 Set_Etype (Hi, T);
20121 end if;
20122
20123 -- If the bounds of the range have been mistakenly given as string
20124 -- literals (perhaps in place of character literals), then an error
20125 -- has already been reported, but we rewrite the string literal as a
20126 -- bound of the range's type to avoid blowups in later processing
20127 -- that looks at static values.
20128
20129 if Nkind (Lo) = N_String_Literal then
20130 Rewrite (Lo,
20131 Make_Attribute_Reference (Sloc (Lo),
20132 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20133 Attribute_Name => Name_First));
20134 Analyze_And_Resolve (Lo);
20135 end if;
20136
20137 if Nkind (Hi) = N_String_Literal then
20138 Rewrite (Hi,
20139 Make_Attribute_Reference (Sloc (Hi),
20140 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20141 Attribute_Name => Name_First));
20142 Analyze_And_Resolve (Hi);
20143 end if;
20144
20145 -- If bounds aren't scalar at this point then exit, avoiding
20146 -- problems with further processing of the range in this procedure.
20147
20148 if not Is_Scalar_Type (Etype (Lo)) then
20149 return;
20150 end if;
20151
20152 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20153 -- then range of the base type. Here we check whether the bounds
20154 -- are in the range of the subtype itself. Note that if the bounds
20155 -- represent the null range the Constraint_Error exception should
20156 -- not be raised.
20157
20158 -- ??? The following code should be cleaned up as follows
20159
20160 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20161 -- is done in the call to Range_Check (R, T); below
20162
20163 -- 2. The use of R_Check_Off should be investigated and possibly
20164 -- removed, this would clean up things a bit.
20165
20166 if Is_Null_Range (Lo, Hi) then
20167 null;
20168
20169 else
20170 -- Capture values of bounds and generate temporaries for them
20171 -- if needed, before applying checks, since checks may cause
20172 -- duplication of the expression without forcing evaluation.
20173
20174 -- The forced evaluation removes side effects from expressions,
20175 -- which should occur also in GNATprove mode. Otherwise, we end up
20176 -- with unexpected insertions of actions at places where this is
20177 -- not supposed to occur, e.g. on default parameters of a call.
20178
20179 if Expander_Active or GNATprove_Mode then
20180
20181 -- Call Force_Evaluation to create declarations as needed to
20182 -- deal with side effects, and also create typ_FIRST/LAST
20183 -- entities for bounds if we have a subtype name.
20184
20185 -- Note: we do this transformation even if expansion is not
20186 -- active if we are in GNATprove_Mode since the transformation
20187 -- is in general required to ensure that the resulting tree has
20188 -- proper Ada semantics.
20189
20190 Force_Evaluation
20191 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20192 Force_Evaluation
20193 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20194 end if;
20195
20196 -- We use a flag here instead of suppressing checks on the type
20197 -- because the type we check against isn't necessarily the place
20198 -- where we put the check.
20199
20200 if not R_Check_Off then
20201 R_Checks := Get_Range_Checks (R, T);
20202
20203 -- Look up tree to find an appropriate insertion point. We
20204 -- can't just use insert_actions because later processing
20205 -- depends on the insertion node. Prior to Ada 2012 the
20206 -- insertion point could only be a declaration or a loop, but
20207 -- quantified expressions can appear within any context in an
20208 -- expression, and the insertion point can be any statement,
20209 -- pragma, or declaration.
20210
20211 Insert_Node := Parent (R);
20212 while Present (Insert_Node) loop
20213 exit when
20214 Nkind (Insert_Node) in N_Declaration
20215 and then
20216 not Nkind_In
20217 (Insert_Node, N_Component_Declaration,
20218 N_Loop_Parameter_Specification,
20219 N_Function_Specification,
20220 N_Procedure_Specification);
20221
20222 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20223 or else Nkind (Insert_Node) in
20224 N_Statement_Other_Than_Procedure_Call
20225 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20226 N_Pragma);
20227
20228 Insert_Node := Parent (Insert_Node);
20229 end loop;
20230
20231 -- Why would Type_Decl not be present??? Without this test,
20232 -- short regression tests fail.
20233
20234 if Present (Insert_Node) then
20235
20236 -- Case of loop statement. Verify that the range is part
20237 -- of the subtype indication of the iteration scheme.
20238
20239 if Nkind (Insert_Node) = N_Loop_Statement then
20240 declare
20241 Indic : Node_Id;
20242
20243 begin
20244 Indic := Parent (R);
20245 while Present (Indic)
20246 and then Nkind (Indic) /= N_Subtype_Indication
20247 loop
20248 Indic := Parent (Indic);
20249 end loop;
20250
20251 if Present (Indic) then
20252 Def_Id := Etype (Subtype_Mark (Indic));
20253
20254 Insert_Range_Checks
20255 (R_Checks,
20256 Insert_Node,
20257 Def_Id,
20258 Sloc (Insert_Node),
20259 R,
20260 Do_Before => True);
20261 end if;
20262 end;
20263
20264 -- Insertion before a declaration. If the declaration
20265 -- includes discriminants, the list of applicable checks
20266 -- is given by the caller.
20267
20268 elsif Nkind (Insert_Node) in N_Declaration then
20269 Def_Id := Defining_Identifier (Insert_Node);
20270
20271 if (Ekind (Def_Id) = E_Record_Type
20272 and then Depends_On_Discriminant (R))
20273 or else
20274 (Ekind (Def_Id) = E_Protected_Type
20275 and then Has_Discriminants (Def_Id))
20276 then
20277 Append_Range_Checks
20278 (R_Checks,
20279 Check_List, Def_Id, Sloc (Insert_Node), R);
20280
20281 else
20282 Insert_Range_Checks
20283 (R_Checks,
20284 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20285
20286 end if;
20287
20288 -- Insertion before a statement. Range appears in the
20289 -- context of a quantified expression. Insertion will
20290 -- take place when expression is expanded.
20291
20292 else
20293 null;
20294 end if;
20295 end if;
20296 end if;
20297 end if;
20298
20299 -- Case of other than an explicit N_Range node
20300
20301 -- The forced evaluation removes side effects from expressions, which
20302 -- should occur also in GNATprove mode. Otherwise, we end up with
20303 -- unexpected insertions of actions at places where this is not
20304 -- supposed to occur, e.g. on default parameters of a call.
20305
20306 elsif Expander_Active or GNATprove_Mode then
20307 Get_Index_Bounds (R, Lo, Hi);
20308 Force_Evaluation (Lo);
20309 Force_Evaluation (Hi);
20310 end if;
20311 end Process_Range_Expr_In_Decl;
20312
20313 --------------------------------------
20314 -- Process_Real_Range_Specification --
20315 --------------------------------------
20316
20317 procedure Process_Real_Range_Specification (Def : Node_Id) is
20318 Spec : constant Node_Id := Real_Range_Specification (Def);
20319 Lo : Node_Id;
20320 Hi : Node_Id;
20321 Err : Boolean := False;
20322
20323 procedure Analyze_Bound (N : Node_Id);
20324 -- Analyze and check one bound
20325
20326 -------------------
20327 -- Analyze_Bound --
20328 -------------------
20329
20330 procedure Analyze_Bound (N : Node_Id) is
20331 begin
20332 Analyze_And_Resolve (N, Any_Real);
20333
20334 if not Is_OK_Static_Expression (N) then
20335 Flag_Non_Static_Expr
20336 ("bound in real type definition is not static!", N);
20337 Err := True;
20338 end if;
20339 end Analyze_Bound;
20340
20341 -- Start of processing for Process_Real_Range_Specification
20342
20343 begin
20344 if Present (Spec) then
20345 Lo := Low_Bound (Spec);
20346 Hi := High_Bound (Spec);
20347 Analyze_Bound (Lo);
20348 Analyze_Bound (Hi);
20349
20350 -- If error, clear away junk range specification
20351
20352 if Err then
20353 Set_Real_Range_Specification (Def, Empty);
20354 end if;
20355 end if;
20356 end Process_Real_Range_Specification;
20357
20358 ---------------------
20359 -- Process_Subtype --
20360 ---------------------
20361
20362 function Process_Subtype
20363 (S : Node_Id;
20364 Related_Nod : Node_Id;
20365 Related_Id : Entity_Id := Empty;
20366 Suffix : Character := ' ') return Entity_Id
20367 is
20368 P : Node_Id;
20369 Def_Id : Entity_Id;
20370 Error_Node : Node_Id;
20371 Full_View_Id : Entity_Id;
20372 Subtype_Mark_Id : Entity_Id;
20373
20374 May_Have_Null_Exclusion : Boolean;
20375
20376 procedure Check_Incomplete (T : Entity_Id);
20377 -- Called to verify that an incomplete type is not used prematurely
20378
20379 ----------------------
20380 -- Check_Incomplete --
20381 ----------------------
20382
20383 procedure Check_Incomplete (T : Entity_Id) is
20384 begin
20385 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20386
20387 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20388 and then
20389 not (Ada_Version >= Ada_2005
20390 and then
20391 (Nkind (Parent (T)) = N_Subtype_Declaration
20392 or else (Nkind (Parent (T)) = N_Subtype_Indication
20393 and then Nkind (Parent (Parent (T))) =
20394 N_Subtype_Declaration)))
20395 then
20396 Error_Msg_N ("invalid use of type before its full declaration", T);
20397 end if;
20398 end Check_Incomplete;
20399
20400 -- Start of processing for Process_Subtype
20401
20402 begin
20403 -- Case of no constraints present
20404
20405 if Nkind (S) /= N_Subtype_Indication then
20406 Find_Type (S);
20407 Check_Incomplete (S);
20408 P := Parent (S);
20409
20410 -- Ada 2005 (AI-231): Static check
20411
20412 if Ada_Version >= Ada_2005
20413 and then Present (P)
20414 and then Null_Exclusion_Present (P)
20415 and then Nkind (P) /= N_Access_To_Object_Definition
20416 and then not Is_Access_Type (Entity (S))
20417 then
20418 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20419 end if;
20420
20421 -- The following is ugly, can't we have a range or even a flag???
20422
20423 May_Have_Null_Exclusion :=
20424 Nkind_In (P, N_Access_Definition,
20425 N_Access_Function_Definition,
20426 N_Access_Procedure_Definition,
20427 N_Access_To_Object_Definition,
20428 N_Allocator,
20429 N_Component_Definition)
20430 or else
20431 Nkind_In (P, N_Derived_Type_Definition,
20432 N_Discriminant_Specification,
20433 N_Formal_Object_Declaration,
20434 N_Object_Declaration,
20435 N_Object_Renaming_Declaration,
20436 N_Parameter_Specification,
20437 N_Subtype_Declaration);
20438
20439 -- Create an Itype that is a duplicate of Entity (S) but with the
20440 -- null-exclusion attribute.
20441
20442 if May_Have_Null_Exclusion
20443 and then Is_Access_Type (Entity (S))
20444 and then Null_Exclusion_Present (P)
20445
20446 -- No need to check the case of an access to object definition.
20447 -- It is correct to define double not-null pointers.
20448
20449 -- Example:
20450 -- type Not_Null_Int_Ptr is not null access Integer;
20451 -- type Acc is not null access Not_Null_Int_Ptr;
20452
20453 and then Nkind (P) /= N_Access_To_Object_Definition
20454 then
20455 if Can_Never_Be_Null (Entity (S)) then
20456 case Nkind (Related_Nod) is
20457 when N_Full_Type_Declaration =>
20458 if Nkind (Type_Definition (Related_Nod))
20459 in N_Array_Type_Definition
20460 then
20461 Error_Node :=
20462 Subtype_Indication
20463 (Component_Definition
20464 (Type_Definition (Related_Nod)));
20465 else
20466 Error_Node :=
20467 Subtype_Indication (Type_Definition (Related_Nod));
20468 end if;
20469
20470 when N_Subtype_Declaration =>
20471 Error_Node := Subtype_Indication (Related_Nod);
20472
20473 when N_Object_Declaration =>
20474 Error_Node := Object_Definition (Related_Nod);
20475
20476 when N_Component_Declaration =>
20477 Error_Node :=
20478 Subtype_Indication (Component_Definition (Related_Nod));
20479
20480 when N_Allocator =>
20481 Error_Node := Expression (Related_Nod);
20482
20483 when others =>
20484 pragma Assert (False);
20485 Error_Node := Related_Nod;
20486 end case;
20487
20488 Error_Msg_NE
20489 ("`NOT NULL` not allowed (& already excludes null)",
20490 Error_Node,
20491 Entity (S));
20492 end if;
20493
20494 Set_Etype (S,
20495 Create_Null_Excluding_Itype
20496 (T => Entity (S),
20497 Related_Nod => P));
20498 Set_Entity (S, Etype (S));
20499 end if;
20500
20501 return Entity (S);
20502
20503 -- Case of constraint present, so that we have an N_Subtype_Indication
20504 -- node (this node is created only if constraints are present).
20505
20506 else
20507 Find_Type (Subtype_Mark (S));
20508
20509 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20510 and then not
20511 (Nkind (Parent (S)) = N_Subtype_Declaration
20512 and then Is_Itype (Defining_Identifier (Parent (S))))
20513 then
20514 Check_Incomplete (Subtype_Mark (S));
20515 end if;
20516
20517 P := Parent (S);
20518 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20519
20520 -- Explicit subtype declaration case
20521
20522 if Nkind (P) = N_Subtype_Declaration then
20523 Def_Id := Defining_Identifier (P);
20524
20525 -- Explicit derived type definition case
20526
20527 elsif Nkind (P) = N_Derived_Type_Definition then
20528 Def_Id := Defining_Identifier (Parent (P));
20529
20530 -- Implicit case, the Def_Id must be created as an implicit type.
20531 -- The one exception arises in the case of concurrent types, array
20532 -- and access types, where other subsidiary implicit types may be
20533 -- created and must appear before the main implicit type. In these
20534 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20535 -- has not yet been called to create Def_Id.
20536
20537 else
20538 if Is_Array_Type (Subtype_Mark_Id)
20539 or else Is_Concurrent_Type (Subtype_Mark_Id)
20540 or else Is_Access_Type (Subtype_Mark_Id)
20541 then
20542 Def_Id := Empty;
20543
20544 -- For the other cases, we create a new unattached Itype,
20545 -- and set the indication to ensure it gets attached later.
20546
20547 else
20548 Def_Id :=
20549 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20550 end if;
20551 end if;
20552
20553 -- If the kind of constraint is invalid for this kind of type,
20554 -- then give an error, and then pretend no constraint was given.
20555
20556 if not Is_Valid_Constraint_Kind
20557 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20558 then
20559 Error_Msg_N
20560 ("incorrect constraint for this kind of type", Constraint (S));
20561
20562 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20563
20564 -- Set Ekind of orphan itype, to prevent cascaded errors
20565
20566 if Present (Def_Id) then
20567 Set_Ekind (Def_Id, Ekind (Any_Type));
20568 end if;
20569
20570 -- Make recursive call, having got rid of the bogus constraint
20571
20572 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20573 end if;
20574
20575 -- Remaining processing depends on type. Select on Base_Type kind to
20576 -- ensure getting to the concrete type kind in the case of a private
20577 -- subtype (needed when only doing semantic analysis).
20578
20579 case Ekind (Base_Type (Subtype_Mark_Id)) is
20580 when Access_Kind =>
20581
20582 -- If this is a constraint on a class-wide type, discard it.
20583 -- There is currently no way to express a partial discriminant
20584 -- constraint on a type with unknown discriminants. This is
20585 -- a pathology that the ACATS wisely decides not to test.
20586
20587 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20588 if Comes_From_Source (S) then
20589 Error_Msg_N
20590 ("constraint on class-wide type ignored??",
20591 Constraint (S));
20592 end if;
20593
20594 if Nkind (P) = N_Subtype_Declaration then
20595 Set_Subtype_Indication (P,
20596 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20597 end if;
20598
20599 return Subtype_Mark_Id;
20600 end if;
20601
20602 Constrain_Access (Def_Id, S, Related_Nod);
20603
20604 if Expander_Active
20605 and then Is_Itype (Designated_Type (Def_Id))
20606 and then Nkind (Related_Nod) = N_Subtype_Declaration
20607 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20608 then
20609 Build_Itype_Reference
20610 (Designated_Type (Def_Id), Related_Nod);
20611 end if;
20612
20613 when Array_Kind =>
20614 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20615
20616 when Decimal_Fixed_Point_Kind =>
20617 Constrain_Decimal (Def_Id, S);
20618
20619 when Enumeration_Kind =>
20620 Constrain_Enumeration (Def_Id, S);
20621 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20622
20623 when Ordinary_Fixed_Point_Kind =>
20624 Constrain_Ordinary_Fixed (Def_Id, S);
20625
20626 when Float_Kind =>
20627 Constrain_Float (Def_Id, S);
20628
20629 when Integer_Kind =>
20630 Constrain_Integer (Def_Id, S);
20631 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20632
20633 when E_Record_Type |
20634 E_Record_Subtype |
20635 Class_Wide_Kind |
20636 E_Incomplete_Type =>
20637 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20638
20639 if Ekind (Def_Id) = E_Incomplete_Type then
20640 Set_Private_Dependents (Def_Id, New_Elmt_List);
20641 end if;
20642
20643 when Private_Kind =>
20644 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20645 Set_Private_Dependents (Def_Id, New_Elmt_List);
20646
20647 -- In case of an invalid constraint prevent further processing
20648 -- since the type constructed is missing expected fields.
20649
20650 if Etype (Def_Id) = Any_Type then
20651 return Def_Id;
20652 end if;
20653
20654 -- If the full view is that of a task with discriminants,
20655 -- we must constrain both the concurrent type and its
20656 -- corresponding record type. Otherwise we will just propagate
20657 -- the constraint to the full view, if available.
20658
20659 if Present (Full_View (Subtype_Mark_Id))
20660 and then Has_Discriminants (Subtype_Mark_Id)
20661 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20662 then
20663 Full_View_Id :=
20664 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20665
20666 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20667 Constrain_Concurrent (Full_View_Id, S,
20668 Related_Nod, Related_Id, Suffix);
20669 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20670 Set_Full_View (Def_Id, Full_View_Id);
20671
20672 -- Introduce an explicit reference to the private subtype,
20673 -- to prevent scope anomalies in gigi if first use appears
20674 -- in a nested context, e.g. a later function body.
20675 -- Should this be generated in other contexts than a full
20676 -- type declaration?
20677
20678 if Is_Itype (Def_Id)
20679 and then
20680 Nkind (Parent (P)) = N_Full_Type_Declaration
20681 then
20682 Build_Itype_Reference (Def_Id, Parent (P));
20683 end if;
20684
20685 else
20686 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20687 end if;
20688
20689 when Concurrent_Kind =>
20690 Constrain_Concurrent (Def_Id, S,
20691 Related_Nod, Related_Id, Suffix);
20692
20693 when others =>
20694 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20695 end case;
20696
20697 -- Size and Convention are always inherited from the base type
20698
20699 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20700 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20701
20702 return Def_Id;
20703 end if;
20704 end Process_Subtype;
20705
20706 --------------------------------------------
20707 -- Propagate_Default_Init_Cond_Attributes --
20708 --------------------------------------------
20709
20710 procedure Propagate_Default_Init_Cond_Attributes
20711 (From_Typ : Entity_Id;
20712 To_Typ : Entity_Id;
20713 Parent_To_Derivation : Boolean := False;
20714 Private_To_Full_View : Boolean := False)
20715 is
20716 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20717 -- Remove the default initial procedure (if any) from the rep chain of
20718 -- type Typ.
20719
20720 ----------------------------------------
20721 -- Remove_Default_Init_Cond_Procedure --
20722 ----------------------------------------
20723
20724 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20725 Found : Boolean := False;
20726 Prev : Entity_Id;
20727 Subp : Entity_Id;
20728
20729 begin
20730 Prev := Typ;
20731 Subp := Subprograms_For_Type (Typ);
20732 while Present (Subp) loop
20733 if Is_Default_Init_Cond_Procedure (Subp) then
20734 Found := True;
20735 exit;
20736 end if;
20737
20738 Prev := Subp;
20739 Subp := Subprograms_For_Type (Subp);
20740 end loop;
20741
20742 if Found then
20743 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20744 Set_Subprograms_For_Type (Subp, Empty);
20745 end if;
20746 end Remove_Default_Init_Cond_Procedure;
20747
20748 -- Local variables
20749
20750 Inherit_Procedure : Boolean := False;
20751
20752 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20753
20754 begin
20755 if Has_Default_Init_Cond (From_Typ) then
20756
20757 -- A derived type inherits the attributes from its parent type
20758
20759 if Parent_To_Derivation then
20760 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20761
20762 -- A full view shares the attributes with its private view
20763
20764 else
20765 Set_Has_Default_Init_Cond (To_Typ);
20766 end if;
20767
20768 Inherit_Procedure := True;
20769
20770 -- Due to the order of expansion, a derived private type is processed
20771 -- by two routines which both attempt to set the attributes related
20772 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20773 -- Process_Full_View.
20774
20775 -- package Pack is
20776 -- type Parent_Typ is private
20777 -- with Default_Initial_Condition ...;
20778 -- private
20779 -- type Parent_Typ is ...;
20780 -- end Pack;
20781
20782 -- with Pack; use Pack;
20783 -- package Pack_2 is
20784 -- type Deriv_Typ is private
20785 -- with Default_Initial_Condition ...;
20786 -- private
20787 -- type Deriv_Typ is new Parent_Typ;
20788 -- end Pack_2;
20789
20790 -- When Build_Derived_Type operates, it sets the attributes on the
20791 -- full view without taking into account that the private view may
20792 -- define its own default initial condition procedure. This becomes
20793 -- apparent in Process_Full_View which must undo some of the work by
20794 -- Build_Derived_Type and propagate the attributes from the private
20795 -- to the full view.
20796
20797 if Private_To_Full_View then
20798 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20799 Remove_Default_Init_Cond_Procedure (To_Typ);
20800 end if;
20801
20802 -- A type must inherit the default initial condition procedure from a
20803 -- parent type when the parent itself is inheriting the procedure or
20804 -- when it is defining one. This circuitry is also used when dealing
20805 -- with the private / full view of a type.
20806
20807 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20808 or (Parent_To_Derivation
20809 and Present (Get_Pragma
20810 (From_Typ, Pragma_Default_Initial_Condition)))
20811 then
20812 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20813 Inherit_Procedure := True;
20814 end if;
20815
20816 if Inherit_Procedure
20817 and then No (Default_Init_Cond_Procedure (To_Typ))
20818 then
20819 Set_Default_Init_Cond_Procedure
20820 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20821 end if;
20822 end Propagate_Default_Init_Cond_Attributes;
20823
20824 -----------------------------
20825 -- Record_Type_Declaration --
20826 -----------------------------
20827
20828 procedure Record_Type_Declaration
20829 (T : Entity_Id;
20830 N : Node_Id;
20831 Prev : Entity_Id)
20832 is
20833 Def : constant Node_Id := Type_Definition (N);
20834 Is_Tagged : Boolean;
20835 Tag_Comp : Entity_Id;
20836
20837 begin
20838 -- These flags must be initialized before calling Process_Discriminants
20839 -- because this routine makes use of them.
20840
20841 Set_Ekind (T, E_Record_Type);
20842 Set_Etype (T, T);
20843 Init_Size_Align (T);
20844 Set_Interfaces (T, No_Elist);
20845 Set_Stored_Constraint (T, No_Elist);
20846 Set_Default_SSO (T);
20847
20848 -- Normal case
20849
20850 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20851 if Limited_Present (Def) then
20852 Check_SPARK_05_Restriction ("limited is not allowed", N);
20853 end if;
20854
20855 if Abstract_Present (Def) then
20856 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20857 end if;
20858
20859 -- The flag Is_Tagged_Type might have already been set by
20860 -- Find_Type_Name if it detected an error for declaration T. This
20861 -- arises in the case of private tagged types where the full view
20862 -- omits the word tagged.
20863
20864 Is_Tagged :=
20865 Tagged_Present (Def)
20866 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20867
20868 Set_Is_Limited_Record (T, Limited_Present (Def));
20869
20870 if Is_Tagged then
20871 Set_Is_Tagged_Type (T, True);
20872 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20873 end if;
20874
20875 -- Type is abstract if full declaration carries keyword, or if
20876 -- previous partial view did.
20877
20878 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20879 or else Abstract_Present (Def));
20880
20881 else
20882 Check_SPARK_05_Restriction ("interface is not allowed", N);
20883
20884 Is_Tagged := True;
20885 Analyze_Interface_Declaration (T, Def);
20886
20887 if Present (Discriminant_Specifications (N)) then
20888 Error_Msg_N
20889 ("interface types cannot have discriminants",
20890 Defining_Identifier
20891 (First (Discriminant_Specifications (N))));
20892 end if;
20893 end if;
20894
20895 -- First pass: if there are self-referential access components,
20896 -- create the required anonymous access type declarations, and if
20897 -- need be an incomplete type declaration for T itself.
20898
20899 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20900
20901 if Ada_Version >= Ada_2005
20902 and then Present (Interface_List (Def))
20903 then
20904 Check_Interfaces (N, Def);
20905
20906 declare
20907 Ifaces_List : Elist_Id;
20908
20909 begin
20910 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20911 -- already in the parents.
20912
20913 Collect_Interfaces
20914 (T => T,
20915 Ifaces_List => Ifaces_List,
20916 Exclude_Parents => True);
20917
20918 Set_Interfaces (T, Ifaces_List);
20919 end;
20920 end if;
20921
20922 -- Records constitute a scope for the component declarations within.
20923 -- The scope is created prior to the processing of these declarations.
20924 -- Discriminants are processed first, so that they are visible when
20925 -- processing the other components. The Ekind of the record type itself
20926 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20927
20928 -- Enter record scope
20929
20930 Push_Scope (T);
20931
20932 -- If an incomplete or private type declaration was already given for
20933 -- the type, then this scope already exists, and the discriminants have
20934 -- been declared within. We must verify that the full declaration
20935 -- matches the incomplete one.
20936
20937 Check_Or_Process_Discriminants (N, T, Prev);
20938
20939 Set_Is_Constrained (T, not Has_Discriminants (T));
20940 Set_Has_Delayed_Freeze (T, True);
20941
20942 -- For tagged types add a manually analyzed component corresponding
20943 -- to the component _tag, the corresponding piece of tree will be
20944 -- expanded as part of the freezing actions if it is not a CPP_Class.
20945
20946 if Is_Tagged then
20947
20948 -- Do not add the tag unless we are in expansion mode
20949
20950 if Expander_Active then
20951 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20952 Enter_Name (Tag_Comp);
20953
20954 Set_Ekind (Tag_Comp, E_Component);
20955 Set_Is_Tag (Tag_Comp);
20956 Set_Is_Aliased (Tag_Comp);
20957 Set_Etype (Tag_Comp, RTE (RE_Tag));
20958 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20959 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20960 Init_Component_Location (Tag_Comp);
20961
20962 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20963 -- implemented interfaces.
20964
20965 if Has_Interfaces (T) then
20966 Add_Interface_Tag_Components (N, T);
20967 end if;
20968 end if;
20969
20970 Make_Class_Wide_Type (T);
20971 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20972 end if;
20973
20974 -- We must suppress range checks when processing record components in
20975 -- the presence of discriminants, since we don't want spurious checks to
20976 -- be generated during their analysis, but Suppress_Range_Checks flags
20977 -- must be reset the after processing the record definition.
20978
20979 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20980 -- couldn't we just use the normal range check suppression method here.
20981 -- That would seem cleaner ???
20982
20983 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20984 Set_Kill_Range_Checks (T, True);
20985 Record_Type_Definition (Def, Prev);
20986 Set_Kill_Range_Checks (T, False);
20987 else
20988 Record_Type_Definition (Def, Prev);
20989 end if;
20990
20991 -- Exit from record scope
20992
20993 End_Scope;
20994
20995 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20996 -- the implemented interfaces and associate them an aliased entity.
20997
20998 if Is_Tagged
20999 and then not Is_Empty_List (Interface_List (Def))
21000 then
21001 Derive_Progenitor_Subprograms (T, T);
21002 end if;
21003
21004 Check_Function_Writable_Actuals (N);
21005 end Record_Type_Declaration;
21006
21007 ----------------------------
21008 -- Record_Type_Definition --
21009 ----------------------------
21010
21011 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21012 Component : Entity_Id;
21013 Ctrl_Components : Boolean := False;
21014 Final_Storage_Only : Boolean;
21015 T : Entity_Id;
21016
21017 begin
21018 if Ekind (Prev_T) = E_Incomplete_Type then
21019 T := Full_View (Prev_T);
21020 else
21021 T := Prev_T;
21022 end if;
21023
21024 -- In SPARK, tagged types and type extensions may only be declared in
21025 -- the specification of library unit packages.
21026
21027 if Present (Def) and then Is_Tagged_Type (T) then
21028 declare
21029 Typ : Node_Id;
21030 Ctxt : Node_Id;
21031
21032 begin
21033 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21034 Typ := Parent (Def);
21035 else
21036 pragma Assert
21037 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21038 Typ := Parent (Parent (Def));
21039 end if;
21040
21041 Ctxt := Parent (Typ);
21042
21043 if Nkind (Ctxt) = N_Package_Body
21044 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21045 then
21046 Check_SPARK_05_Restriction
21047 ("type should be defined in package specification", Typ);
21048
21049 elsif Nkind (Ctxt) /= N_Package_Specification
21050 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21051 then
21052 Check_SPARK_05_Restriction
21053 ("type should be defined in library unit package", Typ);
21054 end if;
21055 end;
21056 end if;
21057
21058 Final_Storage_Only := not Is_Controlled (T);
21059
21060 -- Ada 2005: Check whether an explicit Limited is present in a derived
21061 -- type declaration.
21062
21063 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21064 and then Limited_Present (Parent (Def))
21065 then
21066 Set_Is_Limited_Record (T);
21067 end if;
21068
21069 -- If the component list of a record type is defined by the reserved
21070 -- word null and there is no discriminant part, then the record type has
21071 -- no components and all records of the type are null records (RM 3.7)
21072 -- This procedure is also called to process the extension part of a
21073 -- record extension, in which case the current scope may have inherited
21074 -- components.
21075
21076 if No (Def)
21077 or else No (Component_List (Def))
21078 or else Null_Present (Component_List (Def))
21079 then
21080 if not Is_Tagged_Type (T) then
21081 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21082 end if;
21083
21084 else
21085 Analyze_Declarations (Component_Items (Component_List (Def)));
21086
21087 if Present (Variant_Part (Component_List (Def))) then
21088 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21089 Analyze (Variant_Part (Component_List (Def)));
21090 end if;
21091 end if;
21092
21093 -- After completing the semantic analysis of the record definition,
21094 -- record components, both new and inherited, are accessible. Set their
21095 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21096 -- whose Ekind may be void.
21097
21098 Component := First_Entity (Current_Scope);
21099 while Present (Component) loop
21100 if Ekind (Component) = E_Void
21101 and then not Is_Itype (Component)
21102 then
21103 Set_Ekind (Component, E_Component);
21104 Init_Component_Location (Component);
21105 end if;
21106
21107 if Has_Task (Etype (Component)) then
21108 Set_Has_Task (T);
21109 end if;
21110
21111 if Has_Protected (Etype (Component)) then
21112 Set_Has_Protected (T);
21113 end if;
21114
21115 if Ekind (Component) /= E_Component then
21116 null;
21117
21118 -- Do not set Has_Controlled_Component on a class-wide equivalent
21119 -- type. See Make_CW_Equivalent_Type.
21120
21121 elsif not Is_Class_Wide_Equivalent_Type (T)
21122 and then (Has_Controlled_Component (Etype (Component))
21123 or else (Chars (Component) /= Name_uParent
21124 and then Is_Controlled (Etype (Component))))
21125 then
21126 Set_Has_Controlled_Component (T, True);
21127 Final_Storage_Only :=
21128 Final_Storage_Only
21129 and then Finalize_Storage_Only (Etype (Component));
21130 Ctrl_Components := True;
21131 end if;
21132
21133 Next_Entity (Component);
21134 end loop;
21135
21136 -- A Type is Finalize_Storage_Only only if all its controlled components
21137 -- are also.
21138
21139 if Ctrl_Components then
21140 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21141 end if;
21142
21143 -- Place reference to end record on the proper entity, which may
21144 -- be a partial view.
21145
21146 if Present (Def) then
21147 Process_End_Label (Def, 'e', Prev_T);
21148 end if;
21149 end Record_Type_Definition;
21150
21151 ------------------------
21152 -- Replace_Components --
21153 ------------------------
21154
21155 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21156 function Process (N : Node_Id) return Traverse_Result;
21157
21158 -------------
21159 -- Process --
21160 -------------
21161
21162 function Process (N : Node_Id) return Traverse_Result is
21163 Comp : Entity_Id;
21164
21165 begin
21166 if Nkind (N) = N_Discriminant_Specification then
21167 Comp := First_Discriminant (Typ);
21168 while Present (Comp) loop
21169 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21170 Set_Defining_Identifier (N, Comp);
21171 exit;
21172 end if;
21173
21174 Next_Discriminant (Comp);
21175 end loop;
21176
21177 elsif Nkind (N) = N_Component_Declaration then
21178 Comp := First_Component (Typ);
21179 while Present (Comp) loop
21180 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21181 Set_Defining_Identifier (N, Comp);
21182 exit;
21183 end if;
21184
21185 Next_Component (Comp);
21186 end loop;
21187 end if;
21188
21189 return OK;
21190 end Process;
21191
21192 procedure Replace is new Traverse_Proc (Process);
21193
21194 -- Start of processing for Replace_Components
21195
21196 begin
21197 Replace (Decl);
21198 end Replace_Components;
21199
21200 -------------------------------
21201 -- Set_Completion_Referenced --
21202 -------------------------------
21203
21204 procedure Set_Completion_Referenced (E : Entity_Id) is
21205 begin
21206 -- If in main unit, mark entity that is a completion as referenced,
21207 -- warnings go on the partial view when needed.
21208
21209 if In_Extended_Main_Source_Unit (E) then
21210 Set_Referenced (E);
21211 end if;
21212 end Set_Completion_Referenced;
21213
21214 ---------------------
21215 -- Set_Default_SSO --
21216 ---------------------
21217
21218 procedure Set_Default_SSO (T : Entity_Id) is
21219 begin
21220 case Opt.Default_SSO is
21221 when ' ' =>
21222 null;
21223 when 'L' =>
21224 Set_SSO_Set_Low_By_Default (T, True);
21225 when 'H' =>
21226 Set_SSO_Set_High_By_Default (T, True);
21227 when others =>
21228 raise Program_Error;
21229 end case;
21230 end Set_Default_SSO;
21231
21232 ---------------------
21233 -- Set_Fixed_Range --
21234 ---------------------
21235
21236 -- The range for fixed-point types is complicated by the fact that we
21237 -- do not know the exact end points at the time of the declaration. This
21238 -- is true for three reasons:
21239
21240 -- A size clause may affect the fudging of the end-points.
21241 -- A small clause may affect the values of the end-points.
21242 -- We try to include the end-points if it does not affect the size.
21243
21244 -- This means that the actual end-points must be established at the
21245 -- point when the type is frozen. Meanwhile, we first narrow the range
21246 -- as permitted (so that it will fit if necessary in a small specified
21247 -- size), and then build a range subtree with these narrowed bounds.
21248 -- Set_Fixed_Range constructs the range from real literal values, and
21249 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21250
21251 -- The parent of this range is set to point to the entity so that it is
21252 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21253 -- other scalar types, which are just pointers to the range in the
21254 -- original tree, this would otherwise be an orphan).
21255
21256 -- The tree is left unanalyzed. When the type is frozen, the processing
21257 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21258 -- analyzed, and uses this as an indication that it should complete
21259 -- work on the range (it will know the final small and size values).
21260
21261 procedure Set_Fixed_Range
21262 (E : Entity_Id;
21263 Loc : Source_Ptr;
21264 Lo : Ureal;
21265 Hi : Ureal)
21266 is
21267 S : constant Node_Id :=
21268 Make_Range (Loc,
21269 Low_Bound => Make_Real_Literal (Loc, Lo),
21270 High_Bound => Make_Real_Literal (Loc, Hi));
21271 begin
21272 Set_Scalar_Range (E, S);
21273 Set_Parent (S, E);
21274
21275 -- Before the freeze point, the bounds of a fixed point are universal
21276 -- and carry the corresponding type.
21277
21278 Set_Etype (Low_Bound (S), Universal_Real);
21279 Set_Etype (High_Bound (S), Universal_Real);
21280 end Set_Fixed_Range;
21281
21282 ----------------------------------
21283 -- Set_Scalar_Range_For_Subtype --
21284 ----------------------------------
21285
21286 procedure Set_Scalar_Range_For_Subtype
21287 (Def_Id : Entity_Id;
21288 R : Node_Id;
21289 Subt : Entity_Id)
21290 is
21291 Kind : constant Entity_Kind := Ekind (Def_Id);
21292
21293 begin
21294 -- Defend against previous error
21295
21296 if Nkind (R) = N_Error then
21297 return;
21298 end if;
21299
21300 Set_Scalar_Range (Def_Id, R);
21301
21302 -- We need to link the range into the tree before resolving it so
21303 -- that types that are referenced, including importantly the subtype
21304 -- itself, are properly frozen (Freeze_Expression requires that the
21305 -- expression be properly linked into the tree). Of course if it is
21306 -- already linked in, then we do not disturb the current link.
21307
21308 if No (Parent (R)) then
21309 Set_Parent (R, Def_Id);
21310 end if;
21311
21312 -- Reset the kind of the subtype during analysis of the range, to
21313 -- catch possible premature use in the bounds themselves.
21314
21315 Set_Ekind (Def_Id, E_Void);
21316 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21317 Set_Ekind (Def_Id, Kind);
21318 end Set_Scalar_Range_For_Subtype;
21319
21320 --------------------------------------------------------
21321 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21322 --------------------------------------------------------
21323
21324 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21325 (E : Entity_Id)
21326 is
21327 begin
21328 -- Make sure set if encountered during Expand_To_Stored_Constraint
21329
21330 Set_Stored_Constraint (E, No_Elist);
21331
21332 -- Give it the right value
21333
21334 if Is_Constrained (E) and then Has_Discriminants (E) then
21335 Set_Stored_Constraint (E,
21336 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21337 end if;
21338 end Set_Stored_Constraint_From_Discriminant_Constraint;
21339
21340 -------------------------------------
21341 -- Signed_Integer_Type_Declaration --
21342 -------------------------------------
21343
21344 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21345 Implicit_Base : Entity_Id;
21346 Base_Typ : Entity_Id;
21347 Lo_Val : Uint;
21348 Hi_Val : Uint;
21349 Errs : Boolean := False;
21350 Lo : Node_Id;
21351 Hi : Node_Id;
21352
21353 function Can_Derive_From (E : Entity_Id) return Boolean;
21354 -- Determine whether given bounds allow derivation from specified type
21355
21356 procedure Check_Bound (Expr : Node_Id);
21357 -- Check bound to make sure it is integral and static. If not, post
21358 -- appropriate error message and set Errs flag
21359
21360 ---------------------
21361 -- Can_Derive_From --
21362 ---------------------
21363
21364 -- Note we check both bounds against both end values, to deal with
21365 -- strange types like ones with a range of 0 .. -12341234.
21366
21367 function Can_Derive_From (E : Entity_Id) return Boolean is
21368 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21369 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21370 begin
21371 return Lo <= Lo_Val and then Lo_Val <= Hi
21372 and then
21373 Lo <= Hi_Val and then Hi_Val <= Hi;
21374 end Can_Derive_From;
21375
21376 -----------------
21377 -- Check_Bound --
21378 -----------------
21379
21380 procedure Check_Bound (Expr : Node_Id) is
21381 begin
21382 -- If a range constraint is used as an integer type definition, each
21383 -- bound of the range must be defined by a static expression of some
21384 -- integer type, but the two bounds need not have the same integer
21385 -- type (Negative bounds are allowed.) (RM 3.5.4)
21386
21387 if not Is_Integer_Type (Etype (Expr)) then
21388 Error_Msg_N
21389 ("integer type definition bounds must be of integer type", Expr);
21390 Errs := True;
21391
21392 elsif not Is_OK_Static_Expression (Expr) then
21393 Flag_Non_Static_Expr
21394 ("non-static expression used for integer type bound!", Expr);
21395 Errs := True;
21396
21397 -- The bounds are folded into literals, and we set their type to be
21398 -- universal, to avoid typing difficulties: we cannot set the type
21399 -- of the literal to the new type, because this would be a forward
21400 -- reference for the back end, and if the original type is user-
21401 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21402
21403 else
21404 if Is_Entity_Name (Expr) then
21405 Fold_Uint (Expr, Expr_Value (Expr), True);
21406 end if;
21407
21408 Set_Etype (Expr, Universal_Integer);
21409 end if;
21410 end Check_Bound;
21411
21412 -- Start of processing for Signed_Integer_Type_Declaration
21413
21414 begin
21415 -- Create an anonymous base type
21416
21417 Implicit_Base :=
21418 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21419
21420 -- Analyze and check the bounds, they can be of any integer type
21421
21422 Lo := Low_Bound (Def);
21423 Hi := High_Bound (Def);
21424
21425 -- Arbitrarily use Integer as the type if either bound had an error
21426
21427 if Hi = Error or else Lo = Error then
21428 Base_Typ := Any_Integer;
21429 Set_Error_Posted (T, True);
21430
21431 -- Here both bounds are OK expressions
21432
21433 else
21434 Analyze_And_Resolve (Lo, Any_Integer);
21435 Analyze_And_Resolve (Hi, Any_Integer);
21436
21437 Check_Bound (Lo);
21438 Check_Bound (Hi);
21439
21440 if Errs then
21441 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21442 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21443 end if;
21444
21445 -- Find type to derive from
21446
21447 Lo_Val := Expr_Value (Lo);
21448 Hi_Val := Expr_Value (Hi);
21449
21450 if Can_Derive_From (Standard_Short_Short_Integer) then
21451 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21452
21453 elsif Can_Derive_From (Standard_Short_Integer) then
21454 Base_Typ := Base_Type (Standard_Short_Integer);
21455
21456 elsif Can_Derive_From (Standard_Integer) then
21457 Base_Typ := Base_Type (Standard_Integer);
21458
21459 elsif Can_Derive_From (Standard_Long_Integer) then
21460 Base_Typ := Base_Type (Standard_Long_Integer);
21461
21462 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21463 Check_Restriction (No_Long_Long_Integers, Def);
21464 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21465
21466 else
21467 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21468 Error_Msg_N ("integer type definition bounds out of range", Def);
21469 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21470 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21471 end if;
21472 end if;
21473
21474 -- Complete both implicit base and declared first subtype entities. The
21475 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21476 -- are not clobbered when the signed integer type acts as a full view of
21477 -- a private type.
21478
21479 Set_Etype (Implicit_Base, Base_Typ);
21480 Set_Size_Info (Implicit_Base, Base_Typ);
21481 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21482 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21483 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21484
21485 Set_Ekind (T, E_Signed_Integer_Subtype);
21486 Set_Etype (T, Implicit_Base);
21487 Set_Size_Info (T, Implicit_Base);
21488 Inherit_Rep_Item_Chain (T, Implicit_Base);
21489 Set_Scalar_Range (T, Def);
21490 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21491 Set_Is_Constrained (T);
21492 end Signed_Integer_Type_Declaration;
21493
21494 end Sem_Ch3;