checks.adb: Fix typo.
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch12; use Sem_Ch12;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Eval; use Sem_Eval;
68 with Sem_Mech; use Sem_Mech;
69 with Sem_Prag; use Sem_Prag;
70 with Sem_Res; use Sem_Res;
71 with Sem_Smem; use Sem_Smem;
72 with Sem_Type; use Sem_Type;
73 with Sem_Util; use Sem_Util;
74 with Sem_Warn; use Sem_Warn;
75 with Stand; use Stand;
76 with Sinfo; use Sinfo;
77 with Sinput; use Sinput;
78 with Snames; use Snames;
79 with Targparm; use Targparm;
80 with Tbuild; use Tbuild;
81 with Ttypes; use Ttypes;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
84
85 package body Sem_Ch3 is
86
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
90
91 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
92 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
93 -- abstract interface types implemented by a record type or a derived
94 -- record type.
95
96 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
97 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
98 -- if they appeared at the end of the declarative region. The pragmas to be
99 -- considered are:
100 -- Async_Readers
101 -- Async_Writers
102 -- Effective_Reads
103 -- Effective_Writes
104 -- Part_Of
105
106 procedure Build_Derived_Type
107 (N : Node_Id;
108 Parent_Type : Entity_Id;
109 Derived_Type : Entity_Id;
110 Is_Completion : Boolean;
111 Derive_Subps : Boolean := True);
112 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
113 -- the N_Full_Type_Declaration node containing the derived type definition.
114 -- Parent_Type is the entity for the parent type in the derived type
115 -- definition and Derived_Type the actual derived type. Is_Completion must
116 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
117 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
118 -- completion of a private type declaration. If Is_Completion is set to
119 -- True, N is the completion of a private type declaration and Derived_Type
120 -- is different from the defining identifier inside N (i.e. Derived_Type /=
121 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
122 -- subprograms should be derived. The only case where this parameter is
123 -- False is when Build_Derived_Type is recursively called to process an
124 -- implicit derived full type for a type derived from a private type (in
125 -- that case the subprograms must only be derived for the private view of
126 -- the type).
127 --
128 -- ??? These flags need a bit of re-examination and re-documentation:
129 -- ??? are they both necessary (both seem related to the recursion)?
130
131 procedure Build_Derived_Access_Type
132 (N : Node_Id;
133 Parent_Type : Entity_Id;
134 Derived_Type : Entity_Id);
135 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
136 -- create an implicit base if the parent type is constrained or if the
137 -- subtype indication has a constraint.
138
139 procedure Build_Derived_Array_Type
140 (N : Node_Id;
141 Parent_Type : Entity_Id;
142 Derived_Type : Entity_Id);
143 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
144 -- create an implicit base if the parent type is constrained or if the
145 -- subtype indication has a constraint.
146
147 procedure Build_Derived_Concurrent_Type
148 (N : Node_Id;
149 Parent_Type : Entity_Id;
150 Derived_Type : Entity_Id);
151 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
152 -- protected type, inherit entries and protected subprograms, check
153 -- legality of discriminant constraints if any.
154
155 procedure Build_Derived_Enumeration_Type
156 (N : Node_Id;
157 Parent_Type : Entity_Id;
158 Derived_Type : Entity_Id);
159 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
160 -- type, we must create a new list of literals. Types derived from
161 -- Character and [Wide_]Wide_Character are special-cased.
162
163 procedure Build_Derived_Numeric_Type
164 (N : Node_Id;
165 Parent_Type : Entity_Id;
166 Derived_Type : Entity_Id);
167 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
168 -- an anonymous base type, and propagate constraint to subtype if needed.
169
170 procedure Build_Derived_Private_Type
171 (N : Node_Id;
172 Parent_Type : Entity_Id;
173 Derived_Type : Entity_Id;
174 Is_Completion : Boolean;
175 Derive_Subps : Boolean := True);
176 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
177 -- because the parent may or may not have a completion, and the derivation
178 -- may itself be a completion.
179
180 procedure Build_Derived_Record_Type
181 (N : Node_Id;
182 Parent_Type : Entity_Id;
183 Derived_Type : Entity_Id;
184 Derive_Subps : Boolean := True);
185 -- Subsidiary procedure used for tagged and untagged record types
186 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
187 -- All parameters are as in Build_Derived_Type except that N, in
188 -- addition to being an N_Full_Type_Declaration node, can also be an
189 -- N_Private_Extension_Declaration node. See the definition of this routine
190 -- for much more info. Derive_Subps indicates whether subprograms should be
191 -- derived from the parent type. The only case where Derive_Subps is False
192 -- is for an implicit derived full type for a type derived from a private
193 -- type (see Build_Derived_Type).
194
195 procedure Build_Discriminal (Discrim : Entity_Id);
196 -- Create the discriminal corresponding to discriminant Discrim, that is
197 -- the parameter corresponding to Discrim to be used in initialization
198 -- procedures for the type where Discrim is a discriminant. Discriminals
199 -- are not used during semantic analysis, and are not fully defined
200 -- entities until expansion. Thus they are not given a scope until
201 -- initialization procedures are built.
202
203 function Build_Discriminant_Constraints
204 (T : Entity_Id;
205 Def : Node_Id;
206 Derived_Def : Boolean := False) return Elist_Id;
207 -- Validate discriminant constraints and return the list of the constraints
208 -- in order of discriminant declarations, where T is the discriminated
209 -- unconstrained type. Def is the N_Subtype_Indication node where the
210 -- discriminants constraints for T are specified. Derived_Def is True
211 -- when building the discriminant constraints in a derived type definition
212 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
213 -- type and Def is the constraint "(xxx)" on T and this routine sets the
214 -- Corresponding_Discriminant field of the discriminants in the derived
215 -- type D to point to the corresponding discriminants in the parent type T.
216
217 procedure Build_Discriminated_Subtype
218 (T : Entity_Id;
219 Def_Id : Entity_Id;
220 Elist : Elist_Id;
221 Related_Nod : Node_Id;
222 For_Access : Boolean := False);
223 -- Subsidiary procedure to Constrain_Discriminated_Type and to
224 -- Process_Incomplete_Dependents. Given
225 --
226 -- T (a possibly discriminated base type)
227 -- Def_Id (a very partially built subtype for T),
228 --
229 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 --
231 -- The Elist is the list of discriminant constraints if any (it is set
232 -- to No_Elist if T is not a discriminated type, and to an empty list if
233 -- T has discriminants but there are no discriminant constraints). The
234 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
235 -- The For_Access says whether or not this subtype is really constraining
236 -- an access type. That is its sole purpose is the designated type of an
237 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
238 -- is built to avoid freezing T when the access subtype is frozen.
239
240 function Build_Scalar_Bound
241 (Bound : Node_Id;
242 Par_T : Entity_Id;
243 Der_T : Entity_Id) return Node_Id;
244 -- The bounds of a derived scalar type are conversions of the bounds of
245 -- the parent type. Optimize the representation if the bounds are literals.
246 -- Needs a more complete spec--what are the parameters exactly, and what
247 -- exactly is the returned value, and how is Bound affected???
248
249 procedure Build_Underlying_Full_View
250 (N : Node_Id;
251 Typ : Entity_Id;
252 Par : Entity_Id);
253 -- If the completion of a private type is itself derived from a private
254 -- type, or if the full view of a private subtype is itself private, the
255 -- back-end has no way to compute the actual size of this type. We build
256 -- an internal subtype declaration of the proper parent type to convey
257 -- this information. This extra mechanism is needed because a full
258 -- view cannot itself have a full view (it would get clobbered during
259 -- view exchanges).
260
261 procedure Check_Access_Discriminant_Requires_Limited
262 (D : Node_Id;
263 Loc : Node_Id);
264 -- Check the restriction that the type to which an access discriminant
265 -- belongs must be a concurrent type or a descendant of a type with
266 -- the reserved word 'limited' in its declaration.
267
268 procedure Check_Anonymous_Access_Components
269 (Typ_Decl : Node_Id;
270 Typ : Entity_Id;
271 Prev : Entity_Id;
272 Comp_List : Node_Id);
273 -- Ada 2005 AI-382: an access component in a record definition can refer to
274 -- the enclosing record, in which case it denotes the type itself, and not
275 -- the current instance of the type. We create an anonymous access type for
276 -- the component, and flag it as an access to a component, so accessibility
277 -- checks are properly performed on it. The declaration of the access type
278 -- is placed ahead of that of the record to prevent order-of-elaboration
279 -- circularity issues in Gigi. We create an incomplete type for the record
280 -- declaration, which is the designated type of the anonymous access.
281
282 procedure Check_Delta_Expression (E : Node_Id);
283 -- Check that the expression represented by E is suitable for use as a
284 -- delta expression, i.e. it is of real type and is static.
285
286 procedure Check_Digits_Expression (E : Node_Id);
287 -- Check that the expression represented by E is suitable for use as a
288 -- digits expression, i.e. it is of integer type, positive and static.
289
290 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
291 -- Validate the initialization of an object declaration. T is the required
292 -- type, and Exp is the initialization expression.
293
294 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
295 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296
297 procedure Check_Or_Process_Discriminants
298 (N : Node_Id;
299 T : Entity_Id;
300 Prev : Entity_Id := Empty);
301 -- If N is the full declaration of the completion T of an incomplete or
302 -- private type, check its discriminants (which are already known to be
303 -- conformant with those of the partial view, see Find_Type_Name),
304 -- otherwise process them. Prev is the entity of the partial declaration,
305 -- if any.
306
307 procedure Check_Real_Bound (Bound : Node_Id);
308 -- Check given bound for being of real type and static. If not, post an
309 -- appropriate message, and rewrite the bound with the real literal zero.
310
311 procedure Constant_Redeclaration
312 (Id : Entity_Id;
313 N : Node_Id;
314 T : out Entity_Id);
315 -- Various checks on legality of full declaration of deferred constant.
316 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
317 -- node. The caller has not yet set any attributes of this entity.
318
319 function Contain_Interface
320 (Iface : Entity_Id;
321 Ifaces : Elist_Id) return Boolean;
322 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323
324 procedure Convert_Scalar_Bounds
325 (N : Node_Id;
326 Parent_Type : Entity_Id;
327 Derived_Type : Entity_Id;
328 Loc : Source_Ptr);
329 -- For derived scalar types, convert the bounds in the type definition to
330 -- the derived type, and complete their analysis. Given a constraint of the
331 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
332 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
333 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
334 -- subtype are conversions of those bounds to the derived_type, so that
335 -- their typing is consistent.
336
337 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
338 -- Copies attributes from array base type T2 to array base type T1. Copies
339 -- only attributes that apply to base types, but not subtypes.
340
341 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
342 -- Copies attributes from array subtype T2 to array subtype T1. Copies
343 -- attributes that apply to both subtypes and base types.
344
345 procedure Create_Constrained_Components
346 (Subt : Entity_Id;
347 Decl_Node : Node_Id;
348 Typ : Entity_Id;
349 Constraints : Elist_Id);
350 -- Build the list of entities for a constrained discriminated record
351 -- subtype. If a component depends on a discriminant, replace its subtype
352 -- using the discriminant values in the discriminant constraint. Subt
353 -- is the defining identifier for the subtype whose list of constrained
354 -- entities we will create. Decl_Node is the type declaration node where
355 -- we will attach all the itypes created. Typ is the base discriminated
356 -- type for the subtype Subt. Constraints is the list of discriminant
357 -- constraints for Typ.
358
359 function Constrain_Component_Type
360 (Comp : Entity_Id;
361 Constrained_Typ : Entity_Id;
362 Related_Node : Node_Id;
363 Typ : Entity_Id;
364 Constraints : Elist_Id) return Entity_Id;
365 -- Given a discriminated base type Typ, a list of discriminant constraints,
366 -- Constraints, for Typ and a component Comp of Typ, create and return the
367 -- type corresponding to Etype (Comp) where all discriminant references
368 -- are replaced with the corresponding constraint. If Etype (Comp) contains
369 -- no discriminant references then it is returned as-is. Constrained_Typ
370 -- is the final constrained subtype to which the constrained component
371 -- belongs. Related_Node is the node where we attach all created itypes.
372
373 procedure Constrain_Access
374 (Def_Id : in out Entity_Id;
375 S : Node_Id;
376 Related_Nod : Node_Id);
377 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
378 -- an anonymous type created for a subtype indication. In that case it is
379 -- created in the procedure and attached to Related_Nod.
380
381 procedure Constrain_Array
382 (Def_Id : in out Entity_Id;
383 SI : Node_Id;
384 Related_Nod : Node_Id;
385 Related_Id : Entity_Id;
386 Suffix : Character);
387 -- Apply a list of index constraints to an unconstrained array type. The
388 -- first parameter is the entity for the resulting subtype. A value of
389 -- Empty for Def_Id indicates that an implicit type must be created, but
390 -- creation is delayed (and must be done by this procedure) because other
391 -- subsidiary implicit types must be created first (which is why Def_Id
392 -- is an in/out parameter). The second parameter is a subtype indication
393 -- node for the constrained array to be created (e.g. something of the
394 -- form string (1 .. 10)). Related_Nod gives the place where this type
395 -- has to be inserted in the tree. The Related_Id and Suffix parameters
396 -- are used to build the associated Implicit type name.
397
398 procedure Constrain_Concurrent
399 (Def_Id : in out Entity_Id;
400 SI : Node_Id;
401 Related_Nod : Node_Id;
402 Related_Id : Entity_Id;
403 Suffix : Character);
404 -- Apply list of discriminant constraints to an unconstrained concurrent
405 -- type.
406 --
407 -- SI is the N_Subtype_Indication node containing the constraint and
408 -- the unconstrained type to constrain.
409 --
410 -- Def_Id is the entity for the resulting constrained subtype. A value
411 -- of Empty for Def_Id indicates that an implicit type must be created,
412 -- but creation is delayed (and must be done by this procedure) because
413 -- other subsidiary implicit types must be created first (which is why
414 -- Def_Id is an in/out parameter).
415 --
416 -- Related_Nod gives the place where this type has to be inserted
417 -- in the tree.
418 --
419 -- The last two arguments are used to create its external name if needed.
420
421 function Constrain_Corresponding_Record
422 (Prot_Subt : Entity_Id;
423 Corr_Rec : Entity_Id;
424 Related_Nod : Node_Id) return Entity_Id;
425 -- When constraining a protected type or task type with discriminants,
426 -- constrain the corresponding record with the same discriminant values.
427
428 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
429 -- Constrain a decimal fixed point type with a digits constraint and/or a
430 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431
432 procedure Constrain_Discriminated_Type
433 (Def_Id : Entity_Id;
434 S : Node_Id;
435 Related_Nod : Node_Id;
436 For_Access : Boolean := False);
437 -- Process discriminant constraints of composite type. Verify that values
438 -- have been provided for all discriminants, that the original type is
439 -- unconstrained, and that the types of the supplied expressions match
440 -- the discriminant types. The first three parameters are like in routine
441 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
442 -- of For_Access.
443
444 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
445 -- Constrain an enumeration type with a range constraint. This is identical
446 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447
448 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
449 -- Constrain a floating point type with either a digits constraint
450 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451
452 procedure Constrain_Index
453 (Index : Node_Id;
454 S : Node_Id;
455 Related_Nod : Node_Id;
456 Related_Id : Entity_Id;
457 Suffix : Character;
458 Suffix_Index : Nat);
459 -- Process an index constraint S in a constrained array declaration. The
460 -- constraint can be a subtype name, or a range with or without an explicit
461 -- subtype mark. The index is the corresponding index of the unconstrained
462 -- array. The Related_Id and Suffix parameters are used to build the
463 -- associated Implicit type name.
464
465 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
466 -- Build subtype of a signed or modular integer type
467
468 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
469 -- Constrain an ordinary fixed point type with a range constraint, and
470 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471
472 procedure Copy_And_Swap (Priv, Full : Entity_Id);
473 -- Copy the Priv entity into the entity of its full declaration then swap
474 -- the two entities in such a manner that the former private type is now
475 -- seen as a full type.
476
477 procedure Decimal_Fixed_Point_Type_Declaration
478 (T : Entity_Id;
479 Def : Node_Id);
480 -- Create a new decimal fixed point type, and apply the constraint to
481 -- obtain a subtype of this new type.
482
483 procedure Complete_Private_Subtype
484 (Priv : Entity_Id;
485 Full : Entity_Id;
486 Full_Base : Entity_Id;
487 Related_Nod : Node_Id);
488 -- Complete the implicit full view of a private subtype by setting the
489 -- appropriate semantic fields. If the full view of the parent is a record
490 -- type, build constrained components of subtype.
491
492 procedure Derive_Progenitor_Subprograms
493 (Parent_Type : Entity_Id;
494 Tagged_Type : Entity_Id);
495 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
496 -- operations of progenitors of Tagged_Type, and replace the subsidiary
497 -- subtypes with Tagged_Type, to build the specs of the inherited interface
498 -- primitives. The derived primitives are aliased to those of the
499 -- interface. This routine takes care also of transferring to the full view
500 -- subprograms associated with the partial view of Tagged_Type that cover
501 -- interface primitives.
502
503 procedure Derived_Standard_Character
504 (N : Node_Id;
505 Parent_Type : Entity_Id;
506 Derived_Type : Entity_Id);
507 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
508 -- derivations from types Standard.Character and Standard.Wide_Character.
509
510 procedure Derived_Type_Declaration
511 (T : Entity_Id;
512 N : Node_Id;
513 Is_Completion : Boolean);
514 -- Process a derived type declaration. Build_Derived_Type is invoked
515 -- to process the actual derived type definition. Parameters N and
516 -- Is_Completion have the same meaning as in Build_Derived_Type.
517 -- T is the N_Defining_Identifier for the entity defined in the
518 -- N_Full_Type_Declaration node N, that is T is the derived type.
519
520 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
521 -- Insert each literal in symbol table, as an overloadable identifier. Each
522 -- enumeration type is mapped into a sequence of integers, and each literal
523 -- is defined as a constant with integer value. If any of the literals are
524 -- character literals, the type is a character type, which means that
525 -- strings are legal aggregates for arrays of components of the type.
526
527 function Expand_To_Stored_Constraint
528 (Typ : Entity_Id;
529 Constraint : Elist_Id) return Elist_Id;
530 -- Given a constraint (i.e. a list of expressions) on the discriminants of
531 -- Typ, expand it into a constraint on the stored discriminants and return
532 -- the new list of expressions constraining the stored discriminants.
533
534 function Find_Type_Of_Object
535 (Obj_Def : Node_Id;
536 Related_Nod : Node_Id) return Entity_Id;
537 -- Get type entity for object referenced by Obj_Def, attaching the implicit
538 -- types generated to Related_Nod.
539
540 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
541 -- Create a new float and apply the constraint to obtain subtype of it
542
543 function Has_Range_Constraint (N : Node_Id) return Boolean;
544 -- Given an N_Subtype_Indication node N, return True if a range constraint
545 -- is present, either directly, or as part of a digits or delta constraint.
546 -- In addition, a digits constraint in the decimal case returns True, since
547 -- it establishes a default range if no explicit range is present.
548
549 function Inherit_Components
550 (N : Node_Id;
551 Parent_Base : Entity_Id;
552 Derived_Base : Entity_Id;
553 Is_Tagged : Boolean;
554 Inherit_Discr : Boolean;
555 Discs : Elist_Id) return Elist_Id;
556 -- Called from Build_Derived_Record_Type to inherit the components of
557 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
558 -- For more information on derived types and component inheritance please
559 -- consult the comment above the body of Build_Derived_Record_Type.
560 --
561 -- N is the original derived type declaration
562 --
563 -- Is_Tagged is set if we are dealing with tagged types
564 --
565 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
566 -- Parent_Base, otherwise no discriminants are inherited.
567 --
568 -- Discs gives the list of constraints that apply to Parent_Base in the
569 -- derived type declaration. If Discs is set to No_Elist, then we have
570 -- the following situation:
571 --
572 -- type Parent (D1..Dn : ..) is [tagged] record ...;
573 -- type Derived is new Parent [with ...];
574 --
575 -- which gets treated as
576 --
577 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 --
579 -- For untagged types the returned value is an association list. The list
580 -- starts from the association (Parent_Base => Derived_Base), and then it
581 -- contains a sequence of the associations of the form
582 --
583 -- (Old_Component => New_Component),
584 --
585 -- where Old_Component is the Entity_Id of a component in Parent_Base and
586 -- New_Component is the Entity_Id of the corresponding component in
587 -- Derived_Base. For untagged records, this association list is needed when
588 -- copying the record declaration for the derived base. In the tagged case
589 -- the value returned is irrelevant.
590
591 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
592 -- Propagate static and dynamic predicate flags from a parent to the
593 -- subtype in a subtype declaration with and without constraints.
594
595 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
596 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
597 -- Determine whether subprogram Subp is a procedure subject to pragma
598 -- Extensions_Visible with value False and has at least one controlling
599 -- parameter of mode OUT.
600
601 function Is_Valid_Constraint_Kind
602 (T_Kind : Type_Kind;
603 Constraint_Kind : Node_Kind) return Boolean;
604 -- Returns True if it is legal to apply the given kind of constraint to the
605 -- given kind of type (index constraint to an array type, for example).
606
607 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
608 -- Create new modular type. Verify that modulus is in bounds
609
610 procedure New_Concatenation_Op (Typ : Entity_Id);
611 -- Create an abbreviated declaration for an operator in order to
612 -- materialize concatenation on array types.
613
614 procedure Ordinary_Fixed_Point_Type_Declaration
615 (T : Entity_Id;
616 Def : Node_Id);
617 -- Create a new ordinary fixed point type, and apply the constraint to
618 -- obtain subtype of it.
619
620 procedure Prepare_Private_Subtype_Completion
621 (Id : Entity_Id;
622 Related_Nod : Node_Id);
623 -- Id is a subtype of some private type. Creates the full declaration
624 -- associated with Id whenever possible, i.e. when the full declaration
625 -- of the base type is already known. Records each subtype into
626 -- Private_Dependents of the base type.
627
628 procedure Process_Incomplete_Dependents
629 (N : Node_Id;
630 Full_T : Entity_Id;
631 Inc_T : Entity_Id);
632 -- Process all entities that depend on an incomplete type. There include
633 -- subtypes, subprogram types that mention the incomplete type in their
634 -- profiles, and subprogram with access parameters that designate the
635 -- incomplete type.
636
637 -- Inc_T is the defining identifier of an incomplete type declaration, its
638 -- Ekind is E_Incomplete_Type.
639 --
640 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 --
642 -- Full_T is N's defining identifier.
643 --
644 -- Subtypes of incomplete types with discriminants are completed when the
645 -- parent type is. This is simpler than private subtypes, because they can
646 -- only appear in the same scope, and there is no need to exchange views.
647 -- Similarly, access_to_subprogram types may have a parameter or a return
648 -- type that is an incomplete type, and that must be replaced with the
649 -- full type.
650 --
651 -- If the full type is tagged, subprogram with access parameters that
652 -- designated the incomplete may be primitive operations of the full type,
653 -- and have to be processed accordingly.
654
655 procedure Process_Real_Range_Specification (Def : Node_Id);
656 -- Given the type definition for a real type, this procedure processes and
657 -- checks the real range specification of this type definition if one is
658 -- present. If errors are found, error messages are posted, and the
659 -- Real_Range_Specification of Def is reset to Empty.
660
661 procedure Propagate_Default_Init_Cond_Attributes
662 (From_Typ : Entity_Id;
663 To_Typ : Entity_Id;
664 Parent_To_Derivation : Boolean := False;
665 Private_To_Full_View : Boolean := False);
666 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
667 -- all attributes related to pragma Default_Initial_Condition from From_Typ
668 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
669 -- the creation of a derived type. Flag Private_To_Full_View should be set
670 -- when processing both views of a private type.
671
672 procedure Record_Type_Declaration
673 (T : Entity_Id;
674 N : Node_Id;
675 Prev : Entity_Id);
676 -- Process a record type declaration (for both untagged and tagged
677 -- records). Parameters T and N are exactly like in procedure
678 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
679 -- for this routine. If this is the completion of an incomplete type
680 -- declaration, Prev is the entity of the incomplete declaration, used for
681 -- cross-referencing. Otherwise Prev = T.
682
683 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
684 -- This routine is used to process the actual record type definition (both
685 -- for untagged and tagged records). Def is a record type definition node.
686 -- This procedure analyzes the components in this record type definition.
687 -- Prev_T is the entity for the enclosing record type. It is provided so
688 -- that its Has_Task flag can be set if any of the component have Has_Task
689 -- set. If the declaration is the completion of an incomplete type
690 -- declaration, Prev_T is the original incomplete type, whose full view is
691 -- the record type.
692
693 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
694 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
695 -- build a copy of the declaration tree of the parent, and we create
696 -- independently the list of components for the derived type. Semantic
697 -- information uses the component entities, but record representation
698 -- clauses are validated on the declaration tree. This procedure replaces
699 -- discriminants and components in the declaration with those that have
700 -- been created by Inherit_Components.
701
702 procedure Set_Fixed_Range
703 (E : Entity_Id;
704 Loc : Source_Ptr;
705 Lo : Ureal;
706 Hi : Ureal);
707 -- Build a range node with the given bounds and set it as the Scalar_Range
708 -- of the given fixed-point type entity. Loc is the source location used
709 -- for the constructed range. See body for further details.
710
711 procedure Set_Scalar_Range_For_Subtype
712 (Def_Id : Entity_Id;
713 R : Node_Id;
714 Subt : Entity_Id);
715 -- This routine is used to set the scalar range field for a subtype given
716 -- Def_Id, the entity for the subtype, and R, the range expression for the
717 -- scalar range. Subt provides the parent subtype to be used to analyze,
718 -- resolve, and check the given range.
719
720 procedure Set_Default_SSO (T : Entity_Id);
721 -- T is the entity for an array or record being declared. This procedure
722 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
723 -- to the setting of Opt.Default_SSO.
724
725 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
726 -- Create a new signed integer entity, and apply the constraint to obtain
727 -- the required first named subtype of this type.
728
729 procedure Set_Stored_Constraint_From_Discriminant_Constraint
730 (E : Entity_Id);
731 -- E is some record type. This routine computes E's Stored_Constraint
732 -- from its Discriminant_Constraint.
733
734 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
735 -- Check that an entity in a list of progenitors is an interface,
736 -- emit error otherwise.
737
738 -----------------------
739 -- Access_Definition --
740 -----------------------
741
742 function Access_Definition
743 (Related_Nod : Node_Id;
744 N : Node_Id) return Entity_Id
745 is
746 Anon_Type : Entity_Id;
747 Anon_Scope : Entity_Id;
748 Desig_Type : Entity_Id;
749 Enclosing_Prot_Type : Entity_Id := Empty;
750
751 begin
752 Check_SPARK_05_Restriction ("access type is not allowed", N);
753
754 if Is_Entry (Current_Scope)
755 and then Is_Task_Type (Etype (Scope (Current_Scope)))
756 then
757 Error_Msg_N ("task entries cannot have access parameters", N);
758 return Empty;
759 end if;
760
761 -- Ada 2005: For an object declaration the corresponding anonymous
762 -- type is declared in the current scope.
763
764 -- If the access definition is the return type of another access to
765 -- function, scope is the current one, because it is the one of the
766 -- current type declaration, except for the pathological case below.
767
768 if Nkind_In (Related_Nod, N_Object_Declaration,
769 N_Access_Function_Definition)
770 then
771 Anon_Scope := Current_Scope;
772
773 -- A pathological case: function returning access functions that
774 -- return access functions, etc. Each anonymous access type created
775 -- is in the enclosing scope of the outermost function.
776
777 declare
778 Par : Node_Id;
779
780 begin
781 Par := Related_Nod;
782 while Nkind_In (Par, N_Access_Function_Definition,
783 N_Access_Definition)
784 loop
785 Par := Parent (Par);
786 end loop;
787
788 if Nkind (Par) = N_Function_Specification then
789 Anon_Scope := Scope (Defining_Entity (Par));
790 end if;
791 end;
792
793 -- For the anonymous function result case, retrieve the scope of the
794 -- function specification's associated entity rather than using the
795 -- current scope. The current scope will be the function itself if the
796 -- formal part is currently being analyzed, but will be the parent scope
797 -- in the case of a parameterless function, and we always want to use
798 -- the function's parent scope. Finally, if the function is a child
799 -- unit, we must traverse the tree to retrieve the proper entity.
800
801 elsif Nkind (Related_Nod) = N_Function_Specification
802 and then Nkind (Parent (N)) /= N_Parameter_Specification
803 then
804 -- If the current scope is a protected type, the anonymous access
805 -- is associated with one of the protected operations, and must
806 -- be available in the scope that encloses the protected declaration.
807 -- Otherwise the type is in the scope enclosing the subprogram.
808
809 -- If the function has formals, The return type of a subprogram
810 -- declaration is analyzed in the scope of the subprogram (see
811 -- Process_Formals) and thus the protected type, if present, is
812 -- the scope of the current function scope.
813
814 if Ekind (Current_Scope) = E_Protected_Type then
815 Enclosing_Prot_Type := Current_Scope;
816
817 elsif Ekind (Current_Scope) = E_Function
818 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
819 then
820 Enclosing_Prot_Type := Scope (Current_Scope);
821 end if;
822
823 if Present (Enclosing_Prot_Type) then
824 Anon_Scope := Scope (Enclosing_Prot_Type);
825
826 else
827 Anon_Scope := Scope (Defining_Entity (Related_Nod));
828 end if;
829
830 -- For an access type definition, if the current scope is a child
831 -- unit it is the scope of the type.
832
833 elsif Is_Compilation_Unit (Current_Scope) then
834 Anon_Scope := Current_Scope;
835
836 -- For access formals, access components, and access discriminants, the
837 -- scope is that of the enclosing declaration,
838
839 else
840 Anon_Scope := Scope (Current_Scope);
841 end if;
842
843 Anon_Type :=
844 Create_Itype
845 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
846
847 if All_Present (N)
848 and then Ada_Version >= Ada_2005
849 then
850 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
851 end if;
852
853 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
854 -- the corresponding semantic routine
855
856 if Present (Access_To_Subprogram_Definition (N)) then
857
858 -- Compiler runtime units are compiled in Ada 2005 mode when building
859 -- the runtime library but must also be compilable in Ada 95 mode
860 -- (when bootstrapping the compiler).
861
862 Check_Compiler_Unit ("anonymous access to subprogram", N);
863
864 Access_Subprogram_Declaration
865 (T_Name => Anon_Type,
866 T_Def => Access_To_Subprogram_Definition (N));
867
868 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
869 Set_Ekind
870 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
871 else
872 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
873 end if;
874
875 Set_Can_Use_Internal_Rep
876 (Anon_Type, not Always_Compatible_Rep_On_Target);
877
878 -- If the anonymous access is associated with a protected operation,
879 -- create a reference to it after the enclosing protected definition
880 -- because the itype will be used in the subsequent bodies.
881
882 -- If the anonymous access itself is protected, a full type
883 -- declaratiton will be created for it, so that the equivalent
884 -- record type can be constructed. For further details, see
885 -- Replace_Anonymous_Access_To_Protected-Subprogram.
886
887 if Ekind (Current_Scope) = E_Protected_Type
888 and then not Protected_Present (Access_To_Subprogram_Definition (N))
889 then
890 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
891 end if;
892
893 return Anon_Type;
894 end if;
895
896 Find_Type (Subtype_Mark (N));
897 Desig_Type := Entity (Subtype_Mark (N));
898
899 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
900 Set_Etype (Anon_Type, Anon_Type);
901
902 -- Make sure the anonymous access type has size and alignment fields
903 -- set, as required by gigi. This is necessary in the case of the
904 -- Task_Body_Procedure.
905
906 if not Has_Private_Component (Desig_Type) then
907 Layout_Type (Anon_Type);
908 end if;
909
910 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
911 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
912 -- the null value is allowed. In Ada 95 the null value is never allowed.
913
914 if Ada_Version >= Ada_2005 then
915 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
916 else
917 Set_Can_Never_Be_Null (Anon_Type, True);
918 end if;
919
920 -- The anonymous access type is as public as the discriminated type or
921 -- subprogram that defines it. It is imported (for back-end purposes)
922 -- if the designated type is.
923
924 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
925
926 -- Ada 2005 (AI-231): Propagate the access-constant attribute
927
928 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
929
930 -- The context is either a subprogram declaration, object declaration,
931 -- or an access discriminant, in a private or a full type declaration.
932 -- In the case of a subprogram, if the designated type is incomplete,
933 -- the operation will be a primitive operation of the full type, to be
934 -- updated subsequently. If the type is imported through a limited_with
935 -- clause, the subprogram is not a primitive operation of the type
936 -- (which is declared elsewhere in some other scope).
937
938 if Ekind (Desig_Type) = E_Incomplete_Type
939 and then not From_Limited_With (Desig_Type)
940 and then Is_Overloadable (Current_Scope)
941 then
942 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
943 Set_Has_Delayed_Freeze (Current_Scope);
944 end if;
945
946 -- Ada 2005: If the designated type is an interface that may contain
947 -- tasks, create a Master entity for the declaration. This must be done
948 -- before expansion of the full declaration, because the declaration may
949 -- include an expression that is an allocator, whose expansion needs the
950 -- proper Master for the created tasks.
951
952 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
953 then
954 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
955 then
956 Build_Class_Wide_Master (Anon_Type);
957
958 -- Similarly, if the type is an anonymous access that designates
959 -- tasks, create a master entity for it in the current context.
960
961 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
962 then
963 Build_Master_Entity (Defining_Identifier (Related_Nod));
964 Build_Master_Renaming (Anon_Type);
965 end if;
966 end if;
967
968 -- For a private component of a protected type, it is imperative that
969 -- the back-end elaborate the type immediately after the protected
970 -- declaration, because this type will be used in the declarations
971 -- created for the component within each protected body, so we must
972 -- create an itype reference for it now.
973
974 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
975 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
976
977 -- Similarly, if the access definition is the return result of a
978 -- function, create an itype reference for it because it will be used
979 -- within the function body. For a regular function that is not a
980 -- compilation unit, insert reference after the declaration. For a
981 -- protected operation, insert it after the enclosing protected type
982 -- declaration. In either case, do not create a reference for a type
983 -- obtained through a limited_with clause, because this would introduce
984 -- semantic dependencies.
985
986 -- Similarly, do not create a reference if the designated type is a
987 -- generic formal, because no use of it will reach the backend.
988
989 elsif Nkind (Related_Nod) = N_Function_Specification
990 and then not From_Limited_With (Desig_Type)
991 and then not Is_Generic_Type (Desig_Type)
992 then
993 if Present (Enclosing_Prot_Type) then
994 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
995
996 elsif Is_List_Member (Parent (Related_Nod))
997 and then Nkind (Parent (N)) /= N_Parameter_Specification
998 then
999 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
1000 end if;
1001
1002 -- Finally, create an itype reference for an object declaration of an
1003 -- anonymous access type. This is strictly necessary only for deferred
1004 -- constants, but in any case will avoid out-of-scope problems in the
1005 -- back-end.
1006
1007 elsif Nkind (Related_Nod) = N_Object_Declaration then
1008 Build_Itype_Reference (Anon_Type, Related_Nod);
1009 end if;
1010
1011 return Anon_Type;
1012 end Access_Definition;
1013
1014 -----------------------------------
1015 -- Access_Subprogram_Declaration --
1016 -----------------------------------
1017
1018 procedure Access_Subprogram_Declaration
1019 (T_Name : Entity_Id;
1020 T_Def : Node_Id)
1021 is
1022 procedure Check_For_Premature_Usage (Def : Node_Id);
1023 -- Check that type T_Name is not used, directly or recursively, as a
1024 -- parameter or a return type in Def. Def is either a subtype, an
1025 -- access_definition, or an access_to_subprogram_definition.
1026
1027 -------------------------------
1028 -- Check_For_Premature_Usage --
1029 -------------------------------
1030
1031 procedure Check_For_Premature_Usage (Def : Node_Id) is
1032 Param : Node_Id;
1033
1034 begin
1035 -- Check for a subtype mark
1036
1037 if Nkind (Def) in N_Has_Etype then
1038 if Etype (Def) = T_Name then
1039 Error_Msg_N
1040 ("type& cannot be used before end of its declaration", Def);
1041 end if;
1042
1043 -- If this is not a subtype, then this is an access_definition
1044
1045 elsif Nkind (Def) = N_Access_Definition then
1046 if Present (Access_To_Subprogram_Definition (Def)) then
1047 Check_For_Premature_Usage
1048 (Access_To_Subprogram_Definition (Def));
1049 else
1050 Check_For_Premature_Usage (Subtype_Mark (Def));
1051 end if;
1052
1053 -- The only cases left are N_Access_Function_Definition and
1054 -- N_Access_Procedure_Definition.
1055
1056 else
1057 if Present (Parameter_Specifications (Def)) then
1058 Param := First (Parameter_Specifications (Def));
1059 while Present (Param) loop
1060 Check_For_Premature_Usage (Parameter_Type (Param));
1061 Param := Next (Param);
1062 end loop;
1063 end if;
1064
1065 if Nkind (Def) = N_Access_Function_Definition then
1066 Check_For_Premature_Usage (Result_Definition (Def));
1067 end if;
1068 end if;
1069 end Check_For_Premature_Usage;
1070
1071 -- Local variables
1072
1073 Formals : constant List_Id := Parameter_Specifications (T_Def);
1074 Formal : Entity_Id;
1075 D_Ityp : Node_Id;
1076 Desig_Type : constant Entity_Id :=
1077 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1078
1079 -- Start of processing for Access_Subprogram_Declaration
1080
1081 begin
1082 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1083
1084 -- Associate the Itype node with the inner full-type declaration or
1085 -- subprogram spec or entry body. This is required to handle nested
1086 -- anonymous declarations. For example:
1087
1088 -- procedure P
1089 -- (X : access procedure
1090 -- (Y : access procedure
1091 -- (Z : access T)))
1092
1093 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1094 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Private_Type_Declaration,
1096 N_Private_Extension_Declaration,
1097 N_Procedure_Specification,
1098 N_Function_Specification,
1099 N_Entry_Body)
1100
1101 or else
1102 Nkind_In (D_Ityp, N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Object_Declaration,
1105 N_Formal_Type_Declaration,
1106 N_Task_Type_Declaration,
1107 N_Protected_Type_Declaration))
1108 loop
1109 D_Ityp := Parent (D_Ityp);
1110 pragma Assert (D_Ityp /= Empty);
1111 end loop;
1112
1113 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1114
1115 if Nkind_In (D_Ityp, N_Procedure_Specification,
1116 N_Function_Specification)
1117 then
1118 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1119
1120 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1121 N_Object_Declaration,
1122 N_Object_Renaming_Declaration,
1123 N_Formal_Type_Declaration)
1124 then
1125 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1126 end if;
1127
1128 if Nkind (T_Def) = N_Access_Function_Definition then
1129 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1130 declare
1131 Acc : constant Node_Id := Result_Definition (T_Def);
1132
1133 begin
1134 if Present (Access_To_Subprogram_Definition (Acc))
1135 and then
1136 Protected_Present (Access_To_Subprogram_Definition (Acc))
1137 then
1138 Set_Etype
1139 (Desig_Type,
1140 Replace_Anonymous_Access_To_Protected_Subprogram
1141 (T_Def));
1142
1143 else
1144 Set_Etype
1145 (Desig_Type,
1146 Access_Definition (T_Def, Result_Definition (T_Def)));
1147 end if;
1148 end;
1149
1150 else
1151 Analyze (Result_Definition (T_Def));
1152
1153 declare
1154 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1155
1156 begin
1157 -- If a null exclusion is imposed on the result type, then
1158 -- create a null-excluding itype (an access subtype) and use
1159 -- it as the function's Etype.
1160
1161 if Is_Access_Type (Typ)
1162 and then Null_Exclusion_In_Return_Present (T_Def)
1163 then
1164 Set_Etype (Desig_Type,
1165 Create_Null_Excluding_Itype
1166 (T => Typ,
1167 Related_Nod => T_Def,
1168 Scope_Id => Current_Scope));
1169
1170 else
1171 if From_Limited_With (Typ) then
1172
1173 -- AI05-151: Incomplete types are allowed in all basic
1174 -- declarations, including access to subprograms.
1175
1176 if Ada_Version >= Ada_2012 then
1177 null;
1178
1179 else
1180 Error_Msg_NE
1181 ("illegal use of incomplete type&",
1182 Result_Definition (T_Def), Typ);
1183 end if;
1184
1185 elsif Ekind (Current_Scope) = E_Package
1186 and then In_Private_Part (Current_Scope)
1187 then
1188 if Ekind (Typ) = E_Incomplete_Type then
1189 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1190
1191 elsif Is_Class_Wide_Type (Typ)
1192 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1193 then
1194 Append_Elmt
1195 (Desig_Type, Private_Dependents (Etype (Typ)));
1196 end if;
1197 end if;
1198
1199 Set_Etype (Desig_Type, Typ);
1200 end if;
1201 end;
1202 end if;
1203
1204 if not (Is_Type (Etype (Desig_Type))) then
1205 Error_Msg_N
1206 ("expect type in function specification",
1207 Result_Definition (T_Def));
1208 end if;
1209
1210 else
1211 Set_Etype (Desig_Type, Standard_Void_Type);
1212 end if;
1213
1214 if Present (Formals) then
1215 Push_Scope (Desig_Type);
1216
1217 -- Some special tests here. These special tests can be removed
1218 -- if and when Itypes always have proper parent pointers to their
1219 -- declarations???
1220
1221 -- Special test 1) Link defining_identifier of formals. Required by
1222 -- First_Formal to provide its functionality.
1223
1224 declare
1225 F : Node_Id;
1226
1227 begin
1228 F := First (Formals);
1229
1230 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1231 -- when it is part of an unconstrained type and subtype expansion
1232 -- is disabled. To avoid back-end problems with shared profiles,
1233 -- use previous subprogram type as the designated type, and then
1234 -- remove scope added above.
1235
1236 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1237 then
1238 Set_Etype (T_Name, T_Name);
1239 Init_Size_Align (T_Name);
1240 Set_Directly_Designated_Type (T_Name,
1241 Scope (Defining_Identifier (F)));
1242 End_Scope;
1243 return;
1244 end if;
1245
1246 while Present (F) loop
1247 if No (Parent (Defining_Identifier (F))) then
1248 Set_Parent (Defining_Identifier (F), F);
1249 end if;
1250
1251 Next (F);
1252 end loop;
1253 end;
1254
1255 Process_Formals (Formals, Parent (T_Def));
1256
1257 -- Special test 2) End_Scope requires that the parent pointer be set
1258 -- to something reasonable, but Itypes don't have parent pointers. So
1259 -- we set it and then unset it ???
1260
1261 Set_Parent (Desig_Type, T_Name);
1262 End_Scope;
1263 Set_Parent (Desig_Type, Empty);
1264 end if;
1265
1266 -- Check for premature usage of the type being defined
1267
1268 Check_For_Premature_Usage (T_Def);
1269
1270 -- The return type and/or any parameter type may be incomplete. Mark the
1271 -- subprogram_type as depending on the incomplete type, so that it can
1272 -- be updated when the full type declaration is seen. This only applies
1273 -- to incomplete types declared in some enclosing scope, not to limited
1274 -- views from other packages.
1275
1276 -- Prior to Ada 2012, access to functions can only have in_parameters.
1277
1278 if Present (Formals) then
1279 Formal := First_Formal (Desig_Type);
1280 while Present (Formal) loop
1281 if Ekind (Formal) /= E_In_Parameter
1282 and then Nkind (T_Def) = N_Access_Function_Definition
1283 and then Ada_Version < Ada_2012
1284 then
1285 Error_Msg_N ("functions can only have IN parameters", Formal);
1286 end if;
1287
1288 if Ekind (Etype (Formal)) = E_Incomplete_Type
1289 and then In_Open_Scopes (Scope (Etype (Formal)))
1290 then
1291 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1292 Set_Has_Delayed_Freeze (Desig_Type);
1293 end if;
1294
1295 Next_Formal (Formal);
1296 end loop;
1297 end if;
1298
1299 -- Check whether an indirect call without actuals may be possible. This
1300 -- is used when resolving calls whose result is then indexed.
1301
1302 May_Need_Actuals (Desig_Type);
1303
1304 -- If the return type is incomplete, this is legal as long as the type
1305 -- is declared in the current scope and will be completed in it (rather
1306 -- than being part of limited view).
1307
1308 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1309 and then not Has_Delayed_Freeze (Desig_Type)
1310 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1311 then
1312 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1313 Set_Has_Delayed_Freeze (Desig_Type);
1314 end if;
1315
1316 Check_Delayed_Subprogram (Desig_Type);
1317
1318 if Protected_Present (T_Def) then
1319 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1320 Set_Convention (Desig_Type, Convention_Protected);
1321 else
1322 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1323 end if;
1324
1325 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1326
1327 Set_Etype (T_Name, T_Name);
1328 Init_Size_Align (T_Name);
1329 Set_Directly_Designated_Type (T_Name, Desig_Type);
1330
1331 Generate_Reference_To_Formals (T_Name);
1332
1333 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1334
1335 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1336
1337 Check_Restriction (No_Access_Subprograms, T_Def);
1338 end Access_Subprogram_Declaration;
1339
1340 ----------------------------
1341 -- Access_Type_Declaration --
1342 ----------------------------
1343
1344 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1345 P : constant Node_Id := Parent (Def);
1346 S : constant Node_Id := Subtype_Indication (Def);
1347
1348 Full_Desig : Entity_Id;
1349
1350 begin
1351 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1352
1353 -- Check for permissible use of incomplete type
1354
1355 if Nkind (S) /= N_Subtype_Indication then
1356 Analyze (S);
1357
1358 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1359 Set_Directly_Designated_Type (T, Entity (S));
1360
1361 -- If the designated type is a limited view, we cannot tell if
1362 -- the full view contains tasks, and there is no way to handle
1363 -- that full view in a client. We create a master entity for the
1364 -- scope, which will be used when a client determines that one
1365 -- is needed.
1366
1367 if From_Limited_With (Entity (S))
1368 and then not Is_Class_Wide_Type (Entity (S))
1369 then
1370 Set_Ekind (T, E_Access_Type);
1371 Build_Master_Entity (T);
1372 Build_Master_Renaming (T);
1373 end if;
1374
1375 else
1376 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1377 end if;
1378
1379 -- If the access definition is of the form: ACCESS NOT NULL ..
1380 -- the subtype indication must be of an access type. Create
1381 -- a null-excluding subtype of it.
1382
1383 if Null_Excluding_Subtype (Def) then
1384 if not Is_Access_Type (Entity (S)) then
1385 Error_Msg_N ("null exclusion must apply to access type", Def);
1386
1387 else
1388 declare
1389 Loc : constant Source_Ptr := Sloc (S);
1390 Decl : Node_Id;
1391 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1392
1393 begin
1394 Decl :=
1395 Make_Subtype_Declaration (Loc,
1396 Defining_Identifier => Nam,
1397 Subtype_Indication =>
1398 New_Occurrence_Of (Entity (S), Loc));
1399 Set_Null_Exclusion_Present (Decl);
1400 Insert_Before (Parent (Def), Decl);
1401 Analyze (Decl);
1402 Set_Entity (S, Nam);
1403 end;
1404 end if;
1405 end if;
1406
1407 else
1408 Set_Directly_Designated_Type (T,
1409 Process_Subtype (S, P, T, 'P'));
1410 end if;
1411
1412 if All_Present (Def) or Constant_Present (Def) then
1413 Set_Ekind (T, E_General_Access_Type);
1414 else
1415 Set_Ekind (T, E_Access_Type);
1416 end if;
1417
1418 Full_Desig := Designated_Type (T);
1419
1420 if Base_Type (Full_Desig) = T then
1421 Error_Msg_N ("access type cannot designate itself", S);
1422
1423 -- In Ada 2005, the type may have a limited view through some unit in
1424 -- its own context, allowing the following circularity that cannot be
1425 -- detected earlier.
1426
1427 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1428 then
1429 Error_Msg_N
1430 ("access type cannot designate its own classwide type", S);
1431
1432 -- Clean up indication of tagged status to prevent cascaded errors
1433
1434 Set_Is_Tagged_Type (T, False);
1435 end if;
1436
1437 Set_Etype (T, T);
1438
1439 -- If the type has appeared already in a with_type clause, it is frozen
1440 -- and the pointer size is already set. Else, initialize.
1441
1442 if not From_Limited_With (T) then
1443 Init_Size_Align (T);
1444 end if;
1445
1446 -- Note that Has_Task is always false, since the access type itself
1447 -- is not a task type. See Einfo for more description on this point.
1448 -- Exactly the same consideration applies to Has_Controlled_Component
1449 -- and to Has_Protected.
1450
1451 Set_Has_Task (T, False);
1452 Set_Has_Controlled_Component (T, False);
1453 Set_Has_Protected (T, False);
1454
1455 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1456 -- problems where an incomplete view of this entity has been previously
1457 -- established by a limited with and an overlaid version of this field
1458 -- (Stored_Constraint) was initialized for the incomplete view.
1459
1460 -- This reset is performed in most cases except where the access type
1461 -- has been created for the purposes of allocating or deallocating a
1462 -- build-in-place object. Such access types have explicitly set pools
1463 -- and finalization masters.
1464
1465 if No (Associated_Storage_Pool (T)) then
1466 Set_Finalization_Master (T, Empty);
1467 end if;
1468
1469 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1470 -- attributes
1471
1472 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1473 Set_Is_Access_Constant (T, Constant_Present (Def));
1474 end Access_Type_Declaration;
1475
1476 ----------------------------------
1477 -- Add_Interface_Tag_Components --
1478 ----------------------------------
1479
1480 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1481 Loc : constant Source_Ptr := Sloc (N);
1482 L : List_Id;
1483 Last_Tag : Node_Id;
1484
1485 procedure Add_Tag (Iface : Entity_Id);
1486 -- Add tag for one of the progenitor interfaces
1487
1488 -------------
1489 -- Add_Tag --
1490 -------------
1491
1492 procedure Add_Tag (Iface : Entity_Id) is
1493 Decl : Node_Id;
1494 Def : Node_Id;
1495 Tag : Entity_Id;
1496 Offset : Entity_Id;
1497
1498 begin
1499 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1500
1501 -- This is a reasonable place to propagate predicates
1502
1503 if Has_Predicates (Iface) then
1504 Set_Has_Predicates (Typ);
1505 end if;
1506
1507 Def :=
1508 Make_Component_Definition (Loc,
1509 Aliased_Present => True,
1510 Subtype_Indication =>
1511 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1512
1513 Tag := Make_Temporary (Loc, 'V');
1514
1515 Decl :=
1516 Make_Component_Declaration (Loc,
1517 Defining_Identifier => Tag,
1518 Component_Definition => Def);
1519
1520 Analyze_Component_Declaration (Decl);
1521
1522 Set_Analyzed (Decl);
1523 Set_Ekind (Tag, E_Component);
1524 Set_Is_Tag (Tag);
1525 Set_Is_Aliased (Tag);
1526 Set_Related_Type (Tag, Iface);
1527 Init_Component_Location (Tag);
1528
1529 pragma Assert (Is_Frozen (Iface));
1530
1531 Set_DT_Entry_Count (Tag,
1532 DT_Entry_Count (First_Entity (Iface)));
1533
1534 if No (Last_Tag) then
1535 Prepend (Decl, L);
1536 else
1537 Insert_After (Last_Tag, Decl);
1538 end if;
1539
1540 Last_Tag := Decl;
1541
1542 -- If the ancestor has discriminants we need to give special support
1543 -- to store the offset_to_top value of the secondary dispatch tables.
1544 -- For this purpose we add a supplementary component just after the
1545 -- field that contains the tag associated with each secondary DT.
1546
1547 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1548 Def :=
1549 Make_Component_Definition (Loc,
1550 Subtype_Indication =>
1551 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1552
1553 Offset := Make_Temporary (Loc, 'V');
1554
1555 Decl :=
1556 Make_Component_Declaration (Loc,
1557 Defining_Identifier => Offset,
1558 Component_Definition => Def);
1559
1560 Analyze_Component_Declaration (Decl);
1561
1562 Set_Analyzed (Decl);
1563 Set_Ekind (Offset, E_Component);
1564 Set_Is_Aliased (Offset);
1565 Set_Related_Type (Offset, Iface);
1566 Init_Component_Location (Offset);
1567 Insert_After (Last_Tag, Decl);
1568 Last_Tag := Decl;
1569 end if;
1570 end Add_Tag;
1571
1572 -- Local variables
1573
1574 Elmt : Elmt_Id;
1575 Ext : Node_Id;
1576 Comp : Node_Id;
1577
1578 -- Start of processing for Add_Interface_Tag_Components
1579
1580 begin
1581 if not RTE_Available (RE_Interface_Tag) then
1582 Error_Msg
1583 ("(Ada 2005) interface types not supported by this run-time!",
1584 Sloc (N));
1585 return;
1586 end if;
1587
1588 if Ekind (Typ) /= E_Record_Type
1589 or else (Is_Concurrent_Record_Type (Typ)
1590 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1591 or else (not Is_Concurrent_Record_Type (Typ)
1592 and then No (Interfaces (Typ))
1593 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1594 then
1595 return;
1596 end if;
1597
1598 -- Find the current last tag
1599
1600 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1601 Ext := Record_Extension_Part (Type_Definition (N));
1602 else
1603 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1604 Ext := Type_Definition (N);
1605 end if;
1606
1607 Last_Tag := Empty;
1608
1609 if not (Present (Component_List (Ext))) then
1610 Set_Null_Present (Ext, False);
1611 L := New_List;
1612 Set_Component_List (Ext,
1613 Make_Component_List (Loc,
1614 Component_Items => L,
1615 Null_Present => False));
1616 else
1617 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1618 L := Component_Items
1619 (Component_List
1620 (Record_Extension_Part
1621 (Type_Definition (N))));
1622 else
1623 L := Component_Items
1624 (Component_List
1625 (Type_Definition (N)));
1626 end if;
1627
1628 -- Find the last tag component
1629
1630 Comp := First (L);
1631 while Present (Comp) loop
1632 if Nkind (Comp) = N_Component_Declaration
1633 and then Is_Tag (Defining_Identifier (Comp))
1634 then
1635 Last_Tag := Comp;
1636 end if;
1637
1638 Next (Comp);
1639 end loop;
1640 end if;
1641
1642 -- At this point L references the list of components and Last_Tag
1643 -- references the current last tag (if any). Now we add the tag
1644 -- corresponding with all the interfaces that are not implemented
1645 -- by the parent.
1646
1647 if Present (Interfaces (Typ)) then
1648 Elmt := First_Elmt (Interfaces (Typ));
1649 while Present (Elmt) loop
1650 Add_Tag (Node (Elmt));
1651 Next_Elmt (Elmt);
1652 end loop;
1653 end if;
1654 end Add_Interface_Tag_Components;
1655
1656 -------------------------------------
1657 -- Add_Internal_Interface_Entities --
1658 -------------------------------------
1659
1660 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1661 Elmt : Elmt_Id;
1662 Iface : Entity_Id;
1663 Iface_Elmt : Elmt_Id;
1664 Iface_Prim : Entity_Id;
1665 Ifaces_List : Elist_Id;
1666 New_Subp : Entity_Id := Empty;
1667 Prim : Entity_Id;
1668 Restore_Scope : Boolean := False;
1669
1670 begin
1671 pragma Assert (Ada_Version >= Ada_2005
1672 and then Is_Record_Type (Tagged_Type)
1673 and then Is_Tagged_Type (Tagged_Type)
1674 and then Has_Interfaces (Tagged_Type)
1675 and then not Is_Interface (Tagged_Type));
1676
1677 -- Ensure that the internal entities are added to the scope of the type
1678
1679 if Scope (Tagged_Type) /= Current_Scope then
1680 Push_Scope (Scope (Tagged_Type));
1681 Restore_Scope := True;
1682 end if;
1683
1684 Collect_Interfaces (Tagged_Type, Ifaces_List);
1685
1686 Iface_Elmt := First_Elmt (Ifaces_List);
1687 while Present (Iface_Elmt) loop
1688 Iface := Node (Iface_Elmt);
1689
1690 -- Originally we excluded here from this processing interfaces that
1691 -- are parents of Tagged_Type because their primitives are located
1692 -- in the primary dispatch table (and hence no auxiliary internal
1693 -- entities are required to handle secondary dispatch tables in such
1694 -- case). However, these auxiliary entities are also required to
1695 -- handle derivations of interfaces in formals of generics (see
1696 -- Derive_Subprograms).
1697
1698 Elmt := First_Elmt (Primitive_Operations (Iface));
1699 while Present (Elmt) loop
1700 Iface_Prim := Node (Elmt);
1701
1702 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1703 Prim :=
1704 Find_Primitive_Covering_Interface
1705 (Tagged_Type => Tagged_Type,
1706 Iface_Prim => Iface_Prim);
1707
1708 if No (Prim) and then Serious_Errors_Detected > 0 then
1709 goto Continue;
1710 end if;
1711
1712 pragma Assert (Present (Prim));
1713
1714 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1715 -- differs from the name of the interface primitive then it is
1716 -- a private primitive inherited from a parent type. In such
1717 -- case, given that Tagged_Type covers the interface, the
1718 -- inherited private primitive becomes visible. For such
1719 -- purpose we add a new entity that renames the inherited
1720 -- private primitive.
1721
1722 if Chars (Prim) /= Chars (Iface_Prim) then
1723 pragma Assert (Has_Suffix (Prim, 'P'));
1724 Derive_Subprogram
1725 (New_Subp => New_Subp,
1726 Parent_Subp => Iface_Prim,
1727 Derived_Type => Tagged_Type,
1728 Parent_Type => Iface);
1729 Set_Alias (New_Subp, Prim);
1730 Set_Is_Abstract_Subprogram
1731 (New_Subp, Is_Abstract_Subprogram (Prim));
1732 end if;
1733
1734 Derive_Subprogram
1735 (New_Subp => New_Subp,
1736 Parent_Subp => Iface_Prim,
1737 Derived_Type => Tagged_Type,
1738 Parent_Type => Iface);
1739
1740 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1741 -- associated with interface types. These entities are
1742 -- only registered in the list of primitives of its
1743 -- corresponding tagged type because they are only used
1744 -- to fill the contents of the secondary dispatch tables.
1745 -- Therefore they are removed from the homonym chains.
1746
1747 Set_Is_Hidden (New_Subp);
1748 Set_Is_Internal (New_Subp);
1749 Set_Alias (New_Subp, Prim);
1750 Set_Is_Abstract_Subprogram
1751 (New_Subp, Is_Abstract_Subprogram (Prim));
1752 Set_Interface_Alias (New_Subp, Iface_Prim);
1753
1754 -- If the returned type is an interface then propagate it to
1755 -- the returned type. Needed by the thunk to generate the code
1756 -- which displaces "this" to reference the corresponding
1757 -- secondary dispatch table in the returned object.
1758
1759 if Is_Interface (Etype (Iface_Prim)) then
1760 Set_Etype (New_Subp, Etype (Iface_Prim));
1761 end if;
1762
1763 -- Internal entities associated with interface types are only
1764 -- registered in the list of primitives of the tagged type.
1765 -- They are only used to fill the contents of the secondary
1766 -- dispatch tables. Therefore they are not needed in the
1767 -- homonym chains.
1768
1769 Remove_Homonym (New_Subp);
1770
1771 -- Hidden entities associated with interfaces must have set
1772 -- the Has_Delay_Freeze attribute to ensure that, in case
1773 -- of locally defined tagged types (or compiling with static
1774 -- dispatch tables generation disabled) the corresponding
1775 -- entry of the secondary dispatch table is filled when such
1776 -- an entity is frozen. This is an expansion activity that must
1777 -- be suppressed for ASIS because it leads to gigi elaboration
1778 -- issues in annotate mode.
1779
1780 if not ASIS_Mode then
1781 Set_Has_Delayed_Freeze (New_Subp);
1782 end if;
1783 end if;
1784
1785 <<Continue>>
1786 Next_Elmt (Elmt);
1787 end loop;
1788
1789 Next_Elmt (Iface_Elmt);
1790 end loop;
1791
1792 if Restore_Scope then
1793 Pop_Scope;
1794 end if;
1795 end Add_Internal_Interface_Entities;
1796
1797 -----------------------------------
1798 -- Analyze_Component_Declaration --
1799 -----------------------------------
1800
1801 procedure Analyze_Component_Declaration (N : Node_Id) is
1802 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1803 Id : constant Entity_Id := Defining_Identifier (N);
1804 E : constant Node_Id := Expression (N);
1805 Typ : constant Node_Id :=
1806 Subtype_Indication (Component_Definition (N));
1807 T : Entity_Id;
1808 P : Entity_Id;
1809
1810 function Contains_POC (Constr : Node_Id) return Boolean;
1811 -- Determines whether a constraint uses the discriminant of a record
1812 -- type thus becoming a per-object constraint (POC).
1813
1814 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1815 -- Typ is the type of the current component, check whether this type is
1816 -- a limited type. Used to validate declaration against that of
1817 -- enclosing record.
1818
1819 ------------------
1820 -- Contains_POC --
1821 ------------------
1822
1823 function Contains_POC (Constr : Node_Id) return Boolean is
1824 begin
1825 -- Prevent cascaded errors
1826
1827 if Error_Posted (Constr) then
1828 return False;
1829 end if;
1830
1831 case Nkind (Constr) is
1832 when N_Attribute_Reference =>
1833 return Attribute_Name (Constr) = Name_Access
1834 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1835
1836 when N_Discriminant_Association =>
1837 return Denotes_Discriminant (Expression (Constr));
1838
1839 when N_Identifier =>
1840 return Denotes_Discriminant (Constr);
1841
1842 when N_Index_Or_Discriminant_Constraint =>
1843 declare
1844 IDC : Node_Id;
1845
1846 begin
1847 IDC := First (Constraints (Constr));
1848 while Present (IDC) loop
1849
1850 -- One per-object constraint is sufficient
1851
1852 if Contains_POC (IDC) then
1853 return True;
1854 end if;
1855
1856 Next (IDC);
1857 end loop;
1858
1859 return False;
1860 end;
1861
1862 when N_Range =>
1863 return Denotes_Discriminant (Low_Bound (Constr))
1864 or else
1865 Denotes_Discriminant (High_Bound (Constr));
1866
1867 when N_Range_Constraint =>
1868 return Denotes_Discriminant (Range_Expression (Constr));
1869
1870 when others =>
1871 return False;
1872
1873 end case;
1874 end Contains_POC;
1875
1876 ----------------------
1877 -- Is_Known_Limited --
1878 ----------------------
1879
1880 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1881 P : constant Entity_Id := Etype (Typ);
1882 R : constant Entity_Id := Root_Type (Typ);
1883
1884 begin
1885 if Is_Limited_Record (Typ) then
1886 return True;
1887
1888 -- If the root type is limited (and not a limited interface)
1889 -- so is the current type
1890
1891 elsif Is_Limited_Record (R)
1892 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1893 then
1894 return True;
1895
1896 -- Else the type may have a limited interface progenitor, but a
1897 -- limited record parent.
1898
1899 elsif R /= P and then Is_Limited_Record (P) then
1900 return True;
1901
1902 else
1903 return False;
1904 end if;
1905 end Is_Known_Limited;
1906
1907 -- Start of processing for Analyze_Component_Declaration
1908
1909 begin
1910 Generate_Definition (Id);
1911 Enter_Name (Id);
1912
1913 if Present (Typ) then
1914 T := Find_Type_Of_Object
1915 (Subtype_Indication (Component_Definition (N)), N);
1916
1917 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1918 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1919 end if;
1920
1921 -- Ada 2005 (AI-230): Access Definition case
1922
1923 else
1924 pragma Assert (Present
1925 (Access_Definition (Component_Definition (N))));
1926
1927 T := Access_Definition
1928 (Related_Nod => N,
1929 N => Access_Definition (Component_Definition (N)));
1930 Set_Is_Local_Anonymous_Access (T);
1931
1932 -- Ada 2005 (AI-254)
1933
1934 if Present (Access_To_Subprogram_Definition
1935 (Access_Definition (Component_Definition (N))))
1936 and then Protected_Present (Access_To_Subprogram_Definition
1937 (Access_Definition
1938 (Component_Definition (N))))
1939 then
1940 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1941 end if;
1942 end if;
1943
1944 -- If the subtype is a constrained subtype of the enclosing record,
1945 -- (which must have a partial view) the back-end does not properly
1946 -- handle the recursion. Rewrite the component declaration with an
1947 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1948 -- the tree directly because side effects have already been removed from
1949 -- discriminant constraints.
1950
1951 if Ekind (T) = E_Access_Subtype
1952 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1953 and then Comes_From_Source (T)
1954 and then Nkind (Parent (T)) = N_Subtype_Declaration
1955 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1956 then
1957 Rewrite
1958 (Subtype_Indication (Component_Definition (N)),
1959 New_Copy_Tree (Subtype_Indication (Parent (T))));
1960 T := Find_Type_Of_Object
1961 (Subtype_Indication (Component_Definition (N)), N);
1962 end if;
1963
1964 -- If the component declaration includes a default expression, then we
1965 -- check that the component is not of a limited type (RM 3.7(5)),
1966 -- and do the special preanalysis of the expression (see section on
1967 -- "Handling of Default and Per-Object Expressions" in the spec of
1968 -- package Sem).
1969
1970 if Present (E) then
1971 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1972 Preanalyze_Default_Expression (E, T);
1973 Check_Initialization (T, E);
1974
1975 if Ada_Version >= Ada_2005
1976 and then Ekind (T) = E_Anonymous_Access_Type
1977 and then Etype (E) /= Any_Type
1978 then
1979 -- Check RM 3.9.2(9): "if the expected type for an expression is
1980 -- an anonymous access-to-specific tagged type, then the object
1981 -- designated by the expression shall not be dynamically tagged
1982 -- unless it is a controlling operand in a call on a dispatching
1983 -- operation"
1984
1985 if Is_Tagged_Type (Directly_Designated_Type (T))
1986 and then
1987 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1988 and then
1989 Ekind (Directly_Designated_Type (Etype (E))) =
1990 E_Class_Wide_Type
1991 then
1992 Error_Msg_N
1993 ("access to specific tagged type required (RM 3.9.2(9))", E);
1994 end if;
1995
1996 -- (Ada 2005: AI-230): Accessibility check for anonymous
1997 -- components
1998
1999 if Type_Access_Level (Etype (E)) >
2000 Deepest_Type_Access_Level (T)
2001 then
2002 Error_Msg_N
2003 ("expression has deeper access level than component " &
2004 "(RM 3.10.2 (12.2))", E);
2005 end if;
2006
2007 -- The initialization expression is a reference to an access
2008 -- discriminant. The type of the discriminant is always deeper
2009 -- than any access type.
2010
2011 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2012 and then Is_Entity_Name (E)
2013 and then Ekind (Entity (E)) = E_In_Parameter
2014 and then Present (Discriminal_Link (Entity (E)))
2015 then
2016 Error_Msg_N
2017 ("discriminant has deeper accessibility level than target",
2018 E);
2019 end if;
2020 end if;
2021 end if;
2022
2023 -- The parent type may be a private view with unknown discriminants,
2024 -- and thus unconstrained. Regular components must be constrained.
2025
2026 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2027 if Is_Class_Wide_Type (T) then
2028 Error_Msg_N
2029 ("class-wide subtype with unknown discriminants" &
2030 " in component declaration",
2031 Subtype_Indication (Component_Definition (N)));
2032 else
2033 Error_Msg_N
2034 ("unconstrained subtype in component declaration",
2035 Subtype_Indication (Component_Definition (N)));
2036 end if;
2037
2038 -- Components cannot be abstract, except for the special case of
2039 -- the _Parent field (case of extending an abstract tagged type)
2040
2041 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2042 Error_Msg_N ("type of a component cannot be abstract", N);
2043 end if;
2044
2045 Set_Etype (Id, T);
2046 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2047
2048 -- The component declaration may have a per-object constraint, set
2049 -- the appropriate flag in the defining identifier of the subtype.
2050
2051 if Present (Subtype_Indication (Component_Definition (N))) then
2052 declare
2053 Sindic : constant Node_Id :=
2054 Subtype_Indication (Component_Definition (N));
2055 begin
2056 if Nkind (Sindic) = N_Subtype_Indication
2057 and then Present (Constraint (Sindic))
2058 and then Contains_POC (Constraint (Sindic))
2059 then
2060 Set_Has_Per_Object_Constraint (Id);
2061 end if;
2062 end;
2063 end if;
2064
2065 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2066 -- out some static checks.
2067
2068 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2069 Null_Exclusion_Static_Checks (N);
2070 end if;
2071
2072 -- If this component is private (or depends on a private type), flag the
2073 -- record type to indicate that some operations are not available.
2074
2075 P := Private_Component (T);
2076
2077 if Present (P) then
2078
2079 -- Check for circular definitions
2080
2081 if P = Any_Type then
2082 Set_Etype (Id, Any_Type);
2083
2084 -- There is a gap in the visibility of operations only if the
2085 -- component type is not defined in the scope of the record type.
2086
2087 elsif Scope (P) = Scope (Current_Scope) then
2088 null;
2089
2090 elsif Is_Limited_Type (P) then
2091 Set_Is_Limited_Composite (Current_Scope);
2092
2093 else
2094 Set_Is_Private_Composite (Current_Scope);
2095 end if;
2096 end if;
2097
2098 if P /= Any_Type
2099 and then Is_Limited_Type (T)
2100 and then Chars (Id) /= Name_uParent
2101 and then Is_Tagged_Type (Current_Scope)
2102 then
2103 if Is_Derived_Type (Current_Scope)
2104 and then not Is_Known_Limited (Current_Scope)
2105 then
2106 Error_Msg_N
2107 ("extension of nonlimited type cannot have limited components",
2108 N);
2109
2110 if Is_Interface (Root_Type (Current_Scope)) then
2111 Error_Msg_N
2112 ("\limitedness is not inherited from limited interface", N);
2113 Error_Msg_N ("\add LIMITED to type indication", N);
2114 end if;
2115
2116 Explain_Limited_Type (T, N);
2117 Set_Etype (Id, Any_Type);
2118 Set_Is_Limited_Composite (Current_Scope, False);
2119
2120 elsif not Is_Derived_Type (Current_Scope)
2121 and then not Is_Limited_Record (Current_Scope)
2122 and then not Is_Concurrent_Type (Current_Scope)
2123 then
2124 Error_Msg_N
2125 ("nonlimited tagged type cannot have limited components", N);
2126 Explain_Limited_Type (T, N);
2127 Set_Etype (Id, Any_Type);
2128 Set_Is_Limited_Composite (Current_Scope, False);
2129 end if;
2130 end if;
2131
2132 -- If the component is an unconstrained task or protected type with
2133 -- discriminants, the component and the enclosing record are limited
2134 -- and the component is constrained by its default values. Compute
2135 -- its actual subtype, else it may be allocated the maximum size by
2136 -- the backend, and possibly overflow.
2137
2138 if Is_Concurrent_Type (T)
2139 and then not Is_Constrained (T)
2140 and then Has_Discriminants (T)
2141 and then not Has_Discriminants (Current_Scope)
2142 then
2143 declare
2144 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2145
2146 begin
2147 Set_Etype (Id, Act_T);
2148
2149 -- Rewrite component definition to use the constrained subtype
2150
2151 Rewrite (Component_Definition (N),
2152 Make_Component_Definition (Loc,
2153 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2154 end;
2155 end if;
2156
2157 Set_Original_Record_Component (Id, Id);
2158
2159 if Has_Aspects (N) then
2160 Analyze_Aspect_Specifications (N, Id);
2161 end if;
2162
2163 Analyze_Dimension (N);
2164 end Analyze_Component_Declaration;
2165
2166 --------------------------
2167 -- Analyze_Declarations --
2168 --------------------------
2169
2170 procedure Analyze_Declarations (L : List_Id) is
2171 Decl : Node_Id;
2172
2173 procedure Adjust_Decl;
2174 -- Adjust Decl not to include implicit label declarations, since these
2175 -- have strange Sloc values that result in elaboration check problems.
2176 -- (They have the sloc of the label as found in the source, and that
2177 -- is ahead of the current declarative part).
2178
2179 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2180 -- Determine whether Body_Decl denotes the body of a late controlled
2181 -- primitive (either Initialize, Adjust or Finalize). If this is the
2182 -- case, add a proper spec if the body lacks one. The spec is inserted
2183 -- before Body_Decl and immedately analyzed.
2184
2185 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2186 -- Spec_Id is the entity of a package that may define abstract states.
2187 -- If the states have visible refinement, remove the visibility of each
2188 -- constituent at the end of the package body declarations.
2189
2190 -----------------
2191 -- Adjust_Decl --
2192 -----------------
2193
2194 procedure Adjust_Decl is
2195 begin
2196 while Present (Prev (Decl))
2197 and then Nkind (Decl) = N_Implicit_Label_Declaration
2198 loop
2199 Prev (Decl);
2200 end loop;
2201 end Adjust_Decl;
2202
2203 --------------------------------------
2204 -- Handle_Late_Controlled_Primitive --
2205 --------------------------------------
2206
2207 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2208 Body_Spec : constant Node_Id := Specification (Body_Decl);
2209 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2210 Loc : constant Source_Ptr := Sloc (Body_Id);
2211 Params : constant List_Id :=
2212 Parameter_Specifications (Body_Spec);
2213 Spec : Node_Id;
2214 Spec_Id : Entity_Id;
2215 Typ : Node_Id;
2216
2217 begin
2218 -- Consider only procedure bodies whose name matches one of the three
2219 -- controlled primitives.
2220
2221 if Nkind (Body_Spec) /= N_Procedure_Specification
2222 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2223 Name_Finalize,
2224 Name_Initialize)
2225 then
2226 return;
2227
2228 -- A controlled primitive must have exactly one formal which is not
2229 -- an anonymous access type.
2230
2231 elsif List_Length (Params) /= 1 then
2232 return;
2233 end if;
2234
2235 Typ := Parameter_Type (First (Params));
2236
2237 if Nkind (Typ) = N_Access_Definition then
2238 return;
2239 end if;
2240
2241 Find_Type (Typ);
2242
2243 -- The type of the formal must be derived from [Limited_]Controlled
2244
2245 if not Is_Controlled (Entity (Typ)) then
2246 return;
2247 end if;
2248
2249 -- Check whether a specification exists for this body. We do not
2250 -- analyze the spec of the body in full, because it will be analyzed
2251 -- again when the body is properly analyzed, and we cannot create
2252 -- duplicate entries in the formals chain. We look for an explicit
2253 -- specification because the body may be an overriding operation and
2254 -- an inherited spec may be present.
2255
2256 Spec_Id := Current_Entity (Body_Id);
2257
2258 while Present (Spec_Id) loop
2259 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2260 and then Scope (Spec_Id) = Current_Scope
2261 and then Present (First_Formal (Spec_Id))
2262 and then No (Next_Formal (First_Formal (Spec_Id)))
2263 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2264 and then Comes_From_Source (Spec_Id)
2265 then
2266 return;
2267 end if;
2268
2269 Spec_Id := Homonym (Spec_Id);
2270 end loop;
2271
2272 -- At this point the body is known to be a late controlled primitive.
2273 -- Generate a matching spec and insert it before the body. Note the
2274 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2275 -- tree in this case.
2276
2277 Spec := Copy_Separate_Tree (Body_Spec);
2278
2279 -- Ensure that the subprogram declaration does not inherit the null
2280 -- indicator from the body as we now have a proper spec/body pair.
2281
2282 Set_Null_Present (Spec, False);
2283
2284 Insert_Before_And_Analyze (Body_Decl,
2285 Make_Subprogram_Declaration (Loc, Specification => Spec));
2286 end Handle_Late_Controlled_Primitive;
2287
2288 --------------------------------
2289 -- Remove_Visible_Refinements --
2290 --------------------------------
2291
2292 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2293 State_Elmt : Elmt_Id;
2294 begin
2295 if Present (Abstract_States (Spec_Id)) then
2296 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2297 while Present (State_Elmt) loop
2298 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2299 Next_Elmt (State_Elmt);
2300 end loop;
2301 end if;
2302 end Remove_Visible_Refinements;
2303
2304 -- Local variables
2305
2306 Context : Node_Id := Empty;
2307 Freeze_From : Entity_Id := Empty;
2308 Next_Decl : Node_Id;
2309 Pack_Decl : Node_Id := Empty;
2310
2311 Body_Seen : Boolean := False;
2312 -- Flag set when the first body [stub] is encountered
2313
2314 -- Start of processing for Analyze_Declarations
2315
2316 begin
2317 if Restriction_Check_Required (SPARK_05) then
2318 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2319 end if;
2320
2321 Decl := First (L);
2322 while Present (Decl) loop
2323
2324 -- Package spec cannot contain a package declaration in SPARK
2325
2326 if Nkind (Decl) = N_Package_Declaration
2327 and then Nkind (Parent (L)) = N_Package_Specification
2328 then
2329 Check_SPARK_05_Restriction
2330 ("package specification cannot contain a package declaration",
2331 Decl);
2332 end if;
2333
2334 -- Complete analysis of declaration
2335
2336 Analyze (Decl);
2337 Next_Decl := Next (Decl);
2338
2339 if No (Freeze_From) then
2340 Freeze_From := First_Entity (Current_Scope);
2341 end if;
2342
2343 -- At the end of a declarative part, freeze remaining entities
2344 -- declared in it. The end of the visible declarations of package
2345 -- specification is not the end of a declarative part if private
2346 -- declarations are present. The end of a package declaration is a
2347 -- freezing point only if it a library package. A task definition or
2348 -- protected type definition is not a freeze point either. Finally,
2349 -- we do not freeze entities in generic scopes, because there is no
2350 -- code generated for them and freeze nodes will be generated for
2351 -- the instance.
2352
2353 -- The end of a package instantiation is not a freeze point, but
2354 -- for now we make it one, because the generic body is inserted
2355 -- (currently) immediately after. Generic instantiations will not
2356 -- be a freeze point once delayed freezing of bodies is implemented.
2357 -- (This is needed in any case for early instantiations ???).
2358
2359 if No (Next_Decl) then
2360 if Nkind_In (Parent (L), N_Component_List,
2361 N_Task_Definition,
2362 N_Protected_Definition)
2363 then
2364 null;
2365
2366 elsif Nkind (Parent (L)) /= N_Package_Specification then
2367 if Nkind (Parent (L)) = N_Package_Body then
2368 Freeze_From := First_Entity (Current_Scope);
2369 end if;
2370
2371 -- There may have been several freezing points previously,
2372 -- for example object declarations or subprogram bodies, but
2373 -- at the end of a declarative part we check freezing from
2374 -- the beginning, even though entities may already be frozen,
2375 -- in order to perform visibility checks on delayed aspects.
2376
2377 Adjust_Decl;
2378 Freeze_All (First_Entity (Current_Scope), Decl);
2379 Freeze_From := Last_Entity (Current_Scope);
2380
2381 elsif Scope (Current_Scope) /= Standard_Standard
2382 and then not Is_Child_Unit (Current_Scope)
2383 and then No (Generic_Parent (Parent (L)))
2384 then
2385 null;
2386
2387 elsif L /= Visible_Declarations (Parent (L))
2388 or else No (Private_Declarations (Parent (L)))
2389 or else Is_Empty_List (Private_Declarations (Parent (L)))
2390 then
2391 Adjust_Decl;
2392 Freeze_All (First_Entity (Current_Scope), Decl);
2393 Freeze_From := Last_Entity (Current_Scope);
2394 end if;
2395
2396 -- If next node is a body then freeze all types before the body.
2397 -- An exception occurs for some expander-generated bodies. If these
2398 -- are generated at places where in general language rules would not
2399 -- allow a freeze point, then we assume that the expander has
2400 -- explicitly checked that all required types are properly frozen,
2401 -- and we do not cause general freezing here. This special circuit
2402 -- is used when the encountered body is marked as having already
2403 -- been analyzed.
2404
2405 -- In all other cases (bodies that come from source, and expander
2406 -- generated bodies that have not been analyzed yet), freeze all
2407 -- types now. Note that in the latter case, the expander must take
2408 -- care to attach the bodies at a proper place in the tree so as to
2409 -- not cause unwanted freezing at that point.
2410
2411 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2412
2413 -- When a controlled type is frozen, the expander generates stream
2414 -- and controlled type support routines. If the freeze is caused
2415 -- by the stand alone body of Initialize, Adjust and Finalize, the
2416 -- expander will end up using the wrong version of these routines
2417 -- as the body has not been processed yet. To remedy this, detect
2418 -- a late controlled primitive and create a proper spec for it.
2419 -- This ensures that the primitive will override its inherited
2420 -- counterpart before the freeze takes place.
2421
2422 -- If the declaration we just processed is a body, do not attempt
2423 -- to examine Next_Decl as the late primitive idiom can only apply
2424 -- to the first encountered body.
2425
2426 -- The spec of the late primitive is not generated in ASIS mode to
2427 -- ensure a consistent list of primitives that indicates the true
2428 -- semantic structure of the program (which is not relevant when
2429 -- generating executable code.
2430
2431 -- ??? a cleaner approach may be possible and/or this solution
2432 -- could be extended to general-purpose late primitives, TBD.
2433
2434 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2435 then
2436 Body_Seen := True;
2437
2438 if Nkind (Next_Decl) = N_Subprogram_Body then
2439 Handle_Late_Controlled_Primitive (Next_Decl);
2440 end if;
2441 end if;
2442
2443 Adjust_Decl;
2444 Freeze_All (Freeze_From, Decl);
2445 Freeze_From := Last_Entity (Current_Scope);
2446 end if;
2447
2448 Decl := Next_Decl;
2449 end loop;
2450
2451 -- Analyze the contracts of packages and their bodies
2452
2453 if Present (L) then
2454 Context := Parent (L);
2455
2456 if Nkind (Context) = N_Package_Specification then
2457 Pack_Decl := Parent (Context);
2458
2459 -- When a package has private declarations, its contract must be
2460 -- analyzed at the end of the said declarations. This way both the
2461 -- analysis and freeze actions are properly synchronized in case
2462 -- of private type use within the contract.
2463
2464 if L = Private_Declarations (Context) then
2465 Analyze_Package_Contract (Defining_Entity (Context));
2466
2467 -- Build the bodies of the default initial condition procedures
2468 -- for all types subject to pragma Default_Initial_Condition.
2469 -- From a purely Ada stand point, this is a freezing activity,
2470 -- however freezing is not available under GNATprove_Mode. To
2471 -- accomodate both scenarios, the bodies are build at the end
2472 -- of private declaration analysis.
2473
2474 Build_Default_Init_Cond_Procedure_Bodies (L);
2475
2476 -- Otherwise the contract is analyzed at the end of the visible
2477 -- declarations.
2478
2479 elsif L = Visible_Declarations (Context)
2480 and then No (Private_Declarations (Context))
2481 then
2482 Analyze_Package_Contract (Defining_Entity (Context));
2483 end if;
2484
2485 elsif Nkind (Context) = N_Package_Body then
2486 Pack_Decl := Context;
2487 Analyze_Package_Body_Contract (Defining_Entity (Context));
2488 end if;
2489
2490 -- Analyze the contracts of all subprogram declarations, subprogram
2491 -- bodies and variables now due to the delayed visibility needs of
2492 -- of their aspects and pragmas. Capture global references in generic
2493 -- subprograms or bodies.
2494
2495 Decl := First (L);
2496 while Present (Decl) loop
2497 if Nkind (Decl) = N_Object_Declaration then
2498 Analyze_Object_Contract (Defining_Entity (Decl));
2499
2500 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2501 N_Generic_Subprogram_Declaration,
2502 N_Subprogram_Declaration)
2503 then
2504 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2505
2506 elsif Nkind (Decl) = N_Subprogram_Body then
2507 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2508
2509 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2510 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2511 end if;
2512
2513 -- Capture all global references in a generic subprogram or a body
2514 -- [stub] now that the contract has been analyzed.
2515
2516 if Nkind_In (Decl, N_Generic_Subprogram_Declaration,
2517 N_Subprogram_Body,
2518 N_Subprogram_Body_Stub)
2519 and then Is_Generic_Declaration_Or_Body (Decl)
2520 then
2521 Save_Global_References_In_Contract
2522 (Templ => Original_Node (Decl),
2523 Gen_Id => Corresponding_Spec_Of (Decl));
2524 end if;
2525
2526 Next (Decl);
2527 end loop;
2528
2529 -- The owner of the declarations is a package [body]
2530
2531 if Present (Pack_Decl) then
2532
2533 -- Capture all global references in a generic package or a body
2534 -- after all nested generic subprograms and bodies were subjected
2535 -- to the same processing.
2536
2537 if Is_Generic_Declaration_Or_Body (Pack_Decl) then
2538 Save_Global_References_In_Contract
2539 (Templ => Original_Node (Pack_Decl),
2540 Gen_Id => Corresponding_Spec_Of (Pack_Decl));
2541 end if;
2542
2543 -- State refinements are visible upto the end the of the package
2544 -- body declarations. Hide the state refinements from visibility
2545 -- to restore the original state conditions.
2546
2547 if Nkind (Pack_Decl) = N_Package_Body then
2548 Remove_Visible_Refinements (Corresponding_Spec (Pack_Decl));
2549 end if;
2550 end if;
2551 end if;
2552 end Analyze_Declarations;
2553
2554 -----------------------------------
2555 -- Analyze_Full_Type_Declaration --
2556 -----------------------------------
2557
2558 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2559 Def : constant Node_Id := Type_Definition (N);
2560 Def_Id : constant Entity_Id := Defining_Identifier (N);
2561 T : Entity_Id;
2562 Prev : Entity_Id;
2563
2564 Is_Remote : constant Boolean :=
2565 (Is_Remote_Types (Current_Scope)
2566 or else Is_Remote_Call_Interface (Current_Scope))
2567 and then not (In_Private_Part (Current_Scope)
2568 or else In_Package_Body (Current_Scope));
2569
2570 procedure Check_Ops_From_Incomplete_Type;
2571 -- If there is a tagged incomplete partial view of the type, traverse
2572 -- the primitives of the incomplete view and change the type of any
2573 -- controlling formals and result to indicate the full view. The
2574 -- primitives will be added to the full type's primitive operations
2575 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2576 -- is called from Process_Incomplete_Dependents).
2577
2578 ------------------------------------
2579 -- Check_Ops_From_Incomplete_Type --
2580 ------------------------------------
2581
2582 procedure Check_Ops_From_Incomplete_Type is
2583 Elmt : Elmt_Id;
2584 Formal : Entity_Id;
2585 Op : Entity_Id;
2586
2587 begin
2588 if Prev /= T
2589 and then Ekind (Prev) = E_Incomplete_Type
2590 and then Is_Tagged_Type (Prev)
2591 and then Is_Tagged_Type (T)
2592 then
2593 Elmt := First_Elmt (Primitive_Operations (Prev));
2594 while Present (Elmt) loop
2595 Op := Node (Elmt);
2596
2597 Formal := First_Formal (Op);
2598 while Present (Formal) loop
2599 if Etype (Formal) = Prev then
2600 Set_Etype (Formal, T);
2601 end if;
2602
2603 Next_Formal (Formal);
2604 end loop;
2605
2606 if Etype (Op) = Prev then
2607 Set_Etype (Op, T);
2608 end if;
2609
2610 Next_Elmt (Elmt);
2611 end loop;
2612 end if;
2613 end Check_Ops_From_Incomplete_Type;
2614
2615 -- Start of processing for Analyze_Full_Type_Declaration
2616
2617 begin
2618 Prev := Find_Type_Name (N);
2619
2620 -- The full view, if present, now points to the current type. If there
2621 -- is an incomplete partial view, set a link to it, to simplify the
2622 -- retrieval of primitive operations of the type.
2623
2624 -- Ada 2005 (AI-50217): If the type was previously decorated when
2625 -- imported through a LIMITED WITH clause, it appears as incomplete
2626 -- but has no full view.
2627
2628 if Ekind (Prev) = E_Incomplete_Type
2629 and then Present (Full_View (Prev))
2630 then
2631 T := Full_View (Prev);
2632 Set_Incomplete_View (N, Parent (Prev));
2633 else
2634 T := Prev;
2635 end if;
2636
2637 Set_Is_Pure (T, Is_Pure (Current_Scope));
2638
2639 -- We set the flag Is_First_Subtype here. It is needed to set the
2640 -- corresponding flag for the Implicit class-wide-type created
2641 -- during tagged types processing.
2642
2643 Set_Is_First_Subtype (T, True);
2644
2645 -- Only composite types other than array types are allowed to have
2646 -- discriminants.
2647
2648 case Nkind (Def) is
2649
2650 -- For derived types, the rule will be checked once we've figured
2651 -- out the parent type.
2652
2653 when N_Derived_Type_Definition =>
2654 null;
2655
2656 -- For record types, discriminants are allowed, unless we are in
2657 -- SPARK.
2658
2659 when N_Record_Definition =>
2660 if Present (Discriminant_Specifications (N)) then
2661 Check_SPARK_05_Restriction
2662 ("discriminant type is not allowed",
2663 Defining_Identifier
2664 (First (Discriminant_Specifications (N))));
2665 end if;
2666
2667 when others =>
2668 if Present (Discriminant_Specifications (N)) then
2669 Error_Msg_N
2670 ("elementary or array type cannot have discriminants",
2671 Defining_Identifier
2672 (First (Discriminant_Specifications (N))));
2673 end if;
2674 end case;
2675
2676 -- Elaborate the type definition according to kind, and generate
2677 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2678 -- already done (this happens during the reanalysis that follows a call
2679 -- to the high level optimizer).
2680
2681 if not Analyzed (T) then
2682 Set_Analyzed (T);
2683
2684 case Nkind (Def) is
2685 when N_Access_To_Subprogram_Definition =>
2686 Access_Subprogram_Declaration (T, Def);
2687
2688 -- If this is a remote access to subprogram, we must create the
2689 -- equivalent fat pointer type, and related subprograms.
2690
2691 if Is_Remote then
2692 Process_Remote_AST_Declaration (N);
2693 end if;
2694
2695 -- Validate categorization rule against access type declaration
2696 -- usually a violation in Pure unit, Shared_Passive unit.
2697
2698 Validate_Access_Type_Declaration (T, N);
2699
2700 when N_Access_To_Object_Definition =>
2701 Access_Type_Declaration (T, Def);
2702
2703 -- Validate categorization rule against access type declaration
2704 -- usually a violation in Pure unit, Shared_Passive unit.
2705
2706 Validate_Access_Type_Declaration (T, N);
2707
2708 -- If we are in a Remote_Call_Interface package and define a
2709 -- RACW, then calling stubs and specific stream attributes
2710 -- must be added.
2711
2712 if Is_Remote
2713 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2714 then
2715 Add_RACW_Features (Def_Id);
2716 end if;
2717
2718 when N_Array_Type_Definition =>
2719 Array_Type_Declaration (T, Def);
2720
2721 when N_Derived_Type_Definition =>
2722 Derived_Type_Declaration (T, N, T /= Def_Id);
2723
2724 when N_Enumeration_Type_Definition =>
2725 Enumeration_Type_Declaration (T, Def);
2726
2727 when N_Floating_Point_Definition =>
2728 Floating_Point_Type_Declaration (T, Def);
2729
2730 when N_Decimal_Fixed_Point_Definition =>
2731 Decimal_Fixed_Point_Type_Declaration (T, Def);
2732
2733 when N_Ordinary_Fixed_Point_Definition =>
2734 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2735
2736 when N_Signed_Integer_Type_Definition =>
2737 Signed_Integer_Type_Declaration (T, Def);
2738
2739 when N_Modular_Type_Definition =>
2740 Modular_Type_Declaration (T, Def);
2741
2742 when N_Record_Definition =>
2743 Record_Type_Declaration (T, N, Prev);
2744
2745 -- If declaration has a parse error, nothing to elaborate.
2746
2747 when N_Error =>
2748 null;
2749
2750 when others =>
2751 raise Program_Error;
2752
2753 end case;
2754 end if;
2755
2756 if Etype (T) = Any_Type then
2757 return;
2758 end if;
2759
2760 -- Controlled type is not allowed in SPARK
2761
2762 if Is_Visibly_Controlled (T) then
2763 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2764 end if;
2765
2766 -- A type declared within a Ghost region is automatically Ghost
2767 -- (SPARK RM 6.9(2)).
2768
2769 if Ghost_Mode > None then
2770 Set_Is_Ghost_Entity (T);
2771 end if;
2772
2773 -- Some common processing for all types
2774
2775 Set_Depends_On_Private (T, Has_Private_Component (T));
2776 Check_Ops_From_Incomplete_Type;
2777
2778 -- Both the declared entity, and its anonymous base type if one was
2779 -- created, need freeze nodes allocated.
2780
2781 declare
2782 B : constant Entity_Id := Base_Type (T);
2783
2784 begin
2785 -- In the case where the base type differs from the first subtype, we
2786 -- pre-allocate a freeze node, and set the proper link to the first
2787 -- subtype. Freeze_Entity will use this preallocated freeze node when
2788 -- it freezes the entity.
2789
2790 -- This does not apply if the base type is a generic type, whose
2791 -- declaration is independent of the current derived definition.
2792
2793 if B /= T and then not Is_Generic_Type (B) then
2794 Ensure_Freeze_Node (B);
2795 Set_First_Subtype_Link (Freeze_Node (B), T);
2796 end if;
2797
2798 -- A type that is imported through a limited_with clause cannot
2799 -- generate any code, and thus need not be frozen. However, an access
2800 -- type with an imported designated type needs a finalization list,
2801 -- which may be referenced in some other package that has non-limited
2802 -- visibility on the designated type. Thus we must create the
2803 -- finalization list at the point the access type is frozen, to
2804 -- prevent unsatisfied references at link time.
2805
2806 if not From_Limited_With (T) or else Is_Access_Type (T) then
2807 Set_Has_Delayed_Freeze (T);
2808 end if;
2809 end;
2810
2811 -- Case where T is the full declaration of some private type which has
2812 -- been swapped in Defining_Identifier (N).
2813
2814 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2815 Process_Full_View (N, T, Def_Id);
2816
2817 -- Record the reference. The form of this is a little strange, since
2818 -- the full declaration has been swapped in. So the first parameter
2819 -- here represents the entity to which a reference is made which is
2820 -- the "real" entity, i.e. the one swapped in, and the second
2821 -- parameter provides the reference location.
2822
2823 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2824 -- since we don't want a complaint about the full type being an
2825 -- unwanted reference to the private type
2826
2827 declare
2828 B : constant Boolean := Has_Pragma_Unreferenced (T);
2829 begin
2830 Set_Has_Pragma_Unreferenced (T, False);
2831 Generate_Reference (T, T, 'c');
2832 Set_Has_Pragma_Unreferenced (T, B);
2833 end;
2834
2835 Set_Completion_Referenced (Def_Id);
2836
2837 -- For completion of incomplete type, process incomplete dependents
2838 -- and always mark the full type as referenced (it is the incomplete
2839 -- type that we get for any real reference).
2840
2841 elsif Ekind (Prev) = E_Incomplete_Type then
2842 Process_Incomplete_Dependents (N, T, Prev);
2843 Generate_Reference (Prev, Def_Id, 'c');
2844 Set_Completion_Referenced (Def_Id);
2845
2846 -- If not private type or incomplete type completion, this is a real
2847 -- definition of a new entity, so record it.
2848
2849 else
2850 Generate_Definition (Def_Id);
2851 end if;
2852
2853 -- Propagate any pending access types whose finalization masters need to
2854 -- be fully initialized from the partial to the full view. Guard against
2855 -- an illegal full view that remains unanalyzed.
2856
2857 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2858 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2859 end if;
2860
2861 if Chars (Scope (Def_Id)) = Name_System
2862 and then Chars (Def_Id) = Name_Address
2863 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2864 then
2865 Set_Is_Descendent_Of_Address (Def_Id);
2866 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2867 Set_Is_Descendent_Of_Address (Prev);
2868 end if;
2869
2870 Set_Optimize_Alignment_Flags (Def_Id);
2871 Check_Eliminated (Def_Id);
2872
2873 -- If the declaration is a completion and aspects are present, apply
2874 -- them to the entity for the type which is currently the partial
2875 -- view, but which is the one that will be frozen.
2876
2877 if Has_Aspects (N) then
2878
2879 -- In most cases the partial view is a private type, and both views
2880 -- appear in different declarative parts. In the unusual case where
2881 -- the partial view is incomplete, perform the analysis on the
2882 -- full view, to prevent freezing anomalies with the corresponding
2883 -- class-wide type, which otherwise might be frozen before the
2884 -- dispatch table is built.
2885
2886 if Prev /= Def_Id
2887 and then Ekind (Prev) /= E_Incomplete_Type
2888 then
2889 Analyze_Aspect_Specifications (N, Prev);
2890
2891 -- Normal case
2892
2893 else
2894 Analyze_Aspect_Specifications (N, Def_Id);
2895 end if;
2896 end if;
2897 end Analyze_Full_Type_Declaration;
2898
2899 ----------------------------------
2900 -- Analyze_Incomplete_Type_Decl --
2901 ----------------------------------
2902
2903 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2904 F : constant Boolean := Is_Pure (Current_Scope);
2905 T : Entity_Id;
2906
2907 begin
2908 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2909
2910 Generate_Definition (Defining_Identifier (N));
2911
2912 -- Process an incomplete declaration. The identifier must not have been
2913 -- declared already in the scope. However, an incomplete declaration may
2914 -- appear in the private part of a package, for a private type that has
2915 -- already been declared.
2916
2917 -- In this case, the discriminants (if any) must match
2918
2919 T := Find_Type_Name (N);
2920
2921 Set_Ekind (T, E_Incomplete_Type);
2922 Init_Size_Align (T);
2923 Set_Is_First_Subtype (T, True);
2924 Set_Etype (T, T);
2925
2926 -- An incomplete type declared within a Ghost region is automatically
2927 -- Ghost (SPARK RM 6.9(2)).
2928
2929 if Ghost_Mode > None then
2930 Set_Is_Ghost_Entity (T);
2931 end if;
2932
2933 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2934 -- incomplete types.
2935
2936 if Tagged_Present (N) then
2937 Set_Is_Tagged_Type (T, True);
2938 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2939 Make_Class_Wide_Type (T);
2940 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2941 end if;
2942
2943 Push_Scope (T);
2944
2945 Set_Stored_Constraint (T, No_Elist);
2946
2947 if Present (Discriminant_Specifications (N)) then
2948 Process_Discriminants (N);
2949 end if;
2950
2951 End_Scope;
2952
2953 -- If the type has discriminants, non-trivial subtypes may be
2954 -- declared before the full view of the type. The full views of those
2955 -- subtypes will be built after the full view of the type.
2956
2957 Set_Private_Dependents (T, New_Elmt_List);
2958 Set_Is_Pure (T, F);
2959 end Analyze_Incomplete_Type_Decl;
2960
2961 -----------------------------------
2962 -- Analyze_Interface_Declaration --
2963 -----------------------------------
2964
2965 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2966 CW : constant Entity_Id := Class_Wide_Type (T);
2967
2968 begin
2969 Set_Is_Tagged_Type (T);
2970 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2971
2972 Set_Is_Limited_Record (T, Limited_Present (Def)
2973 or else Task_Present (Def)
2974 or else Protected_Present (Def)
2975 or else Synchronized_Present (Def));
2976
2977 -- Type is abstract if full declaration carries keyword, or if previous
2978 -- partial view did.
2979
2980 Set_Is_Abstract_Type (T);
2981 Set_Is_Interface (T);
2982
2983 -- Type is a limited interface if it includes the keyword limited, task,
2984 -- protected, or synchronized.
2985
2986 Set_Is_Limited_Interface
2987 (T, Limited_Present (Def)
2988 or else Protected_Present (Def)
2989 or else Synchronized_Present (Def)
2990 or else Task_Present (Def));
2991
2992 Set_Interfaces (T, New_Elmt_List);
2993 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2994
2995 -- Complete the decoration of the class-wide entity if it was already
2996 -- built (i.e. during the creation of the limited view)
2997
2998 if Present (CW) then
2999 Set_Is_Interface (CW);
3000 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3001 end if;
3002
3003 -- Check runtime support for synchronized interfaces
3004
3005 if (Is_Task_Interface (T)
3006 or else Is_Protected_Interface (T)
3007 or else Is_Synchronized_Interface (T))
3008 and then not RTE_Available (RE_Select_Specific_Data)
3009 then
3010 Error_Msg_CRT ("synchronized interfaces", T);
3011 end if;
3012 end Analyze_Interface_Declaration;
3013
3014 -----------------------------
3015 -- Analyze_Itype_Reference --
3016 -----------------------------
3017
3018 -- Nothing to do. This node is placed in the tree only for the benefit of
3019 -- back end processing, and has no effect on the semantic processing.
3020
3021 procedure Analyze_Itype_Reference (N : Node_Id) is
3022 begin
3023 pragma Assert (Is_Itype (Itype (N)));
3024 null;
3025 end Analyze_Itype_Reference;
3026
3027 --------------------------------
3028 -- Analyze_Number_Declaration --
3029 --------------------------------
3030
3031 procedure Analyze_Number_Declaration (N : Node_Id) is
3032 E : constant Node_Id := Expression (N);
3033 Id : constant Entity_Id := Defining_Identifier (N);
3034 Index : Interp_Index;
3035 It : Interp;
3036 T : Entity_Id;
3037
3038 begin
3039 Generate_Definition (Id);
3040 Enter_Name (Id);
3041
3042 -- A number declared within a Ghost region is automatically Ghost
3043 -- (SPARK RM 6.9(2)).
3044
3045 if Ghost_Mode > None then
3046 Set_Is_Ghost_Entity (Id);
3047 end if;
3048
3049 -- This is an optimization of a common case of an integer literal
3050
3051 if Nkind (E) = N_Integer_Literal then
3052 Set_Is_Static_Expression (E, True);
3053 Set_Etype (E, Universal_Integer);
3054
3055 Set_Etype (Id, Universal_Integer);
3056 Set_Ekind (Id, E_Named_Integer);
3057 Set_Is_Frozen (Id, True);
3058 return;
3059 end if;
3060
3061 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3062
3063 -- Process expression, replacing error by integer zero, to avoid
3064 -- cascaded errors or aborts further along in the processing
3065
3066 -- Replace Error by integer zero, which seems least likely to cause
3067 -- cascaded errors.
3068
3069 if E = Error then
3070 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3071 Set_Error_Posted (E);
3072 end if;
3073
3074 Analyze (E);
3075
3076 -- Verify that the expression is static and numeric. If
3077 -- the expression is overloaded, we apply the preference
3078 -- rule that favors root numeric types.
3079
3080 if not Is_Overloaded (E) then
3081 T := Etype (E);
3082 if Has_Dynamic_Predicate_Aspect (T) then
3083 Error_Msg_N
3084 ("subtype has dynamic predicate, "
3085 & "not allowed in number declaration", N);
3086 end if;
3087
3088 else
3089 T := Any_Type;
3090
3091 Get_First_Interp (E, Index, It);
3092 while Present (It.Typ) loop
3093 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3094 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3095 then
3096 if T = Any_Type then
3097 T := It.Typ;
3098
3099 elsif It.Typ = Universal_Real
3100 or else
3101 It.Typ = Universal_Integer
3102 then
3103 -- Choose universal interpretation over any other
3104
3105 T := It.Typ;
3106 exit;
3107 end if;
3108 end if;
3109
3110 Get_Next_Interp (Index, It);
3111 end loop;
3112 end if;
3113
3114 if Is_Integer_Type (T) then
3115 Resolve (E, T);
3116 Set_Etype (Id, Universal_Integer);
3117 Set_Ekind (Id, E_Named_Integer);
3118
3119 elsif Is_Real_Type (T) then
3120
3121 -- Because the real value is converted to universal_real, this is a
3122 -- legal context for a universal fixed expression.
3123
3124 if T = Universal_Fixed then
3125 declare
3126 Loc : constant Source_Ptr := Sloc (N);
3127 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3128 Subtype_Mark =>
3129 New_Occurrence_Of (Universal_Real, Loc),
3130 Expression => Relocate_Node (E));
3131
3132 begin
3133 Rewrite (E, Conv);
3134 Analyze (E);
3135 end;
3136
3137 elsif T = Any_Fixed then
3138 Error_Msg_N ("illegal context for mixed mode operation", E);
3139
3140 -- Expression is of the form : universal_fixed * integer. Try to
3141 -- resolve as universal_real.
3142
3143 T := Universal_Real;
3144 Set_Etype (E, T);
3145 end if;
3146
3147 Resolve (E, T);
3148 Set_Etype (Id, Universal_Real);
3149 Set_Ekind (Id, E_Named_Real);
3150
3151 else
3152 Wrong_Type (E, Any_Numeric);
3153 Resolve (E, T);
3154
3155 Set_Etype (Id, T);
3156 Set_Ekind (Id, E_Constant);
3157 Set_Never_Set_In_Source (Id, True);
3158 Set_Is_True_Constant (Id, True);
3159 return;
3160 end if;
3161
3162 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3163 Set_Etype (E, Etype (Id));
3164 end if;
3165
3166 if not Is_OK_Static_Expression (E) then
3167 Flag_Non_Static_Expr
3168 ("non-static expression used in number declaration!", E);
3169 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3170 Set_Etype (E, Any_Type);
3171 end if;
3172 end Analyze_Number_Declaration;
3173
3174 -----------------------------
3175 -- Analyze_Object_Contract --
3176 -----------------------------
3177
3178 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3179 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3180 AR_Val : Boolean := False;
3181 AW_Val : Boolean := False;
3182 ER_Val : Boolean := False;
3183 EW_Val : Boolean := False;
3184 Prag : Node_Id;
3185 Seen : Boolean := False;
3186
3187 begin
3188 -- The loop parameter in an element iterator over a formal container
3189 -- is declared with an object declaration but no contracts apply.
3190
3191 if Ekind (Obj_Id) = E_Loop_Parameter then
3192 return;
3193 end if;
3194
3195 -- Constant related checks
3196
3197 if Ekind (Obj_Id) = E_Constant then
3198
3199 -- A constant cannot be effectively volatile. This check is only
3200 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3201 -- rule. Do not flag internally-generated constants that map generic
3202 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3203
3204 if SPARK_Mode = On
3205 and then Is_Effectively_Volatile (Obj_Id)
3206 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3207
3208 -- Don't give this for internally generated entities (such as the
3209 -- FIRST and LAST temporaries generated for bounds).
3210
3211 and then Comes_From_Source (Obj_Id)
3212 then
3213 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3214 end if;
3215
3216 -- Variable related checks
3217
3218 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3219
3220 -- The following checks are only relevant when SPARK_Mode is on as
3221 -- they are not standard Ada legality rules. Internally generated
3222 -- temporaries are ignored.
3223
3224 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3225 if Is_Effectively_Volatile (Obj_Id) then
3226
3227 -- The declaration of an effectively volatile object must
3228 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3229
3230 if not Is_Library_Level_Entity (Obj_Id) then
3231 Error_Msg_N
3232 ("volatile variable & must be declared at library level",
3233 Obj_Id);
3234
3235 -- An object of a discriminated type cannot be effectively
3236 -- volatile (SPARK RM C.6(4)).
3237
3238 elsif Has_Discriminants (Obj_Typ) then
3239 Error_Msg_N
3240 ("discriminated object & cannot be volatile", Obj_Id);
3241
3242 -- An object of a tagged type cannot be effectively volatile
3243 -- (SPARK RM C.6(5)).
3244
3245 elsif Is_Tagged_Type (Obj_Typ) then
3246 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3247 end if;
3248
3249 -- The object is not effectively volatile
3250
3251 else
3252 -- A non-effectively volatile object cannot have effectively
3253 -- volatile components (SPARK RM 7.1.3(7)).
3254
3255 if not Is_Effectively_Volatile (Obj_Id)
3256 and then Has_Volatile_Component (Obj_Typ)
3257 then
3258 Error_Msg_N
3259 ("non-volatile object & cannot have volatile components",
3260 Obj_Id);
3261 end if;
3262 end if;
3263 end if;
3264
3265 if Is_Ghost_Entity (Obj_Id) then
3266
3267 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3268
3269 if Is_Effectively_Volatile (Obj_Id) then
3270 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3271
3272 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3273
3274 elsif Is_Imported (Obj_Id) then
3275 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3276
3277 elsif Is_Exported (Obj_Id) then
3278 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3279 end if;
3280 end if;
3281
3282 -- Analyze all external properties
3283
3284 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3285
3286 if Present (Prag) then
3287 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3288 Seen := True;
3289 end if;
3290
3291 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3292
3293 if Present (Prag) then
3294 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3295 Seen := True;
3296 end if;
3297
3298 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3299
3300 if Present (Prag) then
3301 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3302 Seen := True;
3303 end if;
3304
3305 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3306
3307 if Present (Prag) then
3308 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3309 Seen := True;
3310 end if;
3311
3312 -- Verify the mutual interaction of the various external properties
3313
3314 if Seen then
3315 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3316 end if;
3317 end if;
3318
3319 -- Check whether the lack of indicator Part_Of agrees with the placement
3320 -- of the object with respect to the state space.
3321
3322 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3323
3324 if No (Prag) then
3325 Check_Missing_Part_Of (Obj_Id);
3326 end if;
3327
3328 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3329
3330 if Is_Ghost_Entity (Obj_Id) then
3331 if Is_Exported (Obj_Id) then
3332 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3333
3334 elsif Is_Imported (Obj_Id) then
3335 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3336 end if;
3337 end if;
3338 end Analyze_Object_Contract;
3339
3340 --------------------------------
3341 -- Analyze_Object_Declaration --
3342 --------------------------------
3343
3344 procedure Analyze_Object_Declaration (N : Node_Id) is
3345 Loc : constant Source_Ptr := Sloc (N);
3346 Id : constant Entity_Id := Defining_Identifier (N);
3347 Act_T : Entity_Id;
3348 T : Entity_Id;
3349
3350 E : Node_Id := Expression (N);
3351 -- E is set to Expression (N) throughout this routine. When
3352 -- Expression (N) is modified, E is changed accordingly.
3353
3354 Prev_Entity : Entity_Id := Empty;
3355
3356 function Count_Tasks (T : Entity_Id) return Uint;
3357 -- This function is called when a non-generic library level object of a
3358 -- task type is declared. Its function is to count the static number of
3359 -- tasks declared within the type (it is only called if Has_Tasks is set
3360 -- for T). As a side effect, if an array of tasks with non-static bounds
3361 -- or a variant record type is encountered, Check_Restrictions is called
3362 -- indicating the count is unknown.
3363
3364 function Delayed_Aspect_Present return Boolean;
3365 -- If the declaration has an expression that is an aggregate, and it
3366 -- has aspects that require delayed analysis, the resolution of the
3367 -- aggregate must be deferred to the freeze point of the objet. This
3368 -- special processing was created for address clauses, but it must
3369 -- also apply to Alignment. This must be done before the aspect
3370 -- specifications are analyzed because we must handle the aggregate
3371 -- before the analysis of the object declaration is complete.
3372
3373 -- Any other relevant delayed aspects on object declarations ???
3374
3375 -----------------
3376 -- Count_Tasks --
3377 -----------------
3378
3379 function Count_Tasks (T : Entity_Id) return Uint is
3380 C : Entity_Id;
3381 X : Node_Id;
3382 V : Uint;
3383
3384 begin
3385 if Is_Task_Type (T) then
3386 return Uint_1;
3387
3388 elsif Is_Record_Type (T) then
3389 if Has_Discriminants (T) then
3390 Check_Restriction (Max_Tasks, N);
3391 return Uint_0;
3392
3393 else
3394 V := Uint_0;
3395 C := First_Component (T);
3396 while Present (C) loop
3397 V := V + Count_Tasks (Etype (C));
3398 Next_Component (C);
3399 end loop;
3400
3401 return V;
3402 end if;
3403
3404 elsif Is_Array_Type (T) then
3405 X := First_Index (T);
3406 V := Count_Tasks (Component_Type (T));
3407 while Present (X) loop
3408 C := Etype (X);
3409
3410 if not Is_OK_Static_Subtype (C) then
3411 Check_Restriction (Max_Tasks, N);
3412 return Uint_0;
3413 else
3414 V := V * (UI_Max (Uint_0,
3415 Expr_Value (Type_High_Bound (C)) -
3416 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3417 end if;
3418
3419 Next_Index (X);
3420 end loop;
3421
3422 return V;
3423
3424 else
3425 return Uint_0;
3426 end if;
3427 end Count_Tasks;
3428
3429 ----------------------------
3430 -- Delayed_Aspect_Present --
3431 ----------------------------
3432
3433 function Delayed_Aspect_Present return Boolean is
3434 A : Node_Id;
3435 A_Id : Aspect_Id;
3436
3437 begin
3438 if Present (Aspect_Specifications (N)) then
3439 A := First (Aspect_Specifications (N));
3440 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3441 while Present (A) loop
3442 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3443 return True;
3444 end if;
3445
3446 Next (A);
3447 end loop;
3448 end if;
3449
3450 return False;
3451 end Delayed_Aspect_Present;
3452
3453 -- Local variables
3454
3455 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3456
3457 -- Start of processing for Analyze_Object_Declaration
3458
3459 begin
3460 -- There are three kinds of implicit types generated by an
3461 -- object declaration:
3462
3463 -- 1. Those generated by the original Object Definition
3464
3465 -- 2. Those generated by the Expression
3466
3467 -- 3. Those used to constrain the Object Definition with the
3468 -- expression constraints when the definition is unconstrained.
3469
3470 -- They must be generated in this order to avoid order of elaboration
3471 -- issues. Thus the first step (after entering the name) is to analyze
3472 -- the object definition.
3473
3474 if Constant_Present (N) then
3475 Prev_Entity := Current_Entity_In_Scope (Id);
3476
3477 if Present (Prev_Entity)
3478 and then
3479 -- If the homograph is an implicit subprogram, it is overridden
3480 -- by the current declaration.
3481
3482 ((Is_Overloadable (Prev_Entity)
3483 and then Is_Inherited_Operation (Prev_Entity))
3484
3485 -- The current object is a discriminal generated for an entry
3486 -- family index. Even though the index is a constant, in this
3487 -- particular context there is no true constant redeclaration.
3488 -- Enter_Name will handle the visibility.
3489
3490 or else
3491 (Is_Discriminal (Id)
3492 and then Ekind (Discriminal_Link (Id)) =
3493 E_Entry_Index_Parameter)
3494
3495 -- The current object is the renaming for a generic declared
3496 -- within the instance.
3497
3498 or else
3499 (Ekind (Prev_Entity) = E_Package
3500 and then Nkind (Parent (Prev_Entity)) =
3501 N_Package_Renaming_Declaration
3502 and then not Comes_From_Source (Prev_Entity)
3503 and then
3504 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3505 then
3506 Prev_Entity := Empty;
3507 end if;
3508 end if;
3509
3510 -- The object declaration is Ghost when it is subject to pragma Ghost or
3511 -- completes a deferred Ghost constant. Set the mode now to ensure that
3512 -- any nodes generated during analysis and expansion are properly marked
3513 -- as Ghost.
3514
3515 Set_Ghost_Mode (N, Prev_Entity);
3516
3517 if Present (Prev_Entity) then
3518 Constant_Redeclaration (Id, N, T);
3519
3520 Generate_Reference (Prev_Entity, Id, 'c');
3521 Set_Completion_Referenced (Id);
3522
3523 if Error_Posted (N) then
3524
3525 -- Type mismatch or illegal redeclaration, Do not analyze
3526 -- expression to avoid cascaded errors.
3527
3528 T := Find_Type_Of_Object (Object_Definition (N), N);
3529 Set_Etype (Id, T);
3530 Set_Ekind (Id, E_Variable);
3531 goto Leave;
3532 end if;
3533
3534 -- In the normal case, enter identifier at the start to catch premature
3535 -- usage in the initialization expression.
3536
3537 else
3538 Generate_Definition (Id);
3539 Enter_Name (Id);
3540
3541 Mark_Coextensions (N, Object_Definition (N));
3542
3543 T := Find_Type_Of_Object (Object_Definition (N), N);
3544
3545 if Nkind (Object_Definition (N)) = N_Access_Definition
3546 and then Present
3547 (Access_To_Subprogram_Definition (Object_Definition (N)))
3548 and then Protected_Present
3549 (Access_To_Subprogram_Definition (Object_Definition (N)))
3550 then
3551 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3552 end if;
3553
3554 if Error_Posted (Id) then
3555 Set_Etype (Id, T);
3556 Set_Ekind (Id, E_Variable);
3557 goto Leave;
3558 end if;
3559 end if;
3560
3561 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3562 -- out some static checks
3563
3564 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3565
3566 -- In case of aggregates we must also take care of the correct
3567 -- initialization of nested aggregates bug this is done at the
3568 -- point of the analysis of the aggregate (see sem_aggr.adb).
3569
3570 if Present (Expression (N))
3571 and then Nkind (Expression (N)) = N_Aggregate
3572 then
3573 null;
3574
3575 else
3576 declare
3577 Save_Typ : constant Entity_Id := Etype (Id);
3578 begin
3579 Set_Etype (Id, T); -- Temp. decoration for static checks
3580 Null_Exclusion_Static_Checks (N);
3581 Set_Etype (Id, Save_Typ);
3582 end;
3583 end if;
3584 end if;
3585
3586 -- Object is marked pure if it is in a pure scope
3587
3588 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3589
3590 -- If deferred constant, make sure context is appropriate. We detect
3591 -- a deferred constant as a constant declaration with no expression.
3592 -- A deferred constant can appear in a package body if its completion
3593 -- is by means of an interface pragma.
3594
3595 if Constant_Present (N) and then No (E) then
3596
3597 -- A deferred constant may appear in the declarative part of the
3598 -- following constructs:
3599
3600 -- blocks
3601 -- entry bodies
3602 -- extended return statements
3603 -- package specs
3604 -- package bodies
3605 -- subprogram bodies
3606 -- task bodies
3607
3608 -- When declared inside a package spec, a deferred constant must be
3609 -- completed by a full constant declaration or pragma Import. In all
3610 -- other cases, the only proper completion is pragma Import. Extended
3611 -- return statements are flagged as invalid contexts because they do
3612 -- not have a declarative part and so cannot accommodate the pragma.
3613
3614 if Ekind (Current_Scope) = E_Return_Statement then
3615 Error_Msg_N
3616 ("invalid context for deferred constant declaration (RM 7.4)",
3617 N);
3618 Error_Msg_N
3619 ("\declaration requires an initialization expression",
3620 N);
3621 Set_Constant_Present (N, False);
3622
3623 -- In Ada 83, deferred constant must be of private type
3624
3625 elsif not Is_Private_Type (T) then
3626 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3627 Error_Msg_N
3628 ("(Ada 83) deferred constant must be private type", N);
3629 end if;
3630 end if;
3631
3632 -- If not a deferred constant, then the object declaration freezes
3633 -- its type, unless the object is of an anonymous type and has delayed
3634 -- aspects. In that case the type is frozen when the object itself is.
3635
3636 else
3637 Check_Fully_Declared (T, N);
3638
3639 if Has_Delayed_Aspects (Id)
3640 and then Is_Array_Type (T)
3641 and then Is_Itype (T)
3642 then
3643 Set_Has_Delayed_Freeze (T);
3644 else
3645 Freeze_Before (N, T);
3646 end if;
3647 end if;
3648
3649 -- If the object was created by a constrained array definition, then
3650 -- set the link in both the anonymous base type and anonymous subtype
3651 -- that are built to represent the array type to point to the object.
3652
3653 if Nkind (Object_Definition (Declaration_Node (Id))) =
3654 N_Constrained_Array_Definition
3655 then
3656 Set_Related_Array_Object (T, Id);
3657 Set_Related_Array_Object (Base_Type (T), Id);
3658 end if;
3659
3660 -- Special checks for protected objects not at library level
3661
3662 if Is_Protected_Type (T)
3663 and then not Is_Library_Level_Entity (Id)
3664 then
3665 Check_Restriction (No_Local_Protected_Objects, Id);
3666
3667 -- Protected objects with interrupt handlers must be at library level
3668
3669 -- Ada 2005: This test is not needed (and the corresponding clause
3670 -- in the RM is removed) because accessibility checks are sufficient
3671 -- to make handlers not at the library level illegal.
3672
3673 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3674 -- applies to the '95 version of the language as well.
3675
3676 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3677 Error_Msg_N
3678 ("interrupt object can only be declared at library level", Id);
3679 end if;
3680 end if;
3681
3682 -- The actual subtype of the object is the nominal subtype, unless
3683 -- the nominal one is unconstrained and obtained from the expression.
3684
3685 Act_T := T;
3686
3687 -- These checks should be performed before the initialization expression
3688 -- is considered, so that the Object_Definition node is still the same
3689 -- as in source code.
3690
3691 -- In SPARK, the nominal subtype is always given by a subtype mark
3692 -- and must not be unconstrained. (The only exception to this is the
3693 -- acceptance of declarations of constants of type String.)
3694
3695 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3696 then
3697 Check_SPARK_05_Restriction
3698 ("subtype mark required", Object_Definition (N));
3699
3700 elsif Is_Array_Type (T)
3701 and then not Is_Constrained (T)
3702 and then T /= Standard_String
3703 then
3704 Check_SPARK_05_Restriction
3705 ("subtype mark of constrained type expected",
3706 Object_Definition (N));
3707 end if;
3708
3709 -- There are no aliased objects in SPARK
3710
3711 if Aliased_Present (N) then
3712 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3713 end if;
3714
3715 -- Process initialization expression if present and not in error
3716
3717 if Present (E) and then E /= Error then
3718
3719 -- Generate an error in case of CPP class-wide object initialization.
3720 -- Required because otherwise the expansion of the class-wide
3721 -- assignment would try to use 'size to initialize the object
3722 -- (primitive that is not available in CPP tagged types).
3723
3724 if Is_Class_Wide_Type (Act_T)
3725 and then
3726 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3727 or else
3728 (Present (Full_View (Root_Type (Etype (Act_T))))
3729 and then
3730 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3731 then
3732 Error_Msg_N
3733 ("predefined assignment not available for 'C'P'P tagged types",
3734 E);
3735 end if;
3736
3737 Mark_Coextensions (N, E);
3738 Analyze (E);
3739
3740 -- In case of errors detected in the analysis of the expression,
3741 -- decorate it with the expected type to avoid cascaded errors
3742
3743 if No (Etype (E)) then
3744 Set_Etype (E, T);
3745 end if;
3746
3747 -- If an initialization expression is present, then we set the
3748 -- Is_True_Constant flag. It will be reset if this is a variable
3749 -- and it is indeed modified.
3750
3751 Set_Is_True_Constant (Id, True);
3752
3753 -- If we are analyzing a constant declaration, set its completion
3754 -- flag after analyzing and resolving the expression.
3755
3756 if Constant_Present (N) then
3757 Set_Has_Completion (Id);
3758 end if;
3759
3760 -- Set type and resolve (type may be overridden later on). Note:
3761 -- Ekind (Id) must still be E_Void at this point so that incorrect
3762 -- early usage within E is properly diagnosed.
3763
3764 Set_Etype (Id, T);
3765
3766 -- If the expression is an aggregate we must look ahead to detect
3767 -- the possible presence of an address clause, and defer resolution
3768 -- and expansion of the aggregate to the freeze point of the entity.
3769
3770 if Comes_From_Source (N)
3771 and then Expander_Active
3772 and then Nkind (E) = N_Aggregate
3773 and then (Present (Following_Address_Clause (N))
3774 or else Delayed_Aspect_Present)
3775 then
3776 Set_Etype (E, T);
3777
3778 else
3779 Resolve (E, T);
3780 end if;
3781
3782 -- No further action needed if E is a call to an inlined function
3783 -- which returns an unconstrained type and it has been expanded into
3784 -- a procedure call. In that case N has been replaced by an object
3785 -- declaration without initializing expression and it has been
3786 -- analyzed (see Expand_Inlined_Call).
3787
3788 if Back_End_Inlining
3789 and then Expander_Active
3790 and then Nkind (E) = N_Function_Call
3791 and then Nkind (Name (E)) in N_Has_Entity
3792 and then Is_Inlined (Entity (Name (E)))
3793 and then not Is_Constrained (Etype (E))
3794 and then Analyzed (N)
3795 and then No (Expression (N))
3796 then
3797 Ghost_Mode := Save_Ghost_Mode;
3798 return;
3799 end if;
3800
3801 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3802 -- node (which was marked already-analyzed), we need to set the type
3803 -- to something other than Any_Access in order to keep gigi happy.
3804
3805 if Etype (E) = Any_Access then
3806 Set_Etype (E, T);
3807 end if;
3808
3809 -- If the object is an access to variable, the initialization
3810 -- expression cannot be an access to constant.
3811
3812 if Is_Access_Type (T)
3813 and then not Is_Access_Constant (T)
3814 and then Is_Access_Type (Etype (E))
3815 and then Is_Access_Constant (Etype (E))
3816 then
3817 Error_Msg_N
3818 ("access to variable cannot be initialized with an "
3819 & "access-to-constant expression", E);
3820 end if;
3821
3822 if not Assignment_OK (N) then
3823 Check_Initialization (T, E);
3824 end if;
3825
3826 Check_Unset_Reference (E);
3827
3828 -- If this is a variable, then set current value. If this is a
3829 -- declared constant of a scalar type with a static expression,
3830 -- indicate that it is always valid.
3831
3832 if not Constant_Present (N) then
3833 if Compile_Time_Known_Value (E) then
3834 Set_Current_Value (Id, E);
3835 end if;
3836
3837 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3838 Set_Is_Known_Valid (Id);
3839 end if;
3840
3841 -- Deal with setting of null flags
3842
3843 if Is_Access_Type (T) then
3844 if Known_Non_Null (E) then
3845 Set_Is_Known_Non_Null (Id, True);
3846 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3847 Set_Is_Known_Null (Id, True);
3848 end if;
3849 end if;
3850
3851 -- Check incorrect use of dynamically tagged expressions
3852
3853 if Is_Tagged_Type (T) then
3854 Check_Dynamically_Tagged_Expression
3855 (Expr => E,
3856 Typ => T,
3857 Related_Nod => N);
3858 end if;
3859
3860 Apply_Scalar_Range_Check (E, T);
3861 Apply_Static_Length_Check (E, T);
3862
3863 if Nkind (Original_Node (N)) = N_Object_Declaration
3864 and then Comes_From_Source (Original_Node (N))
3865
3866 -- Only call test if needed
3867
3868 and then Restriction_Check_Required (SPARK_05)
3869 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3870 then
3871 Check_SPARK_05_Restriction
3872 ("initialization expression is not appropriate", E);
3873 end if;
3874
3875 -- A formal parameter of a specific tagged type whose related
3876 -- subprogram is subject to pragma Extensions_Visible with value
3877 -- "False" cannot be implicitly converted to a class-wide type by
3878 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3879
3880 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3881 Error_Msg_N
3882 ("formal parameter with Extensions_Visible False cannot be "
3883 & "implicitly converted to class-wide type", E);
3884 end if;
3885 end if;
3886
3887 -- If the No_Streams restriction is set, check that the type of the
3888 -- object is not, and does not contain, any subtype derived from
3889 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3890 -- Has_Stream just for efficiency reasons. There is no point in
3891 -- spending time on a Has_Stream check if the restriction is not set.
3892
3893 if Restriction_Check_Required (No_Streams) then
3894 if Has_Stream (T) then
3895 Check_Restriction (No_Streams, N);
3896 end if;
3897 end if;
3898
3899 -- Deal with predicate check before we start to do major rewriting. It
3900 -- is OK to initialize and then check the initialized value, since the
3901 -- object goes out of scope if we get a predicate failure. Note that we
3902 -- do this in the analyzer and not the expander because the analyzer
3903 -- does some substantial rewriting in some cases.
3904
3905 -- We need a predicate check if the type has predicates, and if either
3906 -- there is an initializing expression, or for default initialization
3907 -- when we have at least one case of an explicit default initial value
3908 -- and then this is not an internal declaration whose initialization
3909 -- comes later (as for an aggregate expansion).
3910
3911 if not Suppress_Assignment_Checks (N)
3912 and then Present (Predicate_Function (T))
3913 and then not No_Initialization (N)
3914 and then
3915 (Present (E)
3916 or else
3917 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3918 then
3919 -- If the type has a static predicate and the expression is known at
3920 -- compile time, see if the expression satisfies the predicate.
3921
3922 if Present (E) then
3923 Check_Expression_Against_Static_Predicate (E, T);
3924 end if;
3925
3926 Insert_After (N,
3927 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3928 end if;
3929
3930 -- Case of unconstrained type
3931
3932 if not Is_Definite_Subtype (T) then
3933
3934 -- In SPARK, a declaration of unconstrained type is allowed
3935 -- only for constants of type string.
3936
3937 if Is_String_Type (T) and then not Constant_Present (N) then
3938 Check_SPARK_05_Restriction
3939 ("declaration of object of unconstrained type not allowed", N);
3940 end if;
3941
3942 -- Nothing to do in deferred constant case
3943
3944 if Constant_Present (N) and then No (E) then
3945 null;
3946
3947 -- Case of no initialization present
3948
3949 elsif No (E) then
3950 if No_Initialization (N) then
3951 null;
3952
3953 elsif Is_Class_Wide_Type (T) then
3954 Error_Msg_N
3955 ("initialization required in class-wide declaration ", N);
3956
3957 else
3958 Error_Msg_N
3959 ("unconstrained subtype not allowed (need initialization)",
3960 Object_Definition (N));
3961
3962 if Is_Record_Type (T) and then Has_Discriminants (T) then
3963 Error_Msg_N
3964 ("\provide initial value or explicit discriminant values",
3965 Object_Definition (N));
3966
3967 Error_Msg_NE
3968 ("\or give default discriminant values for type&",
3969 Object_Definition (N), T);
3970
3971 elsif Is_Array_Type (T) then
3972 Error_Msg_N
3973 ("\provide initial value or explicit array bounds",
3974 Object_Definition (N));
3975 end if;
3976 end if;
3977
3978 -- Case of initialization present but in error. Set initial
3979 -- expression as absent (but do not make above complaints)
3980
3981 elsif E = Error then
3982 Set_Expression (N, Empty);
3983 E := Empty;
3984
3985 -- Case of initialization present
3986
3987 else
3988 -- Check restrictions in Ada 83
3989
3990 if not Constant_Present (N) then
3991
3992 -- Unconstrained variables not allowed in Ada 83 mode
3993
3994 if Ada_Version = Ada_83
3995 and then Comes_From_Source (Object_Definition (N))
3996 then
3997 Error_Msg_N
3998 ("(Ada 83) unconstrained variable not allowed",
3999 Object_Definition (N));
4000 end if;
4001 end if;
4002
4003 -- Now we constrain the variable from the initializing expression
4004
4005 -- If the expression is an aggregate, it has been expanded into
4006 -- individual assignments. Retrieve the actual type from the
4007 -- expanded construct.
4008
4009 if Is_Array_Type (T)
4010 and then No_Initialization (N)
4011 and then Nkind (Original_Node (E)) = N_Aggregate
4012 then
4013 Act_T := Etype (E);
4014
4015 -- In case of class-wide interface object declarations we delay
4016 -- the generation of the equivalent record type declarations until
4017 -- its expansion because there are cases in they are not required.
4018
4019 elsif Is_Interface (T) then
4020 null;
4021
4022 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4023 -- we should prevent the generation of another Itype with the
4024 -- same name as the one already generated, or we end up with
4025 -- two identical types in GNATprove.
4026
4027 elsif GNATprove_Mode then
4028 null;
4029
4030 -- If the type is an unchecked union, no subtype can be built from
4031 -- the expression. Rewrite declaration as a renaming, which the
4032 -- back-end can handle properly. This is a rather unusual case,
4033 -- because most unchecked_union declarations have default values
4034 -- for discriminants and are thus not indefinite.
4035
4036 elsif Is_Unchecked_Union (T) then
4037 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4038 Set_Ekind (Id, E_Constant);
4039 else
4040 Set_Ekind (Id, E_Variable);
4041 end if;
4042
4043 -- An object declared within a Ghost region is automatically
4044 -- Ghost (SPARK RM 6.9(2)).
4045
4046 if Comes_From_Source (Id) and then Ghost_Mode > None then
4047 Set_Is_Ghost_Entity (Id);
4048
4049 -- The Ghost policy in effect at the point of declaration
4050 -- and at the point of completion must match
4051 -- (SPARK RM 6.9(14)).
4052
4053 if Present (Prev_Entity)
4054 and then Is_Ghost_Entity (Prev_Entity)
4055 then
4056 Check_Ghost_Completion (Prev_Entity, Id);
4057 end if;
4058 end if;
4059
4060 Rewrite (N,
4061 Make_Object_Renaming_Declaration (Loc,
4062 Defining_Identifier => Id,
4063 Subtype_Mark => New_Occurrence_Of (T, Loc),
4064 Name => E));
4065
4066 Set_Renamed_Object (Id, E);
4067 Freeze_Before (N, T);
4068 Set_Is_Frozen (Id);
4069
4070 Ghost_Mode := Save_Ghost_Mode;
4071 return;
4072
4073 else
4074 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
4075 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4076 end if;
4077
4078 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4079
4080 if Aliased_Present (N) then
4081 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4082 end if;
4083
4084 Freeze_Before (N, Act_T);
4085 Freeze_Before (N, T);
4086 end if;
4087
4088 elsif Is_Array_Type (T)
4089 and then No_Initialization (N)
4090 and then Nkind (Original_Node (E)) = N_Aggregate
4091 then
4092 if not Is_Entity_Name (Object_Definition (N)) then
4093 Act_T := Etype (E);
4094 Check_Compile_Time_Size (Act_T);
4095
4096 if Aliased_Present (N) then
4097 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4098 end if;
4099 end if;
4100
4101 -- When the given object definition and the aggregate are specified
4102 -- independently, and their lengths might differ do a length check.
4103 -- This cannot happen if the aggregate is of the form (others =>...)
4104
4105 if not Is_Constrained (T) then
4106 null;
4107
4108 elsif Nkind (E) = N_Raise_Constraint_Error then
4109
4110 -- Aggregate is statically illegal. Place back in declaration
4111
4112 Set_Expression (N, E);
4113 Set_No_Initialization (N, False);
4114
4115 elsif T = Etype (E) then
4116 null;
4117
4118 elsif Nkind (E) = N_Aggregate
4119 and then Present (Component_Associations (E))
4120 and then Present (Choices (First (Component_Associations (E))))
4121 and then Nkind (First
4122 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4123 then
4124 null;
4125
4126 else
4127 Apply_Length_Check (E, T);
4128 end if;
4129
4130 -- If the type is limited unconstrained with defaulted discriminants and
4131 -- there is no expression, then the object is constrained by the
4132 -- defaults, so it is worthwhile building the corresponding subtype.
4133
4134 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4135 and then not Is_Constrained (T)
4136 and then Has_Discriminants (T)
4137 then
4138 if No (E) then
4139 Act_T := Build_Default_Subtype (T, N);
4140 else
4141 -- Ada 2005: A limited object may be initialized by means of an
4142 -- aggregate. If the type has default discriminants it has an
4143 -- unconstrained nominal type, Its actual subtype will be obtained
4144 -- from the aggregate, and not from the default discriminants.
4145
4146 Act_T := Etype (E);
4147 end if;
4148
4149 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4150
4151 elsif Nkind (E) = N_Function_Call
4152 and then Constant_Present (N)
4153 and then Has_Unconstrained_Elements (Etype (E))
4154 then
4155 -- The back-end has problems with constants of a discriminated type
4156 -- with defaults, if the initial value is a function call. We
4157 -- generate an intermediate temporary that will receive a reference
4158 -- to the result of the call. The initialization expression then
4159 -- becomes a dereference of that temporary.
4160
4161 Remove_Side_Effects (E);
4162
4163 -- If this is a constant declaration of an unconstrained type and
4164 -- the initialization is an aggregate, we can use the subtype of the
4165 -- aggregate for the declared entity because it is immutable.
4166
4167 elsif not Is_Constrained (T)
4168 and then Has_Discriminants (T)
4169 and then Constant_Present (N)
4170 and then not Has_Unchecked_Union (T)
4171 and then Nkind (E) = N_Aggregate
4172 then
4173 Act_T := Etype (E);
4174 end if;
4175
4176 -- Check No_Wide_Characters restriction
4177
4178 Check_Wide_Character_Restriction (T, Object_Definition (N));
4179
4180 -- Indicate this is not set in source. Certainly true for constants, and
4181 -- true for variables so far (will be reset for a variable if and when
4182 -- we encounter a modification in the source).
4183
4184 Set_Never_Set_In_Source (Id);
4185
4186 -- Now establish the proper kind and type of the object
4187
4188 if Constant_Present (N) then
4189 Set_Ekind (Id, E_Constant);
4190 Set_Is_True_Constant (Id);
4191
4192 else
4193 Set_Ekind (Id, E_Variable);
4194
4195 -- A variable is set as shared passive if it appears in a shared
4196 -- passive package, and is at the outer level. This is not done for
4197 -- entities generated during expansion, because those are always
4198 -- manipulated locally.
4199
4200 if Is_Shared_Passive (Current_Scope)
4201 and then Is_Library_Level_Entity (Id)
4202 and then Comes_From_Source (Id)
4203 then
4204 Set_Is_Shared_Passive (Id);
4205 Check_Shared_Var (Id, T, N);
4206 end if;
4207
4208 -- Set Has_Initial_Value if initializing expression present. Note
4209 -- that if there is no initializing expression, we leave the state
4210 -- of this flag unchanged (usually it will be False, but notably in
4211 -- the case of exception choice variables, it will already be true).
4212
4213 if Present (E) then
4214 Set_Has_Initial_Value (Id);
4215 end if;
4216 end if;
4217
4218 -- Initialize alignment and size and capture alignment setting
4219
4220 Init_Alignment (Id);
4221 Init_Esize (Id);
4222 Set_Optimize_Alignment_Flags (Id);
4223
4224 -- An object declared within a Ghost region is automatically Ghost
4225 -- (SPARK RM 6.9(2)).
4226
4227 if Comes_From_Source (Id)
4228 and then (Ghost_Mode > None
4229 or else (Present (Prev_Entity)
4230 and then Is_Ghost_Entity (Prev_Entity)))
4231 then
4232 Set_Is_Ghost_Entity (Id);
4233
4234 -- The Ghost policy in effect at the point of declaration and at the
4235 -- point of completion must match (SPARK RM 6.9(14)).
4236
4237 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4238 Check_Ghost_Completion (Prev_Entity, Id);
4239 end if;
4240 end if;
4241
4242 -- Deal with aliased case
4243
4244 if Aliased_Present (N) then
4245 Set_Is_Aliased (Id);
4246
4247 -- If the object is aliased and the type is unconstrained with
4248 -- defaulted discriminants and there is no expression, then the
4249 -- object is constrained by the defaults, so it is worthwhile
4250 -- building the corresponding subtype.
4251
4252 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4253 -- unconstrained, then only establish an actual subtype if the
4254 -- nominal subtype is indefinite. In definite cases the object is
4255 -- unconstrained in Ada 2005.
4256
4257 if No (E)
4258 and then Is_Record_Type (T)
4259 and then not Is_Constrained (T)
4260 and then Has_Discriminants (T)
4261 and then (Ada_Version < Ada_2005
4262 or else not Is_Definite_Subtype (T))
4263 then
4264 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4265 end if;
4266 end if;
4267
4268 -- Now we can set the type of the object
4269
4270 Set_Etype (Id, Act_T);
4271
4272 -- Non-constant object is marked to be treated as volatile if type is
4273 -- volatile and we clear the Current_Value setting that may have been
4274 -- set above. Doing so for constants isn't required and might interfere
4275 -- with possible uses of the object as a static expression in contexts
4276 -- incompatible with volatility (e.g. as a case-statement alternative).
4277
4278 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4279 Set_Treat_As_Volatile (Id);
4280 Set_Current_Value (Id, Empty);
4281 end if;
4282
4283 -- Deal with controlled types
4284
4285 if Has_Controlled_Component (Etype (Id))
4286 or else Is_Controlled (Etype (Id))
4287 then
4288 if not Is_Library_Level_Entity (Id) then
4289 Check_Restriction (No_Nested_Finalization, N);
4290 else
4291 Validate_Controlled_Object (Id);
4292 end if;
4293 end if;
4294
4295 if Has_Task (Etype (Id)) then
4296 Check_Restriction (No_Tasking, N);
4297
4298 -- Deal with counting max tasks
4299
4300 -- Nothing to do if inside a generic
4301
4302 if Inside_A_Generic then
4303 null;
4304
4305 -- If library level entity, then count tasks
4306
4307 elsif Is_Library_Level_Entity (Id) then
4308 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4309
4310 -- If not library level entity, then indicate we don't know max
4311 -- tasks and also check task hierarchy restriction and blocking
4312 -- operation (since starting a task is definitely blocking).
4313
4314 else
4315 Check_Restriction (Max_Tasks, N);
4316 Check_Restriction (No_Task_Hierarchy, N);
4317 Check_Potentially_Blocking_Operation (N);
4318 end if;
4319
4320 -- A rather specialized test. If we see two tasks being declared
4321 -- of the same type in the same object declaration, and the task
4322 -- has an entry with an address clause, we know that program error
4323 -- will be raised at run time since we can't have two tasks with
4324 -- entries at the same address.
4325
4326 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4327 declare
4328 E : Entity_Id;
4329
4330 begin
4331 E := First_Entity (Etype (Id));
4332 while Present (E) loop
4333 if Ekind (E) = E_Entry
4334 and then Present (Get_Attribute_Definition_Clause
4335 (E, Attribute_Address))
4336 then
4337 Error_Msg_Warn := SPARK_Mode /= On;
4338 Error_Msg_N
4339 ("more than one task with same entry address<<", N);
4340 Error_Msg_N ("\Program_Error [<<", N);
4341 Insert_Action (N,
4342 Make_Raise_Program_Error (Loc,
4343 Reason => PE_Duplicated_Entry_Address));
4344 exit;
4345 end if;
4346
4347 Next_Entity (E);
4348 end loop;
4349 end;
4350 end if;
4351 end if;
4352
4353 -- Some simple constant-propagation: if the expression is a constant
4354 -- string initialized with a literal, share the literal. This avoids
4355 -- a run-time copy.
4356
4357 if Present (E)
4358 and then Is_Entity_Name (E)
4359 and then Ekind (Entity (E)) = E_Constant
4360 and then Base_Type (Etype (E)) = Standard_String
4361 then
4362 declare
4363 Val : constant Node_Id := Constant_Value (Entity (E));
4364 begin
4365 if Present (Val) and then Nkind (Val) = N_String_Literal then
4366 Rewrite (E, New_Copy (Val));
4367 end if;
4368 end;
4369 end if;
4370
4371 -- Another optimization: if the nominal subtype is unconstrained and
4372 -- the expression is a function call that returns an unconstrained
4373 -- type, rewrite the declaration as a renaming of the result of the
4374 -- call. The exceptions below are cases where the copy is expected,
4375 -- either by the back end (Aliased case) or by the semantics, as for
4376 -- initializing controlled types or copying tags for classwide types.
4377
4378 if Present (E)
4379 and then Nkind (E) = N_Explicit_Dereference
4380 and then Nkind (Original_Node (E)) = N_Function_Call
4381 and then not Is_Library_Level_Entity (Id)
4382 and then not Is_Constrained (Underlying_Type (T))
4383 and then not Is_Aliased (Id)
4384 and then not Is_Class_Wide_Type (T)
4385 and then not Is_Controlled_Active (T)
4386 and then not Has_Controlled_Component (Base_Type (T))
4387 and then Expander_Active
4388 then
4389 Rewrite (N,
4390 Make_Object_Renaming_Declaration (Loc,
4391 Defining_Identifier => Id,
4392 Access_Definition => Empty,
4393 Subtype_Mark => New_Occurrence_Of
4394 (Base_Type (Etype (Id)), Loc),
4395 Name => E));
4396
4397 Set_Renamed_Object (Id, E);
4398
4399 -- Force generation of debugging information for the constant and for
4400 -- the renamed function call.
4401
4402 Set_Debug_Info_Needed (Id);
4403 Set_Debug_Info_Needed (Entity (Prefix (E)));
4404 end if;
4405
4406 if Present (Prev_Entity)
4407 and then Is_Frozen (Prev_Entity)
4408 and then not Error_Posted (Id)
4409 then
4410 Error_Msg_N ("full constant declaration appears too late", N);
4411 end if;
4412
4413 Check_Eliminated (Id);
4414
4415 -- Deal with setting In_Private_Part flag if in private part
4416
4417 if Ekind (Scope (Id)) = E_Package
4418 and then In_Private_Part (Scope (Id))
4419 then
4420 Set_In_Private_Part (Id);
4421 end if;
4422
4423 -- Check for violation of No_Local_Timing_Events
4424
4425 if Restriction_Check_Required (No_Local_Timing_Events)
4426 and then not Is_Library_Level_Entity (Id)
4427 and then Is_RTE (Etype (Id), RE_Timing_Event)
4428 then
4429 Check_Restriction (No_Local_Timing_Events, N);
4430 end if;
4431
4432 <<Leave>>
4433 -- Initialize the refined state of a variable here because this is a
4434 -- common destination for legal and illegal object declarations.
4435
4436 if Ekind (Id) = E_Variable then
4437 Set_Encapsulating_State (Id, Empty);
4438 end if;
4439
4440 if Has_Aspects (N) then
4441 Analyze_Aspect_Specifications (N, Id);
4442 end if;
4443
4444 Analyze_Dimension (N);
4445
4446 -- Verify whether the object declaration introduces an illegal hidden
4447 -- state within a package subject to a null abstract state.
4448
4449 if Ekind (Id) = E_Variable then
4450 Check_No_Hidden_State (Id);
4451 end if;
4452
4453 Ghost_Mode := Save_Ghost_Mode;
4454 end Analyze_Object_Declaration;
4455
4456 ---------------------------
4457 -- Analyze_Others_Choice --
4458 ---------------------------
4459
4460 -- Nothing to do for the others choice node itself, the semantic analysis
4461 -- of the others choice will occur as part of the processing of the parent
4462
4463 procedure Analyze_Others_Choice (N : Node_Id) is
4464 pragma Warnings (Off, N);
4465 begin
4466 null;
4467 end Analyze_Others_Choice;
4468
4469 -------------------------------------------
4470 -- Analyze_Private_Extension_Declaration --
4471 -------------------------------------------
4472
4473 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4474 Indic : constant Node_Id := Subtype_Indication (N);
4475 T : constant Entity_Id := Defining_Identifier (N);
4476 Parent_Base : Entity_Id;
4477 Parent_Type : Entity_Id;
4478
4479 begin
4480 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4481
4482 if Is_Non_Empty_List (Interface_List (N)) then
4483 declare
4484 Intf : Node_Id;
4485 T : Entity_Id;
4486
4487 begin
4488 Intf := First (Interface_List (N));
4489 while Present (Intf) loop
4490 T := Find_Type_Of_Subtype_Indic (Intf);
4491
4492 Diagnose_Interface (Intf, T);
4493 Next (Intf);
4494 end loop;
4495 end;
4496 end if;
4497
4498 Generate_Definition (T);
4499
4500 -- For other than Ada 2012, just enter the name in the current scope
4501
4502 if Ada_Version < Ada_2012 then
4503 Enter_Name (T);
4504
4505 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4506 -- case of private type that completes an incomplete type.
4507
4508 else
4509 declare
4510 Prev : Entity_Id;
4511
4512 begin
4513 Prev := Find_Type_Name (N);
4514
4515 pragma Assert (Prev = T
4516 or else (Ekind (Prev) = E_Incomplete_Type
4517 and then Present (Full_View (Prev))
4518 and then Full_View (Prev) = T));
4519 end;
4520 end if;
4521
4522 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4523 Parent_Base := Base_Type (Parent_Type);
4524
4525 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4526 Set_Ekind (T, Ekind (Parent_Type));
4527 Set_Etype (T, Any_Type);
4528 goto Leave;
4529
4530 elsif not Is_Tagged_Type (Parent_Type) then
4531 Error_Msg_N
4532 ("parent of type extension must be a tagged type ", Indic);
4533 goto Leave;
4534
4535 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4536 Error_Msg_N ("premature derivation of incomplete type", Indic);
4537 goto Leave;
4538
4539 elsif Is_Concurrent_Type (Parent_Type) then
4540 Error_Msg_N
4541 ("parent type of a private extension cannot be "
4542 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4543
4544 Set_Etype (T, Any_Type);
4545 Set_Ekind (T, E_Limited_Private_Type);
4546 Set_Private_Dependents (T, New_Elmt_List);
4547 Set_Error_Posted (T);
4548 goto Leave;
4549 end if;
4550
4551 -- Perhaps the parent type should be changed to the class-wide type's
4552 -- specific type in this case to prevent cascading errors ???
4553
4554 if Is_Class_Wide_Type (Parent_Type) then
4555 Error_Msg_N
4556 ("parent of type extension must not be a class-wide type", Indic);
4557 goto Leave;
4558 end if;
4559
4560 if (not Is_Package_Or_Generic_Package (Current_Scope)
4561 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4562 or else In_Private_Part (Current_Scope)
4563
4564 then
4565 Error_Msg_N ("invalid context for private extension", N);
4566 end if;
4567
4568 -- Set common attributes
4569
4570 Set_Is_Pure (T, Is_Pure (Current_Scope));
4571 Set_Scope (T, Current_Scope);
4572 Set_Ekind (T, E_Record_Type_With_Private);
4573 Init_Size_Align (T);
4574 Set_Default_SSO (T);
4575
4576 Set_Etype (T, Parent_Base);
4577 Set_Has_Task (T, Has_Task (Parent_Base));
4578 Set_Has_Protected (T, Has_Task (Parent_Base));
4579
4580 Set_Convention (T, Convention (Parent_Type));
4581 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4582 Set_Is_First_Subtype (T);
4583 Make_Class_Wide_Type (T);
4584
4585 if Unknown_Discriminants_Present (N) then
4586 Set_Discriminant_Constraint (T, No_Elist);
4587 end if;
4588
4589 Build_Derived_Record_Type (N, Parent_Type, T);
4590
4591 -- Propagate inherited invariant information. The new type has
4592 -- invariants, if the parent type has inheritable invariants,
4593 -- and these invariants can in turn be inherited.
4594
4595 if Has_Inheritable_Invariants (Parent_Type) then
4596 Set_Has_Inheritable_Invariants (T);
4597 Set_Has_Invariants (T);
4598 end if;
4599
4600 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4601 -- synchronized formal derived type.
4602
4603 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4604 Set_Is_Limited_Record (T);
4605
4606 -- Formal derived type case
4607
4608 if Is_Generic_Type (T) then
4609
4610 -- The parent must be a tagged limited type or a synchronized
4611 -- interface.
4612
4613 if (not Is_Tagged_Type (Parent_Type)
4614 or else not Is_Limited_Type (Parent_Type))
4615 and then
4616 (not Is_Interface (Parent_Type)
4617 or else not Is_Synchronized_Interface (Parent_Type))
4618 then
4619 Error_Msg_NE ("parent type of & must be tagged limited " &
4620 "or synchronized", N, T);
4621 end if;
4622
4623 -- The progenitors (if any) must be limited or synchronized
4624 -- interfaces.
4625
4626 if Present (Interfaces (T)) then
4627 declare
4628 Iface : Entity_Id;
4629 Iface_Elmt : Elmt_Id;
4630
4631 begin
4632 Iface_Elmt := First_Elmt (Interfaces (T));
4633 while Present (Iface_Elmt) loop
4634 Iface := Node (Iface_Elmt);
4635
4636 if not Is_Limited_Interface (Iface)
4637 and then not Is_Synchronized_Interface (Iface)
4638 then
4639 Error_Msg_NE ("progenitor & must be limited " &
4640 "or synchronized", N, Iface);
4641 end if;
4642
4643 Next_Elmt (Iface_Elmt);
4644 end loop;
4645 end;
4646 end if;
4647
4648 -- Regular derived extension, the parent must be a limited or
4649 -- synchronized interface.
4650
4651 else
4652 if not Is_Interface (Parent_Type)
4653 or else (not Is_Limited_Interface (Parent_Type)
4654 and then not Is_Synchronized_Interface (Parent_Type))
4655 then
4656 Error_Msg_NE
4657 ("parent type of & must be limited interface", N, T);
4658 end if;
4659 end if;
4660
4661 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4662 -- extension with a synchronized parent must be explicitly declared
4663 -- synchronized, because the full view will be a synchronized type.
4664 -- This must be checked before the check for limited types below,
4665 -- to ensure that types declared limited are not allowed to extend
4666 -- synchronized interfaces.
4667
4668 elsif Is_Interface (Parent_Type)
4669 and then Is_Synchronized_Interface (Parent_Type)
4670 and then not Synchronized_Present (N)
4671 then
4672 Error_Msg_NE
4673 ("private extension of& must be explicitly synchronized",
4674 N, Parent_Type);
4675
4676 elsif Limited_Present (N) then
4677 Set_Is_Limited_Record (T);
4678
4679 if not Is_Limited_Type (Parent_Type)
4680 and then
4681 (not Is_Interface (Parent_Type)
4682 or else not Is_Limited_Interface (Parent_Type))
4683 then
4684 Error_Msg_NE ("parent type& of limited extension must be limited",
4685 N, Parent_Type);
4686 end if;
4687 end if;
4688
4689 <<Leave>>
4690 if Has_Aspects (N) then
4691 Analyze_Aspect_Specifications (N, T);
4692 end if;
4693 end Analyze_Private_Extension_Declaration;
4694
4695 ---------------------------------
4696 -- Analyze_Subtype_Declaration --
4697 ---------------------------------
4698
4699 procedure Analyze_Subtype_Declaration
4700 (N : Node_Id;
4701 Skip : Boolean := False)
4702 is
4703 Id : constant Entity_Id := Defining_Identifier (N);
4704 R_Checks : Check_Result;
4705 T : Entity_Id;
4706
4707 begin
4708 Generate_Definition (Id);
4709 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4710 Init_Size_Align (Id);
4711
4712 -- The following guard condition on Enter_Name is to handle cases where
4713 -- the defining identifier has already been entered into the scope but
4714 -- the declaration as a whole needs to be analyzed.
4715
4716 -- This case in particular happens for derived enumeration types. The
4717 -- derived enumeration type is processed as an inserted enumeration type
4718 -- declaration followed by a rewritten subtype declaration. The defining
4719 -- identifier, however, is entered into the name scope very early in the
4720 -- processing of the original type declaration and therefore needs to be
4721 -- avoided here, when the created subtype declaration is analyzed. (See
4722 -- Build_Derived_Types)
4723
4724 -- This also happens when the full view of a private type is derived
4725 -- type with constraints. In this case the entity has been introduced
4726 -- in the private declaration.
4727
4728 -- Finally this happens in some complex cases when validity checks are
4729 -- enabled, where the same subtype declaration may be analyzed twice.
4730 -- This can happen if the subtype is created by the pre-analysis of
4731 -- an attribute tht gives the range of a loop statement, and the loop
4732 -- itself appears within an if_statement that will be rewritten during
4733 -- expansion.
4734
4735 if Skip
4736 or else (Present (Etype (Id))
4737 and then (Is_Private_Type (Etype (Id))
4738 or else Is_Task_Type (Etype (Id))
4739 or else Is_Rewrite_Substitution (N)))
4740 then
4741 null;
4742
4743 elsif Current_Entity (Id) = Id then
4744 null;
4745
4746 else
4747 Enter_Name (Id);
4748 end if;
4749
4750 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4751
4752 -- Class-wide equivalent types of records with unknown discriminants
4753 -- involve the generation of an itype which serves as the private view
4754 -- of a constrained record subtype. In such cases the base type of the
4755 -- current subtype we are processing is the private itype. Use the full
4756 -- of the private itype when decorating various attributes.
4757
4758 if Is_Itype (T)
4759 and then Is_Private_Type (T)
4760 and then Present (Full_View (T))
4761 then
4762 T := Full_View (T);
4763 end if;
4764
4765 -- Inherit common attributes
4766
4767 Set_Is_Volatile (Id, Is_Volatile (T));
4768 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4769 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4770 Set_Convention (Id, Convention (T));
4771
4772 -- If ancestor has predicates then so does the subtype, and in addition
4773 -- we must delay the freeze to properly arrange predicate inheritance.
4774
4775 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4776 -- in which T = ID, so the above tests and assignments do nothing???
4777
4778 if Has_Predicates (T)
4779 or else (Present (Ancestor_Subtype (T))
4780 and then Has_Predicates (Ancestor_Subtype (T)))
4781 then
4782 Set_Has_Predicates (Id);
4783 Set_Has_Delayed_Freeze (Id);
4784 end if;
4785
4786 -- Subtype of Boolean cannot have a constraint in SPARK
4787
4788 if Is_Boolean_Type (T)
4789 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4790 then
4791 Check_SPARK_05_Restriction
4792 ("subtype of Boolean cannot have constraint", N);
4793 end if;
4794
4795 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4796 declare
4797 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4798 One_Cstr : Node_Id;
4799 Low : Node_Id;
4800 High : Node_Id;
4801
4802 begin
4803 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4804 One_Cstr := First (Constraints (Cstr));
4805 while Present (One_Cstr) loop
4806
4807 -- Index or discriminant constraint in SPARK must be a
4808 -- subtype mark.
4809
4810 if not
4811 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4812 then
4813 Check_SPARK_05_Restriction
4814 ("subtype mark required", One_Cstr);
4815
4816 -- String subtype must have a lower bound of 1 in SPARK.
4817 -- Note that we do not need to test for the non-static case
4818 -- here, since that was already taken care of in
4819 -- Process_Range_Expr_In_Decl.
4820
4821 elsif Base_Type (T) = Standard_String then
4822 Get_Index_Bounds (One_Cstr, Low, High);
4823
4824 if Is_OK_Static_Expression (Low)
4825 and then Expr_Value (Low) /= 1
4826 then
4827 Check_SPARK_05_Restriction
4828 ("String subtype must have lower bound of 1", N);
4829 end if;
4830 end if;
4831
4832 Next (One_Cstr);
4833 end loop;
4834 end if;
4835 end;
4836 end if;
4837
4838 -- In the case where there is no constraint given in the subtype
4839 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4840 -- semantic attributes must be established here.
4841
4842 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4843 Set_Etype (Id, Base_Type (T));
4844
4845 -- Subtype of unconstrained array without constraint is not allowed
4846 -- in SPARK.
4847
4848 if Is_Array_Type (T) and then not Is_Constrained (T) then
4849 Check_SPARK_05_Restriction
4850 ("subtype of unconstrained array must have constraint", N);
4851 end if;
4852
4853 case Ekind (T) is
4854 when Array_Kind =>
4855 Set_Ekind (Id, E_Array_Subtype);
4856 Copy_Array_Subtype_Attributes (Id, T);
4857
4858 when Decimal_Fixed_Point_Kind =>
4859 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4860 Set_Digits_Value (Id, Digits_Value (T));
4861 Set_Delta_Value (Id, Delta_Value (T));
4862 Set_Scale_Value (Id, Scale_Value (T));
4863 Set_Small_Value (Id, Small_Value (T));
4864 Set_Scalar_Range (Id, Scalar_Range (T));
4865 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4866 Set_Is_Constrained (Id, Is_Constrained (T));
4867 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4868 Set_RM_Size (Id, RM_Size (T));
4869
4870 when Enumeration_Kind =>
4871 Set_Ekind (Id, E_Enumeration_Subtype);
4872 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4873 Set_Scalar_Range (Id, Scalar_Range (T));
4874 Set_Is_Character_Type (Id, Is_Character_Type (T));
4875 Set_Is_Constrained (Id, Is_Constrained (T));
4876 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4877 Set_RM_Size (Id, RM_Size (T));
4878 Inherit_Predicate_Flags (Id, T);
4879
4880 when Ordinary_Fixed_Point_Kind =>
4881 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4882 Set_Scalar_Range (Id, Scalar_Range (T));
4883 Set_Small_Value (Id, Small_Value (T));
4884 Set_Delta_Value (Id, Delta_Value (T));
4885 Set_Is_Constrained (Id, Is_Constrained (T));
4886 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4887 Set_RM_Size (Id, RM_Size (T));
4888
4889 when Float_Kind =>
4890 Set_Ekind (Id, E_Floating_Point_Subtype);
4891 Set_Scalar_Range (Id, Scalar_Range (T));
4892 Set_Digits_Value (Id, Digits_Value (T));
4893 Set_Is_Constrained (Id, Is_Constrained (T));
4894
4895 when Signed_Integer_Kind =>
4896 Set_Ekind (Id, E_Signed_Integer_Subtype);
4897 Set_Scalar_Range (Id, Scalar_Range (T));
4898 Set_Is_Constrained (Id, Is_Constrained (T));
4899 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4900 Set_RM_Size (Id, RM_Size (T));
4901 Inherit_Predicate_Flags (Id, T);
4902
4903 when Modular_Integer_Kind =>
4904 Set_Ekind (Id, E_Modular_Integer_Subtype);
4905 Set_Scalar_Range (Id, Scalar_Range (T));
4906 Set_Is_Constrained (Id, Is_Constrained (T));
4907 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4908 Set_RM_Size (Id, RM_Size (T));
4909 Inherit_Predicate_Flags (Id, T);
4910
4911 when Class_Wide_Kind =>
4912 Set_Ekind (Id, E_Class_Wide_Subtype);
4913 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4914 Set_Cloned_Subtype (Id, T);
4915 Set_Is_Tagged_Type (Id, True);
4916 Set_Has_Unknown_Discriminants
4917 (Id, True);
4918 Set_No_Tagged_Streams_Pragma
4919 (Id, No_Tagged_Streams_Pragma (T));
4920
4921 if Ekind (T) = E_Class_Wide_Subtype then
4922 Set_Equivalent_Type (Id, Equivalent_Type (T));
4923 end if;
4924
4925 when E_Record_Type | E_Record_Subtype =>
4926 Set_Ekind (Id, E_Record_Subtype);
4927
4928 if Ekind (T) = E_Record_Subtype
4929 and then Present (Cloned_Subtype (T))
4930 then
4931 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4932 else
4933 Set_Cloned_Subtype (Id, T);
4934 end if;
4935
4936 Set_First_Entity (Id, First_Entity (T));
4937 Set_Last_Entity (Id, Last_Entity (T));
4938 Set_Has_Discriminants (Id, Has_Discriminants (T));
4939 Set_Is_Constrained (Id, Is_Constrained (T));
4940 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4941 Set_Has_Implicit_Dereference
4942 (Id, Has_Implicit_Dereference (T));
4943 Set_Has_Unknown_Discriminants
4944 (Id, Has_Unknown_Discriminants (T));
4945
4946 if Has_Discriminants (T) then
4947 Set_Discriminant_Constraint
4948 (Id, Discriminant_Constraint (T));
4949 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4950
4951 elsif Has_Unknown_Discriminants (Id) then
4952 Set_Discriminant_Constraint (Id, No_Elist);
4953 end if;
4954
4955 if Is_Tagged_Type (T) then
4956 Set_Is_Tagged_Type (Id, True);
4957 Set_No_Tagged_Streams_Pragma
4958 (Id, No_Tagged_Streams_Pragma (T));
4959 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4960 Set_Direct_Primitive_Operations
4961 (Id, Direct_Primitive_Operations (T));
4962 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4963
4964 if Is_Interface (T) then
4965 Set_Is_Interface (Id);
4966 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4967 end if;
4968 end if;
4969
4970 when Private_Kind =>
4971 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4972 Set_Has_Discriminants (Id, Has_Discriminants (T));
4973 Set_Is_Constrained (Id, Is_Constrained (T));
4974 Set_First_Entity (Id, First_Entity (T));
4975 Set_Last_Entity (Id, Last_Entity (T));
4976 Set_Private_Dependents (Id, New_Elmt_List);
4977 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4978 Set_Has_Implicit_Dereference
4979 (Id, Has_Implicit_Dereference (T));
4980 Set_Has_Unknown_Discriminants
4981 (Id, Has_Unknown_Discriminants (T));
4982 Set_Known_To_Have_Preelab_Init
4983 (Id, Known_To_Have_Preelab_Init (T));
4984
4985 if Is_Tagged_Type (T) then
4986 Set_Is_Tagged_Type (Id);
4987 Set_No_Tagged_Streams_Pragma (Id,
4988 No_Tagged_Streams_Pragma (T));
4989 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4990 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4991 Set_Direct_Primitive_Operations (Id,
4992 Direct_Primitive_Operations (T));
4993 end if;
4994
4995 -- In general the attributes of the subtype of a private type
4996 -- are the attributes of the partial view of parent. However,
4997 -- the full view may be a discriminated type, and the subtype
4998 -- must share the discriminant constraint to generate correct
4999 -- calls to initialization procedures.
5000
5001 if Has_Discriminants (T) then
5002 Set_Discriminant_Constraint
5003 (Id, Discriminant_Constraint (T));
5004 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5005
5006 elsif Present (Full_View (T))
5007 and then Has_Discriminants (Full_View (T))
5008 then
5009 Set_Discriminant_Constraint
5010 (Id, Discriminant_Constraint (Full_View (T)));
5011 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5012
5013 -- This would seem semantically correct, but apparently
5014 -- generates spurious errors about missing components ???
5015
5016 -- Set_Has_Discriminants (Id);
5017 end if;
5018
5019 Prepare_Private_Subtype_Completion (Id, N);
5020
5021 -- If this is the subtype of a constrained private type with
5022 -- discriminants that has got a full view and we also have
5023 -- built a completion just above, show that the completion
5024 -- is a clone of the full view to the back-end.
5025
5026 if Has_Discriminants (T)
5027 and then not Has_Unknown_Discriminants (T)
5028 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5029 and then Present (Full_View (T))
5030 and then Present (Full_View (Id))
5031 then
5032 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5033 end if;
5034
5035 when Access_Kind =>
5036 Set_Ekind (Id, E_Access_Subtype);
5037 Set_Is_Constrained (Id, Is_Constrained (T));
5038 Set_Is_Access_Constant
5039 (Id, Is_Access_Constant (T));
5040 Set_Directly_Designated_Type
5041 (Id, Designated_Type (T));
5042 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5043
5044 -- A Pure library_item must not contain the declaration of a
5045 -- named access type, except within a subprogram, generic
5046 -- subprogram, task unit, or protected unit, or if it has
5047 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5048
5049 if Comes_From_Source (Id)
5050 and then In_Pure_Unit
5051 and then not In_Subprogram_Task_Protected_Unit
5052 and then not No_Pool_Assigned (Id)
5053 then
5054 Error_Msg_N
5055 ("named access types not allowed in pure unit", N);
5056 end if;
5057
5058 when Concurrent_Kind =>
5059 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5060 Set_Corresponding_Record_Type (Id,
5061 Corresponding_Record_Type (T));
5062 Set_First_Entity (Id, First_Entity (T));
5063 Set_First_Private_Entity (Id, First_Private_Entity (T));
5064 Set_Has_Discriminants (Id, Has_Discriminants (T));
5065 Set_Is_Constrained (Id, Is_Constrained (T));
5066 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5067 Set_Last_Entity (Id, Last_Entity (T));
5068
5069 if Is_Tagged_Type (T) then
5070 Set_No_Tagged_Streams_Pragma
5071 (Id, No_Tagged_Streams_Pragma (T));
5072 end if;
5073
5074 if Has_Discriminants (T) then
5075 Set_Discriminant_Constraint
5076 (Id, Discriminant_Constraint (T));
5077 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5078 end if;
5079
5080 when Incomplete_Kind =>
5081 if Ada_Version >= Ada_2005 then
5082
5083 -- In Ada 2005 an incomplete type can be explicitly tagged:
5084 -- propagate indication. Note that we also have to include
5085 -- subtypes for Ada 2012 extended use of incomplete types.
5086
5087 Set_Ekind (Id, E_Incomplete_Subtype);
5088 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5089 Set_Private_Dependents (Id, New_Elmt_List);
5090
5091 if Is_Tagged_Type (Id) then
5092 Set_No_Tagged_Streams_Pragma
5093 (Id, No_Tagged_Streams_Pragma (T));
5094 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5095 end if;
5096
5097 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5098 -- incomplete type visible through a limited with clause.
5099
5100 if From_Limited_With (T)
5101 and then Present (Non_Limited_View (T))
5102 then
5103 Set_From_Limited_With (Id);
5104 Set_Non_Limited_View (Id, Non_Limited_View (T));
5105
5106 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5107 -- to the private dependents of the original incomplete
5108 -- type for future transformation.
5109
5110 else
5111 Append_Elmt (Id, Private_Dependents (T));
5112 end if;
5113
5114 -- If the subtype name denotes an incomplete type an error
5115 -- was already reported by Process_Subtype.
5116
5117 else
5118 Set_Etype (Id, Any_Type);
5119 end if;
5120
5121 when others =>
5122 raise Program_Error;
5123 end case;
5124 end if;
5125
5126 if Etype (Id) = Any_Type then
5127 goto Leave;
5128 end if;
5129
5130 -- Some common processing on all types
5131
5132 Set_Size_Info (Id, T);
5133 Set_First_Rep_Item (Id, First_Rep_Item (T));
5134
5135 -- If the parent type is a generic actual, so is the subtype. This may
5136 -- happen in a nested instance. Why Comes_From_Source test???
5137
5138 if not Comes_From_Source (N) then
5139 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5140 end if;
5141
5142 T := Etype (Id);
5143
5144 Set_Is_Immediately_Visible (Id, True);
5145 Set_Depends_On_Private (Id, Has_Private_Component (T));
5146 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5147
5148 if Is_Interface (T) then
5149 Set_Is_Interface (Id);
5150 end if;
5151
5152 if Present (Generic_Parent_Type (N))
5153 and then
5154 (Nkind (Parent (Generic_Parent_Type (N))) /=
5155 N_Formal_Type_Declaration
5156 or else Nkind (Formal_Type_Definition
5157 (Parent (Generic_Parent_Type (N)))) /=
5158 N_Formal_Private_Type_Definition)
5159 then
5160 if Is_Tagged_Type (Id) then
5161
5162 -- If this is a generic actual subtype for a synchronized type,
5163 -- the primitive operations are those of the corresponding record
5164 -- for which there is a separate subtype declaration.
5165
5166 if Is_Concurrent_Type (Id) then
5167 null;
5168 elsif Is_Class_Wide_Type (Id) then
5169 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5170 else
5171 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5172 end if;
5173
5174 elsif Scope (Etype (Id)) /= Standard_Standard then
5175 Derive_Subprograms (Generic_Parent_Type (N), Id);
5176 end if;
5177 end if;
5178
5179 if Is_Private_Type (T) and then Present (Full_View (T)) then
5180 Conditional_Delay (Id, Full_View (T));
5181
5182 -- The subtypes of components or subcomponents of protected types
5183 -- do not need freeze nodes, which would otherwise appear in the
5184 -- wrong scope (before the freeze node for the protected type). The
5185 -- proper subtypes are those of the subcomponents of the corresponding
5186 -- record.
5187
5188 elsif Ekind (Scope (Id)) /= E_Protected_Type
5189 and then Present (Scope (Scope (Id))) -- error defense
5190 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5191 then
5192 Conditional_Delay (Id, T);
5193 end if;
5194
5195 -- Check that Constraint_Error is raised for a scalar subtype indication
5196 -- when the lower or upper bound of a non-null range lies outside the
5197 -- range of the type mark.
5198
5199 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5200 if Is_Scalar_Type (Etype (Id))
5201 and then Scalar_Range (Id) /=
5202 Scalar_Range (Etype (Subtype_Mark
5203 (Subtype_Indication (N))))
5204 then
5205 Apply_Range_Check
5206 (Scalar_Range (Id),
5207 Etype (Subtype_Mark (Subtype_Indication (N))));
5208
5209 -- In the array case, check compatibility for each index
5210
5211 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5212 then
5213 -- This really should be a subprogram that finds the indications
5214 -- to check???
5215
5216 declare
5217 Subt_Index : Node_Id := First_Index (Id);
5218 Target_Index : Node_Id :=
5219 First_Index (Etype
5220 (Subtype_Mark (Subtype_Indication (N))));
5221 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5222
5223 begin
5224 while Present (Subt_Index) loop
5225 if ((Nkind (Subt_Index) = N_Identifier
5226 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5227 or else Nkind (Subt_Index) = N_Subtype_Indication)
5228 and then
5229 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5230 then
5231 declare
5232 Target_Typ : constant Entity_Id :=
5233 Etype (Target_Index);
5234 begin
5235 R_Checks :=
5236 Get_Range_Checks
5237 (Scalar_Range (Etype (Subt_Index)),
5238 Target_Typ,
5239 Etype (Subt_Index),
5240 Defining_Identifier (N));
5241
5242 -- Reset Has_Dynamic_Range_Check on the subtype to
5243 -- prevent elision of the index check due to a dynamic
5244 -- check generated for a preceding index (needed since
5245 -- Insert_Range_Checks tries to avoid generating
5246 -- redundant checks on a given declaration).
5247
5248 Set_Has_Dynamic_Range_Check (N, False);
5249
5250 Insert_Range_Checks
5251 (R_Checks,
5252 N,
5253 Target_Typ,
5254 Sloc (Defining_Identifier (N)));
5255
5256 -- Record whether this index involved a dynamic check
5257
5258 Has_Dyn_Chk :=
5259 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5260 end;
5261 end if;
5262
5263 Next_Index (Subt_Index);
5264 Next_Index (Target_Index);
5265 end loop;
5266
5267 -- Finally, mark whether the subtype involves dynamic checks
5268
5269 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5270 end;
5271 end if;
5272 end if;
5273
5274 -- A type invariant applies to any subtype in its scope, in particular
5275 -- to a generic actual.
5276
5277 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5278 Set_Has_Invariants (Id);
5279 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5280 end if;
5281
5282 -- Make sure that generic actual types are properly frozen. The subtype
5283 -- is marked as a generic actual type when the enclosing instance is
5284 -- analyzed, so here we identify the subtype from the tree structure.
5285
5286 if Expander_Active
5287 and then Is_Generic_Actual_Type (Id)
5288 and then In_Instance
5289 and then not Comes_From_Source (N)
5290 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5291 and then Is_Frozen (T)
5292 then
5293 Freeze_Before (N, Id);
5294 end if;
5295
5296 Set_Optimize_Alignment_Flags (Id);
5297 Check_Eliminated (Id);
5298
5299 <<Leave>>
5300 if Has_Aspects (N) then
5301 Analyze_Aspect_Specifications (N, Id);
5302 end if;
5303
5304 Analyze_Dimension (N);
5305 end Analyze_Subtype_Declaration;
5306
5307 --------------------------------
5308 -- Analyze_Subtype_Indication --
5309 --------------------------------
5310
5311 procedure Analyze_Subtype_Indication (N : Node_Id) is
5312 T : constant Entity_Id := Subtype_Mark (N);
5313 R : constant Node_Id := Range_Expression (Constraint (N));
5314
5315 begin
5316 Analyze (T);
5317
5318 if R /= Error then
5319 Analyze (R);
5320 Set_Etype (N, Etype (R));
5321 Resolve (R, Entity (T));
5322 else
5323 Set_Error_Posted (R);
5324 Set_Error_Posted (T);
5325 end if;
5326 end Analyze_Subtype_Indication;
5327
5328 --------------------------
5329 -- Analyze_Variant_Part --
5330 --------------------------
5331
5332 procedure Analyze_Variant_Part (N : Node_Id) is
5333 Discr_Name : Node_Id;
5334 Discr_Type : Entity_Id;
5335
5336 procedure Process_Variant (A : Node_Id);
5337 -- Analyze declarations for a single variant
5338
5339 package Analyze_Variant_Choices is
5340 new Generic_Analyze_Choices (Process_Variant);
5341 use Analyze_Variant_Choices;
5342
5343 ---------------------
5344 -- Process_Variant --
5345 ---------------------
5346
5347 procedure Process_Variant (A : Node_Id) is
5348 CL : constant Node_Id := Component_List (A);
5349 begin
5350 if not Null_Present (CL) then
5351 Analyze_Declarations (Component_Items (CL));
5352
5353 if Present (Variant_Part (CL)) then
5354 Analyze (Variant_Part (CL));
5355 end if;
5356 end if;
5357 end Process_Variant;
5358
5359 -- Start of processing for Analyze_Variant_Part
5360
5361 begin
5362 Discr_Name := Name (N);
5363 Analyze (Discr_Name);
5364
5365 -- If Discr_Name bad, get out (prevent cascaded errors)
5366
5367 if Etype (Discr_Name) = Any_Type then
5368 return;
5369 end if;
5370
5371 -- Check invalid discriminant in variant part
5372
5373 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5374 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5375 end if;
5376
5377 Discr_Type := Etype (Entity (Discr_Name));
5378
5379 if not Is_Discrete_Type (Discr_Type) then
5380 Error_Msg_N
5381 ("discriminant in a variant part must be of a discrete type",
5382 Name (N));
5383 return;
5384 end if;
5385
5386 -- Now analyze the choices, which also analyzes the declarations that
5387 -- are associated with each choice.
5388
5389 Analyze_Choices (Variants (N), Discr_Type);
5390
5391 -- Note: we used to instantiate and call Check_Choices here to check
5392 -- that the choices covered the discriminant, but it's too early to do
5393 -- that because of statically predicated subtypes, whose analysis may
5394 -- be deferred to their freeze point which may be as late as the freeze
5395 -- point of the containing record. So this call is now to be found in
5396 -- Freeze_Record_Declaration.
5397
5398 end Analyze_Variant_Part;
5399
5400 ----------------------------
5401 -- Array_Type_Declaration --
5402 ----------------------------
5403
5404 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5405 Component_Def : constant Node_Id := Component_Definition (Def);
5406 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5407 Element_Type : Entity_Id;
5408 Implicit_Base : Entity_Id;
5409 Index : Node_Id;
5410 Related_Id : Entity_Id := Empty;
5411 Nb_Index : Nat;
5412 P : constant Node_Id := Parent (Def);
5413 Priv : Entity_Id;
5414
5415 begin
5416 if Nkind (Def) = N_Constrained_Array_Definition then
5417 Index := First (Discrete_Subtype_Definitions (Def));
5418 else
5419 Index := First (Subtype_Marks (Def));
5420 end if;
5421
5422 -- Find proper names for the implicit types which may be public. In case
5423 -- of anonymous arrays we use the name of the first object of that type
5424 -- as prefix.
5425
5426 if No (T) then
5427 Related_Id := Defining_Identifier (P);
5428 else
5429 Related_Id := T;
5430 end if;
5431
5432 Nb_Index := 1;
5433 while Present (Index) loop
5434 Analyze (Index);
5435
5436 -- Test for odd case of trying to index a type by the type itself
5437
5438 if Is_Entity_Name (Index) and then Entity (Index) = T then
5439 Error_Msg_N ("type& cannot be indexed by itself", Index);
5440 Set_Entity (Index, Standard_Boolean);
5441 Set_Etype (Index, Standard_Boolean);
5442 end if;
5443
5444 -- Check SPARK restriction requiring a subtype mark
5445
5446 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5447 Check_SPARK_05_Restriction ("subtype mark required", Index);
5448 end if;
5449
5450 -- Add a subtype declaration for each index of private array type
5451 -- declaration whose etype is also private. For example:
5452
5453 -- package Pkg is
5454 -- type Index is private;
5455 -- private
5456 -- type Table is array (Index) of ...
5457 -- end;
5458
5459 -- This is currently required by the expander for the internally
5460 -- generated equality subprogram of records with variant parts in
5461 -- which the etype of some component is such private type.
5462
5463 if Ekind (Current_Scope) = E_Package
5464 and then In_Private_Part (Current_Scope)
5465 and then Has_Private_Declaration (Etype (Index))
5466 then
5467 declare
5468 Loc : constant Source_Ptr := Sloc (Def);
5469 New_E : Entity_Id;
5470 Decl : Entity_Id;
5471
5472 begin
5473 New_E := Make_Temporary (Loc, 'T');
5474 Set_Is_Internal (New_E);
5475
5476 Decl :=
5477 Make_Subtype_Declaration (Loc,
5478 Defining_Identifier => New_E,
5479 Subtype_Indication =>
5480 New_Occurrence_Of (Etype (Index), Loc));
5481
5482 Insert_Before (Parent (Def), Decl);
5483 Analyze (Decl);
5484 Set_Etype (Index, New_E);
5485
5486 -- If the index is a range the Entity attribute is not
5487 -- available. Example:
5488
5489 -- package Pkg is
5490 -- type T is private;
5491 -- private
5492 -- type T is new Natural;
5493 -- Table : array (T(1) .. T(10)) of Boolean;
5494 -- end Pkg;
5495
5496 if Nkind (Index) /= N_Range then
5497 Set_Entity (Index, New_E);
5498 end if;
5499 end;
5500 end if;
5501
5502 Make_Index (Index, P, Related_Id, Nb_Index);
5503
5504 -- Check error of subtype with predicate for index type
5505
5506 Bad_Predicated_Subtype_Use
5507 ("subtype& has predicate, not allowed as index subtype",
5508 Index, Etype (Index));
5509
5510 -- Move to next index
5511
5512 Next_Index (Index);
5513 Nb_Index := Nb_Index + 1;
5514 end loop;
5515
5516 -- Process subtype indication if one is present
5517
5518 if Present (Component_Typ) then
5519 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5520
5521 Set_Etype (Component_Typ, Element_Type);
5522
5523 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5524 Check_SPARK_05_Restriction
5525 ("subtype mark required", Component_Typ);
5526 end if;
5527
5528 -- Ada 2005 (AI-230): Access Definition case
5529
5530 else pragma Assert (Present (Access_Definition (Component_Def)));
5531
5532 -- Indicate that the anonymous access type is created by the
5533 -- array type declaration.
5534
5535 Element_Type := Access_Definition
5536 (Related_Nod => P,
5537 N => Access_Definition (Component_Def));
5538 Set_Is_Local_Anonymous_Access (Element_Type);
5539
5540 -- Propagate the parent. This field is needed if we have to generate
5541 -- the master_id associated with an anonymous access to task type
5542 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5543
5544 Set_Parent (Element_Type, Parent (T));
5545
5546 -- Ada 2005 (AI-230): In case of components that are anonymous access
5547 -- types the level of accessibility depends on the enclosing type
5548 -- declaration
5549
5550 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5551
5552 -- Ada 2005 (AI-254)
5553
5554 declare
5555 CD : constant Node_Id :=
5556 Access_To_Subprogram_Definition
5557 (Access_Definition (Component_Def));
5558 begin
5559 if Present (CD) and then Protected_Present (CD) then
5560 Element_Type :=
5561 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5562 end if;
5563 end;
5564 end if;
5565
5566 -- Constrained array case
5567
5568 if No (T) then
5569 T := Create_Itype (E_Void, P, Related_Id, 'T');
5570 end if;
5571
5572 if Nkind (Def) = N_Constrained_Array_Definition then
5573
5574 -- Establish Implicit_Base as unconstrained base type
5575
5576 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5577
5578 Set_Etype (Implicit_Base, Implicit_Base);
5579 Set_Scope (Implicit_Base, Current_Scope);
5580 Set_Has_Delayed_Freeze (Implicit_Base);
5581 Set_Default_SSO (Implicit_Base);
5582
5583 -- The constrained array type is a subtype of the unconstrained one
5584
5585 Set_Ekind (T, E_Array_Subtype);
5586 Init_Size_Align (T);
5587 Set_Etype (T, Implicit_Base);
5588 Set_Scope (T, Current_Scope);
5589 Set_Is_Constrained (T);
5590 Set_First_Index (T,
5591 First (Discrete_Subtype_Definitions (Def)));
5592 Set_Has_Delayed_Freeze (T);
5593
5594 -- Complete setup of implicit base type
5595
5596 Set_First_Index (Implicit_Base, First_Index (T));
5597 Set_Component_Type (Implicit_Base, Element_Type);
5598 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5599 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5600 Set_Component_Size (Implicit_Base, Uint_0);
5601 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5602 Set_Has_Controlled_Component (Implicit_Base,
5603 Has_Controlled_Component (Element_Type)
5604 or else Is_Controlled_Active (Element_Type));
5605 Set_Finalize_Storage_Only (Implicit_Base,
5606 Finalize_Storage_Only (Element_Type));
5607
5608 -- Inherit the "ghostness" from the constrained array type
5609
5610 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5611 Set_Is_Ghost_Entity (Implicit_Base);
5612 end if;
5613
5614 -- Unconstrained array case
5615
5616 else
5617 Set_Ekind (T, E_Array_Type);
5618 Init_Size_Align (T);
5619 Set_Etype (T, T);
5620 Set_Scope (T, Current_Scope);
5621 Set_Component_Size (T, Uint_0);
5622 Set_Is_Constrained (T, False);
5623 Set_First_Index (T, First (Subtype_Marks (Def)));
5624 Set_Has_Delayed_Freeze (T, True);
5625 Set_Has_Task (T, Has_Task (Element_Type));
5626 Set_Has_Protected (T, Has_Protected (Element_Type));
5627 Set_Has_Controlled_Component (T, Has_Controlled_Component
5628 (Element_Type)
5629 or else
5630 Is_Controlled_Active (Element_Type));
5631 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5632 (Element_Type));
5633 Set_Default_SSO (T);
5634 end if;
5635
5636 -- Common attributes for both cases
5637
5638 Set_Component_Type (Base_Type (T), Element_Type);
5639 Set_Packed_Array_Impl_Type (T, Empty);
5640
5641 if Aliased_Present (Component_Definition (Def)) then
5642 Check_SPARK_05_Restriction
5643 ("aliased is not allowed", Component_Definition (Def));
5644 Set_Has_Aliased_Components (Etype (T));
5645 end if;
5646
5647 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5648 -- array type to ensure that objects of this type are initialized.
5649
5650 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5651 Set_Can_Never_Be_Null (T);
5652
5653 if Null_Exclusion_Present (Component_Definition (Def))
5654
5655 -- No need to check itypes because in their case this check was
5656 -- done at their point of creation
5657
5658 and then not Is_Itype (Element_Type)
5659 then
5660 Error_Msg_N
5661 ("`NOT NULL` not allowed (null already excluded)",
5662 Subtype_Indication (Component_Definition (Def)));
5663 end if;
5664 end if;
5665
5666 Priv := Private_Component (Element_Type);
5667
5668 if Present (Priv) then
5669
5670 -- Check for circular definitions
5671
5672 if Priv = Any_Type then
5673 Set_Component_Type (Etype (T), Any_Type);
5674
5675 -- There is a gap in the visibility of operations on the composite
5676 -- type only if the component type is defined in a different scope.
5677
5678 elsif Scope (Priv) = Current_Scope then
5679 null;
5680
5681 elsif Is_Limited_Type (Priv) then
5682 Set_Is_Limited_Composite (Etype (T));
5683 Set_Is_Limited_Composite (T);
5684 else
5685 Set_Is_Private_Composite (Etype (T));
5686 Set_Is_Private_Composite (T);
5687 end if;
5688 end if;
5689
5690 -- A syntax error in the declaration itself may lead to an empty index
5691 -- list, in which case do a minimal patch.
5692
5693 if No (First_Index (T)) then
5694 Error_Msg_N ("missing index definition in array type declaration", T);
5695
5696 declare
5697 Indexes : constant List_Id :=
5698 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5699 begin
5700 Set_Discrete_Subtype_Definitions (Def, Indexes);
5701 Set_First_Index (T, First (Indexes));
5702 return;
5703 end;
5704 end if;
5705
5706 -- Create a concatenation operator for the new type. Internal array
5707 -- types created for packed entities do not need such, they are
5708 -- compatible with the user-defined type.
5709
5710 if Number_Dimensions (T) = 1
5711 and then not Is_Packed_Array_Impl_Type (T)
5712 then
5713 New_Concatenation_Op (T);
5714 end if;
5715
5716 -- In the case of an unconstrained array the parser has already verified
5717 -- that all the indexes are unconstrained but we still need to make sure
5718 -- that the element type is constrained.
5719
5720 if not Is_Definite_Subtype (Element_Type) then
5721 Error_Msg_N
5722 ("unconstrained element type in array declaration",
5723 Subtype_Indication (Component_Def));
5724
5725 elsif Is_Abstract_Type (Element_Type) then
5726 Error_Msg_N
5727 ("the type of a component cannot be abstract",
5728 Subtype_Indication (Component_Def));
5729 end if;
5730
5731 -- There may be an invariant declared for the component type, but
5732 -- the construction of the component invariant checking procedure
5733 -- takes place during expansion.
5734 end Array_Type_Declaration;
5735
5736 ------------------------------------------------------
5737 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5738 ------------------------------------------------------
5739
5740 function Replace_Anonymous_Access_To_Protected_Subprogram
5741 (N : Node_Id) return Entity_Id
5742 is
5743 Loc : constant Source_Ptr := Sloc (N);
5744
5745 Curr_Scope : constant Scope_Stack_Entry :=
5746 Scope_Stack.Table (Scope_Stack.Last);
5747
5748 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5749
5750 Acc : Node_Id;
5751 -- Access definition in declaration
5752
5753 Comp : Node_Id;
5754 -- Object definition or formal definition with an access definition
5755
5756 Decl : Node_Id;
5757 -- Declaration of anonymous access to subprogram type
5758
5759 Spec : Node_Id;
5760 -- Original specification in access to subprogram
5761
5762 P : Node_Id;
5763
5764 begin
5765 Set_Is_Internal (Anon);
5766
5767 case Nkind (N) is
5768 when N_Component_Declaration |
5769 N_Unconstrained_Array_Definition |
5770 N_Constrained_Array_Definition =>
5771 Comp := Component_Definition (N);
5772 Acc := Access_Definition (Comp);
5773
5774 when N_Discriminant_Specification =>
5775 Comp := Discriminant_Type (N);
5776 Acc := Comp;
5777
5778 when N_Parameter_Specification =>
5779 Comp := Parameter_Type (N);
5780 Acc := Comp;
5781
5782 when N_Access_Function_Definition =>
5783 Comp := Result_Definition (N);
5784 Acc := Comp;
5785
5786 when N_Object_Declaration =>
5787 Comp := Object_Definition (N);
5788 Acc := Comp;
5789
5790 when N_Function_Specification =>
5791 Comp := Result_Definition (N);
5792 Acc := Comp;
5793
5794 when others =>
5795 raise Program_Error;
5796 end case;
5797
5798 Spec := Access_To_Subprogram_Definition (Acc);
5799
5800 Decl :=
5801 Make_Full_Type_Declaration (Loc,
5802 Defining_Identifier => Anon,
5803 Type_Definition => Copy_Separate_Tree (Spec));
5804
5805 Mark_Rewrite_Insertion (Decl);
5806
5807 -- In ASIS mode, analyze the profile on the original node, because
5808 -- the separate copy does not provide enough links to recover the
5809 -- original tree. Analysis is limited to type annotations, within
5810 -- a temporary scope that serves as an anonymous subprogram to collect
5811 -- otherwise useless temporaries and itypes.
5812
5813 if ASIS_Mode then
5814 declare
5815 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5816
5817 begin
5818 if Nkind (Spec) = N_Access_Function_Definition then
5819 Set_Ekind (Typ, E_Function);
5820 else
5821 Set_Ekind (Typ, E_Procedure);
5822 end if;
5823
5824 Set_Parent (Typ, N);
5825 Set_Scope (Typ, Current_Scope);
5826 Push_Scope (Typ);
5827
5828 -- Nothing to do if procedure is parameterless
5829
5830 if Present (Parameter_Specifications (Spec)) then
5831 Process_Formals (Parameter_Specifications (Spec), Spec);
5832 end if;
5833
5834 if Nkind (Spec) = N_Access_Function_Definition then
5835 declare
5836 Def : constant Node_Id := Result_Definition (Spec);
5837
5838 begin
5839 -- The result might itself be an anonymous access type, so
5840 -- have to recurse.
5841
5842 if Nkind (Def) = N_Access_Definition then
5843 if Present (Access_To_Subprogram_Definition (Def)) then
5844 Set_Etype
5845 (Def,
5846 Replace_Anonymous_Access_To_Protected_Subprogram
5847 (Spec));
5848 else
5849 Find_Type (Subtype_Mark (Def));
5850 end if;
5851
5852 else
5853 Find_Type (Def);
5854 end if;
5855 end;
5856 end if;
5857
5858 End_Scope;
5859 end;
5860 end if;
5861
5862 -- Insert the new declaration in the nearest enclosing scope. If the
5863 -- node is a body and N is its return type, the declaration belongs in
5864 -- the enclosing scope.
5865
5866 P := Parent (N);
5867
5868 if Nkind (P) = N_Subprogram_Body
5869 and then Nkind (N) = N_Function_Specification
5870 then
5871 P := Parent (P);
5872 end if;
5873
5874 while Present (P) and then not Has_Declarations (P) loop
5875 P := Parent (P);
5876 end loop;
5877
5878 pragma Assert (Present (P));
5879
5880 if Nkind (P) = N_Package_Specification then
5881 Prepend (Decl, Visible_Declarations (P));
5882 else
5883 Prepend (Decl, Declarations (P));
5884 end if;
5885
5886 -- Replace the anonymous type with an occurrence of the new declaration.
5887 -- In all cases the rewritten node does not have the null-exclusion
5888 -- attribute because (if present) it was already inherited by the
5889 -- anonymous entity (Anon). Thus, in case of components we do not
5890 -- inherit this attribute.
5891
5892 if Nkind (N) = N_Parameter_Specification then
5893 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5894 Set_Etype (Defining_Identifier (N), Anon);
5895 Set_Null_Exclusion_Present (N, False);
5896
5897 elsif Nkind (N) = N_Object_Declaration then
5898 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5899 Set_Etype (Defining_Identifier (N), Anon);
5900
5901 elsif Nkind (N) = N_Access_Function_Definition then
5902 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5903
5904 elsif Nkind (N) = N_Function_Specification then
5905 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5906 Set_Etype (Defining_Unit_Name (N), Anon);
5907
5908 else
5909 Rewrite (Comp,
5910 Make_Component_Definition (Loc,
5911 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5912 end if;
5913
5914 Mark_Rewrite_Insertion (Comp);
5915
5916 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5917 Analyze (Decl);
5918
5919 else
5920 -- Temporarily remove the current scope (record or subprogram) from
5921 -- the stack to add the new declarations to the enclosing scope.
5922
5923 Scope_Stack.Decrement_Last;
5924 Analyze (Decl);
5925 Set_Is_Itype (Anon);
5926 Scope_Stack.Append (Curr_Scope);
5927 end if;
5928
5929 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5930 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5931 return Anon;
5932 end Replace_Anonymous_Access_To_Protected_Subprogram;
5933
5934 -------------------------------
5935 -- Build_Derived_Access_Type --
5936 -------------------------------
5937
5938 procedure Build_Derived_Access_Type
5939 (N : Node_Id;
5940 Parent_Type : Entity_Id;
5941 Derived_Type : Entity_Id)
5942 is
5943 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5944
5945 Desig_Type : Entity_Id;
5946 Discr : Entity_Id;
5947 Discr_Con_Elist : Elist_Id;
5948 Discr_Con_El : Elmt_Id;
5949 Subt : Entity_Id;
5950
5951 begin
5952 -- Set the designated type so it is available in case this is an access
5953 -- to a self-referential type, e.g. a standard list type with a next
5954 -- pointer. Will be reset after subtype is built.
5955
5956 Set_Directly_Designated_Type
5957 (Derived_Type, Designated_Type (Parent_Type));
5958
5959 Subt := Process_Subtype (S, N);
5960
5961 if Nkind (S) /= N_Subtype_Indication
5962 and then Subt /= Base_Type (Subt)
5963 then
5964 Set_Ekind (Derived_Type, E_Access_Subtype);
5965 end if;
5966
5967 if Ekind (Derived_Type) = E_Access_Subtype then
5968 declare
5969 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5970 Ibase : constant Entity_Id :=
5971 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5972 Svg_Chars : constant Name_Id := Chars (Ibase);
5973 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5974
5975 begin
5976 Copy_Node (Pbase, Ibase);
5977
5978 Set_Chars (Ibase, Svg_Chars);
5979 Set_Next_Entity (Ibase, Svg_Next_E);
5980 Set_Sloc (Ibase, Sloc (Derived_Type));
5981 Set_Scope (Ibase, Scope (Derived_Type));
5982 Set_Freeze_Node (Ibase, Empty);
5983 Set_Is_Frozen (Ibase, False);
5984 Set_Comes_From_Source (Ibase, False);
5985 Set_Is_First_Subtype (Ibase, False);
5986
5987 Set_Etype (Ibase, Pbase);
5988 Set_Etype (Derived_Type, Ibase);
5989 end;
5990 end if;
5991
5992 Set_Directly_Designated_Type
5993 (Derived_Type, Designated_Type (Subt));
5994
5995 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5996 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5997 Set_Size_Info (Derived_Type, Parent_Type);
5998 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5999 Set_Depends_On_Private (Derived_Type,
6000 Has_Private_Component (Derived_Type));
6001 Conditional_Delay (Derived_Type, Subt);
6002
6003 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6004 -- that it is not redundant.
6005
6006 if Null_Exclusion_Present (Type_Definition (N)) then
6007 Set_Can_Never_Be_Null (Derived_Type);
6008
6009 -- What is with the "AND THEN FALSE" here ???
6010
6011 if Can_Never_Be_Null (Parent_Type)
6012 and then False
6013 then
6014 Error_Msg_NE
6015 ("`NOT NULL` not allowed (& already excludes null)",
6016 N, Parent_Type);
6017 end if;
6018
6019 elsif Can_Never_Be_Null (Parent_Type) then
6020 Set_Can_Never_Be_Null (Derived_Type);
6021 end if;
6022
6023 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6024 -- the root type for this information.
6025
6026 -- Apply range checks to discriminants for derived record case
6027 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6028
6029 Desig_Type := Designated_Type (Derived_Type);
6030 if Is_Composite_Type (Desig_Type)
6031 and then (not Is_Array_Type (Desig_Type))
6032 and then Has_Discriminants (Desig_Type)
6033 and then Base_Type (Desig_Type) /= Desig_Type
6034 then
6035 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6036 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6037
6038 Discr := First_Discriminant (Base_Type (Desig_Type));
6039 while Present (Discr_Con_El) loop
6040 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6041 Next_Elmt (Discr_Con_El);
6042 Next_Discriminant (Discr);
6043 end loop;
6044 end if;
6045 end Build_Derived_Access_Type;
6046
6047 ------------------------------
6048 -- Build_Derived_Array_Type --
6049 ------------------------------
6050
6051 procedure Build_Derived_Array_Type
6052 (N : Node_Id;
6053 Parent_Type : Entity_Id;
6054 Derived_Type : Entity_Id)
6055 is
6056 Loc : constant Source_Ptr := Sloc (N);
6057 Tdef : constant Node_Id := Type_Definition (N);
6058 Indic : constant Node_Id := Subtype_Indication (Tdef);
6059 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6060 Implicit_Base : Entity_Id;
6061 New_Indic : Node_Id;
6062
6063 procedure Make_Implicit_Base;
6064 -- If the parent subtype is constrained, the derived type is a subtype
6065 -- of an implicit base type derived from the parent base.
6066
6067 ------------------------
6068 -- Make_Implicit_Base --
6069 ------------------------
6070
6071 procedure Make_Implicit_Base is
6072 begin
6073 Implicit_Base :=
6074 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6075
6076 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6077 Set_Etype (Implicit_Base, Parent_Base);
6078
6079 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6080 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6081
6082 Set_Has_Delayed_Freeze (Implicit_Base, True);
6083
6084 -- Inherit the "ghostness" from the parent base type
6085
6086 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
6087 Set_Is_Ghost_Entity (Implicit_Base);
6088 end if;
6089 end Make_Implicit_Base;
6090
6091 -- Start of processing for Build_Derived_Array_Type
6092
6093 begin
6094 if not Is_Constrained (Parent_Type) then
6095 if Nkind (Indic) /= N_Subtype_Indication then
6096 Set_Ekind (Derived_Type, E_Array_Type);
6097
6098 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6099 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6100
6101 Set_Has_Delayed_Freeze (Derived_Type, True);
6102
6103 else
6104 Make_Implicit_Base;
6105 Set_Etype (Derived_Type, Implicit_Base);
6106
6107 New_Indic :=
6108 Make_Subtype_Declaration (Loc,
6109 Defining_Identifier => Derived_Type,
6110 Subtype_Indication =>
6111 Make_Subtype_Indication (Loc,
6112 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6113 Constraint => Constraint (Indic)));
6114
6115 Rewrite (N, New_Indic);
6116 Analyze (N);
6117 end if;
6118
6119 else
6120 if Nkind (Indic) /= N_Subtype_Indication then
6121 Make_Implicit_Base;
6122
6123 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6124 Set_Etype (Derived_Type, Implicit_Base);
6125 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6126
6127 else
6128 Error_Msg_N ("illegal constraint on constrained type", Indic);
6129 end if;
6130 end if;
6131
6132 -- If parent type is not a derived type itself, and is declared in
6133 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6134 -- the new type's concatenation operator since Derive_Subprograms
6135 -- will not inherit the parent's operator. If the parent type is
6136 -- unconstrained, the operator is of the unconstrained base type.
6137
6138 if Number_Dimensions (Parent_Type) = 1
6139 and then not Is_Limited_Type (Parent_Type)
6140 and then not Is_Derived_Type (Parent_Type)
6141 and then not Is_Package_Or_Generic_Package
6142 (Scope (Base_Type (Parent_Type)))
6143 then
6144 if not Is_Constrained (Parent_Type)
6145 and then Is_Constrained (Derived_Type)
6146 then
6147 New_Concatenation_Op (Implicit_Base);
6148 else
6149 New_Concatenation_Op (Derived_Type);
6150 end if;
6151 end if;
6152 end Build_Derived_Array_Type;
6153
6154 -----------------------------------
6155 -- Build_Derived_Concurrent_Type --
6156 -----------------------------------
6157
6158 procedure Build_Derived_Concurrent_Type
6159 (N : Node_Id;
6160 Parent_Type : Entity_Id;
6161 Derived_Type : Entity_Id)
6162 is
6163 Loc : constant Source_Ptr := Sloc (N);
6164
6165 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6166 Corr_Decl : Node_Id;
6167 Corr_Decl_Needed : Boolean;
6168 -- If the derived type has fewer discriminants than its parent, the
6169 -- corresponding record is also a derived type, in order to account for
6170 -- the bound discriminants. We create a full type declaration for it in
6171 -- this case.
6172
6173 Constraint_Present : constant Boolean :=
6174 Nkind (Subtype_Indication (Type_Definition (N))) =
6175 N_Subtype_Indication;
6176
6177 D_Constraint : Node_Id;
6178 New_Constraint : Elist_Id;
6179 Old_Disc : Entity_Id;
6180 New_Disc : Entity_Id;
6181 New_N : Node_Id;
6182
6183 begin
6184 Set_Stored_Constraint (Derived_Type, No_Elist);
6185 Corr_Decl_Needed := False;
6186 Old_Disc := Empty;
6187
6188 if Present (Discriminant_Specifications (N))
6189 and then Constraint_Present
6190 then
6191 Old_Disc := First_Discriminant (Parent_Type);
6192 New_Disc := First (Discriminant_Specifications (N));
6193 while Present (New_Disc) and then Present (Old_Disc) loop
6194 Next_Discriminant (Old_Disc);
6195 Next (New_Disc);
6196 end loop;
6197 end if;
6198
6199 if Present (Old_Disc) and then Expander_Active then
6200
6201 -- The new type has fewer discriminants, so we need to create a new
6202 -- corresponding record, which is derived from the corresponding
6203 -- record of the parent, and has a stored constraint that captures
6204 -- the values of the discriminant constraints. The corresponding
6205 -- record is needed only if expander is active and code generation is
6206 -- enabled.
6207
6208 -- The type declaration for the derived corresponding record has the
6209 -- same discriminant part and constraints as the current declaration.
6210 -- Copy the unanalyzed tree to build declaration.
6211
6212 Corr_Decl_Needed := True;
6213 New_N := Copy_Separate_Tree (N);
6214
6215 Corr_Decl :=
6216 Make_Full_Type_Declaration (Loc,
6217 Defining_Identifier => Corr_Record,
6218 Discriminant_Specifications =>
6219 Discriminant_Specifications (New_N),
6220 Type_Definition =>
6221 Make_Derived_Type_Definition (Loc,
6222 Subtype_Indication =>
6223 Make_Subtype_Indication (Loc,
6224 Subtype_Mark =>
6225 New_Occurrence_Of
6226 (Corresponding_Record_Type (Parent_Type), Loc),
6227 Constraint =>
6228 Constraint
6229 (Subtype_Indication (Type_Definition (New_N))))));
6230 end if;
6231
6232 -- Copy Storage_Size and Relative_Deadline variables if task case
6233
6234 if Is_Task_Type (Parent_Type) then
6235 Set_Storage_Size_Variable (Derived_Type,
6236 Storage_Size_Variable (Parent_Type));
6237 Set_Relative_Deadline_Variable (Derived_Type,
6238 Relative_Deadline_Variable (Parent_Type));
6239 end if;
6240
6241 if Present (Discriminant_Specifications (N)) then
6242 Push_Scope (Derived_Type);
6243 Check_Or_Process_Discriminants (N, Derived_Type);
6244
6245 if Constraint_Present then
6246 New_Constraint :=
6247 Expand_To_Stored_Constraint
6248 (Parent_Type,
6249 Build_Discriminant_Constraints
6250 (Parent_Type,
6251 Subtype_Indication (Type_Definition (N)), True));
6252 end if;
6253
6254 End_Scope;
6255
6256 elsif Constraint_Present then
6257
6258 -- Build constrained subtype, copying the constraint, and derive
6259 -- from it to create a derived constrained type.
6260
6261 declare
6262 Loc : constant Source_Ptr := Sloc (N);
6263 Anon : constant Entity_Id :=
6264 Make_Defining_Identifier (Loc,
6265 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6266 Decl : Node_Id;
6267
6268 begin
6269 Decl :=
6270 Make_Subtype_Declaration (Loc,
6271 Defining_Identifier => Anon,
6272 Subtype_Indication =>
6273 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6274 Insert_Before (N, Decl);
6275 Analyze (Decl);
6276
6277 Rewrite (Subtype_Indication (Type_Definition (N)),
6278 New_Occurrence_Of (Anon, Loc));
6279 Set_Analyzed (Derived_Type, False);
6280 Analyze (N);
6281 return;
6282 end;
6283 end if;
6284
6285 -- By default, operations and private data are inherited from parent.
6286 -- However, in the presence of bound discriminants, a new corresponding
6287 -- record will be created, see below.
6288
6289 Set_Has_Discriminants
6290 (Derived_Type, Has_Discriminants (Parent_Type));
6291 Set_Corresponding_Record_Type
6292 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6293
6294 -- Is_Constrained is set according the parent subtype, but is set to
6295 -- False if the derived type is declared with new discriminants.
6296
6297 Set_Is_Constrained
6298 (Derived_Type,
6299 (Is_Constrained (Parent_Type) or else Constraint_Present)
6300 and then not Present (Discriminant_Specifications (N)));
6301
6302 if Constraint_Present then
6303 if not Has_Discriminants (Parent_Type) then
6304 Error_Msg_N ("untagged parent must have discriminants", N);
6305
6306 elsif Present (Discriminant_Specifications (N)) then
6307
6308 -- Verify that new discriminants are used to constrain old ones
6309
6310 D_Constraint :=
6311 First
6312 (Constraints
6313 (Constraint (Subtype_Indication (Type_Definition (N)))));
6314
6315 Old_Disc := First_Discriminant (Parent_Type);
6316
6317 while Present (D_Constraint) loop
6318 if Nkind (D_Constraint) /= N_Discriminant_Association then
6319
6320 -- Positional constraint. If it is a reference to a new
6321 -- discriminant, it constrains the corresponding old one.
6322
6323 if Nkind (D_Constraint) = N_Identifier then
6324 New_Disc := First_Discriminant (Derived_Type);
6325 while Present (New_Disc) loop
6326 exit when Chars (New_Disc) = Chars (D_Constraint);
6327 Next_Discriminant (New_Disc);
6328 end loop;
6329
6330 if Present (New_Disc) then
6331 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6332 end if;
6333 end if;
6334
6335 Next_Discriminant (Old_Disc);
6336
6337 -- if this is a named constraint, search by name for the old
6338 -- discriminants constrained by the new one.
6339
6340 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6341
6342 -- Find new discriminant with that name
6343
6344 New_Disc := First_Discriminant (Derived_Type);
6345 while Present (New_Disc) loop
6346 exit when
6347 Chars (New_Disc) = Chars (Expression (D_Constraint));
6348 Next_Discriminant (New_Disc);
6349 end loop;
6350
6351 if Present (New_Disc) then
6352
6353 -- Verify that new discriminant renames some discriminant
6354 -- of the parent type, and associate the new discriminant
6355 -- with one or more old ones that it renames.
6356
6357 declare
6358 Selector : Node_Id;
6359
6360 begin
6361 Selector := First (Selector_Names (D_Constraint));
6362 while Present (Selector) loop
6363 Old_Disc := First_Discriminant (Parent_Type);
6364 while Present (Old_Disc) loop
6365 exit when Chars (Old_Disc) = Chars (Selector);
6366 Next_Discriminant (Old_Disc);
6367 end loop;
6368
6369 if Present (Old_Disc) then
6370 Set_Corresponding_Discriminant
6371 (New_Disc, Old_Disc);
6372 end if;
6373
6374 Next (Selector);
6375 end loop;
6376 end;
6377 end if;
6378 end if;
6379
6380 Next (D_Constraint);
6381 end loop;
6382
6383 New_Disc := First_Discriminant (Derived_Type);
6384 while Present (New_Disc) loop
6385 if No (Corresponding_Discriminant (New_Disc)) then
6386 Error_Msg_NE
6387 ("new discriminant& must constrain old one", N, New_Disc);
6388
6389 elsif not
6390 Subtypes_Statically_Compatible
6391 (Etype (New_Disc),
6392 Etype (Corresponding_Discriminant (New_Disc)))
6393 then
6394 Error_Msg_NE
6395 ("& not statically compatible with parent discriminant",
6396 N, New_Disc);
6397 end if;
6398
6399 Next_Discriminant (New_Disc);
6400 end loop;
6401 end if;
6402
6403 elsif Present (Discriminant_Specifications (N)) then
6404 Error_Msg_N
6405 ("missing discriminant constraint in untagged derivation", N);
6406 end if;
6407
6408 -- The entity chain of the derived type includes the new discriminants
6409 -- but shares operations with the parent.
6410
6411 if Present (Discriminant_Specifications (N)) then
6412 Old_Disc := First_Discriminant (Parent_Type);
6413 while Present (Old_Disc) loop
6414 if No (Next_Entity (Old_Disc))
6415 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6416 then
6417 Set_Next_Entity
6418 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6419 exit;
6420 end if;
6421
6422 Next_Discriminant (Old_Disc);
6423 end loop;
6424
6425 else
6426 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6427 if Has_Discriminants (Parent_Type) then
6428 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6429 Set_Discriminant_Constraint (
6430 Derived_Type, Discriminant_Constraint (Parent_Type));
6431 end if;
6432 end if;
6433
6434 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6435
6436 Set_Has_Completion (Derived_Type);
6437
6438 if Corr_Decl_Needed then
6439 Set_Stored_Constraint (Derived_Type, New_Constraint);
6440 Insert_After (N, Corr_Decl);
6441 Analyze (Corr_Decl);
6442 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6443 end if;
6444 end Build_Derived_Concurrent_Type;
6445
6446 ------------------------------------
6447 -- Build_Derived_Enumeration_Type --
6448 ------------------------------------
6449
6450 procedure Build_Derived_Enumeration_Type
6451 (N : Node_Id;
6452 Parent_Type : Entity_Id;
6453 Derived_Type : Entity_Id)
6454 is
6455 Loc : constant Source_Ptr := Sloc (N);
6456 Def : constant Node_Id := Type_Definition (N);
6457 Indic : constant Node_Id := Subtype_Indication (Def);
6458 Implicit_Base : Entity_Id;
6459 Literal : Entity_Id;
6460 New_Lit : Entity_Id;
6461 Literals_List : List_Id;
6462 Type_Decl : Node_Id;
6463 Hi, Lo : Node_Id;
6464 Rang_Expr : Node_Id;
6465
6466 begin
6467 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6468 -- not have explicit literals lists we need to process types derived
6469 -- from them specially. This is handled by Derived_Standard_Character.
6470 -- If the parent type is a generic type, there are no literals either,
6471 -- and we construct the same skeletal representation as for the generic
6472 -- parent type.
6473
6474 if Is_Standard_Character_Type (Parent_Type) then
6475 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6476
6477 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6478 declare
6479 Lo : Node_Id;
6480 Hi : Node_Id;
6481
6482 begin
6483 if Nkind (Indic) /= N_Subtype_Indication then
6484 Lo :=
6485 Make_Attribute_Reference (Loc,
6486 Attribute_Name => Name_First,
6487 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6488 Set_Etype (Lo, Derived_Type);
6489
6490 Hi :=
6491 Make_Attribute_Reference (Loc,
6492 Attribute_Name => Name_Last,
6493 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6494 Set_Etype (Hi, Derived_Type);
6495
6496 Set_Scalar_Range (Derived_Type,
6497 Make_Range (Loc,
6498 Low_Bound => Lo,
6499 High_Bound => Hi));
6500 else
6501
6502 -- Analyze subtype indication and verify compatibility
6503 -- with parent type.
6504
6505 if Base_Type (Process_Subtype (Indic, N)) /=
6506 Base_Type (Parent_Type)
6507 then
6508 Error_Msg_N
6509 ("illegal constraint for formal discrete type", N);
6510 end if;
6511 end if;
6512 end;
6513
6514 else
6515 -- If a constraint is present, analyze the bounds to catch
6516 -- premature usage of the derived literals.
6517
6518 if Nkind (Indic) = N_Subtype_Indication
6519 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6520 then
6521 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6522 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6523 end if;
6524
6525 -- Introduce an implicit base type for the derived type even if there
6526 -- is no constraint attached to it, since this seems closer to the
6527 -- Ada semantics. Build a full type declaration tree for the derived
6528 -- type using the implicit base type as the defining identifier. The
6529 -- build a subtype declaration tree which applies the constraint (if
6530 -- any) have it replace the derived type declaration.
6531
6532 Literal := First_Literal (Parent_Type);
6533 Literals_List := New_List;
6534 while Present (Literal)
6535 and then Ekind (Literal) = E_Enumeration_Literal
6536 loop
6537 -- Literals of the derived type have the same representation as
6538 -- those of the parent type, but this representation can be
6539 -- overridden by an explicit representation clause. Indicate
6540 -- that there is no explicit representation given yet. These
6541 -- derived literals are implicit operations of the new type,
6542 -- and can be overridden by explicit ones.
6543
6544 if Nkind (Literal) = N_Defining_Character_Literal then
6545 New_Lit :=
6546 Make_Defining_Character_Literal (Loc, Chars (Literal));
6547 else
6548 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6549 end if;
6550
6551 Set_Ekind (New_Lit, E_Enumeration_Literal);
6552 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6553 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6554 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6555 Set_Alias (New_Lit, Literal);
6556 Set_Is_Known_Valid (New_Lit, True);
6557
6558 Append (New_Lit, Literals_List);
6559 Next_Literal (Literal);
6560 end loop;
6561
6562 Implicit_Base :=
6563 Make_Defining_Identifier (Sloc (Derived_Type),
6564 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6565
6566 -- Indicate the proper nature of the derived type. This must be done
6567 -- before analysis of the literals, to recognize cases when a literal
6568 -- may be hidden by a previous explicit function definition (cf.
6569 -- c83031a).
6570
6571 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6572 Set_Etype (Derived_Type, Implicit_Base);
6573
6574 Type_Decl :=
6575 Make_Full_Type_Declaration (Loc,
6576 Defining_Identifier => Implicit_Base,
6577 Discriminant_Specifications => No_List,
6578 Type_Definition =>
6579 Make_Enumeration_Type_Definition (Loc, Literals_List));
6580
6581 Mark_Rewrite_Insertion (Type_Decl);
6582 Insert_Before (N, Type_Decl);
6583 Analyze (Type_Decl);
6584
6585 -- The anonymous base now has a full declaration, but this base
6586 -- is not a first subtype.
6587
6588 Set_Is_First_Subtype (Implicit_Base, False);
6589
6590 -- After the implicit base is analyzed its Etype needs to be changed
6591 -- to reflect the fact that it is derived from the parent type which
6592 -- was ignored during analysis. We also set the size at this point.
6593
6594 Set_Etype (Implicit_Base, Parent_Type);
6595
6596 Set_Size_Info (Implicit_Base, Parent_Type);
6597 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6598 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6599
6600 -- Copy other flags from parent type
6601
6602 Set_Has_Non_Standard_Rep
6603 (Implicit_Base, Has_Non_Standard_Rep
6604 (Parent_Type));
6605 Set_Has_Pragma_Ordered
6606 (Implicit_Base, Has_Pragma_Ordered
6607 (Parent_Type));
6608 Set_Has_Delayed_Freeze (Implicit_Base);
6609
6610 -- Process the subtype indication including a validation check on the
6611 -- constraint, if any. If a constraint is given, its bounds must be
6612 -- implicitly converted to the new type.
6613
6614 if Nkind (Indic) = N_Subtype_Indication then
6615 declare
6616 R : constant Node_Id :=
6617 Range_Expression (Constraint (Indic));
6618
6619 begin
6620 if Nkind (R) = N_Range then
6621 Hi := Build_Scalar_Bound
6622 (High_Bound (R), Parent_Type, Implicit_Base);
6623 Lo := Build_Scalar_Bound
6624 (Low_Bound (R), Parent_Type, Implicit_Base);
6625
6626 else
6627 -- Constraint is a Range attribute. Replace with explicit
6628 -- mention of the bounds of the prefix, which must be a
6629 -- subtype.
6630
6631 Analyze (Prefix (R));
6632 Hi :=
6633 Convert_To (Implicit_Base,
6634 Make_Attribute_Reference (Loc,
6635 Attribute_Name => Name_Last,
6636 Prefix =>
6637 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6638
6639 Lo :=
6640 Convert_To (Implicit_Base,
6641 Make_Attribute_Reference (Loc,
6642 Attribute_Name => Name_First,
6643 Prefix =>
6644 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6645 end if;
6646 end;
6647
6648 else
6649 Hi :=
6650 Build_Scalar_Bound
6651 (Type_High_Bound (Parent_Type),
6652 Parent_Type, Implicit_Base);
6653 Lo :=
6654 Build_Scalar_Bound
6655 (Type_Low_Bound (Parent_Type),
6656 Parent_Type, Implicit_Base);
6657 end if;
6658
6659 Rang_Expr :=
6660 Make_Range (Loc,
6661 Low_Bound => Lo,
6662 High_Bound => Hi);
6663
6664 -- If we constructed a default range for the case where no range
6665 -- was given, then the expressions in the range must not freeze
6666 -- since they do not correspond to expressions in the source.
6667
6668 if Nkind (Indic) /= N_Subtype_Indication then
6669 Set_Must_Not_Freeze (Lo);
6670 Set_Must_Not_Freeze (Hi);
6671 Set_Must_Not_Freeze (Rang_Expr);
6672 end if;
6673
6674 Rewrite (N,
6675 Make_Subtype_Declaration (Loc,
6676 Defining_Identifier => Derived_Type,
6677 Subtype_Indication =>
6678 Make_Subtype_Indication (Loc,
6679 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6680 Constraint =>
6681 Make_Range_Constraint (Loc,
6682 Range_Expression => Rang_Expr))));
6683
6684 Analyze (N);
6685
6686 -- Propagate the aspects from the original type declaration to the
6687 -- declaration of the implicit base.
6688
6689 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6690
6691 -- Apply a range check. Since this range expression doesn't have an
6692 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6693 -- this right???
6694
6695 if Nkind (Indic) = N_Subtype_Indication then
6696 Apply_Range_Check
6697 (Range_Expression (Constraint (Indic)), Parent_Type,
6698 Source_Typ => Entity (Subtype_Mark (Indic)));
6699 end if;
6700 end if;
6701 end Build_Derived_Enumeration_Type;
6702
6703 --------------------------------
6704 -- Build_Derived_Numeric_Type --
6705 --------------------------------
6706
6707 procedure Build_Derived_Numeric_Type
6708 (N : Node_Id;
6709 Parent_Type : Entity_Id;
6710 Derived_Type : Entity_Id)
6711 is
6712 Loc : constant Source_Ptr := Sloc (N);
6713 Tdef : constant Node_Id := Type_Definition (N);
6714 Indic : constant Node_Id := Subtype_Indication (Tdef);
6715 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6716 No_Constraint : constant Boolean := Nkind (Indic) /=
6717 N_Subtype_Indication;
6718 Implicit_Base : Entity_Id;
6719
6720 Lo : Node_Id;
6721 Hi : Node_Id;
6722
6723 begin
6724 -- Process the subtype indication including a validation check on
6725 -- the constraint if any.
6726
6727 Discard_Node (Process_Subtype (Indic, N));
6728
6729 -- Introduce an implicit base type for the derived type even if there
6730 -- is no constraint attached to it, since this seems closer to the Ada
6731 -- semantics.
6732
6733 Implicit_Base :=
6734 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6735
6736 Set_Etype (Implicit_Base, Parent_Base);
6737 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6738 Set_Size_Info (Implicit_Base, Parent_Base);
6739 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6740 Set_Parent (Implicit_Base, Parent (Derived_Type));
6741 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6742
6743 -- Set RM Size for discrete type or decimal fixed-point type
6744 -- Ordinary fixed-point is excluded, why???
6745
6746 if Is_Discrete_Type (Parent_Base)
6747 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6748 then
6749 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6750 end if;
6751
6752 Set_Has_Delayed_Freeze (Implicit_Base);
6753
6754 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6755 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6756
6757 Set_Scalar_Range (Implicit_Base,
6758 Make_Range (Loc,
6759 Low_Bound => Lo,
6760 High_Bound => Hi));
6761
6762 if Has_Infinities (Parent_Base) then
6763 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6764 end if;
6765
6766 -- The Derived_Type, which is the entity of the declaration, is a
6767 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6768 -- absence of an explicit constraint.
6769
6770 Set_Etype (Derived_Type, Implicit_Base);
6771
6772 -- If we did not have a constraint, then the Ekind is set from the
6773 -- parent type (otherwise Process_Subtype has set the bounds)
6774
6775 if No_Constraint then
6776 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6777 end if;
6778
6779 -- If we did not have a range constraint, then set the range from the
6780 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6781
6782 if No_Constraint or else not Has_Range_Constraint (Indic) then
6783 Set_Scalar_Range (Derived_Type,
6784 Make_Range (Loc,
6785 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6786 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6787 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6788
6789 if Has_Infinities (Parent_Type) then
6790 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6791 end if;
6792
6793 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6794 end if;
6795
6796 Set_Is_Descendent_Of_Address (Derived_Type,
6797 Is_Descendent_Of_Address (Parent_Type));
6798 Set_Is_Descendent_Of_Address (Implicit_Base,
6799 Is_Descendent_Of_Address (Parent_Type));
6800
6801 -- Set remaining type-specific fields, depending on numeric type
6802
6803 if Is_Modular_Integer_Type (Parent_Type) then
6804 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6805
6806 Set_Non_Binary_Modulus
6807 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6808
6809 Set_Is_Known_Valid
6810 (Implicit_Base, Is_Known_Valid (Parent_Base));
6811
6812 elsif Is_Floating_Point_Type (Parent_Type) then
6813
6814 -- Digits of base type is always copied from the digits value of
6815 -- the parent base type, but the digits of the derived type will
6816 -- already have been set if there was a constraint present.
6817
6818 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6819 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6820
6821 if No_Constraint then
6822 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6823 end if;
6824
6825 elsif Is_Fixed_Point_Type (Parent_Type) then
6826
6827 -- Small of base type and derived type are always copied from the
6828 -- parent base type, since smalls never change. The delta of the
6829 -- base type is also copied from the parent base type. However the
6830 -- delta of the derived type will have been set already if a
6831 -- constraint was present.
6832
6833 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6834 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6835 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6836
6837 if No_Constraint then
6838 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6839 end if;
6840
6841 -- The scale and machine radix in the decimal case are always
6842 -- copied from the parent base type.
6843
6844 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6845 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6846 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6847
6848 Set_Machine_Radix_10
6849 (Derived_Type, Machine_Radix_10 (Parent_Base));
6850 Set_Machine_Radix_10
6851 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6852
6853 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6854
6855 if No_Constraint then
6856 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6857
6858 else
6859 -- the analysis of the subtype_indication sets the
6860 -- digits value of the derived type.
6861
6862 null;
6863 end if;
6864 end if;
6865 end if;
6866
6867 if Is_Integer_Type (Parent_Type) then
6868 Set_Has_Shift_Operator
6869 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6870 end if;
6871
6872 -- The type of the bounds is that of the parent type, and they
6873 -- must be converted to the derived type.
6874
6875 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6876
6877 -- The implicit_base should be frozen when the derived type is frozen,
6878 -- but note that it is used in the conversions of the bounds. For fixed
6879 -- types we delay the determination of the bounds until the proper
6880 -- freezing point. For other numeric types this is rejected by GCC, for
6881 -- reasons that are currently unclear (???), so we choose to freeze the
6882 -- implicit base now. In the case of integers and floating point types
6883 -- this is harmless because subsequent representation clauses cannot
6884 -- affect anything, but it is still baffling that we cannot use the
6885 -- same mechanism for all derived numeric types.
6886
6887 -- There is a further complication: actually some representation
6888 -- clauses can affect the implicit base type. For example, attribute
6889 -- definition clauses for stream-oriented attributes need to set the
6890 -- corresponding TSS entries on the base type, and this normally
6891 -- cannot be done after the base type is frozen, so the circuitry in
6892 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6893 -- and not use Set_TSS in this case.
6894
6895 -- There are also consequences for the case of delayed representation
6896 -- aspects for some cases. For example, a Size aspect is delayed and
6897 -- should not be evaluated to the freeze point. This early freezing
6898 -- means that the size attribute evaluation happens too early???
6899
6900 if Is_Fixed_Point_Type (Parent_Type) then
6901 Conditional_Delay (Implicit_Base, Parent_Type);
6902 else
6903 Freeze_Before (N, Implicit_Base);
6904 end if;
6905 end Build_Derived_Numeric_Type;
6906
6907 --------------------------------
6908 -- Build_Derived_Private_Type --
6909 --------------------------------
6910
6911 procedure Build_Derived_Private_Type
6912 (N : Node_Id;
6913 Parent_Type : Entity_Id;
6914 Derived_Type : Entity_Id;
6915 Is_Completion : Boolean;
6916 Derive_Subps : Boolean := True)
6917 is
6918 Loc : constant Source_Ptr := Sloc (N);
6919 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6920 Par_Scope : constant Entity_Id := Scope (Par_Base);
6921 Full_N : constant Node_Id := New_Copy_Tree (N);
6922 Full_Der : Entity_Id := New_Copy (Derived_Type);
6923 Full_P : Entity_Id;
6924
6925 procedure Build_Full_Derivation;
6926 -- Build full derivation, i.e. derive from the full view
6927
6928 procedure Copy_And_Build;
6929 -- Copy derived type declaration, replace parent with its full view,
6930 -- and build derivation
6931
6932 ---------------------------
6933 -- Build_Full_Derivation --
6934 ---------------------------
6935
6936 procedure Build_Full_Derivation is
6937 begin
6938 -- If parent scope is not open, install the declarations
6939
6940 if not In_Open_Scopes (Par_Scope) then
6941 Install_Private_Declarations (Par_Scope);
6942 Install_Visible_Declarations (Par_Scope);
6943 Copy_And_Build;
6944 Uninstall_Declarations (Par_Scope);
6945
6946 -- If parent scope is open and in another unit, and parent has a
6947 -- completion, then the derivation is taking place in the visible
6948 -- part of a child unit. In that case retrieve the full view of
6949 -- the parent momentarily.
6950
6951 elsif not In_Same_Source_Unit (N, Parent_Type) then
6952 Full_P := Full_View (Parent_Type);
6953 Exchange_Declarations (Parent_Type);
6954 Copy_And_Build;
6955 Exchange_Declarations (Full_P);
6956
6957 -- Otherwise it is a local derivation
6958
6959 else
6960 Copy_And_Build;
6961 end if;
6962 end Build_Full_Derivation;
6963
6964 --------------------
6965 -- Copy_And_Build --
6966 --------------------
6967
6968 procedure Copy_And_Build is
6969 Full_Parent : Entity_Id := Parent_Type;
6970
6971 begin
6972 -- If the parent is itself derived from another private type,
6973 -- installing the private declarations has not affected its
6974 -- privacy status, so use its own full view explicitly.
6975
6976 if Is_Private_Type (Full_Parent)
6977 and then Present (Full_View (Full_Parent))
6978 then
6979 Full_Parent := Full_View (Full_Parent);
6980 end if;
6981
6982 -- And its underlying full view if necessary
6983
6984 if Is_Private_Type (Full_Parent)
6985 and then Present (Underlying_Full_View (Full_Parent))
6986 then
6987 Full_Parent := Underlying_Full_View (Full_Parent);
6988 end if;
6989
6990 -- For record, access and most enumeration types, derivation from
6991 -- the full view requires a fully-fledged declaration. In the other
6992 -- cases, just use an itype.
6993
6994 if Ekind (Full_Parent) in Record_Kind
6995 or else Ekind (Full_Parent) in Access_Kind
6996 or else
6997 (Ekind (Full_Parent) in Enumeration_Kind
6998 and then not Is_Standard_Character_Type (Full_Parent)
6999 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7000 then
7001 -- Copy and adjust declaration to provide a completion for what
7002 -- is originally a private declaration. Indicate that full view
7003 -- is internally generated.
7004
7005 Set_Comes_From_Source (Full_N, False);
7006 Set_Comes_From_Source (Full_Der, False);
7007 Set_Parent (Full_Der, Full_N);
7008 Set_Defining_Identifier (Full_N, Full_Der);
7009
7010 -- If there are no constraints, adjust the subtype mark
7011
7012 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7013 N_Subtype_Indication
7014 then
7015 Set_Subtype_Indication
7016 (Type_Definition (Full_N),
7017 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7018 end if;
7019
7020 Insert_After (N, Full_N);
7021
7022 -- Build full view of derived type from full view of parent which
7023 -- is now installed. Subprograms have been derived on the partial
7024 -- view, the completion does not derive them anew.
7025
7026 if Ekind (Full_Parent) in Record_Kind then
7027
7028 -- If parent type is tagged, the completion inherits the proper
7029 -- primitive operations.
7030
7031 if Is_Tagged_Type (Parent_Type) then
7032 Build_Derived_Record_Type
7033 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7034 else
7035 Build_Derived_Record_Type
7036 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7037 end if;
7038
7039 else
7040 Build_Derived_Type
7041 (Full_N, Full_Parent, Full_Der,
7042 Is_Completion => False, Derive_Subps => False);
7043 end if;
7044
7045 -- The full declaration has been introduced into the tree and
7046 -- processed in the step above. It should not be analyzed again
7047 -- (when encountered later in the current list of declarations)
7048 -- to prevent spurious name conflicts. The full entity remains
7049 -- invisible.
7050
7051 Set_Analyzed (Full_N);
7052
7053 else
7054 Full_Der :=
7055 Make_Defining_Identifier (Sloc (Derived_Type),
7056 Chars => Chars (Derived_Type));
7057 Set_Is_Itype (Full_Der);
7058 Set_Associated_Node_For_Itype (Full_Der, N);
7059 Set_Parent (Full_Der, N);
7060 Build_Derived_Type
7061 (N, Full_Parent, Full_Der,
7062 Is_Completion => False, Derive_Subps => False);
7063 end if;
7064
7065 Set_Has_Private_Declaration (Full_Der);
7066 Set_Has_Private_Declaration (Derived_Type);
7067
7068 Set_Scope (Full_Der, Scope (Derived_Type));
7069 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7070 Set_Has_Size_Clause (Full_Der, False);
7071 Set_Has_Alignment_Clause (Full_Der, False);
7072 Set_Has_Delayed_Freeze (Full_Der);
7073 Set_Is_Frozen (Full_Der, False);
7074 Set_Freeze_Node (Full_Der, Empty);
7075 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7076 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7077
7078 -- The convention on the base type may be set in the private part
7079 -- and not propagated to the subtype until later, so we obtain the
7080 -- convention from the base type of the parent.
7081
7082 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7083 end Copy_And_Build;
7084
7085 -- Start of processing for Build_Derived_Private_Type
7086
7087 begin
7088 if Is_Tagged_Type (Parent_Type) then
7089 Full_P := Full_View (Parent_Type);
7090
7091 -- A type extension of a type with unknown discriminants is an
7092 -- indefinite type that the back-end cannot handle directly.
7093 -- We treat it as a private type, and build a completion that is
7094 -- derived from the full view of the parent, and hopefully has
7095 -- known discriminants.
7096
7097 -- If the full view of the parent type has an underlying record view,
7098 -- use it to generate the underlying record view of this derived type
7099 -- (required for chains of derivations with unknown discriminants).
7100
7101 -- Minor optimization: we avoid the generation of useless underlying
7102 -- record view entities if the private type declaration has unknown
7103 -- discriminants but its corresponding full view has no
7104 -- discriminants.
7105
7106 if Has_Unknown_Discriminants (Parent_Type)
7107 and then Present (Full_P)
7108 and then (Has_Discriminants (Full_P)
7109 or else Present (Underlying_Record_View (Full_P)))
7110 and then not In_Open_Scopes (Par_Scope)
7111 and then Expander_Active
7112 then
7113 declare
7114 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7115 New_Ext : constant Node_Id :=
7116 Copy_Separate_Tree
7117 (Record_Extension_Part (Type_Definition (N)));
7118 Decl : Node_Id;
7119
7120 begin
7121 Build_Derived_Record_Type
7122 (N, Parent_Type, Derived_Type, Derive_Subps);
7123
7124 -- Build anonymous completion, as a derivation from the full
7125 -- view of the parent. This is not a completion in the usual
7126 -- sense, because the current type is not private.
7127
7128 Decl :=
7129 Make_Full_Type_Declaration (Loc,
7130 Defining_Identifier => Full_Der,
7131 Type_Definition =>
7132 Make_Derived_Type_Definition (Loc,
7133 Subtype_Indication =>
7134 New_Copy_Tree
7135 (Subtype_Indication (Type_Definition (N))),
7136 Record_Extension_Part => New_Ext));
7137
7138 -- If the parent type has an underlying record view, use it
7139 -- here to build the new underlying record view.
7140
7141 if Present (Underlying_Record_View (Full_P)) then
7142 pragma Assert
7143 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7144 = N_Identifier);
7145 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7146 Underlying_Record_View (Full_P));
7147 end if;
7148
7149 Install_Private_Declarations (Par_Scope);
7150 Install_Visible_Declarations (Par_Scope);
7151 Insert_Before (N, Decl);
7152
7153 -- Mark entity as an underlying record view before analysis,
7154 -- to avoid generating the list of its primitive operations
7155 -- (which is not really required for this entity) and thus
7156 -- prevent spurious errors associated with missing overriding
7157 -- of abstract primitives (overridden only for Derived_Type).
7158
7159 Set_Ekind (Full_Der, E_Record_Type);
7160 Set_Is_Underlying_Record_View (Full_Der);
7161 Set_Default_SSO (Full_Der);
7162
7163 Analyze (Decl);
7164
7165 pragma Assert (Has_Discriminants (Full_Der)
7166 and then not Has_Unknown_Discriminants (Full_Der));
7167
7168 Uninstall_Declarations (Par_Scope);
7169
7170 -- Freeze the underlying record view, to prevent generation of
7171 -- useless dispatching information, which is simply shared with
7172 -- the real derived type.
7173
7174 Set_Is_Frozen (Full_Der);
7175
7176 -- If the derived type has access discriminants, create
7177 -- references to their anonymous types now, to prevent
7178 -- back-end problems when their first use is in generated
7179 -- bodies of primitives.
7180
7181 declare
7182 E : Entity_Id;
7183
7184 begin
7185 E := First_Entity (Full_Der);
7186
7187 while Present (E) loop
7188 if Ekind (E) = E_Discriminant
7189 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7190 then
7191 Build_Itype_Reference (Etype (E), Decl);
7192 end if;
7193
7194 Next_Entity (E);
7195 end loop;
7196 end;
7197
7198 -- Set up links between real entity and underlying record view
7199
7200 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7201 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7202 end;
7203
7204 -- If discriminants are known, build derived record
7205
7206 else
7207 Build_Derived_Record_Type
7208 (N, Parent_Type, Derived_Type, Derive_Subps);
7209 end if;
7210
7211 return;
7212
7213 elsif Has_Discriminants (Parent_Type) then
7214
7215 -- Build partial view of derived type from partial view of parent.
7216 -- This must be done before building the full derivation because the
7217 -- second derivation will modify the discriminants of the first and
7218 -- the discriminants are chained with the rest of the components in
7219 -- the full derivation.
7220
7221 Build_Derived_Record_Type
7222 (N, Parent_Type, Derived_Type, Derive_Subps);
7223
7224 -- Build the full derivation if this is not the anonymous derived
7225 -- base type created by Build_Derived_Record_Type in the constrained
7226 -- case (see point 5. of its head comment) since we build it for the
7227 -- derived subtype. And skip it for protected types altogether, as
7228 -- gigi does not use these types directly.
7229
7230 if Present (Full_View (Parent_Type))
7231 and then not Is_Itype (Derived_Type)
7232 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7233 then
7234 declare
7235 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7236 Discr : Entity_Id;
7237 Last_Discr : Entity_Id;
7238
7239 begin
7240 -- If this is not a completion, construct the implicit full
7241 -- view by deriving from the full view of the parent type.
7242 -- But if this is a completion, the derived private type
7243 -- being built is a full view and the full derivation can
7244 -- only be its underlying full view.
7245
7246 Build_Full_Derivation;
7247
7248 if not Is_Completion then
7249 Set_Full_View (Derived_Type, Full_Der);
7250 else
7251 Set_Underlying_Full_View (Derived_Type, Full_Der);
7252 end if;
7253
7254 if not Is_Base_Type (Derived_Type) then
7255 Set_Full_View (Der_Base, Base_Type (Full_Der));
7256 end if;
7257
7258 -- Copy the discriminant list from full view to the partial
7259 -- view (base type and its subtype). Gigi requires that the
7260 -- partial and full views have the same discriminants.
7261
7262 -- Note that since the partial view points to discriminants
7263 -- in the full view, their scope will be that of the full
7264 -- view. This might cause some front end problems and need
7265 -- adjustment???
7266
7267 Discr := First_Discriminant (Base_Type (Full_Der));
7268 Set_First_Entity (Der_Base, Discr);
7269
7270 loop
7271 Last_Discr := Discr;
7272 Next_Discriminant (Discr);
7273 exit when No (Discr);
7274 end loop;
7275
7276 Set_Last_Entity (Der_Base, Last_Discr);
7277 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7278 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7279
7280 Set_Stored_Constraint
7281 (Full_Der, Stored_Constraint (Derived_Type));
7282 end;
7283 end if;
7284
7285 elsif Present (Full_View (Parent_Type))
7286 and then Has_Discriminants (Full_View (Parent_Type))
7287 then
7288 if Has_Unknown_Discriminants (Parent_Type)
7289 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7290 N_Subtype_Indication
7291 then
7292 Error_Msg_N
7293 ("cannot constrain type with unknown discriminants",
7294 Subtype_Indication (Type_Definition (N)));
7295 return;
7296 end if;
7297
7298 -- If this is not a completion, construct the implicit full view by
7299 -- deriving from the full view of the parent type. But if this is a
7300 -- completion, the derived private type being built is a full view
7301 -- and the full derivation can only be its underlying full view.
7302
7303 Build_Full_Derivation;
7304
7305 if not Is_Completion then
7306 Set_Full_View (Derived_Type, Full_Der);
7307 else
7308 Set_Underlying_Full_View (Derived_Type, Full_Der);
7309 end if;
7310
7311 -- In any case, the primitive operations are inherited from the
7312 -- parent type, not from the internal full view.
7313
7314 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7315
7316 if Derive_Subps then
7317 Derive_Subprograms (Parent_Type, Derived_Type);
7318 end if;
7319
7320 Set_Stored_Constraint (Derived_Type, No_Elist);
7321 Set_Is_Constrained
7322 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7323
7324 else
7325 -- Untagged type, No discriminants on either view
7326
7327 if Nkind (Subtype_Indication (Type_Definition (N))) =
7328 N_Subtype_Indication
7329 then
7330 Error_Msg_N
7331 ("illegal constraint on type without discriminants", N);
7332 end if;
7333
7334 if Present (Discriminant_Specifications (N))
7335 and then Present (Full_View (Parent_Type))
7336 and then not Is_Tagged_Type (Full_View (Parent_Type))
7337 then
7338 Error_Msg_N ("cannot add discriminants to untagged type", N);
7339 end if;
7340
7341 Set_Stored_Constraint (Derived_Type, No_Elist);
7342 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7343 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7344 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7345 (Parent_Type));
7346 Set_Has_Controlled_Component
7347 (Derived_Type, Has_Controlled_Component
7348 (Parent_Type));
7349
7350 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7351
7352 if not Is_Controlled_Active (Parent_Type) then
7353 Set_Finalize_Storage_Only
7354 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7355 end if;
7356
7357 -- If this is not a completion, construct the implicit full view by
7358 -- deriving from the full view of the parent type.
7359
7360 -- ??? If the parent is untagged private and its completion is
7361 -- tagged, this mechanism will not work because we cannot derive from
7362 -- the tagged full view unless we have an extension.
7363
7364 if Present (Full_View (Parent_Type))
7365 and then not Is_Tagged_Type (Full_View (Parent_Type))
7366 and then not Is_Completion
7367 then
7368 Build_Full_Derivation;
7369 Set_Full_View (Derived_Type, Full_Der);
7370 end if;
7371 end if;
7372
7373 Set_Has_Unknown_Discriminants (Derived_Type,
7374 Has_Unknown_Discriminants (Parent_Type));
7375
7376 if Is_Private_Type (Derived_Type) then
7377 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7378 end if;
7379
7380 -- If the parent base type is in scope, add the derived type to its
7381 -- list of private dependents, because its full view may become
7382 -- visible subsequently (in a nested private part, a body, or in a
7383 -- further child unit).
7384
7385 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7386 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7387
7388 -- Check for unusual case where a type completed by a private
7389 -- derivation occurs within a package nested in a child unit, and
7390 -- the parent is declared in an ancestor.
7391
7392 if Is_Child_Unit (Scope (Current_Scope))
7393 and then Is_Completion
7394 and then In_Private_Part (Current_Scope)
7395 and then Scope (Parent_Type) /= Current_Scope
7396
7397 -- Note that if the parent has a completion in the private part,
7398 -- (which is itself a derivation from some other private type)
7399 -- it is that completion that is visible, there is no full view
7400 -- available, and no special processing is needed.
7401
7402 and then Present (Full_View (Parent_Type))
7403 then
7404 -- In this case, the full view of the parent type will become
7405 -- visible in the body of the enclosing child, and only then will
7406 -- the current type be possibly non-private. Build an underlying
7407 -- full view that will be installed when the enclosing child body
7408 -- is compiled.
7409
7410 if Present (Underlying_Full_View (Derived_Type)) then
7411 Full_Der := Underlying_Full_View (Derived_Type);
7412 else
7413 Build_Full_Derivation;
7414 Set_Underlying_Full_View (Derived_Type, Full_Der);
7415 end if;
7416
7417 -- The full view will be used to swap entities on entry/exit to
7418 -- the body, and must appear in the entity list for the package.
7419
7420 Append_Entity (Full_Der, Scope (Derived_Type));
7421 end if;
7422 end if;
7423 end Build_Derived_Private_Type;
7424
7425 -------------------------------
7426 -- Build_Derived_Record_Type --
7427 -------------------------------
7428
7429 -- 1. INTRODUCTION
7430
7431 -- Ideally we would like to use the same model of type derivation for
7432 -- tagged and untagged record types. Unfortunately this is not quite
7433 -- possible because the semantics of representation clauses is different
7434 -- for tagged and untagged records under inheritance. Consider the
7435 -- following:
7436
7437 -- type R (...) is [tagged] record ... end record;
7438 -- type T (...) is new R (...) [with ...];
7439
7440 -- The representation clauses for T can specify a completely different
7441 -- record layout from R's. Hence the same component can be placed in two
7442 -- very different positions in objects of type T and R. If R and T are
7443 -- tagged types, representation clauses for T can only specify the layout
7444 -- of non inherited components, thus components that are common in R and T
7445 -- have the same position in objects of type R and T.
7446
7447 -- This has two implications. The first is that the entire tree for R's
7448 -- declaration needs to be copied for T in the untagged case, so that T
7449 -- can be viewed as a record type of its own with its own representation
7450 -- clauses. The second implication is the way we handle discriminants.
7451 -- Specifically, in the untagged case we need a way to communicate to Gigi
7452 -- what are the real discriminants in the record, while for the semantics
7453 -- we need to consider those introduced by the user to rename the
7454 -- discriminants in the parent type. This is handled by introducing the
7455 -- notion of stored discriminants. See below for more.
7456
7457 -- Fortunately the way regular components are inherited can be handled in
7458 -- the same way in tagged and untagged types.
7459
7460 -- To complicate things a bit more the private view of a private extension
7461 -- cannot be handled in the same way as the full view (for one thing the
7462 -- semantic rules are somewhat different). We will explain what differs
7463 -- below.
7464
7465 -- 2. DISCRIMINANTS UNDER INHERITANCE
7466
7467 -- The semantic rules governing the discriminants of derived types are
7468 -- quite subtle.
7469
7470 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7471 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7472
7473 -- If parent type has discriminants, then the discriminants that are
7474 -- declared in the derived type are [3.4 (11)]:
7475
7476 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7477 -- there is one;
7478
7479 -- o Otherwise, each discriminant of the parent type (implicitly declared
7480 -- in the same order with the same specifications). In this case, the
7481 -- discriminants are said to be "inherited", or if unknown in the parent
7482 -- are also unknown in the derived type.
7483
7484 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7485
7486 -- o The parent subtype must be constrained;
7487
7488 -- o If the parent type is not a tagged type, then each discriminant of
7489 -- the derived type must be used in the constraint defining a parent
7490 -- subtype. [Implementation note: This ensures that the new discriminant
7491 -- can share storage with an existing discriminant.]
7492
7493 -- For the derived type each discriminant of the parent type is either
7494 -- inherited, constrained to equal some new discriminant of the derived
7495 -- type, or constrained to the value of an expression.
7496
7497 -- When inherited or constrained to equal some new discriminant, the
7498 -- parent discriminant and the discriminant of the derived type are said
7499 -- to "correspond".
7500
7501 -- If a discriminant of the parent type is constrained to a specific value
7502 -- in the derived type definition, then the discriminant is said to be
7503 -- "specified" by that derived type definition.
7504
7505 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7506
7507 -- We have spoken about stored discriminants in point 1 (introduction)
7508 -- above. There are two sort of stored discriminants: implicit and
7509 -- explicit. As long as the derived type inherits the same discriminants as
7510 -- the root record type, stored discriminants are the same as regular
7511 -- discriminants, and are said to be implicit. However, if any discriminant
7512 -- in the root type was renamed in the derived type, then the derived
7513 -- type will contain explicit stored discriminants. Explicit stored
7514 -- discriminants are discriminants in addition to the semantically visible
7515 -- discriminants defined for the derived type. Stored discriminants are
7516 -- used by Gigi to figure out what are the physical discriminants in
7517 -- objects of the derived type (see precise definition in einfo.ads).
7518 -- As an example, consider the following:
7519
7520 -- type R (D1, D2, D3 : Int) is record ... end record;
7521 -- type T1 is new R;
7522 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7523 -- type T3 is new T2;
7524 -- type T4 (Y : Int) is new T3 (Y, 99);
7525
7526 -- The following table summarizes the discriminants and stored
7527 -- discriminants in R and T1 through T4.
7528
7529 -- Type Discrim Stored Discrim Comment
7530 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7531 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7532 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7533 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7534 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7535
7536 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7537 -- find the corresponding discriminant in the parent type, while
7538 -- Original_Record_Component (abbreviated ORC below), the actual physical
7539 -- component that is renamed. Finally the field Is_Completely_Hidden
7540 -- (abbreviated ICH below) is set for all explicit stored discriminants
7541 -- (see einfo.ads for more info). For the above example this gives:
7542
7543 -- Discrim CD ORC ICH
7544 -- ^^^^^^^ ^^ ^^^ ^^^
7545 -- D1 in R empty itself no
7546 -- D2 in R empty itself no
7547 -- D3 in R empty itself no
7548
7549 -- D1 in T1 D1 in R itself no
7550 -- D2 in T1 D2 in R itself no
7551 -- D3 in T1 D3 in R itself no
7552
7553 -- X1 in T2 D3 in T1 D3 in T2 no
7554 -- X2 in T2 D1 in T1 D1 in T2 no
7555 -- D1 in T2 empty itself yes
7556 -- D2 in T2 empty itself yes
7557 -- D3 in T2 empty itself yes
7558
7559 -- X1 in T3 X1 in T2 D3 in T3 no
7560 -- X2 in T3 X2 in T2 D1 in T3 no
7561 -- D1 in T3 empty itself yes
7562 -- D2 in T3 empty itself yes
7563 -- D3 in T3 empty itself yes
7564
7565 -- Y in T4 X1 in T3 D3 in T3 no
7566 -- D1 in T3 empty itself yes
7567 -- D2 in T3 empty itself yes
7568 -- D3 in T3 empty itself yes
7569
7570 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7571
7572 -- Type derivation for tagged types is fairly straightforward. If no
7573 -- discriminants are specified by the derived type, these are inherited
7574 -- from the parent. No explicit stored discriminants are ever necessary.
7575 -- The only manipulation that is done to the tree is that of adding a
7576 -- _parent field with parent type and constrained to the same constraint
7577 -- specified for the parent in the derived type definition. For instance:
7578
7579 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7580 -- type T1 is new R with null record;
7581 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7582
7583 -- are changed into:
7584
7585 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7586 -- _parent : R (D1, D2, D3);
7587 -- end record;
7588
7589 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7590 -- _parent : T1 (X2, 88, X1);
7591 -- end record;
7592
7593 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7594 -- ORC and ICH fields are:
7595
7596 -- Discrim CD ORC ICH
7597 -- ^^^^^^^ ^^ ^^^ ^^^
7598 -- D1 in R empty itself no
7599 -- D2 in R empty itself no
7600 -- D3 in R empty itself no
7601
7602 -- D1 in T1 D1 in R D1 in R no
7603 -- D2 in T1 D2 in R D2 in R no
7604 -- D3 in T1 D3 in R D3 in R no
7605
7606 -- X1 in T2 D3 in T1 D3 in R no
7607 -- X2 in T2 D1 in T1 D1 in R no
7608
7609 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7610 --
7611 -- Regardless of whether we dealing with a tagged or untagged type
7612 -- we will transform all derived type declarations of the form
7613 --
7614 -- type T is new R (...) [with ...];
7615 -- or
7616 -- subtype S is R (...);
7617 -- type T is new S [with ...];
7618 -- into
7619 -- type BT is new R [with ...];
7620 -- subtype T is BT (...);
7621 --
7622 -- That is, the base derived type is constrained only if it has no
7623 -- discriminants. The reason for doing this is that GNAT's semantic model
7624 -- assumes that a base type with discriminants is unconstrained.
7625 --
7626 -- Note that, strictly speaking, the above transformation is not always
7627 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7628 --
7629 -- procedure B34011A is
7630 -- type REC (D : integer := 0) is record
7631 -- I : Integer;
7632 -- end record;
7633
7634 -- package P is
7635 -- type T6 is new Rec;
7636 -- function F return T6;
7637 -- end P;
7638
7639 -- use P;
7640 -- package Q6 is
7641 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7642 -- end Q6;
7643 --
7644 -- The definition of Q6.U is illegal. However transforming Q6.U into
7645
7646 -- type BaseU is new T6;
7647 -- subtype U is BaseU (Q6.F.I)
7648
7649 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7650 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7651 -- the transformation described above.
7652
7653 -- There is another instance where the above transformation is incorrect.
7654 -- Consider:
7655
7656 -- package Pack is
7657 -- type Base (D : Integer) is tagged null record;
7658 -- procedure P (X : Base);
7659
7660 -- type Der is new Base (2) with null record;
7661 -- procedure P (X : Der);
7662 -- end Pack;
7663
7664 -- Then the above transformation turns this into
7665
7666 -- type Der_Base is new Base with null record;
7667 -- -- procedure P (X : Base) is implicitly inherited here
7668 -- -- as procedure P (X : Der_Base).
7669
7670 -- subtype Der is Der_Base (2);
7671 -- procedure P (X : Der);
7672 -- -- The overriding of P (X : Der_Base) is illegal since we
7673 -- -- have a parameter conformance problem.
7674
7675 -- To get around this problem, after having semantically processed Der_Base
7676 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7677 -- Discriminant_Constraint from Der so that when parameter conformance is
7678 -- checked when P is overridden, no semantic errors are flagged.
7679
7680 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7681
7682 -- Regardless of whether we are dealing with a tagged or untagged type
7683 -- we will transform all derived type declarations of the form
7684
7685 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7686 -- type T is new R [with ...];
7687 -- into
7688 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7689
7690 -- The reason for such transformation is that it allows us to implement a
7691 -- very clean form of component inheritance as explained below.
7692
7693 -- Note that this transformation is not achieved by direct tree rewriting
7694 -- and manipulation, but rather by redoing the semantic actions that the
7695 -- above transformation will entail. This is done directly in routine
7696 -- Inherit_Components.
7697
7698 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7699
7700 -- In both tagged and untagged derived types, regular non discriminant
7701 -- components are inherited in the derived type from the parent type. In
7702 -- the absence of discriminants component, inheritance is straightforward
7703 -- as components can simply be copied from the parent.
7704
7705 -- If the parent has discriminants, inheriting components constrained with
7706 -- these discriminants requires caution. Consider the following example:
7707
7708 -- type R (D1, D2 : Positive) is [tagged] record
7709 -- S : String (D1 .. D2);
7710 -- end record;
7711
7712 -- type T1 is new R [with null record];
7713 -- type T2 (X : positive) is new R (1, X) [with null record];
7714
7715 -- As explained in 6. above, T1 is rewritten as
7716 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7717 -- which makes the treatment for T1 and T2 identical.
7718
7719 -- What we want when inheriting S, is that references to D1 and D2 in R are
7720 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7721 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7722 -- with either discriminant references in the derived type or expressions.
7723 -- This replacement is achieved as follows: before inheriting R's
7724 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7725 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7726 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7727 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7728 -- by String (1 .. X).
7729
7730 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7731
7732 -- We explain here the rules governing private type extensions relevant to
7733 -- type derivation. These rules are explained on the following example:
7734
7735 -- type D [(...)] is new A [(...)] with private; <-- partial view
7736 -- type D [(...)] is new P [(...)] with null record; <-- full view
7737
7738 -- Type A is called the ancestor subtype of the private extension.
7739 -- Type P is the parent type of the full view of the private extension. It
7740 -- must be A or a type derived from A.
7741
7742 -- The rules concerning the discriminants of private type extensions are
7743 -- [7.3(10-13)]:
7744
7745 -- o If a private extension inherits known discriminants from the ancestor
7746 -- subtype, then the full view must also inherit its discriminants from
7747 -- the ancestor subtype and the parent subtype of the full view must be
7748 -- constrained if and only if the ancestor subtype is constrained.
7749
7750 -- o If a partial view has unknown discriminants, then the full view may
7751 -- define a definite or an indefinite subtype, with or without
7752 -- discriminants.
7753
7754 -- o If a partial view has neither known nor unknown discriminants, then
7755 -- the full view must define a definite subtype.
7756
7757 -- o If the ancestor subtype of a private extension has constrained
7758 -- discriminants, then the parent subtype of the full view must impose a
7759 -- statically matching constraint on those discriminants.
7760
7761 -- This means that only the following forms of private extensions are
7762 -- allowed:
7763
7764 -- type D is new A with private; <-- partial view
7765 -- type D is new P with null record; <-- full view
7766
7767 -- If A has no discriminants than P has no discriminants, otherwise P must
7768 -- inherit A's discriminants.
7769
7770 -- type D is new A (...) with private; <-- partial view
7771 -- type D is new P (:::) with null record; <-- full view
7772
7773 -- P must inherit A's discriminants and (...) and (:::) must statically
7774 -- match.
7775
7776 -- subtype A is R (...);
7777 -- type D is new A with private; <-- partial view
7778 -- type D is new P with null record; <-- full view
7779
7780 -- P must have inherited R's discriminants and must be derived from A or
7781 -- any of its subtypes.
7782
7783 -- type D (..) is new A with private; <-- partial view
7784 -- type D (..) is new P [(:::)] with null record; <-- full view
7785
7786 -- No specific constraints on P's discriminants or constraint (:::).
7787 -- Note that A can be unconstrained, but the parent subtype P must either
7788 -- be constrained or (:::) must be present.
7789
7790 -- type D (..) is new A [(...)] with private; <-- partial view
7791 -- type D (..) is new P [(:::)] with null record; <-- full view
7792
7793 -- P's constraints on A's discriminants must statically match those
7794 -- imposed by (...).
7795
7796 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7797
7798 -- The full view of a private extension is handled exactly as described
7799 -- above. The model chose for the private view of a private extension is
7800 -- the same for what concerns discriminants (i.e. they receive the same
7801 -- treatment as in the tagged case). However, the private view of the
7802 -- private extension always inherits the components of the parent base,
7803 -- without replacing any discriminant reference. Strictly speaking this is
7804 -- incorrect. However, Gigi never uses this view to generate code so this
7805 -- is a purely semantic issue. In theory, a set of transformations similar
7806 -- to those given in 5. and 6. above could be applied to private views of
7807 -- private extensions to have the same model of component inheritance as
7808 -- for non private extensions. However, this is not done because it would
7809 -- further complicate private type processing. Semantically speaking, this
7810 -- leaves us in an uncomfortable situation. As an example consider:
7811
7812 -- package Pack is
7813 -- type R (D : integer) is tagged record
7814 -- S : String (1 .. D);
7815 -- end record;
7816 -- procedure P (X : R);
7817 -- type T is new R (1) with private;
7818 -- private
7819 -- type T is new R (1) with null record;
7820 -- end;
7821
7822 -- This is transformed into:
7823
7824 -- package Pack is
7825 -- type R (D : integer) is tagged record
7826 -- S : String (1 .. D);
7827 -- end record;
7828 -- procedure P (X : R);
7829 -- type T is new R (1) with private;
7830 -- private
7831 -- type BaseT is new R with null record;
7832 -- subtype T is BaseT (1);
7833 -- end;
7834
7835 -- (strictly speaking the above is incorrect Ada)
7836
7837 -- From the semantic standpoint the private view of private extension T
7838 -- should be flagged as constrained since one can clearly have
7839 --
7840 -- Obj : T;
7841 --
7842 -- in a unit withing Pack. However, when deriving subprograms for the
7843 -- private view of private extension T, T must be seen as unconstrained
7844 -- since T has discriminants (this is a constraint of the current
7845 -- subprogram derivation model). Thus, when processing the private view of
7846 -- a private extension such as T, we first mark T as unconstrained, we
7847 -- process it, we perform program derivation and just before returning from
7848 -- Build_Derived_Record_Type we mark T as constrained.
7849
7850 -- ??? Are there are other uncomfortable cases that we will have to
7851 -- deal with.
7852
7853 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7854
7855 -- Types that are derived from a visible record type and have a private
7856 -- extension present other peculiarities. They behave mostly like private
7857 -- types, but if they have primitive operations defined, these will not
7858 -- have the proper signatures for further inheritance, because other
7859 -- primitive operations will use the implicit base that we define for
7860 -- private derivations below. This affect subprogram inheritance (see
7861 -- Derive_Subprograms for details). We also derive the implicit base from
7862 -- the base type of the full view, so that the implicit base is a record
7863 -- type and not another private type, This avoids infinite loops.
7864
7865 procedure Build_Derived_Record_Type
7866 (N : Node_Id;
7867 Parent_Type : Entity_Id;
7868 Derived_Type : Entity_Id;
7869 Derive_Subps : Boolean := True)
7870 is
7871 Discriminant_Specs : constant Boolean :=
7872 Present (Discriminant_Specifications (N));
7873 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7874 Loc : constant Source_Ptr := Sloc (N);
7875 Private_Extension : constant Boolean :=
7876 Nkind (N) = N_Private_Extension_Declaration;
7877 Assoc_List : Elist_Id;
7878 Constraint_Present : Boolean;
7879 Constrs : Elist_Id;
7880 Discrim : Entity_Id;
7881 Indic : Node_Id;
7882 Inherit_Discrims : Boolean := False;
7883 Last_Discrim : Entity_Id;
7884 New_Base : Entity_Id;
7885 New_Decl : Node_Id;
7886 New_Discrs : Elist_Id;
7887 New_Indic : Node_Id;
7888 Parent_Base : Entity_Id;
7889 Save_Etype : Entity_Id;
7890 Save_Discr_Constr : Elist_Id;
7891 Save_Next_Entity : Entity_Id;
7892 Type_Def : Node_Id;
7893
7894 Discs : Elist_Id := New_Elmt_List;
7895 -- An empty Discs list means that there were no constraints in the
7896 -- subtype indication or that there was an error processing it.
7897
7898 begin
7899 if Ekind (Parent_Type) = E_Record_Type_With_Private
7900 and then Present (Full_View (Parent_Type))
7901 and then Has_Discriminants (Parent_Type)
7902 then
7903 Parent_Base := Base_Type (Full_View (Parent_Type));
7904 else
7905 Parent_Base := Base_Type (Parent_Type);
7906 end if;
7907
7908 -- AI05-0115 : if this is a derivation from a private type in some
7909 -- other scope that may lead to invisible components for the derived
7910 -- type, mark it accordingly.
7911
7912 if Is_Private_Type (Parent_Type) then
7913 if Scope (Parent_Type) = Scope (Derived_Type) then
7914 null;
7915
7916 elsif In_Open_Scopes (Scope (Parent_Type))
7917 and then In_Private_Part (Scope (Parent_Type))
7918 then
7919 null;
7920
7921 else
7922 Set_Has_Private_Ancestor (Derived_Type);
7923 end if;
7924
7925 else
7926 Set_Has_Private_Ancestor
7927 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7928 end if;
7929
7930 -- Before we start the previously documented transformations, here is
7931 -- little fix for size and alignment of tagged types. Normally when we
7932 -- derive type D from type P, we copy the size and alignment of P as the
7933 -- default for D, and in the absence of explicit representation clauses
7934 -- for D, the size and alignment are indeed the same as the parent.
7935
7936 -- But this is wrong for tagged types, since fields may be added, and
7937 -- the default size may need to be larger, and the default alignment may
7938 -- need to be larger.
7939
7940 -- We therefore reset the size and alignment fields in the tagged case.
7941 -- Note that the size and alignment will in any case be at least as
7942 -- large as the parent type (since the derived type has a copy of the
7943 -- parent type in the _parent field)
7944
7945 -- The type is also marked as being tagged here, which is needed when
7946 -- processing components with a self-referential anonymous access type
7947 -- in the call to Check_Anonymous_Access_Components below. Note that
7948 -- this flag is also set later on for completeness.
7949
7950 if Is_Tagged then
7951 Set_Is_Tagged_Type (Derived_Type);
7952 Init_Size_Align (Derived_Type);
7953 end if;
7954
7955 -- STEP 0a: figure out what kind of derived type declaration we have
7956
7957 if Private_Extension then
7958 Type_Def := N;
7959 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7960 Set_Default_SSO (Derived_Type);
7961
7962 else
7963 Type_Def := Type_Definition (N);
7964
7965 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7966 -- Parent_Base can be a private type or private extension. However,
7967 -- for tagged types with an extension the newly added fields are
7968 -- visible and hence the Derived_Type is always an E_Record_Type.
7969 -- (except that the parent may have its own private fields).
7970 -- For untagged types we preserve the Ekind of the Parent_Base.
7971
7972 if Present (Record_Extension_Part (Type_Def)) then
7973 Set_Ekind (Derived_Type, E_Record_Type);
7974 Set_Default_SSO (Derived_Type);
7975
7976 -- Create internal access types for components with anonymous
7977 -- access types.
7978
7979 if Ada_Version >= Ada_2005 then
7980 Check_Anonymous_Access_Components
7981 (N, Derived_Type, Derived_Type,
7982 Component_List (Record_Extension_Part (Type_Def)));
7983 end if;
7984
7985 else
7986 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7987 end if;
7988 end if;
7989
7990 -- Indic can either be an N_Identifier if the subtype indication
7991 -- contains no constraint or an N_Subtype_Indication if the subtype
7992 -- indication has a constraint.
7993
7994 Indic := Subtype_Indication (Type_Def);
7995 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7996
7997 -- Check that the type has visible discriminants. The type may be
7998 -- a private type with unknown discriminants whose full view has
7999 -- discriminants which are invisible.
8000
8001 if Constraint_Present then
8002 if not Has_Discriminants (Parent_Base)
8003 or else
8004 (Has_Unknown_Discriminants (Parent_Base)
8005 and then Is_Private_Type (Parent_Base))
8006 then
8007 Error_Msg_N
8008 ("invalid constraint: type has no discriminant",
8009 Constraint (Indic));
8010
8011 Constraint_Present := False;
8012 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8013
8014 elsif Is_Constrained (Parent_Type) then
8015 Error_Msg_N
8016 ("invalid constraint: parent type is already constrained",
8017 Constraint (Indic));
8018
8019 Constraint_Present := False;
8020 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8021 end if;
8022 end if;
8023
8024 -- STEP 0b: If needed, apply transformation given in point 5. above
8025
8026 if not Private_Extension
8027 and then Has_Discriminants (Parent_Type)
8028 and then not Discriminant_Specs
8029 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8030 then
8031 -- First, we must analyze the constraint (see comment in point 5.)
8032 -- The constraint may come from the subtype indication of the full
8033 -- declaration.
8034
8035 if Constraint_Present then
8036 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8037
8038 -- If there is no explicit constraint, there might be one that is
8039 -- inherited from a constrained parent type. In that case verify that
8040 -- it conforms to the constraint in the partial view. In perverse
8041 -- cases the parent subtypes of the partial and full view can have
8042 -- different constraints.
8043
8044 elsif Present (Stored_Constraint (Parent_Type)) then
8045 New_Discrs := Stored_Constraint (Parent_Type);
8046
8047 else
8048 New_Discrs := No_Elist;
8049 end if;
8050
8051 if Has_Discriminants (Derived_Type)
8052 and then Has_Private_Declaration (Derived_Type)
8053 and then Present (Discriminant_Constraint (Derived_Type))
8054 and then Present (New_Discrs)
8055 then
8056 -- Verify that constraints of the full view statically match
8057 -- those given in the partial view.
8058
8059 declare
8060 C1, C2 : Elmt_Id;
8061
8062 begin
8063 C1 := First_Elmt (New_Discrs);
8064 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8065 while Present (C1) and then Present (C2) loop
8066 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8067 or else
8068 (Is_OK_Static_Expression (Node (C1))
8069 and then Is_OK_Static_Expression (Node (C2))
8070 and then
8071 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8072 then
8073 null;
8074
8075 else
8076 if Constraint_Present then
8077 Error_Msg_N
8078 ("constraint not conformant to previous declaration",
8079 Node (C1));
8080 else
8081 Error_Msg_N
8082 ("constraint of full view is incompatible "
8083 & "with partial view", N);
8084 end if;
8085 end if;
8086
8087 Next_Elmt (C1);
8088 Next_Elmt (C2);
8089 end loop;
8090 end;
8091 end if;
8092
8093 -- Insert and analyze the declaration for the unconstrained base type
8094
8095 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8096
8097 New_Decl :=
8098 Make_Full_Type_Declaration (Loc,
8099 Defining_Identifier => New_Base,
8100 Type_Definition =>
8101 Make_Derived_Type_Definition (Loc,
8102 Abstract_Present => Abstract_Present (Type_Def),
8103 Limited_Present => Limited_Present (Type_Def),
8104 Subtype_Indication =>
8105 New_Occurrence_Of (Parent_Base, Loc),
8106 Record_Extension_Part =>
8107 Relocate_Node (Record_Extension_Part (Type_Def)),
8108 Interface_List => Interface_List (Type_Def)));
8109
8110 Set_Parent (New_Decl, Parent (N));
8111 Mark_Rewrite_Insertion (New_Decl);
8112 Insert_Before (N, New_Decl);
8113
8114 -- In the extension case, make sure ancestor is frozen appropriately
8115 -- (see also non-discriminated case below).
8116
8117 if Present (Record_Extension_Part (Type_Def))
8118 or else Is_Interface (Parent_Base)
8119 then
8120 Freeze_Before (New_Decl, Parent_Type);
8121 end if;
8122
8123 -- Note that this call passes False for the Derive_Subps parameter
8124 -- because subprogram derivation is deferred until after creating
8125 -- the subtype (see below).
8126
8127 Build_Derived_Type
8128 (New_Decl, Parent_Base, New_Base,
8129 Is_Completion => False, Derive_Subps => False);
8130
8131 -- ??? This needs re-examination to determine whether the
8132 -- above call can simply be replaced by a call to Analyze.
8133
8134 Set_Analyzed (New_Decl);
8135
8136 -- Insert and analyze the declaration for the constrained subtype
8137
8138 if Constraint_Present then
8139 New_Indic :=
8140 Make_Subtype_Indication (Loc,
8141 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8142 Constraint => Relocate_Node (Constraint (Indic)));
8143
8144 else
8145 declare
8146 Constr_List : constant List_Id := New_List;
8147 C : Elmt_Id;
8148 Expr : Node_Id;
8149
8150 begin
8151 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8152 while Present (C) loop
8153 Expr := Node (C);
8154
8155 -- It is safe here to call New_Copy_Tree since we called
8156 -- Force_Evaluation on each constraint previously
8157 -- in Build_Discriminant_Constraints.
8158
8159 Append (New_Copy_Tree (Expr), To => Constr_List);
8160
8161 Next_Elmt (C);
8162 end loop;
8163
8164 New_Indic :=
8165 Make_Subtype_Indication (Loc,
8166 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8167 Constraint =>
8168 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8169 end;
8170 end if;
8171
8172 Rewrite (N,
8173 Make_Subtype_Declaration (Loc,
8174 Defining_Identifier => Derived_Type,
8175 Subtype_Indication => New_Indic));
8176
8177 Analyze (N);
8178
8179 -- Derivation of subprograms must be delayed until the full subtype
8180 -- has been established, to ensure proper overriding of subprograms
8181 -- inherited by full types. If the derivations occurred as part of
8182 -- the call to Build_Derived_Type above, then the check for type
8183 -- conformance would fail because earlier primitive subprograms
8184 -- could still refer to the full type prior the change to the new
8185 -- subtype and hence would not match the new base type created here.
8186 -- Subprograms are not derived, however, when Derive_Subps is False
8187 -- (since otherwise there could be redundant derivations).
8188
8189 if Derive_Subps then
8190 Derive_Subprograms (Parent_Type, Derived_Type);
8191 end if;
8192
8193 -- For tagged types the Discriminant_Constraint of the new base itype
8194 -- is inherited from the first subtype so that no subtype conformance
8195 -- problem arise when the first subtype overrides primitive
8196 -- operations inherited by the implicit base type.
8197
8198 if Is_Tagged then
8199 Set_Discriminant_Constraint
8200 (New_Base, Discriminant_Constraint (Derived_Type));
8201 end if;
8202
8203 return;
8204 end if;
8205
8206 -- If we get here Derived_Type will have no discriminants or it will be
8207 -- a discriminated unconstrained base type.
8208
8209 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8210
8211 if Is_Tagged then
8212
8213 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8214 -- The declaration of a specific descendant of an interface type
8215 -- freezes the interface type (RM 13.14).
8216
8217 if not Private_Extension or else Is_Interface (Parent_Base) then
8218 Freeze_Before (N, Parent_Type);
8219 end if;
8220
8221 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8222 -- cannot be declared at a deeper level than its parent type is
8223 -- removed. The check on derivation within a generic body is also
8224 -- relaxed, but there's a restriction that a derived tagged type
8225 -- cannot be declared in a generic body if it's derived directly
8226 -- or indirectly from a formal type of that generic.
8227
8228 if Ada_Version >= Ada_2005 then
8229 if Present (Enclosing_Generic_Body (Derived_Type)) then
8230 declare
8231 Ancestor_Type : Entity_Id;
8232
8233 begin
8234 -- Check to see if any ancestor of the derived type is a
8235 -- formal type.
8236
8237 Ancestor_Type := Parent_Type;
8238 while not Is_Generic_Type (Ancestor_Type)
8239 and then Etype (Ancestor_Type) /= Ancestor_Type
8240 loop
8241 Ancestor_Type := Etype (Ancestor_Type);
8242 end loop;
8243
8244 -- If the derived type does have a formal type as an
8245 -- ancestor, then it's an error if the derived type is
8246 -- declared within the body of the generic unit that
8247 -- declares the formal type in its generic formal part. It's
8248 -- sufficient to check whether the ancestor type is declared
8249 -- inside the same generic body as the derived type (such as
8250 -- within a nested generic spec), in which case the
8251 -- derivation is legal. If the formal type is declared
8252 -- outside of that generic body, then it's guaranteed that
8253 -- the derived type is declared within the generic body of
8254 -- the generic unit declaring the formal type.
8255
8256 if Is_Generic_Type (Ancestor_Type)
8257 and then Enclosing_Generic_Body (Ancestor_Type) /=
8258 Enclosing_Generic_Body (Derived_Type)
8259 then
8260 Error_Msg_NE
8261 ("parent type of& must not be descendant of formal type"
8262 & " of an enclosing generic body",
8263 Indic, Derived_Type);
8264 end if;
8265 end;
8266 end if;
8267
8268 elsif Type_Access_Level (Derived_Type) /=
8269 Type_Access_Level (Parent_Type)
8270 and then not Is_Generic_Type (Derived_Type)
8271 then
8272 if Is_Controlled (Parent_Type) then
8273 Error_Msg_N
8274 ("controlled type must be declared at the library level",
8275 Indic);
8276 else
8277 Error_Msg_N
8278 ("type extension at deeper accessibility level than parent",
8279 Indic);
8280 end if;
8281
8282 else
8283 declare
8284 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8285 begin
8286 if Present (GB)
8287 and then GB /= Enclosing_Generic_Body (Parent_Base)
8288 then
8289 Error_Msg_NE
8290 ("parent type of& must not be outside generic body"
8291 & " (RM 3.9.1(4))",
8292 Indic, Derived_Type);
8293 end if;
8294 end;
8295 end if;
8296 end if;
8297
8298 -- Ada 2005 (AI-251)
8299
8300 if Ada_Version >= Ada_2005 and then Is_Tagged then
8301
8302 -- "The declaration of a specific descendant of an interface type
8303 -- freezes the interface type" (RM 13.14).
8304
8305 declare
8306 Iface : Node_Id;
8307 begin
8308 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8309 Iface := First (Interface_List (Type_Def));
8310 while Present (Iface) loop
8311 Freeze_Before (N, Etype (Iface));
8312 Next (Iface);
8313 end loop;
8314 end if;
8315 end;
8316 end if;
8317
8318 -- STEP 1b : preliminary cleanup of the full view of private types
8319
8320 -- If the type is already marked as having discriminants, then it's the
8321 -- completion of a private type or private extension and we need to
8322 -- retain the discriminants from the partial view if the current
8323 -- declaration has Discriminant_Specifications so that we can verify
8324 -- conformance. However, we must remove any existing components that
8325 -- were inherited from the parent (and attached in Copy_And_Swap)
8326 -- because the full type inherits all appropriate components anyway, and
8327 -- we do not want the partial view's components interfering.
8328
8329 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8330 Discrim := First_Discriminant (Derived_Type);
8331 loop
8332 Last_Discrim := Discrim;
8333 Next_Discriminant (Discrim);
8334 exit when No (Discrim);
8335 end loop;
8336
8337 Set_Last_Entity (Derived_Type, Last_Discrim);
8338
8339 -- In all other cases wipe out the list of inherited components (even
8340 -- inherited discriminants), it will be properly rebuilt here.
8341
8342 else
8343 Set_First_Entity (Derived_Type, Empty);
8344 Set_Last_Entity (Derived_Type, Empty);
8345 end if;
8346
8347 -- STEP 1c: Initialize some flags for the Derived_Type
8348
8349 -- The following flags must be initialized here so that
8350 -- Process_Discriminants can check that discriminants of tagged types do
8351 -- not have a default initial value and that access discriminants are
8352 -- only specified for limited records. For completeness, these flags are
8353 -- also initialized along with all the other flags below.
8354
8355 -- AI-419: Limitedness is not inherited from an interface parent, so to
8356 -- be limited in that case the type must be explicitly declared as
8357 -- limited. However, task and protected interfaces are always limited.
8358
8359 if Limited_Present (Type_Def) then
8360 Set_Is_Limited_Record (Derived_Type);
8361
8362 elsif Is_Limited_Record (Parent_Type)
8363 or else (Present (Full_View (Parent_Type))
8364 and then Is_Limited_Record (Full_View (Parent_Type)))
8365 then
8366 if not Is_Interface (Parent_Type)
8367 or else Is_Synchronized_Interface (Parent_Type)
8368 or else Is_Protected_Interface (Parent_Type)
8369 or else Is_Task_Interface (Parent_Type)
8370 then
8371 Set_Is_Limited_Record (Derived_Type);
8372 end if;
8373 end if;
8374
8375 -- STEP 2a: process discriminants of derived type if any
8376
8377 Push_Scope (Derived_Type);
8378
8379 if Discriminant_Specs then
8380 Set_Has_Unknown_Discriminants (Derived_Type, False);
8381
8382 -- The following call initializes fields Has_Discriminants and
8383 -- Discriminant_Constraint, unless we are processing the completion
8384 -- of a private type declaration.
8385
8386 Check_Or_Process_Discriminants (N, Derived_Type);
8387
8388 -- For untagged types, the constraint on the Parent_Type must be
8389 -- present and is used to rename the discriminants.
8390
8391 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8392 Error_Msg_N ("untagged parent must have discriminants", Indic);
8393
8394 elsif not Is_Tagged and then not Constraint_Present then
8395 Error_Msg_N
8396 ("discriminant constraint needed for derived untagged records",
8397 Indic);
8398
8399 -- Otherwise the parent subtype must be constrained unless we have a
8400 -- private extension.
8401
8402 elsif not Constraint_Present
8403 and then not Private_Extension
8404 and then not Is_Constrained (Parent_Type)
8405 then
8406 Error_Msg_N
8407 ("unconstrained type not allowed in this context", Indic);
8408
8409 elsif Constraint_Present then
8410 -- The following call sets the field Corresponding_Discriminant
8411 -- for the discriminants in the Derived_Type.
8412
8413 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8414
8415 -- For untagged types all new discriminants must rename
8416 -- discriminants in the parent. For private extensions new
8417 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8418
8419 Discrim := First_Discriminant (Derived_Type);
8420 while Present (Discrim) loop
8421 if not Is_Tagged
8422 and then No (Corresponding_Discriminant (Discrim))
8423 then
8424 Error_Msg_N
8425 ("new discriminants must constrain old ones", Discrim);
8426
8427 elsif Private_Extension
8428 and then Present (Corresponding_Discriminant (Discrim))
8429 then
8430 Error_Msg_N
8431 ("only static constraints allowed for parent"
8432 & " discriminants in the partial view", Indic);
8433 exit;
8434 end if;
8435
8436 -- If a new discriminant is used in the constraint, then its
8437 -- subtype must be statically compatible with the parent
8438 -- discriminant's subtype (3.7(15)).
8439
8440 -- However, if the record contains an array constrained by
8441 -- the discriminant but with some different bound, the compiler
8442 -- attemps to create a smaller range for the discriminant type.
8443 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8444 -- the discriminant type is a scalar type, the check must use
8445 -- the original discriminant type in the parent declaration.
8446
8447 declare
8448 Corr_Disc : constant Entity_Id :=
8449 Corresponding_Discriminant (Discrim);
8450 Disc_Type : constant Entity_Id := Etype (Discrim);
8451 Corr_Type : Entity_Id;
8452
8453 begin
8454 if Present (Corr_Disc) then
8455 if Is_Scalar_Type (Disc_Type) then
8456 Corr_Type :=
8457 Entity (Discriminant_Type (Parent (Corr_Disc)));
8458 else
8459 Corr_Type := Etype (Corr_Disc);
8460 end if;
8461
8462 if not
8463 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8464 then
8465 Error_Msg_N
8466 ("subtype must be compatible "
8467 & "with parent discriminant",
8468 Discrim);
8469 end if;
8470 end if;
8471 end;
8472
8473 Next_Discriminant (Discrim);
8474 end loop;
8475
8476 -- Check whether the constraints of the full view statically
8477 -- match those imposed by the parent subtype [7.3(13)].
8478
8479 if Present (Stored_Constraint (Derived_Type)) then
8480 declare
8481 C1, C2 : Elmt_Id;
8482
8483 begin
8484 C1 := First_Elmt (Discs);
8485 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8486 while Present (C1) and then Present (C2) loop
8487 if not
8488 Fully_Conformant_Expressions (Node (C1), Node (C2))
8489 then
8490 Error_Msg_N
8491 ("not conformant with previous declaration",
8492 Node (C1));
8493 end if;
8494
8495 Next_Elmt (C1);
8496 Next_Elmt (C2);
8497 end loop;
8498 end;
8499 end if;
8500 end if;
8501
8502 -- STEP 2b: No new discriminants, inherit discriminants if any
8503
8504 else
8505 if Private_Extension then
8506 Set_Has_Unknown_Discriminants
8507 (Derived_Type,
8508 Has_Unknown_Discriminants (Parent_Type)
8509 or else Unknown_Discriminants_Present (N));
8510
8511 -- The partial view of the parent may have unknown discriminants,
8512 -- but if the full view has discriminants and the parent type is
8513 -- in scope they must be inherited.
8514
8515 elsif Has_Unknown_Discriminants (Parent_Type)
8516 and then
8517 (not Has_Discriminants (Parent_Type)
8518 or else not In_Open_Scopes (Scope (Parent_Type)))
8519 then
8520 Set_Has_Unknown_Discriminants (Derived_Type);
8521 end if;
8522
8523 if not Has_Unknown_Discriminants (Derived_Type)
8524 and then not Has_Unknown_Discriminants (Parent_Base)
8525 and then Has_Discriminants (Parent_Type)
8526 then
8527 Inherit_Discrims := True;
8528 Set_Has_Discriminants
8529 (Derived_Type, True);
8530 Set_Discriminant_Constraint
8531 (Derived_Type, Discriminant_Constraint (Parent_Base));
8532 end if;
8533
8534 -- The following test is true for private types (remember
8535 -- transformation 5. is not applied to those) and in an error
8536 -- situation.
8537
8538 if Constraint_Present then
8539 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8540 end if;
8541
8542 -- For now mark a new derived type as constrained only if it has no
8543 -- discriminants. At the end of Build_Derived_Record_Type we properly
8544 -- set this flag in the case of private extensions. See comments in
8545 -- point 9. just before body of Build_Derived_Record_Type.
8546
8547 Set_Is_Constrained
8548 (Derived_Type,
8549 not (Inherit_Discrims
8550 or else Has_Unknown_Discriminants (Derived_Type)));
8551 end if;
8552
8553 -- STEP 3: initialize fields of derived type
8554
8555 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8556 Set_Stored_Constraint (Derived_Type, No_Elist);
8557
8558 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8559 -- but cannot be interfaces
8560
8561 if not Private_Extension
8562 and then Ekind (Derived_Type) /= E_Private_Type
8563 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8564 then
8565 if Interface_Present (Type_Def) then
8566 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8567 end if;
8568
8569 Set_Interfaces (Derived_Type, No_Elist);
8570 end if;
8571
8572 -- Fields inherited from the Parent_Type
8573
8574 Set_Has_Specified_Layout
8575 (Derived_Type, Has_Specified_Layout (Parent_Type));
8576 Set_Is_Limited_Composite
8577 (Derived_Type, Is_Limited_Composite (Parent_Type));
8578 Set_Is_Private_Composite
8579 (Derived_Type, Is_Private_Composite (Parent_Type));
8580
8581 if Is_Tagged_Type (Parent_Type) then
8582 Set_No_Tagged_Streams_Pragma
8583 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8584 end if;
8585
8586 -- Fields inherited from the Parent_Base
8587
8588 Set_Has_Controlled_Component
8589 (Derived_Type, Has_Controlled_Component (Parent_Base));
8590 Set_Has_Non_Standard_Rep
8591 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8592 Set_Has_Primitive_Operations
8593 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8594
8595 -- Fields inherited from the Parent_Base in the non-private case
8596
8597 if Ekind (Derived_Type) = E_Record_Type then
8598 Set_Has_Complex_Representation
8599 (Derived_Type, Has_Complex_Representation (Parent_Base));
8600 end if;
8601
8602 -- Fields inherited from the Parent_Base for record types
8603
8604 if Is_Record_Type (Derived_Type) then
8605 declare
8606 Parent_Full : Entity_Id;
8607
8608 begin
8609 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8610 -- Parent_Base can be a private type or private extension. Go
8611 -- to the full view here to get the E_Record_Type specific flags.
8612
8613 if Present (Full_View (Parent_Base)) then
8614 Parent_Full := Full_View (Parent_Base);
8615 else
8616 Parent_Full := Parent_Base;
8617 end if;
8618
8619 Set_OK_To_Reorder_Components
8620 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8621 end;
8622 end if;
8623
8624 -- Set fields for private derived types
8625
8626 if Is_Private_Type (Derived_Type) then
8627 Set_Depends_On_Private (Derived_Type, True);
8628 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8629
8630 -- Inherit fields from non private record types. If this is the
8631 -- completion of a derivation from a private type, the parent itself
8632 -- is private, and the attributes come from its full view, which must
8633 -- be present.
8634
8635 else
8636 if Is_Private_Type (Parent_Base)
8637 and then not Is_Record_Type (Parent_Base)
8638 then
8639 Set_Component_Alignment
8640 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8641 Set_C_Pass_By_Copy
8642 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8643 else
8644 Set_Component_Alignment
8645 (Derived_Type, Component_Alignment (Parent_Base));
8646 Set_C_Pass_By_Copy
8647 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8648 end if;
8649 end if;
8650
8651 -- Set fields for tagged types
8652
8653 if Is_Tagged then
8654 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8655
8656 -- All tagged types defined in Ada.Finalization are controlled
8657
8658 if Chars (Scope (Derived_Type)) = Name_Finalization
8659 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8660 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8661 then
8662 Set_Is_Controlled (Derived_Type);
8663 else
8664 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8665 end if;
8666
8667 -- Minor optimization: there is no need to generate the class-wide
8668 -- entity associated with an underlying record view.
8669
8670 if not Is_Underlying_Record_View (Derived_Type) then
8671 Make_Class_Wide_Type (Derived_Type);
8672 end if;
8673
8674 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8675
8676 if Has_Discriminants (Derived_Type)
8677 and then Constraint_Present
8678 then
8679 Set_Stored_Constraint
8680 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8681 end if;
8682
8683 if Ada_Version >= Ada_2005 then
8684 declare
8685 Ifaces_List : Elist_Id;
8686
8687 begin
8688 -- Checks rules 3.9.4 (13/2 and 14/2)
8689
8690 if Comes_From_Source (Derived_Type)
8691 and then not Is_Private_Type (Derived_Type)
8692 and then Is_Interface (Parent_Type)
8693 and then not Is_Interface (Derived_Type)
8694 then
8695 if Is_Task_Interface (Parent_Type) then
8696 Error_Msg_N
8697 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8698 Derived_Type);
8699
8700 elsif Is_Protected_Interface (Parent_Type) then
8701 Error_Msg_N
8702 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8703 Derived_Type);
8704 end if;
8705 end if;
8706
8707 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8708
8709 Check_Interfaces (N, Type_Def);
8710
8711 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8712 -- not already in the parents.
8713
8714 Collect_Interfaces
8715 (T => Derived_Type,
8716 Ifaces_List => Ifaces_List,
8717 Exclude_Parents => True);
8718
8719 Set_Interfaces (Derived_Type, Ifaces_List);
8720
8721 -- If the derived type is the anonymous type created for
8722 -- a declaration whose parent has a constraint, propagate
8723 -- the interface list to the source type. This must be done
8724 -- prior to the completion of the analysis of the source type
8725 -- because the components in the extension may contain current
8726 -- instances whose legality depends on some ancestor.
8727
8728 if Is_Itype (Derived_Type) then
8729 declare
8730 Def : constant Node_Id :=
8731 Associated_Node_For_Itype (Derived_Type);
8732 begin
8733 if Present (Def)
8734 and then Nkind (Def) = N_Full_Type_Declaration
8735 then
8736 Set_Interfaces
8737 (Defining_Identifier (Def), Ifaces_List);
8738 end if;
8739 end;
8740 end if;
8741
8742 -- Propagate inherited invariant information of parents
8743 -- and progenitors
8744
8745 if Ada_Version >= Ada_2012
8746 and then not Is_Interface (Derived_Type)
8747 then
8748 if Has_Inheritable_Invariants (Parent_Type) then
8749 Set_Has_Invariants (Derived_Type);
8750 Set_Has_Inheritable_Invariants (Derived_Type);
8751
8752 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8753 declare
8754 AI : Elmt_Id;
8755
8756 begin
8757 AI := First_Elmt (Ifaces_List);
8758 while Present (AI) loop
8759 if Has_Inheritable_Invariants (Node (AI)) then
8760 Set_Has_Invariants (Derived_Type);
8761 Set_Has_Inheritable_Invariants (Derived_Type);
8762
8763 exit;
8764 end if;
8765
8766 Next_Elmt (AI);
8767 end loop;
8768 end;
8769 end if;
8770 end if;
8771
8772 -- A type extension is automatically Ghost when one of its
8773 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8774 -- also inherited when the parent type is Ghost, but this is
8775 -- done in Build_Derived_Type as the mechanism also handles
8776 -- untagged derivations.
8777
8778 if Implements_Ghost_Interface (Derived_Type) then
8779 Set_Is_Ghost_Entity (Derived_Type);
8780 end if;
8781 end;
8782 end if;
8783
8784 else
8785 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8786 Set_Has_Non_Standard_Rep
8787 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8788 end if;
8789
8790 -- STEP 4: Inherit components from the parent base and constrain them.
8791 -- Apply the second transformation described in point 6. above.
8792
8793 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8794 or else not Has_Discriminants (Parent_Type)
8795 or else not Is_Constrained (Parent_Type)
8796 then
8797 Constrs := Discs;
8798 else
8799 Constrs := Discriminant_Constraint (Parent_Type);
8800 end if;
8801
8802 Assoc_List :=
8803 Inherit_Components
8804 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8805
8806 -- STEP 5a: Copy the parent record declaration for untagged types
8807
8808 if not Is_Tagged then
8809
8810 -- Discriminant_Constraint (Derived_Type) has been properly
8811 -- constructed. Save it and temporarily set it to Empty because we
8812 -- do not want the call to New_Copy_Tree below to mess this list.
8813
8814 if Has_Discriminants (Derived_Type) then
8815 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8816 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8817 else
8818 Save_Discr_Constr := No_Elist;
8819 end if;
8820
8821 -- Save the Etype field of Derived_Type. It is correctly set now,
8822 -- but the call to New_Copy tree may remap it to point to itself,
8823 -- which is not what we want. Ditto for the Next_Entity field.
8824
8825 Save_Etype := Etype (Derived_Type);
8826 Save_Next_Entity := Next_Entity (Derived_Type);
8827
8828 -- Assoc_List maps all stored discriminants in the Parent_Base to
8829 -- stored discriminants in the Derived_Type. It is fundamental that
8830 -- no types or itypes with discriminants other than the stored
8831 -- discriminants appear in the entities declared inside
8832 -- Derived_Type, since the back end cannot deal with it.
8833
8834 New_Decl :=
8835 New_Copy_Tree
8836 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8837
8838 -- Restore the fields saved prior to the New_Copy_Tree call
8839 -- and compute the stored constraint.
8840
8841 Set_Etype (Derived_Type, Save_Etype);
8842 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8843
8844 if Has_Discriminants (Derived_Type) then
8845 Set_Discriminant_Constraint
8846 (Derived_Type, Save_Discr_Constr);
8847 Set_Stored_Constraint
8848 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8849 Replace_Components (Derived_Type, New_Decl);
8850 Set_Has_Implicit_Dereference
8851 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8852 end if;
8853
8854 -- Insert the new derived type declaration
8855
8856 Rewrite (N, New_Decl);
8857
8858 -- STEP 5b: Complete the processing for record extensions in generics
8859
8860 -- There is no completion for record extensions declared in the
8861 -- parameter part of a generic, so we need to complete processing for
8862 -- these generic record extensions here. The Record_Type_Definition call
8863 -- will change the Ekind of the components from E_Void to E_Component.
8864
8865 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8866 Record_Type_Definition (Empty, Derived_Type);
8867
8868 -- STEP 5c: Process the record extension for non private tagged types
8869
8870 elsif not Private_Extension then
8871 Expand_Record_Extension (Derived_Type, Type_Def);
8872
8873 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8874 -- derived type to propagate some semantic information. This led
8875 -- to other ASIS failures and has been removed.
8876
8877 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8878 -- implemented interfaces if we are in expansion mode
8879
8880 if Expander_Active
8881 and then Has_Interfaces (Derived_Type)
8882 then
8883 Add_Interface_Tag_Components (N, Derived_Type);
8884 end if;
8885
8886 -- Analyze the record extension
8887
8888 Record_Type_Definition
8889 (Record_Extension_Part (Type_Def), Derived_Type);
8890 end if;
8891
8892 End_Scope;
8893
8894 -- Nothing else to do if there is an error in the derivation.
8895 -- An unusual case: the full view may be derived from a type in an
8896 -- instance, when the partial view was used illegally as an actual
8897 -- in that instance, leading to a circular definition.
8898
8899 if Etype (Derived_Type) = Any_Type
8900 or else Etype (Parent_Type) = Derived_Type
8901 then
8902 return;
8903 end if;
8904
8905 -- Set delayed freeze and then derive subprograms, we need to do
8906 -- this in this order so that derived subprograms inherit the
8907 -- derived freeze if necessary.
8908
8909 Set_Has_Delayed_Freeze (Derived_Type);
8910
8911 if Derive_Subps then
8912 Derive_Subprograms (Parent_Type, Derived_Type);
8913 end if;
8914
8915 -- If we have a private extension which defines a constrained derived
8916 -- type mark as constrained here after we have derived subprograms. See
8917 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8918
8919 if Private_Extension and then Inherit_Discrims then
8920 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8921 Set_Is_Constrained (Derived_Type, True);
8922 Set_Discriminant_Constraint (Derived_Type, Discs);
8923
8924 elsif Is_Constrained (Parent_Type) then
8925 Set_Is_Constrained
8926 (Derived_Type, True);
8927 Set_Discriminant_Constraint
8928 (Derived_Type, Discriminant_Constraint (Parent_Type));
8929 end if;
8930 end if;
8931
8932 -- Update the class-wide type, which shares the now-completed entity
8933 -- list with its specific type. In case of underlying record views,
8934 -- we do not generate the corresponding class wide entity.
8935
8936 if Is_Tagged
8937 and then not Is_Underlying_Record_View (Derived_Type)
8938 then
8939 Set_First_Entity
8940 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8941 Set_Last_Entity
8942 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8943 end if;
8944
8945 Check_Function_Writable_Actuals (N);
8946 end Build_Derived_Record_Type;
8947
8948 ------------------------
8949 -- Build_Derived_Type --
8950 ------------------------
8951
8952 procedure Build_Derived_Type
8953 (N : Node_Id;
8954 Parent_Type : Entity_Id;
8955 Derived_Type : Entity_Id;
8956 Is_Completion : Boolean;
8957 Derive_Subps : Boolean := True)
8958 is
8959 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8960
8961 begin
8962 -- Set common attributes
8963
8964 Set_Scope (Derived_Type, Current_Scope);
8965
8966 Set_Etype (Derived_Type, Parent_Base);
8967 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8968 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8969 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8970
8971 Set_Size_Info (Derived_Type, Parent_Type);
8972 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8973 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8974 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
8975
8976 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8977 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8978
8979 if Is_Tagged_Type (Derived_Type) then
8980 Set_No_Tagged_Streams_Pragma
8981 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8982 end if;
8983
8984 -- If the parent has primitive routines, set the derived type link
8985
8986 if Has_Primitive_Operations (Parent_Type) then
8987 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8988 end if;
8989
8990 -- If the parent type is a private subtype, the convention on the base
8991 -- type may be set in the private part, and not propagated to the
8992 -- subtype until later, so we obtain the convention from the base type.
8993
8994 Set_Convention (Derived_Type, Convention (Parent_Base));
8995
8996 -- Set SSO default for record or array type
8997
8998 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8999 and then Is_Base_Type (Derived_Type)
9000 then
9001 Set_Default_SSO (Derived_Type);
9002 end if;
9003
9004 -- Propagate invariant information. The new type has invariants if
9005 -- they are inherited from the parent type, and these invariants can
9006 -- be further inherited, so both flags are set.
9007
9008 -- We similarly inherit predicates
9009
9010 if Has_Predicates (Parent_Type) then
9011 Set_Has_Predicates (Derived_Type);
9012 end if;
9013
9014 -- The derived type inherits the representation clauses of the parent
9015
9016 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9017
9018 -- Propagate the attributes related to pragma Default_Initial_Condition
9019 -- from the parent type to the private extension. A derived type always
9020 -- inherits the default initial condition flag from the parent type. If
9021 -- the derived type carries its own Default_Initial_Condition pragma,
9022 -- the flag is later reset in Analyze_Pragma. Note that both flags are
9023 -- mutually exclusive.
9024
9025 Propagate_Default_Init_Cond_Attributes
9026 (From_Typ => Parent_Type,
9027 To_Typ => Derived_Type,
9028 Parent_To_Derivation => True);
9029
9030 -- If the parent type has delayed rep aspects, then mark the derived
9031 -- type as possibly inheriting a delayed rep aspect.
9032
9033 if Has_Delayed_Rep_Aspects (Parent_Type) then
9034 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9035 end if;
9036
9037 -- Propagate the attributes related to pragma Ghost from the parent type
9038 -- to the derived type or type extension (SPARK RM 6.9(9)).
9039
9040 if Is_Ghost_Entity (Parent_Type) then
9041 Set_Is_Ghost_Entity (Derived_Type);
9042 end if;
9043
9044 -- Type dependent processing
9045
9046 case Ekind (Parent_Type) is
9047 when Numeric_Kind =>
9048 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9049
9050 when Array_Kind =>
9051 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9052
9053 when E_Record_Type
9054 | E_Record_Subtype
9055 | Class_Wide_Kind =>
9056 Build_Derived_Record_Type
9057 (N, Parent_Type, Derived_Type, Derive_Subps);
9058 return;
9059
9060 when Enumeration_Kind =>
9061 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9062
9063 when Access_Kind =>
9064 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9065
9066 when Incomplete_Or_Private_Kind =>
9067 Build_Derived_Private_Type
9068 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9069
9070 -- For discriminated types, the derivation includes deriving
9071 -- primitive operations. For others it is done below.
9072
9073 if Is_Tagged_Type (Parent_Type)
9074 or else Has_Discriminants (Parent_Type)
9075 or else (Present (Full_View (Parent_Type))
9076 and then Has_Discriminants (Full_View (Parent_Type)))
9077 then
9078 return;
9079 end if;
9080
9081 when Concurrent_Kind =>
9082 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9083
9084 when others =>
9085 raise Program_Error;
9086 end case;
9087
9088 -- Nothing more to do if some error occurred
9089
9090 if Etype (Derived_Type) = Any_Type then
9091 return;
9092 end if;
9093
9094 -- Set delayed freeze and then derive subprograms, we need to do this
9095 -- in this order so that derived subprograms inherit the derived freeze
9096 -- if necessary.
9097
9098 Set_Has_Delayed_Freeze (Derived_Type);
9099
9100 if Derive_Subps then
9101 Derive_Subprograms (Parent_Type, Derived_Type);
9102 end if;
9103
9104 Set_Has_Primitive_Operations
9105 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9106 end Build_Derived_Type;
9107
9108 -----------------------
9109 -- Build_Discriminal --
9110 -----------------------
9111
9112 procedure Build_Discriminal (Discrim : Entity_Id) is
9113 D_Minal : Entity_Id;
9114 CR_Disc : Entity_Id;
9115
9116 begin
9117 -- A discriminal has the same name as the discriminant
9118
9119 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9120
9121 Set_Ekind (D_Minal, E_In_Parameter);
9122 Set_Mechanism (D_Minal, Default_Mechanism);
9123 Set_Etype (D_Minal, Etype (Discrim));
9124 Set_Scope (D_Minal, Current_Scope);
9125
9126 Set_Discriminal (Discrim, D_Minal);
9127 Set_Discriminal_Link (D_Minal, Discrim);
9128
9129 -- For task types, build at once the discriminants of the corresponding
9130 -- record, which are needed if discriminants are used in entry defaults
9131 -- and in family bounds.
9132
9133 if Is_Concurrent_Type (Current_Scope)
9134 or else
9135 Is_Limited_Type (Current_Scope)
9136 then
9137 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9138
9139 Set_Ekind (CR_Disc, E_In_Parameter);
9140 Set_Mechanism (CR_Disc, Default_Mechanism);
9141 Set_Etype (CR_Disc, Etype (Discrim));
9142 Set_Scope (CR_Disc, Current_Scope);
9143 Set_Discriminal_Link (CR_Disc, Discrim);
9144 Set_CR_Discriminant (Discrim, CR_Disc);
9145 end if;
9146 end Build_Discriminal;
9147
9148 ------------------------------------
9149 -- Build_Discriminant_Constraints --
9150 ------------------------------------
9151
9152 function Build_Discriminant_Constraints
9153 (T : Entity_Id;
9154 Def : Node_Id;
9155 Derived_Def : Boolean := False) return Elist_Id
9156 is
9157 C : constant Node_Id := Constraint (Def);
9158 Nb_Discr : constant Nat := Number_Discriminants (T);
9159
9160 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9161 -- Saves the expression corresponding to a given discriminant in T
9162
9163 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9164 -- Return the Position number within array Discr_Expr of a discriminant
9165 -- D within the discriminant list of the discriminated type T.
9166
9167 procedure Process_Discriminant_Expression
9168 (Expr : Node_Id;
9169 D : Entity_Id);
9170 -- If this is a discriminant constraint on a partial view, do not
9171 -- generate an overflow check on the discriminant expression. The check
9172 -- will be generated when constraining the full view. Otherwise the
9173 -- backend creates duplicate symbols for the temporaries corresponding
9174 -- to the expressions to be checked, causing spurious assembler errors.
9175
9176 ------------------
9177 -- Pos_Of_Discr --
9178 ------------------
9179
9180 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9181 Disc : Entity_Id;
9182
9183 begin
9184 Disc := First_Discriminant (T);
9185 for J in Discr_Expr'Range loop
9186 if Disc = D then
9187 return J;
9188 end if;
9189
9190 Next_Discriminant (Disc);
9191 end loop;
9192
9193 -- Note: Since this function is called on discriminants that are
9194 -- known to belong to the discriminated type, falling through the
9195 -- loop with no match signals an internal compiler error.
9196
9197 raise Program_Error;
9198 end Pos_Of_Discr;
9199
9200 -------------------------------------
9201 -- Process_Discriminant_Expression --
9202 -------------------------------------
9203
9204 procedure Process_Discriminant_Expression
9205 (Expr : Node_Id;
9206 D : Entity_Id)
9207 is
9208 BDT : constant Entity_Id := Base_Type (Etype (D));
9209
9210 begin
9211 -- If this is a discriminant constraint on a partial view, do
9212 -- not generate an overflow on the discriminant expression. The
9213 -- check will be generated when constraining the full view.
9214
9215 if Is_Private_Type (T)
9216 and then Present (Full_View (T))
9217 then
9218 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9219 else
9220 Analyze_And_Resolve (Expr, BDT);
9221 end if;
9222 end Process_Discriminant_Expression;
9223
9224 -- Declarations local to Build_Discriminant_Constraints
9225
9226 Discr : Entity_Id;
9227 E : Entity_Id;
9228 Elist : constant Elist_Id := New_Elmt_List;
9229
9230 Constr : Node_Id;
9231 Expr : Node_Id;
9232 Id : Node_Id;
9233 Position : Nat;
9234 Found : Boolean;
9235
9236 Discrim_Present : Boolean := False;
9237
9238 -- Start of processing for Build_Discriminant_Constraints
9239
9240 begin
9241 -- The following loop will process positional associations only.
9242 -- For a positional association, the (single) discriminant is
9243 -- implicitly specified by position, in textual order (RM 3.7.2).
9244
9245 Discr := First_Discriminant (T);
9246 Constr := First (Constraints (C));
9247 for D in Discr_Expr'Range loop
9248 exit when Nkind (Constr) = N_Discriminant_Association;
9249
9250 if No (Constr) then
9251 Error_Msg_N ("too few discriminants given in constraint", C);
9252 return New_Elmt_List;
9253
9254 elsif Nkind (Constr) = N_Range
9255 or else (Nkind (Constr) = N_Attribute_Reference
9256 and then Attribute_Name (Constr) = Name_Range)
9257 then
9258 Error_Msg_N
9259 ("a range is not a valid discriminant constraint", Constr);
9260 Discr_Expr (D) := Error;
9261
9262 else
9263 Process_Discriminant_Expression (Constr, Discr);
9264 Discr_Expr (D) := Constr;
9265 end if;
9266
9267 Next_Discriminant (Discr);
9268 Next (Constr);
9269 end loop;
9270
9271 if No (Discr) and then Present (Constr) then
9272 Error_Msg_N ("too many discriminants given in constraint", Constr);
9273 return New_Elmt_List;
9274 end if;
9275
9276 -- Named associations can be given in any order, but if both positional
9277 -- and named associations are used in the same discriminant constraint,
9278 -- then positional associations must occur first, at their normal
9279 -- position. Hence once a named association is used, the rest of the
9280 -- discriminant constraint must use only named associations.
9281
9282 while Present (Constr) loop
9283
9284 -- Positional association forbidden after a named association
9285
9286 if Nkind (Constr) /= N_Discriminant_Association then
9287 Error_Msg_N ("positional association follows named one", Constr);
9288 return New_Elmt_List;
9289
9290 -- Otherwise it is a named association
9291
9292 else
9293 -- E records the type of the discriminants in the named
9294 -- association. All the discriminants specified in the same name
9295 -- association must have the same type.
9296
9297 E := Empty;
9298
9299 -- Search the list of discriminants in T to see if the simple name
9300 -- given in the constraint matches any of them.
9301
9302 Id := First (Selector_Names (Constr));
9303 while Present (Id) loop
9304 Found := False;
9305
9306 -- If Original_Discriminant is present, we are processing a
9307 -- generic instantiation and this is an instance node. We need
9308 -- to find the name of the corresponding discriminant in the
9309 -- actual record type T and not the name of the discriminant in
9310 -- the generic formal. Example:
9311
9312 -- generic
9313 -- type G (D : int) is private;
9314 -- package P is
9315 -- subtype W is G (D => 1);
9316 -- end package;
9317 -- type Rec (X : int) is record ... end record;
9318 -- package Q is new P (G => Rec);
9319
9320 -- At the point of the instantiation, formal type G is Rec
9321 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9322 -- which really looks like "subtype W is Rec (D => 1);" at
9323 -- the point of instantiation, we want to find the discriminant
9324 -- that corresponds to D in Rec, i.e. X.
9325
9326 if Present (Original_Discriminant (Id))
9327 and then In_Instance
9328 then
9329 Discr := Find_Corresponding_Discriminant (Id, T);
9330 Found := True;
9331
9332 else
9333 Discr := First_Discriminant (T);
9334 while Present (Discr) loop
9335 if Chars (Discr) = Chars (Id) then
9336 Found := True;
9337 exit;
9338 end if;
9339
9340 Next_Discriminant (Discr);
9341 end loop;
9342
9343 if not Found then
9344 Error_Msg_N ("& does not match any discriminant", Id);
9345 return New_Elmt_List;
9346
9347 -- If the parent type is a generic formal, preserve the
9348 -- name of the discriminant for subsequent instances.
9349 -- see comment at the beginning of this if statement.
9350
9351 elsif Is_Generic_Type (Root_Type (T)) then
9352 Set_Original_Discriminant (Id, Discr);
9353 end if;
9354 end if;
9355
9356 Position := Pos_Of_Discr (T, Discr);
9357
9358 if Present (Discr_Expr (Position)) then
9359 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9360
9361 else
9362 -- Each discriminant specified in the same named association
9363 -- must be associated with a separate copy of the
9364 -- corresponding expression.
9365
9366 if Present (Next (Id)) then
9367 Expr := New_Copy_Tree (Expression (Constr));
9368 Set_Parent (Expr, Parent (Expression (Constr)));
9369 else
9370 Expr := Expression (Constr);
9371 end if;
9372
9373 Discr_Expr (Position) := Expr;
9374 Process_Discriminant_Expression (Expr, Discr);
9375 end if;
9376
9377 -- A discriminant association with more than one discriminant
9378 -- name is only allowed if the named discriminants are all of
9379 -- the same type (RM 3.7.1(8)).
9380
9381 if E = Empty then
9382 E := Base_Type (Etype (Discr));
9383
9384 elsif Base_Type (Etype (Discr)) /= E then
9385 Error_Msg_N
9386 ("all discriminants in an association " &
9387 "must have the same type", Id);
9388 end if;
9389
9390 Next (Id);
9391 end loop;
9392 end if;
9393
9394 Next (Constr);
9395 end loop;
9396
9397 -- A discriminant constraint must provide exactly one value for each
9398 -- discriminant of the type (RM 3.7.1(8)).
9399
9400 for J in Discr_Expr'Range loop
9401 if No (Discr_Expr (J)) then
9402 Error_Msg_N ("too few discriminants given in constraint", C);
9403 return New_Elmt_List;
9404 end if;
9405 end loop;
9406
9407 -- Determine if there are discriminant expressions in the constraint
9408
9409 for J in Discr_Expr'Range loop
9410 if Denotes_Discriminant
9411 (Discr_Expr (J), Check_Concurrent => True)
9412 then
9413 Discrim_Present := True;
9414 end if;
9415 end loop;
9416
9417 -- Build an element list consisting of the expressions given in the
9418 -- discriminant constraint and apply the appropriate checks. The list
9419 -- is constructed after resolving any named discriminant associations
9420 -- and therefore the expressions appear in the textual order of the
9421 -- discriminants.
9422
9423 Discr := First_Discriminant (T);
9424 for J in Discr_Expr'Range loop
9425 if Discr_Expr (J) /= Error then
9426 Append_Elmt (Discr_Expr (J), Elist);
9427
9428 -- If any of the discriminant constraints is given by a
9429 -- discriminant and we are in a derived type declaration we
9430 -- have a discriminant renaming. Establish link between new
9431 -- and old discriminant.
9432
9433 if Denotes_Discriminant (Discr_Expr (J)) then
9434 if Derived_Def then
9435 Set_Corresponding_Discriminant
9436 (Entity (Discr_Expr (J)), Discr);
9437 end if;
9438
9439 -- Force the evaluation of non-discriminant expressions.
9440 -- If we have found a discriminant in the constraint 3.4(26)
9441 -- and 3.8(18) demand that no range checks are performed are
9442 -- after evaluation. If the constraint is for a component
9443 -- definition that has a per-object constraint, expressions are
9444 -- evaluated but not checked either. In all other cases perform
9445 -- a range check.
9446
9447 else
9448 if Discrim_Present then
9449 null;
9450
9451 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9452 and then
9453 Has_Per_Object_Constraint
9454 (Defining_Identifier (Parent (Parent (Def))))
9455 then
9456 null;
9457
9458 elsif Is_Access_Type (Etype (Discr)) then
9459 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9460
9461 else
9462 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9463 end if;
9464
9465 Force_Evaluation (Discr_Expr (J));
9466 end if;
9467
9468 -- Check that the designated type of an access discriminant's
9469 -- expression is not a class-wide type unless the discriminant's
9470 -- designated type is also class-wide.
9471
9472 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9473 and then not Is_Class_Wide_Type
9474 (Designated_Type (Etype (Discr)))
9475 and then Etype (Discr_Expr (J)) /= Any_Type
9476 and then Is_Class_Wide_Type
9477 (Designated_Type (Etype (Discr_Expr (J))))
9478 then
9479 Wrong_Type (Discr_Expr (J), Etype (Discr));
9480
9481 elsif Is_Access_Type (Etype (Discr))
9482 and then not Is_Access_Constant (Etype (Discr))
9483 and then Is_Access_Type (Etype (Discr_Expr (J)))
9484 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9485 then
9486 Error_Msg_NE
9487 ("constraint for discriminant& must be access to variable",
9488 Def, Discr);
9489 end if;
9490 end if;
9491
9492 Next_Discriminant (Discr);
9493 end loop;
9494
9495 return Elist;
9496 end Build_Discriminant_Constraints;
9497
9498 ---------------------------------
9499 -- Build_Discriminated_Subtype --
9500 ---------------------------------
9501
9502 procedure Build_Discriminated_Subtype
9503 (T : Entity_Id;
9504 Def_Id : Entity_Id;
9505 Elist : Elist_Id;
9506 Related_Nod : Node_Id;
9507 For_Access : Boolean := False)
9508 is
9509 Has_Discrs : constant Boolean := Has_Discriminants (T);
9510 Constrained : constant Boolean :=
9511 (Has_Discrs
9512 and then not Is_Empty_Elmt_List (Elist)
9513 and then not Is_Class_Wide_Type (T))
9514 or else Is_Constrained (T);
9515
9516 begin
9517 if Ekind (T) = E_Record_Type then
9518 if For_Access then
9519 Set_Ekind (Def_Id, E_Private_Subtype);
9520 Set_Is_For_Access_Subtype (Def_Id, True);
9521 else
9522 Set_Ekind (Def_Id, E_Record_Subtype);
9523 end if;
9524
9525 -- Inherit preelaboration flag from base, for types for which it
9526 -- may have been set: records, private types, protected types.
9527
9528 Set_Known_To_Have_Preelab_Init
9529 (Def_Id, Known_To_Have_Preelab_Init (T));
9530
9531 elsif Ekind (T) = E_Task_Type then
9532 Set_Ekind (Def_Id, E_Task_Subtype);
9533
9534 elsif Ekind (T) = E_Protected_Type then
9535 Set_Ekind (Def_Id, E_Protected_Subtype);
9536 Set_Known_To_Have_Preelab_Init
9537 (Def_Id, Known_To_Have_Preelab_Init (T));
9538
9539 elsif Is_Private_Type (T) then
9540 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9541 Set_Known_To_Have_Preelab_Init
9542 (Def_Id, Known_To_Have_Preelab_Init (T));
9543
9544 -- Private subtypes may have private dependents
9545
9546 Set_Private_Dependents (Def_Id, New_Elmt_List);
9547
9548 elsif Is_Class_Wide_Type (T) then
9549 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9550
9551 else
9552 -- Incomplete type. Attach subtype to list of dependents, to be
9553 -- completed with full view of parent type, unless is it the
9554 -- designated subtype of a record component within an init_proc.
9555 -- This last case arises for a component of an access type whose
9556 -- designated type is incomplete (e.g. a Taft Amendment type).
9557 -- The designated subtype is within an inner scope, and needs no
9558 -- elaboration, because only the access type is needed in the
9559 -- initialization procedure.
9560
9561 Set_Ekind (Def_Id, Ekind (T));
9562
9563 if For_Access and then Within_Init_Proc then
9564 null;
9565 else
9566 Append_Elmt (Def_Id, Private_Dependents (T));
9567 end if;
9568 end if;
9569
9570 Set_Etype (Def_Id, T);
9571 Init_Size_Align (Def_Id);
9572 Set_Has_Discriminants (Def_Id, Has_Discrs);
9573 Set_Is_Constrained (Def_Id, Constrained);
9574
9575 Set_First_Entity (Def_Id, First_Entity (T));
9576 Set_Last_Entity (Def_Id, Last_Entity (T));
9577 Set_Has_Implicit_Dereference
9578 (Def_Id, Has_Implicit_Dereference (T));
9579
9580 -- If the subtype is the completion of a private declaration, there may
9581 -- have been representation clauses for the partial view, and they must
9582 -- be preserved. Build_Derived_Type chains the inherited clauses with
9583 -- the ones appearing on the extension. If this comes from a subtype
9584 -- declaration, all clauses are inherited.
9585
9586 if No (First_Rep_Item (Def_Id)) then
9587 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9588 end if;
9589
9590 if Is_Tagged_Type (T) then
9591 Set_Is_Tagged_Type (Def_Id);
9592 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9593 Make_Class_Wide_Type (Def_Id);
9594 end if;
9595
9596 Set_Stored_Constraint (Def_Id, No_Elist);
9597
9598 if Has_Discrs then
9599 Set_Discriminant_Constraint (Def_Id, Elist);
9600 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9601 end if;
9602
9603 if Is_Tagged_Type (T) then
9604
9605 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9606 -- concurrent record type (which has the list of primitive
9607 -- operations).
9608
9609 if Ada_Version >= Ada_2005
9610 and then Is_Concurrent_Type (T)
9611 then
9612 Set_Corresponding_Record_Type (Def_Id,
9613 Corresponding_Record_Type (T));
9614 else
9615 Set_Direct_Primitive_Operations (Def_Id,
9616 Direct_Primitive_Operations (T));
9617 end if;
9618
9619 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9620 end if;
9621
9622 -- Subtypes introduced by component declarations do not need to be
9623 -- marked as delayed, and do not get freeze nodes, because the semantics
9624 -- verifies that the parents of the subtypes are frozen before the
9625 -- enclosing record is frozen.
9626
9627 if not Is_Type (Scope (Def_Id)) then
9628 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9629
9630 if Is_Private_Type (T)
9631 and then Present (Full_View (T))
9632 then
9633 Conditional_Delay (Def_Id, Full_View (T));
9634 else
9635 Conditional_Delay (Def_Id, T);
9636 end if;
9637 end if;
9638
9639 if Is_Record_Type (T) then
9640 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9641
9642 if Has_Discrs
9643 and then not Is_Empty_Elmt_List (Elist)
9644 and then not For_Access
9645 then
9646 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9647 elsif not For_Access then
9648 Set_Cloned_Subtype (Def_Id, T);
9649 end if;
9650 end if;
9651 end Build_Discriminated_Subtype;
9652
9653 ---------------------------
9654 -- Build_Itype_Reference --
9655 ---------------------------
9656
9657 procedure Build_Itype_Reference
9658 (Ityp : Entity_Id;
9659 Nod : Node_Id)
9660 is
9661 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9662 begin
9663
9664 -- Itype references are only created for use by the back-end
9665
9666 if Inside_A_Generic then
9667 return;
9668 else
9669 Set_Itype (IR, Ityp);
9670 Insert_After (Nod, IR);
9671 end if;
9672 end Build_Itype_Reference;
9673
9674 ------------------------
9675 -- Build_Scalar_Bound --
9676 ------------------------
9677
9678 function Build_Scalar_Bound
9679 (Bound : Node_Id;
9680 Par_T : Entity_Id;
9681 Der_T : Entity_Id) return Node_Id
9682 is
9683 New_Bound : Entity_Id;
9684
9685 begin
9686 -- Note: not clear why this is needed, how can the original bound
9687 -- be unanalyzed at this point? and if it is, what business do we
9688 -- have messing around with it? and why is the base type of the
9689 -- parent type the right type for the resolution. It probably is
9690 -- not. It is OK for the new bound we are creating, but not for
9691 -- the old one??? Still if it never happens, no problem.
9692
9693 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9694
9695 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9696 New_Bound := New_Copy (Bound);
9697 Set_Etype (New_Bound, Der_T);
9698 Set_Analyzed (New_Bound);
9699
9700 elsif Is_Entity_Name (Bound) then
9701 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9702
9703 -- The following is almost certainly wrong. What business do we have
9704 -- relocating a node (Bound) that is presumably still attached to
9705 -- the tree elsewhere???
9706
9707 else
9708 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9709 end if;
9710
9711 Set_Etype (New_Bound, Der_T);
9712 return New_Bound;
9713 end Build_Scalar_Bound;
9714
9715 --------------------------------
9716 -- Build_Underlying_Full_View --
9717 --------------------------------
9718
9719 procedure Build_Underlying_Full_View
9720 (N : Node_Id;
9721 Typ : Entity_Id;
9722 Par : Entity_Id)
9723 is
9724 Loc : constant Source_Ptr := Sloc (N);
9725 Subt : constant Entity_Id :=
9726 Make_Defining_Identifier
9727 (Loc, New_External_Name (Chars (Typ), 'S'));
9728
9729 Constr : Node_Id;
9730 Indic : Node_Id;
9731 C : Node_Id;
9732 Id : Node_Id;
9733
9734 procedure Set_Discriminant_Name (Id : Node_Id);
9735 -- If the derived type has discriminants, they may rename discriminants
9736 -- of the parent. When building the full view of the parent, we need to
9737 -- recover the names of the original discriminants if the constraint is
9738 -- given by named associations.
9739
9740 ---------------------------
9741 -- Set_Discriminant_Name --
9742 ---------------------------
9743
9744 procedure Set_Discriminant_Name (Id : Node_Id) is
9745 Disc : Entity_Id;
9746
9747 begin
9748 Set_Original_Discriminant (Id, Empty);
9749
9750 if Has_Discriminants (Typ) then
9751 Disc := First_Discriminant (Typ);
9752 while Present (Disc) loop
9753 if Chars (Disc) = Chars (Id)
9754 and then Present (Corresponding_Discriminant (Disc))
9755 then
9756 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9757 end if;
9758 Next_Discriminant (Disc);
9759 end loop;
9760 end if;
9761 end Set_Discriminant_Name;
9762
9763 -- Start of processing for Build_Underlying_Full_View
9764
9765 begin
9766 if Nkind (N) = N_Full_Type_Declaration then
9767 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9768
9769 elsif Nkind (N) = N_Subtype_Declaration then
9770 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9771
9772 elsif Nkind (N) = N_Component_Declaration then
9773 Constr :=
9774 New_Copy_Tree
9775 (Constraint (Subtype_Indication (Component_Definition (N))));
9776
9777 else
9778 raise Program_Error;
9779 end if;
9780
9781 C := First (Constraints (Constr));
9782 while Present (C) loop
9783 if Nkind (C) = N_Discriminant_Association then
9784 Id := First (Selector_Names (C));
9785 while Present (Id) loop
9786 Set_Discriminant_Name (Id);
9787 Next (Id);
9788 end loop;
9789 end if;
9790
9791 Next (C);
9792 end loop;
9793
9794 Indic :=
9795 Make_Subtype_Declaration (Loc,
9796 Defining_Identifier => Subt,
9797 Subtype_Indication =>
9798 Make_Subtype_Indication (Loc,
9799 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9800 Constraint => New_Copy_Tree (Constr)));
9801
9802 -- If this is a component subtype for an outer itype, it is not
9803 -- a list member, so simply set the parent link for analysis: if
9804 -- the enclosing type does not need to be in a declarative list,
9805 -- neither do the components.
9806
9807 if Is_List_Member (N)
9808 and then Nkind (N) /= N_Component_Declaration
9809 then
9810 Insert_Before (N, Indic);
9811 else
9812 Set_Parent (Indic, Parent (N));
9813 end if;
9814
9815 Analyze (Indic);
9816 Set_Underlying_Full_View (Typ, Full_View (Subt));
9817 end Build_Underlying_Full_View;
9818
9819 -------------------------------
9820 -- Check_Abstract_Overriding --
9821 -------------------------------
9822
9823 procedure Check_Abstract_Overriding (T : Entity_Id) is
9824 Alias_Subp : Entity_Id;
9825 Elmt : Elmt_Id;
9826 Op_List : Elist_Id;
9827 Subp : Entity_Id;
9828 Type_Def : Node_Id;
9829
9830 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9831 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9832 -- which has pragma Implemented already set. Check whether Subp's entity
9833 -- kind conforms to the implementation kind of the overridden routine.
9834
9835 procedure Check_Pragma_Implemented
9836 (Subp : Entity_Id;
9837 Iface_Subp : Entity_Id);
9838 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9839 -- Iface_Subp and both entities have pragma Implemented already set on
9840 -- them. Check whether the two implementation kinds are conforming.
9841
9842 procedure Inherit_Pragma_Implemented
9843 (Subp : Entity_Id;
9844 Iface_Subp : Entity_Id);
9845 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9846 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9847 -- Propagate the implementation kind of Iface_Subp to Subp.
9848
9849 ------------------------------
9850 -- Check_Pragma_Implemented --
9851 ------------------------------
9852
9853 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9854 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9855 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9856 Subp_Alias : constant Entity_Id := Alias (Subp);
9857 Contr_Typ : Entity_Id;
9858 Impl_Subp : Entity_Id;
9859
9860 begin
9861 -- Subp must have an alias since it is a hidden entity used to link
9862 -- an interface subprogram to its overriding counterpart.
9863
9864 pragma Assert (Present (Subp_Alias));
9865
9866 -- Handle aliases to synchronized wrappers
9867
9868 Impl_Subp := Subp_Alias;
9869
9870 if Is_Primitive_Wrapper (Impl_Subp) then
9871 Impl_Subp := Wrapped_Entity (Impl_Subp);
9872 end if;
9873
9874 -- Extract the type of the controlling formal
9875
9876 Contr_Typ := Etype (First_Formal (Subp_Alias));
9877
9878 if Is_Concurrent_Record_Type (Contr_Typ) then
9879 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9880 end if;
9881
9882 -- An interface subprogram whose implementation kind is By_Entry must
9883 -- be implemented by an entry.
9884
9885 if Impl_Kind = Name_By_Entry
9886 and then Ekind (Impl_Subp) /= E_Entry
9887 then
9888 Error_Msg_Node_2 := Iface_Alias;
9889 Error_Msg_NE
9890 ("type & must implement abstract subprogram & with an entry",
9891 Subp_Alias, Contr_Typ);
9892
9893 elsif Impl_Kind = Name_By_Protected_Procedure then
9894
9895 -- An interface subprogram whose implementation kind is By_
9896 -- Protected_Procedure cannot be implemented by a primitive
9897 -- procedure of a task type.
9898
9899 if Ekind (Contr_Typ) /= E_Protected_Type then
9900 Error_Msg_Node_2 := Contr_Typ;
9901 Error_Msg_NE
9902 ("interface subprogram & cannot be implemented by a " &
9903 "primitive procedure of task type &", Subp_Alias,
9904 Iface_Alias);
9905
9906 -- An interface subprogram whose implementation kind is By_
9907 -- Protected_Procedure must be implemented by a procedure.
9908
9909 elsif Ekind (Impl_Subp) /= E_Procedure then
9910 Error_Msg_Node_2 := Iface_Alias;
9911 Error_Msg_NE
9912 ("type & must implement abstract subprogram & with a " &
9913 "procedure", Subp_Alias, Contr_Typ);
9914
9915 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9916 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9917 then
9918 Error_Msg_Name_1 := Impl_Kind;
9919 Error_Msg_N
9920 ("overriding operation& must have synchronization%",
9921 Subp_Alias);
9922 end if;
9923
9924 -- If primitive has Optional synchronization, overriding operation
9925 -- must match if it has an explicit synchronization..
9926
9927 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9928 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9929 then
9930 Error_Msg_Name_1 := Impl_Kind;
9931 Error_Msg_N
9932 ("overriding operation& must have syncrhonization%",
9933 Subp_Alias);
9934 end if;
9935 end Check_Pragma_Implemented;
9936
9937 ------------------------------
9938 -- Check_Pragma_Implemented --
9939 ------------------------------
9940
9941 procedure Check_Pragma_Implemented
9942 (Subp : Entity_Id;
9943 Iface_Subp : Entity_Id)
9944 is
9945 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9946 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9947
9948 begin
9949 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9950 -- and overriding subprogram are different. In general this is an
9951 -- error except when the implementation kind of the overridden
9952 -- subprograms is By_Any or Optional.
9953
9954 if Iface_Kind /= Subp_Kind
9955 and then Iface_Kind /= Name_By_Any
9956 and then Iface_Kind /= Name_Optional
9957 then
9958 if Iface_Kind = Name_By_Entry then
9959 Error_Msg_N
9960 ("incompatible implementation kind, overridden subprogram " &
9961 "is marked By_Entry", Subp);
9962 else
9963 Error_Msg_N
9964 ("incompatible implementation kind, overridden subprogram " &
9965 "is marked By_Protected_Procedure", Subp);
9966 end if;
9967 end if;
9968 end Check_Pragma_Implemented;
9969
9970 --------------------------------
9971 -- Inherit_Pragma_Implemented --
9972 --------------------------------
9973
9974 procedure Inherit_Pragma_Implemented
9975 (Subp : Entity_Id;
9976 Iface_Subp : Entity_Id)
9977 is
9978 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9979 Loc : constant Source_Ptr := Sloc (Subp);
9980 Impl_Prag : Node_Id;
9981
9982 begin
9983 -- Since the implementation kind is stored as a representation item
9984 -- rather than a flag, create a pragma node.
9985
9986 Impl_Prag :=
9987 Make_Pragma (Loc,
9988 Chars => Name_Implemented,
9989 Pragma_Argument_Associations => New_List (
9990 Make_Pragma_Argument_Association (Loc,
9991 Expression => New_Occurrence_Of (Subp, Loc)),
9992
9993 Make_Pragma_Argument_Association (Loc,
9994 Expression => Make_Identifier (Loc, Iface_Kind))));
9995
9996 -- The pragma doesn't need to be analyzed because it is internally
9997 -- built. It is safe to directly register it as a rep item since we
9998 -- are only interested in the characters of the implementation kind.
9999
10000 Record_Rep_Item (Subp, Impl_Prag);
10001 end Inherit_Pragma_Implemented;
10002
10003 -- Start of processing for Check_Abstract_Overriding
10004
10005 begin
10006 Op_List := Primitive_Operations (T);
10007
10008 -- Loop to check primitive operations
10009
10010 Elmt := First_Elmt (Op_List);
10011 while Present (Elmt) loop
10012 Subp := Node (Elmt);
10013 Alias_Subp := Alias (Subp);
10014
10015 -- Inherited subprograms are identified by the fact that they do not
10016 -- come from source, and the associated source location is the
10017 -- location of the first subtype of the derived type.
10018
10019 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10020 -- subprograms that "require overriding".
10021
10022 -- Special exception, do not complain about failure to override the
10023 -- stream routines _Input and _Output, as well as the primitive
10024 -- operations used in dispatching selects since we always provide
10025 -- automatic overridings for these subprograms.
10026
10027 -- The partial view of T may have been a private extension, for
10028 -- which inherited functions dispatching on result are abstract.
10029 -- If the full view is a null extension, there is no need for
10030 -- overriding in Ada 2005, but wrappers need to be built for them
10031 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10032
10033 if Is_Null_Extension (T)
10034 and then Has_Controlling_Result (Subp)
10035 and then Ada_Version >= Ada_2005
10036 and then Present (Alias_Subp)
10037 and then not Comes_From_Source (Subp)
10038 and then not Is_Abstract_Subprogram (Alias_Subp)
10039 and then not Is_Access_Type (Etype (Subp))
10040 then
10041 null;
10042
10043 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10044 -- processing because this check is done with the aliased
10045 -- entity
10046
10047 elsif Present (Interface_Alias (Subp)) then
10048 null;
10049
10050 elsif (Is_Abstract_Subprogram (Subp)
10051 or else Requires_Overriding (Subp)
10052 or else
10053 (Has_Controlling_Result (Subp)
10054 and then Present (Alias_Subp)
10055 and then not Comes_From_Source (Subp)
10056 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10057 and then not Is_TSS (Subp, TSS_Stream_Input)
10058 and then not Is_TSS (Subp, TSS_Stream_Output)
10059 and then not Is_Abstract_Type (T)
10060 and then not Is_Predefined_Interface_Primitive (Subp)
10061
10062 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10063 -- with abstract interface types because the check will be done
10064 -- with the aliased entity (otherwise we generate a duplicated
10065 -- error message).
10066
10067 and then not Present (Interface_Alias (Subp))
10068 then
10069 if Present (Alias_Subp) then
10070
10071 -- Only perform the check for a derived subprogram when the
10072 -- type has an explicit record extension. This avoids incorrect
10073 -- flagging of abstract subprograms for the case of a type
10074 -- without an extension that is derived from a formal type
10075 -- with a tagged actual (can occur within a private part).
10076
10077 -- Ada 2005 (AI-391): In the case of an inherited function with
10078 -- a controlling result of the type, the rule does not apply if
10079 -- the type is a null extension (unless the parent function
10080 -- itself is abstract, in which case the function must still be
10081 -- be overridden). The expander will generate an overriding
10082 -- wrapper function calling the parent subprogram (see
10083 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10084
10085 Type_Def := Type_Definition (Parent (T));
10086
10087 if Nkind (Type_Def) = N_Derived_Type_Definition
10088 and then Present (Record_Extension_Part (Type_Def))
10089 and then
10090 (Ada_Version < Ada_2005
10091 or else not Is_Null_Extension (T)
10092 or else Ekind (Subp) = E_Procedure
10093 or else not Has_Controlling_Result (Subp)
10094 or else Is_Abstract_Subprogram (Alias_Subp)
10095 or else Requires_Overriding (Subp)
10096 or else Is_Access_Type (Etype (Subp)))
10097 then
10098 -- Avoid reporting error in case of abstract predefined
10099 -- primitive inherited from interface type because the
10100 -- body of internally generated predefined primitives
10101 -- of tagged types are generated later by Freeze_Type
10102
10103 if Is_Interface (Root_Type (T))
10104 and then Is_Abstract_Subprogram (Subp)
10105 and then Is_Predefined_Dispatching_Operation (Subp)
10106 and then not Comes_From_Source (Ultimate_Alias (Subp))
10107 then
10108 null;
10109
10110 -- A null extension is not obliged to override an inherited
10111 -- procedure subject to pragma Extensions_Visible with value
10112 -- False and at least one controlling OUT parameter
10113 -- (SPARK RM 6.1.7(6)).
10114
10115 elsif Is_Null_Extension (T)
10116 and then Is_EVF_Procedure (Subp)
10117 then
10118 null;
10119
10120 else
10121 Error_Msg_NE
10122 ("type must be declared abstract or & overridden",
10123 T, Subp);
10124
10125 -- Traverse the whole chain of aliased subprograms to
10126 -- complete the error notification. This is especially
10127 -- useful for traceability of the chain of entities when
10128 -- the subprogram corresponds with an interface
10129 -- subprogram (which may be defined in another package).
10130
10131 if Present (Alias_Subp) then
10132 declare
10133 E : Entity_Id;
10134
10135 begin
10136 E := Subp;
10137 while Present (Alias (E)) loop
10138
10139 -- Avoid reporting redundant errors on entities
10140 -- inherited from interfaces
10141
10142 if Sloc (E) /= Sloc (T) then
10143 Error_Msg_Sloc := Sloc (E);
10144 Error_Msg_NE
10145 ("\& has been inherited #", T, Subp);
10146 end if;
10147
10148 E := Alias (E);
10149 end loop;
10150
10151 Error_Msg_Sloc := Sloc (E);
10152
10153 -- AI05-0068: report if there is an overriding
10154 -- non-abstract subprogram that is invisible.
10155
10156 if Is_Hidden (E)
10157 and then not Is_Abstract_Subprogram (E)
10158 then
10159 Error_Msg_NE
10160 ("\& subprogram# is not visible",
10161 T, Subp);
10162
10163 -- Clarify the case where a non-null extension must
10164 -- override inherited procedure subject to pragma
10165 -- Extensions_Visible with value False and at least
10166 -- one controlling OUT param.
10167
10168 elsif Is_EVF_Procedure (E) then
10169 Error_Msg_NE
10170 ("\& # is subject to Extensions_Visible False",
10171 T, Subp);
10172
10173 else
10174 Error_Msg_NE
10175 ("\& has been inherited from subprogram #",
10176 T, Subp);
10177 end if;
10178 end;
10179 end if;
10180 end if;
10181
10182 -- Ada 2005 (AI-345): Protected or task type implementing
10183 -- abstract interfaces.
10184
10185 elsif Is_Concurrent_Record_Type (T)
10186 and then Present (Interfaces (T))
10187 then
10188 -- There is no need to check here RM 9.4(11.9/3) since we
10189 -- are processing the corresponding record type and the
10190 -- mode of the overriding subprograms was verified by
10191 -- Check_Conformance when the corresponding concurrent
10192 -- type declaration was analyzed.
10193
10194 Error_Msg_NE
10195 ("interface subprogram & must be overridden", T, Subp);
10196
10197 -- Examine primitive operations of synchronized type to find
10198 -- homonyms that have the wrong profile.
10199
10200 declare
10201 Prim : Entity_Id;
10202
10203 begin
10204 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10205 while Present (Prim) loop
10206 if Chars (Prim) = Chars (Subp) then
10207 Error_Msg_NE
10208 ("profile is not type conformant with prefixed "
10209 & "view profile of inherited operation&",
10210 Prim, Subp);
10211 end if;
10212
10213 Next_Entity (Prim);
10214 end loop;
10215 end;
10216 end if;
10217
10218 else
10219 Error_Msg_Node_2 := T;
10220 Error_Msg_N
10221 ("abstract subprogram& not allowed for type&", Subp);
10222
10223 -- Also post unconditional warning on the type (unconditional
10224 -- so that if there are more than one of these cases, we get
10225 -- them all, and not just the first one).
10226
10227 Error_Msg_Node_2 := Subp;
10228 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10229 end if;
10230
10231 -- A subprogram subject to pragma Extensions_Visible with value
10232 -- "True" cannot override a subprogram subject to the same pragma
10233 -- with value "False" (SPARK RM 6.1.7(5)).
10234
10235 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10236 and then Present (Overridden_Operation (Subp))
10237 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10238 Extensions_Visible_False
10239 then
10240 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10241 Error_Msg_N
10242 ("subprogram & with Extensions_Visible True cannot override "
10243 & "subprogram # with Extensions_Visible False", Subp);
10244 end if;
10245
10246 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10247
10248 -- Subp is an expander-generated procedure which maps an interface
10249 -- alias to a protected wrapper. The interface alias is flagged by
10250 -- pragma Implemented. Ensure that Subp is a procedure when the
10251 -- implementation kind is By_Protected_Procedure or an entry when
10252 -- By_Entry.
10253
10254 if Ada_Version >= Ada_2012
10255 and then Is_Hidden (Subp)
10256 and then Present (Interface_Alias (Subp))
10257 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10258 then
10259 Check_Pragma_Implemented (Subp);
10260 end if;
10261
10262 -- Subp is an interface primitive which overrides another interface
10263 -- primitive marked with pragma Implemented.
10264
10265 if Ada_Version >= Ada_2012
10266 and then Present (Overridden_Operation (Subp))
10267 and then Has_Rep_Pragma
10268 (Overridden_Operation (Subp), Name_Implemented)
10269 then
10270 -- If the overriding routine is also marked by Implemented, check
10271 -- that the two implementation kinds are conforming.
10272
10273 if Has_Rep_Pragma (Subp, Name_Implemented) then
10274 Check_Pragma_Implemented
10275 (Subp => Subp,
10276 Iface_Subp => Overridden_Operation (Subp));
10277
10278 -- Otherwise the overriding routine inherits the implementation
10279 -- kind from the overridden subprogram.
10280
10281 else
10282 Inherit_Pragma_Implemented
10283 (Subp => Subp,
10284 Iface_Subp => Overridden_Operation (Subp));
10285 end if;
10286 end if;
10287
10288 -- If the operation is a wrapper for a synchronized primitive, it
10289 -- may be called indirectly through a dispatching select. We assume
10290 -- that it will be referenced elsewhere indirectly, and suppress
10291 -- warnings about an unused entity.
10292
10293 if Is_Primitive_Wrapper (Subp)
10294 and then Present (Wrapped_Entity (Subp))
10295 then
10296 Set_Referenced (Wrapped_Entity (Subp));
10297 end if;
10298
10299 Next_Elmt (Elmt);
10300 end loop;
10301 end Check_Abstract_Overriding;
10302
10303 ------------------------------------------------
10304 -- Check_Access_Discriminant_Requires_Limited --
10305 ------------------------------------------------
10306
10307 procedure Check_Access_Discriminant_Requires_Limited
10308 (D : Node_Id;
10309 Loc : Node_Id)
10310 is
10311 begin
10312 -- A discriminant_specification for an access discriminant shall appear
10313 -- only in the declaration for a task or protected type, or for a type
10314 -- with the reserved word 'limited' in its definition or in one of its
10315 -- ancestors (RM 3.7(10)).
10316
10317 -- AI-0063: The proper condition is that type must be immutably limited,
10318 -- or else be a partial view.
10319
10320 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10321 if Is_Limited_View (Current_Scope)
10322 or else
10323 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10324 and then Limited_Present (Parent (Current_Scope)))
10325 then
10326 null;
10327
10328 else
10329 Error_Msg_N
10330 ("access discriminants allowed only for limited types", Loc);
10331 end if;
10332 end if;
10333 end Check_Access_Discriminant_Requires_Limited;
10334
10335 -----------------------------------
10336 -- Check_Aliased_Component_Types --
10337 -----------------------------------
10338
10339 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10340 C : Entity_Id;
10341
10342 begin
10343 -- ??? Also need to check components of record extensions, but not
10344 -- components of protected types (which are always limited).
10345
10346 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10347 -- types to be unconstrained. This is safe because it is illegal to
10348 -- create access subtypes to such types with explicit discriminant
10349 -- constraints.
10350
10351 if not Is_Limited_Type (T) then
10352 if Ekind (T) = E_Record_Type then
10353 C := First_Component (T);
10354 while Present (C) loop
10355 if Is_Aliased (C)
10356 and then Has_Discriminants (Etype (C))
10357 and then not Is_Constrained (Etype (C))
10358 and then not In_Instance_Body
10359 and then Ada_Version < Ada_2005
10360 then
10361 Error_Msg_N
10362 ("aliased component must be constrained (RM 3.6(11))",
10363 C);
10364 end if;
10365
10366 Next_Component (C);
10367 end loop;
10368
10369 elsif Ekind (T) = E_Array_Type then
10370 if Has_Aliased_Components (T)
10371 and then Has_Discriminants (Component_Type (T))
10372 and then not Is_Constrained (Component_Type (T))
10373 and then not In_Instance_Body
10374 and then Ada_Version < Ada_2005
10375 then
10376 Error_Msg_N
10377 ("aliased component type must be constrained (RM 3.6(11))",
10378 T);
10379 end if;
10380 end if;
10381 end if;
10382 end Check_Aliased_Component_Types;
10383
10384 ---------------------------------------
10385 -- Check_Anonymous_Access_Components --
10386 ---------------------------------------
10387
10388 procedure Check_Anonymous_Access_Components
10389 (Typ_Decl : Node_Id;
10390 Typ : Entity_Id;
10391 Prev : Entity_Id;
10392 Comp_List : Node_Id)
10393 is
10394 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10395 Anon_Access : Entity_Id;
10396 Acc_Def : Node_Id;
10397 Comp : Node_Id;
10398 Comp_Def : Node_Id;
10399 Decl : Node_Id;
10400 Type_Def : Node_Id;
10401
10402 procedure Build_Incomplete_Type_Declaration;
10403 -- If the record type contains components that include an access to the
10404 -- current record, then create an incomplete type declaration for the
10405 -- record, to be used as the designated type of the anonymous access.
10406 -- This is done only once, and only if there is no previous partial
10407 -- view of the type.
10408
10409 function Designates_T (Subt : Node_Id) return Boolean;
10410 -- Check whether a node designates the enclosing record type, or 'Class
10411 -- of that type
10412
10413 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10414 -- Check whether an access definition includes a reference to
10415 -- the enclosing record type. The reference can be a subtype mark
10416 -- in the access definition itself, a 'Class attribute reference, or
10417 -- recursively a reference appearing in a parameter specification
10418 -- or result definition of an access_to_subprogram definition.
10419
10420 --------------------------------------
10421 -- Build_Incomplete_Type_Declaration --
10422 --------------------------------------
10423
10424 procedure Build_Incomplete_Type_Declaration is
10425 Decl : Node_Id;
10426 Inc_T : Entity_Id;
10427 H : Entity_Id;
10428
10429 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10430 -- it's "is new ... with record" or else "is tagged record ...".
10431
10432 Is_Tagged : constant Boolean :=
10433 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10434 and then
10435 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10436 or else
10437 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10438 and then Tagged_Present (Type_Definition (Typ_Decl)));
10439
10440 begin
10441 -- If there is a previous partial view, no need to create a new one
10442 -- If the partial view, given by Prev, is incomplete, If Prev is
10443 -- a private declaration, full declaration is flagged accordingly.
10444
10445 if Prev /= Typ then
10446 if Is_Tagged then
10447 Make_Class_Wide_Type (Prev);
10448 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10449 Set_Etype (Class_Wide_Type (Typ), Typ);
10450 end if;
10451
10452 return;
10453
10454 elsif Has_Private_Declaration (Typ) then
10455
10456 -- If we refer to T'Class inside T, and T is the completion of a
10457 -- private type, then make sure the class-wide type exists.
10458
10459 if Is_Tagged then
10460 Make_Class_Wide_Type (Typ);
10461 end if;
10462
10463 return;
10464
10465 -- If there was a previous anonymous access type, the incomplete
10466 -- type declaration will have been created already.
10467
10468 elsif Present (Current_Entity (Typ))
10469 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10470 and then Full_View (Current_Entity (Typ)) = Typ
10471 then
10472 if Is_Tagged
10473 and then Comes_From_Source (Current_Entity (Typ))
10474 and then not Is_Tagged_Type (Current_Entity (Typ))
10475 then
10476 Make_Class_Wide_Type (Typ);
10477 Error_Msg_N
10478 ("incomplete view of tagged type should be declared tagged??",
10479 Parent (Current_Entity (Typ)));
10480 end if;
10481 return;
10482
10483 else
10484 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10485 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10486
10487 -- Type has already been inserted into the current scope. Remove
10488 -- it, and add incomplete declaration for type, so that subsequent
10489 -- anonymous access types can use it. The entity is unchained from
10490 -- the homonym list and from immediate visibility. After analysis,
10491 -- the entity in the incomplete declaration becomes immediately
10492 -- visible in the record declaration that follows.
10493
10494 H := Current_Entity (Typ);
10495
10496 if H = Typ then
10497 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10498 else
10499 while Present (H)
10500 and then Homonym (H) /= Typ
10501 loop
10502 H := Homonym (Typ);
10503 end loop;
10504
10505 Set_Homonym (H, Homonym (Typ));
10506 end if;
10507
10508 Insert_Before (Typ_Decl, Decl);
10509 Analyze (Decl);
10510 Set_Full_View (Inc_T, Typ);
10511
10512 if Is_Tagged then
10513
10514 -- Create a common class-wide type for both views, and set the
10515 -- Etype of the class-wide type to the full view.
10516
10517 Make_Class_Wide_Type (Inc_T);
10518 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10519 Set_Etype (Class_Wide_Type (Typ), Typ);
10520 end if;
10521 end if;
10522 end Build_Incomplete_Type_Declaration;
10523
10524 ------------------
10525 -- Designates_T --
10526 ------------------
10527
10528 function Designates_T (Subt : Node_Id) return Boolean is
10529 Type_Id : constant Name_Id := Chars (Typ);
10530
10531 function Names_T (Nam : Node_Id) return Boolean;
10532 -- The record type has not been introduced in the current scope
10533 -- yet, so we must examine the name of the type itself, either
10534 -- an identifier T, or an expanded name of the form P.T, where
10535 -- P denotes the current scope.
10536
10537 -------------
10538 -- Names_T --
10539 -------------
10540
10541 function Names_T (Nam : Node_Id) return Boolean is
10542 begin
10543 if Nkind (Nam) = N_Identifier then
10544 return Chars (Nam) = Type_Id;
10545
10546 elsif Nkind (Nam) = N_Selected_Component then
10547 if Chars (Selector_Name (Nam)) = Type_Id then
10548 if Nkind (Prefix (Nam)) = N_Identifier then
10549 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10550
10551 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10552 return Chars (Selector_Name (Prefix (Nam))) =
10553 Chars (Current_Scope);
10554 else
10555 return False;
10556 end if;
10557
10558 else
10559 return False;
10560 end if;
10561
10562 else
10563 return False;
10564 end if;
10565 end Names_T;
10566
10567 -- Start of processing for Designates_T
10568
10569 begin
10570 if Nkind (Subt) = N_Identifier then
10571 return Chars (Subt) = Type_Id;
10572
10573 -- Reference can be through an expanded name which has not been
10574 -- analyzed yet, and which designates enclosing scopes.
10575
10576 elsif Nkind (Subt) = N_Selected_Component then
10577 if Names_T (Subt) then
10578 return True;
10579
10580 -- Otherwise it must denote an entity that is already visible.
10581 -- The access definition may name a subtype of the enclosing
10582 -- type, if there is a previous incomplete declaration for it.
10583
10584 else
10585 Find_Selected_Component (Subt);
10586 return
10587 Is_Entity_Name (Subt)
10588 and then Scope (Entity (Subt)) = Current_Scope
10589 and then
10590 (Chars (Base_Type (Entity (Subt))) = Type_Id
10591 or else
10592 (Is_Class_Wide_Type (Entity (Subt))
10593 and then
10594 Chars (Etype (Base_Type (Entity (Subt)))) =
10595 Type_Id));
10596 end if;
10597
10598 -- A reference to the current type may appear as the prefix of
10599 -- a 'Class attribute.
10600
10601 elsif Nkind (Subt) = N_Attribute_Reference
10602 and then Attribute_Name (Subt) = Name_Class
10603 then
10604 return Names_T (Prefix (Subt));
10605
10606 else
10607 return False;
10608 end if;
10609 end Designates_T;
10610
10611 ----------------
10612 -- Mentions_T --
10613 ----------------
10614
10615 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10616 Param_Spec : Node_Id;
10617
10618 Acc_Subprg : constant Node_Id :=
10619 Access_To_Subprogram_Definition (Acc_Def);
10620
10621 begin
10622 if No (Acc_Subprg) then
10623 return Designates_T (Subtype_Mark (Acc_Def));
10624 end if;
10625
10626 -- Component is an access_to_subprogram: examine its formals,
10627 -- and result definition in the case of an access_to_function.
10628
10629 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10630 while Present (Param_Spec) loop
10631 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10632 and then Mentions_T (Parameter_Type (Param_Spec))
10633 then
10634 return True;
10635
10636 elsif Designates_T (Parameter_Type (Param_Spec)) then
10637 return True;
10638 end if;
10639
10640 Next (Param_Spec);
10641 end loop;
10642
10643 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10644 if Nkind (Result_Definition (Acc_Subprg)) =
10645 N_Access_Definition
10646 then
10647 return Mentions_T (Result_Definition (Acc_Subprg));
10648 else
10649 return Designates_T (Result_Definition (Acc_Subprg));
10650 end if;
10651 end if;
10652
10653 return False;
10654 end Mentions_T;
10655
10656 -- Start of processing for Check_Anonymous_Access_Components
10657
10658 begin
10659 if No (Comp_List) then
10660 return;
10661 end if;
10662
10663 Comp := First (Component_Items (Comp_List));
10664 while Present (Comp) loop
10665 if Nkind (Comp) = N_Component_Declaration
10666 and then Present
10667 (Access_Definition (Component_Definition (Comp)))
10668 and then
10669 Mentions_T (Access_Definition (Component_Definition (Comp)))
10670 then
10671 Comp_Def := Component_Definition (Comp);
10672 Acc_Def :=
10673 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10674
10675 Build_Incomplete_Type_Declaration;
10676 Anon_Access := Make_Temporary (Loc, 'S');
10677
10678 -- Create a declaration for the anonymous access type: either
10679 -- an access_to_object or an access_to_subprogram.
10680
10681 if Present (Acc_Def) then
10682 if Nkind (Acc_Def) = N_Access_Function_Definition then
10683 Type_Def :=
10684 Make_Access_Function_Definition (Loc,
10685 Parameter_Specifications =>
10686 Parameter_Specifications (Acc_Def),
10687 Result_Definition => Result_Definition (Acc_Def));
10688 else
10689 Type_Def :=
10690 Make_Access_Procedure_Definition (Loc,
10691 Parameter_Specifications =>
10692 Parameter_Specifications (Acc_Def));
10693 end if;
10694
10695 else
10696 Type_Def :=
10697 Make_Access_To_Object_Definition (Loc,
10698 Subtype_Indication =>
10699 Relocate_Node
10700 (Subtype_Mark (Access_Definition (Comp_Def))));
10701
10702 Set_Constant_Present
10703 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10704 Set_All_Present
10705 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10706 end if;
10707
10708 Set_Null_Exclusion_Present
10709 (Type_Def,
10710 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10711
10712 Decl :=
10713 Make_Full_Type_Declaration (Loc,
10714 Defining_Identifier => Anon_Access,
10715 Type_Definition => Type_Def);
10716
10717 Insert_Before (Typ_Decl, Decl);
10718 Analyze (Decl);
10719
10720 -- If an access to subprogram, create the extra formals
10721
10722 if Present (Acc_Def) then
10723 Create_Extra_Formals (Designated_Type (Anon_Access));
10724
10725 -- If an access to object, preserve entity of designated type,
10726 -- for ASIS use, before rewriting the component definition.
10727
10728 else
10729 declare
10730 Desig : Entity_Id;
10731
10732 begin
10733 Desig := Entity (Subtype_Indication (Type_Def));
10734
10735 -- If the access definition is to the current record,
10736 -- the visible entity at this point is an incomplete
10737 -- type. Retrieve the full view to simplify ASIS queries
10738
10739 if Ekind (Desig) = E_Incomplete_Type then
10740 Desig := Full_View (Desig);
10741 end if;
10742
10743 Set_Entity
10744 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10745 end;
10746 end if;
10747
10748 Rewrite (Comp_Def,
10749 Make_Component_Definition (Loc,
10750 Subtype_Indication =>
10751 New_Occurrence_Of (Anon_Access, Loc)));
10752
10753 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10754 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10755 else
10756 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10757 end if;
10758
10759 Set_Is_Local_Anonymous_Access (Anon_Access);
10760 end if;
10761
10762 Next (Comp);
10763 end loop;
10764
10765 if Present (Variant_Part (Comp_List)) then
10766 declare
10767 V : Node_Id;
10768 begin
10769 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10770 while Present (V) loop
10771 Check_Anonymous_Access_Components
10772 (Typ_Decl, Typ, Prev, Component_List (V));
10773 Next_Non_Pragma (V);
10774 end loop;
10775 end;
10776 end if;
10777 end Check_Anonymous_Access_Components;
10778
10779 ----------------------
10780 -- Check_Completion --
10781 ----------------------
10782
10783 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10784 E : Entity_Id;
10785
10786 procedure Post_Error;
10787 -- Post error message for lack of completion for entity E
10788
10789 ----------------
10790 -- Post_Error --
10791 ----------------
10792
10793 procedure Post_Error is
10794 procedure Missing_Body;
10795 -- Output missing body message
10796
10797 ------------------
10798 -- Missing_Body --
10799 ------------------
10800
10801 procedure Missing_Body is
10802 begin
10803 -- Spec is in same unit, so we can post on spec
10804
10805 if In_Same_Source_Unit (Body_Id, E) then
10806 Error_Msg_N ("missing body for &", E);
10807
10808 -- Spec is in a separate unit, so we have to post on the body
10809
10810 else
10811 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10812 end if;
10813 end Missing_Body;
10814
10815 -- Start of processing for Post_Error
10816
10817 begin
10818 if not Comes_From_Source (E) then
10819 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10820
10821 -- It may be an anonymous protected type created for a
10822 -- single variable. Post error on variable, if present.
10823
10824 declare
10825 Var : Entity_Id;
10826
10827 begin
10828 Var := First_Entity (Current_Scope);
10829 while Present (Var) loop
10830 exit when Etype (Var) = E
10831 and then Comes_From_Source (Var);
10832
10833 Next_Entity (Var);
10834 end loop;
10835
10836 if Present (Var) then
10837 E := Var;
10838 end if;
10839 end;
10840 end if;
10841 end if;
10842
10843 -- If a generated entity has no completion, then either previous
10844 -- semantic errors have disabled the expansion phase, or else we had
10845 -- missing subunits, or else we are compiling without expansion,
10846 -- or else something is very wrong.
10847
10848 if not Comes_From_Source (E) then
10849 pragma Assert
10850 (Serious_Errors_Detected > 0
10851 or else Configurable_Run_Time_Violations > 0
10852 or else Subunits_Missing
10853 or else not Expander_Active);
10854 return;
10855
10856 -- Here for source entity
10857
10858 else
10859 -- Here if no body to post the error message, so we post the error
10860 -- on the declaration that has no completion. This is not really
10861 -- the right place to post it, think about this later ???
10862
10863 if No (Body_Id) then
10864 if Is_Type (E) then
10865 Error_Msg_NE
10866 ("missing full declaration for }", Parent (E), E);
10867 else
10868 Error_Msg_NE ("missing body for &", Parent (E), E);
10869 end if;
10870
10871 -- Package body has no completion for a declaration that appears
10872 -- in the corresponding spec. Post error on the body, with a
10873 -- reference to the non-completed declaration.
10874
10875 else
10876 Error_Msg_Sloc := Sloc (E);
10877
10878 if Is_Type (E) then
10879 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10880
10881 elsif Is_Overloadable (E)
10882 and then Current_Entity_In_Scope (E) /= E
10883 then
10884 -- It may be that the completion is mistyped and appears as
10885 -- a distinct overloading of the entity.
10886
10887 declare
10888 Candidate : constant Entity_Id :=
10889 Current_Entity_In_Scope (E);
10890 Decl : constant Node_Id :=
10891 Unit_Declaration_Node (Candidate);
10892
10893 begin
10894 if Is_Overloadable (Candidate)
10895 and then Ekind (Candidate) = Ekind (E)
10896 and then Nkind (Decl) = N_Subprogram_Body
10897 and then Acts_As_Spec (Decl)
10898 then
10899 Check_Type_Conformant (Candidate, E);
10900
10901 else
10902 Missing_Body;
10903 end if;
10904 end;
10905
10906 else
10907 Missing_Body;
10908 end if;
10909 end if;
10910 end if;
10911 end Post_Error;
10912
10913 -- Local variables
10914
10915 Pack_Id : constant Entity_Id := Current_Scope;
10916
10917 -- Start of processing for Check_Completion
10918
10919 begin
10920 E := First_Entity (Pack_Id);
10921 while Present (E) loop
10922 if Is_Intrinsic_Subprogram (E) then
10923 null;
10924
10925 -- The following situation requires special handling: a child unit
10926 -- that appears in the context clause of the body of its parent:
10927
10928 -- procedure Parent.Child (...);
10929
10930 -- with Parent.Child;
10931 -- package body Parent is
10932
10933 -- Here Parent.Child appears as a local entity, but should not be
10934 -- flagged as requiring completion, because it is a compilation
10935 -- unit.
10936
10937 -- Ignore missing completion for a subprogram that does not come from
10938 -- source (including the _Call primitive operation of RAS types,
10939 -- which has to have the flag Comes_From_Source for other purposes):
10940 -- we assume that the expander will provide the missing completion.
10941 -- In case of previous errors, other expansion actions that provide
10942 -- bodies for null procedures with not be invoked, so inhibit message
10943 -- in those cases.
10944
10945 -- Note that E_Operator is not in the list that follows, because
10946 -- this kind is reserved for predefined operators, that are
10947 -- intrinsic and do not need completion.
10948
10949 elsif Ekind_In (E, E_Function,
10950 E_Procedure,
10951 E_Generic_Function,
10952 E_Generic_Procedure)
10953 then
10954 if Has_Completion (E) then
10955 null;
10956
10957 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10958 null;
10959
10960 elsif Is_Subprogram (E)
10961 and then (not Comes_From_Source (E)
10962 or else Chars (E) = Name_uCall)
10963 then
10964 null;
10965
10966 elsif
10967 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10968 then
10969 null;
10970
10971 elsif Nkind (Parent (E)) = N_Procedure_Specification
10972 and then Null_Present (Parent (E))
10973 and then Serious_Errors_Detected > 0
10974 then
10975 null;
10976
10977 else
10978 Post_Error;
10979 end if;
10980
10981 elsif Is_Entry (E) then
10982 if not Has_Completion (E) and then
10983 (Ekind (Scope (E)) = E_Protected_Object
10984 or else Ekind (Scope (E)) = E_Protected_Type)
10985 then
10986 Post_Error;
10987 end if;
10988
10989 elsif Is_Package_Or_Generic_Package (E) then
10990 if Unit_Requires_Body (E) then
10991 if not Has_Completion (E)
10992 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10993 N_Compilation_Unit
10994 then
10995 Post_Error;
10996 end if;
10997
10998 elsif not Is_Child_Unit (E) then
10999 May_Need_Implicit_Body (E);
11000 end if;
11001
11002 -- A formal incomplete type (Ada 2012) does not require a completion;
11003 -- other incomplete type declarations do.
11004
11005 elsif Ekind (E) = E_Incomplete_Type
11006 and then No (Underlying_Type (E))
11007 and then not Is_Generic_Type (E)
11008 then
11009 Post_Error;
11010
11011 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11012 and then not Has_Completion (E)
11013 then
11014 Post_Error;
11015
11016 -- A single task declared in the current scope is a constant, verify
11017 -- that the body of its anonymous type is in the same scope. If the
11018 -- task is defined elsewhere, this may be a renaming declaration for
11019 -- which no completion is needed.
11020
11021 elsif Ekind (E) = E_Constant
11022 and then Ekind (Etype (E)) = E_Task_Type
11023 and then not Has_Completion (Etype (E))
11024 and then Scope (Etype (E)) = Current_Scope
11025 then
11026 Post_Error;
11027
11028 elsif Ekind (E) = E_Protected_Object
11029 and then not Has_Completion (Etype (E))
11030 then
11031 Post_Error;
11032
11033 elsif Ekind (E) = E_Record_Type then
11034 if Is_Tagged_Type (E) then
11035 Check_Abstract_Overriding (E);
11036 Check_Conventions (E);
11037 end if;
11038
11039 Check_Aliased_Component_Types (E);
11040
11041 elsif Ekind (E) = E_Array_Type then
11042 Check_Aliased_Component_Types (E);
11043
11044 end if;
11045
11046 Next_Entity (E);
11047 end loop;
11048 end Check_Completion;
11049
11050 ------------------------------------
11051 -- Check_CPP_Type_Has_No_Defaults --
11052 ------------------------------------
11053
11054 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11055 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11056 Clist : Node_Id;
11057 Comp : Node_Id;
11058
11059 begin
11060 -- Obtain the component list
11061
11062 if Nkind (Tdef) = N_Record_Definition then
11063 Clist := Component_List (Tdef);
11064 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11065 Clist := Component_List (Record_Extension_Part (Tdef));
11066 end if;
11067
11068 -- Check all components to ensure no default expressions
11069
11070 if Present (Clist) then
11071 Comp := First (Component_Items (Clist));
11072 while Present (Comp) loop
11073 if Present (Expression (Comp)) then
11074 Error_Msg_N
11075 ("component of imported 'C'P'P type cannot have "
11076 & "default expression", Expression (Comp));
11077 end if;
11078
11079 Next (Comp);
11080 end loop;
11081 end if;
11082 end Check_CPP_Type_Has_No_Defaults;
11083
11084 ----------------------------
11085 -- Check_Delta_Expression --
11086 ----------------------------
11087
11088 procedure Check_Delta_Expression (E : Node_Id) is
11089 begin
11090 if not (Is_Real_Type (Etype (E))) then
11091 Wrong_Type (E, Any_Real);
11092
11093 elsif not Is_OK_Static_Expression (E) then
11094 Flag_Non_Static_Expr
11095 ("non-static expression used for delta value!", E);
11096
11097 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11098 Error_Msg_N ("delta expression must be positive", E);
11099
11100 else
11101 return;
11102 end if;
11103
11104 -- If any of above errors occurred, then replace the incorrect
11105 -- expression by the real 0.1, which should prevent further errors.
11106
11107 Rewrite (E,
11108 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11109 Analyze_And_Resolve (E, Standard_Float);
11110 end Check_Delta_Expression;
11111
11112 -----------------------------
11113 -- Check_Digits_Expression --
11114 -----------------------------
11115
11116 procedure Check_Digits_Expression (E : Node_Id) is
11117 begin
11118 if not (Is_Integer_Type (Etype (E))) then
11119 Wrong_Type (E, Any_Integer);
11120
11121 elsif not Is_OK_Static_Expression (E) then
11122 Flag_Non_Static_Expr
11123 ("non-static expression used for digits value!", E);
11124
11125 elsif Expr_Value (E) <= 0 then
11126 Error_Msg_N ("digits value must be greater than zero", E);
11127
11128 else
11129 return;
11130 end if;
11131
11132 -- If any of above errors occurred, then replace the incorrect
11133 -- expression by the integer 1, which should prevent further errors.
11134
11135 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11136 Analyze_And_Resolve (E, Standard_Integer);
11137
11138 end Check_Digits_Expression;
11139
11140 --------------------------
11141 -- Check_Initialization --
11142 --------------------------
11143
11144 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11145 begin
11146 -- Special processing for limited types
11147
11148 if Is_Limited_Type (T)
11149 and then not In_Instance
11150 and then not In_Inlined_Body
11151 then
11152 if not OK_For_Limited_Init (T, Exp) then
11153
11154 -- In GNAT mode, this is just a warning, to allow it to be evilly
11155 -- turned off. Otherwise it is a real error.
11156
11157 if GNAT_Mode then
11158 Error_Msg_N
11159 ("??cannot initialize entities of limited type!", Exp);
11160
11161 elsif Ada_Version < Ada_2005 then
11162
11163 -- The side effect removal machinery may generate illegal Ada
11164 -- code to avoid the usage of access types and 'reference in
11165 -- SPARK mode. Since this is legal code with respect to theorem
11166 -- proving, do not emit the error.
11167
11168 if GNATprove_Mode
11169 and then Nkind (Exp) = N_Function_Call
11170 and then Nkind (Parent (Exp)) = N_Object_Declaration
11171 and then not Comes_From_Source
11172 (Defining_Identifier (Parent (Exp)))
11173 then
11174 null;
11175
11176 else
11177 Error_Msg_N
11178 ("cannot initialize entities of limited type", Exp);
11179 Explain_Limited_Type (T, Exp);
11180 end if;
11181
11182 else
11183 -- Specialize error message according to kind of illegal
11184 -- initial expression.
11185
11186 if Nkind (Exp) = N_Type_Conversion
11187 and then Nkind (Expression (Exp)) = N_Function_Call
11188 then
11189 Error_Msg_N
11190 ("illegal context for call"
11191 & " to function with limited result", Exp);
11192
11193 else
11194 Error_Msg_N
11195 ("initialization of limited object requires aggregate "
11196 & "or function call", Exp);
11197 end if;
11198 end if;
11199 end if;
11200 end if;
11201
11202 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11203 -- set unless we can be sure that no range check is required.
11204
11205 if (GNATprove_Mode or not Expander_Active)
11206 and then Is_Scalar_Type (T)
11207 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11208 then
11209 Set_Do_Range_Check (Exp);
11210 end if;
11211 end Check_Initialization;
11212
11213 ----------------------
11214 -- Check_Interfaces --
11215 ----------------------
11216
11217 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11218 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11219
11220 Iface : Node_Id;
11221 Iface_Def : Node_Id;
11222 Iface_Typ : Entity_Id;
11223 Parent_Node : Node_Id;
11224
11225 Is_Task : Boolean := False;
11226 -- Set True if parent type or any progenitor is a task interface
11227
11228 Is_Protected : Boolean := False;
11229 -- Set True if parent type or any progenitor is a protected interface
11230
11231 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11232 -- Check that a progenitor is compatible with declaration. If an error
11233 -- message is output, it is posted on Error_Node.
11234
11235 ------------------
11236 -- Check_Ifaces --
11237 ------------------
11238
11239 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11240 Iface_Id : constant Entity_Id :=
11241 Defining_Identifier (Parent (Iface_Def));
11242 Type_Def : Node_Id;
11243
11244 begin
11245 if Nkind (N) = N_Private_Extension_Declaration then
11246 Type_Def := N;
11247 else
11248 Type_Def := Type_Definition (N);
11249 end if;
11250
11251 if Is_Task_Interface (Iface_Id) then
11252 Is_Task := True;
11253
11254 elsif Is_Protected_Interface (Iface_Id) then
11255 Is_Protected := True;
11256 end if;
11257
11258 if Is_Synchronized_Interface (Iface_Id) then
11259
11260 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11261 -- extension derived from a synchronized interface must explicitly
11262 -- be declared synchronized, because the full view will be a
11263 -- synchronized type.
11264
11265 if Nkind (N) = N_Private_Extension_Declaration then
11266 if not Synchronized_Present (N) then
11267 Error_Msg_NE
11268 ("private extension of& must be explicitly synchronized",
11269 N, Iface_Id);
11270 end if;
11271
11272 -- However, by 3.9.4(16/2), a full type that is a record extension
11273 -- is never allowed to derive from a synchronized interface (note
11274 -- that interfaces must be excluded from this check, because those
11275 -- are represented by derived type definitions in some cases).
11276
11277 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11278 and then not Interface_Present (Type_Definition (N))
11279 then
11280 Error_Msg_N ("record extension cannot derive from synchronized "
11281 & "interface", Error_Node);
11282 end if;
11283 end if;
11284
11285 -- Check that the characteristics of the progenitor are compatible
11286 -- with the explicit qualifier in the declaration.
11287 -- The check only applies to qualifiers that come from source.
11288 -- Limited_Present also appears in the declaration of corresponding
11289 -- records, and the check does not apply to them.
11290
11291 if Limited_Present (Type_Def)
11292 and then not
11293 Is_Concurrent_Record_Type (Defining_Identifier (N))
11294 then
11295 if Is_Limited_Interface (Parent_Type)
11296 and then not Is_Limited_Interface (Iface_Id)
11297 then
11298 Error_Msg_NE
11299 ("progenitor & must be limited interface",
11300 Error_Node, Iface_Id);
11301
11302 elsif
11303 (Task_Present (Iface_Def)
11304 or else Protected_Present (Iface_Def)
11305 or else Synchronized_Present (Iface_Def))
11306 and then Nkind (N) /= N_Private_Extension_Declaration
11307 and then not Error_Posted (N)
11308 then
11309 Error_Msg_NE
11310 ("progenitor & must be limited interface",
11311 Error_Node, Iface_Id);
11312 end if;
11313
11314 -- Protected interfaces can only inherit from limited, synchronized
11315 -- or protected interfaces.
11316
11317 elsif Nkind (N) = N_Full_Type_Declaration
11318 and then Protected_Present (Type_Def)
11319 then
11320 if Limited_Present (Iface_Def)
11321 or else Synchronized_Present (Iface_Def)
11322 or else Protected_Present (Iface_Def)
11323 then
11324 null;
11325
11326 elsif Task_Present (Iface_Def) then
11327 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11328 & "from task interface", Error_Node);
11329
11330 else
11331 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11332 & "from non-limited interface", Error_Node);
11333 end if;
11334
11335 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11336 -- limited and synchronized.
11337
11338 elsif Synchronized_Present (Type_Def) then
11339 if Limited_Present (Iface_Def)
11340 or else Synchronized_Present (Iface_Def)
11341 then
11342 null;
11343
11344 elsif Protected_Present (Iface_Def)
11345 and then Nkind (N) /= N_Private_Extension_Declaration
11346 then
11347 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11348 & "from protected interface", Error_Node);
11349
11350 elsif Task_Present (Iface_Def)
11351 and then Nkind (N) /= N_Private_Extension_Declaration
11352 then
11353 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11354 & "from task interface", Error_Node);
11355
11356 elsif not Is_Limited_Interface (Iface_Id) then
11357 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11358 & "from non-limited interface", Error_Node);
11359 end if;
11360
11361 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11362 -- synchronized or task interfaces.
11363
11364 elsif Nkind (N) = N_Full_Type_Declaration
11365 and then Task_Present (Type_Def)
11366 then
11367 if Limited_Present (Iface_Def)
11368 or else Synchronized_Present (Iface_Def)
11369 or else Task_Present (Iface_Def)
11370 then
11371 null;
11372
11373 elsif Protected_Present (Iface_Def) then
11374 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11375 & "protected interface", Error_Node);
11376
11377 else
11378 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11379 & "non-limited interface", Error_Node);
11380 end if;
11381 end if;
11382 end Check_Ifaces;
11383
11384 -- Start of processing for Check_Interfaces
11385
11386 begin
11387 if Is_Interface (Parent_Type) then
11388 if Is_Task_Interface (Parent_Type) then
11389 Is_Task := True;
11390
11391 elsif Is_Protected_Interface (Parent_Type) then
11392 Is_Protected := True;
11393 end if;
11394 end if;
11395
11396 if Nkind (N) = N_Private_Extension_Declaration then
11397
11398 -- Check that progenitors are compatible with declaration
11399
11400 Iface := First (Interface_List (Def));
11401 while Present (Iface) loop
11402 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11403
11404 Parent_Node := Parent (Base_Type (Iface_Typ));
11405 Iface_Def := Type_Definition (Parent_Node);
11406
11407 if not Is_Interface (Iface_Typ) then
11408 Diagnose_Interface (Iface, Iface_Typ);
11409 else
11410 Check_Ifaces (Iface_Def, Iface);
11411 end if;
11412
11413 Next (Iface);
11414 end loop;
11415
11416 if Is_Task and Is_Protected then
11417 Error_Msg_N
11418 ("type cannot derive from task and protected interface", N);
11419 end if;
11420
11421 return;
11422 end if;
11423
11424 -- Full type declaration of derived type.
11425 -- Check compatibility with parent if it is interface type
11426
11427 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11428 and then Is_Interface (Parent_Type)
11429 then
11430 Parent_Node := Parent (Parent_Type);
11431
11432 -- More detailed checks for interface varieties
11433
11434 Check_Ifaces
11435 (Iface_Def => Type_Definition (Parent_Node),
11436 Error_Node => Subtype_Indication (Type_Definition (N)));
11437 end if;
11438
11439 Iface := First (Interface_List (Def));
11440 while Present (Iface) loop
11441 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11442
11443 Parent_Node := Parent (Base_Type (Iface_Typ));
11444 Iface_Def := Type_Definition (Parent_Node);
11445
11446 if not Is_Interface (Iface_Typ) then
11447 Diagnose_Interface (Iface, Iface_Typ);
11448
11449 else
11450 -- "The declaration of a specific descendant of an interface
11451 -- type freezes the interface type" RM 13.14
11452
11453 Freeze_Before (N, Iface_Typ);
11454 Check_Ifaces (Iface_Def, Error_Node => Iface);
11455 end if;
11456
11457 Next (Iface);
11458 end loop;
11459
11460 if Is_Task and Is_Protected then
11461 Error_Msg_N
11462 ("type cannot derive from task and protected interface", N);
11463 end if;
11464 end Check_Interfaces;
11465
11466 ------------------------------------
11467 -- Check_Or_Process_Discriminants --
11468 ------------------------------------
11469
11470 -- If an incomplete or private type declaration was already given for the
11471 -- type, the discriminants may have already been processed if they were
11472 -- present on the incomplete declaration. In this case a full conformance
11473 -- check has been performed in Find_Type_Name, and we then recheck here
11474 -- some properties that can't be checked on the partial view alone.
11475 -- Otherwise we call Process_Discriminants.
11476
11477 procedure Check_Or_Process_Discriminants
11478 (N : Node_Id;
11479 T : Entity_Id;
11480 Prev : Entity_Id := Empty)
11481 is
11482 begin
11483 if Has_Discriminants (T) then
11484
11485 -- Discriminants are already set on T if they were already present
11486 -- on the partial view. Make them visible to component declarations.
11487
11488 declare
11489 D : Entity_Id;
11490 -- Discriminant on T (full view) referencing expr on partial view
11491
11492 Prev_D : Entity_Id;
11493 -- Entity of corresponding discriminant on partial view
11494
11495 New_D : Node_Id;
11496 -- Discriminant specification for full view, expression is
11497 -- the syntactic copy on full view (which has been checked for
11498 -- conformance with partial view), only used here to post error
11499 -- message.
11500
11501 begin
11502 D := First_Discriminant (T);
11503 New_D := First (Discriminant_Specifications (N));
11504 while Present (D) loop
11505 Prev_D := Current_Entity (D);
11506 Set_Current_Entity (D);
11507 Set_Is_Immediately_Visible (D);
11508 Set_Homonym (D, Prev_D);
11509
11510 -- Handle the case where there is an untagged partial view and
11511 -- the full view is tagged: must disallow discriminants with
11512 -- defaults, unless compiling for Ada 2012, which allows a
11513 -- limited tagged type to have defaulted discriminants (see
11514 -- AI05-0214). However, suppress error here if it was already
11515 -- reported on the default expression of the partial view.
11516
11517 if Is_Tagged_Type (T)
11518 and then Present (Expression (Parent (D)))
11519 and then (not Is_Limited_Type (Current_Scope)
11520 or else Ada_Version < Ada_2012)
11521 and then not Error_Posted (Expression (Parent (D)))
11522 then
11523 if Ada_Version >= Ada_2012 then
11524 Error_Msg_N
11525 ("discriminants of nonlimited tagged type cannot have "
11526 & "defaults",
11527 Expression (New_D));
11528 else
11529 Error_Msg_N
11530 ("discriminants of tagged type cannot have defaults",
11531 Expression (New_D));
11532 end if;
11533 end if;
11534
11535 -- Ada 2005 (AI-230): Access discriminant allowed in
11536 -- non-limited record types.
11537
11538 if Ada_Version < Ada_2005 then
11539
11540 -- This restriction gets applied to the full type here. It
11541 -- has already been applied earlier to the partial view.
11542
11543 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11544 end if;
11545
11546 Next_Discriminant (D);
11547 Next (New_D);
11548 end loop;
11549 end;
11550
11551 elsif Present (Discriminant_Specifications (N)) then
11552 Process_Discriminants (N, Prev);
11553 end if;
11554 end Check_Or_Process_Discriminants;
11555
11556 ----------------------
11557 -- Check_Real_Bound --
11558 ----------------------
11559
11560 procedure Check_Real_Bound (Bound : Node_Id) is
11561 begin
11562 if not Is_Real_Type (Etype (Bound)) then
11563 Error_Msg_N
11564 ("bound in real type definition must be of real type", Bound);
11565
11566 elsif not Is_OK_Static_Expression (Bound) then
11567 Flag_Non_Static_Expr
11568 ("non-static expression used for real type bound!", Bound);
11569
11570 else
11571 return;
11572 end if;
11573
11574 Rewrite
11575 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11576 Analyze (Bound);
11577 Resolve (Bound, Standard_Float);
11578 end Check_Real_Bound;
11579
11580 ------------------------------
11581 -- Complete_Private_Subtype --
11582 ------------------------------
11583
11584 procedure Complete_Private_Subtype
11585 (Priv : Entity_Id;
11586 Full : Entity_Id;
11587 Full_Base : Entity_Id;
11588 Related_Nod : Node_Id)
11589 is
11590 Save_Next_Entity : Entity_Id;
11591 Save_Homonym : Entity_Id;
11592
11593 begin
11594 -- Set semantic attributes for (implicit) private subtype completion.
11595 -- If the full type has no discriminants, then it is a copy of the
11596 -- full view of the base. Otherwise, it is a subtype of the base with
11597 -- a possible discriminant constraint. Save and restore the original
11598 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11599 -- not corrupt the entity chain.
11600
11601 -- Note that the type of the full view is the same entity as the type
11602 -- of the partial view. In this fashion, the subtype has access to the
11603 -- correct view of the parent.
11604
11605 Save_Next_Entity := Next_Entity (Full);
11606 Save_Homonym := Homonym (Priv);
11607
11608 case Ekind (Full_Base) is
11609 when E_Record_Type |
11610 E_Record_Subtype |
11611 Class_Wide_Kind |
11612 Private_Kind |
11613 Task_Kind |
11614 Protected_Kind =>
11615 Copy_Node (Priv, Full);
11616
11617 Set_Has_Discriminants
11618 (Full, Has_Discriminants (Full_Base));
11619 Set_Has_Unknown_Discriminants
11620 (Full, Has_Unknown_Discriminants (Full_Base));
11621 Set_First_Entity (Full, First_Entity (Full_Base));
11622 Set_Last_Entity (Full, Last_Entity (Full_Base));
11623
11624 -- If the underlying base type is constrained, we know that the
11625 -- full view of the subtype is constrained as well (the converse
11626 -- is not necessarily true).
11627
11628 if Is_Constrained (Full_Base) then
11629 Set_Is_Constrained (Full);
11630 end if;
11631
11632 when others =>
11633 Copy_Node (Full_Base, Full);
11634
11635 Set_Chars (Full, Chars (Priv));
11636 Conditional_Delay (Full, Priv);
11637 Set_Sloc (Full, Sloc (Priv));
11638 end case;
11639
11640 Set_Next_Entity (Full, Save_Next_Entity);
11641 Set_Homonym (Full, Save_Homonym);
11642 Set_Associated_Node_For_Itype (Full, Related_Nod);
11643
11644 -- Set common attributes for all subtypes: kind, convention, etc.
11645
11646 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11647 Set_Convention (Full, Convention (Full_Base));
11648
11649 -- The Etype of the full view is inconsistent. Gigi needs to see the
11650 -- structural full view, which is what the current scheme gives: the
11651 -- Etype of the full view is the etype of the full base. However, if the
11652 -- full base is a derived type, the full view then looks like a subtype
11653 -- of the parent, not a subtype of the full base. If instead we write:
11654
11655 -- Set_Etype (Full, Full_Base);
11656
11657 -- then we get inconsistencies in the front-end (confusion between
11658 -- views). Several outstanding bugs are related to this ???
11659
11660 Set_Is_First_Subtype (Full, False);
11661 Set_Scope (Full, Scope (Priv));
11662 Set_Size_Info (Full, Full_Base);
11663 Set_RM_Size (Full, RM_Size (Full_Base));
11664 Set_Is_Itype (Full);
11665
11666 -- A subtype of a private-type-without-discriminants, whose full-view
11667 -- has discriminants with default expressions, is not constrained.
11668
11669 if not Has_Discriminants (Priv) then
11670 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11671
11672 if Has_Discriminants (Full_Base) then
11673 Set_Discriminant_Constraint
11674 (Full, Discriminant_Constraint (Full_Base));
11675
11676 -- The partial view may have been indefinite, the full view
11677 -- might not be.
11678
11679 Set_Has_Unknown_Discriminants
11680 (Full, Has_Unknown_Discriminants (Full_Base));
11681 end if;
11682 end if;
11683
11684 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11685 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11686
11687 -- Freeze the private subtype entity if its parent is delayed, and not
11688 -- already frozen. We skip this processing if the type is an anonymous
11689 -- subtype of a record component, or is the corresponding record of a
11690 -- protected type, since these are processed when the enclosing type
11691 -- is frozen.
11692
11693 if not Is_Type (Scope (Full)) then
11694 Set_Has_Delayed_Freeze (Full,
11695 Has_Delayed_Freeze (Full_Base)
11696 and then (not Is_Frozen (Full_Base)));
11697 end if;
11698
11699 Set_Freeze_Node (Full, Empty);
11700 Set_Is_Frozen (Full, False);
11701 Set_Full_View (Priv, Full);
11702
11703 if Has_Discriminants (Full) then
11704 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11705 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11706
11707 if Has_Unknown_Discriminants (Full) then
11708 Set_Discriminant_Constraint (Full, No_Elist);
11709 end if;
11710 end if;
11711
11712 if Ekind (Full_Base) = E_Record_Type
11713 and then Has_Discriminants (Full_Base)
11714 and then Has_Discriminants (Priv) -- might not, if errors
11715 and then not Has_Unknown_Discriminants (Priv)
11716 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11717 then
11718 Create_Constrained_Components
11719 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11720
11721 -- If the full base is itself derived from private, build a congruent
11722 -- subtype of its underlying type, for use by the back end. For a
11723 -- constrained record component, the declaration cannot be placed on
11724 -- the component list, but it must nevertheless be built an analyzed, to
11725 -- supply enough information for Gigi to compute the size of component.
11726
11727 elsif Ekind (Full_Base) in Private_Kind
11728 and then Is_Derived_Type (Full_Base)
11729 and then Has_Discriminants (Full_Base)
11730 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11731 then
11732 if not Is_Itype (Priv)
11733 and then
11734 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11735 then
11736 Build_Underlying_Full_View
11737 (Parent (Priv), Full, Etype (Full_Base));
11738
11739 elsif Nkind (Related_Nod) = N_Component_Declaration then
11740 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11741 end if;
11742
11743 elsif Is_Record_Type (Full_Base) then
11744
11745 -- Show Full is simply a renaming of Full_Base
11746
11747 Set_Cloned_Subtype (Full, Full_Base);
11748 end if;
11749
11750 -- It is unsafe to share the bounds of a scalar type, because the Itype
11751 -- is elaborated on demand, and if a bound is non-static then different
11752 -- orders of elaboration in different units will lead to different
11753 -- external symbols.
11754
11755 if Is_Scalar_Type (Full_Base) then
11756 Set_Scalar_Range (Full,
11757 Make_Range (Sloc (Related_Nod),
11758 Low_Bound =>
11759 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11760 High_Bound =>
11761 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11762
11763 -- This completion inherits the bounds of the full parent, but if
11764 -- the parent is an unconstrained floating point type, so is the
11765 -- completion.
11766
11767 if Is_Floating_Point_Type (Full_Base) then
11768 Set_Includes_Infinities
11769 (Scalar_Range (Full), Has_Infinities (Full_Base));
11770 end if;
11771 end if;
11772
11773 -- ??? It seems that a lot of fields are missing that should be copied
11774 -- from Full_Base to Full. Here are some that are introduced in a
11775 -- non-disruptive way but a cleanup is necessary.
11776
11777 if Is_Tagged_Type (Full_Base) then
11778 Set_Is_Tagged_Type (Full);
11779 Set_Direct_Primitive_Operations
11780 (Full, Direct_Primitive_Operations (Full_Base));
11781 Set_No_Tagged_Streams_Pragma
11782 (Full, No_Tagged_Streams_Pragma (Full_Base));
11783
11784 -- Inherit class_wide type of full_base in case the partial view was
11785 -- not tagged. Otherwise it has already been created when the private
11786 -- subtype was analyzed.
11787
11788 if No (Class_Wide_Type (Full)) then
11789 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11790 end if;
11791
11792 -- If this is a subtype of a protected or task type, constrain its
11793 -- corresponding record, unless this is a subtype without constraints,
11794 -- i.e. a simple renaming as with an actual subtype in an instance.
11795
11796 elsif Is_Concurrent_Type (Full_Base) then
11797 if Has_Discriminants (Full)
11798 and then Present (Corresponding_Record_Type (Full_Base))
11799 and then
11800 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11801 then
11802 Set_Corresponding_Record_Type (Full,
11803 Constrain_Corresponding_Record
11804 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11805
11806 else
11807 Set_Corresponding_Record_Type (Full,
11808 Corresponding_Record_Type (Full_Base));
11809 end if;
11810 end if;
11811
11812 -- Link rep item chain, and also setting of Has_Predicates from private
11813 -- subtype to full subtype, since we will need these on the full subtype
11814 -- to create the predicate function. Note that the full subtype may
11815 -- already have rep items, inherited from the full view of the base
11816 -- type, so we must be sure not to overwrite these entries.
11817
11818 declare
11819 Append : Boolean;
11820 Item : Node_Id;
11821 Next_Item : Node_Id;
11822
11823 begin
11824 Item := First_Rep_Item (Full);
11825
11826 -- If no existing rep items on full type, we can just link directly
11827 -- to the list of items on the private type, if any exist.. Same if
11828 -- the rep items are only those inherited from the base
11829
11830 if (No (Item)
11831 or else Nkind (Item) /= N_Aspect_Specification
11832 or else Entity (Item) = Full_Base)
11833 and then Present (First_Rep_Item (Priv))
11834 then
11835 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11836
11837 -- Otherwise, search to the end of items currently linked to the full
11838 -- subtype and append the private items to the end. However, if Priv
11839 -- and Full already have the same list of rep items, then the append
11840 -- is not done, as that would create a circularity.
11841
11842 elsif Item /= First_Rep_Item (Priv) then
11843 Append := True;
11844 loop
11845 Next_Item := Next_Rep_Item (Item);
11846 exit when No (Next_Item);
11847 Item := Next_Item;
11848
11849 -- If the private view has aspect specifications, the full view
11850 -- inherits them. Since these aspects may already have been
11851 -- attached to the full view during derivation, do not append
11852 -- them if already present.
11853
11854 if Item = First_Rep_Item (Priv) then
11855 Append := False;
11856 exit;
11857 end if;
11858 end loop;
11859
11860 -- And link the private type items at the end of the chain
11861
11862 if Append then
11863 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11864 end if;
11865 end if;
11866 end;
11867
11868 -- Make sure Has_Predicates is set on full type if it is set on the
11869 -- private type. Note that it may already be set on the full type and
11870 -- if so, we don't want to unset it. Similarly, propagate information
11871 -- about delayed aspects, because the corresponding pragmas must be
11872 -- analyzed when one of the views is frozen. This last step is needed
11873 -- in particular when the full type is a scalar type for which an
11874 -- anonymous base type is constructed.
11875
11876 if Has_Predicates (Priv) then
11877 Set_Has_Predicates (Full);
11878 end if;
11879
11880 if Has_Delayed_Aspects (Priv) then
11881 Set_Has_Delayed_Aspects (Full);
11882 end if;
11883 end Complete_Private_Subtype;
11884
11885 ----------------------------
11886 -- Constant_Redeclaration --
11887 ----------------------------
11888
11889 procedure Constant_Redeclaration
11890 (Id : Entity_Id;
11891 N : Node_Id;
11892 T : out Entity_Id)
11893 is
11894 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11895 Obj_Def : constant Node_Id := Object_Definition (N);
11896 New_T : Entity_Id;
11897
11898 procedure Check_Possible_Deferred_Completion
11899 (Prev_Id : Entity_Id;
11900 Prev_Obj_Def : Node_Id;
11901 Curr_Obj_Def : Node_Id);
11902 -- Determine whether the two object definitions describe the partial
11903 -- and the full view of a constrained deferred constant. Generate
11904 -- a subtype for the full view and verify that it statically matches
11905 -- the subtype of the partial view.
11906
11907 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11908 -- If deferred constant is an access type initialized with an allocator,
11909 -- check whether there is an illegal recursion in the definition,
11910 -- through a default value of some record subcomponent. This is normally
11911 -- detected when generating init procs, but requires this additional
11912 -- mechanism when expansion is disabled.
11913
11914 ----------------------------------------
11915 -- Check_Possible_Deferred_Completion --
11916 ----------------------------------------
11917
11918 procedure Check_Possible_Deferred_Completion
11919 (Prev_Id : Entity_Id;
11920 Prev_Obj_Def : Node_Id;
11921 Curr_Obj_Def : Node_Id)
11922 is
11923 begin
11924 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11925 and then Present (Constraint (Prev_Obj_Def))
11926 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11927 and then Present (Constraint (Curr_Obj_Def))
11928 then
11929 declare
11930 Loc : constant Source_Ptr := Sloc (N);
11931 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11932 Decl : constant Node_Id :=
11933 Make_Subtype_Declaration (Loc,
11934 Defining_Identifier => Def_Id,
11935 Subtype_Indication =>
11936 Relocate_Node (Curr_Obj_Def));
11937
11938 begin
11939 Insert_Before_And_Analyze (N, Decl);
11940 Set_Etype (Id, Def_Id);
11941
11942 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11943 Error_Msg_Sloc := Sloc (Prev_Id);
11944 Error_Msg_N ("subtype does not statically match deferred "
11945 & "declaration #", N);
11946 end if;
11947 end;
11948 end if;
11949 end Check_Possible_Deferred_Completion;
11950
11951 ---------------------------------
11952 -- Check_Recursive_Declaration --
11953 ---------------------------------
11954
11955 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11956 Comp : Entity_Id;
11957
11958 begin
11959 if Is_Record_Type (Typ) then
11960 Comp := First_Component (Typ);
11961 while Present (Comp) loop
11962 if Comes_From_Source (Comp) then
11963 if Present (Expression (Parent (Comp)))
11964 and then Is_Entity_Name (Expression (Parent (Comp)))
11965 and then Entity (Expression (Parent (Comp))) = Prev
11966 then
11967 Error_Msg_Sloc := Sloc (Parent (Comp));
11968 Error_Msg_NE
11969 ("illegal circularity with declaration for & #",
11970 N, Comp);
11971 return;
11972
11973 elsif Is_Record_Type (Etype (Comp)) then
11974 Check_Recursive_Declaration (Etype (Comp));
11975 end if;
11976 end if;
11977
11978 Next_Component (Comp);
11979 end loop;
11980 end if;
11981 end Check_Recursive_Declaration;
11982
11983 -- Start of processing for Constant_Redeclaration
11984
11985 begin
11986 if Nkind (Parent (Prev)) = N_Object_Declaration then
11987 if Nkind (Object_Definition
11988 (Parent (Prev))) = N_Subtype_Indication
11989 then
11990 -- Find type of new declaration. The constraints of the two
11991 -- views must match statically, but there is no point in
11992 -- creating an itype for the full view.
11993
11994 if Nkind (Obj_Def) = N_Subtype_Indication then
11995 Find_Type (Subtype_Mark (Obj_Def));
11996 New_T := Entity (Subtype_Mark (Obj_Def));
11997
11998 else
11999 Find_Type (Obj_Def);
12000 New_T := Entity (Obj_Def);
12001 end if;
12002
12003 T := Etype (Prev);
12004
12005 else
12006 -- The full view may impose a constraint, even if the partial
12007 -- view does not, so construct the subtype.
12008
12009 New_T := Find_Type_Of_Object (Obj_Def, N);
12010 T := New_T;
12011 end if;
12012
12013 else
12014 -- Current declaration is illegal, diagnosed below in Enter_Name
12015
12016 T := Empty;
12017 New_T := Any_Type;
12018 end if;
12019
12020 -- If previous full declaration or a renaming declaration exists, or if
12021 -- a homograph is present, let Enter_Name handle it, either with an
12022 -- error or with the removal of an overridden implicit subprogram.
12023 -- The previous one is a full declaration if it has an expression
12024 -- (which in the case of an aggregate is indicated by the Init flag).
12025
12026 if Ekind (Prev) /= E_Constant
12027 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12028 or else Present (Expression (Parent (Prev)))
12029 or else Has_Init_Expression (Parent (Prev))
12030 or else Present (Full_View (Prev))
12031 then
12032 Enter_Name (Id);
12033
12034 -- Verify that types of both declarations match, or else that both types
12035 -- are anonymous access types whose designated subtypes statically match
12036 -- (as allowed in Ada 2005 by AI-385).
12037
12038 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12039 and then
12040 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12041 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12042 or else Is_Access_Constant (Etype (New_T)) /=
12043 Is_Access_Constant (Etype (Prev))
12044 or else Can_Never_Be_Null (Etype (New_T)) /=
12045 Can_Never_Be_Null (Etype (Prev))
12046 or else Null_Exclusion_Present (Parent (Prev)) /=
12047 Null_Exclusion_Present (Parent (Id))
12048 or else not Subtypes_Statically_Match
12049 (Designated_Type (Etype (Prev)),
12050 Designated_Type (Etype (New_T))))
12051 then
12052 Error_Msg_Sloc := Sloc (Prev);
12053 Error_Msg_N ("type does not match declaration#", N);
12054 Set_Full_View (Prev, Id);
12055 Set_Etype (Id, Any_Type);
12056
12057 -- A deferred constant whose type is an anonymous array is always
12058 -- illegal (unless imported). A detailed error message might be
12059 -- helpful for Ada beginners.
12060
12061 if Nkind (Object_Definition (Parent (Prev)))
12062 = N_Constrained_Array_Definition
12063 and then Nkind (Object_Definition (N))
12064 = N_Constrained_Array_Definition
12065 then
12066 Error_Msg_N ("\each anonymous array is a distinct type", N);
12067 Error_Msg_N ("a deferred constant must have a named type",
12068 Object_Definition (Parent (Prev)));
12069 end if;
12070
12071 elsif
12072 Null_Exclusion_Present (Parent (Prev))
12073 and then not Null_Exclusion_Present (N)
12074 then
12075 Error_Msg_Sloc := Sloc (Prev);
12076 Error_Msg_N ("null-exclusion does not match declaration#", N);
12077 Set_Full_View (Prev, Id);
12078 Set_Etype (Id, Any_Type);
12079
12080 -- If so, process the full constant declaration
12081
12082 else
12083 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12084 -- the deferred declaration is constrained, then the subtype defined
12085 -- by the subtype_indication in the full declaration shall match it
12086 -- statically.
12087
12088 Check_Possible_Deferred_Completion
12089 (Prev_Id => Prev,
12090 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12091 Curr_Obj_Def => Obj_Def);
12092
12093 Set_Full_View (Prev, Id);
12094 Set_Is_Public (Id, Is_Public (Prev));
12095 Set_Is_Internal (Id);
12096 Append_Entity (Id, Current_Scope);
12097
12098 -- Check ALIASED present if present before (RM 7.4(7))
12099
12100 if Is_Aliased (Prev)
12101 and then not Aliased_Present (N)
12102 then
12103 Error_Msg_Sloc := Sloc (Prev);
12104 Error_Msg_N ("ALIASED required (see declaration #)", N);
12105 end if;
12106
12107 -- Check that placement is in private part and that the incomplete
12108 -- declaration appeared in the visible part.
12109
12110 if Ekind (Current_Scope) = E_Package
12111 and then not In_Private_Part (Current_Scope)
12112 then
12113 Error_Msg_Sloc := Sloc (Prev);
12114 Error_Msg_N
12115 ("full constant for declaration # must be in private part", N);
12116
12117 elsif Ekind (Current_Scope) = E_Package
12118 and then
12119 List_Containing (Parent (Prev)) /=
12120 Visible_Declarations (Package_Specification (Current_Scope))
12121 then
12122 Error_Msg_N
12123 ("deferred constant must be declared in visible part",
12124 Parent (Prev));
12125 end if;
12126
12127 if Is_Access_Type (T)
12128 and then Nkind (Expression (N)) = N_Allocator
12129 then
12130 Check_Recursive_Declaration (Designated_Type (T));
12131 end if;
12132
12133 -- A deferred constant is a visible entity. If type has invariants,
12134 -- verify that the initial value satisfies them.
12135
12136 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12137 Insert_After (N,
12138 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12139 end if;
12140 end if;
12141 end Constant_Redeclaration;
12142
12143 ----------------------
12144 -- Constrain_Access --
12145 ----------------------
12146
12147 procedure Constrain_Access
12148 (Def_Id : in out Entity_Id;
12149 S : Node_Id;
12150 Related_Nod : Node_Id)
12151 is
12152 T : constant Entity_Id := Entity (Subtype_Mark (S));
12153 Desig_Type : constant Entity_Id := Designated_Type (T);
12154 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12155 Constraint_OK : Boolean := True;
12156
12157 begin
12158 if Is_Array_Type (Desig_Type) then
12159 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12160
12161 elsif (Is_Record_Type (Desig_Type)
12162 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12163 and then not Is_Constrained (Desig_Type)
12164 then
12165 -- ??? The following code is a temporary bypass to ignore a
12166 -- discriminant constraint on access type if it is constraining
12167 -- the current record. Avoid creating the implicit subtype of the
12168 -- record we are currently compiling since right now, we cannot
12169 -- handle these. For now, just return the access type itself.
12170
12171 if Desig_Type = Current_Scope
12172 and then No (Def_Id)
12173 then
12174 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12175 Def_Id := Entity (Subtype_Mark (S));
12176
12177 -- This call added to ensure that the constraint is analyzed
12178 -- (needed for a B test). Note that we still return early from
12179 -- this procedure to avoid recursive processing. ???
12180
12181 Constrain_Discriminated_Type
12182 (Desig_Subtype, S, Related_Nod, For_Access => True);
12183 return;
12184 end if;
12185
12186 -- Enforce rule that the constraint is illegal if there is an
12187 -- unconstrained view of the designated type. This means that the
12188 -- partial view (either a private type declaration or a derivation
12189 -- from a private type) has no discriminants. (Defect Report
12190 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12191
12192 -- Rule updated for Ada 2005: The private type is said to have
12193 -- a constrained partial view, given that objects of the type
12194 -- can be declared. Furthermore, the rule applies to all access
12195 -- types, unlike the rule concerning default discriminants (see
12196 -- RM 3.7.1(7/3))
12197
12198 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12199 and then Has_Private_Declaration (Desig_Type)
12200 and then In_Open_Scopes (Scope (Desig_Type))
12201 and then Has_Discriminants (Desig_Type)
12202 then
12203 declare
12204 Pack : constant Node_Id :=
12205 Unit_Declaration_Node (Scope (Desig_Type));
12206 Decls : List_Id;
12207 Decl : Node_Id;
12208
12209 begin
12210 if Nkind (Pack) = N_Package_Declaration then
12211 Decls := Visible_Declarations (Specification (Pack));
12212 Decl := First (Decls);
12213 while Present (Decl) loop
12214 if (Nkind (Decl) = N_Private_Type_Declaration
12215 and then Chars (Defining_Identifier (Decl)) =
12216 Chars (Desig_Type))
12217
12218 or else
12219 (Nkind (Decl) = N_Full_Type_Declaration
12220 and then
12221 Chars (Defining_Identifier (Decl)) =
12222 Chars (Desig_Type)
12223 and then Is_Derived_Type (Desig_Type)
12224 and then
12225 Has_Private_Declaration (Etype (Desig_Type)))
12226 then
12227 if No (Discriminant_Specifications (Decl)) then
12228 Error_Msg_N
12229 ("cannot constrain access type if designated "
12230 & "type has constrained partial view", S);
12231 end if;
12232
12233 exit;
12234 end if;
12235
12236 Next (Decl);
12237 end loop;
12238 end if;
12239 end;
12240 end if;
12241
12242 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12243 For_Access => True);
12244
12245 elsif Is_Concurrent_Type (Desig_Type)
12246 and then not Is_Constrained (Desig_Type)
12247 then
12248 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12249
12250 else
12251 Error_Msg_N ("invalid constraint on access type", S);
12252
12253 -- We simply ignore an invalid constraint
12254
12255 Desig_Subtype := Desig_Type;
12256 Constraint_OK := False;
12257 end if;
12258
12259 if No (Def_Id) then
12260 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12261 else
12262 Set_Ekind (Def_Id, E_Access_Subtype);
12263 end if;
12264
12265 if Constraint_OK then
12266 Set_Etype (Def_Id, Base_Type (T));
12267
12268 if Is_Private_Type (Desig_Type) then
12269 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12270 end if;
12271 else
12272 Set_Etype (Def_Id, Any_Type);
12273 end if;
12274
12275 Set_Size_Info (Def_Id, T);
12276 Set_Is_Constrained (Def_Id, Constraint_OK);
12277 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12278 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12279 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12280
12281 Conditional_Delay (Def_Id, T);
12282
12283 -- AI-363 : Subtypes of general access types whose designated types have
12284 -- default discriminants are disallowed. In instances, the rule has to
12285 -- be checked against the actual, of which T is the subtype. In a
12286 -- generic body, the rule is checked assuming that the actual type has
12287 -- defaulted discriminants.
12288
12289 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12290 if Ekind (Base_Type (T)) = E_General_Access_Type
12291 and then Has_Defaulted_Discriminants (Desig_Type)
12292 then
12293 if Ada_Version < Ada_2005 then
12294 Error_Msg_N
12295 ("access subtype of general access type would not " &
12296 "be allowed in Ada 2005?y?", S);
12297 else
12298 Error_Msg_N
12299 ("access subtype of general access type not allowed", S);
12300 end if;
12301
12302 Error_Msg_N ("\discriminants have defaults", S);
12303
12304 elsif Is_Access_Type (T)
12305 and then Is_Generic_Type (Desig_Type)
12306 and then Has_Discriminants (Desig_Type)
12307 and then In_Package_Body (Current_Scope)
12308 then
12309 if Ada_Version < Ada_2005 then
12310 Error_Msg_N
12311 ("access subtype would not be allowed in generic body "
12312 & "in Ada 2005?y?", S);
12313 else
12314 Error_Msg_N
12315 ("access subtype not allowed in generic body", S);
12316 end if;
12317
12318 Error_Msg_N
12319 ("\designated type is a discriminated formal", S);
12320 end if;
12321 end if;
12322 end Constrain_Access;
12323
12324 ---------------------
12325 -- Constrain_Array --
12326 ---------------------
12327
12328 procedure Constrain_Array
12329 (Def_Id : in out Entity_Id;
12330 SI : Node_Id;
12331 Related_Nod : Node_Id;
12332 Related_Id : Entity_Id;
12333 Suffix : Character)
12334 is
12335 C : constant Node_Id := Constraint (SI);
12336 Number_Of_Constraints : Nat := 0;
12337 Index : Node_Id;
12338 S, T : Entity_Id;
12339 Constraint_OK : Boolean := True;
12340
12341 begin
12342 T := Entity (Subtype_Mark (SI));
12343
12344 if Is_Access_Type (T) then
12345 T := Designated_Type (T);
12346 end if;
12347
12348 -- If an index constraint follows a subtype mark in a subtype indication
12349 -- then the type or subtype denoted by the subtype mark must not already
12350 -- impose an index constraint. The subtype mark must denote either an
12351 -- unconstrained array type or an access type whose designated type
12352 -- is such an array type... (RM 3.6.1)
12353
12354 if Is_Constrained (T) then
12355 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12356 Constraint_OK := False;
12357
12358 else
12359 S := First (Constraints (C));
12360 while Present (S) loop
12361 Number_Of_Constraints := Number_Of_Constraints + 1;
12362 Next (S);
12363 end loop;
12364
12365 -- In either case, the index constraint must provide a discrete
12366 -- range for each index of the array type and the type of each
12367 -- discrete range must be the same as that of the corresponding
12368 -- index. (RM 3.6.1)
12369
12370 if Number_Of_Constraints /= Number_Dimensions (T) then
12371 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12372 Constraint_OK := False;
12373
12374 else
12375 S := First (Constraints (C));
12376 Index := First_Index (T);
12377 Analyze (Index);
12378
12379 -- Apply constraints to each index type
12380
12381 for J in 1 .. Number_Of_Constraints loop
12382 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12383 Next (Index);
12384 Next (S);
12385 end loop;
12386
12387 end if;
12388 end if;
12389
12390 if No (Def_Id) then
12391 Def_Id :=
12392 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12393 Set_Parent (Def_Id, Related_Nod);
12394
12395 else
12396 Set_Ekind (Def_Id, E_Array_Subtype);
12397 end if;
12398
12399 Set_Size_Info (Def_Id, (T));
12400 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12401 Set_Etype (Def_Id, Base_Type (T));
12402
12403 if Constraint_OK then
12404 Set_First_Index (Def_Id, First (Constraints (C)));
12405 else
12406 Set_First_Index (Def_Id, First_Index (T));
12407 end if;
12408
12409 Set_Is_Constrained (Def_Id, True);
12410 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12411 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12412
12413 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12414 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12415
12416 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12417 -- We need to initialize the attribute because if Def_Id is previously
12418 -- analyzed through a limited_with clause, it will have the attributes
12419 -- of an incomplete type, one of which is an Elist that overlaps the
12420 -- Packed_Array_Impl_Type field.
12421
12422 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12423
12424 -- Build a freeze node if parent still needs one. Also make sure that
12425 -- the Depends_On_Private status is set because the subtype will need
12426 -- reprocessing at the time the base type does, and also we must set a
12427 -- conditional delay.
12428
12429 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12430 Conditional_Delay (Def_Id, T);
12431 end Constrain_Array;
12432
12433 ------------------------------
12434 -- Constrain_Component_Type --
12435 ------------------------------
12436
12437 function Constrain_Component_Type
12438 (Comp : Entity_Id;
12439 Constrained_Typ : Entity_Id;
12440 Related_Node : Node_Id;
12441 Typ : Entity_Id;
12442 Constraints : Elist_Id) return Entity_Id
12443 is
12444 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12445 Compon_Type : constant Entity_Id := Etype (Comp);
12446
12447 function Build_Constrained_Array_Type
12448 (Old_Type : Entity_Id) return Entity_Id;
12449 -- If Old_Type is an array type, one of whose indexes is constrained
12450 -- by a discriminant, build an Itype whose constraint replaces the
12451 -- discriminant with its value in the constraint.
12452
12453 function Build_Constrained_Discriminated_Type
12454 (Old_Type : Entity_Id) return Entity_Id;
12455 -- Ditto for record components
12456
12457 function Build_Constrained_Access_Type
12458 (Old_Type : Entity_Id) return Entity_Id;
12459 -- Ditto for access types. Makes use of previous two functions, to
12460 -- constrain designated type.
12461
12462 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12463 -- T is an array or discriminated type, C is a list of constraints
12464 -- that apply to T. This routine builds the constrained subtype.
12465
12466 function Is_Discriminant (Expr : Node_Id) return Boolean;
12467 -- Returns True if Expr is a discriminant
12468
12469 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12470 -- Find the value of discriminant Discrim in Constraint
12471
12472 -----------------------------------
12473 -- Build_Constrained_Access_Type --
12474 -----------------------------------
12475
12476 function Build_Constrained_Access_Type
12477 (Old_Type : Entity_Id) return Entity_Id
12478 is
12479 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12480 Itype : Entity_Id;
12481 Desig_Subtype : Entity_Id;
12482 Scop : Entity_Id;
12483
12484 begin
12485 -- if the original access type was not embedded in the enclosing
12486 -- type definition, there is no need to produce a new access
12487 -- subtype. In fact every access type with an explicit constraint
12488 -- generates an itype whose scope is the enclosing record.
12489
12490 if not Is_Type (Scope (Old_Type)) then
12491 return Old_Type;
12492
12493 elsif Is_Array_Type (Desig_Type) then
12494 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12495
12496 elsif Has_Discriminants (Desig_Type) then
12497
12498 -- This may be an access type to an enclosing record type for
12499 -- which we are constructing the constrained components. Return
12500 -- the enclosing record subtype. This is not always correct,
12501 -- but avoids infinite recursion. ???
12502
12503 Desig_Subtype := Any_Type;
12504
12505 for J in reverse 0 .. Scope_Stack.Last loop
12506 Scop := Scope_Stack.Table (J).Entity;
12507
12508 if Is_Type (Scop)
12509 and then Base_Type (Scop) = Base_Type (Desig_Type)
12510 then
12511 Desig_Subtype := Scop;
12512 end if;
12513
12514 exit when not Is_Type (Scop);
12515 end loop;
12516
12517 if Desig_Subtype = Any_Type then
12518 Desig_Subtype :=
12519 Build_Constrained_Discriminated_Type (Desig_Type);
12520 end if;
12521
12522 else
12523 return Old_Type;
12524 end if;
12525
12526 if Desig_Subtype /= Desig_Type then
12527
12528 -- The Related_Node better be here or else we won't be able
12529 -- to attach new itypes to a node in the tree.
12530
12531 pragma Assert (Present (Related_Node));
12532
12533 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12534
12535 Set_Etype (Itype, Base_Type (Old_Type));
12536 Set_Size_Info (Itype, (Old_Type));
12537 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12538 Set_Depends_On_Private (Itype, Has_Private_Component
12539 (Old_Type));
12540 Set_Is_Access_Constant (Itype, Is_Access_Constant
12541 (Old_Type));
12542
12543 -- The new itype needs freezing when it depends on a not frozen
12544 -- type and the enclosing subtype needs freezing.
12545
12546 if Has_Delayed_Freeze (Constrained_Typ)
12547 and then not Is_Frozen (Constrained_Typ)
12548 then
12549 Conditional_Delay (Itype, Base_Type (Old_Type));
12550 end if;
12551
12552 return Itype;
12553
12554 else
12555 return Old_Type;
12556 end if;
12557 end Build_Constrained_Access_Type;
12558
12559 ----------------------------------
12560 -- Build_Constrained_Array_Type --
12561 ----------------------------------
12562
12563 function Build_Constrained_Array_Type
12564 (Old_Type : Entity_Id) return Entity_Id
12565 is
12566 Lo_Expr : Node_Id;
12567 Hi_Expr : Node_Id;
12568 Old_Index : Node_Id;
12569 Range_Node : Node_Id;
12570 Constr_List : List_Id;
12571
12572 Need_To_Create_Itype : Boolean := False;
12573
12574 begin
12575 Old_Index := First_Index (Old_Type);
12576 while Present (Old_Index) loop
12577 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12578
12579 if Is_Discriminant (Lo_Expr)
12580 or else
12581 Is_Discriminant (Hi_Expr)
12582 then
12583 Need_To_Create_Itype := True;
12584 end if;
12585
12586 Next_Index (Old_Index);
12587 end loop;
12588
12589 if Need_To_Create_Itype then
12590 Constr_List := New_List;
12591
12592 Old_Index := First_Index (Old_Type);
12593 while Present (Old_Index) loop
12594 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12595
12596 if Is_Discriminant (Lo_Expr) then
12597 Lo_Expr := Get_Discr_Value (Lo_Expr);
12598 end if;
12599
12600 if Is_Discriminant (Hi_Expr) then
12601 Hi_Expr := Get_Discr_Value (Hi_Expr);
12602 end if;
12603
12604 Range_Node :=
12605 Make_Range
12606 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12607
12608 Append (Range_Node, To => Constr_List);
12609
12610 Next_Index (Old_Index);
12611 end loop;
12612
12613 return Build_Subtype (Old_Type, Constr_List);
12614
12615 else
12616 return Old_Type;
12617 end if;
12618 end Build_Constrained_Array_Type;
12619
12620 ------------------------------------------
12621 -- Build_Constrained_Discriminated_Type --
12622 ------------------------------------------
12623
12624 function Build_Constrained_Discriminated_Type
12625 (Old_Type : Entity_Id) return Entity_Id
12626 is
12627 Expr : Node_Id;
12628 Constr_List : List_Id;
12629 Old_Constraint : Elmt_Id;
12630
12631 Need_To_Create_Itype : Boolean := False;
12632
12633 begin
12634 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12635 while Present (Old_Constraint) loop
12636 Expr := Node (Old_Constraint);
12637
12638 if Is_Discriminant (Expr) then
12639 Need_To_Create_Itype := True;
12640 end if;
12641
12642 Next_Elmt (Old_Constraint);
12643 end loop;
12644
12645 if Need_To_Create_Itype then
12646 Constr_List := New_List;
12647
12648 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12649 while Present (Old_Constraint) loop
12650 Expr := Node (Old_Constraint);
12651
12652 if Is_Discriminant (Expr) then
12653 Expr := Get_Discr_Value (Expr);
12654 end if;
12655
12656 Append (New_Copy_Tree (Expr), To => Constr_List);
12657
12658 Next_Elmt (Old_Constraint);
12659 end loop;
12660
12661 return Build_Subtype (Old_Type, Constr_List);
12662
12663 else
12664 return Old_Type;
12665 end if;
12666 end Build_Constrained_Discriminated_Type;
12667
12668 -------------------
12669 -- Build_Subtype --
12670 -------------------
12671
12672 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12673 Indic : Node_Id;
12674 Subtyp_Decl : Node_Id;
12675 Def_Id : Entity_Id;
12676 Btyp : Entity_Id := Base_Type (T);
12677
12678 begin
12679 -- The Related_Node better be here or else we won't be able to
12680 -- attach new itypes to a node in the tree.
12681
12682 pragma Assert (Present (Related_Node));
12683
12684 -- If the view of the component's type is incomplete or private
12685 -- with unknown discriminants, then the constraint must be applied
12686 -- to the full type.
12687
12688 if Has_Unknown_Discriminants (Btyp)
12689 and then Present (Underlying_Type (Btyp))
12690 then
12691 Btyp := Underlying_Type (Btyp);
12692 end if;
12693
12694 Indic :=
12695 Make_Subtype_Indication (Loc,
12696 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12697 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12698
12699 Def_Id := Create_Itype (Ekind (T), Related_Node);
12700
12701 Subtyp_Decl :=
12702 Make_Subtype_Declaration (Loc,
12703 Defining_Identifier => Def_Id,
12704 Subtype_Indication => Indic);
12705
12706 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12707
12708 -- Itypes must be analyzed with checks off (see package Itypes)
12709
12710 Analyze (Subtyp_Decl, Suppress => All_Checks);
12711
12712 return Def_Id;
12713 end Build_Subtype;
12714
12715 ---------------------
12716 -- Get_Discr_Value --
12717 ---------------------
12718
12719 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12720 D : Entity_Id;
12721 E : Elmt_Id;
12722
12723 begin
12724 -- The discriminant may be declared for the type, in which case we
12725 -- find it by iterating over the list of discriminants. If the
12726 -- discriminant is inherited from a parent type, it appears as the
12727 -- corresponding discriminant of the current type. This will be the
12728 -- case when constraining an inherited component whose constraint is
12729 -- given by a discriminant of the parent.
12730
12731 D := First_Discriminant (Typ);
12732 E := First_Elmt (Constraints);
12733
12734 while Present (D) loop
12735 if D = Entity (Discrim)
12736 or else D = CR_Discriminant (Entity (Discrim))
12737 or else Corresponding_Discriminant (D) = Entity (Discrim)
12738 then
12739 return Node (E);
12740 end if;
12741
12742 Next_Discriminant (D);
12743 Next_Elmt (E);
12744 end loop;
12745
12746 -- The Corresponding_Discriminant mechanism is incomplete, because
12747 -- the correspondence between new and old discriminants is not one
12748 -- to one: one new discriminant can constrain several old ones. In
12749 -- that case, scan sequentially the stored_constraint, the list of
12750 -- discriminants of the parents, and the constraints.
12751
12752 -- Previous code checked for the present of the Stored_Constraint
12753 -- list for the derived type, but did not use it at all. Should it
12754 -- be present when the component is a discriminated task type?
12755
12756 if Is_Derived_Type (Typ)
12757 and then Scope (Entity (Discrim)) = Etype (Typ)
12758 then
12759 D := First_Discriminant (Etype (Typ));
12760 E := First_Elmt (Constraints);
12761 while Present (D) loop
12762 if D = Entity (Discrim) then
12763 return Node (E);
12764 end if;
12765
12766 Next_Discriminant (D);
12767 Next_Elmt (E);
12768 end loop;
12769 end if;
12770
12771 -- Something is wrong if we did not find the value
12772
12773 raise Program_Error;
12774 end Get_Discr_Value;
12775
12776 ---------------------
12777 -- Is_Discriminant --
12778 ---------------------
12779
12780 function Is_Discriminant (Expr : Node_Id) return Boolean is
12781 Discrim_Scope : Entity_Id;
12782
12783 begin
12784 if Denotes_Discriminant (Expr) then
12785 Discrim_Scope := Scope (Entity (Expr));
12786
12787 -- Either we have a reference to one of Typ's discriminants,
12788
12789 pragma Assert (Discrim_Scope = Typ
12790
12791 -- or to the discriminants of the parent type, in the case
12792 -- of a derivation of a tagged type with variants.
12793
12794 or else Discrim_Scope = Etype (Typ)
12795 or else Full_View (Discrim_Scope) = Etype (Typ)
12796
12797 -- or same as above for the case where the discriminants
12798 -- were declared in Typ's private view.
12799
12800 or else (Is_Private_Type (Discrim_Scope)
12801 and then Chars (Discrim_Scope) = Chars (Typ))
12802
12803 -- or else we are deriving from the full view and the
12804 -- discriminant is declared in the private entity.
12805
12806 or else (Is_Private_Type (Typ)
12807 and then Chars (Discrim_Scope) = Chars (Typ))
12808
12809 -- Or we are constrained the corresponding record of a
12810 -- synchronized type that completes a private declaration.
12811
12812 or else (Is_Concurrent_Record_Type (Typ)
12813 and then
12814 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12815
12816 -- or we have a class-wide type, in which case make sure the
12817 -- discriminant found belongs to the root type.
12818
12819 or else (Is_Class_Wide_Type (Typ)
12820 and then Etype (Typ) = Discrim_Scope));
12821
12822 return True;
12823 end if;
12824
12825 -- In all other cases we have something wrong
12826
12827 return False;
12828 end Is_Discriminant;
12829
12830 -- Start of processing for Constrain_Component_Type
12831
12832 begin
12833 if Nkind (Parent (Comp)) = N_Component_Declaration
12834 and then Comes_From_Source (Parent (Comp))
12835 and then Comes_From_Source
12836 (Subtype_Indication (Component_Definition (Parent (Comp))))
12837 and then
12838 Is_Entity_Name
12839 (Subtype_Indication (Component_Definition (Parent (Comp))))
12840 then
12841 return Compon_Type;
12842
12843 elsif Is_Array_Type (Compon_Type) then
12844 return Build_Constrained_Array_Type (Compon_Type);
12845
12846 elsif Has_Discriminants (Compon_Type) then
12847 return Build_Constrained_Discriminated_Type (Compon_Type);
12848
12849 elsif Is_Access_Type (Compon_Type) then
12850 return Build_Constrained_Access_Type (Compon_Type);
12851
12852 else
12853 return Compon_Type;
12854 end if;
12855 end Constrain_Component_Type;
12856
12857 --------------------------
12858 -- Constrain_Concurrent --
12859 --------------------------
12860
12861 -- For concurrent types, the associated record value type carries the same
12862 -- discriminants, so when we constrain a concurrent type, we must constrain
12863 -- the corresponding record type as well.
12864
12865 procedure Constrain_Concurrent
12866 (Def_Id : in out Entity_Id;
12867 SI : Node_Id;
12868 Related_Nod : Node_Id;
12869 Related_Id : Entity_Id;
12870 Suffix : Character)
12871 is
12872 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12873 -- case of a private subtype (needed when only doing semantic analysis).
12874
12875 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12876 T_Val : Entity_Id;
12877
12878 begin
12879 if Is_Access_Type (T_Ent) then
12880 T_Ent := Designated_Type (T_Ent);
12881 end if;
12882
12883 T_Val := Corresponding_Record_Type (T_Ent);
12884
12885 if Present (T_Val) then
12886
12887 if No (Def_Id) then
12888 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12889
12890 -- Elaborate itype now, as it may be used in a subsequent
12891 -- synchronized operation in another scope.
12892
12893 if Nkind (Related_Nod) = N_Full_Type_Declaration then
12894 Build_Itype_Reference (Def_Id, Related_Nod);
12895 end if;
12896 end if;
12897
12898 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12899
12900 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12901 Set_Corresponding_Record_Type (Def_Id,
12902 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12903
12904 else
12905 -- If there is no associated record, expansion is disabled and this
12906 -- is a generic context. Create a subtype in any case, so that
12907 -- semantic analysis can proceed.
12908
12909 if No (Def_Id) then
12910 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12911 end if;
12912
12913 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12914 end if;
12915 end Constrain_Concurrent;
12916
12917 ------------------------------------
12918 -- Constrain_Corresponding_Record --
12919 ------------------------------------
12920
12921 function Constrain_Corresponding_Record
12922 (Prot_Subt : Entity_Id;
12923 Corr_Rec : Entity_Id;
12924 Related_Nod : Node_Id) return Entity_Id
12925 is
12926 T_Sub : constant Entity_Id :=
12927 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12928
12929 begin
12930 Set_Etype (T_Sub, Corr_Rec);
12931 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12932 Set_Is_Constrained (T_Sub, True);
12933 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12934 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12935
12936 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12937 Set_Discriminant_Constraint
12938 (T_Sub, Discriminant_Constraint (Prot_Subt));
12939 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12940 Create_Constrained_Components
12941 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12942 end if;
12943
12944 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12945
12946 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12947 Conditional_Delay (T_Sub, Corr_Rec);
12948
12949 else
12950 -- This is a component subtype: it will be frozen in the context of
12951 -- the enclosing record's init_proc, so that discriminant references
12952 -- are resolved to discriminals. (Note: we used to skip freezing
12953 -- altogether in that case, which caused errors downstream for
12954 -- components of a bit packed array type).
12955
12956 Set_Has_Delayed_Freeze (T_Sub);
12957 end if;
12958
12959 return T_Sub;
12960 end Constrain_Corresponding_Record;
12961
12962 -----------------------
12963 -- Constrain_Decimal --
12964 -----------------------
12965
12966 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12967 T : constant Entity_Id := Entity (Subtype_Mark (S));
12968 C : constant Node_Id := Constraint (S);
12969 Loc : constant Source_Ptr := Sloc (C);
12970 Range_Expr : Node_Id;
12971 Digits_Expr : Node_Id;
12972 Digits_Val : Uint;
12973 Bound_Val : Ureal;
12974
12975 begin
12976 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12977
12978 if Nkind (C) = N_Range_Constraint then
12979 Range_Expr := Range_Expression (C);
12980 Digits_Val := Digits_Value (T);
12981
12982 else
12983 pragma Assert (Nkind (C) = N_Digits_Constraint);
12984
12985 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12986
12987 Digits_Expr := Digits_Expression (C);
12988 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12989
12990 Check_Digits_Expression (Digits_Expr);
12991 Digits_Val := Expr_Value (Digits_Expr);
12992
12993 if Digits_Val > Digits_Value (T) then
12994 Error_Msg_N
12995 ("digits expression is incompatible with subtype", C);
12996 Digits_Val := Digits_Value (T);
12997 end if;
12998
12999 if Present (Range_Constraint (C)) then
13000 Range_Expr := Range_Expression (Range_Constraint (C));
13001 else
13002 Range_Expr := Empty;
13003 end if;
13004 end if;
13005
13006 Set_Etype (Def_Id, Base_Type (T));
13007 Set_Size_Info (Def_Id, (T));
13008 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13009 Set_Delta_Value (Def_Id, Delta_Value (T));
13010 Set_Scale_Value (Def_Id, Scale_Value (T));
13011 Set_Small_Value (Def_Id, Small_Value (T));
13012 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13013 Set_Digits_Value (Def_Id, Digits_Val);
13014
13015 -- Manufacture range from given digits value if no range present
13016
13017 if No (Range_Expr) then
13018 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13019 Range_Expr :=
13020 Make_Range (Loc,
13021 Low_Bound =>
13022 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13023 High_Bound =>
13024 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13025 end if;
13026
13027 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13028 Set_Discrete_RM_Size (Def_Id);
13029
13030 -- Unconditionally delay the freeze, since we cannot set size
13031 -- information in all cases correctly until the freeze point.
13032
13033 Set_Has_Delayed_Freeze (Def_Id);
13034 end Constrain_Decimal;
13035
13036 ----------------------------------
13037 -- Constrain_Discriminated_Type --
13038 ----------------------------------
13039
13040 procedure Constrain_Discriminated_Type
13041 (Def_Id : Entity_Id;
13042 S : Node_Id;
13043 Related_Nod : Node_Id;
13044 For_Access : Boolean := False)
13045 is
13046 E : constant Entity_Id := Entity (Subtype_Mark (S));
13047 T : Entity_Id;
13048 C : Node_Id;
13049 Elist : Elist_Id := New_Elmt_List;
13050
13051 procedure Fixup_Bad_Constraint;
13052 -- This is called after finding a bad constraint, and after having
13053 -- posted an appropriate error message. The mission is to leave the
13054 -- entity T in as reasonable state as possible.
13055
13056 --------------------------
13057 -- Fixup_Bad_Constraint --
13058 --------------------------
13059
13060 procedure Fixup_Bad_Constraint is
13061 begin
13062 -- Set a reasonable Ekind for the entity. For an incomplete type,
13063 -- we can't do much, but for other types, we can set the proper
13064 -- corresponding subtype kind.
13065
13066 if Ekind (T) = E_Incomplete_Type then
13067 Set_Ekind (Def_Id, Ekind (T));
13068 else
13069 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13070 end if;
13071
13072 -- Set Etype to the known type, to reduce chances of cascaded errors
13073
13074 Set_Etype (Def_Id, E);
13075 Set_Error_Posted (Def_Id);
13076 end Fixup_Bad_Constraint;
13077
13078 -- Start of processing for Constrain_Discriminated_Type
13079
13080 begin
13081 C := Constraint (S);
13082
13083 -- A discriminant constraint is only allowed in a subtype indication,
13084 -- after a subtype mark. This subtype mark must denote either a type
13085 -- with discriminants, or an access type whose designated type is a
13086 -- type with discriminants. A discriminant constraint specifies the
13087 -- values of these discriminants (RM 3.7.2(5)).
13088
13089 T := Base_Type (Entity (Subtype_Mark (S)));
13090
13091 if Is_Access_Type (T) then
13092 T := Designated_Type (T);
13093 end if;
13094
13095 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13096 -- Avoid generating an error for access-to-incomplete subtypes.
13097
13098 if Ada_Version >= Ada_2005
13099 and then Ekind (T) = E_Incomplete_Type
13100 and then Nkind (Parent (S)) = N_Subtype_Declaration
13101 and then not Is_Itype (Def_Id)
13102 then
13103 -- A little sanity check, emit an error message if the type
13104 -- has discriminants to begin with. Type T may be a regular
13105 -- incomplete type or imported via a limited with clause.
13106
13107 if Has_Discriminants (T)
13108 or else (From_Limited_With (T)
13109 and then Present (Non_Limited_View (T))
13110 and then Nkind (Parent (Non_Limited_View (T))) =
13111 N_Full_Type_Declaration
13112 and then Present (Discriminant_Specifications
13113 (Parent (Non_Limited_View (T)))))
13114 then
13115 Error_Msg_N
13116 ("(Ada 2005) incomplete subtype may not be constrained", C);
13117 else
13118 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13119 end if;
13120
13121 Fixup_Bad_Constraint;
13122 return;
13123
13124 -- Check that the type has visible discriminants. The type may be
13125 -- a private type with unknown discriminants whose full view has
13126 -- discriminants which are invisible.
13127
13128 elsif not Has_Discriminants (T)
13129 or else
13130 (Has_Unknown_Discriminants (T)
13131 and then Is_Private_Type (T))
13132 then
13133 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13134 Fixup_Bad_Constraint;
13135 return;
13136
13137 elsif Is_Constrained (E)
13138 or else (Ekind (E) = E_Class_Wide_Subtype
13139 and then Present (Discriminant_Constraint (E)))
13140 then
13141 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13142 Fixup_Bad_Constraint;
13143 return;
13144 end if;
13145
13146 -- T may be an unconstrained subtype (e.g. a generic actual).
13147 -- Constraint applies to the base type.
13148
13149 T := Base_Type (T);
13150
13151 Elist := Build_Discriminant_Constraints (T, S);
13152
13153 -- If the list returned was empty we had an error in building the
13154 -- discriminant constraint. We have also already signalled an error
13155 -- in the incomplete type case
13156
13157 if Is_Empty_Elmt_List (Elist) then
13158 Fixup_Bad_Constraint;
13159 return;
13160 end if;
13161
13162 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13163 end Constrain_Discriminated_Type;
13164
13165 ---------------------------
13166 -- Constrain_Enumeration --
13167 ---------------------------
13168
13169 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13170 T : constant Entity_Id := Entity (Subtype_Mark (S));
13171 C : constant Node_Id := Constraint (S);
13172
13173 begin
13174 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13175
13176 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13177
13178 Set_Etype (Def_Id, Base_Type (T));
13179 Set_Size_Info (Def_Id, (T));
13180 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13181 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13182
13183 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13184
13185 Set_Discrete_RM_Size (Def_Id);
13186 end Constrain_Enumeration;
13187
13188 ----------------------
13189 -- Constrain_Float --
13190 ----------------------
13191
13192 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13193 T : constant Entity_Id := Entity (Subtype_Mark (S));
13194 C : Node_Id;
13195 D : Node_Id;
13196 Rais : Node_Id;
13197
13198 begin
13199 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13200
13201 Set_Etype (Def_Id, Base_Type (T));
13202 Set_Size_Info (Def_Id, (T));
13203 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13204
13205 -- Process the constraint
13206
13207 C := Constraint (S);
13208
13209 -- Digits constraint present
13210
13211 if Nkind (C) = N_Digits_Constraint then
13212
13213 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13214 Check_Restriction (No_Obsolescent_Features, C);
13215
13216 if Warn_On_Obsolescent_Feature then
13217 Error_Msg_N
13218 ("subtype digits constraint is an " &
13219 "obsolescent feature (RM J.3(8))?j?", C);
13220 end if;
13221
13222 D := Digits_Expression (C);
13223 Analyze_And_Resolve (D, Any_Integer);
13224 Check_Digits_Expression (D);
13225 Set_Digits_Value (Def_Id, Expr_Value (D));
13226
13227 -- Check that digits value is in range. Obviously we can do this
13228 -- at compile time, but it is strictly a runtime check, and of
13229 -- course there is an ACVC test that checks this.
13230
13231 if Digits_Value (Def_Id) > Digits_Value (T) then
13232 Error_Msg_Uint_1 := Digits_Value (T);
13233 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13234 Rais :=
13235 Make_Raise_Constraint_Error (Sloc (D),
13236 Reason => CE_Range_Check_Failed);
13237 Insert_Action (Declaration_Node (Def_Id), Rais);
13238 end if;
13239
13240 C := Range_Constraint (C);
13241
13242 -- No digits constraint present
13243
13244 else
13245 Set_Digits_Value (Def_Id, Digits_Value (T));
13246 end if;
13247
13248 -- Range constraint present
13249
13250 if Nkind (C) = N_Range_Constraint then
13251 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13252
13253 -- No range constraint present
13254
13255 else
13256 pragma Assert (No (C));
13257 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13258 end if;
13259
13260 Set_Is_Constrained (Def_Id);
13261 end Constrain_Float;
13262
13263 ---------------------
13264 -- Constrain_Index --
13265 ---------------------
13266
13267 procedure Constrain_Index
13268 (Index : Node_Id;
13269 S : Node_Id;
13270 Related_Nod : Node_Id;
13271 Related_Id : Entity_Id;
13272 Suffix : Character;
13273 Suffix_Index : Nat)
13274 is
13275 Def_Id : Entity_Id;
13276 R : Node_Id := Empty;
13277 T : constant Entity_Id := Etype (Index);
13278
13279 begin
13280 Def_Id :=
13281 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13282 Set_Etype (Def_Id, Base_Type (T));
13283
13284 if Nkind (S) = N_Range
13285 or else
13286 (Nkind (S) = N_Attribute_Reference
13287 and then Attribute_Name (S) = Name_Range)
13288 then
13289 -- A Range attribute will be transformed into N_Range by Resolve
13290
13291 Analyze (S);
13292 Set_Etype (S, T);
13293 R := S;
13294
13295 Process_Range_Expr_In_Decl (R, T);
13296
13297 if not Error_Posted (S)
13298 and then
13299 (Nkind (S) /= N_Range
13300 or else not Covers (T, (Etype (Low_Bound (S))))
13301 or else not Covers (T, (Etype (High_Bound (S)))))
13302 then
13303 if Base_Type (T) /= Any_Type
13304 and then Etype (Low_Bound (S)) /= Any_Type
13305 and then Etype (High_Bound (S)) /= Any_Type
13306 then
13307 Error_Msg_N ("range expected", S);
13308 end if;
13309 end if;
13310
13311 elsif Nkind (S) = N_Subtype_Indication then
13312
13313 -- The parser has verified that this is a discrete indication
13314
13315 Resolve_Discrete_Subtype_Indication (S, T);
13316 Bad_Predicated_Subtype_Use
13317 ("subtype& has predicate, not allowed in index constraint",
13318 S, Entity (Subtype_Mark (S)));
13319
13320 R := Range_Expression (Constraint (S));
13321
13322 -- Capture values of bounds and generate temporaries for them if
13323 -- needed, since checks may cause duplication of the expressions
13324 -- which must not be reevaluated.
13325
13326 -- The forced evaluation removes side effects from expressions, which
13327 -- should occur also in GNATprove mode. Otherwise, we end up with
13328 -- unexpected insertions of actions at places where this is not
13329 -- supposed to occur, e.g. on default parameters of a call.
13330
13331 if Expander_Active or GNATprove_Mode then
13332 Force_Evaluation
13333 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13334 Force_Evaluation
13335 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13336 end if;
13337
13338 elsif Nkind (S) = N_Discriminant_Association then
13339
13340 -- Syntactically valid in subtype indication
13341
13342 Error_Msg_N ("invalid index constraint", S);
13343 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13344 return;
13345
13346 -- Subtype_Mark case, no anonymous subtypes to construct
13347
13348 else
13349 Analyze (S);
13350
13351 if Is_Entity_Name (S) then
13352 if not Is_Type (Entity (S)) then
13353 Error_Msg_N ("expect subtype mark for index constraint", S);
13354
13355 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13356 Wrong_Type (S, Base_Type (T));
13357
13358 -- Check error of subtype with predicate in index constraint
13359
13360 else
13361 Bad_Predicated_Subtype_Use
13362 ("subtype& has predicate, not allowed in index constraint",
13363 S, Entity (S));
13364 end if;
13365
13366 return;
13367
13368 else
13369 Error_Msg_N ("invalid index constraint", S);
13370 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13371 return;
13372 end if;
13373 end if;
13374
13375 -- Complete construction of the Itype
13376
13377 if Is_Modular_Integer_Type (T) then
13378 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13379
13380 elsif Is_Integer_Type (T) then
13381 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13382
13383 else
13384 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13385 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13386 Set_First_Literal (Def_Id, First_Literal (T));
13387 end if;
13388
13389 Set_Size_Info (Def_Id, (T));
13390 Set_RM_Size (Def_Id, RM_Size (T));
13391 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13392
13393 Set_Scalar_Range (Def_Id, R);
13394
13395 Set_Etype (S, Def_Id);
13396 Set_Discrete_RM_Size (Def_Id);
13397 end Constrain_Index;
13398
13399 -----------------------
13400 -- Constrain_Integer --
13401 -----------------------
13402
13403 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13404 T : constant Entity_Id := Entity (Subtype_Mark (S));
13405 C : constant Node_Id := Constraint (S);
13406
13407 begin
13408 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13409
13410 if Is_Modular_Integer_Type (T) then
13411 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13412 else
13413 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13414 end if;
13415
13416 Set_Etype (Def_Id, Base_Type (T));
13417 Set_Size_Info (Def_Id, (T));
13418 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13419 Set_Discrete_RM_Size (Def_Id);
13420 end Constrain_Integer;
13421
13422 ------------------------------
13423 -- Constrain_Ordinary_Fixed --
13424 ------------------------------
13425
13426 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13427 T : constant Entity_Id := Entity (Subtype_Mark (S));
13428 C : Node_Id;
13429 D : Node_Id;
13430 Rais : Node_Id;
13431
13432 begin
13433 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13434 Set_Etype (Def_Id, Base_Type (T));
13435 Set_Size_Info (Def_Id, (T));
13436 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13437 Set_Small_Value (Def_Id, Small_Value (T));
13438
13439 -- Process the constraint
13440
13441 C := Constraint (S);
13442
13443 -- Delta constraint present
13444
13445 if Nkind (C) = N_Delta_Constraint then
13446
13447 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13448 Check_Restriction (No_Obsolescent_Features, C);
13449
13450 if Warn_On_Obsolescent_Feature then
13451 Error_Msg_S
13452 ("subtype delta constraint is an " &
13453 "obsolescent feature (RM J.3(7))?j?");
13454 end if;
13455
13456 D := Delta_Expression (C);
13457 Analyze_And_Resolve (D, Any_Real);
13458 Check_Delta_Expression (D);
13459 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13460
13461 -- Check that delta value is in range. Obviously we can do this
13462 -- at compile time, but it is strictly a runtime check, and of
13463 -- course there is an ACVC test that checks this.
13464
13465 if Delta_Value (Def_Id) < Delta_Value (T) then
13466 Error_Msg_N ("??delta value is too small", D);
13467 Rais :=
13468 Make_Raise_Constraint_Error (Sloc (D),
13469 Reason => CE_Range_Check_Failed);
13470 Insert_Action (Declaration_Node (Def_Id), Rais);
13471 end if;
13472
13473 C := Range_Constraint (C);
13474
13475 -- No delta constraint present
13476
13477 else
13478 Set_Delta_Value (Def_Id, Delta_Value (T));
13479 end if;
13480
13481 -- Range constraint present
13482
13483 if Nkind (C) = N_Range_Constraint then
13484 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13485
13486 -- No range constraint present
13487
13488 else
13489 pragma Assert (No (C));
13490 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13491 end if;
13492
13493 Set_Discrete_RM_Size (Def_Id);
13494
13495 -- Unconditionally delay the freeze, since we cannot set size
13496 -- information in all cases correctly until the freeze point.
13497
13498 Set_Has_Delayed_Freeze (Def_Id);
13499 end Constrain_Ordinary_Fixed;
13500
13501 -----------------------
13502 -- Contain_Interface --
13503 -----------------------
13504
13505 function Contain_Interface
13506 (Iface : Entity_Id;
13507 Ifaces : Elist_Id) return Boolean
13508 is
13509 Iface_Elmt : Elmt_Id;
13510
13511 begin
13512 if Present (Ifaces) then
13513 Iface_Elmt := First_Elmt (Ifaces);
13514 while Present (Iface_Elmt) loop
13515 if Node (Iface_Elmt) = Iface then
13516 return True;
13517 end if;
13518
13519 Next_Elmt (Iface_Elmt);
13520 end loop;
13521 end if;
13522
13523 return False;
13524 end Contain_Interface;
13525
13526 ---------------------------
13527 -- Convert_Scalar_Bounds --
13528 ---------------------------
13529
13530 procedure Convert_Scalar_Bounds
13531 (N : Node_Id;
13532 Parent_Type : Entity_Id;
13533 Derived_Type : Entity_Id;
13534 Loc : Source_Ptr)
13535 is
13536 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13537
13538 Lo : Node_Id;
13539 Hi : Node_Id;
13540 Rng : Node_Id;
13541
13542 begin
13543 -- Defend against previous errors
13544
13545 if No (Scalar_Range (Derived_Type)) then
13546 Check_Error_Detected;
13547 return;
13548 end if;
13549
13550 Lo := Build_Scalar_Bound
13551 (Type_Low_Bound (Derived_Type),
13552 Parent_Type, Implicit_Base);
13553
13554 Hi := Build_Scalar_Bound
13555 (Type_High_Bound (Derived_Type),
13556 Parent_Type, Implicit_Base);
13557
13558 Rng :=
13559 Make_Range (Loc,
13560 Low_Bound => Lo,
13561 High_Bound => Hi);
13562
13563 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13564
13565 Set_Parent (Rng, N);
13566 Set_Scalar_Range (Derived_Type, Rng);
13567
13568 -- Analyze the bounds
13569
13570 Analyze_And_Resolve (Lo, Implicit_Base);
13571 Analyze_And_Resolve (Hi, Implicit_Base);
13572
13573 -- Analyze the range itself, except that we do not analyze it if
13574 -- the bounds are real literals, and we have a fixed-point type.
13575 -- The reason for this is that we delay setting the bounds in this
13576 -- case till we know the final Small and Size values (see circuit
13577 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13578
13579 if Is_Fixed_Point_Type (Parent_Type)
13580 and then Nkind (Lo) = N_Real_Literal
13581 and then Nkind (Hi) = N_Real_Literal
13582 then
13583 return;
13584
13585 -- Here we do the analysis of the range
13586
13587 -- Note: we do this manually, since if we do a normal Analyze and
13588 -- Resolve call, there are problems with the conversions used for
13589 -- the derived type range.
13590
13591 else
13592 Set_Etype (Rng, Implicit_Base);
13593 Set_Analyzed (Rng, True);
13594 end if;
13595 end Convert_Scalar_Bounds;
13596
13597 -------------------
13598 -- Copy_And_Swap --
13599 -------------------
13600
13601 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13602 begin
13603 -- Initialize new full declaration entity by copying the pertinent
13604 -- fields of the corresponding private declaration entity.
13605
13606 -- We temporarily set Ekind to a value appropriate for a type to
13607 -- avoid assert failures in Einfo from checking for setting type
13608 -- attributes on something that is not a type. Ekind (Priv) is an
13609 -- appropriate choice, since it allowed the attributes to be set
13610 -- in the first place. This Ekind value will be modified later.
13611
13612 Set_Ekind (Full, Ekind (Priv));
13613
13614 -- Also set Etype temporarily to Any_Type, again, in the absence
13615 -- of errors, it will be properly reset, and if there are errors,
13616 -- then we want a value of Any_Type to remain.
13617
13618 Set_Etype (Full, Any_Type);
13619
13620 -- Now start copying attributes
13621
13622 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13623
13624 if Has_Discriminants (Full) then
13625 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13626 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13627 end if;
13628
13629 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13630 Set_Homonym (Full, Homonym (Priv));
13631 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13632 Set_Is_Public (Full, Is_Public (Priv));
13633 Set_Is_Pure (Full, Is_Pure (Priv));
13634 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13635 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13636 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13637 Set_Has_Pragma_Unreferenced_Objects
13638 (Full, Has_Pragma_Unreferenced_Objects
13639 (Priv));
13640
13641 Conditional_Delay (Full, Priv);
13642
13643 if Is_Tagged_Type (Full) then
13644 Set_Direct_Primitive_Operations
13645 (Full, Direct_Primitive_Operations (Priv));
13646 Set_No_Tagged_Streams_Pragma
13647 (Full, No_Tagged_Streams_Pragma (Priv));
13648
13649 if Is_Base_Type (Priv) then
13650 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13651 end if;
13652 end if;
13653
13654 Set_Is_Volatile (Full, Is_Volatile (Priv));
13655 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13656 Set_Scope (Full, Scope (Priv));
13657 Set_Next_Entity (Full, Next_Entity (Priv));
13658 Set_First_Entity (Full, First_Entity (Priv));
13659 Set_Last_Entity (Full, Last_Entity (Priv));
13660
13661 -- If access types have been recorded for later handling, keep them in
13662 -- the full view so that they get handled when the full view freeze
13663 -- node is expanded.
13664
13665 if Present (Freeze_Node (Priv))
13666 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13667 then
13668 Ensure_Freeze_Node (Full);
13669 Set_Access_Types_To_Process
13670 (Freeze_Node (Full),
13671 Access_Types_To_Process (Freeze_Node (Priv)));
13672 end if;
13673
13674 -- Swap the two entities. Now Private is the full type entity and Full
13675 -- is the private one. They will be swapped back at the end of the
13676 -- private part. This swapping ensures that the entity that is visible
13677 -- in the private part is the full declaration.
13678
13679 Exchange_Entities (Priv, Full);
13680 Append_Entity (Full, Scope (Full));
13681 end Copy_And_Swap;
13682
13683 -------------------------------------
13684 -- Copy_Array_Base_Type_Attributes --
13685 -------------------------------------
13686
13687 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13688 begin
13689 Set_Component_Alignment (T1, Component_Alignment (T2));
13690 Set_Component_Type (T1, Component_Type (T2));
13691 Set_Component_Size (T1, Component_Size (T2));
13692 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13693 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13694 Set_Has_Protected (T1, Has_Protected (T2));
13695 Set_Has_Task (T1, Has_Task (T2));
13696 Set_Is_Packed (T1, Is_Packed (T2));
13697 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13698 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13699 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13700 end Copy_Array_Base_Type_Attributes;
13701
13702 -----------------------------------
13703 -- Copy_Array_Subtype_Attributes --
13704 -----------------------------------
13705
13706 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13707 begin
13708 Set_Size_Info (T1, T2);
13709
13710 Set_First_Index (T1, First_Index (T2));
13711 Set_Is_Aliased (T1, Is_Aliased (T2));
13712 Set_Is_Volatile (T1, Is_Volatile (T2));
13713 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13714 Set_Is_Constrained (T1, Is_Constrained (T2));
13715 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13716 Inherit_Rep_Item_Chain (T1, T2);
13717 Set_Convention (T1, Convention (T2));
13718 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13719 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13720 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13721 end Copy_Array_Subtype_Attributes;
13722
13723 -----------------------------------
13724 -- Create_Constrained_Components --
13725 -----------------------------------
13726
13727 procedure Create_Constrained_Components
13728 (Subt : Entity_Id;
13729 Decl_Node : Node_Id;
13730 Typ : Entity_Id;
13731 Constraints : Elist_Id)
13732 is
13733 Loc : constant Source_Ptr := Sloc (Subt);
13734 Comp_List : constant Elist_Id := New_Elmt_List;
13735 Parent_Type : constant Entity_Id := Etype (Typ);
13736 Assoc_List : constant List_Id := New_List;
13737 Discr_Val : Elmt_Id;
13738 Errors : Boolean;
13739 New_C : Entity_Id;
13740 Old_C : Entity_Id;
13741 Is_Static : Boolean := True;
13742
13743 procedure Collect_Fixed_Components (Typ : Entity_Id);
13744 -- Collect parent type components that do not appear in a variant part
13745
13746 procedure Create_All_Components;
13747 -- Iterate over Comp_List to create the components of the subtype
13748
13749 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13750 -- Creates a new component from Old_Compon, copying all the fields from
13751 -- it, including its Etype, inserts the new component in the Subt entity
13752 -- chain and returns the new component.
13753
13754 function Is_Variant_Record (T : Entity_Id) return Boolean;
13755 -- If true, and discriminants are static, collect only components from
13756 -- variants selected by discriminant values.
13757
13758 ------------------------------
13759 -- Collect_Fixed_Components --
13760 ------------------------------
13761
13762 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13763 begin
13764 -- Build association list for discriminants, and find components of the
13765 -- variant part selected by the values of the discriminants.
13766
13767 Old_C := First_Discriminant (Typ);
13768 Discr_Val := First_Elmt (Constraints);
13769 while Present (Old_C) loop
13770 Append_To (Assoc_List,
13771 Make_Component_Association (Loc,
13772 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13773 Expression => New_Copy (Node (Discr_Val))));
13774
13775 Next_Elmt (Discr_Val);
13776 Next_Discriminant (Old_C);
13777 end loop;
13778
13779 -- The tag and the possible parent component are unconditionally in
13780 -- the subtype.
13781
13782 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13783 Old_C := First_Component (Typ);
13784 while Present (Old_C) loop
13785 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13786 Append_Elmt (Old_C, Comp_List);
13787 end if;
13788
13789 Next_Component (Old_C);
13790 end loop;
13791 end if;
13792 end Collect_Fixed_Components;
13793
13794 ---------------------------
13795 -- Create_All_Components --
13796 ---------------------------
13797
13798 procedure Create_All_Components is
13799 Comp : Elmt_Id;
13800
13801 begin
13802 Comp := First_Elmt (Comp_List);
13803 while Present (Comp) loop
13804 Old_C := Node (Comp);
13805 New_C := Create_Component (Old_C);
13806
13807 Set_Etype
13808 (New_C,
13809 Constrain_Component_Type
13810 (Old_C, Subt, Decl_Node, Typ, Constraints));
13811 Set_Is_Public (New_C, Is_Public (Subt));
13812
13813 Next_Elmt (Comp);
13814 end loop;
13815 end Create_All_Components;
13816
13817 ----------------------
13818 -- Create_Component --
13819 ----------------------
13820
13821 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13822 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13823
13824 begin
13825 if Ekind (Old_Compon) = E_Discriminant
13826 and then Is_Completely_Hidden (Old_Compon)
13827 then
13828 -- This is a shadow discriminant created for a discriminant of
13829 -- the parent type, which needs to be present in the subtype.
13830 -- Give the shadow discriminant an internal name that cannot
13831 -- conflict with that of visible components.
13832
13833 Set_Chars (New_Compon, New_Internal_Name ('C'));
13834 end if;
13835
13836 -- Set the parent so we have a proper link for freezing etc. This is
13837 -- not a real parent pointer, since of course our parent does not own
13838 -- up to us and reference us, we are an illegitimate child of the
13839 -- original parent.
13840
13841 Set_Parent (New_Compon, Parent (Old_Compon));
13842
13843 -- If the old component's Esize was already determined and is a
13844 -- static value, then the new component simply inherits it. Otherwise
13845 -- the old component's size may require run-time determination, but
13846 -- the new component's size still might be statically determinable
13847 -- (if, for example it has a static constraint). In that case we want
13848 -- Layout_Type to recompute the component's size, so we reset its
13849 -- size and positional fields.
13850
13851 if Frontend_Layout_On_Target
13852 and then not Known_Static_Esize (Old_Compon)
13853 then
13854 Set_Esize (New_Compon, Uint_0);
13855 Init_Normalized_First_Bit (New_Compon);
13856 Init_Normalized_Position (New_Compon);
13857 Init_Normalized_Position_Max (New_Compon);
13858 end if;
13859
13860 -- We do not want this node marked as Comes_From_Source, since
13861 -- otherwise it would get first class status and a separate cross-
13862 -- reference line would be generated. Illegitimate children do not
13863 -- rate such recognition.
13864
13865 Set_Comes_From_Source (New_Compon, False);
13866
13867 -- But it is a real entity, and a birth certificate must be properly
13868 -- registered by entering it into the entity list.
13869
13870 Enter_Name (New_Compon);
13871
13872 return New_Compon;
13873 end Create_Component;
13874
13875 -----------------------
13876 -- Is_Variant_Record --
13877 -----------------------
13878
13879 function Is_Variant_Record (T : Entity_Id) return Boolean is
13880 begin
13881 return Nkind (Parent (T)) = N_Full_Type_Declaration
13882 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13883 and then Present (Component_List (Type_Definition (Parent (T))))
13884 and then
13885 Present
13886 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13887 end Is_Variant_Record;
13888
13889 -- Start of processing for Create_Constrained_Components
13890
13891 begin
13892 pragma Assert (Subt /= Base_Type (Subt));
13893 pragma Assert (Typ = Base_Type (Typ));
13894
13895 Set_First_Entity (Subt, Empty);
13896 Set_Last_Entity (Subt, Empty);
13897
13898 -- Check whether constraint is fully static, in which case we can
13899 -- optimize the list of components.
13900
13901 Discr_Val := First_Elmt (Constraints);
13902 while Present (Discr_Val) loop
13903 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13904 Is_Static := False;
13905 exit;
13906 end if;
13907
13908 Next_Elmt (Discr_Val);
13909 end loop;
13910
13911 Set_Has_Static_Discriminants (Subt, Is_Static);
13912
13913 Push_Scope (Subt);
13914
13915 -- Inherit the discriminants of the parent type
13916
13917 Add_Discriminants : declare
13918 Num_Disc : Int;
13919 Num_Gird : Int;
13920
13921 begin
13922 Num_Disc := 0;
13923 Old_C := First_Discriminant (Typ);
13924
13925 while Present (Old_C) loop
13926 Num_Disc := Num_Disc + 1;
13927 New_C := Create_Component (Old_C);
13928 Set_Is_Public (New_C, Is_Public (Subt));
13929 Next_Discriminant (Old_C);
13930 end loop;
13931
13932 -- For an untagged derived subtype, the number of discriminants may
13933 -- be smaller than the number of inherited discriminants, because
13934 -- several of them may be renamed by a single new discriminant or
13935 -- constrained. In this case, add the hidden discriminants back into
13936 -- the subtype, because they need to be present if the optimizer of
13937 -- the GCC 4.x back-end decides to break apart assignments between
13938 -- objects using the parent view into member-wise assignments.
13939
13940 Num_Gird := 0;
13941
13942 if Is_Derived_Type (Typ)
13943 and then not Is_Tagged_Type (Typ)
13944 then
13945 Old_C := First_Stored_Discriminant (Typ);
13946
13947 while Present (Old_C) loop
13948 Num_Gird := Num_Gird + 1;
13949 Next_Stored_Discriminant (Old_C);
13950 end loop;
13951 end if;
13952
13953 if Num_Gird > Num_Disc then
13954
13955 -- Find out multiple uses of new discriminants, and add hidden
13956 -- components for the extra renamed discriminants. We recognize
13957 -- multiple uses through the Corresponding_Discriminant of a
13958 -- new discriminant: if it constrains several old discriminants,
13959 -- this field points to the last one in the parent type. The
13960 -- stored discriminants of the derived type have the same name
13961 -- as those of the parent.
13962
13963 declare
13964 Constr : Elmt_Id;
13965 New_Discr : Entity_Id;
13966 Old_Discr : Entity_Id;
13967
13968 begin
13969 Constr := First_Elmt (Stored_Constraint (Typ));
13970 Old_Discr := First_Stored_Discriminant (Typ);
13971 while Present (Constr) loop
13972 if Is_Entity_Name (Node (Constr))
13973 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13974 then
13975 New_Discr := Entity (Node (Constr));
13976
13977 if Chars (Corresponding_Discriminant (New_Discr)) /=
13978 Chars (Old_Discr)
13979 then
13980 -- The new discriminant has been used to rename a
13981 -- subsequent old discriminant. Introduce a shadow
13982 -- component for the current old discriminant.
13983
13984 New_C := Create_Component (Old_Discr);
13985 Set_Original_Record_Component (New_C, Old_Discr);
13986 end if;
13987
13988 else
13989 -- The constraint has eliminated the old discriminant.
13990 -- Introduce a shadow component.
13991
13992 New_C := Create_Component (Old_Discr);
13993 Set_Original_Record_Component (New_C, Old_Discr);
13994 end if;
13995
13996 Next_Elmt (Constr);
13997 Next_Stored_Discriminant (Old_Discr);
13998 end loop;
13999 end;
14000 end if;
14001 end Add_Discriminants;
14002
14003 if Is_Static
14004 and then Is_Variant_Record (Typ)
14005 then
14006 Collect_Fixed_Components (Typ);
14007
14008 Gather_Components (
14009 Typ,
14010 Component_List (Type_Definition (Parent (Typ))),
14011 Governed_By => Assoc_List,
14012 Into => Comp_List,
14013 Report_Errors => Errors);
14014 pragma Assert (not Errors);
14015
14016 Create_All_Components;
14017
14018 -- If the subtype declaration is created for a tagged type derivation
14019 -- with constraints, we retrieve the record definition of the parent
14020 -- type to select the components of the proper variant.
14021
14022 elsif Is_Static
14023 and then Is_Tagged_Type (Typ)
14024 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14025 and then
14026 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14027 and then Is_Variant_Record (Parent_Type)
14028 then
14029 Collect_Fixed_Components (Typ);
14030
14031 Gather_Components
14032 (Typ,
14033 Component_List (Type_Definition (Parent (Parent_Type))),
14034 Governed_By => Assoc_List,
14035 Into => Comp_List,
14036 Report_Errors => Errors);
14037
14038 -- Note: previously there was a check at this point that no errors
14039 -- were detected. As a consequence of AI05-220 there may be an error
14040 -- if an inherited discriminant that controls a variant has a non-
14041 -- static constraint.
14042
14043 -- If the tagged derivation has a type extension, collect all the
14044 -- new components therein.
14045
14046 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14047 then
14048 Old_C := First_Component (Typ);
14049 while Present (Old_C) loop
14050 if Original_Record_Component (Old_C) = Old_C
14051 and then Chars (Old_C) /= Name_uTag
14052 and then Chars (Old_C) /= Name_uParent
14053 then
14054 Append_Elmt (Old_C, Comp_List);
14055 end if;
14056
14057 Next_Component (Old_C);
14058 end loop;
14059 end if;
14060
14061 Create_All_Components;
14062
14063 else
14064 -- If discriminants are not static, or if this is a multi-level type
14065 -- extension, we have to include all components of the parent type.
14066
14067 Old_C := First_Component (Typ);
14068 while Present (Old_C) loop
14069 New_C := Create_Component (Old_C);
14070
14071 Set_Etype
14072 (New_C,
14073 Constrain_Component_Type
14074 (Old_C, Subt, Decl_Node, Typ, Constraints));
14075 Set_Is_Public (New_C, Is_Public (Subt));
14076
14077 Next_Component (Old_C);
14078 end loop;
14079 end if;
14080
14081 End_Scope;
14082 end Create_Constrained_Components;
14083
14084 ------------------------------------------
14085 -- Decimal_Fixed_Point_Type_Declaration --
14086 ------------------------------------------
14087
14088 procedure Decimal_Fixed_Point_Type_Declaration
14089 (T : Entity_Id;
14090 Def : Node_Id)
14091 is
14092 Loc : constant Source_Ptr := Sloc (Def);
14093 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14094 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14095 Implicit_Base : Entity_Id;
14096 Digs_Val : Uint;
14097 Delta_Val : Ureal;
14098 Scale_Val : Uint;
14099 Bound_Val : Ureal;
14100
14101 begin
14102 Check_SPARK_05_Restriction
14103 ("decimal fixed point type is not allowed", Def);
14104 Check_Restriction (No_Fixed_Point, Def);
14105
14106 -- Create implicit base type
14107
14108 Implicit_Base :=
14109 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14110 Set_Etype (Implicit_Base, Implicit_Base);
14111
14112 -- Analyze and process delta expression
14113
14114 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14115
14116 Check_Delta_Expression (Delta_Expr);
14117 Delta_Val := Expr_Value_R (Delta_Expr);
14118
14119 -- Check delta is power of 10, and determine scale value from it
14120
14121 declare
14122 Val : Ureal;
14123
14124 begin
14125 Scale_Val := Uint_0;
14126 Val := Delta_Val;
14127
14128 if Val < Ureal_1 then
14129 while Val < Ureal_1 loop
14130 Val := Val * Ureal_10;
14131 Scale_Val := Scale_Val + 1;
14132 end loop;
14133
14134 if Scale_Val > 18 then
14135 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14136 Scale_Val := UI_From_Int (+18);
14137 end if;
14138
14139 else
14140 while Val > Ureal_1 loop
14141 Val := Val / Ureal_10;
14142 Scale_Val := Scale_Val - 1;
14143 end loop;
14144
14145 if Scale_Val < -18 then
14146 Error_Msg_N ("scale is less than minimum value of -18", Def);
14147 Scale_Val := UI_From_Int (-18);
14148 end if;
14149 end if;
14150
14151 if Val /= Ureal_1 then
14152 Error_Msg_N ("delta expression must be a power of 10", Def);
14153 Delta_Val := Ureal_10 ** (-Scale_Val);
14154 end if;
14155 end;
14156
14157 -- Set delta, scale and small (small = delta for decimal type)
14158
14159 Set_Delta_Value (Implicit_Base, Delta_Val);
14160 Set_Scale_Value (Implicit_Base, Scale_Val);
14161 Set_Small_Value (Implicit_Base, Delta_Val);
14162
14163 -- Analyze and process digits expression
14164
14165 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14166 Check_Digits_Expression (Digs_Expr);
14167 Digs_Val := Expr_Value (Digs_Expr);
14168
14169 if Digs_Val > 18 then
14170 Digs_Val := UI_From_Int (+18);
14171 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14172 end if;
14173
14174 Set_Digits_Value (Implicit_Base, Digs_Val);
14175 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14176
14177 -- Set range of base type from digits value for now. This will be
14178 -- expanded to represent the true underlying base range by Freeze.
14179
14180 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14181
14182 -- Note: We leave size as zero for now, size will be set at freeze
14183 -- time. We have to do this for ordinary fixed-point, because the size
14184 -- depends on the specified small, and we might as well do the same for
14185 -- decimal fixed-point.
14186
14187 pragma Assert (Esize (Implicit_Base) = Uint_0);
14188
14189 -- If there are bounds given in the declaration use them as the
14190 -- bounds of the first named subtype.
14191
14192 if Present (Real_Range_Specification (Def)) then
14193 declare
14194 RRS : constant Node_Id := Real_Range_Specification (Def);
14195 Low : constant Node_Id := Low_Bound (RRS);
14196 High : constant Node_Id := High_Bound (RRS);
14197 Low_Val : Ureal;
14198 High_Val : Ureal;
14199
14200 begin
14201 Analyze_And_Resolve (Low, Any_Real);
14202 Analyze_And_Resolve (High, Any_Real);
14203 Check_Real_Bound (Low);
14204 Check_Real_Bound (High);
14205 Low_Val := Expr_Value_R (Low);
14206 High_Val := Expr_Value_R (High);
14207
14208 if Low_Val < (-Bound_Val) then
14209 Error_Msg_N
14210 ("range low bound too small for digits value", Low);
14211 Low_Val := -Bound_Val;
14212 end if;
14213
14214 if High_Val > Bound_Val then
14215 Error_Msg_N
14216 ("range high bound too large for digits value", High);
14217 High_Val := Bound_Val;
14218 end if;
14219
14220 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14221 end;
14222
14223 -- If no explicit range, use range that corresponds to given
14224 -- digits value. This will end up as the final range for the
14225 -- first subtype.
14226
14227 else
14228 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14229 end if;
14230
14231 -- Complete entity for first subtype. The inheritance of the rep item
14232 -- chain ensures that SPARK-related pragmas are not clobbered when the
14233 -- decimal fixed point type acts as a full view of a private type.
14234
14235 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14236 Set_Etype (T, Implicit_Base);
14237 Set_Size_Info (T, Implicit_Base);
14238 Inherit_Rep_Item_Chain (T, Implicit_Base);
14239 Set_Digits_Value (T, Digs_Val);
14240 Set_Delta_Value (T, Delta_Val);
14241 Set_Small_Value (T, Delta_Val);
14242 Set_Scale_Value (T, Scale_Val);
14243 Set_Is_Constrained (T);
14244 end Decimal_Fixed_Point_Type_Declaration;
14245
14246 -----------------------------------
14247 -- Derive_Progenitor_Subprograms --
14248 -----------------------------------
14249
14250 procedure Derive_Progenitor_Subprograms
14251 (Parent_Type : Entity_Id;
14252 Tagged_Type : Entity_Id)
14253 is
14254 E : Entity_Id;
14255 Elmt : Elmt_Id;
14256 Iface : Entity_Id;
14257 Iface_Elmt : Elmt_Id;
14258 Iface_Subp : Entity_Id;
14259 New_Subp : Entity_Id := Empty;
14260 Prim_Elmt : Elmt_Id;
14261 Subp : Entity_Id;
14262 Typ : Entity_Id;
14263
14264 begin
14265 pragma Assert (Ada_Version >= Ada_2005
14266 and then Is_Record_Type (Tagged_Type)
14267 and then Is_Tagged_Type (Tagged_Type)
14268 and then Has_Interfaces (Tagged_Type));
14269
14270 -- Step 1: Transfer to the full-view primitives associated with the
14271 -- partial-view that cover interface primitives. Conceptually this
14272 -- work should be done later by Process_Full_View; done here to
14273 -- simplify its implementation at later stages. It can be safely
14274 -- done here because interfaces must be visible in the partial and
14275 -- private view (RM 7.3(7.3/2)).
14276
14277 -- Small optimization: This work is only required if the parent may
14278 -- have entities whose Alias attribute reference an interface primitive.
14279 -- Such a situation may occur if the parent is an abstract type and the
14280 -- primitive has not been yet overridden or if the parent is a generic
14281 -- formal type covering interfaces.
14282
14283 -- If the tagged type is not abstract, it cannot have abstract
14284 -- primitives (the only entities in the list of primitives of
14285 -- non-abstract tagged types that can reference abstract primitives
14286 -- through its Alias attribute are the internal entities that have
14287 -- attribute Interface_Alias, and these entities are generated later
14288 -- by Add_Internal_Interface_Entities).
14289
14290 if In_Private_Part (Current_Scope)
14291 and then (Is_Abstract_Type (Parent_Type)
14292 or else
14293 Is_Generic_Type (Parent_Type))
14294 then
14295 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14296 while Present (Elmt) loop
14297 Subp := Node (Elmt);
14298
14299 -- At this stage it is not possible to have entities in the list
14300 -- of primitives that have attribute Interface_Alias.
14301
14302 pragma Assert (No (Interface_Alias (Subp)));
14303
14304 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14305
14306 if Is_Interface (Typ) then
14307 E := Find_Primitive_Covering_Interface
14308 (Tagged_Type => Tagged_Type,
14309 Iface_Prim => Subp);
14310
14311 if Present (E)
14312 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14313 then
14314 Replace_Elmt (Elmt, E);
14315 Remove_Homonym (Subp);
14316 end if;
14317 end if;
14318
14319 Next_Elmt (Elmt);
14320 end loop;
14321 end if;
14322
14323 -- Step 2: Add primitives of progenitors that are not implemented by
14324 -- parents of Tagged_Type.
14325
14326 if Present (Interfaces (Base_Type (Tagged_Type))) then
14327 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14328 while Present (Iface_Elmt) loop
14329 Iface := Node (Iface_Elmt);
14330
14331 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14332 while Present (Prim_Elmt) loop
14333 Iface_Subp := Node (Prim_Elmt);
14334
14335 -- Exclude derivation of predefined primitives except those
14336 -- that come from source, or are inherited from one that comes
14337 -- from source. Required to catch declarations of equality
14338 -- operators of interfaces. For example:
14339
14340 -- type Iface is interface;
14341 -- function "=" (Left, Right : Iface) return Boolean;
14342
14343 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14344 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14345 then
14346 E := Find_Primitive_Covering_Interface
14347 (Tagged_Type => Tagged_Type,
14348 Iface_Prim => Iface_Subp);
14349
14350 -- If not found we derive a new primitive leaving its alias
14351 -- attribute referencing the interface primitive.
14352
14353 if No (E) then
14354 Derive_Subprogram
14355 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14356
14357 -- Ada 2012 (AI05-0197): If the covering primitive's name
14358 -- differs from the name of the interface primitive then it
14359 -- is a private primitive inherited from a parent type. In
14360 -- such case, given that Tagged_Type covers the interface,
14361 -- the inherited private primitive becomes visible. For such
14362 -- purpose we add a new entity that renames the inherited
14363 -- private primitive.
14364
14365 elsif Chars (E) /= Chars (Iface_Subp) then
14366 pragma Assert (Has_Suffix (E, 'P'));
14367 Derive_Subprogram
14368 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14369 Set_Alias (New_Subp, E);
14370 Set_Is_Abstract_Subprogram (New_Subp,
14371 Is_Abstract_Subprogram (E));
14372
14373 -- Propagate to the full view interface entities associated
14374 -- with the partial view.
14375
14376 elsif In_Private_Part (Current_Scope)
14377 and then Present (Alias (E))
14378 and then Alias (E) = Iface_Subp
14379 and then
14380 List_Containing (Parent (E)) /=
14381 Private_Declarations
14382 (Specification
14383 (Unit_Declaration_Node (Current_Scope)))
14384 then
14385 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14386 end if;
14387 end if;
14388
14389 Next_Elmt (Prim_Elmt);
14390 end loop;
14391
14392 Next_Elmt (Iface_Elmt);
14393 end loop;
14394 end if;
14395 end Derive_Progenitor_Subprograms;
14396
14397 -----------------------
14398 -- Derive_Subprogram --
14399 -----------------------
14400
14401 procedure Derive_Subprogram
14402 (New_Subp : in out Entity_Id;
14403 Parent_Subp : Entity_Id;
14404 Derived_Type : Entity_Id;
14405 Parent_Type : Entity_Id;
14406 Actual_Subp : Entity_Id := Empty)
14407 is
14408 Formal : Entity_Id;
14409 -- Formal parameter of parent primitive operation
14410
14411 Formal_Of_Actual : Entity_Id;
14412 -- Formal parameter of actual operation, when the derivation is to
14413 -- create a renaming for a primitive operation of an actual in an
14414 -- instantiation.
14415
14416 New_Formal : Entity_Id;
14417 -- Formal of inherited operation
14418
14419 Visible_Subp : Entity_Id := Parent_Subp;
14420
14421 function Is_Private_Overriding return Boolean;
14422 -- If Subp is a private overriding of a visible operation, the inherited
14423 -- operation derives from the overridden op (even though its body is the
14424 -- overriding one) and the inherited operation is visible now. See
14425 -- sem_disp to see the full details of the handling of the overridden
14426 -- subprogram, which is removed from the list of primitive operations of
14427 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14428 -- and used to diagnose abstract operations that need overriding in the
14429 -- derived type.
14430
14431 procedure Replace_Type (Id, New_Id : Entity_Id);
14432 -- When the type is an anonymous access type, create a new access type
14433 -- designating the derived type.
14434
14435 procedure Set_Derived_Name;
14436 -- This procedure sets the appropriate Chars name for New_Subp. This
14437 -- is normally just a copy of the parent name. An exception arises for
14438 -- type support subprograms, where the name is changed to reflect the
14439 -- name of the derived type, e.g. if type foo is derived from type bar,
14440 -- then a procedure barDA is derived with a name fooDA.
14441
14442 ---------------------------
14443 -- Is_Private_Overriding --
14444 ---------------------------
14445
14446 function Is_Private_Overriding return Boolean is
14447 Prev : Entity_Id;
14448
14449 begin
14450 -- If the parent is not a dispatching operation there is no
14451 -- need to investigate overridings
14452
14453 if not Is_Dispatching_Operation (Parent_Subp) then
14454 return False;
14455 end if;
14456
14457 -- The visible operation that is overridden is a homonym of the
14458 -- parent subprogram. We scan the homonym chain to find the one
14459 -- whose alias is the subprogram we are deriving.
14460
14461 Prev := Current_Entity (Parent_Subp);
14462 while Present (Prev) loop
14463 if Ekind (Prev) = Ekind (Parent_Subp)
14464 and then Alias (Prev) = Parent_Subp
14465 and then Scope (Parent_Subp) = Scope (Prev)
14466 and then not Is_Hidden (Prev)
14467 then
14468 Visible_Subp := Prev;
14469 return True;
14470 end if;
14471
14472 Prev := Homonym (Prev);
14473 end loop;
14474
14475 return False;
14476 end Is_Private_Overriding;
14477
14478 ------------------
14479 -- Replace_Type --
14480 ------------------
14481
14482 procedure Replace_Type (Id, New_Id : Entity_Id) is
14483 Id_Type : constant Entity_Id := Etype (Id);
14484 Acc_Type : Entity_Id;
14485 Par : constant Node_Id := Parent (Derived_Type);
14486
14487 begin
14488 -- When the type is an anonymous access type, create a new access
14489 -- type designating the derived type. This itype must be elaborated
14490 -- at the point of the derivation, not on subsequent calls that may
14491 -- be out of the proper scope for Gigi, so we insert a reference to
14492 -- it after the derivation.
14493
14494 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14495 declare
14496 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14497
14498 begin
14499 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14500 and then Present (Full_View (Desig_Typ))
14501 and then not Is_Private_Type (Parent_Type)
14502 then
14503 Desig_Typ := Full_View (Desig_Typ);
14504 end if;
14505
14506 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14507
14508 -- Ada 2005 (AI-251): Handle also derivations of abstract
14509 -- interface primitives.
14510
14511 or else (Is_Interface (Desig_Typ)
14512 and then not Is_Class_Wide_Type (Desig_Typ))
14513 then
14514 Acc_Type := New_Copy (Id_Type);
14515 Set_Etype (Acc_Type, Acc_Type);
14516 Set_Scope (Acc_Type, New_Subp);
14517
14518 -- Set size of anonymous access type. If we have an access
14519 -- to an unconstrained array, this is a fat pointer, so it
14520 -- is sizes at twice addtress size.
14521
14522 if Is_Array_Type (Desig_Typ)
14523 and then not Is_Constrained (Desig_Typ)
14524 then
14525 Init_Size (Acc_Type, 2 * System_Address_Size);
14526
14527 -- Other cases use a thin pointer
14528
14529 else
14530 Init_Size (Acc_Type, System_Address_Size);
14531 end if;
14532
14533 -- Set remaining characterstics of anonymous access type
14534
14535 Init_Alignment (Acc_Type);
14536 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14537
14538 Set_Etype (New_Id, Acc_Type);
14539 Set_Scope (New_Id, New_Subp);
14540
14541 -- Create a reference to it
14542
14543 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14544
14545 else
14546 Set_Etype (New_Id, Id_Type);
14547 end if;
14548 end;
14549
14550 -- In Ada2012, a formal may have an incomplete type but the type
14551 -- derivation that inherits the primitive follows the full view.
14552
14553 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14554 or else
14555 (Ekind (Id_Type) = E_Record_Type_With_Private
14556 and then Present (Full_View (Id_Type))
14557 and then
14558 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14559 or else
14560 (Ada_Version >= Ada_2012
14561 and then Ekind (Id_Type) = E_Incomplete_Type
14562 and then Full_View (Id_Type) = Parent_Type)
14563 then
14564 -- Constraint checks on formals are generated during expansion,
14565 -- based on the signature of the original subprogram. The bounds
14566 -- of the derived type are not relevant, and thus we can use
14567 -- the base type for the formals. However, the return type may be
14568 -- used in a context that requires that the proper static bounds
14569 -- be used (a case statement, for example) and for those cases
14570 -- we must use the derived type (first subtype), not its base.
14571
14572 -- If the derived_type_definition has no constraints, we know that
14573 -- the derived type has the same constraints as the first subtype
14574 -- of the parent, and we can also use it rather than its base,
14575 -- which can lead to more efficient code.
14576
14577 if Etype (Id) = Parent_Type then
14578 if Is_Scalar_Type (Parent_Type)
14579 and then
14580 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14581 then
14582 Set_Etype (New_Id, Derived_Type);
14583
14584 elsif Nkind (Par) = N_Full_Type_Declaration
14585 and then
14586 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14587 and then
14588 Is_Entity_Name
14589 (Subtype_Indication (Type_Definition (Par)))
14590 then
14591 Set_Etype (New_Id, Derived_Type);
14592
14593 else
14594 Set_Etype (New_Id, Base_Type (Derived_Type));
14595 end if;
14596
14597 else
14598 Set_Etype (New_Id, Base_Type (Derived_Type));
14599 end if;
14600
14601 else
14602 Set_Etype (New_Id, Etype (Id));
14603 end if;
14604 end Replace_Type;
14605
14606 ----------------------
14607 -- Set_Derived_Name --
14608 ----------------------
14609
14610 procedure Set_Derived_Name is
14611 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14612 begin
14613 if Nm = TSS_Null then
14614 Set_Chars (New_Subp, Chars (Parent_Subp));
14615 else
14616 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14617 end if;
14618 end Set_Derived_Name;
14619
14620 -- Start of processing for Derive_Subprogram
14621
14622 begin
14623 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14624 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14625
14626 -- Check whether the inherited subprogram is a private operation that
14627 -- should be inherited but not yet made visible. Such subprograms can
14628 -- become visible at a later point (e.g., the private part of a public
14629 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14630 -- following predicate is true, then this is not such a private
14631 -- operation and the subprogram simply inherits the name of the parent
14632 -- subprogram. Note the special check for the names of controlled
14633 -- operations, which are currently exempted from being inherited with
14634 -- a hidden name because they must be findable for generation of
14635 -- implicit run-time calls.
14636
14637 if not Is_Hidden (Parent_Subp)
14638 or else Is_Internal (Parent_Subp)
14639 or else Is_Private_Overriding
14640 or else Is_Internal_Name (Chars (Parent_Subp))
14641 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14642 Name_Adjust,
14643 Name_Finalize)
14644 then
14645 Set_Derived_Name;
14646
14647 -- An inherited dispatching equality will be overridden by an internally
14648 -- generated one, or by an explicit one, so preserve its name and thus
14649 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14650 -- private operation it may become invisible if the full view has
14651 -- progenitors, and the dispatch table will be malformed.
14652 -- We check that the type is limited to handle the anomalous declaration
14653 -- of Limited_Controlled, which is derived from a non-limited type, and
14654 -- which is handled specially elsewhere as well.
14655
14656 elsif Chars (Parent_Subp) = Name_Op_Eq
14657 and then Is_Dispatching_Operation (Parent_Subp)
14658 and then Etype (Parent_Subp) = Standard_Boolean
14659 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14660 and then
14661 Etype (First_Formal (Parent_Subp)) =
14662 Etype (Next_Formal (First_Formal (Parent_Subp)))
14663 then
14664 Set_Derived_Name;
14665
14666 -- If parent is hidden, this can be a regular derivation if the
14667 -- parent is immediately visible in a non-instantiating context,
14668 -- or if we are in the private part of an instance. This test
14669 -- should still be refined ???
14670
14671 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14672 -- operation as a non-visible operation in cases where the parent
14673 -- subprogram might not be visible now, but was visible within the
14674 -- original generic, so it would be wrong to make the inherited
14675 -- subprogram non-visible now. (Not clear if this test is fully
14676 -- correct; are there any cases where we should declare the inherited
14677 -- operation as not visible to avoid it being overridden, e.g., when
14678 -- the parent type is a generic actual with private primitives ???)
14679
14680 -- (they should be treated the same as other private inherited
14681 -- subprograms, but it's not clear how to do this cleanly). ???
14682
14683 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14684 and then Is_Immediately_Visible (Parent_Subp)
14685 and then not In_Instance)
14686 or else In_Instance_Not_Visible
14687 then
14688 Set_Derived_Name;
14689
14690 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14691 -- overrides an interface primitive because interface primitives
14692 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14693
14694 elsif Ada_Version >= Ada_2005
14695 and then Is_Dispatching_Operation (Parent_Subp)
14696 and then Covers_Some_Interface (Parent_Subp)
14697 then
14698 Set_Derived_Name;
14699
14700 -- Otherwise, the type is inheriting a private operation, so enter
14701 -- it with a special name so it can't be overridden.
14702
14703 else
14704 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14705 end if;
14706
14707 Set_Parent (New_Subp, Parent (Derived_Type));
14708
14709 if Present (Actual_Subp) then
14710 Replace_Type (Actual_Subp, New_Subp);
14711 else
14712 Replace_Type (Parent_Subp, New_Subp);
14713 end if;
14714
14715 Conditional_Delay (New_Subp, Parent_Subp);
14716
14717 -- If we are creating a renaming for a primitive operation of an
14718 -- actual of a generic derived type, we must examine the signature
14719 -- of the actual primitive, not that of the generic formal, which for
14720 -- example may be an interface. However the name and initial value
14721 -- of the inherited operation are those of the formal primitive.
14722
14723 Formal := First_Formal (Parent_Subp);
14724
14725 if Present (Actual_Subp) then
14726 Formal_Of_Actual := First_Formal (Actual_Subp);
14727 else
14728 Formal_Of_Actual := Empty;
14729 end if;
14730
14731 while Present (Formal) loop
14732 New_Formal := New_Copy (Formal);
14733
14734 -- Normally we do not go copying parents, but in the case of
14735 -- formals, we need to link up to the declaration (which is the
14736 -- parameter specification), and it is fine to link up to the
14737 -- original formal's parameter specification in this case.
14738
14739 Set_Parent (New_Formal, Parent (Formal));
14740 Append_Entity (New_Formal, New_Subp);
14741
14742 if Present (Formal_Of_Actual) then
14743 Replace_Type (Formal_Of_Actual, New_Formal);
14744 Next_Formal (Formal_Of_Actual);
14745 else
14746 Replace_Type (Formal, New_Formal);
14747 end if;
14748
14749 Next_Formal (Formal);
14750 end loop;
14751
14752 -- If this derivation corresponds to a tagged generic actual, then
14753 -- primitive operations rename those of the actual. Otherwise the
14754 -- primitive operations rename those of the parent type, If the parent
14755 -- renames an intrinsic operator, so does the new subprogram. We except
14756 -- concatenation, which is always properly typed, and does not get
14757 -- expanded as other intrinsic operations.
14758
14759 if No (Actual_Subp) then
14760 if Is_Intrinsic_Subprogram (Parent_Subp) then
14761 Set_Is_Intrinsic_Subprogram (New_Subp);
14762
14763 if Present (Alias (Parent_Subp))
14764 and then Chars (Parent_Subp) /= Name_Op_Concat
14765 then
14766 Set_Alias (New_Subp, Alias (Parent_Subp));
14767 else
14768 Set_Alias (New_Subp, Parent_Subp);
14769 end if;
14770
14771 else
14772 Set_Alias (New_Subp, Parent_Subp);
14773 end if;
14774
14775 else
14776 Set_Alias (New_Subp, Actual_Subp);
14777 end if;
14778
14779 -- Inherit the "ghostness" from the parent subprogram
14780
14781 if Is_Ghost_Entity (Alias (New_Subp)) then
14782 Set_Is_Ghost_Entity (New_Subp);
14783 end if;
14784
14785 -- Derived subprograms of a tagged type must inherit the convention
14786 -- of the parent subprogram (a requirement of AI-117). Derived
14787 -- subprograms of untagged types simply get convention Ada by default.
14788
14789 -- If the derived type is a tagged generic formal type with unknown
14790 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14791
14792 -- However, if the type is derived from a generic formal, the further
14793 -- inherited subprogram has the convention of the non-generic ancestor.
14794 -- Otherwise there would be no way to override the operation.
14795 -- (This is subject to forthcoming ARG discussions).
14796
14797 if Is_Tagged_Type (Derived_Type) then
14798 if Is_Generic_Type (Derived_Type)
14799 and then Has_Unknown_Discriminants (Derived_Type)
14800 then
14801 Set_Convention (New_Subp, Convention_Intrinsic);
14802
14803 else
14804 if Is_Generic_Type (Parent_Type)
14805 and then Has_Unknown_Discriminants (Parent_Type)
14806 then
14807 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14808 else
14809 Set_Convention (New_Subp, Convention (Parent_Subp));
14810 end if;
14811 end if;
14812 end if;
14813
14814 -- Predefined controlled operations retain their name even if the parent
14815 -- is hidden (see above), but they are not primitive operations if the
14816 -- ancestor is not visible, for example if the parent is a private
14817 -- extension completed with a controlled extension. Note that a full
14818 -- type that is controlled can break privacy: the flag Is_Controlled is
14819 -- set on both views of the type.
14820
14821 if Is_Controlled (Parent_Type)
14822 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14823 Name_Adjust,
14824 Name_Finalize)
14825 and then Is_Hidden (Parent_Subp)
14826 and then not Is_Visibly_Controlled (Parent_Type)
14827 then
14828 Set_Is_Hidden (New_Subp);
14829 end if;
14830
14831 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14832 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14833
14834 if Ekind (Parent_Subp) = E_Procedure then
14835 Set_Is_Valued_Procedure
14836 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14837 else
14838 Set_Has_Controlling_Result
14839 (New_Subp, Has_Controlling_Result (Parent_Subp));
14840 end if;
14841
14842 -- No_Return must be inherited properly. If this is overridden in the
14843 -- case of a dispatching operation, then a check is made in Sem_Disp
14844 -- that the overriding operation is also No_Return (no such check is
14845 -- required for the case of non-dispatching operation.
14846
14847 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14848
14849 -- A derived function with a controlling result is abstract. If the
14850 -- Derived_Type is a nonabstract formal generic derived type, then
14851 -- inherited operations are not abstract: the required check is done at
14852 -- instantiation time. If the derivation is for a generic actual, the
14853 -- function is not abstract unless the actual is.
14854
14855 if Is_Generic_Type (Derived_Type)
14856 and then not Is_Abstract_Type (Derived_Type)
14857 then
14858 null;
14859
14860 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14861 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14862
14863 -- A subprogram subject to pragma Extensions_Visible with value False
14864 -- requires overriding if the subprogram has at least one controlling
14865 -- OUT parameter (SPARK RM 6.1.7(6)).
14866
14867 elsif Ada_Version >= Ada_2005
14868 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14869 or else (Is_Tagged_Type (Derived_Type)
14870 and then Etype (New_Subp) = Derived_Type
14871 and then not Is_Null_Extension (Derived_Type))
14872 or else (Is_Tagged_Type (Derived_Type)
14873 and then Ekind (Etype (New_Subp)) =
14874 E_Anonymous_Access_Type
14875 and then Designated_Type (Etype (New_Subp)) =
14876 Derived_Type
14877 and then not Is_Null_Extension (Derived_Type))
14878 or else (Comes_From_Source (Alias (New_Subp))
14879 and then Is_EVF_Procedure (Alias (New_Subp))))
14880 and then No (Actual_Subp)
14881 then
14882 if not Is_Tagged_Type (Derived_Type)
14883 or else Is_Abstract_Type (Derived_Type)
14884 or else Is_Abstract_Subprogram (Alias (New_Subp))
14885 then
14886 Set_Is_Abstract_Subprogram (New_Subp);
14887 else
14888 Set_Requires_Overriding (New_Subp);
14889 end if;
14890
14891 elsif Ada_Version < Ada_2005
14892 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14893 or else (Is_Tagged_Type (Derived_Type)
14894 and then Etype (New_Subp) = Derived_Type
14895 and then No (Actual_Subp)))
14896 then
14897 Set_Is_Abstract_Subprogram (New_Subp);
14898
14899 -- AI05-0097 : an inherited operation that dispatches on result is
14900 -- abstract if the derived type is abstract, even if the parent type
14901 -- is concrete and the derived type is a null extension.
14902
14903 elsif Has_Controlling_Result (Alias (New_Subp))
14904 and then Is_Abstract_Type (Etype (New_Subp))
14905 then
14906 Set_Is_Abstract_Subprogram (New_Subp);
14907
14908 -- Finally, if the parent type is abstract we must verify that all
14909 -- inherited operations are either non-abstract or overridden, or that
14910 -- the derived type itself is abstract (this check is performed at the
14911 -- end of a package declaration, in Check_Abstract_Overriding). A
14912 -- private overriding in the parent type will not be visible in the
14913 -- derivation if we are not in an inner package or in a child unit of
14914 -- the parent type, in which case the abstractness of the inherited
14915 -- operation is carried to the new subprogram.
14916
14917 elsif Is_Abstract_Type (Parent_Type)
14918 and then not In_Open_Scopes (Scope (Parent_Type))
14919 and then Is_Private_Overriding
14920 and then Is_Abstract_Subprogram (Visible_Subp)
14921 then
14922 if No (Actual_Subp) then
14923 Set_Alias (New_Subp, Visible_Subp);
14924 Set_Is_Abstract_Subprogram (New_Subp, True);
14925
14926 else
14927 -- If this is a derivation for an instance of a formal derived
14928 -- type, abstractness comes from the primitive operation of the
14929 -- actual, not from the operation inherited from the ancestor.
14930
14931 Set_Is_Abstract_Subprogram
14932 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14933 end if;
14934 end if;
14935
14936 New_Overloaded_Entity (New_Subp, Derived_Type);
14937
14938 -- Check for case of a derived subprogram for the instantiation of a
14939 -- formal derived tagged type, if so mark the subprogram as dispatching
14940 -- and inherit the dispatching attributes of the actual subprogram. The
14941 -- derived subprogram is effectively renaming of the actual subprogram,
14942 -- so it needs to have the same attributes as the actual.
14943
14944 if Present (Actual_Subp)
14945 and then Is_Dispatching_Operation (Actual_Subp)
14946 then
14947 Set_Is_Dispatching_Operation (New_Subp);
14948
14949 if Present (DTC_Entity (Actual_Subp)) then
14950 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14951 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14952 end if;
14953 end if;
14954
14955 -- Indicate that a derived subprogram does not require a body and that
14956 -- it does not require processing of default expressions.
14957
14958 Set_Has_Completion (New_Subp);
14959 Set_Default_Expressions_Processed (New_Subp);
14960
14961 if Ekind (New_Subp) = E_Function then
14962 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14963 end if;
14964 end Derive_Subprogram;
14965
14966 ------------------------
14967 -- Derive_Subprograms --
14968 ------------------------
14969
14970 procedure Derive_Subprograms
14971 (Parent_Type : Entity_Id;
14972 Derived_Type : Entity_Id;
14973 Generic_Actual : Entity_Id := Empty)
14974 is
14975 Op_List : constant Elist_Id :=
14976 Collect_Primitive_Operations (Parent_Type);
14977
14978 function Check_Derived_Type return Boolean;
14979 -- Check that all the entities derived from Parent_Type are found in
14980 -- the list of primitives of Derived_Type exactly in the same order.
14981
14982 procedure Derive_Interface_Subprogram
14983 (New_Subp : in out Entity_Id;
14984 Subp : Entity_Id;
14985 Actual_Subp : Entity_Id);
14986 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14987 -- (which is an interface primitive). If Generic_Actual is present then
14988 -- Actual_Subp is the actual subprogram corresponding with the generic
14989 -- subprogram Subp.
14990
14991 function Check_Derived_Type return Boolean is
14992 E : Entity_Id;
14993 Elmt : Elmt_Id;
14994 List : Elist_Id;
14995 New_Subp : Entity_Id;
14996 Op_Elmt : Elmt_Id;
14997 Subp : Entity_Id;
14998
14999 begin
15000 -- Traverse list of entities in the current scope searching for
15001 -- an incomplete type whose full-view is derived type
15002
15003 E := First_Entity (Scope (Derived_Type));
15004 while Present (E) and then E /= Derived_Type loop
15005 if Ekind (E) = E_Incomplete_Type
15006 and then Present (Full_View (E))
15007 and then Full_View (E) = Derived_Type
15008 then
15009 -- Disable this test if Derived_Type completes an incomplete
15010 -- type because in such case more primitives can be added
15011 -- later to the list of primitives of Derived_Type by routine
15012 -- Process_Incomplete_Dependents
15013
15014 return True;
15015 end if;
15016
15017 E := Next_Entity (E);
15018 end loop;
15019
15020 List := Collect_Primitive_Operations (Derived_Type);
15021 Elmt := First_Elmt (List);
15022
15023 Op_Elmt := First_Elmt (Op_List);
15024 while Present (Op_Elmt) loop
15025 Subp := Node (Op_Elmt);
15026 New_Subp := Node (Elmt);
15027
15028 -- At this early stage Derived_Type has no entities with attribute
15029 -- Interface_Alias. In addition, such primitives are always
15030 -- located at the end of the list of primitives of Parent_Type.
15031 -- Therefore, if found we can safely stop processing pending
15032 -- entities.
15033
15034 exit when Present (Interface_Alias (Subp));
15035
15036 -- Handle hidden entities
15037
15038 if not Is_Predefined_Dispatching_Operation (Subp)
15039 and then Is_Hidden (Subp)
15040 then
15041 if Present (New_Subp)
15042 and then Primitive_Names_Match (Subp, New_Subp)
15043 then
15044 Next_Elmt (Elmt);
15045 end if;
15046
15047 else
15048 if not Present (New_Subp)
15049 or else Ekind (Subp) /= Ekind (New_Subp)
15050 or else not Primitive_Names_Match (Subp, New_Subp)
15051 then
15052 return False;
15053 end if;
15054
15055 Next_Elmt (Elmt);
15056 end if;
15057
15058 Next_Elmt (Op_Elmt);
15059 end loop;
15060
15061 return True;
15062 end Check_Derived_Type;
15063
15064 ---------------------------------
15065 -- Derive_Interface_Subprogram --
15066 ---------------------------------
15067
15068 procedure Derive_Interface_Subprogram
15069 (New_Subp : in out Entity_Id;
15070 Subp : Entity_Id;
15071 Actual_Subp : Entity_Id)
15072 is
15073 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15074 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15075
15076 begin
15077 pragma Assert (Is_Interface (Iface_Type));
15078
15079 Derive_Subprogram
15080 (New_Subp => New_Subp,
15081 Parent_Subp => Iface_Subp,
15082 Derived_Type => Derived_Type,
15083 Parent_Type => Iface_Type,
15084 Actual_Subp => Actual_Subp);
15085
15086 -- Given that this new interface entity corresponds with a primitive
15087 -- of the parent that was not overridden we must leave it associated
15088 -- with its parent primitive to ensure that it will share the same
15089 -- dispatch table slot when overridden.
15090
15091 if No (Actual_Subp) then
15092 Set_Alias (New_Subp, Subp);
15093
15094 -- For instantiations this is not needed since the previous call to
15095 -- Derive_Subprogram leaves the entity well decorated.
15096
15097 else
15098 pragma Assert (Alias (New_Subp) = Actual_Subp);
15099 null;
15100 end if;
15101 end Derive_Interface_Subprogram;
15102
15103 -- Local variables
15104
15105 Alias_Subp : Entity_Id;
15106 Act_List : Elist_Id;
15107 Act_Elmt : Elmt_Id;
15108 Act_Subp : Entity_Id := Empty;
15109 Elmt : Elmt_Id;
15110 Need_Search : Boolean := False;
15111 New_Subp : Entity_Id := Empty;
15112 Parent_Base : Entity_Id;
15113 Subp : Entity_Id;
15114
15115 -- Start of processing for Derive_Subprograms
15116
15117 begin
15118 if Ekind (Parent_Type) = E_Record_Type_With_Private
15119 and then Has_Discriminants (Parent_Type)
15120 and then Present (Full_View (Parent_Type))
15121 then
15122 Parent_Base := Full_View (Parent_Type);
15123 else
15124 Parent_Base := Parent_Type;
15125 end if;
15126
15127 if Present (Generic_Actual) then
15128 Act_List := Collect_Primitive_Operations (Generic_Actual);
15129 Act_Elmt := First_Elmt (Act_List);
15130 else
15131 Act_List := No_Elist;
15132 Act_Elmt := No_Elmt;
15133 end if;
15134
15135 -- Derive primitives inherited from the parent. Note that if the generic
15136 -- actual is present, this is not really a type derivation, it is a
15137 -- completion within an instance.
15138
15139 -- Case 1: Derived_Type does not implement interfaces
15140
15141 if not Is_Tagged_Type (Derived_Type)
15142 or else (not Has_Interfaces (Derived_Type)
15143 and then not (Present (Generic_Actual)
15144 and then Has_Interfaces (Generic_Actual)))
15145 then
15146 Elmt := First_Elmt (Op_List);
15147 while Present (Elmt) loop
15148 Subp := Node (Elmt);
15149
15150 -- Literals are derived earlier in the process of building the
15151 -- derived type, and are skipped here.
15152
15153 if Ekind (Subp) = E_Enumeration_Literal then
15154 null;
15155
15156 -- The actual is a direct descendant and the common primitive
15157 -- operations appear in the same order.
15158
15159 -- If the generic parent type is present, the derived type is an
15160 -- instance of a formal derived type, and within the instance its
15161 -- operations are those of the actual. We derive from the formal
15162 -- type but make the inherited operations aliases of the
15163 -- corresponding operations of the actual.
15164
15165 else
15166 pragma Assert (No (Node (Act_Elmt))
15167 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15168 and then
15169 Type_Conformant
15170 (Subp, Node (Act_Elmt),
15171 Skip_Controlling_Formals => True)));
15172
15173 Derive_Subprogram
15174 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15175
15176 if Present (Act_Elmt) then
15177 Next_Elmt (Act_Elmt);
15178 end if;
15179 end if;
15180
15181 Next_Elmt (Elmt);
15182 end loop;
15183
15184 -- Case 2: Derived_Type implements interfaces
15185
15186 else
15187 -- If the parent type has no predefined primitives we remove
15188 -- predefined primitives from the list of primitives of generic
15189 -- actual to simplify the complexity of this algorithm.
15190
15191 if Present (Generic_Actual) then
15192 declare
15193 Has_Predefined_Primitives : Boolean := False;
15194
15195 begin
15196 -- Check if the parent type has predefined primitives
15197
15198 Elmt := First_Elmt (Op_List);
15199 while Present (Elmt) loop
15200 Subp := Node (Elmt);
15201
15202 if Is_Predefined_Dispatching_Operation (Subp)
15203 and then not Comes_From_Source (Ultimate_Alias (Subp))
15204 then
15205 Has_Predefined_Primitives := True;
15206 exit;
15207 end if;
15208
15209 Next_Elmt (Elmt);
15210 end loop;
15211
15212 -- Remove predefined primitives of Generic_Actual. We must use
15213 -- an auxiliary list because in case of tagged types the value
15214 -- returned by Collect_Primitive_Operations is the value stored
15215 -- in its Primitive_Operations attribute (and we don't want to
15216 -- modify its current contents).
15217
15218 if not Has_Predefined_Primitives then
15219 declare
15220 Aux_List : constant Elist_Id := New_Elmt_List;
15221
15222 begin
15223 Elmt := First_Elmt (Act_List);
15224 while Present (Elmt) loop
15225 Subp := Node (Elmt);
15226
15227 if not Is_Predefined_Dispatching_Operation (Subp)
15228 or else Comes_From_Source (Subp)
15229 then
15230 Append_Elmt (Subp, Aux_List);
15231 end if;
15232
15233 Next_Elmt (Elmt);
15234 end loop;
15235
15236 Act_List := Aux_List;
15237 end;
15238 end if;
15239
15240 Act_Elmt := First_Elmt (Act_List);
15241 Act_Subp := Node (Act_Elmt);
15242 end;
15243 end if;
15244
15245 -- Stage 1: If the generic actual is not present we derive the
15246 -- primitives inherited from the parent type. If the generic parent
15247 -- type is present, the derived type is an instance of a formal
15248 -- derived type, and within the instance its operations are those of
15249 -- the actual. We derive from the formal type but make the inherited
15250 -- operations aliases of the corresponding operations of the actual.
15251
15252 Elmt := First_Elmt (Op_List);
15253 while Present (Elmt) loop
15254 Subp := Node (Elmt);
15255 Alias_Subp := Ultimate_Alias (Subp);
15256
15257 -- Do not derive internal entities of the parent that link
15258 -- interface primitives with their covering primitive. These
15259 -- entities will be added to this type when frozen.
15260
15261 if Present (Interface_Alias (Subp)) then
15262 goto Continue;
15263 end if;
15264
15265 -- If the generic actual is present find the corresponding
15266 -- operation in the generic actual. If the parent type is a
15267 -- direct ancestor of the derived type then, even if it is an
15268 -- interface, the operations are inherited from the primary
15269 -- dispatch table and are in the proper order. If we detect here
15270 -- that primitives are not in the same order we traverse the list
15271 -- of primitive operations of the actual to find the one that
15272 -- implements the interface primitive.
15273
15274 if Need_Search
15275 or else
15276 (Present (Generic_Actual)
15277 and then Present (Act_Subp)
15278 and then not
15279 (Primitive_Names_Match (Subp, Act_Subp)
15280 and then
15281 Type_Conformant (Subp, Act_Subp,
15282 Skip_Controlling_Formals => True)))
15283 then
15284 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15285 Use_Full_View => True));
15286
15287 -- Remember that we need searching for all pending primitives
15288
15289 Need_Search := True;
15290
15291 -- Handle entities associated with interface primitives
15292
15293 if Present (Alias_Subp)
15294 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15295 and then not Is_Predefined_Dispatching_Operation (Subp)
15296 then
15297 -- Search for the primitive in the homonym chain
15298
15299 Act_Subp :=
15300 Find_Primitive_Covering_Interface
15301 (Tagged_Type => Generic_Actual,
15302 Iface_Prim => Alias_Subp);
15303
15304 -- Previous search may not locate primitives covering
15305 -- interfaces defined in generics units or instantiations.
15306 -- (it fails if the covering primitive has formals whose
15307 -- type is also defined in generics or instantiations).
15308 -- In such case we search in the list of primitives of the
15309 -- generic actual for the internal entity that links the
15310 -- interface primitive and the covering primitive.
15311
15312 if No (Act_Subp)
15313 and then Is_Generic_Type (Parent_Type)
15314 then
15315 -- This code has been designed to handle only generic
15316 -- formals that implement interfaces that are defined
15317 -- in a generic unit or instantiation. If this code is
15318 -- needed for other cases we must review it because
15319 -- (given that it relies on Original_Location to locate
15320 -- the primitive of Generic_Actual that covers the
15321 -- interface) it could leave linked through attribute
15322 -- Alias entities of unrelated instantiations).
15323
15324 pragma Assert
15325 (Is_Generic_Unit
15326 (Scope (Find_Dispatching_Type (Alias_Subp)))
15327 or else
15328 Instantiation_Depth
15329 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15330
15331 declare
15332 Iface_Prim_Loc : constant Source_Ptr :=
15333 Original_Location (Sloc (Alias_Subp));
15334
15335 Elmt : Elmt_Id;
15336 Prim : Entity_Id;
15337
15338 begin
15339 Elmt :=
15340 First_Elmt (Primitive_Operations (Generic_Actual));
15341
15342 Search : while Present (Elmt) loop
15343 Prim := Node (Elmt);
15344
15345 if Present (Interface_Alias (Prim))
15346 and then Original_Location
15347 (Sloc (Interface_Alias (Prim))) =
15348 Iface_Prim_Loc
15349 then
15350 Act_Subp := Alias (Prim);
15351 exit Search;
15352 end if;
15353
15354 Next_Elmt (Elmt);
15355 end loop Search;
15356 end;
15357 end if;
15358
15359 pragma Assert (Present (Act_Subp)
15360 or else Is_Abstract_Type (Generic_Actual)
15361 or else Serious_Errors_Detected > 0);
15362
15363 -- Handle predefined primitives plus the rest of user-defined
15364 -- primitives
15365
15366 else
15367 Act_Elmt := First_Elmt (Act_List);
15368 while Present (Act_Elmt) loop
15369 Act_Subp := Node (Act_Elmt);
15370
15371 exit when Primitive_Names_Match (Subp, Act_Subp)
15372 and then Type_Conformant
15373 (Subp, Act_Subp,
15374 Skip_Controlling_Formals => True)
15375 and then No (Interface_Alias (Act_Subp));
15376
15377 Next_Elmt (Act_Elmt);
15378 end loop;
15379
15380 if No (Act_Elmt) then
15381 Act_Subp := Empty;
15382 end if;
15383 end if;
15384 end if;
15385
15386 -- Case 1: If the parent is a limited interface then it has the
15387 -- predefined primitives of synchronized interfaces. However, the
15388 -- actual type may be a non-limited type and hence it does not
15389 -- have such primitives.
15390
15391 if Present (Generic_Actual)
15392 and then not Present (Act_Subp)
15393 and then Is_Limited_Interface (Parent_Base)
15394 and then Is_Predefined_Interface_Primitive (Subp)
15395 then
15396 null;
15397
15398 -- Case 2: Inherit entities associated with interfaces that were
15399 -- not covered by the parent type. We exclude here null interface
15400 -- primitives because they do not need special management.
15401
15402 -- We also exclude interface operations that are renamings. If the
15403 -- subprogram is an explicit renaming of an interface primitive,
15404 -- it is a regular primitive operation, and the presence of its
15405 -- alias is not relevant: it has to be derived like any other
15406 -- primitive.
15407
15408 elsif Present (Alias (Subp))
15409 and then Nkind (Unit_Declaration_Node (Subp)) /=
15410 N_Subprogram_Renaming_Declaration
15411 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15412 and then not
15413 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15414 and then Null_Present (Parent (Alias_Subp)))
15415 then
15416 -- If this is an abstract private type then we transfer the
15417 -- derivation of the interface primitive from the partial view
15418 -- to the full view. This is safe because all the interfaces
15419 -- must be visible in the partial view. Done to avoid adding
15420 -- a new interface derivation to the private part of the
15421 -- enclosing package; otherwise this new derivation would be
15422 -- decorated as hidden when the analysis of the enclosing
15423 -- package completes.
15424
15425 if Is_Abstract_Type (Derived_Type)
15426 and then In_Private_Part (Current_Scope)
15427 and then Has_Private_Declaration (Derived_Type)
15428 then
15429 declare
15430 Partial_View : Entity_Id;
15431 Elmt : Elmt_Id;
15432 Ent : Entity_Id;
15433
15434 begin
15435 Partial_View := First_Entity (Current_Scope);
15436 loop
15437 exit when No (Partial_View)
15438 or else (Has_Private_Declaration (Partial_View)
15439 and then
15440 Full_View (Partial_View) = Derived_Type);
15441
15442 Next_Entity (Partial_View);
15443 end loop;
15444
15445 -- If the partial view was not found then the source code
15446 -- has errors and the derivation is not needed.
15447
15448 if Present (Partial_View) then
15449 Elmt :=
15450 First_Elmt (Primitive_Operations (Partial_View));
15451 while Present (Elmt) loop
15452 Ent := Node (Elmt);
15453
15454 if Present (Alias (Ent))
15455 and then Ultimate_Alias (Ent) = Alias (Subp)
15456 then
15457 Append_Elmt
15458 (Ent, Primitive_Operations (Derived_Type));
15459 exit;
15460 end if;
15461
15462 Next_Elmt (Elmt);
15463 end loop;
15464
15465 -- If the interface primitive was not found in the
15466 -- partial view then this interface primitive was
15467 -- overridden. We add a derivation to activate in
15468 -- Derive_Progenitor_Subprograms the machinery to
15469 -- search for it.
15470
15471 if No (Elmt) then
15472 Derive_Interface_Subprogram
15473 (New_Subp => New_Subp,
15474 Subp => Subp,
15475 Actual_Subp => Act_Subp);
15476 end if;
15477 end if;
15478 end;
15479 else
15480 Derive_Interface_Subprogram
15481 (New_Subp => New_Subp,
15482 Subp => Subp,
15483 Actual_Subp => Act_Subp);
15484 end if;
15485
15486 -- Case 3: Common derivation
15487
15488 else
15489 Derive_Subprogram
15490 (New_Subp => New_Subp,
15491 Parent_Subp => Subp,
15492 Derived_Type => Derived_Type,
15493 Parent_Type => Parent_Base,
15494 Actual_Subp => Act_Subp);
15495 end if;
15496
15497 -- No need to update Act_Elm if we must search for the
15498 -- corresponding operation in the generic actual
15499
15500 if not Need_Search
15501 and then Present (Act_Elmt)
15502 then
15503 Next_Elmt (Act_Elmt);
15504 Act_Subp := Node (Act_Elmt);
15505 end if;
15506
15507 <<Continue>>
15508 Next_Elmt (Elmt);
15509 end loop;
15510
15511 -- Inherit additional operations from progenitors. If the derived
15512 -- type is a generic actual, there are not new primitive operations
15513 -- for the type because it has those of the actual, and therefore
15514 -- nothing needs to be done. The renamings generated above are not
15515 -- primitive operations, and their purpose is simply to make the
15516 -- proper operations visible within an instantiation.
15517
15518 if No (Generic_Actual) then
15519 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15520 end if;
15521 end if;
15522
15523 -- Final check: Direct descendants must have their primitives in the
15524 -- same order. We exclude from this test untagged types and instances
15525 -- of formal derived types. We skip this test if we have already
15526 -- reported serious errors in the sources.
15527
15528 pragma Assert (not Is_Tagged_Type (Derived_Type)
15529 or else Present (Generic_Actual)
15530 or else Serious_Errors_Detected > 0
15531 or else Check_Derived_Type);
15532 end Derive_Subprograms;
15533
15534 --------------------------------
15535 -- Derived_Standard_Character --
15536 --------------------------------
15537
15538 procedure Derived_Standard_Character
15539 (N : Node_Id;
15540 Parent_Type : Entity_Id;
15541 Derived_Type : Entity_Id)
15542 is
15543 Loc : constant Source_Ptr := Sloc (N);
15544 Def : constant Node_Id := Type_Definition (N);
15545 Indic : constant Node_Id := Subtype_Indication (Def);
15546 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15547 Implicit_Base : constant Entity_Id :=
15548 Create_Itype
15549 (E_Enumeration_Type, N, Derived_Type, 'B');
15550
15551 Lo : Node_Id;
15552 Hi : Node_Id;
15553
15554 begin
15555 Discard_Node (Process_Subtype (Indic, N));
15556
15557 Set_Etype (Implicit_Base, Parent_Base);
15558 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15559 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15560
15561 Set_Is_Character_Type (Implicit_Base, True);
15562 Set_Has_Delayed_Freeze (Implicit_Base);
15563
15564 -- The bounds of the implicit base are the bounds of the parent base.
15565 -- Note that their type is the parent base.
15566
15567 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15568 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15569
15570 Set_Scalar_Range (Implicit_Base,
15571 Make_Range (Loc,
15572 Low_Bound => Lo,
15573 High_Bound => Hi));
15574
15575 Conditional_Delay (Derived_Type, Parent_Type);
15576
15577 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15578 Set_Etype (Derived_Type, Implicit_Base);
15579 Set_Size_Info (Derived_Type, Parent_Type);
15580
15581 if Unknown_RM_Size (Derived_Type) then
15582 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15583 end if;
15584
15585 Set_Is_Character_Type (Derived_Type, True);
15586
15587 if Nkind (Indic) /= N_Subtype_Indication then
15588
15589 -- If no explicit constraint, the bounds are those
15590 -- of the parent type.
15591
15592 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15593 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15594 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15595 end if;
15596
15597 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15598
15599 -- Because the implicit base is used in the conversion of the bounds, we
15600 -- have to freeze it now. This is similar to what is done for numeric
15601 -- types, and it equally suspicious, but otherwise a non-static bound
15602 -- will have a reference to an unfrozen type, which is rejected by Gigi
15603 -- (???). This requires specific care for definition of stream
15604 -- attributes. For details, see comments at the end of
15605 -- Build_Derived_Numeric_Type.
15606
15607 Freeze_Before (N, Implicit_Base);
15608 end Derived_Standard_Character;
15609
15610 ------------------------------
15611 -- Derived_Type_Declaration --
15612 ------------------------------
15613
15614 procedure Derived_Type_Declaration
15615 (T : Entity_Id;
15616 N : Node_Id;
15617 Is_Completion : Boolean)
15618 is
15619 Parent_Type : Entity_Id;
15620
15621 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15622 -- Check whether the parent type is a generic formal, or derives
15623 -- directly or indirectly from one.
15624
15625 ------------------------
15626 -- Comes_From_Generic --
15627 ------------------------
15628
15629 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15630 begin
15631 if Is_Generic_Type (Typ) then
15632 return True;
15633
15634 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15635 return True;
15636
15637 elsif Is_Private_Type (Typ)
15638 and then Present (Full_View (Typ))
15639 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15640 then
15641 return True;
15642
15643 elsif Is_Generic_Actual_Type (Typ) then
15644 return True;
15645
15646 else
15647 return False;
15648 end if;
15649 end Comes_From_Generic;
15650
15651 -- Local variables
15652
15653 Def : constant Node_Id := Type_Definition (N);
15654 Iface_Def : Node_Id;
15655 Indic : constant Node_Id := Subtype_Indication (Def);
15656 Extension : constant Node_Id := Record_Extension_Part (Def);
15657 Parent_Node : Node_Id;
15658 Taggd : Boolean;
15659
15660 -- Start of processing for Derived_Type_Declaration
15661
15662 begin
15663 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15664
15665 -- Ada 2005 (AI-251): In case of interface derivation check that the
15666 -- parent is also an interface.
15667
15668 if Interface_Present (Def) then
15669 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15670
15671 if not Is_Interface (Parent_Type) then
15672 Diagnose_Interface (Indic, Parent_Type);
15673
15674 else
15675 Parent_Node := Parent (Base_Type (Parent_Type));
15676 Iface_Def := Type_Definition (Parent_Node);
15677
15678 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15679 -- other limited interfaces.
15680
15681 if Limited_Present (Def) then
15682 if Limited_Present (Iface_Def) then
15683 null;
15684
15685 elsif Protected_Present (Iface_Def) then
15686 Error_Msg_NE
15687 ("descendant of& must be declared"
15688 & " as a protected interface",
15689 N, Parent_Type);
15690
15691 elsif Synchronized_Present (Iface_Def) then
15692 Error_Msg_NE
15693 ("descendant of& must be declared"
15694 & " as a synchronized interface",
15695 N, Parent_Type);
15696
15697 elsif Task_Present (Iface_Def) then
15698 Error_Msg_NE
15699 ("descendant of& must be declared as a task interface",
15700 N, Parent_Type);
15701
15702 else
15703 Error_Msg_N
15704 ("(Ada 2005) limited interface cannot "
15705 & "inherit from non-limited interface", Indic);
15706 end if;
15707
15708 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15709 -- from non-limited or limited interfaces.
15710
15711 elsif not Protected_Present (Def)
15712 and then not Synchronized_Present (Def)
15713 and then not Task_Present (Def)
15714 then
15715 if Limited_Present (Iface_Def) then
15716 null;
15717
15718 elsif Protected_Present (Iface_Def) then
15719 Error_Msg_NE
15720 ("descendant of& must be declared"
15721 & " as a protected interface",
15722 N, Parent_Type);
15723
15724 elsif Synchronized_Present (Iface_Def) then
15725 Error_Msg_NE
15726 ("descendant of& must be declared"
15727 & " as a synchronized interface",
15728 N, Parent_Type);
15729
15730 elsif Task_Present (Iface_Def) then
15731 Error_Msg_NE
15732 ("descendant of& must be declared as a task interface",
15733 N, Parent_Type);
15734 else
15735 null;
15736 end if;
15737 end if;
15738 end if;
15739 end if;
15740
15741 if Is_Tagged_Type (Parent_Type)
15742 and then Is_Concurrent_Type (Parent_Type)
15743 and then not Is_Interface (Parent_Type)
15744 then
15745 Error_Msg_N
15746 ("parent type of a record extension cannot be "
15747 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15748 Set_Etype (T, Any_Type);
15749 return;
15750 end if;
15751
15752 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15753 -- interfaces
15754
15755 if Is_Tagged_Type (Parent_Type)
15756 and then Is_Non_Empty_List (Interface_List (Def))
15757 then
15758 declare
15759 Intf : Node_Id;
15760 T : Entity_Id;
15761
15762 begin
15763 Intf := First (Interface_List (Def));
15764 while Present (Intf) loop
15765 T := Find_Type_Of_Subtype_Indic (Intf);
15766
15767 if not Is_Interface (T) then
15768 Diagnose_Interface (Intf, T);
15769
15770 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15771 -- a limited type from having a nonlimited progenitor.
15772
15773 elsif (Limited_Present (Def)
15774 or else (not Is_Interface (Parent_Type)
15775 and then Is_Limited_Type (Parent_Type)))
15776 and then not Is_Limited_Interface (T)
15777 then
15778 Error_Msg_NE
15779 ("progenitor interface& of limited type must be limited",
15780 N, T);
15781 end if;
15782
15783 Next (Intf);
15784 end loop;
15785 end;
15786 end if;
15787
15788 if Parent_Type = Any_Type
15789 or else Etype (Parent_Type) = Any_Type
15790 or else (Is_Class_Wide_Type (Parent_Type)
15791 and then Etype (Parent_Type) = T)
15792 then
15793 -- If Parent_Type is undefined or illegal, make new type into a
15794 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15795 -- errors. If this is a self-definition, emit error now.
15796
15797 if T = Parent_Type or else T = Etype (Parent_Type) then
15798 Error_Msg_N ("type cannot be used in its own definition", Indic);
15799 end if;
15800
15801 Set_Ekind (T, Ekind (Parent_Type));
15802 Set_Etype (T, Any_Type);
15803 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15804
15805 if Is_Tagged_Type (T)
15806 and then Is_Record_Type (T)
15807 then
15808 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15809 end if;
15810
15811 return;
15812 end if;
15813
15814 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15815 -- an interface is special because the list of interfaces in the full
15816 -- view can be given in any order. For example:
15817
15818 -- type A is interface;
15819 -- type B is interface and A;
15820 -- type D is new B with private;
15821 -- private
15822 -- type D is new A and B with null record; -- 1 --
15823
15824 -- In this case we perform the following transformation of -1-:
15825
15826 -- type D is new B and A with null record;
15827
15828 -- If the parent of the full-view covers the parent of the partial-view
15829 -- we have two possible cases:
15830
15831 -- 1) They have the same parent
15832 -- 2) The parent of the full-view implements some further interfaces
15833
15834 -- In both cases we do not need to perform the transformation. In the
15835 -- first case the source program is correct and the transformation is
15836 -- not needed; in the second case the source program does not fulfill
15837 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15838 -- later.
15839
15840 -- This transformation not only simplifies the rest of the analysis of
15841 -- this type declaration but also simplifies the correct generation of
15842 -- the object layout to the expander.
15843
15844 if In_Private_Part (Current_Scope)
15845 and then Is_Interface (Parent_Type)
15846 then
15847 declare
15848 Iface : Node_Id;
15849 Partial_View : Entity_Id;
15850 Partial_View_Parent : Entity_Id;
15851 New_Iface : Node_Id;
15852
15853 begin
15854 -- Look for the associated private type declaration
15855
15856 Partial_View := First_Entity (Current_Scope);
15857 loop
15858 exit when No (Partial_View)
15859 or else (Has_Private_Declaration (Partial_View)
15860 and then Full_View (Partial_View) = T);
15861
15862 Next_Entity (Partial_View);
15863 end loop;
15864
15865 -- If the partial view was not found then the source code has
15866 -- errors and the transformation is not needed.
15867
15868 if Present (Partial_View) then
15869 Partial_View_Parent := Etype (Partial_View);
15870
15871 -- If the parent of the full-view covers the parent of the
15872 -- partial-view we have nothing else to do.
15873
15874 if Interface_Present_In_Ancestor
15875 (Parent_Type, Partial_View_Parent)
15876 then
15877 null;
15878
15879 -- Traverse the list of interfaces of the full-view to look
15880 -- for the parent of the partial-view and perform the tree
15881 -- transformation.
15882
15883 else
15884 Iface := First (Interface_List (Def));
15885 while Present (Iface) loop
15886 if Etype (Iface) = Etype (Partial_View) then
15887 Rewrite (Subtype_Indication (Def),
15888 New_Copy (Subtype_Indication
15889 (Parent (Partial_View))));
15890
15891 New_Iface :=
15892 Make_Identifier (Sloc (N), Chars (Parent_Type));
15893 Append (New_Iface, Interface_List (Def));
15894
15895 -- Analyze the transformed code
15896
15897 Derived_Type_Declaration (T, N, Is_Completion);
15898 return;
15899 end if;
15900
15901 Next (Iface);
15902 end loop;
15903 end if;
15904 end if;
15905 end;
15906 end if;
15907
15908 -- Only composite types other than array types are allowed to have
15909 -- discriminants.
15910
15911 if Present (Discriminant_Specifications (N)) then
15912 if (Is_Elementary_Type (Parent_Type)
15913 or else
15914 Is_Array_Type (Parent_Type))
15915 and then not Error_Posted (N)
15916 then
15917 Error_Msg_N
15918 ("elementary or array type cannot have discriminants",
15919 Defining_Identifier (First (Discriminant_Specifications (N))));
15920 Set_Has_Discriminants (T, False);
15921
15922 -- The type is allowed to have discriminants
15923
15924 else
15925 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15926 end if;
15927 end if;
15928
15929 -- In Ada 83, a derived type defined in a package specification cannot
15930 -- be used for further derivation until the end of its visible part.
15931 -- Note that derivation in the private part of the package is allowed.
15932
15933 if Ada_Version = Ada_83
15934 and then Is_Derived_Type (Parent_Type)
15935 and then In_Visible_Part (Scope (Parent_Type))
15936 then
15937 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15938 Error_Msg_N
15939 ("(Ada 83): premature use of type for derivation", Indic);
15940 end if;
15941 end if;
15942
15943 -- Check for early use of incomplete or private type
15944
15945 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15946 Error_Msg_N ("premature derivation of incomplete type", Indic);
15947 return;
15948
15949 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15950 and then not Comes_From_Generic (Parent_Type))
15951 or else Has_Private_Component (Parent_Type)
15952 then
15953 -- The ancestor type of a formal type can be incomplete, in which
15954 -- case only the operations of the partial view are available in the
15955 -- generic. Subsequent checks may be required when the full view is
15956 -- analyzed to verify that a derivation from a tagged type has an
15957 -- extension.
15958
15959 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15960 null;
15961
15962 elsif No (Underlying_Type (Parent_Type))
15963 or else Has_Private_Component (Parent_Type)
15964 then
15965 Error_Msg_N
15966 ("premature derivation of derived or private type", Indic);
15967
15968 -- Flag the type itself as being in error, this prevents some
15969 -- nasty problems with subsequent uses of the malformed type.
15970
15971 Set_Error_Posted (T);
15972
15973 -- Check that within the immediate scope of an untagged partial
15974 -- view it's illegal to derive from the partial view if the
15975 -- full view is tagged. (7.3(7))
15976
15977 -- We verify that the Parent_Type is a partial view by checking
15978 -- that it is not a Full_Type_Declaration (i.e. a private type or
15979 -- private extension declaration), to distinguish a partial view
15980 -- from a derivation from a private type which also appears as
15981 -- E_Private_Type. If the parent base type is not declared in an
15982 -- enclosing scope there is no need to check.
15983
15984 elsif Present (Full_View (Parent_Type))
15985 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15986 and then not Is_Tagged_Type (Parent_Type)
15987 and then Is_Tagged_Type (Full_View (Parent_Type))
15988 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15989 then
15990 Error_Msg_N
15991 ("premature derivation from type with tagged full view",
15992 Indic);
15993 end if;
15994 end if;
15995
15996 -- Check that form of derivation is appropriate
15997
15998 Taggd := Is_Tagged_Type (Parent_Type);
15999
16000 -- Set the parent type to the class-wide type's specific type in this
16001 -- case to prevent cascading errors
16002
16003 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16004 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16005 Set_Etype (T, Etype (Parent_Type));
16006 return;
16007 end if;
16008
16009 if Present (Extension) and then not Taggd then
16010 Error_Msg_N
16011 ("type derived from untagged type cannot have extension", Indic);
16012
16013 elsif No (Extension) and then Taggd then
16014
16015 -- If this declaration is within a private part (or body) of a
16016 -- generic instantiation then the derivation is allowed (the parent
16017 -- type can only appear tagged in this case if it's a generic actual
16018 -- type, since it would otherwise have been rejected in the analysis
16019 -- of the generic template).
16020
16021 if not Is_Generic_Actual_Type (Parent_Type)
16022 or else In_Visible_Part (Scope (Parent_Type))
16023 then
16024 if Is_Class_Wide_Type (Parent_Type) then
16025 Error_Msg_N
16026 ("parent type must not be a class-wide type", Indic);
16027
16028 -- Use specific type to prevent cascaded errors.
16029
16030 Parent_Type := Etype (Parent_Type);
16031
16032 else
16033 Error_Msg_N
16034 ("type derived from tagged type must have extension", Indic);
16035 end if;
16036 end if;
16037 end if;
16038
16039 -- AI-443: Synchronized formal derived types require a private
16040 -- extension. There is no point in checking the ancestor type or
16041 -- the progenitors since the construct is wrong to begin with.
16042
16043 if Ada_Version >= Ada_2005
16044 and then Is_Generic_Type (T)
16045 and then Present (Original_Node (N))
16046 then
16047 declare
16048 Decl : constant Node_Id := Original_Node (N);
16049
16050 begin
16051 if Nkind (Decl) = N_Formal_Type_Declaration
16052 and then Nkind (Formal_Type_Definition (Decl)) =
16053 N_Formal_Derived_Type_Definition
16054 and then Synchronized_Present (Formal_Type_Definition (Decl))
16055 and then No (Extension)
16056
16057 -- Avoid emitting a duplicate error message
16058
16059 and then not Error_Posted (Indic)
16060 then
16061 Error_Msg_N
16062 ("synchronized derived type must have extension", N);
16063 end if;
16064 end;
16065 end if;
16066
16067 if Null_Exclusion_Present (Def)
16068 and then not Is_Access_Type (Parent_Type)
16069 then
16070 Error_Msg_N ("null exclusion can only apply to an access type", N);
16071 end if;
16072
16073 -- Avoid deriving parent primitives of underlying record views
16074
16075 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16076 Derive_Subps => not Is_Underlying_Record_View (T));
16077
16078 -- AI-419: The parent type of an explicitly limited derived type must
16079 -- be a limited type or a limited interface.
16080
16081 if Limited_Present (Def) then
16082 Set_Is_Limited_Record (T);
16083
16084 if Is_Interface (T) then
16085 Set_Is_Limited_Interface (T);
16086 end if;
16087
16088 if not Is_Limited_Type (Parent_Type)
16089 and then
16090 (not Is_Interface (Parent_Type)
16091 or else not Is_Limited_Interface (Parent_Type))
16092 then
16093 -- AI05-0096: a derivation in the private part of an instance is
16094 -- legal if the generic formal is untagged limited, and the actual
16095 -- is non-limited.
16096
16097 if Is_Generic_Actual_Type (Parent_Type)
16098 and then In_Private_Part (Current_Scope)
16099 and then
16100 not Is_Tagged_Type
16101 (Generic_Parent_Type (Parent (Parent_Type)))
16102 then
16103 null;
16104
16105 else
16106 Error_Msg_NE
16107 ("parent type& of limited type must be limited",
16108 N, Parent_Type);
16109 end if;
16110 end if;
16111 end if;
16112
16113 -- In SPARK, there are no derived type definitions other than type
16114 -- extensions of tagged record types.
16115
16116 if No (Extension) then
16117 Check_SPARK_05_Restriction
16118 ("derived type is not allowed", Original_Node (N));
16119 end if;
16120 end Derived_Type_Declaration;
16121
16122 ------------------------
16123 -- Diagnose_Interface --
16124 ------------------------
16125
16126 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16127 begin
16128 if not Is_Interface (E) and then E /= Any_Type then
16129 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16130 end if;
16131 end Diagnose_Interface;
16132
16133 ----------------------------------
16134 -- Enumeration_Type_Declaration --
16135 ----------------------------------
16136
16137 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16138 Ev : Uint;
16139 L : Node_Id;
16140 R_Node : Node_Id;
16141 B_Node : Node_Id;
16142
16143 begin
16144 -- Create identifier node representing lower bound
16145
16146 B_Node := New_Node (N_Identifier, Sloc (Def));
16147 L := First (Literals (Def));
16148 Set_Chars (B_Node, Chars (L));
16149 Set_Entity (B_Node, L);
16150 Set_Etype (B_Node, T);
16151 Set_Is_Static_Expression (B_Node, True);
16152
16153 R_Node := New_Node (N_Range, Sloc (Def));
16154 Set_Low_Bound (R_Node, B_Node);
16155
16156 Set_Ekind (T, E_Enumeration_Type);
16157 Set_First_Literal (T, L);
16158 Set_Etype (T, T);
16159 Set_Is_Constrained (T);
16160
16161 Ev := Uint_0;
16162
16163 -- Loop through literals of enumeration type setting pos and rep values
16164 -- except that if the Ekind is already set, then it means the literal
16165 -- was already constructed (case of a derived type declaration and we
16166 -- should not disturb the Pos and Rep values.
16167
16168 while Present (L) loop
16169 if Ekind (L) /= E_Enumeration_Literal then
16170 Set_Ekind (L, E_Enumeration_Literal);
16171 Set_Enumeration_Pos (L, Ev);
16172 Set_Enumeration_Rep (L, Ev);
16173 Set_Is_Known_Valid (L, True);
16174 end if;
16175
16176 Set_Etype (L, T);
16177 New_Overloaded_Entity (L);
16178 Generate_Definition (L);
16179 Set_Convention (L, Convention_Intrinsic);
16180
16181 -- Case of character literal
16182
16183 if Nkind (L) = N_Defining_Character_Literal then
16184 Set_Is_Character_Type (T, True);
16185
16186 -- Check violation of No_Wide_Characters
16187
16188 if Restriction_Check_Required (No_Wide_Characters) then
16189 Get_Name_String (Chars (L));
16190
16191 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16192 Check_Restriction (No_Wide_Characters, L);
16193 end if;
16194 end if;
16195 end if;
16196
16197 Ev := Ev + 1;
16198 Next (L);
16199 end loop;
16200
16201 -- Now create a node representing upper bound
16202
16203 B_Node := New_Node (N_Identifier, Sloc (Def));
16204 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16205 Set_Entity (B_Node, Last (Literals (Def)));
16206 Set_Etype (B_Node, T);
16207 Set_Is_Static_Expression (B_Node, True);
16208
16209 Set_High_Bound (R_Node, B_Node);
16210
16211 -- Initialize various fields of the type. Some of this information
16212 -- may be overwritten later through rep.clauses.
16213
16214 Set_Scalar_Range (T, R_Node);
16215 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16216 Set_Enum_Esize (T);
16217 Set_Enum_Pos_To_Rep (T, Empty);
16218
16219 -- Set Discard_Names if configuration pragma set, or if there is
16220 -- a parameterless pragma in the current declarative region
16221
16222 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16223 Set_Discard_Names (T);
16224 end if;
16225
16226 -- Process end label if there is one
16227
16228 if Present (Def) then
16229 Process_End_Label (Def, 'e', T);
16230 end if;
16231 end Enumeration_Type_Declaration;
16232
16233 ---------------------------------
16234 -- Expand_To_Stored_Constraint --
16235 ---------------------------------
16236
16237 function Expand_To_Stored_Constraint
16238 (Typ : Entity_Id;
16239 Constraint : Elist_Id) return Elist_Id
16240 is
16241 Explicitly_Discriminated_Type : Entity_Id;
16242 Expansion : Elist_Id;
16243 Discriminant : Entity_Id;
16244
16245 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16246 -- Find the nearest type that actually specifies discriminants
16247
16248 ---------------------------------
16249 -- Type_With_Explicit_Discrims --
16250 ---------------------------------
16251
16252 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16253 Typ : constant E := Base_Type (Id);
16254
16255 begin
16256 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16257 if Present (Full_View (Typ)) then
16258 return Type_With_Explicit_Discrims (Full_View (Typ));
16259 end if;
16260
16261 else
16262 if Has_Discriminants (Typ) then
16263 return Typ;
16264 end if;
16265 end if;
16266
16267 if Etype (Typ) = Typ then
16268 return Empty;
16269 elsif Has_Discriminants (Typ) then
16270 return Typ;
16271 else
16272 return Type_With_Explicit_Discrims (Etype (Typ));
16273 end if;
16274
16275 end Type_With_Explicit_Discrims;
16276
16277 -- Start of processing for Expand_To_Stored_Constraint
16278
16279 begin
16280 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16281 return No_Elist;
16282 end if;
16283
16284 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16285
16286 if No (Explicitly_Discriminated_Type) then
16287 return No_Elist;
16288 end if;
16289
16290 Expansion := New_Elmt_List;
16291
16292 Discriminant :=
16293 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16294 while Present (Discriminant) loop
16295 Append_Elmt
16296 (Get_Discriminant_Value
16297 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16298 To => Expansion);
16299 Next_Stored_Discriminant (Discriminant);
16300 end loop;
16301
16302 return Expansion;
16303 end Expand_To_Stored_Constraint;
16304
16305 ---------------------------
16306 -- Find_Hidden_Interface --
16307 ---------------------------
16308
16309 function Find_Hidden_Interface
16310 (Src : Elist_Id;
16311 Dest : Elist_Id) return Entity_Id
16312 is
16313 Iface : Entity_Id;
16314 Iface_Elmt : Elmt_Id;
16315
16316 begin
16317 if Present (Src) and then Present (Dest) then
16318 Iface_Elmt := First_Elmt (Src);
16319 while Present (Iface_Elmt) loop
16320 Iface := Node (Iface_Elmt);
16321
16322 if Is_Interface (Iface)
16323 and then not Contain_Interface (Iface, Dest)
16324 then
16325 return Iface;
16326 end if;
16327
16328 Next_Elmt (Iface_Elmt);
16329 end loop;
16330 end if;
16331
16332 return Empty;
16333 end Find_Hidden_Interface;
16334
16335 --------------------
16336 -- Find_Type_Name --
16337 --------------------
16338
16339 function Find_Type_Name (N : Node_Id) return Entity_Id is
16340 Id : constant Entity_Id := Defining_Identifier (N);
16341 Prev : Entity_Id;
16342 New_Id : Entity_Id;
16343 Prev_Par : Node_Id;
16344
16345 procedure Check_Duplicate_Aspects;
16346 -- Check that aspects specified in a completion have not been specified
16347 -- already in the partial view. Type_Invariant and others can be
16348 -- specified on either view but never on both.
16349
16350 procedure Tag_Mismatch;
16351 -- Diagnose a tagged partial view whose full view is untagged.
16352 -- We post the message on the full view, with a reference to
16353 -- the previous partial view. The partial view can be private
16354 -- or incomplete, and these are handled in a different manner,
16355 -- so we determine the position of the error message from the
16356 -- respective slocs of both.
16357
16358 -----------------------------
16359 -- Check_Duplicate_Aspects --
16360 -----------------------------
16361 procedure Check_Duplicate_Aspects is
16362 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16363 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16364 F_Spec, P_Spec : Node_Id;
16365
16366 begin
16367 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16368 F_Spec := First (Full_Aspects);
16369 while Present (F_Spec) loop
16370 P_Spec := First (Prev_Aspects);
16371 while Present (P_Spec) loop
16372 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16373 then
16374 Error_Msg_N
16375 ("aspect already specified in private declaration",
16376 F_Spec);
16377 Remove (F_Spec);
16378 return;
16379 end if;
16380
16381 Next (P_Spec);
16382 end loop;
16383
16384 Next (F_Spec);
16385 end loop;
16386 end if;
16387 end Check_Duplicate_Aspects;
16388
16389 ------------------
16390 -- Tag_Mismatch --
16391 ------------------
16392
16393 procedure Tag_Mismatch is
16394 begin
16395 if Sloc (Prev) < Sloc (Id) then
16396 if Ada_Version >= Ada_2012
16397 and then Nkind (N) = N_Private_Type_Declaration
16398 then
16399 Error_Msg_NE
16400 ("declaration of private } must be a tagged type ", Id, Prev);
16401 else
16402 Error_Msg_NE
16403 ("full declaration of } must be a tagged type ", Id, Prev);
16404 end if;
16405
16406 else
16407 if Ada_Version >= Ada_2012
16408 and then Nkind (N) = N_Private_Type_Declaration
16409 then
16410 Error_Msg_NE
16411 ("declaration of private } must be a tagged type ", Prev, Id);
16412 else
16413 Error_Msg_NE
16414 ("full declaration of } must be a tagged type ", Prev, Id);
16415 end if;
16416 end if;
16417 end Tag_Mismatch;
16418
16419 -- Start of processing for Find_Type_Name
16420
16421 begin
16422 -- Find incomplete declaration, if one was given
16423
16424 Prev := Current_Entity_In_Scope (Id);
16425
16426 -- New type declaration
16427
16428 if No (Prev) then
16429 Enter_Name (Id);
16430 return Id;
16431
16432 -- Previous declaration exists
16433
16434 else
16435 Prev_Par := Parent (Prev);
16436
16437 -- Error if not incomplete/private case except if previous
16438 -- declaration is implicit, etc. Enter_Name will emit error if
16439 -- appropriate.
16440
16441 if not Is_Incomplete_Or_Private_Type (Prev) then
16442 Enter_Name (Id);
16443 New_Id := Id;
16444
16445 -- Check invalid completion of private or incomplete type
16446
16447 elsif not Nkind_In (N, N_Full_Type_Declaration,
16448 N_Task_Type_Declaration,
16449 N_Protected_Type_Declaration)
16450 and then
16451 (Ada_Version < Ada_2012
16452 or else not Is_Incomplete_Type (Prev)
16453 or else not Nkind_In (N, N_Private_Type_Declaration,
16454 N_Private_Extension_Declaration))
16455 then
16456 -- Completion must be a full type declarations (RM 7.3(4))
16457
16458 Error_Msg_Sloc := Sloc (Prev);
16459 Error_Msg_NE ("invalid completion of }", Id, Prev);
16460
16461 -- Set scope of Id to avoid cascaded errors. Entity is never
16462 -- examined again, except when saving globals in generics.
16463
16464 Set_Scope (Id, Current_Scope);
16465 New_Id := Id;
16466
16467 -- If this is a repeated incomplete declaration, no further
16468 -- checks are possible.
16469
16470 if Nkind (N) = N_Incomplete_Type_Declaration then
16471 return Prev;
16472 end if;
16473
16474 -- Case of full declaration of incomplete type
16475
16476 elsif Ekind (Prev) = E_Incomplete_Type
16477 and then (Ada_Version < Ada_2012
16478 or else No (Full_View (Prev))
16479 or else not Is_Private_Type (Full_View (Prev)))
16480 then
16481 -- Indicate that the incomplete declaration has a matching full
16482 -- declaration. The defining occurrence of the incomplete
16483 -- declaration remains the visible one, and the procedure
16484 -- Get_Full_View dereferences it whenever the type is used.
16485
16486 if Present (Full_View (Prev)) then
16487 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16488 end if;
16489
16490 Set_Full_View (Prev, Id);
16491 Append_Entity (Id, Current_Scope);
16492 Set_Is_Public (Id, Is_Public (Prev));
16493 Set_Is_Internal (Id);
16494 New_Id := Prev;
16495
16496 -- If the incomplete view is tagged, a class_wide type has been
16497 -- created already. Use it for the private type as well, in order
16498 -- to prevent multiple incompatible class-wide types that may be
16499 -- created for self-referential anonymous access components.
16500
16501 if Is_Tagged_Type (Prev)
16502 and then Present (Class_Wide_Type (Prev))
16503 then
16504 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16505 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16506
16507 -- The type of the classwide type is the current Id. Previously
16508 -- this was not done for private declarations because of order-
16509 -- of elaboration issues in the back-end, but gigi now handles
16510 -- this properly.
16511
16512 Set_Etype (Class_Wide_Type (Id), Id);
16513 end if;
16514
16515 -- Case of full declaration of private type
16516
16517 else
16518 -- If the private type was a completion of an incomplete type then
16519 -- update Prev to reference the private type
16520
16521 if Ada_Version >= Ada_2012
16522 and then Ekind (Prev) = E_Incomplete_Type
16523 and then Present (Full_View (Prev))
16524 and then Is_Private_Type (Full_View (Prev))
16525 then
16526 Prev := Full_View (Prev);
16527 Prev_Par := Parent (Prev);
16528 end if;
16529
16530 if Nkind (N) = N_Full_Type_Declaration
16531 and then Nkind_In
16532 (Type_Definition (N), N_Record_Definition,
16533 N_Derived_Type_Definition)
16534 and then Interface_Present (Type_Definition (N))
16535 then
16536 Error_Msg_N
16537 ("completion of private type cannot be an interface", N);
16538 end if;
16539
16540 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16541 if Etype (Prev) /= Prev then
16542
16543 -- Prev is a private subtype or a derived type, and needs
16544 -- no completion.
16545
16546 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16547 New_Id := Id;
16548
16549 elsif Ekind (Prev) = E_Private_Type
16550 and then Nkind_In (N, N_Task_Type_Declaration,
16551 N_Protected_Type_Declaration)
16552 then
16553 Error_Msg_N
16554 ("completion of nonlimited type cannot be limited", N);
16555
16556 elsif Ekind (Prev) = E_Record_Type_With_Private
16557 and then Nkind_In (N, N_Task_Type_Declaration,
16558 N_Protected_Type_Declaration)
16559 then
16560 if not Is_Limited_Record (Prev) then
16561 Error_Msg_N
16562 ("completion of nonlimited type cannot be limited", N);
16563
16564 elsif No (Interface_List (N)) then
16565 Error_Msg_N
16566 ("completion of tagged private type must be tagged",
16567 N);
16568 end if;
16569 end if;
16570
16571 -- Ada 2005 (AI-251): Private extension declaration of a task
16572 -- type or a protected type. This case arises when covering
16573 -- interface types.
16574
16575 elsif Nkind_In (N, N_Task_Type_Declaration,
16576 N_Protected_Type_Declaration)
16577 then
16578 null;
16579
16580 elsif Nkind (N) /= N_Full_Type_Declaration
16581 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16582 then
16583 Error_Msg_N
16584 ("full view of private extension must be an extension", N);
16585
16586 elsif not (Abstract_Present (Parent (Prev)))
16587 and then Abstract_Present (Type_Definition (N))
16588 then
16589 Error_Msg_N
16590 ("full view of non-abstract extension cannot be abstract", N);
16591 end if;
16592
16593 if not In_Private_Part (Current_Scope) then
16594 Error_Msg_N
16595 ("declaration of full view must appear in private part", N);
16596 end if;
16597
16598 if Ada_Version >= Ada_2012 then
16599 Check_Duplicate_Aspects;
16600 end if;
16601
16602 Copy_And_Swap (Prev, Id);
16603 Set_Has_Private_Declaration (Prev);
16604 Set_Has_Private_Declaration (Id);
16605
16606 -- AI12-0133: Indicate whether we have a partial view with
16607 -- unknown discriminants, in which case initialization of objects
16608 -- of the type do not receive an invariant check.
16609
16610 Set_Partial_View_Has_Unknown_Discr
16611 (Prev, Has_Unknown_Discriminants (Id));
16612
16613 -- Preserve aspect and iterator flags that may have been set on
16614 -- the partial view.
16615
16616 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16617 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16618
16619 -- If no error, propagate freeze_node from private to full view.
16620 -- It may have been generated for an early operational item.
16621
16622 if Present (Freeze_Node (Id))
16623 and then Serious_Errors_Detected = 0
16624 and then No (Full_View (Id))
16625 then
16626 Set_Freeze_Node (Prev, Freeze_Node (Id));
16627 Set_Freeze_Node (Id, Empty);
16628 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16629 end if;
16630
16631 Set_Full_View (Id, Prev);
16632 New_Id := Prev;
16633 end if;
16634
16635 -- Verify that full declaration conforms to partial one
16636
16637 if Is_Incomplete_Or_Private_Type (Prev)
16638 and then Present (Discriminant_Specifications (Prev_Par))
16639 then
16640 if Present (Discriminant_Specifications (N)) then
16641 if Ekind (Prev) = E_Incomplete_Type then
16642 Check_Discriminant_Conformance (N, Prev, Prev);
16643 else
16644 Check_Discriminant_Conformance (N, Prev, Id);
16645 end if;
16646
16647 else
16648 Error_Msg_N
16649 ("missing discriminants in full type declaration", N);
16650
16651 -- To avoid cascaded errors on subsequent use, share the
16652 -- discriminants of the partial view.
16653
16654 Set_Discriminant_Specifications (N,
16655 Discriminant_Specifications (Prev_Par));
16656 end if;
16657 end if;
16658
16659 -- A prior untagged partial view can have an associated class-wide
16660 -- type due to use of the class attribute, and in this case the full
16661 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16662 -- of incomplete tagged declarations, but we check for it.
16663
16664 if Is_Type (Prev)
16665 and then (Is_Tagged_Type (Prev)
16666 or else Present (Class_Wide_Type (Prev)))
16667 then
16668 -- Ada 2012 (AI05-0162): A private type may be the completion of
16669 -- an incomplete type.
16670
16671 if Ada_Version >= Ada_2012
16672 and then Is_Incomplete_Type (Prev)
16673 and then Nkind_In (N, N_Private_Type_Declaration,
16674 N_Private_Extension_Declaration)
16675 then
16676 -- No need to check private extensions since they are tagged
16677
16678 if Nkind (N) = N_Private_Type_Declaration
16679 and then not Tagged_Present (N)
16680 then
16681 Tag_Mismatch;
16682 end if;
16683
16684 -- The full declaration is either a tagged type (including
16685 -- a synchronized type that implements interfaces) or a
16686 -- type extension, otherwise this is an error.
16687
16688 elsif Nkind_In (N, N_Task_Type_Declaration,
16689 N_Protected_Type_Declaration)
16690 then
16691 if No (Interface_List (N)) and then not Error_Posted (N) then
16692 Tag_Mismatch;
16693 end if;
16694
16695 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16696
16697 -- Indicate that the previous declaration (tagged incomplete
16698 -- or private declaration) requires the same on the full one.
16699
16700 if not Tagged_Present (Type_Definition (N)) then
16701 Tag_Mismatch;
16702 Set_Is_Tagged_Type (Id);
16703 end if;
16704
16705 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16706 if No (Record_Extension_Part (Type_Definition (N))) then
16707 Error_Msg_NE
16708 ("full declaration of } must be a record extension",
16709 Prev, Id);
16710
16711 -- Set some attributes to produce a usable full view
16712
16713 Set_Is_Tagged_Type (Id);
16714 end if;
16715
16716 else
16717 Tag_Mismatch;
16718 end if;
16719 end if;
16720
16721 if Present (Prev)
16722 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16723 and then Present (Premature_Use (Parent (Prev)))
16724 then
16725 Error_Msg_Sloc := Sloc (N);
16726 Error_Msg_N
16727 ("\full declaration #", Premature_Use (Parent (Prev)));
16728 end if;
16729
16730 return New_Id;
16731 end if;
16732 end Find_Type_Name;
16733
16734 -------------------------
16735 -- Find_Type_Of_Object --
16736 -------------------------
16737
16738 function Find_Type_Of_Object
16739 (Obj_Def : Node_Id;
16740 Related_Nod : Node_Id) return Entity_Id
16741 is
16742 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16743 P : Node_Id := Parent (Obj_Def);
16744 T : Entity_Id;
16745 Nam : Name_Id;
16746
16747 begin
16748 -- If the parent is a component_definition node we climb to the
16749 -- component_declaration node
16750
16751 if Nkind (P) = N_Component_Definition then
16752 P := Parent (P);
16753 end if;
16754
16755 -- Case of an anonymous array subtype
16756
16757 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16758 N_Unconstrained_Array_Definition)
16759 then
16760 T := Empty;
16761 Array_Type_Declaration (T, Obj_Def);
16762
16763 -- Create an explicit subtype whenever possible
16764
16765 elsif Nkind (P) /= N_Component_Declaration
16766 and then Def_Kind = N_Subtype_Indication
16767 then
16768 -- Base name of subtype on object name, which will be unique in
16769 -- the current scope.
16770
16771 -- If this is a duplicate declaration, return base type, to avoid
16772 -- generating duplicate anonymous types.
16773
16774 if Error_Posted (P) then
16775 Analyze (Subtype_Mark (Obj_Def));
16776 return Entity (Subtype_Mark (Obj_Def));
16777 end if;
16778
16779 Nam :=
16780 New_External_Name
16781 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16782
16783 T := Make_Defining_Identifier (Sloc (P), Nam);
16784
16785 Insert_Action (Obj_Def,
16786 Make_Subtype_Declaration (Sloc (P),
16787 Defining_Identifier => T,
16788 Subtype_Indication => Relocate_Node (Obj_Def)));
16789
16790 -- This subtype may need freezing, and this will not be done
16791 -- automatically if the object declaration is not in declarative
16792 -- part. Since this is an object declaration, the type cannot always
16793 -- be frozen here. Deferred constants do not freeze their type
16794 -- (which often enough will be private).
16795
16796 if Nkind (P) = N_Object_Declaration
16797 and then Constant_Present (P)
16798 and then No (Expression (P))
16799 then
16800 null;
16801
16802 -- Here we freeze the base type of object type to catch premature use
16803 -- of discriminated private type without a full view.
16804
16805 else
16806 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16807 end if;
16808
16809 -- Ada 2005 AI-406: the object definition in an object declaration
16810 -- can be an access definition.
16811
16812 elsif Def_Kind = N_Access_Definition then
16813 T := Access_Definition (Related_Nod, Obj_Def);
16814
16815 Set_Is_Local_Anonymous_Access
16816 (T,
16817 V => (Ada_Version < Ada_2012)
16818 or else (Nkind (P) /= N_Object_Declaration)
16819 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16820
16821 -- Otherwise, the object definition is just a subtype_mark
16822
16823 else
16824 T := Process_Subtype (Obj_Def, Related_Nod);
16825
16826 -- If expansion is disabled an object definition that is an aggregate
16827 -- will not get expanded and may lead to scoping problems in the back
16828 -- end, if the object is referenced in an inner scope. In that case
16829 -- create an itype reference for the object definition now. This
16830 -- may be redundant in some cases, but harmless.
16831
16832 if Is_Itype (T)
16833 and then Nkind (Related_Nod) = N_Object_Declaration
16834 and then ASIS_Mode
16835 then
16836 Build_Itype_Reference (T, Related_Nod);
16837 end if;
16838 end if;
16839
16840 return T;
16841 end Find_Type_Of_Object;
16842
16843 --------------------------------
16844 -- Find_Type_Of_Subtype_Indic --
16845 --------------------------------
16846
16847 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16848 Typ : Entity_Id;
16849
16850 begin
16851 -- Case of subtype mark with a constraint
16852
16853 if Nkind (S) = N_Subtype_Indication then
16854 Find_Type (Subtype_Mark (S));
16855 Typ := Entity (Subtype_Mark (S));
16856
16857 if not
16858 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16859 then
16860 Error_Msg_N
16861 ("incorrect constraint for this kind of type", Constraint (S));
16862 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16863 end if;
16864
16865 -- Otherwise we have a subtype mark without a constraint
16866
16867 elsif Error_Posted (S) then
16868 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16869 return Any_Type;
16870
16871 else
16872 Find_Type (S);
16873 Typ := Entity (S);
16874 end if;
16875
16876 -- Check No_Wide_Characters restriction
16877
16878 Check_Wide_Character_Restriction (Typ, S);
16879
16880 return Typ;
16881 end Find_Type_Of_Subtype_Indic;
16882
16883 -------------------------------------
16884 -- Floating_Point_Type_Declaration --
16885 -------------------------------------
16886
16887 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16888 Digs : constant Node_Id := Digits_Expression (Def);
16889 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16890 Digs_Val : Uint;
16891 Base_Typ : Entity_Id;
16892 Implicit_Base : Entity_Id;
16893 Bound : Node_Id;
16894
16895 function Can_Derive_From (E : Entity_Id) return Boolean;
16896 -- Find if given digits value, and possibly a specified range, allows
16897 -- derivation from specified type
16898
16899 function Find_Base_Type return Entity_Id;
16900 -- Find a predefined base type that Def can derive from, or generate
16901 -- an error and substitute Long_Long_Float if none exists.
16902
16903 ---------------------
16904 -- Can_Derive_From --
16905 ---------------------
16906
16907 function Can_Derive_From (E : Entity_Id) return Boolean is
16908 Spec : constant Entity_Id := Real_Range_Specification (Def);
16909
16910 begin
16911 -- Check specified "digits" constraint
16912
16913 if Digs_Val > Digits_Value (E) then
16914 return False;
16915 end if;
16916
16917 -- Check for matching range, if specified
16918
16919 if Present (Spec) then
16920 if Expr_Value_R (Type_Low_Bound (E)) >
16921 Expr_Value_R (Low_Bound (Spec))
16922 then
16923 return False;
16924 end if;
16925
16926 if Expr_Value_R (Type_High_Bound (E)) <
16927 Expr_Value_R (High_Bound (Spec))
16928 then
16929 return False;
16930 end if;
16931 end if;
16932
16933 return True;
16934 end Can_Derive_From;
16935
16936 --------------------
16937 -- Find_Base_Type --
16938 --------------------
16939
16940 function Find_Base_Type return Entity_Id is
16941 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16942
16943 begin
16944 -- Iterate over the predefined types in order, returning the first
16945 -- one that Def can derive from.
16946
16947 while Present (Choice) loop
16948 if Can_Derive_From (Node (Choice)) then
16949 return Node (Choice);
16950 end if;
16951
16952 Next_Elmt (Choice);
16953 end loop;
16954
16955 -- If we can't derive from any existing type, use Long_Long_Float
16956 -- and give appropriate message explaining the problem.
16957
16958 if Digs_Val > Max_Digs_Val then
16959 -- It might be the case that there is a type with the requested
16960 -- range, just not the combination of digits and range.
16961
16962 Error_Msg_N
16963 ("no predefined type has requested range and precision",
16964 Real_Range_Specification (Def));
16965
16966 else
16967 Error_Msg_N
16968 ("range too large for any predefined type",
16969 Real_Range_Specification (Def));
16970 end if;
16971
16972 return Standard_Long_Long_Float;
16973 end Find_Base_Type;
16974
16975 -- Start of processing for Floating_Point_Type_Declaration
16976
16977 begin
16978 Check_Restriction (No_Floating_Point, Def);
16979
16980 -- Create an implicit base type
16981
16982 Implicit_Base :=
16983 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16984
16985 -- Analyze and verify digits value
16986
16987 Analyze_And_Resolve (Digs, Any_Integer);
16988 Check_Digits_Expression (Digs);
16989 Digs_Val := Expr_Value (Digs);
16990
16991 -- Process possible range spec and find correct type to derive from
16992
16993 Process_Real_Range_Specification (Def);
16994
16995 -- Check that requested number of digits is not too high.
16996
16997 if Digs_Val > Max_Digs_Val then
16998
16999 -- The check for Max_Base_Digits may be somewhat expensive, as it
17000 -- requires reading System, so only do it when necessary.
17001
17002 declare
17003 Max_Base_Digits : constant Uint :=
17004 Expr_Value
17005 (Expression
17006 (Parent (RTE (RE_Max_Base_Digits))));
17007
17008 begin
17009 if Digs_Val > Max_Base_Digits then
17010 Error_Msg_Uint_1 := Max_Base_Digits;
17011 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17012
17013 elsif No (Real_Range_Specification (Def)) then
17014 Error_Msg_Uint_1 := Max_Digs_Val;
17015 Error_Msg_N ("types with more than ^ digits need range spec "
17016 & "(RM 3.5.7(6))", Digs);
17017 end if;
17018 end;
17019 end if;
17020
17021 -- Find a suitable type to derive from or complain and use a substitute
17022
17023 Base_Typ := Find_Base_Type;
17024
17025 -- If there are bounds given in the declaration use them as the bounds
17026 -- of the type, otherwise use the bounds of the predefined base type
17027 -- that was chosen based on the Digits value.
17028
17029 if Present (Real_Range_Specification (Def)) then
17030 Set_Scalar_Range (T, Real_Range_Specification (Def));
17031 Set_Is_Constrained (T);
17032
17033 -- The bounds of this range must be converted to machine numbers
17034 -- in accordance with RM 4.9(38).
17035
17036 Bound := Type_Low_Bound (T);
17037
17038 if Nkind (Bound) = N_Real_Literal then
17039 Set_Realval
17040 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17041 Set_Is_Machine_Number (Bound);
17042 end if;
17043
17044 Bound := Type_High_Bound (T);
17045
17046 if Nkind (Bound) = N_Real_Literal then
17047 Set_Realval
17048 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17049 Set_Is_Machine_Number (Bound);
17050 end if;
17051
17052 else
17053 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17054 end if;
17055
17056 -- Complete definition of implicit base and declared first subtype. The
17057 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17058 -- are not clobbered when the floating point type acts as a full view of
17059 -- a private type.
17060
17061 Set_Etype (Implicit_Base, Base_Typ);
17062 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17063 Set_Size_Info (Implicit_Base, Base_Typ);
17064 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17065 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17066 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17067 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17068
17069 Set_Ekind (T, E_Floating_Point_Subtype);
17070 Set_Etype (T, Implicit_Base);
17071 Set_Size_Info (T, Implicit_Base);
17072 Set_RM_Size (T, RM_Size (Implicit_Base));
17073 Inherit_Rep_Item_Chain (T, Implicit_Base);
17074 Set_Digits_Value (T, Digs_Val);
17075 end Floating_Point_Type_Declaration;
17076
17077 ----------------------------
17078 -- Get_Discriminant_Value --
17079 ----------------------------
17080
17081 -- This is the situation:
17082
17083 -- There is a non-derived type
17084
17085 -- type T0 (Dx, Dy, Dz...)
17086
17087 -- There are zero or more levels of derivation, with each derivation
17088 -- either purely inheriting the discriminants, or defining its own.
17089
17090 -- type Ti is new Ti-1
17091 -- or
17092 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17093 -- or
17094 -- subtype Ti is ...
17095
17096 -- The subtype issue is avoided by the use of Original_Record_Component,
17097 -- and the fact that derived subtypes also derive the constraints.
17098
17099 -- This chain leads back from
17100
17101 -- Typ_For_Constraint
17102
17103 -- Typ_For_Constraint has discriminants, and the value for each
17104 -- discriminant is given by its corresponding Elmt of Constraints.
17105
17106 -- Discriminant is some discriminant in this hierarchy
17107
17108 -- We need to return its value
17109
17110 -- We do this by recursively searching each level, and looking for
17111 -- Discriminant. Once we get to the bottom, we start backing up
17112 -- returning the value for it which may in turn be a discriminant
17113 -- further up, so on the backup we continue the substitution.
17114
17115 function Get_Discriminant_Value
17116 (Discriminant : Entity_Id;
17117 Typ_For_Constraint : Entity_Id;
17118 Constraint : Elist_Id) return Node_Id
17119 is
17120 function Root_Corresponding_Discriminant
17121 (Discr : Entity_Id) return Entity_Id;
17122 -- Given a discriminant, traverse the chain of inherited discriminants
17123 -- and return the topmost discriminant.
17124
17125 function Search_Derivation_Levels
17126 (Ti : Entity_Id;
17127 Discrim_Values : Elist_Id;
17128 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17129 -- This is the routine that performs the recursive search of levels
17130 -- as described above.
17131
17132 -------------------------------------
17133 -- Root_Corresponding_Discriminant --
17134 -------------------------------------
17135
17136 function Root_Corresponding_Discriminant
17137 (Discr : Entity_Id) return Entity_Id
17138 is
17139 D : Entity_Id;
17140
17141 begin
17142 D := Discr;
17143 while Present (Corresponding_Discriminant (D)) loop
17144 D := Corresponding_Discriminant (D);
17145 end loop;
17146
17147 return D;
17148 end Root_Corresponding_Discriminant;
17149
17150 ------------------------------
17151 -- Search_Derivation_Levels --
17152 ------------------------------
17153
17154 function Search_Derivation_Levels
17155 (Ti : Entity_Id;
17156 Discrim_Values : Elist_Id;
17157 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17158 is
17159 Assoc : Elmt_Id;
17160 Disc : Entity_Id;
17161 Result : Node_Or_Entity_Id;
17162 Result_Entity : Node_Id;
17163
17164 begin
17165 -- If inappropriate type, return Error, this happens only in
17166 -- cascaded error situations, and we want to avoid a blow up.
17167
17168 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17169 return Error;
17170 end if;
17171
17172 -- Look deeper if possible. Use Stored_Constraints only for
17173 -- untagged types. For tagged types use the given constraint.
17174 -- This asymmetry needs explanation???
17175
17176 if not Stored_Discrim_Values
17177 and then Present (Stored_Constraint (Ti))
17178 and then not Is_Tagged_Type (Ti)
17179 then
17180 Result :=
17181 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17182 else
17183 declare
17184 Td : constant Entity_Id := Etype (Ti);
17185
17186 begin
17187 if Td = Ti then
17188 Result := Discriminant;
17189
17190 else
17191 if Present (Stored_Constraint (Ti)) then
17192 Result :=
17193 Search_Derivation_Levels
17194 (Td, Stored_Constraint (Ti), True);
17195 else
17196 Result :=
17197 Search_Derivation_Levels
17198 (Td, Discrim_Values, Stored_Discrim_Values);
17199 end if;
17200 end if;
17201 end;
17202 end if;
17203
17204 -- Extra underlying places to search, if not found above. For
17205 -- concurrent types, the relevant discriminant appears in the
17206 -- corresponding record. For a type derived from a private type
17207 -- without discriminant, the full view inherits the discriminants
17208 -- of the full view of the parent.
17209
17210 if Result = Discriminant then
17211 if Is_Concurrent_Type (Ti)
17212 and then Present (Corresponding_Record_Type (Ti))
17213 then
17214 Result :=
17215 Search_Derivation_Levels (
17216 Corresponding_Record_Type (Ti),
17217 Discrim_Values,
17218 Stored_Discrim_Values);
17219
17220 elsif Is_Private_Type (Ti)
17221 and then not Has_Discriminants (Ti)
17222 and then Present (Full_View (Ti))
17223 and then Etype (Full_View (Ti)) /= Ti
17224 then
17225 Result :=
17226 Search_Derivation_Levels (
17227 Full_View (Ti),
17228 Discrim_Values,
17229 Stored_Discrim_Values);
17230 end if;
17231 end if;
17232
17233 -- If Result is not a (reference to a) discriminant, return it,
17234 -- otherwise set Result_Entity to the discriminant.
17235
17236 if Nkind (Result) = N_Defining_Identifier then
17237 pragma Assert (Result = Discriminant);
17238 Result_Entity := Result;
17239
17240 else
17241 if not Denotes_Discriminant (Result) then
17242 return Result;
17243 end if;
17244
17245 Result_Entity := Entity (Result);
17246 end if;
17247
17248 -- See if this level of derivation actually has discriminants because
17249 -- tagged derivations can add them, hence the lower levels need not
17250 -- have any.
17251
17252 if not Has_Discriminants (Ti) then
17253 return Result;
17254 end if;
17255
17256 -- Scan Ti's discriminants for Result_Entity, and return its
17257 -- corresponding value, if any.
17258
17259 Result_Entity := Original_Record_Component (Result_Entity);
17260
17261 Assoc := First_Elmt (Discrim_Values);
17262
17263 if Stored_Discrim_Values then
17264 Disc := First_Stored_Discriminant (Ti);
17265 else
17266 Disc := First_Discriminant (Ti);
17267 end if;
17268
17269 while Present (Disc) loop
17270 pragma Assert (Present (Assoc));
17271
17272 if Original_Record_Component (Disc) = Result_Entity then
17273 return Node (Assoc);
17274 end if;
17275
17276 Next_Elmt (Assoc);
17277
17278 if Stored_Discrim_Values then
17279 Next_Stored_Discriminant (Disc);
17280 else
17281 Next_Discriminant (Disc);
17282 end if;
17283 end loop;
17284
17285 -- Could not find it
17286
17287 return Result;
17288 end Search_Derivation_Levels;
17289
17290 -- Local Variables
17291
17292 Result : Node_Or_Entity_Id;
17293
17294 -- Start of processing for Get_Discriminant_Value
17295
17296 begin
17297 -- ??? This routine is a gigantic mess and will be deleted. For the
17298 -- time being just test for the trivial case before calling recurse.
17299
17300 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17301 declare
17302 D : Entity_Id;
17303 E : Elmt_Id;
17304
17305 begin
17306 D := First_Discriminant (Typ_For_Constraint);
17307 E := First_Elmt (Constraint);
17308 while Present (D) loop
17309 if Chars (D) = Chars (Discriminant) then
17310 return Node (E);
17311 end if;
17312
17313 Next_Discriminant (D);
17314 Next_Elmt (E);
17315 end loop;
17316 end;
17317 end if;
17318
17319 Result := Search_Derivation_Levels
17320 (Typ_For_Constraint, Constraint, False);
17321
17322 -- ??? hack to disappear when this routine is gone
17323
17324 if Nkind (Result) = N_Defining_Identifier then
17325 declare
17326 D : Entity_Id;
17327 E : Elmt_Id;
17328
17329 begin
17330 D := First_Discriminant (Typ_For_Constraint);
17331 E := First_Elmt (Constraint);
17332 while Present (D) loop
17333 if Root_Corresponding_Discriminant (D) = Discriminant then
17334 return Node (E);
17335 end if;
17336
17337 Next_Discriminant (D);
17338 Next_Elmt (E);
17339 end loop;
17340 end;
17341 end if;
17342
17343 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17344 return Result;
17345 end Get_Discriminant_Value;
17346
17347 --------------------------
17348 -- Has_Range_Constraint --
17349 --------------------------
17350
17351 function Has_Range_Constraint (N : Node_Id) return Boolean is
17352 C : constant Node_Id := Constraint (N);
17353
17354 begin
17355 if Nkind (C) = N_Range_Constraint then
17356 return True;
17357
17358 elsif Nkind (C) = N_Digits_Constraint then
17359 return
17360 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17361 or else Present (Range_Constraint (C));
17362
17363 elsif Nkind (C) = N_Delta_Constraint then
17364 return Present (Range_Constraint (C));
17365
17366 else
17367 return False;
17368 end if;
17369 end Has_Range_Constraint;
17370
17371 ------------------------
17372 -- Inherit_Components --
17373 ------------------------
17374
17375 function Inherit_Components
17376 (N : Node_Id;
17377 Parent_Base : Entity_Id;
17378 Derived_Base : Entity_Id;
17379 Is_Tagged : Boolean;
17380 Inherit_Discr : Boolean;
17381 Discs : Elist_Id) return Elist_Id
17382 is
17383 Assoc_List : constant Elist_Id := New_Elmt_List;
17384
17385 procedure Inherit_Component
17386 (Old_C : Entity_Id;
17387 Plain_Discrim : Boolean := False;
17388 Stored_Discrim : Boolean := False);
17389 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17390 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17391 -- True, Old_C is a stored discriminant. If they are both false then
17392 -- Old_C is a regular component.
17393
17394 -----------------------
17395 -- Inherit_Component --
17396 -----------------------
17397
17398 procedure Inherit_Component
17399 (Old_C : Entity_Id;
17400 Plain_Discrim : Boolean := False;
17401 Stored_Discrim : Boolean := False)
17402 is
17403 procedure Set_Anonymous_Type (Id : Entity_Id);
17404 -- Id denotes the entity of an access discriminant or anonymous
17405 -- access component. Set the type of Id to either the same type of
17406 -- Old_C or create a new one depending on whether the parent and
17407 -- the child types are in the same scope.
17408
17409 ------------------------
17410 -- Set_Anonymous_Type --
17411 ------------------------
17412
17413 procedure Set_Anonymous_Type (Id : Entity_Id) is
17414 Old_Typ : constant Entity_Id := Etype (Old_C);
17415
17416 begin
17417 if Scope (Parent_Base) = Scope (Derived_Base) then
17418 Set_Etype (Id, Old_Typ);
17419
17420 -- The parent and the derived type are in two different scopes.
17421 -- Reuse the type of the original discriminant / component by
17422 -- copying it in order to preserve all attributes.
17423
17424 else
17425 declare
17426 Typ : constant Entity_Id := New_Copy (Old_Typ);
17427
17428 begin
17429 Set_Etype (Id, Typ);
17430
17431 -- Since we do not generate component declarations for
17432 -- inherited components, associate the itype with the
17433 -- derived type.
17434
17435 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17436 Set_Scope (Typ, Derived_Base);
17437 end;
17438 end if;
17439 end Set_Anonymous_Type;
17440
17441 -- Local variables and constants
17442
17443 New_C : constant Entity_Id := New_Copy (Old_C);
17444
17445 Corr_Discrim : Entity_Id;
17446 Discrim : Entity_Id;
17447
17448 -- Start of processing for Inherit_Component
17449
17450 begin
17451 pragma Assert (not Is_Tagged or not Stored_Discrim);
17452
17453 Set_Parent (New_C, Parent (Old_C));
17454
17455 -- Regular discriminants and components must be inserted in the scope
17456 -- of the Derived_Base. Do it here.
17457
17458 if not Stored_Discrim then
17459 Enter_Name (New_C);
17460 end if;
17461
17462 -- For tagged types the Original_Record_Component must point to
17463 -- whatever this field was pointing to in the parent type. This has
17464 -- already been achieved by the call to New_Copy above.
17465
17466 if not Is_Tagged then
17467 Set_Original_Record_Component (New_C, New_C);
17468 end if;
17469
17470 -- Set the proper type of an access discriminant
17471
17472 if Ekind (New_C) = E_Discriminant
17473 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17474 then
17475 Set_Anonymous_Type (New_C);
17476 end if;
17477
17478 -- If we have inherited a component then see if its Etype contains
17479 -- references to Parent_Base discriminants. In this case, replace
17480 -- these references with the constraints given in Discs. We do not
17481 -- do this for the partial view of private types because this is
17482 -- not needed (only the components of the full view will be used
17483 -- for code generation) and cause problem. We also avoid this
17484 -- transformation in some error situations.
17485
17486 if Ekind (New_C) = E_Component then
17487
17488 -- Set the proper type of an anonymous access component
17489
17490 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17491 Set_Anonymous_Type (New_C);
17492
17493 elsif (Is_Private_Type (Derived_Base)
17494 and then not Is_Generic_Type (Derived_Base))
17495 or else (Is_Empty_Elmt_List (Discs)
17496 and then not Expander_Active)
17497 then
17498 Set_Etype (New_C, Etype (Old_C));
17499
17500 else
17501 -- The current component introduces a circularity of the
17502 -- following kind:
17503
17504 -- limited with Pack_2;
17505 -- package Pack_1 is
17506 -- type T_1 is tagged record
17507 -- Comp : access Pack_2.T_2;
17508 -- ...
17509 -- end record;
17510 -- end Pack_1;
17511
17512 -- with Pack_1;
17513 -- package Pack_2 is
17514 -- type T_2 is new Pack_1.T_1 with ...;
17515 -- end Pack_2;
17516
17517 Set_Etype
17518 (New_C,
17519 Constrain_Component_Type
17520 (Old_C, Derived_Base, N, Parent_Base, Discs));
17521 end if;
17522 end if;
17523
17524 -- In derived tagged types it is illegal to reference a non
17525 -- discriminant component in the parent type. To catch this, mark
17526 -- these components with an Ekind of E_Void. This will be reset in
17527 -- Record_Type_Definition after processing the record extension of
17528 -- the derived type.
17529
17530 -- If the declaration is a private extension, there is no further
17531 -- record extension to process, and the components retain their
17532 -- current kind, because they are visible at this point.
17533
17534 if Is_Tagged and then Ekind (New_C) = E_Component
17535 and then Nkind (N) /= N_Private_Extension_Declaration
17536 then
17537 Set_Ekind (New_C, E_Void);
17538 end if;
17539
17540 if Plain_Discrim then
17541 Set_Corresponding_Discriminant (New_C, Old_C);
17542 Build_Discriminal (New_C);
17543
17544 -- If we are explicitly inheriting a stored discriminant it will be
17545 -- completely hidden.
17546
17547 elsif Stored_Discrim then
17548 Set_Corresponding_Discriminant (New_C, Empty);
17549 Set_Discriminal (New_C, Empty);
17550 Set_Is_Completely_Hidden (New_C);
17551
17552 -- Set the Original_Record_Component of each discriminant in the
17553 -- derived base to point to the corresponding stored that we just
17554 -- created.
17555
17556 Discrim := First_Discriminant (Derived_Base);
17557 while Present (Discrim) loop
17558 Corr_Discrim := Corresponding_Discriminant (Discrim);
17559
17560 -- Corr_Discrim could be missing in an error situation
17561
17562 if Present (Corr_Discrim)
17563 and then Original_Record_Component (Corr_Discrim) = Old_C
17564 then
17565 Set_Original_Record_Component (Discrim, New_C);
17566 end if;
17567
17568 Next_Discriminant (Discrim);
17569 end loop;
17570
17571 Append_Entity (New_C, Derived_Base);
17572 end if;
17573
17574 if not Is_Tagged then
17575 Append_Elmt (Old_C, Assoc_List);
17576 Append_Elmt (New_C, Assoc_List);
17577 end if;
17578 end Inherit_Component;
17579
17580 -- Variables local to Inherit_Component
17581
17582 Loc : constant Source_Ptr := Sloc (N);
17583
17584 Parent_Discrim : Entity_Id;
17585 Stored_Discrim : Entity_Id;
17586 D : Entity_Id;
17587 Component : Entity_Id;
17588
17589 -- Start of processing for Inherit_Components
17590
17591 begin
17592 if not Is_Tagged then
17593 Append_Elmt (Parent_Base, Assoc_List);
17594 Append_Elmt (Derived_Base, Assoc_List);
17595 end if;
17596
17597 -- Inherit parent discriminants if needed
17598
17599 if Inherit_Discr then
17600 Parent_Discrim := First_Discriminant (Parent_Base);
17601 while Present (Parent_Discrim) loop
17602 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17603 Next_Discriminant (Parent_Discrim);
17604 end loop;
17605 end if;
17606
17607 -- Create explicit stored discrims for untagged types when necessary
17608
17609 if not Has_Unknown_Discriminants (Derived_Base)
17610 and then Has_Discriminants (Parent_Base)
17611 and then not Is_Tagged
17612 and then
17613 (not Inherit_Discr
17614 or else First_Discriminant (Parent_Base) /=
17615 First_Stored_Discriminant (Parent_Base))
17616 then
17617 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17618 while Present (Stored_Discrim) loop
17619 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17620 Next_Stored_Discriminant (Stored_Discrim);
17621 end loop;
17622 end if;
17623
17624 -- See if we can apply the second transformation for derived types, as
17625 -- explained in point 6. in the comments above Build_Derived_Record_Type
17626 -- This is achieved by appending Derived_Base discriminants into Discs,
17627 -- which has the side effect of returning a non empty Discs list to the
17628 -- caller of Inherit_Components, which is what we want. This must be
17629 -- done for private derived types if there are explicit stored
17630 -- discriminants, to ensure that we can retrieve the values of the
17631 -- constraints provided in the ancestors.
17632
17633 if Inherit_Discr
17634 and then Is_Empty_Elmt_List (Discs)
17635 and then Present (First_Discriminant (Derived_Base))
17636 and then
17637 (not Is_Private_Type (Derived_Base)
17638 or else Is_Completely_Hidden
17639 (First_Stored_Discriminant (Derived_Base))
17640 or else Is_Generic_Type (Derived_Base))
17641 then
17642 D := First_Discriminant (Derived_Base);
17643 while Present (D) loop
17644 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17645 Next_Discriminant (D);
17646 end loop;
17647 end if;
17648
17649 -- Finally, inherit non-discriminant components unless they are not
17650 -- visible because defined or inherited from the full view of the
17651 -- parent. Don't inherit the _parent field of the parent type.
17652
17653 Component := First_Entity (Parent_Base);
17654 while Present (Component) loop
17655
17656 -- Ada 2005 (AI-251): Do not inherit components associated with
17657 -- secondary tags of the parent.
17658
17659 if Ekind (Component) = E_Component
17660 and then Present (Related_Type (Component))
17661 then
17662 null;
17663
17664 elsif Ekind (Component) /= E_Component
17665 or else Chars (Component) = Name_uParent
17666 then
17667 null;
17668
17669 -- If the derived type is within the parent type's declarative
17670 -- region, then the components can still be inherited even though
17671 -- they aren't visible at this point. This can occur for cases
17672 -- such as within public child units where the components must
17673 -- become visible upon entering the child unit's private part.
17674
17675 elsif not Is_Visible_Component (Component)
17676 and then not In_Open_Scopes (Scope (Parent_Base))
17677 then
17678 null;
17679
17680 elsif Ekind_In (Derived_Base, E_Private_Type,
17681 E_Limited_Private_Type)
17682 then
17683 null;
17684
17685 else
17686 Inherit_Component (Component);
17687 end if;
17688
17689 Next_Entity (Component);
17690 end loop;
17691
17692 -- For tagged derived types, inherited discriminants cannot be used in
17693 -- component declarations of the record extension part. To achieve this
17694 -- we mark the inherited discriminants as not visible.
17695
17696 if Is_Tagged and then Inherit_Discr then
17697 D := First_Discriminant (Derived_Base);
17698 while Present (D) loop
17699 Set_Is_Immediately_Visible (D, False);
17700 Next_Discriminant (D);
17701 end loop;
17702 end if;
17703
17704 return Assoc_List;
17705 end Inherit_Components;
17706
17707 -----------------------------
17708 -- Inherit_Predicate_Flags --
17709 -----------------------------
17710
17711 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17712 begin
17713 Set_Has_Predicates (Subt, Has_Predicates (Par));
17714 Set_Has_Static_Predicate_Aspect
17715 (Subt, Has_Static_Predicate_Aspect (Par));
17716 Set_Has_Dynamic_Predicate_Aspect
17717 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17718 end Inherit_Predicate_Flags;
17719
17720 ----------------------
17721 -- Is_EVF_Procedure --
17722 ----------------------
17723
17724 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17725 Formal : Entity_Id;
17726
17727 begin
17728 -- Examine the formals of an Extensions_Visible False procedure looking
17729 -- for a controlling OUT parameter.
17730
17731 if Ekind (Subp) = E_Procedure
17732 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17733 then
17734 Formal := First_Formal (Subp);
17735 while Present (Formal) loop
17736 if Ekind (Formal) = E_Out_Parameter
17737 and then Is_Controlling_Formal (Formal)
17738 then
17739 return True;
17740 end if;
17741
17742 Next_Formal (Formal);
17743 end loop;
17744 end if;
17745
17746 return False;
17747 end Is_EVF_Procedure;
17748
17749 -----------------------
17750 -- Is_Null_Extension --
17751 -----------------------
17752
17753 function Is_Null_Extension (T : Entity_Id) return Boolean is
17754 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17755 Comp_List : Node_Id;
17756 Comp : Node_Id;
17757
17758 begin
17759 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17760 or else not Is_Tagged_Type (T)
17761 or else Nkind (Type_Definition (Type_Decl)) /=
17762 N_Derived_Type_Definition
17763 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17764 then
17765 return False;
17766 end if;
17767
17768 Comp_List :=
17769 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17770
17771 if Present (Discriminant_Specifications (Type_Decl)) then
17772 return False;
17773
17774 elsif Present (Comp_List)
17775 and then Is_Non_Empty_List (Component_Items (Comp_List))
17776 then
17777 Comp := First (Component_Items (Comp_List));
17778
17779 -- Only user-defined components are relevant. The component list
17780 -- may also contain a parent component and internal components
17781 -- corresponding to secondary tags, but these do not determine
17782 -- whether this is a null extension.
17783
17784 while Present (Comp) loop
17785 if Comes_From_Source (Comp) then
17786 return False;
17787 end if;
17788
17789 Next (Comp);
17790 end loop;
17791
17792 return True;
17793
17794 else
17795 return True;
17796 end if;
17797 end Is_Null_Extension;
17798
17799 ------------------------------
17800 -- Is_Valid_Constraint_Kind --
17801 ------------------------------
17802
17803 function Is_Valid_Constraint_Kind
17804 (T_Kind : Type_Kind;
17805 Constraint_Kind : Node_Kind) return Boolean
17806 is
17807 begin
17808 case T_Kind is
17809 when Enumeration_Kind |
17810 Integer_Kind =>
17811 return Constraint_Kind = N_Range_Constraint;
17812
17813 when Decimal_Fixed_Point_Kind =>
17814 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17815 N_Range_Constraint);
17816
17817 when Ordinary_Fixed_Point_Kind =>
17818 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17819 N_Range_Constraint);
17820
17821 when Float_Kind =>
17822 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17823 N_Range_Constraint);
17824
17825 when Access_Kind |
17826 Array_Kind |
17827 E_Record_Type |
17828 E_Record_Subtype |
17829 Class_Wide_Kind |
17830 E_Incomplete_Type |
17831 Private_Kind |
17832 Concurrent_Kind =>
17833 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17834
17835 when others =>
17836 return True; -- Error will be detected later
17837 end case;
17838 end Is_Valid_Constraint_Kind;
17839
17840 --------------------------
17841 -- Is_Visible_Component --
17842 --------------------------
17843
17844 function Is_Visible_Component
17845 (C : Entity_Id;
17846 N : Node_Id := Empty) return Boolean
17847 is
17848 Original_Comp : Entity_Id := Empty;
17849 Original_Type : Entity_Id;
17850 Type_Scope : Entity_Id;
17851
17852 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17853 -- Check whether parent type of inherited component is declared locally,
17854 -- possibly within a nested package or instance. The current scope is
17855 -- the derived record itself.
17856
17857 -------------------
17858 -- Is_Local_Type --
17859 -------------------
17860
17861 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17862 Scop : Entity_Id;
17863
17864 begin
17865 Scop := Scope (Typ);
17866 while Present (Scop)
17867 and then Scop /= Standard_Standard
17868 loop
17869 if Scop = Scope (Current_Scope) then
17870 return True;
17871 end if;
17872
17873 Scop := Scope (Scop);
17874 end loop;
17875
17876 return False;
17877 end Is_Local_Type;
17878
17879 -- Start of processing for Is_Visible_Component
17880
17881 begin
17882 if Ekind_In (C, E_Component, E_Discriminant) then
17883 Original_Comp := Original_Record_Component (C);
17884 end if;
17885
17886 if No (Original_Comp) then
17887
17888 -- Premature usage, or previous error
17889
17890 return False;
17891
17892 else
17893 Original_Type := Scope (Original_Comp);
17894 Type_Scope := Scope (Base_Type (Scope (C)));
17895 end if;
17896
17897 -- This test only concerns tagged types
17898
17899 if not Is_Tagged_Type (Original_Type) then
17900 return True;
17901
17902 -- If it is _Parent or _Tag, there is no visibility issue
17903
17904 elsif not Comes_From_Source (Original_Comp) then
17905 return True;
17906
17907 -- Discriminants are visible unless the (private) type has unknown
17908 -- discriminants. If the discriminant reference is inserted for a
17909 -- discriminant check on a full view it is also visible.
17910
17911 elsif Ekind (Original_Comp) = E_Discriminant
17912 and then
17913 (not Has_Unknown_Discriminants (Original_Type)
17914 or else (Present (N)
17915 and then Nkind (N) = N_Selected_Component
17916 and then Nkind (Prefix (N)) = N_Type_Conversion
17917 and then not Comes_From_Source (Prefix (N))))
17918 then
17919 return True;
17920
17921 -- In the body of an instantiation, no need to check for the visibility
17922 -- of a component.
17923
17924 elsif In_Instance_Body then
17925 return True;
17926
17927 -- If the component has been declared in an ancestor which is currently
17928 -- a private type, then it is not visible. The same applies if the
17929 -- component's containing type is not in an open scope and the original
17930 -- component's enclosing type is a visible full view of a private type
17931 -- (which can occur in cases where an attempt is being made to reference
17932 -- a component in a sibling package that is inherited from a visible
17933 -- component of a type in an ancestor package; the component in the
17934 -- sibling package should not be visible even though the component it
17935 -- inherited from is visible). This does not apply however in the case
17936 -- where the scope of the type is a private child unit, or when the
17937 -- parent comes from a local package in which the ancestor is currently
17938 -- visible. The latter suppression of visibility is needed for cases
17939 -- that are tested in B730006.
17940
17941 elsif Is_Private_Type (Original_Type)
17942 or else
17943 (not Is_Private_Descendant (Type_Scope)
17944 and then not In_Open_Scopes (Type_Scope)
17945 and then Has_Private_Declaration (Original_Type))
17946 then
17947 -- If the type derives from an entity in a formal package, there
17948 -- are no additional visible components.
17949
17950 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17951 N_Formal_Package_Declaration
17952 then
17953 return False;
17954
17955 -- if we are not in the private part of the current package, there
17956 -- are no additional visible components.
17957
17958 elsif Ekind (Scope (Current_Scope)) = E_Package
17959 and then not In_Private_Part (Scope (Current_Scope))
17960 then
17961 return False;
17962 else
17963 return
17964 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17965 and then In_Open_Scopes (Scope (Original_Type))
17966 and then Is_Local_Type (Type_Scope);
17967 end if;
17968
17969 -- There is another weird way in which a component may be invisible when
17970 -- the private and the full view are not derived from the same ancestor.
17971 -- Here is an example :
17972
17973 -- type A1 is tagged record F1 : integer; end record;
17974 -- type A2 is new A1 with record F2 : integer; end record;
17975 -- type T is new A1 with private;
17976 -- private
17977 -- type T is new A2 with null record;
17978
17979 -- In this case, the full view of T inherits F1 and F2 but the private
17980 -- view inherits only F1
17981
17982 else
17983 declare
17984 Ancestor : Entity_Id := Scope (C);
17985
17986 begin
17987 loop
17988 if Ancestor = Original_Type then
17989 return True;
17990
17991 -- The ancestor may have a partial view of the original type,
17992 -- but if the full view is in scope, as in a child body, the
17993 -- component is visible.
17994
17995 elsif In_Private_Part (Scope (Original_Type))
17996 and then Full_View (Ancestor) = Original_Type
17997 then
17998 return True;
17999
18000 elsif Ancestor = Etype (Ancestor) then
18001
18002 -- No further ancestors to examine
18003
18004 return False;
18005 end if;
18006
18007 Ancestor := Etype (Ancestor);
18008 end loop;
18009 end;
18010 end if;
18011 end Is_Visible_Component;
18012
18013 --------------------------
18014 -- Make_Class_Wide_Type --
18015 --------------------------
18016
18017 procedure Make_Class_Wide_Type (T : Entity_Id) is
18018 CW_Type : Entity_Id;
18019 CW_Name : Name_Id;
18020 Next_E : Entity_Id;
18021
18022 begin
18023 if Present (Class_Wide_Type (T)) then
18024
18025 -- The class-wide type is a partially decorated entity created for a
18026 -- unanalyzed tagged type referenced through a limited with clause.
18027 -- When the tagged type is analyzed, its class-wide type needs to be
18028 -- redecorated. Note that we reuse the entity created by Decorate_
18029 -- Tagged_Type in order to preserve all links.
18030
18031 if Materialize_Entity (Class_Wide_Type (T)) then
18032 CW_Type := Class_Wide_Type (T);
18033 Set_Materialize_Entity (CW_Type, False);
18034
18035 -- The class wide type can have been defined by the partial view, in
18036 -- which case everything is already done.
18037
18038 else
18039 return;
18040 end if;
18041
18042 -- Default case, we need to create a new class-wide type
18043
18044 else
18045 CW_Type :=
18046 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18047 end if;
18048
18049 -- Inherit root type characteristics
18050
18051 CW_Name := Chars (CW_Type);
18052 Next_E := Next_Entity (CW_Type);
18053 Copy_Node (T, CW_Type);
18054 Set_Comes_From_Source (CW_Type, False);
18055 Set_Chars (CW_Type, CW_Name);
18056 Set_Parent (CW_Type, Parent (T));
18057 Set_Next_Entity (CW_Type, Next_E);
18058
18059 -- Ensure we have a new freeze node for the class-wide type. The partial
18060 -- view may have freeze action of its own, requiring a proper freeze
18061 -- node, and the same freeze node cannot be shared between the two
18062 -- types.
18063
18064 Set_Has_Delayed_Freeze (CW_Type);
18065 Set_Freeze_Node (CW_Type, Empty);
18066
18067 -- Customize the class-wide type: It has no prim. op., it cannot be
18068 -- abstract and its Etype points back to the specific root type.
18069
18070 Set_Ekind (CW_Type, E_Class_Wide_Type);
18071 Set_Is_Tagged_Type (CW_Type, True);
18072 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18073 Set_Is_Abstract_Type (CW_Type, False);
18074 Set_Is_Constrained (CW_Type, False);
18075 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18076 Set_Default_SSO (CW_Type);
18077
18078 if Ekind (T) = E_Class_Wide_Subtype then
18079 Set_Etype (CW_Type, Etype (Base_Type (T)));
18080 else
18081 Set_Etype (CW_Type, T);
18082 end if;
18083
18084 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18085
18086 -- If this is the class_wide type of a constrained subtype, it does
18087 -- not have discriminants.
18088
18089 Set_Has_Discriminants (CW_Type,
18090 Has_Discriminants (T) and then not Is_Constrained (T));
18091
18092 Set_Has_Unknown_Discriminants (CW_Type, True);
18093 Set_Class_Wide_Type (T, CW_Type);
18094 Set_Equivalent_Type (CW_Type, Empty);
18095
18096 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18097
18098 Set_Class_Wide_Type (CW_Type, CW_Type);
18099 end Make_Class_Wide_Type;
18100
18101 ----------------
18102 -- Make_Index --
18103 ----------------
18104
18105 procedure Make_Index
18106 (N : Node_Id;
18107 Related_Nod : Node_Id;
18108 Related_Id : Entity_Id := Empty;
18109 Suffix_Index : Nat := 1;
18110 In_Iter_Schm : Boolean := False)
18111 is
18112 R : Node_Id;
18113 T : Entity_Id;
18114 Def_Id : Entity_Id := Empty;
18115 Found : Boolean := False;
18116
18117 begin
18118 -- For a discrete range used in a constrained array definition and
18119 -- defined by a range, an implicit conversion to the predefined type
18120 -- INTEGER is assumed if each bound is either a numeric literal, a named
18121 -- number, or an attribute, and the type of both bounds (prior to the
18122 -- implicit conversion) is the type universal_integer. Otherwise, both
18123 -- bounds must be of the same discrete type, other than universal
18124 -- integer; this type must be determinable independently of the
18125 -- context, but using the fact that the type must be discrete and that
18126 -- both bounds must have the same type.
18127
18128 -- Character literals also have a universal type in the absence of
18129 -- of additional context, and are resolved to Standard_Character.
18130
18131 if Nkind (N) = N_Range then
18132
18133 -- The index is given by a range constraint. The bounds are known
18134 -- to be of a consistent type.
18135
18136 if not Is_Overloaded (N) then
18137 T := Etype (N);
18138
18139 -- For universal bounds, choose the specific predefined type
18140
18141 if T = Universal_Integer then
18142 T := Standard_Integer;
18143
18144 elsif T = Any_Character then
18145 Ambiguous_Character (Low_Bound (N));
18146
18147 T := Standard_Character;
18148 end if;
18149
18150 -- The node may be overloaded because some user-defined operators
18151 -- are available, but if a universal interpretation exists it is
18152 -- also the selected one.
18153
18154 elsif Universal_Interpretation (N) = Universal_Integer then
18155 T := Standard_Integer;
18156
18157 else
18158 T := Any_Type;
18159
18160 declare
18161 Ind : Interp_Index;
18162 It : Interp;
18163
18164 begin
18165 Get_First_Interp (N, Ind, It);
18166 while Present (It.Typ) loop
18167 if Is_Discrete_Type (It.Typ) then
18168
18169 if Found
18170 and then not Covers (It.Typ, T)
18171 and then not Covers (T, It.Typ)
18172 then
18173 Error_Msg_N ("ambiguous bounds in discrete range", N);
18174 exit;
18175 else
18176 T := It.Typ;
18177 Found := True;
18178 end if;
18179 end if;
18180
18181 Get_Next_Interp (Ind, It);
18182 end loop;
18183
18184 if T = Any_Type then
18185 Error_Msg_N ("discrete type required for range", N);
18186 Set_Etype (N, Any_Type);
18187 return;
18188
18189 elsif T = Universal_Integer then
18190 T := Standard_Integer;
18191 end if;
18192 end;
18193 end if;
18194
18195 if not Is_Discrete_Type (T) then
18196 Error_Msg_N ("discrete type required for range", N);
18197 Set_Etype (N, Any_Type);
18198 return;
18199 end if;
18200
18201 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18202 and then Attribute_Name (Low_Bound (N)) = Name_First
18203 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18204 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18205 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18206 then
18207 -- The type of the index will be the type of the prefix, as long
18208 -- as the upper bound is 'Last of the same type.
18209
18210 Def_Id := Entity (Prefix (Low_Bound (N)));
18211
18212 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18213 or else Attribute_Name (High_Bound (N)) /= Name_Last
18214 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18215 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18216 then
18217 Def_Id := Empty;
18218 end if;
18219 end if;
18220
18221 R := N;
18222 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18223
18224 elsif Nkind (N) = N_Subtype_Indication then
18225
18226 -- The index is given by a subtype with a range constraint
18227
18228 T := Base_Type (Entity (Subtype_Mark (N)));
18229
18230 if not Is_Discrete_Type (T) then
18231 Error_Msg_N ("discrete type required for range", N);
18232 Set_Etype (N, Any_Type);
18233 return;
18234 end if;
18235
18236 R := Range_Expression (Constraint (N));
18237
18238 Resolve (R, T);
18239 Process_Range_Expr_In_Decl
18240 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18241
18242 elsif Nkind (N) = N_Attribute_Reference then
18243
18244 -- Catch beginner's error (use of attribute other than 'Range)
18245
18246 if Attribute_Name (N) /= Name_Range then
18247 Error_Msg_N ("expect attribute ''Range", N);
18248 Set_Etype (N, Any_Type);
18249 return;
18250 end if;
18251
18252 -- If the node denotes the range of a type mark, that is also the
18253 -- resulting type, and we do not need to create an Itype for it.
18254
18255 if Is_Entity_Name (Prefix (N))
18256 and then Comes_From_Source (N)
18257 and then Is_Type (Entity (Prefix (N)))
18258 and then Is_Discrete_Type (Entity (Prefix (N)))
18259 then
18260 Def_Id := Entity (Prefix (N));
18261 end if;
18262
18263 Analyze_And_Resolve (N);
18264 T := Etype (N);
18265 R := N;
18266
18267 -- If none of the above, must be a subtype. We convert this to a
18268 -- range attribute reference because in the case of declared first
18269 -- named subtypes, the types in the range reference can be different
18270 -- from the type of the entity. A range attribute normalizes the
18271 -- reference and obtains the correct types for the bounds.
18272
18273 -- This transformation is in the nature of an expansion, is only
18274 -- done if expansion is active. In particular, it is not done on
18275 -- formal generic types, because we need to retain the name of the
18276 -- original index for instantiation purposes.
18277
18278 else
18279 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18280 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18281 Set_Etype (N, Any_Integer);
18282 return;
18283
18284 else
18285 -- The type mark may be that of an incomplete type. It is only
18286 -- now that we can get the full view, previous analysis does
18287 -- not look specifically for a type mark.
18288
18289 Set_Entity (N, Get_Full_View (Entity (N)));
18290 Set_Etype (N, Entity (N));
18291 Def_Id := Entity (N);
18292
18293 if not Is_Discrete_Type (Def_Id) then
18294 Error_Msg_N ("discrete type required for index", N);
18295 Set_Etype (N, Any_Type);
18296 return;
18297 end if;
18298 end if;
18299
18300 if Expander_Active then
18301 Rewrite (N,
18302 Make_Attribute_Reference (Sloc (N),
18303 Attribute_Name => Name_Range,
18304 Prefix => Relocate_Node (N)));
18305
18306 -- The original was a subtype mark that does not freeze. This
18307 -- means that the rewritten version must not freeze either.
18308
18309 Set_Must_Not_Freeze (N);
18310 Set_Must_Not_Freeze (Prefix (N));
18311 Analyze_And_Resolve (N);
18312 T := Etype (N);
18313 R := N;
18314
18315 -- If expander is inactive, type is legal, nothing else to construct
18316
18317 else
18318 return;
18319 end if;
18320 end if;
18321
18322 if not Is_Discrete_Type (T) then
18323 Error_Msg_N ("discrete type required for range", N);
18324 Set_Etype (N, Any_Type);
18325 return;
18326
18327 elsif T = Any_Type then
18328 Set_Etype (N, Any_Type);
18329 return;
18330 end if;
18331
18332 -- We will now create the appropriate Itype to describe the range, but
18333 -- first a check. If we originally had a subtype, then we just label
18334 -- the range with this subtype. Not only is there no need to construct
18335 -- a new subtype, but it is wrong to do so for two reasons:
18336
18337 -- 1. A legality concern, if we have a subtype, it must not freeze,
18338 -- and the Itype would cause freezing incorrectly
18339
18340 -- 2. An efficiency concern, if we created an Itype, it would not be
18341 -- recognized as the same type for the purposes of eliminating
18342 -- checks in some circumstances.
18343
18344 -- We signal this case by setting the subtype entity in Def_Id
18345
18346 if No (Def_Id) then
18347 Def_Id :=
18348 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18349 Set_Etype (Def_Id, Base_Type (T));
18350
18351 if Is_Signed_Integer_Type (T) then
18352 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18353
18354 elsif Is_Modular_Integer_Type (T) then
18355 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18356
18357 else
18358 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18359 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18360 Set_First_Literal (Def_Id, First_Literal (T));
18361 end if;
18362
18363 Set_Size_Info (Def_Id, (T));
18364 Set_RM_Size (Def_Id, RM_Size (T));
18365 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18366
18367 Set_Scalar_Range (Def_Id, R);
18368 Conditional_Delay (Def_Id, T);
18369
18370 if Nkind (N) = N_Subtype_Indication then
18371 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18372 end if;
18373
18374 -- In the subtype indication case, if the immediate parent of the
18375 -- new subtype is non-static, then the subtype we create is non-
18376 -- static, even if its bounds are static.
18377
18378 if Nkind (N) = N_Subtype_Indication
18379 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18380 then
18381 Set_Is_Non_Static_Subtype (Def_Id);
18382 end if;
18383 end if;
18384
18385 -- Final step is to label the index with this constructed type
18386
18387 Set_Etype (N, Def_Id);
18388 end Make_Index;
18389
18390 ------------------------------
18391 -- Modular_Type_Declaration --
18392 ------------------------------
18393
18394 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18395 Mod_Expr : constant Node_Id := Expression (Def);
18396 M_Val : Uint;
18397
18398 procedure Set_Modular_Size (Bits : Int);
18399 -- Sets RM_Size to Bits, and Esize to normal word size above this
18400
18401 ----------------------
18402 -- Set_Modular_Size --
18403 ----------------------
18404
18405 procedure Set_Modular_Size (Bits : Int) is
18406 begin
18407 Set_RM_Size (T, UI_From_Int (Bits));
18408
18409 if Bits <= 8 then
18410 Init_Esize (T, 8);
18411
18412 elsif Bits <= 16 then
18413 Init_Esize (T, 16);
18414
18415 elsif Bits <= 32 then
18416 Init_Esize (T, 32);
18417
18418 else
18419 Init_Esize (T, System_Max_Binary_Modulus_Power);
18420 end if;
18421
18422 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18423 Set_Is_Known_Valid (T);
18424 end if;
18425 end Set_Modular_Size;
18426
18427 -- Start of processing for Modular_Type_Declaration
18428
18429 begin
18430 -- If the mod expression is (exactly) 2 * literal, where literal is
18431 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18432
18433 if Warn_On_Suspicious_Modulus_Value
18434 and then Nkind (Mod_Expr) = N_Op_Multiply
18435 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18436 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18437 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18438 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18439 then
18440 Error_Msg_N
18441 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18442 end if;
18443
18444 -- Proceed with analysis of mod expression
18445
18446 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18447 Set_Etype (T, T);
18448 Set_Ekind (T, E_Modular_Integer_Type);
18449 Init_Alignment (T);
18450 Set_Is_Constrained (T);
18451
18452 if not Is_OK_Static_Expression (Mod_Expr) then
18453 Flag_Non_Static_Expr
18454 ("non-static expression used for modular type bound!", Mod_Expr);
18455 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18456 else
18457 M_Val := Expr_Value (Mod_Expr);
18458 end if;
18459
18460 if M_Val < 1 then
18461 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18462 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18463 end if;
18464
18465 if M_Val > 2 ** Standard_Long_Integer_Size then
18466 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18467 end if;
18468
18469 Set_Modulus (T, M_Val);
18470
18471 -- Create bounds for the modular type based on the modulus given in
18472 -- the type declaration and then analyze and resolve those bounds.
18473
18474 Set_Scalar_Range (T,
18475 Make_Range (Sloc (Mod_Expr),
18476 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18477 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18478
18479 -- Properly analyze the literals for the range. We do this manually
18480 -- because we can't go calling Resolve, since we are resolving these
18481 -- bounds with the type, and this type is certainly not complete yet.
18482
18483 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18484 Set_Etype (High_Bound (Scalar_Range (T)), T);
18485 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18486 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18487
18488 -- Loop through powers of two to find number of bits required
18489
18490 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18491
18492 -- Binary case
18493
18494 if M_Val = 2 ** Bits then
18495 Set_Modular_Size (Bits);
18496 return;
18497
18498 -- Nonbinary case
18499
18500 elsif M_Val < 2 ** Bits then
18501 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18502 Set_Non_Binary_Modulus (T);
18503
18504 if Bits > System_Max_Nonbinary_Modulus_Power then
18505 Error_Msg_Uint_1 :=
18506 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18507 Error_Msg_F
18508 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18509 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18510 return;
18511
18512 else
18513 -- In the nonbinary case, set size as per RM 13.3(55)
18514
18515 Set_Modular_Size (Bits);
18516 return;
18517 end if;
18518 end if;
18519
18520 end loop;
18521
18522 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18523 -- so we just signal an error and set the maximum size.
18524
18525 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18526 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18527
18528 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18529 Init_Alignment (T);
18530
18531 end Modular_Type_Declaration;
18532
18533 --------------------------
18534 -- New_Concatenation_Op --
18535 --------------------------
18536
18537 procedure New_Concatenation_Op (Typ : Entity_Id) is
18538 Loc : constant Source_Ptr := Sloc (Typ);
18539 Op : Entity_Id;
18540
18541 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18542 -- Create abbreviated declaration for the formal of a predefined
18543 -- Operator 'Op' of type 'Typ'
18544
18545 --------------------
18546 -- Make_Op_Formal --
18547 --------------------
18548
18549 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18550 Formal : Entity_Id;
18551 begin
18552 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18553 Set_Etype (Formal, Typ);
18554 Set_Mechanism (Formal, Default_Mechanism);
18555 return Formal;
18556 end Make_Op_Formal;
18557
18558 -- Start of processing for New_Concatenation_Op
18559
18560 begin
18561 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18562
18563 Set_Ekind (Op, E_Operator);
18564 Set_Scope (Op, Current_Scope);
18565 Set_Etype (Op, Typ);
18566 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18567 Set_Is_Immediately_Visible (Op);
18568 Set_Is_Intrinsic_Subprogram (Op);
18569 Set_Has_Completion (Op);
18570 Append_Entity (Op, Current_Scope);
18571
18572 Set_Name_Entity_Id (Name_Op_Concat, Op);
18573
18574 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18575 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18576 end New_Concatenation_Op;
18577
18578 -------------------------
18579 -- OK_For_Limited_Init --
18580 -------------------------
18581
18582 -- ???Check all calls of this, and compare the conditions under which it's
18583 -- called.
18584
18585 function OK_For_Limited_Init
18586 (Typ : Entity_Id;
18587 Exp : Node_Id) return Boolean
18588 is
18589 begin
18590 return Is_CPP_Constructor_Call (Exp)
18591 or else (Ada_Version >= Ada_2005
18592 and then not Debug_Flag_Dot_L
18593 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18594 end OK_For_Limited_Init;
18595
18596 -------------------------------
18597 -- OK_For_Limited_Init_In_05 --
18598 -------------------------------
18599
18600 function OK_For_Limited_Init_In_05
18601 (Typ : Entity_Id;
18602 Exp : Node_Id) return Boolean
18603 is
18604 begin
18605 -- An object of a limited interface type can be initialized with any
18606 -- expression of a nonlimited descendant type.
18607
18608 if Is_Class_Wide_Type (Typ)
18609 and then Is_Limited_Interface (Typ)
18610 and then not Is_Limited_Type (Etype (Exp))
18611 then
18612 return True;
18613 end if;
18614
18615 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18616 -- case of limited aggregates (including extension aggregates), and
18617 -- function calls. The function call may have been given in prefixed
18618 -- notation, in which case the original node is an indexed component.
18619 -- If the function is parameterless, the original node was an explicit
18620 -- dereference. The function may also be parameterless, in which case
18621 -- the source node is just an identifier.
18622
18623 case Nkind (Original_Node (Exp)) is
18624 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18625 return True;
18626
18627 when N_Identifier =>
18628 return Present (Entity (Original_Node (Exp)))
18629 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18630
18631 when N_Qualified_Expression =>
18632 return
18633 OK_For_Limited_Init_In_05
18634 (Typ, Expression (Original_Node (Exp)));
18635
18636 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18637 -- with a function call, the expander has rewritten the call into an
18638 -- N_Type_Conversion node to force displacement of the pointer to
18639 -- reference the component containing the secondary dispatch table.
18640 -- Otherwise a type conversion is not a legal context.
18641 -- A return statement for a build-in-place function returning a
18642 -- synchronized type also introduces an unchecked conversion.
18643
18644 when N_Type_Conversion |
18645 N_Unchecked_Type_Conversion =>
18646 return not Comes_From_Source (Exp)
18647 and then
18648 OK_For_Limited_Init_In_05
18649 (Typ, Expression (Original_Node (Exp)));
18650
18651 when N_Indexed_Component |
18652 N_Selected_Component |
18653 N_Explicit_Dereference =>
18654 return Nkind (Exp) = N_Function_Call;
18655
18656 -- A use of 'Input is a function call, hence allowed. Normally the
18657 -- attribute will be changed to a call, but the attribute by itself
18658 -- can occur with -gnatc.
18659
18660 when N_Attribute_Reference =>
18661 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18662
18663 -- For a case expression, all dependent expressions must be legal
18664
18665 when N_Case_Expression =>
18666 declare
18667 Alt : Node_Id;
18668
18669 begin
18670 Alt := First (Alternatives (Original_Node (Exp)));
18671 while Present (Alt) loop
18672 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18673 return False;
18674 end if;
18675
18676 Next (Alt);
18677 end loop;
18678
18679 return True;
18680 end;
18681
18682 -- For an if expression, all dependent expressions must be legal
18683
18684 when N_If_Expression =>
18685 declare
18686 Then_Expr : constant Node_Id :=
18687 Next (First (Expressions (Original_Node (Exp))));
18688 Else_Expr : constant Node_Id := Next (Then_Expr);
18689 begin
18690 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18691 and then
18692 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18693 end;
18694
18695 when others =>
18696 return False;
18697 end case;
18698 end OK_For_Limited_Init_In_05;
18699
18700 -------------------------------------------
18701 -- Ordinary_Fixed_Point_Type_Declaration --
18702 -------------------------------------------
18703
18704 procedure Ordinary_Fixed_Point_Type_Declaration
18705 (T : Entity_Id;
18706 Def : Node_Id)
18707 is
18708 Loc : constant Source_Ptr := Sloc (Def);
18709 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18710 RRS : constant Node_Id := Real_Range_Specification (Def);
18711 Implicit_Base : Entity_Id;
18712 Delta_Val : Ureal;
18713 Small_Val : Ureal;
18714 Low_Val : Ureal;
18715 High_Val : Ureal;
18716
18717 begin
18718 Check_Restriction (No_Fixed_Point, Def);
18719
18720 -- Create implicit base type
18721
18722 Implicit_Base :=
18723 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18724 Set_Etype (Implicit_Base, Implicit_Base);
18725
18726 -- Analyze and process delta expression
18727
18728 Analyze_And_Resolve (Delta_Expr, Any_Real);
18729
18730 Check_Delta_Expression (Delta_Expr);
18731 Delta_Val := Expr_Value_R (Delta_Expr);
18732
18733 Set_Delta_Value (Implicit_Base, Delta_Val);
18734
18735 -- Compute default small from given delta, which is the largest power
18736 -- of two that does not exceed the given delta value.
18737
18738 declare
18739 Tmp : Ureal;
18740 Scale : Int;
18741
18742 begin
18743 Tmp := Ureal_1;
18744 Scale := 0;
18745
18746 if Delta_Val < Ureal_1 then
18747 while Delta_Val < Tmp loop
18748 Tmp := Tmp / Ureal_2;
18749 Scale := Scale + 1;
18750 end loop;
18751
18752 else
18753 loop
18754 Tmp := Tmp * Ureal_2;
18755 exit when Tmp > Delta_Val;
18756 Scale := Scale - 1;
18757 end loop;
18758 end if;
18759
18760 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18761 end;
18762
18763 Set_Small_Value (Implicit_Base, Small_Val);
18764
18765 -- If no range was given, set a dummy range
18766
18767 if RRS <= Empty_Or_Error then
18768 Low_Val := -Small_Val;
18769 High_Val := Small_Val;
18770
18771 -- Otherwise analyze and process given range
18772
18773 else
18774 declare
18775 Low : constant Node_Id := Low_Bound (RRS);
18776 High : constant Node_Id := High_Bound (RRS);
18777
18778 begin
18779 Analyze_And_Resolve (Low, Any_Real);
18780 Analyze_And_Resolve (High, Any_Real);
18781 Check_Real_Bound (Low);
18782 Check_Real_Bound (High);
18783
18784 -- Obtain and set the range
18785
18786 Low_Val := Expr_Value_R (Low);
18787 High_Val := Expr_Value_R (High);
18788
18789 if Low_Val > High_Val then
18790 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18791 end if;
18792 end;
18793 end if;
18794
18795 -- The range for both the implicit base and the declared first subtype
18796 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18797 -- set a temporary range in place. Note that the bounds of the base
18798 -- type will be widened to be symmetrical and to fill the available
18799 -- bits when the type is frozen.
18800
18801 -- We could do this with all discrete types, and probably should, but
18802 -- we absolutely have to do it for fixed-point, since the end-points
18803 -- of the range and the size are determined by the small value, which
18804 -- could be reset before the freeze point.
18805
18806 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18807 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18808
18809 -- Complete definition of first subtype. The inheritance of the rep item
18810 -- chain ensures that SPARK-related pragmas are not clobbered when the
18811 -- ordinary fixed point type acts as a full view of a private type.
18812
18813 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18814 Set_Etype (T, Implicit_Base);
18815 Init_Size_Align (T);
18816 Inherit_Rep_Item_Chain (T, Implicit_Base);
18817 Set_Small_Value (T, Small_Val);
18818 Set_Delta_Value (T, Delta_Val);
18819 Set_Is_Constrained (T);
18820 end Ordinary_Fixed_Point_Type_Declaration;
18821
18822 ----------------------------------
18823 -- Preanalyze_Assert_Expression --
18824 ----------------------------------
18825
18826 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18827 begin
18828 In_Assertion_Expr := In_Assertion_Expr + 1;
18829 Preanalyze_Spec_Expression (N, T);
18830 In_Assertion_Expr := In_Assertion_Expr - 1;
18831 end Preanalyze_Assert_Expression;
18832
18833 -----------------------------------
18834 -- Preanalyze_Default_Expression --
18835 -----------------------------------
18836
18837 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18838 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18839 begin
18840 In_Default_Expr := True;
18841 Preanalyze_Spec_Expression (N, T);
18842 In_Default_Expr := Save_In_Default_Expr;
18843 end Preanalyze_Default_Expression;
18844
18845 --------------------------------
18846 -- Preanalyze_Spec_Expression --
18847 --------------------------------
18848
18849 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18850 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18851 begin
18852 In_Spec_Expression := True;
18853 Preanalyze_And_Resolve (N, T);
18854 In_Spec_Expression := Save_In_Spec_Expression;
18855 end Preanalyze_Spec_Expression;
18856
18857 ----------------------------------------
18858 -- Prepare_Private_Subtype_Completion --
18859 ----------------------------------------
18860
18861 procedure Prepare_Private_Subtype_Completion
18862 (Id : Entity_Id;
18863 Related_Nod : Node_Id)
18864 is
18865 Id_B : constant Entity_Id := Base_Type (Id);
18866 Full_B : Entity_Id := Full_View (Id_B);
18867 Full : Entity_Id;
18868
18869 begin
18870 if Present (Full_B) then
18871
18872 -- Get to the underlying full view if necessary
18873
18874 if Is_Private_Type (Full_B)
18875 and then Present (Underlying_Full_View (Full_B))
18876 then
18877 Full_B := Underlying_Full_View (Full_B);
18878 end if;
18879
18880 -- The Base_Type is already completed, we can complete the subtype
18881 -- now. We have to create a new entity with the same name, Thus we
18882 -- can't use Create_Itype.
18883
18884 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18885 Set_Is_Itype (Full);
18886 Set_Associated_Node_For_Itype (Full, Related_Nod);
18887 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18888 end if;
18889
18890 -- The parent subtype may be private, but the base might not, in some
18891 -- nested instances. In that case, the subtype does not need to be
18892 -- exchanged. It would still be nice to make private subtypes and their
18893 -- bases consistent at all times ???
18894
18895 if Is_Private_Type (Id_B) then
18896 Append_Elmt (Id, Private_Dependents (Id_B));
18897 end if;
18898 end Prepare_Private_Subtype_Completion;
18899
18900 ---------------------------
18901 -- Process_Discriminants --
18902 ---------------------------
18903
18904 procedure Process_Discriminants
18905 (N : Node_Id;
18906 Prev : Entity_Id := Empty)
18907 is
18908 Elist : constant Elist_Id := New_Elmt_List;
18909 Id : Node_Id;
18910 Discr : Node_Id;
18911 Discr_Number : Uint;
18912 Discr_Type : Entity_Id;
18913 Default_Present : Boolean := False;
18914 Default_Not_Present : Boolean := False;
18915
18916 begin
18917 -- A composite type other than an array type can have discriminants.
18918 -- On entry, the current scope is the composite type.
18919
18920 -- The discriminants are initially entered into the scope of the type
18921 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18922 -- use, as explained at the end of this procedure.
18923
18924 Discr := First (Discriminant_Specifications (N));
18925 while Present (Discr) loop
18926 Enter_Name (Defining_Identifier (Discr));
18927
18928 -- For navigation purposes we add a reference to the discriminant
18929 -- in the entity for the type. If the current declaration is a
18930 -- completion, place references on the partial view. Otherwise the
18931 -- type is the current scope.
18932
18933 if Present (Prev) then
18934
18935 -- The references go on the partial view, if present. If the
18936 -- partial view has discriminants, the references have been
18937 -- generated already.
18938
18939 if not Has_Discriminants (Prev) then
18940 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18941 end if;
18942 else
18943 Generate_Reference
18944 (Current_Scope, Defining_Identifier (Discr), 'd');
18945 end if;
18946
18947 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18948 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18949
18950 -- Ada 2005 (AI-254)
18951
18952 if Present (Access_To_Subprogram_Definition
18953 (Discriminant_Type (Discr)))
18954 and then Protected_Present (Access_To_Subprogram_Definition
18955 (Discriminant_Type (Discr)))
18956 then
18957 Discr_Type :=
18958 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18959 end if;
18960
18961 else
18962 Find_Type (Discriminant_Type (Discr));
18963 Discr_Type := Etype (Discriminant_Type (Discr));
18964
18965 if Error_Posted (Discriminant_Type (Discr)) then
18966 Discr_Type := Any_Type;
18967 end if;
18968 end if;
18969
18970 -- Handling of discriminants that are access types
18971
18972 if Is_Access_Type (Discr_Type) then
18973
18974 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18975 -- limited record types
18976
18977 if Ada_Version < Ada_2005 then
18978 Check_Access_Discriminant_Requires_Limited
18979 (Discr, Discriminant_Type (Discr));
18980 end if;
18981
18982 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18983 Error_Msg_N
18984 ("(Ada 83) access discriminant not allowed", Discr);
18985 end if;
18986
18987 -- If not access type, must be a discrete type
18988
18989 elsif not Is_Discrete_Type (Discr_Type) then
18990 Error_Msg_N
18991 ("discriminants must have a discrete or access type",
18992 Discriminant_Type (Discr));
18993 end if;
18994
18995 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18996
18997 -- If a discriminant specification includes the assignment compound
18998 -- delimiter followed by an expression, the expression is the default
18999 -- expression of the discriminant; the default expression must be of
19000 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19001 -- a default expression, we do the special preanalysis, since this
19002 -- expression does not freeze (see section "Handling of Default and
19003 -- Per-Object Expressions" in spec of package Sem).
19004
19005 if Present (Expression (Discr)) then
19006 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19007
19008 -- Legaity checks
19009
19010 if Nkind (N) = N_Formal_Type_Declaration then
19011 Error_Msg_N
19012 ("discriminant defaults not allowed for formal type",
19013 Expression (Discr));
19014
19015 -- Flag an error for a tagged type with defaulted discriminants,
19016 -- excluding limited tagged types when compiling for Ada 2012
19017 -- (see AI05-0214).
19018
19019 elsif Is_Tagged_Type (Current_Scope)
19020 and then (not Is_Limited_Type (Current_Scope)
19021 or else Ada_Version < Ada_2012)
19022 and then Comes_From_Source (N)
19023 then
19024 -- Note: see similar test in Check_Or_Process_Discriminants, to
19025 -- handle the (illegal) case of the completion of an untagged
19026 -- view with discriminants with defaults by a tagged full view.
19027 -- We skip the check if Discr does not come from source, to
19028 -- account for the case of an untagged derived type providing
19029 -- defaults for a renamed discriminant from a private untagged
19030 -- ancestor with a tagged full view (ACATS B460006).
19031
19032 if Ada_Version >= Ada_2012 then
19033 Error_Msg_N
19034 ("discriminants of nonlimited tagged type cannot have"
19035 & " defaults",
19036 Expression (Discr));
19037 else
19038 Error_Msg_N
19039 ("discriminants of tagged type cannot have defaults",
19040 Expression (Discr));
19041 end if;
19042
19043 else
19044 Default_Present := True;
19045 Append_Elmt (Expression (Discr), Elist);
19046
19047 -- Tag the defining identifiers for the discriminants with
19048 -- their corresponding default expressions from the tree.
19049
19050 Set_Discriminant_Default_Value
19051 (Defining_Identifier (Discr), Expression (Discr));
19052 end if;
19053
19054 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19055 -- gets set unless we can be sure that no range check is required.
19056
19057 if (GNATprove_Mode or not Expander_Active)
19058 and then not
19059 Is_In_Range
19060 (Expression (Discr), Discr_Type, Assume_Valid => True)
19061 then
19062 Set_Do_Range_Check (Expression (Discr));
19063 end if;
19064
19065 -- No default discriminant value given
19066
19067 else
19068 Default_Not_Present := True;
19069 end if;
19070
19071 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19072 -- Discr_Type but with the null-exclusion attribute
19073
19074 if Ada_Version >= Ada_2005 then
19075
19076 -- Ada 2005 (AI-231): Static checks
19077
19078 if Can_Never_Be_Null (Discr_Type) then
19079 Null_Exclusion_Static_Checks (Discr);
19080
19081 elsif Is_Access_Type (Discr_Type)
19082 and then Null_Exclusion_Present (Discr)
19083
19084 -- No need to check itypes because in their case this check
19085 -- was done at their point of creation
19086
19087 and then not Is_Itype (Discr_Type)
19088 then
19089 if Can_Never_Be_Null (Discr_Type) then
19090 Error_Msg_NE
19091 ("`NOT NULL` not allowed (& already excludes null)",
19092 Discr,
19093 Discr_Type);
19094 end if;
19095
19096 Set_Etype (Defining_Identifier (Discr),
19097 Create_Null_Excluding_Itype
19098 (T => Discr_Type,
19099 Related_Nod => Discr));
19100
19101 -- Check for improper null exclusion if the type is otherwise
19102 -- legal for a discriminant.
19103
19104 elsif Null_Exclusion_Present (Discr)
19105 and then Is_Discrete_Type (Discr_Type)
19106 then
19107 Error_Msg_N
19108 ("null exclusion can only apply to an access type", Discr);
19109 end if;
19110
19111 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19112 -- can't have defaults. Synchronized types, or types that are
19113 -- explicitly limited are fine, but special tests apply to derived
19114 -- types in generics: in a generic body we have to assume the
19115 -- worst, and therefore defaults are not allowed if the parent is
19116 -- a generic formal private type (see ACATS B370001).
19117
19118 if Is_Access_Type (Discr_Type) and then Default_Present then
19119 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19120 or else Is_Limited_Record (Current_Scope)
19121 or else Is_Concurrent_Type (Current_Scope)
19122 or else Is_Concurrent_Record_Type (Current_Scope)
19123 or else Ekind (Current_Scope) = E_Limited_Private_Type
19124 then
19125 if not Is_Derived_Type (Current_Scope)
19126 or else not Is_Generic_Type (Etype (Current_Scope))
19127 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19128 or else Limited_Present
19129 (Type_Definition (Parent (Current_Scope)))
19130 then
19131 null;
19132
19133 else
19134 Error_Msg_N
19135 ("access discriminants of nonlimited types cannot "
19136 & "have defaults", Expression (Discr));
19137 end if;
19138
19139 elsif Present (Expression (Discr)) then
19140 Error_Msg_N
19141 ("(Ada 2005) access discriminants of nonlimited types "
19142 & "cannot have defaults", Expression (Discr));
19143 end if;
19144 end if;
19145 end if;
19146
19147 -- A discriminant cannot be effectively volatile. This check is only
19148 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19149 -- rule (SPARK RM 7.1.3(6)).
19150
19151 if SPARK_Mode = On
19152 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19153 then
19154 Error_Msg_N ("discriminant cannot be volatile", Discr);
19155 end if;
19156
19157 Next (Discr);
19158 end loop;
19159
19160 -- An element list consisting of the default expressions of the
19161 -- discriminants is constructed in the above loop and used to set
19162 -- the Discriminant_Constraint attribute for the type. If an object
19163 -- is declared of this (record or task) type without any explicit
19164 -- discriminant constraint given, this element list will form the
19165 -- actual parameters for the corresponding initialization procedure
19166 -- for the type.
19167
19168 Set_Discriminant_Constraint (Current_Scope, Elist);
19169 Set_Stored_Constraint (Current_Scope, No_Elist);
19170
19171 -- Default expressions must be provided either for all or for none
19172 -- of the discriminants of a discriminant part. (RM 3.7.1)
19173
19174 if Default_Present and then Default_Not_Present then
19175 Error_Msg_N
19176 ("incomplete specification of defaults for discriminants", N);
19177 end if;
19178
19179 -- The use of the name of a discriminant is not allowed in default
19180 -- expressions of a discriminant part if the specification of the
19181 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19182
19183 -- To detect this, the discriminant names are entered initially with an
19184 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19185 -- attempt to use a void entity (for example in an expression that is
19186 -- type-checked) produces the error message: premature usage. Now after
19187 -- completing the semantic analysis of the discriminant part, we can set
19188 -- the Ekind of all the discriminants appropriately.
19189
19190 Discr := First (Discriminant_Specifications (N));
19191 Discr_Number := Uint_1;
19192 while Present (Discr) loop
19193 Id := Defining_Identifier (Discr);
19194 Set_Ekind (Id, E_Discriminant);
19195 Init_Component_Location (Id);
19196 Init_Esize (Id);
19197 Set_Discriminant_Number (Id, Discr_Number);
19198
19199 -- Make sure this is always set, even in illegal programs
19200
19201 Set_Corresponding_Discriminant (Id, Empty);
19202
19203 -- Initialize the Original_Record_Component to the entity itself.
19204 -- Inherit_Components will propagate the right value to
19205 -- discriminants in derived record types.
19206
19207 Set_Original_Record_Component (Id, Id);
19208
19209 -- Create the discriminal for the discriminant
19210
19211 Build_Discriminal (Id);
19212
19213 Next (Discr);
19214 Discr_Number := Discr_Number + 1;
19215 end loop;
19216
19217 Set_Has_Discriminants (Current_Scope);
19218 end Process_Discriminants;
19219
19220 -----------------------
19221 -- Process_Full_View --
19222 -----------------------
19223
19224 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19225 procedure Collect_Implemented_Interfaces
19226 (Typ : Entity_Id;
19227 Ifaces : Elist_Id);
19228 -- Ada 2005: Gather all the interfaces that Typ directly or
19229 -- inherently implements. Duplicate entries are not added to
19230 -- the list Ifaces.
19231
19232 ------------------------------------
19233 -- Collect_Implemented_Interfaces --
19234 ------------------------------------
19235
19236 procedure Collect_Implemented_Interfaces
19237 (Typ : Entity_Id;
19238 Ifaces : Elist_Id)
19239 is
19240 Iface : Entity_Id;
19241 Iface_Elmt : Elmt_Id;
19242
19243 begin
19244 -- Abstract interfaces are only associated with tagged record types
19245
19246 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19247 return;
19248 end if;
19249
19250 -- Recursively climb to the ancestors
19251
19252 if Etype (Typ) /= Typ
19253
19254 -- Protect the frontend against wrong cyclic declarations like:
19255
19256 -- type B is new A with private;
19257 -- type C is new A with private;
19258 -- private
19259 -- type B is new C with null record;
19260 -- type C is new B with null record;
19261
19262 and then Etype (Typ) /= Priv_T
19263 and then Etype (Typ) /= Full_T
19264 then
19265 -- Keep separate the management of private type declarations
19266
19267 if Ekind (Typ) = E_Record_Type_With_Private then
19268
19269 -- Handle the following illegal usage:
19270 -- type Private_Type is tagged private;
19271 -- private
19272 -- type Private_Type is new Type_Implementing_Iface;
19273
19274 if Present (Full_View (Typ))
19275 and then Etype (Typ) /= Full_View (Typ)
19276 then
19277 if Is_Interface (Etype (Typ)) then
19278 Append_Unique_Elmt (Etype (Typ), Ifaces);
19279 end if;
19280
19281 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19282 end if;
19283
19284 -- Non-private types
19285
19286 else
19287 if Is_Interface (Etype (Typ)) then
19288 Append_Unique_Elmt (Etype (Typ), Ifaces);
19289 end if;
19290
19291 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19292 end if;
19293 end if;
19294
19295 -- Handle entities in the list of abstract interfaces
19296
19297 if Present (Interfaces (Typ)) then
19298 Iface_Elmt := First_Elmt (Interfaces (Typ));
19299 while Present (Iface_Elmt) loop
19300 Iface := Node (Iface_Elmt);
19301
19302 pragma Assert (Is_Interface (Iface));
19303
19304 if not Contain_Interface (Iface, Ifaces) then
19305 Append_Elmt (Iface, Ifaces);
19306 Collect_Implemented_Interfaces (Iface, Ifaces);
19307 end if;
19308
19309 Next_Elmt (Iface_Elmt);
19310 end loop;
19311 end if;
19312 end Collect_Implemented_Interfaces;
19313
19314 -- Local variables
19315
19316 Full_Indic : Node_Id;
19317 Full_Parent : Entity_Id;
19318 Priv_Parent : Entity_Id;
19319
19320 -- Start of processing for Process_Full_View
19321
19322 begin
19323 -- First some sanity checks that must be done after semantic
19324 -- decoration of the full view and thus cannot be placed with other
19325 -- similar checks in Find_Type_Name
19326
19327 if not Is_Limited_Type (Priv_T)
19328 and then (Is_Limited_Type (Full_T)
19329 or else Is_Limited_Composite (Full_T))
19330 then
19331 if In_Instance then
19332 null;
19333 else
19334 Error_Msg_N
19335 ("completion of nonlimited type cannot be limited", Full_T);
19336 Explain_Limited_Type (Full_T, Full_T);
19337 end if;
19338
19339 elsif Is_Abstract_Type (Full_T)
19340 and then not Is_Abstract_Type (Priv_T)
19341 then
19342 Error_Msg_N
19343 ("completion of nonabstract type cannot be abstract", Full_T);
19344
19345 elsif Is_Tagged_Type (Priv_T)
19346 and then Is_Limited_Type (Priv_T)
19347 and then not Is_Limited_Type (Full_T)
19348 then
19349 -- If pragma CPP_Class was applied to the private declaration
19350 -- propagate the limitedness to the full-view
19351
19352 if Is_CPP_Class (Priv_T) then
19353 Set_Is_Limited_Record (Full_T);
19354
19355 -- GNAT allow its own definition of Limited_Controlled to disobey
19356 -- this rule in order in ease the implementation. This test is safe
19357 -- because Root_Controlled is defined in a child of System that
19358 -- normal programs are not supposed to use.
19359
19360 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19361 Set_Is_Limited_Composite (Full_T);
19362 else
19363 Error_Msg_N
19364 ("completion of limited tagged type must be limited", Full_T);
19365 end if;
19366
19367 elsif Is_Generic_Type (Priv_T) then
19368 Error_Msg_N ("generic type cannot have a completion", Full_T);
19369 end if;
19370
19371 -- Check that ancestor interfaces of private and full views are
19372 -- consistent. We omit this check for synchronized types because
19373 -- they are performed on the corresponding record type when frozen.
19374
19375 if Ada_Version >= Ada_2005
19376 and then Is_Tagged_Type (Priv_T)
19377 and then Is_Tagged_Type (Full_T)
19378 and then not Is_Concurrent_Type (Full_T)
19379 then
19380 declare
19381 Iface : Entity_Id;
19382 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19383 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19384
19385 begin
19386 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19387 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19388
19389 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19390 -- an interface type if and only if the full type is descendant
19391 -- of the interface type (AARM 7.3 (7.3/2)).
19392
19393 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19394
19395 if Present (Iface) then
19396 Error_Msg_NE
19397 ("interface in partial view& not implemented by full type "
19398 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19399 end if;
19400
19401 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19402
19403 if Present (Iface) then
19404 Error_Msg_NE
19405 ("interface & not implemented by partial view "
19406 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19407 end if;
19408 end;
19409 end if;
19410
19411 if Is_Tagged_Type (Priv_T)
19412 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19413 and then Is_Derived_Type (Full_T)
19414 then
19415 Priv_Parent := Etype (Priv_T);
19416
19417 -- The full view of a private extension may have been transformed
19418 -- into an unconstrained derived type declaration and a subtype
19419 -- declaration (see build_derived_record_type for details).
19420
19421 if Nkind (N) = N_Subtype_Declaration then
19422 Full_Indic := Subtype_Indication (N);
19423 Full_Parent := Etype (Base_Type (Full_T));
19424 else
19425 Full_Indic := Subtype_Indication (Type_Definition (N));
19426 Full_Parent := Etype (Full_T);
19427 end if;
19428
19429 -- Check that the parent type of the full type is a descendant of
19430 -- the ancestor subtype given in the private extension. If either
19431 -- entity has an Etype equal to Any_Type then we had some previous
19432 -- error situation [7.3(8)].
19433
19434 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19435 return;
19436
19437 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19438 -- any order. Therefore we don't have to check that its parent must
19439 -- be a descendant of the parent of the private type declaration.
19440
19441 elsif Is_Interface (Priv_Parent)
19442 and then Is_Interface (Full_Parent)
19443 then
19444 null;
19445
19446 -- Ada 2005 (AI-251): If the parent of the private type declaration
19447 -- is an interface there is no need to check that it is an ancestor
19448 -- of the associated full type declaration. The required tests for
19449 -- this case are performed by Build_Derived_Record_Type.
19450
19451 elsif not Is_Interface (Base_Type (Priv_Parent))
19452 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19453 then
19454 Error_Msg_N
19455 ("parent of full type must descend from parent"
19456 & " of private extension", Full_Indic);
19457
19458 -- First check a formal restriction, and then proceed with checking
19459 -- Ada rules. Since the formal restriction is not a serious error, we
19460 -- don't prevent further error detection for this check, hence the
19461 -- ELSE.
19462
19463 else
19464 -- In formal mode, when completing a private extension the type
19465 -- named in the private part must be exactly the same as that
19466 -- named in the visible part.
19467
19468 if Priv_Parent /= Full_Parent then
19469 Error_Msg_Name_1 := Chars (Priv_Parent);
19470 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19471 end if;
19472
19473 -- Check the rules of 7.3(10): if the private extension inherits
19474 -- known discriminants, then the full type must also inherit those
19475 -- discriminants from the same (ancestor) type, and the parent
19476 -- subtype of the full type must be constrained if and only if
19477 -- the ancestor subtype of the private extension is constrained.
19478
19479 if No (Discriminant_Specifications (Parent (Priv_T)))
19480 and then not Has_Unknown_Discriminants (Priv_T)
19481 and then Has_Discriminants (Base_Type (Priv_Parent))
19482 then
19483 declare
19484 Priv_Indic : constant Node_Id :=
19485 Subtype_Indication (Parent (Priv_T));
19486
19487 Priv_Constr : constant Boolean :=
19488 Is_Constrained (Priv_Parent)
19489 or else
19490 Nkind (Priv_Indic) = N_Subtype_Indication
19491 or else
19492 Is_Constrained (Entity (Priv_Indic));
19493
19494 Full_Constr : constant Boolean :=
19495 Is_Constrained (Full_Parent)
19496 or else
19497 Nkind (Full_Indic) = N_Subtype_Indication
19498 or else
19499 Is_Constrained (Entity (Full_Indic));
19500
19501 Priv_Discr : Entity_Id;
19502 Full_Discr : Entity_Id;
19503
19504 begin
19505 Priv_Discr := First_Discriminant (Priv_Parent);
19506 Full_Discr := First_Discriminant (Full_Parent);
19507 while Present (Priv_Discr) and then Present (Full_Discr) loop
19508 if Original_Record_Component (Priv_Discr) =
19509 Original_Record_Component (Full_Discr)
19510 or else
19511 Corresponding_Discriminant (Priv_Discr) =
19512 Corresponding_Discriminant (Full_Discr)
19513 then
19514 null;
19515 else
19516 exit;
19517 end if;
19518
19519 Next_Discriminant (Priv_Discr);
19520 Next_Discriminant (Full_Discr);
19521 end loop;
19522
19523 if Present (Priv_Discr) or else Present (Full_Discr) then
19524 Error_Msg_N
19525 ("full view must inherit discriminants of the parent"
19526 & " type used in the private extension", Full_Indic);
19527
19528 elsif Priv_Constr and then not Full_Constr then
19529 Error_Msg_N
19530 ("parent subtype of full type must be constrained",
19531 Full_Indic);
19532
19533 elsif Full_Constr and then not Priv_Constr then
19534 Error_Msg_N
19535 ("parent subtype of full type must be unconstrained",
19536 Full_Indic);
19537 end if;
19538 end;
19539
19540 -- Check the rules of 7.3(12): if a partial view has neither
19541 -- known or unknown discriminants, then the full type
19542 -- declaration shall define a definite subtype.
19543
19544 elsif not Has_Unknown_Discriminants (Priv_T)
19545 and then not Has_Discriminants (Priv_T)
19546 and then not Is_Constrained (Full_T)
19547 then
19548 Error_Msg_N
19549 ("full view must define a constrained type if partial view"
19550 & " has no discriminants", Full_T);
19551 end if;
19552
19553 -- ??????? Do we implement the following properly ?????
19554 -- If the ancestor subtype of a private extension has constrained
19555 -- discriminants, then the parent subtype of the full view shall
19556 -- impose a statically matching constraint on those discriminants
19557 -- [7.3(13)].
19558 end if;
19559
19560 else
19561 -- For untagged types, verify that a type without discriminants is
19562 -- not completed with an unconstrained type. A separate error message
19563 -- is produced if the full type has defaulted discriminants.
19564
19565 if Is_Definite_Subtype (Priv_T)
19566 and then not Is_Definite_Subtype (Full_T)
19567 then
19568 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19569 Error_Msg_NE
19570 ("full view of& not compatible with declaration#",
19571 Full_T, Priv_T);
19572
19573 if not Is_Tagged_Type (Full_T) then
19574 Error_Msg_N
19575 ("\one is constrained, the other unconstrained", Full_T);
19576 end if;
19577 end if;
19578 end if;
19579
19580 -- AI-419: verify that the use of "limited" is consistent
19581
19582 declare
19583 Orig_Decl : constant Node_Id := Original_Node (N);
19584
19585 begin
19586 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19587 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19588 and then Nkind
19589 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19590 then
19591 if not Limited_Present (Parent (Priv_T))
19592 and then not Synchronized_Present (Parent (Priv_T))
19593 and then Limited_Present (Type_Definition (Orig_Decl))
19594 then
19595 Error_Msg_N
19596 ("full view of non-limited extension cannot be limited", N);
19597
19598 -- Conversely, if the partial view carries the limited keyword,
19599 -- the full view must as well, even if it may be redundant.
19600
19601 elsif Limited_Present (Parent (Priv_T))
19602 and then not Limited_Present (Type_Definition (Orig_Decl))
19603 then
19604 Error_Msg_N
19605 ("full view of limited extension must be explicitly limited",
19606 N);
19607 end if;
19608 end if;
19609 end;
19610
19611 -- Ada 2005 (AI-443): A synchronized private extension must be
19612 -- completed by a task or protected type.
19613
19614 if Ada_Version >= Ada_2005
19615 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19616 and then Synchronized_Present (Parent (Priv_T))
19617 and then not Is_Concurrent_Type (Full_T)
19618 then
19619 Error_Msg_N ("full view of synchronized extension must " &
19620 "be synchronized type", N);
19621 end if;
19622
19623 -- Ada 2005 AI-363: if the full view has discriminants with
19624 -- defaults, it is illegal to declare constrained access subtypes
19625 -- whose designated type is the current type. This allows objects
19626 -- of the type that are declared in the heap to be unconstrained.
19627
19628 if not Has_Unknown_Discriminants (Priv_T)
19629 and then not Has_Discriminants (Priv_T)
19630 and then Has_Discriminants (Full_T)
19631 and then
19632 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19633 then
19634 Set_Has_Constrained_Partial_View (Full_T);
19635 Set_Has_Constrained_Partial_View (Priv_T);
19636 end if;
19637
19638 -- Create a full declaration for all its subtypes recorded in
19639 -- Private_Dependents and swap them similarly to the base type. These
19640 -- are subtypes that have been define before the full declaration of
19641 -- the private type. We also swap the entry in Private_Dependents list
19642 -- so we can properly restore the private view on exit from the scope.
19643
19644 declare
19645 Priv_Elmt : Elmt_Id;
19646 Priv_Scop : Entity_Id;
19647 Priv : Entity_Id;
19648 Full : Entity_Id;
19649
19650 begin
19651 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19652 while Present (Priv_Elmt) loop
19653 Priv := Node (Priv_Elmt);
19654 Priv_Scop := Scope (Priv);
19655
19656 if Ekind_In (Priv, E_Private_Subtype,
19657 E_Limited_Private_Subtype,
19658 E_Record_Subtype_With_Private)
19659 then
19660 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19661 Set_Is_Itype (Full);
19662 Set_Parent (Full, Parent (Priv));
19663 Set_Associated_Node_For_Itype (Full, N);
19664
19665 -- Now we need to complete the private subtype, but since the
19666 -- base type has already been swapped, we must also swap the
19667 -- subtypes (and thus, reverse the arguments in the call to
19668 -- Complete_Private_Subtype). Also note that we may need to
19669 -- re-establish the scope of the private subtype.
19670
19671 Copy_And_Swap (Priv, Full);
19672
19673 if not In_Open_Scopes (Priv_Scop) then
19674 Push_Scope (Priv_Scop);
19675
19676 else
19677 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19678
19679 Priv_Scop := Empty;
19680 end if;
19681
19682 Complete_Private_Subtype (Full, Priv, Full_T, N);
19683
19684 if Present (Priv_Scop) then
19685 Pop_Scope;
19686 end if;
19687
19688 Replace_Elmt (Priv_Elmt, Full);
19689 end if;
19690
19691 Next_Elmt (Priv_Elmt);
19692 end loop;
19693 end;
19694
19695 -- If the private view was tagged, copy the new primitive operations
19696 -- from the private view to the full view.
19697
19698 if Is_Tagged_Type (Full_T) then
19699 declare
19700 Disp_Typ : Entity_Id;
19701 Full_List : Elist_Id;
19702 Prim : Entity_Id;
19703 Prim_Elmt : Elmt_Id;
19704 Priv_List : Elist_Id;
19705
19706 function Contains
19707 (E : Entity_Id;
19708 L : Elist_Id) return Boolean;
19709 -- Determine whether list L contains element E
19710
19711 --------------
19712 -- Contains --
19713 --------------
19714
19715 function Contains
19716 (E : Entity_Id;
19717 L : Elist_Id) return Boolean
19718 is
19719 List_Elmt : Elmt_Id;
19720
19721 begin
19722 List_Elmt := First_Elmt (L);
19723 while Present (List_Elmt) loop
19724 if Node (List_Elmt) = E then
19725 return True;
19726 end if;
19727
19728 Next_Elmt (List_Elmt);
19729 end loop;
19730
19731 return False;
19732 end Contains;
19733
19734 -- Start of processing
19735
19736 begin
19737 if Is_Tagged_Type (Priv_T) then
19738 Priv_List := Primitive_Operations (Priv_T);
19739 Prim_Elmt := First_Elmt (Priv_List);
19740
19741 -- In the case of a concurrent type completing a private tagged
19742 -- type, primitives may have been declared in between the two
19743 -- views. These subprograms need to be wrapped the same way
19744 -- entries and protected procedures are handled because they
19745 -- cannot be directly shared by the two views.
19746
19747 if Is_Concurrent_Type (Full_T) then
19748 declare
19749 Conc_Typ : constant Entity_Id :=
19750 Corresponding_Record_Type (Full_T);
19751 Curr_Nod : Node_Id := Parent (Conc_Typ);
19752 Wrap_Spec : Node_Id;
19753
19754 begin
19755 while Present (Prim_Elmt) loop
19756 Prim := Node (Prim_Elmt);
19757
19758 if Comes_From_Source (Prim)
19759 and then not Is_Abstract_Subprogram (Prim)
19760 then
19761 Wrap_Spec :=
19762 Make_Subprogram_Declaration (Sloc (Prim),
19763 Specification =>
19764 Build_Wrapper_Spec
19765 (Subp_Id => Prim,
19766 Obj_Typ => Conc_Typ,
19767 Formals =>
19768 Parameter_Specifications (
19769 Parent (Prim))));
19770
19771 Insert_After (Curr_Nod, Wrap_Spec);
19772 Curr_Nod := Wrap_Spec;
19773
19774 Analyze (Wrap_Spec);
19775 end if;
19776
19777 Next_Elmt (Prim_Elmt);
19778 end loop;
19779
19780 return;
19781 end;
19782
19783 -- For non-concurrent types, transfer explicit primitives, but
19784 -- omit those inherited from the parent of the private view
19785 -- since they will be re-inherited later on.
19786
19787 else
19788 Full_List := Primitive_Operations (Full_T);
19789
19790 while Present (Prim_Elmt) loop
19791 Prim := Node (Prim_Elmt);
19792
19793 if Comes_From_Source (Prim)
19794 and then not Contains (Prim, Full_List)
19795 then
19796 Append_Elmt (Prim, Full_List);
19797 end if;
19798
19799 Next_Elmt (Prim_Elmt);
19800 end loop;
19801 end if;
19802
19803 -- Untagged private view
19804
19805 else
19806 Full_List := Primitive_Operations (Full_T);
19807
19808 -- In this case the partial view is untagged, so here we locate
19809 -- all of the earlier primitives that need to be treated as
19810 -- dispatching (those that appear between the two views). Note
19811 -- that these additional operations must all be new operations
19812 -- (any earlier operations that override inherited operations
19813 -- of the full view will already have been inserted in the
19814 -- primitives list, marked by Check_Operation_From_Private_View
19815 -- as dispatching. Note that implicit "/=" operators are
19816 -- excluded from being added to the primitives list since they
19817 -- shouldn't be treated as dispatching (tagged "/=" is handled
19818 -- specially).
19819
19820 Prim := Next_Entity (Full_T);
19821 while Present (Prim) and then Prim /= Priv_T loop
19822 if Ekind_In (Prim, E_Procedure, E_Function) then
19823 Disp_Typ := Find_Dispatching_Type (Prim);
19824
19825 if Disp_Typ = Full_T
19826 and then (Chars (Prim) /= Name_Op_Ne
19827 or else Comes_From_Source (Prim))
19828 then
19829 Check_Controlling_Formals (Full_T, Prim);
19830
19831 if not Is_Dispatching_Operation (Prim) then
19832 Append_Elmt (Prim, Full_List);
19833 Set_Is_Dispatching_Operation (Prim, True);
19834 Set_DT_Position_Value (Prim, No_Uint);
19835 end if;
19836
19837 elsif Is_Dispatching_Operation (Prim)
19838 and then Disp_Typ /= Full_T
19839 then
19840
19841 -- Verify that it is not otherwise controlled by a
19842 -- formal or a return value of type T.
19843
19844 Check_Controlling_Formals (Disp_Typ, Prim);
19845 end if;
19846 end if;
19847
19848 Next_Entity (Prim);
19849 end loop;
19850 end if;
19851
19852 -- For the tagged case, the two views can share the same primitive
19853 -- operations list and the same class-wide type. Update attributes
19854 -- of the class-wide type which depend on the full declaration.
19855
19856 if Is_Tagged_Type (Priv_T) then
19857 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19858 Set_Class_Wide_Type
19859 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19860
19861 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19862 Set_Has_Protected
19863 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19864 end if;
19865 end;
19866 end if;
19867
19868 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19869
19870 if Known_To_Have_Preelab_Init (Priv_T) then
19871
19872 -- Case where there is a pragma Preelaborable_Initialization. We
19873 -- always allow this in predefined units, which is cheating a bit,
19874 -- but it means we don't have to struggle to meet the requirements in
19875 -- the RM for having Preelaborable Initialization. Otherwise we
19876 -- require that the type meets the RM rules. But we can't check that
19877 -- yet, because of the rule about overriding Initialize, so we simply
19878 -- set a flag that will be checked at freeze time.
19879
19880 if not In_Predefined_Unit (Full_T) then
19881 Set_Must_Have_Preelab_Init (Full_T);
19882 end if;
19883 end if;
19884
19885 -- If pragma CPP_Class was applied to the private type declaration,
19886 -- propagate it now to the full type declaration.
19887
19888 if Is_CPP_Class (Priv_T) then
19889 Set_Is_CPP_Class (Full_T);
19890 Set_Convention (Full_T, Convention_CPP);
19891
19892 -- Check that components of imported CPP types do not have default
19893 -- expressions.
19894
19895 Check_CPP_Type_Has_No_Defaults (Full_T);
19896 end if;
19897
19898 -- If the private view has user specified stream attributes, then so has
19899 -- the full view.
19900
19901 -- Why the test, how could these flags be already set in Full_T ???
19902
19903 if Has_Specified_Stream_Read (Priv_T) then
19904 Set_Has_Specified_Stream_Read (Full_T);
19905 end if;
19906
19907 if Has_Specified_Stream_Write (Priv_T) then
19908 Set_Has_Specified_Stream_Write (Full_T);
19909 end if;
19910
19911 if Has_Specified_Stream_Input (Priv_T) then
19912 Set_Has_Specified_Stream_Input (Full_T);
19913 end if;
19914
19915 if Has_Specified_Stream_Output (Priv_T) then
19916 Set_Has_Specified_Stream_Output (Full_T);
19917 end if;
19918
19919 -- Propagate the attributes related to pragma Default_Initial_Condition
19920 -- from the private to the full view. Note that both flags are mutually
19921 -- exclusive.
19922
19923 if Has_Default_Init_Cond (Priv_T)
19924 or else Has_Inherited_Default_Init_Cond (Priv_T)
19925 then
19926 Propagate_Default_Init_Cond_Attributes
19927 (From_Typ => Priv_T,
19928 To_Typ => Full_T,
19929 Private_To_Full_View => True);
19930
19931 -- In the case where the full view is derived from another private type,
19932 -- the attributes related to pragma Default_Initial_Condition must be
19933 -- propagated from the full to the private view to maintain consistency
19934 -- of views.
19935
19936 -- package Pack is
19937 -- type Parent_Typ is private
19938 -- with Default_Initial_Condition ...;
19939 -- private
19940 -- type Parent_Typ is ...;
19941 -- end Pack;
19942
19943 -- with Pack; use Pack;
19944 -- package Pack_2 is
19945 -- type Deriv_Typ is private; -- must inherit
19946 -- private
19947 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19948 -- end Pack_2;
19949
19950 elsif Has_Default_Init_Cond (Full_T)
19951 or else Has_Inherited_Default_Init_Cond (Full_T)
19952 then
19953 Propagate_Default_Init_Cond_Attributes
19954 (From_Typ => Full_T,
19955 To_Typ => Priv_T,
19956 Private_To_Full_View => True);
19957 end if;
19958
19959 if Is_Ghost_Entity (Priv_T) then
19960
19961 -- The Ghost policy in effect at the point of declaration and at the
19962 -- point of completion must match (SPARK RM 6.9(14)).
19963
19964 Check_Ghost_Completion (Priv_T, Full_T);
19965
19966 -- In the case where the private view of a tagged type lacks a parent
19967 -- type and is subject to pragma Ghost, ensure that the parent type
19968 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19969
19970 if Is_Derived_Type (Full_T) then
19971 Check_Ghost_Derivation (Full_T);
19972 end if;
19973
19974 -- Propagate the attributes related to pragma Ghost from the private
19975 -- to the full view.
19976
19977 Mark_Full_View_As_Ghost (Priv_T, Full_T);
19978 end if;
19979
19980 -- Propagate invariants to full type
19981
19982 if Has_Invariants (Priv_T) then
19983 Set_Has_Invariants (Full_T);
19984 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19985 end if;
19986
19987 if Has_Inheritable_Invariants (Priv_T) then
19988 Set_Has_Inheritable_Invariants (Full_T);
19989 end if;
19990
19991 -- Check hidden inheritance of class-wide type invariants
19992
19993 if Ada_Version >= Ada_2012
19994 and then not Has_Inheritable_Invariants (Full_T)
19995 and then In_Private_Part (Current_Scope)
19996 and then Has_Interfaces (Full_T)
19997 then
19998 declare
19999 Ifaces : Elist_Id;
20000 AI : Elmt_Id;
20001
20002 begin
20003 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
20004
20005 AI := First_Elmt (Ifaces);
20006 while Present (AI) loop
20007 if Has_Inheritable_Invariants (Node (AI)) then
20008 Error_Msg_N
20009 ("hidden inheritance of class-wide type invariants " &
20010 "not allowed", N);
20011 exit;
20012 end if;
20013
20014 Next_Elmt (AI);
20015 end loop;
20016 end;
20017 end if;
20018
20019 -- Propagate predicates to full type, and predicate function if already
20020 -- defined. It is not clear that this can actually happen? the partial
20021 -- view cannot be frozen yet, and the predicate function has not been
20022 -- built. Still it is a cheap check and seems safer to make it.
20023
20024 if Has_Predicates (Priv_T) then
20025 if Present (Predicate_Function (Priv_T)) then
20026 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20027 end if;
20028
20029 Set_Has_Predicates (Full_T);
20030 end if;
20031 end Process_Full_View;
20032
20033 -----------------------------------
20034 -- Process_Incomplete_Dependents --
20035 -----------------------------------
20036
20037 procedure Process_Incomplete_Dependents
20038 (N : Node_Id;
20039 Full_T : Entity_Id;
20040 Inc_T : Entity_Id)
20041 is
20042 Inc_Elmt : Elmt_Id;
20043 Priv_Dep : Entity_Id;
20044 New_Subt : Entity_Id;
20045
20046 Disc_Constraint : Elist_Id;
20047
20048 begin
20049 if No (Private_Dependents (Inc_T)) then
20050 return;
20051 end if;
20052
20053 -- Itypes that may be generated by the completion of an incomplete
20054 -- subtype are not used by the back-end and not attached to the tree.
20055 -- They are created only for constraint-checking purposes.
20056
20057 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20058 while Present (Inc_Elmt) loop
20059 Priv_Dep := Node (Inc_Elmt);
20060
20061 if Ekind (Priv_Dep) = E_Subprogram_Type then
20062
20063 -- An Access_To_Subprogram type may have a return type or a
20064 -- parameter type that is incomplete. Replace with the full view.
20065
20066 if Etype (Priv_Dep) = Inc_T then
20067 Set_Etype (Priv_Dep, Full_T);
20068 end if;
20069
20070 declare
20071 Formal : Entity_Id;
20072
20073 begin
20074 Formal := First_Formal (Priv_Dep);
20075 while Present (Formal) loop
20076 if Etype (Formal) = Inc_T then
20077 Set_Etype (Formal, Full_T);
20078 end if;
20079
20080 Next_Formal (Formal);
20081 end loop;
20082 end;
20083
20084 elsif Is_Overloadable (Priv_Dep) then
20085
20086 -- If a subprogram in the incomplete dependents list is primitive
20087 -- for a tagged full type then mark it as a dispatching operation,
20088 -- check whether it overrides an inherited subprogram, and check
20089 -- restrictions on its controlling formals. Note that a protected
20090 -- operation is never dispatching: only its wrapper operation
20091 -- (which has convention Ada) is.
20092
20093 if Is_Tagged_Type (Full_T)
20094 and then Is_Primitive (Priv_Dep)
20095 and then Convention (Priv_Dep) /= Convention_Protected
20096 then
20097 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20098 Set_Is_Dispatching_Operation (Priv_Dep);
20099 Check_Controlling_Formals (Full_T, Priv_Dep);
20100 end if;
20101
20102 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20103
20104 -- Can happen during processing of a body before the completion
20105 -- of a TA type. Ignore, because spec is also on dependent list.
20106
20107 return;
20108
20109 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20110 -- corresponding subtype of the full view.
20111
20112 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20113 Set_Subtype_Indication
20114 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20115 Set_Etype (Priv_Dep, Full_T);
20116 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20117 Set_Analyzed (Parent (Priv_Dep), False);
20118
20119 -- Reanalyze the declaration, suppressing the call to
20120 -- Enter_Name to avoid duplicate names.
20121
20122 Analyze_Subtype_Declaration
20123 (N => Parent (Priv_Dep),
20124 Skip => True);
20125
20126 -- Dependent is a subtype
20127
20128 else
20129 -- We build a new subtype indication using the full view of the
20130 -- incomplete parent. The discriminant constraints have been
20131 -- elaborated already at the point of the subtype declaration.
20132
20133 New_Subt := Create_Itype (E_Void, N);
20134
20135 if Has_Discriminants (Full_T) then
20136 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20137 else
20138 Disc_Constraint := No_Elist;
20139 end if;
20140
20141 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20142 Set_Full_View (Priv_Dep, New_Subt);
20143 end if;
20144
20145 Next_Elmt (Inc_Elmt);
20146 end loop;
20147 end Process_Incomplete_Dependents;
20148
20149 --------------------------------
20150 -- Process_Range_Expr_In_Decl --
20151 --------------------------------
20152
20153 procedure Process_Range_Expr_In_Decl
20154 (R : Node_Id;
20155 T : Entity_Id;
20156 Subtyp : Entity_Id := Empty;
20157 Check_List : List_Id := Empty_List;
20158 R_Check_Off : Boolean := False;
20159 In_Iter_Schm : Boolean := False)
20160 is
20161 Lo, Hi : Node_Id;
20162 R_Checks : Check_Result;
20163 Insert_Node : Node_Id;
20164 Def_Id : Entity_Id;
20165
20166 begin
20167 Analyze_And_Resolve (R, Base_Type (T));
20168
20169 if Nkind (R) = N_Range then
20170
20171 -- In SPARK, all ranges should be static, with the exception of the
20172 -- discrete type definition of a loop parameter specification.
20173
20174 if not In_Iter_Schm
20175 and then not Is_OK_Static_Range (R)
20176 then
20177 Check_SPARK_05_Restriction ("range should be static", R);
20178 end if;
20179
20180 Lo := Low_Bound (R);
20181 Hi := High_Bound (R);
20182
20183 -- Validity checks on the range of a quantified expression are
20184 -- delayed until the construct is transformed into a loop.
20185
20186 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20187 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20188 then
20189 null;
20190
20191 -- We need to ensure validity of the bounds here, because if we
20192 -- go ahead and do the expansion, then the expanded code will get
20193 -- analyzed with range checks suppressed and we miss the check.
20194
20195 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20196 -- the temporaries generated by routine Remove_Side_Effects by means
20197 -- of validity checks must use the same names. When a range appears
20198 -- in the parent of a generic, the range is processed with checks
20199 -- disabled as part of the generic context and with checks enabled
20200 -- for code generation purposes. This leads to link issues as the
20201 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20202 -- template sees the temporaries generated by Remove_Side_Effects.
20203
20204 else
20205 Validity_Check_Range (R, Subtyp);
20206 end if;
20207
20208 -- If there were errors in the declaration, try and patch up some
20209 -- common mistakes in the bounds. The cases handled are literals
20210 -- which are Integer where the expected type is Real and vice versa.
20211 -- These corrections allow the compilation process to proceed further
20212 -- along since some basic assumptions of the format of the bounds
20213 -- are guaranteed.
20214
20215 if Etype (R) = Any_Type then
20216 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20217 Rewrite (Lo,
20218 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20219
20220 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20221 Rewrite (Hi,
20222 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20223
20224 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20225 Rewrite (Lo,
20226 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20227
20228 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20229 Rewrite (Hi,
20230 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20231 end if;
20232
20233 Set_Etype (Lo, T);
20234 Set_Etype (Hi, T);
20235 end if;
20236
20237 -- If the bounds of the range have been mistakenly given as string
20238 -- literals (perhaps in place of character literals), then an error
20239 -- has already been reported, but we rewrite the string literal as a
20240 -- bound of the range's type to avoid blowups in later processing
20241 -- that looks at static values.
20242
20243 if Nkind (Lo) = N_String_Literal then
20244 Rewrite (Lo,
20245 Make_Attribute_Reference (Sloc (Lo),
20246 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20247 Attribute_Name => Name_First));
20248 Analyze_And_Resolve (Lo);
20249 end if;
20250
20251 if Nkind (Hi) = N_String_Literal then
20252 Rewrite (Hi,
20253 Make_Attribute_Reference (Sloc (Hi),
20254 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20255 Attribute_Name => Name_First));
20256 Analyze_And_Resolve (Hi);
20257 end if;
20258
20259 -- If bounds aren't scalar at this point then exit, avoiding
20260 -- problems with further processing of the range in this procedure.
20261
20262 if not Is_Scalar_Type (Etype (Lo)) then
20263 return;
20264 end if;
20265
20266 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20267 -- then range of the base type. Here we check whether the bounds
20268 -- are in the range of the subtype itself. Note that if the bounds
20269 -- represent the null range the Constraint_Error exception should
20270 -- not be raised.
20271
20272 -- ??? The following code should be cleaned up as follows
20273
20274 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20275 -- is done in the call to Range_Check (R, T); below
20276
20277 -- 2. The use of R_Check_Off should be investigated and possibly
20278 -- removed, this would clean up things a bit.
20279
20280 if Is_Null_Range (Lo, Hi) then
20281 null;
20282
20283 else
20284 -- Capture values of bounds and generate temporaries for them
20285 -- if needed, before applying checks, since checks may cause
20286 -- duplication of the expression without forcing evaluation.
20287
20288 -- The forced evaluation removes side effects from expressions,
20289 -- which should occur also in GNATprove mode. Otherwise, we end up
20290 -- with unexpected insertions of actions at places where this is
20291 -- not supposed to occur, e.g. on default parameters of a call.
20292
20293 if Expander_Active or GNATprove_Mode then
20294
20295 -- Call Force_Evaluation to create declarations as needed to
20296 -- deal with side effects, and also create typ_FIRST/LAST
20297 -- entities for bounds if we have a subtype name.
20298
20299 -- Note: we do this transformation even if expansion is not
20300 -- active if we are in GNATprove_Mode since the transformation
20301 -- is in general required to ensure that the resulting tree has
20302 -- proper Ada semantics.
20303
20304 Force_Evaluation
20305 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20306 Force_Evaluation
20307 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20308 end if;
20309
20310 -- We use a flag here instead of suppressing checks on the type
20311 -- because the type we check against isn't necessarily the place
20312 -- where we put the check.
20313
20314 if not R_Check_Off then
20315 R_Checks := Get_Range_Checks (R, T);
20316
20317 -- Look up tree to find an appropriate insertion point. We
20318 -- can't just use insert_actions because later processing
20319 -- depends on the insertion node. Prior to Ada 2012 the
20320 -- insertion point could only be a declaration or a loop, but
20321 -- quantified expressions can appear within any context in an
20322 -- expression, and the insertion point can be any statement,
20323 -- pragma, or declaration.
20324
20325 Insert_Node := Parent (R);
20326 while Present (Insert_Node) loop
20327 exit when
20328 Nkind (Insert_Node) in N_Declaration
20329 and then
20330 not Nkind_In
20331 (Insert_Node, N_Component_Declaration,
20332 N_Loop_Parameter_Specification,
20333 N_Function_Specification,
20334 N_Procedure_Specification);
20335
20336 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20337 or else Nkind (Insert_Node) in
20338 N_Statement_Other_Than_Procedure_Call
20339 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20340 N_Pragma);
20341
20342 Insert_Node := Parent (Insert_Node);
20343 end loop;
20344
20345 -- Why would Type_Decl not be present??? Without this test,
20346 -- short regression tests fail.
20347
20348 if Present (Insert_Node) then
20349
20350 -- Case of loop statement. Verify that the range is part
20351 -- of the subtype indication of the iteration scheme.
20352
20353 if Nkind (Insert_Node) = N_Loop_Statement then
20354 declare
20355 Indic : Node_Id;
20356
20357 begin
20358 Indic := Parent (R);
20359 while Present (Indic)
20360 and then Nkind (Indic) /= N_Subtype_Indication
20361 loop
20362 Indic := Parent (Indic);
20363 end loop;
20364
20365 if Present (Indic) then
20366 Def_Id := Etype (Subtype_Mark (Indic));
20367
20368 Insert_Range_Checks
20369 (R_Checks,
20370 Insert_Node,
20371 Def_Id,
20372 Sloc (Insert_Node),
20373 R,
20374 Do_Before => True);
20375 end if;
20376 end;
20377
20378 -- Insertion before a declaration. If the declaration
20379 -- includes discriminants, the list of applicable checks
20380 -- is given by the caller.
20381
20382 elsif Nkind (Insert_Node) in N_Declaration then
20383 Def_Id := Defining_Identifier (Insert_Node);
20384
20385 if (Ekind (Def_Id) = E_Record_Type
20386 and then Depends_On_Discriminant (R))
20387 or else
20388 (Ekind (Def_Id) = E_Protected_Type
20389 and then Has_Discriminants (Def_Id))
20390 then
20391 Append_Range_Checks
20392 (R_Checks,
20393 Check_List, Def_Id, Sloc (Insert_Node), R);
20394
20395 else
20396 Insert_Range_Checks
20397 (R_Checks,
20398 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20399
20400 end if;
20401
20402 -- Insertion before a statement. Range appears in the
20403 -- context of a quantified expression. Insertion will
20404 -- take place when expression is expanded.
20405
20406 else
20407 null;
20408 end if;
20409 end if;
20410 end if;
20411 end if;
20412
20413 -- Case of other than an explicit N_Range node
20414
20415 -- The forced evaluation removes side effects from expressions, which
20416 -- should occur also in GNATprove mode. Otherwise, we end up with
20417 -- unexpected insertions of actions at places where this is not
20418 -- supposed to occur, e.g. on default parameters of a call.
20419
20420 elsif Expander_Active or GNATprove_Mode then
20421 Get_Index_Bounds (R, Lo, Hi);
20422 Force_Evaluation (Lo);
20423 Force_Evaluation (Hi);
20424 end if;
20425 end Process_Range_Expr_In_Decl;
20426
20427 --------------------------------------
20428 -- Process_Real_Range_Specification --
20429 --------------------------------------
20430
20431 procedure Process_Real_Range_Specification (Def : Node_Id) is
20432 Spec : constant Node_Id := Real_Range_Specification (Def);
20433 Lo : Node_Id;
20434 Hi : Node_Id;
20435 Err : Boolean := False;
20436
20437 procedure Analyze_Bound (N : Node_Id);
20438 -- Analyze and check one bound
20439
20440 -------------------
20441 -- Analyze_Bound --
20442 -------------------
20443
20444 procedure Analyze_Bound (N : Node_Id) is
20445 begin
20446 Analyze_And_Resolve (N, Any_Real);
20447
20448 if not Is_OK_Static_Expression (N) then
20449 Flag_Non_Static_Expr
20450 ("bound in real type definition is not static!", N);
20451 Err := True;
20452 end if;
20453 end Analyze_Bound;
20454
20455 -- Start of processing for Process_Real_Range_Specification
20456
20457 begin
20458 if Present (Spec) then
20459 Lo := Low_Bound (Spec);
20460 Hi := High_Bound (Spec);
20461 Analyze_Bound (Lo);
20462 Analyze_Bound (Hi);
20463
20464 -- If error, clear away junk range specification
20465
20466 if Err then
20467 Set_Real_Range_Specification (Def, Empty);
20468 end if;
20469 end if;
20470 end Process_Real_Range_Specification;
20471
20472 ---------------------
20473 -- Process_Subtype --
20474 ---------------------
20475
20476 function Process_Subtype
20477 (S : Node_Id;
20478 Related_Nod : Node_Id;
20479 Related_Id : Entity_Id := Empty;
20480 Suffix : Character := ' ') return Entity_Id
20481 is
20482 P : Node_Id;
20483 Def_Id : Entity_Id;
20484 Error_Node : Node_Id;
20485 Full_View_Id : Entity_Id;
20486 Subtype_Mark_Id : Entity_Id;
20487
20488 May_Have_Null_Exclusion : Boolean;
20489
20490 procedure Check_Incomplete (T : Entity_Id);
20491 -- Called to verify that an incomplete type is not used prematurely
20492
20493 ----------------------
20494 -- Check_Incomplete --
20495 ----------------------
20496
20497 procedure Check_Incomplete (T : Entity_Id) is
20498 begin
20499 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20500
20501 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20502 and then
20503 not (Ada_Version >= Ada_2005
20504 and then
20505 (Nkind (Parent (T)) = N_Subtype_Declaration
20506 or else (Nkind (Parent (T)) = N_Subtype_Indication
20507 and then Nkind (Parent (Parent (T))) =
20508 N_Subtype_Declaration)))
20509 then
20510 Error_Msg_N ("invalid use of type before its full declaration", T);
20511 end if;
20512 end Check_Incomplete;
20513
20514 -- Start of processing for Process_Subtype
20515
20516 begin
20517 -- Case of no constraints present
20518
20519 if Nkind (S) /= N_Subtype_Indication then
20520 Find_Type (S);
20521 Check_Incomplete (S);
20522 P := Parent (S);
20523
20524 -- Ada 2005 (AI-231): Static check
20525
20526 if Ada_Version >= Ada_2005
20527 and then Present (P)
20528 and then Null_Exclusion_Present (P)
20529 and then Nkind (P) /= N_Access_To_Object_Definition
20530 and then not Is_Access_Type (Entity (S))
20531 then
20532 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20533 end if;
20534
20535 -- The following is ugly, can't we have a range or even a flag???
20536
20537 May_Have_Null_Exclusion :=
20538 Nkind_In (P, N_Access_Definition,
20539 N_Access_Function_Definition,
20540 N_Access_Procedure_Definition,
20541 N_Access_To_Object_Definition,
20542 N_Allocator,
20543 N_Component_Definition)
20544 or else
20545 Nkind_In (P, N_Derived_Type_Definition,
20546 N_Discriminant_Specification,
20547 N_Formal_Object_Declaration,
20548 N_Object_Declaration,
20549 N_Object_Renaming_Declaration,
20550 N_Parameter_Specification,
20551 N_Subtype_Declaration);
20552
20553 -- Create an Itype that is a duplicate of Entity (S) but with the
20554 -- null-exclusion attribute.
20555
20556 if May_Have_Null_Exclusion
20557 and then Is_Access_Type (Entity (S))
20558 and then Null_Exclusion_Present (P)
20559
20560 -- No need to check the case of an access to object definition.
20561 -- It is correct to define double not-null pointers.
20562
20563 -- Example:
20564 -- type Not_Null_Int_Ptr is not null access Integer;
20565 -- type Acc is not null access Not_Null_Int_Ptr;
20566
20567 and then Nkind (P) /= N_Access_To_Object_Definition
20568 then
20569 if Can_Never_Be_Null (Entity (S)) then
20570 case Nkind (Related_Nod) is
20571 when N_Full_Type_Declaration =>
20572 if Nkind (Type_Definition (Related_Nod))
20573 in N_Array_Type_Definition
20574 then
20575 Error_Node :=
20576 Subtype_Indication
20577 (Component_Definition
20578 (Type_Definition (Related_Nod)));
20579 else
20580 Error_Node :=
20581 Subtype_Indication (Type_Definition (Related_Nod));
20582 end if;
20583
20584 when N_Subtype_Declaration =>
20585 Error_Node := Subtype_Indication (Related_Nod);
20586
20587 when N_Object_Declaration =>
20588 Error_Node := Object_Definition (Related_Nod);
20589
20590 when N_Component_Declaration =>
20591 Error_Node :=
20592 Subtype_Indication (Component_Definition (Related_Nod));
20593
20594 when N_Allocator =>
20595 Error_Node := Expression (Related_Nod);
20596
20597 when others =>
20598 pragma Assert (False);
20599 Error_Node := Related_Nod;
20600 end case;
20601
20602 Error_Msg_NE
20603 ("`NOT NULL` not allowed (& already excludes null)",
20604 Error_Node,
20605 Entity (S));
20606 end if;
20607
20608 Set_Etype (S,
20609 Create_Null_Excluding_Itype
20610 (T => Entity (S),
20611 Related_Nod => P));
20612 Set_Entity (S, Etype (S));
20613 end if;
20614
20615 return Entity (S);
20616
20617 -- Case of constraint present, so that we have an N_Subtype_Indication
20618 -- node (this node is created only if constraints are present).
20619
20620 else
20621 Find_Type (Subtype_Mark (S));
20622
20623 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20624 and then not
20625 (Nkind (Parent (S)) = N_Subtype_Declaration
20626 and then Is_Itype (Defining_Identifier (Parent (S))))
20627 then
20628 Check_Incomplete (Subtype_Mark (S));
20629 end if;
20630
20631 P := Parent (S);
20632 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20633
20634 -- Explicit subtype declaration case
20635
20636 if Nkind (P) = N_Subtype_Declaration then
20637 Def_Id := Defining_Identifier (P);
20638
20639 -- Explicit derived type definition case
20640
20641 elsif Nkind (P) = N_Derived_Type_Definition then
20642 Def_Id := Defining_Identifier (Parent (P));
20643
20644 -- Implicit case, the Def_Id must be created as an implicit type.
20645 -- The one exception arises in the case of concurrent types, array
20646 -- and access types, where other subsidiary implicit types may be
20647 -- created and must appear before the main implicit type. In these
20648 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20649 -- has not yet been called to create Def_Id.
20650
20651 else
20652 if Is_Array_Type (Subtype_Mark_Id)
20653 or else Is_Concurrent_Type (Subtype_Mark_Id)
20654 or else Is_Access_Type (Subtype_Mark_Id)
20655 then
20656 Def_Id := Empty;
20657
20658 -- For the other cases, we create a new unattached Itype,
20659 -- and set the indication to ensure it gets attached later.
20660
20661 else
20662 Def_Id :=
20663 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20664 end if;
20665 end if;
20666
20667 -- If the kind of constraint is invalid for this kind of type,
20668 -- then give an error, and then pretend no constraint was given.
20669
20670 if not Is_Valid_Constraint_Kind
20671 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20672 then
20673 Error_Msg_N
20674 ("incorrect constraint for this kind of type", Constraint (S));
20675
20676 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20677
20678 -- Set Ekind of orphan itype, to prevent cascaded errors
20679
20680 if Present (Def_Id) then
20681 Set_Ekind (Def_Id, Ekind (Any_Type));
20682 end if;
20683
20684 -- Make recursive call, having got rid of the bogus constraint
20685
20686 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20687 end if;
20688
20689 -- Remaining processing depends on type. Select on Base_Type kind to
20690 -- ensure getting to the concrete type kind in the case of a private
20691 -- subtype (needed when only doing semantic analysis).
20692
20693 case Ekind (Base_Type (Subtype_Mark_Id)) is
20694 when Access_Kind =>
20695
20696 -- If this is a constraint on a class-wide type, discard it.
20697 -- There is currently no way to express a partial discriminant
20698 -- constraint on a type with unknown discriminants. This is
20699 -- a pathology that the ACATS wisely decides not to test.
20700
20701 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20702 if Comes_From_Source (S) then
20703 Error_Msg_N
20704 ("constraint on class-wide type ignored??",
20705 Constraint (S));
20706 end if;
20707
20708 if Nkind (P) = N_Subtype_Declaration then
20709 Set_Subtype_Indication (P,
20710 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20711 end if;
20712
20713 return Subtype_Mark_Id;
20714 end if;
20715
20716 Constrain_Access (Def_Id, S, Related_Nod);
20717
20718 if Expander_Active
20719 and then Is_Itype (Designated_Type (Def_Id))
20720 and then Nkind (Related_Nod) = N_Subtype_Declaration
20721 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20722 then
20723 Build_Itype_Reference
20724 (Designated_Type (Def_Id), Related_Nod);
20725 end if;
20726
20727 when Array_Kind =>
20728 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20729
20730 when Decimal_Fixed_Point_Kind =>
20731 Constrain_Decimal (Def_Id, S);
20732
20733 when Enumeration_Kind =>
20734 Constrain_Enumeration (Def_Id, S);
20735 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20736
20737 when Ordinary_Fixed_Point_Kind =>
20738 Constrain_Ordinary_Fixed (Def_Id, S);
20739
20740 when Float_Kind =>
20741 Constrain_Float (Def_Id, S);
20742
20743 when Integer_Kind =>
20744 Constrain_Integer (Def_Id, S);
20745 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20746
20747 when E_Record_Type |
20748 E_Record_Subtype |
20749 Class_Wide_Kind |
20750 E_Incomplete_Type =>
20751 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20752
20753 if Ekind (Def_Id) = E_Incomplete_Type then
20754 Set_Private_Dependents (Def_Id, New_Elmt_List);
20755 end if;
20756
20757 when Private_Kind =>
20758 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20759 Set_Private_Dependents (Def_Id, New_Elmt_List);
20760
20761 -- In case of an invalid constraint prevent further processing
20762 -- since the type constructed is missing expected fields.
20763
20764 if Etype (Def_Id) = Any_Type then
20765 return Def_Id;
20766 end if;
20767
20768 -- If the full view is that of a task with discriminants,
20769 -- we must constrain both the concurrent type and its
20770 -- corresponding record type. Otherwise we will just propagate
20771 -- the constraint to the full view, if available.
20772
20773 if Present (Full_View (Subtype_Mark_Id))
20774 and then Has_Discriminants (Subtype_Mark_Id)
20775 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20776 then
20777 Full_View_Id :=
20778 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20779
20780 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20781 Constrain_Concurrent (Full_View_Id, S,
20782 Related_Nod, Related_Id, Suffix);
20783 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20784 Set_Full_View (Def_Id, Full_View_Id);
20785
20786 -- Introduce an explicit reference to the private subtype,
20787 -- to prevent scope anomalies in gigi if first use appears
20788 -- in a nested context, e.g. a later function body.
20789 -- Should this be generated in other contexts than a full
20790 -- type declaration?
20791
20792 if Is_Itype (Def_Id)
20793 and then
20794 Nkind (Parent (P)) = N_Full_Type_Declaration
20795 then
20796 Build_Itype_Reference (Def_Id, Parent (P));
20797 end if;
20798
20799 else
20800 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20801 end if;
20802
20803 when Concurrent_Kind =>
20804 Constrain_Concurrent (Def_Id, S,
20805 Related_Nod, Related_Id, Suffix);
20806
20807 when others =>
20808 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20809 end case;
20810
20811 -- Size and Convention are always inherited from the base type
20812
20813 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20814 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20815
20816 return Def_Id;
20817 end if;
20818 end Process_Subtype;
20819
20820 --------------------------------------------
20821 -- Propagate_Default_Init_Cond_Attributes --
20822 --------------------------------------------
20823
20824 procedure Propagate_Default_Init_Cond_Attributes
20825 (From_Typ : Entity_Id;
20826 To_Typ : Entity_Id;
20827 Parent_To_Derivation : Boolean := False;
20828 Private_To_Full_View : Boolean := False)
20829 is
20830 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20831 -- Remove the default initial procedure (if any) from the rep chain of
20832 -- type Typ.
20833
20834 ----------------------------------------
20835 -- Remove_Default_Init_Cond_Procedure --
20836 ----------------------------------------
20837
20838 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20839 Found : Boolean := False;
20840 Prev : Entity_Id;
20841 Subp : Entity_Id;
20842
20843 begin
20844 Prev := Typ;
20845 Subp := Subprograms_For_Type (Typ);
20846 while Present (Subp) loop
20847 if Is_Default_Init_Cond_Procedure (Subp) then
20848 Found := True;
20849 exit;
20850 end if;
20851
20852 Prev := Subp;
20853 Subp := Subprograms_For_Type (Subp);
20854 end loop;
20855
20856 if Found then
20857 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20858 Set_Subprograms_For_Type (Subp, Empty);
20859 end if;
20860 end Remove_Default_Init_Cond_Procedure;
20861
20862 -- Local variables
20863
20864 Inherit_Procedure : Boolean := False;
20865
20866 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20867
20868 begin
20869 if Has_Default_Init_Cond (From_Typ) then
20870
20871 -- A derived type inherits the attributes from its parent type
20872
20873 if Parent_To_Derivation then
20874 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20875
20876 -- A full view shares the attributes with its private view
20877
20878 else
20879 Set_Has_Default_Init_Cond (To_Typ);
20880 end if;
20881
20882 Inherit_Procedure := True;
20883
20884 -- Due to the order of expansion, a derived private type is processed
20885 -- by two routines which both attempt to set the attributes related
20886 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20887 -- Process_Full_View.
20888
20889 -- package Pack is
20890 -- type Parent_Typ is private
20891 -- with Default_Initial_Condition ...;
20892 -- private
20893 -- type Parent_Typ is ...;
20894 -- end Pack;
20895
20896 -- with Pack; use Pack;
20897 -- package Pack_2 is
20898 -- type Deriv_Typ is private
20899 -- with Default_Initial_Condition ...;
20900 -- private
20901 -- type Deriv_Typ is new Parent_Typ;
20902 -- end Pack_2;
20903
20904 -- When Build_Derived_Type operates, it sets the attributes on the
20905 -- full view without taking into account that the private view may
20906 -- define its own default initial condition procedure. This becomes
20907 -- apparent in Process_Full_View which must undo some of the work by
20908 -- Build_Derived_Type and propagate the attributes from the private
20909 -- to the full view.
20910
20911 if Private_To_Full_View then
20912 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20913 Remove_Default_Init_Cond_Procedure (To_Typ);
20914 end if;
20915
20916 -- A type must inherit the default initial condition procedure from a
20917 -- parent type when the parent itself is inheriting the procedure or
20918 -- when it is defining one. This circuitry is also used when dealing
20919 -- with the private / full view of a type.
20920
20921 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20922 or (Parent_To_Derivation
20923 and Present (Get_Pragma
20924 (From_Typ, Pragma_Default_Initial_Condition)))
20925 then
20926 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20927 Inherit_Procedure := True;
20928 end if;
20929
20930 if Inherit_Procedure
20931 and then No (Default_Init_Cond_Procedure (To_Typ))
20932 then
20933 Set_Default_Init_Cond_Procedure
20934 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20935 end if;
20936 end Propagate_Default_Init_Cond_Attributes;
20937
20938 -----------------------------
20939 -- Record_Type_Declaration --
20940 -----------------------------
20941
20942 procedure Record_Type_Declaration
20943 (T : Entity_Id;
20944 N : Node_Id;
20945 Prev : Entity_Id)
20946 is
20947 Def : constant Node_Id := Type_Definition (N);
20948 Is_Tagged : Boolean;
20949 Tag_Comp : Entity_Id;
20950
20951 begin
20952 -- These flags must be initialized before calling Process_Discriminants
20953 -- because this routine makes use of them.
20954
20955 Set_Ekind (T, E_Record_Type);
20956 Set_Etype (T, T);
20957 Init_Size_Align (T);
20958 Set_Interfaces (T, No_Elist);
20959 Set_Stored_Constraint (T, No_Elist);
20960 Set_Default_SSO (T);
20961
20962 -- Normal case
20963
20964 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20965 if Limited_Present (Def) then
20966 Check_SPARK_05_Restriction ("limited is not allowed", N);
20967 end if;
20968
20969 if Abstract_Present (Def) then
20970 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20971 end if;
20972
20973 -- The flag Is_Tagged_Type might have already been set by
20974 -- Find_Type_Name if it detected an error for declaration T. This
20975 -- arises in the case of private tagged types where the full view
20976 -- omits the word tagged.
20977
20978 Is_Tagged :=
20979 Tagged_Present (Def)
20980 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20981
20982 Set_Is_Limited_Record (T, Limited_Present (Def));
20983
20984 if Is_Tagged then
20985 Set_Is_Tagged_Type (T, True);
20986 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20987 end if;
20988
20989 -- Type is abstract if full declaration carries keyword, or if
20990 -- previous partial view did.
20991
20992 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20993 or else Abstract_Present (Def));
20994
20995 else
20996 Check_SPARK_05_Restriction ("interface is not allowed", N);
20997
20998 Is_Tagged := True;
20999 Analyze_Interface_Declaration (T, Def);
21000
21001 if Present (Discriminant_Specifications (N)) then
21002 Error_Msg_N
21003 ("interface types cannot have discriminants",
21004 Defining_Identifier
21005 (First (Discriminant_Specifications (N))));
21006 end if;
21007 end if;
21008
21009 -- First pass: if there are self-referential access components,
21010 -- create the required anonymous access type declarations, and if
21011 -- need be an incomplete type declaration for T itself.
21012
21013 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21014
21015 if Ada_Version >= Ada_2005
21016 and then Present (Interface_List (Def))
21017 then
21018 Check_Interfaces (N, Def);
21019
21020 declare
21021 Ifaces_List : Elist_Id;
21022
21023 begin
21024 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21025 -- already in the parents.
21026
21027 Collect_Interfaces
21028 (T => T,
21029 Ifaces_List => Ifaces_List,
21030 Exclude_Parents => True);
21031
21032 Set_Interfaces (T, Ifaces_List);
21033 end;
21034 end if;
21035
21036 -- Records constitute a scope for the component declarations within.
21037 -- The scope is created prior to the processing of these declarations.
21038 -- Discriminants are processed first, so that they are visible when
21039 -- processing the other components. The Ekind of the record type itself
21040 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21041
21042 -- Enter record scope
21043
21044 Push_Scope (T);
21045
21046 -- If an incomplete or private type declaration was already given for
21047 -- the type, then this scope already exists, and the discriminants have
21048 -- been declared within. We must verify that the full declaration
21049 -- matches the incomplete one.
21050
21051 Check_Or_Process_Discriminants (N, T, Prev);
21052
21053 Set_Is_Constrained (T, not Has_Discriminants (T));
21054 Set_Has_Delayed_Freeze (T, True);
21055
21056 -- For tagged types add a manually analyzed component corresponding
21057 -- to the component _tag, the corresponding piece of tree will be
21058 -- expanded as part of the freezing actions if it is not a CPP_Class.
21059
21060 if Is_Tagged then
21061
21062 -- Do not add the tag unless we are in expansion mode
21063
21064 if Expander_Active then
21065 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21066 Enter_Name (Tag_Comp);
21067
21068 Set_Ekind (Tag_Comp, E_Component);
21069 Set_Is_Tag (Tag_Comp);
21070 Set_Is_Aliased (Tag_Comp);
21071 Set_Etype (Tag_Comp, RTE (RE_Tag));
21072 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21073 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21074 Init_Component_Location (Tag_Comp);
21075
21076 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21077 -- implemented interfaces.
21078
21079 if Has_Interfaces (T) then
21080 Add_Interface_Tag_Components (N, T);
21081 end if;
21082 end if;
21083
21084 Make_Class_Wide_Type (T);
21085 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21086 end if;
21087
21088 -- We must suppress range checks when processing record components in
21089 -- the presence of discriminants, since we don't want spurious checks to
21090 -- be generated during their analysis, but Suppress_Range_Checks flags
21091 -- must be reset the after processing the record definition.
21092
21093 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21094 -- couldn't we just use the normal range check suppression method here.
21095 -- That would seem cleaner ???
21096
21097 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21098 Set_Kill_Range_Checks (T, True);
21099 Record_Type_Definition (Def, Prev);
21100 Set_Kill_Range_Checks (T, False);
21101 else
21102 Record_Type_Definition (Def, Prev);
21103 end if;
21104
21105 -- Exit from record scope
21106
21107 End_Scope;
21108
21109 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21110 -- the implemented interfaces and associate them an aliased entity.
21111
21112 if Is_Tagged
21113 and then not Is_Empty_List (Interface_List (Def))
21114 then
21115 Derive_Progenitor_Subprograms (T, T);
21116 end if;
21117
21118 Check_Function_Writable_Actuals (N);
21119 end Record_Type_Declaration;
21120
21121 ----------------------------
21122 -- Record_Type_Definition --
21123 ----------------------------
21124
21125 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21126 Component : Entity_Id;
21127 Ctrl_Components : Boolean := False;
21128 Final_Storage_Only : Boolean;
21129 T : Entity_Id;
21130
21131 begin
21132 if Ekind (Prev_T) = E_Incomplete_Type then
21133 T := Full_View (Prev_T);
21134 else
21135 T := Prev_T;
21136 end if;
21137
21138 -- In SPARK, tagged types and type extensions may only be declared in
21139 -- the specification of library unit packages.
21140
21141 if Present (Def) and then Is_Tagged_Type (T) then
21142 declare
21143 Typ : Node_Id;
21144 Ctxt : Node_Id;
21145
21146 begin
21147 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21148 Typ := Parent (Def);
21149 else
21150 pragma Assert
21151 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21152 Typ := Parent (Parent (Def));
21153 end if;
21154
21155 Ctxt := Parent (Typ);
21156
21157 if Nkind (Ctxt) = N_Package_Body
21158 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21159 then
21160 Check_SPARK_05_Restriction
21161 ("type should be defined in package specification", Typ);
21162
21163 elsif Nkind (Ctxt) /= N_Package_Specification
21164 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21165 then
21166 Check_SPARK_05_Restriction
21167 ("type should be defined in library unit package", Typ);
21168 end if;
21169 end;
21170 end if;
21171
21172 Final_Storage_Only := not Is_Controlled_Active (T);
21173
21174 -- Ada 2005: Check whether an explicit Limited is present in a derived
21175 -- type declaration.
21176
21177 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21178 and then Limited_Present (Parent (Def))
21179 then
21180 Set_Is_Limited_Record (T);
21181 end if;
21182
21183 -- If the component list of a record type is defined by the reserved
21184 -- word null and there is no discriminant part, then the record type has
21185 -- no components and all records of the type are null records (RM 3.7)
21186 -- This procedure is also called to process the extension part of a
21187 -- record extension, in which case the current scope may have inherited
21188 -- components.
21189
21190 if No (Def)
21191 or else No (Component_List (Def))
21192 or else Null_Present (Component_List (Def))
21193 then
21194 if not Is_Tagged_Type (T) then
21195 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21196 end if;
21197
21198 else
21199 Analyze_Declarations (Component_Items (Component_List (Def)));
21200
21201 if Present (Variant_Part (Component_List (Def))) then
21202 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21203 Analyze (Variant_Part (Component_List (Def)));
21204 end if;
21205 end if;
21206
21207 -- After completing the semantic analysis of the record definition,
21208 -- record components, both new and inherited, are accessible. Set their
21209 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21210 -- whose Ekind may be void.
21211
21212 Component := First_Entity (Current_Scope);
21213 while Present (Component) loop
21214 if Ekind (Component) = E_Void
21215 and then not Is_Itype (Component)
21216 then
21217 Set_Ekind (Component, E_Component);
21218 Init_Component_Location (Component);
21219 end if;
21220
21221 if Has_Task (Etype (Component)) then
21222 Set_Has_Task (T);
21223 end if;
21224
21225 if Has_Protected (Etype (Component)) then
21226 Set_Has_Protected (T);
21227 end if;
21228
21229 if Ekind (Component) /= E_Component then
21230 null;
21231
21232 -- Do not set Has_Controlled_Component on a class-wide equivalent
21233 -- type. See Make_CW_Equivalent_Type.
21234
21235 elsif not Is_Class_Wide_Equivalent_Type (T)
21236 and then (Has_Controlled_Component (Etype (Component))
21237 or else (Chars (Component) /= Name_uParent
21238 and then Is_Controlled_Active
21239 (Etype (Component))))
21240 then
21241 Set_Has_Controlled_Component (T, True);
21242 Final_Storage_Only :=
21243 Final_Storage_Only
21244 and then Finalize_Storage_Only (Etype (Component));
21245 Ctrl_Components := True;
21246 end if;
21247
21248 Next_Entity (Component);
21249 end loop;
21250
21251 -- A Type is Finalize_Storage_Only only if all its controlled components
21252 -- are also.
21253
21254 if Ctrl_Components then
21255 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21256 end if;
21257
21258 -- Place reference to end record on the proper entity, which may
21259 -- be a partial view.
21260
21261 if Present (Def) then
21262 Process_End_Label (Def, 'e', Prev_T);
21263 end if;
21264 end Record_Type_Definition;
21265
21266 ------------------------
21267 -- Replace_Components --
21268 ------------------------
21269
21270 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21271 function Process (N : Node_Id) return Traverse_Result;
21272
21273 -------------
21274 -- Process --
21275 -------------
21276
21277 function Process (N : Node_Id) return Traverse_Result is
21278 Comp : Entity_Id;
21279
21280 begin
21281 if Nkind (N) = N_Discriminant_Specification then
21282 Comp := First_Discriminant (Typ);
21283 while Present (Comp) loop
21284 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21285 Set_Defining_Identifier (N, Comp);
21286 exit;
21287 end if;
21288
21289 Next_Discriminant (Comp);
21290 end loop;
21291
21292 elsif Nkind (N) = N_Component_Declaration then
21293 Comp := First_Component (Typ);
21294 while Present (Comp) loop
21295 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21296 Set_Defining_Identifier (N, Comp);
21297 exit;
21298 end if;
21299
21300 Next_Component (Comp);
21301 end loop;
21302 end if;
21303
21304 return OK;
21305 end Process;
21306
21307 procedure Replace is new Traverse_Proc (Process);
21308
21309 -- Start of processing for Replace_Components
21310
21311 begin
21312 Replace (Decl);
21313 end Replace_Components;
21314
21315 -------------------------------
21316 -- Set_Completion_Referenced --
21317 -------------------------------
21318
21319 procedure Set_Completion_Referenced (E : Entity_Id) is
21320 begin
21321 -- If in main unit, mark entity that is a completion as referenced,
21322 -- warnings go on the partial view when needed.
21323
21324 if In_Extended_Main_Source_Unit (E) then
21325 Set_Referenced (E);
21326 end if;
21327 end Set_Completion_Referenced;
21328
21329 ---------------------
21330 -- Set_Default_SSO --
21331 ---------------------
21332
21333 procedure Set_Default_SSO (T : Entity_Id) is
21334 begin
21335 case Opt.Default_SSO is
21336 when ' ' =>
21337 null;
21338 when 'L' =>
21339 Set_SSO_Set_Low_By_Default (T, True);
21340 when 'H' =>
21341 Set_SSO_Set_High_By_Default (T, True);
21342 when others =>
21343 raise Program_Error;
21344 end case;
21345 end Set_Default_SSO;
21346
21347 ---------------------
21348 -- Set_Fixed_Range --
21349 ---------------------
21350
21351 -- The range for fixed-point types is complicated by the fact that we
21352 -- do not know the exact end points at the time of the declaration. This
21353 -- is true for three reasons:
21354
21355 -- A size clause may affect the fudging of the end-points.
21356 -- A small clause may affect the values of the end-points.
21357 -- We try to include the end-points if it does not affect the size.
21358
21359 -- This means that the actual end-points must be established at the
21360 -- point when the type is frozen. Meanwhile, we first narrow the range
21361 -- as permitted (so that it will fit if necessary in a small specified
21362 -- size), and then build a range subtree with these narrowed bounds.
21363 -- Set_Fixed_Range constructs the range from real literal values, and
21364 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21365
21366 -- The parent of this range is set to point to the entity so that it is
21367 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21368 -- other scalar types, which are just pointers to the range in the
21369 -- original tree, this would otherwise be an orphan).
21370
21371 -- The tree is left unanalyzed. When the type is frozen, the processing
21372 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21373 -- analyzed, and uses this as an indication that it should complete
21374 -- work on the range (it will know the final small and size values).
21375
21376 procedure Set_Fixed_Range
21377 (E : Entity_Id;
21378 Loc : Source_Ptr;
21379 Lo : Ureal;
21380 Hi : Ureal)
21381 is
21382 S : constant Node_Id :=
21383 Make_Range (Loc,
21384 Low_Bound => Make_Real_Literal (Loc, Lo),
21385 High_Bound => Make_Real_Literal (Loc, Hi));
21386 begin
21387 Set_Scalar_Range (E, S);
21388 Set_Parent (S, E);
21389
21390 -- Before the freeze point, the bounds of a fixed point are universal
21391 -- and carry the corresponding type.
21392
21393 Set_Etype (Low_Bound (S), Universal_Real);
21394 Set_Etype (High_Bound (S), Universal_Real);
21395 end Set_Fixed_Range;
21396
21397 ----------------------------------
21398 -- Set_Scalar_Range_For_Subtype --
21399 ----------------------------------
21400
21401 procedure Set_Scalar_Range_For_Subtype
21402 (Def_Id : Entity_Id;
21403 R : Node_Id;
21404 Subt : Entity_Id)
21405 is
21406 Kind : constant Entity_Kind := Ekind (Def_Id);
21407
21408 begin
21409 -- Defend against previous error
21410
21411 if Nkind (R) = N_Error then
21412 return;
21413 end if;
21414
21415 Set_Scalar_Range (Def_Id, R);
21416
21417 -- We need to link the range into the tree before resolving it so
21418 -- that types that are referenced, including importantly the subtype
21419 -- itself, are properly frozen (Freeze_Expression requires that the
21420 -- expression be properly linked into the tree). Of course if it is
21421 -- already linked in, then we do not disturb the current link.
21422
21423 if No (Parent (R)) then
21424 Set_Parent (R, Def_Id);
21425 end if;
21426
21427 -- Reset the kind of the subtype during analysis of the range, to
21428 -- catch possible premature use in the bounds themselves.
21429
21430 Set_Ekind (Def_Id, E_Void);
21431 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21432 Set_Ekind (Def_Id, Kind);
21433 end Set_Scalar_Range_For_Subtype;
21434
21435 --------------------------------------------------------
21436 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21437 --------------------------------------------------------
21438
21439 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21440 (E : Entity_Id)
21441 is
21442 begin
21443 -- Make sure set if encountered during Expand_To_Stored_Constraint
21444
21445 Set_Stored_Constraint (E, No_Elist);
21446
21447 -- Give it the right value
21448
21449 if Is_Constrained (E) and then Has_Discriminants (E) then
21450 Set_Stored_Constraint (E,
21451 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21452 end if;
21453 end Set_Stored_Constraint_From_Discriminant_Constraint;
21454
21455 -------------------------------------
21456 -- Signed_Integer_Type_Declaration --
21457 -------------------------------------
21458
21459 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21460 Implicit_Base : Entity_Id;
21461 Base_Typ : Entity_Id;
21462 Lo_Val : Uint;
21463 Hi_Val : Uint;
21464 Errs : Boolean := False;
21465 Lo : Node_Id;
21466 Hi : Node_Id;
21467
21468 function Can_Derive_From (E : Entity_Id) return Boolean;
21469 -- Determine whether given bounds allow derivation from specified type
21470
21471 procedure Check_Bound (Expr : Node_Id);
21472 -- Check bound to make sure it is integral and static. If not, post
21473 -- appropriate error message and set Errs flag
21474
21475 ---------------------
21476 -- Can_Derive_From --
21477 ---------------------
21478
21479 -- Note we check both bounds against both end values, to deal with
21480 -- strange types like ones with a range of 0 .. -12341234.
21481
21482 function Can_Derive_From (E : Entity_Id) return Boolean is
21483 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21484 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21485 begin
21486 return Lo <= Lo_Val and then Lo_Val <= Hi
21487 and then
21488 Lo <= Hi_Val and then Hi_Val <= Hi;
21489 end Can_Derive_From;
21490
21491 -----------------
21492 -- Check_Bound --
21493 -----------------
21494
21495 procedure Check_Bound (Expr : Node_Id) is
21496 begin
21497 -- If a range constraint is used as an integer type definition, each
21498 -- bound of the range must be defined by a static expression of some
21499 -- integer type, but the two bounds need not have the same integer
21500 -- type (Negative bounds are allowed.) (RM 3.5.4)
21501
21502 if not Is_Integer_Type (Etype (Expr)) then
21503 Error_Msg_N
21504 ("integer type definition bounds must be of integer type", Expr);
21505 Errs := True;
21506
21507 elsif not Is_OK_Static_Expression (Expr) then
21508 Flag_Non_Static_Expr
21509 ("non-static expression used for integer type bound!", Expr);
21510 Errs := True;
21511
21512 -- The bounds are folded into literals, and we set their type to be
21513 -- universal, to avoid typing difficulties: we cannot set the type
21514 -- of the literal to the new type, because this would be a forward
21515 -- reference for the back end, and if the original type is user-
21516 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21517
21518 else
21519 if Is_Entity_Name (Expr) then
21520 Fold_Uint (Expr, Expr_Value (Expr), True);
21521 end if;
21522
21523 Set_Etype (Expr, Universal_Integer);
21524 end if;
21525 end Check_Bound;
21526
21527 -- Start of processing for Signed_Integer_Type_Declaration
21528
21529 begin
21530 -- Create an anonymous base type
21531
21532 Implicit_Base :=
21533 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21534
21535 -- Analyze and check the bounds, they can be of any integer type
21536
21537 Lo := Low_Bound (Def);
21538 Hi := High_Bound (Def);
21539
21540 -- Arbitrarily use Integer as the type if either bound had an error
21541
21542 if Hi = Error or else Lo = Error then
21543 Base_Typ := Any_Integer;
21544 Set_Error_Posted (T, True);
21545
21546 -- Here both bounds are OK expressions
21547
21548 else
21549 Analyze_And_Resolve (Lo, Any_Integer);
21550 Analyze_And_Resolve (Hi, Any_Integer);
21551
21552 Check_Bound (Lo);
21553 Check_Bound (Hi);
21554
21555 if Errs then
21556 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21557 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21558 end if;
21559
21560 -- Find type to derive from
21561
21562 Lo_Val := Expr_Value (Lo);
21563 Hi_Val := Expr_Value (Hi);
21564
21565 if Can_Derive_From (Standard_Short_Short_Integer) then
21566 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21567
21568 elsif Can_Derive_From (Standard_Short_Integer) then
21569 Base_Typ := Base_Type (Standard_Short_Integer);
21570
21571 elsif Can_Derive_From (Standard_Integer) then
21572 Base_Typ := Base_Type (Standard_Integer);
21573
21574 elsif Can_Derive_From (Standard_Long_Integer) then
21575 Base_Typ := Base_Type (Standard_Long_Integer);
21576
21577 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21578 Check_Restriction (No_Long_Long_Integers, Def);
21579 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21580
21581 else
21582 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21583 Error_Msg_N ("integer type definition bounds out of range", Def);
21584 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21585 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21586 end if;
21587 end if;
21588
21589 -- Complete both implicit base and declared first subtype entities. The
21590 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21591 -- are not clobbered when the signed integer type acts as a full view of
21592 -- a private type.
21593
21594 Set_Etype (Implicit_Base, Base_Typ);
21595 Set_Size_Info (Implicit_Base, Base_Typ);
21596 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21597 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21598 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21599
21600 Set_Ekind (T, E_Signed_Integer_Subtype);
21601 Set_Etype (T, Implicit_Base);
21602 Set_Size_Info (T, Implicit_Base);
21603 Inherit_Rep_Item_Chain (T, Implicit_Base);
21604 Set_Scalar_Range (T, Def);
21605 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21606 Set_Is_Constrained (T);
21607 end Signed_Integer_Type_Declaration;
21608
21609 end Sem_Ch3;